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ABSTRACT

The continuation of three-particle partial wave scattering ampli-
tudes to complex values of the total angular momentum is discussed in
the iramework of potential scattering, We show that if there is a con-
tinuation for which a Watson-Sommerfeld transformation of the full
scattering amplitude can be made, then it is unique and determines the
behavior of the amplitude for large values of any single scattering angle,
A non-rigorous construction of such a continuation is given for an ampli-
tude which describes a scattering in which a given pair of the particles
is buund in lhe initial and final states. Except for simple kinematic
factors, the only singularities of this continuation are poles and
possibly isclated essential singularities. The results are generalized
to cases when exchange forces are present.

As a simple application of the results, we discuss a ¢rude
nuclear model to illustrate how sequences of rotational levels can be
described by Regge trajectories.

The behavior of Regge trajectories near two- and three-

particle thresholds is explored,



ChaEte T

II

III

IV

TABLE OF CONTENTS

INTRODUCTION

THE PARTIAL WAVE EXPANSION OF A MANY-
PARTICLE SCATTERING AMPLITULDE

EXCHANGE FORCES

ANALYTIC PROPERTIES OF A POTENTIAL
SCATTERING AMPLITUDE

I. The Partial Wave Schr;dinger Equation

2. Equations and Solutions for Complex Angular
Momentum

3. The Analytic Properties of the Scattering
Amplitude

4, Discussion

5. A Further Discussion of the Proof of Analyticity

v A SIMPLE NUCLEAR MODEL
VI THE THRESHOLD BEHAVIOR OF REGGE
TRAJECTORIES
REFERENCES
Appendices
A PROPERTIES OF ANGULAR MOMENTUM
EIGENFUNCTIONS
3 DIAGONALIZATION OF AL

ANALYTIC PROPERTIES OF THE FREE SOLUTIONS

Page

16

22

22

29

36
45
49

63

74

76

gl



-1-
I, INTRODUCTION

A simple description of two-particlc potential scattering ampli-
tudes at large momentum transfers has been given by Regge and others
(1-4) in terms of the poles in the partial wave amplitude at complex
values of the angular momentum, For a given energy E, supposec that
the singularity furthest right in the angular momentum plane is a pole
at position a(E) with residue B(E), At large momentum transfers,

t, Regge finds that the amplitude then behaves like

sin wol{kE

' e (E)
T(E, t) ~ iz_@‘ﬂ?ﬂ? {u elrrﬂ] (‘ZtE)a (1.1)

Here, the * sign reiers to the signature, a quantum number which
can be associated with every Regge trajectory in a two-particle prob-
lem (5).

The beauty of Regge's description lics in the fact that poles are
the only angular momentum singularities of a two-particle potential
scattering amplitude, so that at large momentum transfers the ampli-
tude always has the simple form of eciuation 1l.1. Moreover, these
poles can be correlated with the bound and resonant states of the two-
particle system. The energies of the bound states and resonances are
the values at which Re a(E) is a positive integer and the width of a
resonance is proportional to Im a(E). The guestion naturally arises
as to whether this simplicity persists when many-particle scattering
processes are considered.

This question is of intercst for several reacsons.
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(1) The crossing relation for two-particle relativistic scattering
amplitudes implies that the large momentum transfer behavior of the
scattering amplitudes is the high energy behavior of the amplitude for
the cross channel. This behavior is of great interest in current
theories of elementary particles because, if the ideas of Regge are
applicable to relativistic amplitudes, the directly observable high
energy behavior of one channel will be related to the low energy
particles and resonances exchanged in the cross channel {5-6}, At
high energies, howcver, two-particle channels are always coupled to
channels of higher particle number through the possibility of particle
production. This coupling is evident from the unitarity relation for
a two-particle scattering amplitude fA+B"*A‘+B" which can be written

schematically as

™ fatp—artn’ Z fatp—artpriavsgi—an
(intermediate states)"

+ f.A-l'B—"A“’E'B“'FC"fA"+'B"+C”_"Al+B'+ . _l

(1. 2)
In turn, the amplitudes i.A+B—"A'+B“-C' will be related to the amplitudes

f If the behavior of many-particle amplitudes at

A+B+C—~A'+B'+C""
complex values of the angular momentum is gualitatively different from
those involving only two=particle c'hanuels, we may expect it to be re-
flected in the properties of the relativistic two-particle amplitudes.

In particular, it is important to determine whether this coupling gives

use to cuts in the angular momentum plane which would complicate the



-3-

simple asymptotic behavior of equation 1.1, If cuts are present, the
dynamnical mechanism which produces therm should be isolated and their
positions and discontinuities investigated. Mandelstaim (7) has recently
made an important stcp in this direction, By applying the unitarity
relation (equation 1. 2) to a particular class of Feynman diagrams he

has shown that angular momentum cuts can be expected in relativistic
two-particle ami:litude.s. His work will be discussed in more detail
later in the thesis.,

Three-particle potential scattering provides a simple starting
point for investigating the analytic properties of many particle ampli-
tudes and a model in which soms degreé of figor can presumably be
obtained, If past experience is a guide, potential scattcring should
pessess many ol the features of the relativistic problem but not all of
them. A potential scattering model, however, should serve to isolate
the dynamical mechanism through which these relativistic fcatures
arise. In this way the results of a potential scattering model can give
some direction to investigations of the analytic properties of relativistic
amplitudes.

{2} The continuation of many-particle potential scattering
amplitudes to complex values of the angular momenturm is of interest
in its own right because of possible applications to scattering processes
in which nuclei are involved, For instance, onc would like to urder-
stand in more detail how sequences of nuclear rotational levels can be
correlated with definite Regge trajectories. Before any useful approxi-
mate descriptions can be made it is desirable to know the analytic

properties of the exact amplitudes.
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For these reasons, we examine in this thesis the behavior of
many-particle potential scattering amplitudes at complex values of Lthe
total angular momentum. For simplicity, we have considered only
amplitudes which involve spinless and non-identical particles, Where
specific assumptions about the potential need to he made, we will assume
the particles are interacting through two-body Yakawa forces.

In Section II some general propertics of the Watson-Sommerfeld
transformation for many-particle amplitudes are discussed., Here,
we will make a specific but weak assumption about the behavior of the
amplitude in the complex angular momentum planc, We will assume
what is equivalent to the statement thaf the amplitude has at most a
polynomial behaviar at large complex values of the cosine of a scattering
angle. One can then show that & continuation which satisfies this
assumption is unique and determines the asymptotic hehavior of the
full amnplitude in the cosine of any single scattering angle, The problem
of finding the asymptotic behavior of the amplitude in this wide class
of momentum transfers thus reduces to finding a single analytic con~-
tinuation of the partial wave amplitude in the complex angular momentum
plane.

In this section we also discuss the continuation of the partial
wave bchrSdinger equation to complex values of the angular momentum.
If the two-particle case is a guide, the solution of the analytically con-
tinued equation will yield the partial wave amplitude from which the
large momentum transfer behavior of the full amplitude can be deter-
mined, For integer values of the angular momentum, 1, the partial

wave Schradinger equation is a set of (2L +1) coupled equations, one
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for each allowed value of the non-conserved projection of L. on an

axis fixed in the system of particles. For complex values of L we
find a much larger set of coupled equations in which the projection

can assume any integer value,

The results of Section II are gencralized to the case when exchange
forces are present in Section IIL

Although the discussion of these sections is couched in the
language of potential scattering,it is applicable to the Watson-Somme rield
transformation of the relativistic amplitude provided its partial wave
amplitudes obey the weak analyticity assumption.

Scction IV contains a discussion of the analytic properties of a
class of potential scattering amplitudes which are at once interesting from
the point of view of real processes and simple to calculate. These are
the amplitudes which describe three-particle scattering in which initially
and finally a given pair of the particles is bound. A proof of analyticity
is outlined which, although non-rigorous, indicates that with a proper
continuation thesc amplitudes will have only dynamical poles and possibly
isclated &ssentizl singularities in the angular momececntum. A Watson-
Sommerfeld transformation of the full amplitude can be performed to
yield a simple description of the large momentum transfer behavior
analogous to equation l.1. This justifies the assumptions used earlier
in deriving the general propertics of the Watson-Sommerfeld transfor-
mation for this class of amplitudes,

The particular continustion explored here is compared with some
work of Newton (B) and Drﬁmmond {9} who give a different continuation

for these amplitudes in which cuts appear in the angular momentum
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plane. Their continuation, however, will not give the asymptotic be-
havior of the full armplitude in any momentum transfer. Indeed, if the
proof given here can be fully justified, the continuation given in this
thesis is the unique one from which the large momentum transfer
behavior can be determined,

The results of Mandelstam for the relativistic problem are
shown not to be in conflict with the analytic properties given here
since they explicitly deperd on the possibility of particle production.

Sections V and VI contain two simple applications of the previous
work, In Section V a crude nuclear model,which consists of a single
particle outside of a rigid core, is considered at complex values of the
total angular momentum, The presence of the larger set of equations
discussed above and the corresponding larger set of amplitudes allows
the theory to describe sequences of nuclear rotational levels whose
ground state spin is greater than zero or one-half, At cvery integer
the trajectory can choose to appear either in a physical or unphysical
amplitude. If it appears in the unphysical amplitudes for low spins and
in the physical quantities for higher values,a Regge trajectory describes
such a sequence of levels.

In Section VI the behavior of Regge trajectories at certain
thresholds is determined, Specifically, we consider the behavior at
the lowest threshold in the case when it is for a) the scattering of a

single particle off a bound system, and b) three free particle scattering,



II. THE PARTIAL WAVE EXPANSION OF A MANY-PARTICLE
SCATTERING AMPLITUDE

Every many-particle system has three degrces of freedom wkich
correspond tc total rotations, Invariance of the Hamiltonian under
these rotations implies the conservation of the total angular momentum
L and its prejection on a space~fixed axis M. The coordinates which
specify rotations of the entire system we may take to be threc Euler
angles ¢, 6, ), relating a "space-fixed" an(;] a "body-fixed” set of
Cartesian coordinate s.* There are many ways cof specifying these
angles. Each way corresponds to a definite convention as to how the
nody-fixed axes are fixed in the system of particles. *

A complete set of commuting observables conjugate to the three
Euler angles are EZ’ LZ and LZT, the total angular momentum and
its projection on the space-fixed and body-fixed =z-axes respectively.
The eigenfunctions of these quantities are discussed in Appendix A and

defined by:

L2Dr (9.6, 1) = L(L+)DE (o 8,9)
L,Dyic(@:8 , ) = MDYy (0.8.4) (2.1)

L, Dyyx(#:64) = KD (o, 8:4)

[ —
If LX, Ly’ LZ are components of L, a rotation R through ¢,8,{ is
given by ich,a il.. © iLZ'4J

Rig,0,¢) = ¢ e Ve
The conventions usecd in this thesis are those of Ref. 10.

deok
For some examples see Section IV and Ref. 11,
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Consider the scattering of N particles whose initial momenta

—_— —
Pis PosesesPyyg will be denoted collectively by p. The scattering wave
— — —
function is a function of the coordinates FppToreees Ipp denoted col-
— — e
lectively by r andthe momenta of the incoming wave; ¢ = {{(r, p).

Denoting the Euler angles of the coordinates by Q_, and those of the

momenta by Qp, we may expand

E

W7, p) = (81:2)'12 (LAY e (7, PID 4y ) Dy (2)

- on)1 ) Lk pnk @, ) (2. 2)

The sum ranges over positive integral values of L and integer M, K, K!'
such that [M| =1L, |[K|sL, K | = L. The last line follows from

the addition theorem (10) for the cigenfunctions of fz

R Lz’ L;, where
Qrp arc the Euler angles of T with the body-fixed axcs for H; used
as the space-fixed axes. Similarly, the scattering amplitude may be

expanded as

-1 —- 2.-1 1. .
<p |T|p> = (87" Z(ZLH}TK'K(p s PR (@ ) (2.3)

If \7 is the kinetic energy, the Schradinger equation is
(T2 -E+ Vir] w(z,5) =0 (2.4)

—
Since the kinetic energy is at most quadratic in the components of 1.,
it is straightforward using equation A.1 to project out the angles

and ¢ obtaining a partial wave equation
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Z [T nl) + (V(2) = E) 6 il Wl dr, p) = 0 (2.5)

K

The potential energy and energy terms are rotational scalars and hence
diagonal in K, Again the sum is over |K"|= L,

For the case of two-particle potential scattering, the scattering
amplitude for complex values of the angular momentum is found by
writing a radial Schradinger'in which L appears as a parameter and
then solving for the scattering solution at complex values of this
parameter, The amplitude can be read off of the scattering solution
and is the unique one for which a Watson-Sommerield transformation
of the full amplitude can be made to determine its large momentum
transfer behavior.

We will try and follow this program for the case of many particles.,
A difficulty is that in equation 2.5, L not only appears as a parainelier
but also determines the number of coupled equations., Specifically,
there are (2L 'l-l}2 equations, one for each value of K and K'. How
can L become complex if it determines the numher of equations?

The difficulty can be overcome by defining additional unphysical
equations and unphysical wave functions which are not coupled to the
physical quantities for integral values of 1. and such that the number
of equations docs not depend on L. Indeed, since equation 2.5 contains
only the matrix elements from equation A,]l, we can obtain a sensible
set of equations at complex L simply by ignoring the restrictions on
K, K', and K" in equation 2.5 and allowing the sum to range over all

integral values.
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L
KK'

complex L so that they form a matrix with K and K' ranging over

An equivalent way of doing this is to continue the D to

all integers from - to tco. This is discussed in Appendix A.
A

Since L. 2 commutes with the Hamiltonian, we can demand that

j9.0]

VH(FLB) = (8 Z (LA (PP @ ) (2.6)
KK'=-co

solve the full Schrodinger ecuation 2. 4, Projecting out the angles
and ¢, we arrive at the infinite set of coupled equations mentioned
above. Since the DII;K' at integral values of L are non-zero orly if
K" and K' are simultaneously greater than or less than 1 in absolute
value, the equations with (K| = L, |K'|= L will decouple from the
rest and coincide with the physical ones. This can also be seen irom
equation A.l. The presence of unphysical wave functions is familiar
from the problems involving the scattering of particles with spin (12, 2).
L now occurs only as a parameter in the larger set of equations and
the solutions can be cxamined at its complex values.

The asymptotic behavior of the full amplitude can be determined
from the singularities in the angular momentum plane if the amplitude

has the following properties:

(1) TLI DL, (§2) is an analytic function of L with singularities
K'K KK Y

consisting of poles, isolated essential singularities, and cuts confined
to the region Re L < LD for some LO.

{i1) T;'K decreases sufficiently fast as |L]““ oo so that the integral
in the Watson-Sommerfeld transformation over a large semi-circle

in the right-hand plane tends to zero as its radius becomes large,
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In Section IV we will outline a procof that by solving the
Schradinger eguation continued to complex L as above, an analytic
continuation of certain amplitudes can be obtained with properties (1)
and (ii), and, moreover, that the possibility of cuts can be dispensed
with.

Under assumption (i), the partial wave expansion can be written

= . 1 g‘ {(2L4+1}dL ..L L
<p'|Tlp>= a2 Z , sl L-K'KPK'k@
m 1
KK'=-co CKK'
L

Here, we have used the symmetry relations of the DKK,(Q) for integral
L (10), so that if Qp'p derotes the angles ¢,0,4, w denoies w-y, w-0,p.

The contour C encloses the real axis Re L > |max (|K|, |[K'|)- LZ]

KK'
It is assumed to exclude all peles but those of sin nl. If a cut crosscs
the real axis in this region, it would be necessary to subtract out its
contribution.

Under assumption (ii), the contour can be deformed to a line T’

parallel to the imaginary axis at Re L = - 1?, yielding

- — 1 2L.41) dL L L
<p'|Tip>= f (2L4) Z T i D 1)

2, 1 1.
16725 ,r sin Sy
. a.{7T)
dT 1 1
+Z ;;sin 1T(1.1"T) 2 pK‘K(T)DK'K(w)
i K'K
1 . %n % .
WA TN Brik Prrgle) (2.7)
n

n K'K

i
where Pt and BKI?K are simply related tc the discontinuities and -
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. . L .
residues of TK'K respectively,

For large values of 7 = cos 0, DE,K&J) behaves like (2),

1. L L
Do} ~ g8pigle, b)z (2.8)
for some g]ﬁ‘K. The asymptotic behavior of the amplitude is then
determined by the position of the singularity furthest right in the L-
plane. For instance, suppose it is a pole at position a, then
- - . a a ) e
<p'[Tip>~( Z BK,KgK,K) z (2.9)
K'K
The continuation which satisfies conditions {i) and (ii) and thus
determines the asymptotic behavior is unique. The uniquencss may

be established by considering the partial wave expansion of

S.dhpgdrpe_lM(’oe_quJ <P |T| P> (2.10)

o

. .
mires (13)“ 31"19{11:‘ sunnose there are

iscussion of Squires {13), 3Briefl ¥, SUpPPp

it

nd applying the
two continuations ’I‘L (1) and TL (2) which satis{y the conditions (i)
MN MN 4

and (ii) and agree with the physical valucs on the integrals, then

L 1L L b
Thp () + (L-Ly) {TMN(I) } TMN(Z)J (2.11)

will also. The quantity in cquation 2.10 has a unique asymototic behavior
L
which we may say is weaker than z ~. IUf we take Re L1 > Re Lo’ we

must have

L L

1 1
) = Tyn(2

TMN(l {2.12)
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in order for the continuation 2,11 to give the correct asymptotic be-

havior, Since this holds for any L

for which Re L., > Re L, , it
1 1 o

must hold everywhere,

In a two-particle scattering problem, there is essentially only
one scattering angle. For tkree-particle scattering, however, there
are many, Each may be characterized as an angle betwcen =z-axes
fixed in the initial and final systems of particles, As we have mentioned
before, there are many ways of choosing how the body-fixed axes arc
fixed in the system of particles and hence many scattering angles. We
will now show that it a continuation exists which determines the asymp-
totic behavior in one scaltering angle, then it determines the behavior
in all,

From a singlc choice of body-fixed axzes, all others can be found
by rotations in the body-fixed frames of the coordinates and momenta,
Let ﬂl and QZ be two choices of Euler angles and W the rotation
which sends Ql and 92. For integral values of L one knows how
the DiiK transform under this rotation since they form a representation

of the rotation group
L I SR N & L
DMK(QZ) = DMK(WQ],) = Z DMN(W)DNK(QI) (2.13)
N

In Appendix A it is shown that the Di‘&K for complex L also obey
equation 2,13 {(except for some angles where it becomes singular) and
thus also form a representation of the rotation group. To determine

. . L . .
how the partial wave functions YKiK transtorm under a new choice of

— —
body-fixed axes, ceasider the rolalivnal scalar t.’JL( r,p}) of equation 2. 6.
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Denote by W1 the rotation in the body-fixed coordinate frame and by
W, the rotation in the body-{ixed momentum irame. These will be

functions of the internzl variables r and p respectively. Setting

Q = wW.Q W, we have
Tp 27rp 1
L,— = _ 2,-1 L L . 1
g {r,p) =(8x7) z (2L+1)LPK|K(I'.P)DKK,(WZQrPWI)
K'K

- (559 (2L p) > Dy (W) Dy (@)D (W)

K'K . N'N
{2.14)
The wave finctions therefore transform like
L S L L L
L!J;\I'N(r’ P) = Z DN'K‘(WI)LPK'K(I" P)DKN( WZ) (2- 15)

K'K

Similarly, if rotations are performed in the initial and final momeonta so

that w = Yzw'Y the amplitude transforms like

1

Lo\ L L L
T-N'N“Z DY T grgPrk{Yy) (2.16)
KK

Since terms with different complex angular momenta L. do not
mix under rotations, a singularity which determines the asymptotic
behavior in one representation will also determine it in any other. For
instance, if the amplitude has a large =z behavior given by equation 2.9,
then the asymptotic behavior in any other scattering angle z' would be

given by

— — 1
<Pr;T P> (z BI?IKg?{IK) zlll {2,17)
K'K
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where

1
ISEK - Z Dﬁ'K'(YZ)B;]"NDaN(Yl) (2.12)
NN'

B

and Y1 and Y‘2 are the rotations appropriate to the changes of body-
fixed axes in the initial and final states respectively.

Since the continuation which determines the asymptotic behavior
in a given set of scattering angles is unique, we conclude that there is
one unique continuation (if it exists) which determines the asymptotic
behavior in any scattering angle. This conclusion does not depend on
the non-relativistic model being considered here. It is a general
property of the Wateon-Sommericld transformation and wilil hold for

the relativistic amplitudes if they satisfy assumptions (i) and (ii}.
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III. EXCHANGE FORCES

In the non-relativistic limit of a problem in which particles
can be created and destroyed at a vertex, certain non-local potentials
can be expected to occur, In particular, there is the class of potentials
which rearrange the positions of the particles but otherwisec act in a

local way. Such potentials have the {form

- n"‘"’P —_—
szhv(rl,...,rN)Pn {(3.1)

n
where P is a member of the permutation group on N objects, We
will now consider the simple generalization of the prececeding section
necessary to continue to complex values of the angular momentum ampli-
tudes produced by such forces.

The full wave Schradinger equation 2.4 can be written

7(T)-E + xz VAE)P_1U(T.p) = 0 (3. 2)
n

Operate on this equation with the permutation Pi¢ Since the permutations

form a group, we have
PP = Z @;‘jpj (3. 3)
J

n . . . . .
whe re Gju is a representation of Pn. The indicated operation then

gives:

Z [(T-E)s "Z VE(EIPTT (F, p) = 0 (3.4)

J n
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where
Jiny=Jp;7), vi(r)=v®T), (7.9 =4P7.7)

This is a set of six coupled equations on the six unknowns Lpi(—;)
involving only local potentials, The corresponding set of partial wave

equations can then be continued to complex L. as discussed in Section II,

and every coefficient will bé bounded by a polynomial for large
The presence of exchange operators, on the other hand, could entail
factors with asymptotic behaviors like eii“L and perhaps lead to a
violation of assumption (ii}.

The original equation 3, 2 was solved with the boundary condition

that it approach a plane wave ¢ as the potential tends to zero.

Wr,p) > &{T,p)y A—0 (3. 5)

The same solution may be generated by svlving equalion 3, 4 with the

boundary conditions

b (F,p) o, (T,p) =o(P, T, p), A0 (3. 6)

—

If P1 =1 the scattering solution is then given by Y(r,p) = ¢1(?,?).

Equivalently, we can write

W, p)—zdl(r ) (3. 7)

where Lliij has the boundar'y condition
V(TP = 69 (TB) Ao (3. 8)

For a plane wave, a permutation acting vn the coordinates is the
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same as the conjugate permutation acting on the momenta

o,(7,P) = $(P,7,p) = o(7, P p) (3.9)

Every permutation of the momenta can be written as the product of a
transformation Q‘l which changes the lengths of the rel ative momentum

vectors p and a rotation of the body-fixed axes Ri'

P. =Q.R, (3.10)
1 1 1

The partial wave expansion of tbi(—;,ﬂ};) can then be written
6.(7,p) = (8wt Z (2LH)OL . (v, Q) PIDE L (RIQ INCRY
jt TP K'K'" KK' .

LK'K

The boundary condition for the partial wave functions of s, .(?,—5) are
Y ij

then
L . N\, L R 7 1
LEJ.]_KI’ jK(r’ P) 6.13 L ¢K'K"(r' QJP)DK"K (RJ ) (3- 12]
Kﬂ
Consider the wave funcrions E?K' iK defined by the boundary coaditions
$L — &, <1> (r Q p) (3.13)
iK', jK K'K'™? *

Since the Schrddinger equation is lincar, multiplication of the boundary
condition by the constant matrix D%(’K(R;-) only multiplics the solution

by the same matrix,

L +
1K', 'IK Z ll‘.jl{l JK“ DK"K RJ) (3-14}

The scattering solution, Egquation 3.7, can then be written
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Wz, p) = (8n2)'12 (2L+1)Tpll‘K.’jKD]gK.(R;§zri) (3.15)
LK'Kj

Similarly, the partial wave expansion of the amplitude becomes

-t 2,-1Y ~L Lo
<p |T|p> =(81) Z (2L+1) Tu«;‘.jK(P"P)DKK'('RjQrp_’ (3.16)
LK'Kj

where the amplitudes TiLK' K 3T computed from the scattering
1
L

solutions miK',jK'

Equation 3.4 has only local potentials. The boundary condition
of equation 3.13 has the same large |L] behavior as that for a partial
wave cxpansion of cquation 3. 5. If there is an analytic continuation of
the problem of a single three-particle channel with local potentials
which satisfies criteria (i) and (1i) of Section II, it is not unreasonable
to expect that the same result holds for the six coupled three-particle
channels of equation 3, 4, ffK', % can therefore be assumed to satisfy
conditions (i) and {II}) and the Watson-Sommerfeld transformation of
equation 3,16 can be performed.

For non-identical particles, equation 3.4 may not be further

decoupled and z given pole will appear in all the analylically continued

partial wave apiplitudes. However, if

m; = m, = m, and [Pi’ vl =0 (3,17}

as in the case of identical particles, z further decomposition of the set

. _ . n
of equations may be obtained by reducing the regular representation @ij.
The amplitude can be decomposed into a sum of terms {linear combina-

tions of the arguments of equaﬁon 3.16) for each irreducible representa-

tion of the permutation group, The poles in one of these terms need not
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appear in any other, This is the analog of signature in the two-particle
case, If the particles are truly identical, (and not, for example,
differently charged and hence distinguishablc pions interacting by
nuclear forces) only the poles of the symmetric or anti-symmetric
amplitudes could correspond te physical statec.
Let us consider the simplc example of three particles using

the choice of Euler angles discussed by Blatt and Derrick {6}. In these
coordinates the body fixed =z-axis is taken normal to the triangle formed
by the three particles and directed so that a right handed screw will
advance along it if turned successively through particles 1, 2, 3, and
back to 1, Orthogoﬁal x~ and y-axes are defined invariantly as dis-
cussed by these authors, for instance by taking the x-axis to liec along
the principle axis of the triangle with greatest mmoment of inecrtia.

 With these definitions an interchange of particles changes only

the sign of the =z-axis

n

L ’ L
PiDK'K(ﬁ_w * TT-B,QO ) DK|K(T|"“‘-|J, Tr-e,§9 ) N 61 = -1

DR (m-4,8,0), 5, =41 (3.18)

whe re Si is 4l or -1 as the number of interchanges in Pi is even
or odd., The remaining variables p may be taken to be the relative
momenta Pipt Pp3r Py3e A Regge pole term in the full amplitude then

has the form

(Sin Tru)-l Z [ F;l(lK(pll P)DEIK("T"LP: TI'—B, ‘P)
K'K

+ Gruk(p' PIDRi(m-4,8 , 0)] (3.19)
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If conditions of equation 3.17 are satisfied there will be three
clasgses of poles for the symmetric, anti-symmn:etric and mixed repre-
sentations of the permutation group on three objects. Equation 3.19

will then have the corresponding symmetry.
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IV. THE ANALYTIC PROPERTIES OF A POTENTIAL
SCATTERING AMPLITUDE
1. The Radial Schradinger Equation

Regge was able to obtain a simple description of the large mo-
mentum transfer behavior of two-particle potential scattering amplitudes
because the only singularities in the complex angular momentum plane
were poles. In this Section we will discuss the specific analytic
properties of a many-particle potential scattering amplitude by sclving
the analytically continued SchrSdinger equation discussed in Section II
with scattering boundary conditicns. We will find that here alsoc there
are no cuts in the angular momentum plane and a simple expression
for the asymptotic behavior of the scattering amplitude can be obtained.

Since any multi-particle system has only three degrees of rotational
ireedom, all of the angular momentum featares of the many-particle
problem are alrcady present in a system of three particles. We will
therefore be concerned in the bulk of this section with three-particle
scattering and later indicate how the gencralization to non-relativistic
many-particle amplitudes can be made, For simplicity, we are con-
sidering spinless and non-identical particles interacting by means of
two-body Yukawa potentials,

In a three-particle scattering process there arc several amplitudes
that can be discussecd depending on how much of the interaction is turned
off in the asymptotic states. One can have cithcr three free particles or
a bound pair with the third free in the initial and final statcs. Each
possible amplitude represents a different class of scattering boundary

conditions (14), To avoid discussing these various amplitudes at length,
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we will concentrate on the particular class of amplitudes in which initially
and {inally particles 1 and 2 are bound. This particular class is at once
interesting from the point of view of real processes and simple to calcu~-
late. |

To determine these amplitudes we will exploit the kinematical
similarity that three-particle scatte ring bears to the scattering of two
particles with spin. If initially and finally two of the three particles
are in a definite state of their relative angular momentaum £, then the
scattering is kinematically the same as the scattering of a composite
particle with a spin £ and certain other internal degrces of freedom.
Of course, this spin is not conserved and there is a continuous infinity
of internal degrees of freedom corresponding to the energy of the com-
posite object,

In order to study the solutions of Schradinger's equation, we will
introduce a specific coordinate system and make explicit the procedures
cutlined in Section II. We begin by supressing the three degrees cf
freedom corresponding to the total center of mass., The wave function
then depends on fwo position vectors which may be taken to be ?, the
relative coordinate of particles 1 and 2, and —l:? the coordinate of
their center of mass relative to the third particle (see figure 1), These
coordinates were denoted collectively by T in Section II, The scatter-
ing wave function also depends on the quantum numbers which label the
incoming wave (denoted by I)P in Section [I}. These will be chosen to be
ﬁ, the total momentum of the composite chject 1 and 2, and the quantum

numbers which characterize its internal wave function, The latter labels
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will be taken to be £, the relative angular momentum of particles 1 and
2, their "helicity”, m=2:P/|F [, and their energy, pz/Zm, in theix
own center-of-mass system. Since P. (E-T) =P. (Exg) = 0, the
helicity is also the projection of L on B. The total conserved

energy is

2
' (4.1)

ol

2
B S
21

)

In
Here, if oy, My, M, are the particle masses, we have

I, Im (m.+m._)Jm
1 2 mt =1 23 (4. 2)

1T my+ m,+ m,

Explicitly, the wave function is written: & = ¥f (2 p‘q)l?;_r—, E] . This
choice of varizbles is clearly suitable for pursuing the analogy with the
scattering of particles with spin.

Now introduce polar coordinates R,0,p of R relative to some
arbitrary polar axis, and r,f, ¢ of r defined with R asa polar axis.
It is also convenient to introduce a fixed and arbitrary angle a' to
define the origin of a (sec figare 2).

The three angies «,08,u =a + a' are the Euler angles discussed
in Section II. The corresponding body-fixed z-axis lies along f{. The
potential, which depends only on the interparticle distances, is a function
of the remaining coordinates, R, r, 3.

We will now write down the SchrSdinger equation in these coordi-
nates and make the partial wave expansion of Section II, The full

SchrSdinger eqw tion for the wave function fI’(_r", E) = \I'(E,_;)/ Rr is

{(with T =1)
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1 (9 1 1 {8 (L-7) -
[E(BTB_TE) +2m‘("'“_28R ‘—"R'—Z"—-) +E-V(R,r.ﬁ)] d{(R,r) =0

(4. 3)

Here, L and £ are regarded as differential operators in the angles.

The wave function can now be expanded in a complete set of
functions for the variables r, B, a, ¢,6 obtairing a set of coupled
dilfereniial equations in the coordinate K. 'To do this, we make the
partial wave expansion of equation 2, 2 taking P to be the gspace-fixed
z-axis, We will thus be expanding in eigenfunctions labelled by 1, its
projection on the space-fixed axis 7, and the projection on the body-fixed
axis 7'

n'= L. K/|R| (4.4)

We also expand in the eigenfunctions of the relative angular momentum

—

TZ and its projection on —li’. Since I:’ R =?o ﬁ, the combined orthogonal

eigenfunctions may be written

2L+ L —L
y s Dm:(?.ﬂ,a )Y}Z.(ﬁ, a) {4.5)

Finally, we will expand in a complete set of soluticns for the variable r.

These will be the solutions ¢£(p, r) of the two-particle problem

-

) ,
d 2 £{L+) . _
[-Z;z +p- _...._1.:.2._... - va(r}_lqu{p’ r} =0 (4. 6)

The complete expansion then becomes
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tblf(fpﬂ) F;?s E J = E Z d)ﬁd'p'ﬂl,ﬂpﬂ(R) Lpﬂ 'y )
L 2'p'n'

X D} (0,8 ') Y (B o) (4.7)

The sum is over the discrete and continuous spectrum of the two-
particle problem in p, over integral values of f with £ = |n'|, and
over 1n' with I'I]'l = L.

In projecting out the equations which govern the ¢;", \ (R},

p'n'E pn
only the matrix elements of 1. f and V{R, r,p) are not readily
evaluated. In order to evaluate the former it is convenient when con-
sidering rotations generated by L to maintain a fixed and let a'
vary, while when considering rotations gencrated by T, we keep a'
fixed and let @ vary. In terms of the spherical components {10) of T

—_

and £,

Li¢,0,0")* £(pa)=-L2g -L £, +L ¢ (4. 8)

o o

The matrix elements of equation 4, 8 are then given by equation A.1,
remembering that 7 is an angular momentum like L, and that

L
T,(p, @) = Dy (a, B, 0),

Define
1/2
2, = [(L-n)(L*'nﬂ)(f )8 m+1>] (4. 9)

- ' : 3 * | n'*
Vf oL p " 2m GTI'TI ‘S d'r ‘4‘2 Wp', 1) Yﬂ, (B, a) l: V(R, v, B)-V(r):l

X gy p,y TP, )
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where V{(r) is the interaction between particles 1 and 2, The equation

becomes {15):

L
g v ]% ot £ ®)

[ a ppi2 | LALAL) e +1)-2n'2

1 L L
"R [an'q)f prnta, £pn R T B aip iy, gy J

L
- Z | Vﬂ lpl,nI'£ "p"ﬂ"(R) ¢£ "p"?’}",fpﬂ(R) =0 (4.11)
2Mphan
This can be written in a matrix form as
2 L
[—d—z + p2. A—z - V(R)1 HR) = 0 (4.12)
dR R -

The intermediate M" sum remains restrictedto |[n"| = L.

This equation displays the formal equivalence of the three-
particle problem with a problem having many two-body channels, In
equation 4, 7 we can regard ¢£(p, r)‘x]n(ﬁ, u) as the internal wave
function of a composite particle composed of particles 1 and 2 which
scatters off particle 3, The equation which governs such a set of two-

body channels is equation 4,12,

2. The Equations and Solutions for Complex Angular Momentum
We continue the equations to complex L as discussed in Section I,
The restriction that |n'| = L is removed, and the coupled equations are

considered for arbitrary integral values of m'. When L is an integer,
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ar, vanishes thus guaranteeing that the physical equations will decouple

from the unphysical ones.

In order to examinc the analytic properties of the solutions, it

A

ig convenient to introduce a wave function, ¢, which obeys an equation

all of whosc cocfficicnts are entire functions of L.

o = polp
where*
= 5,16 16, [(L-n) {{Ln)1] "L/2 (4.13)
Pepn,d 'p'm' = P24 pp!yn! LT ' '

The potential, a function of the interparticle distances, is
independent of the angle a and hence its matrix elements are diagonal

in 7 (see equation 4.10). The equation governing <i>L can then be

written

‘L
4 +p?. & ‘V(R):]cb (R) =0 (4.14)

Ll

Here, AL is defined in the same way as AL with a, replaced by
!

% 1/2

a, = (L-)[ (£ -n}(2 +ni1)] (4.15)

-

Every clement of A~ and therefore every element of the matrix of
equations is an entire function of L.,

We will now examine the anzalytic properties of the solutions to
cquation 4.14 for two simple classes of boundary conditions. From these

solutions, the solution to the scattering nroblem can be constructed and

™
For complex z we define z! = T'(z+1).
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the analytic properties of the amplitude determined.

In the succeeding paragraphs, many guestions of convergence will
of necessity be left unanswered. We will treat the coupled set of equa-
tions in equation 4.14 as though it were a finite matrix of equations.

This can be done by introducing a cul-uff in the intermediate p and f
sums. The true S-matrix will be the limit as the cut-oif tends to
infinity of the S-matrices computed from these truncated equations.

The analytic properties we derive are those of each term in the sequence.
The potential which couples the equations together is independent of the
angular momentum, so it is perhaps plausible that the limit has the same
analytic properties as each term in the sequence. We are well aware
that mathematically this may not be the case, and we have been unable

to find a rigorous proof for the statement.

Certain intermediate steps in the proof, such as the convergence
of the several power series used to define the solutions, will also not
be discussed in detail in this thesis. Some of them, however, have
been proved rigorously and we will indicate in a later paragraph which
these are.

We first obtain solutions of equation 4.14 specified by boundary
conditions at the origin, In order to examine their analytic properties,
wce employ the standard power series technique (16, 2} and look for

solutions of the form

00
¢L(R) = RUZ a{n, U)Rn (4.16)
n=0

. T . . -
Here, o and a are matrices. R° is a matrix whose diagonal clements

o
have the form R £ when ¢ is diagonal with eigenvalues o

.
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Near the origin, the matrix elements of a Yukawa potential
1

increase no faster than R~ and, consequently, one can expand the
expression V(R) - Pa as
2
V(R) - P% = Zi b{m)R™ {(4.17)
m=-1

The Schradinger equation then dete rmines a recurs’on relation for the

cocificients of the power se ries-which is
ntl
[ (ctn+2){c+nH) - AL] aln+2,0) = Z bi{n-k)a(x, o) {4.18)
k=0

The first term in the recursion relation is

[or(c-1) - .;L\L] a{0,c0) =0 (4.19)

£

We demand that ¢ and AL be simultaneously diagonal, AL is the
orbital angular momentum cof particles 1 and 2, L-7. Its eigenvalues,

as discussed in Appendix B, are given by
(L+EML+E +1) € integral, |€. P (4. 20)

