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1. ABSTRACT
This thesis attempts to estimate the power spectral density of

low frequency semiconductor noise over a range of 10 decades, from

s N

a microcycle (10~ cps) tolOkilocycles (10 cps). Tt is concluded
that the behavior is more complex than a simple inverse proporbionality
to frequency. The spectrum is approximately 1/f in the region around
100 cps and changes gradually to l/f2 as the fregquency decreases to
the microcycle region. These spectra represent the nolse properties
of the first stage transiastors of a grounded input de Aifferential
amplifier. The estimated spectra at very low frequencies still
reflect strong temperature influences.

In order to obtain these measurements it was necessary to
ceontrol the temperature enviromment of the ncise source. This was
accomplished first by passive attenuation and later by active control.
The noise source was placed in a circulating oil bath whose temperatire
was sensed electrically and controlled to a .OOlOC range. In conjunction
with the temperature control activity the power spectral density of
room temperature variatione was estimated in the frequency range from
.1 cps down to 5 x 10-8 cps. Other spectra of interest estimated over
the low frequency range were for line volbage emplitude fluctuations
and operational amplifier drift. A DPrief description of the equipment
constructed to obtaih sample functions of the noise processes is

included.
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The analytical portion of this work is concerned with the
mathematical techniques employed in obtaining power spectral density
estimates. The basic scheme employed is that of Blackman and Tukey
which consists of estimating the auto-correlation function and
Fourier transforming the result. A formula is developed for
calculating the variance of the spectral estimator actually employed
in the computations. The bias and variability are presented for
the estimator when estimatling a spectra contalnlng a spectral line.
A confidence interval approach to the variability of the spectral
estimator is examined. A confidence interval which depends only on
the dats is constructed around the spectral density estimate. A
technique for utilizing the available knowledge concerning the
expected varigbility of the spectral estimate is developed. The
result is formulated in terms of a maximum 1iklihood estimator for
the average spechtral density when several independent egtimates are
available. Some possible sources of low frequency bias in the
spectral estimate are considered in detail. Among these are the
effect of mean removal and certain deterministic disturbancecs such
as steps. DPrewhitening for l/f and l/f2 gpectra is examined and
shown to lead to very great improvement in the spectral estimate.
Some suggestions as to more efficient methods of spectral

estimation data collection and processing are offered.
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2. INTRODUCTION

Does 1/f Noise Really Exist?

The internal noise genersted by solid state devices has long bheen
known to have an "excess" component - that is, a component in
addition to the thermal or Johnson Noise Model. This noise is usually
designated as 'excess'" because of the distribution of the extra
energy with frequency; not because of a large deviation from the antici-
pated total rms value. The power spectral density of this excess
nolse increases with decreasing frequency in contrast with the
thermsl noise spectrum which is constant, or ‘white." This "1/f
Noise," as it has come to be called, is usually modeled as 1/f"
where a > 0. Is this really a valid characterization? How far down
in freguency does this 1/f behavior continue?

Much effort has been expended toward determining the 'cause”
of 1/f Noise. More precisely, the research has been directed toward
& Turther understanding of the physics of the processes which generate
the semiconductor noise. It is generally accepted that l/f Noise is
a collector junction phencmenon. However, there seem to be a large
number of competing theories purporting to explain the l/f behavior.
For instance, Bell in Reference (1] presents a mcdel claimed to lead
to a l/f type spectra. A great deal of the confusion which surrounds
the subject étems from the great variety of experimental results
availasble. It would appear to be useful for the solid state
theoreticiane to have = more definite idea of exactly what the '"factg"

are which require explanation.
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Rollin and Templeton [2], [3] seem to have made one of the
earliest concentrated attacks on the low frequency noise behavior
problem in 1953. They used what may be called the "bape recorder
speed-up” ‘technique. This consists of recording the raw data on
magnetic tape, playing the tape back repeatedly at greatly incréased
speeds, and utilizing a wave analyzer to determine the fregquency
distribution of the energy. This scheme permits use of commercially
available instrumentation (wave analyzer or equivalent) which operates
in the audio frequency (20 cps - 20,000 cps). Rollin and Templeton
had to compensate for the frequency response of their tape recorder
system. Because of the large dynamic range involved coupled with the
inability to measure the frequency response to a sufficiently high
accuracy, their results may have contained a considerable amount of
hias. They presented results for carbon resistors, wire-wound
resistors, and germanium filaments.

Subsequently, several other researchers investigated a variety
of random processes nsing this technique. The last work on low
frequency semiconductor noise seems to have been that of Winston and
Firle in 1955“[M]. They investigated fluctuations in voltage across
reversed biased germanium and silicon diodes. They obtained spectral
estimates by two essentially equivalent schemes. One was a photographic
playback version of the "tape recorder speed-up" scheme and the

other wag an equivalent numerical analysis on a digital computer.
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The modern technique of power spectral density estimation
achieved wide acceptance primarily due to the work of Blackman and
Tukey in 1958 [5]. Parzen has attacked the problem of obtaining
consistent estimates of the spectra [(6]. He has also found for .a
specific class of windows (a shaping function applied to the
correlation function estimate as discussed in Section 3.1.1) and
spectra the ‘'optimum" windows in terms of variability of the
estimator [7]. A number of new wrinkles have been addedbut the basic
scheme of estimating the auto-correlation function and Fourier
transforming remains unchanged. Parzen and a number of others who
have done similar work have exposed the fact that for mast spechtra
of practical interest the varigbility of the estimates is not a
strong function of the particular window. Until recently
[ 8,9 ] almost no attention has been given to the bias properties
of various spectral estimators. It is an extremely difficult subject
to handle with any degree of generality since bias errors depend
intimately on the 'right answer." Most of the discussion of the
low frequency bias prcblem in Section 3.3 1s concerned with spectra
of the 1/f type since it was of most interest for this work.

Both of thc spcetral estimation schemes uped by Winston and Firle
lead to a poor spectral estimator in the statistical sense. Appendix A
shows that their spectral estimate has a variance which is a large

Traction of its mean at all frequencleg. The bias properties are

also calculated but appear not to be very serious for the specific

case of l/f Noise. Winston and Firle's data appears to have a scatter
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which agrees with such a formulation. They fit a least squares
straight line to the data on a log-log scale leading to a value for
a in 1/f" which is "greater than unity." This calculation could be
very unreliable with their estimator. Because of the advances made
in the art of spectral estimation during the intervening years, it

was hoped that ancther look at the problem might add something.

How do you do the job better? Winston and Firle investigated
the noise voltage properties of a bhack biaged p-n junction. For
greater applicability To practical engineering situations it would be
prefer able to measure the noise properties of transistors in operating
circuite. The approach chosen for thic work wmo to attempt to measurc
the noise properties of transistors in an amplification mode via a
differential amplifier noise source. Section 4.1 discusses the design
of the noise source. An attemot was made to establish what can be
inferred about the properties of a single transistor from the measured
properties of the rnoise generator.

Winston and Flrle Tfound 1t necessary to congstruct an elaborate
temperature control system. Are there perhaps other eanvironmental
Tactors which should be controlled? Was this control really required?
Cowld it have been avolided by more clever date processing? I8 it
possible, as in many engineering measurement applications, to utilize
more sophisticated mathematical analysis and numerical compubtation
techniqués and a less sophisticated physical experiment while still

cbtaining at least comparably accurate results? The easy availability
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and low cost of large digital computation facilities lead one to hope
this might be the case. Of course, as a practical mabtter what one
actually does is to build the best physical apparatus one can afford
and then apply the best computation techniques available.

However, in one sense this is not what you would really like
to do. You would like to build apparatus and use data processing
just sophisticated enough to answer the desired question, thereby
saving time and money for use in answering the next question. For
instance, consider the l/fNoise case. It would be nice to control
the enviromment and process the data just cleverly encugh to be able
to determine at what frequency the spectra no longer increases with
decreasing frequency {if such a break frequency exists). The difficulty
of course 1s that 1t is not at all obviocus beforehand how much control
would be 'enough." Would temperaturc comtrol to .1°C be sufficicnt
iff good spectral estimators were employed? This would depend on what
the l/f break frequency turned out to be. But this situation is, in
fact, very general. In many cxperimenbs oue never rewlly koows Liow
good to make an experiment until one knows the results of the
experiment. To avoid having to do the experiment several times
successively more accurate, cne usually adopts the approach of doing
it as well as possible subject to economic type congtraints. It
never seems to be obvious that one "over designed" +the experiment

because the questions change as the answers begin to arrive.
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This discussion is particularly relevant to the temperature
control problem for a l/f Noise source. Section L.2 presentgs a
complete discussion of the temperature dependence problem and the
solutions adopted. When the research reported in this thesis was
begun, results roughly comparable (except more accurate) to those of
Winston and Firle were cbtained with no active temperature control.
Temperature control was then resorted to and lower frequency, more
accurate results were sought. Evenluslly, a polnt was reached such
that the temperature control was not sufficient to avoid distorting
the results. As a nmatural consequence of such a situstion a number
of doubts were created.

Do a great many ‘"noises" nave a 1/f tyve spectra? If so,
doesn't this throw a lot of suspicion on the measurement technique?
Are the cestimates being biased by some as yet unknown phenomencon?
Motivated by Jjust such considerations, spectra of some other noise
processes of interest were also estimated at low frequencies. Among
these were the variations in room temperature, the amplitude cf thev
60-cycle line, and operational amplifier noige. Section 5. discusses
these results in detail.

Can we really estimate power spectral densities at microecycle
type freoquencics? Ecctions 3.2 and 3.3 can be regarded as sort of
an error analysis of the numerical computation procedure used to
obtain pdwer spectral density estimates from raw data. Aside from

the standard regults concerning amplitude and time sampling some
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other errors are congidered. Suppose the data contains a bad point or
an cxbraneous step function, "What is the effect on the spectral
eatimate?" What is the effect of removing the sample mean? Can

the spectral estimate be improved by our a priori knowledge that we
expect to obtain l/f type results? What equipment is required to
cbtain data from which spectral estimates at very low frequencies can
pe formed? Since we are planning to use the digital computer to
gbtaln Lhe spectral estimates from the raw data this gquestion reduces
to consideration of what raw data it is relevant to collect and in
what form. Section 4.3 discusses the equipment mechanized to collect
the raw data for the various experiments while Section 3.2.3 deals
with the specific computational tools utilized.

As a final note before launching into the gory details of this
research it seems appropriate to deal for a moment with the question
of, "Why do we care about 1/f Noise, anyway?" There are several
reasons not the least of which is that insatiable curiosity the author
shares with the elephant’s child., The aim of providing better
information to aid in understanding the l/f Noise generation phenocmenon
was mentioned sbove. On a more practical level knowledge of low
frequency noise behavior is required to make a sensible long-term
design of an electronic instrument. Suppose one intends to put a
piece of egquipment, say an amplifier, in a spacecraft (or anywhere
else) unéttenaed for some long period of time. Need provision be
made for resetting its zero?; If so, how often? Will it be necessary

to control various parbts of the enviromment to guarantee meeting the
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long-term stablility requirements?

It seems to bec an unfortunate fact that the "drift" properties
of electronic devices are very poorly understood especially by many
of the people who are in the business of manufacturing and selling
the devices. A great deal of effort gocs into formulating and
designing instruments to meet other types of specifications. However,
very few manufacturers even formulate a "drift" specification in
a rational manncr, lct alone meet it. In fact, "drift" ought to
be considered as a random process, i.e., "noise," which has most
of its energy at very low frequencies. This of course implies that
measuring the '"peak drift" over a glven Lime span 1s not a very
relevant way of specifying it. Low frequency spectral estimation
techniques offer one rational way of describing "drift." If one
hag an accurate characterization of the random process one can then
make meaningful statistical statements as to what may be expected
in the time domain. For instance, one might say of a given
instrument, "I the instrument is operated in a typical air corditioned
laboratory its "drift" referred to the input will be less than Tu—

volts 95% of the time."



3. SPECTRAL ESTIMATTON
3.1 General

3.1.1 Spectral BEstimation Formulae

All of the spectral estimastes of this thesis were
obtained by utilizing Blackman and Tukey [5 1 type spectral
estimators. Basically, this technique consists of estimating
the correiation functicn and Fourier transfcrming the result
to form a spectral estimate. The power spectral density is
an ensemble property of the random process. But, in general
one has available only one sanpie function from the process.
Therefore, the assumption that the process is ergodic is
indispensible and all attempts at forming averages must
be along time rather than across an ensemble. The auvto-
correlation functicn of the process is estimated by sliding
the data past itself, multiplying, and summing. (In the
discrete case these estimates are called '"mean lagged
products"” for obvious reasons). Specifically, we have as

our estimated correlation functior

~ =
()
2
RO(T) = I’T—-_lm Sy(t +,-T2-) x (t - %)dt |T| < LUV (1)
N _(TN - l"rl)
S
L 0 otherwise |

vhere x(t) is the data and TN is the total dats record

length, and this formula is applied only for lags (T's)

less than some maximum value T, T < T This truncation

M M N’
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can be written explicitly as
R(t) = D(t) R () (2)

where D(T) is called the "lag windcw" and is identically
zero for |T| > TM. The shape of this window for |T| < TM
affects the properties of the spectral estimate as will be
discussed below, but it is important to note that the
truncation can never be eliminated entirely because the
finite data record length precludes estimating the
correlation function over an infinite range. This
"windowed" correlation function is then Fourier transformed

to yield an estimated spectrum as follows:

@0

~ - jgﬁfT
R(T) e ar 3)

n
H

(£)

Notice that this scheme does nct directly estimate the
degired quantity, the power swvectbrum. An intcrmcdiate
guantity, the correlation function, is estimeted and this
result is shaped and transformed to dbbtain the final
estimate. While the prcperties of this estimator can be
calculated (see below) it has never been shown that this
procedure is in any way ‘optimum" or most efficient.

On the other hand, no one hac proposcd any very acccpbablce,

*
practical alternative approaches.

2
Parzen's "Reproducing Kernel Eilbert Space" approach is apparently

an attempt to do this, but has not received very wide acceptance.
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3.1.2 Properties of the Estimate

The estinmated péwer spectral density at any given
frequency is a random variable and a property of particular
interest is its average value. One wants to know
specifically how the average value of the estimate ig
related to the correct answer. Taking the ensenble avecrage

$
of Equation (3) above and inerting Equation (2) we have

. T -gene .
EL8(f)] = / e D(T) EI:RO(T)]dT (1)

where E refers to the expected value, and the order of
integration has been interchanged. To find the expected
value of the correlation Iunction estimate, we rewrite

Equation (1) as

T
A L 2 T T
RO(T) = Eﬁ £{t,7) X<t +—§> b's <t - 5) ar 5)
"
2
where
T - |7l T - ||
£(t,7) A u -(N2 ><t< o ©)
T - Il
( 0 otherwise

Since the data i1s bounded in amplitude and the

limits are finite, we can calculate the expected value
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as
T
E[ﬁé(T)] = %—-J £(t,T) RX(T)dt (1)
NT
X
2
vsed

where we have ,the stationarity assumption implied by the
ergodicity of x(t) to write T as the argument of the
correlation functicn. Direct calculation via Egquation (&)

now yields

O\
= <
R (0} = R fer 7] < (8)
which inserted in Equation (4) gives

O

B(2)] = a(x) ® s, (£) =/ a(e-£') 8 (£7)ar’ (9)

o0

where (:) denotes the operation of convolution and Q(f)

1s the fourier transform of the  "window" D(T).
(eo]
- jomeT
az) o [ e D(1)ar (10)
oo

The significance of the ‘'window" can now be seen
directly from Equation (9). Recalling that D(T) is

identically zero for 7> T, we see that Q(f) will De

M
- . sin x .. . . .
oa51cally'~—§—— iike in character with a width of at
least 5%—. Therefore, the ‘'window" is analagous to
M

the narrow band filter in the wave analyzer. It is thc

width in frequency over which the average value of the
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estimate samples the real spectrum. The specific window

most used In this work was the ‘"hanning" window given by

p(r) - g@ | cos %D 7| =3 (11)

o otherwise
for which Q(f) is shown in Figure (1). Reference [5]
contains definiticns and normalized plots of several other
window functions.

Equation (9) indicates one of the central difficulties
of powexr spectral density estimation. Namely, that
properties of the estimabor are expressible (to date, at
least) only as integrals involving the actual spectrum,
which at that point is presumably unknown. Therefore, all
that i1s possible is a kind of hypothesis testing operaticn.
One postulates a correct result, and then rotes that the
egtbimated spectrum 1s, or is not, consistent with the
postulated result. One way to circumvent this difficulty
through confidence interval statements is discussed in
Section 3.1.k4.

Ancther very general result for this type of
spectral estimator is also obvious. Most estimates of
the spectrum will be biased, since Equation (9) indicates
that the average value of the estimate will be exactly
equal to the actual value of the spectrum at s given

frequency only through a numerical coinecidence fer
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*
everything except & white (constant) spectrum. It has

been shown by Parzen and others that these types of
estimators are asymptotically unbiased in the limit as TN
goes to infinity. This is a consequence cf the fact that
Q(f) becomes a delta function as IM grows without limit.

As a practical matter it is neither very interesting,

nor surprising that an unbiased estimator can be obtained
with a record of infinite lengtn. However, it is important
to notice that with a fixed tinite record of length TN’

the best results are opbtained from a bias standpolint when
the real spectrum is "smooth" over distances of a few
times l/ETM in frequency.

The other statistical property of the spectrzl
estimate, which is of primary interest, is its variance.
Following the example of Blackman and Tukey the covarilance
between the spectral estimate at two different frequencies
will be calculated. Tnis procédure has the advantage of
yielding considerably more information with only a slight
increase in computational complexity. It nmakes the

correlation between adJjacent estimates readily available

as well as the variance at a given frequency. Thus, we

See Section 6. below, which discusses this facet more fully.
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wish to caleculate

cod 8(2,) , 8(z,)] - E{[g(f1)-E{%(fl):D [%(fp)-E[g(fp):ﬂ} (12)

From Equations (2) and (3) it is obvious that we must

calculate
A i,

COV[RO(Tl) ’ Ro(kz)]

which in turn regquires a formula for
T.. T T

g 1y L 2 .._2_]

COV{XQC:L "é’)‘{ (tl " 2) ) Xctz - 2>X<t2 * 2)
T T T T

_ el N . . L ) _é}

= E{:{tl —2> x Q:l + —§> x(tg + g) X (tg - 2> @3)
T T T T
: Db e, - D e (e E)

- E{m:#l —-jé> x (ﬁl + —ED} X(FE - —=)x t2 + =

At This point it is necessary to make the

assumption that the data, x(t), is a sample function from
a zero mean, gaussian random process, in order to

evaluate the expected vaiuve of the four-fold product.*
This is not tc imply that the spectral estimation technique
will not work in non-zero mean or non-gaussian cases,

only that the properties of the estimator are then more
difficult to calculate. Our data will, in general, have

a mean, and the effect of its removal is discussed below

in Section 3.3.1.

Statiorarity has been assumed previously.
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Proceeding then, under the assumption that x(t) is gaussian

and zero mean, we write the expected value of the fourfold

product a3

(o, - D) x (o + e)X@e ) o + 5]

) ) -2y - e Ll -y - 25
enfs - vy e Bl wls s, - T_L;l%] (1)

which yields

T . T T . T
COVE@;,'%‘) @*%))X(te'% @2'*‘@]
GRICRUSICRE 1 (Tlﬂ'g)

w - w, —-w, | ———
:-[7.GJ 122 S(fl)S(fg) eJ roe 2

T, T
e o[z
3 (w0 -, ==

+ e dfldﬁ2

where wl = Zﬂii, wE = Bﬂié, and the correlation functions
have been written as the inverse transform of the
corresponding spectral densities.

Now changing variables to

and rvecognizing that the spectral density 1s an evern

*
See for instance, Davenport and Root, [10] Problem # 2, vage 168.

Hk
The notation w = 20T will be used for zl1l ®w's and f's regardless
of subgeripte or superscripts throughout this Thesig.
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function we obtain

T T T T
L L : = 2y
COV{XGl - 2) X (tl * 2) > X Q“e - 2> X (te 5 )
i @s)
— ’ o : , e r a_pf I
= L]] cos 2w (tl tg) cos WT, cos T, s(e'+r)s (-t )arar
vyoo

Utilizing this result we return to calculate the
deslred covarlance of Equablon (12) through the use of

Equations {1}, (2}, and (3). .We haeve

® _j(wlTl+w2T2)
e[ R (e
Yoo N 1 K 2

TN-lTl| TN"ITgl
2 -2

’( f ) (16)

TN"‘TZLD -(TN_ITED'
5 5

/ T 1 o o
Cov [X\tl - §"> * Q’l * "é') ) X <t2 - —2> x (te 3 ]dtldtszldTg

The varlance calculatlon to thils point has
exactly parallel that of Blackman and Tukey. At this
point they choose, for calculational convenience, o
approximate ﬁo(t) by an estimstor where the integration

limits do not depend on t; ramely by
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7

T
\
& (1) 4 f x(t +3) x(t - —)dt ITl< (17)
< K
Ty
2
\ 0 otherwise)

where TN' = TN - aTM and @ is on the order of % but depends
on the window used.* this particular approximstion seems
to have nothing to especially recommend it for the work in
this thesis. It does, however, have a serious disadvantage
in That the variance cglculated is for an estimator that
is not, in fact, used. It is preferable to calculaste the
second order properties of the estimator actually used.
Since 1n most cases the approximation above
concerning ¢ is a good one, the two different schemes
yield resﬁlts which differ only slightly. Bub this fact
in itself, is a comforting one to have available. Wc
shall therefore proceed using the correct correlation
function estimator of Equation (1). Utilizing once more,
the formulation of Equations (5) and (6) and inserting

the result of Equations (15) into (16) we obtain:

T

T D(T)ar

o
jﬁﬂ D(7)dr
0
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A AN _ . - _
Cov[S(fl),S(;g)] = M-JCZZJ(;OS Wy T, COS WyT, cos WT, cos W, D(Tl)D(TE)
o

(18)

pofeh

—

’ 1 j . ¢ a f
H — - - [ -
s(r+r')8(f-11) =5 £(6,,7)E(t,,T,) cos 20 (b, -t )b, db,dras ar,at,
N -T

ol

Where use has been made of the ‘"evenness" of the windows
and spectra and the order of integration has been inter-
changed. The tl and te integraticns can pe carried out
directly by expanding the cosine term and utilizing the

fact that £(t,T) is even in t. Thus,

TN
2
L . _ P’
= J/ﬂf(tl,Tl) £(t,,7,) cos 2w (b, -b,)at, at, (19)
2
K m ! s ‘
i sin W (TN - |Tl|) sin ® (TN - |T2|)
w (T - [T ]) o (T - 17p0)

which in turn gives for the covariance

A
Cov[S(fl),é(fg)] =‘1tlll]rcos W, Ty COS WyT, cOS WT, cos WT, D(Tl)D(TE)

(20)
sin w'(TN - ITll) sin w'(TN - |72|)

S{f+f’)s(f-f") dTldTedf'df

ez - Iy ) e - [Tyl
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While this formula is not simple, it is apparently
the best that can be obtained without approximsticns ol
some kind. As will become apparent shortly, it is really no
more complicated to apply in a practical calculation than
the simpler appearing versicns because both reduce to
the same approximate formula.

For compariscn, if we had utiligzed the approximation

of Blackman and Tukey, we wculd have arrived at

A A
Cov{s(fl),s f /]fcos €, T, cOs WyT, COS WT, cOs WT, D(T )D(r,‘)

(21)
/sm w’ T. \2 ,
s{f+r)s(r-£") \——”——/ dr, aT,Aaf ‘af
w' T

which is their rcsult. The f’ integration decouples in
this approximation. Recognizing the T inbegrals as
windows cvaluated at specific frequencies the result can

then be rewritten as in Reference [5] .

00v{§(fl),§(f2)} = / [Q(f+fl‘) + Q,(f-fl):l[Q(fﬂ?g) + Q(f—fe)] r(f)ar

(22)
where

i . ’ N\ 2
sin w T

T(f)éh[ s(z+’) s(r-r') [ ——T ) az’
= s

The approximate result, Equation (22), is much easier to
interpret than Equaticn (20). However, with the aid of
"hindsight" most of the intuitive arguments can be applied

to either form. The more accurate result then shows that
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as expected, the classical formulation is a good

approximation. We shall illustrate this point with
typical numerical values in the next section. But, first
however, it is useful tc see what form the first order
correcticn terms take analytically.

Returning to Equation (20) we see that the f’
integration does not separate out neatly as in the

approximate case, because of the 7 dependence of

10 T2
the ' integrand. One approach Is to expand this integrand
: T T,

in a +two-dimensional Taylor series in = Ti
| N

= 0, TE = 0. The zeroth order term

and

about the point Tl
is then identical with Equation (22), the approximate

answer, except that TN replaces TN'. Thus, we define

gin w' T - T gin @ T - T
D(£,7,7,) & AJ’ s(e+r')s(f-") N N Bl 2 Lar’
-~ wlTN( _.LE—.L) wlT( __l_2|_)

T

W N

B

(23)

and wish to expand T(f,Tl,TQ) as follows

T rie,r.,7,) T\ (£,7,,7,)
r(fJTl:TE) = F(fjo)o) + (——‘TJ|> é E’Tl 2 4+ (ITQ-1> (’Tl 2 Tenese
af 1 N/ o3 | 2] (24)
Ty Ty

N
Tl=T2=O Tl=T2=O
We will depend on the fact that the windows D(Tl) and

D(TE) are zero Tor T's greater than T, vhich is much

less than TN to make second order terms in %IL negligible,
N
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It is now obvious, as alluded to above, that

sin w ITN ,
I'(f,0,0) = k4 ———— ] 8(r+£”) 8(r-£')ar (25)
w T
e s] N

and that this tcrm in the covariance is just BEquation (22)

with T instead of TN' Calculating the partial derivatives

of F(f,Tl,TE) and evaluating at T,

T, =0 yields

2
ar(f)Tl}Tg) al_\(fJTng) ;
T I = T = F(f)0:0> - T (f:O;O)
0 Tl T, =T,=0 ° T2 T, ~T,—0 (26)
N 12 N ie
& !
, ; , sin 2w :N ,
I''(f,0,0) A 4 s(f+£") s(e-r") ~———— df (27)
- - 2w TN

Returning to Equation (24) we obtain

T B ’ ]
_ . | 1| r(f,o,o)
I(g,7,,7,) = I'(f0,0) §1 + T, P Ee0
|7, : 1
2 I (f£,0,0)
+ + PR
TN * I'(f,0,0)
-

in order to facilitate interpretaticn oi the T and Ts

integrations we will factor the first order terms into prcduct

Torm ag follows:

{ T /
. - fa Pl o T(E,0,0)
F(f)Tl:Tg) Nl(—‘)oyo) L+ T [ TF(f P 05

(28)
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. . %
We can write Equation (28) as

I(£,71,75) =~ T(f;0,0) D'(7)) D'(1,) (29)
where T
1 + l__L lTl <
, TNR NR
D(T) & (30)
0 othexrwise
and

['(f,0,0)
TNR - TN/(% T ,0,0
When inserted into Equation (20) this result yields a

formule comparable to Equation (22), namely

Cov{@(fl),é\(fe)} ~ j [Q”(f-fl) + @ (z-r) [a(ren,) + a(r-y) | T(2)ax

(31)
where
[ea]

, , sin w'TN 2 ,

T(r) =4 s(e+t’) s(g-") ——,——) ar
ple] ‘ w TN

and Q" is the Fourier transform cf the product of the
0ld  "window" D(L) and the npew “window" D'(%) l.e.,

[oe]
-jeT

Q"(£) A / D(T) D'(T) e aT = Q(f) & Q' (f) (32)

where Q' (f) is, of course, the Fourier transform of D' (t)

” _ 3T sin mF T\ °
/ / NR
Q'(£) = D(T) e gt =¢_ | "NR

NR T ?MR

We will show in Sections 3.L.3- that [" 1s closely related to

I' in the usual case so thatm = S p |
NR 3 N
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It is now apparent that to first order the effect of the
approximation in Equation (I7) which leads to Equation (2)
is represented by the change in the window from Q(f)

4 4 m >
to Q(f) @ Q'(£). Nomally T, >> T, and T Ty

R
which imolies that Q' (f) is much nerrower" +than Q(f).
Therefore, Q"(f) is very nearly equal to Q(f). Thus,
the approximation ia very good. The first order exror
can be evaluated numerically in any given case. The
variance of S(f) is, of course, obtalned by setting

fl = f2 yielding

> 2
varf 3(2))] ~ f [a"(erey) v @m(e-n) | T(mar (33)

8

It is perhaps pertinent to meantion that the form
of the modified window Q"(f) can be calculated exactly.
We merely perforrm the convolution indicated in Equation
(). For illustrative purposes we shall consider the
case of the Qo window. Because Lhe operations lnvolved
in obtaining Q" from Q are linear,the modified window for
Q2 etc., can then be obtained by simple glgebra in the

frequency domain. (See Equation (67) ). Thus, we have

® sin WTNR 2 sin ZHTM(X—f)
Q"(f):/ e\ 7/ ™ 2L, (x-T) dx

T
[4es] NR




26—
This integral is evaluated by expanding the denominator

via a partial fraction expansion to yield

1 1 1

S + 1
xg(x-f) 3= f2X fg(x~f)

*
and then utilizing DW 858.70% and DW 858.713 [12] for these
integrations which are not identically zero. After

simplification the result is

A .2
. ~ a 'I‘M sin r_TT:ETM 1 sin TTfTM
Q"(f) = (* -4 *
T mf ) 2]
NR ﬂ“% f

A

which can be rewritten as

T T
a'(s) = (_M)Q fy + Mg (34)
( = %0 tr o)

where QO is the rectangular window and Q,1 is the trianguler

window. il.e., l I

T < F
T Il =5y
1 |T|STI

M
D (7) = D, (1) =
° o |7l >, L 0 |7] > =,
2
sin Eﬂij sin TLT
o _ o - M

Thus, thc modificd window is a slightlgreduced copy cf the
original window plus a smell copy of the next higher
order window. As advertised, 1f iM < TN and the spectral

density is 'smoothy (see next section) then the modified

*
Tuls notation refers Lo the integral # in Dwight's Table of Integrals.
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window will be very nearly the original window. A case

when this would not be true would be 1f the real spectral

density -  something like 1/f or 1/f2 noise with a lower
break frequercy much smaller than EEM , the minimum
resolution point. Then for calculating the variance at
the point fl = E%i we would have

[Q"(f+fl) + Q"(f-flj] - {[Qo(ﬁfz) * Qo(f'fl)] (l ) %})

[Ql(f+f1) + Ql(f-fl)} }2

to be inbegrated in Equation (33)to yield the variance.
The Tirst term is just the ordinary result. Its
cortribution to the variance will be smgll ever though

S(£), and hence I'(f), is very large near the origin

(relative to its size at fl). This is because Qo(f)
has its first zero at the origin when located at
£ = 5%&. This same behavior is not true of Ql(f) when
located at f. = = since 1ts first zero is at i—.
1 QTM TM
Therefore, the Ql terms might make a significant contribution
T
to the var{@(fj)} regardless of the ﬁM multiplier. Perhaps
- i\

a less confusing way to view this same pheromenon is to
return to Equation (34) for Q"(f). From this equation

we ges that the odd zerocg of Q"(Ff) counting from the
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center are those of Qo(f) shifted outward slightly because
the Ql(f) term is always positive. The even zeros do not
change because Ql(f) alsc has zeros at these pcints.

Thus, when the variance at the odd points (R =1, .3, ....)
is evaluated,we expect to obtain slightly larger results
than at the cven pointe, particularly for spectra which
have something like a '"pole" at the origin. Also, it

is obvious that this extra variapility at both the odd

and the even points grows smaller as the point in question,

ff proceeds from the minimum resolution point 5%— to
- M
1

the maximum point 5AT
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3.1.3 Approximate Variance Formuls

From the results of the last section it is cbvious
that calculation of the variance of the spectral estimator
is complex. In order to plan experiments and obtain rough
estimates of the accuracy of a given measurement, it is
desirable to have available some sort of approximate
formuletion. To this end, let us conesider the case where
the true power spectrum is ‘'smooth.” By this we mean
that S(f) does not change rapidly in value on the
frequency scale ol o [lew Limes l/TM. With this assumpbion
we formulate some useful approximations.

Part of the motivation for the choicé-of this
particular assumption is evident from Equation (31). We

. /
in TN\

2
s
wish to evaluate I'(f) in a simple manrer. The (

1
@w

term behaves essentially like a delta function, provided
S(f') does not change rapidly in f'; hence, the choice of
"smooth" over at least a few @i's. An alternative
approach 1s to assume S(f) is white noise. The same
results would be obtained. It would become obvious that
a constant spectrum was a more severe restriction than
necessary, and that 'smoothness" would be sufficient.

In any case, with the smoothness assumption we

now have

T(£) ~ %}- [s(f)f (36)
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so that in Equation (3L) or (33) we are integrating the
modified windows against approximately [S(f)]g. All

of the usual windows employed are basically of width

1 . . R .
= or greater in frequency. For instance, the hanning

T
M :
window employed most frequently in this thesis has =
.X<

central blob of width o— and side lobes of width ==— .

TM ETN
Thus, since Q'(f) is of 'width" %— we can say that

N

Q"(f) ~ Q(f) provided T, >> T, (37)

Thus we have

(ee]

var[%(f)] ~ §—N / [Q(f+fl) + Q(f--fl)]e E(f_)]2 ar  (38)

0

It is now clcar why S(f) must be "omooth" over distances
of order l/TM for the approximetion to be useful. This
is, of course, a more stringent restriction on the

spectrum than the L
TN

thege conditions do hold the windows squared are

smoothness requiremcnt. If both

approximately 6 functions of strength TM centered at

=+ fl with negligible cverlap at the origin. (This can
be verified by inserting any of the explicit formulae

for Q(f) and integrating). Consequently we have

var[%(fl):l ~ % l:s(fl):lf2 (39)

Por reduced confusion the natation will be chosen ccnsistent with
Reference [5] and the hanning window will be referred to as QE'
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It is important to note where the approximatlons

occurred and what types were involved at each poinmt. The
approximation leading to ['(f) in Equation (36) is culy

one of smoothness of S(f) cn a %— scale. Tnis result
N

would be exact if S(f) were really a constant (white
noise). The approximation leading to Equation (37)
whicn says that the medified window is spproximately equal
to the original window, 1$ dependent only on ?M’ TN’ and
the particular window used. It is independent of the
spectra being estimated and in thie way is analagous

to Blackman and Tukey's ® ca’culation mentioned above
(see footnote to Equation (16)). The advaﬁtagé here is
that without a great deal of difficulty Q"(f) can be
calculated exactly. The approximation of Equation (37)
can be eliminated and the variance calculated for the
estimator actually used. These two approximaticns are
compired to yield Equation (38). Thus, for a white noise
and accurately calculated Q"(f), Equation (38) can be
made exact. This 1s stlll true waen we proceed to the
final result, Equation (39). The TM/TN result presented
there depends on Ignoring the overiap of the two window
functions. Again, 1f the spectrum is white, then this
dpproximation is only a furncticn of the windows and
Equation (39) could be made exact with more detailed
calculation. As it stands it is apprcximate, and for

any non-waite noise 1t is more approximate.
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Some words on the significance of Equation (3¢)
are in order. First ’of all +the presence of the TM/TN
shows immediately why, as mentioned several times already,
the usual case is TN >> TM. This case leads to a smaller
variance Tor the estimator. A criterion often chosen for
the estimator is the ratic of its standard deviation toc
its mean. Applying the same 1/TM amoothness approximation

to Equation (9), we see that the estimate is approximately

unbiased, and we have

E{é(f)] ~ S(f) (ko)

go that

A
var S(f)] TM (L1)
A i T
mean| S(f) N
This is a rough measure of the percentage accuracy of the
estimator. It says, for instance, that if 8(f) werc
gaussian (patently false, but perhaps not a bad approximation),
T
then 68% of the time the estimate would be within 100 M

Bl

percent of its average value (approximately the correct
result).

The major trade-off involved in power spectral
density estimation is now apparent. The resolution cf
the estimate is about l/T , because of the window. Thus,
to increase resolution we must increase T.. If we

M

desire to keep the variance ccnstant at this increased
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resolution, we must increase TN proporticnately. But
this requires more datal Therefore, if we have a Tixed
record iength, the variance of the estimated spectra
must he traded off against resolution in the estimated
spectra. As TM is decreased to decrease the variance,
the window gets broader and one gets a lower variance
estimate of the spectrum averaged cver a broader range
in frequency. Thus, it is really a varlance-uncertaginty
trade-offe We are +trading one kind of uncertainty in
the result for another. PFPhrased still ancther way, this
can be called a variance-confidence trade-off, or indeed
a variance-variarce trade-off.

It is, of course, important to note that cne
type of variability might be much more acceptable than
the other in a given problem. For instance, if one knows
the noise is white and desires only to estimate accurately
how much of it is present (i.e., |3(f)|), the resclution
is clearly nct very important, while the variance of the
estimate at a given frequency is paramount. On the other
hand., the opposite case could occur. Suppose that we
know that a line is present in the spectrum and its
magnitude is known but not its location. Obviously, we
desire all possible.resolution at the expense of

variability.
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It is also of interest to examine briefly the
covariance between adjacent estimates in an approximate
form. Following the above '"smoothness" approximation,
we can see Equation (36) and (37) rcmain unchangcd vhile

the approximate form of Equation (31) becomes
(we)
A AL 2 :
o 85y), 3(3,)] ~ & f la(esz)) + a(ez)]

[Q(f-l—fg) + Q(f—f2 )][S(f)]gdf

(12)

From this result it is apparent that if fl and fg are

.
clese together on a %— gscale, then the two windows overlap
M

considerably and the spectral cstimates at the two points
are highly correlated. If fl and f2 are ceparated by
many %g’s then the product of the windows is small and
the covariance is small. When (fl - fg) is small
multiple of é%ﬁ'the covariance is dependent upon the
particular window used. For instance, with the hanning

window the covariance is approximately %‘at adjacent

;
points 1in a discrete estimation i.e., f, - I, = =,
1 2 QTM

But for the rectangular window (i.e., no shaping of
correlaticn estimate, only truncation) the covariance,
2% this separation, is nearly zero. Thus, for most

windows little independent information is obtained

&
T
TM
Note, that by using the hanning wirdow to decrease the

from estimates closer together in frequency than

varlance of the estimate, the correlation between adjacent



_35 -
estimates separated by §%§ has risen, so that in a way
no 'new" information isiobtained until the separation
becomes %@ or 80,

Ii was claimed above that I''(f,0,0) is simply
related to I'(f,0,0). We will now demonstrate this for
the case under discussion where S(f) is 'smooth” over
many %&'s. Returning to the definition of ' in
Equation (27) we see that proceeding just as above, we

obtain

F’(f,o,o) A

and that S(f) reed only be “smooth" on a scale of a

few %—'s. Since in this approximation I'(f,0,0) was

N ~y12
given by Equation (36) to be ngéEAl we see, in fact,
N
that
I'(f,0,0)

N[=

T(f,o,oj -

With all this discussion of the "smooth" spectra
case 1t might seem that it is the only one of interest.
Unfortunately, nature is not sc benevolent. Distressingly
cften the cituntion aricec where the cpectrumwe're
trying to estimate has discontiruities of one kind cr
another. By "discontinuities" we zrefer to large
changes in the magnitude of tae spectra on a frequency

scale small compared to é— or . .
T T

M n

come about in mwany different ways, some of which will be

This phenomenon can
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demongtrated below; but the general problem is that of
a line in the spectral dénsity.
In this case none of the ‘smoctaness" approxi-
mations mwade above hold and we must return to Equalilon (33)
and the definition of I'(f). For this purpose let us
suppose that the real spectrum S(f) consists of white

noise pilus a 0 function.
A2
s(f) = NO + 5 [6(f+fo) + é(f—fo)] (43)

Assunming the nolse to be white and the line to be a 6
function are not necessary, only convenient. It will be
clear that any smocth component and any shape spike would
do. Now we Insert this spectrum into the definition of

I'(f) and obtain

T(f) =X /g){Ng +‘éé N [6(F+P/+? )+ B(PHE F ) + 8(£-f 4 )
- o 2 o o CATTT T o
-0 —}
/
+ §(f-F —fo)J
+AlL [6(f+f'+f ) 8(L-£'4f ) + s(s+p'4p ) 8(f-F - )
I o - ) 0 o
’ ) (k)
+ §(f+f —fo) 5(f-F +f0)
SR Y sin w'T 2 ‘
b O (F+1 —fo) 8(f-f -;O)] } N ar

/
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The three Leruws Lo Lhe brackets shows the respective
contributions of the white nocise itgelf, the irteraction
between the white noise and the line, and the line itsel~”.
I we cull Uhe integral on the first of these I‘N(f), we

have already seen in Equation (36) “hat for the 'smcothress"

approximation it is given by
2 2w
0

2_ . =
Iﬁ(f) ~ T [S(I)J T,

Calling the Temm representing the interaction bebween

the smooth spectrvmand the spectral line, ES?) we have

(e o}
PR 2 ! el e N el
I“i(*) 2 A No[ [6(f+f +fo) + O (f+1 IO) Fo(t-t +Io)
zeo
/ sin o 'T 2
S5(f-F" =
+ &(f-f fo)] : N\
y W TN
whickh yields
2 2
sin(wHe )T sin(w-w )T
ro(e) =u At || ——28) b [ W) o)
B m -
(w+mO)LN (w wO)TN

Finally the term contributed by the & functicn alone

Fé(f), is

tee]
oy ak [ e NP
Fa(L) = A f 8 (f+f +io) §(r-f +fo)
Yoo

7

+6(f+f'+fo) §(£-£'-f )

C

+6 (TH+0 -2 ) 8(f-F +f )
@] Q ; o
sin TN ,
46 (2o’ of ) B(£-f -F )J af
O (@] ’
w TN
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A convenient way to put this intc tractable form
is to insert it in Equation (33) and carry out the 7 and
£ integrations tcgether. The component in the variance

due to the spectral line, var{é(f)}, then becomes

A AL ® sin wTN 2 Sin(w+wo)TN 2
var, 8] = 5= [ |2 s\ =) + (e | —mme
Joo N ¢’ N
sin(wwwo)TN & -2
+ &(f-f i [ "(e-£,) + QN (L ar
(2-2) \—qmym ) L8780 *a(e-ny) |

whick, since Q" is an even Tunction, is Jjust

n 8] < plare) o+ [anen) « @20} we)
Note that up to this point no approximations have been

made on this component of the variance (other than
represcating the 'ine" as a 6-function). If the real
spectrum had been only the line, the average value of

the estimates dbtained via Equation (9) would be

wear{Bie )} = a(n) ® L [s(sez) + 8(r-2)) ]

e o]

2
= é‘— f [6(f’+fo) + 6(f’—fo)] Qe -r)ar’ (47)
A2 y
- [Q(fl+fo) * Q‘(fo—f]_):l

It is immediately apparent that S is a very bad
estimator for a line spectrum. The modified window is
approximetely equal to the actual window as shown above

and for fl larger than a few %—, Q(f} is very small so
M
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that we have

2
var 8(r )] ~a" [ale_+r,) +a(e_-2)] (48)

and hence

\/;aré[/é (£, )] N
meané[%(fl)]

This is a very discouraging, although not surprising,

2

conclusion. It tells you not o bother to try to
éstimate something which is too narrow for you to seel
Your estimate will cnly be within EOO% of its average
value, 68% of the time or sc; and that average value

itself will be of minimum width %— and hence biased.
M

A sketch of Equations (46 ) and (47) is perhaps in order.

We are assuming the real spectrum is  two lines at = fd

with total power A2
A Si¥) A
F3 2
-1 1 f— f.

Equation (47) says that the average velue of the estimated

spectrum is two windows centered at + fc.

meang [%@)l

a Pnox'i\mé +e
ddh L
w T

} /”\\j,
£, O/
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Bquation(h6) indicates that the variance is the square of
the modified windows located at + f_ plus four times the

square of a modified window located at the origin.

ey (3]

g ARQeol
appres imate width

B n ot
/\ﬂ/\/\f\—u‘ T A.[QCO)]
i '\/\/\./\f [

-5 .F__, i—ﬁ

Notice that there is a large variance around the origin

even Though the average value 1s small.

Now weturning from the di_gression conecerning a
line spectruvmalone, Lo complete the variance calculation
we insert the other two contributicns to I'(F) into
Equation (33) and perform the { integration. The white

noise contribution from Fw(f) is

2 foe]
varw[/s\(fl)] = T; f [Q”(fﬂ‘l) + Q"(f-f‘l)]gdf




g

which, as before, in the smocthness approximation ylelds

T
A 2 ™M
Varw[s(fl):l ~N T (49)
N
The contribution resulting from interaction of the

spectral line and the white noise is

2
[a"(ere)) + @'(e-2))] T, (D)ar

Vari[é\(fl)]

i

i 2
b A% f [Q”(f+fl) * Q"(f—fl)]

voo
sin(me)TN 2 sin(w—wo)TN 2
—_—_— + af
(wﬂ)O)TN (m-wo)TN

Now if we take the rormal case where TN >> TM ther the

2
sin x .
(—;{——) terms are much narrower than the windows and

we have approximately

A2N 2

var,| 8(z))] ~ “T‘B‘f Lan(e ey ) + Q"(fo"fl)] (50)

which again ic thc squarc of the sum cf two modificd
windows located at %= i‘o but whose amplitude now depends

on TN. A sketch of this result follows:
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]
J% o

IFf we combine these resulte Tor the normal case we how
hgve Tor the variance of the spectral estimate when the

real spectrum is given by Equation (L43) the formula

var[@(f)] ~ ALP ﬁ+[Q"(f)]2 + [Q”(fo+f) + Q”(fo—f)]z}

1
Ner 5 Nog 7, (51)

The average value of the spvectral ecstimate is, of course,

given by

A A?
mean[s(f)] = 5 [Q(f+fo) + Q(f~fo)] + (52)
where the equality should be approximately for a "smooth"
but not "white" spectrum. The two important Ffeatures
of having a line present in a spectrum to be esgtimated
are now evident. Tirst the estimate of the original
spectbrum ig ruvined in the variance sense within a few

%—’s of the origin and for a few %—‘s around the spectral
M M

line. In addition, the estimate is bilased in that

it measures the line itself spread out to a few-%—’s
M



-3
around its actual location. The extent to which both of
these detrimental effects occur at a given frequency
depends not only on the relagtive size of the line but
alsc on the particular window.
3.1.4 Confidence Interval for Spectral Estimate

The difficulty referred to above of having the
answer to the question, "How good is the estimator?",
depend on the correct result can be partially remcved
through use of confidence intervals. Thec key is to ask
the right question. Suppose we ask how large an interval
in apectral density aroundthe egtimated epectrum is
required to guarantee a given probability of including
the correct result. This question can be answered in a
form which does not involve knowledge of the correct
result. We will gpply the general procedure for finding
confidence intervals outlined by Mood.*

Suppose that we consider our spectral estimate
at a given frequency, g(f), to be a normally distributed
random variable. Since we have cnly one sample, we
clearly need to have some sort of constraint between the
mean anrd variance in order to make it a one parameter

T

distribution. Motivated by the fM percentage estimator
i

¥
Reference [11], pgs. 256ff.
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result of Equatiorn (41) let us suppose that, in fact, the

standard deviation 1s known Tc be a given fraction of the mean
i.e., lct us assume

vaf 8(2)] = gmean [B(5)] (53)

T

where g < 1 and corresponds to TM . It should be ncted
N

that we are making the assumption that é(f) is gaussian
which ig in itself an approximation. In order to simplify

the notation for This section let us redefine

A
S(f) 4 8
mean[g(f)] = 8 A
var] @(f) = ‘Vvar s Aa

The mean to variance constraint assumption becomes
g = g (54)
and we are now asking the following guestion, 'What
size interval shcoculd we construct around our sample mean
(maybe one sample) to guarantee a given probability of
covering the population mean?" We call our one sample
mean, S, an estimate of the mean

S =10 .
Then we know by assumption that the density of G with W

as parameter is

p(R51) = p(ssm) = e (55)
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We desire to find two values of S, Sl and SE’ such that

the random interval (S 82) contains the true mean B with

l)
a given probabllity, say l—Rl—Rg. These values will,
cf course, depend on what our particular date point is,

g0 we want Sl(a), Sz(ﬁ) such that
A A
< < = - -
P(Sl(u) b<8,(H) =1 R -R, (56)

We expect Rl and R2 to be small (i.e. a high ‘'confidence"
in the interval) and the reason for separating them will

- . A A . *
become obvious shortly. Sl(u) and S2(u) must satisfy

()
I S I S
5 = o)y = p(k ; p)di
- (57)
R = P{ﬁ‘/sl(@)}: f p(d 5 wah
82 ([)

A
il
%N-g— -1

ol
1
P~
1

: N (58)

=v}
Il
=
1
nj=
=

where N(x) iec the normal integral tabulated by Dwight

1ok4s5, [12] namely - EE
2

N(x) = L fx e . dz

v 5

* The logic involved here is adequately detailed in Mood.
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And if we denote by N_l(x) the inversion of this operation
{which can only be done numerically, but is extensively

tabulated) the equations can be inverted to yield

N
s, () = -
1 1+g N'l(l-le)

A (59)
s,(0) = -

1-g N’l(l-eRE)

Wnich is the result desired for Eguation (56) above and

yields
AN A
AN
P sz> < mean S(f)} < S(fi =1-R;
1+ gN (1-231) 1-gh (1-2R2)
(60)

We could now (in theory at least) choose R, and R, to
minimize the length of the interval. Notice that Equation
(60) tells us what size interval to construct around the
data point as a function only of that data point in order
to guarantee a given probability cf covering the average
answer. This appears to be in a sense more useful than
the earlier'VTM/TN variance result. However, the
appearance is mostly illusion since roughly the same
approximations are involved in saying that the standard
deviation is a fixed fraction of the mean as those which
lead to the earlier approximate variance result. In
practiceseither method sccemes to yicld very similar results

as the following example indicates.
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Suppose we have, as 4s typical of many of the experimental
results in this thesis, 10000 equi-spaced data points and
we estimate the spectra at 100 points. Then this
corresponds to a V'I'M/TN ration of .1 which yields
approximately a 10% estimator. The 20 variance band (95%)
would be + .82 db and - .92 db. Therefore we can expect
the catimetcd spcetrum to lic within thic roange around any
postulated correct result about 95% of the time. On the
other hand, if we take g = .1 and ask for a corresponding
confidence of 95%, we obtaina+ .78 and - .95 db band around
the data point. Therefore, we can expect the postulated
result So lie within this range around our estimated
spectrum about 95% of the time. These are very slimilar
results.

Along the same lines of what we can say, given a
batch of spectral estimation data, it is interesting to
ask the following questlion. Suppose we have estimated
the spectrum of a given process several times. Can we use
the informaticn we have about the variance of these
different results to improve our estimate cf the spectruwﬁ
Maintaining the notation from above, this is saying,

"If we have  samples S5 ey S, and we know a mean to
variance constraint exists, 0 = gy, then how should we
estimate w = S?" Without the constraint,the minimum

variance unbiased estimate is the sample mean



N
2 s. =8
i=1 7

-
il
==

With the constraint and the assumption that the
various experiments are independent we have that the Sl

are Jjoirtly gaussian so that

N 2
—5 5
io] 28 W

_ 1
p(Sl, Sg, coese SN]H) = TR e

2 N
(am) = (em)
Teking the derivative of the logarithm and setting it
equal to zero we find the maximum likelihood estimator

for the mean to be

~

. 5 2
o= j—% {-l +‘fl+’+g 3} (61)
g X

- 1 & 1 & e
where x is the sample mean, Z:Si ;end r =5 E:Si .
i=1 i=L

Recalling that g represeunts a sort of frachbional accuracy
of our spectral estimate, it is clear that for our appli-
cations we will have g << 1. Using this assumption, we

can form an expansion for ﬂ as follows:
. 2 3
A - T 2 T 2 T
b~ ox [‘:e“'g (:2") + e Q{'-‘z")
X X
. L
6/ r
+ 58 (—-3) +}
ps

(62)
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Since :%— is on the order of unity this tells us how to
modify?the sample mean in order to make use of our know {-
edge about the one parameter nature of the distribution.
As a practical matter the correcticn wlll be Insignificant
in most cases as illustrated by the following numerical
example.
Suppose we have 5 samples with vailues 95, 104, 97,
108, 80 and that the true distribution has p = 100, ¢ = 10
(i.e., g = .1). Then the sample mean would be
X = 96.8

and Equation (42) above tells us to use

n

W= 97.7
On the other hand, suppose the 80 were a 120 so the samples
were

95, 10k, 97, 108, 120

then x would be

X = 104.8
and our estimate would be

0 = 10k.h
In each case our knowledge that the standard

deviation was one tenth the mean allowed us to adjust

the estimate toward the correct result. Bubt not by much!
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3.2 Practical Computational Considerations

When it comes to the real job of actually estimating a
power spectral density from data, there are a number of relevent
details which do not appear in the above discussion. This
section will attempt to discuss these in some detail., The first

has to do with the sampled nsture of the data.

3.2.1 Aliassing (Frequency Folding)

The numerical calculablons leading Lo a power
spectral denslty estimate are performed on a large digital
machine. It 1s, in fact, the very speed of the machine
which makes power spectral density estimation a feasible
endeavor. Therefore, The daba must be in sampled form.
That is, the sample function from the continuocus random
process must be sampled in time to form a discrete set
of numbers which can form the starting point for the
machine computations. For convenience, samples equi-
spaced in time are chosen for this analysis. Section 6.
below suggests some alternate schemes which might prove
more efficient and/or be easier to implement. But for
the data analyzed in this thesis we have available only
equi-spaced samples of the noise processes whose spectra

it is desired to estimate.
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The spectrum of a sample function obtained in this
way from a continuous process (equi-spaced samples) is
Just the original spectrum repeatedly folded back on
iteelf at all multiples of the Nyquist folding frequency
and summed. Physically, this merely says we cannct tell
how many wiggles the signal has between our time samples
unless we have some prior knowledge about its spectrum.
More precciscely, if our ncise procces is n(t) and we semple
every At seconds then we have available the function x (t)

given by

on

x(t) = Zn(t) & (t-nlit)

n=-=

*
for which it is well known that the spectrum is

5.0 = Y s(r-5) 7] < o (63)

and where Sx(f) is pericdic in freguency with period %E-
This frequency folding is commonly referred to by Tukey's
coined term of ‘Yaliasing" because energy at some
frequencies masquerades as energy ab olliers.

It is now apparent that for any digital power

spectral density estimation scheme, this feature is present

and must be dealt with in a sabtisfactory way. Flrst,

See Blackman and Tukey or almost any sample data control Sysﬁemp
text for a derivation.
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it is significant +to note that if the original

spectrum is Twhite" (constant) over a frequency band

appreciably larger than “%KE’ there will be trouble. The
1

estimated spectrum is limited to lfl < AT In this case
the estimate would bear very little resemblance to the real
gspectrum even if the estimation were perfect., Thus, in
order to do a sensible job of estimating a nearly white
spectrum 10 must be low pass Tlltered abt a frequency
somewhere near (preferably less than) E%E' It is also
important to realize that this filtering must be done in
analog form betfore the sampling is done. The aliasing
occurs with the sampling and cannot subsequently be undone
by further digital processing. The computer does not know
how to tell which energy at a given frequency belongs there.

However, the situation changes slightly for many
of the spectra dealt with in this thesis. Many of them

Tall off with frequency like = or even as fast as

-+
2.
T

From even a cursory inspection of the numbers, it is

]

clear that aliasing is insignificant in this case for all

but a few frequencies very near 5%5’ Therefore, for many
of the data runs of this thesis anti-aliasing filters

were unnecessaly.
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3.2.2 Discrele Esbimabion Formulae

As discussed in the previous section, we must
work with discrete samples from the random processes.
Thus, it is cbvious that the correlation function can be
estimated only at discrete points rather than on a
continuous basis. Therefore, we modify Equation (1) of

*¥
Section 3.1.1 to calculate 'mean lagged products” as

N-R
R(RAE) = Cp = ﬁ%ﬁ z x(abt) x(q+R)AL) R =0, veve, M
a0 (64)

which yields an estimate of the correlation function at
points At gpart fram zero to MAt. In the discrete case a
convolution interval becomes a sum so that it is easier to
"rindow! +the estimate in the frequency domain after it

has been Fourier transformed. Accordingly, a 'raw spectral

egtimate”, Vg 18 Tormed by taking a flnite Fourier cosine

X
transform

M-1
ey .
_ o) .
VE At [%(o) + 2 Z C(gAt) cos (.M + 0(MAt) cos RT
a-1 R=0,1, oo, M

-
The final spectral estimabe U is then obtgined by (65)

¥
The correlation function and spectrum are even because of

stationarity.

The notation is changed to C!'s for the discrete case rather than
R's to reduce confusion by conforming to Blackman and Tukey's
notation,
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convolution with the '"window" as

af B\ _ - r 1a:
“(EﬁZ%» = U T oa TRt :E: LVRey * Vﬁ-jjal (66)
—

where the "a;"

1

log window. For the ‘'hanning" window (QE) used most

represents the Fourier transform of the

extensively in this thesis they are

a.j- = %‘ i=0
0 otherwise

3.2.3 Program Description

To carry out the computations leading to a
spectral estimate a TORTRAN program was written for the
709k digital computer. It would have been possible to
obtain an existing program which performed many of the
calculations, The major motivation for creating another
was convenience. It was considered important from the
viewpoint of input data processing and output data
prescentation to have a format that was very convenient,
since it was to be used extensively. For instance, it
was found to be imperative in many cases to '"prewhiten"
the data; (dlgltally fillter to obtaln favorable spectra s
as discussed below and in Section 3.3.22 a feature which
1s not generally directly available in spectral estimation

programs., Our program is included in Appendix [ B] and
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a detailed listing will not be presented here although a
general description is perhaps in order.

The program mechanization selected first computes
the Tinite cosine table to be used later in the calculations
for Fourler transformation. This step may be omitted 1r the
current run is a repeat of an immediately prior estimation
for which the cosine table is still available in memory.

The program then digitally filters the input data
to form a new random process whose spectrum is related
to the original spectrum by the magnitude squared of the
filter transfer function (known). With some a priori
knowledge of the input spectrum,this technique allows
improvement of the spectral estimate’s properties. This
improvement is obtained by shaping the spectrum to be
egstimated to be more nearly constant. As indicated in
Section 3.1.2 above, this helps lower the variance of
the estimate as well as reduce its bias. A much more
detailed discussion of the blas prcblem will be presented
below for some specific cases.

The sample mean is computbed nexh. This compubation
is done by data thirds in order to maintain the option of
removal of a linear trend from the data. The mean lagged
products are then formed. Appropriate constants are
subtracted from each to remove either a constant or a linear

trend froar the data. The mean removal, at least, was
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always employed ard is discussed in detail below in
Section 3.3.1.

The raw spectral estimates are now formed by finite
Fourier transformation by the cosine table generated
earlier. Application of the '"window" then yields the
spectral estimate. The effect of any digital filter used
to prewhiten the data is then removed yielding a final
spectral estimate for the sctual input data.

Our program is written as a subroutine so that it
may be called by a main program which can further process
any of the desired results. We used this technique to
do various data plotting jobs while avoiding the recompiling
of the basic spectral estimstion formulse.

3.2.4 Quantization

Because all of the data processing is done digitally,
the original contilnuous date must, of course, be quantized.
Wnlle the exact spectral effect of time sampling can be
calculated as indicated above in Section 3.2.1 the exact
effect of amplitude sampling can not. The difficulty lies
in a practical calculation of the second order statistics
of the quantized signal. Various approximate formulations
are avallable. The one presented here is original although
not unique. We have chosen to separate the analysis of

time sampling and amplitude quantization effects. Both,
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in fact, occur together and it is possible that the way
to an exact description of their effects is to solwve the
problem all at once.* We desire a description of the
spectrum of the quantized output in terms of the spectrum
of the input. We shall proceed by characterizing the
cutput as the input plus an error term, utilizing the
approximgtion that the error and the input are independent,
agsuming the error is white, obbtaining a formuls for the
spectrum of the error and thereby for the quantized signal.
We consider a quantizer, E, whose input is a random
procegs n(t) and whose owkput is another random process
n'(t). There are many specific ways to mechanize a
guantizer. We consider only cne although it will he
cbviousg that in our approximation most others would

yield the same results. Suppose E is defined by
/
' L,f’rf
rrl"\ n
”

(oN+1) 0 < Ne <n < (N+L)e

n’ = (68)
- (P41 ) 0 >=Ne > n> -(N+1)e

o} @

njo

7 _

Reference [13] is Widrow's version of such an attempt. For a
certain class of signals he shows that the error has approximately
a white sgpectrum.
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Then if we write the ocutput in terms of the inpub

as

we can specify the crror, ¢, in terms of n as follows:

}
é
NP \+é§\\ N N N\ WA
-\ hY A 1 f T
N N N NNN NN NN e
2 Nn—»
g = % - (n-Ne) Ne < n < (N+1)e
(69)
N=0,%1, £2, £3, .....
Now let us calculate p(e) from the gaussian
distribution as N€+€/2-e
© 2
~ —'n/ 2
p(e) zlimz”\%'l— E e 29 4n ¢/yZez0

Ve o

he~0 N=-%Ne+e /2 -e-be

Approximating the integrand of each term by its first
order Taylor series and noting that the approximation

becomes exact in the limit we obtain

N [3) ece]
02

x© -

- L
ple) /o o Ze

— 0O

o

(70)

T
We calculate p(e) only for e 2 O since it is an even function by
symmetry.,



_59_
p(e) is approximstely constant and equal to % since its
integral must be unity. A bound on the first order
correction term can be obtained as follows. Suppose we

expand p(e) in a Taylor ceries obout the origin.

2
p(e) ~ p(o) +p'(0)e +p"(0) Z5 + ...,

The linear term is zero because p(e) is even but this fact
can also be shown immediately from Equation (70) above by
differentiation because the sum obtained for p’(e) is
identically zero at e = o. The first correction term is
then quadratic.

Let us evaluate p(E/E),?rom Equation (70) we have

[ee]

@ - &, T e l20)

N=-c
vhich becomes on utilizing DW 552.6 [12],

R
JORFN LD (72
& series which converges & great deal faster In the cases
of interest where (g) is large. Thus ;1(%) is slightly

larger than %. The deviation of p(o) from % can be bounded

as follows., From Eguation (70) by differentiation we
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. 2
cbtain [ (w+d)e-e]
-
® 20
1 -1 1
ple) = — 3 E L(m+3)e-e] e
J/2n o N
[(N%%)S—e]g
e ) 202
pe) = = 5 :E : e
/20T e [ (wd)ee]
*® ‘202
MR S At L
Jem o ey

which indicates that the function p(e) is concave upward

and increases monatonically from the origin in both directions
in the 7region - % <e< %. Therefore, the behavior

is as shown In exaggerated form in the sketeh below. Since

we know that e{f}p(e) = 1, we know that the area above

e/,

AN e Al
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the % line must egual that below it which combined with
the concavity implies that B > o, Since B is given by
o 22
Equation (22) we have @ < B =2 Z e
N=1

(13)

as bounds for

the error in calling the quantization ervor uniformly
distributed. It is interesting to note that the
probability density of the error is very uniform., Even
when € is equal to O the maximum percentage error P is
on the order of 107!, Therefore it is an excellent

approximation to take

1 €
= < X
€ iel 2

ple) =~ (Th)
0 otherwise

which of course implies

Ele) = 0
2

2 _ e
E(e™) = 15

Consider the error e(t) to be a stationary random process.
If we assume its spectrum is white over the estimation
bandwidth for any given run, %E , we arrive at a level for
this spectrum, NO, of*

2 At
N, = ¢ 13 (75)

Note this puts the gquantization noise over the same band as the spectral

estimates,-»%E% < £ <+ % Atywhich Includes negative frequercies.
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The validity of this assumption is very difficult to

evaluate because it involves the second order statistics

of the output of the quantizer.
3.3 Low Frequency Bias

The particular interest of this thesis is in the behavior
of several random processes at very low frequencies. Therefore,
the various phenomena which lead to inaccuracies in the spectral
estimates at low frequencies will be examined in detail. There
are two reasons for concentrating on the bias of the estimate.
First, it 1s the area which has typically been ignhored in
previous studies. In addition, an estimator's biag is the most
annoying property empirically because it is so slippery. One
can repeat the experiment a large number of times and obtain
results whose spread agrees very well with the estimator's
expected variance. And yet the results can all be in error by
a considerable amount and lead to errcneous conclusions.
Finally, the exasperabing Teature 1s that arlter the source of
the bias has been found and eliminated, the results again
appear consistent to the same extent as previously. Thus, one
is always left with some lingering doubt about whether there
is still some undiscovered bias lurking in the estimate, We
shall now consider specifically some of the prominent sources

of low freguency bilases in spectral estimates.
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3.3.1 Mean Rewmoval

Recalling the analysis of the previous sections it
will be noted that all discussion was for a zero mean random
process. Slnce thils willl almost never be the case, the
mean is removed during the spectral estimation process.
Were this not done The spectrum being estimated would have
a spectral line at the origin. The estimate would tThen
be ruined in a bias and a variance sense in the vicinity
of the origin as discussed gbove. The method of mean
removal used in our computations was to employ the sample
mean as an estimate of the mean and subtract its sqguare
from the mean lagged products at each point to obtain
auto-correlation functior estimates.* This cnoice is
motivated by the following case. Suppose our data x(t)
was actually from a stationary zero mean noise process
n(t) plus an additive constant m;

x(t) = n(t) +m

Then the correlation functions are

R(r) = R (1) + e

X n
and m? is Just the right thing to remove from our estimated
correlation function to obtain the correct result. Moreover
if n(t) were white the sample mean would be a minimum

variance, unbiased estimator for m.

¥
We will also consider in this section mean removal by subtraction
of the sample mean from each data point.
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However, in real cases several quesblons arise.
What is the effect of such a calculation for real data?
In particular, how can this effect be expressed in terms
of spectral densities? How serious is the fact that the
noise is not white? Is the use of the sample mean
adequate?

We shall answer these questions in a very straight
forward manner by calculating the average value of the
spectral density estimated by the actual computational

formula employed. The estimate of the spectrum at

*
frequency R/2 MAt is VE given by
= 2 : RqT -
Vﬁ At Cq cos R=0,1, ¢.v00u, M
q:-l\/_[+l (76)
and
N -R
o= E Z 7 (2)2 R=0,1, eoveaey M
R 4 a+4R
N -R
a4 (77)

where the Zi are the data points and 7 is the sample mean.
We shall calculate the properties for this QO window
estimate first, then extend to those for the more complex
windows {i.e. UR). To investigate the bias properties

we take the ensemble average and maneuver 1t

algebraically until we cbtain an expression containing

ThLS differs from Eguation (64) above only in that the mean
removal is included.
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terms for which we have a ready explanation.

Inserting Equation (77) into Equation (76) yields

M
E {VR} =E [é (2—-1\-4%% )] = A% Z [RZ(th) - E{ig}]cos -R-D%E
g==-M+1

which can be written as

” M
E [VB:I = At [ RZ‘<T) cos[ETT (——2—%%) T] Zé(T-QAt)dT

g=-M+l

- 2mst oy 5l (Z)?]

where &, . 1s the Kronecker delta given by 6, . = {O l}EJ
i,d i,J 1 i=]
This can be further juggled by including a window to

obtain

-2
E [VR] = At R, (T) D(T) cos w_T E §(T-gAt)ar - 2MAt 6 EL(Z)]
Z r R,0
oo q,—__oo
1 |7 <mat
\ R ‘
where OJI' = 21 (-m) and DO(T) = % IT\ = MAL
0 otherwise

It is now evident that the T integration can be considered
as a convolution evaluated at the specific frequency
R/EMA’C while the train of § functions performs, the

expected aliasing in the frequency domain. Thus
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[eo]
5,0 ® 9,0 ® L sl (78)
0_:—-
spcetral  windowed aliased £ = R/EMA‘E
density with Q evaluated at
window appropriate discrete
Lfregyuency

OMAL 60,R EL (2)2]

where QO is, of course, the Fourier transform of DO(T)
given by

_ gin 2MAtTE
Qo(f) = Mt ( 2MAtTT

and the triple convolution is evaluated at frequency

——2—1\%%- as indicated,

This formula is exactly ag expected in that it
contains: the effects of the asliasing due Lo discrete
sampling; the effects of the window (simple QO in this
case); and has a term removed from the dc estimate
(R=0) which would be - 1if the 7 were a perfect estimate
of the mean. It is the verification that the discussions
of Section 3.1 do in fact hold for the discrete version.
In order to formulate the effect of the actual mean
subtraction term in a more amenable manner,; we proceed

as above to eventually obtain an integral on the spectral

density.
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The sample mean squared is given by
_ 1 N N
Z o= = 2 2 zZ,
Noogsl 41 ¢

Its expected value is a sum of correlation functions
times coefficients which can be written as an integral

against a train of § functions.

as

B7°] = & 1\,;:_1 (8 -lql) R (1) 8(T-gAt)ar
= F =5 -lq Y ~Q

which upon further manipulation becomes

jou]

_D. -
7] = L > 8(T-ght) B, (7) D (7)ar
N J, 4=
where
1~—J—T-I- - N AL =T 5N A
D () = N At
0 otherwise

whose Tourier transform is

sin TIN At
TN At

Q (f) = N4t (

Again it is clear that in the frequency domain this is

Just an aliased convolufion evaluated at the origin so
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+that
=2 sin TfN At
77 = [ s (r) @ (PRTA ) Z o2 - & (79)
[ ® (L)) © &

S — /

spectral windowed allased M =0

density evaluated
at
frequency
origin

Now returning to the previous equation for E(VE) we can

*
examine the estimate at the origin for the QO window as

2
2TIMAL gin TN At
E{V}= Eé(f- >*2MAt sin -
° 0 ® At OTTFMAL TN At
(80) 710

But a convolution evaluated at the origin is just the
integral of the product of the two quantities. Thus,
the average value of the estimate at dec is an integral.
The integrand is the aliased (real) spectrum multiplied

by a 3 MAt width “window" with a size "hole" in

N At
it. The equivalent window for VO looks like the following

sketch.

[}

S
pres

f—-

* For other windows one must use their explicit formulae instead of
the simple sin x Dbut the result is the same in principle.
X
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Therefore, 1n the usuval case the scheme removes the mean as
advertised. But it should be pointed out that Vé is really
not an estimate of the power spectral density at the
origin. Figure (2 ) is a plot ot the "equivalent window"
for Vb of Equation (80) on a log-log scale. It is clear
that VO is really an estimate at some freguency less than
%—MAt but considerably greater than zero. Blackman and
Tukey apparently recognize this and consequently recommend
considering the Vb point as an estimate at % of the lowest
point, % MAt x %. However, if one postulates a true
spectrum and can carry out the necessary integrations,
then VO can be plotteda at exactly the appropriate point
for that particular spectrum.

There is one additional consideration associated
with the mean removal situation waich warrants a moments
discussion. This concerns the specific method of mean
removal. The above discussion considered removal of the
square of the sample mean from each '"lagged vproduct.'

An alternate scheme is to remove the sample mean from
each raw data point before calculating the mean lagged
products. Suppose that in place of Equation (77) sabove

we yereto employ

’ 1 N:R - -
C®) - L Gy Gy - D) (61)
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Rewriting this and adding and subtracting terms from the
sums yilelds

/( ) 1 1\123R 2 }-C ZN R
¢ (R) = — XX, -X +== (x -x) + (x_-x)
N-R T aetr N-Ry e @ o ¢

But the first two terms are just the previously discussed
method of mean removal so that this result can be written
¢’(R) = ¢(R) + D(R)

where

z N ‘R
D(R) A ﬁ——-{ 2 (xg=%) * %; quﬁi%

T N-R+L
represents the differcnce between the two methods of mean
removal. It is clear thst the ensemble average of D(R)
is identically zero. Thus, "on the avcrage" +the methods
are identical and’hence the sbove discussion concerning E(Vi)
holds equally well for either scheme. For a given specific
set of data D(R) will have some value and hence there will
be some finite difference in the power spectral density
estimated from any particular sample function.

Consider the case of l/f2 nolse where the process
containg a great deal of energy at frequencies below the
minimunm resolution, éE%E. Then the time data will (may)
have slow, large amplitude fluctuations. Thus, for short
hunks of data at the erds the samples are guite llkely
to al’ be on the séme side of the mean. In D(R) this

will make gll of the terms in either or both of the

sumrations possess the same sign. Thus, as R increases
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the sums will grow in magnitude so that D(R) will be
increasing in R. This in turn implies that C’(R) contains

a term increasing approximately linearly in R waich is

not contained in C(R). For l/f type speclra Lle correiation
function decreases monotonically with T i.e., as 1n T for
l/f ncise, e T for l/f2 noise. Because C'(R) decays

more slowly in the T domain its Fourier transform will

decay more rapidly in the frequency domain. Hence, the

bias created will tend to make the estimabed spectral
density steeper. In this respect the effects of this

error source are very similar to those of long step function
type disturbances (see Section 3.3.3).

A numerical illustration is provided by the
following case. Figure (3) shows a spectrum estimsted
from 10000 raw data points with At = 5 sec and X = .5986399.
It is a Q2 estimate with M = 100, and the mean was removed
according to Equation (TT7) by subtracting the square of
the sample mean Irom all the mean lagged products. The
circles represent the result of an estimation with the
same parameters from the sawe data but with the sample
mean subtracted from each data point. The differences
appear to be significant only Tfor small R. For this
particular case the sample mean is some 778 times the
standard deviation of the noise. Thus, effects such as

D(R) which depend on this rabtio beccme more important.
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This error source {which mean removal scheme is
chosen) is not properly characterized as a bias since on
the average there is no contribution. The question one
is concerned about it, "What happene for a particular
sample function?" But this is really a question of
variability in the usual sense. How much is the result
likely to vary from one sample function to another?

What we should really do is caleulate the variance
of our power spectral density estimates for the computation
scheme we actually use. We should not assume, as was done
by Blackman and Tukey and in Section 3.1.2 above, that we
are working with a zero mean random process. We should
take account of the fact that we are removing the nean.

Returning to the discussion of Section 3.3.1 we
will now wish to replace x(t) by x(t) + m- % to explicitly
exhibit its mean and the sample mean removed. ILet us
ignore the fact that x ie clightly oorrelated'to each of

the x's and write

m-x AS
and assume that & is a zero mean random variable which is
statistically independent of x(t). This process will
calculate the effeét on the covariance of the spectral

estimator introduced by removal of the sample mean
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directly from the data. We will have added onto the rigat

nand side of Equation (13) the berms

2 s o
2lvar(s)]® + var 8 [R(tE—tl t 5 - —5) + R(tg—tq

T

I
2

ol

T T T T

mho

278
where Var(ﬁ) is the variance of the sample megn a8 an
estimate of the true mean. Again proceseding to write the
correlation functions as inverse transforms of the

corresponding spectral densities yields the two terms

(o2]

2 R w -
2(var 8)° + b(var &) JL 8(f) cos ® (tQ"tl) cos 1 T, cos Ty df

added to the rigat hand side of Equation (15). Now
insertion back into Equation (16) as was done in Equation
(17) before yields Equation (20) with the twc additional

terms appearing on the right hand side as

2
2 5 .
-—--—<":r2 L as)) atsy)
N

[v ]
+ b ovar 6VA57f cos W, T. cos W. T. COS 2 cos &
11 2 2 I 1 I 2
o s]

';Q-T - ilg'T _
D(Tl) D(TE) 5(2) Slﬁi( N ‘Tll) 5 Fi( N |T2|) dTldTEdf
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This can be written approximately in terms of the modified

windows by the same technigue used before as

T Ty

2
elvar 8] g2y a(e,) + {raz8) f lan(e, + ) + e, - D]
N - | (

32)

[Q”(f?_ * Iif) Qe - If;)]s(f) af

where Q"(f) is as defined in Equation (32). The degree
of approximation here is the same as that utilized In

deriving Equation (31 ) in that we have ignored terms
2

in (%“) in the T1s T integrations. We expect x to be
N

8 good estimate of the mean so that the first term should

usually be regligible,

Tn the case of a ‘"smooth" spectrumthis additional

-

term in the variance (f, = f,) simplifies %o

1

2
_ T T
2(var 8)° <f¥). + ﬁZé%.él fﬂ [s(£)]
N N

This is in addition tc the previously calculated

T
fﬁ term so that if we write the total variance for the
N

smooth gpectra case we have

| ~ N 1 [var 6 2 TM var 62
var S(f) = T, 8(f) |z +3 <_§T57> " Ty (?ﬂgiT)
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This result indicates that the deviatior from the expected

. ) . =) 2
variance increases as S(L) decreases. TFor l/f or l/f
type spectra which decay with increasing frequency this
additional variability is largest at the highest frequencies.
Thus, 1t seems not to help explain any unexpected low

frequency behavior.
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Se3.2 Prewhitening

As Sections 3.1.2 and 3.1.3 sbove have shown the
gtatistical properties of the spectral estimate are much
more desirable 1f the spectrim to be estimated iz white or
at least 'smooth." That this is particularly true of
the spectral estimate's bias will be further illustrated
heree The situastion is not unlike that in most estimation
problems. We can almost always do a better job of estimating
something if we know the answer or some approximation to
it beforehand. In this case the general technigue is to
force the data To be white by putting it through a filter
whose transfer function is the inverse cof the presumed
final result. The spectral estimation is done on this
result which is presumably white or nearly so. Thus, all
the advantages of the ‘'smooth" estimation case can be
obtained. The final spectral estimate is then obtained
by undoing the filter which can be done exactly since the
filter was known, While this procedure ﬁay seem rather
trivial and of little consequence, as a practical matter
it is extremely important. Blackman and Tukey stress the
need for prewhitening repeatedly. They're warnings
should not go unheeded. For instance, in the l/f noilse

case proper prewhitening has probably been the single
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most important factor in obtaining useful results. Since
the low frequency semiconductor noise case is the one of
particular interest for this thesis let us move on to
an examination of the prewhitening problem in detail for
this case.

Iet us consider a power spectral density which
goes as l/f for decreasing frequencies. It might appear
smooth on a log-log plot but this is a deception. It has
s logarithmic singularity at the origin and is definitely
not 'smooth" over linear frequency spacings on the order

I
of ETM S.

A spectrum which actually behaves as l/f all the
way Lo the origin is disturbing for several reasons. First,
it would not be integrable and hence imply infinite total
power in the random process.* In addition, some of the
integrals which appear in the calculatlons for lhe wmean
and the variance of the spectral estimate at low frequencies
would not converge because their integrands are windows
multiplied by l/f type kernels. A l/f spectrum will also
have divergent total power because of its behavior at
high frequencies. However, because of aliasing difficulties

in a practical estimation provlem we will arrange to be

desling with a basically low pass spectrum.

It io not, however, clear that we could ever expect to measure a
significant amount of this infinite power. We may not live long
enoughi
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Let us consider then a l/f spectrum which is white
below some lower 'break" frequency, fo’ and zero above
some upper 'cutoff" frequency, fc, as shown in Figure (1)

and given by

fK ™
3 lel < ¢
o]
K < |P] <
s(r) =<4 = £o< [£] < £, > (8l)
| £
0 |£] > £
c
~ »

where K sets the absolute level of the spectrum. For any
given spectral estimation run fc will be something on the
order of §%E whereas fo might be something like a micro
cycle (10‘6 cps). It is interesting to note that having
idealized the situation to this extent we can at least
calculate a correlation function,'a feat which could not
be managed when the spectruw diverged like 1/f at the
origir and decayed only like 1/f at infinity. The inverse
Fourier transform of Equation (84) yields the correlation

function as

sin 2ﬂfoT
R(T) = 2k BT + ¢, (eme T) - C; (27, T) (85)

[ee]

o
where Ci(x) is the cosine integral J. Eeg—wda. It seems

X
clear that cutting off the l/f behavicr at low frequencies
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in o different manncr would mcrely change the ‘"shapc!
sin x . A . .
of the ——— temm to the Fourier sransform (i.e. "window")

for whatever shape igs chosen as the truncation in the
Lreguency domain. Uslng  asymptolic expansions for Che

cogine integral

gin x x> 1
X
C; )~ (86)
~in %; x << 1
v = 1.781072

we obtain approximate exprcooions for the correlation

function in the three regions of interest.

e " fc‘ 1 ™
R(1) ~ |2k l+1n<f—) T<<§?E— region 1
R o] C
2k -in(2ﬁyf T) ek & T <K region 2
c oTT BTiT >
L C O
[sin 2ﬂfCT 1
\?k L EWfCT v EEFE reglon 3 )
(87)

where we have uged the assumption mentioned earlier that
f > 1.
c C
In the first region the correlation function is
a large positive constant which grows logarithmically as
we let the l/f behavior extend to the origin. Note that
with our discrete estimation scheme we willl never be

able to measure this region's behavior. Our minimum



-83=

resolution in the correlation function estimates is

_ . 1 _ At
T = At but region 1 occurs for T << §ﬁ§; = -=".

. Therefore, almost all of this R(T) contribution
would appear 1n the T = O point for our scheme., This is
one way of viewing the origin of the bias in Tthe spectral
estimator.

In the second region R(T) has a lograthmic behavior
with 7. We are Interested in considering the case where
our minimum resclution in frequencyyéﬁ%g,is much larger
than fo, the l/f break frequency. Thus, region 2 is all

we will ever be able to see ag T increases since it extends

in T to something like which is larger than the

212
®sin x

maximum T poinmt 2MAt. The ——§7i-behavior of the correlaticn

function in region 3 won't be seen until we get down in

frequency to where we can resolve the f break point.

L

This means essentially record lengths long compared to
1

f
o]

But lct us return to the question of bias. We
wish to calculate the average value for our spectral
estimator for the particular case of 1/f noise of the
assumed shape. From the preceeding section we have that

the average value of the estimate at frequency R/QMAt
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for the ”QO“ window is given by

°° : v s 2
S(f) (:) §: § £ - %E <:> 2MAt{Sln 2TEMAL _[sin TINAT }]
L q=-* 2TINAL TINAT Lo
-
. P :
WO Lk QW | )
T = oAt

We will calculate the bias for the Qo estimatc and recombine
these results according to Bquation ©7 +to obtain the bias
results for the Q2 window. DBecause we are considering the
allased power spectrum of the noilse Lo be given by Equaticn

(8L4) we see that the blas calculatlons will lLuvolve lobegrals

of the truncated 1/f function against Zo% and Gﬂi X)2
type kernels. Although these integrals converge they are
not readily obtainable via any cf the standard reference
tables. The easiest method of evaluating them is to return
to the T domein where the windows take simple forms. In
particular, the @ window ig, of course, Just urnity over a

, 2
fixed T length and the (?ig~§> ig a triangle ir the T domain.
For R > O, and a QO window,

E(vR) 'fm s (2') Qo(f’ - ém%) ar’

plles]

MAT . (89)
Zj{; RS(T) COS( en WAL T)d'r

where Ra(T) is the correlation function corresponding to

the aliased spectrum Sa(f). If we use Eguation (85)
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Tor thls correlation funcllon we lave

2ﬂf T
MAt 2nf T
E{V } - o o sin =T, *_-/P cos x dx| cos RT_ 4T
R 0 CemE T T 2ﬂf T MAt

With the use of integration by parts and trigonometric

‘dentities we obtain

E{VR} = ﬁ%; [sﬂ:gﬂ + QHfOMA€> - sﬂigﬂ - EﬂfaMAg}]
- 2k @3 I.SJ.(PW + omf vm;) - Si(QTTf MAL - Rﬁ) (90)

-Si(RTT + EﬂfoMAt> - Si(Rﬂ - 2TTfOMAt>]

where SL(x) is the sine 1ntegral/ sin X dX g

expression is cxzact in thet the only assumption involved
is that the aliased power spectral density is the truncated
1/f spectrum of Equation ( 84 ). Since Vp Is tThe
; : ‘ R
esbimatc of the gpectrum of £ = SHAT ywe see that to

calculate the bias Equation (90 ) should be compared‘

with

g (glvrm) k EMAt (91)

which ig the correct result at this frequency. Tn

developing approximate formulae from Fquation (90 )

we nobte that we have already assumed that

R _ .
loo << SMAT fc (92)
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which imples that

EWfOMAt < R = EﬂfdMAt

wnere the equality sign holds only for M = 100.

The differences vetween Si functions then become

. R Sin X
integrals of the

kernel over very small regions

around the points RU. Using a first order Taylor series

. . sin x . .
approximation to the ——= in this region we have

E{V } ~ 57 2 s1(zm) + {2 ) (1 Tgf‘o"
R~ B |70 3R\ Mo
(sj(errfcMAt + Rﬂ) - 0:‘( 27y bt - RTF)):l (93)

i

The last term will be exactly zero to the extent that the
cutoff frequency, fc, is really the allasing frequency,
E%E,and will be negligibly small in any case. Fquation
(93 ) is written with the correct result at the
fraquency R/EMAt factored out. Therefore, the exfent

to which the expression in square brackets is not equal
to unity will be the fractionzl bias. For this case of
the Q_ window, Table { 1 ) shows this bias vs R for the

first few terms under the assumption ( 2).
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R % Bias of Q, Spectral
Estimate at R/EMAt
Tor Truncated 1/f Spectrum
1 + 17% + .68 ab
2 - % - W1 db
3 + 6.7% + .28 db
L - 4.5% - .2 dp
TABLE ( 1 )

We must now calculate the bias of cur estimate Vb
considered as an estimate at the origin., This result will
be important for computjing the bias of the QQ estimate.
However, as pointed out in Section 3.3.1 this point is
actually an estimate at some point cother than the origin
due to the mean removal scheme. Thus, we can also ask
what frequency this point should be plotited at such that
it 'will be an unbiased estimate of the spectrum at that
frequency. To calculate E(Vb) we return to Equation
(88 ), insert the truncated 1/f noise of Equation

(84 ) as the aliased spectrum, and integrate all the
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integrals only over the positive frequency domain since

the functions are even in f. This procedure leads to

f il
2
LKMAL f © gin 2TEMAL LRMA f °
E(V) = ~Zrmm— 4 - sin TENA%
o] fO ) 20 ML fO (W) af
i
c c 5
+ %g . gin ESfMAt if - gKg J/‘ gin ngAt ar
fo il ™ N At fo iy

The first integral is just a S1 function and the other
three can be expressed in terms of sine and cosine
integrals. The following formuiae cbtained by repeated

integration by parts will be useful.

si(2a) -

&

‘

gin rx ax = 7 [81n A _ sin rB + Ci(rB) _ Ci(nA{}

rhA rB

2 \ 2 . 2
sin~ rx _ 2 1fsin TA 1 [sin B sin 2rA
y3 x = r [ 2( Th ) G < B > E-Ty
- -S-%-g—rg—@- + C1i(2rB) - Ci(ErAﬂ

Ubilization of these results in conjunction with the

expression for E(Vﬁ) above yields



E(VO)

il

-+

-+

Lxpat [
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Si(EﬁfOMAt) sin(enMAth\ 2 Si(znfONAt) sin [EWfCMAt)
2mE MAT 2 _MAE h 2 NAT - 2T JNE

+

[\

X (sin ﬂfONAt> 2 (sin nf(ﬂAt) 2 sin(znfol\mt) sin(EﬂchAt)
= + e :
2

TE NAG TF NAT DT NAG * TOMT NAG
o] C (o] C

Ci(EﬁMAth) - Ci(eﬂfOMAt) - Ci(ETrfcl\TAt) + Ci(ETTfONAt)J (oh)

This expression 1s exact but not very useful. To form more
tractable approximstions we need to say something aboutb
the size of EHfONAt. This 1s equivalent to asking if

even our total record length, (NAt), is long enough to be
near vesolving fo. A typical set of parameters might be

M = 100 and I = 10%. If we take £ on the order of 1077

and let At range fromlo-lL to 109

then there are clearly
two different ranges of approximstions of interest. At
the high fregquency end where we cannot resolve fo at all

Equation (94) becomes

K N 1
E(VO) ~ o — [- 1+21n M] M << merrfom (95)

This result is in the form one would expect. It does not
depend on fo explicilly since we have assumed we cannob
"see" £ but it depends on its presence through the

ratio of our total record length to the maximum lag at
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which the correlation function is estimated. Another
way of interpreting this effect is as the ratio between
the minimum frequency resolution point and the size of
the ‘“hole" in the window due to the removal of the
sample mean. At the low frequency end, where 1/2NAt

resolves fo but 1/2MAt does not, we have

K 1 1
By ~ k+21n (_.__.__...> P
o) l72MAt [ Y 2ﬂfOMAt ZWde

wnlch again shows the expected dependence; that is, it
now depends on how far the minimum frcquency resolubion
point is above the l/f break freguency.

Cne expects the bias during the transition region,
where neither of these two approximetions is strictly
valid, to vary smoothly between them. This could be
verified for any particular case by inserting numerical
values into the exact formuls, Iguation (9&). HowevEr,

a good indication that this is in fact the case is given
by the following typical calculation. Taking a case which
is Jjust at thce uppcr borderline of the low freguency

L

case, M = 100, N =10, At = 5, fo = 10_5 and evaluating

the result utilizing both approximate formulae we dbtain

high freoguency case E(VO) ~ (K/1/2vAt) (8.2)
low frequency case E(VO) ~ (K/1/2MAt) (9.76)

which are not very different.
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The bias of these results when considered as estimates of
S(o) is large since the correct result there is K/fo. But
we are now in a positicn to calculate that point, f/, for
which they are in fact urbiased estimates of S(f). The
most convenient form for this result is as a fraction of
the lowest frequency point R = 1 where T = l/EMAt. Thus
we calculate (£'/1/2MAt) as

7

(1/f ) - Kﬁ%%A§ = |1 +21n % oTie NAt << 1
2MAL o)

1
T A >>
Y + 2 1n 7 gﬁfo T 2 fON t 1

(97)
For a typical low frequency case of M = 100, N = 10", d

fo = 10_5, At = 5 sec this says the zero pcoint estimate
should be plotted l/(lO)th of the way between the origin
and the R = 1 point. This i1s about 1 decade on a log T
scale.

We are also now in a position to complete a
table of percentage biases Ior the Q2 estimate by using
the &, 3, + coefficients of Equation (67 ) applied
tc the Qo results. This yields biases as indicated in

Table ( 2 ).
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R % Bias of Q, Estimates % Bias of Q, Estimates for
Perfect QO Bstimates of 3

Truncated 1/f Spectrum

for QO Estimates of &
Truncated l/f

Spectrum
0 0 0 - -
1 + 313% + L.ok ap + 315% + 4,98 dv
2 T 2L.5% + .85 db + 16.5% + .66 db
3 < 1% - .01 db + 6.5% + .27 db
h . . + 3.3% + .1k db
TABLE (2)

The R = O point is considered as an estimate at the point
£! Just caleulated.and hence is unbiased by definition.
Tne other biases involving the Vb point assume the high
frequency case is involved but as the calculation above
indicates it makes 1ittle difference most of the time.
The bias of the spectral estimator becomes even
more pronounced for the case of 1/f2 spectra., This is
to be cxpected since one 1é now estimatling on Lhe slope
of a much steeper function. ILet us take as the correct

regult an RC noise spectrumwith a very low break Ifrequency,



-93~-

5(f) = —=——3 (98)

where K% sets the absolute level. We will be particularly

interested in the case where f >> ft and the spectrum is
decaying as the sguare of the frequency. Let us proceed
to calculate the expected value of the QO spectral estimate
at f = R/2MAt

ool

X
- t R
B(Vg) = / 5 9 (f-QMAt af (99)

J. fg + ft

where we have made the approximstion of ignoring the
aliasing since the spectral density is decaying as! l/fﬁ .
Making use of the formule for the QO window given earlier
in Equation ( 35 ) and . the fTact that

/sin(x-Rﬂ) ax _ [1_(_';)36‘5‘]
(x-Rm) (Xe + ae) 2 (100)

a -+ (]E{'I’T)2

we have

r

& l—(—l)Re

LTS

*
This integral is obtained by integrating the product cf the
Fourier transforms of the factors in the integrand in the F ourier
transformed domain.

-2TrftMAL1

E(VR) (101)
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For the case where our frequency resolution is much too

1

large to ‘''see" f% then

1
S
f% < STIAE Ty 2UfMAL << 1
and we have approximately

2 R odd

Kf
) o~ s
(.R/EMA’G:)2 EHfEMAt R even

This is a very interesting and rather unusual result. It

E(VR (102)

says that since K(?/EMAt:F is the correct result you will

be biased upward by a factor of 2 at every other point and
downward by a large factor at the points in between.

This behavior correlates very well with typical experimental
date as Figure ( 5 ) illustrates. The dashed line shows
what is believed to be the correct result for this data
which goes as l/fz in this range. The points are the QO
egtimates directly from the data with the lables indicating
the values of R for the first few points. For this
particular run At = 5 sec, M = 100 and if one postulates

£, = 1072 cps then Equation ( 102 ) predicts + 3 db for
the odd points and - 15 db for the even points which
agrees with the data within the expected variability of

these points.
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As a preliminary to calculating the bias for the
Qo estimate it 1s necessary to find E(Vb). We start with
the agsumed spectrumof Equation. { 84 ) and again

ignoring asliasing obtain from Eouation ( 80 ) that

[ _ t oppe | 810 2TENAL (;in QHTNAf) af

iy - -
. \Vo} 2 STIMAG \ 2rINAT

. *
Meking use of Dwight 859.005 [12] and

2
sin x ax _m m -23, (103)
- —— e T e e (e _l)
/ ( “ ) (2+32) 2 2a3

© X

we obtain
( -2ﬂNAtft
X EMEMAT M1 - e
t 2M
E{vb} - —5 ML -c¢ -5t N2 .
£, L | oTALE,
. . I « 1
Again making the assumption that ﬂf% < VAT we have
- K £
t 2 t
E{v } i {n } omie, WAL << 1
o) 2 17 t
£, oMAL (104)

£
2 )2 T M ;
7 - ki >>
K/ft {T i7£——; T } 2ﬂftNAt > 1

where in the first case even the total record length N4t

ig ingufficient to resclve ft' Tese results are written

in a form which exhibits thedeviation of the estimate, Vé,

- from the actual behavior of the origin, K/th. They show

*
Franklin [ 14] pg. 225.
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that Vb underestimates the true spectrum at the origin by

about 1/10th of the ratio between the break frequency of
the noise, ft’ and the estimation resolution 1/2MAt.

A more informstive way to write this result ies as

E{Vb} ) (?/f% :ﬁ i <}/§$A%> (105)
2MAL

which shows how much bigger Vb estimates the noise to be

than the correct answer at the R = 1 point. Since the

noise is increasing like l/f2 in this region Equation

( 105 } can be used to determine at what frequency

£’ the Vv, estimate ie an unbiased estimate. Thie

calculation yields

£\ 1 Ly
(l;2MAt> I RV (106)

which tells at what fraction of 1/ the Vé point should

2MAYL
be plotted. TFor the typical run referred to above and

shown in Figare ( 5 ) this fraction is about 1/107.

The point labled R = O in this figuréjhenplotted at this
point (logarithmically a decade and a half away in frequency

from the R = 1 point) =3 appears quite reasonable, again

within the variabllity expected.
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We are now in g position to evaluate the bias of

the Q, (hanning window) estimate using the i, 2, &
coefficients as given by Equation ( 67 ). The biases

for R even with the QO window and R = O and 1 with the
QO window will depend on an assumption about f% but the
others can be evaluated in percentage terms without this
assumption because the odd R terms dominate.
case let us again use the data of Figure ( 5 ) emplcyed
109 and f, is assumed to be 1077

t
Then the data of Table ( 3

above for which 2MAt =
cps. ) results where the

last column

As & Typical

R % Bias of Vo

Qo Q (perfect QO)
o | o 0 do 509" -3 + 5004 +6.99 db
1 100% + 3 db + 12500%  20.97 ab + 25000%* 34 "
2 omd" <15 ab + 125% + 3,52 db + 100% 3.03 db
3 100% + 3 db + 3.8% + .16 db + 20% .8 db
i -97%* -15 a" . . .

TABLE (3)

These polints depend

on assumption about £

_to
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presents the fractional bias of the Q2 estimate for vperfect
Qo points including R = 0., The R = O point is considered
an estimate at the £’ given by Equation. (106) for this
table and so is uﬂbiased for QO by definition. The data
of Table (3) indicates why prewhitening is so important
when dealing with l/f2 spectra. The bilases are very
pronounced at the few lowest points. But these are just
the points of most interest for this type of spectra since
they "cover more ground" on the logarithmic frequency
scale. Hence, it is important to recapture them via
prevhitening. |

The above discussions have adeguately demonstrated
that attempting to fcrm spectral dengity estimates on a
1/f or 1/f2 sloping spectrumleads to very bad estimates.
The major remwediasl action taken during this research was
to prewhiten the data. The gcheme utilized was basically
that recommended by Blackman and Tukey. In the discrete
case the prewhitened data, zj‘s, are formed from the raw

data Xi‘s by

K
. = igo Ay Xy, 3=1,2, vo., N - K (107)

Waere the Ai's can be viewed as the sampled data version

of the impulse response of a linear filter. The magnitude
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squared. of thig filter will then be given by

1Y(f)|2 = B, + 2B, cos 2nf + 2B, cos 2(onf) + .....
- (108)
- z Bl cos 2Tfn
n=-K

And the B's will therefore relate 8_(f) to Sx(f) as

5,(8) = 1¥(2)1° 8,(2)

We will he nmost interested in two kinds of filters

| £] l£| < =T 1/f prevhitening
7(2)]? - (102)
. ir| < 5%5 1/£° prewaitening

where each will be pericdic in frequency with period l/L\t
Just as the aliased spectral density. Looking back at
Equation (108) we see that a simple method of realizing
B's is to expand Equation (109) in a finite ccsine series.

This procedure yields

2 T 1 /£
lx(e)= = & - = > —— cos 2nWfAt  prewhitening
m n=l, ocdd n
q2 © l)n l/f2
— + L ——g—(- cos 2nTfAt  prewhitening
3 n= n
) ) (110)

But neither of these expansions is really zero at the

origin for any finitc number of terms. This feature is
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very important when we are dealing with cases where the
l/f or l/fg behavior continues for several decades below

the minimum frequency resoclution point In order

~d_
7 2MAtT
to force the prewhitening filter to be ildentically zero

ES

at £ = O we subtract the partisl sum from |¥(£)|° for sny

given number of terms. Then we have

< S y B 1 1/t
= E: = - 5 2: 5 cos 2nTfAt  prewhitening
m =1l n ﬂ2 n=1, odd n
2
K gyt K+l ()0 1/t
L3 ~=s— b Y 5 cos 2nmfAt  prewhitening
n=1 n n=1L n
- (111)
which yields
K+
in 1
Bk - ) E: > k=0
i n=1l n
l/f prevhitening
'55 l§ k = odd
T k
0 kK = even
(112)
K+L n+l
_ (-1) _
Bk = |k 2: 5 k=0
n=1 n
1/f2 prewhitening
k
(_l) K > 1



-102 -

the coefficlents which must be applied to the raw date in
the time domain, the A's, are cobtained from the filter
characteristic, the B's, by a self convolution. Writing

out these formulae in detail yields

B, = a° +A12.. . Coral

Bl = AoAl T e e e e s e s e e T AK-lAK

B, = BA, * et A A (113)
B, = Bhg + e kA A

DK - AOAK

These nonlinear algebraic equations must be Inverted to
find the proper A's for the set of B's of Equation (112).
By inserting the numerical values Tor the first few cases,
i.e., K small, a form for rough approximations to the A's
for all K can be obtained. A short computer program was
written by K. Matsumotc to solve the equations iteratively

starting from the approximate results for any given K.
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Since the partial sum is removed the values for all of
the A's change, depending on how many A's are computed.
It was found, for this work, that very adequate results
were obtained utilizing K = 9 (or 10 A's) for 1/f
prewhitening and K = 8 (or 9 A's) for l/f2 prewhitening.
Table (4) 1lists these prewhitening coefficients. In
addition, Table (5) 1lists the A's for K = 49 (or 50 A's).
They would presumably only be used in o case where it wae
very important to maintain a 1/f behavior very accurately

and to very low frequencies.

1/f Prevhitening l/f2 Prewhitering
+ 1.2460762 A, =+ .85900591
- 88669391 A= - .938065k4
- 096221262 Ay =+ .18554991
- .12234353 A3 = - .086138683
- 037616304 Ay =+ .031371809
- 047103651 A5 = - .034h5261
- 01728585k Ag =+ 0063926557
- 022159825 AT = - 023757884
- 0070501685
- 0099076437

TABLE (L)

FREWHITENING COEFFICIENTI
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TABLE (5)

PREWHITENING COEFFICIENTS FOR 1/f SPECTRA

1.3221297 Asg .0024582738
.82051718 Ae .0029221055
.080650110 Ang .0021067328
.11433732 A29 .0025097537
036575483 Asy .0018054929
.049030906 A31 .0021538768
.022105715 A32 .0015443690
.028579432 A33 .0018566522
015215286 Agu .0013155949
.019185228 Age .0015933982
011264811 A36 .0011130872
.013950386 A3T .0013615906
.0087319731 Agg .00093192328
.010670907 Agg .0011551859
.006981.9628 A) g .00076793013
.0081483139 Ay .00096509006
.0057063556 Ay .00061729365
.006854537k A)s 0007986446,
0047384243 Ay, .00047603093
.005662107k Ah5 .00063890126
.0039806248 A .00033888270
.00kT399473 Ay 00048294127
.0033722939 Ayg 00019550028
.0040076400 ALL9 .00031501684
.0028738183
.0034133139

The accuracy with which the A's of Table 4~
represent the respective functions can be illustrated by

calculating the filter characteristic (magnitude squared)
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at equi-spaced points in frequency. TFigure (6)

is such a graph for the l/f prewhitening filter. Both
scales are |ogarithmic so that a straight line would
represent exactly an f characteristic. The deviation at
very low frequencies results from the fact that the filter
characteristic is zero at the origin. (Within round off
error). The filter has been evaluated at 100 points because
M = 100 is the case most frequently utilized in the
experimental work below. Figure (7) is a similar plot

of the l/f2 prevwhitening filter and exhibits similar
behavior relative to a square law.

An Interesting intuitive understanding of these
prewhitening filters is obtained by examining the effects
in the time domain for typical data. If we are estimating
on the slope of l/f or l/f2 type spectral densities the
sarple function in the time domain will appear very smooth

or slowly varying. Decsuse most of the energy in the

—_
2NAT

the numerical values obtained by sampling the process

process is contained at frequencies well below

gvery At seconds will not change rapidly. Consider
construction of a given Zi from X, and the 9 adjacent x's

by the A's listed in Table (k). The 10 A's sum to
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approximately zero so that, because the daba 1s very
smooth, the resulting zi’s will be small and oscillate
about zero. But this is Jjust one description of a process
which is more "white" CUhaa the origloal speclrum.
Table (7) illustrates this behavior by listing a
typical sequence of raw data points and the corresponding
prewhitened data points. These are from a process whose

spectrumis approximately l/ £ in the region of interest.

Raw Data Prewhitened Data
6648

.6375

6473

6512

.6395

L6505

6458

LOhle

6Lsh

L6491 + ,005132
L6548 - .011872
6575 - .003256
.6580 + ,011284
6518 - 012720
6529 + ,00h729
LOhT79 - ,000448
R teire - 004585
6522 - 00687k
6519 - .00T7kh2
428 - 001840
Oh28 1 ,001672
Ll + .,008327

TABLE (7)

PREWHITENED DATA
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An illustration of the effectiveness of such prewhitening
is given by Figure (8) . This is a spectrum estimated
Trom prewhitened data. The corresponding spectrum from
the raw data, Figure (5) , was shown earlier to
illustrate the bias which enters when estimating on the
slope of a il_/f2 spectrum. The gain achieved by prewhitening
is quite striking. The tremendous bilases in the unpre-
whitened estimated spectrum are not lorger present. The
variability on thié run appears to now be consistent with
the 11:1—1 approximation. That the spectrumestimated upon
is now approximgtely white is best illustrated by the
estimated spectrumbefore the effect of the prewhitening
filter has been removed. Figure (9) shows the spectrum
estimated from the prewhitened data corresponding to the
spectra of Figures (5) and (8). When lﬁ((f)l‘2 is
removed the spectrumof Figure (9) becomes that of
Figure (8) . By forcing |Y(£)|° to zero at the origin
we have overpowered the prcbiem so that the spectrumbeing
estimated upon goes to zero at the origin. This seems o
be necessary because the blas contributions from a non=~

smoothness in which the specbrumgoes bo zero arec not ncarly

as serious as those where the spectrum increases appreciably.
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3.3.3 Impulsive or Step Type Disturbances

At the very practical level a severe bias is
oftten introduced by impulsive or step type disturbances
in the data. The questior is, "What is the effect on the
power spectral density estimste of a big glitch in the
raw data?"

First congider the simple case of one isolated
"pad point."” Suppose out of our N discrete samples X,

one is equal to a large constant A, say

. 1
£ - A >> &

{x(tziAt)=x. i=1,§F ik
A ok (114)
where we shall assume that A is much larger thar the EMS
value of the noise because this is the case of interest.
If A is the same order as O, not only would the effects

be greatly reduced, but it would presumably be difficult
to decide that the point was 'bad." The sketcnh

below illustrates the situabion under comsideration.

]
T

aortie A B4 Mwnhw._l/\-\r.u/‘(_wl

o Mehan i Alds DAL A AATA o BpAd LA
il Mhaa e Alda ity M dB ALY ot
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This new random process ig, of course, non-stationary
and a spectral density for it is nonsense.* However, as
a practical matter it is important to know the properties
of such data since this situation occurc fairly often.
In particular, it is pertinent to ask how a power spectral
density estimated from this data by the usual techniques
compares with the '"real" spectrum of x(t). On an
intuitive basis it seems clear what the answer should be.
The spectrel estimator assumes that the waveform with
which it is presented is a sample funt¢tion from an ergodic
random process. Thus, the real process must contain a
Mot", in some sense, of ‘"spikes" 1in the time domain.
Therefore, 1t has a great deal of energy at even very
high frequencies, Thus, the original spectrumof x(t)
must have been 'whitened" in some way.

Computationally, the situation is even more clear.
The record is shifted by itself and multiplied to form
mean lagged products. Since A is much larger than O the

value for ({o), i.e., the square of all the x,'s, will be

essentially
2 - 2 2
A exA A A
Clo) ~ Clo) v -5 == = clo) + 5 (125)
k

where the first term is the ‘ordinary" result, the

The non-sbationarity is not, in fact, implied rigorously. It is
possible to think of stationary ensembles from which this would be
a typical sample. However, in most cases such processes are not
very realistic physically.
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last two terms arise because of the mean removal (see
Equation ( 77T )), and X is the sample mean excluding
A, The other mean lagged products are changed only by
terms on the order of RA/N which are much smallexr. It

is now clear that, since C(o) is an esbimate of GX?, if

A>> /N o

there will be trouble. In this case

c¢’(o) > c(o)

¢’(R) ~ c(R) <Cc(c) R>0

which is the estimator's best approximation to 'white"
noise, i.e., a & function in T. Another way of viewing
this is that when the finite cosine transform ic computed
via Equation ( 65 ) the C(o) term will dominate. The
raw spectral estimates, Vﬁ's, as well as the windowed

spectral eslimales, Uﬁ's will be approximately constant

2
~ R _ i AtA
S(m) = VR%URR;A'EC (O)m—]"\T—"— (116)

Thus the estimated spectrumwill, in fact, be
"white." A significant point which should not be
overlooked is that the disturbance in the freguency domain

goes as the square of the amplitude in the time domain,
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An excellent illustration of this benavior in
action is given by Figure ( 10 ). This is a plot of
an estimated spectrum from N =6230 points of which one is
in error and equal to A = 3.0 . The 'real spectrum’ is
plotted below for comparison and from it we determine
that 0 =,0136 and x = ,664 and for this run At = 5 sec
go that the level of the incorrect 'white'" spectrum
agrees well with the approximate prediction of Equation
(75) (je -214b).
The case of a number of isolated '"bad" points
possibly of different heights Ai becomes slightly more
complex. It seems clear that the basic ‘'whitening"

will still take place and that we will have something

At
N

are within MAt (the largest lag estimated) of each other

like V(R) ~ = & Aig. But if any of the disturbances
there will be, in addition, another large term in the
correlation function estimate., This will in turn lead
to a spike in the spectral density at the corresponding
frequency. Note that this implies the Ai involved occur
within the same M/N th fraction (something like l/lOOth
for our data) of the data.

Next, consider the case of series of adjacent

"bad points." Ouppose the available signal is just the
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sampled noise everywhere except at X consecubive points
where it is larger by A

) X, 0<i=k,K+k=is=QN
x, ' =¢ 7 (117)

A+ Xy k = k + K

A
A

A
i
IN

so that the situation 1s as sketched below

where again we have assumed A >> ¢ (but not necessarily

A S>> x).

(4

As before x'(t) is decidedly non-stationary, barring an
inventive job of ensemble creation, and we shall only
ask what the effect is on the estimated spectrum. There
seems to be two distinct cases of interest depending on
length of the disturbance.

First, suppose that K << M and the disturbance is
etill short relative to the maximum correlstion function

lag estimated. Then the correlation function at zero



will be given by
N 2 k+K -2 - 2
1 2 KA 24 2 X 2Kx K
¢/(o) = = X, e o B <T A> (118)
F & " " "% &4 %k W N i
which since K << M << N becomec approximstcly
’ KA2
¢’(o0) ~ Clo) + T (119)
and similarly
2
¢’(1) ~ o) + (‘i—) A
N
2
’ X-2) A
c'(2) ~ c(2) + (%ﬁ;)
» . (120)
2
¢/ (K-1) =~ C(R-1) + le'fA

¢(M)

7
¢c'M) =~
Thus, the estimated correlatlon function will be approximately

the ordinary estimate plus a triangle of height A?/N and
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width KAt as illustrated schematically in the sketch.

This implies

Clt) f A

K4t N Y—»

that the spectral estimate §'(f) will be approximately
the ordinary estimate plus the Fourier transform of the

2

] 2
ﬁiﬁ?&) of height é;EéE and width
X N

triangle which is a (
K%E centered at the origin. As K-»1 this (EEEAE)
extends over the whole estimation bandwidth and whitens
the data in agreement with the discussion above. But
as K increases the effective area of the disturbance
in the frequency domain shrinks back toward the origin.
Figure { 11 ) illustrates this type of bias
in action. The ‘real" spectfum ig also shown and
from its calculation we learn that X =-.078, ¢ = .30 ,
while for this run At was 5 minutes and N was 10000 .

The data leading to the biased curve had 10 points 10

times too large i.e., A =~ 3.0. Here we have that
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K

T l/lO and this correépnnds to the point at which the

first large dip in the biased spectruvmoccurs. The other
\
sin x 2 .
zeros of the k—~§-) curve also show up as large dips
since the correct result is "down" a large distance even
on a logarithmic scale. For anyone unfamilar with the

distortions introduced by a log-log scale a glance at

Figure ( 12 ) will be helpful in the sense of

“calibration."” It shows another function, the hanning
] 2
window (see Section ( 3.1.2 )) which is not a (EE%.E)

but of similar shape, plotbted on a log-log scale.

As the second case suppose K > M and the disturbance
takes up a large fraction of the record. Now, of course,
it is perhaps presumptuous to specify either case as the
"disturbance” but this can be accounted for by the sign
of A and the analysis is unaffected. Returning to the
Tformula for the calculation of the mean lagged products
including the mean removal, Equation ( 77 ), and
utilizing our definition of x,, Equation ( 11k ), we
see that the new correlation function is expressible in

terms of the old as

, 1 k k+K-R k+K-R
CR' =CrtFm (A2 _ X tAL  Xp tAY X
1SR Tok+1 s

BK ozka  [AK\T | A°(R-R)
rAy KR (- - \§) tThw
1=R+K—R+L
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which simplifies to C'(R) = C(R) + £(R) where

A k+K+R k+K-R
f(B) = ﬁ:ls

2. x, 9. x.-—25<:v{<1- )
i=k-R+l T i=k+RA T N (121)

alelop)-n (L)

If X, is written as a fluctuation about its mean, X, the
small correction term on the X coefficient will be the

only X contribution remaining i.e., for Xy Ax+ 6

1
KR 1+K-R
A - KR
£(R) = == {}: b, + Y, &, + 2% =—
B iZkrn ' fSome * N (122)

o[l -5) o6 - 1))
where the 51 sumations will vanish if the expected value
is taken since they are zero mean. It is now clear that
because N =2 K >> M = R, £(R) is always positive. Rewriting

Equation ( 121 ) and taking the expected value we see

that

fo - s falo§)2(F -6 -6)) 0o

By expanding the denominator and combining terms this can

be put in thce form
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E E(Rﬂ = 8 + bR+ CR + ..... 0o £R=WV

where

L P X |
P [2 N A[l <N)] (124)

Thus f£(R) is, on the average, a linear increasing term
added to the correlation function (R > 0).

For l/f type spectra the correlation functions
decay in the T domain rather smoothly. For instance, as
1n T for 1/f noise and e ~ | for l/f2 noise. Thus, the
addition of the step to the data will cause the correlation
function decay in T to be more gradual. This implies a
Taster decay, 1l.e. steeper slope, in the frequency domain
because of the Fourier transform relationship. Hence,
the effect of the step is to bias the spectral density
"upward" et the low frequency end. This would imply

estimating an a in 1/f° which was too large.
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To obtain a gquantitative measure for the size of
this effect we shuall calceulabe Lhe spectral estimate
that would arise from £(R) alone via Equation (76)

for the V's. Thus,

M-1
} RT
E[VR] = At [a + 2?1;7 (a + bg) cos g T T (a + BM) cosiRﬂ

The effect of the constant "a"™ in the C's is to add
2Malt to Vb while leaving the other V's unaffected.
to
Therefore, the only terms which will contribute ,the Vf for

R > 0 are the b terms. Thus,

\ M-1
E[V ] = At |M(-1)F + 23" g cos q R
R o~ M

which by utilizing Jolley 428 [15] vecomes

ME R =20
E[VR] —pAt |- —E R odd (125)
sine 2
B
0 R even

Now including the Vé contributions from the & term

we have for the bias in a Qo estimate from this '"long step”
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effect
bM? + 2aM R =20
_ -b 5
E [VR] - At — R odd (126)
sin M
0 R even

Therefore, the Q2 biases would be given by

_ - "
Bl I
2
- a Mb 2 _ o
E[UR] %MA“L< §+r[l-2<-ﬁ>] R—l> (l T)
- s
LEMSina —2%% J

An illustration that this analysis is reasonably
correct is given by the following set of data. Figure (3)
shows a spectrum from the Mark I noise source derived
from 10000 raw data points taken at 5 second intervals.
Because a nunber of independent measurements were made
this estimate is believed to spproximate the actual
spectral density well over this region (see Section 5.2
below). This spectrum is a Q, estimate from data pre-
whitened for l/f and is plotted from -60 db to -103b
vertically with the frequerncy scale running
(Logarithmically) from ].O"br cps to lO"l cps. The raw
data for this run is very ‘“smooth" in the sense of

lacking step or impulsive type disturbances. Tigure (13)
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shows a section of 1/ 11th of the raw data. The vertical
scale is + .55 to + .75 volts and the horizontal scale

is such that the data shown covers 150 minutes of time

( 900 points). The sample mean for this data (all
10000 points) is a .5986399. Assuming the noise to be
gaussian the square root of the correlation function
estimate at the origin is an estimator for o0, the rms
value. In Tthis case we find 0 =~ .007T70. A step was
intentionally inserted in the 'middle half" of the

data. In the notation used above this is
K = N/2 = 5000,k = 2500

The size of the step, A, was varied through the values
.01, .05, .1, .2. BSince for this data‘M = 100, At =5

this yields for a and b the values shown in Table (§)

a g alempirical) Dhlempirical)
2.5 x 107 5.94 x 107" 4,06 x 10~ 5.96 x 1077
62.5 x 1077 28.7 x 107  70.3 x107° 28,9 x 107"
250 x 1072 k.9 x 1077 266 x 1077 55.3 % 1077

1000 x 1072 99.7 x 107" 1031 x 1077 100.6 x 107

TABLE (§)
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If g and b are formed exmpirically from the daba via

a(empirical)

e

c’lo) - cl(o)

[c'M) - ca)] - [c'(u) - c(o)]
M

b (empirical)

e

the last two columns in this table result. These results
are seen to agree with the analyvtical predictions quite
well. Perhaps a nore impressive illustration is given
by Figure (1), which shows the correlation funcbion
estimated from the data with no step, C(R), and the
correlation function estimated from the data with a

step of .01, C'(R). The other line on the graph is their
difference which exhibits & surprising linearty. In
fact, the deviation at the uppermost end is adequately
explained via the cR® terms of Equation (12k4).

The results in spectral deunsity are not as easily
displayed. Table (%) presents the calculated 0, bias
for R = 0, 1, and 6, from Equation (127) using the
calculated values for a and b aloag with the empirical
biases obtained by substracting the known correct result
from the estimated value. Again the calculated results

would only be expected to cgual an cnsemble average cof the

empirical results so the agreement is guife good. Figure (15)
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Q2 Spectral Bstimate

Calculated
R=0 R=1 R=6
+ 2,139 x 1072 .77 = 10T - 1,65 x 107k
£3.56 %1070+ 1.63k x 107 - 8.02 x 107F
+ 1,332 + 6.39 x 107t - 15.35 x 10‘lF
+ 5,15 + 2,52 - 27.9 x 10“”
Empirical
R=0 R=1 R=6
£1.929 x 1070+ 1.148 x 1072 - 1.7h x 107
+3.98 x 10™F +1.82h x 1070 - 8.85 x 10'”
+1.k23 + 6,767 x 107t - {6.90x% 10'lL
+5.36 + 2.601 _20.97 20 ¥

TARLE (9)

shows three spectral densities., These are Q2 estimates
where no prewhitening was applied and are thus poor
estimates of the real spectrum (i.e., see bias discussion
for l/f2 noise in Section 3.3.2). However, the difference
between the curves indicates the effect of the '"long
step" +type bias. One is the estimated spectrum for no
step ( points). The second is for a step of .01 (eircles).
The third is for a step of .2 (points). Thais is a log-log

scale. As the step bias begins to dominate all of the
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estimated points become negative. The logarithm of
their magnitude is plotted. The curve for A = .2 is all
negative., There are no negative points on the spectrum

for A

I

0 and only the two points doublé%ircled (R =2

and R

12) are negative for the A = .01 case. The bias
is as advertised in Equation (127), negabive,

inereasing with A,and decreasing with R. But since the
correct spectrumis decaylng as l/f2 and the blas also
decays as l/f2 it sppears to remain a constant percentage
which 1s a fixed displacement on a logarithmic scale.

The R = O point is not plotted on these curves. The
intermediate spectra for A = .05, .1 are not plotted to
reduce the confusion somewhat. By the time the step is
as large as .2 the spectrum is =lways negative and very
gmooth because all of the variahility contributed by the
original random process has disappeared. It is interesting
to note the amount of success that prewhitening achieves
in reducing the effects of this bias. Figure (16)

shows the Q2 prewhitened l/f estimates for A = .01, .05,
.1, .2. The curve for the smallest step .0l coincides
nearly exactly with the urdisturbed case. The bias

does increase with step size although not as sevérely in

the unprewhitened case. Also, no points are negative in
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the prewhitered case so that the blas effect has in fact

been reduced a great deal. When you congider that a

step of .2,in g piece of data for which ¢ =~ .00TT, is a

260 disturbance these results are quite remarkable.

L, LOW FREQUENCY SPECTRAI. ESTIMATICN EXPERIMENTS

The major portion of the experimental work of this thesis is
concerned with obtaining estimates of the power spectral density of
l/f noise or excess noisgse 1n semiconductors. This sectlion discusses
the planning and motivation of the experiments. Also covered is the
design of the noise generator and the measurement of some of its
basic clrcult properties. The experimental results Themselves are
presented below in Section 5.

4,1 1/f Woise

The basic motivation for investigating l/f noise is that
the guestions are interesting. The answers may, in fact, turn
out tc be very dull, but the questions are intriguing.

Is the phenomenon really 1/f? Winston and Firle, for
instance, fitted a least squares line (on a logarithmic scale)
through their data and claimed that the spectrumwent as 1/fa
with & > 1. As Appendix A indicates, thelr conclusion 1s oOpen
to considerable question because of the grossness of their
spectral estimator. The question of whether a simple exponential

model is adequate to explain the dats remains. DBut if the
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behavior really is l/f, now does one deal with the infinite
power implied for the random process?Y Or does It stop being
l/f at some very low frequency? And i1f so, at what frequency?

As mentioned in Section 2. a knowledge of the real spectrum
of low frequency semiconductor noise is required in order to
design any piece of de equipment which must operate for a long
period of time. How long can it be left alone before the zero
must be reset? If the Time between calibrations is a design
parameter, how should it be set to guarantee a given probability
of not having the "drift" exceed a given value? How important
is it in terms of drift to control the temperature variitions
is the immediate environment?

The experimental program undertaken in this thesis is
not intended to investigate the solid-state physics of the
generation of semiconductor noise. The objechtive is to measure
the noise propertiss of the whole device, a transistor, in an
operating circuit. From the experimental viewpoint the proper
approach is to control everything (i.e., all relevant parameters
of the circuit and its environment). Then by relaxing control
on one item at a time the effect of each on the end result can
be ascertained irrevocably The propertics of ordinary
transistors in ordinéry circuits could then be calculated by
noting what lack of control of the enviromment was implied in

eacu case, Unfortunately, no one has yebt been able to decide
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exactly what environmental conditions require control and to
what extent, let alone actually control them.

The basic difficulty is of a very practical mundane
nature. The rms value of the noise generated by a transistor
ir normal operating circumstances is on the order of fractions
of microvolts. Transistor operating voltages are at least
fractions of volts. Therefore, a dynamic range of 106 is
involved. In order to measure the noise one must be able to
measure, record, and process variations which are seven or eight
decades smaller than the mean operating voltages. This require-
ment can, of course, be eliminated step wise by successive
amplification and subtraction of constants. Two major difficulties
arise. First, one must either know in advance the constant or
de value which is present so that it may be taken out to an
extremely high accuracy, or one must be very clever about taking
it out ‘“adaptively" in order rot to distort the subsequent’
spectral estimation results. Secondly, one must always face
Tthe unpleasant reali’ty.tha.t ampllifiers have internally generaled
noise as well as limited dynamic range.

Considerations such as these led us to utilization of the
concept of differential émplification. It was found that by
surrendering on the goal of measuring the properties of one

transistor directly and utilizing a grounded input differentisgl



~138=

amplifier as our noise source we could cobtain reasonsble
measurements in the laboratory, This implies in our case that
we are actually measuring the difference properties of two
transistors. This proves to be useful nct only for eliminating
the operating point effects, which can be adjusted to be the
same Ffor both transistors, bub for eliminating the effects of
external conditions such as temperature to which the two
transistors react similarly. And, if one considers the two
transistors to be statistically independent samples from the
same ensemble, the spectrum measured is a constant times that
for one transistor. Even if the net results were only the
noise properties of a group of components in a particular
configuration {which it will be argued is not the case) these
results would still be useful because this specific combination,
the de differential amplifier, is very commonly employed.

The schematic for the particular noise generstor used for
most of the measurements of this thesis is shown in Figure (17)
This device was constructed by H. C. Martel and will be
referred to henceforth as the "Mark I." The first stags is
the noise generator. The second two stages are only for
amplification near the source in an attempt to minimize the
introduction of external noise. The emmitter follower final

sbage, is mainly for impedance matching. It is desirable to
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have essentially a voltage source. The claim that the noise
is contributed mainly by the first stage is substantiated by
noting that the noise of the second stage would have to be
larger than that of the first by a factor egual tc the currcnt
gain of the first stage in order to make a significant
contribution to the output. This argument extends, of course,
to the next stage. Iirst stage Vbe varlablions appear il the
output. This circuit is one often used in practice ard it is
the simplest version of the Vbe variation cancelling configuration
recommended by Hoffait and Thorton in Reference [16]. As
menticned above, amplification was provided internal to the
noise generator becaguse of the size of the semiconductor noise
relagtive to the input drift/noise of resdily available amplifiers,
l.e., a typical opergtionsl amplifier has a few microvolts of drift/
noise referred to its input. Really, this is beggingthe question
because the stages of gain internal to Mark I have an equivalent
drift referred to their input, which may or may not be as large
ag k-volts. We actually measure the combined noise properties
of the whole differential amplifier.

In any attempt Lo reler Uhe measured spectral densities
and rms values back to the input of the noise generator, the
gain must be known. The measurement which was made was a

transter gain between voltage at the output and current of the
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collector of the noise generating transistor (upper first stage
in Figure (17)). This measurement was made with the circuit
under operating conditions by injecting .37h4 pa in additior to
the blas current point via & current source. In order to obtain
a current source with a high encugh impedance tc guarantee no
loading of the circuit, a 500 v power supply and a very large
resistance was employed. The resistance was then varied and a
differential transfer gain of about 1.07 volts output per micro-
amp of current at this collector was measured. This is probably
no better than a 5% measurement but it should be accurate enough
for the degired applications.

In addition,to refer the assumed cutput properties back to
the input, a differential mode gain for Mark I must be known.
One form of spproximate result can be cobtained via the formualation
of Reference [17]. Assume that the interstage loading can be
ignored and that the equivalent internal emmitter resistance
is on the order of 100 Q. Then the differential mode gain,
exclusive of the emmitter follower output stages, is about 8700.
Another method of obtaining the differential mode gain is to
refer the measured transfer gain of 1 volt/pa back from the
collectcr of the first stage to its basc via the shert circuit
current gain, B. Then calculating the voltage drop implied

wnen this current flows in the equivalent input impedance
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of the transistor yields & value for differential mcde voltage
gain. BSpecifically, if B is 30 and the equivalent input
impedance is 3 k{, ther the differentisl mode gain would be
10000, This Is gbout .2 times the previous result, so for
this crude calculation they are not inconsistent.

For the first sets of experimental data taken with the
Mark I noise source, the power supply was batteries. Initially,
four 1.5 volt "D" cells (normal flashlight size) were used.
Tt was observed that long scale (a few weeks) linear trends
in the data appeared to correlate with the battery voltage
decay. Then a power supply consisting of several rechargeable
nickle-cadmium cell batteries and a 20 volt regulated dec
supply operating from the 60~ 1ine was employed. This too
eventually proved unsatisfactory,and a special regulated supply
was constructed. In order to decide what degree of control
was actually required, rough measurements were made of the
extent to which power supply voltage variations gppear in
the output. Let the positive and negotive power supply voltages

be By and E,, respectively, and define E and AE by

_ B+ |5
E A _———E__—_VAE A\ El + By, N A Mark I Noise Generator Output
Then by varying the two power supplies independently, one can
dbtain a common mode gain, AN/(E), and a

differential mode gain, AN/A(AE). Figures (18) and (19 ) show
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the data leading to values for these two gains of

AN
—— &~ 3 volts/volt
A(E)

Ll a2 volts/volt
A(AE)

Thie data wae taken with the noisc gencrabor in teumperature
controlled oil bath at 26.300 on June 1, 1965. It was also
taken at a particular (arbitrary) setting of the noise generator
zero adjust balance pot (see Figure (17)). These latter two
facts are not now thought to be relevent, but that is no
guarantee that they will not be desired at some future date.

The data from which the spectfai densities for Mark I ere
estimated was taken later ab 45.900 at a different setting of
the balance pot.

After this investigation, 1t appeared from past Mark I
nolse measurements that power supplies with stebility on the
order of g millivolt would be required. ALt the 3-volt level
this is something on the order of .033%. The device conveniently
available as a starting point was a commercial two-unit solid-
state 20-volt regulated supply made by Avtel Corporation, which
operated from the 60~ line. The first unit supplies a 27.5 volt
de gigna.l. The refercnec is a 3N39 Zener-transistor package

which has an advertised temperature coefficient of .OOB%/OC over
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the range -~ 20 to + TlOC and opcrates at 9 volts. For room
temperature variations of = SOC, this implies something on the
order of = 69 mv on the 2T7.5 vclt output assuming temperature
variaticns are the major contributor to the drift. The second
unit follows with & solid-state de regulator which further
attenuates this temperature drift, via feedback and a more
stable Zener. The observed lcong~term variation in the 20-volt
output is on the order of £ 10 mv. Better regulation of the
nigh frequency ripple is presumably the primary purpose of the

second unit.

A simple series regulator was designed to provide a stable
3-volt output from this 20-volt input. The schematic iz shown
in Figure (20). Two units were constructed and the outputs
adjusted to the desired values. Thae expected output variation
has 4 major components. First, the amcunt of the input voltage
variations which feed through the 36K resistor and appear
across the output will be small since this 1s a negative
feedback circuit with a reasonzbly high loop gain. TFor this
particular case numerically, it can be shown that the + 10 mv
input variations are reduced to less than =+ 100 | volts at
the output. Secondly, the iaput voltage variations will cause
a change in the Zener curfent and hence its voltage which

(throughk the voltage divider) is the reference for the
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differential amplifier comparator against the output. Using

the 15 O dynamic impedance ag per opceifications for thc

Zener, this source yields output variation of + 40 uv for

input changes of + 10 mv. Third, there will be an ocutput
componen t due to the mismabch of the btemperalure coefflcients
of the base emmitter junctions in the two 2060 transistors.
These units are nominally temperature matched and packaged in

a single case and have g specification or their AVbe mismatch
of 10 w/°C. A room tempersture variation of + 5°C will then
case a variation projected to the oubtput of about + 120 pv.
Finally, there will be a change in output voltage due to the
variation in Zener voltage with tempersture. The specifications
on this particular diode (Hoffman 1N430A) indicate a maxirum
change with temperature of = T mv out of the 8.5 volt operating
range which would cause a * 2.5 mv change in the oubput. This
is obviously the determining factor. However, the £ T mv
specification is for a much wider temperature range (-55 - + 100°C)
and was felt to be pessimistic. Therefore, the temperature
coefficlent of the Zener voltage was measured for the unit
actually used. The maximum voltage variation observed as measured
by a b disit, digital voltmeter over the temperature range

15 - 35°C was + .5 mv. This value yields a somewhat more

realistic value of less than + 200 pv of output variation.
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The megsurements on the Zener's temperature coefficient were

all made in a short time, less than 1 hour. Some pains were
taken to insure that the case was actually at the measured
temperature. It is possible, however, that a longer-term effect
was overlooked. For instance, it could be that the junction
mgterigl itself, which 1s at least somewhat thermally insulated
Trom the case, must be at a given temperature for some long
period of time to reach "equilibrium" {in some sense hefore

its temperature effects are seen in full force. It was

assumed that this was not the case and an approximate error
budjet for the power supply was conctructed as shown in Teable (10)

Both the sum and the RBRSS of these values are shown.

Source Approximate Magnitude

Input variations direct < £+ 100 uv
Input variations through £ 40 pv
Zener
Avbe of 2N2060 + 120 uv
LTempergture coelficlent + 200 pv
of Zener

(Rss) . + 257 pv

(sum) £ 460 pv

TABLE (10)

ERROR BUDJET FOR MARK I POWER SUPPLY
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The sum is a reasonable measure if one claims the errors are

81l dominantly the result of scolid-gtate temperature effects
which would be expected to proceed together. The RSS is =
reasonable measure if cne clsims the errors are statistically
independent random variables. A realistic estimate is undoubtedly
somewhere between the two but even the more pessimigtic is

less than 1 millivolt.

b2 Temperature Dependence

As is well known, the volbage across a vack-biased
p-n junction varies with tempersture. For germanium at room
temperature, this variation is of the order of 2 miilivolts
per degree centigrade. The Mark I noise generator will have
a differential mode output due to the difference between
the temperature coefficients of the base-emmitter junctions

of the first stage transistors.

If the temperature coefficients of the two initial
transistors are matched 4o something on the order of 10%, this
will represent a differntial mode temperature signal of
200 u volts/OC. Operated on by the differential mode gain of

Mark I, this would be expected to yleld an output on the order
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cf 1.70 volts/OC. This parameter was actually measured to be
L.k volts/oc.* The measurement was made by observing the rate
of decline from a specific voltage in the presence of a known
rate of temperature decline. ©Since nc attempt was made to
match the first stage transistors with respect to temperature
coefficients, the implied discrepancy is not surprising.
Further demonstration that Mark I measures temperature 1is
given by Figure (21). The upper curve ls the room temperature
as a function of time over a 5-day veriod. The lower is a
record of the output of Mark I operated in the room over the
same time period.** The two curves are plotted on the same
time scale and when compared show clearly that Mark I is

an excellent differential temperature sensor. The differential
temperature "gain' implied by this data is 5 - 10 volts/OC.
Unfortunately, temperature changes are not the effect it

1s desired to measure.

x
Thia gain maasurenent. was made with the Targe aijuminum block

shown in Figure (22) immersed in oil.

X
Again, the large aluminum block was used and the whcle systen
was allowed to reach thermal equilibrium before data was
taken.
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Two distinct approaches were considered for eliminating
the effects of temperature. One was tc simply place the
offending equipment in a temperature controlled environment.
This was the approach taken by Winston and Firle [L4] and
ultimately resorted to in this research. The scheme used will
be described in detail in Section (4.2.2),but there are a few
general comments which are of interest here. First of all,
to be effective in thie case, the tempersture control must be
extremely accurate. This is difficult to acconmplish and
maintain, especially over 1ong periods of time. Secondly, cne
encountbers the normal difficulties of deciding how much control
is required and what amount of the experimental apparatus should
be temperature controlled., The method has the advantage,
however, of being direct and straightforward. Control is exerted
directly on the variable which is producing undesirable
consequences.,

An alternate approach is to eliminate the effects of
temperature through attenuation. That is one can atiempt to
isolate the noise generstor from the enviromment in such a
way that any changes in the temperature (of the room Say), are
not felt at the noise generating jimctions to any significant
extent. This method haslthe advantage of being a great deal

more simple to accomplish Tor all but the lowest freguencies.
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It has two major disadvéntages. It does not appear to be
feasible at very low freguencies (i.e., for very long times)
and it affects owly Uhe lemperalure changes impinging from the
external enviromment. Temperature vaﬂ;ations dve to variations
in internal power dissipated will be unaffected.
L.2,1 Thermal Isolation
The method of thermal isclation was utilized for
a series of experiments with the Mark I noise source
and was accomplished as follows. The cases of the two
first stage transistors, (which generate the noise)
were connected by an approximation to a thermal short
circuit. This was mechsnized Dby Fitting the two
transistors snuggly into holes drilled into a small block
of aluminum. Flectrical insulation was not maintained
since the base is connected to the case for this transistor
and the two bases are cennected in the noise generator

circuit . (see Fjgure v T)

The block of aluminum snd all other circuit
components (see Figure (17) of Section (%.1) ) except the
batteries, balance pot and on~off switch were mounted
on a small circuit board (1x2 inches) whick in turn was
tightly encased in a larger aluminum block (1x2x3inches)

made in halves with the leads extending through small



_lbb.—

drilled holes. This whole assembly was mounted together
with the batteries, on-off switch, and balance potentiometer
in an aluminum box with the output appearing on é BNC
connector mounted through the box. Thus, except for
leakage, no room air circulated inside the box and none
of the box air circulated inside the sluminum block
housing the circuit components. In addition, the only
thermal gradients that covld exist between the two inpub
transistor caseswevre those which covldnot be eliminated
by the thermal conductivity of their connecting aluminum
block., ZEach stage of thermal isclation is essentially
a iow pass filter betweén room temperature variations and
thé temperature at the transistors.

If the geometry, shown schemgtically in Figure
(22), is modeled for approximate purposes as plane
parallel as shown in Figure (23), © we can calculabe an
approximate transfer function between temperature changes
in the room environment, ATe, and temperature changes at

the dévice, AT We will ignore all corner effects for

d.
this approximate discussion. ZILet the equivalent air

1 o and temperature

difference of the aluminum block AT

gaps dl and dg, areas S, and S

1 be as shown in

the figure. We will also asccume that the thermal
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conductivity of the aluminum is high enough so that all

of the aluminum reaches the same temperature instantaneously.
Then on setting the rate of heating of the device equal

to the heat conducted across the air gap we will have for
the first stage

d ATd olATl

K = = k 3

where Ki is the thermal capacity of the small aluminum
block (and contents) and k is the thermal conductivity
of the air. TFor the second stage we have similarly

a AT
K, —== = X

o AT ATe

D—!! mm

N

where Ké is the thermal capacity of the large aluminum
block. Ignoring initial conditions and combining the

Laplace transforms of these two equations yields

ATd 1

o)
1 2

for the desired approximate transfer function where s

represents the Laplace variable. Thus, we have that
the device is linked to the room thermally through two
time constants which depend on the geometry and the

materials.
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We are now able to ascertain to what extent this
thermal isolation scheme will be useful. Let us suppose
that the room temperature is & disturbance and we desire
ags little asg possible of it to appear in our estimated
spectral density for the device. In order to achieve

this one must have the '"break freguency) of one

ks

2TKd
of the two temperature "filters" considerably lower
than the lowest frequency at which we wish To obtain

estimates fz. (How much lower depends on the particular

spectrum of the disturbance). Thus we must have

ks

—— <L
2TKd

£y

Using .221 cal/gOC as the thermal capacity of
aluminum and .616 cal/sec-cm’C as the thermal conductivity

of air this reduces to
S
Qe B <<
k3 I L,

Where M is the mass of aluminum in grams. M will nost
likely not be much over 100 and g will certainly be at
least 10. Thus, it is rather unlikely that f, can be
taken much bclow lO-2 or lO-3 cpo. One expecte, then,
that if this scheme is used, any estimates below a
'millicycle or so will consist largely of temperature

gpectral density. This was in fact exactly what occurred
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Tor Mark I as illustrated and discussed sz;ﬁzqgéﬁ2€5%%;*
4,2,2 Thermal Control

Because of the Inability to isolate the noise
generator rrom room temperature variations gt freguencies
below a millicycle by the technique just described the
more straight forward approach of thermal conbrol was
eventually employed. The following 1s a description of
the scheme used to accomplish the thermal control.

To get an idea of the magnitude of the problem
let us examine how well the temperature must be controlled.
Let's suppose that we will be using as our random noise
process the outpul of Mark I on a + 1 volt scale at its
output. The temperature coefficient of Mark T referred
to its output is on the order of 4.k volts/%C of
temperature change to the large block of aluminum. We
will wish to quantize the oubput, say visually which is
the most crude, at least at the + .01 level. Thus to
make the tempsrature '"noise” at least as small as
the largest quantization noise we expect we must control

the temperature to about four times better than £ .OlOC.

Such control is not achieved easily.

* . ..
One can make a similar calculaticn for an evaguated cavity contairing
the noise generator. For the parameters undcr conslderation such a

N X . i _ _ as the
grey body caelculation yields a limit of 10 L or 10 5 cps {a]
break frequency.



-160-

As mentioned earlier when one adopts the approach
of controlling the tempersture, the ideal situation would
be to control the temperature of the noise generating
Junction itself. To avoid becoming completelyenmeshed
in solid-state physical difficulties it was decided for
this research to settle for the case (can) of the
transistor, Thus, a large thermal capacity, constant
temperature, heat sink in good thermal contact with the
first stage transistor cases is desired. DBecause of its
non-inflammgbiiity, high thermal capacity, and electrical
insulation properties silicon oil was chosen.*

k,2.2,1 Temperature Scnsing

The next obvious obstacle to construction
of the temperature controlieca bath was a sensor
with which to sense tempewature variations of less
than + .01°C. As a general rule of thumb one
expects to need a sensor that is somewhat better
in terms of resoclution than the eventual control
desired. However, by far the most severe
constraint was the length of time over which the
sensor must be accurate on an absolute scale.

Since it was hoped to cobtain spectral density

estimates to a microeycle (10_6 cps) the data

record lengths would have to be on the order of a

*
Specifically GE SF -81(50).



-161~

Tew months to secure reasonable variance estimates.
Because of the conbinuing cxtreme sensitivity
of the noise source to temperature changes any
"drift" in the calibration of the temperature
sensor would show up directly in the noise output
voltage. In order to operate a control system of
this kind in a continuous manner, a continuous
electrical output from the btemperature sensor was
desired. To accomplish these objectives at mcdest
cost, some amount of ingenuity was required.
Resistence bridges were rejected for
several reasons. First, none was found commercially
available at the time which would sense temperature
to .001°C. Secondly, those available at the .oloC
level were Tound to be quite expensive ard in
general provided only a manual readout of the
temperature. Design and construction of a
sensitive temperature bridge was considered. As
ir the commerical cases the resolution was
limited and the cosgt was high due to the extreme
gtability required of the non-sensing members of
the bridge. The temperature sensing resistor in
such arrangements is usually platinum (or an alloy)

which has s temperature resistence coefficient of
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about 4% per degree centigrade. Thus, to sense
.OOlOC requires detection of a change in the
resistance of U parts in 10°. This requires at
least one of the other legs of the bridge to be
10 times better or L4 parts in 106 cver s period
of several months. Even when they can be purchased,
such resistors are quite expensive. The maximum
amount of power which may be dissipated into
resistors of this degree of stability is usually
quite small. Thus, when a bridge circult is used
one finds that at the maximum resolution the
available signals are of the order of microvolts
(10'6). It is difficult as well as expensive
to cobtain an amplifier which will amplify p volts
stably over a period of several months. For
instance, most standard analog camputer type dc
amplifiers have an equivalent nolse referred to
the input on the corder of several W volts.

This same difficulty of stable automatic
measurement of w volts over long periods also
precluded the uge of thermo couples where the

voltages generated are on the order of hundredths

of millivolts per degree cenllgrade.
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The solution firally adopted was to
measure the temperature stably over long periods
with a mercury differential thermometer. The
constancy of the thermal coefficient of expansion
of the mercury in the double glass envelope is
thus presumed to yicld the required absolute
repeatability of the temperature measurements over
long periods of time, The conversion to an
electrical output is obtained via a capacitive
megsurenent of the héight of the mercury.* Figure

(2h) illustrabes this process schematically. The

variable capacitance, CT’

—

|

L4
_..._X__

sh}g\ded

cable -

Cr

CaF?C,'faan

— e e —— — gy

¢ Pac#ance ¢ 8
>

]
shieled ——

(]

cable T =7

Fnauae 24——

Thermorneter Geome+RY

* The original idea for this scheme was generated in a discussion
of the problem between the author and A. R. Jones in the fgll of
1964 at which time it was thought to be impractical.
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is between the mercury column in the capillary
tube and a strip of conducting paint on the
calibrated section of the outside of the glass
envélope. Iixcept for end effects and leakage
fields this capacitance 1s exactly proportional tc
the temperature (i.e., tc the h eight of the
mercury assuming the capillary tube is of constant
diameter). This capacitance CT is much smaller
than CB, the capacitance between the bottom
mercury bulb and the conducting paint covering

the bottom of the outside of the glass. Hence,
when these twc capacitors are put in a circuit

in series the effective value of the capacitance

is essentially C C, is of course constant,

T "B
since the bottom buldb is always full. The basic
circuit chosen to measure this capacitance (shown in

‘the Sketch below) was extremely simple and used

available components.

e
AMF':'FI.CK

Avdio

Oscina{’OR —
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Ignoring the output impedance of the oscillator

- kY —X-
and the input impedance to the amplifier we have

RCTS

1+RCTS
It is clear that provided lRCTsl <1
the magnitude of the ac voltage appearing across
the resistor will be directly proportiongl to

CT and hence to the temperature. However, note
that the size of the voltage available to amplify
is also proporitonal to RCTS. This voltage must
be kept large compared with the noise of the
amplifier referred to its input. Since this is
typically a few microvolts, the magnitude of VT
must be kept at least ag large as a 100 microvolts
or so and preferably a millivolt. This yields a
lower bound for RCTEHf of ZLO.3 or so.** But CT
is fixed ab aboub 0 — Lppf by the size of the
capillary tube, the dielectric constant of the

glass, and the geometry; none of which are really

in our control. Also an upper bound of samething

Appendix C contains an error analysis of this schenme .

¥¥V_ was not increased simply by increasing Vé because it was felt
undesirable to have large ac voltages and fields in the
vicinity of the noise source in the oil bath.
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on the order of a few megachus for R 1s glven by
Tthe AC amplifiers available which have input
impedances of a few hundreds of megaohms.
Practical considerations regarding sensitivity
to 60~ noise pickup indicate a choice of the
operating frequency at least in the high audio
frequency range. The actual values chosen were
1 megaohm and 10 kilocyele. The thermometer used
for the thermal control systems sensor was a
Beckman differential thermometer with a linear
range ol 5OC and o calibrabed resolublon of
.001°C over this range.T It can be set to have
its zero point be anywhere between 0% and + 100°%C
by extruding mercury to & special storage container
at the top of the instrument. This temperature
sensing scheme has the advantage of requiring
only one $50 thermomenter plus readily available
laboratory equipment and sgemi-infinite graduate
student labor. The amplifier and oscillator
stability need only be as good as the desired

temperature sensing.

Catalog #61055 in C. F. Braun 1964 catalog.
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In practice the actual circuit used
was as shown in Figure (25) with the addition of:
g blocking capacitor at the output of the ac
amplifier to remove any dc bias in its output,
e 10 Kec band pass filter to eliminate to 60K hum
pickup*, a diode and capacitor acting as a peak
rectifier to produce a dc voltage proportional
to temperature, and dc amplitier to drive a recorder

and the heater coil circuitry.

Cr Ce

OSCILLATOR

L H P AC_1H ]

DA

|

R [ ampP - _,_I_l
JE W

LC
AMP

TEMPERATURE
Figure (25) SIGIVAL

Actual Tempersture Measuring Circuit

Figure (26) is a calibration curve for the
temperature curve for the temperature sensor
obtained by using the visual calibration on the
glass as the standard. It can be read with a lens
to .OOlOC. The dats appears to be consistent

with a sensor which is accurate to at least + .01°%c.

* This filter provides an attenuation of 250 in the time domain to
60 ~vsignals relative to the 10Ke component. The oscillator was
tuned to the center frequency of this filter.
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A similar setup using a .1OC resolution
therrometer with a range + 150 to + 3500 wag ugsed
to measure and record the room temperature beginning
March 26, 1965. This is the record that was used
to obtain the spectral densities of room temperature
discussed in Section 5.1.
4.2.2.2 Thermal Control System

A very simple system was used to control
the temperature of the oil bath. A constant
current was run through a nichrome wire resistance
heater coil to maintain the steady-state Temperature
of the oil at about 45°C. A one-sided conmtrol
system was then utilized to hold the temperature
to this value by changing the heallng Uhrough
variation of the current in the heater coil. This
steady temperature was chosen to provide ample
distance for decay to room temperature as the

cooling agent.
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In order to avoid temperature gradients
in the oil it was stirred violently by a 6"
diameter propeller located at the bottom of the
dewar containing the oil and turned at about 175 rpm
by a motor and pulley through an 0-Ring Drive,
A baffle was inserted in the dewar to avoid
vortexing, Increase turbulance, and guarantee
good mixing of the fluid.

DC current and proportional control was
chosen for the heaters rather than a bang-bang or
60 rvgystem in order to avoid limit cycles and
large 60rvfields in the dewar which might
contribute to the measured power spectral density
of the noise source.*

The temperature control situation is
thus as illustrated in Figure (27) with the heater
coils achbing on the oil and the electrical
thermometer described above sensing the resultant
oil temperature and driving the heater coils through
the amplifier. The steady-stabte temperature is

obtained through a consbtant current in the heater

¥
Recall that a sharp line in the spectrum ‘"ruins" the estimator
over a considerable range of frequency in both directions depending
on the magnitude of the line.
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colls and the room temperature disturbance acts

on the oil.

ROOM
FEMPERATYRE
HEATER -
co/L O/l
HEATER
Co/L FLECTHR/CAL
OR/IVE R -——
AMPLIESER THERMOME TER
FIGURE 27

As a model for the tempersture sensor

we shall take

%

—
TtS 1

This is the transfer functions between the

temperature of the oil in °¢ and the sensor output
in volts, Ké is the dc gain in volts/OC and Tl
represents the thermsl time constant between the
oil temperature and the mercury tempersture due

to the glass around the bulb of the thermometer.

Otherwise, the electronic system is assumed to be
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instantaneous which seems an adequate approximation
Tor this analysis. Sinee the amplifier in the
sensor is variable gain and the oscillator voltage
can be adjusted somewhat, the numerical value of

Ké is not entirely fixed. However, it is nominally
a few tenths of a volt per degree ceantigrade.

The time constant Tt was Included because this is
probably an adequate model of the most significant
non-ideality present in the sensor. It is difficult
to measure due to the limited linear range of the
sengor and it was hoped that a design largely
independent of Tt could be obtained. Note that

all poles in the ac amplifier and the de amplifier
of the temperature sensing circuit are ignored.

To this same degree of approximation,
then the poles of the heater coil driver amplifier
will also be ignored. All of these will he at
least as high as 10Kc and so should in fact be
unimportant in such a "slow" system. The
model for the dc amplifier will thus be just a

transfcr gain K, in amps/volt. This gain is

3

available ag a design porameter and its varigbility

‘was accomplished as follows. A circuit normally
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employed as a regulated power supply was utilized
to achieve the large steady current in the heaber

coil as shown in Figure (28). This circuit was

+20V

1K

5/0 /5K /;éa"/'!’k

o
47
Temp * v
g} na‘ - T P 4
’ - 50 1K
= 1A
FIGURE 28

HEATER CO/L DRIVER C/RCUIT
chosen to allow a large steady current at the
null of the temperature sensor (~ 45°C) as
well as a high gain from variations in the
temperature voltage signal to the heater coil
current.

To derive a model for the oil and heater

let uvs begin with the differential eguation
describing the temperature of the oil, This is

arT .2
——— = -~ —-— [~ - —
C T - KA(T -T )+ iR+H L R (128)
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where: CO is the thermal capacity (specific heat)
watt-sec
e

of the oil in

K is the thermal conductivity of the oil
in watts/°C

T is the oil temperature in OC

T is the room temperature in OC

i is the heater current in amps

R is the heater coil resistance in ohms

H_is the heat in watts due to the stirring

L 1is the conductive heat loss through all
parts immersed in the oil in watts

R is the heat loss through radiative

transfer to the surroundings in watts

t is time in seconds.

There are several simplifying assumptions
made here. All of the oil is assumed to be at
a constant temperature, T, The extensive stirring
and baffle included to increase turbulence are
intended to Justify the neglecting of temperature
gradients in the fluid, but this is probably the
most severe approximation involved in the above
equation. The amount of the mechanical energy

input of the sftirring blade which is converted to
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heat in the oil Ho is assumed to be constant.
Sincc the stirring speed will be kept conoctant
this is not an unreasonable approximation. The
amount of heat lost by conduction through parts
immersed in the oil, LO, is agsumed to be constant.
This will not, in fact, actually be the case since
each part will conduct an amount of heat depending
on 1its thermal conductivity and the temperature
gradient across it. These parts consist of a
lucite baffle, a lucite heater coil support, &
metal stirring shaft, a wide range glass thermometer,
the ground shield around the fine thermometer and
the thermometer itselff?ﬁhe cables and leads for
whatever experiment packages are in the oil. It
was expected that to achieve actual closed-loop
control to a .001°C these conduction effects would
have to be compensated for, but as a'first
approximation we sholl ignore them. The loss
through radiastive transfer, RO, is assumed to be
constant but should be negligible in any case

so Lhal Lhis is not a severe spproximaetion. In
addition, the thermal time constant required for
the heater wire to change iTs temperature is

assumed to be negligible.
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The control variable is i, the disturbance
is Tr’ and it is desired to control T. As mentioned
above in order to opefate a "one-sided" control
by heating only {or the lack of it) we must
'%ias” T above room temperature. This will be
accomplished by a constant current io and lead
to a constant oil temperature T (in the absence
of disturbances). If we slso geparate the room
temperature into its steady state and varisble

component we have the following set of linearization

assumptlong:
T = T + 4T A <<
o 0
T = T+ AT AT << T
r r r r r
i = i + Al Al << 4
e} o]

Inserting these definitions into the differential
equation describing the oil we see that io must
be chosen so that

\/K(T -T)-H +I +R
o' 0 r (o] (o) O
R

i =
o]

N2 Y
Where we have ignored the (Ai)” term compared to
2i0Ak,  Tgnoring initial conditions, the remaining

linearized incrementsl differential equation in
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the Laplace domain is
C,or = - KO(AT - A'I'r) + 21 MR

which simplities to

' 71 R > K, )
AT = |eow———r] Al + | g ] AT
Cos + Ko Cos + KO r

A complete block diagram for the incremental

system is now given in Figuwe (29),

47 -
. . f* Ko | AT
REF 24K | # Coge/ .
- e
4i K|
k% o 1 +4S -
Figure (29)

Linearized Incremental Block Diagram '
of Thermal Control System

In order to ascertain the largest admissible
value of K3’ a root locus can be constructed for

the expression

21 RK, X
0
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which is the complete open-loop transfer function

in the absence of noise. It will look approxi-
X

mately as shown below since %—->> 52

t o)

~

P -~ -~ N,
) oo Fal

1<
v
\

q Plane

This would lead us to believe that the system
is always stable, which is cf course, false.
The locus will actuslly tura into the right half
plane at large values of gain due to the presence
of the amplifier pcles. If these had, in fact,
been included, the locus would lock more like the

following sketch (note the scale is now expanded).

" ¢

K.

"

y
-
N
-

XK




-179-
But notice that long before such an instability
is reached, the system is highty underdamped and
will have very undesirable behavior in the
presence of the noise, ATE. An alternate approach
is to construct a Bode plot of the closed-loop
transfer function and choose K3 tE/;ield a specific
gain or phase margin. Numerically, this is the
technique which was utilized as will be relsted
shortly. First, however, let us examine the
problem from the viewpoint of disturbance
attenuation.

The closed-loop transfer function between

ATR and AT is after simplification

(129)
AT K0<Tt8+l) _ Ko(’Tts+l)
AT, T c - »
R 21ORK3K2 + KO(’Tts+l) ( o/Kou+1) (S+sl)(s+sl)

*-
where 81 and its complex conjugate 8¢ are the poles
located on the root locus pictured above for a
particular value of KB. For large values of

Ké, Im{sl$ = Re{sl} and we have approximately

2iORK3Ké
syl =~
CoTt
1
R {s } L
el 1 2Tt



-180-

Since ‘sl\>> %—-the two poles of the disturbance
+

attenuation transfer function dominate the

behavior and a Bode plot of it would appear as

shown in Figure (30) . TFor comparison, the open-

1

Co[K(s+1 3
o}

loop disturbance attenuation,

O db Figure {30)

Disturbance Attenustion

OPEN LOOFP

_CLOSED LooP vf ’1 1
20log, Ko 6Tt f
21, Rh K,
<<
& L g is
° 2r% - T

1s also shown in this figure. Thus, it is clear
that a great deal of noise attenuation is gained
by employing closed-loop control. Tﬁis is
especially true for this particular case where
the disturbance is room temperature variations.
The results of Section 5.1 below indicate this
spectrumvaries roughly as l/f2 over a very wide
frequency range and so the total disturbarce power
femaining in AT varies as the cube of the lower
l/f2 band edge in the open loop case but only

as the first powér of this value in the closed-

locop case. To he gpecific, suppose we model



~181-
the power spectral density of the disturbance
ATR as

W
= [N o N
Spp (%)

2
R l+<f/f>
T
where N_ 1s the low frequency ("white") value
of the spectrum and fT is the 'break frequency."

Then we have in the open loop case

No 1

SAT(f) = ) ¢ 2,
1+ {£/ ) 1+(;92ﬁ f

f X

T 0

and in the closed-loop case .

-

} 2 2
N K C.T, l}zrrrw t) + 1

2 2
[1 +(f/fT>] 21 R Ky r/.fT) + 1

Now if we calculate the total power in

f) =

the remaining noises utilizing the approximations

K
o] 1 . .
~ L i <L
gﬂfé,w fT 5 Tt fl and approximating

the functions by their straight line approximate

that

bode plots we have

2
T apen loop Q’NofT

—

2
T
closed loop =~ N_T (—ﬁ-————~—
o T 21ORK3K2
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which is deceptively simple looking only because
both the transfer functions and the noise fall
off rapidly with f and hence only low frequency

behavior 1ls important. Numerically, we have:

XK = 1.28
o]

T, = 1

C = 6.65x 1oLL
]

i = .250

R = .45

;2 = 10

K3 - .3

So that the attenuations factor is

These numerienl valuee asre the system parameterg
actually used for the experiments reported on below.
The quantities ic’ Ké, KS’ and R are directly
measurcablc. The value for T‘t wag egtimated
approximately from an experiment where the
differential thermometer's response to a large
known step of temperature was measured. This

waé a rather crude measurement and the 95%

confidence limits on the value for T, are probably
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about - 20% + 200%. Such an underestimate of Ty
would ledd to a consequent understating of the
attenuation. A largef value seems more nearly
ir gecordance with the observed behavior of the
oil. Over the 7 month period from September '65
to April '66 the oil temperature was recorded
some several dozen times at random occasions
(including early morning hours). The maximum
temperature excursion observed* was *+ .300
while the maximum room temperature excursions
over this period were on the order of =+ BOC.
This indicates an emﬂrical attenuation figure of
about 160.

The values for Ko and CO were obtained
from transient and steady state measurements on
the oil. From the basic differential eguations
describing the oil tempem ture equations (4.2.2.1)

with no heating we have

KO(T-TR)

= H -L -R

o o o
in the "steady state" (with no disturbances).
The steady state heat input due to the stirring

(175 rpm) less the radiative and conduction losses

% . N .
This excludes changes in gystem operation such as stirring failure,
battery changing, etc.
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was Tound in terms of Ko by this method. A
period of time many days in length was employed
and "averpfe" behavior was utilized since a
completely disturbance free environment was not
available. The result was that about a 4.5°C
temperature differential was maintained between
the room and the oil by the stirring minus the
losses. From measurements of the decay from
steady state with heating current back to h.EOC

above the room without heating current via

dr
¢, ® T - KO(T-TR) +H - T, - Ry
t=0
K
we obtain a value for 62 of
'}
Ko/C - 1.93 x 1077 aec-l
o)

From meoourements of the heating up of the oil
from 4.500 above the room to steady state at
15,9%C via,

dT .2
C == =i R
0 dt/t=o o

we obtain

C, = 6.65 x 10 watt/secC
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which then yielids

K =1.28 watts/°C and H - L_ - R_ = 5.76 watts
(@] Q o] o]

While none of these messurements are terribly
accurate, they are precise enough for use in
indicating that the system's performance is
essentially as expected according to the design

analysis.
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4.3 Experimental Equipment Description

As described above, the method used to estimate pcwer
spectral densities in this thesis was to obtain a sample function
from the nolse process and ubtilize the Blackman and Tukey technique.
Because the estimation was done on a digital machine discrete
samples were required. The samplies were obtained in three
different ways for various parts of this work.

First for high frequencies (i.c., rapid sampling wabtes)
the analog~to~digital conversion equipment of the (IT computing
center was utilized. The Packard Bell Multiverter operated
directly on an amplified version of the noise orocess. The
sampled, quantized result wae fed o the TOLO-TO9L
vhere it was recorded on magnetic tape. This was an entirely
on-line operation performed completely in real time. The
magnetic tape data could then de used at any future time as
an input to the spectral estimation program for the 709k,
Figure (31) shows a diagram of the equipment arrangement for
this procece. The low pass filter shown is to el iminate the
effects of aliasing on the final spectral estimate as
discussed in Section 3.2.1 and in Reference (5], Figure (32)
ghows a measured frequéncy response of the filter with the

break frequency sct at 25 cps.
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The second method of obtaining the sampled quantized datba
was used for low frequencies (i.e., slow sampling rates). This
consisted of recording the noise voltage on an Easterline Angus
recorder, reading the values at equi-spaced intervals of time
and punching these numbers onto IBM carde. These dats cards
were then entered as input date to the TO9 spectral estimation
program which yielded a power spectral density estimate.

Figure (33) shows a schematic diagram of this operstion.

The third method of data collection used was s somewhat
less painful version of the second ir which the sampling,
quentization and recording of the data was done automatically.
The quartization 1s accomplished through use of a digital
voltmeter., The sampling is performed by punching a paper tape
with the digital voltmeter's reading at specified times. The
paper tape is then read on the paper tape reader unit of
Burroughs 220 computer at the CIT compubation center. The
magnetic tape immage formed in this manner is then decoded by
a aachinge language program and put onto s FORTRAN DATA tape.
This data tape is used as the input to the spectral estimation
program. Figure (34) illustrates this data collection and

orocessing scheme, -



-190-

ST TIHING VO

VIVG GIZINO

7 7dNHS

!

i

SQ¥VI NO %MJ

°La HINNS

LEvHI ¥

\/

*

Fde50774 0G0 7Y

VYV
90TYNY

LYVHO
T/FLS

WY HIOHS
NOLLYWILST g TLVNILST
TV LITSS TV LITTS
2604 W&/

WIFLSAS NO/LITTT70D VLVT
£ FHN19/S

g L7\ 70¢008
sois mo7| e oo | | Fs/on




-191-

WS90 S
%wmm 7 T/ ONIG0IFa FML VLVE hﬁﬂwmwm .
_ : Py IIL TNV 1 F9wony7 WYY L0 LIS
FAVL INIHIV Y 7
& Fd Ve
\*q 4 SHONYT FIVL FIVNLST
‘ YIdVd 1IFHH0D YAZINERS
WITLSAS NO/LIFTT0T VLVT Gt d
HIM 5E FENIA
FdVL ﬁ -
& IAVS \
F SOLVYS TNTI 2/907 2/907 \ﬂww\q_mw“ 4
‘ g «
TG Homde T HINIS w\w \WMM mwwmw_m ~ LN
FdvL STV |
}
2/907 ¢ ILINLTON ¥31714 (3261708 FSIONY
FOLY TSNV L VLI | | GNISYITY-ILNY INIWIYTSXT




-192

The central clock for the system consists of a Beckman
Berkley counter. The outputs of each decimal counting unit
are available ag four wire binary coded dccimal outputs on &
plug at the rear of the chassis. These are connected via a
cable to binding posts at the front of the relay rack in which
most of the equipment is mounted. The appropriate decimal
counting unit outputs can then be selected conveniently and
fed into the system logic.

The analog to digital conversion was accomplished via
e model 3440 Hewlit-Packard digital voltmeter. This meter
semples the noise input by counting the time interval required
for an internally generated ramp to equal the input voltage.

The digital voltmeter reading is available in a four-
wire binary ccde on a connector at the rear of the instrument.
This information is provided in a parallel fashion. The
translator logic referred to in Figure (34) converts it to a
serial format and changes the code slightly. A schematic of
the translator logic circuitry is shown in Figure (35) . It
is neither clever nor orlglnal bul was desligned for convenlence
and use of readily available components. The inputs from the

digital voltmeter are numbered according to the pir numbers on
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the digital jack at the rear cf the digital voltmeter. The
punch pulse generator outputs are labled Gl, G2, G3, G4, G5
and correspond to the first 5 rows on the paper tape. The sixth
bulse is fed directly to the paper tape punch drive circult
which generstes the end of word code internally. The outputs
from the translator logic appear on five separate lines Ted to
the paper tape purch magnet drive circuitry and are labeled
Pl, P2, P3, Ph, P5, Most of the circuit complexity is associated
with generating a parity ©bit to ve punched on the paper tape.
This part of the circuit never did operate entirely without
error for any extended period of time. This situation is not
without irony in that the part cf the circuit which causcd
the most trouble shesting problems was that designed to make
the code error detecting.

The punch pulse circuitry generates pulses at 0.0 aud 5.0
%o punch the digital voltmeter reading onto the paper tape.
The sample pulse circuitry generates pulses at 0.1 and 5.1
which are sent to the digital voltmeters external sample terminal
to instigate a new measurement. In this case 4.9 of the 5
seconds between samples are avallable for the volimeter to reach
a reading., This is long enough to automatic range through the

whole set of ranges for the Hp 3440. For other sample times
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these values are correspondingly scaled. Figure (36) shows a
schematic of the sample and punch pulse circuitry. The Schmitt
trigger was required to achieve a fast erough rise time to
trigger the digital voltmeter's sample flip-flop.

The punch pulse gererator is fed by a synchronizing signal
from the shaft of the-paper tape punch motor. It generates a
series of 6 square pulses each of which eventually generstes
a row on the paper tape. The sixth is used to generate an
end-of=-word message and the sequence repeated. Originally,
a transistor mechanized scr type circuit was used for this
purpocse. It was found that small timing errors occurring
at various places in the circuit led to false pulses and/or
nissed pulses. After considerable effort was expended on
eliminating this paiticular version of the digital race problem
the circult was discarded in favor of that shown in Figure(37)
This circuit mechanizes the ripple shift register via a 3 stage
binary counter and output gating. On receipt of a-clock input
pulse the circuit puts out the six required pulses at the next
available shaft rotation (synch pulse).

The paper tape punch drive generates the currents necessary
to drive the magnetic in the paper tape punch and generates a

feed pulse Lo step the paper tape forward. This circuit uses
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silicon controlled rectifiers fed by emitbter followers and was
designed and contructed by H. C. Martel

After a magnetlc tape image of a given paper tape has
been formed, the machine language program* attempts to form a
FORTRAN DATA tepe. If disallowed characters or dsgta words of

Improper length are found they arce Dprinted out. Most simple

kinds of errors can be corxrected by hand on the paper tape which

must then be reread onto magnetic tape.

This program was originally written by J. K. Lo and later revised
by J. Hughes both of the CIT Computation Center.
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4.t Line Voltage Noise

One of the noise processes investigated at very low
frequencies was the amplitude fluctuations in the 60 cycle
power line. Suppose we consider the €0~ line voltage to
have an amplitude which is a constant plus a zero mean,
stationary randor process. Then it is interesting to ask,
"What is the spectrum of these fluctuations in line voltage?"
As well as being of academic interest the results are usefuyl
in calculating the effects of line voltage 'noise"” on any
given place of experimental eguipment operating in the
laboratory. Given the performance specifications for the
instrument relative to line voltage variations one could
then make a more intellilgent decision about whether or not a

regulated supply should be employed.

A1l of the power spectral densities obtained for the
line voltage experiment were calculated from data hand punched
onto IBM cards from analog FEasterline Angus Strip Chart

recordings. A sketch of the experimental setup used to obtain
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the raw data is shown in FMigure (38). The simple average reading
power supply circuit whose schematic is shown in Figure (39)

was utilized. This choice is motivated by the desire to

measure the low frequency "de" fluctuations in line voltage
amplitude. This circuit is followed by an amplifier to drive

the Easterline Angus recorder. No anti-aliasing filter was
erxployed because it was anticipated that we would be dealing

with a spectrum decaying at least as fast as l/f and possibly

as fTast as l/fg.

5. EXPERIMENTAL RESULTS
This section presents the actual results for the various
noise processes measured. These includes: room temperature
fluctuations, Mark I Noise generator, amplitude noise, and line
voltage noise. Both raw data and estimates of spectral density
are given.
5.1 Room Temperature Measurements
As mentioned sbove in Section 4.2 the rgtnwtemperature
first became important through being measured inadvertently
by the Mark I output voltage. It was therefore necessary to
measure and/or control it. The approach taken as indicated
above was to control only a small enviromment immediately

adjoiring the noise generator.
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At the same time, however, it was of interest to know
if the spectrumof the room temperature was as inferred from
Mark I data. In addition, of course, the room temperature
was precisely the disturbance a thermal control system for the
nolse generator enviromment would have to combrol against.
Thinking of the ambient tempersture as a disturbance led
naturally to the notion of considering it, like many other
disturbances, as a random process.

What does the room temperature do? It gets hotter in the
daytime and colder at night, but not by the same amounts every
time. This behavior is typical of many processes. Given all
the pertinen+ data on a microscoplc scale the procesg can be
calculated exactly. However, on a microscopic scale it can be
considered random.

Let us, then, consider the room tewperature as a randon
process. It obviously has g mean vglue and lots of energy at
2Lk hrs and its harmonics. Bub whal are lhe peak excursions?
What is the ‘'average" temperature 1like? Is this process
gaussian? What is the 'shape" of its spectrum? Does it fall
oft linearly with ilncreasing frequency or lilke 14%? We shall
estimate the power spectral density of this random process.

The results will be useful in the design of our thermal control
system (see Section L.2 sbove) and also applicable to a large
number of laboratory experiments in which the temperature is

not controlled. For instance, éuppose the drift in the oubput
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04 3 solid-state regulated power supply is dominated by
the temperature dependence of one or more components. Knowledge
of typical spectra for laboratory rﬁom temperatures enables a
statistically meaningful prediction of the rnms value of the
drift.

In order to measure and record the temperature electrically,
a scheme exactly like that used to measure the oil bath temperature
wag employcd. A complctc discussion of the system and its design
was presented above in Section 4.2. The setup implemented to
monitor room temperature dffered only in that a thermometer
with a range of 150 - 3500 was used. Its calibrated resolublon
is .1°C and it can be read easily to .01%. & diagram of the
experimental setup is shown in Figure (40).

Appendix C contains a tentative error analysis of the
temperature sensing system.' It is expected that the resultant
overall temperature sensor will have an accuracy on the order
of £ .lOC. A calibration curve cbbtained by cycling the
temperature in & short period of time will, of course, be
somewhat better thar this. It will not include long=-term
drift effects of any of the comporents. However, this is not
the appropriate information for our purposes since we are
interested in the accuracy of the temperature sensor over many
months. For this reason, it was decided to calibrate the whole
temperature sensing system intermitbantly over the full length

of the experiment. This was accomplished by measuring and
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recording the actual temperature, the voltage sensed as
temperature, the oscillator voltage output, and the recording
chart reading {v¢ermrﬁanﬂg at arbitrary times. The result is
a composite calibration curve for the whole temperature gensing
system for the experiment. Figure (U1)shows this data and
indicates that the system is in fact accurate to something on

the order of + .1°C. The line shown i& described by

Vp = all - b) (130)

where a and b are the minimum variance estimates assuming that

the data is actually from a process whereby

Vo = all - D)+ n(t)
and n(t) is white noise. One can use the estimated variance
for n(t) to calculate an error in the measured spectrum of
the room temperature. However, such sophistication is hardly
worthwhile in this case. The quantization error due to the
visual reading at the recordings is much larger than n(t).
Therefore, to the extent that this gquantization noise is
negligible in the final spectral estimate the temperature sensing
1s exact.

The room temperabure measured is for Room 223 Spaulding
from March 17, 1965 through March 9, 1966. It is asserted

that this 1s typical behavior for an air-cooled laboratory with

some amount of equipment cperating continuously.
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I an examination of the experimental results regarding

room temperature, it is perhaps most instructive to start with
the raw data. Figure (42) shows a typical section of Easterline
Angus chart from which the lowest frequency raw dats was taken.
As indicated or the figure the time scale is such that a sample
is taken every 5 minutes and the vertlcal scale is £ 1 volt
full scale with zeroc at the center. This figure is full size.
The quantization level is .0l volts which corresponds to
reading four levels between each line shown on the chart.

This data is available for the time period 3-1T7-65 through
3-9-66. As is obvious from the figure, not much information
about the random process is obtained by examining the raw

data on this scale.

The first level of condensation 1s more informative and
is represented by Figure (43a) and (43b). The time scale is
such that each curve covers J days. At this scale 52 sheets
of graph paper are required just to cover the period from
6-26-65 to 3-9-66. A few typical sections were chosen and 8
of these are presented, L on each figure. Lf it is sensible
to make such a charscterization when dealing with random
processes, these samples represent the various "types" of
behavior exhibited in the composite data. The time period
represented by each cﬁ&e is shown on the figures and the
vertical scale is £ 1 volt; that at which the data was read

from the Easterline Angus Chart. Down on these graphs
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corresponds to lower temperatures and vice-versa. The scale of
conversion from volts to degrees centrigradc is given by
Equation (130). In general, the bottom most excursions run
to something like 20°C and the top most to something like 3OOC.
The first curve on Figure (h3a)(i.e., uppermost) indicates
very clearly the dominant feature of the room temperature,
namely its 24 hour cycle. However, the second and succeeding
curves indicate that the story is nowhere near so gimple.

The waveforms are strange enough to indicate that there must

be a considerable amount of cnergy at higher harmonic frequencies.
The third curve on Figure (43a)is an example of the behavior
tending to indicate that there is also considerable energy

at frequencies below 1 cycle per day. The first curve on
Figure (43b)indicates a very common type of behavior which
illustrates the comment made above about the non-randomness

of the room temperature 'noise" when viewed on a microscopic
scale., The flat portions show that between about 2 AM and

8 AM the temperature in the room is very constant. During this
time the room is rarely entered and the fans are off in the
air circulating system for the building. The temperature
characteristically decayed in the morning (8 AM) when the fans
come on and decreased until somewhere around noon. Because

no extra equipment was being operated during the mornings in



-213-

this period, the room tcmpersture didn't begln rising until
afternoon. Tt then rose due to equipment operation and other
independent building phenomens thrdugh 10 M or so. At 10 BM,
the Tans were once more turned off and the temperature decayed
back to ‘'steady state" with no excitation for the 2 AM +o
8 AM period (actuslly 'small" is more proper since some
equipment was operating on a 24 hour basis). This situation
doeg not always occur due to both internal ond cxbernal
conditions changing as the other curves indicate. However, it
or some version of it occurs frequently enough to merit
discussion. The very smooth behavior appesring in the last
two curves 1s believed to be a result of operating a great
deal of equipment in the room on a 24 hour basis. The paper
tape punch date collecting system was obtaining a large portion
of the Mark I data during this time. Tf one considers the
air conditioning system for this room to have a volume flow
saturation then one expects the resultant temperature to be
higher and more regulated, which is apparen‘bly what occurred.

Leaving aside for the moment all cause and effect
relationships, the data on this time scale does not seem to
be very ‘'"random'; or does it? The characfer certainly
changes from time to time. Is it perhaps best regarded as a

non-stationary random process? This is not clear, since
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one could, by applylng a little Yankee ingeruity, invent an
engemble for which thie date would make a reasonable sadple
function. In any case an idea of the amount, in some sense,
of non-stationarity present is given by estimating spectra
from these eight pieces of data separately. Figures (Lha) and
(Wb)  show these estimated spectra labled 1 through 8 in the
order in which the raw data appears in Figures (43a) and (L3b).
The minimum frequency resolution on these plots is 8.33 x 1()"5
cps and they are Q2 estimates prewhitened for a l/f2 spectrum
The fact that these spectra do not differ more violently is
consistent with the fact that their minimum resolution corresponds
to a period of # 3 hours. To cbtain reasonable variance
estimates with greater resolution, one has to look at longer
sections of data. This will be done shortly. The power
specbral densily of room lLemperabure variatlons can be modeled
Tairly accurately as l/f2 for this region (8.33 x 10_5 cps
to 1.667 x 1073 cps). The quantization noise for this data
calculated from the Ae = .01 step size is -26 db. The smooth
variance approximation yields 10 bands of + 11.8% or (+.L8 db,
~.54 ab).

The next level of condensation is again more informative
in that it provides a sti1l broader view. Looking at the data
on more and more condensed time scales allows the human eye

and brain to extract lower and lower frequency information.
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Figures @59«;b;0;d;e;f,g,h) show all ¢f Lhe voom temperature date
(a years worth) on a still more condensed scale, The vertical
scale now extends only + .6 volt and the time scale is 30

days per sheet. Another feaiure of the noise process becomes
more obvious, There exists what might be called a "week end
fluctuation.” Figure (45h illustrates it in a most pronounced
Tashion and has the days or the week labled. Tt seems to be
present in almost all cases to some extent. The activity in
the room is naturally somewhat different on weekends. This is
combined with a different schedule for the building's air
circulating and heating/cooling sjstem. These figures show the
daily cycle in very pronounced form but also indicate that
there is a considerable energy at still lower frequencies. An
informative exercise is to time scale mentally by 9 decades

so that 2% hours becomes roughly 10Kc. Then imagine a narrow
band noise signal with a center frequency at 10Kc. How would
the narrow band noise waveform as viewed on an oscilloscope
differ from the scaled up room temperature waveform? It

would, in general, not have the slower wiggles seen in the
temperature data. ITf RC noise were viewed in the sawe way

it would appear more similar in the slower wiggles hut lesg in
the faster ones. In this sense one expects intuitively that
the room temperabure spectrun should be roughly l/f2 typc

(RC or first order) noise with an excess of energy at 24 nours

and its harmonics.
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With the data available on this time scale (Figures 45a
through h) the non-stationarity aspects discussed above
become even more apparent. For instance, compare the section
of small amplitude behavior of Figure (L5ec) with
the larger amplitude behavior in Figure (45d) or the even larger
amplitude behavior of Figures (45 f,g) and the begirning of Figure
(45h). In aeddition, therc arc scecbtions of the data where it
seems to be much sharper and therefore presumably contains
relgtively more energy at higher frequencies. This feature
may be merely the bias of the human eye to large amplitudes.

In any case, as before, we can obtain at least a semiquantative
measure of the difference by estimating spectra separately for
representative sections of the data. Three sections were
chosen; the last part of Figure(45c)which exemplifies the
small amplitude behavior, TFigure (4 )which is a nominal or
"regular" section most resembling narrowband noise, and the
last part of Figure (L45g)which typify the large amplitude
behavior. The estimated spectra are shown in Figures 46a, L6b,
and 46c Here again in order to obtain a reasonable variance

p)

the minimum fregquency rcsolubtion aveilable 1se 1.67 x 1077 cpe

p)

so that the energy at 24 hours (1.158 x 1077 cps) is smeared
out over the first few points. Therefore, the differences in
"amplitude" of the three gets of data only show up as &

general rise in the level of the spectra. These arc QE
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estimates from date prewhitened for a l/f2 spectrum The quanti-
zatlon noise level has remained unchanged and the 10 variance
bands are: + .8l db, - .99 do; + .75 db, - .90 db; + .58 db,
- .67 db, respectively. The energy at the hormonices of 2L
hours is more evident. TFor comparison 1f the three spectra
were plotted on the same graph, the lowest frequency
points would differ py 5 db wllh Lhie widdle one .1 below
the wupper one. If we put this in the time domain it is a
factor of 3 difference in "gain." Here again though the
overall picture is clearly one of roughly l/f2 noise with
extra energy in some bands.

A final level of conbraction is shown in Figure (L47)

This shows all of the daba on a scale where the 2k

hour cycles have almost disappeared into the line widths.
The sections of small and large amplitude behavior are apparent,
but the general appearance isnow nuch more like noise as we
generally think of it. Once again there appear to be slow
wiggles which imply sizeable energy at still lower frequencies.
With respect to this aspect the data seems surprisingly
stationary. No matter on which Llme scale you examine the
data, excluding the 2l hour components, it always appears to
have an appreciable mmount of energy at still lower frequencles.
Figure (48) shows an estimated spectrumtfor all of the data
using only every 30th point. This is one sample every 2-%

hours. Aliasing causes no sericus difficulty in this case
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because the spectrumis falling off as the square of the
frequency. The minimum resolution on this scale is 5.556 x 1077
cps or about % of a microcycle. The 10 variance bands are

£ 17.45% or (+ .70 db, - .83 db). These are Q, estimates where
the data was prewhitened for a 1/f2spectrMW\.As shown above

in Section 3.1.3 the estimator's properties are undesirable
when estimating a line. Therefore, one could estimate the
spectral density in the vicinity of the 24 hour frequency and
its harmonics better by prewvhitening with a notch type filter.
However, this refinement was felt to be rather ambitious when
the raw data itself clearly indicates, as mentioned gbove, that
the amount of 24 hour energy varies from time to time. This
estimated spectrum (Figure 48 ) does, however, illustrate

very nicely the daily cycle and 1ts harmonics. Again they
appear superimpcsed on a generally rising spectrum which obeys
approximately a l/f2 law. Here thc weekly cycle as in the case
of the daily cycle before, is not very visible due to the lack of
sufficient resolution. It is interesting to note the width of
the 24 hour line and its harmonics has decreased each time the
spectral resolution was inc:eased. This is exactly 1in keeping
with the discussion of Scction 3.1.3 regarding estimating a
spectrum containing a delta function. The width and shape
which the line appears to have, (i.e., on the average) is Jjust

that of the window utilized for the estimation.
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At tThe price of sacrificing statistical properties of
the estimate, both blas and varisnce, one can obtain one more
decade of resolution Irom this data. There are now only 331
data points so that the 10 smooth gpproximation variance bands
are = 55.2% or (+ 1.91 db, - 3.49 db) and the smooth
approximation is undoubtedly less valid. In addition, significant
aliasing will cccur at the high frequency end due to the 24
hour spike folding back on the spectrum. This could be
eliminated via low pass filtering but since the purpcse of this
exercise is to investigate the low frequencies it will be
acceptable to merely iluncrease the time between samples once
more. The result of such an operation is the spettyumshown
in Figure (49) . It has the anticipated difficulties but
resolves the new spectral component at & week and retalns
the Dbasic 1/f2 background shape. The minimum frequency resolution
is 5.556 % 10-8 cps which has a period of about T months.
This set of data should rot be taken too seriously. Lt serves
only as an indication. The 5 db 10 variance band does not
seem very severe, especially on a logarithmic scale. But this
ig an illusgion. The % fractional variance approximation itself
is questionable in this case. If it is off even by a small

amount the estimated spectra for a fair fraction of samples

from the ensemble could have negative estimated spectra at a
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considerable number of points. Such a situstior has already
been shown to exist for l/f type spectrs in the sbsence of
prewhitening.

A composite view of the room temperature variation
spectra is given by Figure (50) . This is a collection and
replotting of the results presented in this section. Where
nore than one run was avallapble over a given Tfrequency range
the average was takgn,although in most cases the dAifferenceg
are so small as to be hardly visible on this scale. Two
high frequency runs corresponding to sampling times of 5
seconds and 50 seconds have been iancluded. Thisg data was taken
via the paper tape punch technique and the spectra estimsted
using l/f2 prevhitening. If forced to model the totai results

in a simple form it seems that a reasonable choice would be

k

K o ‘

8p(f) = =—T% + 3, A 8(f - nfy) (131)
f + fT n=1

where fT represents the basic RC noise break frequency, Ky
sets its RMS wvalue, the Av1 represents the amplitudes of the
daily cycle and its harmonics, k is the number aﬂ?armonics

included, and fd is the 2L hour frequency, 1.158 x 10_5 CDS
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The correlation function corresponding to the model is

K -2nt, | 7| T

Bo(T) 2 & e + T §§ Iy s(r - =)
3 5 d noy o n

Then caleulating a limited bandwidth rms from the data of Figure
(5), yields

.872°C from RC noise to 1lu cycle

.20 7C @ T days

.33 C @ 24 hrs
A7°C @12 hes.
.055°C @ 8 hrs

.063°C @ 6 nrs
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5.2 1/f Noise
The experimental results for l/f Woise were obtained
uging the Mark I noise generator described in Section L.l
The raw data was collected via tThe three methods described in
Section 4. As discussed in Section 4.2 the first approach taken
toward inhibiting the temperature dependence of the Mark I
oubput was an attempt at thermal isoclation. A complete set
of data using this approach was taken during May through
July 196L. The first set of 7 runs were made utilizing the
A-D conversion equipment at the CIT Computation Center on
May 25, 196k. Six different sampling rates varying in decades
from 10Ke (At = ZLO'-LL sec) to .1 cps (At = 10 sec) were used.
At leaét 10000 points were taken at each rate, so that the total
time required was about 30 hours. The Mark I noise generator
was then removed to Room 223 Spaulding and its output was
recorded on an Fasterline Angus strip chart. These runs were
eventually terminated because of a battery fallureby the
batteries which were supplying power to the noise generator.
Two sets of daba were punched onto cards from these strip charts.
Power spectrai densities were estimated from these 3 runs
with M = 100 and l/f prewhitening. The composite results are

shown in Figure (51) . This figure is a photographic reduction
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of the original plot waose 800 points cover 6 sheets of 11%x 15"
graph paper. Most of the significanl details are still visivtle
but some sections will be expanded to demonstrate particular
points. The vertical scale on Figure (51) lruns from - 210 db
to + 20 db referred to the output of the Mark T noige
gererator where O db is 1 voltg/cps. The horizontal scale runs
logarithmically from a microcycle to 1C kilocyeles. The two
lowest frequency spectral lines are at frequencies corresponding
to 24 nrs and 12 hours, xespectively. They were presumed to be
the direct reflection of room temperature on the Mark I output
as discussed in Section 4.2. The two spectral lines near the
high freguesncy end are locabted neaxr 91 cps and 309 cps. These
are believed tc have been due to extranecous voltages present
somewhere in the A-D cconversion eguipment at the time of data
collection. They are not attributed to the noise generator
cutput.

The section around the spectral line at 309 cps 1s
informative when examined in datail. Figure (52) shows this
ares in detail. There are four curves plotted. The one which
shows the & Ffuanction in most resolution is for a sampling time
of At = 10-3 sec, The cther three are spectra cstimated from

the At = 10’lL sec data. They have M = 100, 30, 10 and
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correspondingly decreased resolution. Several points discussed

in Section 3.1.3 concerning estimating s spectaunm containing

a spectral line are illustrated here. First the line is resolved

in proporticn to the minimum resolution svailable from the Qg

window Tor a given M. Notice that if we examined merely the

M = 30 result for this case (thin line) we would come 4o the
conclusion that the spectrumbroke at 188 cps and obeyed a % 1.33

bower law. Ir addition, this conclusion, looking only at the

M = 30 case, would appear to be supported by the empiricial

veriance which would be consistent with the % approximation.

Bias 1s a very sneaky error because it makes you wrong on the

average but when discovered is terribly obvious. At the high

Prequencies where the spectrum is in fact smooth the smalier M

estimates do in fact have smaller variance. The more oscillatory

higher M estimates are not plotted in this region. We are

really not interested in all the wiggles- cnce we know they

are small. Regarding the same data it is interesting to

observe how poor a spectral estimator the human eyeball turns

out to be. All the fancy digital processing of the data

apparently has accomplished éomething. For instance, Figures
(53) and (54) show typical sections of the At = lO-lP sec

and At = II_O"3 sec data, respectively. The vertical scale is the









-246-

same in both cases. Rach graph contains 900 points or about
1/11 of thc total data. A 309 cycle 8ine wave would have
about 27 cycles on Figure (53) or 270 on Figure (54) . The
eye seems to be able to imagine this in the data only with
difficulty. Figure (54%) for At = lO_3 gsec apprears to contain
relatively less high frequency cncrgy compared to Figure (53)
for At = 10"lL gsec. Each was low pass filtered similarly and the
time scale on the plots is such that this comparison can be
made directly. <The estimated spectra, of course, yield this
conclusion in a much more quantitative fashion. TFigure (55)
is a plot of l/l:LJGh of the &b = 10™° sec raw data on the same
vertical scale. Again there seems to be ar increasing amount
of erergy at low freguencies. TFor all three of these sets of

] - -
L, 10 3, 10 2 sec, the raw data selections are

data, At = 10
very typical in that none of the other portions of the data
lock any different. In other words, the process appears to bs
stationary. This sT*uation changes abrubtly for the next batch
of data.

Let us now examine the At = .1 data. There are again

10000 data points. Suppose we plot the first 9900 points, S00

tc a sheet on 11 sheets of graph paper. Figure (56) shows



247-




-248-

= TSR RIAS I




-249-

sheets 2, 8, and 11 superimposed on the same page. They are not
alike. The data seems to exhibit a marked non-stationarity.
Figure (57) which is a plot of sheet number 9 shows an additional
difficulty. There weré apparently violent transients samevhere

in lhe experiment or daba collection system. Tor all of these
reasons the spectrumestimated from this data is not felt o be
very relisble.

The particular problem of different '"kinds" of behavior
is illustrated further by the At = 1 sec data of which Figure
(58) .shows a typical section.* Now we have returned to a
case where all the sections look alike. However, a close
examination of this Tigure shows the three types of behavior
illustrated by the three traces of higher frequency data on
Figure (56). Let us get an idea of time scale here. The
At = 1 sec data run btakes about 3 hrs total and the sheet showm
in Figure (58) represents about 15 minutes. It now seems less
surprising that the estimated spectra between .1 cps and 3 cps
don't appear to be cousistent within the expecbed 1 db variance
band.

The At = 10 sec data required a total of about 30 nrs to

collect. It does not seem to show different types of heéhavior.

" The verbical scale is slightly reduced compared to the previous raw
data graphs. This scale is + .1 volt to + A velts compared to
+.0 to .2 volts beloxe.
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It does, however, have what appears to be a strong temperature
component in the output. Flgures (59) and (60) show two typical
sheets of data illustrating this phenomenen. Esch sheet represents
about 2% hours of total time. There are such steps in the data
at about 12 hr intervels, and this data was taken on a Saturday
- Sunday so that they could be direct results of the air
conditioning system. All of these latter resulbts concerning the
examingticn of the time domain data are in the nature of hind-
sight, in that, they were not uncovered uatil March 1966.

The next step in the experimental program was to control
the temperature environment of the noise source. Section 4.2
discusgeg the thermal cantrol in detail while we ghall present
here only the experimental results. The primary interest was
in the low frequency behavior. It was felt that the three
highest freguency rung of Figure (51) were relatively unaffected
by temperature. There was no strange behavior in the time domain
data and the estimated spectra are reasonably consistent.
Therefore, 1L was plamned Lo proceed down in freguency from
At = 5 sec with Mark I in the oil bath. Unfortunately, over the
rtermediate period the output of the noise generator was
inadvertently shoried. The two emmitter follower Translstors

(see Figure (17) ) were subsequently replaced. The three
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highest Irequency runs were then repeated to verify that the
noise generstor's propertiec had not beer altered substantially.
The three highest frequenéy curves in Figure (61) present this
data, which was taken in August 1965. Again there are apparently
exlbrancous lrequencles present 1n the A-D conversion equipment.
In addition, there appears to be a significant low frequency
bias in the highest frequency run. This data was taken with
the noise generator in the aluminum block but not enclosed in
the temperature isolation aluminum box (see the beginning
of Section 4.2). The low freguency points are thus presumably
biased by room temperature to a greater extent than the
comparable previous results of Figure (51). Comparison of
the level of the high frequency white noise asymptote for the
1964 data and the 1965 data indicates that this aspect of the
roise generator did aot change a greal deal. After allowance
for the gains of all the amplifiers and filters following the
Mark I output, these levels are within about 2 db of each other.
The other major portion of the Mark I environment which
it was felt required control for the second series of measure-
ments was the power supply. The 1964 data of Figure (51)
was taken with 4 "D" cells as the power supply. As batteries

diacharge their voltage does not decay smoothly, but in small
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discontinucus teps. Mark I is s differential mode device and
1ts power supply batteries discharge independently. It is
possible that such a phenomenm might be the explanation far

the non-stationarity effects noticed in the raw data, particularly
some long-term linear trend effects noticeable in the lowest
frequency data. A scheme employing continuously charged Niekle
Cedmium cells was utilized initially but proved ungatisfactory.
Eventually, the solid-state regulated power supply discussed

in Section 4.1 was constructed. With the aid of
hindsight this choice seems to have been a mixed blessing.
Long-term decay effects were reduced but short-term (daily)
temperature response effects were increased. The most intensive
set of data teker in the oil bath was for At = 5 sec. Ten
independent sets of data were taken in February and March of 1966.
Each run lasts sbout 12hrs. Initially spectra run directly
from the raw data seemed to contain too much variability.

They were 1/f prewhitened spectra so that the smooth spectra

M variance formula was expected to hold. On further
?nvcstigatibn it turned out that the raw data contained small
steps of arbitrary times which biased the spectral estimates
considerably (see Section 3.3.3). Figure (62) shows an example
of'such a step. The vertical scale is from + .55 volt to + .25

volt at the Mark I output and the step size is about .1 volt,
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The approach adopted for analyzing this data is that such gteps
were related to influences of the ekternal environment and not
to be attributed vo semiconductor noise. The raw data was
edited where necessary to exclude the steps and utilize only
"smooth" portions of the data for spectral estimates ..
Figure (63) shows a plot of the average of the ten edited runs.
Table (10) indicates the ratio of the standard deviation to
the mean of the spectral estimates for several values of R.
The ideal result for this data is 10%. Thus, lhere does seem
to be a component of variance unaccounted for by the smooth
approximation.

Unfortunately, displaying the average behavior as in
Figure (63) obscures some perhaps rclevant detail. At the
5 sec sampling rate in a tempersturc controlled environment,
with a regulated power supply, the Mark T oubpubt still exhibits
some degree of non-stationarity. For instance, Figure (64)
shows two sections of 900 points each from two different runs.
Thie verbical‘ﬁualcﬁ are ldenlical alluough overleapped. One
seems to exhibit a 'large amplitude” behavior that is not
present in the other while “he "normal' (smaller amplitude)
case seems to contaln relatlvely more O 1ls energy al higher
frequencies. Since relatively long sections of each types of
behavior were available, spectra could be estimated for each

separately. Figure (65) indlcates Lhal Uhe process, al least as

3 camplete runs contained no steps at all.
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measured here, does not contain much "large amplitude™ type
behavior since the ‘"normal" estimated spectrm is very close
to that for the average of the 10 runs.

The raw data for At = 50 sec run is very similar with
respect to the occurrence of steps. Figure (66a)shows a
typical section of smocth data while Figure (66b)illustrates
a secticn containing a step. These particular steps occur at
about 2:30 AM and T:00 AM which is very reminiscent of the
room temperature behavior in Figure (L43b)discussed in Secticu 5.1.
Again the approach of editing tae data (in the sense of selecting
sections for which no steps occurred) was chosen to cbtain
reaningful spectral estimates. Figure (67) shows the spectral
estimate for the smooth (“normal") part of the At = 50 sec data.

The lowest frequency data available for the Mark I noise
generator was read from Easterline Angus 8trip Charts at 5
minute intervals (i.e., At = 300 seconds). It is similar
to the room temperature raw data in almost all respects. Thus,
most of the discussion of Section 5.1 is pertinent concerning
the 24 hr components and the manner in which the raw data is
most informatively displayed. Figure (68) shows L sections of
raw date each 5 days in length. Despite the temperature control
and special power supply, scme of the previously observed

non-stationarity effects appear to still be present. Steps
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gseem Lo occur often and last varying lengths of time. AL

the next level of aggregation the three traces of Figure (69)
give an indication of the diversity of behavior that is present
here, . Again spectra were estimated
fram different representative sections of the dats in an atbempt
to ascertain the seriousness of the nonm=stationarity. The Tirst
section chosen is marked on the top trace of Figure (69) and
will be referred to as the "small amplitude" case. The

other section is the last part of the second trace and the

first part of the third (these pieces of daba are continuous

in time) and will be referred to ag the "normal amplitude”

case. Figure (70)  shows the spectra estimated from thesc two
data sections. The variability is higher for the '"small
amplitude” case because the M is 100 Ffor both estimates but

the total number of date voints 1n this section is smaller than
in the normal amplitude section. The spectra differ by as
much as 10 db at low frequencies. This indicates a change by

a factor of 3. in the corresponding time domain amplitude of
“he random process which is an appreciable indication of
non-stationarity. An additional feature whose presence 1t is

important tc recognize 1s illustrated by Figure (71) which shows
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the first 1296 data points on a-l v to + 1 v vertical scale.
Some kind of warmup phenomeron is apparently occurring which
lasts about 10 days.

Evident in all this data, of course, is the 24 hr cycle,
It 1s very significant to note that on this secale, 30 days per
page, and the previous one, 5 days per page, the Mark I 2% hr
cycles do not correlate with the roomtemperature very closely.
Figure (72) illustrates this point by showing the Mark T
output (top) and the corresponding room temperature (botlom)
on the same time scale (5 days per sheet). There may be some
statistical correlation between these two waveforms but is
certainly not as high as for the compsrisor made earlier
in Figure (21) and described in Section 4.2. When the Mark I
noise generator is responding to temperature its response is
definite and immediéte. Suppose the oll temperature control
system is operating approximately according to the msthematical
model of Section 4.2, Then we should expect the oil temgerature
response to a 24 hr input to look like an attenuatedtﬁgg;ion
of the room temperature. If this were the dominating factor
in the Mark I output it would be expected to be highly
correlated with the room temperature. Thus, it appears that
the attempt at thermal control has been at least partislly
sucéessful in that the room temperature is no longer directly

sensed by the nolse generator.
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But the Mark I oubput certainly does have a strong 24 hr
component. Some additional light is shed on the subject by
Figure (73) which is the final condensation of the Mark T
data on an expanded vertical scale. The first portion of
the warmup period illustrated in Figure (71) has been execluded
©o utilize a vertical scale of + ,35 to + .95 volts, The
horizontal scale was about 7 days per inch on the original
graph so that after the photographic reduction the daily
cycles are barely visible. This isi€£2X§ame scale as Figure
(47) above for the room temperature. If the corresponding
time sections of these two figures are compared, cne finds
that the large and small amplitude behavior regicns of each
function correspond. Thus, 1t seemé clear that Mark I must
in Tact be measuring the room temperature by some intermediate
variable or combination of variables.* This composite view
of the Mark I output also indicates vividly the existence
of a considersble amount of energy in a weekly cyeie. Also
evident is the fact that the latter portion is most smooth
and would be most attractive for eliminating low frequency

biasco. Thio labbcr porblor was in fact used for the lowest

frequency spectral estimations. There are some fairly plausible

It is now believed that the most likely candidate for the indirect
temperature influence is the Mark I power supplies. DMonitoring

these power supplies shows changes in excess of the expected

amounts calculated in Section 4.1. The power supplies appear to
vary scmething on the order of + 15 mv over the daily cycle although
the data is not precise enough at this time to correlate the changes
directly with the room temperature variations.
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physical reasons for this behavior. No changes in power
supply, reference cell batteries, low pass filters, steady
heating current, or other parameters of the thermal control
system were nﬂa& e during this period. Bach of these
parameters was adjusted at least once during the earlier part
of the run.

The spectrum estimated from this edited lowest frequency
datais shown in Figure (7h). Plotted for compariscn of the low
frequency end is the same spectrumestimated from all the
Mark I data shown in Figure (73) . Considering that the latter
includes: warmup transient, the switchover from rechargeable
batteries to a regulated power supply, and the ddJustment
of the thermal control system parameters, the differences
are surprisingly small.

Coileccting our best estimate of the Mark I noise
generator's spectrum over the whole range of estimation now
yields the spectrunof Figure (75). Only selected points have
been plotted. Some of the minor statistical variabion has
been smoothed and the extraneous high frequency lines have
been ignored. The 24 hr and harmonic lines have been retained
because it has not been established with enough certainty

that they are not, ir fact, intrinsic to the noise process.
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It is significant to nole that the lowest sampling rate for
which we were able to obtain ‘“smooth" data, At = 50 sec,

the estimated spectrumlies somewhalt below the two lower
frequency runs. These were obtained from the 5 min data which
1g definitely not smocth.

One could now proceed as in the case of room temperature
noise to construct a crude mathematical model for thepverall
noise behavior. The simplest model would be l/f2 noise (RC
noise with very low bresk frequency) plus excess noise at 24 hrs
and harmonics plus l/f noige plus white noise. If the
parameters are plcked tc correspond to the asymptotes shown

in Figure (75) we would have

Ké Ki k

z

s(f) = ¥ + 3 A 8(f-nf_ )N

4 f22 lf]  n=x d ©
with
K, =8.92x 1077 Ay = L0072k
K =2.63 %10 Ay = .00k37
f, < 107" cps Ay = .00335
fg=1.15x 1077 cps A, = .00207
N,= 1.78 x 107

referred to the output of Mark I. This rodel should not be

taken too sericusly in view of the obvious non-stationarities
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in the data discussed above. Alsc the real data appears to
move smoothly from 1/f behavior to l/f2 behavior. Thus,
a polynomial or other more complicated fit to the dats is
probably better. However, it seems fruitless at this point
to fit more sophisticated models to such crude data.

In conclusion let us suppose that this simple model
holds and that we wish to compube an RMS value for the "grift"
of Mark I over the limited band from 1p to 10Ke . We would
find a value of approximgtely 18 mnmillivolts referred o
the output? Utilizing a differential mode gain of 8700

(see Section 4.l) yields an input BMS drift over this band

H

of about 1% microvolts. On the other hand, if we calculate
an EMS value based on the data (as opposed to the model) we arrive
at 11 mv referred to the output, which yields an equivalent

input drift of 13 uv.

* This excludes the 24 hr and haymonic enexrgy.
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5.3 Amplifier Noise

Low frequency noise measuremsnts were also made on
operationsl amplifiers. First of all it was necessary to
establish that the operational amplifiers used in other
experiments were not contributing significantly to the
meagured output. Secondiy, it was desirable to know their
"drift"” properties for comparison with the Mark I
measurenents.

The particular unit measured was a Kaylab 110A de smplifier.
The two higher frequency sets of runs were made via the digital
voltmeter-paper tape scheme and the lowest frequency data
was btaken from EFasterline Angus Strip Chart recordings.
These daba collection schemes are just those described in
Sectiorn 4.3 gbove. A1l of the raw data was taken with the
unit operating open in the ordinary room environment. No
attempt was made to control either the temperature environment
seen by the amplifier or the line voltage from which it is
operated. In other words, these results are expected to be
representative of reasonable laboratory conditions.

For the highest frequency data the sampling timé was
5 seconds which yields a highest estimation frequency of
.1 cps. Spectra at higher frequencies for amplifiers are
féirly well known. The primary interest here was the low

frequency or "drift" properties. The power spectral density
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from the 5 sec data is shown in Figure (76). The vertical
scale extends from - 140 db to - 90 db where O db corresponds
to 1 vofl,‘bg/cps. This spectrim is referred back to the input
of the amplifier through its gain. The horizontal scale
represents logarithmic frequency from J_O-lL to :LO_l CPS .

By this time it should came asg no great shock that the
result is basically a "1/f type" spectrum This data was
taken with the digital vcltmeter fixed at 10 volts full scale
and another intermediate amplifier of gain 100. Therefore, the

guantization level is l/lOOth of & millivolt at the output.
In the notation of Section 3.2.4 this is lde = ZLO_5 wailch
implies a quantizabion noisc level of 4.166 x 1077 at the
ouput or - 164 db referred to the input. There is clearly no
problem here for this data. The spectrum shown was estimated
from prewhitened data so that the M/N approximation is
probably a reasocnable estimate of the expected relative
varigbility. There were 7658 total data points and an M of
100 was used for this estimation. Thus, we would expect about
an + ll% 10 estimator. This is (+ 573 do, -~ .528 db) which
is approximately a 1 db band. The small section with lines
enclosing the estimates shows a 1 db band. A platcau scems
to occur at the R = 4, 5, 6 points. To the right of R = 6
point (6 x 1073 cps) the results seem to be consistent with

a 1 db 10 band sbout a line, i.e., power law. The lowest
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frequency data was read from the Easterline Angus Charts

at a sampling rate of once every 5 minutes. Figure (T7)

shows a typical section of raw data. There were a total

of N = k840 data points and an M = 100 spectrsl estimation

was performed ylelding a minimum frequency resolution of

1.67 x 1072 cps. The data was prewhitened for a l/fE spectrum
and the 10 variance bands are * 14.U% or + .58 db, - .63 db.
Flgure (78) presents thls spectrum. The verbtical scale 1is

- 120 db to - 70 db where once again 0 db is 1 voltg/cps
referred to the input and the horizontal scale is 10$aglo(f)
from - 55 to ~ 25 which corresponds to 3.16 x 10_6 eps to

3.16 x 1073 cps. A composite spectrumcan now be assembled.
The lowest freguency spectrumis obtained by Saking every

lO-bh sample of the 5 minute data and has 1o variance bands of
(+ 1.63 db, = 2.64 db). Figure (79) shows the three spectra
plotted together. All are prewhitened l/f‘2 estimates. As with
the room temperature and Mark I spectra there is excess enefgy
et 24 hro end ito harmonico. Deopite the prewhitening, the
lowest frequency points on each curve seem biased upward.

As in the Mark I dabta case fitting a power law to this data

is a significant oversimplification as the line shown on
Tigure (T9) indicates. This line is K/f1.32 where

K =217 x lOﬂlh voltsg/cps. It is not at all a good fit to






) I } .. 4 i . - : SO R
|

e L
[ EEEe] tEE

s

.

pps

o 13T

i
) Sua=as




=287




-288-
the middie run dala. Houwever, we can use lhls furm o calculate
a crude limited bandwidth RMS value for the region from 1
microcycle to 1 cycle. The result is RMS = 1.1 x ZLO"6 or
about 1p volt. This 1s an extremely Interesting result because
it implies that the instrument’s REMS "drift" is really
quite low, almost & decade lower than its specification
guarantees. This calculation is, of course, insccurate.
The model itself doesn't really match the dala because it
does not include the 24 hr energy peaks. We could eliminate
this difficulty by including these as additional narrow band
noises as done for room temperature (see Section 5.1).

There is an additional festure of operational amplifier
noise which indicates cleariy that we still do not fully
understand the phenomenenof drift. Data was also taken at
a 50 sec sampling rate via the paper tape punch scheme.

While none of the above spectra are from this data the raw
data itself is extremely interesting. There were 10000 data
points available and these were plotted 900 to a sheet.

Figures (80) shows two typical scctions of data. The
vertical scele is + 104 volts full scale referred to the inpub.
‘There seem to be two distinct processes with violently
different RMS values and different mean values. The times
between state changes are long, on the order of 12 hrs. Tt

is possible that the different states are related to room
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temperature. However, this speculation loocks doubtful when
the whole sequence of dabta is examined (6 days tobal) because
the switch times do not appear to be regular or particulatrly
correlated with the time of day. Another possibility is that
the building’s line voltage changes veriodically leading to
a different behavior for the ampiifier. Or perhaps the
electramechanical chopper in this operational amplifier
really does have two distinct noise states. Flgures (816.)
and (@b)illustrate that the situation is even more complicated.
They are also pleces of the same 50 sec sampling rabe data.
They also 1lndicate the existence of the two states but in
addition show two cother kinds cf behavior. The vertical
scale is = 10W volts zero center (referred to the amplifier
input) so that the sharp transients in Figure(8la) are indications
that the outpubt was going to zero. This tends to make one
suspicious of circuit failure type errors. In addition, this
Tigure iliustrates another of the pitfalls of practical
spectral estimation. The large point al abeout the horlzontal
midpoint of the data appears to be due to an error in either
the paper tape coding circuit or the translating program.

If a spectrum were esgtimated from thig deta it would be very
nearly white because of the influence of this bad point as

discussed in Section 3.3.3. This figure is alsc the only
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point in the entire data run of 6 days length when more than
two distinct mean levels were observed. Here there seem to
be two levels of low RMS behavior rather than just one.
Figure@ﬁb)shows in addition some transients which increase
in voltage to further confuse the situation.

In general, it seems that the noise properties of this
electromechanical chopper stabilized dc amplifier are in one
sense an extension of those of the Mark I noise generator.
The two state phenomenoh is more accentuated and the RMS
values in the two states differ nore for the awplifier noise.
But the general characteristics of the spectra are very

similar.
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5.4 TLine Voltage Results

As described in Secllon 4.4 the mechanization chosen was
to measure the average value of the rectified 60N line and
record these "de" fluctuations. Power spectral density
estimates obbalned from this dala zre then presumed to rerlect
the spectrum cf line voltage amplitude variations. When the
experiments were planned it was anticipated that the major
contributor tc the line voltage fluctuation spectrum would be
temperature and that the resultant spectra should increase
with decreasing freguency, possibly like l/f or l/fe. Therefore,
1t was felt to be unnecessary to go to the trouble of mechanizing
very low frequency antialiasing filters. This expectation
was Jjustified by the results. Three different sets of runs
were made with sampling times, At, of 1.25 sec, 30 sec, and
5 min. Figurcs @a), (82b), and (82c) show short segments of
typical raw data for the three differert sampling times. It
is obvious from this data that there will be trouble with the
lowest frequency runs. When a large transiert occurs near a
sample time the getual amplitude at the sampling instant is
uncertain. From the raw data it appears that the error might
be characterized as a guantization problem. The line voltage
amplitude variations apparently have = very non-gaussian
pfdbability density. The line ‘'sags" much more often than
anything else and generslly in respounse to transients. For
instance, a small fraction of time and the large transient

type behavior exhibited in Figure(SEC)was found to be directly
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correlated with the operation of the elevator in the buiiding
when the apparatus was located. When a large transient happens
to coincide with a sampling time (for instance see circled area
In Figure (820)) then one may consider that a large quantization
error is present in that particular sample, (for inslance

~ 16 volts for the example from Figure (82¢)). Since

this event does not occur for every sample the discussion of
Section 3.2.4 regurding quanbizalion 1s ool direclly applicable.
If we, however, use it as an approximation it indicates that a
white noise level of about

2 2
AAE.  _ (900) (L6 )"
5 =5 = 2.8 ab

would be present due tc the guantization.

Figures (83a) , ard (83b), and (&c)present the spectra for
the three sets of data runs At = 1.25 sec, 30 sec, 900 sec,
respectively. These are Q2 estimates (hanning window). The
estimgtion was done utilizing prewhitening for l/fQ.
Alternatively, a linear trend was removed from the lowest
frequency run with the only difference being at the R =0,1
points which are plotted for the trend removed egtimations.

The whitening of the Zowest Ffrequency run at its high frequency
end seems to be adequately explained via the approximate

qﬁantization argunent made stove. Each run has been antlaiilased
under the assumption that the straight line shown in Figure (8L)

is the correct resultb.
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The variance of the estimates for each run is different
increasing with decreasing frequency. M is 100 for each set
bub N ig 3920, 1550, and 790, 10 so that under the smooth
spproximation these would be 16%, 25%, and 36% estimations,
respectively. These yield 10 various bands of (+ .6k db
- .76 db), (+ .98 db, - 1.26 db), (+ 1.32 db, - 1.91 db),
respectively, which are shown on the figumes as dobted lines
Tor a short segment to indicate their size. It appears %o
be a reasonable statement to say the estimated spectral density
lies roughly within those bands about 2/3 of the time. Since
those estimates are prewhitened one expects this smooth
approxiugtion to ylield reasonable agreement with the empirical
result with the possible exception of the very lowest frequency
points. It should be kxept in mind That putting equi-spaced
data on & logarillmic sczle tends to reduce the visual
variability in the low freguency points.

Figure (8h4) is a composite of the total results. The
horizontal scale on this graph covers six decades in frequency
from 1 microcycle (lO—6 cps) to 1 cycle (L cps). Based on
past experience we tend to be very suspicious of simple power
law modeling for spectral densities. However, we can Iit a
l/(f)a curve to the sloping portion of the results. This

yviclds a value for the line shown on the figure of & = 1.33.
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IZ we clalm that the spectrum 1s indeed lat at the lower

frequencies we obtain as a model

(5L <z )
a L
5|
s . (g2) =
I e (132)
(I o> lepr, )
£
0 || > £
C
/
where K = 8.36 x 10—9, voth/Cpﬁ, fL =2 x lO_Bcps, a = 1.33,
fc = 1 cps. The reason we are so cautiocus in claiming this as

a valid representation of the true result is related to how
many times during the course of the Mark I noise studies
similar conjectures were proposed for its "true" spectrum
which turned out to be errocneous.

In any case 1f one takes the positior that these

results are representative then the total RMS value

1, fc

[P Y
R 1 1 B o
= T =D =T T =3 = 36 millivolts
f
L
can be tzken as the 1o fluctuations expected from low frequency
line voltage amplitude fluctuations in a typical air conditioned

laboratory.
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6. FURTHER WORK

Because of the exhorbitantly long data records required, it
is urlikely that power spectrsl densities can be esbimated at much
lower frequencies than those presented above. All of the equipment
problems discussed above compound as the desired data lengths grow.
Indeed, there is considerable question as to whether power spectral
density is a useful concept in the context of "yearly" etc.,
fluctuations. Consequently, informaticn pertaining to still lower
frequercies will have to be cobtained indirectly. For instance,
hypothesis tests might be constructed to yield information anslagous
to the lower break [reguency in the l/ T case.

One of the most interesting areas for further work pertsins
to the nature of the sampling scheme. Discrete spectral estimation
schemes customarily deal only with equi-spaced samples. There are
many cases where non-equispaced samples might be a great deal more
convenient.

For instance, suppose it is desired to estimate the spectral
density over many decades of frequency from one sample function of
the random process.* IT a sampling rate is chosen high encugh to
allow estimation of the highest frequency desired, an extrenely
large number of samples must be taken if information is to be obtained

of the lowest frequency, (i.e., for 7 decades with M = 100, N = ZLOLP

The situatiorn is scmewhat more complicated if aliasing is a sericus
broblem,
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as in Figure (51) , 10Y samples would be required}. For this work,

the straightforward approach of taking a ‘reasonsble" number
(R;lO,OOO*) of samples at a specific sampling rate and then repeating
the process at a different rate was employed. TFigure (85) depicts such
a sampling scheme. This procedure 1s intuitively unappealing and

has the disadvantage that several data "runs" must be made. Several

"more efficient" sampling schemes suggest themselves.

Run 1 |11 } N + 1 samples @ At
0 NAL
Rz | | 11111  }N+2 samples @0
0 10NAL
ren3 | )T }N+lsamples@lOOAt
lOENAt
’ ) Figure (85)
) ) Batch Sampling Scheme
e T e I e R T &
1OD1\TAt Sa;%lples @
107AL

D "Runs" (ND + D)total samples:yields Spectral Density Estimates
over D decades in freguencye.
This is strictly a function of the pafticular equipment available

but is probably ro loager %han]OT so that the following arguments
will apply. )
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The first cbvious simplification is to collapse this all into

one "run," where the sampling rate changes every N samples. TFigure §6)

illustrates schemagtically such a scheme. It should be pointed out
that the serious effect of aliasing can pe removed from the spectral
estimates dotained from the batch sampling scheme via different
anti~aliasing filters for each ‘run." But, the nature of the
aliesing problem faced with the ‘'decade" sampling scheme is quite
different and in fact the author does not know of a way to handle

the aliasing problem in this situation. For spectral densities

1 T T T O \ l

WA 10WAL LOONAL
N + 1 samples @ At
N /
—_—
N + 1 samples @ 10 At A‘_——/__—-_—“ﬁ—////

—_—
N + 1 samples @ lOEAt

\’—‘_—\_—\/’——'——w

-

N + 1 samples @ lOD/\t

1 Run (ND + N + 1 - D)'fotal Ssuples:yields Spectral Density Estimates
over D decades in frequency.
Figure (86)

Decade Sampling Scheme
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which are of the general 1/T character, neither scheme should experience
great difficulty as any reasonable folding of the actual spectrum
cannot be too seriocus.

The most striking appearance characteristic of the low frequency
noise data records themselves is their slowly varying nature. There
arises naturally out of the fact that a very large part of the energy
in the random process is at very low freguencies. This appearance
suggests that a sultable sampling scheme might be to record ovuly
changes in the noise voltage and the times at which they occur.

This could be further simplified to recording only the times st which
the noise voltage changes by a pre-specified fixed amount. Two
courses of action are then available. One could reconstruct the noise
voltage Lo the pre-determined accuracy on the digital computer and
sample it at any desired rate. Albernatively, one could invent a
technique for estimating the correlation functiorn or spectral density
directly from the switching time data and the sizes of the steps.

A simple technique for obtaining a logarithmic fregquency
spacing of the spectral estimates could be mechanized utilizing the
present correlation function estimator. The window could be applied
in the T domain and the kourier transform to cbtain spectral estimates
could simply be evaluated st logarithmically spaced points in the
fregquency domain. This would be more or less equivalent to using the

R

present scheme and calculating é(éﬁﬁ%) only for selected values of R.
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is would be only slightly less expensive Lfrom a computational
standpoint because the major job is in calculating the mean lagged
products from the raw data.

It is perhaps interesting to note that it is not a mathematical
necessicy that the spectral estimate be biased. In fact, for any
spectrum, S(f), for which the window Q(f) is en eigenfunction of s(f)
then 8(f) can be unbiased. One could, in fact, imagine asking the
question, "For a given spectrum, for instance l/f neise, what window
should I use to make S(f) an unbiased estimate?" This line of attack
has not been pursued here becguse it is not of practical interest for
the following reason. The window Q(f) must be bandlimited in the T
domain because only a finite data record is available. Therefore,
Q(f) camnot be bandlimited in the f domain. Because of aliasing
problems the spectrumto be estimated must be bandlimited in the
frequency domain. Therefore, Q(f) cannot be an eigenfunction of S(f)
gince it would have to be bandlimited in f. One could perhaps ask
for the "besl" approxlmallorn to a bandlimited function. The work
of Slepian, Landau, and Pollak leading to prolate spheriodal wave
functions is then applicable and gives the answer for a varticular
definition of "best" and the special case ol a white spectrum.
Alternatively one can notice that the requirement that S(f) be band-
limited to mect aliasing requirements is in fact much too severs. As
a practical matter it appears that a spectrum decaying even as fast

as l/f2 creates no serious aliasing difficulties. This leaves
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considerably more flexibility for finding allowsble Q's since they
now need not be bhandlimited in the frequency domain and can mcct Tthatb

requirement in the T domalin.

Still anocther approach might be
to solve for the eigenfunctions ignoring this constraint and mechanize
them gpproximately in the T domain by truncation. The resulting
elTects ol this approximation would however be difficult to evaluate.

There are three major fealtures of the spectral estimation
techniques employed in this work which appear intuitively unsatisfactory.
That is, one would hope to improve upon the scheme of taking data at
egui-spaced points in time. First, it seems sort of silly to blindly
sample the random process conly at equi-~spaced specified intervals of
time., Secondly, if the interest is in making spectral estimates
over more than a decade in freguency, the current scheme is usually
guite inconvenient and inefficient because of the linear frequency
spacing of the points. A log spacing would be much more appealing.
Finally, if a large range of frequency is to be covered from one set
of time cdomain data, some kind of anti-aliasing fiitering (1ow pass)
must be done. Again this seems incfficient intuitively. It would
seem that a more elficlent computational algorithm could improve

thig situation.
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One alternate approach which is very appealing intuitively
is to change the basic form of the data available. 1In other
words, let us not ask, '"how can we more efficiently process the
equi-spaced data to yleld a spectral estimate?"” But let us go back
one step further and ask how could we take the data in a form
which might lead %o more efficient processing algorithms. The
"decade sampling" scheme is one small stcp in this direction., The
"sample at data change times" scheme is a further step. A more
basic change which is very appealing intuitively is to sample at
randam or psuedo-random times.

Suppose one sampled the random process ab times tk distributed
cccording to some density p('l:k). For example, one might easily imagine

mechanizing t. 's that were normally distributed (or uniformly distributed

k
etc.) about some set of fixed times (say equispaced). One could then
imagline laklng an enseuble gverage over lhe Lk’s ellthier on the eslimaled
correlation function in the T domain or on the spectrum in the
frequency domain. In a manner of speaking then one might have an
estimate of R(T) '"averaged over T" in some sense.

A slightly different computational scheme which might be
utilized for random time sampled data is given by the following.
Suppose each pair of data points x(ti), x(ty) were used to get an

egtinate of the correlation fuhction. If the tk’s distributed over

a large enough irterval this could alleviabte the aliasing problem.
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The subsequent estimstion of the correlation function, R( T), will be
essentially a scatter diagram. Fach point will be unbiased and will

have g very large variance given by

2
va.r{R('ti-tj)} = E{[x(ti) x(tj) - R(ti-tj)]}
which becomes under a zero mean gaussian assumption for x(t)

var [g(tj"tjﬂ = 2c7)+

Thisg will, of course, be useful only where there is a sufficient
concentration of points to reduce this variance considerably.
However, it must be kept in mind that there are a very large number
of such R(tiaty') points available; something on the order of N2/2
for N data points.

There seem to be a number of special problems associated with
data acquisition for very low frequency speciral estimation. They
might be categorized generally as 'non-stationarities': i.e., such
things as steps, spikes, and very low frequency oscillations in the
data. When reccrds many days, or even weeks long, must be dealt with
cne must take extreme caution to avoid the influence of external
conditicns. This is, of course, nothing new or startling. One must
always be careful sbout exactly what one is measuring. Its just that
on this time scale very few pieces of commercially available equipment
have cutputs that are in fact independent of their enviromment. In

this respect hirdsight is extremely powerful. TFor the particular
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case of low frequency semiconductor noise it is now much nmore cbvious

to what extent the enviromment must be controlled. After the next
"round" of experimente it will undoubtedly be found that the
experimental conditions must be even more carefully controlled to

answer the next round of questions. For instance, "Is l/f Noise

only the reflection of temperature variations at the input throush

the gain of the device and will it 'l:hereforedisappear in exact proportion

to the amount of temperature control?"



-31%-

APPENDIX A

ANATYSTS OF A PARTICULAR SPECTRAL ESTIMATOR

1. Mathematical Model

Let us construct s mathematical model intended to correspond
to the ‘'photographic playback method" of spectral analysis used by
Winston and Firle. At the conclusion of any real experiment
we will have s finite piece of, let us say corntinuous, record of
length, T, seconds. We shall Immedigbtely Lorm a periodlc funcilon
x(t) whose T second sections are exact replicas of our data. We
shall assume that x(t) is a sample Function from a stationary, zero
mean gaussian random process whose spectral density is S(f). We
note at this point that the only spectral density we can ever hope
to estimate is S(f) which is not of course the spectral density of

the original random process.
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Now let us begin by making a Fourier Oeries expansion of the
periodic waveform x(t). We will have
® &
o)

xp(t) = 1l.i.m. Z;l [an cos nw t + b sin nwot] + 5

where the right hand side converges in the 1limit in the mean sense and

w, = omn/m
5 T
a, = ff x(t) cos nw t dt
o}
5 T
b = -rfL x(t) sin oo _t at
o - 2 2 . .
Thinking of a, + bn as the magnitude of the complex Fourier

coefficient, let us venture the conjecture that it is provortional

to the erergy in the random process at frequency nwo. But

m
fa
7 = 4/a, + D

r n n

is incorrect dimensionally to estimate the power spectral density of
the random process, x(t). Therefore, let us form as an estimate of

/S(f) the quantity

In other words let us take

FaN VAN N\
%S(fq) = /s(nfo) = ‘/S(E) = Ly
- T
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sc that Qn will be our estimate of the sguare root of the spectral
density at multiples of the reciprocal of the record lerngth. The
constant B, as we shall see presently, can be chosen ir such a manner
that the estimate will be unbiased if x(t) is white noise. It should
be noticed that a fallacy has already been perpetrated since, in
genergl, one has absolutely ro guarantee that estimating the square
root of a quantity and squaring the result will yield a desirable
estimate of the quantity itself.
2. Properties of the Estimator

We have assumed that x(t) is gaussian and zero mean. Therefore,
the random variables an and bn wlll be gaussian and zero mean since
they are cobtained by integration which is a linear operation. To
complete their statistical description, then, we need only find their
correlation and variances, We begin the latter task by forming their

squares

T
a. 2 E? x(t) x(t') cos nw t cos nw t' dt at’
T JoJo © ©

T
b %L[g x(t) x(t') sin nw t sin nwt’ dt at’

1t

We then obtain on taking the expected value, interchanging the orders
of inbegration (and expectation), and writing the trigonometric

functions as sums and differences that

2
o)

&
n

!

T
fﬁ(t-t’)[cos nwo(t-t') £ cos nwo(t++,’_)] at at’
O

e
77

o

. 2
b
I
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where the upper and lower signs refer to the variances of &, and bn,
respectively and R(T) is the correlation function of the random
process x(t). We will evertually wish to express this as an integral
on the spectral density. As a first step in this direction we see
that by changing variables we will be asble to perform one of the

integrations. To this end, then, let the new variables T ard u be

defined by
t -t = 7
t+t’ = oy

rzom which we heave immediately that

t = % (u+T)
tl = %'(u - T)

The Jacobian of the transformation, J, therefore has arn absolute

value equal to

lal =

]\_, Sl

Nj—
|

o[k

N
[

The region of integragtion in the (t,t,) plane was the square region, R

B - {(t,4') : o=t=m7, 0=’ <m

{T ~ .a
: /
o

0 1 i -
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which maps into the (u, T) plane as the region R’ given by

R’ = {(t,t7); ~t=u< 2m+7, -Ps7<q} U{(%,%"): T<us 2771, O<r<T}

or

f‘r
< | 3 +

//R///
NI

Performing the u integration first, the equation for the variances

becomes
o 2
& 1 o TH2T
= -——f [ R(7)[cos ne T £ cos nw ul du 4T
2 o) 0
T =7 T
o z
b,
n
1 @ -
t = [ R(T)cos nw T + cos nw u] du 4T
“ Jo 1 o o

Performing the u integration now yields

|
S H

0 T sin nu:OT
f R(T){cos(nwoﬂ)(l + "",f) + W] dT

T

H o

c“bn T T (sin nwo'r)]
+ —f R(’r)[cos(nwo’r)(l - @-)-p ———rl-UTc;—I,— ar
Q
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where use has been made of the fact that w, = 2m/T in simplifying

trigoncmetric expressions. Combining terms we nave

n T sin nw T
_ 2 1-07] ) £ Io] 0
=z [I R(T)[cos nw T ( = >=F T aT
o

The contribution from the second term in the brackets is zero since

it will be the integral of an odd function cver symmetrical limits.
Hence, we see alreudy Lhatb Ga 2 cb 2 o 2

n n
exponential form we then have

« Wrillpg the cosine in

o +inw T -jnw T
o 1 o] o
o = = f R(T) \e + e D(T) ar
T o s]

0 otherwise

i)

i.€.,

-1“ \O e T

But since both R(T) and D(T) are even in T the contribution for each
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exponential term is just the Fourier transform of the product R(T)D(7)
evaluated at the frequency nf‘o. Hence, the result is equivalent tao
the convolution of the Fourier transforms in the frequency domain

evaluated at this frequency. Thus,

o}
i
=ino

IlUJO
£ - nf’o = A

[s(f) % Q(f)]

o o]

fs(f’-nfo) Q(s"ar’ = f s(£’) Q(f'-nfo)df’

=T
=i

where Q(F) is the Fourier transform cf D(T) which is well known to
be given by

. - JjwT 2

w = [Tome e (4)

Inserting this fact in the above result yields finally

) e [sin ﬂT(f’-nfo)] ,
o 2f s(f’) 7 ar
/s mT(f —nfo)

2

joe]

2]‘ s(2") [sin(mre’ -om)]

(nps’ ) |

il

Given a spectral density S(f) this quartity is Jjust a fixed

number. In fact, if the spectral density is white or 'smooth" the
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2
(sin x /%) acts as a delta function and ‘samples" +the function so
2 2
that Ua and Gb will be proportional to the real spectral density

n n
at the frequency nfo. i.e.,

o 2 2 sin = ax 2
9) = = O o~ 2o = =
i, can b ~ 28(nf ) Jép ( - ) o ~ 5 S(af )

Thus, there is some hope that the gn defined earlier may be a
reasonable estimator of the square root of the power spectral density.
To complete the description of the random varisbles a, and bn
we nmust calculate thelr correlation Pop Proceeding directly from
n

n
the definition we obtain

R
ot = Elab } =E b x(t) x(t') cos nw t sin nw £’ at dat’
n n nn T2 oto o o)

Again taking the expectation inside the iIntegration, recognizing the

carrelaticon Tunchion, and expanding the trigonometric furection we have

oLy = 2 T L R(t-t") [sin mo(t+t') + sin nwo(t’-t)J at as’
“n'n TE./Z./;

wnich becomes after the same change of variables used previously

T+2T :
Pab = Lf[ R(7)[sin aw u + sin nwo'r] du dT

n n 2 2T T

T -7+2T
= ff R(r)[sin nw ou + sin non] du ar
T o JT

-

+
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On performing the u integration we obtain

s T+2T
1 cos nwou
pa_b ) B(T) (cT+2T) sin uon N\ ar
nn T T o .
1 ik cos nmou 2T-7
+ "2'[ R(7) |(2T-2T) sin nw T -| ———— ar
o nw
T © o] T

27 .
But because wo =5 we see that

0 2 fT R(T) Q__lll.) sin nw T 4T
abh == T o}
nn T T

which is identically zero since R(T) and ( - J—%j—> are even while

the sine is odd. Thus,

pa.b = 0
nn

so that the Fourier coefficients are uncorrealted to each other (and
hence independent since gaussian) for the same n.

Now becauge &, and bn are equal variance uncorrelated gaussian

variables we know that

2 2

will be Raylcigh diotribubted, i.c., that the probability density

function for Z will be given by
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o
7
_ n
A 20112
. n
p(z ) = 2 e z Z0
n
0 7z <0
n

0 otherwise

from which we can calculate the mean and variance of our estimator gn.

The mean will be given by

1 [ 2
¢, - RN at
n B20n2 o B n

i
[Fes

Suppese x(t) has a spectral density which is white:

S(f) = N,

Then to have our estimator be unbiased in this case we must clearly have
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We have already seen above that for x(t) white

2
°n < TNO

from which we see that

k5 2
\Iﬁ:) _J; VTNOB

and thus we should choose

This will guarantee an unblased estimabe for white noise and presumably

a negrly unbiased estimate at f = n/T for any case where the spectral

o

density is relatively constant in the neighborhood of T

cycles.

Fixing B at this value we will have

— _ 4T
C’n "JEGn

We now calculate the second moment of our estimate as follows:

2
o 20n2B2
— 2 1 3
¢~ = Efg "} = f C e ac
n n Bgc 2 , 0 n
n
= 2B20 2
n
But on utilizing the value for B chosen above thils beccmes
2 27 2
Qn = m %
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from which we obtain the variance as

wor 0, =05 - O =T )

One of the frequently employed measures of the usefulness of the
gpectral estimatcr is the ratio of its variance to the square of its

mean. For the estimator considered we Iind that

var § 2Gn2(T/TTXl - /)
(mean Qn)z (T/2)0n2
L
= - 1~ .285

It is particularly significant to notice that this important
result is independent of On and hence independent of the particular
spectral density being estimated. In other words in estimating
(the square root of ) any power spectral density whatsoever by this
technique only 68% of the time will the estimate fall within 53.4%
of its own average value (which itself may be bilased in any particular
case). The fractional variability formula also is independent .of T.
The frequencies over which the estimate is made thus depends on the
record length butlnot the relative accuracy of the resulbs.

3. Specific Example: RC Noise

In this section and the next we shall examine our model cof the

photographic playback method estimstor in two specific examples, RC

Noise and 1/f Noise in that order. We should like to obtain some
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idea of aow bad Its bias is likely to be in these particular cases.
Suppose then that we are attempting to estimate the spectral
density of a random process, x(t), whose spectral density, S(f) is

given by

_x
2
1+ (%)
a

where X is the velue at very low frequencies and a is the '"break

s(f) =

frequency' in cps.
Utilizing the results of Section 2 we will then have for the

varliance of the Fourier coefficients

© 2
2 K sin (TET-n1T)
o =2 _L 5 [ ('rrf'r-nn)] arf

7 oae(3)

which becomes on letting x = "If

o 2
Gpg - oK ./ (Sn(lgr_ﬁ?)) >
: ~eo x + (anT)

This integral can be evaluated by integrating the product of the Fourier
transforms of the two factors in the integrand. Appendix D carries

out this calculation with the result

J[m sin(x-nm) a dx  _ T 1 - a n Mae” 2%
bo | )] 2B BBy (am)® o + ()P [7 + (@r)?)?
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which when inserted in the above expression and simplified yields

anT

— 1 -
1+ (%} mar[1 + (;—%\Q]J mar [1 + (%}212

Now since the average value of our estimate is given by

_ T
gn B ‘QGn

2 2 K 1 L K .- 2arT

we have
oamr |3
- 2g,
L, =vK L - - |+ —— 5
Lo (B) | meeln e (Sg) ] menln o+ (Ep) 2P

This is to be comparcd with the square roob of the true spectral

density at frequencies of n/T which will be

1
1 2
Pl - m i —

1+ (7

¥
For the case where aT >> 1 we have to first order in (aT) that

i
2

E on R || -2 e

n 2
1+ (@)

) =

* We assume n is sufficiently small such that the inequallity need not
be written aT > n.

or

C,n,cs S

TN
HlB
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which is to be expected since this corresponds to the case where the
record is of sufficient length to expose many cycles of the noise

at its break frequency. Ancther way of phrasing this would be that
we are estimating the spectral density only at such low frequencies
that it is essentially white. Hence, the first order error term
doeg not depend on h and the estimaste ie not badly biascd in this
case.

On the other hand when a® << 1 we obtalr in a similar fashion

2
= n - al 5
Cn . S(T) [% - (E—) o ]

so that again the estimate is not badly biased. Here we are estimsting
at very high frequencies compared to the break frequency of the
noise. Again note that the first order error term (zero) is independent
of n.

Thus, 1t appears that the only significant bias is for
cases where % is on the order of the break frequency of the noise, a.
For the case aT = 1, Figure 1 shows Eﬁ and S<%> with K =1 and a = 1.
As expected the bias is only significant near the break frequency but

it is interesting to note its irregular nature.
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L, Specific Example: 1/f Noise
In this case we shall suppose that we are attempting to estimate

the power spectral density,
s(£) = x/|g]*®

where K is a constant and a is in the vicinity of unity.
Applying the results of Sectior 2 we will have for the wvariance

of the Fourier coefficients

o 2
2 _ X in(TMT-n1)
c ° = 2 _L e [61? f_mrTl) ] af

Letting x = MIf we will obtain:

2
cng 2K(ﬂT)a-l glm {%i?;fgﬁ?)] |iTa

)%

Il

ok (mT)®* L I(n,a)

where

© 2
ree) = %ﬁggﬁ] Mﬁ 0<ac<e

Initially, it appears that the integral might not coaverge.
This is, however, not the case as will be shown. The integrand does

not have a singularity st the origin becausc the origin is a zero of

. - nﬂl . e F
[%1néxnﬁ ) . It can be seen from a Taylor Series expansion of
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this function about this zero that it approaches zero quadratically.
Hence, since a < 2 the integrand does not have a singularity at this

point but indeed has a zero. Since the integrand is bounded in the

sin(x-nm)
X=nm

region -nfm < x < nT where N > n and is less than outgide
this region it will be integrable and I(n,a) wili exist.
Since I(n,a) will be calculated by numerical integration it

will be useful to bound the error made in taking the integration

limits to be finite. Appendix B derives the following formula:

I(n,1) - XINT(W,1) - 32 ;. 81n 2

op® 23

1 2 1
- [3 cos 24 + 5(nm)] ﬁﬁ(
" 3

where the first term is just the finite integral defined by

A . 2
XINT N;l) = [Sln(x-nﬂ)-l ax
( J& (x-nT) 1 ox

and the last texm approaches zero at a rate faster than A-h.

If we now choose
A = bnm

we gee that for n = 1

—= ~ .0095

3
2A2

and we make less than a 1% error in taking

I(1,1) = XINT(1,1)
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The approximation improves as n increases and similar results are

expected to hold for a % 1.

We now have for the gverage value of the estimstor

- T
n J'e“"n

a-1 a
)
JE Y T \xmwrm,a)

which is to be compared with the correct result

™
]

It

ma - (3)

f =

Hls

A convenient way to present the comparison is to normalize

with respect to K and T. To examine the bias we can then compare

~ - &
,‘ﬂa-l X INT(N,a) with N 2- FigureA2 shows such a comparison. The
values for the Integral were cbtained by numericel integration using
a digital computer. The curve of N is, of course, a sbraight line

since the paper is logarithmic in both directicns and is indistinguish-

able from the computed integral on the graphs.
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APPENDIX B
SPECTRAL ESTIMATION PROGRAM

A listing of the FORTRAN program used for obtaining the spectral
estimates of this thesis is given below in Table Bl. Similar programs
to compute power spectral density estimates are avallsble at a large
number of places throughcut the ccuntry. This one is presented only
because it has a few features not generally avallable. First, the
ability to prewhiten the dats (i.e., perform any linear filtering
cperation) before spectral estimation is incorporated directly into
the program. Second, scme smount of effort has been exerted to render
the output format both serviceable and convenient to read. A number
of intermediate results are presented which are not often printed out.
Among these are: the estimated correlation function, the magnitude
sguared of the prevhitening filher's transfer function, The actual
spectral densities estimated from the prewhitened data, the QO
windowed estimates, and the logarithmic frequency. Table B2 shows a
typical output from the program with M = 30. The first page gives
the first 400 raw data points while the second gives the estimated

spectrum.
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APFPENDIX C
ERRCR ANATYSIS OF TEMPERATURE SENSCR
Let ug examine what kinds of errors are generated in the

temperature sensor due to various non-ideal components in the circuit.
For an approximate first order analysis we shall consider only the
new factors represented in Figure C 1 . They are: the nou=zero
output impedance of the audic oscillator, RS; the non-infinite input
impedance of the AC amplifier; R ; the leakage capacitance between

the input and oubput, C,; the leakage capacitance between the input

o3

and ground, C.; the stray capacitance of the mercury column to

33
ground, Cu; and the capacitance between the output and ground, Cl'
The elements previcusly discussed, CT’ CB’ and R are also included.

IT we define Vé and Vé as the voltages at the internal nodes as shown

C,
——
v Rs Va Vr

C)mPuT‘ o C—r_ R Ra °
Tcs Tc,, .

Figure (CL)

Temperature Sensing Circuit Model
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and RL as the parallel combination of R and BA we can write

Vi v

R S
S

0 = Al v

g

0 VT

for the circuit equatione in the Laplace domain where the Makrix A

is given by

s{cC k02+C ) + = RS -sCp, -sC,
A = -sC;, S(CL+C +Cop ) -sCpy
~sC, -sCp (cl+c +cg) + ﬁ;

The solution of this set of equations for the output voltage

in terms of the input is given by

2
. - Yi s (c CtCaC), 0 +020T)

T RS Al

where IAl 1s the determinent of the matrix A.
Prysically we expect to be operating under conditions where

>>
Cq Cps Cqs

thermometer 1s separated Irom the painted outside covering only be &

02, 03, Ch because the bottom mercury reservoir of the

thin layer of glass.
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For the case of the fine differential thermometer used as the
thermal control system sensor our nominal operating point will be in
the middle of its range so that we will also have

>>
Cp > Cp, Gy, Cgs Oy

For the case of the larger range thermometer used to measure room
temperature the capillarly tube is much larger in diameter and the

glass cnvolope is smaller in diameter. Thus, C, is much larger so

T
that the above approximations would be expected to hold until the
temperature reached say 20°¢ (the range of the té@rmometer is lSOC -

3500). In addition, we expect the oscillators output impedance to

be small so that

R << RL

Utilizing these approximations we have to first order thalt the
transfer Function becomes

3 g

it (CptCo )Ry,

v, ¥ 2
i 1 +s.R£cl + CT) + 87 Cp C; R, B

In Section 4.2 we ignored these denominator. poles. They are much
higher frequency than the pole due to the the thermel lag in the
glass mercury bulb itself. The significant first order exrror term
seems TO be 02 the input-output capactisnce. 1f CT is proporitonal

to temperature, T, as

CT = g + bT



-343-

where a << b then the major contribution of C2 will be to increase

a, but will not effect the linearity of the sensor. For the
differential thermometer CT A JHUpf at the operating point. Hence,

a stray capacitance between input and output of a few hundredths cf

g micro-microfared will lead to an appreciable offset in the temperature
sensor. However, for use as a small range linear sensor about a

fixed operating point this dec bias will be unimportant. For the

long range room tempersture measuring thermometer CT is much larger
while C2 is probably on the same order. Thus, the de bias is smeller.
The magnitude of the first order error in the linearity of the sensor
will be

@ B Cp

compgred to unity. For the differential thermometer with CT PORIN THTRR

RL ~ 1 MQ, and an operating frequency of 10Kec we will have a first
order linearity error of about 3%. For the room temperature thermometer
Cr 1s larger and the situation 1s slightly worse with possibly a

T

linearity on the order of 10%.
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APPENDIX D

gin{x-nm )2 ax

{x-nm) 2 2

(o]
1. Calculation of f (
= a +X

Consider the Integral

°° 2
si - dx
o= L [(Efin?ﬂ)] 2 .2

X

Because of the generalized version of Parseval's Theorem, this
integral is equivalent tc the integral of the Fourier Transforms of

the factors of the integrand in the corresponding domain. Thus

_ ” in(x—nﬁ) 2 1

. - 30T
wnere F{f(x)} = f f(x) e J2Tyx dx denotes the Fourier transform

20

of #(x). The Fourier transform of the second factor is well known

Lo be

7 __.._:.'.l.'._.—-— o= E e _Eﬂaly‘
2 2 8
a +T X

The Fourier transform of the first factor can be easily obtained

as follows:

CC

F{ [sin}({:_«:r-lTrTlﬂ):]e} :[o ,:sin(x—zﬂ'f):,2 e ~IETRY dx

X-nt

)2 TTyrTT sinx2
e R ()

1t

1t
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But the latter transform is well known so that we have finally

F{["Z—_j“sm;(::lﬁﬂ)]g} - ¢ ST {ﬂz(%— vl) vl <3 }
0

otherwise
Inserting these results above yields

e 21 ] T el

il
i
alE~—a

which becomes after simplifecation

2
- o pie e X
I = 5 J; (2 - x) cos nimx e ax

Writing thie latter integral as two integrals Il and IE’ respectively,

wa have

I = I, +1I,

i -aX
I = = J{ cos nix e dx
0

2
T -8X
= e e \li
TE 53 % ¢cos nfix e dx

The first of these can be evaluated immediately DW 576.1 yieclding

I, = s (-

28.)
2 ()
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Noting that

we have by differertistion thas

I, = z_ﬁaeeJ’zﬂe—g: 1+ s
(2% + (um)<]°  &° + (om) a + (am)

Combining these two results ylelds

-2a,
i1l a, Ta €
I =1 +I, = ——s - +
2
TR Bk ) [ a2+<nn>} [a2 + (am))°

which is the result quoted in Appendix A.

2. Truncation Error
This appendix will calculate the error made in approximating

(ee] . 2
s - [ (eislem) =

by the finite integral

. . 2
) - [ (4n) N
A |x

We begin by writing

I(n,1) = L+ XINT(N,1) + Tn
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where

H
i

co
sin(x-nm)\ dx
R : {x-nTT) lxl
Sincc B ip popitive we have on writing the sinc sguarcd as half of one

minus the cosine of the double angle that

J/m dx 5 - %_J/' cos 2(nm-x) dx
B B

x (nm-x) x(nﬂ—x)2

H
Hi
nj=

The first integral can be integrated by DW 101.2 to give

o1 | _m[_@”
E(rm)2 [nﬂ—B B

Since we expect to take B »> nm it 1s convenient to write this as

ot B & ¢ a1 -2
2(@n)” [B (-F +1)

and expand in powers of (nT/B) obtaining

2 3 b 2 3
—— [@E) CE) @ ) - @@ 2
(xr)
—%(%”)LL- }
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from which we obtain finally

7.2 w3 5 L r T
R~ [3 @) -2 &)+ & ...+<-1>r(r-+<~r:1—>~><§3>+..]

2 ()

for the contribution to I, fram the first integral in Equation (Bl4).
The conbribution from the second term in thalt equation becomes on

integrating by parts once

sin 2(am-x)

Iy x(nﬂ—x)2

+'jz sin 2(nm-x) (3 - 23) dx
B

by x(x—nﬂ)3 £

which is approximately

. = 2 3
sin 2B sin 2x [ ni
) 5+ 8+ 15T+ 2k (@) de
B3 - B b *

Integrating by parts again we have

2

2
gin 2B nit cos 2B
1p3 { B } 8B

3
+ 24(“TT + ]

[ee]

- 2 A\ 3
+j- cos 2x [ 12 , )5 & 9% > +Jﬁ%mj + ... ldx
B 8 X5 ;6 x7 ;8

so that we heve finally that the contribution from this term is

sin 2B [nﬂ ] 1 ol
—e— +. |-~ 8in 2B -~ cos 2B y
s 2 g B ﬂ(g;)
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where the order notation indicates that the latter term goes to mero

Taster than EE « Combining the two contributions now yields

T = om ede 4 A (%E+-S—j%-2—§)'i‘%<gﬁsj.ﬂ2:8—%COSEB-%(YY”)Q)

’ 1y (D5)
o)

B

Proceeding in a similar manner for IT we have first

I - J/:A sin(x-nm) 2 ax
LT (x-nf) x

which becomes on changing variables

%4% du s - 3 J/? cos 2(nmu) au (D6)
u{utnr) .\ u(nm+u)

As can be seen by comparing Equation (D4) and (D6) the contribu-

!
i
=

tion for both terms in latter equation can be obtained by substituting

A for B and changing the sign on the nm termg. We have then

_ -3 1
I ~—§+—-3'

L AT A <-§ﬂ + Si{l‘ﬁ) ) ]'L)T(SE sin 24 + % cos 2 + % (nﬁ)2>
A

. ﬁ'(i-l,—_) O71)

Substituting Equations (D5) and (D7) into (D1) now yields



I(n,1) = XINT(N,1) - E(ie " ;2\) . ?(i? ) %\ 1 (sin §A . sin 2]3)

A A B3
nT\fsin 2B sin 2A 3 fcos 2A | cos 2B
+(2_)(‘B - Au)'S(Au " Bu)
__5_(m,)21+1>+ 1
A v B

if we now make the assumpbior that for calculational convenience we

take A

it

B this becomes

it

I(n,1) 5

XN (W,1) - S5+ BEER L L [3 cos 20+ 5(m)7] + O3
24 27 b A

which is the result used in Appendix A.
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