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1. ABSTRACT
This thesis attempts to estimate the power spectral density of

low frequency semiconductor noise over a range of 10 decades, from

s N

a microcycle (10~ cps) tolOkilocycles (10 cps). Tt is concluded
that the behavior is more complex than a simple inverse proporbionality
to frequency. The spectrum is approximately 1/f in the region around
100 cps and changes gradually to l/f2 as the fregquency decreases to
the microcycle region. These spectra represent the nolse properties
of the first stage transiastors of a grounded input de Aifferential
amplifier. The estimated spectra at very low frequencies still
reflect strong temperature influences.

In order to obtain these measurements it was necessary to
ceontrol the temperature enviromment of the ncise source. This was
accomplished first by passive attenuation and later by active control.
The noise source was placed in a circulating oil bath whose temperatire
was sensed electrically and controlled to a .OOlOC range. In conjunction
with the temperature control activity the power spectral density of
room temperature variatione was estimated in the frequency range from
.1 cps down to 5 x 10-8 cps. Other spectra of interest estimated over
the low frequency range were for line volbage emplitude fluctuations
and operational amplifier drift. A DPrief description of the equipment
constructed to obtaih sample functions of the noise processes is

included.
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The analytical portion of this work is concerned with the
mathematical techniques employed in obtaining power spectral density
estimates. The basic scheme employed is that of Blackman and Tukey
which consists of estimating the auto-correlation function and
Fourier transforming the result. A formula is developed for
calculating the variance of the spectral estimator actually employed
in the computations. The bias and variability are presented for
the estimator when estimatling a spectra contalnlng a spectral line.
A confidence interval approach to the variability of the spectral
estimator is examined. A confidence interval which depends only on
the dats is constructed around the spectral density estimate. A
technique for utilizing the available knowledge concerning the
expected varigbility of the spectral estimate is developed. The
result is formulated in terms of a maximum 1iklihood estimator for
the average spechtral density when several independent egtimates are
available. Some possible sources of low frequency bias in the
spectral estimate are considered in detail. Among these are the
effect of mean removal and certain deterministic disturbancecs such
as steps. DPrewhitening for l/f and l/f2 gpectra is examined and
shown to lead to very great improvement in the spectral estimate.
Some suggestions as to more efficient methods of spectral

estimation data collection and processing are offered.
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2. INTRODUCTION

Does 1/f Noise Really Exist?

The internal noise genersted by solid state devices has long bheen
known to have an "excess" component - that is, a component in
addition to the thermal or Johnson Noise Model. This noise is usually
designated as 'excess'" because of the distribution of the extra
energy with frequency; not because of a large deviation from the antici-
pated total rms value. The power spectral density of this excess
nolse increases with decreasing frequency in contrast with the
thermsl noise spectrum which is constant, or ‘white." This "1/f
Noise," as it has come to be called, is usually modeled as 1/f"
where a > 0. Is this really a valid characterization? How far down
in freguency does this 1/f behavior continue?

Much effort has been expended toward determining the 'cause”
of 1/f Noise. More precisely, the research has been directed toward
& Turther understanding of the physics of the processes which generate
the semiconductor noise. It is generally accepted that l/f Noise is
a collector junction phencmenon. However, there seem to be a large
number of competing theories purporting to explain the l/f behavior.
For instance, Bell in Reference (1] presents a mcdel claimed to lead
to a l/f type spectra. A great deal of the confusion which surrounds
the subject étems from the great variety of experimental results
availasble. It would appear to be useful for the solid state
theoreticiane to have = more definite idea of exactly what the '"factg"

are which require explanation.
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Rollin and Templeton [2], [3] seem to have made one of the
earliest concentrated attacks on the low frequency noise behavior
problem in 1953. They used what may be called the "bape recorder
speed-up” ‘technique. This consists of recording the raw data on
magnetic tape, playing the tape back repeatedly at greatly incréased
speeds, and utilizing a wave analyzer to determine the fregquency
distribution of the energy. This scheme permits use of commercially
available instrumentation (wave analyzer or equivalent) which operates
in the audio frequency (20 cps - 20,000 cps). Rollin and Templeton
had to compensate for the frequency response of their tape recorder
system. Because of the large dynamic range involved coupled with the
inability to measure the frequency response to a sufficiently high
accuracy, their results may have contained a considerable amount of
hias. They presented results for carbon resistors, wire-wound
resistors, and germanium filaments.

Subsequently, several other researchers investigated a variety
of random processes nsing this technique. The last work on low
frequency semiconductor noise seems to have been that of Winston and
Firle in 1955“[M]. They investigated fluctuations in voltage across
reversed biased germanium and silicon diodes. They obtained spectral
estimates by two essentially equivalent schemes. One was a photographic
playback version of the "tape recorder speed-up" scheme and the

other wag an equivalent numerical analysis on a digital computer.
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The modern technique of power spectral density estimation
achieved wide acceptance primarily due to the work of Blackman and
Tukey in 1958 [5]. Parzen has attacked the problem of obtaining
consistent estimates of the spectra [(6]. He has also found for .a
specific class of windows (a shaping function applied to the
correlation function estimate as discussed in Section 3.1.1) and
spectra the ‘'optimum" windows in terms of variability of the
estimator [7]. A number of new wrinkles have been addedbut the basic
scheme of estimating the auto-correlation function and Fourier
transforming remains unchanged. Parzen and a number of others who
have done similar work have exposed the fact that for mast spechtra
of practical interest the varigbility of the estimates is not a
strong function of the particular window. Until recently
[ 8,9 ] almost no attention has been given to the bias properties
of various spectral estimators. It is an extremely difficult subject
to handle with any degree of generality since bias errors depend
intimately on the 'right answer." Most of the discussion of the
low frequency bias prcblem in Section 3.3 1s concerned with spectra
of the 1/f type since it was of most interest for this work.

Both of thc spcetral estimation schemes uped by Winston and Firle
lead to a poor spectral estimator in the statistical sense. Appendix A
shows that their spectral estimate has a variance which is a large

Traction of its mean at all frequencleg. The bias properties are

also calculated but appear not to be very serious for the specific

case of l/f Noise. Winston and Firle's data appears to have a scatter
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which agrees with such a formulation. They fit a least squares
straight line to the data on a log-log scale leading to a value for
a in 1/f" which is "greater than unity." This calculation could be
very unreliable with their estimator. Because of the advances made
in the art of spectral estimation during the intervening years, it

was hoped that ancther look at the problem might add something.

How do you do the job better? Winston and Firle investigated
the noise voltage properties of a bhack biaged p-n junction. For
greater applicability To practical engineering situations it would be
prefer able to measure the noise properties of transistors in operating
circuite. The approach chosen for thic work wmo to attempt to measurc
the noise properties of transistors in an amplification mode via a
differential amplifier noise source. Section 4.1 discusses the design
of the noise source. An attemot was made to establish what can be
inferred about the properties of a single transistor from the measured
properties of the rnoise generator.

Winston and Flrle Tfound 1t necessary to congstruct an elaborate
temperature control system. Are there perhaps other eanvironmental
Tactors which should be controlled? Was this control really required?
Cowld it have been avolided by more clever date processing? I8 it
possible, as in many engineering measurement applications, to utilize
more sophisticated mathematical analysis and numerical compubtation
techniqués and a less sophisticated physical experiment while still

cbtaining at least comparably accurate results? The easy availability
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and low cost of large digital computation facilities lead one to hope
this might be the case. Of course, as a practical mabtter what one
actually does is to build the best physical apparatus one can afford
and then apply the best computation techniques available.

However, in one sense this is not what you would really like
to do. You would like to build apparatus and use data processing
just sophisticated enough to answer the desired question, thereby
saving time and money for use in answering the next question. For
instance, consider the l/fNoise case. It would be nice to control
the enviromment and process the data just cleverly encugh to be able
to determine at what frequency the spectra no longer increases with
decreasing frequency {if such a break frequency exists). The difficulty
of course 1s that 1t is not at all obviocus beforehand how much control
would be 'enough." Would temperaturc comtrol to .1°C be sufficicnt
iff good spectral estimators were employed? This would depend on what
the l/f break frequency turned out to be. But this situation is, in
fact, very general. In many cxperimenbs oue never rewlly koows Liow
good to make an experiment until one knows the results of the
experiment. To avoid having to do the experiment several times
successively more accurate, cne usually adopts the approach of doing
it as well as possible subject to economic type congtraints. It
never seems to be obvious that one "over designed" +the experiment

because the questions change as the answers begin to arrive.
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This discussion is particularly relevant to the temperature
control problem for a l/f Noise source. Section L.2 presentgs a
complete discussion of the temperature dependence problem and the
solutions adopted. When the research reported in this thesis was
begun, results roughly comparable (except more accurate) to those of
Winston and Firle were cbtained with no active temperature control.
Temperature control was then resorted to and lower frequency, more
accurate results were sought. Evenluslly, a polnt was reached such
that the temperature control was not sufficient to avoid distorting
the results. As a nmatural consequence of such a situstion a number
of doubts were created.

Do a great many ‘"noises" nave a 1/f tyve spectra? If so,
doesn't this throw a lot of suspicion on the measurement technique?
Are the cestimates being biased by some as yet unknown phenomencon?
Motivated by Jjust such considerations, spectra of some other noise
processes of interest were also estimated at low frequencies. Among
these were the variations in room temperature, the amplitude cf thev
60-cycle line, and operational amplifier noige. Section 5. discusses
these results in detail.

Can we really estimate power spectral densities at microecycle
type freoquencics? Ecctions 3.2 and 3.3 can be regarded as sort of
an error analysis of the numerical computation procedure used to
obtain pdwer spectral density estimates from raw data. Aside from

the standard regults concerning amplitude and time sampling some
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other errors are congidered. Suppose the data contains a bad point or
an cxbraneous step function, "What is the effect on the spectral
eatimate?" What is the effect of removing the sample mean? Can

the spectral estimate be improved by our a priori knowledge that we
expect to obtain l/f type results? What equipment is required to
cbtain data from which spectral estimates at very low frequencies can
pe formed? Since we are planning to use the digital computer to
gbtaln Lhe spectral estimates from the raw data this gquestion reduces
to consideration of what raw data it is relevant to collect and in
what form. Section 4.3 discusses the equipment mechanized to collect
the raw data for the various experiments while Section 3.2.3 deals
with the specific computational tools utilized.

As a final note before launching into the gory details of this
research it seems appropriate to deal for a moment with the question
of, "Why do we care about 1/f Noise, anyway?" There are several
reasons not the least of which is that insatiable curiosity the author
shares with the elephant’s child., The aim of providing better
information to aid in understanding the l/f Noise generation phenocmenon
was mentioned sbove. On a more practical level knowledge of low
frequency noise behavior is required to make a sensible long-term
design of an electronic instrument. Suppose one intends to put a
piece of egquipment, say an amplifier, in a spacecraft (or anywhere
else) unéttenaed for some long period of time. Need provision be
made for resetting its zero?; If so, how often? Will it be necessary

to control various parbts of the enviromment to guarantee meeting the
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long-term stablility requirements?

It seems to bec an unfortunate fact that the "drift" properties
of electronic devices are very poorly understood especially by many
of the people who are in the business of manufacturing and selling
the devices. A great deal of effort gocs into formulating and
designing instruments to meet other types of specifications. However,
very few manufacturers even formulate a "drift" specification in
a rational manncr, lct alone meet it. In fact, "drift" ought to
be considered as a random process, i.e., "noise," which has most
of its energy at very low frequencies. This of course implies that
measuring the '"peak drift" over a glven Lime span 1s not a very
relevant way of specifying it. Low frequency spectral estimation
techniques offer one rational way of describing "drift." If one
hag an accurate characterization of the random process one can then
make meaningful statistical statements as to what may be expected
in the time domain. For instance, one might say of a given
instrument, "I the instrument is operated in a typical air corditioned
laboratory its "drift" referred to the input will be less than Tu—

volts 95% of the time."



3. SPECTRAL ESTIMATTON
3.1 General

3.1.1 Spectral BEstimation Formulae

All of the spectral estimastes of this thesis were
obtained by utilizing Blackman and Tukey [5 1 type spectral
estimators. Basically, this technique consists of estimating
the correiation functicn and Fourier transfcrming the result
to form a spectral estimate. The power spectral density is
an ensemble property of the random process. But, in general
one has available only one sanpie function from the process.
Therefore, the assumption that the process is ergodic is
indispensible and all attempts at forming averages must
be along time rather than across an ensemble. The auvto-
correlation functicn of the process is estimated by sliding
the data past itself, multiplying, and summing. (In the
discrete case these estimates are called '"mean lagged
products"” for obvious reasons). Specifically, we have as

our estimated correlation functior

~ =
()
2
RO(T) = I’T—-_lm Sy(t +,-T2-) x (t - %)dt |T| < LUV (1)
N _(TN - l"rl)
S
L 0 otherwise |

vhere x(t) is the data and TN is the total dats record

length, and this formula is applied only for lags (T's)

less than some maximum value T, T < T This truncation

M M N’
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can be written explicitly as
R(t) = D(t) R () (2)

where D(T) is called the "lag windcw" and is identically
zero for |T| > TM. The shape of this window for |T| < TM
affects the properties of the spectral estimate as will be
discussed below, but it is important to note that the
truncation can never be eliminated entirely because the
finite data record length precludes estimating the
correlation function over an infinite range. This
"windowed" correlation function is then Fourier transformed

to yield an estimated spectrum as follows:

@0

~ - jgﬁfT
R(T) e ar 3)

n
H

(£)

Notice that this scheme does nct directly estimate the
degired quantity, the power swvectbrum. An intcrmcdiate
guantity, the correlation function, is estimeted and this
result is shaped and transformed to dbbtain the final
estimate. While the prcperties of this estimator can be
calculated (see below) it has never been shown that this
procedure is in any way ‘optimum" or most efficient.

On the other hand, no one hac proposcd any very acccpbablce,

*
practical alternative approaches.

2
Parzen's "Reproducing Kernel Eilbert Space" approach is apparently

an attempt to do this, but has not received very wide acceptance.
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3.1.2 Properties of the Estimate

The estinmated péwer spectral density at any given
frequency is a random variable and a property of particular
interest is its average value. One wants to know
specifically how the average value of the estimate ig
related to the correct answer. Taking the ensenble avecrage

$
of Equation (3) above and inerting Equation (2) we have

. T -gene .
EL8(f)] = / e D(T) EI:RO(T)]dT (1)

where E refers to the expected value, and the order of
integration has been interchanged. To find the expected
value of the correlation Iunction estimate, we rewrite

Equation (1) as

T
A L 2 T T
RO(T) = Eﬁ £{t,7) X<t +—§> b's <t - 5) ar 5)
"
2
where
T - |7l T - ||
£(t,7) A u -(N2 ><t< o ©)
T - Il
( 0 otherwise

Since the data i1s bounded in amplitude and the

limits are finite, we can calculate the expected value
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as
T
E[ﬁé(T)] = %—-J £(t,T) RX(T)dt (1)
NT
X
2
vsed

where we have ,the stationarity assumption implied by the
ergodicity of x(t) to write T as the argument of the
correlation functicn. Direct calculation via Egquation (&)

now yields

O\
= <
R (0} = R fer 7] < (8)
which inserted in Equation (4) gives

O

B(2)] = a(x) ® s, (£) =/ a(e-£') 8 (£7)ar’ (9)

o0

where (:) denotes the operation of convolution and Q(f)

1s the fourier transform of the  "window" D(T).
(eo]
- jomeT
az) o [ e D(1)ar (10)
oo

The significance of the ‘'window" can now be seen
directly from Equation (9). Recalling that D(T) is

identically zero for 7> T, we see that Q(f) will De

M
- . sin x .. . . .
oa51cally'~—§—— iike in character with a width of at
least 5%—. Therefore, the ‘'window" is analagous to
M

the narrow band filter in the wave analyzer. It is thc

width in frequency over which the average value of the
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estimate samples the real spectrum. The specific window

most used In this work was the ‘"hanning" window given by

p(r) - g@ | cos %D 7| =3 (11)

o otherwise
for which Q(f) is shown in Figure (1). Reference [5]
contains definiticns and normalized plots of several other
window functions.

Equation (9) indicates one of the central difficulties
of powexr spectral density estimation. Namely, that
properties of the estimabor are expressible (to date, at
least) only as integrals involving the actual spectrum,
which at that point is presumably unknown. Therefore, all
that i1s possible is a kind of hypothesis testing operaticn.
One postulates a correct result, and then rotes that the
egtbimated spectrum 1s, or is not, consistent with the
postulated result. One way to circumvent this difficulty
through confidence interval statements is discussed in
Section 3.1.k4.

Ancther very general result for this type of
spectral estimator is also obvious. Most estimates of
the spectrum will be biased, since Equation (9) indicates
that the average value of the estimate will be exactly
equal to the actual value of the spectrum at s given

frequency only through a numerical coinecidence fer
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*
everything except & white (constant) spectrum. It has

been shown by Parzen and others that these types of
estimators are asymptotically unbiased in the limit as TN
goes to infinity. This is a consequence cf the fact that
Q(f) becomes a delta function as IM grows without limit.

As a practical matter it is neither very interesting,

nor surprising that an unbiased estimator can be obtained
with a record of infinite lengtn. However, it is important
to notice that with a fixed tinite record of length TN’

the best results are opbtained from a bias standpolint when
the real spectrum is "smooth" over distances of a few
times l/ETM in frequency.

The other statistical property of the spectrzl
estimate, which is of primary interest, is its variance.
Following the example of Blackman and Tukey the covarilance
between the spectral estimate at two different frequencies
will be calculated. Tnis procédure has the advantage of
yielding considerably more information with only a slight
increase in computational complexity. It nmakes the

correlation between adJjacent estimates readily available

as well as the variance at a given frequency. Thus, we

See Section 6. below, which discusses this facet more fully.



16~

wish to caleculate

cod 8(2,) , 8(z,)] - E{[g(f1)-E{%(fl):D [%(fp)-E[g(fp):ﬂ} (12)

From Equations (2) and (3) it is obvious that we must

calculate
A i,

COV[RO(Tl) ’ Ro(kz)]

which in turn regquires a formula for
T.. T T

g 1y L 2 .._2_]

COV{XQC:L "é’)‘{ (tl " 2) ) Xctz - 2>X<t2 * 2)
T T T T

_ el N . . L ) _é}

= E{:{tl —2> x Q:l + —§> x(tg + g) X (tg - 2> @3)
T T T T
: Db e, - D e (e E)

- E{m:#l —-jé> x (ﬁl + —ED} X(FE - —=)x t2 + =

At This point it is necessary to make the

assumption that the data, x(t), is a sample function from
a zero mean, gaussian random process, in order to

evaluate the expected vaiuve of the four-fold product.*
This is not tc imply that the spectral estimation technique
will not work in non-zero mean or non-gaussian cases,

only that the properties of the estimator are then more
difficult to calculate. Our data will, in general, have

a mean, and the effect of its removal is discussed below

in Section 3.3.1.

Statiorarity has been assumed previously.
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Proceeding then, under the assumption that x(t) is gaussian

and zero mean, we write the expected value of the fourfold

product a3

(o, - D) x (o + e)X@e ) o + 5]

) ) -2y - e Ll -y - 25
enfs - vy e Bl wls s, - T_L;l%] (1)

which yields

T . T T . T
COVE@;,'%‘) @*%))X(te'% @2'*‘@]
GRICRUSICRE 1 (Tlﬂ'g)

w - w, —-w, | ———
:-[7.GJ 122 S(fl)S(fg) eJ roe 2

T, T
e o[z
3 (w0 -, ==

+ e dfldﬁ2

where wl = Zﬂii, wE = Bﬂié, and the correlation functions
have been written as the inverse transform of the
corresponding spectral densities.

Now changing variables to

and rvecognizing that the spectral density 1s an evern

*
See for instance, Davenport and Root, [10] Problem # 2, vage 168.

Hk
The notation w = 20T will be used for zl1l ®w's and f's regardless
of subgeripte or superscripts throughout this Thesig.
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function we obtain

T T T T
L L : = 2y
COV{XGl - 2) X (tl * 2) > X Q“e - 2> X (te 5 )
i @s)
— ’ o : , e r a_pf I
= L]] cos 2w (tl tg) cos WT, cos T, s(e'+r)s (-t )arar
vyoo

Utilizing this result we return to calculate the
deslred covarlance of Equablon (12) through the use of

Equations {1}, (2}, and (3). .We haeve

® _j(wlTl+w2T2)
e[ R (e
Yoo N 1 K 2

TN-lTl| TN"ITgl
2 -2

’( f ) (16)

TN"‘TZLD -(TN_ITED'
5 5

/ T 1 o o
Cov [X\tl - §"> * Q’l * "é') ) X <t2 - —2> x (te 3 ]dtldtszldTg

The varlance calculatlon to thils point has
exactly parallel that of Blackman and Tukey. At this
point they choose, for calculational convenience, o
approximate ﬁo(t) by an estimstor where the integration

limits do not depend on t; ramely by
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7

T
\
& (1) 4 f x(t +3) x(t - —)dt ITl< (17)
< K
Ty
2
\ 0 otherwise)

where TN' = TN - aTM and @ is on the order of % but depends
on the window used.* this particular approximstion seems
to have nothing to especially recommend it for the work in
this thesis. It does, however, have a serious disadvantage
in That the variance cglculated is for an estimator that
is not, in fact, used. It is preferable to calculaste the
second order properties of the estimator actually used.
Since 1n most cases the approximation above
concerning ¢ is a good one, the two different schemes
yield resﬁlts which differ only slightly. Bub this fact
in itself, is a comforting one to have available. Wc
shall therefore proceed using the correct correlation
function estimator of Equation (1). Utilizing once more,
the formulation of Equations (5) and (6) and inserting

the result of Equations (15) into (16) we obtain:

T

T D(T)ar

o
jﬁﬂ D(7)dr
0



20~

A AN _ . - _
Cov[S(fl),S(;g)] = M-JCZZJ(;OS Wy T, COS WyT, cos WT, cos W, D(Tl)D(TE)
o

(18)

pofeh

—

’ 1 j . ¢ a f
H — - - [ -
s(r+r')8(f-11) =5 £(6,,7)E(t,,T,) cos 20 (b, -t )b, db,dras ar,at,
N -T

ol

Where use has been made of the ‘"evenness" of the windows
and spectra and the order of integration has been inter-
changed. The tl and te integraticns can pe carried out
directly by expanding the cosine term and utilizing the

fact that £(t,T) is even in t. Thus,

TN
2
L . _ P’
= J/ﬂf(tl,Tl) £(t,,7,) cos 2w (b, -b,)at, at, (19)
2
K m ! s ‘
i sin W (TN - |Tl|) sin ® (TN - |T2|)
w (T - [T ]) o (T - 17p0)

which in turn gives for the covariance

A
Cov[S(fl),é(fg)] =‘1tlll]rcos W, Ty COS WyT, cOS WT, cos WT, D(Tl)D(TE)

(20)
sin w'(TN - ITll) sin w'(TN - |72|)

S{f+f’)s(f-f") dTldTedf'df

ez - Iy ) e - [Tyl
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While this formula is not simple, it is apparently
the best that can be obtained without approximsticns ol
some kind. As will become apparent shortly, it is really no
more complicated to apply in a practical calculation than
the simpler appearing versicns because both reduce to
the same approximate formula.

For compariscn, if we had utiligzed the approximation

of Blackman and Tukey, we wculd have arrived at

A A
Cov{s(fl),s f /]fcos €, T, cOs WyT, COS WT, cOs WT, D(T )D(r,‘)

(21)
/sm w’ T. \2 ,
s{f+r)s(r-£") \——”——/ dr, aT,Aaf ‘af
w' T

which is their rcsult. The f’ integration decouples in
this approximation. Recognizing the T inbegrals as
windows cvaluated at specific frequencies the result can

then be rewritten as in Reference [5] .

00v{§(fl),§(f2)} = / [Q(f+fl‘) + Q,(f-fl):l[Q(fﬂ?g) + Q(f—fe)] r(f)ar

(22)
where

i . ’ N\ 2
sin w T

T(f)éh[ s(z+’) s(r-r') [ ——T ) az’
= s

The approximate result, Equation (22), is much easier to
interpret than Equaticn (20). However, with the aid of
"hindsight" most of the intuitive arguments can be applied

to either form. The more accurate result then shows that
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as expected, the classical formulation is a good

approximation. We shall illustrate this point with
typical numerical values in the next section. But, first
however, it is useful tc see what form the first order
correcticn terms take analytically.

Returning to Equation (20) we see that the f’
integration does not separate out neatly as in the

approximate case, because of the 7 dependence of

10 T2
the ' integrand. One approach Is to expand this integrand
: T T,

in a +two-dimensional Taylor series in = Ti
| N

= 0, TE = 0. The zeroth order term

and

about the point Tl
is then identical with Equation (22), the approximate

answer, except that TN replaces TN'. Thus, we define

gin w' T - T gin @ T - T
D(£,7,7,) & AJ’ s(e+r')s(f-") N N Bl 2 Lar’
-~ wlTN( _.LE—.L) wlT( __l_2|_)

T

W N

B

(23)

and wish to expand T(f,Tl,TQ) as follows

T rie,r.,7,) T\ (£,7,,7,)
r(fJTl:TE) = F(fjo)o) + (——‘TJ|> é E’Tl 2 4+ (ITQ-1> (’Tl 2 Tenese
af 1 N/ o3 | 2] (24)
Ty Ty

N
Tl=T2=O Tl=T2=O
We will depend on the fact that the windows D(Tl) and

D(TE) are zero Tor T's greater than T, vhich is much

less than TN to make second order terms in %IL negligible,
N
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It is now obvious, as alluded to above, that

sin w ITN ,
I'(f,0,0) = k4 ———— ] 8(r+£”) 8(r-£')ar (25)
w T
e s] N

and that this tcrm in the covariance is just BEquation (22)

with T instead of TN' Calculating the partial derivatives

of F(f,Tl,TE) and evaluating at T,

T, =0 yields

2
ar(f)Tl}Tg) al_\(fJTng) ;
T I = T = F(f)0:0> - T (f:O;O)
0 Tl T, =T,=0 ° T2 T, ~T,—0 (26)
N 12 N ie
& !
, ; , sin 2w :N ,
I''(f,0,0) A 4 s(f+£") s(e-r") ~———— df (27)
- - 2w TN

Returning to Equation (24) we obtain

T B ’ ]
_ . | 1| r(f,o,o)
I(g,7,,7,) = I'(f0,0) §1 + T, P Ee0
|7, : 1
2 I (f£,0,0)
+ + PR
TN * I'(f,0,0)
-

in order to facilitate interpretaticn oi the T and Ts

integrations we will factor the first order terms into prcduct

Torm ag follows:

{ T /
. - fa Pl o T(E,0,0)
F(f)Tl:Tg) Nl(—‘)oyo) L+ T [ TF(f P 05

(28)
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. . %
We can write Equation (28) as

I(£,71,75) =~ T(f;0,0) D'(7)) D'(1,) (29)
where T
1 + l__L lTl <
, TNR NR
D(T) & (30)
0 othexrwise
and

['(f,0,0)
TNR - TN/(% T ,0,0
When inserted into Equation (20) this result yields a

formule comparable to Equation (22), namely

Cov{@(fl),é\(fe)} ~ j [Q”(f-fl) + @ (z-r) [a(ren,) + a(r-y) | T(2)ax

(31)
where
[ea]

, , sin w'TN 2 ,

T(r) =4 s(e+t’) s(g-") ——,——) ar
ple] ‘ w TN

and Q" is the Fourier transform cf the product of the
0ld  "window" D(L) and the npew “window" D'(%) l.e.,

[oe]
-jeT

Q"(£) A / D(T) D'(T) e aT = Q(f) & Q' (f) (32)

where Q' (f) is, of course, the Fourier transform of D' (t)

” _ 3T sin mF T\ °
/ / NR
Q'(£) = D(T) e gt =¢_ | "NR

NR T ?MR

We will show in Sections 3.L.3- that [" 1s closely related to

I' in the usual case so thatm = S p |
NR 3 N
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It is now apparent that to first order the effect of the
approximation in Equation (I7) which leads to Equation (2)
is represented by the change in the window from Q(f)

4 4 m >
to Q(f) @ Q'(£). Nomally T, >> T, and T Ty

R
which imolies that Q' (f) is much nerrower" +than Q(f).
Therefore, Q"(f) is very nearly equal to Q(f). Thus,
the approximation ia very good. The first order exror
can be evaluated numerically in any given case. The
variance of S(f) is, of course, obtalned by setting

fl = f2 yielding

> 2
varf 3(2))] ~ f [a"(erey) v @m(e-n) | T(mar (33)

8

It is perhaps pertinent to meantion that the form
of the modified window Q"(f) can be calculated exactly.
We merely perforrm the convolution indicated in Equation
(). For illustrative purposes we shall consider the
case of the Qo window. Because Lhe operations lnvolved
in obtaining Q" from Q are linear,the modified window for
Q2 etc., can then be obtained by simple glgebra in the

frequency domain. (See Equation (67) ). Thus, we have

® sin WTNR 2 sin ZHTM(X—f)
Q"(f):/ e\ 7/ ™ 2L, (x-T) dx

T
[4es] NR
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This integral is evaluated by expanding the denominator

via a partial fraction expansion to yield

1 1 1

S + 1
xg(x-f) 3= f2X fg(x~f)

*
and then utilizing DW 858.70% and DW 858.713 [12] for these
integrations which are not identically zero. After

simplification the result is

A .2
. ~ a 'I‘M sin r_TT:ETM 1 sin TTfTM
Q"(f) = (* -4 *
T mf ) 2]
NR ﬂ“% f

A

which can be rewritten as

T T
a'(s) = (_M)Q fy + Mg (34)
( = %0 tr o)

where QO is the rectangular window and Q,1 is the trianguler

window. il.e., l I

T < F
T Il =5y
1 |T|STI

M
D (7) = D, (1) =
° o |7l >, L 0 |7] > =,
2
sin Eﬂij sin TLT
o _ o - M

Thus, thc modificd window is a slightlgreduced copy cf the
original window plus a smell copy of the next higher
order window. As advertised, 1f iM < TN and the spectral

density is 'smoothy (see next section) then the modified

*
Tuls notation refers Lo the integral # in Dwight's Table of Integrals.
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window will be very nearly the original window. A case

when this would not be true would be 1f the real spectral

density -  something like 1/f or 1/f2 noise with a lower
break frequercy much smaller than EEM , the minimum
resolution point. Then for calculating the variance at
the point fl = E%i we would have

[Q"(f+fl) + Q"(f-flj] - {[Qo(ﬁfz) * Qo(f'fl)] (l ) %})

[Ql(f+f1) + Ql(f-fl)} }2

to be inbegrated in Equation (33)to yield the variance.
The Tirst term is just the ordinary result. Its
cortribution to the variance will be smgll ever though

S(£), and hence I'(f), is very large near the origin

(relative to its size at fl). This is because Qo(f)
has its first zero at the origin when located at
£ = 5%&. This same behavior is not true of Ql(f) when
located at f. = = since 1ts first zero is at i—.
1 QTM TM
Therefore, the Ql terms might make a significant contribution
T
to the var{@(fj)} regardless of the ﬁM multiplier. Perhaps
- i\

a less confusing way to view this same pheromenon is to
return to Equation (34) for Q"(f). From this equation

we ges that the odd zerocg of Q"(Ff) counting from the
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center are those of Qo(f) shifted outward slightly because
the Ql(f) term is always positive. The even zeros do not
change because Ql(f) alsc has zeros at these pcints.

Thus, when the variance at the odd points (R =1, .3, ....)
is evaluated,we expect to obtain slightly larger results
than at the cven pointe, particularly for spectra which
have something like a '"pole" at the origin. Also, it

is obvious that this extra variapility at both the odd

and the even points grows smaller as the point in question,

ff proceeds from the minimum resolution point 5%— to
- M
1

the maximum point 5AT
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3.1.3 Approximate Variance Formuls

From the results of the last section it is cbvious
that calculation of the variance of the spectral estimator
is complex. In order to plan experiments and obtain rough
estimates of the accuracy of a given measurement, it is
desirable to have available some sort of approximate
formuletion. To this end, let us conesider the case where
the true power spectrum is ‘'smooth.” By this we mean
that S(f) does not change rapidly in value on the
frequency scale ol o [lew Limes l/TM. With this assumpbion
we formulate some useful approximations.

Part of the motivation for the choicé-of this
particular assumption is evident from Equation (31). We

. /
in TN\

2
s
wish to evaluate I'(f) in a simple manrer. The (

1
@w

term behaves essentially like a delta function, provided
S(f') does not change rapidly in f'; hence, the choice of
"smooth" over at least a few @i's. An alternative
approach 1s to assume S(f) is white noise. The same
results would be obtained. It would become obvious that
a constant spectrum was a more severe restriction than
necessary, and that 'smoothness" would be sufficient.

In any case, with the smoothness assumption we

now have

T(£) ~ %}- [s(f)f (36)
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so that in Equation (3L) or (33) we are integrating the
modified windows against approximately [S(f)]g. All

of the usual windows employed are basically of width

1 . . R .
= or greater in frequency. For instance, the hanning

T
M :
window employed most frequently in this thesis has =
.X<

central blob of width o— and side lobes of width ==— .

TM ETN
Thus, since Q'(f) is of 'width" %— we can say that

N

Q"(f) ~ Q(f) provided T, >> T, (37)

Thus we have

(ee]

var[%(f)] ~ §—N / [Q(f+fl) + Q(f--fl)]e E(f_)]2 ar  (38)

0

It is now clcar why S(f) must be "omooth" over distances
of order l/TM for the approximetion to be useful. This
is, of course, a more stringent restriction on the

spectrum than the L
TN

thege conditions do hold the windows squared are

smoothness requiremcnt. If both

approximately 6 functions of strength TM centered at

=+ fl with negligible cverlap at the origin. (This can
be verified by inserting any of the explicit formulae

for Q(f) and integrating). Consequently we have

var[%(fl):l ~ % l:s(fl):lf2 (39)

Por reduced confusion the natation will be chosen ccnsistent with
Reference [5] and the hanning window will be referred to as QE'
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It is important to note where the approximatlons

occurred and what types were involved at each poinmt. The
approximation leading to ['(f) in Equation (36) is culy

one of smoothness of S(f) cn a %— scale. Tnis result
N

would be exact if S(f) were really a constant (white
noise). The approximation leading to Equation (37)
whicn says that the medified window is spproximately equal
to the original window, 1$ dependent only on ?M’ TN’ and
the particular window used. It is independent of the
spectra being estimated and in thie way is analagous

to Blackman and Tukey's ® ca’culation mentioned above
(see footnote to Equation (16)). The advaﬁtagé here is
that without a great deal of difficulty Q"(f) can be
calculated exactly. The approximation of Equation (37)
can be eliminated and the variance calculated for the
estimator actually used. These two approximaticns are
compired to yield Equation (38). Thus, for a white noise
and accurately calculated Q"(f), Equation (38) can be
made exact. This 1s stlll true waen we proceed to the
final result, Equation (39). The TM/TN result presented
there depends on Ignoring the overiap of the two window
functions. Again, 1f the spectrum is white, then this
dpproximation is only a furncticn of the windows and
Equation (39) could be made exact with more detailed
calculation. As it stands it is apprcximate, and for

any non-waite noise 1t is more approximate.
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Some words on the significance of Equation (3¢)
are in order. First ’of all +the presence of the TM/TN
shows immediately why, as mentioned several times already,
the usual case is TN >> TM. This case leads to a smaller
variance Tor the estimator. A criterion often chosen for
the estimator is the ratic of its standard deviation toc
its mean. Applying the same 1/TM amoothness approximation

to Equation (9), we see that the estimate is approximately

unbiased, and we have

E{é(f)] ~ S(f) (ko)

go that

A
var S(f)] TM (L1)
A i T
mean| S(f) N
This is a rough measure of the percentage accuracy of the
estimator. It says, for instance, that if 8(f) werc
gaussian (patently false, but perhaps not a bad approximation),
T
then 68% of the time the estimate would be within 100 M

Bl

percent of its average value (approximately the correct
result).

The major trade-off involved in power spectral
density estimation is now apparent. The resolution cf
the estimate is about l/T , because of the window. Thus,
to increase resolution we must increase T.. If we

M

desire to keep the variance ccnstant at this increased
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resolution, we must increase TN proporticnately. But
this requires more datal Therefore, if we have a Tixed
record iength, the variance of the estimated spectra
must he traded off against resolution in the estimated
spectra. As TM is decreased to decrease the variance,
the window gets broader and one gets a lower variance
estimate of the spectrum averaged cver a broader range
in frequency. Thus, it is really a varlance-uncertaginty
trade-offe We are +trading one kind of uncertainty in
the result for another. PFPhrased still ancther way, this
can be called a variance-confidence trade-off, or indeed
a variance-variarce trade-off.

It is, of course, important to note that cne
type of variability might be much more acceptable than
the other in a given problem. For instance, if one knows
the noise is white and desires only to estimate accurately
how much of it is present (i.e., |3(f)|), the resclution
is clearly nct very important, while the variance of the
estimate at a given frequency is paramount. On the other
hand., the opposite case could occur. Suppose that we
know that a line is present in the spectrum and its
magnitude is known but not its location. Obviously, we
desire all possible.resolution at the expense of

variability.
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It is also of interest to examine briefly the
covariance between adjacent estimates in an approximate
form. Following the above '"smoothness" approximation,
we can see Equation (36) and (37) rcmain unchangcd vhile

the approximate form of Equation (31) becomes
(we)
A AL 2 :
o 85y), 3(3,)] ~ & f la(esz)) + a(ez)]

[Q(f-l—fg) + Q(f—f2 )][S(f)]gdf

(12)

From this result it is apparent that if fl and fg are

.
clese together on a %— gscale, then the two windows overlap
M

considerably and the spectral cstimates at the two points
are highly correlated. If fl and f2 are ceparated by
many %g’s then the product of the windows is small and
the covariance is small. When (fl - fg) is small
multiple of é%ﬁ'the covariance is dependent upon the
particular window used. For instance, with the hanning

window the covariance is approximately %‘at adjacent

;
points 1in a discrete estimation i.e., f, - I, = =,
1 2 QTM

But for the rectangular window (i.e., no shaping of
correlaticn estimate, only truncation) the covariance,
2% this separation, is nearly zero. Thus, for most

windows little independent information is obtained

&
T
TM
Note, that by using the hanning wirdow to decrease the

from estimates closer together in frequency than

varlance of the estimate, the correlation between adjacent
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estimates separated by §%§ has risen, so that in a way
no 'new" information isiobtained until the separation
becomes %@ or 80,

Ii was claimed above that I''(f,0,0) is simply
related to I'(f,0,0). We will now demonstrate this for
the case under discussion where S(f) is 'smooth” over
many %&'s. Returning to the definition of ' in
Equation (27) we see that proceeding just as above, we

obtain

F’(f,o,o) A

and that S(f) reed only be “smooth" on a scale of a

few %—'s. Since in this approximation I'(f,0,0) was

N ~y12
given by Equation (36) to be ngéEAl we see, in fact,
N
that
I'(f,0,0)

N[=

T(f,o,oj -

With all this discussion of the "smooth" spectra
case 1t might seem that it is the only one of interest.
Unfortunately, nature is not sc benevolent. Distressingly
cften the cituntion aricec where the cpectrumwe're
trying to estimate has discontiruities of one kind cr
another. By "discontinuities" we zrefer to large
changes in the magnitude of tae spectra on a frequency

scale small compared to é— or . .
T T

M n

come about in mwany different ways, some of which will be

This phenomenon can
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demongtrated below; but the general problem is that of
a line in the spectral dénsity.
In this case none of the ‘smoctaness" approxi-
mations mwade above hold and we must return to Equalilon (33)
and the definition of I'(f). For this purpose let us
suppose that the real spectrum S(f) consists of white

noise pilus a 0 function.
A2
s(f) = NO + 5 [6(f+fo) + é(f—fo)] (43)

Assunming the nolse to be white and the line to be a 6
function are not necessary, only convenient. It will be
clear that any smocth component and any shape spike would
do. Now we Insert this spectrum into the definition of

I'(f) and obtain

T(f) =X /g){Ng +‘éé N [6(F+P/+? )+ B(PHE F ) + 8(£-f 4 )
- o 2 o o CATTT T o
-0 —}
/
+ §(f-F —fo)J
+AlL [6(f+f'+f ) 8(L-£'4f ) + s(s+p'4p ) 8(f-F - )
I o - ) 0 o
’ ) (k)
+ §(f+f —fo) 5(f-F +f0)
SR Y sin w'T 2 ‘
b O (F+1 —fo) 8(f-f -;O)] } N ar

/
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The three Leruws Lo Lhe brackets shows the respective
contributions of the white nocise itgelf, the irteraction
between the white noise and the line, and the line itsel~”.
I we cull Uhe integral on the first of these I‘N(f), we

have already seen in Equation (36) “hat for the 'smcothress"

approximation it is given by
2 2w
0

2_ . =
Iﬁ(f) ~ T [S(I)J T,

Calling the Temm representing the interaction bebween

the smooth spectrvmand the spectral line, ES?) we have

(e o}
PR 2 ! el e N el
I“i(*) 2 A No[ [6(f+f +fo) + O (f+1 IO) Fo(t-t +Io)
zeo
/ sin o 'T 2
S5(f-F" =
+ &(f-f fo)] : N\
y W TN
whickh yields
2 2
sin(wHe )T sin(w-w )T
ro(e) =u At || ——28) b [ W) o)
B m -
(w+mO)LN (w wO)TN

Finally the term contributed by the & functicn alone

Fé(f), is

tee]
oy ak [ e NP
Fa(L) = A f 8 (f+f +io) §(r-f +fo)
Yoo

7

+6(f+f'+fo) §(£-£'-f )

C

+6 (TH+0 -2 ) 8(f-F +f )
@] Q ; o
sin TN ,
46 (2o’ of ) B(£-f -F )J af
O (@] ’
w TN



-38-
A convenient way to put this intc tractable form
is to insert it in Equation (33) and carry out the 7 and
£ integrations tcgether. The component in the variance

due to the spectral line, var{é(f)}, then becomes

A AL ® sin wTN 2 Sin(w+wo)TN 2
var, 8] = 5= [ |2 s\ =) + (e | —mme
Joo N ¢’ N
sin(wwwo)TN & -2
+ &(f-f i [ "(e-£,) + QN (L ar
(2-2) \—qmym ) L8780 *a(e-ny) |

whick, since Q" is an even Tunction, is Jjust

n 8] < plare) o+ [anen) « @20} we)
Note that up to this point no approximations have been

made on this component of the variance (other than
represcating the 'ine" as a 6-function). If the real
spectrum had been only the line, the average value of

the estimates dbtained via Equation (9) would be

wear{Bie )} = a(n) ® L [s(sez) + 8(r-2)) ]

e o]

2
= é‘— f [6(f’+fo) + 6(f’—fo)] Qe -r)ar’ (47)
A2 y
- [Q(fl+fo) * Q‘(fo—f]_):l

It is immediately apparent that S is a very bad
estimator for a line spectrum. The modified window is
approximetely equal to the actual window as shown above

and for fl larger than a few %—, Q(f} is very small so
M
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that we have

2
var 8(r )] ~a" [ale_+r,) +a(e_-2)] (48)

and hence

\/;aré[/é (£, )] N
meané[%(fl)]

This is a very discouraging, although not surprising,

2

conclusion. It tells you not o bother to try to
éstimate something which is too narrow for you to seel
Your estimate will cnly be within EOO% of its average
value, 68% of the time or sc; and that average value

itself will be of minimum width %— and hence biased.
M

A sketch of Equations (46 ) and (47) is perhaps in order.

We are assuming the real spectrum is  two lines at = fd

with total power A2
A Si¥) A
F3 2
-1 1 f— f.

Equation (47) says that the average velue of the estimated

spectrum is two windows centered at + fc.

meang [%@)l

a Pnox'i\mé +e
ddh L
w T

} /”\\j,
£, O/
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Bquation(h6) indicates that the variance is the square of
the modified windows located at + f_ plus four times the

square of a modified window located at the origin.

ey (3]

g ARQeol
appres imate width

B n ot
/\ﬂ/\/\f\—u‘ T A.[QCO)]
i '\/\/\./\f [

-5 .F__, i—ﬁ

Notice that there is a large variance around the origin

even Though the average value 1s small.

Now weturning from the di_gression conecerning a
line spectruvmalone, Lo complete the variance calculation
we insert the other two contributicns to I'(F) into
Equation (33) and perform the { integration. The white

noise contribution from Fw(f) is

2 foe]
varw[/s\(fl)] = T; f [Q”(fﬂ‘l) + Q"(f-f‘l)]gdf




g

which, as before, in the smocthness approximation ylelds

T
A 2 ™M
Varw[s(fl):l ~N T (49)
N
The contribution resulting from interaction of the

spectral line and the white noise is

2
[a"(ere)) + @'(e-2))] T, (D)ar

Vari[é\(fl)]

i

i 2
b A% f [Q”(f+fl) * Q"(f—fl)]

voo
sin(me)TN 2 sin(w—wo)TN 2
—_—_— + af
(wﬂ)O)TN (m-wo)TN

Now if we take the rormal case where TN >> TM ther the

2
sin x .
(—;{——) terms are much narrower than the windows and

we have approximately

A2N 2

var,| 8(z))] ~ “T‘B‘f Lan(e ey ) + Q"(fo"fl)] (50)

which again ic thc squarc of the sum cf two modificd
windows located at %= i‘o but whose amplitude now depends

on TN. A sketch of this result follows:
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]
J% o

IFf we combine these resulte Tor the normal case we how
hgve Tor the variance of the spectral estimate when the

real spectrum is given by Equation (L43) the formula

var[@(f)] ~ ALP ﬁ+[Q"(f)]2 + [Q”(fo+f) + Q”(fo—f)]z}

1
Ner 5 Nog 7, (51)

The average value of the spvectral ecstimate is, of course,

given by

A A?
mean[s(f)] = 5 [Q(f+fo) + Q(f~fo)] + (52)
where the equality should be approximately for a "smooth"
but not "white" spectrum. The two important Ffeatures
of having a line present in a spectrum to be esgtimated
are now evident. Tirst the estimate of the original
spectbrum ig ruvined in the variance sense within a few

%—’s of the origin and for a few %—‘s around the spectral
M M

line. In addition, the estimate is bilased in that

it measures the line itself spread out to a few-%—’s
M
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around its actual location. The extent to which both of
these detrimental effects occur at a given frequency
depends not only on the relagtive size of the line but
alsc on the particular window.
3.1.4 Confidence Interval for Spectral Estimate

The difficulty referred to above of having the
answer to the question, "How good is the estimator?",
depend on the correct result can be partially remcved
through use of confidence intervals. Thec key is to ask
the right question. Suppose we ask how large an interval
in apectral density aroundthe egtimated epectrum is
required to guarantee a given probability of including
the correct result. This question can be answered in a
form which does not involve knowledge of the correct
result. We will gpply the general procedure for finding
confidence intervals outlined by Mood.*

Suppose that we consider our spectral estimate
at a given frequency, g(f), to be a normally distributed
random variable. Since we have cnly one sample, we
clearly need to have some sort of constraint between the
mean anrd variance in order to make it a one parameter

T

distribution. Motivated by the fM percentage estimator
i

¥
Reference [11], pgs. 256ff.
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result of Equatiorn (41) let us suppose that, in fact, the

standard deviation 1s known Tc be a given fraction of the mean
i.e., lct us assume

vaf 8(2)] = gmean [B(5)] (53)

T

where g < 1 and corresponds to TM . It should be ncted
N

that we are making the assumption that é(f) is gaussian
which ig in itself an approximation. In order to simplify

the notation for This section let us redefine

A
S(f) 4 8
mean[g(f)] = 8 A
var] @(f) = ‘Vvar s Aa

The mean to variance constraint assumption becomes
g = g (54)
and we are now asking the following guestion, 'What
size interval shcoculd we construct around our sample mean
(maybe one sample) to guarantee a given probability of
covering the population mean?" We call our one sample
mean, S, an estimate of the mean

S =10 .
Then we know by assumption that the density of G with W

as parameter is

p(R51) = p(ssm) = e (55)
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We desire to find two values of S, Sl and SE’ such that

the random interval (S 82) contains the true mean B with

l)
a given probabllity, say l—Rl—Rg. These values will,
cf course, depend on what our particular date point is,

g0 we want Sl(a), Sz(ﬁ) such that
A A
< < = - -
P(Sl(u) b<8,(H) =1 R -R, (56)

We expect Rl and R2 to be small (i.e. a high ‘'confidence"
in the interval) and the reason for separating them will

- . A A . *
become obvious shortly. Sl(u) and S2(u) must satisfy

()
I S I S
5 = o)y = p(k ; p)di
- (57)
R = P{ﬁ‘/sl(@)}: f p(d 5 wah
82 ([)

A
il
%N-g— -1

ol
1
P~
1

: N (58)

=v}
Il
=
1
nj=
=

where N(x) iec the normal integral tabulated by Dwight

1ok4s5, [12] namely - EE
2

N(x) = L fx e . dz

v 5

* The logic involved here is adequately detailed in Mood.
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And if we denote by N_l(x) the inversion of this operation
{which can only be done numerically, but is extensively

tabulated) the equations can be inverted to yield

N
s, () = -
1 1+g N'l(l-le)

A (59)
s,(0) = -

1-g N’l(l-eRE)

Wnich is the result desired for Eguation (56) above and

yields
AN A
AN
P sz> < mean S(f)} < S(fi =1-R;
1+ gN (1-231) 1-gh (1-2R2)
(60)

We could now (in theory at least) choose R, and R, to
minimize the length of the interval. Notice that Equation
(60) tells us what size interval to construct around the
data point as a function only of that data point in order
to guarantee a given probability cf covering the average
answer. This appears to be in a sense more useful than
the earlier'VTM/TN variance result. However, the
appearance is mostly illusion since roughly the same
approximations are involved in saying that the standard
deviation is a fixed fraction of the mean as those which
lead to the earlier approximate variance result. In
practiceseither method sccemes to yicld very similar results

as the following example indicates.
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Suppose we have, as 4s typical of many of the experimental
results in this thesis, 10000 equi-spaced data points and
we estimate the spectra at 100 points. Then this
corresponds to a V'I'M/TN ration of .1 which yields
approximately a 10% estimator. The 20 variance band (95%)
would be + .82 db and - .92 db. Therefore we can expect
the catimetcd spcetrum to lic within thic roange around any
postulated correct result about 95% of the time. On the
other hand, if we take g = .1 and ask for a corresponding
confidence of 95%, we obtaina+ .78 and - .95 db band around
the data point. Therefore, we can expect the postulated
result So lie within this range around our estimated
spectrum about 95% of the time. These are very slimilar
results.

Along the same lines of what we can say, given a
batch of spectral estimation data, it is interesting to
ask the following questlion. Suppose we have estimated
the spectrum of a given process several times. Can we use
the informaticn we have about the variance of these
different results to improve our estimate cf the spectruwﬁ
Maintaining the notation from above, this is saying,

"If we have  samples S5 ey S, and we know a mean to
variance constraint exists, 0 = gy, then how should we
estimate w = S?" Without the constraint,the minimum

variance unbiased estimate is the sample mean



N
2 s. =8
i=1 7

-
il
==

With the constraint and the assumption that the
various experiments are independent we have that the Sl

are Jjoirtly gaussian so that

N 2
—5 5
io] 28 W

_ 1
p(Sl, Sg, coese SN]H) = TR e

2 N
(am) = (em)
Teking the derivative of the logarithm and setting it
equal to zero we find the maximum likelihood estimator

for the mean to be

~

. 5 2
o= j—% {-l +‘fl+’+g 3} (61)
g X

- 1 & 1 & e
where x is the sample mean, Z:Si ;end r =5 E:Si .
i=1 i=L

Recalling that g represeunts a sort of frachbional accuracy
of our spectral estimate, it is clear that for our appli-
cations we will have g << 1. Using this assumption, we

can form an expansion for ﬂ as follows:
. 2 3
A - T 2 T 2 T
b~ ox [‘:e“'g (:2") + e Q{'-‘z")
X X
. L
6/ r
+ 58 (—-3) +}
ps

(62)
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Since :%— is on the order of unity this tells us how to
modify?the sample mean in order to make use of our know {-
edge about the one parameter nature of the distribution.
As a practical matter the correcticn wlll be Insignificant
in most cases as illustrated by the following numerical
example.
Suppose we have 5 samples with vailues 95, 104, 97,
108, 80 and that the true distribution has p = 100, ¢ = 10
(i.e., g = .1). Then the sample mean would be
X = 96.8

and Equation (42) above tells us to use

n

W= 97.7
On the other hand, suppose the 80 were a 120 so the samples
were

95, 10k, 97, 108, 120

then x would be

X = 104.8
and our estimate would be

0 = 10k.h
In each case our knowledge that the standard

deviation was one tenth the mean allowed us to adjust

the estimate toward the correct result. Bubt not by much!
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3.2 Practical Computational Considerations

When it comes to the real job of actually estimating a
power spectral density from data, there are a number of relevent
details which do not appear in the above discussion. This
section will attempt to discuss these in some detail., The first

has to do with the sampled nsture of the data.

3.2.1 Aliassing (Frequency Folding)

The numerical calculablons leading Lo a power
spectral denslty estimate are performed on a large digital
machine. It 1s, in fact, the very speed of the machine
which makes power spectral density estimation a feasible
endeavor. Therefore, The daba must be in sampled form.
That is, the sample function from the continuocus random
process must be sampled in time to form a discrete set
of numbers which can form the starting point for the
machine computations. For convenience, samples equi-
spaced in time are chosen for this analysis. Section 6.
below suggests some alternate schemes which might prove
more efficient and/or be easier to implement. But for
the data analyzed in this thesis we have available only
equi-spaced samples of the noise processes whose spectra

it is desired to estimate.
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The spectrum of a sample function obtained in this
way from a continuous process (equi-spaced samples) is
Just the original spectrum repeatedly folded back on
iteelf at all multiples of the Nyquist folding frequency
and summed. Physically, this merely says we cannct tell
how many wiggles the signal has between our time samples
unless we have some prior knowledge about its spectrum.
More precciscely, if our ncise procces is n(t) and we semple
every At seconds then we have available the function x (t)

given by

on

x(t) = Zn(t) & (t-nlit)

n=-=

*
for which it is well known that the spectrum is

5.0 = Y s(r-5) 7] < o (63)

and where Sx(f) is pericdic in freguency with period %E-
This frequency folding is commonly referred to by Tukey's
coined term of ‘Yaliasing" because energy at some
frequencies masquerades as energy ab olliers.

It is now apparent that for any digital power

spectral density estimation scheme, this feature is present

and must be dealt with in a sabtisfactory way. Flrst,

See Blackman and Tukey or almost any sample data control Sysﬁemp
text for a derivation.
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it is significant +to note that if the original

spectrum is Twhite" (constant) over a frequency band

appreciably larger than “%KE’ there will be trouble. The
1

estimated spectrum is limited to lfl < AT In this case
the estimate would bear very little resemblance to the real
gspectrum even if the estimation were perfect., Thus, in
order to do a sensible job of estimating a nearly white
spectrum 10 must be low pass Tlltered abt a frequency
somewhere near (preferably less than) E%E' It is also
important to realize that this filtering must be done in
analog form betfore the sampling is done. The aliasing
occurs with the sampling and cannot subsequently be undone
by further digital processing. The computer does not know
how to tell which energy at a given frequency belongs there.

However, the situation changes slightly for many
of the spectra dealt with in this thesis. Many of them

Tall off with frequency like = or even as fast as

-+
2.
T

From even a cursory inspection of the numbers, it is

]

clear that aliasing is insignificant in this case for all

but a few frequencies very near 5%5’ Therefore, for many
of the data runs of this thesis anti-aliasing filters

were unnecessaly.
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3.2.2 Discrele Esbimabion Formulae

As discussed in the previous section, we must
work with discrete samples from the random processes.
Thus, it is cbvious that the correlation function can be
estimated only at discrete points rather than on a
continuous basis. Therefore, we modify Equation (1) of

*¥
Section 3.1.1 to calculate 'mean lagged products” as

N-R
R(RAE) = Cp = ﬁ%ﬁ z x(abt) x(q+R)AL) R =0, veve, M
a0 (64)

which yields an estimate of the correlation function at
points At gpart fram zero to MAt. In the discrete case a
convolution interval becomes a sum so that it is easier to
"rindow! +the estimate in the frequency domain after it

has been Fourier transformed. Accordingly, a 'raw spectral

egtimate”, Vg 18 Tormed by taking a flnite Fourier cosine

X
transform

M-1
ey .
_ o) .
VE At [%(o) + 2 Z C(gAt) cos (.M + 0(MAt) cos RT
a-1 R=0,1, oo, M

-
The final spectral estimabe U is then obtgined by (65)

¥
The correlation function and spectrum are even because of

stationarity.

The notation is changed to C!'s for the discrete case rather than
R's to reduce confusion by conforming to Blackman and Tukey's
notation,
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convolution with the '"window" as

af B\ _ - r 1a:
“(EﬁZ%» = U T oa TRt :E: LVRey * Vﬁ-jjal (66)
—

where the "a;"

1

log window. For the ‘'hanning" window (QE) used most

represents the Fourier transform of the

extensively in this thesis they are

a.j- = %‘ i=0
0 otherwise

3.2.3 Program Description

To carry out the computations leading to a
spectral estimate a TORTRAN program was written for the
709k digital computer. It would have been possible to
obtain an existing program which performed many of the
calculations, The major motivation for creating another
was convenience. It was considered important from the
viewpoint of input data processing and output data
prescentation to have a format that was very convenient,
since it was to be used extensively. For instance, it
was found to be imperative in many cases to '"prewhiten"
the data; (dlgltally fillter to obtaln favorable spectra s
as discussed below and in Section 3.3.22 a feature which
1s not generally directly available in spectral estimation

programs., Our program is included in Appendix [ B] and
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a detailed listing will not be presented here although a
general description is perhaps in order.

The program mechanization selected first computes
the Tinite cosine table to be used later in the calculations
for Fourler transformation. This step may be omitted 1r the
current run is a repeat of an immediately prior estimation
for which the cosine table is still available in memory.

The program then digitally filters the input data
to form a new random process whose spectrum is related
to the original spectrum by the magnitude squared of the
filter transfer function (known). With some a priori
knowledge of the input spectrum,this technique allows
improvement of the spectral estimate’s properties. This
improvement is obtained by shaping the spectrum to be
egstimated to be more nearly constant. As indicated in
Section 3.1.2 above, this helps lower the variance of
the estimate as well as reduce its bias. A much more
detailed discussion of the blas prcblem will be presented
below for some specific cases.

The sample mean is computbed nexh. This compubation
is done by data thirds in order to maintain the option of
removal of a linear trend from the data. The mean lagged
products are then formed. Appropriate constants are
subtracted from each to remove either a constant or a linear

trend froar the data. The mean removal, at least, was
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always employed ard is discussed in detail below in
Section 3.3.1.

The raw spectral estimates are now formed by finite
Fourier transformation by the cosine table generated
earlier. Application of the '"window" then yields the
spectral estimate. The effect of any digital filter used
to prewhiten the data is then removed yielding a final
spectral estimate for the sctual input data.

Our program is written as a subroutine so that it
may be called by a main program which can further process
any of the desired results. We used this technique to
do various data plotting jobs while avoiding the recompiling
of the basic spectral estimstion formulse.

3.2.4 Quantization

Because all of the data processing is done digitally,
the original contilnuous date must, of course, be quantized.
Wnlle the exact spectral effect of time sampling can be
calculated as indicated above in Section 3.2.1 the exact
effect of amplitude sampling can not. The difficulty lies
in a practical calculation of the second order statistics
of the quantized signal. Various approximate formulations
are avallable. The one presented here is original although
not unique. We have chosen to separate the analysis of

time sampling and amplitude quantization effects. Both,
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in fact, occur together and it is possible that the way
to an exact description of their effects is to solwve the
problem all at once.* We desire a description of the
spectrum of the quantized output in terms of the spectrum
of the input. We shall proceed by characterizing the
cutput as the input plus an error term, utilizing the
approximgtion that the error and the input are independent,
agsuming the error is white, obbtaining a formuls for the
spectrum of the error and thereby for the quantized signal.
We consider a quantizer, E, whose input is a random
procegs n(t) and whose owkput is another random process
n'(t). There are many specific ways to mechanize a
guantizer. We consider only cne although it will he
cbviousg that in our approximation most others would

yield the same results. Suppose E is defined by
/
' L,f’rf
rrl"\ n
”

(oN+1) 0 < Ne <n < (N+L)e

n’ = (68)
- (P41 ) 0 >=Ne > n> -(N+1)e

o} @

njo

7 _

Reference [13] is Widrow's version of such an attempt. For a
certain class of signals he shows that the error has approximately
a white sgpectrum.
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Then if we write the ocutput in terms of the inpub

as

we can specify the crror, ¢, in terms of n as follows:

}
é
NP \+é§\\ N N N\ WA
-\ hY A 1 f T
N N N NNN NN NN e
2 Nn—»
g = % - (n-Ne) Ne < n < (N+1)e
(69)
N=0,%1, £2, £3, .....
Now let us calculate p(e) from the gaussian
distribution as N€+€/2-e
© 2
~ —'n/ 2
p(e) zlimz”\%'l— E e 29 4n ¢/yZez0

Ve o

he~0 N=-%Ne+e /2 -e-be

Approximating the integrand of each term by its first
order Taylor series and noting that the approximation

becomes exact in the limit we obtain

N [3) ece]
02

x© -

- L
ple) /o o Ze

— 0O

o

(70)

T
We calculate p(e) only for e 2 O since it is an even function by
symmetry.,
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p(e) is approximstely constant and equal to % since its
integral must be unity. A bound on the first order
correction term can be obtained as follows. Suppose we

expand p(e) in a Taylor ceries obout the origin.

2
p(e) ~ p(o) +p'(0)e +p"(0) Z5 + ...,

The linear term is zero because p(e) is even but this fact
can also be shown immediately from Equation (70) above by
differentiation because the sum obtained for p’(e) is
identically zero at e = o. The first correction term is
then quadratic.

Let us evaluate p(E/E),?rom Equation (70) we have

[ee]

@ - &, T e l20)

N=-c
vhich becomes on utilizing DW 552.6 [12],

R
JORFN LD (72
& series which converges & great deal faster In the cases
of interest where (g) is large. Thus ;1(%) is slightly

larger than %. The deviation of p(o) from % can be bounded

as follows., From Eguation (70) by differentiation we
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. 2
cbtain [ (w+d)e-e]
-
® 20
1 -1 1
ple) = — 3 E L(m+3)e-e] e
J/2n o N
[(N%%)S—e]g
e ) 202
pe) = = 5 :E : e
/20T e [ (wd)ee]
*® ‘202
MR S At L
Jem o ey

which indicates that the function p(e) is concave upward

and increases monatonically from the origin in both directions
in the 7region - % <e< %. Therefore, the behavior

is as shown In exaggerated form in the sketeh below. Since

we know that e{f}p(e) = 1, we know that the area above

e/,

AN e Al
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the % line must egual that below it which combined with
the concavity implies that B > o, Since B is given by
o 22
Equation (22) we have @ < B =2 Z e
N=1

(13)

as bounds for

the error in calling the quantization ervor uniformly
distributed. It is interesting to note that the
probability density of the error is very uniform., Even
when € is equal to O the maximum percentage error P is
on the order of 107!, Therefore it is an excellent

approximation to take

1 €
= < X
€ iel 2

ple) =~ (Th)
0 otherwise

which of course implies

Ele) = 0
2

2 _ e
E(e™) = 15

Consider the error e(t) to be a stationary random process.
If we assume its spectrum is white over the estimation
bandwidth for any given run, %E , we arrive at a level for
this spectrum, NO, of*

2 At
N, = ¢ 13 (75)

Note this puts the gquantization noise over the same band as the spectral

estimates,-»%E% < £ <+ % Atywhich Includes negative frequercies.
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The validity of this assumption is very difficult to

evaluate because it involves the second order statistics

of the output of the quantizer.
3.3 Low Frequency Bias

The particular interest of this thesis is in the behavior
of several random processes at very low frequencies. Therefore,
the various phenomena which lead to inaccuracies in the spectral
estimates at low frequencies will be examined in detail. There
are two reasons for concentrating on the bias of the estimate.
First, it 1s the area which has typically been ignhored in
previous studies. In addition, an estimator's biag is the most
annoying property empirically because it is so slippery. One
can repeat the experiment a large number of times and obtain
results whose spread agrees very well with the estimator's
expected variance. And yet the results can all be in error by
a considerable amount and lead to errcneous conclusions.
Finally, the exasperabing Teature 1s that arlter the source of
the bias has been found and eliminated, the results again
appear consistent to the same extent as previously. Thus, one
is always left with some lingering doubt about whether there
is still some undiscovered bias lurking in the estimate, We
shall now consider specifically some of the prominent sources

of low freguency bilases in spectral estimates.
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3.3.1 Mean Rewmoval

Recalling the analysis of the previous sections it
will be noted that all discussion was for a zero mean random
process. Slnce thils willl almost never be the case, the
mean is removed during the spectral estimation process.
Were this not done The spectrum being estimated would have
a spectral line at the origin. The estimate would tThen
be ruined in a bias and a variance sense in the vicinity
of the origin as discussed gbove. The method of mean
removal used in our computations was to employ the sample
mean as an estimate of the mean and subtract its sqguare
from the mean lagged products at each point to obtain
auto-correlation functior estimates.* This cnoice is
motivated by the following case. Suppose our data x(t)
was actually from a stationary zero mean noise process
n(t) plus an additive constant m;

x(t) = n(t) +m

Then the correlation functions are

R(r) = R (1) + e

X n
and m? is Just the right thing to remove from our estimated
correlation function to obtain the correct result. Moreover
if n(t) were white the sample mean would be a minimum

variance, unbiased estimator for m.

¥
We will also consider in this section mean removal by subtraction
of the sample mean from each data point.
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However, in real cases several quesblons arise.
What is the effect of such a calculation for real data?
In particular, how can this effect be expressed in terms
of spectral densities? How serious is the fact that the
noise is not white? Is the use of the sample mean
adequate?

We shall answer these questions in a very straight
forward manner by calculating the average value of the
spectral density estimated by the actual computational

formula employed. The estimate of the spectrum at

*
frequency R/2 MAt is VE given by
= 2 : RqT -
Vﬁ At Cq cos R=0,1, ¢.v00u, M
q:-l\/_[+l (76)
and
N -R
o= E Z 7 (2)2 R=0,1, eoveaey M
R 4 a+4R
N -R
a4 (77)

where the Zi are the data points and 7 is the sample mean.
We shall calculate the properties for this QO window
estimate first, then extend to those for the more complex
windows {i.e. UR). To investigate the bias properties

we take the ensemble average and maneuver 1t

algebraically until we cbtain an expression containing

ThLS differs from Eguation (64) above only in that the mean
removal is included.
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terms for which we have a ready explanation.

Inserting Equation (77) into Equation (76) yields

M
E {VR} =E [é (2—-1\-4%% )] = A% Z [RZ(th) - E{ig}]cos -R-D%E
g==-M+1

which can be written as

” M
E [VB:I = At [ RZ‘<T) cos[ETT (——2—%%) T] Zé(T-QAt)dT

g=-M+l

- 2mst oy 5l (Z)?]

where &, . 1s the Kronecker delta given by 6, . = {O l}EJ
i,d i,J 1 i=]
This can be further juggled by including a window to

obtain

-2
E [VR] = At R, (T) D(T) cos w_T E §(T-gAt)ar - 2MAt 6 EL(Z)]
Z r R,0
oo q,—__oo
1 |7 <mat
\ R ‘
where OJI' = 21 (-m) and DO(T) = % IT\ = MAL
0 otherwise

It is now evident that the T integration can be considered
as a convolution evaluated at the specific frequency
R/EMA’C while the train of § functions performs, the

expected aliasing in the frequency domain. Thus
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[eo]
5,0 ® 9,0 ® L sl (78)
0_:—-
spcetral  windowed aliased £ = R/EMA‘E
density with Q evaluated at
window appropriate discrete
Lfregyuency

OMAL 60,R EL (2)2]

where QO is, of course, the Fourier transform of DO(T)
given by

_ gin 2MAtTE
Qo(f) = Mt ( 2MAtTT

and the triple convolution is evaluated at frequency

——2—1\%%- as indicated,

This formula is exactly ag expected in that it
contains: the effects of the asliasing due Lo discrete
sampling; the effects of the window (simple QO in this
case); and has a term removed from the dc estimate
(R=0) which would be - 1if the 7 were a perfect estimate
of the mean. It is the verification that the discussions
of Section 3.1 do in fact hold for the discrete version.
In order to formulate the effect of the actual mean
subtraction term in a more amenable manner,; we proceed

as above to eventually obtain an integral on the spectral

density.
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The sample mean squared is given by
_ 1 N N
Z o= = 2 2 zZ,
Noogsl 41 ¢

Its expected value is a sum of correlation functions
times coefficients which can be written as an integral

against a train of § functions.

as

B7°] = & 1\,;:_1 (8 -lql) R (1) 8(T-gAt)ar
= F =5 -lq Y ~Q

which upon further manipulation becomes

jou]

_D. -
7] = L > 8(T-ght) B, (7) D (7)ar
N J, 4=
where
1~—J—T-I- - N AL =T 5N A
D () = N At
0 otherwise

whose Tourier transform is

sin TIN At
TN At

Q (f) = N4t (

Again it is clear that in the frequency domain this is

Just an aliased convolufion evaluated at the origin so
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+that
=2 sin TfN At
77 = [ s (r) @ (PRTA ) Z o2 - & (79)
[ ® (L)) © &

S — /

spectral windowed allased M =0

density evaluated
at
frequency
origin

Now returning to the previous equation for E(VE) we can

*
examine the estimate at the origin for the QO window as

2
2TIMAL gin TN At
E{V}= Eé(f- >*2MAt sin -
° 0 ® At OTTFMAL TN At
(80) 710

But a convolution evaluated at the origin is just the
integral of the product of the two quantities. Thus,
the average value of the estimate at dec is an integral.
The integrand is the aliased (real) spectrum multiplied

by a 3 MAt width “window" with a size "hole" in

N At
it. The equivalent window for VO looks like the following

sketch.

[}

S
pres

f—-

* For other windows one must use their explicit formulae instead of
the simple sin x Dbut the result is the same in principle.
X
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Therefore, 1n the usuval case the scheme removes the mean as
advertised. But it should be pointed out that Vé is really
not an estimate of the power spectral density at the
origin. Figure (2 ) is a plot ot the "equivalent window"
for Vb of Equation (80) on a log-log scale. It is clear
that VO is really an estimate at some freguency less than
%—MAt but considerably greater than zero. Blackman and
Tukey apparently recognize this and consequently recommend
considering the Vb point as an estimate at % of the lowest
point, % MAt x %. However, if one postulates a true
spectrum and can carry out the necessary integrations,
then VO can be plotteda at exactly the appropriate point
for that particular spectrum.

There is one additional consideration associated
with the mean removal situation waich warrants a moments
discussion. This concerns the specific method of mean
removal. The above discussion considered removal of the
square of the sample mean from each '"lagged vproduct.'

An alternate scheme is to remove the sample mean from
each raw data point before calculating the mean lagged
products. Suppose that in place of Equation (77) sabove

we yereto employ

’ 1 N:R - -
C®) - L Gy Gy - D) (61)
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Rewriting this and adding and subtracting terms from the
sums yilelds

/( ) 1 1\123R 2 }-C ZN R
¢ (R) = — XX, -X +== (x -x) + (x_-x)
N-R T aetr N-Ry e @ o ¢

But the first two terms are just the previously discussed
method of mean removal so that this result can be written
¢’(R) = ¢(R) + D(R)

where

z N ‘R
D(R) A ﬁ——-{ 2 (xg=%) * %; quﬁi%

T N-R+L
represents the differcnce between the two methods of mean
removal. It is clear thst the ensemble average of D(R)
is identically zero. Thus, "on the avcrage" +the methods
are identical and’hence the sbove discussion concerning E(Vi)
holds equally well for either scheme. For a given specific
set of data D(R) will have some value and hence there will
be some finite difference in the power spectral density
estimated from any particular sample function.

Consider the case of l/f2 nolse where the process
containg a great deal of energy at frequencies below the
minimunm resolution, éE%E. Then the time data will (may)
have slow, large amplitude fluctuations. Thus, for short
hunks of data at the erds the samples are guite llkely
to al’ be on the séme side of the mean. In D(R) this

will make gll of the terms in either or both of the

sumrations possess the same sign. Thus, as R increases
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the sums will grow in magnitude so that D(R) will be
increasing in R. This in turn implies that C’(R) contains

a term increasing approximately linearly in R waich is

not contained in C(R). For l/f type speclra Lle correiation
function decreases monotonically with T i.e., as 1n T for
l/f ncise, e T for l/f2 noise. Because C'(R) decays

more slowly in the T domain its Fourier transform will

decay more rapidly in the frequency domain. Hence, the

bias created will tend to make the estimabed spectral
density steeper. In this respect the effects of this

error source are very similar to those of long step function
type disturbances (see Section 3.3.3).

A numerical illustration is provided by the
following case. Figure (3) shows a spectrum estimsted
from 10000 raw data points with At = 5 sec and X = .5986399.
It is a Q2 estimate with M = 100, and the mean was removed
according to Equation (TT7) by subtracting the square of
the sample mean Irom all the mean lagged products. The
circles represent the result of an estimation with the
same parameters from the sawe data but with the sample
mean subtracted from each data point. The differences
appear to be significant only Tfor small R. For this
particular case the sample mean is some 778 times the
standard deviation of the noise. Thus, effects such as

D(R) which depend on this rabtio beccme more important.
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This error source {which mean removal scheme is
chosen) is not properly characterized as a bias since on
the average there is no contribution. The question one
is concerned about it, "What happene for a particular
sample function?" But this is really a question of
variability in the usual sense. How much is the result
likely to vary from one sample function to another?

What we should really do is caleulate the variance
of our power spectral density estimates for the computation
scheme we actually use. We should not assume, as was done
by Blackman and Tukey and in Section 3.1.2 above, that we
are working with a zero mean random process. We should
take account of the fact that we are removing the nean.

Returning to the discussion of Section 3.3.1 we
will now wish to replace x(t) by x(t) + m- % to explicitly
exhibit its mean and the sample mean removed. ILet us
ignore the fact that x ie clightly oorrelated'to each of

the x's and write

m-x AS
and assume that & is a zero mean random variable which is
statistically independent of x(t). This process will
calculate the effeét on the covariance of the spectral

estimator introduced by removal of the sample mean
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directly from the data. We will have added onto the rigat

nand side of Equation (13) the berms

2 s o
2lvar(s)]® + var 8 [R(tE—tl t 5 - —5) + R(tg—tq

T

I
2

ol

T T T T

mho

278
where Var(ﬁ) is the variance of the sample megn a8 an
estimate of the true mean. Again proceseding to write the
correlation functions as inverse transforms of the

corresponding spectral densities yields the two terms

(o2]

2 R w -
2(var 8)° + b(var &) JL 8(f) cos ® (tQ"tl) cos 1 T, cos Ty df

added to the rigat hand side of Equation (15). Now
insertion back into Equation (16) as was done in Equation
(17) before yields Equation (20) with the twc additional

terms appearing on the right hand side as

2
2 5 .
-—--—<":r2 L as)) atsy)
N

[v ]
+ b ovar 6VA57f cos W, T. cos W. T. COS 2 cos &
11 2 2 I 1 I 2
o s]

';Q-T - ilg'T _
D(Tl) D(TE) 5(2) Slﬁi( N ‘Tll) 5 Fi( N |T2|) dTldTEdf
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This can be written approximately in terms of the modified

windows by the same technigue used before as

T Ty

2
elvar 8] g2y a(e,) + {raz8) f lan(e, + ) + e, - D]
N - | (

32)

[Q”(f?_ * Iif) Qe - If;)]s(f) af

where Q"(f) is as defined in Equation (32). The degree
of approximation here is the same as that utilized In

deriving Equation (31 ) in that we have ignored terms
2

in (%“) in the T1s T integrations. We expect x to be
N

8 good estimate of the mean so that the first term should

usually be regligible,

Tn the case of a ‘"smooth" spectrumthis additional

-

term in the variance (f, = f,) simplifies %o

1

2
_ T T
2(var 8)° <f¥). + ﬁZé%.él fﬂ [s(£)]
N N

This is in addition tc the previously calculated

T
fﬁ term so that if we write the total variance for the
N

smooth gpectra case we have

| ~ N 1 [var 6 2 TM var 62
var S(f) = T, 8(f) |z +3 <_§T57> " Ty (?ﬂgiT)
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This result indicates that the deviatior from the expected

. ) . =) 2
variance increases as S(L) decreases. TFor l/f or l/f
type spectra which decay with increasing frequency this
additional variability is largest at the highest frequencies.
Thus, 1t seems not to help explain any unexpected low

frequency behavior.
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Se3.2 Prewhitening

As Sections 3.1.2 and 3.1.3 sbove have shown the
gtatistical properties of the spectral estimate are much
more desirable 1f the spectrim to be estimated iz white or
at least 'smooth." That this is particularly true of
the spectral estimate's bias will be further illustrated
heree The situastion is not unlike that in most estimation
problems. We can almost always do a better job of estimating
something if we know the answer or some approximation to
it beforehand. In this case the general technigue is to
force the data To be white by putting it through a filter
whose transfer function is the inverse cof the presumed
final result. The spectral estimation is done on this
result which is presumably white or nearly so. Thus, all
the advantages of the ‘'smooth" estimation case can be
obtained. The final spectral estimate is then obtained
by undoing the filter which can be done exactly since the
filter was known, While this procedure ﬁay seem rather
trivial and of little consequence, as a practical matter
it is extremely important. Blackman and Tukey stress the
need for prewhitening repeatedly. They're warnings
should not go unheeded. For instance, in the l/f noilse

case proper prewhitening has probably been the single
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most important factor in obtaining useful results. Since
the low frequency semiconductor noise case is the one of
particular interest for this thesis let us move on to
an examination of the prewhitening problem in detail for
this case.

Iet us consider a power spectral density which
goes as l/f for decreasing frequencies. It might appear
smooth on a log-log plot but this is a deception. It has
s logarithmic singularity at the origin and is definitely
not 'smooth" over linear frequency spacings on the order

I
of ETM S.

A spectrum which actually behaves as l/f all the
way Lo the origin is disturbing for several reasons. First,
it would not be integrable and hence imply infinite total
power in the random process.* In addition, some of the
integrals which appear in the calculatlons for lhe wmean
and the variance of the spectral estimate at low frequencies
would not converge because their integrands are windows
multiplied by l/f type kernels. A l/f spectrum will also
have divergent total power because of its behavior at
high frequencies. However, because of aliasing difficulties

in a practical estimation provlem we will arrange to be

desling with a basically low pass spectrum.

It io not, however, clear that we could ever expect to measure a
significant amount of this infinite power. We may not live long
enoughi
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Let us consider then a l/f spectrum which is white
below some lower 'break" frequency, fo’ and zero above
some upper 'cutoff" frequency, fc, as shown in Figure (1)

and given by

fK ™
3 lel < ¢
o]
K < |P] <
s(r) =<4 = £o< [£] < £, > (8l)
| £
0 |£] > £
c
~ »

where K sets the absolute level of the spectrum. For any
given spectral estimation run fc will be something on the
order of §%E whereas fo might be something like a micro
cycle (10‘6 cps). It is interesting to note that having
idealized the situation to this extent we can at least
calculate a correlation function,'a feat which could not
be managed when the spectruw diverged like 1/f at the
origir and decayed only like 1/f at infinity. The inverse
Fourier transform of Equation (84) yields the correlation

function as

sin 2ﬂfoT
R(T) = 2k BT + ¢, (eme T) - C; (27, T) (85)

[ee]

o
where Ci(x) is the cosine integral J. Eeg—wda. It seems

X
clear that cutting off the l/f behavicr at low frequencies
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in o different manncr would mcrely change the ‘"shapc!
sin x . A . .
of the ——— temm to the Fourier sransform (i.e. "window")

for whatever shape igs chosen as the truncation in the
Lreguency domain. Uslng  asymptolic expansions for Che

cogine integral

gin x x> 1
X
C; )~ (86)
~in %; x << 1
v = 1.781072

we obtain approximate exprcooions for the correlation

function in the three regions of interest.

e " fc‘ 1 ™
R(1) ~ |2k l+1n<f—) T<<§?E— region 1
R o] C
2k -in(2ﬁyf T) ek & T <K region 2
c oTT BTiT >
L C O
[sin 2ﬂfCT 1
\?k L EWfCT v EEFE reglon 3 )
(87)

where we have uged the assumption mentioned earlier that
f > 1.
c C
In the first region the correlation function is
a large positive constant which grows logarithmically as
we let the l/f behavior extend to the origin. Note that
with our discrete estimation scheme we willl never be

able to measure this region's behavior. Our minimum
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resolution in the correlation function estimates is

_ . 1 _ At
T = At but region 1 occurs for T << §ﬁ§; = -=".

. Therefore, almost all of this R(T) contribution
would appear 1n the T = O point for our scheme., This is
one way of viewing the origin of the bias in Tthe spectral
estimator.

In the second region R(T) has a lograthmic behavior
with 7. We are Interested in considering the case where
our minimum resclution in frequencyyéﬁ%g,is much larger
than fo, the l/f break frequency. Thus, region 2 is all

we will ever be able to see ag T increases since it extends

in T to something like which is larger than the

212
®sin x

maximum T poinmt 2MAt. The ——§7i-behavior of the correlaticn

function in region 3 won't be seen until we get down in

frequency to where we can resolve the f break point.

L

This means essentially record lengths long compared to
1

f
o]

But lct us return to the question of bias. We
wish to calculate the average value for our spectral
estimator for the particular case of 1/f noise of the
assumed shape. From the preceeding section we have that

the average value of the estimate at frequency R/QMAt
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for the ”QO“ window is given by

°° : v s 2
S(f) (:) §: § £ - %E <:> 2MAt{Sln 2TEMAL _[sin TINAT }]
L q=-* 2TINAL TINAT Lo
-
. P :
WO Lk QW | )
T = oAt

We will calculate the bias for the Qo estimatc and recombine
these results according to Bquation ©7 +to obtain the bias
results for the Q2 window. DBecause we are considering the
allased power spectrum of the noilse Lo be given by Equaticn

(8L4) we see that the blas calculatlons will lLuvolve lobegrals

of the truncated 1/f function against Zo% and Gﬂi X)2
type kernels. Although these integrals converge they are
not readily obtainable via any cf the standard reference
tables. The easiest method of evaluating them is to return
to the T domein where the windows take simple forms. In
particular, the @ window ig, of course, Just urnity over a

, 2
fixed T length and the (?ig~§> ig a triangle ir the T domain.
For R > O, and a QO window,

E(vR) 'fm s (2') Qo(f’ - ém%) ar’

plles]

MAT . (89)
Zj{; RS(T) COS( en WAL T)d'r

where Ra(T) is the correlation function corresponding to

the aliased spectrum Sa(f). If we use Eguation (85)
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Tor thls correlation funcllon we lave

2ﬂf T
MAt 2nf T
E{V } - o o sin =T, *_-/P cos x dx| cos RT_ 4T
R 0 CemE T T 2ﬂf T MAt

With the use of integration by parts and trigonometric

‘dentities we obtain

E{VR} = ﬁ%; [sﬂ:gﬂ + QHfOMA€> - sﬂigﬂ - EﬂfaMAg}]
- 2k @3 I.SJ.(PW + omf vm;) - Si(QTTf MAL - Rﬁ) (90)

-Si(RTT + EﬂfoMAt> - Si(Rﬂ - 2TTfOMAt>]

where SL(x) is the sine 1ntegral/ sin X dX g

expression is cxzact in thet the only assumption involved
is that the aliased power spectral density is the truncated
1/f spectrum of Equation ( 84 ). Since Vp Is tThe
; : ‘ R
esbimatc of the gpectrum of £ = SHAT ywe see that to

calculate the bias Equation (90 ) should be compared‘

with

g (glvrm) k EMAt (91)

which ig the correct result at this frequency. Tn

developing approximate formulae from Fquation (90 )

we nobte that we have already assumed that

R _ .
loo << SMAT fc (92)
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which imples that

EWfOMAt < R = EﬂfdMAt

wnere the equality sign holds only for M = 100.

The differences vetween Si functions then become

. R Sin X
integrals of the

kernel over very small regions

around the points RU. Using a first order Taylor series

. . sin x . .
approximation to the ——= in this region we have

E{V } ~ 57 2 s1(zm) + {2 ) (1 Tgf‘o"
R~ B |70 3R\ Mo
(sj(errfcMAt + Rﬂ) - 0:‘( 27y bt - RTF)):l (93)

i

The last term will be exactly zero to the extent that the
cutoff frequency, fc, is really the allasing frequency,
E%E,and will be negligibly small in any case. Fquation
(93 ) is written with the correct result at the
fraquency R/EMAt factored out. Therefore, the exfent

to which the expression in square brackets is not equal
to unity will be the fractionzl bias. For this case of
the Q_ window, Table { 1 ) shows this bias vs R for the

first few terms under the assumption ( 2).
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R % Bias of Q, Spectral
Estimate at R/EMAt
Tor Truncated 1/f Spectrum
1 + 17% + .68 ab
2 - % - W1 db
3 + 6.7% + .28 db
L - 4.5% - .2 dp
TABLE ( 1 )

We must now calculate the bias of cur estimate Vb
considered as an estimate at the origin., This result will
be important for computjing the bias of the QQ estimate.
However, as pointed out in Section 3.3.1 this point is
actually an estimate at some point cother than the origin
due to the mean removal scheme. Thus, we can also ask
what frequency this point should be plotited at such that
it 'will be an unbiased estimate of the spectrum at that
frequency. To calculate E(Vb) we return to Equation
(88 ), insert the truncated 1/f noise of Equation

(84 ) as the aliased spectrum, and integrate all the
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integrals only over the positive frequency domain since

the functions are even in f. This procedure leads to

f il
2
LKMAL f © gin 2TEMAL LRMA f °
E(V) = ~Zrmm— 4 - sin TENA%
o] fO ) 20 ML fO (W) af
i
c c 5
+ %g . gin ESfMAt if - gKg J/‘ gin ngAt ar
fo il ™ N At fo iy

The first integral is just a S1 function and the other
three can be expressed in terms of sine and cosine
integrals. The following formuiae cbtained by repeated

integration by parts will be useful.

si(2a) -

&

‘

gin rx ax = 7 [81n A _ sin rB + Ci(rB) _ Ci(nA{}

rhA rB

2 \ 2 . 2
sin~ rx _ 2 1fsin TA 1 [sin B sin 2rA
y3 x = r [ 2( Th ) G < B > E-Ty
- -S-%-g—rg—@- + C1i(2rB) - Ci(ErAﬂ

Ubilization of these results in conjunction with the

expression for E(Vﬁ) above yields



E(VO)

il

-+

-+

Lxpat [
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Si(EﬁfOMAt) sin(enMAth\ 2 Si(znfONAt) sin [EWfCMAt)
2mE MAT 2 _MAE h 2 NAT - 2T JNE

+

[\

X (sin ﬂfONAt> 2 (sin nf(ﬂAt) 2 sin(znfol\mt) sin(EﬂchAt)
= + e :
2

TE NAG TF NAT DT NAG * TOMT NAG
o] C (o] C

Ci(EﬁMAth) - Ci(eﬂfOMAt) - Ci(ETrfcl\TAt) + Ci(ETTfONAt)J (oh)

This expression 1s exact but not very useful. To form more
tractable approximstions we need to say something aboutb
the size of EHfONAt. This 1s equivalent to asking if

even our total record length, (NAt), is long enough to be
near vesolving fo. A typical set of parameters might be

M = 100 and I = 10%. If we take £ on the order of 1077

and let At range fromlo-lL to 109

then there are clearly
two different ranges of approximstions of interest. At
the high fregquency end where we cannot resolve fo at all

Equation (94) becomes

K N 1
E(VO) ~ o — [- 1+21n M] M << merrfom (95)

This result is in the form one would expect. It does not
depend on fo explicilly since we have assumed we cannob
"see" £ but it depends on its presence through the

ratio of our total record length to the maximum lag at
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which the correlation function is estimated. Another
way of interpreting this effect is as the ratio between
the minimum frequency resolution point and the size of
the ‘“hole" in the window due to the removal of the
sample mean. At the low frequency end, where 1/2NAt

resolves fo but 1/2MAt does not, we have

K 1 1
By ~ k+21n (_.__.__...> P
o) l72MAt [ Y 2ﬂfOMAt ZWde

wnlch again shows the expected dependence; that is, it
now depends on how far the minimum frcquency resolubion
point is above the l/f break freguency.

Cne expects the bias during the transition region,
where neither of these two approximetions is strictly
valid, to vary smoothly between them. This could be
verified for any particular case by inserting numerical
values into the exact formuls, Iguation (9&). HowevEr,

a good indication that this is in fact the case is given
by the following typical calculation. Taking a case which
is Jjust at thce uppcr borderline of the low freguency

L

case, M = 100, N =10, At = 5, fo = 10_5 and evaluating

the result utilizing both approximate formulae we dbtain

high freoguency case E(VO) ~ (K/1/2vAt) (8.2)
low frequency case E(VO) ~ (K/1/2MAt) (9.76)

which are not very different.
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The bias of these results when considered as estimates of
S(o) is large since the correct result there is K/fo. But
we are now in a positicn to calculate that point, f/, for
which they are in fact urbiased estimates of S(f). The
most convenient form for this result is as a fraction of
the lowest frequency point R = 1 where T = l/EMAt. Thus
we calculate (£'/1/2MAt) as

7

(1/f ) - Kﬁ%%A§ = |1 +21n % oTie NAt << 1
2MAL o)

1
T A >>
Y + 2 1n 7 gﬁfo T 2 fON t 1

(97)
For a typical low frequency case of M = 100, N = 10", d

fo = 10_5, At = 5 sec this says the zero pcoint estimate
should be plotted l/(lO)th of the way between the origin
and the R = 1 point. This i1s about 1 decade on a log T
scale.

We are also now in a position to complete a
table of percentage biases Ior the Q2 estimate by using
the &, 3, + coefficients of Equation (67 ) applied
tc the Qo results. This yields biases as indicated in

Table ( 2 ).
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R % Bias of Q, Estimates % Bias of Q, Estimates for
Perfect QO Bstimates of 3

Truncated 1/f Spectrum

for QO Estimates of &
Truncated l/f

Spectrum
0 0 0 - -
1 + 313% + L.ok ap + 315% + 4,98 dv
2 T 2L.5% + .85 db + 16.5% + .66 db
3 < 1% - .01 db + 6.5% + .27 db
h . . + 3.3% + .1k db
TABLE (2)

The R = O point is considered as an estimate at the point
£! Just caleulated.and hence is unbiased by definition.
Tne other biases involving the Vb point assume the high
frequency case is involved but as the calculation above
indicates it makes 1ittle difference most of the time.
The bias of the spectral estimator becomes even
more pronounced for the case of 1/f2 spectra., This is
to be cxpected since one 1é now estimatling on Lhe slope
of a much steeper function. ILet us take as the correct

regult an RC noise spectrumwith a very low break Ifrequency,
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5(f) = —=——3 (98)

where K% sets the absolute level. We will be particularly

interested in the case where f >> ft and the spectrum is
decaying as the sguare of the frequency. Let us proceed
to calculate the expected value of the QO spectral estimate
at f = R/2MAt

ool

X
- t R
B(Vg) = / 5 9 (f-QMAt af (99)

J. fg + ft

where we have made the approximstion of ignoring the
aliasing since the spectral density is decaying as! l/fﬁ .
Making use of the formule for the QO window given earlier
in Equation ( 35 ) and . the fTact that

/sin(x-Rﬂ) ax _ [1_(_';)36‘5‘]
(x-Rm) (Xe + ae) 2 (100)

a -+ (]E{'I’T)2

we have

r

& l—(—l)Re

LTS

*
This integral is obtained by integrating the product cf the
Fourier transforms of the factors in the integrand in the F ourier
transformed domain.

-2TrftMAL1

E(VR) (101)
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For the case where our frequency resolution is much too

1

large to ‘''see" f% then

1
S
f% < STIAE Ty 2UfMAL << 1
and we have approximately

2 R odd

Kf
) o~ s
(.R/EMA’G:)2 EHfEMAt R even

This is a very interesting and rather unusual result. It

E(VR (102)

says that since K(?/EMAt:F is the correct result you will

be biased upward by a factor of 2 at every other point and
downward by a large factor at the points in between.

This behavior correlates very well with typical experimental
date as Figure ( 5 ) illustrates. The dashed line shows
what is believed to be the correct result for this data
which goes as l/fz in this range. The points are the QO
egtimates directly from the data with the lables indicating
the values of R for the first few points. For this
particular run At = 5 sec, M = 100 and if one postulates

£, = 1072 cps then Equation ( 102 ) predicts + 3 db for
the odd points and - 15 db for the even points which
agrees with the data within the expected variability of

these points.
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As a preliminary to calculating the bias for the
Qo estimate it 1s necessary to find E(Vb). We start with
the agsumed spectrumof Equation. { 84 ) and again

ignoring asliasing obtain from Eouation ( 80 ) that

[ _ t oppe | 810 2TENAL (;in QHTNAf) af

iy - -
. \Vo} 2 STIMAG \ 2rINAT

. *
Meking use of Dwight 859.005 [12] and

2
sin x ax _m m -23, (103)
- —— e T e e (e _l)
/ ( “ ) (2+32) 2 2a3

© X

we obtain
( -2ﬂNAtft
X EMEMAT M1 - e
t 2M
E{vb} - —5 ML -c¢ -5t N2 .
£, L | oTALE,
. . I « 1
Again making the assumption that ﬂf% < VAT we have
- K £
t 2 t
E{v } i {n } omie, WAL << 1
o) 2 17 t
£, oMAL (104)

£
2 )2 T M ;
7 - ki >>
K/ft {T i7£——; T } 2ﬂftNAt > 1

where in the first case even the total record length N4t

ig ingufficient to resclve ft' Tese results are written

in a form which exhibits thedeviation of the estimate, Vé,

- from the actual behavior of the origin, K/th. They show

*
Franklin [ 14] pg. 225.
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that Vb underestimates the true spectrum at the origin by

about 1/10th of the ratio between the break frequency of
the noise, ft’ and the estimation resolution 1/2MAt.

A more informstive way to write this result ies as

E{Vb} ) (?/f% :ﬁ i <}/§$A%> (105)
2MAL

which shows how much bigger Vb estimates the noise to be

than the correct answer at the R = 1 point. Since the

noise is increasing like l/f2 in this region Equation

( 105 } can be used to determine at what frequency

£’ the Vv, estimate ie an unbiased estimate. Thie

calculation yields

£\ 1 Ly
(l;2MAt> I RV (106)

which tells at what fraction of 1/ the Vé point should

2MAYL
be plotted. TFor the typical run referred to above and

shown in Figare ( 5 ) this fraction is about 1/107.

The point labled R = O in this figuréjhenplotted at this
point (logarithmically a decade and a half away in frequency

from the R = 1 point) =3 appears quite reasonable, again

within the variabllity expected.
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We are now in g position to evaluate the bias of

the Q, (hanning window) estimate using the i, 2, &
coefficients as given by Equation ( 67 ). The biases

for R even with the QO window and R = O and 1 with the
QO window will depend on an assumption about f% but the
others can be evaluated in percentage terms without this
assumption because the odd R terms dominate.
case let us again use the data of Figure ( 5 ) emplcyed
109 and f, is assumed to be 1077

t
Then the data of Table ( 3

above for which 2MAt =
cps. ) results where the

last column

As & Typical

R % Bias of Vo

Qo Q (perfect QO)
o | o 0 do 509" -3 + 5004 +6.99 db
1 100% + 3 db + 12500%  20.97 ab + 25000%* 34 "
2 omd" <15 ab + 125% + 3,52 db + 100% 3.03 db
3 100% + 3 db + 3.8% + .16 db + 20% .8 db
i -97%* -15 a" . . .

TABLE (3)

These polints depend

on assumption about £

_to
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presents the fractional bias of the Q2 estimate for vperfect
Qo points including R = 0., The R = O point is considered
an estimate at the £’ given by Equation. (106) for this
table and so is uﬂbiased for QO by definition. The data
of Table (3) indicates why prewhitening is so important
when dealing with l/f2 spectra. The bilases are very
pronounced at the few lowest points. But these are just
the points of most interest for this type of spectra since
they "cover more ground" on the logarithmic frequency
scale. Hence, it is important to recapture them via
prevhitening. |

The above discussions have adeguately demonstrated
that attempting to fcrm spectral dengity estimates on a
1/f or 1/f2 sloping spectrumleads to very bad estimates.
The major remwediasl action taken during this research was
to prewhiten the data. The gcheme utilized was basically
that recommended by Blackman and Tukey. In the discrete
case the prewhitened data, zj‘s, are formed from the raw

data Xi‘s by

K
. = igo Ay Xy, 3=1,2, vo., N - K (107)

Waere the Ai's can be viewed as the sampled data version

of the impulse response of a linear filter. The magnitude
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squared. of thig filter will then be given by

1Y(f)|2 = B, + 2B, cos 2nf + 2B, cos 2(onf) + .....
- (108)
- z Bl cos 2Tfn
n=-K

And the B's will therefore relate 8_(f) to Sx(f) as

5,(8) = 1¥(2)1° 8,(2)

We will he nmost interested in two kinds of filters

| £] l£| < =T 1/f prevhitening
7(2)]? - (102)
. ir| < 5%5 1/£° prewaitening

where each will be pericdic in frequency with period l/L\t
Just as the aliased spectral density. Looking back at
Equation (108) we see that a simple method of realizing
B's is to expand Equation (109) in a finite ccsine series.

This procedure yields

2 T 1 /£
lx(e)= = & - = > —— cos 2nWfAt  prewhitening
m n=l, ocdd n
q2 © l)n l/f2
— + L ——g—(- cos 2nTfAt  prewhitening
3 n= n
) ) (110)

But neither of these expansions is really zero at the

origin for any finitc number of terms. This feature is
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very important when we are dealing with cases where the
l/f or l/fg behavior continues for several decades below

the minimum frequency resoclution point In order

~d_
7 2MAtT
to force the prewhitening filter to be ildentically zero

ES

at £ = O we subtract the partisl sum from |¥(£)|° for sny

given number of terms. Then we have

< S y B 1 1/t
= E: = - 5 2: 5 cos 2nTfAt  prewhitening
m =1l n ﬂ2 n=1, odd n
2
K gyt K+l ()0 1/t
L3 ~=s— b Y 5 cos 2nmfAt  prewhitening
n=1 n n=1L n
- (111)
which yields
K+
in 1
Bk - ) E: > k=0
i n=1l n
l/f prevhitening
'55 l§ k = odd
T k
0 kK = even
(112)
K+L n+l
_ (-1) _
Bk = |k 2: 5 k=0
n=1 n
1/f2 prewhitening
k
(_l) K > 1
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the coefficlents which must be applied to the raw date in
the time domain, the A's, are cobtained from the filter
characteristic, the B's, by a self convolution. Writing

out these formulae in detail yields

B, = a° +A12.. . Coral

Bl = AoAl T e e e e s e s e e T AK-lAK

B, = BA, * et A A (113)
B, = Bhg + e kA A

DK - AOAK

These nonlinear algebraic equations must be Inverted to
find the proper A's for the set of B's of Equation (112).
By inserting the numerical values Tor the first few cases,
i.e., K small, a form for rough approximations to the A's
for all K can be obtained. A short computer program was
written by K. Matsumotc to solve the equations iteratively

starting from the approximate results for any given K.
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Since the partial sum is removed the values for all of
the A's change, depending on how many A's are computed.
It was found, for this work, that very adequate results
were obtained utilizing K = 9 (or 10 A's) for 1/f
prewhitening and K = 8 (or 9 A's) for l/f2 prewhitening.
Table (4) 1lists these prewhitening coefficients. In
addition, Table (5) 1lists the A's for K = 49 (or 50 A's).
They would presumably only be used in o case where it wae
very important to maintain a 1/f behavior very accurately

and to very low frequencies.

1/f Prevhitening l/f2 Prewhitering
+ 1.2460762 A, =+ .85900591
- 88669391 A= - .938065k4
- 096221262 Ay =+ .18554991
- .12234353 A3 = - .086138683
- 037616304 Ay =+ .031371809
- 047103651 A5 = - .034h5261
- 01728585k Ag =+ 0063926557
- 022159825 AT = - 023757884
- 0070501685
- 0099076437

TABLE (L)

FREWHITENING COEFFICIENTI
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TABLE (5)

PREWHITENING COEFFICIENTS FOR 1/f SPECTRA

1.3221297 Asg .0024582738
.82051718 Ae .0029221055
.080650110 Ang .0021067328
.11433732 A29 .0025097537
036575483 Asy .0018054929
.049030906 A31 .0021538768
.022105715 A32 .0015443690
.028579432 A33 .0018566522
015215286 Agu .0013155949
.019185228 Age .0015933982
011264811 A36 .0011130872
.013950386 A3T .0013615906
.0087319731 Agg .00093192328
.010670907 Agg .0011551859
.006981.9628 A) g .00076793013
.0081483139 Ay .00096509006
.0057063556 Ay .00061729365
.006854537k A)s 0007986446,
0047384243 Ay, .00047603093
.005662107k Ah5 .00063890126
.0039806248 A .00033888270
.00kT399473 Ay 00048294127
.0033722939 Ayg 00019550028
.0040076400 ALL9 .00031501684
.0028738183
.0034133139

The accuracy with which the A's of Table 4~
represent the respective functions can be illustrated by

calculating the filter characteristic (magnitude squared)
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at equi-spaced points in frequency. TFigure (6)

is such a graph for the l/f prewhitening filter. Both
scales are |ogarithmic so that a straight line would
represent exactly an f characteristic. The deviation at
very low frequencies results from the fact that the filter
characteristic is zero at the origin. (Within round off
error). The filter has been evaluated at 100 points because
M = 100 is the case most frequently utilized in the
experimental work below. Figure (7) is a similar plot

of the l/f2 prevwhitening filter and exhibits similar
behavior relative to a square law.

An Interesting intuitive understanding of these
prewhitening filters is obtained by examining the effects
in the time domain for typical data. If we are estimating
on the slope of l/f or l/f2 type spectral densities the
sarple function in the time domain will appear very smooth

or slowly varying. Decsuse most of the energy in the

—_
2NAT

the numerical values obtained by sampling the process

process is contained at frequencies well below

gvery At seconds will not change rapidly. Consider
construction of a given Zi from X, and the 9 adjacent x's

by the A's listed in Table (k). The 10 A's sum to
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approximately zero so that, because the daba 1s very
smooth, the resulting zi’s will be small and oscillate
about zero. But this is Jjust one description of a process
which is more "white" CUhaa the origloal speclrum.
Table (7) illustrates this behavior by listing a
typical sequence of raw data points and the corresponding
prewhitened data points. These are from a process whose

spectrumis approximately l/ £ in the region of interest.

Raw Data Prewhitened Data
6648

.6375

6473

6512

.6395

L6505

6458

LOhle

6Lsh

L6491 + ,005132
L6548 - .011872
6575 - .003256
.6580 + ,011284
6518 - 012720
6529 + ,00h729
LOhT79 - ,000448
R teire - 004585
6522 - 00687k
6519 - .00T7kh2
428 - 001840
Oh28 1 ,001672
Ll + .,008327

TABLE (7)

PREWHITENED DATA
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An illustration of the effectiveness of such prewhitening
is given by Figure (8) . This is a spectrum estimated
Trom prewhitened data. The corresponding spectrum from
the raw data, Figure (5) , was shown earlier to
illustrate the bias which enters when estimating on the
slope of a il_/f2 spectrum. The gain achieved by prewhitening
is quite striking. The tremendous bilases in the unpre-
whitened estimated spectrum are not lorger present. The
variability on thié run appears to now be consistent with
the 11:1—1 approximation. That the spectrumestimated upon
is now approximgtely white is best illustrated by the
estimated spectrumbefore the effect of the prewhitening
filter has been removed. Figure (9) shows the spectrum
estimated from the prewhitened data corresponding to the
spectra of Figures (5) and (8). When lﬁ((f)l‘2 is
removed the spectrumof Figure (9) becomes that of
Figure (8) . By forcing |Y(£)|° to zero at the origin
we have overpowered the prcbiem so that the spectrumbeing
estimated upon goes to zero at the origin. This seems o
be necessary because the blas contributions from a non=~

smoothness in which the specbrumgoes bo zero arec not ncarly

as serious as those where the spectrum increases appreciably.
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3.3.3 Impulsive or Step Type Disturbances

At the very practical level a severe bias is
oftten introduced by impulsive or step type disturbances
in the data. The questior is, "What is the effect on the
power spectral density estimste of a big glitch in the
raw data?"

First congider the simple case of one isolated
"pad point."” Suppose out of our N discrete samples X,

one is equal to a large constant A, say

. 1
£ - A >> &

{x(tziAt)=x. i=1,§F ik
A ok (114)
where we shall assume that A is much larger thar the EMS
value of the noise because this is the case of interest.
If A is the same order as O, not only would the effects

be greatly reduced, but it would presumably be difficult
to decide that the point was 'bad." The sketcnh

below illustrates the situabion under comsideration.

]
T

aortie A B4 Mwnhw._l/\-\r.u/‘(_wl

o Mehan i Alds DAL A AATA o BpAd LA
il Mhaa e Alda ity M dB ALY ot
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This new random process ig, of course, non-stationary
and a spectral density for it is nonsense.* However, as
a practical matter it is important to know the properties
of such data since this situation occurc fairly often.
In particular, it is pertinent to ask how a power spectral
density estimated from this data by the usual techniques
compares with the '"real" spectrum of x(t). On an
intuitive basis it seems clear what the answer should be.
The spectrel estimator assumes that the waveform with
which it is presented is a sample funt¢tion from an ergodic
random process. Thus, the real process must contain a
Mot", in some sense, of ‘"spikes" 1in the time domain.
Therefore, 1t has a great deal of energy at even very
high frequencies, Thus, the original spectrumof x(t)
must have been 'whitened" in some way.

Computationally, the situation is even more clear.
The record is shifted by itself and multiplied to form
mean lagged products. Since A is much larger than O the

value for ({o), i.e., the square of all the x,'s, will be

essentially
2 - 2 2
A exA A A
Clo) ~ Clo) v -5 == = clo) + 5 (125)
k

where the first term is the ‘ordinary" result, the

The non-sbationarity is not, in fact, implied rigorously. It is
possible to think of stationary ensembles from which this would be
a typical sample. However, in most cases such processes are not
very realistic physically.
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last two terms arise because of the mean removal (see
Equation ( 77T )), and X is the sample mean excluding
A, The other mean lagged products are changed only by
terms on the order of RA/N which are much smallexr. It

is now clear that, since C(o) is an esbimate of GX?, if

A>> /N o

there will be trouble. In this case

c¢’(o) > c(o)

¢’(R) ~ c(R) <Cc(c) R>0

which is the estimator's best approximation to 'white"
noise, i.e., a & function in T. Another way of viewing
this is that when the finite cosine transform ic computed
via Equation ( 65 ) the C(o) term will dominate. The
raw spectral estimates, Vﬁ's, as well as the windowed

spectral eslimales, Uﬁ's will be approximately constant

2
~ R _ i AtA
S(m) = VR%URR;A'EC (O)m—]"\T—"— (116)

Thus the estimated spectrumwill, in fact, be
"white." A significant point which should not be
overlooked is that the disturbance in the freguency domain

goes as the square of the amplitude in the time domain,



-llb-
An excellent illustration of this benavior in
action is given by Figure ( 10 ). This is a plot of
an estimated spectrum from N =6230 points of which one is
in error and equal to A = 3.0 . The 'real spectrum’ is
plotted below for comparison and from it we determine
that 0 =,0136 and x = ,664 and for this run At = 5 sec
go that the level of the incorrect 'white'" spectrum
agrees well with the approximate prediction of Equation
(75) (je -214b).
The case of a number of isolated '"bad" points
possibly of different heights Ai becomes slightly more
complex. It seems clear that the basic ‘'whitening"

will still take place and that we will have something

At
N

are within MAt (the largest lag estimated) of each other

like V(R) ~ = & Aig. But if any of the disturbances
there will be, in addition, another large term in the
correlation function estimate., This will in turn lead
to a spike in the spectral density at the corresponding
frequency. Note that this implies the Ai involved occur
within the same M/N th fraction (something like l/lOOth
for our data) of the data.

Next, consider the case of series of adjacent

"bad points." Ouppose the available signal is just the
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sampled noise everywhere except at X consecubive points
where it is larger by A

) X, 0<i=k,K+k=is=QN
x, ' =¢ 7 (117)

A+ Xy k = k + K

A
A

A
i
IN

so that the situation 1s as sketched below

where again we have assumed A >> ¢ (but not necessarily

A S>> x).

(4

As before x'(t) is decidedly non-stationary, barring an
inventive job of ensemble creation, and we shall only
ask what the effect is on the estimated spectrum. There
seems to be two distinct cases of interest depending on
length of the disturbance.

First, suppose that K << M and the disturbance is
etill short relative to the maximum correlstion function

lag estimated. Then the correlation function at zero



will be given by
N 2 k+K -2 - 2
1 2 KA 24 2 X 2Kx K
¢/(o) = = X, e o B <T A> (118)
F & " " "% &4 %k W N i
which since K << M << N becomec approximstcly
’ KA2
¢’(o0) ~ Clo) + T (119)
and similarly
2
¢’(1) ~ o) + (‘i—) A
N
2
’ X-2) A
c'(2) ~ c(2) + (%ﬁ;)
» . (120)
2
¢/ (K-1) =~ C(R-1) + le'fA

¢(M)

7
¢c'M) =~
Thus, the estimated correlatlon function will be approximately

the ordinary estimate plus a triangle of height A?/N and
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width KAt as illustrated schematically in the sketch.

This implies

Clt) f A

K4t N Y—»

that the spectral estimate §'(f) will be approximately
the ordinary estimate plus the Fourier transform of the

2

] 2
ﬁiﬁ?&) of height é;EéE and width
X N

triangle which is a (
K%E centered at the origin. As K-»1 this (EEEAE)
extends over the whole estimation bandwidth and whitens
the data in agreement with the discussion above. But
as K increases the effective area of the disturbance
in the frequency domain shrinks back toward the origin.
Figure { 11 ) illustrates this type of bias
in action. The ‘real" spectfum ig also shown and
from its calculation we learn that X =-.078, ¢ = .30 ,
while for this run At was 5 minutes and N was 10000 .

The data leading to the biased curve had 10 points 10

times too large i.e., A =~ 3.0. Here we have that
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K

T l/lO and this correépnnds to the point at which the

first large dip in the biased spectruvmoccurs. The other
\
sin x 2 .
zeros of the k—~§-) curve also show up as large dips
since the correct result is "down" a large distance even
on a logarithmic scale. For anyone unfamilar with the

distortions introduced by a log-log scale a glance at

Figure ( 12 ) will be helpful in the sense of

“calibration."” It shows another function, the hanning
] 2
window (see Section ( 3.1.2 )) which is not a (EE%.E)

but of similar shape, plotbted on a log-log scale.

As the second case suppose K > M and the disturbance
takes up a large fraction of the record. Now, of course,
it is perhaps presumptuous to specify either case as the
"disturbance” but this can be accounted for by the sign
of A and the analysis is unaffected. Returning to the
Tformula for the calculation of the mean lagged products
including the mean removal, Equation ( 77 ), and
utilizing our definition of x,, Equation ( 11k ), we
see that the new correlation function is expressible in

terms of the old as

, 1 k k+K-R k+K-R
CR' =CrtFm (A2 _ X tAL  Xp tAY X
1SR Tok+1 s

BK ozka  [AK\T | A°(R-R)
rAy KR (- - \§) tThw
1=R+K—R+L
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which simplifies to C'(R) = C(R) + £(R) where

A k+K+R k+K-R
f(B) = ﬁ:ls

2. x, 9. x.-—25<:v{<1- )
i=k-R+l T i=k+RA T N (121)

alelop)-n (L)

If X, is written as a fluctuation about its mean, X, the
small correction term on the X coefficient will be the

only X contribution remaining i.e., for Xy Ax+ 6

1
KR 1+K-R
A - KR
£(R) = == {}: b, + Y, &, + 2% =—
B iZkrn ' fSome * N (122)

o[l -5) o6 - 1))
where the 51 sumations will vanish if the expected value
is taken since they are zero mean. It is now clear that
because N =2 K >> M = R, £(R) is always positive. Rewriting

Equation ( 121 ) and taking the expected value we see

that

fo - s falo§)2(F -6 -6)) 0o

By expanding the denominator and combining terms this can

be put in thce form
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E E(Rﬂ = 8 + bR+ CR + ..... 0o £R=WV

where

L P X |
P [2 N A[l <N)] (124)

Thus f£(R) is, on the average, a linear increasing term
added to the correlation function (R > 0).

For l/f type spectra the correlation functions
decay in the T domain rather smoothly. For instance, as
1n T for 1/f noise and e ~ | for l/f2 noise. Thus, the
addition of the step to the data will cause the correlation
function decay in T to be more gradual. This implies a
Taster decay, 1l.e. steeper slope, in the frequency domain
because of the Fourier transform relationship. Hence,
the effect of the step is to bias the spectral density
"upward" et the low frequency end. This would imply

estimating an a in 1/f° which was too large.
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To obtain a gquantitative measure for the size of
this effect we shuall calceulabe Lhe spectral estimate
that would arise from £(R) alone via Equation (76)

for the V's. Thus,

M-1
} RT
E[VR] = At [a + 2?1;7 (a + bg) cos g T T (a + BM) cosiRﬂ

The effect of the constant "a"™ in the C's is to add
2Malt to Vb while leaving the other V's unaffected.
to
Therefore, the only terms which will contribute ,the Vf for

R > 0 are the b terms. Thus,

\ M-1
E[V ] = At |M(-1)F + 23" g cos q R
R o~ M

which by utilizing Jolley 428 [15] vecomes

ME R =20
E[VR] —pAt |- —E R odd (125)
sine 2
B
0 R even

Now including the Vé contributions from the & term

we have for the bias in a Qo estimate from this '"long step”
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effect
bM? + 2aM R =20
_ -b 5
E [VR] - At — R odd (126)
sin M
0 R even

Therefore, the Q2 biases would be given by

_ - "
Bl I
2
- a Mb 2 _ o
E[UR] %MA“L< §+r[l-2<-ﬁ>] R—l> (l T)
- s
LEMSina —2%% J

An illustration that this analysis is reasonably
correct is given by the following set of data. Figure (3)
shows a spectrum from the Mark I noise source derived
from 10000 raw data points taken at 5 second intervals.
Because a nunber of independent measurements were made
this estimate is believed to spproximate the actual
spectral density well over this region (see Section 5.2
below). This spectrum is a Q, estimate from data pre-
whitened for l/f and is plotted from -60 db to -103b
vertically with the frequerncy scale running
(Logarithmically) from ].O"br cps to lO"l cps. The raw
data for this run is very ‘“smooth" in the sense of

lacking step or impulsive type disturbances. Tigure (13)
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shows a section of 1/ 11th of the raw data. The vertical
scale is + .55 to + .75 volts and the horizontal scale

is such that the data shown covers 150 minutes of time

( 900 points). The sample mean for this data (all
10000 points) is a .5986399. Assuming the noise to be
gaussian the square root of the correlation function
estimate at the origin is an estimator for o0, the rms
value. In Tthis case we find 0 =~ .007T70. A step was
intentionally inserted in the 'middle half" of the

data. In the notation used above this is
K = N/2 = 5000,k = 2500

The size of the step, A, was varied through the values
.01, .05, .1, .2. BSince for this data‘M = 100, At =5

this yields for a and b the values shown in Table (§)

a g alempirical) Dhlempirical)
2.5 x 107 5.94 x 107" 4,06 x 10~ 5.96 x 1077
62.5 x 1077 28.7 x 107  70.3 x107° 28,9 x 107"
250 x 1072 k.9 x 1077 266 x 1077 55.3 % 1077

1000 x 1072 99.7 x 107" 1031 x 1077 100.6 x 107

TABLE (§)
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If g and b are formed exmpirically from the daba via

a(empirical)

e

c’lo) - cl(o)

[c'M) - ca)] - [c'(u) - c(o)]
M

b (empirical)

e

the last two columns in this table result. These results
are seen to agree with the analyvtical predictions quite
well. Perhaps a nore impressive illustration is given
by Figure (1), which shows the correlation funcbion
estimated from the data with no step, C(R), and the
correlation function estimated from the data with a

step of .01, C'(R). The other line on the graph is their
difference which exhibits & surprising linearty. In
fact, the deviation at the uppermost end is adequately
explained via the cR® terms of Equation (12k4).

The results in spectral deunsity are not as easily
displayed. Table (%) presents the calculated 0, bias
for R = 0, 1, and 6, from Equation (127) using the
calculated values for a and b aloag with the empirical
biases obtained by substracting the known correct result
from the estimated value. Again the calculated results

would only be expected to cgual an cnsemble average cof the

empirical results so the agreement is guife good. Figure (15)
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Q2 Spectral Bstimate

Calculated
R=0 R=1 R=6
+ 2,139 x 1072 .77 = 10T - 1,65 x 107k
£3.56 %1070+ 1.63k x 107 - 8.02 x 107F
+ 1,332 + 6.39 x 107t - 15.35 x 10‘lF
+ 5,15 + 2,52 - 27.9 x 10“”
Empirical
R=0 R=1 R=6
£1.929 x 1070+ 1.148 x 1072 - 1.7h x 107
+3.98 x 10™F +1.82h x 1070 - 8.85 x 10'”
+1.k23 + 6,767 x 107t - {6.90x% 10'lL
+5.36 + 2.601 _20.97 20 ¥

TARLE (9)

shows three spectral densities., These are Q2 estimates
where no prewhitening was applied and are thus poor
estimates of the real spectrum (i.e., see bias discussion
for l/f2 noise in Section 3.3.2). However, the difference
between the curves indicates the effect of the '"long
step" +type bias. One is the estimated spectrum for no
step ( points). The second is for a step of .01 (eircles).
The third is for a step of .2 (points). Thais is a log-log

scale. As the step bias begins to dominate all of the
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estimated points become negative. The logarithm of
their magnitude is plotted. The curve for A = .2 is all
negative., There are no negative points on the spectrum

for A

I

0 and only the two points doublé%ircled (R =2

and R

12) are negative for the A = .01 case. The bias
is as advertised in Equation (127), negabive,

inereasing with A,and decreasing with R. But since the
correct spectrumis decaylng as l/f2 and the blas also
decays as l/f2 it sppears to remain a constant percentage
which 1s a fixed displacement on a logarithmic scale.

The R = O point is not plotted on these curves. The
intermediate spectra for A = .05, .1 are not plotted to
reduce the confusion somewhat. By the time the step is
as large as .2 the spectrum is =lways negative and very
gmooth because all of the variahility contributed by the
original random process has disappeared. It is interesting
to note the amount of success that prewhitening achieves
in reducing the effects of this bias. Figure (16)

shows the Q2 prewhitened l/f estimates for A = .01, .05,
.1, .2. The curve for the smallest step .0l coincides
nearly exactly with the urdisturbed case. The bias

does increase with step size although not as sevérely in

the unprewhitened case. Also, no points are negative in
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the prewhitered case so that the blas effect has in fact

been reduced a great deal. When you congider that a

step of .2,in g piece of data for which ¢ =~ .00TT, is a

260 disturbance these results are quite remarkable.

L, LOW FREQUENCY SPECTRAI. ESTIMATICN EXPERIMENTS

The major portion of the experimental work of this thesis is
concerned with obtaining estimates of the power spectral density of
l/f noise or excess noisgse 1n semiconductors. This sectlion discusses
the planning and motivation of the experiments. Also covered is the
design of the noise generator and the measurement of some of its
basic clrcult properties. The experimental results Themselves are
presented below in Section 5.

4,1 1/f Woise

The basic motivation for investigating l/f noise is that
the guestions are interesting. The answers may, in fact, turn
out tc be very dull, but the questions are intriguing.

Is the phenomenon really 1/f? Winston and Firle, for
instance, fitted a least squares line (on a logarithmic scale)
through their data and claimed that the spectrumwent as 1/fa
with & > 1. As Appendix A indicates, thelr conclusion 1s oOpen
to considerable question because of the grossness of their
spectral estimator. The question of whether a simple exponential

model is adequate to explain the dats remains. DBut if the
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behavior really is l/f, now does one deal with the infinite
power implied for the random process?Y Or does It stop being
l/f at some very low frequency? And i1f so, at what frequency?

As mentioned in Section 2. a knowledge of the real spectrum
of low frequency semiconductor noise is required in order to
design any piece of de equipment which must operate for a long
period of time. How long can it be left alone before the zero
must be reset? If the Time between calibrations is a design
parameter, how should it be set to guarantee a given probability
of not having the "drift" exceed a given value? How important
is it in terms of drift to control the temperature variitions
is the immediate environment?

The experimental program undertaken in this thesis is
not intended to investigate the solid-state physics of the
generation of semiconductor noise. The objechtive is to measure
the noise propertiss of the whole device, a transistor, in an
operating circuit. From the experimental viewpoint the proper
approach is to control everything (i.e., all relevant parameters
of the circuit and its environment). Then by relaxing control
on one item at a time the effect of each on the end result can
be ascertained irrevocably The propertics of ordinary
transistors in ordinéry circuits could then be calculated by
noting what lack of control of the enviromment was implied in

eacu case, Unfortunately, no one has yebt been able to decide
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exactly what environmental conditions require control and to
what extent, let alone actually control them.

The basic difficulty is of a very practical mundane
nature. The rms value of the noise generated by a transistor
ir normal operating circumstances is on the order of fractions
of microvolts. Transistor operating voltages are at least
fractions of volts. Therefore, a dynamic range of 106 is
involved. In order to measure the noise one must be able to
measure, record, and process variations which are seven or eight
decades smaller than the mean operating voltages. This require-
ment can, of course, be eliminated step wise by successive
amplification and subtraction of constants. Two major difficulties
arise. First, one must either know in advance the constant or
de value which is present so that it may be taken out to an
extremely high accuracy, or one must be very clever about taking
it out ‘“adaptively" in order rot to distort the subsequent’
spectral estimation results. Secondly, one must always face
Tthe unpleasant reali’ty.tha.t ampllifiers have internally generaled
noise as well as limited dynamic range.

Considerations such as these led us to utilization of the
concept of differential émplification. It was found that by
surrendering on the goal of measuring the properties of one

transistor directly and utilizing a grounded input differentisgl
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amplifier as our noise source we could cobtain reasonsble
measurements in the laboratory, This implies in our case that
we are actually measuring the difference properties of two
transistors. This proves to be useful nct only for eliminating
the operating point effects, which can be adjusted to be the
same Ffor both transistors, bub for eliminating the effects of
external conditions such as temperature to which the two
transistors react similarly. And, if one considers the two
transistors to be statistically independent samples from the
same ensemble, the spectrum measured is a constant times that
for one transistor. Even if the net results were only the
noise properties of a group of components in a particular
configuration {which it will be argued is not the case) these
results would still be useful because this specific combination,
the de differential amplifier, is very commonly employed.

The schematic for the particular noise generstor used for
most of the measurements of this thesis is shown in Figure (17)
This device was constructed by H. C. Martel and will be
referred to henceforth as the "Mark I." The first stags is
the noise generator. The second two stages are only for
amplification near the source in an attempt to minimize the
introduction of external noise. The emmitter follower final

sbage, is mainly for impedance matching. It is desirable to
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have essentially a voltage source. The claim that the noise
is contributed mainly by the first stage is substantiated by
noting that the noise of the second stage would have to be
larger than that of the first by a factor egual tc the currcnt
gain of the first stage in order to make a significant
contribution to the output. This argument extends, of course,
to the next stage. Iirst stage Vbe varlablions appear il the
output. This circuit is one often used in practice ard it is
the simplest version of the Vbe variation cancelling configuration
recommended by Hoffait and Thorton in Reference [16]. As
menticned above, amplification was provided internal to the
noise generator becaguse of the size of the semiconductor noise
relagtive to the input drift/noise of resdily available amplifiers,
l.e., a typical opergtionsl amplifier has a few microvolts of drift/
noise referred to its input. Really, this is beggingthe question
because the stages of gain internal to Mark I have an equivalent
drift referred to their input, which may or may not be as large
ag k-volts. We actually measure the combined noise properties
of the whole differential amplifier.

In any attempt Lo reler Uhe measured spectral dens