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ABSTRACT

Let N(p,q) denote the companion matrix of XZ-FPX-Pq,
for rational integers p and g, and let M(p,q)=N(p,q)(N(p,q))"'.
Further let F(M(p,q)) and F(N(p,q)) denote the fields gener-
ated by the characteristic roots of M(p,q) and N(p,q) over
the rational field, R, This thesis is concerned with
F(M(p,q)), especially in relation to F(N(p,q)). The prin-
cipal results obtained are outlined as follows:

Let S be the set of square-free integers which are sums
of two squares. Then F(M(p,q)) is of the form R(Vc), where
ce S, Purther, F(M(p,q)) = R if and only if pg = O. Suppose
c€ S. Then there exist infinitely many distinct pairs of
integers (p,q) such that F(M(p,q)) = R(Ve).

Fursher, if ce 8, there exists a sequence {(pn,qn)}
of distinct pairs of integers such that F(N(p,,q,)) = R(Ve)
and F(M(p,,q,)) = R(VEE;), where the 4 are some integers
such that (c,dn) =1, If ce S and ¢ is o0dd or ¢ =2, there
exists a sequence {(Pﬁ
such that F(M(p!,q})) = R(Ve) and F(N(p},q})) = R(Ved"),

for some integers d! such that (c,dﬁ) = 1,

»q})} of distinct pairs of integers

There are five known pairs of integers (p,q), with
pqg # 0 and q # -1, such that F(M(p,q)) and F(N(p,q)) coin-
cide. For q = 2(mod 4) and for certain odd integers ¢, the
fields F(M(p,q)) and F(N(p,q)) cannot coincide for any

integers p.
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Finally, for any integer p # 0 (or q # 0, ~1) there
exist at most a finite number of integers g (or p) such that

the two fields coincide,
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INTRODUCTION

Let A = (aij) be a matrix of order n with elements
in the complex field, We say A is normal if and only if
A'A = AA' where A' = (5;;). It is known that if A is normal,
with characteristic roots Ai’ i=1,...,n, then* the char-
acteristic roots of AR' are given by AiTXZ’ i=1,00.,n,.
Conversely, if the characteristic roots of AA' can be writ-
ten as Aixgz s i = 1,.e0,n, where {61,...,6n} is some per-
mutation of {1,...,n}, then A is normalf* Hence it seems
of interest to study the characteristic roots of AA' in
comparison with the characteristic roots of A in the case
of non-normal matrices A. Results are known which com-
pare the magnitudes of these roots. Here a different point
of view is adopted. The matrices A are restricted to a set
of matrices of order Swo over the rational integers and the
algebraic number fields in which the characteristic roots
of A and AA' lie are compared.

Specifically, the matrices studied in this thesis
are the companion matrices of the polynomials

X2+px+q,

* This follows immediately from Theorem 1, [1].

XX This was proven by A, J. Hoffman and O, Taussky in [2].



i. €., the matrices

where p and q are rational integers. We denote the above

matrix by N(p,q). Further, we define

M(p,q) = N(p,a)(W(p,a))' .
Then we have
1 -p
M(F;Q) =
2 2
-p P +q
a2 pq
and (N(p,q))'N(p,a) = , .
pa 1+p

Evidently N(0,1) is normal and N(p,-l) is normal (and, in
fact, symmetric) for all integers p. With these exceptions,
N(p,qg) is not normal.
We define functions 6(p,q) amd A(p,q) as follows:
6(p,q)

a(p,a)
We note that A(p,q) can also be expressed in the following

2
P~ - 4q
(p2 + q2 +1)° - 4q2 .

three forms
(9% + (q + 1)) (p° + (¢ - 1))
492 + (p2 + q2 - 1)?

2 2 2 2
4p“g” + (p° - q

+ l)2 .
A11 four forms of A(p,q) are used in this work.
Tet us denote the characteristic roots of N(p,q) and

+ +
M(p,q) by AN(p,q) and Xﬁﬂp,q), respectively, so that
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+
)\lg(p,q) = ( -p + ¥6(p,a) )/2

1t

x 2 2
Ag(p,a) = (p° +a° + 1+ VA(B,0) )/2 .

We denote the fields which Ag(p,q) and Aé(p,q) generate
over the rational number field, R, by F(N(p,q)) and F(M(p,q)),
respectively.

We define gé(p,q) to be the square-free part of 6(p,q)
if 6(p,q) # 0, and gé(p,q) = 0 if 8(p,q) = 0. Similarly we

define gA(p,q). Then we have:

F¥(p,q)) = R(Vétpyqj) = R(Vgé(P,qj)
F(M(p,q)) = R(VATp,q)) = R(Vg,(p,a)) -

This thesis is therefore concerned with the relationships
between gé(p,q) and gA(p,q). Occasional other related prob-
lems are also given some treatment here.

Many of the conjectures proven in this work were sug-
gested by calculations performed on the IBM 709 and 7090
computers. The question of the number of solutions (pyq) of
the equation
(1) P(M(p,q)) = F(N(p,q))
with q # -1 and pq # O is still unanswered., (Since N(p,=-1)
is symmetric, it has real roots. Hence, by the normality of
W(py-1)5 Ag(ps-1) = (Ag(p,-1))? o that F((p,-1))
= R(p(p°+ 4 )715) = R((p2+4 )'12‘) = F(N(p,-1)), for all p. Also,
it is easily seen that F(M(p,0)) = F(¥(p,0)) and F(M(O,-n2))
=_F(N(O,;n2)), for all integers p and n.) The computer data
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and a number of results lead us to conjecture that there
exist only finitely many pairs (p,q) with q # -1 and pg # O

which are solutions of equation 1.



I. THE NATURE OF F(M(p,q))

The following two theorems will be useful in this and
subsequent chapters.
Theorem A. Let P be a prime congruent to 1 or 2 modulo 4.
Then there exist integers X and y such that

x° - Py2 =-1 .8

For P = 1(mod 4), the conclusion of this theorem follows
from Theorem 107 of [3], pages 203-4, For P = 2, the con-
clusion of Theorem A follows from the fact that 1 + VE is a
solution* of x2 - 2y2 = =1,
Theorem B, Let ¢ be a positive integer which is not a per-
feect square. Then the equation
x° - cy2 =1
has a fundamental solution X4 + WEyi and all other sclutions

are of the form 4+x =+ Ve y, Where
n —
Xn'l-ﬁyn =(Xl+v-c_sﬁ_) 9 Il—l, 2’ LI .'

This theorem follows from Theorem 104 of [3], pages 197-9,

The first significant faet which we notice concerning

the nature of F(M(p,q)) ie expressed in the following

* A number s+tyD is said to be a solution of the equation

x° - y°D = H if and only if s° - t°D = H. This usage is

not uncommon.



theorem:

Theorem 1.1. F(M(p,q)) = R if and only if pq = O.

Proof: Without restricting generality, we can consider p
and q to be non-negative integers. We first assume that
pq # O and show that F(M(p,q)) cannot be rational. Thus

we wish to show that*

2 2 2
Alp,a) = (p° + a® - 1)% + 4p° 40 .
Now, (p2 + q2 - 1)2 + 4p2 = (p2 + q2)2 + 2(p2 - q2) + 1.

Suppose that p > q > 0, Observe that

(p2 + q2 +1)% = (p° + a®)% + 2(p° + q°) + 1> A(p,q).

Also, 2(p° - q°) + 1> 0, so that

(p2 + q2)2 < A(p,q) < (92 + q2 +1)°.

Hence in this case: A(p,q) #01

Now suppose that q > p > 0. We have
(p? + a° = 1)% = (8% + a®)% - 2(p° + d®) + 1 < Alp,a).
Also, 2(p” - q’) +1=-2p° -q°l +1<0, so that

(p° + o - 1)% < alp,a) < (0% + d®)?,
and in this case also, A(p,q) #O. In the remaining case,

qa = p > 0 so that A(p,q) = A(p,p) = (2p°)2 + 1 400 -
Hence for pgq # 0, A(p,q) #07 .

Now observe that A(0,q) = (q2 - l)2 and A(p,0)
= (p2 + 1)2, and the proof of the theorem is complete.ll

For pg # O, the above theorem tells us that

*¥ In this thesis "g" will always denote a square of a
rational integer.
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gA(p,q) # 1. Further, since gA(p,q) is the square free part
of (p2 + (g + 1)2)(p2 + (g - 1)2), we conclude that if

pq # O then gA(p,q) > 1, and gA(p,q) is of the form Zxd,
where « is either one or zero, and d is a product of dis-
tinct primes of the form 4N+l. We ask what numbers 24

are actually found in the set {gA(p,q)I pq #0} . The
following theorem gives us e partial answer to this question.

Theorem 1.2, Let P be a prime congruent to one or two modulo

four. Then there exist infinitely many pairs of integers

(p,q) such that F(M(p,q)) = R(VP).

Proof: Let x; + ylV§ denote the fundamental solution of

the equation X2 - Py2 = =1, Define integers X, and I by

2n-1
Xn + ynﬁ (Xl + yl@) ’ n = l, 2, ® e L
We can assume that < and yq vwere chosen to be positive so
that the sequences (xn} and {yn) are positive and
2 2

strictly increasing. Further, X, - Pyn = =l, =1, 25 saoe

Now define P, = 2Xn. Then O <pp <Py < .. . TFinally,

a(p,,1) = pi(pi +4) = p§(4Xi + 4) = 49§Py§,

so that F(M(p ,1)) =R(YP), n =1, 2, ... . B

Since every prime P = 1 or 2(mod 4) can be expressed
as a sum of two squares, it will be seen that Theorem 1.2
is in fact a special case of the following general theorem.

Theorem l.3%. Let ¢ be any integer of the form a2+b2 which

¥ BSuch a solution exists by Theorem A.
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is not a perfect square. Then there exists a sequence of
pairs of integers {(pn,qn}} such that the sequences {pn}
and {qn} are strictly increasing, and such that F(M(p ,q, ))
= R(Ye), n =’l, 2y aes N |

Proof: Consider the equation

(L.1) w2 - ov? = ca® .

Since ¢2 - cb? = c(c - bz) = ca2, ¢ + bVc is a solution

of equation l.1l. Consider also the equation
(1.2) X2 - Cyg = 1 .

Since ¢ is not a perfect sguare, this equation is solvable,

by Theorem B, Let 81 + tlyg denote a solution of equation
1.2 with 8 and tf> 0. Nowidefine Sy tn’ X and Ty by

S, + thE = (8 + thE)n

x, + ynVE = (Sl + thE)gn , n=1, 2, ... .

(This construction, though it may seem in part superfluous
for the moment, is used to facilitate the proof of a later
theorem, Theorem 2.8. ) Clearly s, + thE and x + ynVE
are solutions of equation 1.2 for each n, Also

(s, + 5,¥0)™)2 = (8, + t,Y3)°
= (si + tic) + VE(2sntn), for n > 1.

x, +y,Ve

Clearly X, >'Xn_l and yn.>’ynrl for all n > 1, Define

(1.3) uy v Ve = (e + pVe)(x, + y,Ve)

=‘(cxn + cbyn) + VE(bXn + cyn), n>1,
It is clear that u, + vnYE is a solution of equation 1.1
for n > 1. Furthermore u = O(mod c¢) and v, = b(mod c),

since X, = si = 1(mod ¢), n > 1., It follows that
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8u, = O(mod 4c), 8v, = 8b(mod 4c),

so that there exist integers k and m 6 such that

(1.4) m, = Bun/4c, k, = 8(vn - b)/4e, n>1,

Since we may assume that a, b > 0, it is evident that

w, >>un_l and Vi >—vn_l . Thus the integers kn form a
strictly increasing sequence, Now

2, for n > 1,

2 2
(Bun) - C(an) = G4ca
by equation 1l.1. Hence from equation 1.4 we have:
64ca° (4cmn)2 - c(4ckn + 8b)2

2 2 2 .2
= (4e) m - (4e) ck - 64c

2 2
knb - 64eb”,

Rearranging we have
(40)%(n? - ck? - 4k.b) = 64c(a’ + b2) = (4c)%4 .
n n n
Hence we have
2 2

(1.5) m_ = cky + 4knb +4, n>1.

Recall that A(p,q) = (p2 + (q + 1)2)(P2 + (q - 1)2) .
Let Py = kna, Ay = knb + 1, n>1.

Then the sequences {p,} and (qn} are strictly increasing.

Finally,
2 + (q, - 1)% = k2% + Kb° = Kc
2+ (g, +1)° = k%% + K50° + 4k b + 4
2 _ 2
=koc+ 4k b+ 4 =m

by equation l.5. Hence A(pn,qn) = kimic and F(M(pn,qn))
= R(Ixn2c) = R(VS), n> 1. &
For illustration, let us give an example of the

above construction of pairs (pn,qn). Suppose ¢ = 10, Then
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we can set a = 3%, b = 1., Also, we can choose

+ £,VI0 = (3 + VI0)® = 19 + 6VI0 .

s
1
Then x; + yVI0 = (19 + 6VI0)° = (721 + 228Y10),
my = 8u1/4c = Zc(xl + yl)/c = Z(Xl +yq) = 27949 ,
and ky = 2(vl - b)/c = 2(b(xl - 1) + cyl)/c

= 2(b(xl - 1)/c + yl) = 2(72 + 228) = 2+300,

by equation 1.3. As in the above proof, we define

p; = kya = 3+2.300 = 1800,
= kb + 1 =230 + 1 = 60L.

G =5
Hence pi + (ql - 1)2 = 4-3002(9 + 1) = 1000
and  p° + (g + 1)° = 4(810,000 + 90601) = 4+900,601

= 4+949°,
so that P(M(1800,601)) = R(V10).

Since the product of two integers which are sums of
squares can also be expressed as a sum of squares, it is
evident from previous remarks and from Theorem 1.7 that the
set of fields {F(M(p,q))| pu # 0) is precisely the set
{rR(Ve) |c #1, ¢ =TVP;, B; =1, 2(mod 4), Py prime) .

From a non-field theoretic standpoint, Theorem 1.3
tells us that for any sum of two squares, c, which is not a
perfect square, there exist pairs (p,q) such that A(p,q)
= ¢c+[J. We ask if perhaps there exist pairs (p,q) such
that A(p,q) = ¢ for such c. The answer is in the negative,
as is clear from the following simple theorems, stated here

without proof.
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Theorem 1l.4. A(p,q) = 0, 1, 4, or 5 (mod 8) and there exist

pairs (p,q) such that each of these congruences is satisfied.l

Theorem 1.5. A(p,q) = 0, 1, 4, 5, or 9 (mod 16) and each of

these cases occurs.®
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TI. CERTAIN RELATIONS BETWEEN F(M(p,q)) AND F(N(p,q))

The following theorem will be of use in this chaptlers:
Theorem C., If § is a simple root of the congruence
f(x) = 0(mod P)
where P ig prime, then there exists precisely one root n
modulo P™ of the congruence
£(x) = 0(mod P*)
such thet § = 7 (mod P).
For a proof of this theorem see for instance [3], Theorem 50,
page 87.
In the following work we write: F°| b if and only if
P*l b and ﬁ1+14’b, where o« and b are integers, &K > 0, and

P is prime. (This notation is found in (61, for example.)

The following theorems are concerncd with various
comparisons of the fields F(M(p,q)) and F(N(p,q)). We will
eventually prove that there exist infinitely many pairs (p,q),
with q # -1, pq # O, such that gé(p,q)| g,(p,a). Then we
will show that there also exist infinitely many pairs (p,q)
with q # -1, pq # O, such that gA(p,q)l gs(Pya).

We observe that if 4 is an integer which is square-
free, and & |(p? + (a - 1)%, 8(p,a)), then 4 |(q + 1)°
80 that in fact d |(qg +1). Then d [(p2 + 4). These

facts suggested the following theorems:
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Theorem 2,1. Suppose d is a positive integer of the form tZS,

where g is odd. Further suppose that d 1(p2+ 4), for some
integer p > 0. Then there exists an integer q # 0, -1 such
that F(N(p,q)) = R(Yd) and F(M(p,q)) = R(Vdc), where c is
some integer such that (c¢,d) = 1.
Proof: We define an integer f as follows:
d if t+ is odd

fz{dm if t is even
Since p° = 0, 1, 4, or 9(mod 16), it is clear that
p2 + 4 £ 0(mod 16). Hence t = 1 or 2(mod 4) and s = 1(mod 4),
since p2 + 4 can have no prime factors of the form 4N+3,
Hence £ = 1(mod 4). We define d' = (p° + 4)/f. Clearly d'
is an integer and d' = 0 or 1(mod 4). Ve can therefore define
a positive integer k by

2f4' + 1 if d' = 1(mod 4)

1

k = f(d' +1) +1 4if &' = O(mod 8) .
3F(d? + 1) + 1 if 4' = 4(mod 8)
Observe that in all cases k2 = d'(mod 4)., Alsc, when 4d' is
even, K2 £ d'(mod 8). We let q be the integer defined as
follows:
q = (£(a' - k°)/4) - 1.
Evidently k° > d' so that g < -l. Then

5(p,q) = p° - 4q = p° + 4 = 4(q + 1)
= £a' - 4£(a' - X°)/4 = TK° .
Also, p2 + (g ~1)° = p2 + (g + 1)% - 4q

= £(x° + £((a' - ¥2)/4)°) = fo,
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where cq is defined by this equation. Now it is clear
that (f,cl) = 1, since (f,k) = 1, by the construction of
k. Also, since f [(p2 + 4) and f = 1{mod 4), we must
have (f,p) = 1. Now T l(q + 1) so we nust have

(£,(p° + (q + 1)°))= 1. Iet o = oy (p® + (a + 1)°). Then

(f,C) = 1,

F(N(p,a)) = R(VT) = R(Vd),
and F(M(p,q)) = R(Vfc) = R(Vde) .

If d is odd, then (d,c) = (f,c) = 1, and the theorem is
proven., If d is even then d4' = (p2 + 4)/f = 4((p2 + 4)/4d)

It

= O(mod 4), 1 O(mod 4), and 1c° # d'(mod 8). Thus

ey = E° + £((a' = k°)/4)° = 0 + 1°1 = 1(mod 2),
Also, since d is even, we know that p is even and hence

p? + (¢ + 1)% = p% + 22((a" - x%)/4)°
=0+ 11 = 1(mod 2) .

Thus (2,c) = 1 so that (d,e) = (4f,¢) = 1 and the theorem
is proven.l

We recall that gé(p,q) and gA(p,q) denote the unique
square-free integers such that:

F(N(p,a)) = R(Ves(p,a)), P(M(p,a)) = R(Vg,(p,q)).
We have the following theorem:

Theorem 2.2. For every integer p > 0 there exist infinitely

many distinet integers g such that gé(p,q) lgA(p,q) and
[gé(PsQ)' # 1.
Proof: We note that p2 + 4 is of the form 2%%, where

=0, 2, or 3, and t is a product of primes of the form
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AN+1l. Ve first assume that p # 2. Then we can choose an
odd, square-free integer d > 1 such that d.|(p2 + 4).
This is true if p = 1, for in this case we choose d = 5,
For p>2 we observe that p° + 4 = 2%t >8 so that t >1
and hence we can choose d +tobe any prime factor of t. We
define 4' = (p2 + 4)/d@. Since 4' = 0 or 1(mod 4) and d
is odd, we can choonse a positive integer e so that
e? = d'(mod 4) and (e,d) = 1. We then choose

kn = 2dn + e, n=0,1, 2, «.. R
:{215 e? = d'(mod 4), (k ,d)
n=0,1, 2, eos . We then define

(2.1) g, = (a@' - x)/4) -1, =»

Clearly, k

1, and kn > 0,

it

O, l, 2, 0. L]

As in the proof of Theorem 2.1 (with f = d), we observe that

F(¥(p,q,)) = R(VA)
and F(U(p,q,)) = R(Vdc,),

where c, = (p2 + (g, + 1)2)(k§7+ a((a’ - ki)/4)2)-
Since 4 l(p2 + 4), d I(qn + 1), (d,kn) =1, and 4 is odd,
we conclude that (d,cn) =1, n=0, 1, 2, «0. « Clearly
the sequence {qn) is strictly decreasing. Further,
g5(pyay) =d>1 and g,(p,q,) =dcy ,
where c] is the square-free part of c, . Hence, if p £ 2
the theorem is proven.
Now suppose p = 2, Let
(2.2) q =1 - on2,  n=1, 2, ees o
Then p2 -4q, =41 - q)) = 2-(211)20
Also  alpay)= (0% + af - 1% + (2p)°
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50 that a(2,q) = (3 + ¢2)% + 16.
Now 3 4+ qi =3+ 1 = 4(mod 8)
so that a(2,q,)/16 = ((3 + qfl)/dr)2 + 1

=1+ 1= 2(mod 4)
and lhus A(Z,qn) = 2c!T), where c is some square-free
odd integer. Also, g6(2’qn) = 2 and gA(Z,qn) = 2¢].
Evidently the sequence {qn} is strictly decreasing. Hence
the theorem is proven. i
Corollary. If p > 1 there exists an integer ¢ such that
la|] < 3%, a # -1, gg(p,a) | g,(v,a), and gg(p,a) # 1.
Proof: (We first note that the requirement ¢ # -1 is neces-
sary to make the corollary meaningful, since gé(p,—l)
= gA(p,—l) # 1 trivially for p # O. We also note that an
examination of cases demonstrates that the conclusion of the
corollary is false in the case p = 1.} From the proof of
Theorem 2,2 we see that if p = 2 we can choose ¢q =1 = 2*22
= «7 (as in equation 2.2) and all of the assertions of the
corollary are satisfied. Hence we may assume p > 2. Then
we choose d and 4' as directed in the proof of Theorem
2.2+ There are four possible cases,

Case I3 d' = 4, Take n =0 and e = 4 in the proof of

Theorem 2.2. (Clearly e = d'(mod 4) and (e,d) = 1 so
that the conditions of the theorem are fulfilled.) Then
we define

g, = d(ar - e%)/4 - 1

as in equation 2.1, and conclude as in Theorem 2.2 that
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gs({psq,) = a>1, g,(p,q,) =deg,
(oince A is squarc—free). Now q, + 1 = a4 - 16)/4
= =30 # 0 so thet q  # -1 and |q_]| < (p% + 4) + 1< 3p°,
since p2 > 9 by hypothesis. Thus the corollary is true in
this case.

Case II. d' = O(mod 4), d' > 4, Take e = 2, Then (d,e) = 1

Tm.

and e° = d'(mod 4). Further,
0<aq, +1=(aa' -e))/4<adr/t=(p° + 4)/4
< 3p°
and g # -1, s0 a8 in the case above we find the corollary
to be true.

Case IIT. d' = 1. In this case p- + 4 = d. Obviously,
2

(3,d) = 1. Also, 3

d'(mod 4) so that we may choose e = 3

in this case., Then

g, + 1 =ad(a - e%)/4 = a(1 - 9)/4 = =24 # O.
Hence lqo\ = |-24 -1l =24 + 1 = 2p2 + 8 +l§3p2
and as above we have the desired result.

Case IV, d' = 1(mod 4), d' > 1. We choose e = 1l., Clearly
2

(dye) = l, and e

d'(mod 4). Then

0<gq,+1=ad(d" - o) /4 < 3p°, a, # -1
and we have proven the corollary. B

In Theorem 2.1 we required that d be positive (and of
the form s+0, wvhere s is o0dd)., A similar theorem dealing
instead with -d is as follows:

Theorem 2,3, Suppose p is even, p > 0. Suppose also that d

is a positive integer of the form tZS, where g is odd, and
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that d f(p2 + 4), Then there exists an integer q > O such
that F(N(p,q)) = R(Y=d) and F(M(p,q)) = R(Yed), for some
integer ¢ such that (c,d) = 1.
Proof: We note that the requirement that p be even is
necessary. For, if F(H(p,q)) = R(Y-d) then p2 - 4q = =s+00
so that p2 = —(nod 4) and hence p2 = O(mod 4).

We may write p = 2pl, where Py is an integer. We
define

d if + is odd

° = {d/4 if t is even
We also define 4' = (p2 + 4)/e and observe that d'/4 is
an integer which we denote by d". Since e 1is odd we can
choose a positive integer j such that (j,e) =1 and 4" £ J

(mod 2). We let

q = e(d" + 32) -1>1(1 +1) -1>0.

Then p2 - 4q = ed' - 4ed" - 4ej2 = - 4ej2
so that F(N(p,q)) = R(V=Fe) = R(V-d). Also
2 + (q - 1)% = —bej? + &2(a" + 3°)°
= e(-4j2 + e(a" + 32)2} = ehq,
where hl is defined by this equation and is evidently odd

by our choice of j. Further,
p% + (q + 1% = 4pf + e®(a" + 3%)° = n,,
where h2 is defined by this equation and is odd. Let
c = hlhz' Then
F(M(P:q_) ) = R(Vec) = R(JdC).

Since (e,j) = 1, e is odd, and e ‘(p2 + 4), it is clear



- 19 -

that (e,¢) = 1. Since h, and h, are odd, (2,e) = 1, Hence
(4e,¢) = 1 so that certainiy (d,c) = 1.8

In Theorems 2.1 and 2.3 we required that the square-
free part of d Dbe odd. We now suppose that the square-
free part of d is even. We are able to consider the case
in which F(N(p,q)) = R(Yd) and the case in which F(N(p,q))
= R(V=d), 4 > 0, simultaneously.

Theorem 2.4. Suppose 4 is a positive integer of the form

2t23, where g 1is a square-free odd integer. Suppose also

that d !(p2 + 4) and e = 1. Then:

(a) IT p2 + 4 = O(mod 8), there exists an integer q # 0, -1,
such that F(N(p,q)) = R(Ved) and F(M(p,q)) = R(Vde),
where ¢ is an integer such that (c,d) = 1.

(b) If p2 + 4 £ 0(mod 8), then there exist no integers g
and ¢ such that F(N(p,q)) = R(Ved), F(M(p,a)) = R(Ved),
and  (c,d/t2) = 1.

Proof: Since 2 |d |(p2 + 4), we can define an integer p; by

py = p/2. To prove (a) we suppose that p2 + 4 = 0(mod 8).
We let
d if ¥ is odd
£ = a/4 if + is even

Let d' be the integer defined as follows:

' = (p2 + 4)/f .
Clearly 2 |f and 22T d', so that we can define odd integers
d" and fl by the following:

ar = dav+/4, £, = £/2 ,
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Choose an even positive integer j so that (fl,j) =1, j> 24",
and define
q = £(d" - ej?) - 1.
If e<O then g>2-1=1, and if e > 0 then
q < £(a" - 44") -1 <-1.
Hence gq # 0, -l. Now,
p2 -4g = £d' - 4f(a" - ej2) = 4fej2
so that PF(N(p,q)) = R(Vef) = R(Ved). Also,
02 + (g - 1)° = 4fej® + £2(a" - e39)°
= 2f(232e + fl(d“ - ej2)2)= 2fh,
and p2 + (g + l)2

il

4pf + £7(a" - e%)°
2 2 .2 2
= 4(P1 + fl(d" - €] ) ) = 4h29
where h, and h, are defined by these equations. Now
since p2 + 4 = O(mod 8), we know that py is odd. Also,
since fld" ](p2 + 4) and 4" and :@L are odd, we conclude

that £ 1 =d"(mod 4), Since Jj is even,

1=
hy = 2:0 + 11 + 0)° = L(mod 4)
2 2 2,2
and h, = p] + fl(d -ej) " =1+ 1= 2(mod 4).

Hence A(p,q) = 42fhl(h2/2) = 42cf,
where ¢ is an odd integer and (c¢,f) = 1, since (fl,j) = 1.
Then (f,c¢) = 1 = (4f,¢) so that (d,c) = 1. Also F(M(p,q))
= R(Vef)) = R(Vdc). Thus (a) is proven.

To prove (b) we assume that p2 + 4 £ 0(mod 8), so
that in fact, p2 + 4 = 4(mod 8), since p is even. We
suppose that (b) is false. Then there exist integers q

and ¢ (we may surely assume that c is square-free) such that:
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(2.3) F(N(p,q)) = R(Ved) = R(V2se)
(2.4) P(M(p,q)) = R(Vdc) = R(V2se),

where 1 = (c,d/tz) = (2s,c). Since p2 + 4 = 4(mod 8),
(p2 + 4)/4s 1is an odd integer, say g. Now

5(p,q) = p° + 4 - 4(q + 1) = 4sg - 4(q + 1)
so that from equation 2.3,

4sg - 4(gq + 1) = 2%’ se
for some positive integer k. Since s is odd we conclude
that k/2 is a positive integer, say m. Thus

2

g +1=o(g - 2m%e).
Hence p2 + (g - l)2 = p2 ~ 49 + (g + 1)2

= 2ske + s2(g - 2m2e)2

i

s(2k2e + s(g - 2m2e)2) = snq
and p2 + (q + l)2 = 4pi + 32(g - 2m2e)2 = N,,
where n,y and n, are defined by these equations and are both
0odd since s and g are both odd. Hence A(p,q) = SNy
But, according to equation 2.4 we must have A(p,q) = 2sc-O .
But this is a contradiction since s, nq, and n, are odd.
Hence the truth of (b) is established. (We observe that in
the statement of Theorem 2.4 we need not restrict e to be
+1. In fact, the only préperty of e used in the proof of
the theorem is that (d,e) = 1.) &

We use the preceding theorems to prove the following
comprehensive statement:
Theorem 2,5. Let d be a square-free positive integer of the

form a’ + b . Then there exist sequences {rp} 5 {a,} » and
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{a)} such that p, <Py ., ay # 0, =1, F(N(py,q,)) = R(VE),
F(M(p,,q,)) = R(Vac,), F(N(p,q))) = R(V=d), end F(M(p,,q)))
= R(VEEE), where c, and c] are integers which are rela-
tively prime to &, n =1, 2, ... N

Proof: Ve consider two cases: in the first case d 1is odd

and in the second case 4 is even, In the first case d is

t
of the form T—YPi , where each Pi is equal to one or to
i=1

a primc of the form 4N+ 1, and the Pi are distinct,.
Clearly each of the equations

x° + 1 = O(mod P,) =1, 2,000t
has a solution which we shall denote by Xy Further,
gince the integers Pi are relatively prime, by the Chi-

negs Remainder Theorem there exists an integer z such that

ZEXi(mOd Pi), i =l, 2,ooc,t,

so that

(2.5) z” + 1 = o(mod d).

Let us define

(2.6) p, =2(z+ (n=-1)a), n=1,2, ... .

Then by equation 2,5 we have

pi + 4 = 4(22 +1) =0(mod d), =n=1, 2, ...

Then by Theorem 2.1, for each Py there exists an integer
q‘l’l # 0, =1, such that F(N(Pn,qn))= R(ﬁ) and F(M(Pn’qn))
= R(Vdcn), where ¢, = is some integer such that (d,cn) = 1.
Also, since o is even, by Theorem 2.3 there exists an

)) = r(V=3)

integer q # 0, -1, such that F(N(pn,qﬁ
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and F(M(p_,q})) = R(Vdc]), for some integer c) such that
(d,cﬁ) =1l,n=1, 2, ase . Clearly the sequence {pn)

is strictly increasing since d > 1, so that the theorem is
true if 4 is odd.

in the second case 4 is even and hence of the form

-t
27—TPi where the P, are as specified in the first case.
i=1

We can choose integers X4 i =1, 25e4.,t+1, so that

2 .
x; +1= 0(mod Pi), i=1, 2,004t
2
and Xp t1= O{mod 2).

Hence, as above, we can choose an integer =z such that

52 + 1 = O(mod d).

Clearly z is an odd integer. We define integers P, by
equation 2.6, Then p- + 4 = O(mod ) and p, /2 = 1(mod 2)
so that pg + 4 =0(mod 8), n =1, 2, ... . Thus by
Theorem 2.4 (with e = 1), for each integer p, there
exists an integer q # 0, -1, such that F(N(p ,q,)) = R(Vd)
and F(M(pn,qn)) = R(VEE;) , for some integer c  such that
(d,cn) = 1, Also, by Theorem 2.4 (with e = -1), for each
p,» there exists an integer a) # 0, =1, such that
F(N(p,,q))) = R(Y=4) and F(M(p,q})) = R(Vdc]), where

c! is some integer such that (d,cﬁ) = 1. As in the pre-

vious case, the sequence {pn} is seen to be strictly in-

creasing; so that the proof of the theorem is complete.

From a non-field theoretic viewpoint, the following

simple theorem comes to our attention relating A(p,q) and
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5(p,q) for certain pairs (p,q).

Theorem 2.6. Suppose 4 |p, p > 0, Then there exists an inte-

ger q # -1 such that A(p,q) = cb(p,q), for some integer c.
2

v | ((8/2)° +1), v = 1(mod 4), y > 1} .

Then U #£ @ since ((p/2)° + 1) € U. Choose ye&U. Tet

Proof: ILet U = {y

m be the integer given by:
m=(y - 1)/1 .
Then let
(4m(p/2)° = 1)/(1 + 4m) = ((y = 1)(p/2)" - 1)/y
(v(p/2)% = ((p/2)% + /vy ,

and this last expression is an integer. Then

oy
i

il

q +1=4n((p/2)% + 1)/(1 + 4m) £ 0
so that q # -1. Further,
m(p® - 4a) =42((p/2)° - (4n(p/2)° = 1)/(1 + 4m))
= q + 1.

Hence p2 + (q - l)2 = p2 - 4q + (q + l)2 = m.l(p2 - 4q)

where my =1 + m2(p2 - 4q), and this proves the theorem. f

We have shown in Theorem 2.2 that there exist infi-
nitely many pairs (p,q), with q # -1, pg # O, such that
gé(p,q) lgA(p,q). The following two theorems each tell us
that there also exist infinitely many pairs (p,q), with

q # -1, pg # 0, such that g,(p,a) | g5(psa)s

Theorem 2.7. There exists a sequence {(pn,qn)} of distinet
pairs of integers such that F(M(pn,qn)) = R(V2) and

F(N(Pn,qn))_ = R(V2dn), where d  is an odd integer and
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qn#—l’n‘:l’ 2’ LI *

Proof: Consider the equation
(2.7) x° - 2y2 = =1,
The solutions of this equation are of the form + x + ynVE ’

where X, and y, are defined by

(208) Xn + ynV‘Z_ = (l + ﬁ)zn—l, n = l, 2, LY »

We can show that the numbers X, and y, are all odd. For,

from equation 2.7, each X, is surely odd and thus

Zyi = X2 + 1

" 2(mod 4),

so that N cannot be even. We can define a sequence of
pairs of integers {(sn,tn)} by the requirements
\snl = x> ltnl = |Yp|» Sp =ty = -1(mod 4), n> 1.
We further define
by, = 8, *F tn’ q, = tn.

Then we have

(2.9) pi - qﬁ +1=-2pa = (s + tn)2 -t

2 2 _
= Sn + QSntn + 1 - 2sntn - Ztn = 0.

2

I 2(sn+ tn)tn

Then we see that

2 2

2 2
(2.10) (p> - a2 +1)° = 4pZq;

so that

2 2 2 2 2
Ap.,q.) = (ps - q2 + 1) + 4p%q° = 8p2¢°.
n’-n n 11 n—m n-'*n

Hence
F((pysa,)) = R(VD).
Furthermore, by the above,
2 2 _ 2
(2.11) py - 4q, = (s, + 1) = 4t = 4((s + .)7/4 - t ).
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Since s + t, = -2(mod 4), we have
2
((sy, +%,)/2)° - %, =1+ 1= 2(mod 1).

Hence F(N(pn’qn)) = R(VZdn) where d is the square-free

part of (((s, + tn)/z)2 - t,)/2 and is odd. Evidently
ltll <:1t2l <:‘t3‘ << aas » Hence 193} <:lq2|-< |q31-<... ’
so that the sequence ((pn,qn)) consists of distinct pairs,
Also, if q, = -1, for some n, we can delete the nﬁh pair
from the sequence thus fulfilling 211 conditions of the
theorem, 1
To illustrate the above theorem, we note that
X, +vV2 =1+ V2, oz, + 7,2 =7 + 52,
XB + y3V§ = 41 + 29y2.
Thus (Sl’tl) = (‘la“l)’ (sttz) = (73‘5): (35:t3)=Q'41:“29)
and hence (Plsql) = (-2,-1), (Pgaq2) = (2,-5),
(p3,a3) = (~70,-29).
Then  A( ) = ( 2 4 ( + 1)2)( 2 + - 1)2)
SRR Pq a9 Pl 44
4(4 + 4) = 2-4°,
and similarly, A(p,,q,) = (4 + 36)(4 + 16) = 24202,

i

A{(ps505) = 42(1225 + 196)(1225 + 225)
= 2(4+5-7-29)°,
Further, 6(pl,ql) = pi - 4ql =4 + 4 = 2'22

4+ 20 = 2:3:2°

i

5(P29q2)
5(p5ra5) = 4(1225 + 29) = 2(2°+3-11-19) .
The results of these calculations are as expected from the

theorem.
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While Theorem 2.7 tells us that there are infinitely
many pairs (p,q), with q # -1, such that gA(p,q)‘ gé(p,q)
and gA(p,q) = k, where k = 2, the next theorem tells us
that the same statement holds for an infinite number of in-
tegers k > 0, We first have a lemma:
nggg% Let ¢ > 1 be an integer of the form -TTfji,‘where
each prime P, is of the form 4N+ 1l. Then therc ecxiste
at least one pair of integers (a,b) such that ¢ = a2 + b2

and (b,c) = 1.

Theorem 2.8. Let d be an odd integer which is a product of

primes of the form 4N+1. Suppose further that 4 is not
a perfect square. Then there exists a sequence ((pﬁ,qﬁ)},
where the sequences {pé) and (q&) are strictly increasing,
such that F(M(p},q!)) = R(VA), F(N(py,qy)) = R(Vad, ),
where (d,dn) = 1.

Proof: Let 8, + tOVE denote any solution of the equation

(2.12) &2 - a2 = 1, s, >0, t,>0 .

n_ A.

(Such a solution exists by Theorem B,) VWrite d = 1 Pil
i=1

where the primes P, are distinct and each A, > 0. Fur-

tmﬁwﬁm t:krﬁ mwe%EO,izL“”mam
(k,d) = 1. Define
ar = t,/k, ¢ =(a)% .

Then we have

* A proof of this result can be found in [4], pages 164-6,
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2 2 2 N2 2. 2 L2,
(2.13%) s, = kc = s, - (d')°k"d = s; - td = 1.
Ve can write ¢ = a“+ b°  where (b,e) = 1. Such a and b

can be chosen by the lemma, Now ¢ is of the form pre-

scribed in Theorem 1.3 and s  + k¥e is a solution of
2 2

(2.14) s - t%¢ = 1.

We define

(2.15) 8 + tIVE = (sO + kVE)Q = (si + ch) + ZSOKV" .
Furthermore, define

(2.16) s, + tVC = (s + t,VC)"

x, + yn\[‘c? = (sn + tn\l—c?)z
u, + v e = (¢ +bye)(x, + y,Ve)

= (cxIl + cbyn) + VE(bXn + cyn)

k = 2(v, - b)/c
Pp = Xp2s
qQ, = knb + 1, for n > 1,

as in the proof of Theorem 1l.3. (In the proof of Theorem
1.% we demonstrated that the numbers kn are in fact in-
tegral.) By induction, we prove that s, = 1(mod ¢), n > 1.
Clearly, 84 = 1(mod ¢), since by equations 2,13 and
2,15
8 = sg + k% = 2ek? + 1 = 1(mod ¢).
Also

(2.17) s, + thE

(Sn—l + tn_lVE)(sl + thE)
= 8y g8y ety %+ Velt, 181 + sy %))

so that if we assume s ;= l(mod c¢) then s =1°1+0

n-1—
= 1(mod c) and the induction is complete,
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Further,

(‘tl,c) = (QSOk,c) = (2so,c)
since (k,c) = 1 by the definition of c. Also, (2s_,c) =1
by equation 2.13 and the fact that d is odd. Hence

(2.18) (t,,¢) = 1.

1°°
We now show that % = ntl(mod e¢) for n>1, We

prove this statement inductively noting that it is cer-
tainly true for n = 1. Assuming then that

tho1 = (n - l)tl(mod c),

where n > 2, we have from equation 2,17:

t, = ¢ t, = t + %

n n-15%1 F Sp1%1 F Pp-1 1 = (n - 1)1:l + t

1

= nt,(mod ¢)

1.(
and this completes the proof by induction.

Now congider the equations
(2.19) £(y) =y° + 1 = 0(mod P,), i=1,u..,m.
BEach of these equations is solvable since each Pi is of the
form 4N + 1. PFor each integer i, denote one solution of
equation 2.19 by y;. Since f'(yi) # O(mod Pi), i=1,0e.,m,
we conclude by Theorem C that there exist integers yi such
that
(2.20) v} = yy(mod B,), £(y}) = O(mod P2 ty),

i=1lyeea,m &

Then by the Chinese Remainder Theorem we can choose an
integer 2z such that

2o, +f3,

ZEy:{(mOd Pil l), i:l,ooo,m

and hence by equation 2.20 we have
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2

(2.21) f(z) = z° + 1 = 0(mod ¢),

m 2“1+ﬂi
since ¢ = T_TPi and the primes P, are distinct.
i=1

Now since 1t = ntl(mod c) and (tl,c) =1, as is
demonstrated above, it is clear that the numbers:

% 4re’ boire? “"tc(l+r)

where r is any positive integer, form a complete residue
system modulo ¢. Also, since (2b,c) = 1, the integers

2bt

2bt ‘24re

,Qo.’2bt

l+re? c(l+r)

also represent a complete residue system modulo c, Further,

since t,, . = t (mod c¢) for all m > 1, we can choose an in-

teger W such that

(2.22) 2bt =z - 1(mod ¢)

N+re
for every integer 1r > O.

Then:

2

(2.23) (2bt +12 4+1=2°+1 = 0(nod o),

N+re
by equations 2.21 and 2.22,

Now by equations 2.16,

2 : 2 2
(2.24) Pryre ~ 4qN+rc= kN+rca - 4(kN+rcb + 1)
2 2 2
= (_kN+rcb B 4kN+rcb - 4) + kN+rcc
= —(k,. b+ 2)%(mod ) .

N+re
In general, from equations 2,16 we know that

+ ey, - b)/c

n

kﬁ = 2§vn - b)/e = 2(bx

il

2(b(si + tic) + (28t ) - b)/e

2
2(b(sn + t5¢ = 1)/c + ZSntn) .

2
n
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. 2
Moreover, since si - tnc = 1, we have

It

(2.25) k,

4(bti + t,)(mod ¢),

since s = 1(mod c) as is demonstrated above.

equations 2.23% and 2.25 we have:
(2.26) Kyppol + 2 = 4th+rc + 1) + 2

(2bt

(th+rc
+ 1) 41

il
il

N+re
Hence by equations 2.24 and 2.26 we have

2
Plyre ~ 4ql\T+:t"c

Furthermore, since

2

O(mod ¢), r =20, 1, 2,

) 73 _ 2
z(b(Ztnc)/c + 2sntn) = 4(btn + sntn)

Thus from

O(mod c) .

* a9 9 .

) 2
(2.27) Pire = Hjsre = -(kN+rcb +2)7 + KireCs

we can show that ((p§+rc- 4qN+rc)/c,c) =1,
2

For, if P ‘((pN+rc - 4qN+rC)/c,c), where P 1is prime,
then P = Pi for some i. Then
200, + 6. +1
i i 2
Pi I(pN+ro - 4qN+rc) .
Also, by equation 2.26 we know that
2(2u.+4.)
i 7i 2
i l(kN+rcb + 2)
so that @
20t +0. +1
i i 2
Pi l(kN+rcb +2)".

Hence from equation 2.27 we would have

20+, +1
i i 2
Py ‘kN+rcc
so that
P: | By

which is impossible in view of equation 2,26.

Hence
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)) = R(Ve3,,;) = R(V(a")%aa ;)
R('ddrﬂ.) !

is an integer such that (4

F(N(pN+rc’qN+rc

where d ,¢) =1, r >0,

r+l r+l
Further, from the proof of Theorem 1.3, we know that

FM(Py, pot Oape)) = R(Ve) = R(YA), r=0,1, 2, ...
Since the sequence {(pN+rc’qN+rc)} is a subsequence of the
sequence {(pn,qn)), the sequences {pN+rc} and {qN+rc} are
strictly increasing, by the proof of Theorem 1.3.
Finally, we set

Py = PN4(n-1)c’ ay = At (n-1)e? ™ =1
and the proof of the theorem is complete.l

As an illustration of the above theorem, consider
the case d = 5. Since 92 - 425 =1, and (4,5) = 1, we
set ¢ =5 =4 and define a =1, b =2, We take

sy + th§ = (9 + 4V5)% = 161 + 72V% .

il

Then ) 2
S2 + t2v-5. = (Sl + th";) = (161 + 72V€)

= 51841 + 23184Y5 .
Now 22 + 1 = O(mod 5) so we can take 2z = 2, We then wish
to choose an integer N such that 2bty =z - 1(mod c),
ag in equation 2.22 above. In our case equation 2,22 be-
comes
| 4%y = 1(mod 5).
Since tl = 2(wod 5) and tz = =1(mod 5), evidently N = 2

will suffice., We then observe that 5 does indeed divide

k2b + 2. . In fact,
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kb + 2 = 2(k2 + 1) = 2(4t2(t2 + 32) + 1)
2(4+23184+98209 + 1) = 29107509825

i

= 2+5+1821501965 .
Setting p, = k,a = k, and q, = kyb + 1 = 2k, + 1, we
have
2 .2
p; - 40, = k5 - 4(21:2 + 1) |
b3 = 4(ky + 1)7 = 5+4((k/2f = 5((ky#1)/5)7)

il

so that P(W(p,,q,)) = R(V5d;) vhere 5 f dy. Clearly we

must also have F(M(pz,qz)) = R(V5). (We omit numerical
verification of this last statement as a similar calcula-
tion was demonstrated in a previous example.) Evidently
from this example, the method of calculation outlined is

highly impractical.
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IIT. ON THE COINCIDENCE OF F(M(p,q)) AND F(N(p,q))

The following known theorems will be of use in this
chapter:
Theorem D, Let f(x) be a polynomial of degree n > 3 with
integral coeffiecients and distinet =zeros, and let a be any
non-zero integer. Then the equation
ay2 = f(x)
has only finitely many integral solutions (x,y).B§
This is a special case of a theorem by C. L. Siegel,
(5] . A proof resting on the Thue-Siegel-Roth Theorem was
given by W. J. Leveque in (6] , pages 155-7.
Theorem E., The integer 2 is a quadratic residue of primes
of the form 8N+l and a quadratic non-residue of primes
of the form 8N+ 3. &
A proof of this theorem can be found in [7] ,
Theorem 95, page 75.
Theorem F., Let D be a positive integer which is not a perfect
square, If ug + le5 is the fundamental solution oif any
class of solutions of the equation
u? - Dv? = N

and if x, + ylV5 is the fundamental solution of the equation

2 g2 =1

(which exists according to Theorem B), then



y
0<v, < ——L V¥ if N> 0,
V23X14- 1)
J
1 i
and 0<vy £ —=—— |-N if W<o0.1
1 VZ(Xl- 1)

A proof of this theorem can be found in [3}, pages 205~7,

Computations for pairs of integers (p,q) satisfying
the inequalities

0< |pp < 600, O< g} <800
revealed five pairs (p,q) with ¢ # -1, pq # O, such that
the fields F(M(p,q)) and F(N(p,q)) coinecide. In the case
q = -1, we have

A(pyq) = p°(p° + 4), 8(p,a) = p° + 4
so that the fields coincide trivially for every p. (This
fact is also evident from remarks in the Introduction.)
Also, it is easy to see that

a(p,0) = (p° + )%,  6(p,0) = p°,

8(0,q) = (¢ - 1)%,  8(0,q) = -4q

so that F(M(p,0)) = F(N(p,0)) for all inlegers p and
P(N(0,q)) = F(M(0,q)) if and only if q = -=[1.

The five non-trivial pairs (p,q) such that the
fields coincide are listed in Table I below with other
pertinent information. Here we define F(p,q) = F(M(p,q))

= F(N(p,q)). Also we denote the fundamental unit in

F(p,a) by ulp,a).



TABLE I

F(p,q) P q &(p,a) o+ (g +1)° 2 + (g - 1)°
R{2) 6 7 e 10° 0.6°
R(I2) 1k 7 2.2° 502 2.17°
R(I1T) 11 ~T6 S.mm m.S....&m m.mmm
RETT) 141 -236 17-35° 2.17-47° 2.195%
R(/I1) %0 31 11-6° 41.8° 50°
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TABLE II

“}

y.*.

® d w(psq) N(p,a) M(p,a)
6 7 14392 - 3442 (-3 +¥3)3(u(6, 7))
14 k7 1492 .7 492 (7 +¥3)2(a(t, h7))*
11 16 y + 417 ap?u(1L,~76) &2re3(u(1r, -76))"
=6 + &WHN.
B=(5~J17)/2
11 -236 T w.micﬁmf,mwmzw s
+ =22 + 5017
1O 31 32 + 5Vh1 -20 + 341 (-20 + 3011)2(u(b0,31))?
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Tn Table IT above* the characteristic roots A&(p,q)
and Aﬁ(p,q) are factored into primes in F(p,q). This
factorization is possible since the fields in question,

R(V2), R(YI7) and R(V41), are Buclidean fields.

We obhserve that one of the cases of coincidence of
the fields F(M(p,q)) and F(N(p,q)) occurs when (p,q) = (6,7).
This brings to mind the question of whether there exists
another pair (p,q) such that ¢ = p + 1 and the two fields

coincide. We have the following theorem:

Theorem 3,1, F(M(p,p+l)) = F(N(p,p+l)) 4if and only if

p =-1, -2, or 6.

Proof: (Note that when p = -1 or -2 the fields in question
coincide trivially.) We set q = p + 1. Then we have
(3.1) 8(p,q) = p° - 4q = g° - 6q + 1 = k%m

for some integers k and m such that m is square-free.

Further,

p° + (q - 1)% = 2p°

p° + (g + 1)% = 2(¢® + 1)
so that
(3.2) a(p,q) = 2%p%(a° + 1) .

Suppose F(M(p,qa)) = F(N(p,a)). Then from equations 3.1

and 3.2:

(3.3) ¢ +1=mn0.

Then equation 3.1 becomes

* This table is not further used here. Since, however, it
necessitates some lengthy computation, it is included as
it may be of interest independently,
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m'[] - 6q = k2m

so that m [6g. But (m,q) = 1 from equation 3.1 so that
mn| 6. Hence by equation 3.3, m = 1 or 2,

If m=1 then O = pg = p(p + 1) by Theorem 1.1, so
that p = 0 or -1. In the case p = -1 the two fields do
in fact coincide, whereas in the case p = 0 they do not.

If m = 2 then there exists an integer h such that

(3.4) 0 + 1 = 2n°,

by equation 3.3. Thus egquation 3.1 becomes
2n° - 6q = 2k°

or

(3.5) 3q = h° - k°.

From equation 3.4, we must have
99° = 9(2n° - 1)

which we combine with equation 2.5 to have:
(3.6) (n? - ¥2)? = 3°(2n® - 1).
We will show that equation 3.6 has only two sclutions
which correspond to p = -2, 6. We may assume that both
h and k are non-negative throughout our discussion. We
first suppose that h > 30, Then if |h - k|l > 5 we have:

x% = ((h - ¥)/3)%(h + k)° > 250%/9 > 2n° > 21° - 1
where we have defined

x = ((n® - ¥%)/3) .
This ineciuality shows us that in this case equation 3.6
cannot be satisfied.

If Ih -k} =4, then lh + k|l = 2h + 4 (since h > 30)

and so
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£ = 16(2h + 4)°/9 > (2n - 4)?
> 2h% + (2h° - 16h) = 2h° + 2h(n - 8)

so that equation 3.6 cannot be satisfied,
If |h - k| = 3, then

2 2

X2(2h—3)2>2h 2

+ 2n{(h - 6) > 2h° - 1
and again equation 3,6 cannot be satisfied.
In the caselh - k| = 2 we have
x° = 4(2h + 2)%/9 < 4(2n + 2)°/9
16n%/9 + 4(8n + 4)/9
2n? - 2(h? - 16h - 8)/9.

1l

I

]

Now it is clear that since h > 30 we must have:

2

h" - 16h - 8 = h(h - 16) - 8 > 30-1 - 8 > 9,

Hence X2 <:2h2 -2 <:2h2 - l.' Hence in this case also
equation 3.6 cannot be satisfied.
Suppose now that }h - k| = 1. Then
x° < (2h + 1)2/9 = 4n%/9 + 4n/9 + 1/9
= 2% - (14h%/9 - 4n/9 - 1/9)
= 2% - (2(7h - 2) - 1)/9
< 2n® -1
and we conclude as above that equation 3.6 cannot be satis-
fied, Obviously, equation 3.6 cannot be satisfied in the
case |h - k| =0 and sobwe have proven that for h > 30
there is no k such that equation 3.6 is satisfied,
Now we observe that equation 3,6 implies

(5.7) n° - 2n° = -1
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where =n = _-x;(h2 - kz)/B so that k2 = h2 + 3n.

The positive solutions of equation 3.7 can of course be
written down in order of increasing magnitude as in the
table below. (The positive solutions of equation 3.7 are

precisely the pogitive odd powers of 1 + V2 )

n n he _ %n n° 4 7 I
1 1 -2 4 2
5 T 4 46 2

29 41 718 964 —_

Thus we see that for h < %30 +the possible solutions of
equation 3.6 are (h,k) = (1,2) and (5,2). In the former
case q = (h2 - k2)/3 = =1 and thus p = -2, whereas in the
latter case g = 7 and thus p = 6. }

We observe that in three cases of coincidence of
F(M(p,q)) and F(N(p,q)), two of which are non-trivial, the
relation 6&(p,q) = 8 is satisfied. This leads us to in-
quire if there are any additional pairs (p,q) such that
F(M(p,a)) = F(N(p,q)) and 6(p,q) = 8. We have the following
theorem:

Theorem 3.2. Suppose F(M(p,q)) = F(N(p,q)), 8(p,q) = 8,

and p > 0. Then (p,q) = (2,-1), (6,7), or (14,47).

Proof: Under the above hypotheses,

p2'+ (g + 1)% = 4g +8 + q° + 29 +1 = (g + 3)2
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2 2
p° 4 (g -1 =8+ (q+1)°.

Since P(N(p,q)) = R(Y2) we must have

(3.8) (¢ +1)% + 8 = 2k

for

2

some integer k. We define x = p/2, Clearly x is

integral. Aloso

X2 =q + 2

so that

e +1l=x2-1.

Substituting this result in equation 3.8 we have:

(%.9) (x° - 1)° + 8 = 2k°.

From this equation we see that x is odd and k is even, so

that /2 is an integer which we denote by y. ZEquation

3.9 then becomes
(x> - 1)% = 8(y° - 1)
and thus
(3.10) (=2 - 1)/8)% = (32 - 1)/8.
*

Since x and y are odd we may write

x=2u-1, y=2v -1

so that equation %.10 becomes

The

HIEEMIE

*%
only solutions  of this equation are (u,v) = (1,1),

(2,2) and (4,9), and these solutions correspond to

*

*¥%

I am indebted to H. Hasse for this transformation.

For a proof of this assertion, see [8]}, pages 202-7.

The problem was raised previously by several authors.
(See [9], pages 27, 36, and 37.) A new proof by J. W. S.
Cassels is forthcoming.
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(p,q) = (2,-1), (6,7), and (14,47), respectively. §

In Theorem %.2 we considered only those cases of
coincidence which occur when 6(p,q) = 8., We suppose now
that 6(p,q) = K, where K is a constant. Then we have the
following theorem:

Theorem 3,3, Let K denote an integral constant. Then

there exist at most a finite number of pairs (p,q) such
that 6(p,q) = K and F(M(p,q)) = F(I(p.q)).
Proof: We can easily see that there exists no pair
(p,q) such that &(p,q) =0 and F(M(p,q)) = F(N(p,q)).
Hence we assume K # 0. We may also assume K # 8, in
view of the previous theorem. We write K = k2Q, where
k and Q are integers and Q is square-free., We suppose
that F(M(p,q)) = F(N(p,q)) coincide. Then we must have
(3.11) a(p,a) = (0% + (¢ + DI + (a - 1)?) = »g
for some integer h. Since &(p,q) = p2 - 4q = kZQ, we
must have:
(3.12) (k°Q + 4q + (g + 1)%)(x%2 + 4q + (q - 1)?) = n.
The left-hand side of equation 3.12 is a polynomial of
degree four in g with roots

a=-3+ (8-%Q)7, -1:k(-Q?f.
Since kZQ =K #8 and K £ 0 by hypothesis, these four
roots are distinect. Thus by Theorem D we conclude that
equation 3,12 has at most a finite number of solutions
(h,q). This proves the theorem since K and q determine

Ip}| uniquely. R
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We apply a similar argument to prove the following

more interesting rcoult:

Theorem 3,4, For any given integer q # -1, O, there exist

at most a finite number of integers p such that F(M(p,q))
and F(N(p,q)) coincide.
Proof: (Recall that when q = -1 or O, the cases eliminated
from this theorem, these fields coinecide for all integers
p. ) Suppose first that g and Q are fixed integers
satisfying the conditions that q # 0, -1, and Q is non-
zero and square-free, Suppose also that
(3.13) F(M(p,a)) = R(VQ) = F(N(p,a)),
for some integer p. Then equation 3.12 must be satis-
fied for some pair of integers (h,k). The left side of
this equation is a polynomial of degree four in k with
roots given by

=+ ((<4g - (a £ 1DD)/Q)?
for all four choices of signs. These four roots are dis-
tinet except if either

49 + (g + 1)2

4q + (g - 1) =0,

]

0,

or 4qg + (q + 1)2 = 4q + (q - 1)2.

The first of these equations is not satisfied for integral
g, the second implies that g = =1, and the third implies
thalt g = 0, so that under our hypotheses the four roots
are distinct. Thus we can conclude by Theorem D that

equation %.,12 has at most a finite number of solutions
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(h,k) for fixed q and Q satisfying these restrictions, so
that for such q and Q equation 3.13% can be satisfied by at
most a finite number of integers p (since k, q and Q deter—
nine |p| uniquely). Clearly if Q = 0, |p| is uniquely de-
termined by q (in fact, p2 = 4q). Thus we conclude that
for any Q and any q# 0, -1, there exist at most a finite
number of integers p such that equalion 3.17 holds.
Now we observe that for q # -1 there exist at most

a finite number of square-free integers Q such that equa-
tion %.1% is satisfied. This is true since equation 3.17
implies that there exist integers k, N, a, b and M such
that Q = ab, MN =[O , and the following equations are
satisfied:

p? - 4q = k°Q

p2 + (g + 1)2 = Na

p2 + (q - 1)2 = Mb .

Combining these equations we see that

a {(q2 +6g +1), Db |(q + 1)2
so that

Q |(a +1)%(d® + 6a + 1).
Now the expression (q + 1)2(q2 + 6q + 1) is not equal to
zero for integral q # -1. Hence it follows that Q can
assume only a finite number of square-free values, for
fixed q # -l. Since Q may always be considered to be
square-free or equal to zero in equation 3,13, we conclude

from all of the above results that there exist at most a
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finite number of integers p such that F(M(p,q)) = F(N(p,q)),
and thus the theorem is proven..

We may simplify the above proof slightly with the use
of the following lemma:
Lemma. There exists no integer p such that F(M(p,1))
= F(N(p,1)).
Proof: We let g = 1 and suppose that P(M(p,q)) = F(N(p,q)).
Then we must have
(3.14) p? - 4q = p° - 4 = k°Q
(3.15) (02 + (a + DO + (a - D) = (p° + H)p?

= h2Q

for some integers h, k, and Q, where Q is square-free
or zero as usual, and h, k # 0. Equation 3.15 implies that
h/p is an integer, say j. Thus from equations 3.14 and 3.15
we have

8 = 320 - ¥%q = (3% - ¥9)q .

If Q = 1 then from equation 3.14 we have p2 = k2 + 4
which is impossible since k # 0. The only remaining alter-—
native is Q = 2, which implies j2 = k2 + 4 and this is
also an impossibility. Thus there exists no Q, and hence
no p, satisfying equations %.14 and 3.15. §

In the proof of Theorem 3.4 we have shown that
equation %.1% has at most a finite number of solutions p
for given integers q and Q, where q # -1, 0, and Q is

either equal to zero or square~free. We may now give a

different demonstration of this as follows:
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We observe from the lemma that for g = 1, equation
%.13 is never satisfied. We therefore can assume that integers
a#+1, 0, and Q are fixed and observe that the equation
F(M(p,q)) = R(VYQ) has only a finite number of solutions
p at most. This is true since the left-hand side of the
equation

(02 + (g + DD (P2 + (a - 1)?) = n%q
is a polynomial of degree four in p with roots given by the
relation p =+ i(q + 1) (for all four choices of
signs in this expression). Under our hypotheses these
roots are distinct so that for Q # O we conclude again by
Theorem D that F(M(p,q)) = R(YQ) has at most a finite num-
ber of solutions p, and for Q = O this equation has no
solutions p. This is the desired result.

The proof of the following theorem proceeds along
the same lines of reasoning employed in proving Theorem 3.4,

Theorem 3,5, For a fixed integer p # O there exist at

most a finite number of integers g such that F(M(p,q))

and F(N(p,q)) coincide,

Proof: We observe that for fizxed Q and p # 0 the equation
(3.16) A(p,q) = k2Q

has at most a finite number of solutions (q,k). For,

AMp,q) is a polynomial of the fourth degree in g with

roots g =+ 14+ ip (for all four choices of signs). Under
our hypotheses, these roots are distinct so that by Theorem

D, equation 3.16 has at most a finite number of solutions
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(g,k) for Q # 0 (and clearly it has no solutions q for

Q = 0, since by hypothesis p # 0) so that equation 3.16

has at most a finite number of solutions g for any Q .
We now demonstrate that only a finite number of

square~free integers Q can satisfy

(3.17) F(M(p,q)) = F(i(p,q)) = R(VQ)

for fixed p # 0. For, if equation 3.17 is satisfied then

there exist integers h and k such that:

Mq + 1) = p° - ¥°Q + 4,

4(q - 1) = p° - k°Q - 4,
(16p° + 16(q + 1)°)(16p° + 16(q - 1)°) = (16)°n°q
and hence,

(24p° + p4

+ 16)(p2 + 4) = 0(mod Q).
Since this expression is never equal to zero, we conclude
that @ belongs to a finite set of integers., These results

yield the theorem. B

For two of the known non-trivial cases of coinci-
dence of F(M(p,q)) and F(N(p,q)) we notice that
(5.18) (2 + (a + D) (P + (¢ - 1)?) = 17-130%°.
In one ecase (p,q) = (11,-76) and in the other (p,q)
= (141,-2%6),

Using computer-obtained data, it is possible to show
that equations 3.18 and
(5.19) p° - 4q = 17%%,

which together imply that
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(3.20) P(M(p,q)) = F(N(p,q)) = R(VIT),
are satisfied for no other triples (p,q,k) (with p >0
and k > 0) than (11,-76,5),(141,-23%6,35), and (53%6,-1,130),
the latter triple representing a trivial case of coincidence.
From computations we know that this assertion is true for
p, la| <550, If either p or }q| > 550 then

(p% + (q + D) (P + (a - 1) = (p° + (q + 1)

> 550°p° > 17°130°p2.

24,2
)p
Hence equations 3,18 and 3.19 are satisfied for no other
triples than those given.
One of the coinciding cases, namely (p,q) = (40,3L)
gives us a solution of the system of equations:

(3.21) (0% + (q + 1)2)(p° + (g - 1)?) = 41-10%p°

(3.22) p? - 4q = 41°x°.
There are no other triples except (p,q,k) = (40,%1L,6) and
(64,~1,10) (with p > 0 and k > 0) satisfying equations 3,12
and 3.22. From computations we know that this assertion is
true for p and |q| < 65. If either p or |q| > 65 thens
(0% + (q + %) (2% + (¢ - 1)) = (p° + (g + 1)%)p
> 65%p2 > 4100p°
and this proves our assertion.
We observe that both equation 3.21 and equation
3.18 have solutions (p,q9) of the form (p,-l). In general,
the following remark is true:

Remark 3.6. Let K be a fixed integer. Suppose the

equation . A(p,q) = Kp2 has a solution (pO,qo), P, > O,



- 50 -
2
l.
Progf: Write K = h2Q, where Q is square-free. Then by

Then there exists an integer p such that A(pl,—l) = Kp

hypothesis we have:
2 242 2 2.2
A(pysa,) = (1 + py + q,) - 4q, = h'p Q.

2 2 2)2 2)

Hence hZng - 4p0 = (1 + P, * 9, - 4(q§ + Py

= (1 - (pi + qi))2

so that th -4 = pi for some integer Py since P, # O.

This integer p satisfies our requirements. For,
1

a(py,-1) = pi(pi + 4) = hgpiQ = Kpi .

In the above discussion we considered systems of
equations which included the equation
(3.73) (0% + (a + DA + (a - 1) = 4p?
with k = 17-652 in one case and k = 41’52 in the other.
We noted some solutions (p,q) (indicated by T in Table III)
in these cases, Let us now consider the solutions of
equation 3,23 by itself, Clearly we need only mention none
negative pairs of solutions (p,q) (i.e., pairs such that
P, 9=>0 ). As solutions of equation 3.23 must satisfy
the conditions

lg + 11l <V2& , Ipi< V2K,

it is easy = to exhaust them with the aid of a computer,
as has been done in the cases of those k noted above (see
Table III below),

General properties of the solutions of equation 3.23

evidenced in these two cases are explained by the following
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Table IIT
K = 17+65° k = 41.5°

1Y q P q

0 1 0 1

3 40 1 8

8 65 7 20

+ 11 76 12 25

21 104 24 31

%0 127 31 32

53 160 3% 30

60 169 ¥ 40 31

T7 188 52 25

80 191 57 20

99 208 6% 8

108 215 1 64 1
¥ 141 236
164 547
192 257
2073 260
228 265
267 268
269 268
308 265
3373 260
344 257
272 247
395 236
428 215
437 208
456 191
459 188
476 169
187% 160
504 127
515 104
525 76
508 65
53% 40
+ 536 1
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remark,

Remark %.7. Let n(k) denote the number of non-negative

pairs (p,q) which are solutions of equation 3.23 for a

*
fixed positive integer k. Then
1, ifk #1 +0Q
n(k) =
2(dl(k) - d3(k)), if k=1

Purther, if k = 1 +00 and k # 1, then n(k) > 4.

Proof: Since

2 2 2

Alp,a) = (p° + o© - 1)%+ 4p°,
we can rewrite equation 3%.2% as follows:
(3.24) (p2 + ¢% - 1) = 4p°(x - 1),

Hence if k¥ - 1 # 0, equation 3.23 has only the trivial

solution (p,q) = (0,1). Suppose now that there exists a
non-negative integer h such that k =1 + h2. Then the
non-negative solutions of equation 3,23 are precisely the

pairs (p,q) = (1si,\tl), where (s,t) is a solution of
2 2

(3.25) s + t°“ -1 = 2sh
which can be written as
(3.26) x° +t2 =h° + 1=k

where X = s - h, Evidently for h > 0, n(k) is the number
of solutions (x,t) of equation 3%.26 with +t > O (we must

count both (x,t) and (-x,t) since h > O implies x # 0, and

* In [T7], dl(n) and d3(n) are defined to be the number of
divisors of n of the form 4N+1 and 4N+ 3, respectively.
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hence the absolute values of the integers s corresponding
to +x and -x are distinet) and thie number is just*
*%
r(k)/2. It is known that
r(k) = 4(d; (k) - dx(k)).

Thus n(k) = 2(dl(k) - d3(k)).
Clearly this formula also holds if h = 0. For, in this

2 . 1)2 =0, so that

case equation 3.24 becomes (p2 + q
n(l) = 2. Since dl(l) = 1 and dj(l) = 0, we have

n(1) = 2, (1) = d5(1))
as asserted. To complete the proof of the remark, we
observe that for k > 2, four distinet solutions of
equation 3%.23 are given by (p,q) = (0,1), (h=1,h), (h+l,h),
and (2h,1). (We note that according to Table III,
n(l7-652) = % and n(4l-52) = 12, This agrees with
Remark 3.7, since dl(17°652) = 2+3+3% = 18, dl(4l’52)
= 223 =6, and d5(17-65°) = d5(41+57) = 0.) N

We observe that Table III includes the pair (p,q)

(8,65), which is a solution of the equation

(3.27) (p° + (a + 1)2)(p2 + (g -1)%) = 4,17132(12,

Actually we can very simply describe all of the solutions

of this equation as follows

Remark %.8. The (non-negative) solutions of equation 3.27

* In [7), r(n) is defined to be the number of representa-
tions of n as a sum of two ordered squares (variations
in sign are taken into account).

** See [7], pages 241-2, for instance.
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are precisely the pairs (p,a) = (0,1), (p, ,q,) and (Ppray.q)
where b, =X + 4qn, and x, and q  are defined by the

equation
Xn + q‘n 17 = (4 + l7)2n+l ’ n = O’ l! 2’ L) *

Proof: Since

2 2 2 2
Alp,a) = (p° - g + 1) + 4p=q”,

equation 3,27 becomes
2 2 2
(p = a” + 1)° = (8pq

Thus the non-negative solutions of equation 3%.27 are

)2

precisely the paire ( lel , {45! ) cuch that (e,t) ie a eolution of
(3.28) s° + 88t - t° + 1 =0,
We let x =s - 4t., Then equation 3.28 becomes

x% - 1742 = -1,
The solutions of this equation are the pairs (x,t) = (ixn,itn),
n=0, 1, 2,ss45 (for all choices of signs) where x, and

t, are defined by
x, + t,V17 = (4 + Vi7)2n+l .

n
Hence the non-negative solutions of equation 3.27 are pre-

cisely the pairs (p,q) = (pn,qn) and (pﬁ,qn), n =0, 1, 2, ¢eey

where

P, = X, + 4%, p) = [Xn - 451, a, = t,.
We complete the proof by showing that p)! is in fact equal

t0 for n > 1, and (pé’qo) = (0,1)s Thus

Ppa

2
x, + t V17 = (x,_; + tn_lVi7)(4 + YIT)

It

33x,_q + 136t 1 + VIT(8x,_ + 33t ;).
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Hence
p} = ‘xn - 4tn,
= ]SBXn_l + 136tn_1 - 32xn_l - 132tn_l i
= Xpag * 4tn—l = Ppqe '

Returning now to the question of coincidence of
the fields F(M(p,q)) and F(N(p,q)) in its more general
aspects, we are able to demonstrate that there exist an
infinite number of integers ¢ such that the fields coin-
cidec for no integers p.

Theorem 3.9, Suppose F(M(p,q)) = F(N(p,g))e Then
q £ 2(mod 4),

Proof: Suppose F(M(p,q)) = F(¥(p,q)) and q = 2(mod 4).

Then there exist integers Q, k, and m such that k, m £ O,
(3.29) 8(p,qa) = p° - 4q = k°Q
(3.30) A(p,@) = (p° + (¢ + 1) (p* + (a - 1)?) = nq

where Q 1is equal to zero or a square-free product of

Il

it

primes congruent to one or two modulo four. Hence Q =1, 2,
or 5(mod 8), or Q = O. We show that Q is odd, For,
combining equations %.29 and 3.%0 we have
(3.31)  (6°Q + 4q + (q - 1)?)(x%Q + 4q + (a + 1)?) = nq,
so that

(°Q + 1) (k% + 1) = m°Q(mod 2)
since q = O(mod 2)., Clearly from this equation we cannot
have Q = O(mod 2). Hence Q = 1 or 5(mod 8). We assume

now that - Q = 5(mod 8) and deduce a contradiction. From
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equation %.29 we have

(3.32) p° = 5k°(mod 8).

Hence p2 = 0 or 4(mod 8)., In either case, we see that
A(p,q) = 1(mod 8), and since mZQ = 5m2 £ 1(mod 8), we con~
clude that equation 3,30 cannot possibly be satisfied in the
case Q = 5(mod 8). The remaining case is Q = 1{mod 8).

We will also deduce a contradiction in this case. Assume
then that Q = 1(mod 8). We can write

(3.33) p? + (q +1)2 ﬁ:gLan

(3.34) p? + (¢ - 1)2 = pom

for some integers /31, ﬁz, Ql, Q2, and n, where Q1Q2 = Q

il

and n is square-free. It is clear that n is a product of
primes of the form 4N + 1, or twice suech a product. Com-
bining equations 3.33 and 3.29 we have

(3.35) 4q + k°QQ, + (g + 1)% =@%an

so that we conclude

(3.36) 4q + (g + 1)2 = 0 (mod Ql)’

Similarly, from equatlons 3,29 and 3.3%4 we have

(5.37) 4q + (g - 1) = (¢ + 1)°
which implies that in g + 1.

= O(mod QZ)

Now Ql is a product of primes, TYPi, where each
P, = 1(mod 4). We can show that in fact each P; = 1(mod 8).

For, suppose some P, = 5(mod 8), Then, by equation 3.3%6,
4qg + (g + l)2 = 0{mod Pi),
or, setting x = p/2 (x is obviously integral),

(3.38) C4x® 4 4x o+ 8x + 1 = O(mod B, ).
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Equation %.38 can be revwritten as

(3.39) (2x + 3)° = 8(mod P,).
But, (._8_. ) = (_2_) = el
P, P,

by Theorem E, and hence we have a contradiction,

Hence Q; = T—TPi , where each P, = 1(mod 8),
and, in particular, Q; = 1(mod 8), Since Q = 1(mod 8)
and Q;Q, = Q, we conclude that Q, = 1(mod 8) also.

Now, from equation 3.29 we have

p° = k°Q + 8(mod 16)

= k2 + 8 or 9k2 + 8 (mod 16)

since q = 2(mod 4) and Q = 1{mod 8). Since the guadratic
residues of 16 are 0O, 1, 4, and 9, it is clear that

p2 =1 or 9 (mod 16).
Also, we observe that since 4 X g, we have

(q + 1)2 £ (q - 1)2(mod 16).

Since q is even we conclude that there are four possible

cages:
Case I: (g +1)% =1, (¢ -1)2 =9, p° = 1(mod 16)
Case II: (@ +1)% =9, (g -1)% =1, p° = 1(uod 16)
Case III: (q + l)2 =1, (g - l)2 =9, p2 = 9(mod 16)
Case IV: (q+1)%° =9, (g -1)2=1, p° = 9(mod 16).
In Case I we have
>+ (g +1)%2=14+1=2(mod 16)
P2 + (q - 1)2 =1+ 9 = 10(mod 16)



and in Case IV we have

p° + (q + 1)? 2(mod 16)

it

9 +9
p2 + (q - 1)2 =9 +1

1]

10(mod 16)

so that in both cases I and IV we have

(3.40) p? + (q + 1)% = 2(mod 16)

(3.41) p2 + (g - 1)° = 10({mod 16) .

Hence from equations 3.3%3, 3.3%4, 3,40 and 3.41 we have
(3.42) AZ0n = 2(nod 16)

(3.43) /3§Q2n 10(mod 16) .

Similarly in cases II and III we have

p2 + (g + 1)2 = 10(mod 16)

p° + (q - 1)2 = 2(mod 16)
so that
(3.44) /3§an = 10(mod 16)
(3.45) /3§Q2n = 2(mod 16) .
We now show that the system of equations
(3.46) v2tA = 2(mod 16)
(3.47) wo LB = 10(mod 16)

cannot be satisfied for any integers v, w, and t, where

A and B are integers such that A = B = 1(mod 8) and are

]

fixed. Then it will certainly follow that neither of the
systems of equations %.42 and 3.43 or 3.44 and 3.45 can be
satisfied so that in all cases we have a contradiction,
Thus we assume that equations 3.46 and 3.47 are
satisfied for some integers v, w, and t. Then since

A =B = 1(mod 8) we must have v = l(mod 2) from equation
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3,46, w = 1(mod 2) from equation 3.47, and t = O(mod 2)
from both of these equations. Hence

Av2 =1-= sz(mod 8)
gso that
(%.48) $(w°B - v2A) = O(mod 16).
However, subtracting equation %.46 from equation 3.47
we have

°B - v24) = 10 - 2 = 8(mod 16)

t(w
and this equation contradicts equation 3.48. Thus if we
assume Q = l(mod .8) we arrive at a contradiction and this
completes the proof of the theorem, i

We recall from the lemma following Theorem 3.4
that F(M(p,1)) and F(N(p,l)) cannot coincide for any
integer p. For certain other odd integers g we can also
demonstrate that F(M(p,q)) and F(N(p,q)) cannot coincide

for any p. Thus we have

Theorem 3,10. Suppose F(M(p,q)) and F(W(p,q)) coincide,

Then ¢ # 3, 5, 11, 13, 15, =3, -5, and -13%,

Proof: By equation 3.3l of Theorem 3.9, we have

(5.49) gla) = (a + 1)((a + D? + 4q) = O(mod Q)

where Q is a square—free integer or zero and we have
assumed that F(M(p,q)) = F(N(p,q)) = R(YQ) (gla) is defined
by this expression). From Table IV below and the fact that
the prime divisors of Q are of the form 2 or 4N+ 1, it
is clear that for esch integer g listed in the statement

of the theorem, we must have Q = 1 or 2, (Since q # + 1,
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we know that Q # 0.)

Table IV
Q la+1]  [Wa+1/2%+q]  |ela)/4]
5 22 7 227
5 2.3 247 22%5.7
2 >
11 2% 47 27347
13 0.7 2.31 227.%31
15 o 79 %79
-3 2 > 22
-5 22 1 22
-13 227 23 223.0%
Now,
2 2
(3.50) 6(p,q) = p~ =~ 40 = k°Q

for some integer k. This implies that Q # 1. For, if
Q =1, then pg = O by Theorem 1.1 and hence, since the
integers q in question are non-zero, p = 0; then, from

equation 3,50, we have -4q = k2, which is impossible for

the given q. Hence Q 2 and thus equation %.50 becomes

(3.51) p; - 2 = q

where P, = p/2, kl = k/2 are integers. Now the fundamental
solution of the equation
x2 - 2y2 =1

is Xq + ylﬁ = 3 + 2V’2- . Hence by Theorem F, if equation
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5.51 has solutions for q > 0, one of them must satisfy the
inequality

0 <k <2Va/V8 = Va/2 .
Also, by Theorem F, if equation 3.51 has solutions for
q < 0, then one of them must satisfy

0 <k <2Vjq(/V4& = V[aJ.
For each of the g involved in this theorem we test all
posgible kl and discover that indeed in each case
equation 3.51 has no soluticns, and thus the theorem is
proven. ¥

In the case q = 7, we recall that there exists an

integer p such that F(M(p,q)) and F(N(p,q)) coincide.
We are able to show that in fact this p is unique (in
absolute value). Thus

Theorem 3.1lL. F(M(p,7)) = F(N(p,7)) if and only if |p] = 6.

Proof: Assume p is an integer such that F(M(p,7)) and
F(N(p,7)) coincide and F(p,7) = R(VQ), say, where Q is
zero or square-free. Then we have

(3.52) 5(p,7) = p° - 28 = k°Q

(3.53) A(p,7) = (9% + 36)(p° + 64) = n°Q

for some integers k and m such that k, m # 0. Now from

i

the previous theorem we see that we must have
Q] (7 + 17 + 1)% + 28)
so that a)] 8.2%23 .
Hence, in fact, Q‘ 2., Ve argue as in Theorem 3%.10 and

conclude that Q = 2. We note that if P 1is a prime such
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that

2
P ((p° + (a + 1)%), (»° + (¢ - 1)2)),
then P ‘4q. In this case 4q = 28 so that P can only be

equal to 2 or 7. However, we know that if
7 (0% + (a2 1)),
o | . 2 2
then  7° | (0% + (¢ £ 1))
for some integer oL (where of course oL depends on the
choice of pigns). Hence for a given integer p, one of the

following systems of equations must be satisfied:

I 0% + % = 4.0 II p° + %% = 2.0
p° + 64 = 2.0 p° + 64 = 400

IIT 02 + %6 = 2.0 IV 02 + % = O
p2+64=m p2+64=2-\3

Now from equation 3.52, p2 = 2Kk + 4(mod 8) so that

p2 = 4(mod 8). Hence p2 + % = O(mod 8), and p2 + 64 = 4

(mod 8)., Hence neither system I nor system IV can hold.

In systems II and III we have p2 + 36 = 2n2, for
some integer n, so that
(3.54) x° + 9 = 2y2
where x and y are integers defined by x = p/2, y = n/2.

Further, equation 3.52 yields:

(3.55) % -7 = 222,
where =z = k/2. Combining equations %.54 and 3,55 we have
222 - 2y° = =7 = 9 = =16

so that
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(3.56) v° - z° = 8.

The only solutions of equation 3,56 are y =+ 3, z = + 1,
and these solutions lead to x =+ 3 (from equation 3.55),

or |p|=6 (and we recall that in this case the fields

coincide). 1
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