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ABSTRACT 

 

 This study examines the accuracy of the extracted elastic properties using 

nanoindentation. Since the conventional method to extract these properties utilizes 

Sneddon’s elastic solution, this study first considers indentations of linearly elastic solids 

for direct comparison. The study proposes a criterion for a converged specimen’s 

geometry and modifies Sneddon’s equation to account for the finite tip radius and 

specimen compressibility effects. A composite correction factor is derived to account for 

the violations of the underlying assumptions behind Sneddon’s derivation. This factor is a 

function of indentation depth, and a critical depth is derived beyond which the finite tip 

radius effect will be insignificant. Techniques to identify the radius of curvature of the 

indenter and to decouple the elastic constants for linear elastic materials are proposed. 

Experimental results on nanoindentation of natural latex are reported and discussed in 

light of the proposed modified relation and techniques. 

 The second part of the study examines the accuracy of the extracted material 

properties in elastic-plastic nanoindentations. The study establishes that the accurate 

determination of the projected area of contact, A, is crucial. However, the conventional 

method to determine A is largely limited to elastic materials, hence a new electrical 

resistance method is proposed to measure A for elastic-plastic materials. With an accurate 

A, the error associated with the extracted elastic material properties is reduced by more 

than 50% in some cases. This error remains to be a function of the material’s Poisson’s 

ratio, which is identified to influence the amount of residual stresses at the plastic imprint. 
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Finally, this study examines the accuracy of the extracted material properties in 

the nanoindentation of soft materials using an Atomic Force Microscope (AFM). The 

effects of cantilever stiffness, preload, and surface interaction forces are observed to 

influence the measurements. Three set of experiments were performed to decouple these 

effects. The effect of a preload resembles a shift of nanoindentation load-displacement 

curve, while the cantilever stiffness is observed to have significant influence on the 

measurement of the surface forces. Lastly, a novel technique to account for these effects 

is proposed, in order to accurately extract the material properties of interest.   
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NOMENCLATURE 

 

α  Half angle of the conical indenter 

α’  Half angle of the equivalent conical indenter 

α*  Angle between indenter and residual imprint 

β  Correction factor 

γ  Surface energy per unit area per surface 

δ  Approach displacement 

ε  Percentage error in Young’s modulus 

εs Mean of the square of the difference between experimental and JKR curve 

normalized by the square of JKR curve 

ζ Correction factor for compressible specimen 

ν  Poisson’s ratio of the specimen 

ρ Tip radius 

σy Yield stress of the specimen 

χ Coefficient determined by the indenter geometry 

a Contact radius 

A Projected area of contact 

As Surface area of contact 

C Constraint factor 

E Young’s modulus of specimen 

Ec Young’s modulus derived using conventional method 

Er Reduced modulus 
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h Indentation displacement/depth 

ha Location of sphere-to-cone transition 

hb Blunting distance 

hc Contact depth 

he Elastic recoverable displacement 

hmax Maximum indentation depth 

ho Indentation displacement due to preload 

hr Residual displacement 
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kc Spring constant of the cantilever 
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CHAPTER 1: INTRODUCTION 

 

 Indentation tests, also commonly known as hardness tests, were likely first 

developed by mineralogists (Tabor, 1951). The first documented semi-quantitative 

hardness test was developed by Mohs in 1822. Mohs established a measurement of 

hardness by ranking the ability of a material to scratch or be scratched by another 

material (Tabor, 1951). A subsequent development to the Mohs hardness measurement 

introduced the use of a diamond stylus to scratch the surface of the material of interest. 

The size of residual scratch imprint on the surface was measured to infer the hardness of 

the material. The scratch test however, was not suited for the hardness testing of metals, 

and the results are often complicated by the frictional properties of the surfaces. 

 In 1900, Brinell introduced the Brinell test (Tabor, 1951), which involved pushing 

a very hard spherical indenter (made of hard steel, tungsten carbide, or diamond) into the 

material of interest. The imprint was measured to derive the Brinell hardness number. In 

1908, Meyer proposed the measure of hardness as the ratio of the load to the projected 

area of indentation, which is still the commonly accepted measure for hardness even 

today. In 1908 and 1925, Ludwik and Vickers hardness tests were introduced; this was 

when conical and pyramidal indenters were used in hardness tests. These indenter 

geometries are commonly used today. 

 The theoretical development for indentation of materials was first studied by 

Hertz (1881). More commonly known for his important contributions in the field of 

electromagnetism, Hertz, during the Christmas holiday in 1880, at the age of 23, 

developed the linear elastic solution for the contact between two spheres to account for 
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elastic deformation in his study of Newton’s interference rings. His work immediately 

drew considerable attention to the contact mechanics community. Boussinesq (1885) then 

introduced the methods of potential theory to solve the contact problem between two 

linearly elastic isotropic solids. This proved to be an important milestone, as Sneddon 

took this method further, solving the contact problem first for a rigid conical indenter and 

a semi-infinite half plane (1948), and then for any arbitrary axisymmetric indenter and a 

semi-infinite half plane (1965). 

 The research interest in indentation tests became diverse by mid 20th century. 

Researchers examined various aspects of indentation tests such as plasticity (Dumas, 

1971; Ford and Alexander, 1963; Hardy, 1972; Hill, 1950), frictional effects (Goodman, 

1962; Grunzweig, 1954), viscoelastic and nonlinear elastic solids (Kuznetsov, 1962; Lee 

and Radok, 1960; Matthews, 1980; Radok, 1957; Yang, 1966) and adhesion (Bradley, 

1932; Derjaguin, 1934; Derjaguin et al., 1975; Johnson et al., 1971; Maugis, 1991; 

Muller et al., 1980; Tabor, 1977). By early 1970s, depth-sensing indentation tests were 

developed (Bulychev et al., 1975; Loubet et al., 1984; Newey et al., 1982; Pethica et al., 

1983; Ternovskii et al., 1974). These researchers laid the foundation for the subsequent 

development of nanoindentation, when technological advancements reduced the size of 

the indenter tips and improved the accuracy and resolution of the depth and load 

measurements. 

 Indentation experiments had been traditionally used to measure hardness of a 

material, until Ternovskii et al. (1974) introduced the stiffness equation to derive the 

reduced modulus (coupled term between the Young’s modulus and Poisson’s ratio) of 

interest using the measured load-displacement data. The stiffness equation is as follows 
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݀ܲ
݄݀ ൌ
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where dP/dh is the slope of the load-displacement curve, Er is the reduced modulus for 

the material, and A is the projected contact area of the indent. In 1992, Oliver and Pharr 

popularized nanoindentation as a technique to extract elastic material properties for 

materials, by re-introducing the stiffness equation and demonstrating that this equation 

works for all axisymmetric indenters with any infinitely smooth profile (Oliver and Pharr, 

1992; Pharr et al., 1992).  

 This technique proposed by Oliver and Pharr (1992) received wide acceptance by 

the community and is the built-in method to retrieve the reduced modulus information, 

for most modern commercial nanoindenters. This technique involves a number of 

simplifying assumptions, (i) the specimen is an infinite half-space, (ii) the indenter has an 

ideal geometry, (iii) the material is linearly elastic and incompressible, and (iv) there are 

no interaction surface forces during contact such as adhesive or frictional forces. With the 

advent of more efficient finite elements (FE) simulations and commercial codes, many 

researchers followed the footsteps of Hardy (1972) and Dumas (1971), who first used FE 

simulations to study the indentation problem. Some of the work published by researchers 

examining the indentation problem using FE simulations include ― on spherical indenter 

(Hill et al., 1989; Kral et al., 1993; Storåkers and Larsson, 1994); on conical indenter 

(Laursen and Simo, 1992); on pyramidal indenters (Giannakopoulos et al., 1994; Larsson 

and Giannakopoulos, 1996); on the effects of plasticity (Cheng and Cheng, 1999; Pharr 

and Bolshakov, 2002); on the forward-reverse analysis in nanoindentation (Chen et al., 

2007; Dao et al., 2001). 
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 Practical indentations are likely to deviate from the assumptions cited above used 

in deriving the stiffness equation (Eq. (1)). Any deviations of the extracted elastic 

properties using nanoindentation from the ones obtained using traditional material 

characterization techniques, such as the uniaxial tests, are commonly accounted for using 

a correction factor. This correction factor is commonly derived using two approaches, the 

phenomenological approach and the mechanistic approach. Using the phenomenological 

approach, researchers often establish a composite correction factor by comparing the 

macroscopic material properties obtained using traditional characterization techniques 

with those obtained using nanoindentation for different classes of materials such as 

polymers, metals, and ceramics, etc. (Tranchida et al., 2006). This composite correction 

factor takes into account all the factors that violate the stringent criteria for the stiffness 

equation. Unfortunately, this approach does not provide an insight to the makeup of the 

correction factor by different factors, nor does it reflect how the factors affect one another. 

In using the mechanistic approach, researchers often isolate one single factor that 

violates the criteria for the use of the stiffness equation. Using this approach, researchers 

are able to gain tremendous insight about this isolated factor. For example, in the 

compressibility of the specimen when ν < 0.5 ― which results in a lateral displacement 

during indentation, neglected in Sneddon’s derivation (Hay et al., 1999) ― researchers 

were able to derive a close form expression for the correction factor that relates to the 

Poisson’s ratio, ν. However, using this approach, it is often not clear if this correction 

factor for a violation of one criterion is applicable to practical indentations that include 

violations of other criteria as well, i.e., can this factor, derived under linear elastic 

conditions, be used in elastic-plastic indentations? And, how do different correction 
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factors relate to each other to form the effective correction factor for each 

nanoindentation experiment? 

 The objective of this thesis is to first investigate the effects of some of the most 

common violations of the assumptions required for the accurate use of the stiffness 

equation (Eq. (1)) such as finite tip radius, finite specimen geometry, compressible 

specimen, plasticity, and surface forces. This thesis will also examine the relationship 

between some of these violations that form the composite correction factor during the 

indentation of simple solids such as isotropic linearly elastic solids and isotropic elastic, 

perfectly plastic solids. Finally, this study aims to identify the crucial factors affecting the 

accuracy of the extracted material properties for indentations under various conditions, 

and to propose novel techniques to account for these factors. The last part of this study 

will also consider some additional challenges to extract material properties through 

nanoindentation of soft materials using an Atomic Force Microscope (AFM). This thesis 

will be organized into three main chapters: Chapter 2 ― an analysis of nanoindentation in 

linearly elastic solids; Chapter 3 ― an analysis of nanoindentation in elasto-plastic solids; 

and Chapter 4 ― an analysis of nanoindentation in soft materials. This thesis will 

conclude with a brief summary and discussion for future challenges in the final chapter.  
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CHAPTER 2: AN ANALYSIS OF NANOINDENTATION IN LINEARLY 

ELASTIC SOLIDS 

 

ABSTRACT 

The conventional method to extract elastic properties in the nanoindentation of linearly 

elastic solids relies primarily on Sneddon’s solution (1948). The underlying assumptions 

behind Sneddon’s derivation, namely (i) an infinitely large specimen and (ii) an infinitely 

sharp indenter tip, are generally violated in nanoindentation. As such, correction factors 

are commonly introduced to achieve accurate measurements. However, little is known 

regarding the relationship between the correction factors and how they affect the overall 

accuracy. This study first proposes a criterion for the specimen’s geometry to comply 

with the first assumption, and modifies Sneddon’s elastic relation to account for the finite 

tip radius effect. The relationship between the finite tip radius and compressibility of the 

specimen is then examined and a composite correction factor that involves both factors, 

derived. The correction factor is found to be a function of indentation depth and a critical 

depth is derived, beyond which the arbitrary finite tip radius effect is insignificant. 

Techniques to identify the radius of curvature of the indenter and to decouple the elastic 

constants (E and ν) for linear elastic materials are proposed. Finally, experimental results 

on nanoindentation of natural latex are reported and discussed in light of the proposed 

modified relation and techniques.   
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2.1. INTRODUCTION 

 

Nanoindentation has become an increasingly popular mechanical characterization 

technique in the last decade. In addition to measuring the hardness value, the depth-

sensing indentation has been routinely used to extract the elastic properties of the 

specimen, with known indenter geometry and material properties. Nanoindentation was 

developed in the early 1970s (Bulychev et al., 1975; Loubet et al., 1984; Newey et al., 

1982; Pethica et al., 1983; Ternovskii et al., 1974). The technological developments have 

reduced the size of tips manufactured, and improved the accuracy and resolution of depth 

and load measurement of the indentation test, which has spurred the development of 

commercial nanoindenters. Their popularity is primarily due to the increased interest in 

thin films and specimens with small volumes, as motivated by modern applications, e.g., 

thin films, microelectronics, MEMS, biomaterials, etc. In addition, nano characterization 

instruments such as the Atomic Force Microscope (AFM) are being widely used for 

performing nanoindentation on a wide range of materials (e.g., Bhushan and Koinkar, 

1994; Dimitriadis et al., 2002; VanLandingham et al., 2001). When compared to other 

methods of mechanical testing in the sub-micron range, nanoindentation has a relatively 

simple setup and specimen preparation. Furthermore, nanoindentation leaves a small 

imprint and is commonly perceived as relatively non-destructive. 

The indentation problem has been studied for over a century, beginning with 

Hertz's pioneering contribution on the contact between elastic bodies (Hertz, 1881). 

Boussinesq (1885) subsequently studied the contact problem between two linearly elastic 

isotropic solids using methods of potential theory, which proved to be a significant 
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milestone to the understanding of the indentation problem. Sneddon used the approach 

taken by Bousinnesq to derive the load-displacement relationship for a rigid cone 

indenter (1948), and subsequently derived it for an arbitrary indenter that is a body of 

revolution (1965). However, the analytical solutions were derived with stringent 

assumptions ― (i) the specimen is an infinite half-space, (ii) the indenter has an ideal 

geometry with known parameters (perfect cone, sphere, etc.), and (iii) the material is 

linearly elastic. These assumptions limit the application of these solutions to many 

problems of practical interest. However, with the advent of finite element simulations and 

commercial codes, researchers now have a new tool to investigate the indentation 

problem, e.g., on spherical indenters (Hill, 1989; Kral, 1993; and Storåkers, 1994); on 

conical indenters (Laursen and Simo, 1992); on pyramidal indenters (Giannakopoulos, 

1994; and Larsson, 1996); on effects of plasticity (Pharr et al., 2002; and Cheng and 

Cheng, 1999); and on forward-reverse analysis in nanoindentation (Dao et al., 2001; and 

Chen et al., 2007). 

Pyramidal indenters (three-sided Berkovich and four-sided Vickers) are 

commonly used in indentation tests. These indenters are commonly treated as conical 

indenters with equivalent half angle α, that gives the same area-to-depth relationship as 

the pyramidal indenter in question (Fischer-Cripps, 2004; Lichinchi et al., 1998; Oliver 

and Pharr, 1992; Wang et al., 2006; Yu et al., 2004).  

The conventional procedure to derive the elastic properties during an indentation 

experiment was first proposed by Oliver and Pharr (1992), who made use of Sneddon's 

solution to retrieve the reduced modulus, Er. Due to the stringent assumptions made in 

Sneddon’s theoretical derivation as discussed previously, a correction factor is often 



14 
 

introduced to achieve accurate results. The correction factor is commonly derived using 

two approaches, (i) phenomenological approach and (ii) mechanistic approach. Using the 

phenomenological approach, researchers establish a composite correction factor by 

comparing the macroscopic material properties obtained using traditional characterization 

techniques, such as uniaxial test, with those obtained using nanoindentation for different 

classes of materials such as polymers, metals, and ceramics, etc. (Tranchida et al., 2006). 

This composite correction factor obtained takes into account all the factors that violate 

the assumptions in the theoretical derivations, however, this approach does not provide 

insight to the makeup of the correction factor by different factors, nor does it show how 

the factors affect one another. For the mechanistic approach, researchers often isolate one 

individual factor not considered in the theoretical derivation. Using this approach, 

researchers are able to gain tremendous insight about this isolated factor. For example, in 

the compressibility of the specimen when ν < 0.5 ― which results in a lateral 

displacement during indentation, neglected in Sneddon’s derivation (Hay et al., 1999) ― 

researchers were able to derive a close form expression for the correction factor that 

relates to the Poisson’s ratio, ν. However, it is often not clear if this correction factor is 

applicable to practical indentations that commonly involve other factors as well, i.e., can 

this factor derived under linear elastic conditions be used in elastic-plastic indentations? 

And, how do different correction factors relate to each other to form the effective 

correction factor for the nanoindentation experiment? 

This chapter first critically examines the various assumptions used in 

conventional technique to extract elastic material properties for nanoindentation 

experiments, using numerical finite element calculations. The various sources of 
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deviation from theoretical assumptions, such as the finite tip radius and the lateral 

displacement at the indentation, will be examined carefully. The conventional procedure 

for extracting the reduced modulus is briefly reviewed in Section 2.2.  Results regarding 

the validity of the various assumptions discussed earlier are presented in Section 2.3.  

New methodologies and techniques accounting for the errors associated with 

conventional indentation of isotropic linearly elastic solids are described in Section 2.4.  

The composite correction factor that involves finite tip radius and compressibility of the 

specimen is presented in close form, and the significance of each factor will be discussed 

in detail.  Results from nanoindentation experiments on a nominally elastic solid (natural 

latex) are used to illustrate the application of the suggested techniques for accurate 

evaluation of material properties. A summary and conclusions of the study are presented 

in Section 2.5. 
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2.2. CONVENTIONAL EXTRACTION OF ELASTIC PROPERTIES 

 

By assuming a linearly elastic half-space and rigid conical indenter, Sneddon 

(1948) found that 

ܲ ൌ
2 ܧ tan ߙ

ߨ ሺ1 െ ଶሻߥ ݄ଶ (1)

where P is the load measured by the indenter, E and ν are the Young's modulus and 

Poisson's ratio of the material that is being indented, α is the half angle of the indenter, 

and h is the penetration depth by the indenter. While the validity of Sneddon's solution is 

limited to linearly elastic indentations, Eq. (1) is nonetheless routinely applied to elastic-

plastic indentations by assuming that the initial unloading segment of the load-

displacement curve is linearly elastic. In an elastic indentation where the loading and 

unloading curves follow the same path, Eq. (1) and subsequent derivations should be 

valid at all h. 

Differentiating (1) with respect to h, the slope of the load-displacement curve is 

given by, 

݀ܲ
݄݀ ൌ

4 ܧ tan ߙ
ߨ ሺ1 െ ଶሻߥ ݄ (2)

and with further algebraic manipulation (Fischer-Cripps, 2004), 

݀ܲ
݄݀ ൌ

2 ܣ√ ܧ
ߨ√ ሺ1 െ ଶሻߥ

 (3)

where A is the projected area of contact of the indenter. Bulychev et al. (1975) showed 

that (3) also holds for cylindrical punch and spherical indenters. Subsequently, Pharr et al. 

(1992) showed that (3) is relevant for all axisymmetric indenters with infinitely 
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differentiable profile. For a Berkovich/Vickers indenters, the angle α = 70.3o, and the 

corresponding projected area, A is given by, 

ܣ ൌ ߨ tanଶ ߙ ݄௖
ଶ (4)

where hc refers to the contact depth (Fig. 2.1) and is given by (Fischer-Cripps, 2004), 

݄௖ ൌ ݄ െ
2 ሺߨ െ 2ሻ

ߨ
ܲ

݀ܲ/݄݀ . (5)

Note that the coefficient of the second term on the right-hand side of (5) can be replaced 

by χ, whose value is dependent on the geometry of the indenter (Pharr and Bolshakov, 

2002). 

 

 

Fig. 2.1. Illustration of an indentation by a rigid cone into a linearly elastic solid 

Thus, using the load-displacement curve measured during an indentation, one can 

obtain the elastic constants of the specimen of interest by rearranging (3) to obtain the 

stiffness equation given by 

ܧ
ሺ1 െ ଶሻߥ ൌ

1
2 ߚ

ට
ߨ
ܣ

݀ܲ
݄݀ (6)

α hc 
h 

a 
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where β is a non-dimensional correction factor to account for deviations from the original 

stiffness equation. The factor β is used to account for the treatment of a pyramidal 

indenter as an equivalent conical indenter ― β is unity for axisymmetric indenters and 

close to unity for pyramidal ones ― β = 1.012 for square-based indenter, e.g., Vickers, 

and β = 1.034 for a triangular punch, e.g., Berkovich (King, 1987). However, these 

results are debatable, as Woirgard (2006) demonstrated analytically that β = 1.061 and β 

= 1.023 for triangular and square-based indenters, respectively. Hay et al. (1999) 

considered the elastic radial displacement neglected in Sneddon’s formulation and 

proposed a correction factor that is a function of the indenter’s half angle, α and 

Poisson’s ratio, ν. In addition, the correction factor β is also used to account for finite tip 

radius effect as found in the works of Troyon et al. (2004). The deviation of a pyramidal 

indenter from a conical one is not relevant to this paper since only the conical indenter is 

considered. Furthermore, since the objective of this paper is to investigate the 

applicability of Sneddon’s equation on nanoindentation, β is deliberately chosen to be 

one, so as not to introduce artificial effects into the analysis.      

The right-hand side of (6) consists of terms that can be derived using the load-

displacement measurements in an indentation experiment. Thus, using this relationship, 

the term on the left-hand side of the equation consisting of both E and ν, commonly 

referred to as the reduced modulus, Er, can be evaluated. It is important to note that the 

elastic constants, E and ν, evaluated using this procedure are coupled and thus require a 

priori knowledge of one of them to calculate the other. Also note that when the indenter 

is not considered as rigid, the reduced modulus, Er is given by, 
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1
௥ܧ

ൌ
ሺ1 െ ଶߥ

௦௣௘௖௜௠௘௡ሻ
௦௣௘௖௜௠௘௡ܧ

൅
ሺ1 െ ଶߥ

௜௡ௗ௘௡௧௘௥ሻ
௜௡ௗ௘௡௧௘௥ܧ

. (7)

The load-displacement relationship derived by Sneddon (1948), given by (1), 

assumed the specimen as a linearly elastic infinite half space and a conical indenter that is 

infinitely sharp. While these assumptions simplified the problem, it is important to note 

that it is virtually impossible to fulfill them in reality. In an experiment, the specimen to 

be tested is likely to have a finite geometry and so does the radius of curvature of the 

indenter. Any deviations from the assumptions made in the derivation of Sneddon’s 

solution will be inevitably transferred as errors to the extracted elastic constants. 

The goal of this study is to identify the effects of the above-mentioned deviations 

from the assumptions used in Sneddon's derivation (1948), and quantify the error 

associated with the calculation of elastic constants using the conventional method 

proposed by Oliver and Pharr (1992). This paper considers a Berkovich equivalent 

conical indenter (α = 70.3o) for which there is an available analytical solution (given by 

(1)). The elastic properties will be derived using (6) with β = 1. 
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2.3. NUMERICAL SIMULATIONS 

 

2.3.1. Sneddon’s Solution and a Rigid Indenter with a Finite Tip Radius 

 Numerical 'experiments' were performed using the commercial numerical finite 

element package, ABAQUS. A cylindrical specimen with a radius, rs, of 18 μm and a 

height, hs, of 30 μm, was indented on its top surface, along the axis of symmetry. The 

cylindrical specimen was modeled as an isotropic deformable solid with E = 70 GPa and 

ν = 0.3. Figure 2.2(a) is a three-dimensional illustration of the numerical simulation 

performed. The conical indenter was modeled as analytically rigid, with a finite tip radius, 

ρ, of 200 nm, and was indented into the specimen to a maximum depth, hmax, of 600 nm 

(displacement control). Details of the simulation will be included in the following section. 

 Figure 2.2(b) shows a snapshot of the Mises equivalent stress field in the 

specimen when the indenter is at hmax = 600 nm. The region with highest stress is directly 

beneath the indenter tip. The boundary of the high-stress region defined by the outlined 

area in Fig. 2.2(b) has an equivalent stress larger than or equal to 3.9 GPa. This region 

has a width of 2.1 μm and a maximum depth of 3.3 μm. This high-stress region is located 

reasonably far away from the boundaries. The height and width of the area of high stress 

is close to 10 times smaller than that of the specimen and there is no visible interaction of 

the stress field with the boundaries of the specimen, which suggests that the specimen can 

be considered as sufficiently large for practical purposes. 
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Fig. 2.2.  (a) Geometry of indentation of a cylindrical specimen with a rigid conical indenter with finite tip 

radius; (b) The Mises equivalent stress field in the specimen during indentation at hmax = 600 nm. (Note that 

the stress values must be multiplied by a factor of 1e7 to respect the scale of the problem.) 

The load-displacement (P – h) curves from the numerical simulations are plotted 

in Fig. 2.3. The continuous solid curve refers to the load-displacement relationship for 

both the loading and unloading paths (loading and unloading paths coincide since the 

specimen was modeled as linear elastic) obtained from the simulation, while the dashed 

curve shows the load-displacement relationship derived from Sneddon, Eq. (1). It can be 

seen that the two curves are distinctly different. Using the conventional derivation 

described previously, while assuming that the Poisson's ratio was known a priori to be 

0.3, the Young's modulus was found to be 77 GPa, which is quite different from the 

value used in the simulation (70 GPa). This difference motivated the present study in 

order to first understand the effect of deviations from Sneddon's assumptions, and then to 

quantify and to correct for the errors associated with them, so as to obtain reliable values 

of the reduced modulus from experimental measurements. 

(a) 

rs = 18 μm 

hs = 30 μm 

3.3 μm 
2.1 μm 

(b) 
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Fig. 2.3. Load-displacement measurements in the numerical experiment with a rigid indenter with a finite 

tip radius of 200 nm compared with Sneddon's Eq. (1) 

 

2.3.2. Converged Specimen Geometry 

It has been noted that the geometry of the specimen affects the values of measured 

load and displacement significantly (Dimitriadis et al., 2002). This is not surprising ― 

consider two specimens loaded uniaxially (load control) with identical uniform stress and 

strain fields; the displacements of the specimens are not unique but functions of their 

geometries (i.e., length). This is also true for the measured load in a displacement-

controlled experiment. 

Numerical simulations were performed to investigate the indentation problem, 

using the commercial finite element software, ABAQUS. The indentation experiment 

was modeled as a 2-dimensional axisymmetric problem using a total of 5006 three-node 

linear axisymmetric triangular elements (CAX3) for a specimen with a geometry rs/hs 

equals unity and hs/hmax equals 100 (the actual physical size of the specimen is irrelevant 

as the simulations are scaled to the indentation depth). The number of nodes used for 
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individual specimens was scaled up and down for changes in their respective dimensions 

with respect to indentation depth. A more refined mesh by doubling the number of 

elements was used for each specimen size but did not yield significantly different results 

(< 1% difference for the range of indentation depth of interest) for each simulation, which 

suggests convergence of the existing mesh. The mesh is denser at the indentation site and 

less dense away from the indentation to minimize computational time. In order to isolate 

the effects of finite specimen size and finite tip radius of the indenters, the simulations 

were performed using conical indenters with the identical arbitrary tip radius; in addition, 

friction was also excluded in the contact between the indenter and the specimen. The 

indenter was also pushed to a maximum indentation depth, hmax, that is much larger than 

the radius of curvature of the tip, ρ, in order to minimize any tip-geometry-transition 

effect ― the conical tip is rounded off by a tangent sphere, whose radius gives the radius 

of curvature of the tip. 

Elastic specimens with identical material constants (E = 70 GPa and ν = 0.3) and 

radius, rs (18 μm) but different height, hs (see Fig. 2(a)) were indented to the same 

maximum indentation depth, hmax (600 nm) in the numerical experiments performed. 

Figure 2.4 shows the load-displacement relationship (both loading and unloading) of each 

specimen recorded during the simulations. It is observed that a thinner specimen resulted 

in a higher load measurement for a given displacement or equivalently, at a given load, a 

smaller displacement. Despite having identical material properties, the specimens with 

different height, hs, have distinctly different load-displacement curves. The first 

observation is that these differences will inevitably be passed on to the value of the 

reduced modulus evaluated using the conventional method discussed in the previous 
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section. Dimitriadis et al. (2002) considered the problem of spherical indentation and 

corrected for the specimen thickness effect on the load-displacement relation. 

 

Fig. 2.4. Non-unique load-displacement relationships for specimens with the same radius, rs, of 18 μm but 

different height, hs (18,30, 40, 60, 92, and 120 μm) 

Keeping hs at 30 μm, the radius of the specimens, rs was varied from 9 μm to 60 

μm. The specimens were indented with the same indenter to the same maximum depth of 

600 nm. From Fig. 2.5, it can be observed that the load-displacement curves converge 

when the aspect ratio, rs/hs equals or exceeds unity. The validity of converged aspect ratio 

was checked and confirmed for other values of hs as well. 
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Fig. 2.5. Load-displacement curves for specimens with rs = 30 μm and different aspect ratios, rs/hs (0.3, 0.6, 

1, and 2). It can be observed that a unique curve was obtained when rs/hs ≥ 1, suggesting convergence 

Specimens with converged aspect ratio, but different hs/hmax, were used in 

subsequent simulations to determine the minimum size of the specimens to achieve 

convergence. Figure 2.6 plots their corresponding calculated load-displacement curves. It 

is observed that the load-displacement curves ‘converge’ ― i.e., load difference < 100 μN 

(which is approximately 1% of the maximum load for the nanoindenter) when the hs/hmax 

equals or exceeds 100. From here on, converged specimen geometry will be defined as: 

௦ݎ

݄௦
൒ 1 

and 

݄௦

݄௠௔௫
൒ 100 . (8)



26 
 

To save computation time, it is favorable to keep the specimen as small as possible, 

hence converged specimen geometry is defined as rs/hs equals unity and hs/hmax equals 

100. 

 

 

Fig. 2.6. Load-displacement curves for specimens with different hs/hmax.  Insert shows a close-up view of 

the load-displacement curves at larger indentation depths for different hs/hmax (15, 30, 50, 100, and 150) 

There is a general ‘rule of thumb’ which suggests that convergence is achieved 

when hs/hmax is larger than 10 (Fischer-Cripps, 2004). Figure 2.2(b) shows that the depth 

of high-stress region is about five times that of hmax, all of which may seem to suggest 

that (8) may be too stringent. However, as shown in Fig. 2.7, both criteria shown in (8) 

have to be fulfilled in order to achieve convergence.  

 Figure 2.7 shows an enlarged view of a segment of the load-displacement curves. 

As discussed previously, it is observed that for a given hs/hmax, the curves converge when 

rs/hs > 1. It is also observed that for an ‘unconverged’ aspect ratio, i.e., rs/hs < 1, 

convergence in the ‘hmax/hs sense’ occurs much earlier. As seen in Fig. 2.7, for rs/hs of 1/2, 
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the load-displacement curves for hs/hmax of 25 to 150 coincide. However, one should note 

that this is a “pseudo-convergence” ― a slight change in the aspect ratio of the specimen 

will result in a significant change in the load-displacement curves. This “pseudo-

convergence” could occur for an even smaller hs/hmax than 25 (not checked in this series 

of simulations), which could possibly explain why the conventional “rule of thumb” 

(which does not consider the aspect ratio) only requires hs/hmax > 10. It is, however, clear 

from the Fig. 2.7 that both rs/hs > 1 and hs/hmax > 100 in order for convergence to be met. 

 

Fig. 2.7. Convergence study for different hmax/hs and rs/hs 

 

2.3.3. Finite Tip Radius Effect 

When considering the geometry of the indenting cone, Sneddon assumed an 

infinitely sharp tip. In reality, the tip of the indenter has a finite tip radius of curvature. 

The finite tip radius effect was observed and explicitly discussed by many researchers 
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over the years (Doerner and Nix, 1986; Shih et al., 1991; Wang et al., 2006; Yu et al., 

2004). These authors generally perceived the finite tip radius effect as a deviation from 

the estimated projected tip area, A. Doerner and Nix (1986) calibrated the tip area 

function, A(hc), of the indenter using careful measurements from transmission electron 

microscopy (TEM) images (proposed by Pethica et al. (1983)). Shih (1991) and Yu (2004) 

corrected A(hc) by introducing a spherical cap on pyramidal equivalent conical indenters. 

Shih et al. varied the tip radius to fit the A(hc) measurements performed by Doerner and 

Pethica, while Yu et al. modified A(hc) such that it takes the function of a spherical 

indenter at shallow depth and that of a conical indenter when the indentation is deeper 

than the transition point, ha, given by, 

݄௔ ൌ ߩ ሺ1 െ sin ሻ (9)ߙ

where ρ is the tip radius of the indenter and α is the half angle of the cone. More recently, 

Wang et al. (2006) noted that using indenters with different tip radii resulted in 

significantly different load-displacement curves. The authors observed that the values of 

the measured load increase for a tip with a larger radius of curvature at the same 

indentation depth. They plotted the load-displacement curves for identical specimens 

using different tip radii and also tabulated some examples of the indenter's tip radius 

effect on the calculated Young's modulus, and discussed qualitatively some possible 

sources of error. This study will investigate the effect of finite tip radius on the load-

displacement curves of an elastic specimen quantitatively. 

 The finite tip effect on load-displacement curves was observed in our simulations 

(Fig. 2.8), and it is consistent with the expectation that a blunt tip will require a greater 

load to penetrate the specimen to the same depth as compared to a sharp tip. It was noted 
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that the correction for the finite tip radius effect is crucial for the accurate measurements 

of material properties especially in shallow indentations (Yu et al., 2004). To identify the 

effects of a finite tip radius, numerical simulations were performed. The conical tip used 

in the simulations was modeled to be analytically rigid, and had a tip radius of curvature 

that ranged from 30 nm to 1 μm. The cylindrical specimens used in the simulations had 

converged geometries as defined earlier in (8). Their Young's moduli and Poisson's ratios 

ranged from 10 GPa to 200 GPa, and from 0.01 to 0.49, respectively, in the simulations. 

 

Fig. 2.8. Simulated load-displacement curves of identical elastic cylindrical specimens (E = 50 GPa, ν = 0.3) 

indented with rigid conical indenters of different tip radii, ρ (0, 30, 75, 120, 150, and 200 nm) 

 Unlike the load displacement relationship derived by Sneddon in (1), where there 

is only an h2 term, the load-displacement relationships obtained from these numerical 

'experiments' were found to have the following form, 

ܲ ൌ ሺ݄݄ܭ ൅ ሻ (10)ܮ
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where K and L are constant coefficients independent of P and h. The results from the 

simulations suggest that K is a function of the geometry of the indenter and the elastic 

constants of specimen similar to that in Sneddon's equation (Eq. (1)), while L is a 

function of the radius of curvature of the tip, ρ. A modified elastic indentation equation 

was derived empirically for the range of elastic properties and tip radii as mentioned 

previously, 

ܲ ൌ ݂ሺߥሻ
ܧ 2 tanሺ70.3௢ሻ

ሺ1 ߨ െ ଶሻߥ ݄ ൫݄ ൅ ݃ሺߩሻ൯

ൌ ሺܽଵߥଶ ൅ ܽଶߥ ൅ ܽଷሻ
ܧ 2 tanሺ70.3௢ሻ

ߨ ሺ1 െ ଶሻߥ ݄ ሺ݄ ൅ ܿଵ ߩଶ ൅ ܿଶ ߩሻ

(11)

where, a1 = -0.062, a2 = -0.156, a3 = 1.12 and c1 = 1.50e4 m-1 and c2 = 1.17e-1. 

 This equation fits the results from numerical simulation very well (R2 > 0.99). For 

simple abbreviation, f(ν) and g(ρ) are referred to as the multiplicative and additive factor, 

respectively. Figures 2.9 and 2.10 show the curve fit for the multiplicative and additive 

factor, respectively. It is interesting to note that these are two sources of divergence from 

Sneddon's solution. Sneddon's solution will be recovered when the multiplicative term 

equals one (unfortunately, when ν = 0.63, which is physically unrealistic) and when the 

tip radius of curvature, ρ equals zero.  

 The multiplicative term, f(ν), similar to that found in the load-displacement 

relationship found empirically by Larsson et al. (1996) for Berkovich indenters, is likely 

due to the correction for radial displacements in Sneddon's solution when ν < 0.5, as 

discussed by Hay et al. (1999).   
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Fig. 2.9. Multiplicative factor, f(ν), as a function of Poisson's ratio, ν  (R2 = 0.9999) 

 Figure 2.11 compares various correction factors, the correction factors, ζ(ν), 

proposed by Hay et al. (1999), with f(ν) from (11) for a conical indenter with α of 70.3o. 

It can be observed that f(ν) in (11) is practically identical to the correction factor, ζ(ν) 

proposed in Eq. (20) from the work of Hay et al. (1999) for ν smaller than 0.2. As ν 

approaches 0.5, this difference becomes larger. As compared to the functions proposed 

by Hay et al., f(ν) is observed to adequately describe the FEM results performed by Hay 

et al. at ν equals 0, 0.2, and 0.4, respectively. Unfortunately, no FEM results were 

provided for the correction factor as ν approaches 0.5, for comparison with f(ν). 
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Fig. 2.10. Additive factor, g(ρ), vs. tip radius, ρ (R2 = 0.9977) 

 

 

Fig. 2.11. Comparison of Hay's correction factor, ζ, and f(ν) (after Hay et al., 1999) 
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 Figure 2.12 shows the accurate description of (11), for elastic indentation of 

compressible specimens with indenters with finite tip radii over a range of elastic 

constants. The empirically derived load displacement relationship (11) matches the 

simulation results very well ― the dotted lines represent Sneddon's analytical solution (1). 

With an accurate elastic load-displacement expression that includes the effect of finite tip 

radius of the indenter, the elastic constants of an elastic specimen of interest can be 

derived in a straightforward manner. In the spirit of (6), the unknown elastic constants 

can be expressed as, 

ܧ
1 െ ଶߥ  ሺܽଵߥଶ ൅ ܽଶߥ ൅ ܽଷሻ ൌ

ߨ cotሺ70.3௢ሻ
2 ሺ2݄ ൅ ܿଵߩଶ ൅ ܿଶߩሻ 

݀ܲ
݄݀  . (12)

 It is important to note that (11) can be used directly to solve for the elastic 

constants. It is not necessary to use the slope of the load-displacement curve, dP/dh, 

instead of the direct use of load-displacement measurement. The latter is in fact favorable 

due to the elimination of uncertainties associated with the measurement of the slope. 

However, (12) will be used in subsequent parts of the paper to provide a direct 

comparison of the proposed load-displacement relationship with the existing one, (6).  

 The first observation in examining (12) is that, similar to the conventional 

derivation, the Young's modulus, E, and Poisson's ratio, ν, of the specimen are coupled. 

The second observation is that the coupled term on the left-hand side of the equation can 

be solved in a straightforward manner, provided the terms on the right-hand side are 

known, which includes the tip radius. In the following section, viable procedures to 

identify ρ using a calibration specimen, and to decouple the elastic constants E and ν will 

be proposed. 
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Fig. 2.12. Comparison of simulation results with proposed empirical curve fits for various material 

constants and tip radii of the rigid indenter 
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2.4. PROPOSED TECHNIQUES AND MODIFICATIONS 

 

2.4.1. Technique for Characterizing the Tip Radius of the Indenter 

 The typical radius for brand new nanoindenter tips are usually in the range of 50-

200 nm, and it is often difficult to measure accurately ― the manufacturer can generally 

provide the radius of curvature of the indenters up to an uncertainty of 100 nm. There 

have been some suggested methods of retrieving the tip radius of the indenter. Shih et al. 

(1991) were able to retrieve the tip radius of the indenter by comparing the A(hc) of his 

proposed spherical cap model with that measured experimentally using TEM images, as 

described by Doerner et al. (1986). Using the measured tip radius, Shih showed that there 

was good agreement between the results from numerical simulations and experiments. 

This method, however, is cumbersome to perform, and it is likely to fail for shallow 

indentations, as it does not consider elastic recovery of the plastic imprint. Yu et al. (2004) 

proposed a method to retrieve the tip radius that is suitable for shallow indentations, by 

measuring ha, using a "bilocular spherical-conical" fitting method. This method however, 

is difficult to implement when α is large, as is the case for Berkovich/Vickers equivalent 

conical indenters. The large value of α will result in a small ha (shown by (9)), thus 

making it difficult to accurately distinguish the spherical section from the conical one, 

using a least-squares fit of this model. The procedure proposed here is suitable for large 

angle conical indenters (α = 70.3o) and does not require cumbersome measurements of 

the tip area function, A(hc) to retrieve the value of the tip radius. 

The following example demonstrates how the tip radius of the indenter can be 

inferred in principle, as the practicality of this technique may be limited by the 
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availability of a linearly elastic material. Suppose there is a 'sufficiently large' (with 

converged geometry) linearly elastic specimen with E = 50 GPa and ν = 0.47, indented 

by a rigid Berkovich/Vickers equivalent conical indenter with an unknown ρ to a 

maximum depth of 263 nm. The measured load-displacement curve is shown in Fig 2.12. 

The measured load-displacement curve is fitted with a quadratic curve using least- 

square fit. The equation of the fitted curve is found to be, 

ܲ ൌ 1.182݁11݄ଶ ൅ 1597݄ . (13)

From (11), it can be shown that 

ܿଵߩଶ ൅ ܿଶߩ ൌ 1597/1.182݁11 . (14)

Solving (14), one obtains the following two roots for the equation, 

ଵߩ ൌ െ7.90 ݉ߤ and ଶߩ ൌ 0.114  .  ݉ߤ

It can be noted immediately that ρ1 is inadmissible. One can confidently conclude that ρ = 

114 nm, in this case. The indenter used in the simulation has a radius of curvature, ρ of 

120 nm, which confirms that this procedure yields fairly accurate results within 5% of the 

true value. It should be noted that this method does not require a specimen with known 

material properties. However, the curve fitting process can be optimized over one 

variable (the coefficient of the h term), instead of two (the coefficient of the h2 term is a 

function of E and ν), if the material properties of the specimen is known.  

 

2.4.2. Methodology to Decouple the Measurements for Linear Elastic Constants, E and ν 

 An interesting observation is that the coupled elastic constants (E and ν) can be 

decoupled if two different indenters are used, of course assuming that the specimen of 

interest is linearly elastic, which may be hard to come by. The load-displacement 
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relationship for an elastic indentation using a spherical indenter is given by the Hertz 

equation (1881), 

ܲ ൌ
4
3

ܧ
1 െ ଶߥ √ܴ ݄ଷ/ଶ . (15)

Since there is no issue with finite tip radius in the case of spherical indenters, the 

simulated load-displacement curve is expected to coincide with the Hertz equation. This 

was validated as shown in Fig. 2.13. As discussed previously, (6) is valid for all bodies of 

revolution, thus can be used in the case of spherical indenters. The tip area function of a 

spherical indenter (Fischer-Cripps, 2004) is, 

௦௣௛௘௥௘ܣ ൎ ௖ (16)݄ܴߨ2

where R is the radius of the spherical indenter and hc is the contact depth. For an 

indentation with a spherical indenter, hc, is given by, 

݄௖ ൌ ݄/2 .  (17)
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Fig. 2.13. Load-displacement curves for Hertz equation (15) and simulated indentations using spherical and 

conical indenters on identical specimens     

 Figure 2.13 illustrates two load-displacement curves corresponding to spherical 

and conical indenters, respectively. The spherical indenter has a radius, R of 400 nm and 

the specimen was indented to a maximum indentation depth, hmax of 150 nm. At hmax, the 

slope was found to be 2.67e4 N/m, and the projected tip area of contact was found to be 

1.86e-13 m2. Using (6), Er was found to be, 

௥ܧ ൌ
ܧ

1 െ ଶߥ ൌ 54.8 ܽܲܩ . (18)

The conical indenter has a tip radius, ρ, of 75 nm and the specimen was indented to a 

maximum depth, hmax, of 263 nm. At hmax, the slope was found to be 5.6e4 N/m. Using 

(12), 

ܧ
1 െ ଶߥ ሺܽଵߥଶ ൅ ܽଶߥ ൅ ܽଷሻ ൌ 58.9 (19) ܽܲܩ
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where ai are constants as defined in (11). Solving (18) and (19), the Young's modulus, E, 

and Poisson's ratio, ν, were found to be 50.5 GPa and 0.281, respectively. The specimen 

was modeled with E = 50 GPa and ν = 0.3.  This procedure does not require a priori 

knowledge of one elastic constant to derive the other, and instead it allows both the 

elastic constants to be calculated independently and simultaneously. 

 

2.4.3. Quantifying Error Due to Finite Tip Radius and Specimen’s Compressibility  

 Figure 2.12 shows that (11) accurately describes the load-displacement 

measurements of elastic indentations using an indenter with finite tip radius, and there are 

visible differences with the equation derived by Sneddon (Eq. (1)). It is of interest to 

quantify the error that is propagated in the derivation of elastic constants due to finite tip 

radius. 

 Since it was shown that the load-displacement relationship (using an indenter with 

a finite tip radius) can be accurately described by (11), one can use this equation to 

calculate the reduced modulus, Er, in the conventional way (6) as described in the 

previous section. The value of E can be extracted from Er by substituting a known value 

of ν. The slope of the load-displacement curve can be obtained by differentiating (11), to 

calculate the contact depth, hc, and projected area of contact, A.  

Differentiating (11), 

݀ܲ
݄݀ ൌ

2 ܧ tanሺ70.3௢ሻ݂ሺߥሻሺ2݄ ൅ ݃ሺߩሻሻ
ߨ ሺ1 െ ଶሻߥ . (20)

Recall (4) and solving for hc as defined in (5), at hmax, 
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ܣ ൌ 24.5 ݄௖
ଶ ൌ 24.5

݄௠௔௫
ଶ ሺሺߨ െ 4ሻ ݃ሺߩሻ െ 4݄௠௔௫ሻଶ

ଶߨ ሺ2 ݄௠௔௫ ൅ ݃ሺߩሻሻଶ   . (21)

Thus, one arrives at 

௖ܧ

ܧ ൌ
0.35809

݄௠௔௫
݂ሺߥሻ൫2݄௠௔௫

൅ ݃ሺߩሻ൯ tanሺ70.3௢ሻඨ
ሺ2 ݄௠௔௫ ൅ ݃ሺߩሻሻଶ

ሺሺߨ െ 4ሻ݃ሺߩሻ െ  4 ݄௠௔௫ሻଶ 

(22)

where Ec is the derived Young's modulus using the conventional method described in 

Section 2.2. The ratio would be one if the Young's modulus derived using the 

conventional method is equal to the actual Young's modulus, E. Note that, the right-hand 

side of (22) is essentially equal to the correction factor, β, as discussed by researchers to 

derive an accurate value for the Young’s modulus with nanoindentation. The correction 

factor in this case, appears to be the product of the first correction factor term, f(ν) due to 

radial displacement (Hay et al., 1999) and a term essentially related to the finite tip 

effects (the rest of the equation). This confirms the proposition by Troyon and Huang 

(2004). Without an explicit demonstration, the authors proposed that the overall 

correction factor is the product of ζ (to account for the radial inward displacements) and a 

form factor related to the geometry of the indenter. However, unlike the correction factor 

proposed by Troyon and Huang, the right-hand side of (22) is a function of indentation 

depth. Taking the limit as hmax tends to infinity, 

lim
௛೘ೌೣ՜ஶ

௖ܧ

ܧ ൌ ݂ሺߥሻ . (23)
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Thus, for deep linearly elastic indentations, the only relevant correction factor is f(ν), 

which accounts for the radial inward displacements; the finite tip radius effects are absent, 

which is within expectation. 

The percentage error, ε is defined as 

ߝ ൌ ൬
௖ܧ

ܧ െ 1൰ · 100 . (24)

The percentage error is plotted as shown in Fig. 2.14 for a specimen with Poisson’s ratio, 

ν, of 0.3, which is indented to maximum depths, hmax, of 100 nm and 300 nm, respectively. 

The percentage error, ε, is positive for the entire range of ρ, which suggests that the 

conventional method will result in an overestimation of the actual E. This phenomenon 

was observed for the range of E, ν, ρ, and hmax used in the simulations. 

 

Fig. 2.14. Percentage error in estimation of Young’s modulus, ε, vs. tip radius, ρ, for hmax = 100 and 300 nm 

When ρ is equal to zero, the error arises from the multiplicative term, f(ν), which 

is a function of the Poisson’s ratio, ν. Thus, for specimens with different ν, the intercept 
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would be different. As the tip radius becomes larger, the percentage error increases 

significantly, which is consistent with expectation. The slope of the ε vs. ρ curve is found 

to be highly dependent on hmax. Consider the use of an indenter with a tip radius of 150 

nm ― when the material parameters were obtained at hmax of 300 nm, the conventional 

derivation will overestimate E by close to 12%; however when obtained at hmax of 100 nm, 

the overestimation would be more than 20%. This suggests that the overestimation of E is 

more pronounced in shallow indentations, which is consistent with (23) demonstrating 

that finite tip radius effects are irrelevant in deep indentations. It is important to note that 

these results were obtained in closed form through algebraic operations as described. The 

derivation does not take into account any surface and tip-geometry-transition effects, 

often associated with shallow indentations. This phenomenon is consistent with the 

observations by Yu et al. (2004), that the effect of “tip roundness” is more severe in 

shallow indentations. 

The tip radius effect affects the accurate determination of the hardness of the 

material using nanoindentation as well. The additional indentation load, ∆P, required by 

the indenter to attain the same depth due to tip bluntness can be expressed as 

∆ܲ
ܲ ൌ

݃ᇱሺߩሻ∆ߩ
݄௠௔௫ ൅ ݃ሺߩሻ . (25)

The measured hardness using a blunt tip, Hc is given by 

௖ܪ ൌ
ܲ ൅ ∆ܲ

ܣ ൌ
ܲ
ܣ ቆ1 ൅

݃ᇱሺߩሻ ߩ∆
݄௠௔௫ ൅ ݃ሺߩሻቇ . (26)

Thus, the measured hardness over the actual hardness, Hc/H is given by 

௖ܪ

ܪ ൌ 1 ൅
݃ᇱሺߩሻ ߩ∆

݄௠௔௫ ൅ ݃ሺߩሻ . (27)
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If the tip radius of the indenter tip is zero, the right-hand side of (27) reduces to unity, 

implying that the measured hardness is accurate. Otherwise, it is evident that the ratio 

deviates from one.      

 

2.4.4. Sensitivity of the Load-Displacement Measurements to Finite Tip Radius Effect  

It has been shown that the finite tip radius effects cause the measured load-

displacement curve to deviate from that derived by Sneddon shown by (1). It is of interest 

to investigate the sensitivity of these effects. 

From (25), it is observed that at a given indentation depth, the percentage change 

in measured load is independent of material properties (E and ν). This ratio is larger at a 

shallow indentation (where hmax is small) which is consistent with the previous 

discussions. 

For indentations using a typical tip radius of around 200 nm, a minimum 

indentation depth of 467 nm is required, in order for the finite tip effects to be 

insignificant (∆P/P < 0.05). If the typical maximum load of the nanoindenter of around 

10 mN is considered, a material stiffer than 22 GPa will exhibit significant difference 

between an indentation with an infinitely sharp indenter and that with a finite tip radius of 

200 nm. 

To investigate this effect, nanoindentation experiments on natural latex rubber 

were performed. The load-displacement measurement for an indentation on natural latex 

rubber is shown in Fig. 2.15. The experiment was performed using open loop load-

control option on the HysitronTM Triboindenter. The contact ‘set-point’, Po, was set to be 

2 μN. The indentation sites were scanned and found no residual imprints.  
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Fig. 2.15. Load-displacement measurement for the indentation of latex rubber 

The measured uniaxial stress-strain behavior of latex is shown in Fig. 2.16. It is 

observed that latex is essentially linearly elastic up to 10% strain. However, hysteresis 

can be observed in the load-displacement record in Fig. 2.15, which might suggest the 

attainment of larger strains. To a first approximation, the average behavior of the material 

is considered as shown in Fig. 2.15. 

The averages of the loading and unloading segments of several nanoindentations 

of natural latex are plotted in Fig. 2.17. The Young’s modulus, E, of the latex was 

determined to be 3.46 MPa from uniaxial experiments, and its Poisson’s ratio, ν was 

assumed to be 0.5. Using the values of Po, E, and ν, load-displacement curves for the 

indentation were plotted for an infinitely sharp tip which corresponds to ρ of 0 nm, and 

for ρ of 200 nm and 400 nm, respectively.  It is immediately observed that the effect of 

200 nm in the tip radius of the indenter does not have such a significant effect on the 

load-displacement as that illustrated in Fig. 2.8. This confirms that tip radius effects are 
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generally insignificant for the indentation of relatively soft materials when deep 

indentation depths can be attained.  

Using the average load-displacement curves from all the indentations performed, 

and assuming that the indenter tip is infinitely sharp, the Young’s modulus for the latex 

indented was found to be 3.26 MPa, which is only about 6% error from the uniaxially 

measured Young’s modulus. However, the effect of preload is very significant in the 

indentation of soft materials as evidenced in Fig. 2.17. It is crucial that this effect is 

accounted for in order to accurately extract any elastic properties. This point will be 

further elaborated in Chapter 4.  

 

Fig. 2.16. Stress-strain relationship for natural latex from quasi-static uniaxial compression experiments 
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Fig. 2.17. Comparison of experimental results and predicted load-displacement relations for different ρ (0 

nm, 250 nm, 500 nm) 

As a final remark, the atomic force microscope (AFM) is commonly used in the 

indentation of soft materials in the sub-μN force range. The tip radius for the AFM 

typically ranges from 10 nm to 60 nm. Despite the sharp tips used in these indentations, 

finite tip radius effects can become significant due to the low-load applied in the 

indentation, resulting in typically shallow indentations. Consider ∆ρ of 20 nm and solving 

around ρ of 20 nm in (25), the minimum indentation depth, hcrit, for ∆P/P to be less than 

0.05 is 44.6 nm. Suppose the maximum indentation load is 1 μN; a material stiffer than 

196 MPa will result in ∆P/P larger than 0.05.   
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2.5. SUMMARY AND CONCLUSIONS 

 

 The applicability of Sneddon's solution to the nanoindentation problem has been 

critically reassessed together with the implications of deviations from the basic 

assumptions in the analytical derivation, namely having: 

1. a specimen with finite dimensions and 

2. an indenter tip with a finite tip radius. 

 This study has clearly defined a criterion for “converged 2-dimensional 

(axisymmetric) geometry” (8). Geometrical modeling issues are seldom detailed in the 

literature and this criterion will provide a common basis for comparison. In addition, this 

study addressed the finite tip effect and developed an accurate empirical load-

displacement relationship that takes into account the finite tip radius, ρ (11). An estimate 

of the error arising from the neglect of the finite tip effect was provided by performing 

the conventional derivation procedure based on the load-displacement relation that takes 

the tip radius into account (11). It was found that the error consistently results in an 

overestimation of E (with known ν), which is more pronounced in shallow indentations. 

The error due to finite tip radius was also found to be more severe in shallow indentations. 

Finally, nanoindentation on natural latex was performed to experimentally examine the 

proposed model and techniques introduced in the paper.   

 Several aspects of nanoindentation have been explored in this work, namely: 

1. A procedure to identify the indenter tip radius, ρ. The tip radius of the 

indenter is normally not provided by the manufacturers to a great accuracy, 
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but it has been identified to be crucial for the accurate determination of 

elastic properties; 

2. A procedure using two different indenters has been outlined to decouple 

the elastic constants, E and ν measured during indentation. 

It should however be noted that the proposed procedures are limited to the availability of 

a linearly elastic material. 

This study has shed light on several concepts related to the field of 

nanoindentation, but many open questions still remain. The ideas proposed in this paper 

are typically confined to indentations of linearly elastic solids. However, nanoindentation 

uses sharp indenters that are likely to induce plasticity on the very onset of loading. The 

validity of these observations in elastic-plastic indentations is addressed in Chapter 3. 

Elasticity is more commonly observed for softer materials, however additional challenges 

to accurately extract their material properties remain. These challenges will be carefully 

examined in Chapter 4. 

In conclusion, 

• Sneddon's solution was modified to accommodate finite indenter tip radius. 

• Valid 2-dimensional specimen geometry for extracting the reduced 

modulus making use of the converged solutions must satisfy (8). 

• The error associated with neglecting the finite indenter tip radius was 

quantified and an algebraic expression has been developed to account for 

this effect. 

• For a known Poisson’s ratio, ν, the error consistently results in an 

overestimation of the Young’s modulus, E. 
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• The overestimation of E is more pronounced in shallow indentations. 

• An experimental procedure to characterize the indenter's tip radius, ρ, has 

been proposed. 

• An experimental procedure to decouple the measurement of the linearly 

elastic constants E (Young’s modulus) and ν (Poisson’s ratio) has been 

outlined. 
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CHAPTER 3: AN ANALYSIS OF NANOINDENTATION IN ELASTO-

PLASTIC SOLIDS 

 

ABSTRACT 

This chapter examines the accuracy of the extracted elastic properties using the 

nanoindentation technique on elastic-plastic solids. The application of the correction 

factor evaluated in the linearly elastic case (in Chapter 2) on elastic-plastic materials is 

critically examined. It is then established that the accurate determination of the projected 

area of contact is found to be crucial for the accurate determination of elastic material 

properties. The conventional method for the accurate determination of contact area is 

generally limited to ratios of Young’s modulus over yield stress, E/σy < 30 for elastic, 

perfectly plastic materials, which is too stringent for most materials. Thus, a new 

electrical resistance method is proposed to measure directly the projected contact area. 

Using numerical simulations, it is found that with the accurate determination of A, the 

error associated with the extracted elastic material properties is reduced by more than 50% 

in some cases. Using the newly proposed procedure, the error is also found to be 

independent of E/σy and the tip radius, ρ, and it is only a function of Poisson’s ratio, ν. 

This suggests that the errors might be due to the residual stresses at the plastic imprint 

that are found to depend on ν as well. 
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3.1. INTRODUCTION 

 

Motivated by the development of modern applications such as microelectronics, 

MEMs and biomaterials, there is an increased interest in material characterization in the 

micro/nano scale in recent years. Nanoindentation has been increasingly popular for its 

relative ease of use with the advent of modern commercial nanoindenters. Modern depth 

sensing indentation was first developed in the early 1970s (Bulychev et al., 1975; Loubet 

et al., 1984; Newey et al., 1982; Pethica et al., 1983; Ternovskii et al., 1974). As the 

technology improved, manufacturers were able produce smaller indenter tips and load 

cells with better force resolution, which finally led to the production of commercial 

nanoindenters. 

Nanoindentation was originally developed to measure the elastic properties of the 

material of interest (Bulychev et al., 1975; Pharr et al., 1992). However, researchers have 

since developed novel applications, such as acoustic emission testing (Shiwa et al., 1996; 

Tymiak et al., 2003), impact testing (Fischer-Cripps, 2004), fracture toughness testing 

(Lawn et al., 1980; Palmqvist, 1957), constant strain rate/creep testing (Bower et al., 

1993; Mayo and Nix, 1988; Storåkers and Larsson, 1994), high-temperature testing 

(Atkins and Tabor, 1966; Kutty et al., 1996; Payzant et al., 1993), and most recently in 

situ electrical measurement testing (Mann et al., 2002; Ruffell et al., 2007) for the 

nanoindenter. 

Nonetheless, the basic determination of the material elastic properties is most 

often a requirement for further determination of additional mechanical properties. While 

Chapter 2 considered purely elastic materials to establish some basic facts and 



57 
 

correlations, it is evident that the overwhelming majority of materials display plastic flow 

to some extent during the nanoindentation process. Plasticity in nanoindentation deviates 

from the linear elastic assumptions on which Sneddon’s derivation is based.  Since there 

is no theoretical solution for general hardening, elastic-plastic materials, the main 

assumption underlying the extraction of materials properties using nanoindentation is that 

while the loading stage is elastic-plastic, the unloading stage is purely elastic. Hence, 

nanoindentation of elastic-plastic solids is still quite suitable for elastic analyses. The 

elastic unloading assumption is based on the validity of the following two components:  

a. the unloading and subsequent reloading load-displacement curves coincide;  

b. the reloading of a residual imprint can be described as the indentation of a 

flat surface with an equivalent (thus different) indenter.   

Moreover, the factors identified as relevant to linear elastic indentations, such as finite tip 

radius effect and radial displacement recovery as discussed in Chapter 2, that are not 

considered in Sneddon’s formulation (1948), might still be pertinent towards elastic-

plastic indentations as well. Thus, it is important to assess their relevance in the context 

of the indentation of isotropic, elastic-plastic materials, particularly to examine the 

validity of the application of the correction factor derived for the linear elastic 

indentations (Hay et al., 1999; Troyon and Huang, 2004) in elastic-plastic indentations. 

 This study critically reassesses the various assumptions used in extracting the 

linearly elastic material properties in an elastic-plastic indentation using experiments and 

numerical finite element calculations. In addition, the paper proposes viable methods to 

minimize these errors and obtain an optimal estimation of the elastic and plastic 

properties. The conventional procedure for extracting the reduced modulus in elastic-
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plastic indentation is briefly reviewed in Section 3.2.  The results obtained through 

numerical simulations, the validity of the underlying assumptions, and factors affecting 

the accuracy of the extracted material properties are all presented in Section 3.3. A novel 

technique to directly measure the projected contact area is described in Section 3.4.  

Experimental results from nanoindentation on elastic-plastic solids are used to illustrate 

the application of the suggested techniques for accurate evaluation of material properties. 

A summary and conclusions of the study are presented in Section 3.5. 
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3.2. CONVENTIONAL EXTRACTION OF ELASTIC PROPERTIES 

 

Figure 3.1(a) is a schematic of an indentation of an infinitely sharp conical 

indenter on an elastic-plastic specimen. The thick black line illustrates the indenter tip at 

its maximum depth, while the thick broken grey line illustrates the indenter tip when fully 

unloaded. Figure 3.1(b) plots the corresponding load-displacement curve for the 

indentation. The unloading is assumed to be elastic and he is the recoverable elastic 

displacement. Upon unloading, the reloading path is expected to follow that of the 

unloading until hmax, the maximum indentation depth of the previous indentation, is 

reached. 

 

Fig. 3.1. (a) Schematic of an indentation at full load and unload; (b) The corresponding load-displacement 

curve.  (After Fischer-Cripps, 2004) 

The elastic unloading path can thus be described by the elastic load-displacement 

relations derived by Sneddon (1948) assuming an indentation of a rigid conical indenter 

on a linearly elastic half-plane (see Fischer-Cripps, 2004; Sakai, 2003), 
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ܲ ൌ
2 ܧ tan ᇱߙ

ߨ ሺ1 െ ଶሻߥ ݄௘
ଶ (1)

where P is the load measured by the indenter, E and ν are the Young’s modulus and 

Poisson’s ratio of the specimen, α′ is the effective half angle of the indenter, and he is the 

recoverable elastic displacement of the indenter.  

Although the reloading path is elastic and follows the previous unloading path 

until hmax, it is still different from the case of elastic indentation derived by Sneddon 

(1948). Sneddon assumed that the conical tip is indenting a flat elastic plane, whereas 

during reloading, the conical tip is indenting on a residual imprint. Therefore, the 

effective half angle, α′ is introduced, which takes into account α, the half angle of the 

conical indenter and also the residual imprint left from the previous indentation, as shown 

in Fig 3.2.  

Thus, 

ᇱߙ ൌ
ߨ
2 െ (2) כߙ

where α* is the angle between the indenter and the residual imprint.  

 

Fig. 3.2. Illustration of the equivalent indentation problem 

Using a physical argument that the normal component of the stress at the surface 

of the specimen remains finite around the contact area with the tip, and an assumption 

α* 

α 
α* 

α′ 
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that both the shear and normal stresses remain zero at the unperturbed surface, Sneddon 

(Fischer-Cripps, 2004; Sneddon, 1948) found that,    

                 ݄ ൌ ቀ
ߨ
2 െ

ݎ
ܽቁ ܽ cot ᇱߙ ݎ ൑ ܽ  . (3)

Thus,  

݄௘ ൌ
ߨ
2 ܽ cot ᇱߙ . (4)

Differentiating (1), 

݀ܲ
݄݀௘

ൌ
4 ܧ tan ᇱߙ

ߨ ሺ1 െ ଶሻߥ ݄௘ . (5)

Substituting (4) into (5), 
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 (6)

where A is the projected contact area and β is the correction factor. The left-hand side of 

(6) is the reduced modulus, Er. In order to reassess the application of Sneddon’s equation 

to nanoindentations, subsequent derivation of Er is performed with β = 1. 

The conventional relationship used in the extraction of elastic constants in depth-

sensing indentation experiments is shown in (6). Bulychev et al. (1975) showed that (6) 

holds for cylindrical punch and spherical indenters. Subsequently, Pharr et al. (1992) 

showed that the relationship is true for all indenters that are bodies of revolution. For a 

Berkovich/Vickers equivalent cone (α = 70.3o), the projected contact area, A, is given by, 

ܣ ൌ ߨ tanଶ ߙ ݄௖
ଶ ൌ 24.5 ݄௖

ଶ (7)

where hc is the contact depth. Note that the projected contact area, A, is calculated using 

the half-angle of the indenter, α. Using (1) and (3), 
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 (8)

where χ ≈ 0.72 for conical indenters, and χ = 0.75 for spherical indenters. Researchers 

have also proposed that χ is a function of the exponent of the unloading curve for the 

elastic-plastic indentation (Martin and Troyon, 2002; Pharr and Bolshakov, 2002). With 

the load and displacement of the indenter monitored throughout the indentation, hc and A 

can be calculated. The value of A can then be plugged into (6) to derive Er for the 

material of interest.  The accuracy of the conventional method is evaluated in the next 

section by means of numerical simulations. 
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3.3. NUMERICAL SIMULATIONS 

 

Numerical ‘experiments’ were performed using a commercial numerical finite 

element package, ABAQUS. The indentation experiment was modeled as a 2-

dimensional axisymmetric problem using a total of 6252 three-node linear axisymmetric 

triangular elements (CAX3) for the specimen with converged geometry ― i.e., rs/hs 

equals unity and hs/hmax equals 100, where rs, hs, and hmax are the radius and thickness of 

the specimen and maximum indentation depth, respectively. A more refined mesh by 

doubling the number of elements was used for each specimen size but did not yield 

significantly different results (< 1% difference for the range of indentation depth of 

interest) for each simulation, which suggests convergence of the existing mesh. The mesh 

is denser at the indentation site and less dense away from the indentation to minimize 

computational time. The indenter was modeled as a rigid conical tip with a tip radius, ρ, 

of 30 nm and 150 nm. The cylindrical specimen was modeled as an isotropic, deformable 

elastic, perfectly plastic material, whose E/σy ranged from 10 to 1000, and ν ranged from 

0.01 to 0.47. The results of the numerical simulations are tabulated in Tables 3.1–3.4 in 

the Appendix.   

 

3.3.1. The Effective Half Angle, α′ 

It is important to examine the relationship between α′ and the mechanical 

properties of the indented material, as this will provide a relevant range of α′ for typical 

materials. Figure 3.3 shows the relationship between the effective half-angle, α′, and E/σy. 

For the linearly elastic case, α′ is equivalent to the half-angle of the indenter, α (in this 
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case 70.3o). As E/σy becomes large, i.e., when plasticity becomes dominant, α′ is 

observed to tend towards 90o. This is consistent with the expectation that when the region 

of contact is completely plastic, there will be no elastic recovery and thus, the residual 

imprint will take the shape of the indenter upon unloading, so that α*  (Fig. 3.2) is 0o, 

corresponding to α′ of 90o.  

The theoretical cohesive strength, σc of a solid, is on the order of E/10. However, 

it is well documented that this is much larger than the typical strength of solids, which is 

typically between E/100 and E/1000. Based on this estimate, the relevant α′ for typical 

materials ranges between 88o and 89.7o. It should be noted that the elastic, perfectly 

plastic materials considered here are the limiting case; materials that harden will reduce 

the extent of plasticity in the specimen under indentation and thus, reduce the effective 

half-angle, α′ of the equivalent problem.     

 

Fig. 3.3. Effective half-angle, α', vs. E/σy. Error bars represent spread of data for ν from 0.01 to 0.47 
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3.3.2. The Relationship Between he/hmax and E/σy for Elastic, Perfectly Plastic Materials 

The yield stress, σy of a rigid perfectly plastic material has been identified to be 

related to the hardness of the material through (Hill et al., 1947; Tabor, 1948; 1951) 

ܪ ൌ ௬ (9)ߪܥ

For metals in general, it has been shown empirically that the constraint factor C ≈ 3. It 

would seem that with an accurate measurement of H, σy can be calculated in a 

straightforward manner; however C is dependent on material properties, namely the 

extent of plasticity measured by E/σy, strain hardening, n, and other strengthening 

mechanisms such as pressure sensitivity (in polymers and granular materials), etc. 

(Fischer-Cripps, 2004; Tabor, 1951). As such, C commonly varies from 1.5–3 and is 

largely material dependent. The relationship proposed subsequently in this section takes 

the extent of plasticity, E/σy, into account. While the derived value of hardness depends 

on the actual contact area, which is affected by effects of pile-ups and sink-ins (Miyake et 

al., 2004), the proposed relation uses the elastic recoverable displacement, he and 

maximum indentation depth, hmax, to infer the value of the yield stress. These parameters 

are directly measured during an indentation experiment. For elastic, perfectly plastic 

solids, the proposed model takes pile-ups around the indentation into consideration by 

establishing a relationship between he and hmax with respect to E/σy. For hardening elastic 

plastic solids, the amount of pile-ups around the indentation will be lesser than that for 

elastic, perfectly plastic solids. This is not accounted for by the proposed model, thus it 

can only provide an upper bound for σy.   

Using numerical simulations, a relationship is identified between E/σy and he/hmax, 

which is given by, 
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This relationship was obtained through the fitting of mean he/hmax at five discrete 

values of E/σy. The fit had a R2 value of 0.999. The spread illustrated by the error bounds 

at each E/σy represents the range of values for ν ranging between 0.01 and 0.47 and for ρ 

ranging between 30 nm and 150 nm. The average standard deviation for each spread was 

approximately 12% of their respective mean.  

The yield stress, σy can now be calculated for elastic, perfectly plastic materials 

using (10), since both he/hmax (Fig. 3.1) and E are typically measured or extracted from a 

typical indentation experiment. For hardening materials, the calculated σy using (10) is 

the upper bound for the actual σy. Elastic materials correspond to he/hmax of one. Materials 

that strain or pressure harden will fall within the shaded area between he/hmax of one and 

the line given by (10).  

The relation provided by (10) was verified in a series on nanoindentation 

experiments of single-crystal aluminum oriented in the (100) direction, fused quartz, 

platinum-based based bulk metallic glass, homalite (a brittle glassy polymer), and single 

crystal silicon oriented in the (100). Their measured he/hmax ratios are plotted against the 

known ratio E/σy, as shown in Fig. 3.4. The experiments were carried out on a HysitronTM 

Triboindenter, with a Berkovich diamond tip. The load-displacement displacement curves 

were obtained following conventional correction techniques for machine compliance and 

other system calibrations such as thermal drift. 

The first observation is that the data points for all materials fall within the shaded 

region, confirming that (10) is indeed a bound for elastic-plastic materials. The single-

crystal aluminum data fall on the elastic, perfectly plastic line, which suggests that this 
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material does not significantly strain harden under confined flow during indentation. 

However, it should be noted that while he and hmax were measured directly from the 

nanoindentation experiments, bulk polycrystalline aluminum values for E and σy were 

used to determine the location on the x-axis. Due to the lack of grain boundaries, σy for 

single-crystal aluminum is likely to be smaller than that for polycrystalline aluminum, 

which will shift the experimental points to the right into the shaded region. The single-

crystal aluminum was identified as highly anisotropic (Hansen and Huang, 1998), thus 

the selection of representative E and σy is non-trivial. Nonetheless, the use of bulk 

polycrystalline aluminum’s properties provides some comparison for single crystal 

aluminum to other materials. Moreover, since the σy chosen is likely to overestimate the 

actual value of σy for single-crystal aluminum, these experimental points provide a 

stringent confirmation that (10) is indeed a bound for elastic-plastic materials. The other 

materials were found to deviate from the elastic, perfectly plastic line, which can be 

attributed to the operation of hardening mechanisms, such as work hardening or 

hardening due to the high hydrostatic pressure created under the indenter tip. The 

statistical variations for the experiments are summarized in Table 3.5 in the Appendix. 
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Fig. 3.4. E/σy vs. he/hmax for different materials 

 

3.3.3. Error Involved in the Conventional Derivation 

The percentage error, ε, in the determination of elastic modulus E is defined as, 

ߝ ൌ
௖௔௟௖௨௟௔௧௘ௗܧ െ ௣௥௘௦௖௜௕௘ௗܧ

௣௥௘௦௖௜௕௘ௗܧ
· 100 (11)

The percentage error, ε, was found to vary with ρ, ν and E/σy. From Tables 3.1 

and 3.3, one can observe that ε is directly related to indenter tip radius, ρ ― i.e., the use 

of a blunt tip results in a larger error using the conventional derivation.  

The sensitivity of ε to changes in ν and E/σy can be seen from Fig. 3.5. It is 

observed that ε is larger as ν approaches 0. The percentage error on the extracted Young’s 

modulus, E, was also observed to increase with E/σy ― i.e., the larger the extent of 

plasticity, the larger the error observed in the calculated E. This observation seems to 

imply the inaccuracy of the underlying elastic unloading assumption, which is central to 
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the correctness of the conventional method. The elastic unloading assumption is based on 

the two assumptions listed in the introduction to Section 3.1. These two assumptions are 

critically examined in the subsequent section. 

 

Fig. 3.5. Percentage error of E, ε, vs. E/σy, for different ν (0.01, 0.3, 0.47). The spread represents different 

indenter tip radius ranging between 30 nm and 150 nm 

 

3.3.4. Examination of the Underlying Assumptions 

3.3.4.1. Does the unloading and subsequent reloading load-displacement follow 

the same path? 

The conventional derivation assumes that the unloading is elastic with the 

expectation that reloading of the indenter will take the prior unloading path until the prior 

maximum indentation depth, hmax is reached. To verify this assumption, indentation 

experiments and simulations were performed. Single-crystal aluminum in the (100) 

orientation and fused quartz were indented with the HysitronTM Triboindenter. The 
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experiments were carried out in a load-control mode, using a diamond Berkovich 

indenter tip. The specimens were indented to a preset load, then unloaded and reloaded to 

a higher preset load before the final unloading. A similar numerical ‘experiment’ was 

also performed using ABAQUS. The conical indenter tip was modeled as rigid with α = 

70.3o and ρ = 30 nm.  The elastic, perfectly plastic cylindrical specimen was modeled 

with E = 200 GPa, σy = 1 GPa, and ν = 0.3.  

From Fig. 3.6, it can be observed that the unloading and reloading paths coincide 

for both the curves obtained through experiments and through numerical simulation. The 

material properties of the specimens considered were varied and the extent of plasticity in 

the specimens during indentation was different. Thus, it can be concluded that the 

unloading curve is indeed elastic and the common assumption for the unloading path to 

be perceived as an elastic reloading path is valid. 
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Fig. 3.6. Loading-reloading curves obtained from nanoindentation experiments on fused quartz (dash-

dotted line) and single-crystal aluminum (dotted line), and from numerical simulation with E = 200 GPa, σy 

= 1 GPa, ν = 0.3, and ρ = 30 nm (dashed line) 

3.3.4.2 Validity of the ‘equivalent’ problem 

Having validated the assumption that the elastic unloading curve of the elastic-

plastic indentation may be treated as an elastic loading curve of an indentation on a 

specimen with a plastic imprint, it is imperative to examine the validity of the ‘equivalent’ 

problem used to solve the latter. Two numerical simulations were performed, with 

conical tips (α = 70.3o) indenting on notched specimens (to emulate plastic imprints), 

such that α′ equals 85o and 89o, respectively. From Fig. 3.3, the values of α′ chosen 

correspond to E/σy of approximately 25 and 500, respectively, which are representative 

for a wide range of common materials. Figure 3.7(a) illustrates the indenter and specimen 

before reloading, while Fig. 3.7(b) shows them at maximum depth, hmax.  
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Figure 3.8 shows the load-displacement curves for the indentation of notched 

specimens with α′ equals 85o and 89o (obtained from the numerical simulations), and 

their comparison with Sneddon’s solution (1), plotted with the corresponding α′. The 

simulation results were found to coincide with their analytical counterpart for both values 

of α′. These results agree with the works of other researchers (Sakai, 2003; Stilwell and 

Tabor, 1961); Provided (i) the residual impression has flat sides even after elastic 

recovery and (ii) the reloading of impression is elastic and reversible, then the load-

displacement reloading path is quadratic and may be characterized by a single 

geometrical parameter, in this case α′.  This suggests that the equivalent problem that 

involved solely geometrical differences is indeed valid; however, the actual unloading of 

a plastic imprint involves the effects of residual stresses as well, which might suggest that 

this sole geometrical parameter, α′ is sufficient to describe the equivalent indenter. This 

point will be discussed in more detail in the subsequent section. 

 

Fig. 3.7. (a) Indentation of a notched specimen. (b) At hmax the radius of contact is equal to the radius of the 

residual imprint 

(a) (b) 
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Fig. 3.8. Load-displacement curves for α′ = 85o and 89o 

 

3.3.5. The Straightforward Application of Sneddon’s Equation 

Having validated the elastic unloading and equivalent problem assumption, it may 

seem logical to use Sneddon’s elastic relation (1) directly, with an appropriate α′, to take 

into account the plastic imprint. This will eliminate the uncertainty introduced in the 

measurement of the slope of the unloading load-displacement curve, dP/dhe, which is a 

required parameter for the conventional derivation of the elastic modulus, as shown in (6).  

The unloading curve from an elastic-plastic indentation was compared with the 

elastic load-displacement relationship obtained using (1), to examine the accuracy of the 

straightforward application of Sneddon’s equation. Figure 3.9 shows the comparison 

between the simulated unloading curve and the elastic reloading curves with calculated 

and ‘ideal’ α′s. The calculated α′ refers to the effective angle derived using (4), which is 
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found to be 88.1o. The ideal α′ refers to the effective angle that will give the correct E 

when substituted into (1), which is found to be 88.9o.  

The two elastic curves obtained using (1) are observed to be distinctly different 

from the actual unloading curve. The curve plotted with the ideal α′ only meets the 

unloading curve at hmax. This suggests that the reason behind the mismatch of the curves 

is not due to the wrong choice of α′.  

 

Fig. 3.9. Comparison between the simulated unloading curve and the elastic reloading curves with 

calculated and ‘ideal’ α′s 

One reason for this discrepancy is the curvature of the walls of the imprint. Figure 

3.10 shows profiles of the residual imprint for E/σy of 10 and 1000, respectively. From 

Fig. 3.10(a), it is observed that the walls of the residual imprint are not flat as assumed in 

the ‘equivalent’ problem. Thus, the actual problem cannot be simply described by the 

indentation of a notched specimen with half-angle α, as illustrated in Fig. 3.2. According 

to Pharr et al. (2002) , the effective indenter shape in this case is no longer conical, but 
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instead is a parabola of revolution. This is because the actual problem is now an 

indentation of a curved surface with a conical indenter, and following the same reasoning 

as the proposition of the equivalent problem before, it is expected that the equivalent 

problem is now an indentation of an indenter with a curved profile on a flat surface. 

Hence, for elastic-plastic indentations using conical indenters, the straightforward 

application of Sneddon’s elastic relation (1948) as shown in (1) to the unloading curve is 

not appropriate. The conventionally used stiffness equation, shown by (6), was 

demonstrated to be applicable to indenters that are bodies of revolution, and have a 

profile that is C∞, i.e., infinitely smooth (Pharr et al., 1992). Thus, it is suitable for the 

effective indenter shape, which was established to be a parabola of revolution. The 

factors affecting the accuracy of (6) are examined next. 

 

Fig. 3.10. (a) Profile of the residual imprint for E/σy=10. (b) Profile of the residual imprint for E/σy=1000.  

(Note the sink-ins and pile-ups.) 

 

3.3.6. Factors Affecting the Accuracy of the Stiffness Equation 

3.3.6.1. Residual stresses at the plastic imprint 

Residual stresses are present at the plastic imprint during the unloading process of 

the elastic plastic indentation and they cannot be neglected. Pharr and Bolshakov (2002) 

introduced the concept of the effective indenter to account for the surface distortion and 

pressure distribution under the indenter, however, the interaction between the residual 

(a) (b) 
α* 

α* 
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stresses and the surface geometry of the plastic imprint and their combined effects on the 

shape of the effective indenter through the exponent of the unloading load-displacement 

relationship is not clear.  

The Poisson’s ratio, ν, of the specimen is an important parameter that dictates the 

level of residual stresses present at the plastic imprint, as can be observed in Fig. 3.11. 

This figure shows that as ν tends towards 0.5, the extent of residual equivalent stress 

present at the plastic imprint decreases significantly. This can be qualitatively understood 

in terms of the elastic constraint exerted on the plastic zone. This observation may also 

possibly explain why the percentage error for the extracted E using the conventional 

method is so much dependent on ν, and why it decreases as ν approaches 0.5, as observed 

in Fig. 3.5.  
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Fig. 3.11. Residual equivalent (Mises) stress fields for indentations of elastic, perfectly plastic material with 

E = 200 GPa, σy = 2 GPa, and different ν (= 0.01, 0.3, and 0.45, respectively). (Note that the stress values 

must be multiplied by a factor of 1e7 to respect the scale of the problem.) 

 

 

 

 

(a) 

(b) 

(c) 
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3.3.6.2. Accurate determination of A 

3.3.6.2.1. The contact depth, hc 

The projected contact area, A is a function of the contact depth, hc, through the 

known or measured geometry of the indenter. Thus, the accurate determination of hc is 

crucial for the extraction of elastic constants using (6).    

It is observed from Fig. 3.10(b) that when E/σy is large and the hardening 

coefficient n is small, there are pile-ups around the plastic imprint. This will result in the 

actual contact depth, hc, deviating significantly from that derived by (8). This deviation 

has been studied extensively and found to be more than 30% in some cases (Cheng and 

Cheng, 2004). While some researchers may argue that pile-ups are only significant when 

hr/hmax > 0.7 (Oliver and Pharr, 2004), this criterion corresponds to E/σy > 30, for elastic-

perfectly plastic materials, using (10), and is also evidenced by the numerical simulations 

of Pharr and Bolshakov (2002). This stringent criterion severely limits the applicability of 

(8) to accurately determine hc for typical materials.   

3.3.6.2.2. Finite tip radius of the indenter 

It has been established in the previous chapter that in the case of a linearly elastic 

indentation, finite tip radius effects are significant. Unlike the elastic case, the loading 

and unloading segments for the elastic-plastic indentation do not coincide. Thus, the 

effects of the finite tip radius of the indenter, ρ, will be discussed separately for the 

loading and unloading stages of the elastic-plastic indentation. 

The loading curve of the elastic-plastic indentation is expected to be sensitive to 

finite tip radius effects. Similar to the arguments for the indentation of linearly elastic 

solids, a blunt indenter is expected to require a larger force to penetrate to a fixed 
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arbitrary depth. In addition, ρ will affect the projected contact area, A, at the maximum 

indentation depth. These effects have been extensively studied by researchers (Cheng and 

Cheng, 1998; Troyon and Huang, 2004).   

On the other hand, the unloading curve of the elastic-plastic indentation is 

expected to be insensitive to finite tip radius effects. This is evidenced by two 

observations. First, it is observed that for a typical range of E/σy between 100 and 1000, 

the effective half-angle, α′ is between 88o and 89.7o. As α′ tends to 90o, the effect of ρ is 

expected to become less dominant. This phenomenon can be interpreted from the location 

of the transition point, ha, given by, 

݄௔ ൌ ߩ ሺ1 െ sin ᇱሻ (12)ߙ

where ha is defined as the depth which the spherical tip (with radius = ρ) is tangential to 

the sides of the cone with half-angle, α′. As α′ tends towards 90o, ha becomes vanishingly 

small, regardless of the tip radius. This suggests that the finite tip radius of the indenter 

does not play a dominant role in the elastic unloading/reloading process of the 

indentation.  

For situations where the walls of the plastic imprint may not be described by a 

single geometrical parameter, α′, the effect of ρ can be explained with the pressure 

distribution under the indenter. Pharr and Bolshakov (2002) demonstrated that the 

pressure distribution under the indenter at peak load is relatively constant and suggested 

that the equivalent problem amounts to the indentation of an elastic flat half-space with 

an effective parabolic indenter. The effective parabolic indenter takes no account of the 

local ρ, which also suggests that the finite tip radius effects are unlikely to affect the 

elastic unloading curve significantly.  
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However, one should keep in mind that unloading follows active loading for 

which the finite tip radius does indeed affect the projected area of contact, A. The latter, 

in turn, determines the accuracy of the conventional method for the extraction of elastic 

properties of the material. These results are tabulated in Tables 3.1 and 3.3 in the 

Appendix.   
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3.4. PROPOSED TECHNIQUE 

 

Load and displacement measurements are recorded during nanoindentation 

experiments. The slope of the unloading segment can be easily derived from the load-

displacement curve leaving the projected contact area, A, as the only unknown in (6). 

Therefore, the primary challenge to reduce the errors involved in the derivation of the 

reduced modulus Er, lies in the accurate measurements of the projected contact area, A.  

As discussed in the previous section, the accurate determination of A is dependent 

on the accurate derivation of hc and ρ. Pile-ups, as shown in Fig. 3.12, underestimate hc 

and thus underestimate the actual projected contact area, A. For elastic-plastic materials 

that strain-harden, it has been shown that the extent of hardening reduces the amount of 

pile-ups, and it is even possible for the material to sink-in (Cheng and Cheng, 1999), i.e., 

(8) overestimates hc. 

The neglect of finite tip radius effects will result in the underestimation of A as 

well. Suppose a conical indenter with a finite tip radius may be represented by a cone 

with a spherical cap; the projected contact area, A, is given by (Troyon and Huang, 2004), 

ܣ ൌ ߨ tanଶ ߙ ሺ݄௖ ൅ ݄௕ሻଶ (13)

where hb is the blunting distance, which is the distance between the supposed apex of the 

cone and the spherical cap. Since hb is a positive variable that represents the finite tip 

radius effects, if neglected it will result in an underestimation of the projected contact 

area, A.   
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Fig. 3.12. Schematic of an elastic-plastic indentation 

Although it is clear that the accurate determination of the projected contact area, A, 

is central to the accurate extraction of Er, such a determination is currently missing. The 

accurate determination of the tip radius of the indenter, ρ, is not a trivial task, yet, even 

with an accurate knowledge of ρ, one still requires the knowledge of hc to accurately 

determine A. It is established that hc is affected by pile-ups and sink-ins that are 

themselves determined by the material constitutive behavior, which is precisely what one 

seeks to characterize using nanoindentations. Proposed methods to approximate hc, are 

often valid for a certain range of material properties, which might result in a severe 

overestimation or underestimation of the material property values (Tranchida et al., 2006). 

Thus, the subsequent section proposes an experimental technique to measure the 

projected contact area, A, directly without any assumptions or restrictions on material 

properties.   

  

 

α* 

α 

hc, calculated from Eq. (8). 

pile-up 

actual hc 

a 
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 3.4.1. Measurement of the Projected Contact Area using Electrical Resistance Method 

A simple methodology is proposed for the in situ measurement of the contact area, 

A. It is based on the following 2 steps: 

a. Determine r, the specific electrical contact resistance between the tip and 

the substrate. For this, bring a cylindrical (or equivalently well defined) 

conductive tip of known cross-sectional area in contact with the sample.  

b. Using a conventional tip (such as Berkovich) with the same material as the 

tip used in the calibration, the measured current is directly related to the 

surface area of contact, As, using the relation I = Asr. The projected area of 

contact, A, can then be inferred from As, based on the known geometry of 

the indenter. 

The proposed method is simple and straightforward. The measured projected area 

takes into account any pile-ups or sink-ins associated with the properties of the sample. 

Figure 3.13(a) shows the load-displacement curves for the indentations of 

polycrystalline gold, using a Berkovich tip, and Fig. 3.13(b) shows the corresponding in 

situ measurement of the current-displacement curves. Figure 3.13(b) was discretized and 

fitted with a quadratic curve with no linear term. The current-displacement relation is 

well described by the fitted quadratic curve, as expected (R2 = 0.994). The current is 

expected to increase with surface contact area, which varies with the square of 

indentation depth. Thus, the current measured across the tip/specimen contact should 

vary proportionally with the square of the indentation depth. It is also observed that at 

shallow indentation depths, the current does not fit as well to the quadratic curve. This is 

probably due to the finite tip radius of the indenter. Granted r, the tip radius of the 
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indenter, ρ, can be inferred from the current measurements as well. This preliminary 

analysis shows that the proposed methodology for the measurement of projected contact 

area, A, is very promising. 

While this proposed technique assumes that the electrical resistance of the 

material and indenter tip does not change during indentation, it is important to note this 

assumption may not hold for some materials. For these materials, phase changing or 

formation of shear bands, or even presence of surface asperities were found to affect the 

contact resistance measurement, as discussed by researchers such as Mann et al. (2002) 

and Ruffell et al. (2007). 

 

Fig. 3.13.  (a) Load-displacement curves for the indentations of polycrystalline Gold (Au); (b) 

Corresponding current-displacement curves for the indentations (courtesy of Hysitron (Vodnick, 2007)) 

 

3.4.2. Reduction of Errors with Accurate Measurement of A 

To investigate the reduction of errors from the accurate measurement of A, the 

Young’s modulus, E (with a priori knowledge of ν), was calculated using (6) with 

accurate measurements of A from the numerical simulations. The results are tabulated in 

Tables 3.6 and 3.7 in the Appendix. 



85 
 

Figure 3.14 plots the percentage error, ε, vs. E/σy for the range of ν (0.01, 0.3, and 

0.47) and ρ (30 nm and 150 nm), using A, calculated from (7) and measured directly in 

the simulations. It is observed that for the range of E/σy relevant to most materials, i.e., 

between 100 and 1000, ε is reduced by more than 50%. It is also observed that when E/σy 

is small, the difference between A calculated using (7) and that measured in the 

simulation is not significant. When E/σy is small (say, < 30), the extent of plasticity is not 

prevalent and the hr/hmax < 0.7 criterion for the accurate use of (8) is fulfilled. Hence, the 

measured value of A is expected to be similar to that derived using elastic relations. In 

addition, when the accurate value of A is used, ε is observed to be relatively insensitive to 

E/σy, which suggests an accurate determination of A eliminates the effects from plasticity. 

 

Fig. 3.14. ε vs. E/σy using calculated and “measured” values for A. The bars correspond to the calculated 

range of ε for values of ν (= 0.01, 0.3, 0.47) and ρ (= 30 nm, 150 nm). Exact values are tabulated in Tables 

3.1, 3.3, 3.6, and 3.7 
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The percentage error of the extracted E, ε, is also found to be insensitive to the tip 

radius of the indenter when the accurate projected area, A, was used in the extraction of E, 

as can be observed from Fig. 3.15. This result confirms the previous hypothesis that the 

finite tip radius of the indenter only affects the accurate determination of A.  

 

Fig. 3.15. ε vs. E/σy using “measured” values for A for ρ = 30 nm and 150 nm. The bars correspond to the 

range of ε for values of ν (= 0.01, 0.3, 0.47). Exact values are tabulated in Tables 3.6 and 3.7 

From Fig. 3.16, it is observed that the percentage error of the extracted E, using 

the measured A, remains sensitive to ν. This suggests that this error associated with ν is 

independent of the accurate determination of A. Though it has been shown that the extent 

of residual stress at the plastic imprint is sensitive to ν of the indented material, it is not 

clear how the residual stresses affect the accuracy of the extracted elastic properties of 

interest. 

For linearly elastic indentations, it was established in Chapter 2 that the correction 

factor, β, is the product of the first correction factor term, f(ν) due to radial displacement 
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(Hay et al., 1999) and a form factor essentially related to the geometry of contact. For 

elastic-plastic indentations, the present discussion assumed that the projected contact area, 

A is accurately determined. Hence, in the context of β in the linearly elastic case, the form 

factor is effectively unity. Furthermore, ε for the elastic-plastic indentations is observed 

to be relatively insensitive to E/σy and ρ, such that ε may be interpreted as a function of 

only ν. Figure 3.17 compares the correction factor, f(ν) associated with ν in elastic and 

elastic-plastic indentations. It is observed that f(ν) for both cases are rather similar, 

although f(ν)elastic-plastic is observed to be consistently larger than f(ν)elastic. It is important to 

note that f(ν)elastic is attributed to the negligence of radial displacement in Sneddon’s 

derivation, whereas f(ν)elastic-plastic is likely associated with the residual stress field around 

the plastic imprint due to elastic confinement. In the case for elastic-plastic indentations, 

the effective half-angle, α' is very large (> 88o for common materials) for the elastic 

unloading curve, thus the error dependent on ν is unlikely due to the negligence of lateral 

displacement as demonstrated by the work of Hay et al. (1999). Moreover, it is clear that 

in the limiting case of a flat punch, the induced lateral displacement would be zero. The 

slight difference between the correction factors in Fig. 3.17 could suggest why significant 

errors are not observed even when these correction factors are used interchangeably.    
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Fig. 3.16. ε vs. E/σy using “measured” values for A for ν (= 0.01, 0.3 and 0.47). The bars correspond to the 

range of ε for values of ρ (= 30 nm and 150 nm). Exact values are tabulated in Tables 3.6 and 3.7 

 

 

Fig. 3.17. Comparison between the correction factor, f(ν), between elastic and elastic-plastic indentations 

 

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

0 0.1 0.2 0.3 0.4 0.5
ν

f( ν
)

Elastic
Elastic-plastic



89 
 

It is important to note that there are still secondary sources of error in the 

derivation of elastic constants. One important source of error lies in the measurement of 

the slope of the unloading curve. Despite measures taken to reduce them, such as curve 

fitting, an uncertainty of up to 5% can be introduced to the measurement of the slope. 

This uncertainty will then be propagated to the value of Er. 
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3.5. SUMMARY AND CONCLUSIONS 

 

The conventional method of deriving elastic constants using nanoindentation of 

elastic-plastic materials has been critically examined using numerical simulations and 

experiments. The main results of this study are summarized below: 

The effective half-angle, α′ has been identified to be a function of E/σy, as shown 

in Fig. 3.3. For a typical material, E/σy ranges between 100 and 1000, thus its 

corresponding α′ ranges between 88o and 89.7o. However, this single geometrical 

parameter α′ cannot adequately represent the residual stress field, which is a function of 

Poisson’s ratio of the specimen, ν that characterizes the unloading stage of the elastic-

plastic imprint. Consequently, Sneddon’s load-displacement relationship for the conical 

indenter (1) cannot effectively describe the elastic unloading curve of an elastic-plastic 

indentation. Therefore, it seems preferable to use the elastic relationship for axially 

symmetric indenters with a smooth profile (6). Yet, (6) requires an accurate 

determination of the projected area of contact, A. The latter may be inferred analytically 

provided hr/hmax < 0.7, but for an elastic-perfectly plastic material, this criterion is 

equivalent to E/σy < 30, which is quite limited in scope for most materials of interest. 

Pile-ups and sink-ins will also affect the accuracy of hc , and thus A, but they are in turn 

determined by the very mechanical properties of the investigated material, which are to 

be determined. In addition, A is also found to be a function of the indenter’s tip-radius, ρ, 

through the elastic-plastic loading stage of the indentation cycle. Therefore, an alternative 

approach is proposed, in which A is measured directly, using electrical methods. The 

viability of this method has been verified based on experimental results. Once A is 
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accurately determined, one observes that the percentage error of the extracted Young’s 

modulus is insensitive to E/σy and ρ as expected, but it is still sensitive to ν.  

Concerning the determination of the yield strength of the material, a power law 

relationship was identified between he/hmax and E/σy in (10). This relation was verified 

experimentally and found to provide an upper bound for the yield stress of pressure 

sensitive and/or strain hardening materials.  

In conclusion, 

• The direct application of Sneddon’s solution for elastic-plastic 

indentations is not as appropriate as the conventional method (6). 

• The residual stress field around the plastic imprint is found to be sensitive 

to the Poisson’s ratio, ν. Higher values of ν correspond to lower residual 

stresses.   

• An accurate determination of the projected contact area, A, will reduce the 

errors in the extracted value of E by more than 50% for typical elastic-

plastic solids.  

• The projected contact area, A, is found to be not only related to hc but also 

to E/σy and ρ as well. 

• A new experimental procedure to directly measure the projected contact 

area, A is proposed. 

• A new methodology to extract the yield stress of materials using 

nanoindentation has been proposed. 
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APPENDIX 

 

E/σy he (nm) α′ Calculated E 

(GPa) 

% Error 

E = 50 GPa, ν = 0.01, ρ = 30 nm 

10 135.3 80.7o 55.6 11.3 

50 55.53 86.9o 58.1 16.3 

100 34.15 88.2o 61.8 23.7 

500 10.48 89.5o 68.4 36.8 

1000 7.03 89.7o 69.6 39.3 

E = 50 GPa, ν = 0.3, ρ = 30 nm 

10 161.68 78.6o 53.4 6.8 

50 56.48 86.8o 56.7 13.3 

100 35.95 88.1o 61.3 22.5 

500 11.95 89.4o 64.5 29.0 

1000 7.41 89.6o 64.7 29.4 

E = 50 GPa, ν = 0.47, ρ = 30 nm 

10 161.68 78.5o 51.9 3.9 

50 61.57 86.5o 55.2 10.5 

100 32.95 88.2o 60.8 21.6 

500 9.57 89.5o 64.9 30.0 

1000 6.47 89.4o 59.6 19.2 

Table 3.1. Varying Poisson's ratio, ν, with E = 50 GPa and ρ = 30 nm 
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E/σy he (nm) α′ Calculated E 

(GPa) 

% Error 

E = 10 GPa, ν = 0.3, ρ = 30 nm 

10 161.68 78.6o 10.7 6.61 

50 56.47 86.8o 11.5 14.7 

100 35.95 88.1o 12.4 24.3 

500 11.95 89.4o 13.2 32 

1000 7.41 89.6o 13.1 31 

E = 50 GPa, ν = 0.3, ρ = 30 nm 

10 161.68 78.6o 53.4 6.8 

50 56.48 86.8o 56.7 13.3 

100 35.95 88.1o 61.3 22.5 

500 11.95 89.4o 64.5 29.0 

1000 7.41 89.6o 64.7 29.4 

E = 100 GPa, ν = 0.3, ρ = 30 nm 

10 161.68 78.6o 106.1 6.1 

50 56.47 86.8o 113.3 13.3 

100 35.95 88.1o 123.6 23.6 

500 11.95 89.4o 129.9 29.9 

1000 7.41 89.6o 131.4 31.4 

Table 3.2. Varying Young's modulus, E, with ν = 0.3 and ρ = 30 nm 
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E/σy he (nm) α’ Calculated E 

(GPa) 

% Error 

E = 50 GPa, ν = 0.01, ρ = 150 nm 

10 138.64 80.4o 57.4 14.8 

50 53.26 87.0o 60.1 20.3 

100 34.50 88.2o 63.2 26.4 

500 10.48 89.5o 68.4 36.8 

1000 6.02 89.7o 74.8 49.6 

E = 50 GPa, ν = 0.3, ρ = 150 nm 

10 161.68 78.4o 55.3 10.5 

50 58.82 86.7o 58.6 17.3 

100 36.33 88.1o 61.6 23.2 

500 11.50 89.4o 68.0 36.0 

1000 6.36 89.7o 69.4 38.9 

E = 50 GPa, ν = 0.47, ρ = 150 nm 

10 161.68 78.4o 53.8 7.7 

50 58.79 86.7o 57.3 14.7 

100 37.22 88.0o 57.8 15.5 

500 13.05 89.3o 60.5 20.9 

1000 10.14 89.5o 61.2 22.3 

Table 3.3. Varying Poisson's ratio, ν, with E = 50 GPa and ρ = 150 nm 
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E/σy he (nm) α′ Calculated E 

(GPa) 

% Error 

E = 10 GPa, ν = 0.3, ρ = 150 nm 

10 161.68 78.4o 11.0 10.4 

50 58.82 86.7o 11.7 16.6 

100 36.33 88.1o 12.4 24.1 

500 11.50 89.4o 13.8 38.0 

1000 6.36 89.7o 14.5 44.9 

E = 50 GPa, ν = 0.3, ρ = 150 nm 

10 161.68 78.4o 55.3 10.5 

50 58.82 86.7o 58.6 17.3 

100 36.33 88.1o 61.6 23.2 

500 11.50 89.4o 68.0 36.0 

1000 6.36 89.7o 69.4 38.9 

E = 100 GPa, ν = 0.3, ρ = 150 nm 

10 161.68 78.4o 110.4 10.4 

50 58.82 86.7o 117.3 17.3 

100 36.33 88.1o 125.3 25.3 

500 11.50 89.4o 138.0 38.0 

1000 6.36 89.7o 139.9 39.9 

Table 3.4. Varying Young's modulus, E, with ν = 0.3 and ρ = 150 nm 
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Specimen Number of 

experiments 

E/σy  

(from known 

values) 

Mean  

(he/hmax from 

experiments) 

Standard 

Deviation 

(he/hmax from 

experiments) 

Aluminum 12 1750 0.0181 0.0055 

Fused Quartz 6 68.2 0.5609 0.0171 

Pt BMG 12 67.7 0.2516 0.0356 

Homalite 14 79.9 0.5900 0.0938 

Silicon 3 145.5 0.6305 0.0087 

Table 3.5. Statistical variation for nanoindentation experiments 
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E/σy Calculated A 

(μm2) 

“Measured” A 

(μm2) 

Calculated E (with 

“measured” A) 

(GPa) 

% Error 

E = 50 GPa, ν = 0.01, ρ = 30 nm 

10 0.87 0.79 58.4 16.7 

50 1.33 1.28 59.1 18.2 

100 1.47 1.69 57.7 15.3 

500 1.64 2.17 59.5 19.1 

1000 1.67 2.39 58.2 16.4 

E = 50 GPa, ν = 0.3, ρ = 30 nm 

10 0.81 0.82 52.9 5.8 

50 1.3 1.48 53.1 6.2 

100 1.46 1.77 55.7 11.4 

500 1.64 2.16 56.2 12.8 

1000 1.67 2.16 56.9 13.7 

E = 50 GPa, ν = 0.47, ρ = 30 nm 

10 0.81 0.76 53.6 7.2 

50 1.31 1.56 50.7 1.4 

100 1.48 1.97 52.7 5.4 

500 1.65 2.42 53.6 7.1 

1000 1.67 2.45 49.2 1.6 

Table 3.6. Calculated E with “measured” A, for different ν, with ρ = 30 nm 
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E/σy Calculated A 

(μm2) 

“Measured” A 

(μm2) 

Calculated E (with 

“measured” A) 

(GPa) 

% Error 

E = 50 GPa, ν = 0.01, ρ = 150 nm 

10 0.85 0.86 57.2 14.4 

50 1.32 1.41 58.5 17.1 

100 1.46 1.76 57.5 15.0 

500 1.64 2.42 56.5 13.1 

1000 1.67 2.66 59.3 18.5 

E = 50 GPa, ν = 0.3, ρ = 150 nm 

10 0.79 0.80 54.9 9.8 

50 1.3 1.46 55.1 10.3 

100 1.45 1.86 54.9 9.7 

500 1.64 2.62 54.7 9.3 

1000 1.67 2.63 57.6 15.2 

E = 50 GPa, ν = 0.47, ρ = 150 nm 

10 0.79 0.85 52.1 4.2 

50 1.30 1.53 52.9 5.8 

100 1.47 1.79 53.7 7.3 

500 1.64 2.43 49.7 0.5 

1000 1.67 2.64 48.6 2.8 

Table 3.7. Calculated E with “measured” A, for different ν, with ρ = 150 nm 
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CHAPTER 4: AN ANALYSIS OF NANOINDENTATION IN SOFT 

MATERIALS 

 

ABSTRACT 

The effects of cantilever stiffness, preload, and surface interaction forces on the load-

displacement relation for soft materials are critically examined in this study. During the 

indentation of soft materials with an Atomic Force Microscope (AFM), these effects are 

usually coupled and are observed to influence the deflection-approach displacement 

measurements. These effects have a particularly significant influence on the accurate 

extraction of material properties in soft materials. To understand these effects, three 

separate experiments were performed, (i) the indentation with a ‘rigid cantilever’ on a 

soft material with no surface forces, (ii) the indentation with a compliant cantilever on a 

rigid material with surface forces and, (iii) the indentation with a compliant cantilever on 

a soft material with surface forces. For the first experiment, it is observed that the effects 

of preload resemble a shift of the measured nanoindentation load-displacement curve to 

the right of the tip-specimen contact point. The second experiment examines the 

influence of the cantilever stiffness on the surface forces measured by the deflection-

approach displacement records of the AFM. The third experiment most closely resembles 

practical nanoindentation of soft materials. In this experiment, all the three effects were 

present and coupled. A novel technique to account for these effects is proposed, in order 

to accurately extract the material properties of interest. 
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4.1. INTRODUCTION 

 

 In recent years, the importance for the mechanical characterization of biological 

materials has become evident in the field of biology, ranging from the diagnosis of 

diseases (Paszek et al., 2005; Suresh et al., 2005) to the understanding of cell-biology 

(Ingber et al., 1994; Lo et al., 2000; Wang et al., 2003; Wells, 2008). Biological materials 

are commonly soft and viscoelastic in nature and characterized by means of traditional 

techniques such as the uniaxial test. For small area and volume specimens such as thin 

protein films, tissues, cells, etc., or when local mechanical properties are of interest, 

nanoindentation is commonly used to extract their stiffness values. Since the indentation 

force required in these indentations is usually small, they are commonly performed using 

the atomic force microscope (AFM) because of its superior force resolution compared to 

a typical force resolution of approximately 100 nN of a nanoindenter. Unlike a 

nanoindenter, the AFM does not require a load cell to measure the indentation load. 

Instead, the AFM derives the indentation force by multiplying the measured deflection of 

the cantilever with its spring constant. Thus, with the selection of an appropriate soft 

cantilever, the AFM is able to measure low indentation force down to the 1 pN range, 

which makes it particularly suitable for soft materials. 

Soft materials such as rubber and gel are commonly incompressible and exhibit 

elastic deformations which satisfy the prerequisite for the accurate application of the 

stiffness equation. Moreover, since deep indentations are usually achieved during the 

nanoindentation of soft materials, it was concluded in Chapter 2 that the finite tip radius 

effect is not significant. These unique mechanical characteristics all seem to suggest that 
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the conventional method to extract material properties using nanoindentation is very 

appropriate for soft materials, which will be investigated in this study. 

Many soft materials are non-linearly elastic, viscoelastic, and hysteretic (Mullin’s 

effect), which will undoubtedly affect the applicability of the stiffness equation in the 

indentation on such materials. However, such effects are not considered in this study. The 

materials chosen for this study (latex and polyacrylamide gel) are rate-insensitive and 

linearly elastic, as evidenced by their uniaxial stress-strain curves. Nevertheless, even 

when such soft linearly elastic materials are used, there are still challenges impeding the 

accurate extraction of material properties using the stiffness equation. Surface interaction 

forces between the tip and the specimen are particularly significant in the indentation of 

soft materials, which were not considered in the theoretical derivation of the stiffness 

equation. The effect of preload in the indentation of soft materials was identified in 

Chapter 2 to be crucial for the accurate extract of material properties as well. Moreover, 

the use of the AFM introduced an additional variable, the stiffness of the cantilever, 

which can influence the measurements during the nanoindentation experiment.  

This chapter will be organized as follows. The study will first discuss the effects 

of the stiffness of cantilever tip, the tip-specimen contact point and the surface forces in 

Section 4.2. The interaction between these effects and their influences on the overall 

accuracy of the extracted material properties will be investigated in detail in the 

experiments presented in Section 4.3. This study explores three indentation scenarios, (i) 

the indentation with a ‘rigid cantilever’ on a soft material with negligible surface forces, 

(ii) the indentation with a compliant cantilever on a rigid material with surface forces and 

finally, (iii) the indentation with a compliant cantilever on a soft material with surface 
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forces. The first two experiments isolate some of these effects for a closer examination 

while the third experiment most closely resembles a typical practical nanoindentation of 

soft materials, where all the effects are present and coupled. Techniques to account for 

the effects are presented in their respective sections for each indentation scenario. Finally, 

summary and conclusions for this study will be presented in Section 4.4. 
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4.2. ACCURACY OF THE EXTRACTED MATERIAL PROPERTIES 

 

 Nanoindentation of soft materials using the AFM poses a different set of 

challenges than the ones already discussed in the previous chapters. As illustrated in Fig. 

4.1, nanoindentation using the AFM is a ‘displacement controlled’ experiment, where the 

user imposes an approach displacement, δ, between the tip and specimen that usually 

follows a ramp function. This approach is actuated by piezoelectric transducers located 

either at the indenter head or at the stage and is monitored throughout the indentation.  

Another parameter monitored during the experiment is the deflection by the 

cantilever, δ – h, where h is the indentation depth. A laser beam is reflected off the tip of 

the cantilever, thus any changes to the slope at this location will be detected by the photo-

detector monitoring the reflected laser beam. The conversion factor between the changes 

in the slope of the cantilever to changes in the deflection of the cantilever generally 

depends on the geometry of the cantilever. It is usually calibrated through an indentation 

on a ‘rigid surface’ (a specimen that is as stiff as the indenter tip but much stiffer than the 

spring constant of the cantilever). In this case, the deflection will equal the approach 

distance and thus the slope-to-deflection factor for the cantilever can be calculated.  

The stiffness or spring constant of the cantilever is commonly derived through the 

measured intensity of the thermal noise during the excitation of the cantilever with 

thermal fluctuations (Hutter and Bechhoefer, 1993). The indentation force is then inferred 

by the product of the spring constant of the cantilever and its deflection. The stiffness of 

the cantilever affects the force resolution of the indentation, the penetration depth of the 

tip, the amount of preload on the specimen and the effects of surface forces on the 
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indentation load-displacement curve. Each of these effects will be discussed individually 

in the subsequent subsections. In this study, the indenter tips (made of glass or diamond) 

are much stiffer than the soft specimens tested, and thus are assumed to be rigid; the 

specimens, on the other hand, are sufficiently large to meet the converged geometry 

criteria established in Chapter 2. 

 

 

 

4.2.1. Stiffness of the Cantilever 

  The indentation problem between a rigid spherical indenter and a linearly elastic 

half-plane was first studied by Hertz (1881). The total indentation force, P is given by 

ܲ ൌ
4 ܽଷ ܧ

3 ܴ ሺ1 െ ଶሻߥ ൌ ݇௖ሺߜ െ ݄ሻ  (1)

where a is the radius of the contact area, R is the radius of the spherical indenter, E and ν 

are the Young’s modulus and Poisson’s ratio of the specimen, and kc is the spring 

constant of the cantilever. At equilibrium, the indentation force on the specimen must 

equal the restoration force, kc (δ - h) of the cantilever, acting in the opposite direction to 

the deflection of the cantilever. The indentation depth, h is given by 

δ 

δ – h 

h 

Fig. 4.1. Illustration of indentation with the AFM 
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݄ ൌ
ܽଶ

ܴ .  (2)

Eqs. (1) and (2) can be solved simultaneously to obtain an expressions with: (i) 

indentation load, P, as a function of imposed approach displacement, δ, (ii) cantilever 

deflection (δ - h) as a function of the imposed approach displacement, δ, and (iii) 

indentation force, P, as a function of indentation depth, h.  

 Figures 4.2, 4.3 and 4.4 show the effects of the stiffness of the cantilever on P, δ – 

h, δ, and h.  In these plots, the material constants E and ν were arbitrarily chosen to be 

100 kPa and 0.5, respectively, which are within the typical range of values for many soft 

biological materials. The stiffness of the cantilever for the AFM is typically between 0.05 

N/m and 0.5 N/m, however a larger range of stiffness (between 0.0001 N/m and 1 N/m) 

was used in these plots to better illustrate the effect of varying cantilever stiffness. The 

radius of curvature of the spherical indenter was arbitrarily selected to be 2.5 μm for this 

example. The imposed approach distance, δ, a parameter usually assigned by the user 

during an indentation, was arbitrarily chosen to be 2 μm for all the indentations. 

 Figure 4.2 shows P vs. δ for various kc. In this figure, it is observed that softer 

cantilevers offer better force resolution. The slope of the curves decreases with 

decreasing cantilever stiffness, thus every unit of δ, the softer cantilever measures a 

smaller unit of P as compared to a stiffer one. This plot also shows that the amount of 

force the tip exerts on the specimen depends significantly on the stiffness of the 

cantilever used. 
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Fig. 4.2. Indentation load, P, vs. imposed approach distance, δ, for different cantilever stiffness, kc 

Figure 4.3 shows (δ – h) vs. δ for different kc. This figure shows that as the 

cantilevers become softer, the slope of the curves tends towards unity. As observed in Fig. 

4.2, the soft cantilevers barely exert any force on the specimen, hence, the imposed 

approach displacement δ is entirely translated to tip deflection (δ – h).      
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Fig. 4.3. Cantilever deflection vs. imposed approach displacement, δ, for different cantilever stiffness, kc 

 Figure 4.4 shows P vs. h for various kc. This figure shows that the indentation 

depth, h, is dependent on the cantilever stiffness, kc. As concluded by the previous figures, 

a softer cantilever exerts a smaller indentation load on the specimen, hence reaching a 

shallower penetration depth. Therefore, it is evident that nanoindentation using the AFM 

is not exactly a ‘displacement controlled’ experiment, since the actual indentation depth 

is largely dependent on the stiffness of the cantilever used. 
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Fig. 4.4. Indentation load, P, vs. indentation displacement, h, for different cantilever stiffness, kc 

 

4.2.2. Tip-Specimen Contact Point 

 For the indentation of soft materials, the identification of the point of contact 

between the tip and specimen, without any penetration into the specimen, is generally 

non-trivial. Firstly, in order for the nanoindenter or AFM to detect any contact, a finite 

amount of force (for the load cell in the nanoindenter) or a finite deflection of the 

cantilever is usually required. This value can be minimized through careful calibration 

but will always remain finite. For the indentation of a stiff specimen, this finite force 

exerted on the specimen normally result in negligible displacement, however, for a soft 

specimen, this force can results in a large indentation depth by the indenter tip. Without 

the presence of any surface forces, this preload can usually be inferred from the ‘set 

point’ ― for the nanoindenter, the preset load point that defines contact; for the AFM, the 

preset deflection by the cantilever that defines contact. It should be noted, however, for 
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some modern AFM, this effect is eliminated by retracting the tip some distance away 

from the specimen before the indentation. This preload is crucial for the accurate 

extraction of material properties, which will be discussed in detail in Section 4.3.1. 

 The identification of the contact point is further complicated by the presence of 

surface forces. The different types of surfaces forces will be discussed in detail in Section 

4.2.3. In this section, surface force is treated as an attractive force between the tip and the 

specimen. As the tip and the specimen come into contact, the attractive force will pull the 

tip towards the specimen which can result in an indentation for soft materials. Unlike the 

preload resulting from a finite ‘set point’ to establish contact by the equipment, it is 

usually more difficult to infer the preload due to surface forces between the tip and 

specimen. A novel method to extract this value of preload due to surface forces in soft 

materials will be presented in Section 4.3.3.2.     

 

4.2.3. Surface Forces 

 The surfaces force between the tip and specimen can arise from several different 

sources. The most common considerations include the Van der Waals force, the 

electrostatic force or the Coulomb force, and the capillary force (Burnham and Colton, 

1989; Cappella et al., 1997; Mann and Pethica, 1996; Ouyang et al., 2000; Zammaretti et 

al., 2000). Unfortunately, it is often difficult to identify the most critical force of all since 

the effects from each of these forces differ for different tip-specimen configurations 

(Ouyang et al., 2000). Researchers have explored multiple ways to isolate these forces by 

examining the tip-specimen contact under various conditions ― in air, all the three forces 

are in play during indentation; in water, the electrostatic and capillary forces are removed, 
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however, a repulsive double-layer force (due to the charging of both sample and tip 

surfaces in liquids) may be introduced; under ion showers, the electrostatic force is 

removed (Cappella et al., 1997; Ouyang et al., 2000). 

The effect from surface forces between the tip and the specimen is more 

significant during the indentation of soft materials. Firstly, this is because the amount of 

force required to indent softer materials is smaller, thus any other artificial effects from 

the tip-specimen interactions are significantly amplified; and secondly, the asperities on 

the soft material tend to conform to the indenting surface, which increases the effective 

surface area of the contact. This often intensifies the effect of surface forces between the 

two surfaces. 

In this study, the surface forces are treated as a single entity composed of the 

long-range attractive force and the short-range adhesive force. The long-range attractive 

force is observed before the snap-in of the cantilever (the sudden deflection by the 

cantilever as the tip comes into contact with the specimen). The short-range adhesive 

force is directly observed by the pull-off force required to separate the tip from the 

specimen. The effect of surface forces observed during nanoindentation will be discussed 

in detail in Section 4.3.2. 
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4.3. EXPERIMENTS 

 

 The effects from cantilever stiffness, preload, and surface forces discussed in the 

previous sections all affect the accurate extraction of the material properties using 

nanoindentation. To better understand their individual effects, three indentation 

experiments were designed to isolate them. The first is the indentation with a ‘rigid 

cantilever’ on a soft material with negligible surface forces to isolate any effects from 

cantilever stiffness and surface forces. This experiment examines the effects of preload 

(identification of the zero penetration depth contact point) on the accurate determination 

of material properties. The second experiment is the indentation with a compliant 

cantilever on a rigid material with surface forces to study the effects of the cantilever 

stiffness and the surface forces, and the interaction between them. The third experiment is 

the indentation with a compliant cantilever on a soft material with surface forces. This 

experiment most closely resembles practical indentations on soft biological materials to 

extract material properties. The objective of this experiment will be to develop a method 

to account for the effects from surfaces forces and preload conditions, so as to be able to 

extract the material properties accurately.       

 

4.3.1. Indentation with a ‘Rigid Cantilever’ on a Soft Material with negligible Surface 

Forces 

Indentation with an AFM cannot be performed using a rigid cantilever. The rigid 

cantilever will not deflect during the indentation. While h will be equal to the prescribed 

δ, the measurement for P is not possible. Hence, to isolate the effects from the cantilever 
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stiffness, a nanoindenter was used for this experiment. During the indentation, the 

indenter tip was moved towards the specimen with piezoelectric transducers, while the 

specimen sits on a stationary stage. The indentation load, P was measured using a load 

cell. The nanoindenter is unable to achieve the force resolution of the AFM but it 

eliminates any complications arising from the cantilever stiffness. 

In this experiment, natural latex rubber was used. The latex rubber was first tested 

uniaxially using the servo-hydraulic Materials Testing System (MTS 358 series) with 30-

kip (13.3 kN) load cartridge. The measured compressive uniaxial stress-strain behavior of 

latex is shown in Fig. 4.5. The cubic specimens (12 mm on each side) were loaded 

repeatedly at various strain rates without significant changes to the measured stress-strain 

behavior. It is observed that latex is essentially linearly elastic up to 10% strain. 

 

Fig. 4.5. Uniaxial true stress-strain curves for natural latex rubber 

The nanoindentation experiment was then performed on the latex rubber using a 

diamond Berkovich tip on the HysitronTM Triboindenter. The loading function was 
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created with the open loop load-control option. The contact ‘set-point’, Po (the load 

threshold to establish contact) was set at the default of 2 μN. The indentation sites were 

scanned after each indentation and showed no residual imprints. A typical load-

displacement curve measured during the experiments is shown in Fig. 4.6.  Unlike the 

uniaxial response, hysteresis was observed in the load-displacement measurements 

suggesting the attainment of larger strains. To a first approximation, the average behavior 

of the material is considered as shown in Fig. 4.6.  

 

Fig. 4.6. Typical measured load-displacment nanoindentation curve for latex rubber using a Berkovich tip 

The averages of the loading and unloading segments of several nanoindentations 

of natural latex are plotted in Fig 4.7. The Young’s modulus, E, of the latex was 

determined to be 3.46 MPa from uniaxial experiments in Fig. 4.5, and its Poisson’s ratio, 

ν, was assumed to be 0.5. Using the values of Po, E, and ν, a theoretical load-

displacement curve is derived using Sneddon’s equation (1948) for a conical tip with a 

half-angle of 70.3o ― the equivalent of the actual pyramidal indenter (in this case a 
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Berkovich tip) to a conical tip with the same projected area-to-depth relationship is 

widely accepted by the research community (Fischer-Cripps, 2004; Lichinchi et al., 1998; 

Oliver and Pharr, 1992; Wang et al., 2006; Yu et al., 2004). From Fig. 4.7, the 

experimental load-displacement curves were observed to match the theoretical load-

displacement curve well. 

During the indentation of stiffer materials such as aluminum, fused quartz, and 

metallic glass in Chapter 3, the same preload of 2 μN results in negligible indentation into 

material as such h equals zero is taken to coincide with the location where the tip just 

touches the specimen without any penetration. This is evidently not the case for the 

indentation of soft materials as shown in Fig. 4.7. The location in which the tip just 

touches the specimen without any penetration is at the negative 500 nm mark. The 

approximately 2 μN of load required for the load-cell to establish contact resulted in 

about 500 nm of indentation depth in the specimen. Considering that the typical range for 

nanoindentation depth is between 200 nm to 1 μm, this preload displacement, ho of 500 

nm is very significant.  

For an indentation with a conical tip, the preload, Po, effectively shifts the 

measured load-displacement curve to the right of tip-specimen contact point by ho, as 

follows  

ሺܲ െ ௢ܲሻ ൌ
2 ܧ tan ߙ

ߨ ሺ1 െ ଶሻߥ ሺ݄ െ ݄௢ሻଶ  (3)

where α is the half angle of the conical indenter. As discussed in the earlier chapters, the 

slope of the load-displacement curve is commonly used by the stiffness equation to 

extract the elastic properties of the material of interest. The slope of the load-

displacement curve for the preloaded specimen is given by  
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݀ܲ
݄݀ ൌ

4 ܧ tan ߙ
ߨ ሺ1 െ ଶሻߥ

ሺ݄ െ ݄௢ሻ .  (4)

If the effects of the preload are not accounted for from (4), the slope of the load-

displacement curve will be overestimated (since ho is positive). This error will be 

propagated to the accuracy of the extracted material properties when the erroneous slope 

for the load-displacement curve is used in the stiffness equation. This error will lead to an 

overestimation for the extracted reduced modulus. The green line in Fig. 4.7 illustrates 

the load-displacement curve if the preload is not taken into account. It is evident that the 

green line is distinctly steeper than the red one. Similar effects can be demonstrated for 

other indenter geometries as well. 

 However, as shown in Fig. 4.7, if Po and ho, are appropriately accounted for, the 

linear elastic theory coincides rather well with the experimental results. This ensures that 

the stiffness equation can be used to accurately extract the reduced modulus of interest 

through the nanoindentation load-displacement measurements.  
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Fig. 4.7. Comparison between experimental and theoretical load-displacement curves for the indentation of 

latex 

 

4.3.2. Indentation with a Compliant Cantilever on a Rigid Material with Surface Forces 

To investigate the effects of cantilever stiffness and surface forces, 

nanoindentations were performed using the Asylum Research MFP-3D-BIO™ AFM. 

Two separate cantilevers were used in the experiments with stiffness of 0.2735 N/m and 

0.0766 N/m, respectively. The spring constants for the cantilevers were calibrated 

automatically using the thermal calibration option (Hutter and Bechhoefer, 1993). Both 

cantilevers have a glass spherical tip with a radius of 2.5 μm. In this series of experiments, 

glass slides were being ‘indented’. Since glass is much stiffer than the cantilevers, it is 

assumed to behave effectively as a ‘rigid’ material.  

 Figure 4.8 shows the relationship between the cantilever’s deflection (δ – h), and 

the imposed approach displacement, δ. The slopes of the curves from both cantilevers 
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were approximately one, which suggests that all of the imposed approach displacements 

were translated into cantilever deflection. Hence, there can be no indentation into the 

specimen, which confirms that the glass was indeed a ‘rigid’ material.  

 The contact point (where the tip initially touches the specimen without any 

indentation) can be easily identified in these indentations. Since there was no indentation 

into the glass slide, there can be no preload and the contact point must coincide with the 

snap-in point (marked by the small dip along the loading path) on the curves. 

 

Fig. 4.8. Deflection vs. imposed approach displacement for different cantilever stiffnesses. (Curves are 

deliberately offset for clarity.) 

 From Fig. 4.8, it is observed that the loading and unloading deflection-approach 

displacement curves do not follow the same paths. This hysteresis has been studied 

extensively by researchers (Burnham et al., 1991; Butt et al., 2005; Cappella et al., 1997) 

and was best discussed by Cappella et al. as shown in Fig. 4.9. Figure 4.9(a) shows the 

tip-specimen interaction force vs. the distance between them. This interaction force was 
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modeled using an inter-atomic Lennard-Jones force for simplicity. The tip-specimen 

interaction achieves force equilibrium when the force on the specimen equals that exerted 

by the cantilever. The force by the cantilever is dependent on its stiffness, as shown by 

both lines marked 1 and 2 in Fig. 4.9(a). The loading process can be described by the 

shift of the cantilever force curve from right to left. Force equilibrium is achieved 

whenever the cantilever force curve intersects the tip-specimen interaction force curve. 

From Fig. 4.9, it is observed that the indentation is stable until the distance between the 

tip and the specimen reaches point ‘a’. It is observed that the force curve at line 1 

intersects the tip-specimen interaction force curve at both point ‘a’ and ‘b’, thus upon 

arriving at point ‘a’, the tip jumps instantaneously to point ‘b’, resulting in the snap-in 

phenomenon observed in the corresponding force-approach displacement plot in Fig. 

4.9(b). This phenomenon occurs as soon as the gradient of the attractive force exceeds the 

spring constant of the cantilever (Burnham et al., 1991) as observed in Fig. 4.9(a). 

Beyond point ‘b’, the indentation remains stable until it arrives at point ‘c’ during 

retraction. Upon arriving at point ‘c’, the tip jumps to point ‘d’, resulting in a pull-force 

of fc observed in Fig. 4.9(b). This explains the hysteresis in the deflection-approach 

displacement observed in Fig. 4.8. 

 From Fig. 4.9(a), it is observed that the size of the hysteresis depends on the 

stiffness of the cantilever used. If a sufficiently stiff cantilever is used, there will be no 

hysteresis between the approach and retraction paths. This is evidently true in Fig. 4.8, as 

the hysteresis loop measured using the stiffer cantilever is smaller than that measured 

with the softer one.  
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While Cappella et al. considered a single force function in Fig. 4.9, different 

forces could be in play during the approach and retraction stages of the actual indentation 

test. During the approach, long-range attractive forces such as Van der Waals and 

electrostatic forces are likely to pull the cantilever tip towards the specimen, eventually 

causing the snap-in. However, once the tip and specimen come into contact, shorter-range 

forces, such as capillary forces, take over. Capillary forces are likely to be more dominant 

during nanoindentation in air due to the moisture accumulated on the surfaces (Cappella 

et al., 1997), thus requiring a much larger force to separate the tip from the specimen 

after contact. This hypothesis forms the basis for the decomposition of the surface forces 

into long- and short-range forces in the subsequent discussions. 
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Figure 4.10 shows the indentation force vs. the approach displacement. The 

indentation force, P, is calculated by multiplying the cantilever deflections with their 

respective spring constants. The AFM was unable to record the pull-off force during the 

indentation with the softer cantilever because its deflection went out of the range of 

measurement. Thus, the final portion of the curves for the soft cantilever in Figs. 4.8 and 

4.9 were constructed (dashed lines) assuming that the pull-off force for the soft cantilever 

equals that of the stiff cantilever. Even though both the cantilevers have identical tips (in 

fa 
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fc 
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fb 

fc 

z = – δ 
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Fig. 4.9. Graphical construction of an AFM force-displacement curve on a rigid specimen with surface 

forces (after Capella et al. (1997)) 
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both material and geometry), the pull-off force measured from the two cantilevers may 

not be the same, as researchers have shown that it is highly dependent on surface 

roughness of both the tip and the specimen (Ando and Ino, 1996; Hodges et al., 2002; 

Jang et al., 2007). The surface quality of the two tips was not examined during the 

experiments. However, for the purpose of comparison in this study, an equivalent pull-off 

force was assumed.  

 The adhesion between two rigid bodies was first studied by Bradley (1932). The 

attractive force, Fad, between two rigid spheres, is found by integrating a λ/xn force law 

between two molecules, given by (Maugis, 1991), 

௔ௗܨ ൌ ߛߨ4
ܴଵ ൅ ܴଶ

ܴଵ ܴଶ
  (5)

where γ is the surface energy per unit area of each surface and R1 and R2 are the radius of 

the two spheres, respectively. This expression can be applied to calculate the attractive 

force between a sphere and a plane by limiting one of the radii to infinity, and to arrive at 

௔ௗܨ ൌ  ܴߛߨ4 (6)

where R is the radius of the sphere. This expression is subsequently derived by Derjaguin 

(1934) using geometrical considerations, which was subsequently used in the famous 

Derjaguin-Muller-Toporov (DMT) model (Derjaguin et al., 1975). The pull-off force 

measured by the stiff cantilever was approximately 130 nN. Thus from (6), the surface 

energy per unit area for glass, γglass, in air was approximately 4.14e-3 N/m.  

 From Fig. 4.9, it can be observed again that the hysteresis loop from the stiff 

cantilever is smaller than that from the softer one. This observation agrees with the work 

of Cappella et al. (1997) as shown in Fig. 4.9. 
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Fig. 4.10. Indentation force vs. imposed approach displacement for different cantilever stiffnesses. (Curves 

are deliberately offset for clarity.) 

 

4.3.3. Indentation with a Compliant Cantilever on a Soft Material with Surface Forces 

 The effects of cantilever stiffness, preload, and surface forces were decoupled and 

studied in detail in the previous experiments. In this experiment however, all three effects 

will be coupled and the objective is to develop a method to account for these effects so as 

to accurately extract the reduced modulus for the soft material. 

 Uniaxial compression experiments were first performed to determine the Young’s 

modulus of the specimen. These experiments were carried out using an Instron single 

column uniaxial testing machine (5540 series) with a 5 N load cell. The nanoindentation 

experiments, on the other hand, were performed with the Asylum Research MFP-3D-

BIO™ AFM. Two separate cantilevers were used in the experiments with stiffness of 

0.2735 N/m and 0.0766 N/m, respectively. The cantilever stiffness was calibrated 
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automatically using the thermal calibration option (Hutter and Bechhoefer, 1993). Both 

cantilevers had a glass spherical tip with a radius of 2.5 μm.  

A 12% polyacrylamide gel was tested in these experiments. This gel is soft and is 

hydrophilic in nature. It is commonly used in commercial biological applications such as 

in the manufacturing of contact lenses and as subdermal filler for aesthetic facial 

surgeries. The polyacrylamide gel was cast simultaneously in a Petri dish (thickness of 

approximately 10 mm) and in between two glass plates in a vertical GE Healthcare gel 

caster (thickness of approximately 3 mm). The gel in the Petri dish was carved into 

cylinders using a cylindrical coring tool (works like a cookie cutter). The diameter-to-

thickness ratio of these cylinders was approximately one. These specimens were used in 

the uniaxial tests. The gel film in the gel caster, on the other hand, was used for the 

nanoindentation experiments. Cast between two glass slides, this gel film had a smooth 

surface for indentation which is an important consideration in nanoindentation 

experiments. The specimens for the uniaxial compression tests, on the contrary, are less 

sensitive to the surface roughness than the aspect ratio of its geometry. The asperities on 

the surfaces were likely to flatten out upon contact since the size of the asperities was 

much smaller than the surface area of contact. The diameter-to-thickness ratio of the 

geometry on the other hand, is a crucial parameter because a small ratio might cause the 

specimen to buckle under the slightest misalignment while a large ratio will not only 

reduce the resolution of strain measurement but also enhance any frictional effects along 

the loading surfaces. 

 Figure 4.11 shows the true stress-strain curves for three different cylindrical 

polyacrylamide gel specimens carved from different locations on the Petri dish. The 
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specimens were loaded repeatedly at different strain rates without any significant changes 

in the stress-strain behavior. The first observation is that polyacrylamide gel is practically 

linearly elastic up to 20% strain. However, the Young’s modulus, E, of the gel is not 

homogeneous across the Petri dish in which it was cast. The largest E measured for the 

gel was approximately 153 kPa (blue line) and the smallest measured was approximately 

137 kPa (green line). Taking the average of all the specimens tested, E for 

polyacrylamide gel is approximately 144 kPa. To ensure that the time lag between the 

uniaxial experiment and nanoindentation experiment (< 5 hours) did not affect the overall 

mechanical properties of the polyacrylamide gel, the cylindrical specimens were retested 

after 24 hours and their stress-strain curves yielded no significant differences. 

 

Fig. 4.11. True stress-strain curves for polyarcylamide gel specimens cut from various locations of the Petri 

dish under uniaxial compression 

 Figure 4.12 shows the indentation load-displacement curves for the two 

cantilevers used. Using E, ν, and R of 144 kPa, 0.5, and 2.5 μm, Hertz’s solution, shown 
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in (1), was plotted for comparison. The Hertz curve, shown by the green line in Fig. 4.12, 

is plotted with the assumption that there is no preload (h equals zero corresponds to the 

contact point), which is unlikely the case, as discussed earlier. Snap in for both the soft 

and stiff cantilevers is marked by the decrease of f1 and f2, respectively. It is evident that 

f1 > f2, which agrees with the previous experiment. The snap-in forces f1 and f2 measured 

the amount of force each cantilever was exerting against the attractive surface force to 

pull the tip away from the specimen. Hence, the amount of preload exerted on the 

specimen due to the surface forces is inversely related to the snap-in force. If the tip-

specimen surface interaction force for both the soft and stiff cantilevers can be assumed 

to be equivalent, then the amount of preload due to the surface forces was larger when the 

soft cantilever was used. 

From Fig. 4.12, it is evident that the measured load-displacement curves for both 

the stiff and soft cantilevers are distinctly different from the Hertz prediction. It should be 

noted that the linear elastic Hertz solution can be algebraically manipulated into the 

stiffness equation, since the latter was shown to be applicable for all axisymmetric 

indenters with an infinitely smooth profile (Pharr, et al., 1992). Therefore, the difference 

between the experimentally measured load-displacement curves and Hertz’s linear elastic 

solution demonstrates that the application of the stiffness equation will inevitably yield 

inaccurate extracted material properties for this material. The load-displacement curves 

for each cantilever will be discussed in detail in the subsequent sections.  
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Fig. 4.12. Comparison between indentation load-displacement curves for different cantilever stiffness with 

Hertz prediction 

4.3.3.1. Indentation with the soft cantilever 

 The load-displacement curve for the soft cantilever resembles an S-shaped curve, 

which does not exhibit the P=f(h3/2) relationship, shown in (1), predicted by Hertz (1881). 

To better understand the deformation of the soft cantilever during indentation, a 

numerical finite element (FE) simulation was performed using commercial FE package 

ABAQUS.  

 The actual cantilever beam was made of silicon nitrate. It had a 200 μm long, V-

shaped geometry and a spring constant of 0.0766 N/m. The virtual cantilever beam in the 

numerical experiment was modeled as a 200 μm long rectangular beam with a section 

profile of 100 μm by 0.455 μm, so as to obtain a moment of inertia, I of 0.786e-25 μm4. 

The material for the beam was modeled as isotropic and had a Young’s modulus and 

Poisson’s ratio equivalent to silicon nitride’s, which are 260 GPa and 0.24, respectively. 

f1 

f2 
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The virtual beam was designed to have an identical spring constant of 0.0766 N/m. The 

beam was meshed with 20 2-node linear ‘beam in a plane’ elements (B21). To ensure 

convergence, the beam was deformed through a series of force and displacement 

controlled numerical simulations, and the results were found to coincide with known 

solutions. The number of elements was also doubled with no significant changes to the 

solutions, suggesting the attainment of convergence. The beam was cantilevered on one 

end and free on the other, which is identical to the boundary conditions of the actual 

cantilever. To model the contact problem, the free end of the beam was attached to a non-

linear spring, as shown in Fig. 4.13. The spring was infinitely soft (with a spring constant 

of zero) for the first micron to simulate the snap-in behavior. The concentrated force of 

76 nN (equals f2) exerted on the tip of the beam, will deflect the virtual beam by 

approximately 1 μm without any resistance from the attached non-linear spring. Beyond 

the contraction of this initial distance, the spring will exhibit a Hertz contact load-

displacement relationship using E, ν, and R of 144 kPa, 0.5, and 2.5 μm, respectively. The 

stage was moved upwards by approach displacement, δ, to simulate the ‘indentation’ 

process. The tip of the beam was not allowed to move laterally after the snap-in to 

simulate adhesion between the tip and the specimen. 
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 Figure 4.14 illustrates the deformed shape of the cantilever at different stages of 

the indentation. The deformation was magnified fifty times in this illustration. Line ‘a’ 

corresponds to the undeformed shape of the cantilever and line ‘b’ corresponds to the 

shape of the cantilever at snap-in. Lines c–f describe the shape of the cantilever as the tip 

‘indents’ into the specimen. It can be observed that lines c–f show a buckled cantilever 

that did not deform like an assumed linear beam. Since the AFM infers the deflection of 

the cantilever through the slope at the tip, the rotation of the node at the tip of the beam in 

the simulations was recorded. The slope-to-deflection conversion factor was calibrated 

during the step when a concentrated force was acting on the tip (to simulate snap-in) with 

the beam behaving linearly.  

δ 

Fig. 4.13. Schematic of the numerical simulation 
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Figure 4.15 shows the indentation load-displacement curve obtained from the 

numerical simulation. The first observation is that the curve captures the general shape of 

the curve (‘S’) measured in the experiment shown in Fig. 4.12. This suggests that the soft 

cantilever was most likely buckled during indentation, which resulted in the erroneous 

derivation of the indentation load using the slope of the cantilever at the tip. This problem 

can be eliminated by using stiffer and shorter cantilevers. The indentation depth of the 

virtual tip, however, is an order of magnitude larger than that measured in the experiment. 

This is attributed to neglecting the preload in the numerical FE simulation. The numerical 

experiment considered the snap-in solely as a deflection of the cantilever, without any 

indentation into the specimen due to the preload from the surface forces. If the preload is 

considered, the reaction force exerted by the non-linear spring will not start from zero 

before the ‘indentation’ process. The reaction force will be equivalent to the preload 

exerted on the specimen, in order to achieve force equilibrium. Since the non-linear 

Fig. 4.14. Sketch of the shapes of the deformed cantilever at different stages of indentation. 

(The deformation was magnified 50 times.) 

a 

b 

c 

d 
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spring exhibits a monotonically increasing Hertzian contact load-displacement 

relationship, a smaller indentation depth will be required to achieve a sufficiently large 

reaction force to buckle the cantilever, if the preload by the surface forces is considered.    

 

Fig. 4.15. Indentation force vs. indentation depth from numerical simulations 

4.3.3.2. Indentation with a stiff cantilever 

 Unlike the soft cantilever, the indentation load-displacement curve for the stiff 

cantilever did not exhibit an S-shape behavior, which suggests that the cantilever did not 

buckle. However, its load-displacement curve is still distinctly different from the Hertz 

solution. One plausible explanation is that the preload from the attractive surface forces 

induced indentation upon contact at snap-in. Another reason could be the alteration of the 

shape of the load-displacement curve due to the attractive surface forces at the tip and 

specimen, since additional force will now be required to overcome the adhesion between 

the tip and the specimen. In order to account for the effects from the surface forces, 
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existing continuum theories describing the effects of adhesion during indentation are 

carefully reviewed. 

 The problem of adhesion between two deformable objects had been studied 

extensively by researchers since the work of Van der Waals (1893). Bradley (1932) and 

Derjaguin (1934) subsequently derived the attractive force between two rigid bodies. It 

was 1971 when Johnson, Kendall, and Roberts developed their famous JKR theory which 

introduced an attractive tip-specimen interaction force into Hertz derivation (Johnson et 

al., 1971). In 1975, Derjaguin, Muller, and Toporov presented a different theory (DMT 

theory) for the contact with adhesion problem (Derjaguin et al., 1975). While the JKR 

theory considers attractive forces within the contact area and takes into account any 

deformation associated with these forces; the DMT theory considers the attractive forces 

from the non-contact annulus zone around the area of contact, and assume that these 

forces do not deform the annulus zone other than Hertz’s prediction. After the two 

contradicting theories were published, researchers began to debate the accuracies of each 

theory, beginning with the work of Tabor (1977), who compared both theories and 

highlighted that the DMT theory neglects deformation due to adhesion near the contact 

area, and that the JKR theory results in a discontinuous displacement around the contact 

area. This debate continued within the scientific community until Muller et al. (1980) and 

subsequently Maugis (1991) showed that both theories are the extremes of a theoretical 

framework they developed. The criteria for the selection of either theory was first 

proposed by Tabor (1977) and subsequently refined by Muller et al. (1980) ― for hard 

solids with small radii and low surface energies, the DMT theory is more applicable; 

whereas the JKR theory is more suitable for soft solids with large radii and high surface 
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energies. Since (i) the spherical indenter tip used in the experiment is large compared to 

its indentation depth, (ii) the polyacrylamide gel is considerably soft, and (iii) the surface 

forces were observably strong (possibly due to the hydrophilic nature of the gel), the JKR 

theory is considered in this study. 

The JKR theory considers an additional pressure distribution which also satisfies 

kinematic constraint for the problem such that (Johnson, 1987) 

ሻݎሺ݌ ൌ ଵሺ1݌ െ ଶ/ܽଶሻଵ/ଶݎ ൅ ଶሺ1݌ െ  ଶ/ܽଶሻିଵ/ଶݎ (7)

where p1 = 2aE/πR(1-ν2), a is the radius of contact, R is the radius of the sphere and E and 

ν, are the Young’s modulus and Poisson’s ratio for the specimen respectively. This 

second term on the right-hand side of (7) was previously omitted by Hertz during his 

derivation because of the assumption that tensile forces cannot be sustained during 

indentation. Using a thermodynamic criterion for equilibrium contact,  

ଶ݌ ൌ െሺ4ܽߨ/ܧߛሺ1 െ ଶሻሻଵ/ଶߥ .  (8)

The total indentation force, P found by integrating (5) is 

ܲ ൌ ൬
2
3 ଵ݌ ൅ ଶ൰݌2 ଶܽߨ .  (9)

The total indentation, h can be derived to be 

݄ ൌ ቆ
ሺ1ܽߨ െ ଶሻߥ

ܧ2 ቇ ሺ݌ଵ ൅ ଶሻ݌2 .  (10)

The indentation load-displacement curve, which takes adhesive forces into consideration, 

can be plotted from (9) and (10) if the surface energy per unit area of each surface, γ, is 

known. This value is usually derived using the pull-off force, Poff, which is given by, 

௢ܲ௙௙ ൌ െ3ܴߛߨ . (11)
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Unfortunately, in the present experiment on the polyacrylamide gel, the pull-off force is 

so large that the amount of deflection required by the stiff cantilever to separate the tip 

and the specimen exceeded the measurable range for the AFM. This problem can be 

solved experimentally through the use of a stiffer cantilever, but this will reduce the force 

resolution of the setup, which might be an important consideration for soft materials. To 

maintain the force resolution of the setup, a stiffer cantilever was not used and γ is treated 

as an unknown. 

 The indentations were performed by first manually moving the specimen affixed 

to the stage slowly towards the tip. The cantilever deflections were monitored throughout 

the process and when the deflection attained a preset value, the feedback kicked in ― the 

piezoelectric transducers moved a displacement equal to the deflection to ensure no 

further penetration. The AFM then automatically retracted the tip from the specimen 

before the nanoindentation experiment was conducted. During the manual approach, as 

the stage was moved towards the tip, the cantilever was observed to deflect towards the 

specimen before any contact. This deflection became larger and larger as the distance 

between the tip and specimen became smaller before the eventual snap-in. This deflection 

due to long range attractive forces is described by fa in Fig. 4.9(b) and was measured 

manually during the experiment to be approximately 32.8 nN. 

 Figure 4.16 shows an idealized nanoindentation load-displacement curve for a 

soft material with surface forces. The snap-in force, fb, is composed of the long range 

attractive force, fa, and the short range adhesive force, fb – fa. After snap-in, the adhesive 

force pulls the tip into the specimen, resulting in a preload displacement of ho. The 
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unloading curve shows a pull-off force, Poff (beyond which the tip separates from the 

specimen) described by the JKR curve. In this problem, both Poff and ho are unknowns. 

 To solve for Poff and ho simultaneously, an error minimization algorithm is used. 

Since the curvature of the load-displacement curve is unique at each h, the algorithm 

minimizes the difference between the experimental curve and JRK curve for all Poff and 

ho. The measure for this difference is the mean of the square of the difference between 

the load values on the JKR and the experimental curve normalized by the square of the 

JKR values at each indentation depth. This measure, εs, is given by 

௦ߝ ൌ ݉݁ܽ݊ ቌ
ሺ ௃ܲ௄ோ൫ ௢ܲ௙௙, ݄൯ െ ௘ܲ௫௣௧ሺ݄௢, ݄ሻሻଶ

௃ܲ௄ோ൫ ௢ܲ௙௙, ݄൯ଶ อ
௔௟௟ ௛

ቍ  .  (12)

 For each Poff, εs was first calculated for all ho to determine the optimal ho that 

would minimize εs. This optimal value for ho was then substituted into (12) to determine 

the optimal Poff that would minimize εs. The plot for εs vs. Poff is shown in Fig. 4.17. From 

this figure, it is observed that εs was minimized when Poff was approximately -790 nN. 

The corresponding ho that minimizes εs for Poff at this value was found to be 

approximately 1.27 μm. 
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Fig. 4.17. Pull-off force, Poff, vs. percentage square error, εs 

 Figure 4.18 plots the experimental curve in relation to the constructed JKR 

unloading curve using the Poff and ho found to minimize εs. It is evident that the 

h 

P 

Poff 

fa 

ho fb 

Fig. 4.16. Idealized loading-unloading indentation load-displacement curve for soft material with surface 

forces 
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experimental curve matches the JKR curve better than its previous comparison with 

Hertz’s prediction in Fig. 4.12. While it is true that this minimization scheme requires an 

a priori knowledge of the specimen’s reduced modulus, Er = E/(1-ν2), a parameter most 

commonly sought after in indentation experiments, this minimization algorithm provides 

an alternative to evaluate the surface forces and preload displacement during the 

indentation of soft materials. Using (11), the surface energy per unit area between glass 

and polyacylamide gel, γgp in air, was found to be approximately 3.35e-2 N/m.  

The validity of using the JKR model, as opposed to the DMT or transition model 

can be readily verified. By considering Lennard-Jones potential, Muller et al. (1980) 

proposed a parameter, μ, given by 

ߤ ൌ
32
3 ߨ ቆ

8 ଶߛ ܴ ሺ1 െ ଶሻߥ
ߨ ଶܧ ܼ௢

ଷ ቇ
ଵ/ଷ

  (13)

where Zo is the typical atomic dimensions. As a rule of thumb, for μ << 1, the DMT 

theory is applicable, and for μ >> 1, the JKR theory is more suitable. By considering that 

the typical atomic dimensions, Zo, are of the order of 1 Ångström, μ is found to be 2.16e4, 

which is much larger than one. This confirms that the choice of JKR theory to describe 

the tip-specimen surface interaction was appropriate.    

This technique can also be easily modified for the extraction of the specimen’s 

reduced modulus. In this case, however, the pull-off force has to be measured using a 

stiffer cantilever. With a known Poff, εs can be minimized over Er and ho (by replacing Poff 

with Er in (12)).  

It is important to note that the minimization algorithm is effectively solving an 

inverse problem where the number of unknowns exceeds the number of constraints. Thus, 
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it is necessary that a further investigation on the uniqueness of the extracted parameters 

be conducted following this study.   

 

Fig. 4.18. Experimental load-displacement curve plotted in relation to constructed JKR unloading curve 

with derived Poff and ho 

  

Poff 

ho 
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4.4. SUMMARY AND CONCLUSIONS 

 This chapter has addressed some of the challenges impeding the accurate 

extraction of material properties for soft materials using nanoindentation. The effects of 

the cantilever stiffness, preload, and tip-specimen surface interaction forces were 

carefully examined. These effects are found to influence each other during the 

nanoindentation tests. The cantilever stiffness was observed to affect the amount of 

preload on the specimens and influence the effects of surface forces on the load-

displacement measurements. Three indentation scenarios were considered in this study: (i) 

the indentation with a ‘rigid cantilever’ on a soft material with negligible surface forces, 

(ii) the indentation with a compliant cantilever on a rigid material with surface forces, 

and (iii) the indentation with a compliant cantilever on a soft material with surface forces. 

The first experiment isolated the effects of preload by examining the 

nanoindentation of natural latex rubber with a nanoindenter. The Young’s modulus of the 

natural latex rubber was first measured using a uniaxial compression experiment. The 

preload was introduced to the nanoindentation experiment due to the finite load set-point 

required by the nanoindenter to determine contact. This experiment demonstrated that the 

effects of the preload resemble a shift of the load-displacement curve to the right of the 

tip-specimen contact point. Neglecting the preload will result in a gross overestimation of 

the extracted reduced modulus for the specimen. 

The second experiment investigated the effects from the cantilever stiffness and 

the surfaces forces. The nanoindentation experiment was performed using an AFM. A 

glass slide was indented by glass spherical tips with a radius of 2.5 μm, mounted 

individually on two separate cantilevers with spring constants 0.2735 N/m and 0.0766 
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N/m, respectively. Hysteresis between the loading and unloading curves was observed. 

This hysteresis was larger for indentations performed using the softer cantilever, which is 

consistent with the work of Cappella et al. (1997), who demonstrated that the hysteresis 

can be eliminated with the use of a sufficiently stiff cantilever. However, while Cappella 

et al. considered a single Lennard-Jones type force function to describe the surface force 

between the tip and the specimen, it was proposed that different types of surface forces 

could be at play during the loading and unloading segments of the nanoindentation 

experiment. During the approach, long-range forces such as Van der Waals and 

electrostatic forces can cause the unstable snap-in of the cantilever, while short-range 

forces such as capillary force can be responsible for the larger pull-off force during the 

retraction of the cantilever.    

The third experiment most closely resembles a practical nanoindentation 

experiment for soft materials where all the effects are present and coupled. In this 

experiment, 12% polyacrylamide gel was indented by glass spherical tips with a radius of 

2.5 μm, individually mounted on two different cantilevers (with spring constants 0.2735 

N/m and 0.0766 N/m, respectively). The gel was first tested in a uniaxial compression 

setup to measure its Young’s modulus. Both load-displacement curves measured using 

the soft and stiff cantilever were distinctly different from the linear elastic prediction 

(Hertz solution), which implied that the stiffness equation cannot be used to accurately 

extract the material properties of interest.  

Using finite element simulations, it was demonstrated that the S-shaped load-

displacement curve exhibited by the soft cantilever was the result of buckling. On the 

other hand, the difference between the load-displacement curve measured by the stiff 
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cantilever and Hertz’s prediction was attributed to the tip-specimen surface forces and the 

preload. The JKR theory was used to describe the indentation curve with adhesion 

between the tip and the specimen. However, the JKR theory requires the knowledge of 

the surface energy, which is commonly derived using the measurable pull-off force. 

Unfortunately, the pull-off force could not be measured in this experiment as the 

cantilever’s deflection exceeded the measurable limit for the AFM. A stiffer cantilever 

can be introduced, but it will reduce the load resolution for the nanoindentation 

experiment. Therefore, an error minimization algorithm between the experimental data 

and JKR curve was proposed to extract the value of the pull-off force and preload 

displacement simultaneously. Using the extracted value for the surface energy between 

the glass tip and polyacrylamide gel, the use of JKR theory was then verified to be 

appropriate. This error minimization algorithm was demonstrated to be easily modifiable 

to extract the reduced modulus of the specimen if the pull-off force is measured during 

the nanoindentation experiment. 

The main conclusions for this study are as follows 

•  The challenges impeding the accurate extraction of material properties in 

the nanoindentation of soft linearly elastic solids are different from that 

discussed in the earlier chapters. 

• The effects of cantilever stiffness, preload, and surface forces all influence 

the accurate extraction of material properties. 

• The effect of the preload is equivalent to a translation of the load-

displacement curve to the right of the tip-specimen contact point. 
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• The cantilever stiffness is observed to influence the difference between the 

snap-in and pull-off forces. 

• Strong adhesive forces between the tip and specimen can prevent in-plane 

displacement of the tip, which was demonstrated to be capable of buckling 

a soft cantilever. 

• The JKR theory was demonstrated to be appropriate for the indentation of 

polyacrylamide gel with a spherical glass indenter. 

• An error minimization algorithm was proposed to determine the pull-off 

force and preload displacement simultaneously. 

• This algorithm was demonstrated to be easily modifiable to extract the 

reduced modulus and preload displacement simultaneously if the pull-off 

force is known.   
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CHAPTER 5: CONCLUSIONS AND FUTURE CHALLENGES 

 

 This thesis has addressed a number of the challenges impeding the accurate 

extraction of material properties through nanoindentation using both a nanoindenter and 

an Atomic Force Microscope (AFM). The approach of this study focused on some of the 

most common deviations from the stringent assumptions necessary for the accurate use of 

the stiffness equation to extract material properties from the load-displacement 

measurements during nanoindentation experiments. These assumptions include: (i) the 

specimen is an infinite half-space, (ii) the indenter has an ideal geometry, (iii) the 

material is linearly elastic and incompressible, and (iv) there are no interaction surface 

forces during contact (such as adhesive or frictional forces). 

 The first part of this study, as presented in Chapter 2, considers an isotropic, 

linearly elastic solid to directly reassess the applicability of Sneddon’s solution (1948; 

1965) (which the stiffness equation was derived from) in practical nanoindentations. 

These nanoindentations typically involve specimens with finite dimensions, specimens 

with Poisson’s ratio less than 0.5, and an indenter tip with a finite tip radius. This chapter 

addressed deviations from the common assumptions through a series of systematic 

numerical simulations using commercial finite element (FE) package ABAQUS. 

 In Chapter 2, the study clearly defined a new set of criteria for converged 2-

dimensional (axisymmetric) geometry to be ‘sufficiently large’ to be compared to an 

infinite half space, as follows 

௦ݎ

݄௦
൒ 1 

and 
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݄௦

݄௠௔௫
൒ 100  (1)

where rs and hs are the radius and height of the specimen, respectively, and hmax is the 

maximum indentation depth attained. Geometrical modeling issues are seldom detailed in 

the literature and these criteria will provide a common basis for comparison with 

Sneddon’s solution. However, these criteria were found to be considerably more stringent 

than the conventional rule-of-thumb criterion (Fischer-Cripps, 2004) to determine the 

dimensions for the ‘sufficiently large’ specimen. It was concluded that the conventional 

criterion possibly achieved a ‘pseudo-convergence’, when a slight change in the aspect 

ratio of the specimens will result in a big deviation in the measured load-displacement 

behavior. 

 In addition, in Chapter 2, the study addressed the finite tip effect and developed 

an accurate empirical load-displacement relationship that takes into account the finite tip 

radius, ρ, as follows, 

ܲ ൌ ݂ሺߥሻ
2 ܧ tanሺ70.3௢ሻ

ሺ1 ߨ െ ଶሻߥ ݄ ൫݄ ൅ ݃ሺߩሻ൯

ൌ ሺܽଵߥଶ ൅ ܽଶߥ ൅ ܽଷሻ
ܧ 2 tanሺ70.3௢ሻ

ߨ ሺ1 െ ଶሻߥ ݄ ሺ݄ ൅ ܿଵ ߩଶ ൅ ܿଶ ߩሻ 

(2)

where, a1 = -0.062, a2 = -0.156, a3 = 1.12, c1 = 1.50e4 m-1, and c2 = 1.17e-1. With this 

relationship, an expression for the correction factor required to account for the neglect of 

the finite tip effect was derived. This relation for the correction factor revealed the 

relationship between the effects arising from the use of a compressible specimen and an 

indenter tip with a finite radius for the first time. It confirms that this composite 

correction factor is the product of the individual correction factors to separately account 
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for specimen compressibility and finite tip radius, first proposed by Troyon and Huang 

(2004). It was also demonstrated that the neglect of finite tip radius will consistently 

result in an overestimation for the extracted reduced modulus, Er.  

 While it is commonly expected that the finite tip radius effect will be less 

significant for deep indentations, this study, for the first time, established the criterion for 

‘sufficiently deep’ indentations as a function of tip radius. Nanoindentation experiments 

were performed on a linearly elastic solid (natural latex rubber) to confirm that finite tip 

radius effects are not significant when sufficiently deep indentations are achieved. 

 Finally in Chapter 2, two practical applications were proposed. The first is a novel 

procedure to identify the indenter tip radius using Eq. (2). While it was demonstrated that 

finite tip radius effects are important for the accurate extraction of Er, manufacturers are 

usually only able to provide an estimation of the tip radius up to 100 nm. It was 

demonstrated that the proposed technique could achieve an accurate determination of the 

tip radius without an a priori knowledge for the material property of the specimen. The 

second application is a procedure to decouple the extracted material properties into its 

Young’s modulus, E, and Poisson’s ratio, ν, through the use of conical and spherical tip 

indenters. It should be noted however, that the applicability of the proposed procedures 

are limited by the availability of linearly elastic solids (to large strains), which are scarce 

in nature. This study naturally led us to the next part of our study in elasto-plastic solids, 

since most engineering materials exhibit plastic flow on the very onset of indentation 

with a sharp indenter tip, as in practical nanoindentations. 

 In Chapter 3, the objective of the study was to reassess some of the common 

assumptions to adapt elastic-plastic indentations to the linear elastic contact problem to 
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utilize the stiffness equation. The study also examined the applicability of the correction 

factor derived under linearly elastic conditions on elasto-plastic indentations, which is 

commonly practiced by the nanoindentation community. 

 In Chapter 3, it was established that while the assumption of a linearly elastic 

unloading curve and the equivalent problem (a mapping of an elastic indentation by a 

conical indenter on a plastic imprint to an elastic indentation by an equivalent conical 

indenter on a flat surface) may hold true, Sneddon’s solution cannot adequately predict 

the unloading load-displacement behavior for an elasto-plastic indentation. Due to the 

elastic recovery during unloading, the sides of the plastic imprint are generally curved; as 

such, a single geometrical parameter, in this case the equivalent half-angle, α′, cannot 

adequately map the actual problem (Sakai, 2003; Stilwell and Tabor, 1961). 

Consequently, Sneddon’s solution with α′ cannot effectively describe the unloading load-

displacement relationship. 

 Pharr and Bolshakov (2002) demonstrated that the stress field during the 

unloading process resembled that of an elastic indentation with a parabolic indenter. It 

was therefore established that the stiffness equation is more suitable for the analysis of 

elasto-plastic unloading curves, due to its applicability to all axisymmetric indenters with 

infinitely smooth profiles. Yet, the stiffness equation requires an accurate determination 

of the projected area of contact, A. The latter is usually calculated using linear elastic 

considerations, which had been shown to be sufficiently accurate for hr/hmax < 0.7 (Oliver 

and Pharr, 2004). However, for an elastic, perfectly plastic material, this criterion is 

equivalent to E/σy < 30, which is quite limited in scope for most materials of interest. For 

hardening elastic-plastic solids, both pile-ups and sink-ins will affect the accuracy of A 
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derived using linear elastic considerations. In addition, A is also found to be a function of 

the indenter’s tip-radius, ρ, through the elastic-plastic loading stage of the indentation 

cycle. It is therefore imperative to develop an alternative approach to determine A.  

 A novel experimental method to directly measure A using electrical resistance 

method was proposed. The viability of this method was demonstrated based on 

experimental results. Once A was accurately determined, it was observed that the error of 

the extracted Young’s modulus became insensitive to both E/σy (a measure of the extent 

of plasticity) and ρ. This suggests that an accurately measured A eliminates any effects 

arising from plasticity or the finite tip radius.  

The error, however, remains sensitive to ν. It was found that ν determined the 

amount of residual stress at the plastic imprint of the indent, which certainly violates the 

assumptions in the theoretical derivation. This however, is in stark contrast with the 

errors arising from ν due to the negligence for lateral displacements in the theoretical 

derivation for linear elastic indentations. Nonetheless, it is common practice to use the 

correction factor for ν derived for linear elastic indentations on practical elasto-plastic 

indentations. A comparison between the correction factors to account for the residual 

stresses at the imprint and for the lateral displacements under indentation showed that 

both correction factors are quantitatively similar. The correction factor for ν in elasto-

plastic indentations was only slightly larger than the one for linear elastic indentations, 

which explains why errors were not reported when the correction factors were used 

interchangeably. Nevertheless, it is important to note that these correction factors are 

essentially different.    
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Finally in Chapter 3, concerning the determination of the yield strength of the 

material, a power law relationship was identified between he/hmax and E/σy as follows, 

݄௘

݄௠௔௫
ൌ 2.98 ቆ

ܧ
௬ߪ

ቇ
ି଴.଺଼

  (3)

where he is the elastic recoverable displacement and σy is the yield stress of the specimen. 

This relation was verified experimentally and found to provide an upper bound for the 

yield stress of pressure sensitive and/or strain hardening materials.  

 In Chapter 4, the study addressed some of the challenges faced in the 

nanoindentation of soft materials. In general, the challenges discussed previously hold for 

soft materials as well. However, as shown in Chapter 2, deep indentations are usually 

achieved in the indentation of soft materials which significantly reduce the effects from 

the finite tip radius. Also, soft rubber-like materials are usually incompressible, which 

obeys the stringent assumption of incompressibility for the stiffness equation. In addition, 

soft materials do not commonly deform plastically. All of the above seem to suggest that 

the elastic properties of these soft materials can be accurately extracted from the 

nanoindentation experiments. However, a different set of challenges was found to impede 

the accurate extraction of material properties for soft materials during nanoindentation. 

 Soft materials are usually rate-sensitive and nonlinearly elastic. The asperities on 

the surface usually conform to the shape of the indenter, increasing the effective surface 

area of contact, which tends to amplify the surface interaction forces. Furthermore, since 

the AFM is commonly used in these experiments for its superior force resolution, the 

cantilever stiffness becomes an additional parameter for consideration in the problem. 

 To simplify the problem, soft linear elastic solids were considered in this study. 

The effects of the cantilever stiffness, preload, and tip-specimen surface interaction 
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forces were carefully examined. These effects were found to influence each other and the 

overall accuracy of the extracted material properties during the nanoindentation. To 

examine these effects further, three indentation scenarios were investigated: (i) the 

indentation with a ‘rigid cantilever’ on a soft material with no surface forces, (ii) the 

indentation with a compliant cantilever on a rigid material with surface forces, and (iii) 

the indentation with a compliant cantilever on a soft material with surface forces. 

 The first experiment examined the effects of preload by indenting natural latex 

rubber with a nanoindenter. The preload was introduced by the finite indentation force 

required by the nanoindenter to establish contact. It was demonstrated that it is crucial to 

account for the preload to accurately extract elastic properties using the stiffness equation; 

otherwise, there will be a severe overestimation for Er. 

 The second experiment examined the interaction between the cantilever stiffness 

and surface forces during an indentation. The experiment was performed using an AFM 

with a spherical glass tip mounted on two separate cantilevers with different spring 

constants. The specimen used in the example was a glass slide. It was observed that the 

snap-in force was smaller than the pull-off force. This difference was larger for 

indentations performed using the softer cantilever, which is consistent with the work of 

Cappella et al. (1997). Cappella et al. demonstrated that this hysteresis can be eliminated 

with the use of a sufficiently stiff cantilever. However, while Cappella et al. considered a 

single Lennard-Jones type force function to describe the surface force between the tip and 

the specimen, it was proposed that different types of surface forces could be at play 

during the loading and unloading segments of the nanoindentation experiment. During 

the approach, long-range forces such as Van der Waals and electrostatic forces can cause 
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the unstable snap-in of the cantilever, while short-range forces such as capillary force can 

be responsible for the larger pull-off force during the retraction of the cantilever.  

 Finally, for the third scenario, the study considered the nanoindentation of a soft 

linearly elastic material, 12% polyacrylamide gel with a spherical glass tip mounted on 

two cantilevers with different stiffness. In this experiment, the effects from the cantilever 

stiffness, preload, and surface forces were present and coupled. 

 Using the softer cantilever, the load-displacement measurement was found to 

resemble an S-shaped curve. To understand the deformation of the cantilever during the 

indentation, FE simulations were performed. It was demonstrated that the softer 

cantilever was most likely buckled during the indentation due to the adhesion between 

the indenter tip and the specimen. 

 Using the stiffer cantilever, the load-displacement curve was also observed to be 

distinctly different from Hertz’s prediction. It was determined that this was possibly due 

to surface adhesive forces and preload which were not accounted for in Hertz’s relation. 

The Johnson-Kendall-Roberts (JKR) model was used to account for the tip-specimen 

adhesion. However, information on the pull-off force and the preload were unavailable. A 

stiffer cantilever will be required to measure the pull-off force, but its force resolution 

will be compromised. Hence, a minimization scheme was proposed to derive the pull-off 

force and the indentation depth due to preload simultaneously. This scheme offered an 

alternative method to study the surface interaction forces between the indenter tip and the 

specimen. The extracted surface energy between the glass tip and the polyacrylamide gel 

was used to verify the appropriate use of the JKR theory. It was also subsequently 

demonstrated that with an accurate measurement for the pull-off force, the proposed 
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minimization scheme can be easily modified to extract the reduced modulus of interest 

and the preload displacement simultaneously. Neglecting preload and tip-specimen 

adhesion will inevitably result in an overestimation for the extracted reduced modulus for 

the specimen. 

 This thesis has shed light on several concepts related to the field of 

nanoindentation, but many open questions still remain. The ultimate challenge for the 

nanoindentation to extract a representative stress-strain curve from nanoindentation data 

for comparison with traditional uniaxial measurements still remains. An important 

milestone towards this goal was achieved recently when researchers such as Dao et al. 

(2001) proposed the use of the forward-reverse algorithms to extract both elastic and 

plastic properties for the material of interest using nanoindentation. Unfortunately, due to 

its nature as an inverse problem, where the number of unknowns exceeds the number of 

constraints, researchers have found that this method may not yield unique solutions 

(Chen et al., 2007).  

 A plausible method to derive an equivalent stress-strain for the material under 

indentation is to experimentally measure the full-field stress and strain fields of the 

material under indentation. Established optical techniques such as photoelasticity, 

coherent gradient sensing (CGS), and digital image correlation (DIC) may provide 

valuable information on the stress and strain fields of the specimen.      

Lastly, another important area for research in nanoindentation is to account for 

anisotropy in materials. For the length scale of interest to nanoindentations, many solids 

exhibit anisotropy. Since the nanoindentation is effectively a multiaxial loading 

experiment, the challenge to decouple the material properties at different orientation 
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remains. An interesting method to study anisotropy experimentally was proposed by 

Yonezu (2007), who attempted to infer the material’s anisotropy by measuring the 

dimensions of the plastic imprint at the indent in different directions. Using the spherical 

indenter, the plastic imprint will resemble an ellipse with the minor axis parallel to the 

material orientation with larger elastic recovery. 

No doubt, the development of the nanoindentation mechanical testing technique 

has come a long way since Hertz’s pioneering contribution in 1881.  Commercial 

nanoindenters today have made nanoindentation a relatively simple test to perform. 

Nevertheless, many challenges concerning the practical extraction of useful material 

properties still remain.     
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