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Abstract

The design of MEMS (Micro Electro Mechanical Systems) on the millimeter to micron
length scales will be examined in this thesis.

A very broad base of knowledge has been developed concerning the etching processes
commonly used in MEMS fabrication. The fundamental problem we have sent out to study
is how to model the shape transformations that occur in MEMS fabrication. The ultimate
goal is to determine the required input mask geometry for a desired output etched shape.

The body of work begins with the crystal structure of silicon and ends with etched
shapes. The underlying crystal structure causes different rates for different directions;
this behavior has been modeled to obtain rate models. The information in these rate
models has then been used in a number of shape modelers. High level models like the
Eshape model provide not only simulation but a framework for true design. Other models
such as the Cellular Automata model take a different approach and provide flexible and
robust simulators. The tools were used to develop real world MEMS applications such as
compensation structures.

As important as the individual models, is the ability to integrate them together into a
coherent design tool and allow information to flow between different parts. This synthesis
allows a fuller understanding of the etching process from start to finish.

It is important to note that while this thesis deals with etching, the methods developed
are very general and are applicable to many shape transformation processes.
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Chapter 1

Introduction

1.1 Design

The design of MEMS (Micro Electro Mechanical Systems) on the millimeter to micron
length scales will be examined in this thesis.

While MEMS structures have been fabricated for many years, their design has been al-
most entirely informal trial and error. A more formal MEMS design approach is presented
below, which substantially reduces the number of experimental prototypes required to fab-
ricate a MEMS structure, and provides considerable insight into effective MEMS design.

In a generalized manufacturing process (see Figure 1-1), an initial plan or mask is
made. Next the fabrication process (using that plan or mask) produces an output shape
which performs some function. CAA (computer aided analysis) allows the user to model
the function (e.g., stress or deformation) of a given shape. A true CAD (computer aided
design) system allows the designer to specify a desired function, then determines a shape
which provides that function, and ultimately obtains an input mask which evolves into the
desired shape. True design works backwards from the desired outputs to determine the
required inputs, while analysis deals with the forward path. In many cases what is termed
CAD is actually the repeated use of CAA in an iterative fashion using the design knowledge
of the designer. This iteration is used to converge on the desired output. This thesis will
examine a subset of the general problem: the transition from input mask to output shape,
while the highest level of this research is to produce masks that will create shapes that

exhibit a desired function.



FABRICATION

OPERATION

MASK = SHAPE > FUNCTION
(ETCHING)
SIMULATION ANALYSIS
MASK > SHAPE 31 FUNCTION
(ETCH MODELS) (FEA, ETC.)
DESIGN DESIGN
MASK = SHAPE (= DESIRED FUNCTION

Figure 1-1: Manufacturing, Analysis, and Design.




Design methodology is dependent on the manufacturing technology, and this becomes
especially true on smaller length scales. Large or macro scale objects can be built using
many different techniques, each method having its advantages and disadvantages. Thin
objects such as automobile body panels and tin cans can be made with sheet metal forming.
Rotationally symmetric objects such as chair legs may be spun on a lathe. Other objects
such as an engine block may be cast from a mold. Each of these technologies imposes
limits on the possible output shapes, for example a square chair leg cannot be made on
a conventional lathe without external cutting either before or after. In addition there are
other trade offs; casting is cheaper than milling, but it is also less precise. No one technology
is best suited for all applications, and a manufacturing process may involve many different
steps in series.

Just as there are many fabrication methods for making macro scale objects, there are
many ways to make MEMS [52, 55, 58, 70, 72, 79, 86]. In MEMS it is possible to make
a wide variety of shapes, with a specific process being well suited for a specific set of
shapes. A number of different fabrication technologies will be introduced later, but the
focus of this thesis will be primarily on wet bulk etching. This process is well established
and relatively inexpensive. More importantly it is often one of the steps in a multi step
fabrication technology. Finally, the design methodologies developed here can be adapted to
many other types of MEMS fabrication techniques.

In bulk wet etching, etched shapes evolve as a function of time in a complex fashion.
Because the transformation from the initial two dimensional input mask to the final three

dimensional output shape is quite complex, the design of MEMS is not straight forward.

1.2 Historical Perspective

This section presents a brief review of some of the important milestones in the history of
MEMS. This summary is by no means complete, and only includes a portion of the work
carried out in the field.

Both MEMS and micro electronics have seen dramatic improvements in recent decades,
in fact many of the MEMS fabrication technologies were originally developed as micro

electronic technologies. Micro electronics has progressed rapidly from the first transistor



(1948) [6] to the first integrated circuit(1959) [42] to the VLSI and ULSI systems of today.
Throughout its history, micro electronics has been characterized by decreasing feature size
and increasing density. MEMS on the other hand has no such universal figure of merit and
its progress is measured not so much in terms of improving one specific parameter, but
rather in terms of its diversity and the increasing range of possible applications. Thus the
following summary is organized on a partly chronological, partly functional basis.

One of the earliest means of obtaining three dimensional shapes in mono-crystaline
silicon was the use of anisotropic etchants. With these etchants the etch rate depends
on orientation of the face being etched and the initial (two dimensional) mask is etched
to become a three dimensional shape bounded by certain etch planes. Ethylene diamine
pyrocathecol (EDP) was studied as early as 1967 [25, 62]. EDP etching has been used in a
wide variety on applications. Early products included ink jet printer nozzles [8, 38, 57] and
optical components [81, 80]. In addition EDP etches boron doped silicon very slowly [12];
doped etch stop layers provide a way of very accurately controlling the thickness of thin
etched membranes and diaphragms. Another common etchant in potassium hydroxide
(KOH) [85, 64]. KOH etching is very anisotropic and the ratio between fastest to slowest etch
rate can be as high as 400 to 1. In addition KOH can produce vertical walls when etching a
(110) wafer [39, 40]. This property has been used in a wide variety of applications [7, 9, 19,
41] including high capacity heat sinks for micro electronics [82]. While some measurements
of the etch rate behavior have been done by a number of researchers [34, 44, 64, 65, 85], full
three dimensional etch rate data is generally not available. More complicated wet etching
techniques such as doping selective etching [46] have also been studied and newer etchants
such as tetra-methyl hydroxide (TMAH) are being used [74].

Dry etching [1, 26, 71] involves a gas or a plasma in place of a liquid. Examples of dry
etching systems include reactive ion etchers (RIE) and plasma etchers. Dry etchers can
produce very small features, but are generally limited in etching depth [63].

Another fabrication technology, surface micromachining, takes a different approach to
shape generation. Surface micro machining uses sacrificial layers to form thin, high resolu-
tion structures on the surface of the wafer. The sacrificial layer allows the generated parts

to be freed from the wafer. Using this technology, very complex parts such as micro motors



can be manufactured [76, 75, 73, 23]. Pister [59] has demonstrated hinged structures that
can be folded out of the plane of the wafer in order to create three dimensional shapes.
Because of their high resolution and high density, surface micro machined parts show great
promise.

A more recent development is the combination of existing etching techniques with di-
rected energy sources. Two examples of this are laser assisted etching and LIGA. Laser
assisted etching [3, 4, 10, 11, 13, 22, 54, 83] uses a laser to locally heat a sample in order to
effect the etching. LIGA [32, 31, 33, 51, 84] uses a strong x-ray source to expose a pattern
in x-ray sensitive resist. Both methods can produce detailed parts with small dimensions,
but both have high cost per part [72].

A number of etch modeling methods have been proposed. Early shape modeling work
included the Wulff-Jaccodine method of traveling planes [27, 36]. A number of computer
implementations have been developed [18, 20, 21, 68, 69, 77] including ASEP (Anisotropic
silicon etching program) [16]. Another important etching simulation tool is the Slowness
method [67]. Both models are good simulators but do have some disadvantages, particularly
in design. My research builds on these early etch modeling methods and resulted in several
new etch simulation methods that improve on the previous methods, particularly for MEMS
design. The new methods that I developed (Eshape, Cellular Automata, etch rate modeling,
etc.) will be presented in detail below.

In addition, much work has been done on the broader picture of MEMS design concerning
CAD architecture and the interface of shape modelers with FEA function modelers [15, 45,
48, 60, 66, 87].

Perhaps the most promising aspect of MEMS research is the integration of electronic
and mechanical components into functioning systems. For example, applications such as
pressure sensors have on-chip signal conditioning and processing [14, 53, 86, 52]. If any
figure of merit is to be established to benchmark the progress of MEMS, it should be a
measure of the number and different types of sensors and actuators and components that
can be incorporated into a single system.

Modeling, wet etching and many of the other fabrication technologies will be reexamined

later in Chapter 2.



1.3 VLSI vs. MEMS

Many of the fabrication techniques for MEMS are derived from the micro electronics indus-
try. The introduction of VLSI (Very Large Scale Integration) design methodology (CAD)
has led to a rapid growth in the micro-electronics sector [50]. It is hoped that a MEMS
CAD system will lead to similar benefits in micro-devices. VLSI changed the way micro-
electronic systems were designed, providing a design framework and a set of design rules. By
separating the details of the fabrication technology from the electronic function, VLSI CAD
freed designers from process knowledge and allowed them to think at a higher functional
level, permitting large scale projects.

However, the logic gates of VLSI are essentially planar while a micro-machine may be
fully three dimensional. The electronic function of a VLSI gate is essentially independent of
its position and orientation on the wafer while the mechanical function of a micro-machine
is usually highly dependent on its location and orientation. Thus there is a much more
complicated relationship between input mask and output shape (and function) in MEMS.
Because of the three dimensional nature of the shape-function relationship in MEMS, it

may not be possible to fully separate the design process from the fabrication process.

1.4 MEMS CAD

Many useful micro-devices are now being built, but no structured formal design methods
exist and automated design (in the VLSI CAD sense) awaits a strong foundation. Propos-
als for MEMS CAD systems have been made in recent years [15, 45, 48, 60, 66, 87] and as
the complexity of devices rises the need for a coherent design system has been recognized.
Considerable work has been done on establishing the best architecture for such a system.
Some of the essential elements include: a user interface, a structure simulator, a materials
database, a three dimensional modeler, a FEM package, along with the proper intercon-
nections between elements. Implementation of this system has provided much information
about both mechanical and electrical properties. For example stresses and deflections have
been accurately predicted as have capacitance and resistance. Such systems have success-

fully analyzed MEMS devices and allowed for the higher level descriptions required for



complicated projects.

While much work has been done in other parts of CAD systems, there is much potential
in an improved simulator/modeler. For some of the other elements it is logical to use
existing software, however there are good reasons to reexamine simulators to ensure that
the ones used are optimally designed for use with MEMS (as opposed to converted VLSI
simulators). In fact Maseeh et al. recognized that “the critical block in this section is the
Structure Simulator” [48]. Because the modeler occurs very early in the CAD architecture,
it should be as general and flexible as possible in order to increase the scope of MEMS
CAD applications. Finally, any simulator should have the capability for design in addition

to simply analyzing MEMS behavior.

1.5 Thesis Overview

This thesis has four broad goals:

To (empirically) explain why etched shapes change as they etch,

To develop new methods to predict output shapes as a function of time,

e To develop new methods to perform MEMS design to obtain required input masks

that will create desired shapes,

To apply these design methods to real MEMS applications.

The first item is discussed in chapters 2, 3, and 4. Chapter 2 is an introduction to
MEMS fabrication, explaining common processes and providing the necessary background
for this work. Chapters 3 and 4 examine the effect of the crystal structure on the etching
process. These two chapters show the link between crystal structure, etch rates, and etched
shapes; they lay the foundations for constructing good design tools.

The remaining items are discussed in chapters 5, 6, 7, and 8. Chapters 5 and 6 present
two different simulators which take two different approaches to modeling the etching. Chap-
ter 7 examines broad design issues, including design inversion and model comparisons.
Chapter 8 uses the previous methods in several real world applications. Finally, chapter 9

is a conclusion presenting a summary and an examination of possible future work.



1.5.1 Contributions

My research resulted in the creation of several new etch simulation methods that are aimed
specifically at aiding MEMS design. These new methods are the Eshape method, the CA
(Cellular Automata) method, and an etch rate modeling method.

While the foundation of the Eshape method is based on the same (empirical) method
of traveling planes that the Wulff-Jaccodine method is based upon, the Eshape method
recasts these calculations into a wholly new new etch simulation approach that has several
significant advantages. The Wulff-Jaccodine method calculates the position of the traveling
planes for each unique geometry for each time-step. The Eshape method is significantly
more computationally efficient than the Wulff-Jaccodine method, because the calculations
for the traveling planes are done once for all geometries far all time steps. This not only
eliminates the many repeated calculations of the Wulff-Jaccodine method, it also directly
aids MEMS design by graphically showing the designer which shapes are possible to etch
(for a given silicon wafer orientation and etchant).

Because the underlying approach of the two methods is the same, they share limitations,
most notably the difficulty in determining the presence and location of the intersections of
one part of the evolving shape with another.

To surmount this difficulty, and to create an etch simulator that is robust for arbitrarily
complex geometry, I developed the CA (cellular automata) method. This method applies
the basic premise of all cellular automata to etching: to divide the spatial domain into small
cells, provide each cell with simple and primitive (but appropriate) behavior, and the ag-
gregate behavior of many cells will mirror the behavior of physical systems. Finite element
analysis (FEA) and computational fluid dynamics (CFD) and other methods are all based
upon this approach. The approach is simple to create conceptually and algorithmically
(each cell is identical and the rules for each cell’s behavior are simple), but the method is
computationally expensive since a few simple calculations are repeated many times. De-
spite the computational limitation of the method (which imposes a trade off between the
spatial resolution of the CA etch simulation technique and the simulation time) the ap-
proach’s robustness to arbitrarily complex geometry and an unlimited number of etched

shape intersections and interactions, provides a clear advantage for most MEMS design



problems.

The modeling of etch rates (in all directions within the silicon crystal) was limited. Since
the most commonly used anisotropic etchants for silicon preferentially etch rectangles, and
since most electronic structures are composed of rectangles, the etch rates for these etchants
for the commonly occurring planes are well known. However for other directions, only
a limited amount of data exists [34, 44], and no satisfactory model existed to calculate
approximate rates in between well known rates. The etch rate model that I developed relies
on etch rate data from the literature [64, 65], and can easily incorporate new data as it
becomes available, however the modeling method itself is wholly new.

Finally, the underlying philosophy and approach of this research is a departure from
other MEMS design work. The long-term goal of this research is to permit the designer to
specify a desired MEMS function, and to have the design system automatically (or perhaps
semi-automatically) determine the required silicon shape to exhibit that desired function,
and further for the design system to automatically determine the mask and other process-
ing instructions to fabricate that shape. This goal is motivated by the the desire to enable
MEMS design to approach the level of automaticity present in VLSI design. Other contem-
porary MEMS design research is based on an analytic (rather than synthesis-based) view of
MEMS design, namely: Given a mask what shape will be produced? [16, 20, 36, 67], and:
Given a shape, what function will be exhibited? [15, 45, 48, 66]. The methods developed
here were specifically developed for MEMS design (synthesis) rather than analysis, funda-
mentally based on the goal of developing highly-automatic MEMS design systems, on par

with contemporary VLSI design systems.

1.5.2 Limitations

There are three principal limitations to the scope of this thesis. As previously mentioned,
only part of the design problem is addressed: the transition between initial mask and
final shape. Neither the relationship between shape and function, nor integration of shape
modelers with function analysis tools such as FEA are examined. Both these issues are
important, but the ability to predict and ultimately produce a shape is a prerequisite to

any further study.
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Secondly, while there are many fabrication techniques in MEMS (e.g. surface micro-
machining, LIGA, dry etching, laser micro machining, etc.), the thesis concentrates on wet
bulk etching. Wet bulk etching is relatively easy to perform, is relatively inexpensive, and
is commonly used in many applications. More importantly, wet bulk etching displays the
fundamental behaviors found in many fabrication methods. While it is possible to do so,
the design methods in this thesis have not been applied to other etching technologies.

Thirdly, the analysis of the etching of silicon has been empirical rather than theoretical.
The question most commonly asked is “how?” rather than “why?”. There are a number
of reasons for this, primary among them are the complexity and diversity of silicon etching
processes. Silicon and silicon etchants interact in a very complicated fashion, and much
remains to be learned. Furthermore, the details of the etching can be very different for
different etchants. Thus the thesis seeks to characterize etching in terms of experimentally
measured quantities to form empirical relations describing the etching. The emphasis has
been on distilling from the fabrication the important parameters, and using them in simple,
efficient models. Nevertheless, this empirical approach must satisfy two requirements: (i)
the results must be accurate (ii) the models must reflect the actual physics of the etching.
To the extent that measurements are possible, the research presented in this thesis satisfies
these two requirements. More work on a better theoretical understanding of the etching

would be of great value.

1.5.3 MEMS design
The fundamental question this thesis set out to answer was
What is the necessary input shape to get a desired output shape?
Unfortunately, the original question was superseded by another question:
Does the necessary input shape exist to get a desired output shape?

One of the initial goals of this work was to develop a good etch simulator. There are a
number of existing simulators, each having advantages and disadvantages, and the proper
choice of modeler depends on the application. However, during the course of the research,

it became apparent that even an “ideal” simulator is not an “ideal” design tool. The ability
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to simulate the transition from input mask shape to final output etched shape is necessary
for any MEMS CAD system, but it is not sufficient.

Because the transition from input to output can in general be very complex, the inverse
process is very difficult and often impossible. In essence, since planes may disappear or
appear, the forward path (mask to shape) and backward path (shape to mask) can be fun-
damentally different. In fact some shapes simply cannot be fabricated with some etchants.
These issues are examined at greater length in chapter 7.

As MEMS design tools are developed, the need to differentiate between analysis and
design must be addressed. The focus should shift away from the types of output shapes
that can be produced to what types of output shapes can be inverted using design meth-
ods. Continuing MEMS CAD developments will increasingly permit designers to ignore

fabrication details and concentrate instead on providing MEMS functions.
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Chapter 2

MEMS Background

Micro Electro Mechanical Systems (MEMS) are silicon micro-structures produced by etch-
ing which exhibit valuable mechanical properties and can be readily integrated with micro-
electronics. The integration of micro pressure sensors (fabricated by etching a thin di-
aphragm) and processing electronics is only one of the recent applications of MEMS. Since
these devices depend heavily on specialized fabrication methods, a brief review of several

widely used methods will be presented.

2.1 MEMS Fabrication Techniques

2.1.1 Bulk wet micro machining process steps

There are many techniques for micro-machining silicon; this work will concentrate on bulk
wet etching [7, 9, 40, 41]. Several other techniques will also be discussed, and the design
methodologies developed will not be limited to bulk wet etching. Bulk wet etching is
chosen because it is an established method that has been available for many years and it is
relatively easy to perform and relatively inexpensive. The review article by Petersen [58] is
an excellent summary of many MEMS fabrication methods.

The first step is to obtain silicon wafers cut along some orientation. The most common
wafer orientation is (100) (the wafer is cut perpendicular to the x-axis), although other
orientations such as the (110) are also available. Typical wafer sizes are one to four inches
in diameter and 100 to 400 microns in thickness.

Next the wafer is cleaned and a thin masking layer is applied to the wafer (see Figure 2-1).
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Figure 2-1: Oxide masking layer.

The masking layer used in these experiments is silicon dioxide. Silicon has the advantage
that its oxide is grown easily and is lattice matched, which makes for low stress masking
layers. The bare silicon wafers are placed in a furnace at approximately 1000 to 1100
degrees Celsius for several hours. The furnace contains water vapor to enhance the oxide
growth. Thicknesses of up to a micron are readily attainable, the thickness in most of
our experiments is roughly 8000 Angstroms. Other possible masking layers include silicon
nitride and evaporated metals such as gold or chrome.

Next a uniform layer of photoresist of roughly micron thickness is spun onto the wafer
(see Figure 2-2). The desired input mask is used to selectively expose the photoresist. When
exposed to ultraviolet light the photoresist is chemically altered and the exposed portions
of the photoresist can then be removed with photoresist developer. With parts of the
photoresist removed, the masking layer is now partially exposed. The exposed portions of

the masking layer are etched away with an etchant which removes oxide but not photoresist
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or silicon. Having done so, the remaining photoresist is removed, leaving a patterned oxide
masking layer.

The wafer is then placed in a container of etchant as shown in Figure 2-3. The etchant
may be KOH (potassium hydroxide), EDP (ethylene diamine pyrocatecol), TMAH (tetram-
ethyl ammonium hydroxide), or some other etchant which attacks silicon but not the mask-
ing layer. A reflux system runs cold water through the top of the container to prevent
evaporation of the etchant. Many etchants are used near their boiling point since the rate
of etching tends to increase greatly with temperature. The container has both a tempera-
ture feedback to maintain constant temperature and a stirrer to ensure that the etching is
homogeneous. The sample is etched for a set period of time then removed. The remaining
masking layer can now be stripped, leaving a three dimensional shape in the silicon wafer.

Bulk wet etching may be done alone or in conjunction with other micro machining

techniques.

Disadvantages

As mentioned above, bulk wet etching is an established relatively inexpensive method, but
it does have many disadvantages. Many of the etchants are very hazardous and must
be handled properly. The anisotropic nature of the etchants means that certain planes
dominate others and that the etched shapes are distorted versions of the original masks [34,
37, 44, 65, 64, 85]. The anisotropy also limits the possible output shapes and the attainable

height aspect ratios.

2.1.2 Other etching methods

A wide variety of other etching techniques also exists, a few are listed below. All these

methods can be used either singly or in combination to manufacture micro machines.

Bulk dry etching

In bulk dry etching [63], the liquid etchant is replaced by a gaseous plasma or ions. Plasma
etchers and RIE (reactive ion etchers) are two examples of dry etchers. The etching takes

place by chemical means, by physical bombardment of the silicon, or by some combination
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of both. A suitable mask which is resistant to etching must be chosen. By varying the gases
in the etching chamber, both the etching characteristics and the mask selectivity can be
changed. Dry etching advantages include high resolution (micron range) and wide variety
of possible etching characteristics. Disadvantages include depths typically 25 microns or
less (limited by masking material), loading effects (etch rate depends on amount of silicon

etched), and changing side wall profile.

Surface micro machining

Surface micro machining [59, 76, 75, 73, 23] uses many masking layers to form thin structures
on the surface of the wafer. Below each masking layer materials such as PSG (phospho-
silicate glass) are used as sacrificial layers. After a masking layer has been patterned the
underlying sacrificial layer may be removed. The resulting structures may be multi-layer
and may be attached to the wafer or free to move. Surface micro machining has very high

resolution (sub-micron is possible) but the output shapes are very thin (typically microns).

Laser micro machining

Laser micro machining [3, 4, 11, 10, 13, 54, 83] uses a laser to locally change the etching
environment. Dry or wet etching may be used. The increased local etching may be due to
photo-chemistry, higher local temperature, or a combination of both. Alternatively, local
deposition can be performed in place of local etching. Laser micro machining can produce
very complex shapes but it is a serial rather than parallel process so only one part at a time

may be machined. This increases the price per part and decreases the throughput.

LIGA

LIGA (a German acronym) [32, 31, 33, 51, 84] uses an x-ray source to irradiate a radiation
sensitive polymer. That polymer is then developed and a mold is formed. The mold is then
used to make metal parts. The process is extremely accurate (sub-micron) and produces
high aspect ratio structures (hundreds of microns deep) with vertical walls. Unfortunately,

the required x-ray source makes LIGA very expensive, and limits the throughput.
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2.2 Crystals and Shapes

In this section the effect of the crystal structure of silicon on the final output shapes will

be discussed.

2.2.1 Why use silicon?

The vast majority of micro-machining uses silicon as a construction material. Silicon has
several advantages: it is the basis of the semiconductor industry and as such has over
thirty years of research into its production and use making it one of the best characterized
materials. Silicon has the added advantage that its oxide is a good electrical insulator,
is easily grown, and is lattice matched which makes for low stress. Also, surplus micro
electronic equipment is usually sufficient for MEMS requirements and can be obtained
inexpensively.

Silicon is one of the commonest elements (sand consists mostly of silicon dioxide) and
huge quantities (Mkg/year) are produced so that the price is relatively low. It is one of
the purest materials produced in bulk, almost free of defects (parts per billion purities) and
has excellent mechanical properties including high strength and low density (see Table 2.1).
Silicon will allow integration of micro mechanics and micro electronics. Unfortunately,
silicon is a brittle material and will break rather than bend. In some applications this is
desirable (for example a damaged part is obviously damaged and easy to separate from
functioning parts so that no hidden defects arise), but generally more pliable materials such
as steel are easier to use as mechanical design materials. This may be partly due to to the
fact that much of the acquired design knowledge is concerned with non-brittle materials
and brittle design is less well understood.

Many of the mechanical properties of silicon, such as Young’s Modulus, are anisotropic
and can vary by as much as a factor of two in different orientations.

Finally it is important to note that this work is not strictly limited to silicon but rather
is applicable to any material. Non-crystalline materials may also be considered if a good
characterization of the etching rates versus orientation is known. In many cases, non-

crystalline materials have isotropic properties since all directions are equivalent.
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Property Steel | Aluminum | Silicon
Density (kg/1) 7.8 2.8 2.3

Young’s Mod. (GPa) 200 70 130-200
Yield stress (GPa) 2-1 2-.5 2-7

Coefl. of Expansion (/°C x107%) | 12 23 2.3-3.5
Hardness (kg/mm?) 500 130 850

Table 2.1: Typical values for mechanical properties.

Figure 2-4: Silicon basis cell.

2.2.2 Crystal planes

Silicon has a diamond crystal structure which has atoms located at (0,0,0), (1/2,1/2,0),
(1/2,0,1/2),(0,1/2,1/2),(1/4,1/4,1/4), and (3/4,3/4,3/4) (see Figure 2-4).
Crystallographic planes are characterized by their Miller indices (h,k,l) which are the
inverses of the (x,y,z) intercepts for the planes. For example the (100) plane intersects the
x axis but not the y or z axes. In MEMS etching, some planes appear more often than
others. The most common planes in MEMS are the (111), (110), (100), and (311) planes.
As different planes are cut, different atom densities are encountered as shown in Figure 2-5.

Because of this, when silicon is etched, different planes are etched at different rates. In
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general terms, the most dense planes are etched the slowest; the (111) planes are the most
dense of all the planes. While each particular etchant has its own etch rate behavior, for
many etchants the (311) planes are the fastest with the (100) and (111) planes somewhat
slower. In addition to the density, another important factor is the symmetry. In general, the
observed etch rate diagrams and the output etched shapes tend to have the same symmetry
as the crystal structure of the wafer plane. For example (100) wafers tend to produce shapes
with four-fold symmetry while (110) wafers tend to favor six-fold symmetry.

The actual etch rate behavior will depend on both the crystalline nature of silicon and
on the particular etchant used. There are complicated chemical reactions involving the
etchant and any two etchants can have very different etch rate behaviors. The crystal
planes give the general behavior of etched silicon; further information can be obtained from
experimental measurements.

The wafer itself can be cut along different planes and the experimental results show a two
dimensional projection of the full three dimensional etch rate behavior onto the wafer plane.
Cutting along different planes can produce very different results with different symmetry.
Figure 2-6 shows an empirical fit to some etch rate data obtained for etchants such as KOH
and EDP for the (100) plane. Both the experimental method used to obtain these results

and some theoretical models will be discussed later.

2.2.3 Corner and shape classifications

There are two main classifications that describe how the two dimensional initial mask shape
will evolve into the three diemsnional final etched shape:

Firstly, etched shapes may be classified as either pegs or holes. Holes are lower than
the surface of the wafer and pegs are higher than the wafer (see Figure 2-7). Holes enlarge
with time while pegs shrink. After long times, holes are dominated by slow planes, while
pegs become dominated by fast planes.

Secondly, within a shape (be it a peg or a hole), there can be two types of corners in two
dimensions: convex and concave (see Figure 2-8). The behavior of the two types of corners
is very different. A square hole has four concave corners, a triangular peg has three convex

corners, a general shape may have both convex and concave corners. For example, the hole
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Figure 2-6: Qualitative (100) wafer etch rate diagram. The x axis is parallel to the wafer
flat.

HOLE PEG

Top surface
Walls

[ Bottom surface

Figure 2-7. Definition of pegs and holes.
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Figure 2-8: Definition of convex and concave corners. The unetched mask is dark, the
etched bottom is light, and the beveled walls are grey.

in Figure 2-7 has five concave corners and one convex corner; the peg in Figure 2-7 has
four convex corners. The inside of a corner is taken to mean the region defined by an angle
smaller than 180 degrees. For a convex corner, the inside is unetched, while the inside of
a concave corner is etched. While etching convex corners fast planes dominate: fast planes
increase in length while slow planes decrease in length. For concave corners, slow planes
dominate. The subjects of holes/pegs and convex/concave corners will reappear throughout

this work.

2.2.4 Spoke patterns

There are a number of ways to experimentally determine the etch rate as a function of
orientation. One method is to etch many long rectangular holes, with each hole at a slightly
different angle. Then the small undercut along the long axis of the holes is measured with
a microscope. This must be done for each hole. Long holes are required since the holes
change shape with time and the corners of the holes are distorted. This method can produce
accurate etch rate diagrams, but is time consuming since all the holes must be measured
individually and a microscope is required.

Another, slightly less accurate method is to etch a spoke pattern of pegs. This method



24

ORIGINAL MASK ETCHED PATTERN

Figure 2-9: Spoke pattern geometry.

produces a macroscopic copy of the etch rate diagram which can be directly viewed or
photographed. Seidel [65], for example has studied the etch rate behavior of KOH in both
the (100) and (110) planes. The method works because the long thin wedges that make
up the spokes retain their sharp endpoints and only the outer ends distort. This is true
because the planes that make up the sides of the wedges are geometrically magnified while
any new distorting planes are not.

Consider a spoke pattern consisting of a set of N radial thin triangular wedges (pegs)
as shown in Figures 2-9 and 2-10. As each individual wedge etches, two things occur: the
outer end of the wedge distorts slightly while the sharp inner end moves outwards. The
outward motion of the sharp ends is primarily radial, at a rate proportional to the average
of the two rates which make up the wedge sidewalls. These two rates are slightly different
since the wedge has finite angular width.

In addition there is also a small lateral motion proportional to the difference between
the two side rates, this motion is proportional to 1/N and is neglected for large N. Let the

new radial position of the inner ends be a set of N points SP; , then
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Figure 2-10: Spoke tip geometry.

(2.1)
[R(0i+§*(1+%))+R(6i—g*(1+%))}

If N is large, the following approximation is valid:

Ntime s T

Note that the position at an angle depends on the rate at the angle perpendicular to
the wedge. The spoke pattern actually averages the etch rate diagram rotated clockwise
90 degrees with the etch rate diagram rotated counterclockwise 90 degrees. In addition the
etch rate is geometrically magnified by the number of spokes, which allows a macroscopic
output. The magnification is linear in N for large N.

For 2-fold symmetrical etch rates, rates at @ 4+ 7 are equal to the rates at 4, thus
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gp, = 2Nume {R (94 + g)] (2.3)

T

For 4-fold symmetrical etch rates (rates at 8, 8 + 7 /2, 8 + 7, and 8 + 37/2 are all equal)

the rotation effect disappears:

. 2Ntime .
- T

SP, [R(6:)] (2.4)

Some etchants do not have 2-fold symmetry, and thus spoke patterns do not accurately
model these systems.
Consider a 4-fold symmetric system (for example a (100) wafer): if N is not large the

net effect is to blur the etch rate diagram by averaging over the width of the wedge:

SP; = g-z—v-f-rm—e . [Rm, (m + %)] (2.5)
Figure 2-11 shows an etched spoke pattern for EDP.
The spoke method is also susceptible to lithography errors since all wedges converge at
the origin and the pattern has some minimum feature size. The effect of lithography errors
is to delay the etching time for some of the wedges, introducing error in the results. The

error is diminished by using larger patterns so that the time error is smaller in proportion

to the total etching time.

2.3 Shape Transformations

2.3.1 Examples of shape transformations

The fundamental process we will examine is the transformation from one shape to another.
Such changes occur at all length scales, a few macro scale examples are listed below. These

different examples all share the same mathematics.

o Painting:
Consider a two dimensional curve defining the path of a paint brush. As the paint

brush is swept along this curve the initial path is mapped to two output curves, an
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Figure 2-11: Experimental spoke patterns for (100) wafer in EDP.



28

inner and an outer path. (see Figure 2-12). By changing the shape of the brush we
can model anisotropic transformations [28]. Note that some corners are rounded and
others are sharp. This dichotomy of corner behavior is a fundamental part of shape

transformation.

Fonts:

If the painting path is the outline of a letter, typographic fonts may be developed with
a compact representation. By parametrically defining a brush which changes along

the path, a wide variety of fonts may be generated [28].

Milling:

The ideal cutting path of a milling machine is enlarged by the finite size of the milling
cutter. The output shapes are called offset surfaces. Offsets surfaces are difficult to
calculate (because they often contain cusps) and are the subject of much research [24,

35, 78]. They are commercially important because NC (numerically controlled) milling

machines must be able to predict the result of particular milling actions.

Robotic Path Planning:

Consider a circular two-dimensional robot in an obstacle filled room. Path planing
algorithms attempt to move the robot from one location to another. If the obstacles
are painted with a brush the same size and shape as the robot, the robot may be
replaced with a point and the path planing done on this new system [29]. This

method is valid for non-circular robots as long as rotation is not permitted.

Profilers:

One way to measure the surface profile of a sample is to drag a stylus across the sample
(see Figure 2-12). One of the limitations of such a system is that the measurable height
changes are limited by the shape of the stylus. In fact the output is a convolution of

the actual shape and the stylus shape. This is a serious limitation at smaller scales.

Optics:
In most materials, the propagation of light is isotropic; a circular wave front remains

circular. Birefringent materials have indices of refraction that depend on orientation.
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Figure 2-12: Shape transformation examples: (A) painting, (B) profilers, (C) cams.
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The evolution of the wave front is anisotropic in this case and the wave front changes

shape.

o Cams:

When a rocker arm is in tangential contact with a cam the output motion of the
arm depends on the shape of the cam [47] (see Figure 2-12). If the cam is defined
by R(6) and rotates at an angular rate w, then the output as a function of time is
®. This output can be expressed in Cartesian coordinates (® vs. time) or polar
coordinates (radius: ®, angle: time). In polar coordinates the motion of the cam is

the transformation of the shape defined by R(8) to a new shape ®(time).

2.3.2 Minkowski transforms

Minkowski transformations [28, 29, 30] are a mathematical method of modeling shape trans-
formations, some examples of which were given above. Minkowski algebra allows us to add
two shapes represented by a list of vectors from one vertex of a polygon to the next vertex.
If the polygons are both convex, then the Minkowski addition of two polygons is found
by combining the two vector lists and slope sorting them (see Figure 2-13). Slope sorting
means that the combined list of vectors is rearranged so that the vectors with the smallest
slopes (with respect to the x axis) are the first vectors in the sorted list. The asterisks in
Figure 2-13 represent the slope angles of individual vectors.

When one shape is nonconvex then the algorithm is more involved. Between two con-
secutive vertices of the nonconvex polygon perform the following steps:
i) if the rotation from one vertex to the next is counterclockwise (positive angle), insert into
the nonconvex list the portion of the convex vector list that is between the two nonconvex
vertices (this is the same as the convex/convex case).
ii) if the rotation from one vertex to the next is clockwise (negative angle), insert into the
nonconvex list the negative of the portion of the convex vector list that is between the two
nonconvex vertices (see Figure 2-14). Note that the output shape is non-simple and has self
intersections. The final shape in the outer perimeter of the shape with the set of intersecting
regions trimmed off. The finding of such self intersections is a non-trivial part of Minkowski

transformations.
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Figure 2-13: Example of Minkowski Addition (convex/convex). The slope diagrams are
shown below.
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Figure 2-14: Example of Minkowski Addition (convex/nonconvex). + signs mean that the
vector is used, - signs mean that the negative of the vector is used. The slope diagrams are
shown at the bottom of the figure.
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Figure 2-15: Wulfl-Jaccodine method.

Minkowski subtraction is performed in the same fashion as addition but the negative of

the vectors are used. Minkowski transformations will be revisited later.

2.3.3 MEMS shape modelers

There are a number of existing methods for predicting the output shapes in MEMS [16, 18,
20, 17, 21, 36, 67, 68, 77]. Two are listed below, each uses etch rate diagrams to give the

etch rate as a Tunction of orientation.

Wulff-Jaccodine

The Wulff-Jaccodine method [36, 20] uses plane waves that propagate outwards at a rate
given by the etch rate diagram. At each point on the initial surface, a tangent plane is moved
outward a distance equal to the appropriate rate multiplied by the time (see Figure 2-15).
The final shape is the envelope of all these planes. This envelope is calculated by finding the
intersections of adjacent lines. Planes may disappear and/or appear at corners and must
be considered.

At corners there is a geometrical test to determine if new planes appear. Consider one
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corner of a convex hole: a small intermediate plane is inserted and the evolution of this
new plane is examined. As shown in Figure 2-16 fast planes soon disappear and slow planes
tend to grow. For convex pegs the situation is reversed. A general shape may have both
convex and concave corners. When etch rates differ greatly, only a few dominant planes
appear. However as the etchant becomes more and more isotropic, more and more planes are
relevant and must be considered. The major difficulty of this method is the computational
cost of determining which planes appear or disappear at each time step.

Buser et al. [16] have developed a useful analysis tool called ASEP (Anisotropic Silicon
Etching Program) which can predict the output shape based on traveling planes. These
results have been verified experimentally. In addition the output can be linked to FEA
modelers such as ANSYS. The model itself runs quickly.

However, much generality has been lost, and this approach is specialized. Only KOH
silicon is being modeled in this implementation, although EDP is planned. The analysis is
limited to a number of dominant plane families (111, 100, 110, 311) which tend to appear
in crystal etching. In addition the permissible input masks shapes are limited: only 0, 45,

90, 135 degree etc. input walls are permitted.

Slowness

The Slowness method [27, 67] uses the inverse of the rate (the slowness) to calculate the
trajectories of points or lines in the shape (see Figure 2-17). Using the slowness instead of
the rate simplifies the mathematics.

The trajectory of a corner is given by a vector relation involving the slowness vectors of
the two lines which form the corner. This relation states that the trajectory of the corner lies
along the normal to the difference of the two line slowness vectors (see Figure 2-17). This
ensures that the components of the trajectory vector in a basis defined by the normals to
the corner lines are equal to the two line etch rates (see Figure 2-17). The Slowness method
is equivalent to solving two simultaneous linear equations to find these two components.

In order to model appearing planes, many small lines are inserted at corners and left to
evolve. The more isotropic the etchant, the more lines will be required. The trajectories

of the corners are then used to determine when lines disappear; lines disappear when two
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Figure 2-16: Corner evolution.
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Figure 2-17: Slowness method geometry.

adjacent trajectories converge. The procedure is iterated to find the shape at any time. The
method is extended to three dimensions by extending the vector relationship. The three
dimensional case is more complicated because in two dimensions, a corner is always formed
by two lines, while in three dimensions three or more planes may define a corner.

Sequin [67] has successfully used the Slowness method to model changing shapes, al-

though experimental verification is not included in his publication.

Discussion

It can be shown that the two above methods are mathematically equivalent, but this does
not imply complete redundancy. The two models each have their advantages; the Wulff-
Jaccodine model is easy to interpret, while the Slowness method is easy to implement
computationally.

These etch simulation methods have some disadvantages. The Slowness method is iter-
ative and many time steps may be necessary, while ASEP is limited in its scope. In both
methods, local calculations involving neighbors do not consider global effects. For example,

when two separate shapes grow so that they intersect to form a new larger shape, all lines



36

in both shapes must be considered. A single complex shape may also have two parts that
intersect. When such cases occur, the number of required calculations increases dramati-
cally. Finally, both the Slowness and Wulff-Jaccodine methods cannot simply be reversed
and run backward in time in order to perform design inversion. Because planes appear
and disappear, such reversals do not give complete results and there is no general design

framework inherent to either model.
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Chapter 3

Rate Modeling

3.1 Introduction

Anisotropic etching of silicon is one common micro-machining technique. Anisotropic
means, of course, that the rate of etching is dependent on the orientation of the face being
etched in the crystal. These differing rates mean that most etched shapes change with time
as will be discussed in considerable detail below. In order to simulate the time evolution
of three dimensional etched shapes, it is essential that the full etch rates in all directions
be well known. Any MEMS CAD system that will accurately be able to determine a mask
shape for a given desired three dimensional fabricated shape will require well characterized
and accurate three dimensional etch rate information. Similarly three dimensional etch
simulators, such as the author’s Eshape and Cellular Automata methods (chapters 5 and 6
respectively) as well as the Slowness method by Sequin [67] and ASEP by Buser [16] require
accurate etch rate data.

Unfortunately, for most etchants etch rates for only a few major planes are known,
notably the (100), (110), (111), and perhaps the (311) planes. Seidel [65], for example has
studied the etch rate behavior of KOH in both the (100) and (110) planes. The (100) plane
etch rate diagram has a characteristic four lobed rosette pattern while the (110) plane etch
rate diagram is six-sided. These planes are chosen because they tend to dominate most
etched shapes, but they do not give the full picture. In this chapter we will derive a model
which supplies the full etch rate diagram given a few experimentally measured planes.

The model requires a minimum of N planes to provide a N dimensional representation,
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but more planes may be utilized if they are available, providing a more accurate etch rate
diagram. The model will first be derived for two dimensions with two parameters, then with
three parameters. The same approach will be used for the three dimensional models with
three and four parameters. The models show excellent agreement with both experimental

measurements and values reported in the literature.

3.2 Two Dimensions

We represent etch rates with vectors where, in polar coordinates @ is a given etch direction
and R() is the rate for the 8 direction. Of course, this {R, 8} vector can also be represented
by Cartesian coordinates: {z,y}. Because of silicon’s symmetry, we need only examine
1/8th of the circle: 0 < 8§ < 7/4(or0 <z < 1land 0 <y < z). For example the
(10),(10), and (01) vectors have the same rate since they belong to the (10) family. This
use of symmetry simplifies the derivation, but the model is in no way limited to symmetrical

systems. For asymmetrical systems all regions of the plane must be modeled.

3.2.1 Two Parameters

In two dimensions, two independent vectors are needed to define a basis. In the two-
parameter model there are two distinct rate vectors, the (10) vector at zero degrees and the
(11) vector at 45 degrees. These vectors shall be called the principal vectors or principal
rates.

These two dimensional rate vectors are the two dimensional projections of the three
dimensional etch rates for different planes. The (11) vector is the projection of the (111)
plane while the (10) vector is the projection of either the (100) or the (101) plane depending
on the etchant being modeled.

In order to interpolate the etch rate of any arbitrary vector we wish to find its com-
ponents not in terms of its Cartesian components but rather in terms of its (10) and (11)
components. In other words we wish to transform from a representation in Cartesian space
into a representation in the non-orthogonal basis of the two linearly independent principal

rate vectors. We do this by multiplying the {z,y} vector by the inverse of the basis matrix
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Figure 3-1: Two dimensional basis representations.

defined by the principal vectors. This is equivalent to solving two simultaneous equations
to determine what magnitudes of the (10) and (11) vectors are required to construct an
arbitrary vector (see Figure 3-1).

In addition we must satisfy the additional condition that the interpolated rates be
isotropic when the (10) and (11) rates are unity. This is done with a diagonal scaling
matrix which simply multiplies the result by two scaling constants. In the two dimensional
two parameter model the scaling matrix is the identity matrix but this is not true in general.
If this scaling matrix is not included the model is still valid but the model etch rates will
differ from the experimental etch rates. The need for the scaling matrix arises because when
the Miller indices are calculated, the numbers are scaled to be integers. The scaling matrix
undoes this Miller scaling.

Every vector has a representation in the orthogonal Cartesian basis {z,y}. Let {a,b}
be the components of a vector {z,y} in the non-orthogonal basis defined by the normals

(Miller indices {h,k}) of two principal planes. Then:
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basis scaling | component | normalization
vectors | matriz equations

10 10 a=z—Y
[ 11 } { 0 1 } b=y le

Table 3.1: 2D, two parameter model matrices and equations.

-1

hi k s1 O
[a b}‘;{m y] e ' (3.1)
hg kg 0 89

where s is the scaling matrix. This relationship is valid within the triangular region defined
by the two principal planes.

The etch rate along a vector {z, y} is then given by a weighted sum of these components.
By choosing the weights (W;) to be the ratio of the i** rate to the (11) rate , it is possible
to separate the shape of the etch rate diagram (ratio of rates) from the absolute size of the

etch rate diagram ((11) rate). Thus W7 = 1 and Wy = R(10)/ R(11):

R(z,y) = N(ax Wi+ bx W3) x Ry (3.2)

where N is a normalization factor (1/z in this case). N is necessary since R should be
dependent on angle (ratios of z and y) and not on the magnitudes of z and y. This formula
is valid for all possible symmetric etchants: isotropic or highly anisotropic. Table 3.1
displays the details of this model. Note that the equations are only valid when @ and b are
positive, since the weights cannot be negative.

Compared to other planes, the (111) planes are relatively dense. For many etchants they
are the slowest etching planes. The ratio of the fastest to slowest planes ranges from 1:1 for
the isotropic case to 400:1 for etchants such as KOH. For this reason it is not necessary to
plot the etch rate diagrams for the cases where the ratio of (10) to (11) is less than unity,
although the model would still be valid if small ratio etchants were available. Figure 3-2

shows an array of hypothetical ratios of the (10) etch rate to the (11) etch rate. Each
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Figure 3-2: 2D, two parameter results.

element in the array has been scaled to fill an equal amount of space for display purposes.

This has been done for all the arrays that follow.

Three Parameters

The effect of the (311) planes can be included by using a three parameter model. Again only
the region 0 < 6 < 7/4 is considered, but there are now three principal rates (10), (11), and
(31) where the (31) vector is the two dimensional projection of the (311) plane. The (10)
and (11) rates appear in hole type shapes since they are slow compared to faster planes such

as the (31) rates. Failure to include (31) rates will lead to peg type shapes that are correct
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basis scaling component normalization
veclors | matriz equations
(1 0] |1 0] a=z-3y
3 1 0 3 b= 3y l/z
(1 1]|[10]] a=(-z+3y)/2 e
31 0 3 b=3/2(z —y)

Table 3.2: 2D, three parameter model matrices and equations.

in form but incorrect in detail; the three parameter model eliminates this deficiency. The
(31) vector lies at about 18 degrees (arctan(1/3)) with respect to the z axis. Because only
two vectors at a time may be used as a two dimensional basis, two regions are examined:
0 < 0 < arctan(1/3) with (10) and (31) as the basis and arctan(1/3) < 6 < 7 /4 with (31)
and (11) as the basis. The derivation for the two parameter model is carried out again
for the two regions producing two separate weighted sums each valid within its associated
region. In this case the scaling matrix is not the identity matrix but contains a 1 and a 3
along the diagonal. In general, the scaling matrix diagonal value is the maximum cartesian
component of the associated plane. Note that the rates are continuous across the region
interface. The net effect of the (31) rates is to produce secondary extrema. The results
are rearranged to separate the size and shape effects as was done with the two parameter
model. Furthermore by using the two parameter model we can find the default value for
the (31)/(11) rate ratio required to collapse the three parameter model to two parameters:

default R31/R11 = (14 2% R1o/R11)/3

Rearranging, we obtain a weighted sum in terms of Rio/R11, the R3;/ Ry default rate
ratio, and the scaling factor by which the default is multiplied. Table 3.2 displays the details
of this model. Note that the equations are only valid when a and b are positive, since the
weights cannot be negative.

Again the availability of etchants is used to limit the Ryq/R;; rates and the scaling

factor to be larger than or equal to unity. Figure 3-3 shows such plots.
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3.2.2 Three Dimensions

Consider a vector in space defined by its cartesian components z , ¥, and z or in spherical
coordinates R, §, and ¢. The magnitude of the vector is the three dimensional etch rate in
the direction of the vector. Because of silicon’s symmetry, we need only look at 1/16th of

the sphere: 0 < <7/4and 0<¢<7/2(or0<z<1,0<y<=z,0<2z<1).

Three Parameters

In three dimensions, three independent vectors are needed to define a basis. The three
principal vectors for the three parameter model are the (111), (100), and (110) rates. In
this section of the sphere there are 5 principal planes in 3 families: (100) family: (100) and
(001) (110) family: (110) and (101) (111) family: (111) From symmetry, all planes within a
family have the same rate. The five planes form three triangular regions on the sphere each
bounded by three basis vectors: (100,111,110), (100,111,101), & (001,111,101) as is shown
in Figure 3-4.

For each triangular section, the representation of any arbitrary vector is found in the
non-orthogonal basis by multiplying the vectors cartesian components by the inverse of the
3 by 3 basis matrix. Again a scaling matrix is necessary. This is equivalent to solving
three simultaneous equations to determine the magnitudes of the (100),(110), and (111)
vectors required to construct an arbitrary vector. The required rate is a weighted sum of
the components expressed in terms of etch rate ratios.

Every vector has a representation in a orthogonal Cartesian basis {z,y, z}. Let {a,b,c}
be the components of a vector {z,y, z} in the non-orthogonal basis defined by the normals

(Miller indices {h,k,(}) of three principal planes. Then:

hl kl l1 81 0 0
[abc]2{zyz} hy ky [y 0 s O (3.3)
hay ki I3 0 0 s3

This relationship is valid within the triangular region defined by the three principal

planes. The etch rate at a vector {z,y, z} is then given by a weighted sum of these compo-
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Figure 3-4: 3D, three parameter model regions.
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basis scaling component | normalization
vectors matrizc equations
(1 00)|[100]] a=z—-y
110 010 =y-—2z 1/z
11 1]10 0 1] c=2z
(1 00]|[100]|a=z-2
1 01 010 b=2z-—1y 1/z
|11 1] | 0 0 1| c=1y
(00 1]|[100]|a=z-x
1 01 010 Y 1/
|11 1]1]60 1 =y

Table 8.9: 3D, three parameter model matrices and equations.

nents:

R(m,y,z):N(a*Wl+b*Wg+c*W3)*R111 (34)

where W; is the relative etch rate or weight for the ** plane. N is a normalization factor
(either 1/z or 1/z) which ensures that the rates are independent of the magnitude of z,
y, and z. Two different normalizations are needed to provide continuity on the boundary
between regions. Table 3.3 shows the details of this model. Again a, b, and ¢ must be
positive for the equations to be valid.

This formula is valid for all possible symmetric etchants: isotropic or highly anisotropic.

Figure 3-5 shows the etch rates for ratios greater than unity.

Four Parameters

The (311) rates can be added to the model by redefining the triangular sections. In this
case there seven vectors in the three principal families: (100) family: (100) and (001)
(110) family: (110) and (101) (111) family: (111) (311) family: (113) and (311) The new

vectors require that the triangular sections be properly chosen. The seven planes form six
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Figure 3-5: 3D, three parameter model results.
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Figure 3-6: 3D, four parameter model regions.

triangular regions on the sphere each limited by three planes: (100,311,110), (100,101,311),

(110,111,311),(101,111,311), (101,113,111), and (001,113,101) as is shown in Figure 3-6.
The etch rate at a vector {z,y, 2z} is then given by a weighted sum of these components.
Table 3.4 shows the details of this model.

Figure 3-7 shows the etch rates for ratios greater than unity.
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basis scaling component normalization

vectors matrizc equations

1 00 100 a=z-—y—2z

110 010 b=y—2z 1/z
11 0 0 3 c=3z

1 00 1 00 a=z—2y—=z

1 01 010 b=z-y 1/z

3 11 0 0 3 c=3y

1 11 1 00 a=(y—-z)/2+z

110 010 b=y—z 1/z

3 11 00 3 c=3/2(z—y)

1 11 1 00 a=2y—z+2)/2

10 010 b=z—y 1/z

3 11 0 3 c=3/2(z — 2)

111 100 a=(z+2y—2)/2

1 01 010 b=z -y 1/z

113 0 0 3 c=3/2(z—z)

0 0 1 100 a=-—z—2y+z

1 01 0 10 b=z—-y 1/z

11 3 0 0 3 c=3y

Table 3.4: 3D, four parameter model matrices and equations.
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Figure 3-7: 3D, four parameter model results.
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3.3 3D = 2D (100) Projections

When etched shapes are produced, the three dimensional etch rate diagrams are transformed
into two dimensional etch rate diagrams projected onto the plane of the wafer cut. This
cutting of the wafer establishes boundary conditions at the wafer surface which limit the
observed etch rates. At each 6 value in the plane a minimization in ¢ is performed to find

the minimum projection onto the plane. For a (100) wafer this is

Ry4(0) = MINy[proj(6,¢)] = proj(0,¢)= Rzq(8, )/ cos(¢ — 90) (3.5)

Figure 3-8 shows such a minimization performed graphically.

The plane of the wafer corresponds to a maximum ¢ of 90 degrees. It is possible to
perform this minimization for other maximum ¢ values, in this case the projection is onto
a cone (see Figure 3-9).

Three maximum ¢ values were examined, 90 (plane of wafer), 60 , and 30 degrees. The
maximum ¢=90 corresponds to the surface etch rate while the maximum ¢=60 and 30 give
information about the etch rate deeper into the crystal. Thus there are three contours
to plot the etch rate behavior. Closely packed contours indicate sharply sloped walls while
widely spaced contours indicate walls with smaller slopes. Note that each contour represents
constant ¢ and not constant depth.

Figure 3-10 shows a modeled (100) projection while Figure 3-11 shows experimental

data.

3.3.1 General Projections

This projection need not be limited to the (100) plane. In order to examine another plane
the spherical coordinates in the new reference frame defined by the new wafer cut must be
converted into the spherical coordinates in the (100) reference frame. If the old frame (¢, 8)

is rotated by A¢ and A6, the equations giving the new coordinates (¢, 6) are :

cos(¢a) = cos(¢y) cos(¢) — cos(8) sin(A¢) sin(¢) (3.6)
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Figure 3-8: Minimum projection.




53

PLANE OF THE WAFER

A Z AXIS

Figure 3-9: Projections onto cones.

cos(fz)sin(¢2) = cos(Af)cos()sin(Ad)
+ cos(A¢) cos(Af) cos(8) sin(p) (3.7)
— sin(Af) sin(¢) sin(8)

where (¢2, 6>) defines the original frame.

For the (110) wafer A6 = 7 /4 and A¢ =0, while for the (111) wafer A8 = 7/4 and
A¢ =m/4. The minimization is performed as before but the rate values used are those
obtained from the new ¢ and 6. Figure 3-12 shows such a (110) projection. Figure 3-13
shows experimental measurements of the (110) projection (reproduced from a paper by

Seidel [65]).

3.4 Generality

In this derivation the (111), (110), (100), and (311) rates have been chosen as principal
planes. These planes were chosen because they appear quite often in the anisotropic etching
of silicon. The model is in no way limited to such systems and any three principal planes
may serve as a basis. More planes may be added to increase the accuracy of the model, in

which case new triangular regions will have to be defined.
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Figure 3-10: Modeled (100) projection.
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Figure 3-11: Experimental (100) projection.
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Figure 3-12: Modeled (110) projection.
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Figure 3-13: Experimental (110) projection from the literature [65].
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3.5 Summary

A method for parametrizing the full etch rate behavior given a few known rates has been
presented and found to agree with experimental measurements. The model does not seek
to understand the reasons why etch rates differ, but rather uses the known available data to
predict the results of differing etch rates. The method clarifies both the three dimensional
nature of the etch rate diagram as well as the observed etch rates for different wafer planes.
The predictions of any MEMS CAD tools can only be as good as the data it is provided.
A standardized system for measuring and classifying different etchant based on their etch
rate behavior is a much needed aspect of MEMS design. The model outlined above is a

valuable part of such a system.
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Chapter 4

Shape Modeling

4.1 Introduction

A wide variety of interesting shapes can be micro-machined from silicon using an-

isotropic etchants. Common etchants such as EDP and KOH are highly anisotropic and the
transformation from two dimensional input mask to three dimensional output shape is quite
complex in general. This chapter examines the output shapes that can be expected given
specified etchant characteristics. While a number of techniques [16, 67] exist for predicting
output shapes, the problem of inverting the design to find the required input mask for a
desired output shape remains largely unresolved. A special class of shapes will be examined
for which this kind of design inversion is possible. Uncertainties in design parameters will
also be examined. The chapter uses as a starting point a full three dimensional etch rate
diagram. In general etch rate diagrams are not well known, although some measurements
have been made [65, 34]. For most etchants data is usually only available for a few planes
and a few wafer orientations. This chapter uses a four parameter model to provide the
three dimensional etch rate diagram. The model gives the etch rate diagram from the
experimentally determined etch rates for four principal planes: (100), (111), (110), and
(311). The following analysis is independent of the source of the etch rate diagram so
other methods for obtaining the three dimensional etch rate diagram can also be used. The

derivation assumes that the etching is linear and neglects non-linear effects such as diffusion.
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4.2 Wafer Cuts

Given a three dimensional etch rate diagram R(¢,6) or R(z,y,z), some planes will tend
to dominate others in certain conditions. One important factor is wafer orientation. The
wafer orientation refers to the crystal orientation along which the crystal is cut (the (100)
orientation being the most common). This cutting of the wafer establishes boundary con-
ditions at the wafer surface which limit the observed etch rates to a subset of the full three
dimensional etch rate diagram. The observed etch rate within the plane of the wafer is the

minimum projection onto the wafer at that orientation given by:
Ry4(8) = MINy[proj(0,¢)] = proj(0,$) = Raq(6, )/ cos(¢ — 90) (4.1)

Similar projections onto cones can also be found by replacing 90 degrees with another angle.
These projections are combined to form a contour plot of the etch rate on a given wafer
orientation. The surface etch rate is given by the planar projection and the conic projections
give information about the etch rate deeper into the wafer. Figure 4-1 shows a variety of
etchants on a (100) wafer). The outer contours show the etch rate at the surface and the
inner contours show etch rates at conic angles of 30 and 60 degrees.

It is important to note that the transformation from three dimensions to two is a pro-
jection. The two dimensional etch rate diagram is not a shadow of the three dimensional
diagram nor is it a slice through the three dimensional diagram.

Projections onto other planes such as the (110) are found by changing the reference
frame of R before performing the minimization. In fact any arbitrary projection may be
determined. Figure 4-2 shows nine different projections interpolating from the (100) to

(110) wafer orientations. Again the contours indicate etch rates at different depth.

4.3 Limit Shapes

When EDP etches silicon, holes tend to converge to pyramidal pits bounded by four (111)
planes. In general, the final shape to which a hole evolves depends only on the etchant

used. In two dimensions consider an initial mask hole defined by a set of points in polar



61

Figure 4-1: Different etchants for (100) wafer. Outer contours show etch rate at surface,
inner contours show etch rate at greater depths.
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Figure 4-2: EDP/KOH-like etchant from (100) wafer to (110) wafer. Outer contours show
etch rate at surface, inner contours show etch rate at greater depths.
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Figure 4-3: Limit shape (inner shape) for hypothetical elliptical etch rate diagram (outer
shape).

coordinates. Each 7o, is the initial radius at some angle §;. The output shape of the hole is
the envelope of tangents of the shape; with each tangent displaced from its initial position
by an amount which depends the tangent’s orientation. The rate for any particular tangent
is the rate which is normal to that tangent and the displacement is given by Rate  time.
For large time, the ro; terms become negligibly small compared to the time dependent term.
Thus the limiting shape for holes is the interior portion of the envelope formed by displacing
a normal to § by R(8) for all § values. Figure 4-3 shows an example of this process for a
hypothetical elliptical etchant. This is termed the limit shape. As two examples, the two
dimensional limit shape for isotropic etchants is a circle while for etchants such as EDP and
KOH it is a square. The limit shape may be determined graphically as shown in Figure 4-3
or mathematically.

Let the two dimensional etch rate diagram be sampled at N § values (see Figure 4-4).
Consider a line at an angle # with one endpoint of the line at the origin. Let the other
endpoint of the line be given by its intersection with a displaced normal. The minimum
length of the line determined from all possible intersections with all displaced normals is
termed the radius of intersection for 4.

At each 6;, (N — 1) lines have to be intersected to find the radius of intersection. Thus,
N % (N — 1) calculations will have to be performed. Because, the limit shape is convex,

(any non-convex part would be dominated by fast planes and etched away) a more efficient



64

SHAPE SAMPLING

P SR
o s o s e o

it tb Y B RS
’
~
ot e vt

Figure 4-4: Sampling of a shape.

algorithm is possible. At each 6;, adjacent normals at 6;,1,6;12, etc. are intersected until
the intersection radius increases. Normals any further away from 6; cannot have a smaller
intersection radius because the limiting shape must be convex. Note that the minimization
must be carried out both in a clockwise and counterclockwise direction (8;_1, 6;_,, etc. also
must be considered). This improved algorithm performs on the order of N calculations,
although the number of calculations does depends on the etchant. The improved algorithm
is a type of gradient descent to find the minimum radius of intersection at every angle 6,
using the convex nature of the limit shape to state that at each angle 8, there are no multiple
minima in the radius of intersection.

Figure 4-5 shows the limit shapes associated with the etchants given in Figure 4-2. The
outer contours show the limit shape at the surface and the inner contours show limit shape
at conic angles of 30 and 60 degrees.

A full three dimensional limit shape could also be calculated from the three dimensional
etch rate diagram if the radius of intersection minimization were performed in both the 6
and ¢ directions. In this case the limit shape algorithm was applied to the surface etch

rate diagram as well as the conic projections deeper into the wafer to obtain partial three
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Figure 4-5: Limit shapes for Figure 4-2. Quter contours show limit shape at surface, inner
contours show limit shape at greater depths.
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Figure /-6: Limit and linear shapes.

dimensional information about the limit shape. Note that the limit shape is dominated
by the slowest planes and has the same symmetry as the etch rate diagram. For this
EDP/KOH-like etchant the (100) pyramidal pits (as shown in the upper left hand element
of Figure 4-2) are obtained as expected.

While all holes converge to a limit shape independent of initial shape, the time required

to converge increases as the initial shape differs from the limit shape.

4.3.1 Linear shapes

Closely related to limit shapes are linear shapes which change linearly from their present
shape. A linear shape is obtained by stretching a limit shape along any two parallel lines.
Figure 4-6 shows examples of linear shapes for KOH-like etchants for both (100) and (110)
wafers. The linear shape for the (110) wafer is of great practical importance since it allows
long thin vertical walled channels to be etched.

Planes appear at corners and since the linear shape has the same corners as the limit
shape, no new planes appear in the linear shape. Similarly, no planes may disappear from

the linear shape since it contains only planes found in the limit shape. While no planes
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disappear in the linear shape, some planes will change length until the proportion of each

plane is the same as the proportions of the limit shape.

4.3.2 Why are limit and linear shapes important?

The etching process transforms a two dimensional mask into a three dimensional shape. A
general shape may change in a very complex manner. In the forward path (determining the
final output shape given the initial mask) this does not pose serious difficulties. Simulation
can still be performed on a general shape. However in the backward path, finding the
necessary input mask in order to produce a desired output shape may be very difficult for
a general shape. In some cases this design inversion is impossible.

In contrast to general shapes, limit and linear shapes change in a straigthforward fashion.
Limit shapes, do not distort, they simply grow larger. Linear shapes “unstretch” and
approach the limit shape. Because of this behavior, if the desired output shape is a limit
or linear shape, the required input mask can always be found.The design implications of
limit, linear, and general shapes will be examined in much greater detail in later chapters.
Moreover, limit and linear shapes are not only easy to obtain and analyse, they are usually

hard to avoid.

4.4 Shape Library

With the rate and shape tool thus far developed it is possible to build a library of shapes
for use in design. While it is not possible in general to invert the design process to find
the necessary initial conditions to obtain a desired output shape, an empirical inversion in
some respects is possible. If the etch rates and associated shapes are tabulated, then the
inversion can be performed by choosing the limit shape closest to the desired output shape.
In effect we construct a library of limit shapes that point to the required initial conditions.

There are five important parameters to consider: the four major etch rates (111), (110),
(110), and (311) as well as the wafer orientation. The values for the four principal planes
are well suited to characterize the etched shapes since they appear quite often. By dividing

all principal rates by the (111) rate, the size of the diagram ((111) rate) can be separated
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Figure 4-7: Shape Library.

from the shape of the etch rate diagram (ratio of the rates). Thus there are now four
parameters. The effect of the (110) and (100) rates can be modeled by an array like that of
Figure 4-5. This array is termed a page. Different pages with different values of the (311)
rate are calculated to form a stack of pages.

For each element of each page in the stack, the associated limit shape is calculated to
form a stack of shapes. This is repeated for different wafer orientations as is shown in
Figure 4-7. The Figure only shows certain orientations and certain rates, but any arbitrary
rate or orientation could be included.

The Shape Library is used in the following manner. The designer finds the linear shape
closest to the desired shape. The linear shape has an associated limit shape which is found in
the library. From the associated library rate entry, the designer now knows the requirements

for etch rates and wafer orientation necessary to produce the linear shape. The initial mask
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can be interpolated backward from the linear shape, as discussed above.

Movement within a page or within a stack is equivalent to being able to vary the etch
rate behavior either by varying the temperature, composition, or chemistry. The ability to
do this may be limited. Nonetheless, the required properties for a desired output shape are
given by the Shape Library. Movement between stacks is equivalent to changing the wafer
cut for a given etchant. While wafers are usually available in only a few orientations, if a
particular application needs a specific shape, the Shape Library will show if it is possible. In
general, a particular etchant and a particular wafer orientation may not always be available,
but the Shape Library does indicate the type of etchant and initial conditions required to

produce a desired shape.

4.5 Uncertainty

Often the etching parameters are not accurately known or measured. In this section the

effect of error in both rate and wafer cut is examined

4.5.1 Noise

The idealized etch rate diagrams neglect such effects as error in rate measurements, nonho-
mogeneous etching, asymmetry in the etching, and defects in the crystal. All these possible
sources of error are modeled by adding a random error to each R(¢,8). The new R is then
used to calculate both projections and limit shapes. By repeating this process several times
it is possible to obtain quantitative results on the effect of noise. Figure 4-8 shows such a
simulation where a 3 x 3 array shows EDP-like etch rates with an error of 50 percent of the
(111) rate. Again the contours indicate etch rates at different depth. From such Figures
as Figure 4-9 it is possible to estimate both a maximum error and an average error in the

limit shape expected for any given etch rate error.

4.5.2 Misalignment

Commercially available wafers are cut to a particular orientation with an accuracy of a few

degrees. The effect of this misalignment, or mask misalignment, can easily modeled. The
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Figure 4-8: Rates with noise level of 50 percent of (111) rate. Outer contours show etch
rate at surface, inner contours show etch rates at greater depths.
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Figure 4-9: Limit shapes for Figure 4-8. Outer contours show limit shape at surface, inner
contours show limit shape at greater depths.
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Figure 4-10: Rates with five degree misalignment. Outer contours show etch rate at surface,
inner contours show etch rate at greater depths.

methodology for examining different wafer cuts is adapted to display an array of similar
cuts that differ by some small misalignment. Figure 4-10 shows a three by three array
for an EDP-like etchant where the center element is perfectly aligned and the surrounding
elements have five degree misalignments in 6 and/or ¢. Figure 4-11 shows the effect of

misalignment on the limit shape.



73

limit shape: 3D->2D, 100

1,9..9.,6.333 1,9.,9.,6.333 1,9.,9.,6.333

[
w
w

..6.333 1,%.,9.,6.333 1,9.,9.,6.333

1,9.,9.,6.333 1,9.,9.,6.333 1.9.,9.,6.333

Figure 4-11: Limit shapes for Figure 4-10. Quter contours show limit shape at surface,
inner contours show limit shape at greater depths.
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4.6 Peg Limit Shape

It has been shown that for a given etchant any hole will evolve to some common limiting
shape after a sufficient period of time has elapsed. The question arises, does there exist an
analogue to the limit shape for concave shapes (pegs)? For example, EDP etched pegs tend
to approximate an eight sided figure bounded by (311) planes. However, because pegs tend
to get smaller with time, often the peg is completely etched away before sufficient time has
passed to allow the peg to approach a limiting shape. This is especially true since pegs
are dominated by faster planes. Thus the concept of a limiting shape to which all shapes
evolving to some common limiting shape is not as universal as the hole limit shape concept.
Nonetheless it may be possible to find a peg shape which is stable for a given etchant, that

is for which a peg maintains its proportions as it becomes smaller.

4.7 Summary

The effect of the three dimensional etch rate diagram on the output shape was studied as
well as the effect of uncertainties such as noise and wafer misalignment. The concept of

limit and linear shapes was introduced as was the Shape Library design method.
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Chapter 5

Eshapes

5.1 Introduction

This chapter introduces a new method for modeling the etching of single-crystalline sili-
con for arbitrarily complex MEMS fabrication, as a first step in developing comprehensive
MEMS design methods approaching the level of development and automaticity in VLSI
design.

This type of etching can be described by an etch rate diagram which indicates etch rate
as a function of the orientation of the surface to be etched within the crystal. While full
three dimensional etch rate diagrams are generally not available for most etchants, some
two dimensional etch rate diagrams have been obtained [64, 65]. The (100) plane etch rate
diagrams for KOH and EDP are of the form given qualitatively by Figure 5-1. Note that the
etching is slowest along the (111) family of planes and faster on the (011) family. However
the modeling of anisotropic etching is not straightforward because certain faces may appear
while others may disappear [67]. This chapter will examine the modeling of emergent faces

in crystal etching.

5.1.1 Prior work

There are a number of methods for predicting the output shapes. The Wulff-Jaccodine
method [36, 20] uses plane waves that propagate outwards at a rate given by the etch rate
diagram. At each point on the initial surface, a tangent plane is moved outward a distance

equal to the appropriate rate multiplied by the time. At sharp corners there is a geometrical
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Figure 5-1: A qualitative example of an etch rate diagram. The formula for this rate in
terms of angle 6 is given above the figure. Etchants such as KOH and EDP have (100) etch
rate diagrams which are very similar to the above figure.
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test to determine if new planes appear. The final shape is the envelope of all these planes.
Buser (et al.) [16] have developed a useful analysis tool called ASEP which can predict the
output shape based on traveling planes. These results have been verified experimentally.
However, their analysis is limited to a number of dominant plane families (111, 100, 110,
311) which tend to appear in crystal etching.

The Slowness method [67] uses the inverse of the rate (the slowness) to calculate the
trajectories of points or lines in the shape. The trajectory of a corner is given by a vector
relation involving the slowness vectors of the two lines which form the corner. This relation
states that the trajectory of the corner lies along the normal to the difference of the two
line slowness vectors. The trajectories of the corners are then used to determine when lines
disappear and the procedure is iterated to find the shape at any time. Sequin [67] has
successfully used the Slowness method to model changing shapes, although experimental
verification is not included in that publication. Each method has its disadvantages and
advantages and a more complete description of the above methods is given in Chapter 2.

In this chapter I present a third, geometric model which combines some aspects of the
previous models, and various observations, to form a more complete and concise description
of crystal etching. A comparison with previous work will be presented at the the end of
the derivation. Idealized linear models including the one presented here do not consider
nomn-ideal processes such as diffusion, however, such models do give accurate results where

the effects of diffusion are small.

5.2 Mathematical Derivation

5.2.1 Shapes

The fundamental process that we are modeling is one of applying an etch-resistant mask
to portions of a wafer of silicon, and exposing the non-masked portions of the surface to
an anisotropic etchant. Anisotropic etchant refers to etchants whose etching rate depend
on orientation. The etchant removes silicon and creates a depression in the surface which
grows both in the direction normal to the surface of the wafer (down), and also laterally.

Because the etchants of interest are anisotropic, the rates at which material is removed in
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Figure 5-2: Evolution of corners.

the various directions are different.

We model the mask and etched shapes as (arbitrarily complex) polygons, and therefore
our model of the etching process must properly account for the behavior of the sides of the
polygons (planes, or tangents in 2-D) and the corners. We model the corners as a polygonal
approximation to a circular curve with an infinitesimal radius. Thus each corner contains
a very large number of nearly coincident planes or tangents. Our model focuses on the
evolution of these planes as the etching takes place, with particular attention paid to the
corners (since all planes or tangents in the entire polygonal shape appear at the corners).

Consider an arbitrary initial polygon defined by a set of m vertices {P;}; we wish
to find its shape at a later time. At each ¢ the vertex P, is mapped to a set of points
{Ci.(t),...Ciy,(t)} and these points are connected to form a piecewise linear curve (See
Figure 5-2). The key lies in determining the set of points C; which model the evolving

corner shapes.
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5.2.2 Envelopes

Consider the region near a corner P; as shown in Figure 5-3A: the perpendicular distance
from a local tangent plane to a local initial corner position is R(8) x ¢, where R(6) is the
etch rate as a function of orientation and 6 is the orientation of the tangent. We wish to
find the envelope of tangents displaced a distance R(6) x ¢ from the initial corner position
as shown in Figure 5-3A.

The new evolved corner will be defined by the envelope of displaced tangents that move
out at rates dependent on their orientation.

In order to understand the complete envelope formed by all the tangents, let us first
examine one of the points on the envelope formed by the intersection of two adjacent
tangents as shown in Figure 5-3B.

The algorithm we have developed makes the following assumptions: The etch rate is
independent of time, is a function of orientation only, and is given by an etch rate diagram.

My nomenclature is as follows: in two dimensions, the x and y positions of a point define
a vector [x,y]. A general vector is denoted by T7, its unit vector by V and its magnitude by
V. If V is a function of some variable s, then V(s) is used. ¢ is time.

Let E be the vector per unit time from the initial corner to the intersection of two
adjacent local tangents. From Figure 5-3B we see that in the (R, §) reference frame (denoted

by superscript *)

- dR
*(0) = — 1
£0) = &, 5] 5.1)
Transforming to the initial reference frame using a rotation matrix, we obtain
- dR(6
B(0) = [R(Q), —%—)] ROT, (5.2)
where
cosf sinf
ROTy = (5 .3)

—sinf cos@

Interestingly, Equation 5.1 also appears in the study of disk cams with flat-faced followers

where the follower maintains tangential contact with the cam [47].
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Figure 5-3: (A) Corner evolving to envelope of tangents. (B) Intersection of two adjacent
tangents near a corner.
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The local normal of the etch rate diagram is given by:

1 dR}

R, = {1, -5 (5.4)

Thus E is the local normal of R(8), (here denoted by R, ) multiplied by R then reflected

about the R axis:

L 1 0
E(6,t)=RR, ROT, (5.5)
0 -1

From Equation 5.4, it can be seen that the E differs from the etch rate diagram in that

an individual point on the etch rate diagram at an angle # is rotated in the 8 direction an

angle equal to the local derivative of the rate at that point with respect to 6.

5.2.3 Eshapes

Plots of E() that cover the entire range of § are termed Eshapes (envelope, equilibrium,
or eigen shapes). Because the complete Eshapes contain all possible envelopes, they also
contain all possible evolving corners. The evolving corners (where the i** corner is denoted
C; as shown in Figure 5-2) are found by extracting a subset of the Eshape termed an
Esection. If (61); and (6,); are the angles of the two line segments forming the i** vertex,
C; is obtained from the section of the Eshape, E(9), lying between (6;); and (8,);. C; may
consist of from one to N; points and the j** point is denoted C;;. For each corner, a set
of points is taken from the Eshape region and this set is translated to the initial cormer

position and then scaled with time:
Cij(t) ={P; +1 % E(@i )} (5.6)

where the angle of the j®* point in C; is given by 6;; = (81); + 7 * ((62); — 61)/N;
The map ¢t — {C;, (), ...Ciy,(t)} has the property:

{Ci,(at) — P;, ...CiNi(Cet) - B} = a{C; (t) - P, ...C','Ni(t) - P}
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Thus individual evolved corners obtained from the Eshape do linearly change size but do
not change shape as a function of time (hence the name: equilibrium).
The evolved shape S is given by a set of evolved corners C;(t) which themselves are a

combination of the original polygon P and the Eshape E:

S(t) = {C1(), Ca(t), ...Cm(1)} (5.7)

Figure 5-4 shows two hypothetical etch rate diagrams and the resulting Eshapes.
By differentiating F with respect to 6, we obtain the following test to determine the
location of cusps in the Eshape,

d2R(0)
d6?

+ R(8) =0 (5.8)

If Equation 5.8 is satisfied by any 6, then the Eshape will be non-simple.

Eshapes and Esections will be examined further below.

5.2.4 Corners

There are two types of corners in two dimensions: convex and concave (see Figure 5-5). A
square hole has 4 concave corners, while a triangular peg has 3 convex corners. The inside
of a corner is taken to mean the region defined by an angle smaller than 180 degrees. For
a convex corner, the inside is unetched, while the inside of a concave corner is etched.

To determine the shape of an etched corner at a later time, begin at each corner of
the initial polygonal shape, and locate the two lines forming the corner.’ The appropriate
Esection can be determined by finding points on the Eshape that are tangent to these
two lines. The etched corner shape corresponds to the region of the Eshape between the
two points of tangency. Figures 5-6 and 5-4 show the use of the Eshape method for
predicting output corner shapes. Note that hypothetical, asymmetrical, etchants have been

used to demonstrate the model. The predictions for these figures are correct for these two

*We approximate all shapes as arbitrarily complex polygons, hence the shapes are composed of straight
line segments and corners. For a curve approximated with many chords, the line segments will be short, and
the angle between them near 180 degrees.
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Figure 5-4: Hypothetical two dimensional etch rate diagram (top), corresponding Eshapes
(center), and Etched shape (bottom). Note that the two etchants are not real etchants.
The initial mask shape was the cross shaped hole shown at the bottom of the Figure.
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unetched surface CONVEX CORNER

beveled walls

E: etched bottom

CONCAVE CORNER

Figure 5-5: Definition of convex and concave corners.The unetched mask is dark, the etched
bottom is light, and the beveled walls are grey.

hypothetical etchants but may differ from the results expected with actual silicon etchants.
When using the Eshape model, there are three different corner types that must be

considered:

Concave corners: If the original corner is concave then the resultant corner is the Es-

ection which lies within the two lines which enclose the origin (see Figure 5-4, corner
a).

Convex corners: If the original corner is convex then the resultant corner is the Esec-
tion which lies in the quadrant opposite the two lines which enclose the origin (see

Figure 5-4, corner b).

Static corners: If there are no Esections in the appropriate area, the corner remains
a sharp corner. The corner is located at the intersection of the two lines and its
trajectory is along the radius from the origin to the intersection (see Figure 5-4,

corner c).

Figure 5-6 shows a further example of the Eshape method.
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Figure 5-6: Summary of Eshape analysis: The etch rate is first transformed into an Eshape
diagram. Then each corner is tangent-matched to the Eshape, and the appropriate Esection
is extracted. The initial mask (shaded region) evolves to the surrounding curve. Concave
corners use interior Esections, while convex corners use exterior Esections. The three corners
shown are, starting at the top in counterclockwise order, concave, convex, and convex.
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5.2.5 Time Evolution

A polygon evolves in the following manner: The etched shape at any time is formed by
connecting each corner, determined by the method above, to its neighboring corners as
shown in Figure 5-4. At each corner the extracted Esection is scaled (magnified) by the
time. However as time increases, corners commonly intersect (see for example corners
d and e in Figure 5-4) and some faces may disappear. The segments of corner sections
that lie beyond the intersection of two corner sections do not appear in the final shape.
Determination of the etched shape involves finding all such intersections, or cusps, and
removing the non-physical segments.

The finding of such intersections has been extensively studied in the field of computer
aided geometric design. Specifically, the etching process can be viewed as the generation of
an offset curve with an orientation-dependent offset distance. Such offset curves [78] appear
in applications such as numerically controlled machining.

In addition, new corners may appear and new Esections may have to be inserted when
through-cut occurs (for example when two separate polygons merge into one larger polygon).

After these new Esections have been added, the analysis proceeds as before.

5.3 Limit Shape

Etchants produce characteristic etched shapes, shapes that tend to appear after long etch
durations. For example, KOH and EDP produce pyramidal pits on a (100) wafer. These
characteristic shapes (which do not further evolve in time, though they grow in size) are
limit shapes and are produced by the following process. Consider some initial polygon
which is closed, then the corner angles must cover the range 0 to 360 degrees at least
once. Therefore all parts of the Eshape are present in the etched shape, but each section
is translated from the origin by the initial corner positions. As time goes to infinity, this
initial translation becomes negligible compared to the size of the Esections, and the shape
converges to Esections all centered at the origin. Using the rules for intersections stated
above we see that the etched shape at large time converges to the interior of the Eshape,

termed the limit shape.
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5.4 Time Scaling

Etchants exibit a relationship between time, size, and shape. Two geometrically similar
polygons, one large and one small will evolve into different shapes if etched for the same
time. However, if the etch times are proportional to the polygon sizes, the geometric
similarity is preserved.

The exact relationship between size and time can be found by considering two initial

polygons where the second polygon is a scaled version of the first:

{polys} = {poly:} * k (5.9)

From Equation 5.6 ,
(Ci;()) = {P; +1 x E(6y)} (5-10)
(Cij(t))g = {Pi xk +1 % E(%)} (5.11)

therefore (C;(k xt))2 = k % (Cy;(t))1 and
Sa(k xt) = k x S1(¢) (5.12)

Thus, if a second polygonal mask twice as big as a first is etched, the shape of the second
at time 2t is the shape of the first at time ¢, enlarged by a factor of two. Time scaling
has a very important consequence: if several scaled versions of a mask are placed on a
wafer and that wafer is etched for one value of time, then each of the evolved shapes will
present a scaled version of the output shape at different values of time (see Figure 5-7).
The smaller masks will represent the evolved shapes at larger time, with the effective time
going as the inverse of the scale. This allows the entire time history of a shape to be etched
in one experiment. This result has been verified by simulation and experiment as shown in

Figure 5-11B.
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Figure 5-7: Time evolution of a shape in a single etch. The initial mask on left is repeated
at different scales. The output shapes are on the right. The effective etch time is inversely
proportional to scale.
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------- INITIAL MASK OUTPUT SHAPE

Figure 5-8: EDP or KOH etching: (A) diamond mask evolves to octagon. (B) modified
diamond evolves to approximate diamond. (C) Eshape for (A). (D) Eshape for (B).

5.5 Design Inversion

The most general and most powerful form of design inversion is: given a desired final etched
shape and a particular etchant, what initial mask is necessary to produce the desired output?
This is a very difficult problem to solve in general and there are some shapes for which it
is impossible to design an input mask, however it may be possible to closely approximate
the desired shape. For example in EDP or KOH etching, a diamond shaped hole tends to
evolve into a octagonal shape (see Figure 5-8A). If we desire a diamond we can approximate
it by using the initial mask shown in (see Figure 5-8B).

This shape evolves into something which more closely resembles a diamond. The reason
is immediately clear if we examine the Eshape. Consider the top corner: The first mask has

a corner defined by the thick line (see Figure 5-8C). The second mask because of different



90

tangent matching conditions, has a much sharper outline (see Figure 5-8D). This particular
example has also been verified experimentally.

Another type of inversion is as follows: Given a desired output shape, what type of
etchant is needed to etch this shape? Since the tangent of the Eshape is perpendicular to
the rate, the normal of the Eshape is parallel to the rate and thus the inversion formula is

given by

R(6)=(E-EE, (5.13)

where E, is the unit normal of the Eshape.

To verify this capability, the Eshapes shown earlier were inverted and the original etch
rate diagrams were obtained. This process is independent of desired output and because of
the limit shape theorem is also independent of initial mask. Of course this second form of
inversion is limited by our ability to tailor the behavior of etchants. Nevertheless it provides

information on the desired etchant behavior for any desired output specification.

5.6 Comparison with Experiment

5.6.1 Test patterns

A two dimensional model was used to model the surface outline of etched shapes. Tests
were performed with both KOH and EDP, and although only the KOH results are presented
here, the results from both etchants agreed with experiments. Samples were etched from
one to two hours in a reflux system with temperature feedback. The temperatures for the
KOH and EDP were 60 and 95 degrees Celcius respectively. In both cases the masking layer
was silicon dioxide (approximately 0.8 microns in thickness).

The etch rate diagram in Figure 5-1 was used to generate the Eshape shown in Figure 5-9.

A test pattern was designed to verify different aspects of the model. The patternincluded
squares, circles, diamonds, and crosses of various sizes. In addition, both positive (holes)
and negative (pegs) images were used. The Eshape of Figure 5-9 was use to generate the
predicted shapes of Figure 5-10B. The model shows very good agreement with experiment

as shown in Figure 5-11A. Note that both the pegs and the holes are accurately rendered as
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Figure 5-9: Etch rate diagram for (100) silicon in KOH and associated Eshape.

are both the convex and concave corners. In general it was found that the ability to predict
output shapes is most limited by rate diagrams. Given that the Eshape model is a linear
model, the error between the output shapes and the predicted results is on the order of the
error between the actual etch rate and the etch rate used by the model.

Figure 5-11B shows another etch of half the duration of Figure 5-11 A. Comparison of

the two figures confirms that the time scaling rule is valid.

5.6.2 Spoke patterns

One way to experimentally obtain the etch rate as a function of orientation is to etch a
spoke pattern constisting of many radial wedges (see Figure 5-12 A). These spoke patterns
are discussed more completely in Chapter 2.

Simple geometry shows that for N spokes each centered about angle ;, the pattern SP

formed is given by:

titme 1 s 1 T 1
1= = g+ =% (14 — 6; — — - .14
SP, sz_%*f[zz( + T +N))+R( 2*(1+N))] (5.14)

where SP; is the radial position of the tip of the spoke at angle ;. This formulation
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A: INITIAL SHAPES

+oH O

B: PREDICTED SHAPES
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Figure 5-10: (A) Initial mask shapes; the squares are 0.8 mm across. (B) Predicted shapes
derived from Figure 5-9. Compare with Figure 5-11. In both A and B, The top row of
figures represents “pegs” while the bottom row represents “holes”.
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Figure 5-11: (A) (100) silicon etched with KOH at 60°C for two hours. The largest square
is 0.8 mm across. (B) (100) silicon etched with KOH at 60°C for one hour. Compare any
shape in this figure with the corresponding shape in Figure 5-11 A. In both A and B, The
top row of figures represents “pegs” while the bottom row represents “holes”.
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illustrates four phenomena: (1) the pattern grows linearly in time; (2) the etch rate is
magnified: as N increases, the effective etch rate (the rate at which SP; moves radially)
increases; (3) the etch rate is averaged over the width of the spoke; (4) the pattern depends
on the rates perpendicular to the spokes;

For etchants that have four-fold symmetry and for the number of spokes N large, the
formulation reduces to:

_ 2Ntime

SP; *[R(6:)] (5.15)

Figure 5-12 B shows the Eshape simulation of the etching of the spoke pattern. Compare
this both with Figure 5-1 and Figure 5-12 C & D. Figure 5-12 C & D show experimental
etches in both EDP and KOH. The experimental patterns suffer from lithography problems
at the center where all lines meet and the lithography resolution is exceeded. However,
these problems may be minimized by increasing the size of the pattern which reduces the
relative effect of the center region.

Finally a comparison of an enlargement of the wide ends of the spokes (Figure 5-12 C
& D) to the simulation of this region (Figure 5-12 B) shows good agreement in modeling

the etch rate pattern as well as the changing shape of the spoke ends.

5.7 Extension to Three Dimensions

5.7.1 Exact solution

The extension from two dimensions to three dimensions can be very complicated [67, 20].
Many different geometries can arise and have to be considered individually. Because of its
intuitive nature, the extension of the Eshape method introduced above allows us to observe
which corner types are possible, and to classify those types by inspection.

In three dimensions, consider a vector [x,y,z]. As in two dimensions we have a reference
frame and a rotated frame. The rotated frame is located at some angle ¢ from the z axis
and rotated from the x axis by an angle 4.

Repeating the derivations for Equations 5.1 through 5.4 in three dimensions we obtain



Figure 5-12: (A) Initial spoke pattern. (B) Simulated etch using Eshape method with
KOH etchant. Compare with Figure 5-1. (C) Spoke pattern etched in KOH. (D) Spoke
pattern etched in EDP. Both patterns are approximately 1.5 centimeters across and both
were etched for several hours. Note that the end regions on the simulations agree with the

observed experiments.
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(compare with Equation 5.5):

= OR(0, OR(8,
50,6, = [00,9), 2200 L IO poryer (s16)
or
1 0 0
E@,9,t)=RR, | 0 -1 0 | ROTsyxt (5.17)
0 0 -1

Here:
sinf 0 —cosf cos¢ sing 0

ROTsg = 0 1 0 —sing cos¢p 0 (5.18)
cosd 0 sind 0 0 1

and R is the local normal of R(8, ¢) in spherical coordinates.

Hypothetical three dimensional etch rate diagrams have been formulated (since full
3-D etch rate information is not available in the literature) and the corresponding three
dimensional Eshapes have been constructed using Equation 5.16.

The results for limit shapes and time scaling can also be extended to three dimensions.

5.7.2 Approximate three dimensional solution

Three dimensional etch simulation using the method described above can become quite
complex, however, in many common situations an approximation is sufficient. Rather than
examining the three dimensional evolution of corners, a two dimensional outline (as a func-
tion of time) can be used to simulate the three dimensional evolution of the edges which
make up the shape. Two assumptions are necessary: (1) the etching is anisotropic, thus
the cross section of any edge perpendicular to the (100) plane is a straight line inclined at
some angle; (2) the depth is shallow, such that three dimensional corners do not intersect.

The shape is given by the two dimensional outline extended into the (100) plane at the
appropriate angles. In order to calculate this, the inclination of planes (with respect to the
z axis) as a function of orientation within the (100) plane must be obtained. This may be
done from the spoke pattern described earlier.

EDP and KOH have similar etch rate diagrams in the (100) plane but they differ out
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of the (100) plane. Both produce 54.7 degree z-inclined planes for lines inclined at 0 or 90
degrees in the (100) plane. However, for planes inclined 45 degrees in the (100) plane, EDP
produces a z-incline of 45 degrees while KOH produces vertical walls (90 degrees). Using
this data and intermediate values, we can add to the two dimensional outline and produce
three dimensional images. This was done for the experimental test patterns as shown in
Figure 5-13 A. The results agree very well with the data.

The three dimensional representation allows us to view the shape from any direction we

choose as shown in Figure 5-13 B.

5.8 Summary

Several models for analyzing MEMS exist and accurately model the future output shape
given the initial conditions [16, 20, 27, 67]. The Eshape model also accurately predicts the
output shapes, but offers some additional advantages. It provides a simple mathematical
description of the etching process as well as a framework for inverting the design process to
determining the required input mask for a desired output shape. Thus it is closer to CAD
(Computer Aided Design) than to CAA (Computer Aided Analysis). The disadvantages
of the Eshape model are shared by many other models. For example, a model is only as
good as the etch rate information that is available. Additionally, when two or more etched
shapes intersect to form new shapes, more detailed global calculations are required.

A new method for modeling the time development of emergent faces in crystal etching.
This modeling is fundamental to MEMS fabrication simulations and design. The two di-
mensional Eshape method was presented, which is both intuitive and easy to implement
manually or by computer. The concepts of equilibrium sections, equilibrium shapes, limit
shapes, and time scaling were introduced. The predictions of the model agreed well with
experiments performed with KOH and EDP. The Eshape etch model presented here is a
first step in developing the ability to represent and manipulate complex (mechanical) shapes
to be fabricated in silicon, and in developing comprehensive MEMS design methods which
we hope will approach the level of development and automaticity in VLSI design.

The next chapter will introduce another etch simulator which complements the Eshape

method.
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Figure 5-13: Cross and diamond shaped holes. (A: top) KOH etch simulation extension to
three dimensions (B: bottom) View from an oblique angle. Compare with Figure 5-11.
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Chapter 6

Cellular Automata

6.1 Introduction

As discussed above, when silicon is etched with anisotropic etchants, the etched shape
changes as a function of time. A number of different approaches exist to accurately predict
the etched shape given an initial mask. The ASEP program by Buser [16] uses traveling
planes and the intersections between them to define the shape as a function of time. The
Slowness method of Sequin [67] examines the corners of a shape and predicts the trajectory
of those corners. This is done using a vector expression involving the inverse of the rate (the
slowness) of the planes which make up the corner. These models deal very well with most
basic shapes. In both of these cases however, complex shapes are more difficult to deal with.
For example when two distinct shapes merge to form a new shape (termed through-cut),
much more computation must be done.

This chapter presents a robust cellular automata model which predicts the three di-
mensional etched shape as a function of time for arbitrary etchants and arbitrary initial
mask shapes. The fundamental idea is to use many small cells, each with simple empirical
rules of behavior, but whose aggregate behavior is an accurate simulation of anisotropic
etching. Some preliminary work has been done on atomistic approachs [67]; this chapter
will focus on cellular automata and address, at greater length, issues such as generality, effi-
ciency, and speed. The model can deal with very complicated structures and has moderate

computational requirements.
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6.2 Modeling Methods

The above methods and others like them are high level; the fundamental modeling unit
or primitive is defined in terms of endpoints with an associated interior. The intersection
points between two or more units are calculated and new endpoints delimiting new interiors
are defined. In two dimensions the units are line segments while in three dimensions they
are planar polygons. For example a sharp two dimensional corner is defined by the changing
intersection point of the two segments that make up that corner.

The advantage of this approach is that each unit is defined at a relatively high level of
abstraction. Thus relatively few units are needed to define shapes. The disadvantage of this
approach is the difficulty of calculating interactions between etching primitives. In general
as the etched shapes are modeled by fewer, more complex primitives the computational
intensity required to calculate the change in primitives increases. When only local calcula-
tions are performed, the number of computations is low since only only a few neighbors may
interact. Unfortunately, the most interesting phenomena (through-cut, shape intersections,
compensation, etc.) require global calculations. This means that all primitives must be
checked for interactions. There are hierarchical testing schemes that narrow the possible
interactions using efficient tests, then examine only those that pass the first tests, but the
computational cost is still high. Thus the attributes of models such as Slowness are only
fully utilized for simple cases. For more complex cases the methods incur disadvantages.

The Cellular Automata model is a low level representation, each shape is represented
by a sequence of cells. FEach cell interacts only with its neighbors, there are no global
interactions. Moreover all interactions are computationally efficient. Thus cellular automata
always perform many calculations, but the individual calculations are small and only the
net cost (number of calculations x cost of one calculation) is important.

Higher level methods may do much better but they are only faster when they do not
have to do global calculations. In other words by doing a few large calculations, the other
methods are superior in simple cases because the cellular automata always does many small
calculations. However cellular automata excel at complex cases where heavy computation

is required regardless of method.
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6.2.1 Scaling

The Cellular Automata method is based on the principal of scaling. For a given mask shape,
the form of the etched shape does not change if the initial mask size is scaled, although the
output size and effective etch time do change. Thus the mask can be reduced to smaller and
smaller sizes until the crystal nature of silicon becomes important. In effect, the cellular
automata replaces many atoms in a shape with one atom. Another way of thinking about
the model is to say that within the shape, groups of atoms behave as if they were only
one atom obeying crystallographic laws. In this way the number of required primitives is
minimized. Linearity is necessary for this to be true, linearity in the sense of scaling, but
the etching itself may be nonlinear in space. Through-cut and compensation are inherently

non-linear, but they scale linearly with size.

6.2.2 Empirical vs. theoretical

As mentioned in the introduction to the thesis, the analysis of the etching of silicon has
been empirical rather than theoretical. The theoretical approach would involve the study of
the chemistry of both the silicon and the silicon etchant. However such chemical reactions
are very complex and are not fully understood. Furthermore, such a “pure” approach is
beyond the scope of this thesis and is perhaps better suited to separate, independent study.
The empirical approach of this thesis is more empirically oriented. The emphasis has
been on using experimental data and experimental observations to formulate empirical
rules that accurately model the etching. The use of such rules allows for the efficient
implementation of modelers which would otherwise be very computationally intensive. In
formulating these etching rules two guidelines must be followed: (i) the rules must produce
accurate results (ii) the model rules must agree with the microscopic chemical behavior.
The empirical rules used in the Cellular Automata model reduce the complexity of the
interactions between cells while still producing accurate predictions of the changing shapes

as a function of time.
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Figure 6-1: Silicon basis cell.

6.3 Two Dimensional Algorithm

The cellular automata model will first be developed in two dimensions then extended to
three dimensions.

To begin developing a two dimensional cellular automata etch simulation, consider the
diamond lattice crystal structure of silicon as shown in Figure 6-1. For the purposes of
simulation the diamond structure of the lattice is converted into an array of cells. If we
examine an x-y plane of atoms, one lattice unit cell deep, from above we see the pattern
shown in Figure 6-2 and Equation 6.1 (the depth within the page is not shown). An array
of cells is constructed such that it contains a 1 when an atom is present and a 0 (o is

empty) when no atom is present. Each two dimensional unit cell resembles the number 5
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O : SURFACE

Figure 6-2: Silicon basis cell viewed from above, size indicates depth.

on a throwing die, and has four nearest neighbors, as shown in Equation 6.1.

cell array =

1 1
1

1 1
1

1 1

unit cell = 1 (6.1)

At each cell in sequence, the number of nearest neighbors is counted along with the

number of next nearest neighbors. From this information, the local plane is classified as

either (111), (101), or (311). For example, the (111) plane has three nearest neighbors while

the (101) plane has only two (see Figure 6-3).

As would be expected, the fastest planes (as measured experimentally) have fewer neigh-

bors. Table 6.1 shows the neighbor conditions for the different planes. These planes were

chosen since most etched shapes can be accurately modeled using these three planes.

At each time step a certain percent of the cell is removed, the larger the etch rate of the
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Figure 6-3: Classification of planes based on neighbors.

plane | nearest next speed
neighbors | neighbors

(111) 3 2 slowest
(100) 2 3 varies
(110) 2 3 varies
(311) 2 2 fastest

Table 6.1: Number of neighbors for etching planes.
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plane the more is removed. The behavior of any etchant can be modeled by appropriate
choice of etch rate for each major plane. The etch rate diagram can be varied from isotropic
to highly anisotropic. When the fraction of a cell falls to zero it is removed. These steps
are then repeated to find the etched shape at each time step. The algorithm uses the

anisotropicity of the etchant to automatically introduce new planes.

6.4 Three Dimensional Extension

This method can easily be extended to three dimensions when a vertical stack of cell arrays
is used. Once the topmost array has been calculated for a particular time, it is used to
calculate the next lower array. To calculate each succeeding array, at each cell in the lower
layer, examine the five nearby cells above it. If any of these cells are present, the lower cell
is protected and kept, otherwise it is removed. This lower array is then used to calculate
the one beneath it. This process is repeated for each time step. The final section of this
chapter lists a pseudocode implementation of the Cellular Automata method.

The above extension algorithm is valid for etchants modeled by (111), (100), (101),
and (311) planes. This is the case for a (100) wafer etched with EDP. Different etchants
have different dominate planes; with KOH etching, the (101) planes (45 degree walls) are
replaced by the (010) planes (vertical walls). If a different etchant is to be modeled, a
slightly different three dimensional extension algorithm must be used.

A sample of the Cellular Automata simulations (EDP etchant) is shown in Figure 6-4.
Figure 6-5 shows the result of the Cellular Automata simulation for an initial cross shaped
mask. The simulation shows good agreement with the experimental results (see Figure 6-6).

Note that the bounding planes for long times are the (111) planes.

6.5 Full Three Dimensional Algorithm

In addition to the two dimensional model extended to three dimensions, a full three dimen-
sional algorithm was developed. In this case the actual diamond lattice is modeled with a
three dimensional array having elements at each atom location. In three dimensions, each

atom has four nearest neighbors. Referring to the five atom unit cell of two dimensions
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Figure 6-6: Experimental output shapes for initially cross shaped pegs.
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(see Equation 6.1), the central atom remains the same but the northeast and southwest
atoms are one atomic level higher while the southeast and northwest atoms are one atomic
level higher. Each cell also has twelve next nearest neighbors. As with the two dimensional
case, a classification scheme is developed based on the the number of nearest and next near-
est neighbors. This algorithm has been used to predict output shapes with results similar
to those for the extended two dimensional case. However this algorithm is slower. One
reason for the slowness is that this array is not symmetric. Planes at +45 degrees (along
the southeast/northwest line) will differ in height from planes at -45 degrees (along the
southwest /northeast line) by two atom heights. Thus the results have to be averaged over
two heights steps, and the number of calculations needed is doubled. The two dimensional

extension above in effect removes this asymmetry.

6.5.1 Two dimensions vs. Three dimensions

Both the two and three dimensional algorithms produce similar results, and both clas-
sify planes according to the number of neighbors with more neighbors meaning a denser
plane. However it is important to note that they do so by using two different classification
schemes. The three dimensional algorithm is a general approach, while the extended two
dimensional algorithm is a specialized subset of the full three dimensional case which uses
certain conditions ((100) wafer) to reduce the complexity of the rules.

The choice of classification rules involves a trade off between accuracy of modeling
and speed of implementation. A very complex rule system involving many neighbors will
provide a more detailed model of the etching, but at the price of increased computation. The
extended two dimensional algorithm was chosen over the full three dimensional algorithm

since it provides a sufficiently accurate modeler in a faster, more efficient implementation.

6.6 Computational Cost

Consider an area divided into N by N cells. Most higher level approaches scale on the order
of N in two dimensions, but Cellular Automata fair less well. They scale as N3, N2 cells

are needed and the effective time scales with N; if the size of the array is doubled, then
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twice as many time steps are required. In three dimensions, all models add an extra factor
of N in the scaling. Note that the scaling only relates to the number of calculations, not to
the net cost of calculation, and may be misleadingly biased against Cellular Automata.
Computer time is required for calculating the Cellular Automata, storing the data, and
displaying the data. For three dimensional Cellular Automata, the actual calculations for
twenty time steps of a 50 by 50 cell input mask, required several seconds on a Unix work
station. A 100 by 100 array for 40 time steps would require a few minutes, a 200 by 200 for
80 time steps would require on the order of half an hour. Despite the rapid rise in processing

time, there are measures which improve the situation greatly.

6.6.1 Area vs. volume calculations

The speed of the algorithm can be increased if the model only looks at the boundary of
shapes and not at the entire shape. In two dimensions this means modeling the perimeter
and not the area of a shape; in three dimensions, the surface area and not the volume
is considered. This can lead to a marked increase in performance, but this increase is
only seen at larger sizes since there is a cost overhead associated with keeping track of
the perimeters. It is vital to update the changing perimeter since through-cut may create
or destroy individual shapes and their perimeters. This approach can make the Cellular

Automata model much more competitive with some higher level models.

6.7 Cellular Automata Advantages

Cellular automata models were designed and tested and were found to be useful tools for
in MEMS design. The algorithm used is very efficient, is easy to implement and requires
little computational time. Cellular automata have the added benefit of being extremely
robust since only local calculations are performed. Cellular automata excel at complex
cases where heavy computation is required regardless of method. For instance, the most
interesting phenomena in MEMS design (through-cut, intersections, compensation, etc.)
have been successfully analyzed with the Cellular Automata algorithm reported in this

chapter.
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6.8 Implementation

Listed below is a pseudocode implementation of the extended two dimensional Cellular

Automata method. Comments are denoted by (* comments *).

1)
2)

3)
4)

5.b)

6)
7)

Create (N x N x depth) array
Create (N x N x depth) temporary array
Transfer mask in array level 1
Input percentages to be removed for each plane
(* Two dimensional algorithm *)
For each (i,j) element in level 1:
count occupied nearest cells: (i+1,j-1), (i+1,j+1), (i-1,j-1), (i-1,j+1)
count occupied next nearest cells: (i,j+2), (i,j-2), (14+2,i), (i-2,j)
use Table 6.1 to classify plane
remove proper percentage of cell (i,j) in temporary array
Switch level 1 of array and temporary array
(* Three dimensional extension *)
Set depth level k=2
For each (i,j) element in upper level k:
count occupied nearest cells in level k-1: (i+1,j-1), (i+1,j+1), (i-1,j-1), (i-1,j+1)
if count = 0 then remove cell (i,j) in level k of temporary array
Switch array and temporary arrays
Set depth level k=k+1, while k < depth loop to 5.b
Write array

Loop to step 4 for next time step
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Chapter 7

Synthesis

In this chapter I will examine general phenomena that are encountered in MEMS fabrication,

and show the significant impact these phenomena have on design.

7.1 Design Paths

The first step in systemizing MEMS design is to classify shapes into three broad classes.
The first class is the limit shape class, the shape to which holes tend to evolve. Limit
shapes are stable in that no planes appear or disappear; as time increases that retain their
proportions. The second class is the linear shape class, which are “stretched” versions of
the limit shapes. Linear shapes do change with time, but no new planes appear and none
disappear. Linear shapes linearly converge to limit shapes and design inversion is always
possible. This means that an input mask shape can always be found that will create a
desired linear shape. These two types of shapes are then said to behave linearly. Linear

behavior has two consequences:

a) The etching can be run backwards or forwards in time.

b) Given the shape at any time, the shape at any other time can be found.

The third class consists of general shapes. These shapes change non-linearly with time

and planes appear and disappear. Types of non-linear behavior include:

a) The etching produces different results if run in different directions.

b) Knowing the shape at one time may not fully specify the system for all times.



113

Figure 7-1: EDP etchant: (A) limit shape, (B) linear shape, general shapes (C) and (D).

Examples of such behavior will be presented later.

7.1.1 Linear zones

General shapes behave linearly until a plane disappears. Figure 7-1 shows some examples
for and EDP etchant: A and B are limit and linear shapes, shape C is guaranteed to behave
linearly until plane 1 or plane 2 disappears, and shape D is guaranteed to behave linearly
until peg 3 disappears. Once a plane appears 