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Abstract

Azimuthal distributions in hadron production were measured in unpolarized deep
inelastic scattering with unpolarized light gas targets. For pions, measurements of
(cos ¢) are consistent with previous measurements at moderate * values, although
at low @2, there are indications that simple kinematic models are insufficient to
describe these data. This effect appears to be charge-independent. The (cos 2¢) mo-
ment is extracted as well and at an average Q2 of 1.2 GeV?, a significant value for
(cos 2¢) / fo(y) of 0.302 £ 0.029 + 0.064 is seen and decreases with Q2. In addition,
first measurements are shown for the same /azimuthal distributions in electroproduc-
tion of A and K5 and indicate that, unlike in pion production, the azimuthal moments
for strange particles are much smaller. The A events are also used in a new search for
spin transfer in deep inelastic scattering. Terms that depend on beam polarization
are consistent with zero and show no clear kinematic variation, indicating that the
polarized fragmentation function is small at these kinematics. On the other hand,
the transverse polarization of P, = —0.429 & 0.149 & 0.120 seen at (zr) = 0.44 sug-
gests that unpolarized transverse fragmentation functions grow with zr and z; these

measurements may be compared with hadroproduction data.
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Chapter 1 Physics Motivation.

1.1 Formalism for Deep Inelastic Scattering.

1.1.1 Inclusive Deep Inelastic Scattering.

The term deep inelastic scattering (DIS) describes the process in which a lepton
beam is scattered off a hadronic target such that the energy and momentum transfer
are sufficient to break up the hadron. Although at higher energies Z° exchange is
relevant, at the energies of the experiments discussed here (27.5 GeV), the single
photon exchange approximation is sufficient. The relevant Feynman diagram is shown

in Figure 1.1, with the four-vectors shown as they are defined in Table 1.1. Inclusive

K=Ek)
\/,u: i

qi v.9)

}Wz

Figure 1.1: Feynman diagram of single photon exchange. All four-vectors are evalu-
ated in the laboratory frame and represented as (E, p).

P'=(M.0)

measurements characterize those in which only the scattered lepton is detected. In
the following discussion, the formalism and conventions of References [1] and [2] will
be used in terms of the variables defined in Table 1.1. A differential cross section in

the laboratory frame for particles of energy E that are scattered with energy E' into
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solid angle dQ2 may be written in the following way:

do ol E'

=2 = v
dQdE' Q*FE Ly WH (1.1)

where « is the fine structure constant and Q2 represents the invariant momentum
transfer. The indices p and v typically refer to the Cartesian coordinates in which

the tensors may be evaluated.

The target nucleon
M | Mass of target nucleon
P# | 4-momentum of target nucleon
The lepton

E | Energy of incident lepton

k* | 4-momentum of incident lepton

E’ | Energy of scattered lepton

k* | 4momentum of scattered lepton

6 Scattering angle of lepton

g* | 4-momentum of virtual photon= k* — k'#

Q? | Squared momentum transfer = —¢? = 4E E'sin®4/2

W? | Invariant mass of hadronic system = (p + ¢)? = M? + 2Mv — Q?
v | Energy loss to hadronic system = £ — E'

Ly Fractional energy loss = (£ — E')/E

z | Scaling variable in parton model = (Q*/P - q) = Q*/2Mv
The coincident hadron

M, | Mass of hadron

PF | 4-momentum of hadron

E;, | Energy of hadron

z Fractional energy of hadron= P - P,/P -q = E,/v

zr | Fractional longitudinal momentum of hadron in +-N CM = 2p; - §/ VIv?
pr | Transverse momentum of hadron in v-N CM

Table 1.1: Variables used in semi-inclusive deep inelastic scattering and definitions in
terms of Lorentz invariants. Unless otherwise specified, all quantities are evaluated
in the target rest frame (the laboratory frame for fixed-target experiments).

Assuming a massless lepton, the lepton tensor L, can be written as:
L., = 2kuk, + 2k, k), — Q*gp. (1.2)

The hadron tensor W, can be expanded in terms of currents J, operating between
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the proton state |P) and all N particle final states (X|. It is appropriate to average
over initial spins s and sum over final spin states s'; doing so explicitly, the following

expression may be obtained:

d*p
MW, = Z / H ( Gy, ) > (PIJ|X) (X |Ju|P) (2m)*6*(P —g =3 ).
N
(1.3)
For the inclusive case where only a lepton with final momentum p’ is detected and no

information is gained regarding the final hadronic state X, this reduces to

arMW™ = S (P|JYIX) (X |J#|P)(2m)*8(P + q — ). (1.4)

X
Furthermore, this tensor can be decomposed into its Lorentz components. Current

conservation, gauge invariance, and parity conservation lead to

M .
W = Wl(qu )= g + Wo—(p* — Ll g¥) (¥ — ?g—"q") (1.5)

where W, and Wy will be further elucidated below.

1.1.2 Semi-inclusive Reactions.

Semi-inclusive reactions are those in which one, but not all, of the final state particles
are detected. This work will be concerned principally with three such reactions:
ep — e€1X, ep — €AX, and ep — ¢'KsX. The pions allow generous access to the
valence quarks as their multiplicity is high. The measurements of the A and the K
are interesting because the quark structure of the A is uds and that of the Ky is ds.
Consequently, both of these particles sample the strange nucleon sea, and in fact the
K is composed only of sea particles. ’

Following Reference [3] and using Equation 1.3, the hadron tensor can be rewritten
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for the case of one detected hadron A and an undetected remnant X:

3P ‘
2MW uv .= 4 Z/ 271_ 32).(E (PJu‘-PXaph)(phdPXIJ#|P>(2W)454(P+q_ph_PX)

(1.6)

The differential cross section analogous to Equation 1.1 can then be rewritten as

2F,do o’ E'
— = il
Fonddb — r 5wV (1.7)

1.1.3 The Parton Model.

The discussion of Section 1.1.1 provides exact expressions for the scattering cross sec-
tion in both inclusive and semi-inclusive DIS interactions. In general, such processes
are characterized by the theory of quantum chromodynamics (QCD). QCD describes
both the confinement of the quarks inside the hadron and the z-scaling behavior
seen in the first quark scattering experiments [4]. Thus, the QCD coupling con-
stant, as(@?), must grow with distance; equivalently, by the Heisenberg uncertainty
principle, o5(Q?) must decrease as the momentum transfer Q* grows.

If Q? is large enough, the virtual photon probes a short distance inside the nu-
cleon. Furthermore, at high energies, the time scale of the probe is shorter than the
parton interaction time scale. These two assumptions together constitute an impulse
approximation known as the parton model. In this case, the single-photon exchange
diagram of Figure 1.1 indicates that the leading process is governed by the theory of
quantum electrodynamics (QED). Assuming that the partons are non-interacting free
particles, the tensor W, may be rewritten once its Lorentz structure is specified and
current conservation is imposed. The structure functions Wi and W, of Equation 1.5

can be simplified to give the following well-known result:

W, @) = Fo(z) = 3 eafi(s)

MW, (v, Q%) — Fi(z) = —2}3—:172(:0). (1.8)
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These sums run over ¢ quarks with charges . The parton model is defined by
vthe assﬁmption that each parton carries a fraction x of the momentum of the nucleon
and that the partons do not interact. The function f;(z) is the parton distribution
function (DF) which defines the number of partons with the momentum fraction z.
An important assumption in this model is that the partons carry only longitudinal
momentum; the influence of transverse components will be considered below in a
more realistic model.

The unpolarized function Fj(z) and the related function F»(z) are seen to be
equivalent to Fourier transforms of matrix elements via Equations 1.5 and 1.6. They
are known as “distribution” functions since they elucidate the momentum distribu-
tions of the quarks inside the nucleon. The polarized DF’s g¢;(z) and go(z) have
also been studied experimentally and access the spin distributions of the quarks (dis-
cussed in References [5] and [6] and the references therein), which may be explained
straightforwardly in the parton model as well.

A more complete representation of the nucleon demands the inclusion of QCD in
order to properly account for the confinement of partons, interactions between them,
and transverse momenta. Such calculations exploit the behavior of the coupling
constant ag under the assumption that high energy processes can be factorized into
short and long distance physics; this is equivalently explained as a separation into
hard and soft processes and is detailed in Appendix A.2. The differential cross section
for N, coincident hadrons detected with energy fraction z can be expressed in this
fashion, summing over i flavors of quarks carrying momentum fraction z and with

charges €? gives
1 dN, _ Yiefqi(z)Di(2)
Ny dz  Yielg(z)

where ¢; are DF’s and D; are fragmentation functions (FF), which characterize the

(1.9)

hadronization. Equation 1.9 indicates that the dependence on the lepton kinematics
resides entirely in the DF’s, while the hadronization behavior is fully contained in the
FF’s. Thus, semi-inclusive cross sections may be expressed as sums of products of

DF’s and FF’s.
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The factorization into long and short distance processes is important for the fol-
lowing feason: At short distances, where the coupling constant, ag, is smaller, the
partons behave more as free particles and hence perturbative techniques may be used
to calculate the cross sections. On the other hand, at large distances, aig grows and
the coupling can no longer be expanded analytically. ag is written as a function of
Q? in order to characterize its variation with length scale. For this reason, a mech-
anism that may chtribute to a high energy process is identified by its twist, which
is fully defined in Appendix A.2. Dominant terms appear at leading twist, whereas
other effects appear with higher twist. These terms will be used in the discussions

following.

1.1.4 Hadronization.

In principle, these DF’s and the FF’s should characterize universal properties of
hadronization. In particular, soft processes provide information regarding confine-
ment and hence should be common to all high energy processes [7]. It is precisely
these interesting soft processes that cannot be calculated perturbatively.

An alternative approach to calculations with current algebra is that developed
by Ellis, et al. [8], in which the structure functions are expanded diagrammatically.
Intrinsic transverse momentum enters naturally and 1/Q corrections are derived.
Extensions of these techniques allow for the determination of similar diagrammatic
expansions for semi-inclusive processes.

In the parton model, the physics is expressed in the Breit (or “infinite momen-
tum”) frame, in which the target parton is considered to have “bounced” off the
brick wall of the photon. That is, the nucleon absorbs no energy in this frame. An
alternative reference frame has been widely considered for semi-inclusive processes
and is elucidated clearly in References [9] and [10]. In this new frame, the target
momentum vector is collinear with that of the exiting hadron (thus it will be referred
to as the h — N frame). The process is then written in terms of the four-vectors

p* and k#, which distinguish the quark before and after the interaction, fespectively.
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This representation is shown diagrammatically in Figure 1.2.

Hadronization

Quark after the interaction
q Described by FF

“JY UL

Quark before the interaction
P yP Described by DF

| 4 P

Figure 1.2: Semi-inclusive scattering at the parton level. Taken from Reference [10..

Under the assumption that the matrix elements will be nonzero only for quark
momenta limited to the hadronic length scale given by @), the quark momenta may

be approximated:

p?~ PP=M? < Q2

B~ P =M <@ (1.10)

Meanwhile, the following relations still hold true:

q2 = _Qz)
P = M?
P} = M2,
2
IB
2P, -q = —z,Q% (1.11)

A transformation is chosen from p* and k* to new lightlike coordinates, n, and n_.

These basis vectors satisfy ny - n_ = 1; n2 = n2 = 0.
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The observed momenta P and £, may be resolved easily in this A— /V basis (where
they are, after all, collinear). The virtual photon’s momentum g is decomposed here

as well (its transverse momentum gr is trivially transformed into —pz/z in the y — N

frame):
P = % (3:22/[2n_ + %n_,_) ) (1.12)
¢ = == (@n--Qui)+or, (1.13)
= L (n s 2B g

Hard parts of the interaction will go as ) and soft parts will go as 1/@. In order to
investigate the soft parts, the appropriate contributions are P~ and P;". Returning
to the relevant quark momenta, the soft part of the interaction is thus reduced to
terms in p~ and £7.

The DF’s and FF’s may be expressed in terms of these new transformed momen-
tum four-vectors. New correlation functions ®;; and A;; are introduced in order to
represent the action of the non-local field operators ¢ in this frame. Their expressions

as Fourier transforms of matrix elements are

@ij(pvpa S)

e - [ dne?=(P, ST, (0)4i(2) | P.5), (1.13)

1
Aij(kvphn Sh) = Z (2

X

2" (01)i(2)| Ph, Sn; X )(Ph, Sn; X [1;(0)10).  (1.16)

The correlation function ®;; acts on the proton ground state and hence represents
the DF’s. On the other hand, the correlation function A;; provides for the creation
of hadrons from the vacuum (thus the sum over final states | X)); for that reason, it is
related to the FF’s. These functions are projected onto the space of Dirac operators

I
Tr{®rl]
2 3

ol (z,pr) = /dp‘ (1.17)

A (2 k) /dk+Tr[AF . (1.18)
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The tensor of Equation 1.6 may then be rewritten in terms of these correlation

functions:

1
2MW,, (g, P,pr) = / d*prd*krd®(pr + qr — k) Tr(@(z, pr) vl (2, br) v

+ (g —g,pev). (1.19)

Thus, the hadron tensor has been expressed in terms of calculable matrix elements
rather than the pborly understood currents. Just as in the parton model, albeit in
a different frame, the DF’s and FF’s may be expressed in this formalism as Fourier
transforms of matrix elements via Equations 1.15 and 1.16. For instance, the unpo-
larized DF and FF discussed previously may be extracted if the Dirac projection is

simply the vector operator ~v#:

©I7+J($7 pT) = fl (17, p%‘))

A" )(z,kr) = Dy(z,—zkr). (1.20)

The notation to identify these Dirac projections follows that of Mulders and is
summarized in Appendix A.3. In general, invariance under Lorentz, parity, and time-
reversal (TR) transformations can be used to constrain the form of these functions.
Final state interactions, however, may produce FF’s that are not even under TR
invariance. The interesting behavior of DF’s and FF’s for various final states are the

subject of this thesis.

1.2 Azimuthal Distributions.

1.2.1 Theory.

The azimuthal angle ¢ is shown in Figure 1.3; it is the angle between the hadron
production plane and the lepton scattering plane. For an unpolarized target and a
lepton beam with longitudinal polarization P,, the most general form for the normal-

ized cross section for NV detected hadrons is given by the following (see Appendix A.1
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for details) [11]:
14V , |
Nds - 1+ Afi(y)cos ¢ + B fo(y)cos 2¢ + P.C f5(y)sin 4. (1.21)

k /

Figure 1.3: The definition of the angle ¢ between the lepton scattering plane and the
hadron production plane.

The functions f;(y) in Equation 1.21 describe the components of the photon’s

polarization in terms of the lepton’s kinematics:

Al) = @-yyi-y/1+0 -y,

hly) = 0-v) /L+0-9)7, (1.22)

fly) = yyi—-y/[1+ 1 -y)7.

The moments of the distribution can then be identified:

{cos @) = A/2fi(y), (cos 2¢) = B/2f>(y), (sin ¢) = C/2fs(y). (1.23)

In the language of nuclear physics, the photon’s coupling can be decomposed into the
longitudinal (L) and two transverse (T) components. In Equation 1.21, the quantities
A and C reflect the L-T and L-T' interference terms, respectively, and B identifies

the T-T interference.!

'In intermediate energy nuclear physics, the terms analogous to A, B, and C are, respectively,
Wi, Wrr, and the “fifth structure function” Wj .
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These expressions do not elucidate the hadronization process but rather just the
terms allowed by angular momentum algebra. These distributions are actually sen-
sitive to-the parton transverse momentum distributions, as discussed by Cahn [12].
Although it was originally proposed that such distributions would also result from
radiative QCD processes [13, 14], it appears that the transverse momentum effects
dominate, although the two effects may be considered simultaneously [15, 16]. The
physics of transverse momentum effects will be discussed further in Section 1.4.

The hadronization process may also induce such azimuthal distribution phenom-
ena via final state interactions that result in so-called time-reversal (TR) odd frag-
mentation functions. (Note that these functions do not indicate a violation of fun-
damental TR-invariance.) In particular, such effects can produce a non-zero leading
order (cos 2¢) moment [17] as opposed to higher twist (order 1/Q?) processes, consid-
ered by Berger in Reference [18]. Separation of the kinematic and higher-twist effects
was considered in Reference {19], specifically for pion production.

Recent work by Mulders [20] and others have couched these observables in the
language of the quark fragmentation process. In this framework, the leading moments
can be evaluated and expressed in terms of weighted and integrated cross sections.
For beam polarization Py and target polarization Pr, the expectation value for the

weighting function W may be expressed as

do
- 2 , h PpPr
(W) pspy —/dd)d arW(Qr, ¢, ¢S’¢S)dm dy dz do Bap’ (1.24)

with transverse spin vectors for the target (detected hadron) defined by ¢s (¢%). With
an unpolarized target and no determination of the spin of the detected hadron?, this

reduces to
dJUU

dr dy dz d¢ d?qp’

Wow = [ dod’arW(Qr, ¢) (1.25)

?In principle, additional asymmetries would be accessible for the A, in which the ¢ dependence
of the polarization would access additional structure functions; furthermore, such effects are not
expected to contribute up to order (1/Q) [20]. The statistics of this experiment were limited such
that a search from deviations from this model were impossible. For this reason, the polarization and
¢ measurements for the A will be considered to be independent.
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where the subscript U refers to the unpolarized beam or target.
For instance, for an unpolarized beam incident on an unpolarized target, the
expectation value of the constant (i.e., (1)) should simply be the unpolarized cross

section,

Wpr=01+1~-y Ze%q )z Di (). (1.26)

That is, the ¢-independent term of Equation 1.21 is simply a product of the properly
weighted DF and FF. Both the DF and FF are even under time reversal.

Another leading-twist contribution is the expectation value for the (cos 2¢) weight-
ing function, which gives rise to an asymmetry

Q7

<4MM cos 2¢)yr = (1 — Ze ahy Wi (g ‘L(l)i(z). (1.27)

In this expression, the term Q% is the photon’s transverse momentum in the frame
where the proton and detected hadron are collinear; Qr = pr/z where pr is the
hadron’s transverse momentum in the v — N CMS3.

The observable of Equation 1.27 contains a DF and a FF that are both odd under
time reversal. (If only T-even terms are included, this term contributes at order
1/Q? [18].) The DF h{ describes the momentum-weighted distribution of quarks with
transverse spin in an unpolarized nucleon. The FF Hj represents fragmentation of a
quark with transverse spin. It has been widely discussed in terms of experiments with
transversely polarized targets [21, 22, 23]; here, it appears as a leading contribution
only when weighted over the kr distribution. This moment corresponds to the term
B in Equation 1.21 expressed in terms of FF’s.

Interestingly, the moment {cos @) (the labels UU will be assumed and hence sup-
pressed hereafter) does not appear at leading order in the unpolarized cross sectiouns.

Its complicated form is discussed in Reference [20]. If the dynamics in the DF and

3The observed pr, the hadron’s transverse momentum in the v — N CMS, should be carefully
distinguished from p, , the parton’s transverse momentum in the same frame. In the simplest model,
they are related simply by the factor dilution z: p1 = pr/z. Thus, Qr is simply equal to the
parton’s transverse momentum p; . This is equivalent to the observation that the parton’s transverse
momentum in the v — N frame is transformed into the photon’s transverse momentum in the & —
frame.
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FF are suppressed and the quark has only transverse momentum pr, this expectation

value reduces to the simple form

2-y)vI—yp.

_
R

(1.28)

This term was first predicted by Cahn [12]. It measures the transverse momentum
of the struck quark but provides no determination of the spin vector. As the quark’s
momentum would be diluted by a factor of z in the hadronization process, this factor
should properly be included in experimental work. The fragmentation also affects
this measurement because the random motion of hadronization is expected to dilute
the strong ¢ dependence.

Cahn also predicts a kinematic model to produce a non-vanishing (cos 2¢) term.

Under such kinematic considerations, this term appears at order (1/Q?):

_ 2
(cos 2¢) = 1J£1(1 _y)y)z (2’;) . (1.29)

For it to contribute at leading order, more complex dynamics, such as the TR-odd
functions discussed in Equation 1.27, must be included as well.

Parity considerations allow polarized leptons to provide an additional term in
(sin @) ; however, it is expected to appear at order 1/@Q [24]. It is the product of a
higher twist DF and a TR-odd, twist-two FF, as considered in Reference [25]. The
spin dependence of the {cos ¢) moments by a polarized beam was also considered in

Reference [26] as a new technique to extract polarized nucleon structure functions.

1.2.2 Previous Measurements.

Azimuthal distributions were studied by the European Muon Collaboration (EMC)
[27, 28] in doubly polarized u— N scattering experiments, in which all charged hadrons
in coincidence with the scattered muon were detected. Since there was not sufficient
particle identification, the final states were not separated, though the sample was

largely composed of pions. Using the notation of Equation 1.21, measured values for
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A were negative and showed variation with increasing pr, z, and zr, while values for
B and C were consistent with zero. A was also insensitive to variations in Q* and
W2. These observations agreed with Cahn’s kinematic model and were consistent
with the idea that the hadron production mechanism is independent of the lepton
kinematics. Further measurements by the E665 Collaboration in g — p and p —d
interactions similarly indicated that the (cos ¢) moment was negative and could be
explained by the quark’s transverse momentum [29].

These distributions were also measured in deep inelastic neutrino scattering [30],
where a {cos ¢) value of —0.0224 £ 0.0032 was measured. This was combined with
hadronization models to extract a value for the quark’s transverse momentum of
(k1) ~0.3 GeV/c by using Cahn’s model.

A related set of measurements is published in Reference [31], in which a polarized
target is used to extract a spin-dependent asymmetry in ¢. This measurement accesses

different spin-dependent parton distributions.

1.3 A Polarization.

The A baryon is particularly conducive to polarization measurements; its weak decay
into a pTn~ pair (BR=64%) is self-analyzing since the polarization of the A can
be directly related to the momentum of the decay particles. For the case of an
unpolarized beam and unpolarized target, the resulting polarization of the exiting
A must result from so-called final-state interactions.

Andersson’s semi-classical model for production of A polarization [32] is expounded
more fully in Section 1.4. The following discussion, however, provides the mathemat-

ical expressions for polarization in terms of DF’s and FI’s.

1.3.1 Theory.

Using the formalism of Section 1.1.4, the polarization of the detected A may be
expressed in terms of these DF’s and FF’s. The full expressions for the polarization

along each axis are listed below. S, , refers to the polarization axis of the target. The
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summations run over ¢ quarks and antiquarks, each with charges e;. The coeflicients
that describe the photon’s polarization vector can be written in different ways; a
convention has been chosen here that will make the relation between the azimuthal

distributions and the polarization more evident:

y2-y) Tiefi(z)Gi(2)
1+(1-9)? Tiefilz)

Tielgi(2)Gi(2)
¥ € fi(z)

RELED Vs hatse Dl
T1+(1-9)? @ Tieifiln)
MyY, e?hi(x)Hi(z)/z}

Q ¥ €2 fi(z)

s AVT—y MyTieEhiB(2)/

1+(1-9)? Q@ Lieffi(x)

Pz(x, Z)NA =

+S,

42 — y)vT—y My 3 €2 fiz) DV ()
1+(1-y? Q  %.éfi(a)
o VT=y M, Tiégi(@)Di"(2)
T+(1-y)?2 Q@  Ziefi(a)
Lo 20-9) T.dhi@Hi()
I+ (1—y)?  Yiedfi(z)

P,(z,z)Ny =

+P,

P.(z,z)Ny, =

o Ty [_M_ >, e2zel(z) Hi(z)
T+(1-9?2[Q Xiefi(z)

MY, €?ff(x)éiT(Z)/Z]

Q i e? fi(z)

o 20-y) ¥iehi(z)Hi(2)

T+ (1-9)? e fis)
o= R 05
T1+(1-y)? Q@ Tielfilx)
My 3 6?9%(33)@%(2)/2}
Q > e f(z) .

+

+
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By setting .S; = 0, these equations can be reduced to the expressions that can
be measured with an unpolarized target and polarized beam. Naturally, many new
functions-can be accessed with a polarized target as well, though such data were not
available with sufficient precision when this analysis was performed. The measure-
ments available with a polarized target have also been discussed [33, 34] in order to
access the contribution of the strange sea to the spin of a longitudinally polarized

nucleon.

Longitudinal Polarization P,.

y(2— 1) Tiefie)Gi(2)
Ple N = By T 3 =5 o)

This term, the transfer of longitudinal polarization from the beam to the target,

(1.30)

has been widely discussed as an interesting measurement [35]. Its importance lies in
the access to the polarized fragmentation function G;(z). At the energies of these
measurements, it is expected to probe the contribution from the valence quarks to
the A polarization rather than the contribution from the s quark in the sea.

The kinematic coefficient is familiar as the depolarization factor D(y), which is
used to extract inclusive asymmetries; it relates the longitudinal polarization of the

lepton to that of the photon and hence is needed here as well.

Transverse Polarization F,.

dyT=y [M Y, elze(z)Hi(2)
Falo 2N T+ (1-y) [Ez' i@
MAZZelfI( )é (Z)/
Q  Tiefi(x) } 3

P, is transverse polarization in the scattering plane. Its leading term is propor-
tional to 1/Q and requires polarized beam to observe a spin transfer. This process is
higher twist. This kinematic coeflicient appeared previously as f3(y), the imaginary

part of the longitudinal-transverse interference term in Section 1.2.
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Transverse Polarization F,.

o _4C-yVI-y M\ Y, €%fi(.’£)DJ'(1)i(z)
P,(z,z)Np = TTaF O Eli e%ffér) _

The polarization P, transverse to the y— A scattering plane, does not require po-

(1.32)

larized beam or target in order to conserve parity. It does, however, contain the term
DiL:,(ul)(z). Translation of the superscripts and subscripts leads to the understanding
that this describes an unpolarized FF in which the transverse momentum dependence
is explicit. The appearance of such a FF in the expression for P, indicates that trans-
verse momentum effects are related to the generation of polarization in a completely
unpolarized (beam and target) experiment; a semi-classical model for the connection
between them is described further in Section 1.4.

The kinematic factor is familiar from Section 1.2 as fi(y), which scales the real
part of the interference between photons with longitudinal and transverse linear po-

larizations. P, also varies as 1/@Q but it contains leading twist operators.

1.3.2 Measurements.

Hadron measurements of transverse polarization in A production have existed for
nearly twenty-five years and have been widely discussed in terms of evolution with zx
and pr. Recent measurements at CERN have added a new body of data produced in
ete™ collisions. The measurements discussed in this work will complement this set of

measurements by adding electroproduction data to the current body of observations.

Hadron Physics.

Lambda polarization experiments have spanned the breadth of hadronic beams avail-
able in the past quarter-century, including neutrons on nuclear targets [36]; pions
on a copper target [37]; and hyperon beams [38]. The majority of experiments were
performed with protons on heavy nuclear targets [39, 40, 41, 42], although a proton
target was used in the work of Reference [43]. The work from various targets has

been compiled in References [44] and [45], where the polarization from Cu and Pb
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targets is shown to be ~75% compared with the values obtained for a Be target;
whereas in H it is ~10% higher than for Be, indicating that targets of higher mass
dilute the polarization through nuclear effects and final state interactions. In general,

the polarization grows with both pr and zr and reaches values of 40% for zr ~0.7

and pr ~1 GeV [46, 47].

Collider Experiments.

Both the OPAL and ALEPH experiments have measured the longitudinal polariza-
tion of A hyperons in Z° decays [48, 49]. The Standard Model predicts that Z°
decays will yield predominantly left-handed quarks. Straightforward SU(3) calcula-
tions show that the A spin is carried by the s quark; in this model, measurements of
the A polarization access the initial s quark. Lambdas produced from u or d quarks or
from secondary fragmentation processes are not expected to be longitudinally polar-
ized. The measurements of ~35% agree with these predictions of the standard model
and the constituent quark model. Similarly, transverse polarization in Z° decays is
expected to be low, an assumption that is borne out by the measurements of ~1%.
These experiments are interesting as they provide another avenue by which the
polarized FF’s may be extracted. With this information, DIS measurements may
be used to obtain polarized DF’s {50, 51], with QCD corrections calculated as in

Reference [52].

1.4 Deviations from the Parton Model.

Although the discussion of Sections 1.2.1 and 1.3.1 has been highly mathematical, the
underlying physics may be understood in terms of additions to the naive parton model,
which, because of the uncertainty principle, cannot generate transverse momenta p;
larger than ~300 MeV. As these quantities are small compared with the interaction
scale @2, in general hadrons will be emitted in a narrow cone about the virtual photon
direction.

It is precisely the transverse momentum, however, that leads to the seemingly un-
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related phenomena of azimuthal distributions and A polarization. To understand the
azimuthal distributions , it is best to begin by following Cahn’s straightforward model,

in which the massless parton’s momentum four-vector is written in the following way:

p = (zP,p. cos ¢,p. sin ¢,zP)
= zP+p.. (1.33)

In general, the cross section o for high energy processes reduces to

2 2
s“+u
o x |M|? x o (1.34)
where the Mandelstam invariants are written as
s=2k-p, t=-2p-p, u=2k-p, (1.33)

for parton momentum p and the incident (scattered) lepton k (k). Since it is assumed
that the parton’s momentum direction is conserved after the collision, p - p' is not ¢

dependent. The invariants s and u, however, are evaluated as follows*:

s~ 2zME(1 —2(pL/Q)+/1 — y cos ¢),
uwr —2cME'(1-2(pL/Qy1—y) cos @). (1.36)

Thus, the invariants in the numerator of Equation 1.34 generate the ¢ dependence of
the cross section directly. This may be seen in Figure 1.4.

Cahn makes the interesting point that such an azimuthal distribution requires
neither the parton nor the lepton probe to have spin. Rather, it is a direct consequence
of the spin-one nature of the photon and the transverse momentum demanded by
confinement.

The transverse momentum of the quark induces polarization somewhat differently,

as it must be transferred to spin. In a semi-classical model like that of Andersson [32],

“The expressions of Reference [12] were corrected as cited in Reference [30].
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Longitudinal component
of photon couples to xP

Transverse component
of photon couples to p
' L

Figure 1.4: Lepton-parton scattering in the v — N CMS, where the parton has a
transverse momentum p, and a longitudinal momentum zP. The strength of the
photon coupling to the transverse component will then depend on the angle ¢. Taken
from Reference [12].

shown in Figure 1.5, the primordial transverse momentum p,; generated in the in-
teraction may also induce the polarization of the A. As the incident photon breaks
the target proton apart, a string (or force-field) is generated between a ¢g pair. In a
classical model, this string must have a finite length and associated intrinsic energy
in order to conserve energy and momentum. (This model is also valid for the case
of partons with finite mass and no transverse momentum.) Because there is a finite
length of the string, orbital angular momentum is generated®. To conserve angular
momentum, the ¢g system must have spin angular momentum associated with it.

Strictly speaking, however, the ¢g pair is generated from the vacuum and hence
inherits the vacuum’s total spin J = 0; furthermore, since a particle and antiparticle
have opposite parities, the total parity is negative. Thus, the field has total spin and
parity J~. With negative parity, the string must have orbital angular momentum
L =1, and thus the spin must couple to S = 1 in order to satisfy L + S = J. Since
each member of the ¢g pair exists in a definite spin state, the quark fragments into a
A such that the final hadron inherits this spin.

Thus, transverse momentum is seen to generate both the azimuthal distributions
and A polarization. Although more complete descriptions are available, these mod-

els are sufficient to provide insight regarding the origin of these processes (see Ap-

5This is the same mechanism used to generate transverse momentum in the Feynman-Field
model [53].
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Figure 1.5: A model for the role of transverse momentum in generating A polarization.
A photon scatters from quark g with transverse momentum p.. The resulting string
is created with orbital momentum, which is compensated by the ¢7 spin. The struck
quark is not shown; the ¢g pair are created from the vacuum with good quantum
numbers and transfer the spin to the lambda. Taken from Reference [32].

pendix A.4). As such effects identify deviations from the parton model, these mea-
surements are particularly interesting and could lead to a better understanding of

quark confinement.
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Chapter 2 Experimental Apparatus.

The HERMES (HERa MEasurement of Spin) experiment is designed to observe a wide
variety of final states in lepton-nucleon interactions. The detector was installed at
the Deutsches Elektronen-Synchrotron (DESY) in 1994 and recorded its first data in
1995. As a result, much of the experimental apparatus has been elucidated in several
publications, including References [5, 6, 54, 55]. In brief, the HERMES spectrometer
was designed to have good angular and momentum resolution over a large kinematic
range, with the capacity to search for spin observables by using a polarized beam
and a variety of polarized targets. The implementation of these specifications will be

elucidated below.

2.1 The HERA Beam.

The HERA ring at DESY is a collider and hence there are two beams: a 27.5 GeV
positron beam and a 820 GeV proton beam circulating in opposite directions. The
lepton probe is a positron beam, rather than an electron beam, because of its longer
lifetime at HERA (the electrons experience more losses through interactions with
residual ions). These positrons provide the lepton beam used at HERMES, while the
proton beamline is separated from the center line of the experiment by 72 cm. The
proton beam causes background which is reduced with the trigger, discussed below
in Section 2.3.5.

The positron beam is typically injected at a current of ~35 mA and allowed to
remain in the ring for ~12 hours. Its time structure is a 29 ps pulse every 96 ns
and its shape is elliptical, with a cross section of 0.07 mm (vertical) and 0.26 mm
(horizontal).

The polarization and polarimetry are fully discussed in Reference [56]. The beam

is polarized by the Sokolov-Ternov mechanism, in which positrons in a storage ring
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are polarized along the direction of the guide field because of a rate asymmetry in
the synchrotron radiation for each spin state [57]. For the HERMES beam, the
polarization builds up asymptotically over a 30 minute period to a value of ~50-60%,

as shown in Figure 2.1.

HERA WITH SPIN ROTATORS 4-May-94
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Rise of electron polarization at HERA
Longitudinal polarization at HERMES

Figure 2.1: Risetime of the beam polarization.

The induced polarization is transverse to the direction of motion of the positrons.
The measurements conducted at HERMES require longitudinally polarized leptons
and thus the polarization vector must be translated without affecting the magnitude
of the polarization or the momentum of the leptons. This is accomplished with
spin rotators on either side of the HERMES experiment. The layout is shown in
Figure 2.2. The spin rotators may themselves be rotated in order to flip the positron
helicity, thus reducing systematic uncertainties. This was done such that the 1996
data analyzed here were all taken with positrons of positive helicity, while the 1997
data were collected with leptons of negative helicity.

The transverse polarization is measured in a Compton polarimeter, which takes
advantage of the spin-dependent nature of the Compton scattering cross section. A
beam of 2.4 eV polarized photons is directed onto the positron beam. The back-
scattered photons are detected by a tungsten scintillator sandwich that is divided
into an upper and lower portion. The polarization is then evaluated by extracting
the shift in the mean vertical position when the polarization of the incident photons

is flipped (the helicity is flipped at 84 Hz).
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Figure 2.2: The HERA ring and the rotation of the beam polarization. Spin rotators
produce longitudinal spin at the interaction point and rotate the polarization vector
back to the transverse direction after the interaction. Taken from Reference [56].

2.2 The Internal Target.

The HERMES internal storage cell was designed to be a versatile instrument for use
as both a high density polarized gas target and as an unpolarized gas target. It is
discussed in detail as a polarized target in Reference [58]; the aspects relevant to
filling it with unpolarized gas are summarized here. It is shown in Figure 2.3.

The target cell is made of aluminum and is 40 cm long. Because the beam at
HERMES is elliptical in shape, the target cell has a cross section of 9.8 mm (vertical)
by 29.0 mm (horizontal). The target gas is injected via a T-shaped tube such that
it flows through the cell close to the positron beam and then is pumped away via
a high speed differential pumping system. The gas density profile is longitudinally
triangular (see Section 3.5.5).

For these measurements, the target cell was filled with one of several unpolar-
ized gases: Hj, Dj, *He, and N,. Each of the gases was restricted to a density of
10 nucleons/cm?; at this density, the beam lifetime was kept at an acceptable level
of ~8 hours. (The contribution from the gas is limited to 45 hours in order to min-
imize its effect on the beam.) In contrast to the polarized gas, in which the target
cell is in a 3.5 kG magnetic field, no external magnetic field exists while unpolarized

gas data are collected.
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Figure 2.3: The target cell assembly. The fixed collimator C2, directly in front of the
target cell, protects the cell from synchrotron radiation. The gas is injected into the
storage cell via a T-shaped tube. Wake field suppressors connect the target cell to
the beam pipe and reduce the consequences of the changing cavity diameter on the
positron beam. Taken from Reference [59].

Since ~100 W of synchrotron radiation exist in the target region, the cell is pro-
tected by a system of two sets of collimators, C1 and C2. C1 consists of collimators
that are independently adjustable in the horizontal and vertical directions; they are
placed 2 m upstream of the target. Directly in front of the storage cell is the second
collimator, C2, which is fixed. It is slightly larger than C1 and protects the target
from photons scattered by C1.

2.3 The HERMES Detector.

The HERMES detector, pictured in Figure 2.4, has been well described in Refer-
ence [59]. It is designed to look at various final states with its particle identification
capabilities and its large forward acceptance. It is completely top-bottom symmetric
such that the plane of the two beamlines separates the two halves. This section will
elucidate those components relevant to this analysis.

The coordinate system at HERMES is defined such that when looking down the
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Figure 2.4: A schematic of the detector. Taken from Reference [59].

detector, Z points downstream along the beam line, § points vertically upward, and

Z points to the left.

2.3.1 Tracking Detectors.

The tracking system used at HERMES consists of a large dipole magnet and two
sets of drift chambers. The magnet has a field integral of 1.3 T-m and contains a
large steel septum plate that shields the two beamlines from the magnetic field. As
a resuit, the lower limit of the acceptance is 40 mrad.

The front chambers (FC) are drift chambers located immediately after the target
and in front of the magnet. There are two sets of 6 planes, arranged such that the
wires are strung vertically for measurement in X, or tilted £30° right or left (for U
or V planes); the actual configuration is UU'XX'VV’. Each plane has a resolution of
220 pm and runs at an efficiency of 95%.

Since drift chambers cannot be used in the strong field inside the magnet, a set
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of multi-wire proportional chambers (MWPC) known as the magnet chambers (MC)
were installed there instead. The three planes are oriented, in order, in the U, X, and
V planes. Rather than provide time-of-flight information like the drift chambers, the
MWPC’s record digital patterns where each wire is identified with a bit.

The back chambers (BC) are additional drift chambers located behind the magnet.
They comprise of 4 chambers of 6 planes each for each half of the detector, oriented,
like the FC, in UU'XX'VV'. The measured resolution is 275 pm for the front and
300 pm for the back. Their efficiencies are 99 (97)% for positrons (hadrons).

2.3.2 The Calorimeter.

The calorimeter is a shower counter that measures the energy of incident positrons.
At high energies, the interaction of positrons in matter is dominated by showering;
this is an alternating sequence of bremsstrahlung and e*te™ pair creation. This takes
place until the positron’s energy decreases to ~10 MeV, when the principal energy
loss becomes ionization. The length of material required to contain the shower de-
pends logarithmically on the incident energy E,. The shower’s transverse size is
determined by the average deflection from bremsstrahlung and multiple scattering
and is characterized by the Moliére radius Ry, defined as Rjs ~ 21X,/ E, for a mate-
rial of radiation thickness X [60, 61]. A material of atomic number Z may be further
characterized by its critical energy E., defined as the energy at which ionization and
bremsstrahlung losses are equal; in general, E, ~ 580 MeV/Z.

In a lead glass calorimeter, the energy of the incident particle is determined by
collecting the radiated Cerenkov light. The HERMES calorimeter is an array of 42x10
lead glass blocks of density 3.86 g/cm® and radiation length X;=10.73 g/cm? [54];
thus, the lead blocks of length 50 cm (~18 radiation lengths) contain most of the
shower. Since E, = 18 MeV for this material, the 9 x 9 cm? face of each block is large
enough such that the showers are generally contained in a 3 x 3 cluster of blocks.
Each block is viewed by a phototube affixed from the rear to collect the Cerenkov

radiation.
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2.3.3 Particle Identification (PID) Detectors.

The particle identification system at HERMES is designed to accurately identify
positrons. In addition, a Cerenkov counter is used to separate pions from protons and
kaons. The principle of operation and relevant characteristics of the four elements of
the PID system are listed below. Analysis of the PID detector responses is discussed
further in Section 3.2.

e The calorimeter.

The lead glass calorimeter may also be used to separate positrons and hadrons. Be-
cause hadrons and positrons experience different interactions in matter, the relevant
length scales lengths differ considerably; the hadronic interaction length of ~36 cm
is large compared with the ~3 cm radiation length for electromagnetic showers. The
energy loss distributions differ in shape as well for the two processes, since secondary
hadrons are generated with larger transverse momenta than electromagnetic showers.
Consequently, the calorimeter may separate the two types of particles by identifying
differences in the energy deposition.

e The hodoscopes.

The two scintillator hodoscopes (H1) and (H2) used for particle identification are
both composed of 42 scintillators 1 cm thick, coupled to phototubes. While H1 is
used primarily for the trigger (see Section 2.3.5 below), H2 is used as an additional
electromagnetic calorimeter.

Directly in front of H2 is a sheet of lead 11 mm thick (2 radiation lengths).
Positrons passing through this sheet create electromagnetic showers, which then de-
posit more energy in H2 than just the ionizing energy of a single particle. While pions
deposit less than 5 MeV, positrons typically deposit ~20 MeV. These energy losses
are not sufficient to affect the final calorimetry, but the relative difference provides
separation between positrons and hadrons.

e The Cerenkov counter.

The Cerenkov counter operates on the principle that in a medium where the

velocity of light is given by 3;, a charged particle moving through it with a relativistic
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velocity # > B, will radiate visible photons. Thus, Cerenkov detectors are often
characterized by the threshold G;y;. The light is then collected in phototubes; Ceren-
kov responses are measured in terms of the number of photoelectrons collected in the
phototube. The angle of emission of Cerenkov radiation is given by cos 6, = 1/8n,
where the local optical properties are given by the index of refraction n.

The HERMES Cerenkov is filled with C,F1o and N, at atmospheric pressure in
a ratio of ~30:70 by volume. This yields a threshold value 37y of ~29, such that the
threshold momentum for positrons, pions, kaons, and protons is 0.015 GeV, 4 GeV,
14 GeV, and 27 GeV, respectively. Unfortunately, protons and kaons cannot be
separated in the range of 4-14 GeV, in which most of the events occur (as shown,
for instance, in Figure 3.23 for (e, e’A) events). The pion threshold, however, may be
used to separate pions from the heavier hadrons at momenta greater than 4 GeV.

e The Transition Radiation Detector (TRD).

Transition radiation occurs when an ultrarelativistic particle crosses a boundary
from one dielectric medium into another. As the electromagnetic field is different
on each side of the boundary, the difference in these fields results in radiation. The
intensity of the radiation is proportional to the relativistic v factor [62]. In most
dielectrics, this will yield radiation in the X-ray region. Like Cerenkov radiation,
transition radiation is emitted at a characteristic angle which can be used, in principle,
to identify particles. In this case the radiation is emitted inside the cone frg < 1/7,
which is too narrow to allow separation of the radiation from the incident positron.

The TRD consists of 6 modules in each half of the detector. Each module consists
of a fiber matrix radiator and a Xe/CH,4 proportional chamber. While hadrons deposit
~5-20 keV in a single module, positrons deposit ~20-50 keV and hence the two

distributions can be separated.

2.3.4 The Luminosity Monitor.

The luminosity monitor consists of a pair of calorimeters placed symmetrically around

the beam pipe. They detect the Bhabha scattering of incident positrons from atomic
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electrons in the target cell; the luminosity is simply the product of the current and the
target density and is proportional to the coincidence rate between the two calorime-
ters.

Absolute luminosity measurements were not used for the main analyses of this
thesis. Instead, it was only required that the luminosity monitor had to be function-
ing well in order to determine that the entire detector was not subject to poor beam
conditions and significant high voltage trips. The luminosity monitor was used, how-
ever, in measurements made by the Target Optical Monitor, to be discussed further

in Appendix B.

2.3.5 The Trigger.

A trigger can be formed from just the two preshower hodoscopes and the calorimeter.
Unfortunately, there is a large background initiated by the proton beam that satisfies
the trigger requirements for DIS positrons. For this reason, an additional scintillator
hodoscope (HO) was introduced in order to distinguish particles moving backward
through the detector from those going forward. The total travel time through the
entire set of trigger detectors is 18 ns; this provides adequate separation between
forward and backward moving particles of 36 ns.

A trigger is formed by requiring hits in the three hodoscopes HO, H1, and H2.
In addition, there must be 3.5 GeV deposited in the calorimeter. Finally, this is all
timed in coincidence with the 10 MHz accelerator signal. This four-fold coincidence
forces the entire detector to be read out; in this fashion, multi-particle events are

detected.

2.3.6 The Gain Monitoring System.

The scintillator-phototube systems of the preshower counter, the calorimeter and the
luminosity monitor utilize the Gain Monitoring System (GMS). A 500 nm dye laser
beam is directed toward these detectors via fiber optics with a frequency of 1 Hz, such

that it is out of time with the positron beam. A filter wheel attenuates the pulse in
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order to provide 6 different intensities. In this way the linearity of the gain could be

verified as well as the absolute intensity.

2.3.7 Reconstruction Software.

The HERMES reconstruction software (HRC) [63] uses the information provided
by the drift chambers and the proportional chambers listed in Section 2.3.1. HRC
implements two innovative techniques for efficient reconstruction. First, it uses a
“tree-search algorithm” for fast track finding. In its initialization, HRC calculates
all allowed patterns and stores them. Then, upon running the reconstruction, the
tree-search improves the resolution by a factor of two in successive steps. At each
step and with that resolution, the track is compared with the complete set of all
allowed track patterns. The track is then discarded if it is not allowed. This is done
independently for the front and back tracks, such that there is a set of front partial
tracks and one of back partial tracks. They are then matched at the magnet center
(with some prespecified tolerance) to determine whether they form a full track.

The second innovation is in the determination of the momentum of a track once it
has been found. Rather than propagate each track through the magnetic field, HRC
generates a look-up table upon initialization. This table contains the momentum of
the particle in terms of three quantities: the position of the front track; the slope of
the front track; and the horizontal slope of the back track. HRC then labels each track
that it finds in terms of these parameters and searches the table for the appropriate
momentum.

Without the tracking provided by additional proportional and drift chambers in
the front region (more chambers were installed in 1997 but were not used for this
analysis), the entire track could not be determined uniquely due to the limited res-
olution and lever arm of the front chambers; the two front chambers are only 12 cm
apart. For this reason, the “forced bridging” technique was employed, in which HRC
extracted a front and back track independently. While the back track is projected

back to the center of the magnet, the front chambers define only a single space point,



32
from which a track is constructed to the center of the magnet. The matching con-
dition consists of well specified tolerances in z and y (5 cm in each direction); in
addition, the dy/dz gradient is required to be within 0.050 for both partial tracks.

This technique allows for momentum resolution of ~1.1% for dp/p.

The Magnet Chambers.

For those cases in which a hadron has been reconstructed using the standard tech-
niques, additional tracks may be found using the magnet chambers (MC). It is possible
for a low momentum pion from the target to traverse the FC’s such that it is tracked
additionally by the MC’s. The MC'’s are bathed by low momentum pions spiraling
inside the magnet. For this reason, a search is not performed for a low momentum
pion unless a coincident high momentum hadron has already been tracked through the
entire detector. This is known as “sparse” magnet chamber tracking and it is used for
the strange particle analyses presented here, though not for the semi-inclusive pions.

Two terms used frequently in this work are long and short tracks. A long track is
one that has been reconstructed through the entire detector, while one that is tracked
only in the FC’s and the MC'’s is a short track. Differences in the reconstruction using

the two different algorithms were found to be negligible [64].



33

Chapter 3 Signal Extraction.

3.1 Monte Carlo Simulations.

In the discussion of hadronization processes in Section 1.1.4, the semi-inclusive cross
section was expanded into matrix elements describing parton correlations; however,
these cannot be calculated explicitly without models for the correlation functions.
Hence fragmentation is conventionally discussed in terms of various models that are
intended for use in Monte Carlo simulations. The HERMES Monte Carlo uses the
package LEPTO to calculate the well-understood lepton-quark interaction; it then
uses the LUND model, realized in the JETSET software package, to perform the
fragmentation of the struck quark via the creation of ¢ pairs; a field is stretched
between them (see Reference [65] and references therein for a detailed discussion of
the implementation of the model).

The most important assumption is that of local parton-hadron duality [66], in
which for any fragmentation process, quantum numbers are locally conserved until
a colorless hadron is formed. In this fashion, the quantum numbers of the detected
hadron can give direct information regarding the struck parton. Typically, kinematic
restrictions can be applied to the data in order to enhance this correlation, namely
on the variables zz and z, as defined in Table 1.1; these variables simply measure the
forward momentum in each of two reference frames (the -N and laboratory frames,
respectively). The region of phase space in which the struck quark is detected is
referred to as the current fragmentation region, whereas the recoil partons fall into
the target fragmentation region.

Inputs to the LUND model currently use the fragmentation functions from other
experiments. These parameters have been varied slightly in order to better character-
ize these processes at lower energies of HERMES. Events generated by this model may

be passed through a simulation of the detector, which is digitized by the GEANT
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package. These simulated hits may then be reconstructed again with HRC to create
Monte Carlo tracks.

In these analyses, Monte Carlo events were produced on a farm of 20 personal
computers (PC’s), running the Linux operating system. Each computer had two 300
MHz Pentium II processors. The generator produced events at ~0.1 s/events. The
most CPU-intensive task was the GEANT digitization of the three-track events in
the detector, which required 4.6 s/event. Finally, they were reconstructed in HRC at
0.15 s/event.

The events that were successfully digitized and reconstructed were written to files
which were identical to the data in structure. In this fashion, they could be passed

through the same analysis program as the data.

3.2 Particle Identification.

The PID analysis scheme at HERMES is based on a probability analysis of the re-
sponses for the four PID detectors. The general form of the analysis follows from the
general case in which each detector measures either positrons or hadrons [67]. Then

the probability that a particle is a positron (PP) is given by

Lr

P T
QLA+ [P

(3.1)
® = ¢"/¢” defines the ratio of the fluxes of the two particles and is determined by
the physics. Consequently, it must be parameterized in terms of variables such as
momentum and scattering angle: ¢' = ¢(p, ).

LP™) represents the conditional probability that the response was caused by a
positron (hadron). For each detector, this function is generated from data measured
with a clean particle sample, either with a test beam or by applying severe PID

restrictions to the other detectors and then extracting a clean sample.
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3.2.1 Detector Parameterizations.

For each detector the function LP®) is determined independently. The models follow
below for particles of energy E and momentum p.

o Calorimeter. |

In the calorimeter, positrons deposit most of their energy in electromagnetic show-
ers, whereas hadrons principally lose energy only by ionization. As a result, the dis-
tribution of the ratio R = FE/p will look different for each particle type. Not only
does the shape differ, it is peaked at a value lower than R = 1 for hadrons rather than
at R = 1 for positrons. The positron spectrum is well characterized by a Gaussian
centered at 1 with a high energy exponential tail, while the hadron distribution is a
constant with an exponential tail.

o Preshower hodoscope.

Hadrons deposit only the minimum ionizing energy and hence their spectrum
results in a narrow peak, whereas positrons deposit energy roughly proportional to
In E and yield a much broader spectrum. Asymmetric Gaussians are used to model
this response while the hadrohs are given an additional exponential tail.

e Cerenkov counter.

The response for the Cerenkov counter is modeled as a Poisson distribution de-
scribing the probability of recording a number of photoelectrons, convolved with a
Gaussian distribution centered about that number of photoelectrons. In this analy-
sis, each hadron type is considered separately. Since the deep inelastic trigger is set
at 3.5 GeV and the pion threshold is at 4.8 GeV, the Cerenkov does not contribute
much information for the positron-hadron separation. Its use in separating pions and
protons will be discussed further in Section 3.3.2.

e TRD.

The responses are fit to Gaussians with tails.

The distributions for the responses of each detector are shown in Figure 3.1.
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Figure 3.1: Responses of the PID detectors. Positrons (hadrons) are solid (dotted)
lines.

3.2.2 Likelihood PID.

For one detector the likelihood PID is defined as

e

PID = logy ( L

z—h-) - logm@. (32)

The calorimeter, preshower, and Cerenkov counters all originally showed responses
in the HERMES experiment which matched their responses from test beams. Conse-
quently, their parent distributions were understood easily and a triple likelihood was

constructed as
L, L LS.
———-——-——fl“l ’Ze — (3.3)

cal~precer

PID3 = lOgl()

The TRD required additional study until the parent distributions were under-
stood. Hence its likelihood function, known as PID5, was added later to the available

PID data [68], though it still follows the formalism of Equation 3.2.
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3.3 Selection of Candidate Events.

3.3.1 Run and Burst Selection.

A run is a set of data taken over a time period of ~10 minutes, although the exact
time scale is determined by the luminosity, since the run length is set by the amount
of data collected. This time scale is useful in order to monitor the detector, since
variations in efficiency or beam quality typically occur over this time.

The smallest time scale used is that of a burst, an interval of ~10 seconds that
represents the frequency at which the scalers are read. Although the detector is
read out with every event, monitors such as the luminosity monitor and the GMS
are integrated over the 10 second burst. In this period, the high voltage to all the
detectors can be monitored as well.

Recorded data in a run are processed through HRC, after which the surviving full
tracks are written to files, known as data summary tapes (DST’s). Two sets of these
were used for this analysis. u-DST’s comprised all multi-track events recorded by the
detector and were used for the (e, €'7) analysis. The strange particles, however, were
identified from a compressed data set known as nano-DST’s; these files comprised
all events with three or more tracks and were thus much smaller than the p-DST’s.
Aside from a small irregularity in the PID histograms (see Section 3.3.2), the p-DST’s
and nano-DST’s are equivalent in quality; the nano-DST’s were used only to analyze

the strange particles more efficiently.

Target Type.

For this analysis, the runs taken with the Hy, Dy and *He targets were used. Specifi-
cally, in 1996, selected runs between numbers 11321-14133 were used. In 1997, data
were taken with N,; however, it was decided to limit the analysis to light targets in
order to minimize nuclear corrections. This had the added benefit of yielding approxi-
mately equal samples of events in each year and thus in each helicity state. Candidate

runs from the 1997 running cycle were chosen from the dedicated unpolarized running
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Qf runs 17185-19650.

High Voltage Operation.

A list of candidate bursts was available that used common requirements for all the
physics analyses at HERMES [69]. Additional information was available to clarify the
status of the high voltage (HV) for the magnet chambers (MC) and trigger detectors
independently. In this analysis, all the bursts that had any HV problems in either
of these detector sets were discarded. This led to only 2.3% loss in the 1996 burst
list and 1.4% in the 1997 bursts; these losses were considered acceptable in terms of

obtaining the cleanest detector conditions possible!.

Detector Configuration.

These runs comprise all the data taken with unpolarized targets in 1996 and 1997.
Unfortunately, in the two years of data taking, there were three distinct configurations
in which changes were made to the drift vertex chambers (DVC) and the vertex

chambers (VC):

1. Barly 1996: No DVC, the lower VC present.
2. Late 1996: No DVC, the lower VC removed.

3. 1997: DVC and VC both present.

Because these detectors present extra radiation and nuclear interaction lengths to
be traversed, it was important to accurately describe the detector in order to perform
an acceptance correction. Since there were only a few runs taken in the early part
of 1996 with the first configuration, these were discarded in order to have only one

acceptance correction for each year of data.

1The quality of the detector is summarized in a bit pattern for each half of the detector; the
hexadecimal value 21E03DE from standard HERMES lists was used to select the bursts in which
the entire detector was at the correct voltage.
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Tracking Efficiencies.

The tracking efficiency may be calculated in many different ways; for instance, it can
be averagéd over only the positrons, or over all tracks. (For polarized target use,
the efficiency may be calculated for each spin state.) This analysis used the entire
set of tracks in one run as the basis for the efficiency calculation. The efficiency
was then calculated for each half of the front and back drift chambers. If any of
these efficiencies was less than 94%, the run was discarded from the analysis. The
largest spread in the efficiencies was seen in the front chambers in 1996, as is shown in
Figure 3.2. These quantities may be correlated, as bad beam conditions are likely to
cause low efficiencies in both halves of the same chamber. Totals for the consequences

of imposing this requirement on the list of candidate runs are shown in Table 3.1.
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Figure 3.2: Efficiencies in the front chambers from the 1996 data. These efficiencies
were calculated by averaging over all the tracks in an entire run.
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| Detector [ 1996 | 1997 |
Candidate runs | 998 | 1257
FC, top 47 0
FC, bottom 56 0
BC, top 0 15
BC, bottom 0 15
Total discarded 58 15
Total remaining | 940 | 1242

Table 3.1: Runs discarded due to low chamber efficiency. The total number discarded
is less than the sum of discarded runs because of correlations.

3.3.2 Particle Identification.
Likelihood Analysis.

The relevant quantity in PID analysis is the expression PID3 + PID5, which refers
to the summed likelihood analyses from the various detectors as discussed in Sec-
tion 3.2.2. PID3 describes the combined likelihood function in the preshower counter,
the calorimeter, and Cerenkov detector, while PID5 characterizes the response of the
TRD. These functions are discussed fully in Reference [68].

A histogram of this quantity for a subsample of all events in the nano-DST’s is
shown in Figure 3.3. It reveals a distribution that looks almost as expected: it consists
of two well-separated Gaussian distributions. The small feature at -2 is an artifact
from the data compression used in the nano-DST’s: Three-track events are recorded
only if they contain a positively charged particle that satisfies the kinematics of a DIS
positron, and the positron must have a summed PID value of at least -2, resulting in
an artificial cutoff at -2.

Although the detectors were initially calibrated such that hadrons would appear at
negative values of PID3 + PID5 and positrons at positive values, subsequent calibra-
tions changed the shape of this distribution somewhat [70]. As a result, the particles

are identified as follows:
e Positrons: PID3 + PID5 > 2;

s Hadrons: PID3 + PID5 < 0.
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Figure 3.3: A histogram of the quantity PID3+PID5. Taken from a random sample
of runs from the 1996 data set.

The Cerenkov Counter.

The largest source of background is hadron misidentification below the Cerenkov
threshold of 4.8 GeV since there is no hadron separation at those momenta; a smaller
contribution results from the lack of p— K separation in the 4.8-12 GeV region. Rather
than estimate the misidentification, these will be treated as sources of background
and subtracted appropriately, as discussed in Section 3.5.9.

The Cerenkov pion fraction was examined to extract the lower momentum limit
of 4.8 GeV. This study consisted of defining a sample of hadrons by stringent cuts on
the other three PID detectors:

Ecao/p < 0.75
Epreshower <5 Mev7
ETRD < 20 keV.

A p — 7 separation fraction f. ..z, for the Cerenkov counter was then constructed
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in the following way:

Number of good hadrons with N(p.e.)&erenkov

> 0.25
Number of good hadrons '

fC'erenkov = (34)

where N(D.€.)@erenkov indicates the number of photo-electrons detected in the Ceren-
kov counter. This fraction was plotted as a function of the particle momentum to
determine the threshold and is seen in Figure 3.4, where it was fit with an exponential

function.
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Figure 3.4: The Cerenkov separation fraction, fit to the form f = fo(1—e~®=P0)/prise),

By 4.8 GeV, the fraction f has reached its asymptotic value of ~75%. The fit
parameters can be compared for the two years of operation to look for systematic
differences; the results are shown in Table 3.2. The x2 values indicate that this
function characterizes the data quite well and that there are not significant differences
in the turn-on properties, as characterized by py and pr.. Although the average
fraction of pions was slightly higher in 1997, the difference is not large compared with

other systematic effects, discussed further in Chapter 4.
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| Year | fo Prise (GeV) | po (GeV) | 2 |
1996 | 0.749 £ 0.004 | 0.314 £ 0.012 | 3.933 £ 0.017 | 0.951
1997 | 0.761 £ 0.004 | 0.300 £ 0.019 | 3.864 = 0.019 | 1.273

Table 3.2: Cerenkov p — 7 separation parameters for 1996 and 1997.

3.3.3 The Scattered Positron.

The kinematic cuts used to identify DIS positrons were:

W? > 4.0 GeV?,
y < 0.85,
Q* > 1GeV2: (3.5)

The W? cut guarantees exclusion of resonance data and inclusion of deep inelastic
data. The restriction on y avoids excessive radiative corrections. The cut on Q?
restricts the data sample to deep inelastic events. Originally, it was hoped to include
lower Q? data in order to take maximum advantage of the detector acceptance. The
Monte Carlo generator is valid down to @* of 0.5 GeV2. The acceptance is limited
at lower 2, as can be seen from Monte Carlo simulations; Figure 3.5 indicates that
the acceptance at low Q? is very narrow and thus more susceptible to alignment
uncertainty. Since this analysis combines data from two years with possibly differ-
ent alignments, the lower Q? data are excluded. This also safeguards against the
possibility that the detector is not perfectly represented at its edges by the Monte
Carlo.
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Figure 3.5: The variation in the acceptance with Q?. The scattered positron in gen-
erated (e,e’A) events was tracked to find the position at which it hits the calorimeter
face.

3.4 Identification of (e, e'r) Events.

3.4.1 Fiducial Cuts.

The (e, e'm) events were extracted from the p-DST’s. Using the candidate runs of
Section 3.3, two-track (e, e'n) events were easily identified. The kinematics of the
positron were still required to satisfy Equation 3.5.

Pions and positrons were identified as in Section 3.3.2. In addition, they were
required to fall well within the fiducial region, as given by restrictions on the scattering

angle 6, and the z and y positions at the calorimeter face (Zcu and yea):

40 < 6, <110 (140) mrad for positrons (pions),
|Zear] < 170 cm,

Each track had to independently satisfy the detector’s acceptance cut on §, in
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order to clear the septum plate. The average 6, is 0.07 & 0.02 rad for positrons, and
0.08 = 0.03 rad for pions. Thus, the ranges specified above allowed for 2¢ variation
in 6,. The additional cuts guaranteed that all tracks fell well inside the calorimeter’s
face. The reconstructed slopes were used to calculate the z and y positions at the
calorimeter face.

Given only two tracks, the scattering vertex is not as well defined as in the three-
track case, although it is still possible to construct a production vertex by evaluating
the distance of closest approach for both tracks. The location of this vertex can be
evaluated, giving results for Zproq, Yprod; a0d Zproq 0f 2.0, 2.3, and 0.07 cm, respectively.
Furthermore, the mean distance between the two tracks may be calculated; for these
events, the distance dp,.¢ Was 2 cm. Therefore, the following cuts were used to improve

the x2 of the physics results:

Tprody) Yprod < 4 cm,
Zproa < (.5 cm,

dproa < 4 cm.

It was decided not to use short tracks at all. In the case of the strange particles,
one hadron is allowed to be a short track only if there is another hadron that produces
along track. By requiring the triple coincidence of the positron and hadron that reach
the calorimeter as well as a short track that does not, the background can be reduced.

On the other hand, two-track events obviously lack the third coincidence that
reduces background. For this reason, only long tracks were allowed in this analysis.

Thus, the Cerenkov was used to separate pions and protons:
4.8 < p, < 14 GeV.

The x2 of the azimuthal distributions were also influenced by the kinematics of
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the v-N system. Consequently, kinematic cuts were imposed:

0.3 < pr<1.2GeV,
0.2 < 2<0.95,
025 < zp<0.95.

The final cut selection is summarized in Table 3.3.

| Requirement | Minimum | Maximum |

6, of each track (mrad) 40

y-slope of positron 0.11
y-slope of pion 0.14
x at prod. vertex (cm) 4
y at prod. vertex (cm) 4
z at prod. vertex (cm) 0.5
z at calorimeter face (cm) 170
y at calorimeter face (cm) 30 90
der (cm) 4
Pr (GeV) 418 14
Q? (GeV?) 1 5
W? (GeV?) 4

Y 0.85
Tp 0.1 0.95
z 0.2 0.95
pr (GeV) 03 1.20

Table 3.3: Final cut selection for pions.

The effectiveness of these cuts is shown by comparing the resulting events with
Monte Carlo simulations. The kinematic distributions are shown in Figure 3.6 to agree
very well with Monte Carlo events. Limitations on the available computing power
made it necessary to generate only enough (e,e'n) events such that the accepted
number was only slightly larger than that of the data. The data analyzed comprise
170(210)k events in 1996(1997); and the number generated was 190(252)k events for
1996(1997).
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Figure 3.6: Kinematics of (e, e'r) events with data (filled circles) and Monte Carlo
(histogram). Top left (right): Q* (pr). Bottom left (right): zr (2).

These graphs are not all independent.

For instance, Figure 3.7 indicates the

strong correlation in the acceptance in zr and z. On the other hand, the lack of a

clear correlation between pr and z is seen in Figure 3.8.



48

Figure 3.7: The correlation between zr and z for (e, €'n) events.

1800
1600
1400
1200

Figure 3.8: The correlation between pr and z for (e, e'm) events.

The most important correlation is that between z and Q2. If factorization holds,

the process may be separated into short and long distance contributions and z and
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@? will be mutually independent, as shown in Table 3.4 and plotted in Figure 3.9.

Q? range (z)
1.00 < Q% < 1.40 GeV? | 1.997 £ 0.006
1.40 < Q% < 1.70 GeV? | 2.131 £ 0.006
1.70 < Q% < 2.60 GeV? | 2.114 + 0.007
2.60 < Q% < 5.00 GeV? | 2.034 + 0.005

z range Q%)
0.20 < 2<0.35 0.497 £ 0.001
0.35 < 2 < 0.45 0.501 4 0.001
0.45 < 2 < 0.55 0.502 £ 0.001
0.55 < z < 0.95 0.497 4 0.001

Table 3.4: Evidence of factorization in (e, e'm) interactions.
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- Figure 3.9: Evidence of factorization in (e, ¢'r) interactions.
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3.4.2 Quadrant Analysis.

An additional check was performed to look for geometric effects in the kinematic
distributions of the coincident hadron. This was done in the following way: The
detector was divided into four quadrants, as shown in Figure 3.10. (e,e'r) events
were sorted into the appropriate quadrant, according to the polar angle ¢’ (not to be

confused with the physics azimuthal angle ¢) of the scattered positron.

Quadrant:

Figure 3.10: The division of the detector into quadrants for systematic studies. The
events were sorted according to the region of the detector into which the associated
positrons were scattered.

The kinematic distributions of each quadrant’s sample were then analyzed; the
mean and standard deviation were calculated. The results are shown in Figure 3.11. It
is evident that no bias is seen across the four quadrants; there is no spurious geometric
bias from the detector. Furthermore, the distributions agree for both years, indicating

that the two data samples can be combined with confidence.
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Figure 3.11: The dependence of the kinematics of the pion on the quadrant of the
scattered positron.

3.4.3 Kinematic Bins.

In these analyses, the data are binned in various kinematic quantities. The mean
values of these distributions were compared from one year to the next to look for
systematic differences that could lead to an inability to combine the data sets.

The average value in each bin was evaluated for each year’s (e,e'n) events and
are tabulated in Table 3.5, indicating that the acceptance does not differ significantly

from year to year so the data may be combined.
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Variable | Binning Mean value
1996 | 1997

pr 0.30 — 0.40 || 0.3498 | 0.3493
PT 0.40 — 0.50 || 0.4479 | 0.4480
pr 0.50 — 0.70 || 0.5883 | 0.5881
pr 0.70 — 1.20 || 0.8472 | 0.8480
Q? 1.00 — 1.40 §| 1.1830 | 1.1841
Q? 1.40 — 1.70 || 1.5408 | 1.5419
Q? 1.70 — 2.60 || 2.0822 | 2.0794
Q® | 2.60—5.00 || 3.4155 | 3.4152
z 0.20 — 0.35 || 0.3176 | 0.3175
z 0.35 —0.45 || 0.3983 | 0.3983
z 0.45 — 0.55 || 0.4978 | 0.4974
z 0.55 - 0.95 || 0.6913 | 0.6898
TF 0.25 - 0.32 || 0.2856 | 0.2855
TF 0.32 - 0.40 || 0.3585 | 0.3588
TF 0.40 — 0.52 || 0.4567 | 0.4562
Tp 0.52 - 0.95 || 0.6516 | 0.6501

which a coincident positron is also detected.

3.5.1 Fiducial Cuts.

The strange particles were extracted from the nano-DST’s. Again, the runs of Sec-
tion 3.3 were used to extract three-track events, in which the kinematics of the

positron satisfied Equation 3.5. As in the (e,e'm) analysis, when long tracks were

Table 3.5: Average kinematic values and bins for (e, e'7) events.

3.5 Identification of (e,e’A) and (e, e'Ks) Events.

Hereafter, any discussion of lambdas or K-shorts refers to semi-inclusive events, in

used, they had to fall well within the detector’s fiducial volume:

8, > 40 mrad,

Imcal|

30 < |Yew) < 90 cm.

< 170 cm,
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3.5.2 Background Reduction.

~ Given a mass distribution with a signal S and a background B, the background may
be reduced with an appropriate set of cuts. In general, such cuts should be chosen to
optimize the following:

e Maximize S/B for the smallest correction.

¢ Minimize §5/S for a precision measurement.

These terms are defined as:

55/ = YNsa B
Nop — B

where Ngp is the number of events passing all cuts that are =3¢ from the peak; while
B events satisfy all the same cuts except that they appear at £(4—7)o from the mean
mass. B can also be extracted by fitting the background, but this is a poor estimator

when the actual shape of the background events is needed for physics distributions.

3.5.3 Lifetime.

The lifetime ct is the distance traveled by the A or K in the laboratory frame, where
cr is the proper lifetime. Since the A and the K have proper lifetimes of 7.89 cm and
2.68 cm, respectively, this quantity can be used to better improve the signal, though
it is complicated because the particles are not produced from a point source, but
rather from a triangular vertex distribution. Although other quantities, such as the
vertex distributions, are best understood with the Monte Carlo (see Section 3.5.5),
this quantity is best optimized with the data.

No restriction was made regarding long and short tracks, as defined iﬁ Sec-
tion 2.3.7. For the A events, the pion may be a short track, but the proton must
traverse the detector. Either charged pion, but not both, may be a short track in the
K selection. Furthermore, protons below the Cerenkov threshold were accepted as

well.
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A Ks
o (om) | S/B[95/5 | S/B [ 65/5
(minimum) (%) (%)
1996
5 07| 530 1.1 437
10 1.0 5.10 2.2 3.89
15 1.31 4.98 3.1 3.81
20 1.4 | 5.18 3.8 3.89
25 16| 5.34 46| 4.01
30 1.7 5.66 4.9 | 4.27
1997
5 07| 4.76 1.0 4.01
10 09| 4.62 1.8 | 3.72
15 1.3 4.47 231 3.69
20 1.5 | 4.56 27| 3.78
25 1.7 4.60 3.3 | 3.82
30 1.9 4.81 3.81 3.88

Table 3.6: S/B and §S5/S as a function of travel distance in the laboratory for the
semi-inclusive A and Kg. No cuts are applied beyond those to identify a DIS positron.

Table 3.6 shows the variation of 6S/S for each data sample. These studies are
independent of Monte Carlo simulation and come strictly from analysis of the data.
According to this method, the optimal value is 15 cm for both the A and the K.
S/B is not maximized here as it increases monotonically with the length used; it is
simply used for later comparison to indicate the appropriateness of other cuts. Both
S/B and §5/S vary between the years, indicating a difference in average background
conditions. This is one of the many reasons why the data from each year are treated
separately. Although the statistical precision naturally varies with the run list used,
the average S/B does not, indicating no pathological problems with including various
runs (or excluding them).

The Monte Carlo can also be used to extract the optimal range for these values
such that the data can be fit with an exponential appropriately. On the other hand, it
was very useful to use §5/S as a guide because the final physics results were insensitive
to the actual cut used and only the precision was affected.

Additionally, A identification requires that p, > p, in the lab frame.
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3.5.4 Monte Carlo Models of Detector Resolution.

The Monte Carlo was again used to understand the impact of the finite detector
resolution and acceptance on the data sample. Lambda and K-short events were
generated with ~10 times the statistics of the data sample for both the 1996 and 1997
detector configurations, as discussed above in Section 3.3.12. The decay products
were passed through a digitized version of the detector. The resulting multi-track
events were then subjected to the same analysis program as the data, after which
distributions were generated in order to establish appropriate cuts for the actual data

sample.

Collinearity.

The collinearity describes the following: Let A be the unit vector pointing from the
reconstructed decay vertex back to the production vertex, and let 4, be the unit
vector describing the sum of the momentum vectors of the proton and the pion.
The collinearity is the cosine of the angle between these two, defined as collinear-
ity=cos (A, Upr) (@s shown in Figure 3.12). Variations from unity for this number

result from reconstruction errors. The same quantity can be evaluated for the Kjg

P
Vpn

T

_ o— —o Are these parallel?
Production vertex A Decay vertex

events.

Figure 3.12: The collinearity in decays of strange particles.

To determine how well this can be measured with the spectrometer, (e,e’A) and
(e,€'Kg) events were generated by the Monte Carlo and the collinearity distribution

was constructed. As seen in Figure 3.13, the resolution of the detector is such that a

2The only modified files: hmcdg.ie, which lists the materials in the detector, and hme.digi, which
parameterizes the response of the detectors.
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cut of cos (A, T,x) > 0.99 is sufficient (only < 1% of the Monte Carlo events are lost).

L Entries 23292
104k Mean 0.9999
E RMS 0.55034-03

T T 7T

1025-

10

F [T ST NRRN S |
0.982 0.984 0.986 0.988 0.99 0.992 0.994 0.996 0.998 1 1.002

cos (A, pr)

Figure 3.13: The collinearity, as defined in the text. It has been evaluated for gener-
ated semi-inclusive A and K5 that were then reconstructed.

Track Separation at the Vertices.

The two relevant vertices are shown in Figure 3.14 and the two relevant distances,
dpadron and de_x, are defined. The decay vertex is reconstructed first with the two de-
cay hadrons and then the production point isb found by using that track and matching
it to the positron’s track.

In the decay vertex, the background can be reduced by restricting dnadron, the
distance of closest approach between the two decay hadrons. The reconstructed Monte
Carlo events were used to determine how well the vertices can be identified. The
results for the semi-inclusive A and the K are seen in Figures 3.15 and 3.16; these
distributions were poorly described by exponential distributions. A calculation of the
o of the distribution (assuming a mean of zero) gives values of ~1 cm for both the

A and K. The value varies by ~0.2 cm as the detector description is refined and
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Figure 3.14: The geometry of the decay and the definition of the two distances dpadron
and d._x, shown for A decay.

other cuts are varied slightly. For this reason, the average value is deemed sufficiently
accurate and a 30 cut of 3.0 cm was used.

Similarly, background can be reduced by restricting d._x, the distance of closest
approach between the positron and the reconstructed particle. Figures 3.15 and 3.16
show these distributions as well and indicate how, because of the third track needed
to create this figure, the distribution does not look exponential. The widths were
again calculated and they were 1.0(0.7) cm for the A(K), though these values varied
as a function of the other cuts. Since the physics results were extremely insensitive
to these values, an average of 1.0 cm was used to impose a 30 cut of 3.0 cm for both

particles.
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Figure 3.15: Distance between the positron and the A at the production vertex (top)
and the 7 and p at the decay vertex (bottom) in Monte Carlo events.
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Figure 3.16: Distance between the positron and the Ky at the production vertex
(top) and the two pions at the decay vertex (bottom) in Monte Carlo events.
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Mass Distributions in the Monte Carlo.

The mass distributions were constructed for both the A and the K s generated in the

Monte Caﬂo, as can be seen in Figures 3.17 and 3.18.

3000
2500 -

2000 |-
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0 Laile by W FEEE oL o
1.09 1095 1.1 1305 1.11 1.115 1.12 1,125 1,13 1.135 1.14

m,, from Monte Carlo (GeV)

Figure 3.17: The A mass distribution in Monte Carlo events.
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Figure 3.18: The Kg mass distribution from the Monte Carlo. The mass resolution
of ~1.3% may be seen from the width of the distribution.
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The distribution in the K, which decays symmetrically to #*7~, can be used to
examine the detector mass resolution, giving a value of ~1.5%. This will be compared

to data in Section 3.5.8.

3.5.5 Vertex Distributions.

The production vertex distributions will be discussed in terms of the coordinates z’,
o, and 2/, in order to avoid confusing them with other variables defined in this work.
The origin for this system of coordinates is at the center of the target cell and following

the HERMES convention (z' horizontal, 3 vertical, and 2’ pointing downstream).

Longitudinal Distributions.

The 2’ distribution of Figure 3.19 indicates that ~5% of the events are reconstructed
outside of the target cell. The mean of the 2’ distribution is sensitive to the cuts
placed on the track separation at the two vertices. If these numbers are too generous,

the mean will be inconsistent with zero. Fortunately, tight cuts mitigate this problem.
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Figure 3.19: The 2’ distribution for A and K events in the data of 1996; the 1997
data look identical. Top: ~5% of the events are reconstructed outside the target cell.
The collimator “bump” seen at negative 2’ values in the inclusive distributions is not
seen here. Bottom: The distribution in the target cell with the cut |2'| < 20 cm.

Transverse Distributions.

In inclusive analyses, events are restricted to the target cell region by utilizing the
fact that a single track can be traced back to its point of closest approach to the
beam line; this is then considered the vertex position. In coincidence measurements,
more information is available to accurately reconstruct a vertex position.

The relevant distribution of vertex coordinates is that associated with the pro-
duction of the strange particle. In order to understand the detector’s limitation on
these quantities, these histograms can be plotted for Monte Carlo events, where all
events are produced at ' = 0, ¥ = 0, and with a triangular distribution in z'. The

finite beam size in the experiment is so small that it is unlikely to be uncovered by
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the resolution of this detector. Hence comparing Monte Carlo distributions to data
tests the represent‘ation of the detector.

Figure 3.20 shows that the transverse distributions are not easy to understand.
One Gaussian curve does not fit the data well, while the x?2 is significantly reduced
by fitting with two Gaussian curves. The widths differ in 2’ and y' due to the con-
figuration of the front chambers, which are the only tracking detectors used for the
region in front of the magnet in this work. The 2’ position is better determined, thus

producing distributions with smaller widths.
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Reconstructed MC: Vertex distributions
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Figure 3.20: Vertex distributions resulting from reconstructed Monte Carlo events,
where the events produced are A or Kg, as discussed in the text.
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The transverse vertex distributions from the data look much as they do in the

Monte Carlo, such that Gaussian curves do not characterize the data very well.

Rather, it is preferable to calculate the widths of the z' and 3’ distributions. It

is also possible to exclude events where the reconstructed z' origin appears to be

outside the target cell. Table 3.7 describes the changes in the mean and widths when

data and Monte Carlo events are compared; and when the 2’ origin is restricted.

Monte Carlo Data Data with |[2/| < 20 cm |
1 T i T o
A
z' | 0.0145 4 0.0013 | 0.1947 | —0.1018 £ 0.0095 | 0.3587 | —0.1103 £ 0.0074 | 0.2813
y' 1 0.0193 &£ 0.0035 | 0.5032 | —0.0364 +0.0160 | 0.5812 | —0.0220 = 0.0120 | 0.4218
Z' 1 1.0297 £ 0.0643 | 9.3447 0.3160 £ 0.3129 | 11.3411 0.0811 £ 0.2533 | 8.8994
Ks
z' 1 0.0216 = 0.0011 | 0.1454 | —0.1054 +0.0084 | 0.3208 | —0.0985 £ 0.0074 | 0.2774
y' | 0.0258 £ 0.0038 | 0.4819 | —0.0360 = 0.0145 | 0.5237 | —0.0450 +0.0124 | 0.4340
Z' | 0.8937 £ 0.0713 | 9.0596 0.2667 + 0.3006 | 10.8008 0.0793 £+ 0.2521 | 8.8019 |

Table 3.7: Statistical measures for vertex distributions of A and K5 for Monte Carlo
events, data, and data with 2’ < 20 cm. All measurements given in centimeters.

The widths are particularly sensitive to the cuts on de—x and dhadgron; though

generous values for these quantities do not affect S/B or 65/ significantly, they do

change the values for o. Hence vertex information gives additional guidance regarding

the validity of other cuts. Furthermore, the means are closer to zero and the transverse

widths are narrowed when the |2’| < 20 cm restriction is imposed.

3.5.6 Additional Kinematic Cuts.

The following additional cuts were imposed on kinematic variables:

0 < zp<1,

02 < z<1,

0.1 < pr<1.2GeV.
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Tp > O was required in order to guarantee that the events took place in the current
fragmentation region. Singularities in the polarization histograms were seen for very
low z and for low pr. It was discovered that these additional cuts improve the x2
of the final results and they do not bias the results at all. These cuts were more
generous than those for (e, e'w) events because there are far fewer events; hence, the

results are less sensitive to these cuts.

3.5.7 Final Cut Selection.

For convenience, the cuts are summarized in Table 3.8.

Requirement Minimum value | Maximum value
for A (K5s) for A (K5s)

Q% (GeV?) 1 7

W? (GeV?) 4

Y 0.85

z 0.2 1

pr (GeV) 0.1 1.2

6, of each track (mrad) 40

T at calorimeter face (cm) 150

y at calorimeter face (cm) 30 90

ct (cm) 15

COS(‘K(KS), vpvr(ww)) 0.99

deA(Ks) (cm) 3(3)

drp(r) (cm) 3(3)

2 at prod. vertex (cm) -20 20

width of peak (GeV) 0.002(0.008)

Table 3.8: Final cut selection for (e,e’A) and (e, €' Kg) events.

3.5.8 Mass Distributions.

Figure 3.21 shows the mass peaks after all cuts are applied. The Kg peak shows
a mass resolution of 1.2%, which agrees impressively with Monte Carlo, and the x?2

values are rather reasonable.
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Figure 3.21: Reconstructed mass peaks with all cuts applied. Top: A
bottom: Kj. The constants are extracted from fitting N events with
N = P1 exp (~0.5(m — P2)/P3)? + (P4 + P5(m — P2)) for mass m.

3.5.9 Background Subtraction to Strange Particles.

The background is identified by looking at the region in the mass spectrum that is
+(4 — 7)o from the mean, while the signal region is defined to be +3c. In every
distribution plotted hereafter, the signal and background regions are binned indepen-

dently and then the background is subtracted. The corresponding error bar for this



67
yield is increased appropriately. The size of the correction is shown in the ratio of

S/B as & function of A energy in Figure 3.22.
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Figure 3.22: The signal-to-background ratio S/B as a function of the A energy. At
low momentum, the background is high; and at high momentum, the signal is low.

Although the Monte Carlo can be used to simulate background as well, it was de-
cided to study the background in the data sample. This is due to the proliferation of
low energy pions which can cause accidental coincidences and which affect misiden-
tification in the Cerenkov as well. The Monte Carlo does not model these extra

background processes well; analyzing the background in the data is more reliable.

3.5.10 Kinematic Distributions.

For all the distributions shown in this thesis, the Monte Carlo and data have each been
independently normalized. This is done because the Monte Carlo does not reproduce
the observed rates of production for A and K. Thus, the distributions are used to
compare the shapes and not the absolute yields of particles.

The energy distribution for the A is shown in Figure 3.23.
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Figure 3.23: The A energy distribution. Filled circles: Data. Histogram: Monte
Carlo. '

Other kinematic distributions are more revealing. For instance, the momentum
distributions of the decay products show a high degree of correlation, shown for the
accepted A in Figure 3.24. Ideally, if a proton of a given momentum is detected, one
would still find pions of all allowed momenta. Because this forward spectrometer sees
such a narrow range of phase space, high (low) momentum protons correspond to high
(low) momentum pions. This also explains the features of the energy dependence of
the S/B. The low momentum protons are subject to background because of the failure
of the Cerenkov to separate pions and protons below 4.8 GeV, while low momentum
pions are immersed in coincident low energy particles at the magnet chambers. Hence,
each decay particle of low momentum A events is reconstructed in a high background

environment.
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Figure 3.24: The momentum correlation between the proton and the pion of A decays
in the data.

Figure 3.25 shows other kinematic distributions compared to Monte Carlo results.
Data with Q* < 1 GeV? were discarded since, as discussed in Section 3.3.3, the
acceptance is very sensitive to alignment at low Q2.

Differences are seen in the variables describing the hadron. This is most likely due
to inappropriate modeling of the fragmentation functions, which would also explain
the discrepancy seen between the Monte Carlo and the data in the energy distribution.
As in pion production, the distributions in zz and z are not independent; however,

this is an artifact of the detector.
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Figure 3.25: Background corrected kinematic distributions in (e, ¢'A) events. Top left
(right): Q? (pr). Bottom left (right): zr (2).

As before, factorization can be shown to hold for these events. Table 3.9 indicates
that the mean z and Q? are independent of one another; this is apparent in the coarser

binning necessary for measurements with limited statistics.

Kinematic bin Average value

1996 1997
2z < 0.5 (@%) =1.910£0.034 | {Q*) = 1.833 £0.029
z>05 (@) = 2.076 £0.045 | (Q?) = 2.062 + 0.039
Q% <2 GeV? (z) = 0.473£0.005 | (2) = 0.469 & 0.005
Q% > 2 GeV? (z) = 0.479 £0.005 | (2) = 0.480 & 0.005

Table 3.9: Evidence that factorization holds in the set of all (e,e’A) and (e, €' Ks)
events, as discussed in the text. Furthermore, the average values for @Q? and z agree
for the two years of data.

The associated plots for the Kg sample are shown below in Figures 3.26, 3.27,
and 3.28. Compared with the A events, the kinematics are slightly different for the
K events since at least one of the decay particles is required to be positively identified

as a pion. Because the threshold of the Cerenkov counter is 4.8 GeV, this imposes a
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minimum momentum on the detected K events.

8 o
o
o
6_
o
m [w]
~4 i
0 a u]
2 F o
(n)
O
O TEID EIG 1 1 1 1 1 | g
0 2 6 8 10 12 14 16 18
E, (GeV)

Figure 3.26: The S/B for the K5 sample, as a function of particle energy.
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Figure 3.27: The energy distribution for the Kg, compared to Monte Carlo. The
minimum momentum cutoff of 4.8 GeV is due to the requirement that at least one
particle be positively identified as a pion by using the threshold Cerenkov counter.
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3.5.11 Quadrant Analysis.

As in Section 3,4.2,' the data were sorted according to the physical region of the
detector into which the positron was scattered, as determined by the positron’s polar
angle ¢’. Each quadrant thus had a sample of A or K5 events. The mean and
variance of the kinematic distributions for each quadrant’s sample were calculated.
The results are shown in Figures 3.29 and 3.30. It is evident that no bias exists
across the four quadrants (there is no spurious geometric bias from the detector).
Furthermore, the distributions agree for both years, indicating that the two data
samples can be combined with confidence. It is noteworthy that the 1996 trend of
the energy distribution of the A is reproduced in the 1997 data; this may hint at a
small bias that is not significant in these limited statistics.

<E> <p,>

L1996 50
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>6:50 45 {% E
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GeV

575
5‘50 1 1 1 i ‘35 l 1 i o
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Figure 3.29: The dependence of the kinematics of the A on the quadrant of the
scattered positron.
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Figure 3.30: The dependence of the kinematics of the K on the quadrant of the
scattered positron.

3.5.12

Kinematic Bins.

As in Section 3.4.3, the average values of the kinematic distributions were evaluated

for each strange particle and are tabulated in 3.10. The acceptance differs between

the A and K and hence different endpoints were used for the binning in zr and z

for the two samples. The results indicate that the mean value in each kinematic bin

is stable from year to year and hence the results can be combined; the average value

was used to characterize the results.
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Variable | Binning A Ks

1996 | 1997 || 1996 l 1997
pr 0.1-0.5 0.684 | 0.667 | 0.723 | 0.703
pr 0.5-1.2 0.312 | 0.311 || 0.319 | 0.330
Q* 1-2 3.193 | 3.276 || 3.248 | 3.171
Q? 2-7 1.443 1 1.419 | 1.430 | 1.425 ;
z 0.2-0.5(0.55) {| 0.606 | 0.621 || 0.682 | 0.676
z 0.5(0.55)-1 |1 0.365 | 0.365 | 0.430 | 0.429
or 0-0.3(0.5) | 0.430 | 0.444 || 0.624 | 0.624
TF 0.3(0.5)-1 0.161 | 0.157 || 0.375 | 0.378

Table 3.10: The average values in each kinematic bin for semi-inclusive A and K.
The K5 parameters appear in parentheses unless they are identical for both particles.
The binning was chosen to give equal statistical precision in each bin.
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Chapter 4 Results.

4.1 Overview of Acceptance Corrections.

In general, once good events are selected, the distributions must be corrected for
the acceptance of the apparatus, although the strange particles require a background
correction first. The background correction can be understood by examining the
events outside the central region in the mass spectrum containing good events; these
“sideband” events are assumed to model the background well since they have similar
kinematics.

The acceptance of the apparatus is very difficult to model, as it should take all
the relevant measured quantities into account. For instance, for the A events, the

acceptance function Agpperetus depends on many variables:

Aapparatus - Aapparatus (p;+7p—;r)p_;7)- (41)

With few events for the strange particles, it is not possible to bin events in all
variables with sufficient statistics. Hence, distributions formed from reconstructed
Monte Carlo events are used to correct the data.

The pion sample has sufficient statistics so that it would be possible to follow such
a model. Attempts to use the Monte Carlo simulation to simply write an acceptance
correction of the form N,ecepted/Ngenerated Still demanded binning the data in the six-
dimensional space of both the positron and pion momenta, although this did not
produce statistically robust results. While this could work in order to extract an
absolute cross section, the correlations that produce the azimuthal moments are too
complex to be easily treated in this way. Consequently, a heuristic approach was
followed instead and the systematic uncertainty was evaluated accordingly.

The statistical quality of each fit is measured not just by its x?, but rather by the
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probability P,(x*,v) = [ Py(x*)dx®. In principle, P,(x?, v) defines a flat distribu-
tion between 0 and 1; thus, the fits should give uniform randomly distributed values

for this quantity.

4.2 Azimuthal Distributions of Pions.

4.2.1 The Monte Carlo Generator.

Before the Monte Carlo could be used reliably to perform an acceptance correction,
it was necessary to verify that the generator did not itself create false moments.
Initially, the Monte Carlo simulation did produce a non-trivial azimuthal distribution,
which was derived from analytic expressions for gluon radiation [14]. Using this
generator would have made it very difficult to separate the relative importance of
simple radiation from the physics of fragmentation, particularly when these effects
both vary kinematically.

For this reason, the standard HERMES generator was modified to produce a
completely flat distribution in ¢. A sample of 300,000 events was used to determine
the binning of the data; for instance, at very low pr, there was a significant moment
seen. This is consistent with observations that it is difficult to construct a reliable
definition of ¢ at low pr [27].

The moments extracted from generated events are separated kinematically and
shown in Table 4.1. The bins differ only slightly from those used in the data analysis
since they are chosen to equalize the precision in each measurement and the detector
naturally samples the phase space differently. The differences are shown to be zero in
Table 4.1 to within 1o, in general, and certainly within 20. Variations are assumed
to be due to the analysis that evaluates ¢, as it cannot be extracted directly from the

generated events but must be reconstructed via the vector analysis of Section 4.2.3.
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| Kinematics {cos ¢) | (cos2¢) | {sin ¢) X2 |
0.30 < pr < 0.35 | —0.018 £ 0.049 0.099 £ 0.048 0.069 £ 0.046 | 1.317
0.35 < pr < 0.45 | —0.030 £ 0.037 0.009 £ 0.037 0.061 = 0.036 | 0.806
0.45 < pr < 0.65 | —0.012 +0.030 | —0.063 £ 0.032 | —0.014 £ 0.031 | 1.474
0.65 < pr < 1.00 0.035 £ 0.043 | —0.053 £ 0.043 0.063 = 0.043 | 0.507
1.00 < Q% < 1.35 | —0.040 £ 0.041 0.023 £ 0.041 0.048 £ 0.039 | 1.320
1.35 < Q* < 1.65 0.016 +0.048 | —0.046 £ 0.050 | —0.026 & 0.050 | 0.406
1.65 < Q% < 2.50 | —0.001 £ 0.034 | —0.044 3 0.035 0.066 £ 0.035 | 0.571
2.50 < Q% < 5.00 | —0.008 £+ 0.026 | —0.036 £ 0.027 0.015 £ 0.027 | 0.676
0.20< 2<0.35 —0.05540.028 | —0.003 £0.028 | —0.011 4+ 0.028 | 1.465
0.35 < z < 0.45 —0.014 £ 0.036 | —0.044 £ 0.036 | —0.014 + 0.036 | 0.500
0.45 <2< 0.55 —0.037 £ 0.043 0.037 £0.043 0.133 £ 0.042 | 0.987
0.55 < 2 < 0.90 0.016 & 0.035 | —0.031 £0.035 0.037 £ 0.034 | 1.403
0.10 < zr < 0.25 | —0.040 = 0.028 | —0.004 £ 0.028 | —0.015 = 0.028 | 0.789
025 <zp <035 0.013 +0.031 | —0.021 =0.031 0.062 4 0.030 | 1.436
0.35 < zr < 0.50 | —0.030 £ 0.040 | —0.044 £ 0.040 0.036 4+ 0.040 | 0.811
0.50 < zp < 0.70 0.027 +0.080 | —0.094 = 0.087 | —0.089 £+ 0.084 | 1.554

Table 4.1: The generated ¢ moments in (e, e'm) reactions. The detector geometry is
not included; thus, these are the raw moments extracted from the generator when
binned kinematically, although the amplitudes are set to zero.

4.2.2 Simulations of the Acceptance.

The Monte Carlo simulation can be used to determine the influence of the geometry
of the detector, without the need to actually simulate and digitize detector responses.
The full digitization can then be used later to understand the instrumental, or “smear-
ing,” effects of the detector.

An example of this study is shown in Figure 4.1, where the distributions represent
averages over all kinematic bins. Each distribution of N events in ¢ has been fit with

a function of the form

N
lé_:l—f—Acos ¢+ B cos 2¢ + C sin ¢.

NG (4.2)

Initially, generated DIS events are selected if they have a coincident pion with
momentum greater than 4.8 GeV (the Cerenkov threshold). Next, the tracks are
propagated through the magnetic field look-up table used by HRC. The z’ and ¢’
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positions of these tracks are then analyzed to determine if they would be detected
by the calorimeter. This is effectively a geometric cut on the generated events. It is
much less time-consuming than performing a full reconstruction and shows how the
detector itself create false non-zero moments. This is clearly the largest effect as it
produces the largest change in A. In the third and final step, a set of generated tracks
is completely propagated through a digitized version of the detector. The detector’s
influence on the distributions thus extracted can then be separated into a contribution

from the geometric acceptance and a small component from smearing.
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Figure 4.1: The effect of the acceptance on azimuthal distributions in generated
(e,€'m) events, averaged over all kinematics, where the ¢ dependence is fit to the
form Il\,‘le = 1+ A cos ¢+ B cos 2¢+ C sin ¢. Top: All events; middle: events falling
in the geometrlc acceptance of the detector; bottom: fully digitized and reconstructed
events. The largest change occurs in the step wherein good events must fall in the

detector, indicating that the detector’s geometry produces a large false asymmetry.
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1t is clear that this correction will be the source of a large systematic uncertainty, as
the acceptance can be parameterized with the same functional form as the signature
of the physics. The acceptance does not only introduce a false moment, but the
moment changes as a function of kinematics. Correcting for this is the most critical
step and hence it has to be considered carefully.

For instance, Figure 4.2 indicates the variation in the acceptance as a function of
Q? by examination of Monte Carlo events for which the generated distribution is flat
in ¢. Thus, it is an accurate measure of the effect of the detector. Comparison of the
lower Q? plot with Figure 3.5 suggests that ¢ = 0 and 27, the septum plate limits
the acceptance; thus, there is additional sensitivity to misalignment at that edge.

Thus, it was important to restrict the data to those regions in which the description
of the edge nearest to the septum plate would not be so critical. In principle, a region
with low statistics should not drive a fit or the x?; however, the low yields are an
indication that there is some systematic uncertainty that could be much larger there.
In order to minimize such systematic effects, a correction factor f was constructed

such that

(4.3)

At ¢ values near ¢ = 0 and 27, the data were neglected if f > 0.25. In practice,
with the binning chosen for this analysis, this was equivalent to discarding bins in
which the yield was less than 4% of the total. Figures 4.2-4.6 indicate how the
acceptance varies as a function of each kinematic quantity. This criterion was applied
symmetrically, such that if ¢ = ¢, was the critical ¢ value at which the yield was too
low, the events at (27 — @.) were also excluded, thus forcing the events to fall into a
region symmetric in ¢. The vertical lines in Figure 4.2 indicate at which points the
data were excluded.

Similar variations were seen in the region near ¢ = m, for instance, at high Q2.
These acceptance effects are due to different edge effects and were neglected. The

criterion on f excluded no events and thus the data were restricted at bins inside
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those containing the maxima of the “side lobes.”
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Figure 4.2: Detector acceptance in ¢ as a function of Q? for generated (e, €'mw) events.
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cles) and Monte Carlo (open circles) are compared; the Monte Carlo event sample has
the same statistical precision as the data. Bottom: Acceptance corrected distribution

and the results of a fit to 1—\1,7%—' =1+ A cos ¢+ B cos 2¢ + C sin ¢.

An example is shown in Figure 4.3. Bins near ¢ = 0 or ¢ = 27 were not used for
the fit in order to minimize systematic effects. Thus, the following guidelines were
developed for determining the range of bins in which the acceptance correction is

valid:

e Only those bins in which the data and the Monte Carlo contain more than 4%

may be used.

e The kinematic regimes in which the acceptance produces a large {cos 2¢) false
asymmetry must be handled carefully, as it is difficult to identify the “edge” in

these distributions.
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Similar distributions and the associated restrictions are shown in Figures 4.4, 4.5,

and 4.6.
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Figure 4.4: Detector acceptance in ¢ as a function of pr.
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4.2.3 Analysis.

The angle ¢ is defined as the angle between the electron scattering plane and the

hadron production plane. It is defined by the following vectors in the -N CM frame:

~ ~

(4 ><7“r)-(k><k’)_
ja x #| [k x k|

cos ¢ =

(@x#)x (kx¥)-q

sin ¢ = SR —"
jax 7| [k x k|

Unit vectors in the appropriate direction are all denoted by a hat. 7 is the pion
direction of motion in the 4-N CM frame. §, k and &' describe the direction of motion
of the virtual photon, the incident lepton, and the scattered lepton, respectively. The

Monte Carlo histogram is normalized and used to construct a correction factor C'(¢):

C(¢) = Nuc; (4.4)
| T C(0)dd = 1.

The data are similarly normalized to unity (such that the statistical error bars are

properly transformed as well) and a corrected distribution is formed:

dNI(¢) 1 deata (¢)

= ) 4.5
B 00 9 (49)
N'(¢) is then normalized to one and fit to the function
1 dN' :
—ﬁd—¢—1+Acos¢+Bc032¢+Csm¢. (4.6)

The results for the raw data are shown in Table 4.2, where they are separated
for each year. The statistical quality is identified with the P,. from the fit. The
number of bins used for the analysis is also indicated (indicating the excluded bins
near ¢ = 0,27 where the factor f < 0.25); this is not equivalent to the number of

degrees of freedom, as this is a four-parameter fit.
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| Kinematics (cos¢) | (cos2¢) | (sin ¢) | P2 | N|
7 : 1996
{(pr) = 0.350 GeV | —0.057 £0.018 | 0.11440.015| —0.017+0.013 | 0.044 | 12
{pr) = 0.448 GeV | —0.044£0.019| 0.090+0.016 | 0.004 £0.014 | 0.115 |12
(pr) = 0.588 GeV | —0.108 £0.017 | 0.068+0.015 | ~0.018 +0.012 | 0.134 | 14
(pr) = 0.848 GeV | —0.099 & 0.025 | —0.005+0.022 | 0.032+0.017|0.015| 14
(Q?%) = 1.184 GeV* | —0.018 £0.017| 0.087+0.015| 0.005+0.013 | 0.177| 12
(@%) = 1.541 GeV? | —0.045 £0.022 | 0.052 4 0.020 | —0.003 £0.017 | 0.051 | 14
(@Q%) = 2.081 GeV? | —0.104 +0.017 | 0.057 £0.015 | —0.018 £0.012 | 0.021 | 14
(Q%) = 3.415 GeV* | —0.067 £ 0.022 | 0.046 +0.016 | —0.010 +0.014 | 0.299 | 12
(z) =0.318 0.000£0.021 | 0.009£0.019| 0.004 =0.016 | 0.923 | 12
(z) =0.398 —0.004 +£0.017| 0.037£0.015| 0.025+0.013 | 0.508 | 14
(z) = 0.498 —0.052 £0.020 | 0.094 £0.017 | —0.014 £ 0.014 | 0.096 | 14
(z) = 0.691 —0.098 £0.019| 0.129+0.014 | —0.024 £ 0.012 | 0.537 | 12
(zr) = 0.286 —0.013£0.019| 0.002+£0.018 | —0.005+0.015 | 0.924 | 14
(zp) = 0.359 0.005+£0.019| 0.028£0.017| 0.043+0.015|0.061] 12
(zp) = 0.456 —0.063£0.018 | 0.0883 £0.016 | —0.010+£0.013 | 0.131 | 14
(zr) = 0.651 —0.103£0.020 | 0.135£0.015 | —0.027 £0.013 | 0.764 | 12
71997
(pr) = 0.350 GeV | —0.047+0.015| 0.121+0.013| 0.014+0.011 | 0.039 | 12
{pr) = 0.448 GeV | —0.062+0.017| 0.112+0.014 | —0.003 = 0.012 | 0.283 | 12
(pr) = 0.588 GeV | —0.111+0.015| 0.067£0.013 | 0.015+0.011 | 0.250 | 14
{pr) = 0.848 GeV | —0.124 +0.022 | —0.005 £ 0.019 | —0.003 + 0.015 | 0.124 | 14
(Q%) =1.184 GeV? | -0.026 £0.015| 0.1114+0.013| 0.002+0.012 | 0.661 | 12
(Q%) = 1.541 GeV? | —0.065+0.020 | 0.086 + 0.018 | ~0.002 +0.015 | 0.061 | 14
(Q?%) = 2.081 GeV? | —0.099 +0.015| 0.038 £0.013 | 0.009+0.011 |0.026} 14
(Q?) = 3.415 GeV? | —0.071£0.019| 0.051+£0.014| 0.001+0.012|0.116 |12
(z) = 0.318 0.004 +0.018 | 0.013£0.017| 0.013+0.014 |0.670 | 12
(z) = 0.398 —0.044 +0.015| 0.054+0.013| 0.014+0.011|0.172 | 14
(z) =0.498 —0.063+0.018 | 0.088+0.015| 0.0174+0.013 | 0.856 | 14
(z) =0.691 —0.116 +0.017| 0.133 £0.013 | —0.009 4 0.011 | 0.166 | 12
(zp) = 0.286 —0.026 +0.017 | —0.005 £ 0.016 | 0.009 +0.013 | 0.737 | 14
(zr) = 0.359 —0.0134+0.017| 0.063£0.015| 0.014+0.0130.175| 12
(xp) = 0.456 —0.057+0.016 | 0.084+0.014| 0.012+£0.011|0.419| 14
(zp) = 0.651 —0.118 £0.018 | 0.143£0.013 | —0.003 £ 0.011 | 0.106 | 12

Table 4.2: Extracted

moments of the ¢ distributions for the (e,e'n) for each year,
with the associated confidence level and number of analyzed bins N.



87
The numbers in Table 4.2 were corrected to translate the lepton polarization into

photon polarization via the following equations from Section 1.3.1:

W) = @-yy1-y/+0-v)7,
hly) = (-9 /L+1-9)7,
(
(

y) = y/l-y/L+1-y), (4.7)

y) = y2-v) /1+1-v)7,

where D(y) is included for the polarization measurements.

These functions were averaged in each kinematic bin and are tabulated in Ta-
ble 4.3. In particular, the functions f;(y) vary significantly over the accepted range
of zr and z. Photon polarization factors were applied independently for each year’s
data, although the differences between the factors between the years are negligible.

These kinematically corrected moments are shown in Table 4.4.

[ Kinematics | y [ Al [ f() ] fsly) | D) |
{pr) = 0.350 GeV | 0.556 | 0.780 | 0.357 | 0.293 | 0.660
(pr) = 0.448 GeV | 0.576 | 0.761 | 0.345 | 0.300 | 0.683
(pr) = 0.588 GeV | 0.596 | 0.742 | 0.333 | 0.306 | 0.707
(pr) = 0.848 GeV | 0.610 | 0.729 | 0.324 | 0.310 | 0.722
(Q%) = 1.184 GeV? | 0.594 | 0.743 | 0.334 | 0.305 | 0.704
(Q%) = 1.541 GeV? || 0.584 | 0.751 | 0.339 | 0.301 | 0.692
(Q%) = 2.081 GeVZ || 0.579 | 0.758 | 0.343 | 0.301 | 0.688
(Q%) = 3.415 GeVZ | 0.566 | 0.774 | 0.353 | 0.299 | 0.674
2y = 0.318 0.607 | 0.647 | 0.272 | 0.339 | 0.824
(z) = 0.398 0.633 | 0.714 | 0.315 | 0.322 | 0.752
(z) = 0.498 0.580 | 0.761 | 0.344 | 0.303 | 0.690
(z) = 0.691 0.491 | 0.834 | 0.391 | 0.268 | 0.583
(zr) = 0.286 0.683 | 0.662 | 0.282 | 0.336 | 0.808
(zr) = 0.359 0.629 [ 0.716 | 0.316 | 0.321 | 0.747
(zr) = 0.456 0.579 | 0.760 | 0.344 | 0.302 | 0.688
(zr) = 0.651 0.493 | 0.833 | 0.391 | 0.268 | 0.585

Table 4.3: Photon polarization factors in (e, €'m) events.
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| Kinematics [ {cos @) /{(A1(y)) | {cos 2¢) /{f(y)) | (sin @) /Po{fs(v)) |
7. 1996
(pr) = 0.350 GeV —0.073 £ 0.023 0.320 £ 0.042 —0.105 £ 0.081
(pr) = 0.448 GeV —0.058 £0.025 | 0.261 + 0.046 0.024 = 0.085
(pr) = 0.588 GeV -0.146 £ 0.023 0.205 + 0.045 —0.107 £ 0.071
(pr) = 0.848 GeV —-0.136 £ 0.034 —0.015 £ 0.068 0.188 £ 0.100
(Qz) = 1.184 GeV? | —0.024 £+ 0.023 0.261 £ 0.045 0.030 £ 0.078
(Q2) = 1.541 GeV? | —0.060 =+ 0.029 0.154 4 0.059 —0.018 £0.103
(Qz) = 2.081 GeV? | —0.137+0.022 0.166 £ 0.044 —0.109 £0.072
(Qz) = 3.415 GeV? | —0.087 £ 0.028 0.130 = 0.045 —0.061 £ 0.085
(z) = 0.318 0.000 £ 0.032 0.033 £0.070 0.021 £ 0.086
(z) = 0.398 —0.006 £ 0.024 0.118 £0.048 0.141 +0.073
(z) = 0.498 —0.068 £ 0.026 0.273 £+ 0.049 —0.084 £ 0.084
(z) = 0.691 —0.118 £0.023 0.330 £0.036 —0.163 = 0.081
(zr) = 0.286 —0.020 £ 0.029 0.007 £+ 0.064 —0.027 £ 0.081
(zp) = 0.359 0.007 £ 0.027 0.089 4+ 0.054 0.244 + 0.085
(xp)y = 0.456 —0.083 £ 0.024 0.256 +0.047 | = —0.060 £+ 0.078
(zp) = 0.651 —0.124 £0.024 0.346 4= 0.038 —0.183 +0.088
m:1997
(pr) = 0.350 GeV —0.060 £ 0.019 0.3394+0.036 | —0.087 + —0.068
(pr) = 0.448 GeV —-0.081 +£0.022 0.325 £ 0.041 0.018 £ —-0.073
{pr) = 0.588 GeV —0.150 £+ 0.020 0.202 4+ 0.039 | —0.089 + —0.065
(pr) = 0.848 GeV -0.170 £ 0.030 —0.015 £ 0.059 0.018 + —0.088
(Q2> = 1.184 GeV? | —0.035 4 0.020 0.333+0.039 | —0.012+ —0.072
(Qz) = 1.541 GeV? | —0.087 £ 0.027 0.255 £ 0.053 0.012 £+ —0.090
(Qz) = 2.081 GeV? | —0.131 £ 0.020 0.111 4+ 0.038 | —0.054 £ —0.066
(Q2) = 3.415 GeV? | —0.092 4 0.025 0.145 4+ 0.040 | —0.006 £ —0.073
(z) = 0.318 0.006 £ 0.028 0.048 +£0.062 | —0.070 £ —0.075
(z) = 0.398 -0.062 £ 0.021 0.172 £ 0.041 | —0.079 £ —0.062
(z) = 0.498 -0.083 £ 0.024 0.256 +0.044 | —0.102 £+ —0.078
(z) = 0.691 —0.139 £ 0.020 0.340 £ 0.033 0.061 £ —0.075
(zp) = 0.286 —0.039 £ 0.026 -0.018 £ 0.057 | —0.049 £ —0.070
(zp) = 0.359 —0.018 £ 0.024 0.199 +£0.047 | —0.079 £ —0.074
(zF) = 0.456 —0.075 £ 0.021 0.244 4 0.041 | —0.072 £ —0.066
(zp) = 0.651 —0.142 £+ 0.022 0.366 £ 0.033 0.020 £ —0.075

Table 4.4: Corrected moments in ¢ in (e, e'w) for each year.
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4.2.4 Systematic Studies and Uncertainties.
Acceptance Correction.

The algorithm used to extract the moments in ¢ is complex and several questions

must be answered in order to evaluate the associated systematic uncertainties:

1. What is the contribution from using a finite number of Monte Carlo events?

The number of (e, e'r) events generated was equal to the statistics in the data
set. The weighted fits already took these statistics into account. Thus, this is

a contribution to the statistical, not the systematic, error bar.

2. How does the detector affect the “real” ¢ distribution?

Figure 4.7 shows the distribution in ¢ for (e, 'n) events that were generated in
the Monte Carlo and then reconstructed; i.e., §¢ = ¢"%¢ — ¢9°®. The mean ¢ is
consistent with zero within 1o, indicating that the detector does not shift the ¢
value. Shifting the value asymmetrically would clearly affect the evaluation of
the moments. Thus, there is no systematic bias associated with the detector’s

measurements of ¢.

50
n= —2.0£2.7 mrad
40 + = 30.6 mrad
30 -
20
10 +
O —r = o
=0.50 -0.25 0.00 0.25 0.50

6¢ (rad)

Figure 4.7: Difference in the azimuthal angle ¢ for Monte Carlo (e, &'m) events, before
and after reconstruction.
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3. Does the 4% cutoff on the yields, as described in Section 4.2.2, improve the

agreement between the Monte Carlo and the data?

To study this effect, the data and Monte Carlo were compared, as in Figure 3.6;
however, the range in ¢ was restricted to 1 < ¢ < (27) — 1, as this represented

an average range of ¢ values allowed in all kinematic ranges. The results are
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Figure 4.8: Events are restricted to the range 1 < ¢ < (27) — 1 in this comparison
of data and Monte Carlo. In pr and zf, better agreement is seen here compared to
Figure 3.6, where all values of ¢ are allowed; thus, the acceptance is not well modeled
at the edges in ¢.

shown in Figure 4.8. Since the data/Monte Carlo agreement has improved,
particularly in the pr and z ¢ distributions, the cut at the edges in ¢ has removed
regions where the acceptance is not well modeled. The remaining discrepancy
at Q% ~ 1 GeV? indicates that the Monte Carlo generator does not produce
events appropriately at low Q2. This could most certainly be correlated with

the remaining discrepancies in the hadron kinematic quantities.

This study indicates that since the restrictions in ¢ do improve agreement be-

tween the Monte Carlo and the data in kinematic distributions, they improve
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the reliability of the Monte Carlo in describing the detector acceptance. No

systematic uncertainty is assigned for this effect.

4. Are enough bins near the septum plate removed?

This was evaluated by reducing the number of bins used in the analysis. In a
kinematic range with n bins in ¢, the analysis was repeated with n — 4 bins.

This is illustrated in Figure 4.9 for the highest Q2 bin.

.12

1<Q®> = 3.4 GeV? |

10 |

.08

.06
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.02

.OO I [é 1 1 i g! lL

Figure 4.9: ¢ distribution in accepted Monte Carlo events. Solid lines indicate the
cut-off bins in ¢, as described in Section 4.2.2; dashed lines indicate the narrower
range used to determine the sensitivity to the bins nearer the edge in ¢.

The quantity
5<W> = <W>all data — <W>narrower range (48)

has been tabulated independently for each year for (W)=(cos ¢), (cos 2¢), and
(sin ¢) in Table 4.5. The values for 6(W) for each year were compared and
the larger one was used as the absolute systematic uncertainty associated with

binning.
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Kinematic bin d {cos ¢) 0 {cos 2¢) 6 (sin ¢)

\ 1996 | 1997 || 1996 | 1997 || 1996 | 1997
(pr) =0.350 GeV | -0.001 | -0.001 || 0.023 | 0.013 || -0.021 | 0.004
(pr) = 0.448 GeV | -0.010 | 0.004 ] -0.004 | 0.027 || 0.011 | 0.009
(pr) = 0.588 GeV [ -0.023 | -0.020 | -0.006 | 0.006 || -0.005 | 0.008
(pr) =0.848 GeV | -0.036 | -0.037 || -0.003 | -0.008 [| -0.002 | -0.023
(Q%) =1.184 GeV* | -0.010 | 0.000 || -0.017 | 0.001 || -0.006 | -0.012
(Q?) = 1.541 GeV* | -0.015 | -0.012 || -0.003 | 0.002 [| -0.008 | 0.006
(Q%) =2.081 GeV? | -0.024 [ -0.023 || -0.008 | 0.000 [| -0.004 | -0.006

(Q%) = 3.415 GeV? | -0.002 | 0.004 | 0.016 | 0.025 || 0.004 | 0.042
(z) = 0.318 -0.007 | -0.004 || -0.013 [ -0.010 | -0.008 | -0.006 |
(z) = 0.398 0.003 [ -0.011 || 0.004 | -0.005 || -0.013 | 0.012
(z) = 0.498 -0.003 | -0.009 || 0.008 | -0.003 || -0.015 | 0.001
{z) = 0.601 0.002 | -0.001 || 0.012 | 0.027 | 0.008 | 0.003
{z7) = 0.286 -0.005 | -0.011 || 0.002 | -0.002 | 0.001 | 0.003 |
{z7) = 0.359 ~0.010 | 0.001 || -0.027 | -0.002 || -0.018 | -0.003
(zr) = 0.456 -0.008 | -0.008 || 0.006 | -0.002 | -0.011 | 0.004
(zr) = 0.651 0.001 | -0.002 | 0.017 | 0.027 | 0.004 | 0.006

Table 4.5: The differences in extracted moments if a narrower range in ¢ is used.

Radiative Corrections.

The radiative corrections may be evaluated for two processes: internal and external
radiative processes. Internal radiative corrections refer to vertex corrections, loop
diagrams, and other QED corrections to the single-photon exchange diagram, whereas

external radiative corrections describe losses in the detector.

e Internal radiation.

At HERMES energies, weak corrections and multi-photon exchange may be
neglected. The remaining loop and vertex corrections were recently calculated
by Akushevich et al. in Reference [71] and are shown in Figure 4.10. These
calculations suggest relative corrections to (cos ¢} of 10% at low 2z and only 1%
at high z, largely independent of the Bjorken fraction z (defined in Table 1.1).
These values are model-dependent and an iterative procedure would be ideal,
where an input model is radiated until good agreement is reached with the data.

Such a model was not available at the time of the completion of this work.
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Figure 4.10: The radiative corrections to {cos ¢) , evaluated at HERMES kinematics
as a function of z. Taken from Reference [71]. Dashed (solid) lines are Born (observed)
moments. Curves from top to bottom correspond to Bjorken z=0.7, 0.45, 0.05.

Instead, the data were directly corrected in z as shown in Figure 4.10. Because
z and zp are strongly correlated, as shown previously in Figure 3.7, the same
corrections were applied in zz; however, since pr and z are not strongly corre-
lated (shown in Figure 3.8), an average value of 5% was applied to each pr bin.
Similarly, as the corrections vary slowly as a function of z (relative to how fast
they vary as a function of z), it was assumed that they did not vary significantly
as a function of Q? either and an average value of 5% was applied to each Q2
bin.

Rather than correcting each event, the final results were corrected. This was
done in order to facilitate studies in which a model could be corrected iteratively.
In principle, each event could be corrected; however, the literature suggests that
current estimates of radiative corrections to these processes are highly model-
dependent and not exact at this time. Consequently, an average value was
applied to the results and an associated 100% contribution was assigned to the

systematic uncertainty (i.e., systematic error = size of radiative correction).
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» External radiation.

In principle; external radiative corrections result from two sources. One contri-
bution is bremsstrahlung in the target gas in addition to the DIS interaction
(either before or after it). Because the target represents about 10~° radiation
lengths at the typical density, this correction is negligible. In addition, the scat-
tered positron may experience energy loss in the material via bremsstrahlung.
It is precisely this quantity that the Monte Carlo models quite well, as shown
in Figure 4.1. Because reconstructed Monte Carlo events were used to calculate
the acceptance correction, no additional correction was applied to correct for
external radiative effects. Each component’s contribution to the detector’s total

number of radiation lengths is described in Chapter 2.
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Figure 4.11: Fractional differences in kinematics for Monte Carlo (e, €'m) events,
before and after reconstruction.

An example of the importance of external radiation may be seen in Figure 4.11,
where the relative differences in Q2 and pr in (e, €'w) events is shown for Monte
Carlo events before and after the reconstruction; dv = v — v9¢" for each vari-

able v. The distribution in §Q? shows an asymmetric radiative tail; otherwise,
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these distributions are rather featureless. The means are all unaffected at the

90 level and the widths of these distributions indicate broadening of ~3%.

These distributions are also affected by finite efficiencies in the hardware as
well as in the software; however, these factors should broaden the distributions
and do not contribute to the radiative tails. These distributions do not con-
tribute independent systematic uncertainties as these effects are included in the

evaluation of the uncertainty of the acceptance correction.

Contamination.

In principle, both the leptons and the hadron samples may be contaminated. A

detailed study of the particle identification scheme was performed by Menden [68]

and the results will be summarized here.

e Contamination in the positron sample.

The positron sample may be contaminated in two fashions: First, hadrons
may be misidentified as leptons. Secondly, positrons may originate in charge-
symmetric processes (such as <y from 7% decays) that are not deep-inelastic in-
teractions but satisfy the kinematic requirements. Detailed studies have shown
that these contamination factors vary with kinematics, as expected. Assuming
a particle identification efficiency of 95%, the contamination N5 /N, is estimated

to be less than 0.3% in the worst case and as low as 0.1% on average.

Contamination in the hadron sample.

The hadrons may be contaminated by misidentified leptons. In the worst case,
this factor is less than 0.4%. The hadron efficiency is 98.5% on average, and at
its lowest it is 97%.

These two factors are presumed to have no azimuthal dependence; however, a

conservative estimate of 0.5% was assigned for this contribution.
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Summary.

A summary of the maximum estimates for the principal sources of systematic uncer-

tainties is'shown in Table 4.6.

| Source | Uncertainty | Contribution |
| Binning in ¢ ~3% absolute
Radiative corrections | 10% relative
({cos ¢) only)
Contaminations 0.5% absolute

Table 4.6: Systematic uncertainties in azimuthal moments in (e, ).
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4.2.5 Results for Pion Azimuthal Distributions.

The statistical averages are tabulated in Table 4.2.5.

| Kinematics (cos ¢) [(/1(y)) {cos 29) /(F(y)) |
{pr) = 0.350 GeV | —0.062+0.0153+0.006 | 0.331 +0.028 +0.024
(pr) = 0.448 GeV | —0.067+£0.0174+0.012 | 0.297 + 0.031 & 0.027
(pr) = 0.588 GeV | —0.141+£0.015+0.025 | 0.203 = 0.030 £ 0.008
(pr) = 0.848 GeV | —0.148 £0.023 £ 0.038 | —0.015 & 0.044 + 0.009
(Q% = 1.184 GeV? | —0.029 + 0.015 £ 0.011 0.302 £ 0.029 £ 0.018
{(Q*) = 1.541 GeV? | —0.071 £0.020 £ 0.016 | 0.210 + 0.040 = 0.006
{Q?) = 2.081 GeV* | —0.127 £0.0154+0.025 | 0.135 £ 0.029 £ 0.009
(Q?) = 3.415 GeV? | —0.085 £ 0.019 + 0.008 | 0.139 & 0.030 £ 0.025
(z) = 0.318 0.003 £0.021 £0.009 | 0.041 & 0.046 +0.014
(z) = 0.398 —0.033 £0.016 +£0.013 | 0.149 + 0.031 £ 0.007
(z) = 0.498 —0.073 £ 0.018 = 0.011 0.263 £ 0.033 & 0.009
(z) = 0.691 —0.128 £0.015+ 0.006 | 0.33540.024 £ 0.027
(zp) = 0.286 —0.027 £0.019 £ 0.012 | —0.007 £ 0.042 £+ 0.005
(xp) = 0.359 —0.006 £ 0.018 = 0.011 0.151 + 0.036 = 0.027
(zp) = 0.456 —0.075£0.016 +£0.010 | 0.249 4 0.031 £ 0.008
(zp) = 0.651 —0.132 £0.016 £ 0.006 | 0.358 £ 0.025 £ 0.027

Table 4.7: {cos ¢) and {(cos 2¢) moments for the (e, e'T) events.
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~ The results for the measured (cos ¢) moments are shown in Figure 4.12 as a func-
tion of Q2. The HERMES data seem to smoothly connect with the higher @* EMC
data and are also consistent with the E665 measurements of (cos ¢) = —0.004 £ 0.020
for IT < 1 GeV and (cos ¢) = —0.070 & 0.023 for IT > 1 GeV, where Il is a generalized

extension of the transverse momentum; IT = 34,1005 [P7| [29].
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Figure 4.12: The Q? variation of the (cos ) moment. The band represents the
systematic uncertainty. These EMC data fall in the ranges 60 < W?2 < 160 GeV? and
Q?* > 2 GeV?.
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Figure 4.13: pr dependence of {cos ¢) moments. The EMC data plotted here fall in
the range 160 < W? < 360 GeV? and Q* > 10 GeV?; no lower W? data were available
for the pr dependence.
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Although, as Figure 4.13 indicates, the HERMES data increase with pr, the Q?
behavior suggests that Cahn’s kinematic model (cos ¢) ~ pr/Q is, perhaps, incom-
plete. Thus, higher-twist effects may modify the asymmetries at low Q? as parton
interactions become more important.

While both measurements cover the same range in z, Figure 4.14 indicates that
the enhancement at high z is very strong in the HERMES data. This effect repre-
sents a dilution of the moment by the random motion of the fragmentation process,
a mechanism which is independent of Q? and which differs from the QCD predic-
tion [12]. In principle, different fragmentation models could be distinguished at low

z; unfortunately, the experimental restriction on low z events prevents this study.
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Figure 4.14: z dependence of (cos ¢) moments. Unlike Figure 4.13, the kinematic
ranges of these EMC data are 60 < W2 < 160 GeV? and Q2 > 2 GeV2.
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Figure 4.15 shows the results for the extracted (cos 2¢) moments. The enhance-
~ ment at low Q? is strong here, suggesting that Cahn’s simple kinematic prediction of
{cos 2¢) ~ (pr/Q)? may contribute significantly; as the pr ranges of the two exper-
iments are roughly equivalent, the different Q? ranges would have a greater impact.
Konig and Kroll suggest that (cos 2¢) ~0 at low @2, but their calculations were per-
formed for EMC kinematics and do not access dynamics below 10 GeV2. Clearly it is
desirable to have model calculations performed at the HERMES kinematics to facili-
tate a more detailed comparison with these new data. However, the variation with Q?
seems to indicate that the leading order TR-odd fragmentation functions are not im-
portant, whereas the 1/Q? higher twist processes may play a major role. Figure 4.15
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Figure 4.15: Top (bottom): Dependence of (cos 2¢) moments on @? (z). The band
represents the systematic uncertainty.

also indicates that the variation with z is even more pronounced, suggesting again a
dilution effect from the fragmentation process. This produces an average value that

is higher because of the Q? dependence, while the shape of the z dependence results
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from the hadronization dilution.
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Figure 4.16: Variation of (cos ¢) and (cos 2¢) with parton kinematic factors.

Finally, the kinematic prediction may be tested directly by considering the vari-
ation of (cos ¢) ({cos 2¢) ) with pr/Q ((pr/Q)?), as shown in Figure 4.16. This
figure indicates that these expectation values are not well described by simple parton
kinematics and that such a simplistic picture may not be valid at such a low Q?
regime.

HERMES measurements of (sin ¢) are consistent with zero, as seen in Table 4.8.
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| Kinematics

(sin ¢) Po(fs(y)) |

{pr) = 0.350 GeV

—0.094 + 0.052 + 0.022 |

(pr) = 0.448 GeV

0.021 £ 0.055 + 0.012

(pr) = 0.588 GeV

—0.097 £ 0.048 £ 0.009

(pr) = 0.848 GeV

10.092 £ 0.066 £+ 0.024

(@Q%) = 1.184 GeV?

0.007 + 0.053 £ 0.013

(@?) = 1.541 GeV?

—0.001 £ 0.068 £ 0.009

(Q%) = 2.081 GeV?

—0.079 £ 0.049 + 0.008

(@%) = 3.415 GeV?

—0.029 & 0.055 & 0.042

(z) = 0.318 —0.030 = 0.056 £ 0.009
(z) = 0.398 0.013 & 0.047 + 0.014
(z) = 0.498 —0.094 £ 0.057 £ 0.016
(z) = 0.691 —0.041 % 0.055 =+ 0.009
{zr) = 0.286 —0.039 & 0.053 + 0.006
{zr) = 0.359 0.059 & 0.056 & 0.019
{zr) = 0.456 —0.067 =+ 0.050 & 0.012
(zF) = 0.651 —0.064 = 0.057 £ 0.008

Table 4.8: Results for (sin ¢) for the (e, ') events.

4.2.6 Charge-separated Results.

Instead of simply combining the two charge states, it is possible to identify and sep-
arate 77 and 7~. This analysis comprises 101k 7+ events and 74k 7~ events. This
7t /m~ ratio of 0.73 is consistent with the value of 0.72 extracted in an independent
analysis [31], although the numbers of accepted events are lower because of the ex-

clusion of events in regions where the systematic uncertainties associated with the

acceptance correction are large.

Figure 4.17 indicates that the two states give distributions and there are no large
charge-dependent effects. On the other hand, the 7~ events show a systematically
larger moment in (cos 2¢) compared to the 7. This may indicate a charge-dependent

enhancement in addition to the (pr/Q)* dependence expected in kinematic models

that may point to different DF’s or FF’s for 7% /7~ production.
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Figure 4.17: @Q? dependence of moments for 7+ and 7~. Top (bottom): (cos ¢)
({cos 2¢) ) moments.

The results are tabulated in Table 4.9.
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| Kinematics [ (cos @) /{f1(y)) [ (cos 2¢) /(fa(y)) |
pus
(pT) =0.350 GeV | —0.065 £ 0.035 £+ 0.006 0.312 £ 0.061 £0.024
(pr) = 0.448 GeV | —0.058 £ 0.041 £ 0.012 0.255 £ 0.071 £ 0.027
(pr) = 0.588 GeV | —0.153 £ 0.038 £ 0.025 0.127 £ 0.073 £ 0.008
(pr) = 0.848 GeV | —0.148 £0.060 £ 0.038 | —~0.027 £ 0.119 £ 0.009
(Q2> = 1.184 GeV? | —0.019 + 0.035 £ 0.011 0.275 4+ 0.064 £0.018
(QZ) = 1.541 GeV? | —0.076 £ 0.047 +0.016 0.143 £+ 0.092 £ 0.006
<Q2) = 2.081 GeV? | —0.143 + 0.037 £ 0.026 0.066 + 0.071 + 0.009
<Q2> = 3.415 GeV? | —0.075 £ 0.054 + 0.007 0.115 4 0.084 £ 0.025
(z) =0.318 —0.051 +0.049 +£0.010 | —0.090 £ 0.116 = 0.014
(z) = 0.398 —0.023 £ 0.040 £ 0.012 0.090 £ 0.082 £ 0.007
(z) = 0.498 —0.076 £ 0.043 £+ 0.011 0.217 £ 0.079 £ 0.009
(z) = 0.691 —0.120 £+ 0.035 £ 0.006 0.291 4+ 0.052 £0.027
(zp) = 0.286 —0.053 + 0.045 £ 0.013 | —0.104 £+ 0.106 £ 0.005
(zpy = 0.359 0.000 4 0.046 = 0.011 0.091 + 0.090 £ 0.027
(zr) = 0.456 —0.068 =+ 0.038 = 0.010 0.200 4+ 0.071 £ 0.008
(zp) = 0.651 —0.128 + 0.036 + 0.006 0.313 + 0.054 = 0.027
=
(pT> =0.350 GeV | —0.059 + 0.041 £ 0.006 0.371 +£0.071 = 0.024
(pr) = 0.448 GeV | —0.071 £ 0.047 = 0.012 0.383 £ 0.083 £ 0.027
(pr) = 0.588 GeV | —0.126 £ 0.044 +0.024 0.314 +0.080 4 0.008
(pr) = 0.848 GeV | —0.132 £ 0.068 & 0.038 0.037 £ 0.133 £ 0.009

(Q%) = 1.184 GeV?

—0.032 £ 0.039 =+ 0.011

0.358 £ 0.073 £ 0.018

(@?) = 1.541 GeV* | —0.073 £ 0.054 £ 0.016 | 0.317 £ 0.102 & 0.006
(@Q%) = 2.081 GeV? | —0.118 £ 0.044+0.025 | 0.230 % 0.080 + 0.009
(@Q%) = 3.415 GeV? | —0.091 £ 0.064 & 0.008 | 0.192 £ 0.099 = 0.025
(z) = 0.318 0.029 £ 0.055 £ 0.009 | 0.143 £0.127 =£0.014
(z) = 0.398 ~-0.042 +0.045+0.013 | 0.241 4 0.088 =+ 0.007
(z) = 0.498 —0.065 £ 0.049 £ 0.011 0.337 £ 0.090 £ 0.009
(z) = 0.691 —0.141 4: 0.043 £ 0.006 | 0.414 +0.063 £ 0.027
(zr) = 0.286 0.007 £0.051 £0.012 | 0.120 £ 0.115 £ 0.005
(zr) = 0.359 —0.004 £ 0.052 + 0.011 0.250 £ 0.097 £ 0.027
(xF) = 0.456 —0.080 £ 0.044 = 0.010 | 0.326 £ 0.081 £ 0.008 |
(zp) = 0.651 —0.139 £ 0.044 £ 0.006 | 0.439 £ 0.065 £ 0.027

Table 4.9: (cos ¢) and (cos 2¢) separated for 7+ and 7.



105
4.3 Azimuthal Distributions of Strange Particles.

4.3.1 Acceptance Corrected Results.

The (e,e’A) and (e,e'Kg) data were analyzed and corrected in the same fashion
as discussed in Section 4.2.3. An important difference, however, is that the Monte
Carlo event sample exceeds the data by a factor of ~10 and hence the uncertainty is

dominated by the statistical precision of the data.

Function A Kg
1996 | 1997 | 1996 | 1997

y 0.549 | 0.554 || 0.622 | 0.630
Fi(y) | 0.781 ] 0.774 || 0.720 | 0.712
Fo(y) || 0.358 | 0.354 || 0.319 | 0.314
F2(y) || 0.288 [ 0.287 || 0.316 | 0.318
D(y) || 0.652 | 0.655 || 0.737 | 0.746

Table 4.10: Photon polarization factors in (e, e’A) and (e, e'Ks) events.

Using the kinematic factors shown in Table 4.10, the raw results for each year of
Table 4.11 could be corrected. Originally, it was hoped that better statistical precision
could be obtained by fitting the data with only a term in (cos ¢) but the uncertainties
increased by only 5% when all allowed terms were included; thus prompting the
decision to include all terms in all the fits. The fits are separated for each year and
the confidence levels are tabulated as well to show that the fits are quite robust.

The corrected values for each year are shown in Table 4.12.
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| Kinematics | {cos @) | (cos2¢) ] (sin @) [ P2 ]
o A 1996
{pr) = 0.676 GeV 0.125 £ 0.179 0.190 + 0.168 0.048 £0.133 | 0.194
(pr) = 0.311 GeV | —0.134 4+ 0.137 | —0.276 £ 0.133 | —0.025 + 0.104 | 0.852
(Q%) =3.235 GeV2 | —0.130 £0.149 | —0.292 £ 0.151 | —0.013+0.114 | 0.286
(@?) = 1.431 GeV? 0.061 4 0.157 | 0.008£0.144 | —0.014 +0.117 | 0.459
(z) =0.613 ~0.175 £ 0.157 0.040 £ 0.154 0.275+0.117 | 0.663
(z) = 0.365 0.081 4 0.143 | —0.207 £ 0.137 | —0.185 £ 0.111 | 1.000
(zrp) = 0.441 —0.155 % 0.136 0.079 £ 0.131 0.218 £0.103 | 0.401
(zrp) = 0.159 0.111£0.163 | —0.294 £ 0.159 | —0.190 £ 0.125 | 0.970
A 1997
{pr) = 0.676 GeV | —0.131 £ 0.174 0.145+0.139 | —0.034 £ 0.114 | 0.310
(pr) = 0.311 GeV | —0.335+0.139 0.185+0.125 0.073 +£0.100 | 0.598
(Q%) = 3.235 GeV2 | —0.154 £0.191 | 0.318 £0.168 | 0.050 = 0.133 | 0.623
(@ =1.431 GeV? | —0.211 £ 0.133 0.104 £ 0.115 | —0.037 £ 0.094 | 0.508
(z) = 0.613 —0.211 £ 0.159 0.100 £ 0.148 | —0.124 +0.116 | 0.116
(z) = 0.365 —0.164 + 0.142 0.219+0.123 0.074 £ 0.101 | 0.516
(zp) = 0.441 —0.389 £ 0.138 0.162 +£0.122 | —0.043 £ 0.098 | 0.352
(zp) = 0.159 —0.066 £+ 0.167 0.175 £ 0.149 0.070 £ 0.119 | 0.764
Kg: 1996
{pr) = 0.713 GeV 0.019 £ 0.133 0.016 £0.128 0.126 £ 0.106 | 0.780
(pr) = 0.324 GeV | —0.252 % 0.130 0.004 £ 0.130 | —0.024 £ 0.106 | 0.101
(@%) = 3.209 GeV? | —0.282 4+ 0.144 0.089 + 0.135 | —0.081 £+ 0.108 | 0.729
(Q%) =1.427 GeV? | —0.010£0.120 { —0.058 £0.124 | 0.188 £ 0.105 | 0.271
(z) =0.679 —0.060 £ 0.131 | —0.107 + 0.126 0.009 £ 0.102 | 0.085
(2) = 0.429 —0.077 £+ 0.130 0.175 £ 0.131 0.172 £ 0.110 | 0.190
(zp) = 0.624 —0.090 £ 0.130 | —0.084 £ 0.124 | 0.001 4 0.100 | 0.049
(xp) = 0.377 —0.073 +0.132 0.160 = 0.133 0.163 £ 0.112 | 0.209
Ks : 1997
(pr) = 0.713 GeV | —0.100 = 0.126 0.071 £ 0.118 | —0.024 + 0.100 | 0.789
(pr) = 0.324 GeV | —0.165+0.112 | —0.192 £ 0.117 | —0.152 + 0.096 | 0.381
(Q%) =3.209 GeV? | —0.225 £ 0.123 | —0.038 £ 0.117 | —0.007 £ 0.096 | 0.342
(@%) =1.427 GeV? | —0.068 £0.114 | —0.062 £ 0.117 | —0.178 + 0.100 | 0.838
(z) = 0.679 —0.141 £0.125 | 0.127+0.125 | —0.184 + 0.101 | 0.470
(2) = 0.429 —0.054 £0.112 | —0.225 £ 0.112 | —0.021 £ 0.097 | 0.411
(zF) = 0.624 —0.162 +0.125 0.107 £ 0.125 | —0.153+£0.102 | 0.572
(zr) = 0.377 —0.058 £0.112 | —0.196 £ 0.112 | —0.049 £+ 0.096 | 0.532

Table 4.11: Extracted moments in ¢ for (e,e’A) and (e, e'Ks) events for each year,
with the associated confidence level.
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| Kinematics | {cos 8) /{f1(v)) | (cos 2¢) /{fa(y)) | (sin ¢) /Po(fs(¥)) |
- A - 1996
{pry = 0.676 GeV 0.161 = 0.230 0.534 & 0.472 0.303 & 0.841
(pr) = 0.311 GeV | —0.172£0.176 | —0.776 =0.374 | —0.158 = 0.657
(Q%) = 3.235 GeVZ | —0.167 +£0.192 | —0.821 £ 0.425 | —0.082 =+ 0.721
(Q%) = 1.431 GeVZ | 0.078 £ 0.202 0.022£0.405 | —0.088 = 0.740
(z) = 0.613 —0.225 + 0.202 0.112 % 0.433 1.738 £ 0.740
(z) = 0.365 0.104£0.184 | —0.582 £0.385 | —1.169 +0.702
{zp) = 0.441 —0.199 + 0.175 0.222 & 0.368 1.378 £ 0.651
(zrF) = 0.159 0.143+0.210 | —0.827 +0.447 | —1.201 & 0.790
A ;1997
{pr) = 0.676 GeV | —0.168£0.224 |  0.408 = 0.391 0.215 % 0.721
(pr) = 0311 GeV | —0.431£0.179 | 0.520£0.352 | —0.461 = 0.632
(Q%) = 3.235 GeVZ | —0.198 £ 0.246 0.894£0.472 | —0.316 +0.841
(Q%) = 1.431 GeVZ | —0.271£0.171 0.292 & 0.323 0.234 £ 0.594
(z) = 0.613 —0.271£0.204 |  0.281 £ 0.416 0.784 £ 0.733
(z) = 0.365 —0.211£0.183 0.616 £ 0.346 | —0.468 = 0.638
(zp) = 0.441 —0.500 £0.177 | _ 0.456 = 0.343 0.272 £ 0.619
(zr) = 0.159 —0.085 £ 0.215 04920419 | —0.442 £ 0.752
Ks : 1996
{pr) = 0.713 GeV 0.027+£0.186 | _ 0.051 =+ 0.405 0.723 £ 0.608
(pr) = 0.324 GeV | —0.352 £ 0.182 0013+ 0411 | —0.138 = 0.608
(Q?) = 3.200 GeVZ | —0.394 = 0.201 0.281+0.427 | —0.465 % 0.620
(Q?) = 1.427 GeV? | —0.014 £0.168 | —0.183 & 0.392 1.079 + 0.603
(z) = 0.679 —0.084£0.183 | —0.338 £ 0.398 0.052 % 0.585
(z) = 0.429 —0.108 =+ 0.182 0.553 £ 0.414 0.987 £ 0.631
(zr) = 0.624 ~0.126 £ 0.182 | —0.266 = 0.392 0.006 £ 0.574
(zF) = 0.377 —0.102 £ 0.184 0.506 + 0.421 0.936 & 0.643
Ks : 1997
(pr) = 0.713 GeV | —0.140%=0.176 0.225 & 0.373 0.138 £ 0.574
(pr) = 0.324 GeV | —0.231 £0.156 | —0.607 =+ 0.370 0.872 £ 0.551
(Q?) =3.209 GeVZ | —0.314£0.172 | —0.120 = 0.370 0.040 £ 0.551
(Q%) = 1.427 GeVZ | —0.095£0.159 | —0.196 =+ 0.370 1.022 £0.574
(z) = 0.679 ~0.197 £0.175 0.402 & 0.395 1.056 £ 0.580
(z) = 0.429 ~0.075+£0.156 | —0.711 £ 0.354 0.121 + 0.557
(zF) = 0.624 ~0.226 £ 0.175 0.338 £ 0.395 0.878 % 0.585
(zp) = 0.377 —0.081 £0.156 | —0.620 & 0.354 0.281 £ 0.551

Table 4.12: Corrected moments in ¢ for (e,e’A) and (e, €' Kg) for each year.

4.3.2 Systematic Uncertainties.

For the strange particles there are two dominant uncertainties: The background and

the acceptance corrections.
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Background Correction.

One way to see the impact of the acceptance on the background is to consider Ta-
ble 4.13, where the S /B numbers are tabulated for each bin, rather than integrated
over all kinematics as they were in Section 3.3. Clearly, the background depends heav-
ily on the kinematic bin, since the lower momentum events are subject to much higher
backgrounds. For those measurements that are more sensitive to the acceptance, the

background may be more important.

Kinematics om =20 | dm = 30
{pr) = 0.702 GeV 4.3 3.7
(pr) = 0.327 GeV 3.4 2.5
(Q%) = 3.389 GeV? 3.8 2.5
(Q?) = 1.454 GeV*? 3.7 3.1
(z) = 0.615 5.0 4.6
(z) =0.365 3.2 2.3
(zp) = 0.441 5.7 5.1
(zr) = 0.160 2.8 2.0

Table 4.13: The S/B as a function of kinematic bin for the A events. The numbers
are calculated by assuming a mass window of 20 and then 3¢ in order to include more
of the wings of the mass distribution.

It was possible to perform the entire analysis without a background correction to

search for a difference:

5 ((COS ¢>> — <COS ¢>COTT€Ct€d _ <COS ¢>uncorrected‘

fi(y) fi(y) fi(y) (49)

Results for this term are shown in Table 4.14. The other moments are neglected
since (cos ¢) is the moment that is determined with the highest statistical precision.
For both particles, these numbers are reasonably small; namely, they are ~5%, with
some excursions. For the Kg the numbers are consistently negative, indicating that

the background produces a larger moment than the physical measurement.
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A Ks

Kinematics 5 %—Z@ Kinematics 5 (—j,‘;s(—j)i
{pr) = 0.676 GeV 0.011 || (pr) = 0.713 GeV -0.037
{pr) = 0.311 GeV -0.012 || (pr) =0.324 GeV | -0.106
(@Q?%) = 3.235 GeV? | 0.048 [| (Q?) = 3.209 GeV? ;|  -0.087
(Q?%) =1.431 GeV? | -0.016 || (Q?) = 1.427 GeV? | -0.070
(z) = 0.613 0.046 || (z) = 0.679 -0.046
(z) = 0.365 0.013 | () = 0.429 -0.077
(zp) = 0.441 0.029 || (zz) = 0.624 -0.058
(zF) = 0.159 0.080 || {(xr) = 0.377 -0.076

Table 4.14: The importance of background corrections on the extracted azimuthal
distributions.

The Acceptance Correction.

e Generator.

Like the pions, the A and K5 were generated with an isotropic distribution in

¢. Thus, no uncertainty was assigned for the generator.

e Precision.

The number of events generated was such that ten times more A and K events
were reconstructed as were available in the data. The statistics of the Monte

Carlo was accounted for in the statistical error.

e Binning.

Unlike the (e, e'n) analysis, this analysis did not exclude events near the edges
in ¢ for two reasons: First, there were not sufficient statistics to search for
pathologies where the edges dominated the systematics. Secondly, because these
events sample a different region of phase space, the edges of the calorimeter
are not as likely to be populated by (e, €’A) or (e,e'Ks) events. Since this
correction was not performed, it should not be considered a source of systematic

uncertainty.

o Kinematic disagreements.
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Because the @Q? distributions of the Monte Carlo and the data agreed well,
discrepancies in the shapes of the z and zr distributions reflected poor un-
derstanding of hadronization dynamics. It was assumed that this changed the
relative rate of production in various kinematic bins but did not affect the ¢

distributions. Hence this was neglected.

Contamination.

Again, the contamination in each hadron sample is limited to 0.5% for the same
reasons as stated in Section 4.2.4. A better indication of the contamination is to
consider particlés in the Monte Carlo that were reconstructed incorrectly. This is
also an indication of the efficacy of the cuts. The results are shown in Table 4.15. An

~ absolute uncertainty of 5% was assigned for misidentification of particles.

A events K events
Ny | Ng | Nio || Nks | N | Na
r0.952 | 0.041 ] 0.007 || 0.958 ] 0.024 | 0.019J

Table 4.15: Misidentification of A or Kg as other particles. The background fraction
depends on the width of the peak, which is estimated from the mass distribution of
these events.

Cut Selection.

Because the S/B numbers are rather insensitive to the details of the cuts, no ad-
ditional systematic uncertainty was calculated for variation in the selection criteria.

These differences were assumed to be included in the background correction.

Radiative Corrections.

As shown in Section 4.2.4, internal radiation caused a 10% change in the extracted
(cos ¢) values for pions; however, this has not been studied for any other channels.
Furthermore, the other systematic and statistical uncertainties are much larger. For

these reasons, this correction was neglected.
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In order to understand the impact of external radiation as well as finite detector
efficiencies, the Monte Carlo simulation was used to consider (e,€'A) events analyzed
before and after the reconstruction. Again, although the §Q? and dpr distributions
showed radiative effects, the mean of the d¢ distribution was (0.24 £ 0.53)%, indi-
cating that this is not a significant bias in measuring the azimuthal angle. The Kg

events showed similar distributions.

Summary.

The dominant systematic uncertainties and their maximum sizes are summarized in

Table 4.16.

| Contribution Size |
Background correction | 0.10
Contamination 0.05

Table 4.16: Systematic uncertainties in ¢ moments of (e, e’A) and (e, €' Kg) events.
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4.3.3 Results for Azimuthal Moments of Strange Particles.

| Kinematics

{cos ¢) [{f1(y))

{cos 2¢) /(f2(y))

A

(pr) = 0.676 GeV

—0.008 = 0.160 + 0.051

0.459 £0.301 £ 0.051

)
{pr) = 0.311 GeV

—0.300 £ 0.126 £ 0.051

—0.088 £ 0.256 £+ 0.051

—0.179 £ 0.151 £ 0.069

—0.055 £ 0.316 £ 0.069

(Q%) = 3.235 GeV?
(Q?) = 1.431 GeV?

- —0.125 £ 0.130 £ 0.052

0.187 £ 0.253 + 0.052

{z) =0.613 —0.248 £+ 0.144 + 0.068 0.200 £ 0.300 £ 0.068

(z) = 0.365 —0.054 £ 0.130 £ 0.052 : 0.081 &£ 0.257 £ 0.052

{zr) = 0.441 —0.348 £ 0.125 £ 0.058 0.347 £ 0.251 £ 0.058

(zr) = 0.159 0.032 £ 0.150 = 0.004 | —0.125 = 0.306 £ 0.094
Ks

(pr) = 0.713 GeV | —0.061 = 0.128 + 0.062 0.145 + 0.274 4+ 0.062

(pr) = 0.324 GeV | —0.282+0.119 £ 0.117 | —0.330 £ 0.275 + 0.117

(Q%) = 3.200 GeV?

—0.348 = 0.131 £ 0.100

0.052 = 0.280 £ 0.100

(Q%) = 1.427 GeV?

—0.057 £ 0.115 = 0.086

—0.190 £ 0.269 £+ 0.086

(z) = 0.679

—0.143 £0.126 £ 0.068

0.034 £ 0.281 = 0.068 |

(z) = 0.429

—0.089 £0.119 £ 0.092

—0.177 £ 0.269 = 0.092

{zF) = 0.624

—0.178 £ 0.126 + 0.077

0.034 £0.278 = 0.077

(zF) = 0.377

—0.090 £ 0.119 £ 0.091

—-0.153 £ 0.271 = 0.091

Table 4.17: {cos ¢) and (cos 2¢) in (e, e'A)

and (e, e'Kg) events.
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| Kinematics

(

(sin @) /P (fs(y)) |

A

{pr) = 0.676 GeV

0.252 £ 0.547 £ 0.051

(pr) = 0.311 GeV

—0.316 £ 0.456 + 0.051

(Q?) = 3.235 GeV?

—0.181 £ 0.547 £ 0.069

(Q7) = 1.431 GeV?

0.107 £ 0.463 + 0.052

(z) = 0.613 1.257 £ 0.521 = 0.068
(z) = 0.365 —0.785 £ 0.472 =+ 0.052
(zr) = 0.441 0.797 & 0.449 & 0.058
(zr) = 0.159 —0.803 £ 0.545 & 0.094

Ks

(pr) = 0.713 GeV

0.413 = 0.418 + 0.062

(pr) = 0.324 GeV

0.417 £ 0.408 £0.117

(Q2) = 3.209 GeVZ

—0.183 £ 0.412 £ 0.100

(Q%) = 1.427 GeV?

1.049 4 0.416 = 0.086

(z) = 0.679 0.559 & 0.412 % 0.068
(z) = 0.429 0.500 & 0.418 = 0.092
(zr) = 0.624 0.433 £ 0.410 = 0.077
(zF) = 0.377 0.558 & 0.418 = 0.091

Table 4.18: (sin ¢) in (e,e'A) and (e, €' Kg) events.
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The results are combined statistically and the appropriate kinematic functions
are included in the final results, shown in Tables 4.3.3 and 4.3.3. The results for the
A are shown in Figure 4.18, where all moments appear to be fully consistent with zero
within 20. Because of the low statistics, it is too difficult to compare these results
with those of the pions to search for the validity of parton kinematic models at the
@? range covered at HERMES. Neither TR-odd nor higher twist effects produce a

significant value for the (cos 2¢) moment.
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Figure 4.18: Moments in ¢ for the (e,e’A) events. The measurements are taken at
the same average kinematic value but have been offset in this plot.

The same measurements were carried out for the Kg; the results are shown in
Figure 4.19, where they, too, show no evidence for significant azimuthal moments.
Again, more complex interactions affect the Kg production, a reasonable conclusion

for a particle that is composed entirely of sea quarks.
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Figure 4.19: Moments in ¢ for the (e,e'Ks) events. The measurements are taken at
the same average kinematic value but have been offset in this plot.

4.4 A Polarization.

4.4.1 Analysis.

In the A CMS, an orthonormal coordinate system can be constructed:

2 = A,
g = G x A,
& = § x 3 (4.10)

where A, given by A = (7 + §)/|7 + 5| for pion(proton) momentum 7(5), identifies the
direction opposite the undetected recoiling target fragments. (In the laboratory, it is
the A boost direction.) § is the virtual photon direction. Nevertheless, this convention

differs slightly from that used in hadron experiments, where the quantization axes are
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defined with respect to the incoming and outgoing beams rather than with respect to
the momentum trénsfer direction. This convention is, however, consistent with that
used in traditional electron scattering experiments at intermediate energies [11]'.
Angular distributions are then constructed by using the decay proton as an ana-
lyzer:

cos 0; = p-é; (4.11)
1
N= 5(1 + a P; cos 6;), (4.12)

where p is the normalized momentum vector of the decay proton in the A center of
mass and ¢ = z,y, z. « is the weak decay constant for A decay, which is 0.642 & 0.013.

These raw distributions are seen in Figure 4.20 and show the influence of the
spectrometer acceptance; the Monte Carlo event sample exceeds the data by a factor
of ~10 and hence the uncertainty is dominated by the statistical precision of the
data. The histogram in cos 8, is particularly sensitive, as the proton must a priori
go opposite to the A direction of motion in order to be detected; if the proton goes
forward, the pion goes backward and will not get boosted enough to be detected.
Hence pion detection is most likely if the pion is moving forward already before the
boost. (For this reason, in this analysis, this histogram is binned asymmetrically in
cos 0,, as the detector samples this quantity very asymmetrically.) The transverse

directions z and y are much less sensitive to the acceptance and hence are flatter.

1This coordinate system in the A CMS is an example of the helicity frame. It may be contrasted
with the Gottfried-Jackson (GJ) frame, in which the z direction is given by §. The GJ frame
is relevant for discussing the t-channel helicity density matrix, which is difficult to discuss in the
context of having an undetected remnant X in the reaction y— N — AX. A full discussion of these
frames (and others) is given in Reference {72).
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Figure 4.20: Raw angular distributions for A events for z <0.5, with data (black
circles) and Monte Carlo (red histogram). Top: cos 6,; middle: cos 6,; bottom:
cos 8,. The shapes differ radically due to differences in the acceptance.

4.4.2 Acceptance Corrected Results.
The distributions were corrected in a fashion analogous to the distributions in ¢. A

correction factor was constructed for each direction cosine:

C(cos 6;) = Nyc; (4.13)
1
/ C(cos 6;)d(cos 6;) = 1.
-1
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The data were then corrected with this factor C:

dN’(COS 01) N 1 deata (COS 62) (4 14)
d(cos 6;)  C(cos 6;) d(cos 6;) -

where each sample is independently normalized to unity, since the absolute cross
section for these production processes is not well described in the Monte Carlo. Then

N'(cos 6;) is normalized and fit to the function

1 dN’

— = —1+aP, cos ;. .
N’ d{eos 83 + aP; cos 6 (4.15)

That is, extraction of the slope yields a value for P;. An example is shown in
Figure 4.21. Although the binning is not symmetric in cos 8., the result is insensitive

to the bin choice; only the probability P2 is improved.

2.0
1.5

1.0

¥ |

P= 0.124 + 0.256

x%,= 1190
0.0 | 1 | 1 { L {
‘~1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00
cos @

Figure 4.21: The histogram used to determine the final polarization P, as discussed
in the text. The precision is representative of each polarization component.

The results for the three polarization directions were then sorted by kinematic
bin and are tabulated in Tables 4.19, 4.20, and 4.21 with the associated confidence

values.
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Kinematic bin 1996 1997
= I P P, l P2
(pr) = 0.676 GeV 0.195 £ 0.289 | 0.932 0.529 £ 0.276 | 0.469
(pr) = 0.311 GeV 0.023 +0.221 | 0.179 0.099 +0.230 | 0.172
(Q*) = 3.235 GeV? | —0.074+0.231 | 0.143 || —0.211 £ 0.293 | 0.514
(Q%) = 1.431 GeV? 0.229 + 0.263 | 0.766 0.487 £ 0.223 | 0.354
(z) =0.613 0.119 £ 0.258 | 0.433 0.350 & 0.275 | 0.652
(z) =0.365 0.066 & 0.241 | 0.246 0.119 4+ 0.232 | 0.306
(zr) = 0.441 0.186 £ 0.227 | 0.324 0.337+0.235 | 0.201
(zg) = 0.159 0.079 £ 0.267 | 0.245 0.148 £ 0.267 | 0.530
Table 4.19: The extracted values for P, for each year.
Kinematic bin 1996 1997
P, P P, P,

(pr) = 0.676 GeV | —0.247 £0.258 | 0.122 || —0.270 £ 0.225 | 0.023
(pr) = 0.311 GeV 0.009 +£0.210 | 0.799 || —0.352 £ 0.209 | 0.308
(@Q?%) = 3.235 GeV? | —0.063 £0.232 | 0.651 || —0.193 £ 0.265 | 0.028
(Q?%) =1.431 GeV? || —0.126 +0.230 | 0.240 || —0.554 & 0.192 | 0.440
(z) =0.613 —0.300 £0.248 | 0.991 || —0.663 £ 0.231 | 0.622
(z) = 0.365 0.020 £0.216 | 0.513 || —0.229 & 0.206 | 0.208
(zp) = 0.441 —-0.171 £0.225 | 0.898 || —0.628 + 0.198 | 0.503
(xpy = 0.159 —0.037 £0.236 | 0.645 || —0.219 + 0.240 | 0.359

Table 4.20: The extracted values for P, for each year.

In order to access fragmentation functions, the extracted polarizations must be
scaled by the proper kinematic functions to determine the transfer coefficient for the
photon’s polarization, as restated in Equation 4.7.

Unlike the transverse polarization P,, measurements of the other polarization com-
ponents require polarized beam. Consequently, the spin transfer coefficients AP, and
AP, can then be defined by combining the kinematic functions, the beam polarization

and the extracted polarization:

11 1
AP, = _I_Elmpm (4.16)
AR = E o
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: Kinematic bin 1996 1997

i . P, prz P, ! sz
{pr) = 0.676 GeV || 0.271£0.277 | 0.390 || —0.209 & 0.263 | 0.872 !
(pr) =0.311 GeV || 0.243 £0.213 | 0.855 0.211 £ 0.195 | 0.954 :
(Q*) =3.235 GeV? || 0.290 £ 0.237 | 0.789 0.127 £0.243 | 0.832
(@) =1.431 GeV?% | 0.195 £ 0.240 | 0.534 0.042 +0.204 | 0.744
(2) = 0.613 0.015£0.256 | 0.424 0.217 £ 0.2535 | 0.503
(z) = 0.365 0.392 £ 0.220 | 0.849 0.022 £0.192 | 0.857
(zp) = 0.441 0.176 = 0.234 | 0.815 0.097 +0.216 | 0.733
{zF) = 0.159 0.286 £ 0.239 | 0.957 0.070 + 0.217 | 0.799 |

Table 4.21: The extracted values for P, for each year.

4.4.3 Systematic Uncertainties.

As with the azimuthal measurements, the dominant systematic uncertainties result
from the background and acceptance corrections. Each contribution will be considered

in furn.

Background Correction.

While the background subtraction is important, the measured number of events in
each bin is statistically corrected for it. Ideally, one would investigate the polarization
of the background itself. The sidebands of the mass distribution do not provide
enough events, unfortunately, to provide a good measure of the polarization. Instead,
a conservative estimate was obtained by extracting the polarization with and without
the background correction to look for sensitivity, as in Equation 4.9. This was done
in all the kinematic bins, for each polarization state, to look at the importance of the
background correction.

The results are shown in Table 4.22. The importance of correcting the background
is shown for the spin transfer coefficients and for the transverse polarization. P,, which
was shown to have the most sensitivity to the acceptance by Figure 4.20, is also the
most sensitive to the background. This is due to the variation of the background
with the acceptance. These estimates are ultimately limited by the statistics of the

data sample; the statistical uncertainty on each measurement is approximately that
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Kinematics 6AP, | AP, OF,
pr) = 0.676 GeV 0.296 | 0.271 || -0.026
p ) =0.311 GeV || -0.053 | 0.090 || -0.020 |
Q* ) =3.235 GeV? || 0.034 | 0.283 || -0.093
Q%) = 1.431 GeV? || 0.142 | 0.055 ][ -0.107

z) = 0.613 0.089 | -0.217 || -0.117
z) = 0.365 0.017 | 0.323 |; -0.022
zr) = 0.441 0.107 | 0.045 || -0.090
zr) = 0.159 0.000 | 0.223 |[-0.042

Table 4.22: The effect of the background correction on the extraction of each polar-
ization state.

of the data themselves. Consequently, there are spurious effects, such as in P,, where
a large (small) value is seen in high z(zr) and a small effect in high zp, whereas
it has been shown that the acceptance of these two physical quantities is positively
correlated. Another way of stating this is that these differences are not statistically
different from zero.

These results are not precise enough to determine uncertainties clearly. Thus, they
are used only as a guideline to assign global values for the systematic uncertainties.
Conservatively, an absolute background-related uncertainty of 20% was assigned to
the spin transfers AP, and AP,, and a value of 10% is assigned for the contribution
to the error on the transverse polarization P,. The background apparently produces
a false asymmetry in P, since all the values are negative. To be exact, the error from
this should be asymmetric to compensate for this; however, instead, a conservative

symmetric error was assigned.

Acceptance Correction.

An additional check is provided by the K¢ sample, since symmetry demands that the
spin-0 particle has no polarization. The polarization values are as well determined
statistically as the A events and hence they may be used directly to estimate the
systematic uncertainty; they are shown in Table 4.23. These values are all consistent

with zero and do not indicate that there are additional poorly understood sources of



122
systematic uncertainty. Thus, they are consistent with understanding of the accep-

tance at the precision of the data and do not contribute an additional uncertainty.

Polarization 1996 1997
Value I~ Value | X2
(Py) —0.046 &+ 0.141 | 0.012 || —0.099 £+ 0.134 | 0.867
(Py) —0.082 4+ 0.142 | 0.516 0.020 £ 0.132 | 0.535
(P,) —0.170 £0.150 | 0.715 || —0.048 4= 0.140 | 0.432

Table 4.23: Polarization of the K.

Misidentification.

Using the results of Section 4.3.2, the contribution to the uncertainty from misiden-

tification was estimated at 5% (absolute).

Radiative Corrections.

Internal radiative corrections have not been calculated and thus are neglected in this
analysis.

Monte Carlo events were analyzed before and after reconstruction in order to
understand the external corrections, just as in Section 4.2.4. Figure 4.22 shows his-
tograms in d(cos 6;) =cos 0°“—cos 67" for the directions i = z,y, z.

These graphs indicate that while the transverse states are not affected very much
by radiative corrections, the mean of the §(cos 8,) is shifted to positive values by
radiative corrections. No uncertainty is assigned for this correction, as this is small

(1%) compared to the other systematic uncertainties.

Spin Precession.

Because the magnetic field has a finite extent, the influence of the stray field in the
region of the target cell on the spin precession can be estimated. The field strength

in the region of the target cell is ~1 mT [58].
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Figure 4.22: Effect of reconstruction on A angular distributions. The histograms
represent the difference between generated and reconstructed Monte Carlo (e,e’A)
events. The graphs show the histograms corresponding, from top to bottom, to F,
P, and F,.

This effect can be calculated by solving the elementary quantum mechanics prob-
lem of a spin-1/2 particle in a static magnetic field. The precession frequency is
Q2 = B,up/h. Since the magnetic moment u, for the A is 0.613 3= 0.004u, where
pn is the Bohr magneton (uy = eh/2m, = 3.15 x 107'* MeV/T), the frequency
is 29 kHz, such that the relevant time constant is on the order of 30 us. Because
the A are relativistic with v ~6, they traverse the region of the field in nanoseconds

before decaying. Hence this is a negligible contribution to the uncertainty.
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Dilution from ¥ Particles.

Reference [44] is an excellent guide for a treatment of dilution from ¥ particles. In
general, a A sample is composed of those produced directly by the interaction and
the daughters of ¥ particles. Following the assumptions in that reference, the authors
conclude that dilution is ~20-30% and that the interaction-induced polarization is
increased somewhat.

Because no attempt is made to model the interaction and reproduce the polar-
ization values exactly, the dilution of ¥ particles is, to some extent, irrelevant. The
values were not corrected for dilution since they represent the actual measurement

extracted by this analysis.

Other Contributions.

Other factors, discussed previously in Section 4.3.2, include the following;:

o Cut selection.
o Kinematic factors.

e Monte Carlo precision.

All of these factors will be neglected, as before. Further, it should be noted that
just as the hadron production is isotropic in the Monte Carlo generator, so is the

A decay.

Summary of Systematic Uncertainties.

The dominant background and acceptance corrections are listed in Table 4.24. The
longitudinal polarization transfer is clearly the most difficult measurement to ex-
tract due to the skewed detector acceptance. These uncertainties are all significantly

smaller than the statistical uncertainties in each kinematic bin.
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[ Term | AP, [AP, | B, ]
Background 0.20 | 0.20 || 0.10
Misidentification | 0.05 | 0.05 || 0.05
Total 0.21 | 0.21 |} 0.11

Table 4.24: Systematic uncertainties for polarization extractions.

4.4.4 Polarization Results.

The results for the spin transfer coefficients are tabulated in Table 4.25 and shown in
Figure 4.23 where the average beam polarization of +(—)0.55 in 1996(1997) has been
included. An analysis of these data using an asymmetry to construct the longitudinal
spin transfer coefficient (thus using a technique independent of detector simulation)

has extracted results which agree extremely well with this analysis [73].

| Kinematics ! AP, AP,
(pr) = 0.676 GeV 0.290 £ 0.315 0.664 £ 0.531
(pr) = 0.311 GeV 0.056 £ 0.252 | —0.011 £+ 0.400
(Q%) = 3.235 GeV? | —0.056 +0.287 | 0.241 & 0.472
(QT: 1.431 GeV? 0.296 £ 0.269 0.160 4 0.433
(z) = 0.613 0.159 + 0.297 | —0.282 £ 0.503
(z) = 0.365 0.047 £ 0.264 0.437 £ 0.403
(zp) = 0.441 0.105 £ 0.258 0.080 + 0.442
(zr) = 0.159 0.055 4+ 0.298 0.253 4 0.447

Table 4.25: Extracted spin transfer coefficients AP, and AP,.

The fact that AP, is consistent with zero indicates that the polarized fragmen-
tation functions are very small, as discussed in detail in Reference [74]. The LEP
experiments measured significant longitudinal polarization via the parity-violating
qgZ° interaction; however, this process takes place via a different mechanism and so
the results are not easily combined. The LEP experiments represent the process:

qt—= AT
whereas the DIS analogue is:

Yt+a—-qt— AT

where the 1 denotes polarization. The small value for P, does not clarify at which
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Figure 4.23: Extracted spin transfer coefficients.

point the helicity information is lost. The spin transfer to the unpolarized quark is
apparently “inefficient” in that the hadronizing quark does not absorb a large fraction
of the longitudinal polarization of the virtual photon. It is further unclear how the
different kinematic regimes affect the comparison; the HERMES measurements are
largely dominated by the valence u quarks, whereas the LEP measurements access
the sea s quarks more readily. Assuming that the valence quarks dominate, the well-
understood DF’s f; for the u quark may be used to conclude that the polarized FF

for u quarks fragmenting to A is small, given Equation 1.30:

Py(z, )Ny = P, Y2 =Y % e:fi(2)Gi(2)

THI-f  n.edfi@ i

Similarly, the observation that AP, is consistent with zero suggests that the higher

twist fragmentation functions do not dominate the process either.
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On the other hand, the transverse polarization P,, which does not contain infor-
mation about the beam helicity, is tabulated in Table 4.26. These values may be
compared directly to hadron experiments, as in Figure 4.24. This figure indicates
largely how difficult it will be to obtain comparable statistics to make meaning-
ful comparisons to hadron data, although the current measurement suggests that
this analysis could provide an interesting connection between electron scattering and
hadroproduction. Furthermore, a suggestion of polarization at high zp and high z is

seen.

Kinematics P,

(pr) = 0.676 GeV | —0.260 = 0.170
(pr) = 0.311 GeV | —0.172 £ 0.148
1 (@%) =3.235 GeV? | —=0.1194+0.175
(Q?%) =1.431 GeV? | —0.378 4 0.147

(z) = 0.613 —0.494 + 0.169
(z) = 0.365 —0.110  0.149
(zr) = 0.441 —0.429 & 0.149
(zr) = 0.159 —0.126 + 0.168

Table 4.26: The transverse polarization P,.
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Figure 4.24: P, for (e,e’A) and hadroproduced lambdas. The filled circles are HER-
MES data.

As a check of the acceptance, the A and K samples are compared in a large
range of kinematics. Because the mean of the zp distribution is higher for the Kj,
the polarization is evaluated at slightly different values of . The results are shown
in Figure 4.25, in which the Kg results are consistent with zero across the range,
whereas the A suggests an effect at high zz.

In addition to comparisons with hadroproduction data, studies may be conducted
with advance knowledge of the form of P, in the language of fragmentation function

physics. According to Equation 1.32, P, may be expressed as:

My i e fi) Dy (2)
Q el fi (z) ’

Py(IL', Z)NA ~ (418)
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Figure 4.25: P, of both A and K events.

that the dependence should vary as 1/Q), as is seen in Figure 4.26.
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Figure 4.26: Dependence of P, with Q.
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Chapter 5 Summary and Conclusions.

Azimuthal distributions were measured in electroproduction of charged pions with un-
polarized light gaseous targets. Observed values of {cos ¢) agree well with previous
measurements, although at low Q? they do not vary as 1/Q, indicating that simple
kinematics are insufficient to explain the (cos ¢) behavior. The (cos 2¢) moments
are significantly larger and increase dramatically at low Q?; these two measurements
jointly indicate the importance of higher-twist effects in describing azimuthal distri-
butions. The 7~ systematically show slightly higher values for {cos 2¢) than the =™,
suggesting differences in the DF’s or FF's.

Similar measurements were performed for the first time in electroproduction of
A and K. Unlike pions, the strange particles show very small values for the azimuthal
moments, indicating that the kinematic model for the valence quarks is insufficient
to describe the hadronization dynamics of these particles.

In addition, this work presents the first search for spin transfer to A from a po-
larized beam. The absence of a clear signature for longitudinal polarization indicates
that the polarized fragmentation function is small. Similarly, the transverse spin
transfer AP, shows no signal, indicating that the higher twist interactions are not
large, as expected.

Another new investigation was a search for transverse polarization in A production.
These measurements suggest that the transverse fragmentation functions become sig-
nificant at high z or high z, consistent with hadroproduction observations. This
measurement offers additional access to determining the influence of the transverse
momentum of the struck quark. Although imprecise, these measurements may be
compared to hadroproduction data and a better understanding of final state interac-
tions may be obtained.

These measurements indicate that a variety of interesting physics may be ob-

tained via measurements of azimuthal distributions and that comparisons of pions and
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strange particles access the momentum distributions of the valence and sea quarks
in a novel fashion. Better background reduction will be achieved in the future with
the improved particle identification capabilities implemented in the 1998-9 running
cycle. With a polarized target, a complete description of fragmentation functions will
become available. In particular, the strange particles offer a new avenue to examine

the nucleon sea.
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Appendix A Formalism.

A.1 The Coincidence Cross Section.

Equation 1.21 gives the azimuthal distribution of particles in a high-energy electron

scattering process:
—— =1+ Afi(y)cos ¢ + Bfs(y)cos 2¢ + P.C f3(y)sin ¢. (A.1)

This form for the distribution is not immediately obvious. Certainly the mathe-
matics leading to this result is identical to that of lower energy (e, ¢’ N) experiments,
as it results from the contraction of the lepton temsor L,, and the hadron tensor
W,,. Thus, traditional nuclear physics may be used to understand the origin of this
expression. Following Reference [75], this tensor analysis will be reviewed here in
order to derive the azimuthal distribution. In this discussion, Cartesian coordinates

will be denoted by p and v, while spherical coordinates are identified by A and X'.

A.1.1 The Lepton Tensor.

Initially, the general form for the tensor L,, is naturally a 4 x 4 Hermitian matrix; this
is trivially reduced to a 3 x 3 matrix by imposing current conservation. The set of nine
remaining independent elements may be further reduced with the reflection symmetry
L5, _y = (=)*L§,; this is simply the statement that polarized photons have a
preferred axis but no direction. This symmetry reduces the set of nine components
to six independent terms.

This tensor is usually expressed in Cartesian coordinates in the laboratory frame,
in which the z-z plane is the electron scattering plane, with the z direction defined
by the incident electron’s momentum, and the y direction is perpendicular to the

electron scattering plane. Furthermore, it may be understood by calculating the
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photon density matrix p,, and using the relation

1
=920%— )
Ly = 2Q° T—pu> (A.2)
where € is defined as .
(142198 e A3
= 02 an® . (A.3)

¢ is a measure of the transverse polarization of the virtual photon because it
satisfies the equation L., = 1+€ thus forming an analogy with the case for real
photons propagating along the z direction with linear polarization of (1+e¢) in z,
relative to (1 — €) along the y direction. That is, with this definition, L,, should
reduce to the density matrix for linearly polarized real photons propagating along z,

with strength (1 + ¢') in z relative to (1 — €') along y:

1/2(1+¢€¢) 0O 0
0 1/20-¢) 0 |- (A.4)
0 0 0

With this definition, the lepton tensor element L., is given by

w2 €

Lzzz'—@'l_ey

(A.5)

which diverges as Q2 — 0. Thus, it is regulated with the factor Q®/|q|* by defining
the term €7, as o

€L = I—fi—ﬁe’ (A.6)
where the virtual photon four-momentum is written as ¢* = (w,0,0, |ql)-

The virtual photon’s density matrix p,, may now be written in the following way,
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where the ordering in the matrix is z, y, 2:

(1+e¢) —iVi-¢€ /el +e)
V1 ¢ s(1—¢ Ze(l—¢) |- (A7)

el +e) —Hec(l—¢) e

This may be compared with the case of a real photon propagating along the z-axis

with circular polarization. In this case, p,, is given by:

1/2 /2 0
-i/2 1/2 0 |- - (AL8)
0 0 0

It is thus evident that circular polarization is manifested in the anti-symmetric com-
ponents of the photon, and thus the lepton, tensor.
Furthermore, the density matrix p,, of Equation A.7 shows that virtual photon

is in a pure polarization state given by:

1 1
(€z; €y, €2) = (ﬁ\/l + €, $$\/(1 —€), Ig—l\/a?), (A.9)

where the = sign refers to £ helicity of the incident electron. Evidently, scattering
with electrons yields photons with transverse linear and longitudinal components. If
the electrons are polarized, then a circular component is introduced, with a differ-
ent strength than the transverse linear component. Thus, a virtual photon has a
longitudinal component and an elliptical one.

This result lies at the heart of electron scattering. By evaluating the photon tensor
in this way, its contraction with the hadron tensor may be calculated to extract a
cross section. A decomposition of the cross section for scattering with a virtual
photon probe thus directly accesses the helicity structure of the target nucleon. It
is also remarkable in that the density matrix for the spin-1/2 electron is directly

proportional to that for the spin-1 photon, thus making simple geometric models
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availablel.

A.1.2 The Hadron Tensor.

The hadron tensor W,,, on the other hand, still has nine independent components,
as the only demand is that it is Hermitian. In order to extract helicity distributions,
two steps must take place. First, the tensors are transformed to spherical coordinates
in order to extract helicity information. In the second step, the hadron tensor W,
measured in the laboratory frame, is transformed back to its CM frame (where it
is denoted by W'). This requires a rotation by the angle ¢ in order to make the
electron scattering and hadron production planes coincide, and then a boost along
the z direction. Since the rotation is only in z and y and thus does not affect the
longitudinal components, the hadron tensor is transformed as follows, introducing a
phase:

Win = -1, (A.10)

The contraction of the two tensors leads to the following coincidence cross section:

do

W LI_LVWIJ,V (A']']')

~ p)\)\’F)\/\' (A12)
~  pooFoo + p11Fi1 + porFor + proa Fi-1 + h(pg Fyy + P11 Fi-1)
— pSFS +h(pAFA)

where (1,-1) correspond to transverse directions and the symmetric (anti-symmetric)
components of the tensors are given by superscripts S (A); the beam helicity h mul-
tiplies the anti-symmetric components. The tensor F)y is simply the hadron tensor

W, transformed back into the hadron CM frame in a spherical basis. Thus, the

1Strictly speaking, the spin-one nature of the photon manifests itself in a density matrix which
is decomposed into a set of Stokes matrices, or equivalently into rank-two spherical harmonics.
However, such a decomposition is not necessary for understanding the reduction of the hadron
tensor via geometric symmetries.
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phases are contained in the components of Fjy:

Foo = Joo (A.13)
Fan o= /fu
Fyy = focos ¢+ fosin ¢
Fi_i = fi_icos 2¢ + f;_,sin 2¢
i = fi

Fl, = flsin ¢+ Fycos ¢

Traditionally, the response functions fiy are expressed in terms of nuclear currents.
It is this interpretation that differs for the case of QCD phenomenology; nonetheless,
the mathematical derivation is still valid.

The response functions fyy may be transformed back to the original hadron tensor

W

foo = Woo (A.14)
fiu = W +Wy
fo = V2(Woy + W)

fict = Wy — Wy,

fii = —i(Wey — Wya)

fo = —iV2(Wos = Wao)

Foo = =V2(Wey + Wye)
fio = Woy + Wy,

Foo = —ivV2(Woy — Wyo)

The symmetries of W, may now be utilized in order to understand the coincidence
cross section. The major consequences for an unpolarized target follow.
Remembering that the coordinate system is defined with the electron scattering

plane as the z-z plane, the symmetry of the unpolarized target may be exploited.
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Since the y-axis is normal to this plane, components of W, with only one y index
will vanish. Equivalently, all the “barred” structure functions fo;, f1_1, and Fo, will
disappear, as will fi;.

If the incident electron is unpolarized, only the symmetric portion of the lepton
tensor Lﬁy may contribute. Consequently, only the symmetric components, W,f,,, will
survive when the tensors are contracted. This affects only one of those terms that
did not vanish by the previous argument: the structure function fo1- Although it is
antisymmetric in its Lorentz indices, it does not refer to the y coordinate. Thus, it
is not required to disappear by the symmetry of the unpolarized target, but because

the unpolarized beam forces L,, to be symmetric. Thus, if the beam is polarized,

this term will reappear. This is the “fifth structure function” of nuclear physics.

A.1.8 Kinematic Factors.

Thus, under symmetry considerations, the form of the cross section must be the

following:

do

d—_-_3pthdE, ~ poofoo+p11fir+Po1 forcos ¢+ p1—1 fi—1c08 2¢+h(py; forsin ¢+py_ 1 F1_;).

(A.15)

It remains only to show that the kinematic coefficients are equivalent. By using the
relation € = 2(1—y)/(1+(1—y)?), and ignoring the kinematic factors that distinguish
¢;, from e, the expressions for the kinematic functions f;(y) from Equation 1.22 may

be reduced simply to the following:

I
M
N
-t
+
™
S’
-
n

fi
L2 = 6/2’

fa = Je(l—¢€)/2.

By referring to the photon polarization vector of Equation A.9, it is evident that

(A.16)

the product 1/e(1 + €) of fi refers to z-z, or LT, interference. Similarly, the product
J/€(1 — €) of f3 describes y-z, or LT, interference. The kinematic factor of f, scales
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with ¢, indicating that it strictly describes transverse components and thus may be

referred to as the TT term.
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A.2 Twist.

Following Reference [2], a definition of twist begins at Equation 1.4, in which the
hadronic tensor W was expanded in terms of currents J* connecting intermediate
states |X) and the nucleon ground state |P). It is possible to rewrite this as the

Fourier transform of a commutator:

4rWH = ;(PIJ“IX)(X]J”IP)(Qw)‘*cS(P +q - px) (A.17)

= /d“xe"q'z(Pl[J“(x),J”(O)]IP>-

In the deep inelastic (@* — oo) limit, this commutator is dominated by 7% ~0.
Thus, it can be expanded in z around 2% = 0 as a power series of operators O with
coefficients K. This is known as the Operator Product Ezpansion (OPE) and is the
formal realization of the separation of the scattering amplitude into short- and long-
distance physics, as discussed in Section 1.1.4. It is assumed that the commutators

are traceless and symmetric in the Lorentz indices (herafter omitted):
J(z), J(0 Z Ko(z?)z" - - - 2#70 Oy .y (0). (A.18)
This can be substituted into Equation A.17:
4W = / 2269 S Ko(z?)zh - - - 7470 (PO, .m0 (0)|P), (A.19)
o

where the matrix elements are described in the following way, assuming a typical

hadronic mass scale M and a coefficient fo:

(P|Oysmg (O)|P) = Py, -+ P MIom0=2f5 4. (A.20)

bne

The “twist” of the operator O is defined as to = do — np, where np is the

spin of the operator. The Fourier transform must now be performed by making the
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substitution

Tt = -—22’q“aiq2 (A.21)

to obtain

4 W ~ ; <%>t0-2 (1>no fo. (A.22)

X

Thus the twist, which identifies the order at which M appears in the decomposition
of the matrix element, is equivalent to the power at which ¢ appears in the hadronic
tensor. The leading operators are of the lowest twist and have tp = 2.

In experimental physics, a slightly modified definition is used, where an effect
showing a dependence of (1/Q?)? is said to have twist ¢ = 2+ 2p, which is consistent

with the formal definitions and can be used to decompose the matrix element.
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A.3 Notation.

The notation used to identify distribution and fragmentation functions follows that

of Mulders [20] and is briefly summarized here.

o Lower case letters refer to distribution functions and upper case, to fragmen-
tation functions. Only the unpolarized fragmentation function is referred to as

D(z) to be consistent with the literature.

o The letter indicates the Lorentz structure of the operator: e refers to the oper-

ators 1 or iys; fis 7y,; g1s vu7s; and h is the tensor term io#ys.

» The subscript 1 identifies a function that is twist-two (as described in Sec-

tion A.2), while the subscript L or T refers to the target spin direction.

e Dynamics are included in terms with a tilde, such that the functions can be

split into a “parton” term and an interaction term.
o The superscript L signals explicit presence of transverse momenta.

o The superscript (n) indicates the weighted moment of the relevant function,
where distribution and fragmentation functions are given, respectively, by the

following (using h; as an example):

i) = / d’pr (%)nhl(a:,p}) (A.23)

-~ k2 \" -
HY(z) = 22/d2kT (ﬁ) Hy(z, —zkr)
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A.4 Interpretation of Observable Asymmetries.

There are many observable azimuthal moments for various combinations of target and
beam polarizations. In order to clarify the relations between these terms, Table A.1
identifies some of the leading-twist asymmetries (W), which are defined as integrated

cross sections:

. _ 2 dops Py
(W)pspr = /d¢d arW(Qr, ¢, ¢s)d$ dy dz 4 Pap (A.24)

In general W is also a function of the spin direction of the detected hadron, which is
significant for the A polarization measurements; however, in this section, only those
azimuthal distributions that have been widely considered theoretically and exper-
imentally will be considered. Pg and Pr are unpolarized (U), or polarized either
longitudinally (L) or transversely (T). The relevant DF and FF are identified, along

with their behavior under time-reversal (given as +/—).

[Ps [Pr| (W) | DF [Tpr| FF |Trr ]
UJU (1) fi + | D | +
U|U]| (cos2¢) |mRP] - |HD] -
L|U (sin ¢) e | + |HWY] -
U|L (sin 2¢) | A" | + | HY ] -

U | T [(sin(é+0s)) [Mz” | + [H] -

Table A.l1: Single-spin leading-twist observables. = The behavior under TR-
transformations is given as well.

The first term of this table reflects the unpolarized cross section. The terms in
(cos 2¢) yy and (sin ¢) Lv were investigated in this thesis. The leading-order term in
(sin 2¢) yz, and the sub-leading order term (sin ¢) yr, were investigated at HERMES
recently as well [76], and are related to the asymmetry (sin(¢ + ¢s)), originally dis-
cussed by Collins [21]. All the leading-order ¢ moments shown in Table A.1 contain
the same TR-odd FF; the TR-even DF’s appearing in the same moments must be
chirally-odd in order to preserve the total symmetry of the matrix element.

The only sub-leading order term relevant to this work is the (cos ¢)yy asymmetry,
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which contains the sum of f+D; and flf). In the absence of parton interactions, both
the non-leading terms will reduce to their leading twist contributions; i.e., f+ — f;
and D — D;. Thus, the (cos ¢)yy asymmetry, even at low Q?, signals the importance
of the dynamics in either the DF or FF (or both).

The formal definitions of the DF’s and FF’s presented thus far do not easily give
any clear physical insight. Instead, as in the derivation of the form of the coincidence
cross section, some insight may be gained by returning to more traditional nuclear
physics. For instance, at first glance, the difference between (cos 2¢) yy and (sin 2¢)
yr is simply the subscript L describing the longitudinally polarized target. This is
equivalent to the statement that (cos 2¢) yy accesses the unpolarized portion of the
transversity distribution hi, while (sin 2¢) 1 accesses a specific polarized component.

Together, these DF’s may also be discussed in the language of many-body physics
by discussing initial-state interactions (ISI). For instance, the difference between
{cos 2¢) yy and (sin 2¢) yr may be seen as a spin-dependent term in the ISI. In
fact, in this language, the kinematic effects discussed in Section 1.4 are a consequence
of the ISI resulting from confinement.

Similarly, the FF’s differ because they reflect final-state interactions (FSI) wherein
the struck quark undergoes hadronization. Clearly, this process takes place in a strong
field and hence fragmentation is essentially a many-body problem. This is reflected
in the production of A polarization, discussed in Section 1.4. The spin-orbit effect is
a classic example of FSI.

Factorization, then, is equivalent to separating the entire scattering process into
ISI and FSI. Asymmetries in unpolarized experiments then are perhaps more intuitive
if transverse momentum is included, since transverse effects result from confinement
and represent familiar interactions from classical many-body nuclear physics. Simi-

larly, spin-dependent effects may be interpreted in this language as well.
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Appendix B The Target Optical Monitor
(TOM). |

In 1995, the HERMES experiment measured spin-dependent structure functions with
an internal 3He tafget. A novel device for studying the target in situ, the Target
Optical Monitor (TOM), was constructed and its operation will be reviewed. It was
then tested as a luminosity monitor for the polarized hydrogen target. The different
electromagnetic environments in which it operated and the ensuing consequences will

be discussed here.

B.1 3He Optical Pumping and Polarimetry.

The technique of polarization of *He via optical pumping is well-known [77] and
will be briefly summarized. A radio-frequency (RF) discharge is used to produce
the metastable 23S; atomic state, while the sample is held in a 30 G guiding field.
Circularly polarized 1083 nm laser light is used to produce electron polarization in the
metastable state via optically pumping the 23 P, level; this polarization is transferred

to the nuclei via the hyperfine coupling. A level diagram is shown in Figure B.1.

3

T 2P,
3 1083 nm
2'S

1
| T discharge
1S, —

30 gauss
magnetic field

Figure B.1: Level diagram for optical pumping of SHe.

The atoms then undergo metastability exchange collisions where they retain their
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nuclear polarization in the ground state. That is:
3He +° He —°® He* +3 He

The polarization process takes place in a pumping cell external to the storage ring.
In this pumping cell, the discharge also excites the 3* D, level, where the hyperfine
interaction transfers the nuclear polarization back to the electronic system. The
resulting 667 nm photons from the decay to the 2! P state (see Figure B.2 for the
levels) have circular polarization; this can be measured and related to the nuclear
polarization [78].
1

3D,

667 nm

2P
. discharge
1S,

Figure B.2: Level diagram for optical polarimetry of *He.

The device performing this analysis is the pumping cell polarimeter (PCP), where
the circularly polarized photons pass through a rotating quarter-wave plate, a linear
polarizer, and an interference filter centered at 667 nm, as is shown in Figure B.3. This
path transforms circularly polarized light into linearly polarized light with intensity
that varies in time as a sine wave.

The light then enters a photomultiplier tube. The signal is split and directed into
both a DC amplifier and a lock-in amplifier, which measures the AC strength. The

nuclear polarization P is simply given by

AC
P = a—. B.1
The proportionality constant « is given by several factors, including the depen-

dence of the nuclear polarization on the pressure in the pumping cell, the magnetic
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Figure B.3: The optics in the polarimeter. The action of each optical component on
the incident light is shown; the intensity of the linearly polarized light varies as a sine
wave.

field, and the observation angle. These factors are all determined off-line. The domi-
nant calibration errors result from understanding the proportionality constant a. In
particular, knowledge of the dependence on the pumping cell pressure and the mag-
netic field contribute 2.0% each to the total error; this calibration was determined
with NMR, previously [79].

Because of this signal integration, the only uncertainty is systematic rather than
statistical. Various contributions are discussed in detail elsewhere [58]; the total
relative error on this measurement is 3.4%. The greatest measurement error results
from determination of the DC component, as this contains an offset due to the light

from the discharge; this level varies over time, contributing 1.4% to the error.

B.2 The Principle of the TOM.

A schematic demonstrating the configuration at DESY is shown in Figure B.4. While
the polarization is well determined in the PCP, the gas travels through a small conduit
to reach the storage cell, where no traditional polarimetry can be conducted.

The TOM is a novel solution to the problem of in situ measurements of internal
targets. It operates on a similar principle as the PCP, as discussed in Reference [80].
Instead of using a RF discharge to excite atomic states, the stored positron beam is
used to excite these states via the Coulomb interaction.

The cross section for excitation of an atom of charge z by a relativistic electron
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Figure B.4: Polarimetry with an internal target.

to an optically forbidden level n is given by the following [81]:

8ma2Rz?
Op = ———

b (B.2)

where ag is the Bohr radius (0.53 A), R is the Rydberg energy (13.6 V), and b,
is an empirical constant. On the other hand, for an optically allowed transition to

level n, the cross section is expressed as:

8maiRz?

MeC?

(MElln(v*6%) = B*)] + Ch), (B.3)

On

where M? is related to the oscillator strength f, via M2 = (R/E,)f» (for energy
E, of level n), and Cp, = M2[In c,+n(2m.c®/R)]= MZ[In ¢, + 11.23].

Once the atoms were excited, the backscattered photons from the decay were
directed through a mirror assembly, out of the beamline, and into a detector. A
schematic of the assembly is shown in Figure B.5, as well as the optical components

comprising the TOM.
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HERMES

Target Optical Monitor

TOM Polarimeter Schematic
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Figure B.5: The principle of the TOM. Top: A drawing of the target cell; 3He enters
through a thin tube. The backscattered decay photons from the excitation by the
beam leave the beamline through a mirror assembly to reach a detector. Bottom:
The optical components of the TOM, discussed in more detail in the text.
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~ The apparatus that directed the photons from the beamline to the detector has
been described in detail previously [82] and here only the optical components will
be discussed. Circularly polarized photons were directed through a rotating quarter
wave plate, a linear polarizer, then through a beam-splitter to two phototubes: PMT1,
with a 3 nm bandwidth interference filter centered at the central wavelength for the
atomic line of choice, and PMT2, with a 10 nm filter at a nearby wavelength to
sample the background. Each phototube thus recorded a sine wave with an amplitude
proportional to the circular polarization of the incident photons; a rough schematic

can be seen in Figure B.6.

Pulse height

Time

Phase of A/4 plate

4 Time (ms)1® 16

Figure B.6: A schematic representation of the signals. As the quarter-wave plate
rotates, the intensity of the recorded light varies as well.

Due to the low rates, single photon counting techniques were used and an asym-

metry is constructed:

N, -y refers to the number of counts in the positive (negative) lobe of the sine
wave and P, is the measured circular polarization. The lobe of the sine wave was
identified as follows: The circular mount for the quarter-wave plate had notches cut at

90 degree intervals around the circumference; one of the notches had a mirror inside
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it in order to initialize the cycle. A small light source and detector were fixed on the
same side of the mount, such that when the sensor received light, it initialized the
coincidence circuitry. Then each quarter of the rotation was identified with another
signal from the sensor. Thus, photoelectrons were counted for each quarter of the
rotation and the appropriate sums and differences could be constructed.

S/B is the signal-to-background ratio (typically 1:2), determined by measuring
the rates in both PMT1 and PMT2 with the target empty. Most of the background
was seen even with a closed shutter in front of the exit window and hence did not
come from optical photons, such as synchrotron light, from inside the beam pipe. The
S/B was also reduced by applying a timing veto, since the number of synchrotron
photons in coincidence with the beam pulse swamped the signal by a factor of 100.
Consequently, a 20 ns veto was applied, leaving 76 ns in which to detect the decay

photons.

B.3 The Helium Target.

B.3.1 Spectroscopy.

The 4! D, — 2! P, transition (BR=75%) was used to analyze the 3He polarization; the
level structure is shown in Figure B.7. Its 37 ns lifetime is well suited to the HERA
beam structure, since the beam was pulsed in buckets 20 ps in length and incident
at 10 MHz. Using the data of Reference [83], in which the energy dependence of the
cross section for 0.05-6 keV electrons was shown to follow theoretical models fairly
well, an estimate of 2.7 x 10723 cm? was obtained for the cross section at HERA beam
energies.

Because the helium target was operated in a weak magnetic field, the nuclear
polarization was again transferred back to the electronic system via the hyperfine
interaction. As a result, the decay photons of this excited state were circularly polar-
ized. At the 4D — 2P transition, the relation between the circular polarization and

the nuclear polarization at low pressures is well characterized by results of Pinard
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and Van Der Linde [78].

492 nm

1
2P,

Coulomb excitation from beam

1S,

Figure B.7: The level diagram for TOM polarimetry.

The appropriate optics were selected for this measurement: In front of PMT1
lay a 492 nm (3 nm bandwidth) filter; and in front of PMT?2, an interference filter
centered at 460 nm (10 nm bandwidth). There is no 3He line at 460 nm and hence
PMT?2 was used to sample the background, which was assumed to have roughly the

same intensity at that wavelength as at 492 nm.

B.3.2 Results.

Initially, the rates for the helium target were unexpectedly high. While estimates for
the cross section suggested that the expected rates should have been on the order of
80 Hz/mA at 30 mA, the observed rates were, in fact, 250 Hz/mA. This difference was
ascribed to excitations taking place via the intermediate P state. This mechanism had
been previously suggested in order to bring theoretical calculations and observed cross
sections into agreement [84]. Furthermore, this mechanism explains the observation
that the rate in the TOM varied with the current as I?, rather than linearly as I.
Preliminary studies indicated that the measured asymmetry was ~50% of its
expected value, due probably to diffuse reflection of the photons off the cell walls.
For this reason, the absolute nuclear polarization could not be computed directly
from the asymmetry. On the other hand, the asymmetry could be used to extract
a relative polarization measurement when compared to the PCP, providing a useful
cross-check as well as additional information regarding possible polarization losses

between the pumping cell and the storage cell.
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The two phototubes’ signals are plotted in Figure B.8. The target cell is filled
with gas at t=0.5 h and the 20 minute time structure of the spin flip for the target is
clearly visible in PMT1, where the asymmetry clearly changes sign, whereas PMT2
sees no change. Both phototubes measured a non-zero asymmetry even with the
target empty, indicating a background with circular polarization. This was perhaps
due to synchrotron radiation being reflected downstream of the target, where it picked
up a phase to become partially circularly polarized. Because of this large offset in
the asymmetry, the magnitude of which varied as a function of beam conditions, the

TOM was used as a relative monitor rather than as an absolute polarimeter.
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Figure B.8: A comparison of the signal seen in each of the two TOM phototubes.
Top: PMT1, which sees the 492 nm 3He line and hence clearly sees the structure of
the spin flips. Bottom: PMT2, which only sees background light at 460 nm.
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the polarization measured with the TOM and the PCP are com-

pared; the time structure of the spin flips is again clearly visible. The error bars

shown on the TOM are purely statistical and can be reduced to ~2% over the course

of an 8-hour fill, though a systematic error of 6% remains, largely because of the

imprecision of the

BO

S/B measurement.
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Figure B.9: A comparison of the polarization measured in the TOM versus the mea-
surement in the PCP. The time structure of the helicity flip is clearly seen. The TOM
measurement has been normalized to the PCP measurement.
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B.3.3 Search for Depolarization.

By comparing the TOM and the PCP, additional information could be gained regard-
ing possible depolarization mechanisms inside the target. One possible source was the
low temperature of the target. For a long elliptical target cell, the gas density varies
as 1/ VT for temperature T, indicating that it would be favorable to keep the target
cold. At low temperatures, however, there is a possibility that the gas atoms will be
slowed down enough such that, when they interact with the surface, there is sufficient
time for the spin to relax. Previous experiments on a similar target suggested that
such effects would be negligible above 12 K [85]. This was confirmed in the range
from 18-60 K, as shown in Figure B.10.
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Figure B.10: The ratio of the TOM and PCP polarization measurements as a function
of cell temperature. No evidence for depolarization at low temperatures is seen.

Another possible source of depolarization was the transient electromagnetic fields
of the 10 MHz pulsed positron beam. The beam properties will be discussed further
in Section B.5.1; however, it is sufficient to note that the magnetic fields may reach
60 mT. It is possible that this may disorient the spin vector of the helium nuclei.
Since this transient field is directly proportional to the current, this effect may be
investigated by studying the dependence of the polarization on the current. This
study is shown in Figure B.11, where the relative change in the polarization in the
target was measured to be less than 7%. Evidently, the transient magnetic fields did

not depolarize the target.
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Figure B.11: The ratio of the TOM and PCP polarization measurements as a function
of positron beam current. No evidence for depolarization by the beam is seen.

B.4 The Hydrogen Target.

In 1996, the target gas was no longer 3He but *H. Originally, it was intended that the
TOM be used as a monitor, using the Balmer 4p — 2s transition at 486.1 nm, which
has a lifetime of 33 ns and a branching ratio of 28%. The cross section was expected
to be much higher since that excitation was optically allowed, unlike the transition
used for the *He target.

The change in hardware provided new constraints for the TOM position and the
device was moved accordingly to a position 1.8 m away from the beamline, such
that the total optical path length was 2 m; this changed the background rates. An
appropriate lens was installed in the TOM beam path to compensate for this change.

The HERMES polarized hydrogen target functioned as an atomic beam source
(ABS) [86], wherein kgaseous H, was directed through a RF-dissociator to produce
atomic hydrogen. The atomic gas was then directed into a sextupole magnetic fo-
cusing system, where the two higher hyperfine levels were focused and the lower two
states were discarded, thus producing an electron-polarized source. Nuclear polariza-

tion was produced by using RF transition units to populate specific hyperfine states.



156
The atoms were then injected into the storage cell, which was inside a 3.5 T guiding
field in which the electronic and nuclear magnetic moments were decoupled. The
guiding field was produced by a superconducting solenoid.

There was a significant probability of recombination in the storage cell. The molec-
ular fraction was measured by analyzing the gas exiting the storage cell via a sample
tube. Unfortunately, the apparatus measuring the molecular fraction suffered the
disadvantage of sampling gas that was not directly in the beam path and which trav-
eled through an additional path along which it might undergo recombination. This
measurement suggested that the molecular fraction was ~10-20% and contributed a
possible depolarization to the atomic sample [87].

Because the magnetic field was designed to decouple the atomic and nuclear po-
larizations, the TOM, which measured atomic polarization, could not be used to
measure the nuclear polarization. It was thought that the TOM could be used as
an additional determination of the molecular fraction if the second phototube could
be used to monitor the population of Hy while the first phototube monitored the
H; population. The nuclear density of this target was only 7 x 10'® nucleons/cm?,
compared to the 105 nucleons/cm? of the helium target. Originally, this was not
anticipated to be a concern.

A primary question was the choice of an interference filter to select the H lines [88].
The 3s — 2p transition was chosen, as its wavelength of 450 nm was well suited to
the characteristics of the phototube already in place in the TOM. An interference
filter with 10 nm width was installed to avoid the nearby 434 nm atomic line.

It was soon discovered that the rates in PMT1, which was intended to measure
atomic hydrogen, did not vary as expected; namely, they did not vary linearly with
the density and current. The variations were much greater than those seen by the
luminosity monitor, as seen in Figure B.12. As discussed in Section 2.3.4, the lumi-
nosity monitor detects Bhabha scattering. Like the TOM, its rate was proportional
to the product of the current and the target electron density; this electron density
was naturally assumed to be equivalent to the nucleon density.

The variations in PMT1 were not seen in PMT2, indicating that it was not a
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problem with the electronics or of a systemic nature. Rather, the density seen by

PMT1 appeared to vary much more greatly than that seen by the luminosity monitor.
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Figure B.12: TOM signal fluctuations with the ABS. The fluctuations in PMT1 were
not seen in PMT2 nor in the luminosity monitor.
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The background did not show the same fluctuations, as seen in Figure B.13. In
these data, a shutter in front of the TOM was closed for ten minutes once every
two hours ‘to sample the background well. The background rates were lower by a
factor of ~ 50 relative to the helium results. This was attributed to the new position
of the TOM,; it experienced different conditions in the experimental hall, which was
presumably bathed in photons. (A lead sheet surrounds the TOM, but hadronic
background could simply induce showers and increase the background rates.) The
background counted at a rate of ~75 Hz/mA and varied only by 30%, unlike the
signal, which varied by ~250%. |
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Figure B.13: The rates in PMT1 for shutter open (top) and closed (bottom). The
shutter closed results show variations of ~30%, unlike the shutter open rate, which
varies by a factor of 2 or 3.

A very interesting series of observations and measurements followed, motivated

largely by C. A. Miller [89]; later, the interpretation of the results was guided prin-
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cipally by R. D. McKeown [90]. To both of these authors I am deeply indebted for
an understanding of the dynamics of the hydrogen target; the TOM offered a unique
opportunity to study the interesting system wherein a relativistic beam ionizes a gas
in the presence of a strong magnetic field. Other interactions between the beam and

the gas have been considered in Reference [91].

B.4.1 Rate Dependence on the Magnetic Field.

When the ABS was on, the rates rose slightly as the holding field strength was in-
creased, as seen in Figure B.14. The magnetic field strength was changed by increasing
the current to the solenoid and it did not impact the electronics of the TOM at all.
The luminosity monitor did not show the same rise, indicating a different density
than that measured by the TOM phototube. The apparent difference in measured

electron densities remained unclear.
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Figure B.14: The PMT1 variation as a function of magnetic field strength with the
ABS on.
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In order to examine this effect more closely, it was decided to fill the target cell
with unpolarized hydrogen, as it could be injected at higher densities as high as
10% nucleons/cm?. Once again, the rates varied as a function of the magnetic field
strength; in addition, hysteresis was observed when current was lowered again. These
results are shown in Figure B.15. Furthermore, enough Hy was present in the unpo-
larized gas that PMT2 can detect a signal. If the molecular fraction in the ABS was
15%, then the density of Hy was only 10™ nucleons/cm?; the unpolarized gas was

operated at a density higher by a factor of 50.
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Figure B.15: Signal variation with magnetic field strength with Hy gas. Unlike the
ABS, there was sufficient Hj in the unpolarized target that PMT2 can detect a signal.
It sees the same hysteresis and magnetic field dependence as PMT1.

B.4.2 The “Amplifier” Effect.

The results of Section B.4.1 showed that there were insufficient electrons in the ABS

output to excite the H, electrons at a rate that could be detected by PMT2. Fur-
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thermore, the variation of the PMT1 signal with magnetic field indicated that the
density of excited electrons varied with field strength.

In an-interesting test, unpolarized helium was injected simultaneously with the
ABS gas in order “amplify” the ABS signal by providing additional electrons. This
was possible because the ABS output enters the target cell through a different valve
than the unpolarized gases. Helium was chosen because no lines exist in the band-
width of these interference filters, unlike the other available gases, H, and D,.

The interesting results are shown in Figure B.16. PMT1 did not see anything
from the helium alone, whereas with the ABS on simultaneously, the rate was higher
by an order of magnitude than that seen with the ABS alone (seen earlier in Fig-
ure B.12). Similarly, whereas PMT2 counted at 100 Hz/mA with just the ABS on,
and 200 Hz/mA with only helium in the target cell, the result with the two gases flow-
ing simultaneously was 800 Hz/mA rather than just the sum. In addition, the rates
in both phototubes varied with magnetic field strength again. Non-linear phenomena

were becoming increasingly evident in this system.
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Figure B.16: The “amplifier” effect in a target filled with *He and the ABS output.
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B.4.3 Dependence on the Density.

The results of Sections B.4.1 and B.4.2 suggested that the electron density varied
tremendbusly in these tests. Since it was not possible to increase the density of the
ABS alone, the next step was to vary the density of unpolarized H. This measurement
was performed at 2.2 kG, the magnetic field strength at which the rates were highest
in the studies of Figure B.15 and Figure B.16. The results are shown in Figure B.17,

in which the rates increased non-linearly with the gas density.
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Figure B.17: Rates in both phototubes as a function of unpolarized gas density. All
measurements were taken at 2.2 kG.
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B.5 Interpretation of the Hydrogen Results.

B.5.1 Beam Properties.

The results shown in the previous section were not easy to interpret. The target
gas apparently experienced interactions that varied non-linearly with magnetic field
strength and target density. In order to explain these results, an understanding of
the incident positron beam was necessary.

At a typical current of 30 mA, the 27.5 GeV positron beam has an associated
magnetic field such that the field lines loop around the beam axis. At 0.01 cm, the
approximate beam size, the magnetic field strength is ~60 mT due to the 10 MHz
time structure of the beam. Meanwhile, it also has an associated electric field, with
lines extending radially from the beam axis. Since for a relativistic beam [E| — c|B],
the electric field has a strength of ~2 kV at a distance of 0.01 cm. Electrons trapped
in this electric field will have then, on average, energies in the vicinity of several

hundred electron-volts.

B.5.2 Ionization.

Ionization may be described empirically by the following equation:

do/dE = nwag%F(Z,e/x) (B.5)

1
= 1.63 x 10—14;(?1.

where ag is the Bohr radius; x is the ionization energy; € is the incident electron
energy; n is the number of incident electrons; and Z is the charge on the ionized
atom. g = (x/€)F(Z,¢/x), where F has been measured experimentally at low Z
and calculations have been performed for infinite Z. Measurements are shown in
Figure B.18 (taken from Reference [92]), where the results agree well with calculations
and data shown in Reference [93)].

For molecular hydrogen, data exist over a greater energy range, where it is seen
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Figure B.18: Ionization cross section of atomic hydrogen. Taken from Reference [92].

in Figure B.19 that the peak ionization energy is still in the vicinity of 100 eV.
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Figure B.19: Ionization cross section of molecular hydrogen.
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An average cross section for ionization of hydrogen atoms may be estimated at

0.5x 10716 cm?2. Combining this cross section, the ABS target density of 7 x 10'*/cm?,

and a 30 mA beam at 10 MHz, the ion production rate is 7 x 1012/s; this leads to

7 x 10° ions produced per beam pulse. This process liberates electrons held in the

electric field. Meanwhile, the ions inherit the kinematics of the parents and, at the

cell temperature of 80 K, the kinetic energy of the ions is on the order of 7 meV.

Perhaps 10% of the electrons trapped in the field will have an energy of 70 eV,
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where there is a peak in the ionization cross section. The associated momentum is
then p, = vV2mE ~ 8 keV. This is transverse to the beam direction because of the

radial direction of the electric field lines.

B.5.3 The Magnetic Mirror Effect.

The 0.35 T longitudinal holding field will force the electrons to orbit the beam axis.
The cyclotron orbit period T, is inversely proportional to the strength B of the mag-

netic field and is given by the following equation, for B in Tesla and T in seconds:

2m 1
T, = TmB (B.6)
= 3x107'/B.

For B fields on the order of 1 T, the cyclotron orbit period approaches the beam
bucket length of 20 ps. In this case, the electron orbits the beam axis during the entire
duration of the transient electric field. Consequently, the electric field’s attempt to
push the electron radially toward the wall averages to zero over the electron’s orbit
around the beam axis.

This orbit takes place at the Larmor radius of p, /(¢B) = 0.016 cm; thus, the
electron is placed at exactly the edge of the beam pulse!. The transverse velocity v,
is given by 8, = p,/m = 0.016, giving a velocity of ~5x10®% cm/s.

The non-linear variations of the TOM signal suggested that the electron density
was augmented in an unexpected fashion. With the two orthogonal magnetic fields
(one varying in time and a constant component), it is possible to have an environment

in which the electrons are trapped if they satisfy the magnetic mirror criterion [62]:

vi/v: < \/ Bmas/ Brmin — 1. (B.7)

1The helium target was placed in a field lower by a factor of 100; for this reason, the cyclotron orbit
period was correspondingly 100 times longer and hence the electron could execute only a fraction of
a complete orbit before the beam pulse disappeared. Furthermore, such an electron would orbit at
a distance of 2 cm instead and hence was not close enough to experience the higher field strength
of the beam. Because its ionization cross section looks quite similar to that of hydrogen [93], in a
different electromagnetic environment helium could also experience these effects.
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This equation applies to longitudinal (transverse) velocities of v; (v;) and max-
imum (minimum) values of the magnetic field of B0z (Bmin). The magnetic field
produced. by the superconducting solenoid varied by 2.5% at the center of the mag-
net, where the density profile was highest. Assuming that the electrons are trapped,
this implies a longitudinal velocity of v; = (v/0.025)(5 x 10® cm/s) = 8 x 107 cm/s.
Therefore, it would take only 20 cm/(8 x 107 c¢cm/s) =0.25 us to leave the target.

The 10 MHz beam returns only 0.1 us later, while the electron has only traveled
(8 x 107 ¢cm/s)(10~7 s) = 8 cm in this time. The electric and magnetic fields return
and perform the same exercise again, redirecting the longitudinal and transverse
momenta, such that the electron’s momentum vector is reoriented. Consequently the
electron undergoes a random walk with step size d = 8 cm. For a random walk
with k& = diotai/dstep, the average number of steps is k?. Thus the random walk has
(20 cm/8 c¢cm)? = 6.25 steps, on average. As a result, the total path length traveled
is diraver =(6.25 steps)(10 cm/step)/B, = 4 x 10° cm.

Because the magnetic field caused by the beam cannot be controlled experimen-
tally in these measurements, v; does not change. The holding field, in contrast, may
be changed. At small fields, the electrons have larger orbits and may land on the cell
surface. Because of the larger orbit, they absorb less energy from the electron beam
and v; decreases. It is then harder to satisfy Equation B.7.

On the other hand, with an increased holding field, the cyclotron radius decreases
and forces the liberated electrons to be closer to the beam. At this point, the electrons
are deeper in the potential well created by the beam and thus they are ionized with
more energy; the result is that v; increases as well. This is possible until fields are
reached that are too high; at this point, the electron’s orbit period approaches that
of the beam pulse and hence it gains no energy from the transient field. Therefore,
with high enough fields, the electron is actually less affected by the incident beam.

These conclusions together imply that an intermediate field strength exists such
that the electron absorbs significant energy from the beam but not so much that
it is thrown into the cell wall or dragged out of the cell longitudinally. This set

of conditions appears to be fulfilled at 2.2 kG, according to the results shown in
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Sections B.4.1 and B.4.2.

B.5.4 - The Density Dependence of the Chain Reaction.

The discussion of Section B.5.3 suggest that the rates should vary as a function of
longitudinal magnetic field strength. On the other hand, the density dependence of
the intensity was not yet explained by this analysis. The non-linear dependence of
the signal on the density indicates that a chain reaction was triggered at densities
between 7 x 10'® cm~2 (the ABS density) and densities of 105 cm~2 (unpolarized gas
densities). The “flickering” of this signal should be understood in terms of simple gas
kinetic theory.

The ABS gas density is 7 x 10'® nucleons/cm?; in a target cell 40 cm long, the
volumetric density p is (7 x 10 em™2)(40 cm)~! ~ 2 x 10'2 cm™3. In this gas,
the mean free path d will be given by d ~ 1/(pr2) for molecules of size r,. For
diatomic hydrogen molecules, 7, will be roughly the same size as one molecule; that
is, 7 ~1 A, such that d ~ 5 x 10% cm.

Each freed electron will release more electrons; the average number of excess
electrons is Negcess = 4/ draver- At the ABS density, negeess = 5 X 10% em/4 x 10® cm,
OT Tegeess = 1.2 electrons, thus barely provoking a chain reaction.

In general, the chain reaction will take place if d > dyraver, With direve; defined by
the beam properties and d set by the target density. Therefore, the chain reaction
will occur if the following condition is satisfied
1

Pec = (BS)

Qul

2
Tm

for critical density p.. Under the current configuration, p. must be 2.5 x 10'2/cm?,
which is an areal density of only 10'cm~2. This agrees very well with the results of

Figure B.17, which shows a threshold density of p, = 4p4ps ~ 3(7 x 10" cm™2) ~

2 x 10 cm™2.
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‘B.6 Summary and Conclusions.

The TOM was the first in situ monitor of a polarized internal gas target. By detecting
the polafiéed photons of radiative decays, the TOM measured the atomic polarization
of these targets as well as the luminosity.

In 1995, the TOM functioned well as a relative monitor of the nuclear polarization
of the helium target. Synchrotron backgrounds were high and there was a polarized
contribution to the background, thus making it impossible to use for absolute polar-
ization measurements. It did, however, provide an excellent set of complementary
measurements to the traditional polarimeter. In addition, it was possible to search
for sources of depolarization.

In 1996, the target gas was hydrogen, rather than helium. The high guiding field
needed for this target created a new environment in which a plasma was formed.
This was evident by consideration of the dependence of the TOM luminosity on the
magnetic field strength, as well as on the density. These observations were understood
in terms of simple kinetic models. Because of the limited density of the ABS, the TOM
could not be used to monitor the molecular hydrogen population. In addition, the
instability of the signal made it difficult to use as an additional luminosity monitor.

The TOM did, however, shed light on the interesting electromagnetic environment
created by the beam passing through a gas held in a high magnetic field. Evidently,
this was a complicated system needing precise numerical modeling; however, the broad
aspects of the results could be interpreted through straightforward physical models.

The use of the TOM for luminosity measurements in atomic hydrogen gas targets
was not excluded by these observations. Presumably such a target will always require
a strong holding field on the order of 2 kG. At another facility, however, the electron
beam may differ considerably; namely, if it had a different time structure or peak

beam current, the instabilities seen here could be reduced.
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