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ABSTRACT

This thesis consists of an introduction to the field of hydro-
magnetics, followed by three separate studies in this subject.

The first is a study of the small-amplitude hydromagnetic
radiation from a localized disturbing source in an unbounded dissi-
pationless fluid permeated by a constant uniform magnetic field.

The relevant linearized vector wave equation is treated by Fourier
transform methods, utilizing the stationary-phase approximation.
Asymptotic solutions are obtained for the wave-zone amplitude in
the three modes emitted, and these are discussed in some detail;
analytically, geometrically, and physically. Expressioné are ob-
tained for the angular distribution of the power radiated into these
- modes by a distributed source.

The second study concerns itself with some special two-dimen-
sional hydromagnetic steady flows. Various general properties of
these flows are discussed. Ten exact solutions of the exact non-
Iinear;equations of flow are derived and some of their features noted.

The third study‘is an investigation of whether, for .the case of
a deep 'lake' of dissipationless incompressible conducting fluid in a
constant uniform magnetic field, there exist characteristic small-
amplitude gravity surface-waves différent from those known in hydro-
dynamics. It is concluded that no surface waves exist at all if the
magnetic field has a component normal to the undisturbed surface,
and that if the field is tangential to the surface, there are no new

wave types with a characteristic dispersion law.
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INTRODUCTION

1. Description and History of the Subject.

The subject of hydromagnetics (or magneto-hydrodynamics, as
it was originally called) deals with the motion of conducting fluid
media under the influence of magnetic forces. In most of the examples
encountered in nature, the medium is an ionized gas; in the earth's
core and in most of the laboratory experiments to date, it is a con-
ducting liquid. In nearly all the theoretical studies so far published
the medium is assumed to be an isotropic "ohmic fluid" describable
by the Navier-Stokes equation of ordinary hydrodynamics with the
addition of an appropriate magnetic body-force.

The beginnings of this field can be traced at least as far back
as 1919, when Sir Joseph Larmor published his speculations on the
structure of sunspots. (1) Little or no further development seems to
have occurred until 1930, when T. G. Cowling took up, in his doctoral
thesis, the problem of the generation and maintenance of magnetic
fields by the motion of conducting fluids; the problem of fluid dynamo
action in nature still remains the central theme of the present subject
and is one of the most difficult problems ever posed in classical
theoretical physics.

During the period of the 1930's, further studies basic to hydro-
magnetics were carried out by a small number of workers, among
whom S. Chapman, T. G. Cowling and V. C. A. Ferraro were pro-
minent. " During this decade or so basic kinetic-theory studies were
made of the properties of ionized gases, and experience was gained

in the construction of a number of frequently short-lived theories of



stellar and cosmic electromagnetic phenomena. It soon became appa-
rent that, on the mathematical side, the subject is extremely formi-
dable, and on the physical side, as Cowling has remarked, "the pro-
bability of being led astray by seductive theories is high".

The recent popularization and active phase of the development
of hydromaghetics began shortly after 1942, in which year H. Alfve'gl
(2) pointed out the existence, in a copducting fluid, of wave motions
with purely magnetic restoring forces, and subsequently, in a series
of boldly imaginative papers, set forth interesting semi-qualitative
theories of various solar and geomagnetic phenomena. (3)

Alfvén's pioneer work and that of his colleagues Wale/n,
Lundquist, Lehnert and others in Alfvén's very active Stockholm
group brought the subject an increasingly wider measure of attention.
In the 1940's, E. C. Bullard in England and W. M. Elsasser and
S. Chandrasekhar in the U. S. A. interested themselves in the sub-
ject and, with their collaborators have made notable pioneering con-
tributions during the past decade. The whole field is currently under
increasingly active development, on both the theoretical and experi-
mental sides.

Hydromagnetic theories have been constructed for such diverse
phenomena as the structure of sunspots, solar prominences and flares,
the oscillations of magnetic variable stars, terrestrial magnetic
storms, acceleration of cosmic rays in interstellar space, the origin
and evolution of the earth's magnetic field, the structure of spiral
nebulae, oscillations of the earth's ionosphere and, currently, pro-

blems of immense potential practical importance centering on the initi-



ation, containment, cooling, and heat insulation of high temperature
reactions, chemical and thermonuclear. Electromagnetic pumps and
flow-meters based on hydromagnetic effects are already in use, and
further technical devices of such kinds are doubtless in the offing.

Until guite recently, the vast majority of the researches in
this field were of a purely theoretical nature. DBecause of the very
great difficulties of exact analysis, these studies, especially those
directed to problems set by nature, were usually of a partly qualita-
tive character, characterized by a very free use of assumptions and
intuitive arguments, and with order-of -magnitude estimates instead
of accurate calculations. Experimental studies, on the other hand,
have been hampered by the lack of high-conductivity low-density fluid
media and, for the best available approximations thereto (mercury .
and liquid sodium), by the difficulty of arranging sufficiently extended
and sufficiently large magnetic fields. Ionized gases furnish much
more suitable media, but there are severe experimental difficulties
in achieving a uniform sufficiently high ionization over an extended
region and under controlled reproducible conditions. Currently, how-
ever, such experiments are being gotten under way and thé next few
years should bring considerably more, and much more helpful, experi-
mental information than has been available in the past.

The physical content of the customary formulation of hydromag-
netics, as a simple generalization of hydrodynamics, is very clear.
However, the mathematical complexities of a quantitative treatment
of even the simplest idealized problems are usually too great to allow

a thorough investigation. At the present state of development of the



subject, it is thus of interest to study simple problems permitting of
detailed mathematical analysis. One may hope, then, that progress
will be made in the same way as in fluid dynamics -- that, ultimately,
useful reliable approximations may be developed to aid intuitive
thinking and to reduce the mathematical complications.

The studies reported on in this thesis are directed to this end.

It is hoped these simple examples will illustrate some of the features
which must be takeﬁ account of in more complex situations.

The rest of this chapter aims to present a brief but éelf-con-
tained account of the formal basis of hydromagnetics, on the customary |
assumptions. For further details, discussions of applications, and
accounts of experimental work, reference may be made to a number
of authoritative review articles and symposia. (4, 5, 6, 7, 8, 9, 10, 11)
The entire development given here is a direct generalization of hydro-
dynamics, based on a macroscopic description of the dynamics and
electrical properties of the fluid, It is outside the scope of the present
work t;) give any quantitative discussion of the conditions under which

such a description is appropriate for an ionized gas.

2. The Basic Hydrodynamical and Electromagnetic Equations

In hydromagnetics one is concerned with the dynamics of a slowly
varying electromagnetic field. The periods of fluid motions and field
fluctuations are comparable; loosely speaking, the field is embedded
in the fluid and moves with it. The equations describing these effects
are those needed in hydrodynamics (the Navier-Stokes equation, the

equation of energy balance, and the thermal and caloric equations of



state), with the addition of the quasi-static Maxwell equations. No
problems have yet been treated with all these relations taken simul-
taneously into account, but logically all are necessary. We shall
show how, from this array of relations we may derive, for small
amplitude disturbances of a uniform fluid in a large, constant, uni-
form magnetic field, a pair of linearized coupled equations for the
velocity and temperature fields, from which all the others may be
derived. The problems studied in this thesis involve only very
special cases of the equations presented here; it seems worthwhile,
however, to present a considerably more general formulation to
begin with.

Throughout this work, rationalized MKS units are used. We
assume a uniform medium, devoid of electric or magnetic polariza-
tion, and possessed of the properties assigned to a viscous compres-
sible fluid in hydrodynamics. In addition, the medium is assumed to
be isotropically conducting with uniform conductivity & such that,
when it is permeated by fields /£ and /B a current j: e/ flows
locally, these quantities being measured in a reference frame moving
with the fluid locally. In our system of units, the dielectric constant

and permeability are assigned the respective values

€,= 8.854 x 10—12 farad/meter
and

Jv = darx 10”7 henry/meter

©

The equations from which we begin, written in the inertial coor-

dinate system with respect to which the fluid is moving with velocity V ,
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may be divided into groups as follows.

(2) Maxwell equations and complements:

VX IE + ;%LE =0 (1)
2 = (2)
v-pB =0 (3)
€,V IE =m (4)

Lo =77V+ s(/E+\Vx /5)-;-60 /é (5)
%—'z— + Ve Ty =© (6)

75, =  Lorentz force-density :—.7//5 L, % B (7)

47 is the electric charge density. Eguation 5 expresses the total cur-
rent as the sum of a convection current due to the bodily éonvection of
free charge by the fluid, a conduction current created by the electric
field /E):[Ei- Vx/p seen by the moving fluid, and the displacement
current. We shall shortly show that the convective and displacement
currents are, in hydromagnetics, completely negligible in comparison
with the conduction current, and that the electric part, 7/E , of the
Lorentz force is negligible in comparison with the magnetic part. Thus
we shall finally use the quasi-static form of the Maxwell equations,
with a purely magnetic body force.

(b) Navier-Stokes and continuity equations:

We assume that our medium is a "Stokes fluid", with zero bulk

viscosity. Then,defining
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F = /o -DV +/ov~(VxV><v-- %va\\/) + VP

D _ D )
(pt_@évu\vv

the equation of motion of the fluid is

(8)

-

F=F )

In addition, of course, we have the continuity equation

D o=
3§+/ov V=0 (10)

IO’V“ is the shear-viscosity coefficient, 2/ being the kinematical
viscosity coefficient. Equation 9 equates the Lorentz ponderomotive
force to the' sum of pressure, inertial, and viscous forces.

(c) Energy equation and the equations of state:

The equation of energy balance is

Duw
D2U L oW+ P+ 7)+ -(E+WVx 1
P I ¢, + v-(evT) + J (E+vxi) (1)
where
(. = gpecific internal energy of the fluid
T = heat conduction coeificient
T = temperature

DU 0,
@v - f”ﬁ[2 %/ (bm) Z (@'xJ fam)]
the viscous dissipation term, and the meamngs of the individual terms

in equation 11 are clear.

The thermal equation of state is

r=p (/o/ 7) (t2)
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and the ‘'caloric' eguation of state is

l,(,-:b(,(/o}v (13)

Before we proceed to combine and manipulate the foregoing
equations, we digress to discuss the orders of magnitude of certain
important gquantities and the conditions for pronounced hydromagnetic
coupling effects. This information is readily developed by order-of-
magnitude estimates from the equations.

K

3. Orders of Magnitude; Hydromagnetic Approximations.

Let V denote a representative velocity, [ a representative
length within which a specified field changes by a significant fraction
of itself, T a representative time for the same thing, etc. The («J)
sign shall denote rough equality in the order-of-magnitude sense.

As we have seen, we have

vx/B
x5 = ‘;zo{_ = & comd +J¢A.,OC +Jc:y».u +/¢[¢‘sf-

where : /40

/ = c/E

, the conduction current
cond

J = & ¥Vx/B , the "induction current"

el

J =»WV =W V-[E , the convection current
Comnu

Ja[,gf_ = € /£ , the displacement current

For periodic processes,

Ja&.s . €W
AL "

F

Our discussion in this section is largely based on those given by
W. M. Elsasser, (6 and 12).
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a quantity well-known in the theory of electromagnetic waves in rigid

-

e
conductors. Now, in hydromagnetics we are concerned with the motion

of highly conducting fluids, moving with long periods (limited by the

inertia of the fluid as a whole). The conductivities rarely fall below
metallic order. A lower limit for & is surely =2 107 mhos /meter,

the conductivity of iron. An upper limit for « is surely, say,

E3
104 radians /second. Even with these liberal limits Y is minute,

of the order of 10;13. So the displacement current may always be

neglected in hydromagnetics.

Now, c
” = €g V- IE ~o Lo 5
Therefore
(/'c,o'wu. — ”7‘/ ~ €V ~ X (13)
Jeomd, & L&

So JCOMU’ is enormously smaller than Jmo(' and we may likewise neglect
the convection current against the conduction current. We see then

that, to an excellent approximation,

IXB
-J - G"(IE-/—\VXIB) (14)

/40

Let us now compare the "induction current"to the total current

J“""( SVE _ LV =R (15)
Teot. (%OL) e T

where the useful dimensionless number R,,,? is often called the "mag-

netic Reynolds number", for formal reasons to be mentioned shortly.

“In cosmic hydromagnetics the conductivities are considerably higher:
.than the value cited; and the frequencies much lower,.
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Let us clarify the physical meaning of this quantity.
For free decay of currents in a rigid conductor we have the well

known eddy-current equation

:%Lé z/'f/? 7B (16)
Then

B ! A) o ~f el

Tdecay /o€ (/f )T Teeay™f e (t7)

This describes the diffusive decay (or penetration) of magnetic fields
in conductors, which proceeds slowly when the conductivity is high

or the dimensions of the field large; it is of course the basis of the
skin effect . Relation 17 states that the time necessary for a magnetic
field to penetrate to a depth L ina rigid conductor is of order /éG'LZ.‘

Roughly, then, we may think of the field as moving through the con-
/

ductor with a "velocity" /«oc“L
Now, the periods of the fluid's motion are of the order of
L

T, = =

Therefore
Tde
= =y v
Rm: /vOQBLV’V ([8)

ik
We see that a large AR., means that the changes of the field due to its
convection by the fluid are large compared to the changes caused by
resistive damping of the field, in the same amount of time.
To consider the matter in another way, we first derive the

generalization of eguation 16 for a fluid conductor. From equation 14,

VXB

Fo s

in our hydromagnetic approximation, £ = —WVx/B. Using this in
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equation 1, together with the identity

Vx@x B = —ViB (since V-B=o0)
yields
QB { 2
;a—_z—-— VX(\\/X/B)-—!*/—Q?:'V B (19)

This relation, which is referred to throughout this thesis as the "equa-
tion of induction', is the companién to the Navier-Stokes equation of
motion in all hydromagnetic problems.

The equation of induction, clearly, describes the bodily convection
of the magnetic field by the fluid motion, proceeding apace with its
diffusive damping by Joule heat losses=:< -- these two effects being

described respectively by the first and second terms on the right side

of equation 19, The ratio of these two terms is, in order of magnitude,

: (VB
-?Co»o-u ~ A) _ /406-[_\/ e Rm (20)
BG&'% <B4,°c-l_2‘)
We see that is a measure of the strength of coupling of the velocity

field to the magnetic-induction field. If R... is large, the convective
effects dominate the diffusive effects and the field can be significantly
changed by the fluid motion before being apprec_ﬂiably damped. Clearly,
Rm>>_{ is a necessary condition for appreciable hydromagnetic coupling

effects. For the fluid motions in the earth's core, R,,,I’V 103, and it is

is larger by many powers of ten for phenomena on a cosmic scale.

E3
As a rough picture we may think of a partial entrainment of the magne-

tic field lines by the moving fluid, with a relative slip and damping effect
from the resistivity. Such a picture is useful and exact for the case of a
perfectly-conducting fluid, but for finite conductivity it is apparently

not a precise notion, though often an aid to the imagination.
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Under the condition of large R.,,,? we see from equation 15 that
both the 'induction current' &Wx/B and the 'conduction current' &/~
are large compared to the total current. Therefore, for large R, ,
E o —~VXB toa very good approximation. Now the condition £ =—-Fx/R
is precisely the definition of infinite or "perfect' conductivity. So a
fluid with large Rm_ behaves like a perfectly conducting fluid. That is,
the larger the scale of a hydromagnetic disturbance, the larger the con-
ductivity of the fluid and the larger its velocity, the more nearly does
it approximarte tola perfectly-conducting fluid. This is one of the
reasons supporting the use of the infinite~conductivity idealization,
especially in cosmic physics. This idealization, however, must be
handled with great care; not only does it often make ambiguous the
proper fitting of boundary conditions, but in other respects as well it
represents a singular limiting case, as we shall see elsewhere in this
thesis.

For a perfectly-conducting fluid equation 19 reduces to
DB = Vx (\vx'lB) (19a)

and this equation is readily integrated to yield the result that

.)%///B.c(?=o (for R..,, = ) (21)

where the integral is taken over any closed surface whose boundary
moves with the fluid everywhere. This clearly expresses the feature
already mentioned, that in this limiting case the magnetic field is "'locked"

to the fluid motion.
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In fluid dynamics the important dimensionless Reynolds’ number
is defined as

Vi

R=—0 (22)

It is the ratio of the sizes of the inertial terms to the viscous frictional
terms in the Navier-Stokes equation. It is well known that if R >>:£
for a flow, the situation is unstable with regard to the development of
a turbulent regime out of a laminar one. Now, in cosmical'physics
the Reynolds number is‘probably always very large. Therefore we
must expect that turbulent motion is the rule in cosmic hydromagnetics
and hydrodynamics, and we must frankly face the likelihood that lami-
nar flows represent at best only a crude approximation in these cases.
In all probability the scope of applicability of laminar flow theories is
no greater than, say, in the field of meteorology. The development
of a good theory of hydromagnetic turbulence is therefore of great im-
portance for the astrophysical applications of our subject. Efforts on
this formidable task have already been initiated by Chandrasekhar.

In analogy with the role of the kinematic viscosity in the Navier-
Stokes equation, we may attach the term "magnetic viscosity" to the
guantity

= 1
A= = (23)

o
A then has the same formal role in the induction equation {equation 19)
as 7~ has in the Navier-Stokes equation. Furthermore, with definition

23 we have, from eguation 15 that
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Roy = 5 (24)

in analogy with equation 22; for this reason R”, was termed the mag-
netic Reynolds' number. It is by no means to be implied, however,
that this analogy is a very close one physically.

The ratio of the rates of local heat generation by viscosity to
that by resistivity is easily expressed. This ratio is of the order of

magnitude

vE -
” () 7= Vaa
:i,- ~ _L( BLz. =(/’é G_"”)(/é/o Ba) (25)
& /ZL

Now, for reasonably pronounced hydromagnetic coupling, the mag-
& 2
netic pressure YN must be comparable with £ V", the dynamic

pressure of the fluid. Therefore

2
2 B
V T av
/O ~ Fio (26)
so that equation 25 may be written
f)ﬁ
MWor /%G")/‘ = (26)

We

Eguation 26 is but one condition for pronounced hydromagnetic
coupling; as we have seen in the considerations following equation 20,
we must also have Rms/%fLV»l. Combining this condition with

eguation 26 yields
Phke Vﬁe > 1 (28)

as a necessary condition for appreciable hydromagnetic effects. Thus,

we require sufficiently high conductivity, small enough density, large
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enough wave disturbances and strong enough fields. These require-
ments create some of the experimental difficulties mentioned at the
beginning of this chapter.

Liet us now compare the relative importance of electrostatic

to magnetic ponderomotive forces on the moving fluid. This ratio is

2 -
£ /e V-E[ «% 1 E .
£ “/vx/lsx/B/ RZ - c2 BZ (29)
SR Fol- |
here c = is the vac locity of light. But, if R i
W V??F: i vacuum velocity g u ey i8
not &< { , we may estimate
E ~ BL ~ BY
T
Therefore
Fe
7 (30}
»y

since we deal with completely non-relativistic fluid velocities through-
" out., So, unless R,, is minute, one may neglect the electrostatic
body force in comparisoh with the magnetic one.

With the excellent approximation of a purely magnetic Lorentz
force we may,i from equations 8, 9, and 14, with the use of the identity

2

VXAV = VV W —VTV

write the hydromagnetic Navier-Stokes equation explicitly as

+ (\v V) (VxIB)x/B ‘7)" + (vz\v +3—’ vV \Q (31)

where any external body-force is to be added on the right side. Equa-

tion 31 together with the induction equation

%)éé = vx(\\/xaa)—i-/é’e_

are the basic equations of hydromagnetics.

veB (19)

We note, incidentally, that V/Ca. is also the ratio of electric to
magnetic energy-densities.
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4, The Linearized Equations of Hydromagnetics.

(2) The linearization process.

Summarizing the results of sections 2 and 3, we see that the
solution of a hydromagnetic problem, with the very good approxima-
tions already indicated, involves the simultaneous treatment of
equations 31 (the equation of motion), 19 )the equation of induction),

10 (the equation of continuity), 11 (the equation of energy balance),

13 (the thermal equation of state), and 12 (the "caloric"equation of
state), together with appropriate boundary conditions on the mag-
netic field, the velocity field, and the accompanying electric field.
Since this array of relations is completely intractable save possibly
for certain one-dimensional problems, we are led to consider simp-
ler expedients for certain kinds of situations.

As in ordinary hydrodynamics, it seems that we may gain much
useful information by studying flows which may be considered as small
perturbations about a known one; in particular, small »perturbations
about a; quiescent state of a uniform fluid. Our object will then be to
obtain "linearized" equations describing the "small" deviations of
the various dependent variables from their "unperturbed" values.

In hydromagnetics, an unperturbed state cannot be one of
vanishing magnetic field, for then, since the magnetic field enters
quadratically in the equation 6f motion and bilinearly with the velocity

in the equation of induction, there would be no first order’' effects

>kThe electric field must in principle be taken .account of even though, in-
side the fluid, it may be expressed in terms of the velocity and magnetic
fields. However, it seems (analogously to the discussion of the electric
field in and about a wire carrying a steady current) that the matching of
IE across the boundaries will result merely in a surface-- '

charge. This charge, because of the largeness of o« , will be very
small, just as in the case of the wire.
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involving the rhagnetic field. So we are forced to consider an unper-
turbed state in which there is already a "large" magnetic field per-
meating the medium. In nearly all studies in hydromagnetics, from
sheer mathematical necessity, this zero-order magnetic field is taken
as constant in time and uniform in direction; external currents are
necessary, of course, to maintain it. Admittedly, this necessity
greatly limits the range of problems to which such linearized equations
are applicable. If the large field varies slowly enough, with respect
to the scale of fhe fluid motions, we may still hope to use the uniform-
field approximation. More elaborate perturbation methods, similar
to the "WKB approximation" may also be used in such cases, starting
with the uniform-field case. |

(b) Linearized velocitY—eq_uations for a polytropic fluid.

Returning to equations 10, 11, 12, 13, 19, and 31 we proceed now
to linearize them throughout, writing new equations for small depar-
tures of all our dependent variables from an unperturbed state of a
uniform isotropic fluid at rest in a large constant magnetié field B, .

We put B:@ﬁﬁe W:w?fn8+0% TEE+T%’%=%JJ? P=£+F0)
where the superscripted symbols are 'first order' quantities. The
velocity IV and all derivatives of first-order quantities are also first-
order quantities. Quantities of second--and higher order are neglected

throughout. We shall omit the superscripts, as it will be clear which

1

our first-order terms are. The dotted equality sign (=) shall be under
stood to mean "equality to within second- and higher-order quantities".

Taking the curl of equation 1, and using .eq_uation 14 and the vector
identity VxVX( )= vv-()=-v< ) yields

2 Y |
vV E ——V(E'f“/vo,b{: =0 (32)



-18 -

ox b

fe

~vv-(VxB,) — VIE +f =%

L

Al so, since — WVxiB, equation 32 becomes

/ELJ_ = O (33)

when a second-order term VV-(¥ X&) has been dropped. Next, upon
post-multiplying equation 33 with the constant vector B, in the vec-
tor cross-product, and noting that (V /E)X/B \% (/EX/B) (since v

is a scalar operator), we obtain

—~ VV'(\V-X/BO)]></BO - VZ(IEXIBO) A % (Jx BQ =0 (34)

> .
Now, since F =Jx/5 to a very close approximation, as we have seen,

we have

. . F
EXB, = (—g— "“/X/BQ"/BO = = ——(\Vx/Bch/Bo

where, from the linearized approximation to equation 8 we have

>
‘V oV(vxvx\v—-g—Vv-\\Q+VP (35)

IF = /o
Therefore, equation 34 becomes

v [V x /5) - Ly /F+V7'[(Vx/25) X/B]

But, in this last equation, identically

VZ@Vx //5,,) x/537 = Z'VL(\VX /502] XB, =[Vvv-(vx /BQ]X Bo—[VxVXGVqux B,

and so finally we obtain the linearized equation

Q
.__...::O
DE

F -
-[VxVx(va]x/B +/4 = E—L V?'/F (36)

where the linearized form of # is given by equation 35. Let us now
write out the explicit forms this takes for compressible and for in-
compressible fluids; in so doing we shall, for the case of monochroma-

tic time-dependence, convert equation 36 into an equation in the velocity
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alone.

The linearized form of the continuity equation 10 is

.. _‘f-b
A (a"é 37)

wt
Now, if all quantities have the time-dependence e then, from equa-

tion 37,

/o,.f__v v (38)

If we choose to neglect the energy balance equation, and thereby
take no account of heat conduction effects, we may assume that our
medium is a so-~called '"polytropic fluid", with equation 12 replaced

by

P=Pe ©9)

(For a general fluid this assumes, in effect, either isothermal or adia-
batic compressions.) Then
. ro> 2
—1 Ve = V. ¢
(%—F ) vp =V "vp (40)
where VS is the isothermal speed of sound in the fluid. Thereupon,

for monochromatic time-dependence, we obtain, with the use of equations

38 and 40, the linearized equation for the velocity field, namely

.
...[vax (\\/Xlﬁoj X6, ~fs 3V *‘h’/sﬂov[Vx vX W~ —34—\7 v ["]*/"0/3 Kvv

- —S;i-[auv?‘\v +vvz{vxvx\\/—— L ov \\{ﬂ + kY% ?‘(Vv-@ (41)

(AT

This fourth-order equation becomes of second order when we put
¢=oco, In Chapter II of this thesis we shall be concerned with the case

»=0, &= oo, for which equation 41 becomes

_[:vax(\vx”so XBo o (42)

#

_ JIZ?)\V +p Vopew —
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Actually, equation 42 is needlessly restrictive; with the assumptions

’Y"’=O/

fo 5

& = <o one may easily derive the equation

\v__[vx?;(w/&yx@ -0 (42)

which is studied in Chapter II. Even this dissi;ﬁationless case, because

”b\\/

of the anisotropic third-term, is a rather difficult one, as we shall see.
' . . ro. . .
Another case of interest is that studied by Alfven in his basic
paper, namely the case of a perfectly-conducting non-viscous incom-

pressible fluid. For this case

. _/Ofa\v +op

and since V-+V¥V=0, equation 36 becomes

2.
[VxVx(\Vx/BQZx/[S = kL 2\; ﬁV(/a) (43)

A
Putting B = €x B equation 43 is seen to become
o

2
v
v _ BV /‘°’3’°+—-‘j (44)
—_— —— ————— — 2 (3
2z> Yy ot* Bo o o=
where \ﬁ = Be is the so-called Alfven velocity. Taking the divergence
VR
yields

2 [(fo(2P), =]
v -zgiégz;)-ﬁ ”32327"'0

Now, (considering the case of an unbounded fluid), a harmonic
function which is everywhere non-singular must be a constant. Since
P=%=0 in the undisturbed fluid at infinity, this constant must be

zero. Therefore,

PP - B2t | (45)
ot a

— Bo
A
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giving the pressure once %5 is known. Substituting equation 45
into equation 44 yields a one-dimensional wave equation for the propa-

gation of the transverse "Alfven waves", namely

DV { %_\V—wp (46)
- ===
Pzx T ot®

It may be mentioned that a very similar derivation gives the more

general linearized equation

A A 2 3y
2
COS -y = AL (16)

for small motions of a viscous, finitely conducting incompressible fluid
in a field lﬁozé\zﬁo . Moreover, equation 46' is exact, for all ampli-
tudes, when V lies everywhere orthogonal to B, .

The linearized equation 36 was derived and discussed by Banos
(13, 17) for the case 2 =0 ; our derivation is an abridged version of
his. Banos ,(15) has studied the plane- and cylindrical-wave solutions
of equation 36 and has shown that the incompressible fluid sustain two
modes -- one accompanied by pressure fluctuations ("p-modes" in
Banos' nomenclature) and the other ("v-modes") devoid of fhem; the
coméressible fluid, on the other hand, sustains the same "v-modes"
as the incompressible one, and in addition two shear-compression

"p-modes", which behave respectively like a modified sound wave and

o

like a modified Alfven wave.q: This author has also (13) made it highly

plausible that for validity of equation 36 we need only require that [V|<<¥

“In the case of a finitely-conducting viscous compressible fluid, with
neglect of the heat-conductivity, describable by equation 41, there is
an additional pair of damped shear waves, making five modes altogether,
The effects of heat-conductivity introduce yet another mode, giving two
shear modes and four shear-compression modes. These matters will
not be further pursued here, however.
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In Chapter II we shall discuss the generation of waves by a point
source in a compressible dissipationless fluid, and shall be concerned
with the last-mentioned three wave types.

c. Inclusion of the equation of energy balance.

Logically, for the discussion of flows in a compressible fluid
in the presence of dissipation, either viscous or ohmic, we should
include the equation of energy balance along with the equation of mo-
mentum balance already discussed. Not to do so is to neglect the
effect of heat conductivity and the resulting changes in the velocity
field via the thermal equation of state. In acoustics, for example, it
has long been known that the effects of heat conductivity can be as im-
portant as those of viscosity.

In published work on hydromagnetics, with but one or two excep-
tions*, the equation of energy-balance has not been taken into acount.
It may be of interest, however, to show how its inclusion within the
‘linearized scheme discussed in section b is straightforward, and leads
to a pair of coupled equations for the velocity and temperature fields;
plane-wave equations for these are derivable by the same procedure
used by Bafos (17) for the polytropic fluid.

Let us return to equations 12 and 13, to linearize them and to
eliminate the pressure, density and internal-energy variables.

(Compare reference 14.)
P

|\

W

%)TFJF %;‘27" and e = (%.QLV/O.;_@EQ%

s )

These are studies on the structure of l-dimensional hydromagnetic
shock waves, for which the energy-balance equation is of prime impor-
tance, because of the violent compression.
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In linearized form, the partial derivatives will refer to the ‘unpertur-
bed' state of the fluid and will be constants. These derivatives may,
by the use of familiar thermodynamic relations, be reduced to fami-

liar quantities, as follows. Let

\/5 =  Isothermal sound velocity

Yy = CP/C , the ratio of specific heats
U

X = 4 or = Thermal expansion coefficient
A ’BTF

2 C
Then {2%) — Coy ) (%f_ﬁ[o: ﬁ)(x—o =T, 7 and thgrefore

T Jo
w = —p (%—;})TV' W+ eyl (47)

Now. the linearized form of the energy-balance equation 1l is

/o,,; :_-._/oov.\t/+-cvl7‘ (48)

the viscous dissipation and Joule-heat terms being of second-order.
( L is the unperturbed pressure.) Inserting equation 47 into equation

48 yielas

T z : P4 & e
vV 7T —T7T = £ — . (49)
Po Co /;%CU = /3/0)7:/7 v

Now, from thermodynamics,

C e e T RE) =R 2 oo

( To is the unperturbed temperature.) Hence

- z DT . w1
= - 2 = S < (51)
L v vr Rt = v :

showing clearly the coupling between the velocity and temperature

fields.
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To include energy-balance in linearized approximation one must
solve equation 51 simultaneously with equation 36, / being defined

by equation 35. Now, however, instead of equation 40, we have

- AP (3P
= o ol Py
P = (55, 7° *or
which for monochromatic time-dependence ecw becomes
2

RYs™ RO-D. o
vp = AN e To

To include energy-balance together with momentum-balance in
a consistent linear approximation, we must therefore handle the

simultaneous equations-

[vax'(\\/x/Bojx/B,, +Ca_s/: F = ——-gf-v'z'//: (36)
and
T ey _ BT - ¥lgly (51)
R Cu 2t o
where
Z
Y1 .
/F~¢w/olv+/9,'>*(\7xvxnv—— ERAS \0 \v+/°J(7.)Cv‘77‘(52)
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II. RADIATION OF HYDROMAGNETIC WAVES.

1. Introduction.

We consider here the generation of hydromagnetic waves by the
action of applied body forces in an unbounded dissipationless com-
pressibl‘e fluid permeated by a large, constant, uniform magnetic
field. The basic problem considered is that of the wave motion pro-
duced by a body force applied at a point in the medium. The distur-
bances are to be small enough so that the linearized wave equation
applies, which means that the 'velocity must everywhere be small
compared to the Alfven velocity VA =B Wo . This leads to a Green's
function typﬁ solution which may then be used to study the radiation
from extended sources.

The exact integration of our vector wave equation in a practically
usable form is probably out of the question. The present work is for
the most part addressed to obtaining asymptotic results, giving the
radiated amplitude in the far-zone region, at distances for which it
diminiéhes inversely with the distance from the source. (One mode,
however, is discussed exactly, for all distances.)

Expressions are derived, asymptotically exact at large distances
for a sinusoidally oscillating source, from which one may nume.rically
compute the amplitude, phase, and polarization of the velocity field*
in the wave zone. Formulae are also derived for the power radiated
per unit solid angle per unit freguency, in any direction, for each of

the three modes involved. Detailed geometricalAinterpretations are

*The accompanying induced magnetic field is of course immediately
derivable from this, by use of the equation of induction.
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given for various points in the analysis.

The three modes, one of which is purely transverse and the others
direction-dependent mixtures of longitudinal and transverse waves,
behave in quite different fashions. Two of these propagate sharp
wave fronts from pulses, but the third does not, namely, Huyghens'
Principle*does not hold for it. This last mode, most prominent when
the sound velocity and the Alfven velocity are not very different, is
characterized by disconnected cusp-shaped closed disturbance fronts,
not surrounding the disturbance source, and propagating away from
it parallel and anti-parallel to the magnetic field, while growing
uniformly within a limiting cone whose vertex angle depends on the
ratio of sound velocity to Alfvén velocity.

The other two modes obey Huyghen's Principle.* One of these,
the purely transverse Alfvén mode, polarized perpendicularly to the
magnetic field, shows a peculiar behavior in that a point source never-
theless sets up disturbances everywhere along planes perpendicular
to the magnetic field; these plane wave fronts propagate along and anti-
parallel to the magnetic field with the Alfvén velocity. The intensity
along such a plane has an azimuthal angular dependence with respect
to the transverse radius. Just as with the heat-conduction equation
(though for entirely different reasons), some disturbance appears
instantaneously at all points of a transverse plane through the source,

whenever this undergoes a change. This physical anomaly is, as we

i

" This term is used in a variety of senses in the literature. We say that
a wave motion proceeding from a point source propagates according

to Huyghens' Principle if a) the amplitude at any space-time point de-
pends only on what the source was doing at a single previous instant,
and b) a pulse source, with time dependence ) (f-to) , creates a

pulse wave front (see ref. 20, pp. 169-170).
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shall see, largely due to the approximation of infinite conductivity,
and illustrates again that results based on this common idealization
must be examined with care. The second mode obeying Huyghens'
Principle, a mixed longitudinal-transverse wave, propagates outward
from the source with expanding ovaloid disturbance fronts enclosing
the cusp shaped disturbances previously mentioned. This mode be-
comes a pure sound wave as the magnetic field vanishes.

Typical polar plots of the wave-fronts are given, on common

scales. An exact solution, valid for all distances, is given'for the

Alfvén mode. This, by itself, is the exact solution of our problem

for an incompressible fluid. The other two modes, to which most of

this work is addressed, are studied by an asymptotic integration pro-
cedure utilizing approximate inversion of Fourier transforms by the
stationary-phasg method, This procedure is of wide applicability and
should enable the study of wave propagation problems in quite general
uniform anisotropic media.

The stationary phase approximation, because it is non-uniform,

renders certain parts of our analysis somewhat inconclusive. With

an aperiodic source some odd features appear in the solution for one
of the modes, which anomalies are partly traceable to the breakdown
of the stationary-phase approximation when there are Fourier com-
ponents present in the source time-dependence of such low frequency
that the field-point does not lie in the wave-zone for these frequencies.
This has to do with the order in which integrations are performed in
evaluating inverse transforms. |

The validity of Huyghens' Principle for wave motions described
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by a hyperbolic set of equations is of course a very exceptional cir-
cumstance and so the occurrence of a mode not obeying it need occasion
no surprise. We may make a tentative plausible re-interpretation of
the peculiar properties predicted for this mode by the stationary-phase
approximation. A full investigation of these points, involving a detailed
study of the "domain of dependence' for the hyperbolic system of
equations involved here, involves elaborate considerations in recently
developed theory for linear hyperbolic equations of order higher than
the second, and is not entered into here. (See, however, ref. 15.)

It is shown in the appendix that the disturbance fronts derived in

the explicit solutions for our three modes are also the characteristic

surfaces of our set of hyperbolic equations, thus identifying these as
the only possible true wave fronts (loci upon which th¢ amplitude
and/or its derivatives may be discontinuous).

The driving source treated in the mathematical analysis here --
a body force applied at a point -- may seem somewhat artificial to
realize in concrete terms, especially for a compressible fluid. Pre-
sumably, however, in principle at least, the results given here are
applicable to cover the study of the hydromagnetic radiation from quite
general disturbing sources in such a medium, whatever their energy
supply may be. One needs only to specify the equivalent body forces
in the regions Whéré driving agencies are active, these body forces
being expressed (necessarily in a rather complicated way) in terms of
certain space and time derivatives of the fluid velocity which is to be
specified in the source region, and then to use an appropriate super-

position of the point source solutions given here. In the case of exci-
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tation by heat liberation within the fluid we shall see that, for "weak"
heat sources, permitting use of a linearized equation of state, one
may quite simply express the driving forces in terms of the gradient

of the rate of heat generation per unit volume.

2. The Plane Wave Solutions.

In commencing the analysis, we first consider the various modes
of vibration of our medium. We have small oscillations in a perfectly
conducting, non—viséous compressible fluid, permeated by a constant
uniform magnetic field B, = é;Bo. As we have seen (eguation 42

in the Introduction), the linearized equation describing free waves is
7 2 Bo :
pV —p L vvV+ 7 VX VX (\VX/BO) =0 (1)
° ©

where 4 is the fluid density and V, the sound velocity. This line-

Be
VEf

We wish first to examine some of the characteristics of plane

arized eguation is valid for V << '\{q' =

waves in this medium, and then the shapes of the wave fronts caused

by a localized pulse disturbance. Seeking plane wave solutions, put

y(r t)

A slight reduction yields

C(we —wt A
_e/our )(\/ (2)

4
ﬁ&@ -f-&\éa(lK'\O)K G5 W)GB L/ /B" (k- HOIK (‘;’k) @&—//%M@o =o 3

Let © denote the angle between B and XK

A A
(a) For WV:B=W-K=0 equation 3 yields

:2. A
[(/B;;k “wj?, V=0 o 2 Wi Bk, 2 (4)
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These are plane A.lfv;a/n waves, purely transverse. When we consider
the excitation problem we shall see that this mode, alone, is a purely
transverse wave whose generation and propagation is best treated
separately from the other modes.

(b) If V is inthe 8., K plane, V= oaK+6 B, , then equation 3

gives N
2 2 2
(—gw?'—ﬁﬁ,\é K2+ —B/i—,i)tx 1"/2\4‘(/50’//95 =0
and

2 2 _
./%w b +ak (/5°'lk)~o
from which we obtain

2
2 2 B-ix
uf[-)gooa—;»/oi//izi— —/%—fj—-lgkz;)=o (5)

or, after slight reduction,

- (%,Z+ %zjw?’k?‘—l— 1/5214'2,24cos?'6 = (5')

from which

2
2 2 '
S = () V(W) 4 P eeste
Putting
.Yi = QA . (6)
Vi
and
VitV
and

EO)=figheehs \fizVimoae =B a [ azg ©
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we have
2. kZE®)
W= i-( (9)
or
A
K = + 2 _¢
F(Q) K (10)
for F. or F , where é,\,K is a unit vector making an angle © with
B,

Typical polar plots of -(:')— ng"'-Vf, K against © are shown in
2

figures 1 through 3. We see that these plots are in general 3-sheeted
surfaces, except when A=0 , when they coalesce. These sur-
faces des.cribe the behavior of a pair of "magneto-acoustic" wave
modes which we shall denote as the " L " and " £ " modes. Both are
mixtures of transverse and longitudinal waves, the percentages varying
with @

For propagation along the magnetic field ( €= 0 ), and for this
direction alone, there occur purely longitudinal (sound) waves with
w? = \ézka . For both £+ modes the phase velocity is independent
of K (though depending on the direction of /K ), and so the loss-
less medium, though anisotropic, is non-dispersive, in the usual sense
of that term. Plane waves of arbitrary form can be propagated without

change of shape.

The phase velocity (along K )is

%)
\\{oh_T

A
K

=& RE) (a

while the group velocity is
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Vo= =8 Rw ¢ DBw g D (12)
9 %w X o ky + & DKy ©= DK<

and these are in géneral unequal, both in magnitude and direction, even
though the medium is ""non-dispersive''.

The F, and F modes, whose velocity fields are accompanied by
pressure fluctuations, are the " P _modes' of Banos (13). The third,
purely transverse mode (see equation 3) is the "A.lfve/n mode' of Banos,
and its velocity field is devoid of pressure fluctuations. This mode,
which also exists in an incompressible fluid, is the type of hydromag-

netic wave discussed by Alfvén in his basic paper (2 ). The disper-

sion relation for this mode is
2. 22 .2
W = V'; K cos & (13)

For this mode, the plot of -—(—Y)ﬂ-lk against © 1is a pair of planes orthogo-
nal to B, and at unit distance from the origin. The group velocity of

this mode is

v, = = Ve | (14)

3. The Wave Fronts.

Next, it is of interest to study the form of the phase fronts (the
equi-phase surfaces) emanating from a point source, still considering
sinusoidal time-dependence. Since, as we have seen, the medium is
non-dispersive, we might also expect that these phase fronts will also
define true wave fronts, on which the arnplitude can have discontinuous
derivatives or itself be discontinuous. This is explicitly verified for the

F; modes in the Appendix, where it is shown that these two equi-phase
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&
surfaces are also characteristic surfaces of our equations.

Very simple considerations will reveal into what regions energy
will spread from a concentrated pulse source (and an interesting new
type of wave-front, as well). It wiﬁ be the object of‘ later more elaborate
considerations to study the distribution of amplitude, polarization and
energy flux in the far-zone.

To study the equi-phase surfaces emanating from a monochromatic

point source, we must find the envelope of the equi-phase planes

K- = const

With B, as polar axis, let K have polar angles 6, ¢ and let » (the
radius vector to any field point) have polar angles v h . (We suppose
a fixed reference system in which to measure these angles.) Then, we
vary k& over all directions and find the envelope of the two-parameter
family of equi-phase planes. Now, in the subsequent application of the

stationary-phase method we shall also be interested in stationary values

of the phase-factor X&-» , namely, values of K about which, for any
given JJ*’%-" , this expression is stationary. The two questions are very
closely related and the following analysis answers them both.

Using equation 10 we find the equation of a plane of constant phase
to be
X cos @ cosy + St @ sty Cos (¢—A)/= wt = conskt. (15)
F&)
Also, the partial derivative of the left-hand side with respect to &

must vanish for all 6, ¥, h , which gives

k3

Curiously, the third (Alfvén) characteristic is not identical with the
envelope of equi-phase planes for that mode; this envelope consists of
just a single point.
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sn & simgp sim($—h) = ©
for all 6, ¥ , thereby determining that
p—h=0, T

and hence, from equation 15,

g cos‘(e + "F) = const. (16)

F@6)
where the (+) sign goes with ¢—A=u( /A case) and the (-) sign goes
with g‘kﬁ =0 ( Fp case). Finally, the partial derivative of equation 15

with respect to € must vanish for all 6, v, h, which gives

.-l:an(etﬁpj = —_F/(e) (17)

So far, in equation 15 to 17, '"F ' denotes either A or £ (the Alfven
case being trivial). & and ¥ are taken as positive colatitude angles.
‘We want now to remove the remaining sign ambiguity; to find a
unique pairing of (€% Vf) with £ , /Z . In equation 16 we may take the
constant > © without loss ofvgenerality; this amounts merely to stipu-
lating r}o in the first quadrant for ©—-v . Let us solve the equation

._F/
F

toun (6-—/3)= (177)

where

cos (3 __/3) >0 (which follows from equation 16)

I >0, ¢$-h=oand v=8 . I p<o , $-h=wand y=-f=/s/.
We know that F_;/>O and f:'_/<o . Hence, from equation 17', for A we
get 6-B <o, guaranteeing p>o . So, for the. /# mode we require
9—h=0 and B=Y¥ , and use the (-) sigr; (9—}‘9 in equations 16 and 17.

For £ , equation 17' gives é-8 >0, which says nothing. If we can show

3
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that tan@<éam(6-p) for f_ , this will establish p<e for F~ . Now,

— F' K% (6 cos®

= = tam ®—ﬁ)- /_-——E;[- 7 — k%o zQ]

To show *a«6 (fary,(evs) we need merely show that

z
24
Vi-Keato (1-VikZoe ) < ~——o—

which is easily demonstrated. Consequently, g>o for the 5 mode,

and /f><0 for the £ mode.

Assemleng these results, we have the following:

For the fZ mode,

/
. E®
ten (e—w) = — —/Tj@;—) (18a)
+
and
k-1~
Ve) cos(6-V¥) =+ (= —-——w) (19a)
while, at a stationary point,
¢-.A_ = O (ZOa)
For the £ mode,
/
e
tam (é#nw) = - F'é3 (18b)
d
an (e w ¢ /f< i
cos = o
= 19b
=0 (195)
while, at a stationary point,
$-h =T (20b)

Equations 18 and 20 establish, for both /4 and /. modes, an association
between directions in physical space(‘% ﬁ)and directions in Kk -space

(9) ¢), which will play a role later in our use of the stationary-phase approxi-
mation. On the other hand, equations 18 and 19 together define, for both
modes, the parametric equations (in terms of the K -space angle co-
ordinate € ) of a family of curves #' = //V(w) , which are sections, by

planes through the source and parallel to /BO , of a family of equiphase



-39-

\
surfaces, (envelopes of planes k- = constant), axially symmetric

about the polar axis. From equation 18 and equation 19,

r=ty e + FT® (21)

Clearly this is the equation of the equiphase surface @ =0, in time *
We shall see later that, for © and ¢ connected by equation 18,

\/7:—24—.—575 is the speed of a wave front (e.g. from a pulse disturbance)

in the direction ¢ , so that equation 21 is also the equation of the trace

/
of such a wave front at time + after its initiation. For the Alfven mode

we shall see that the analog of equation 21 is the pair of planes

z = + VA. + (22)
In figures 1 through 3 , the dimensionless wave number
k*= _L. ___________V52+ VAZ X
w 2

is plotted against @ for the £ and £ modes, for A =0, +0.1, i0.25.

In figures 4 , 5 , 6 , the dimensionless quantity

is plotted against y for the same set of values of A . The correspon-
dence between 6 and « is graphically depicted in figures 7 , 8 , 9 .
The ovaloid surfaces are for the /_‘; mode, which radiates in all directions.
The diskjoint tri-cusped surfaces are for the A~ mode, which radiates only
within a double-cone whose angular width, 2’%{'1051.’ is determined by V%A .
We can readily ascertain from the equation following equation 5' that, if

\/A <V$ , the plane wave front for the Alfve/n mode intersects the /=
tri—cﬁsped surface at 6©=0 and v on its caps, whereas if % >V$: the
A.lfye/n wave front intersects the /j_ ovaloid at 6= 0 and o . (See

figure 10 ).

sk
We define P=k-r-wt as the phase of a plane wave.



O —= F, MODE

0O — F_ MODE
FIGURE 4

%= - c 2 2 R \= = '
PLOT OF v V24V, 2 FE+F'® VS ¢ FOR A=0(Vy/Vg=1)

FOR THE F, AND F. MODES



8=l80°‘(l}T T T T T T T T J)—-e :oo
1.0 06 04 02 02 04 08 0]

O— F, MODE

0 - F. MODE
FIGURE 5

PLOT OF ¢ *= /\/—2'2_'}_"\'/—2 JF24Fi2 VS, FOR X =%0. (VA/VS= 1105 OR 0.9050Q!}
S A '

FOR THE F. AND F- MODES



O—F, MODE

0O —=F_ MODE
FIGURE 6

/2
PLOT OF r ™= VEIRVE: JF2+ F'2 VS FOR )\=:*_'O.25(\{A/VS=I.284 OR 0.7788)
S A

FOR THE F, AND F. MODES



Y IN DEGREES

20

80

70

60

50

30

20

20

30

O — F, MODE P

6 N DEGREES
10 20 30 40 50 60 70
|

90

/"j/’_—‘hr

FIGURE 7

¥ VS. @ FOR F_ AND F_ MODES, WITH ) fO (VA/VS = 1)



Y IN DEGREES

90

80

o~ F, MODE

O —F_ MODE

70

20

30

6 IN DEGREES
40 50 60

_—

FIGURE 8

¥ vs. 8 FOR F, AND F. MODES, WITH = +O.| (vA/vS=|.|05 OR 09050)



0— F, MODE /

80 d

O— E MODE /
70 /

60

50 =

i /

[5)
i o /
a
[O]
w
S

10

8 IN DEGREES
10 20 30 40 50 60 70 80 90
0C - L
20
FIGURE 9

¥ VS. 8 FOR F, AND F. MODES, WITH )\=t0.25(VA/VS=I.284 OR 0.7788)



-46-

For a pulse point disturbance at the origin, we now have the
following simple partial picture of the way in which the energy subse-
quently spreads. The Alfvén mode carries off its energy in a pair of -

-plane disturbance points orthogonal to the magnetic field, The faster
of the - shear-compression modes ( ./ mode) radiates ocut as an
expanding ovaloid, flattened in the direction of the magnetic field.
Within the ovaloid there moves outwards, parallel and anti-parallel
to the field, a pair of tri-cusped closed wave fronts, remaining always
touching a double cone whose angular aperture is determined by VS/VA
alone. These disjoint f{ronts are most prominent when VS/\/A is nearly
unity. As Vg/\/A?{ the F. and F modes coalesce into a wave front
in the shape of an ovaloid pinched in at its minor axis. As ‘VS‘/VA ~ oo

or O the critical cone angle 2y o tends monotonically to zero.

Velocity VS Critical Velocity VS

Cone , \
\ p 1fven fronts \ /
N y locity V) /
. , (velocity A \ /

Figure 10 - showing the relative positions of F, fronts
: and Alfvén fronts for \4 z V.
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Our analysis does not entirely settle the question of the distribu-
tion of energy within ‘the ovaloid front. There can be no amplitude
ahead of either Alfvén front, outside the ovaloid. There can be no am-
plitude outside of the ovaloid front and ahead of the A,lfve/n front.* How-
ever, as already stated, Huyghens' Principle does not hold for part of

the front associated with the /2 mode. Presumably, then, there is

some disturbance everywhere inside the critical cone and within the

ovaloid front, at all distances from the source. Further, there will be
a discontinuity in the amplitude across each of these surfaces. Further
remarks about the wave fronts and some geometrical interpretations

are given later in the text, and in the Appendix.

4. Fourier Analysis of the Inhomogeneous Wave Equation.

We consider again our linearized vector wave equation, this time

with a forcing term. We have then

Do foforss e -9

where @(y)\'jé) is the time derivative of the applied body force density at

(23)

wr t . Attempts were madé to treat this as a vector eguation, perhaps

, aléng lines similar to those used in the integration of the ordinary vector
wave equation (16, Chapter 16), but the anisotropic term (the third term
on the left-hand side of eguation 23) seems to block such an approach.
Bafios ( 13 and 17 ) has constructed éomplete sets of plane and cylindrical
wave solutions of equation 1 in terms of solutions of the scalar Helmholtz
equation and it was attempted to use these in the integration of equation

23, by constructing a tensor Green's function from them. However, it

B3 . .
These two statements hold for all distances, being based on the fact that
these surfaces are characteristic surfaces, as shown in the Appendix.
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is by no means evident how to find a "vector Green's Theorem" for the
operator in equation 23, and, also, the divergenceless and irrotational
parts of ¥ are by no means simply related to the divergenceless and
irrotational parts of @ . Also, it seems impossible to find equations
for these parts of V , by themselves. Consequently, the only feasible
approach has seemed to be via the decomposition of equation 23 into a
system of equations, and solution of this system by Fourier analysis.
To this we now proceed.

We take the 4-dimensional Fourier transform of eq‘ua"tion 23,

putting

V(s ¢) = (J_)a o de < 7 G ) (24)
c(r-r—wt)
@Q" 1’;)" / o(,ko[w -3 C " ) Q") W) (25)

of which the inverses are

ik r— w0t o
V(o) = e /f@‘m&e frer= )\V@:f) (24")

and

GK, V=5 )?-//C{ ot & = Qs H)

(257)
With the use of equations 24 and 25, equation 23 becomes
Z.& ’ 2. " BOX - -~ .
e V(IK)w)—l—g\g(lK.v);K—- —F—smx(mxﬁxnéb 76K} w) (26)

Throughout most of this work, and unless otherwise indicated, our source

will be the point source
679 - SEHAO- WIS e

(where @@ is a const. vector) so that, in this case, from equation 25'

(9=

(28)
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where
2 b
7['(00): —L/}&)e oAt
varx
— O
We resolve our vector Fourier transforms for the moment along
the axes of a mobile coordinate system defined as follows. Introduce
A A '
the unit vectors €, parallel to B, , e, in the B , k plane but ortho-
A A
gonal to B, , and é\s = €,%x¢, . This mobile coordinate system is
referred to a set of fixed Cartesian axes x y® whose =z -axis coincides
A
with e, and with respect to which Kk has polar angles 6, ¢ and I~
(the vector from the source to the field point) has polar angles vy, A

as shown below.

} {')3(2').5 lBo

Kk
Axis (2) lies always in the
plane, so that k=& K +€.Kp
X A N Axes x> and (2), (3) lie in a
9 common plane perpendicular
- to /B, .
(2) The source Q has polar
¢ angles GV ¢9 .
(3)
(y)
Figure 11
Clearly, then
(total) ‘ (* ®)
Vo = Vacosd —Vysind =\ + V, where the superscript ()
(bstod) ) @) denotes the part due to the
\_/y = —Vysimp 4 Vgees = Vo + Y, F+ modes, and the super- (29)
script (A) denotes the part
((:ofae?—_ v due to the Alfven mode.
z - V3
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Resolving equation 26 along the mobile axes yields

2 .
é, -component : —/Swz‘v; +£ Vs K/(K, v, tKy Va) = q{ (30)
A 2
€, -component = —£ w2v2 A VS Ky (K, Vv, + Ko "'Kz) ‘] (31)
2
3 _component : —pw?V, +K° By - (32)
3 P o /3 3 f ol 3 75 .

From equation 29 thru 32 we see that we may treat separately the ampli-
tude due to the f+ and £ modes (described by equations 30 and 31), and
that due to the A.lfve/n mode, described by equation 32, for which —\72= o
and V-v=0. It will be convenient to obtain the total amplitude by solving
equations 30, 31 together, separately solving equation 32, and adding the
results. We commence by treating the F; modes, leaving the A,lfve,n
mode for a separate treatment later,

Equations 30 and 31 may be written in matrix form as

2

2 2 2
~Pw “‘ﬁ,vs Ky ﬂ,\é K K2 Vi 9,
2 = (33)
2 2 B, _
p VoK peteplis 2o\ e/,
Introduc:’ing
Bo

V’;: \[F:Fo ) ki =Kcos® and Ky = Ksim®

the determinant of this matrix may be written as

P w—wKZ(V+ )+ Kcos?/

(34)
2
- R)z wa_KaF;(e))(wa__ KZF_ (6)
Then
v 2 V ‘f‘VSl/na—-——- -V St 6@ cosE
! _ p K A s pE S. ‘7, (35)
2 "\{q stmBcos® Visefe — ":21 qa
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But
R
gx-_ 1 [ L _ /
D p(R-R)L et W R
Then
\Y \/2+V%L' 29-—-‘1'-2: -Vs BcosH
I A s > Ka s tm (=X
f’ (F' F) KZF 2
vV, ""V Strm B cos© VSV")G"—
Vi sere  <Us
{ [ p ~ J ) A+ s 5L © —~V55tm0cos b wz / ‘7/
- 2, ———— —
pEEE?) Lo ey ez f;:z ERPE
—-Vss-c.v,e cos® SL'V} (2] 92

2 A
1 [ / { ] %—&-Vé Sd,,'ze _VSsL,.,Gcose [ F'z ]
= 2 -2 Y= R - N wet-
FO(E~E) =k el Vsswzecose 554.«,9 ~ ‘LF Wtk £

where | is the unit matrix <' o) .
~s o |

(‘7/
7

Then, defining

2 2 2 2
VA +v.;‘sg'oqze --F::,: —-Vs €+ Ocos O
M () = (36)
ns + 2 R 2 2 2’
~Vs s¢mBcos6 Vs sim"e — F+

we have, in an obvious notation,

) Be o m-] )
V()) ﬁ(F F) WP KEFE kR 7(K’)

#+ { M- M- = o
/%(F Fz)[wF(K-#“’ K-—‘F) 2w l<+‘*’ k- C/(K))(?ﬂ)

£ £

Our mobile coordinate system has aided in a very convenient decom-
position of the amplitﬁde into ‘'modes, but, before we can transform
eguation 37 back into ph‘ysical space we must express it in terms of
fixed axes.

In equation 29, picking out the first terms on the right hand sides

(which refer to that part of the total amplitude due to the F':.,_. modes),
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we have
Vx o cos¢ v,
Vy = Q ~5tlmd
v
v, | o 2
and
\ 1 7)(
9, 1 ° °©
= 9y
9> cos¢  smp O\ g

Consequently, from equation 37, we may define

0 cosé _ M, cosacﬁ M cos¢~sc"n¢ Malcos(f.

: M, M
Hyep)=\ © —"¢ < ! "") <¢O ° 0) M gospsing Musicl® My, sin
+

M M oS ~Stm ¢
o o° ar Tea/y ¢ Mizcosd M sing My +

(vzs.;-r,ze ' _,_2) coszt;S (F Sun. ¢) stm¢ cosPp —-\é.zsdnécos 99059&
= (Fi- 5‘" 9)5(»147(:0545 (V 56m 6 — Fe )5"’"' ¢ ‘é-zscinecose séng

V onec»sGCos4> vszs;qewse svn \4‘24- \ézs&rzze—- ’:___tz
so that
N { / Hy B+ { H- 2 > )
v (K, 2 w hg_{_)—ZwF( ) C’(lk)w
) R’)(F F) ZwEl-_(K_'.E K F.;_ — K+'-F~_: K =
= a+ —_ X ] SaY (39)
so,

solution)

V (r, £)= —.——ﬁw/c(\';?./ 2.0(K (a _ a) L(K«:-u*) (Exact ';formal (40)

(Hemtsrhe'ce)
where we have introduced polar coordinates in IK -space and we inte-

grate first radially on K , then over angles, and finally over « . We
adopt the convention here of carrying the angular integratién over a
hemisphere (cosL(lK'ﬂ")Z O), while the radius Kk is allowed to assume
both signs. |

An exact evaluation of equation 40 would certa1n1y be very difficult.

Here, we limit ourselves to seeking only the asymptotic form of equation
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40, for large r’ , which makes things much simpler. We shall find

that the dominant terms fall off as 71;- , and we shall discard higher
reciprocal powers of the radius. We now proceed step by step to an
asymptotic evaluation of equation 40, where the stationary-phase

approximation will be used for doing the angular part of the integral.

5. Radial Part of the Inversion Integral. Selection of Outgoing Waves.

Consider the radial integrals in K -space

};@"V"“D = »75‘“5/ SCRCE AL R (41)

where fo= oosé@(, lf)and S denotes the angular coordinates (9, d>) of
K . These integrals are to be interpreted in the sense of appropriate

principal values, as we whall see presently. Substituting equation 39,

equation 41 becomes

LK’A‘x/ oo L/</4?"
r N N | iq(Kf“’) _/K e dx
I (52') Y; "‘))_ VZTE' ﬁ(ﬁ%,_:) 2‘0 {/ /<+ I, K--I—:_‘A—J— (42)

—00

To see how to