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ABSTRACT 

The structure and stability of the convecting tluid tlow generated by a 

di:ffusion tlame in gaseous reactants has been investigated. The tlame extends 

vertically upwards from a solid horizontal boundary, and separates the fuel 

from the oxidizer which can be of a di:fferent density. Real fuels are modelled by 

choosing appropriate values for the density di:fference and stoichiometric ratio 

of the reaction. 

A self-similar solution for the steady flow is obtained incorporating the 

Howarth transformation, which allows the large density variations inherent in 

the combustion of gases to be accommodated. The stoichiometric ratio and 

fuel/ oxidizer density ratio are varied to examine their e:ffects on the structure 

and tlow properties of the tlame. 

An Orr-Sommerfeld equation governing the stability of buoyant tlows is 

developed, incorporating all the variable density terms. Two di:fferent steady 

flows are studied, the symmetric flame (unit stoichiometry), and a flame with 

the stoichiometric ratio corresponding to methane burning in air. It was found 

that using the Boussinesq approximation which neglects density variations 

except for a buoyancy term is not applicable for the flame, and also introduced 

inaccuracy in the stability diagram for the buoyant plume. Although the flame 

bears a superficial similarity to the buoyant plume, the several di:fferences cause 

a large di:fference in their stability. Empirically interpreting the stability 

diagrams to obtain an expected transition point gives ReT Rj 250 for the flame 

compared to the less stable buoyant plume with ReT Rj 140. A new unstable 

region consisting of waves with negative phase velocity but positive group velo­

city was found for both the buoyant flame and the buoyant plume. 

The local analysis is inappropriate for disturbances with wavelengths long 

compared to the flame thickness, therefore an analysis treating the flame and 

associated plume as negligibly thin was undertaken. This showed that the 
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primary cause of instability was centrifugal forces generated by the momentum 

flux following a curved path. Reasonably good agreement was obtained with the 

local analysis. 
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Chapter 1. 

INTRODUCTION 

The stability of a two-dimensional laminar jet is one of the classic examples 

of hydrodynamic stability theory. The problem has been studied analytically by 

Pai, reference (1.1), 1951, for large Reynolds numbers, and by Curle, reference 

(1.2), 1956, and Tatsumi and Kakutani, reference (1.3), 1958, who established 

the position of the neutral stability curve and the existence of a critical Rey­

nolds number below which the flow was stable. Kaplan, reference (1.4), 1964, 

improved the accuracy of the solution numerically and added several temporal 

amplification rate curves. More recently, the spatial stability of laminar jets has 

been studied, including the effects of removing the parallel fl.ow assumption, by 

Haaland, reference (1.5), 1972, Bajaj and Garg, reference (1.6), 1977, and Garg, 

reference ( 1. 7), 1981. They found that removing the parallel fl.ow assumption 

resulted in improved agreement between the experimentally determined and the 

calculated critical Reynolds numbers. 

Another problem, closely related but differing in some essential aspects, is 

the two-dimensional buoyant plume generated by a line heat source. Unlike the 

laminar jet, the buoyant plume does not conserve momentum, since buoyancy is 

accelerating the fl.ow. The velocity at the centerline of the plume is therefore 

increasing with height, while the temperature decreases due to entrainment of 

the external fluid. A self-similar description of the flow has been developed by 

Fujii. reference (1.8), 1963, Gebhart, Pera and Schorr, reference (1.9), 1970, and 

Fujii, Morioka and Uehara, reference (1.10), 1973. 

Because this fl.ow has something of the character of an accelerated layer or 

jet, one intuitively expects the solution to be in some sense more stable. The 

stability was first studied by Pera and Gebhart, reference (1.11), 1971, who 

obtained the neutral stability curve and demonstrated the importance of 
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including the buoyancy term in the Orr-Sommerfeld equation. While their 

results showed the buoyant plume to first become unstable at lower Reynolds 

numbers than the jet, the results of Haaland and Sparrow, reference (1.12), 

1973, and Hieber and Nash, reference (1.13), 1975, who included non-parallel 

e:ffects as well as calculating several constant amplification rate curves, show 

that the expected Reynolds number for transition to turbulence is larger in the 

case of the plume, since the amplification rates are somewhat lower than for the 

jet. 

The physical situation of interest in the following work is the buoyant or 

.naturally convecting laminar di:ffusion flame. The fuel and oxidizer are 

separated by a thin reaction zone which is idealised as a vertical flame sheet 

extending upwards from a solid horizontal boundary. Real fuels are modelled by 

allowing the stoichiometric ratio of the reaction to vary and the fuel and oxi­

dizer density to di:ffer. Because the flame position is taken as fixed, a density 

di:fference between fuel and oxidizer results in a buoyancy driven flow upwards 

and towards the flame in the lighter fluid. This problem has practical 

significance for diffusion flames where buoyancy is important, such as candle 

flames, bunsen burners and natural fires. 

A self-similar solution is developed in Chapter 2, which is similar to the buoy­

ant plume in some respects, but di:ffers from it in several important areas. The 

presence of a reaction causes both a discontinuity in the temperature gradient 

and a constant temperature to occur at the flame. The buoyant di:ffusion flame 

is thus essentially different to the buoyant plume in that, because of the sensi­

ble heat released along the length of the flame, the ''buoyancy" is not conserved 

but increases with distance along the flow direction. Furthermore, the buoyant 

flame can be very asymmetric due to both the unequal consumption of fuel and 

oxidizer by the reaction and the external velocity caused by the density 

difference between fuel and oxidizer. The stoichiometric ratio and the density 

ratio of fuel to oxidizer are varied to examine their effects on both the structure 
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of the flame, and the properties of the flame such as buoyancy, oxidizer entrain­

ment and fuel consumption. 

There is some evidence that laminar shear zones which support combustion 

processes are more stable than corresponding isothermal regions, for example 

the stabilising efiect of combustion on the wake behind cylindrical flame holders 

observed by Zukoski and Marble, reference (1.14), 1955. Certainly if the shear 

layer is in a favorable pressure gradient, the acceleration resulting from the 

gradient is enhanced by the reduced density of the combustion products. 

Further, the increased temperature results in a higher viscosity and locally 

lower values of the Reynolds number. This may well be reflected in an increase 

of the critical Reynolds number based upon external (cold) gas conditions. An 

examination of the combustion layer in the absence of pressure gradient, how­

ever, failed to show an increased stability, Blackshear, reference (1.15),1956. 

In Chapters 3 and 4, the Tollmien-Schlichting theory of small disturbances is 

used to formulate the stability problem for the buoyant diffusion flame. It is 

assumed that at sufficiently large heights above the start of the flame, the flow 

can be approxmated locally by a parallel flow, which is then perturbed by small 

sinusoidal disturbances. The efiect of buoyancy causes a coupling between the 

equations of momentum and energy increasing the order of the disturbance 

equations from fourth order, in the case of the laminar jet, to sixth order, in the 

case of the buoyant flows. Pera and Gebhart, reference (1.11), 1971, found that 

this coupling could not be neglected for the buoyant plume, since it destabilised 

the flow considerably at low Reynolds numbers. 

The present analysis differs from that of the buoyant plume in three respects. 

Firstly the steady flow differs considerably from that of the buoyant plume as 

previously discussed. Secondly, the presence of the flame alters the matching 

conditions to be applied within the flow and thirdly, the very large effect of den­

sity variation must be accounted for. Chapter 3 is therefore devoted to 
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obtaining the pertinent governing equations starting from the disturbance equa­

tions for compressible fluid flow derived by Lees and Lin, reference (1.16), 1946, 

and to developing the appropriate boundary and matching conditions and 

presenting the numerical methods to be employed. As a check on the results, 

two different numerical algorithms are used, these being a shooting method 

developed by Hieber and Gebhart, reference (1.17), 1971, and a difference 

method due to Keller and Cebeci, given in Cebeci and Bradshaw, reference (1.18), 

1977. 

In Chapter 4, the results from the stability analysis are presented for several 

of the steady solutions obtained in Chapter 2. Unlike the buoyant plume, the 

flame eventually becomes unstable to disturbances of all frequencies as the Rey­

nolds number, or height above the start of the flame, is increased, however the 

most amplified frequencies are around 5-10 Hz. The necessity of considering 

large density variations in the case of the flame, is exhibited by the large 

increase in stability of the flow as the flame temperature is increased. The most 

notable feature of the stability diagrams, however, is the existence of an insta­

bility for waves with negative phase velocity, wave crests moving downwards, but 

with positive group velocity. Although in the parallel ft.ow analysis, these distur­

bances seem to be very important in the stability of flames, they have very long 

wavelengths, so an analysis including non-parallel effects might considerably 

change this region of the stability diagram. 

As a check on the numerical algorithms, and to determine whether this nega­

tive phase velocity region exists for the buoyant plume, this ft.ow is subjected to 

a parallel-ft.ow stability analysis in Chapter 5. Comparison with the results of 

Gebhart and Pera, reference (1.11), 1971. gives good agreement for the neutral 

stability curve over the range of Reynolds numbers they considered. Extending 

their calculations to include several constant amplification rate curves and 

lower Reynolds numbers showed that a negative phase velocity region, positive 

group velocity region also exists for the buoyant plume. It should be noted that 
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non-parallel effects included in the analysis of Haaland and Sparrow, reference 

(1.12), 1973, and Hieber and Nash, reference (1.13), 1975, alter the stability 

diagram considerably at low Reynolds number. They did not consider negative 

phase velocity waves however, so it is not known how this region will be affected, 

except that an even greater change is expected since the parallel-flow assump­

tion is very poor for these long wavelength disturbances. Removal of the Bous­

sinesq approximation led to considerably improved agreement with experimen­

tal results obtained by Pera and Gebhart, reference (1.11), 1971, but did not 

have as dramatic effect as it did for the flame. 

Finally in Chapter 6, the effect of the flow properties changing with Reynolds 

number is examined by assuming disturbances of wavelength long compared to 

the thickness of the fiame and associated convecting fluid. It is found that the 

instability arises primarily due to centrifugal forces generated by the momen­

tum flux in the fiame fl.owing along a curved path, balanced by the force neces­

sary to overcome the inertia of the surrounding fiuid. Limited comparison with 

the results of Chapter 4 gave good agreement for disturbance amplification 

rates. 
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Chapter 2. 

THE STRUCTURE OF BUOYANT DIFFUSION FLAMES 

In this chapter it is shown that a self-similar solution may be obtained for the 

free convective plume generated by a vertical diffusion ftame. The Boussinesq 

approximation, which was used by Pohlhausen, reference (2.1), 1930, for the 

free convection boundary layer on a vertical hot plate, is too restrictive when 

considering the large temperature differences associated with combustion 

processes and has been replaced by the Howarth Transformation for variable 

density fiows, reference (2.2), 1946. This transformation was also employed by 

Kosdon, Williams and Buman, reference (2.3), 1969, and later by Kim, De Ris and 

Kroesser, reference (2.4), 1971, in their investigations of the laminar free con­

vective burning of fuel surfaces and gave good agreement with experimental 

measurements of burning-rates for several fuels. 

This work was extended to include the overtire region by Pagni and Shih, 

reference (2.5), 1977, using an integral technique, and by Ahmad and Faeth, 

reference (2.6), 1976, and Groff and Faeth, reference (2.7), 1976, using a numeri­

cal procedure. Shih and Pagni, reference (2.6), 1976, and Kinoshita and Shih, 

reference (2.9), 1960, examined forced, free and mixed-mode diffusion ftames 

adjacent to vertical fuel surfaces and above free standing fuel slabs, and found 

that the limit of free convective burning gave a good description of the ft.ow if 

the Froude number was less than one. The self-similar solution of Kosdon, Willi­

ams and Buman was also incorporated by Fernandez-Pello and Williams, refer­

ence (2.10), 1977, and Fernandez-Pello, reference (2.11), 1978, in their treat­

ments of fiame spread over vertical and inclined fuel surfaces. 

Consider the buoyant diffusion fiame, shown in figure (2.1), for which no 

motion of either reactant is present upstream of the point at which the fiame 

originates. The fuel at y • = 00 may have a different density from that of the 
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oxidizer at y ·= -aa , thus only one of the reactants need be quiescent at large 

IY I. while the other may rise due to the effects of buoyancy. Although the work 

covered here is restricted by the assumption of unit Lewis number, wide ranges 

in the stoichiometry of the chemical reaction and in the density ratio of the fuel 

to oxidizer at infinity have been considered. 

2.1. The Governing Equations 

The governing boundary layer equations for a steady laminar diffusion flame 

are reference (2.12), 1965. 

Continuity: 

(2.1) 

where the superscript• denotes a dimensional variable. 

Vertical Momentum: 

Here the pressure gradient is fixed by the external hydrostatic pressure gra­

dient, -~= p:,g •,since p • = p •(.:r:•) under the boundary layer assumption. 
Bx · 

Energy: 

(2.3) 

where the specific enthalpy 
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(2.4) 

and the volumetric heat release rate is cj •. 

Species: 

(2.5) 

where the mass fraction, diffusivity and volumetric mass-production of species i 

are respectively Ji, D,t and 'f7'1.•. 

State: 

(2.6) 

where the gas constant for species i is given by 

(2.7) 

R~ is the universal gas constant and Mt the molecular weight of species i, and 

the subscript 00 refers to the ambient conditions at y • = -oo (i.e. in the oxi-

dizer). 

Chemistry: 

(2.8) 

where F, 0, and P are one mole of Fuel, Oxidizer and Product, Q• is the heat 

produced by one mole of fuel and rp 0 and 'Pp are the amounts of oxidizer con­

sumed and product generated by the reaction of one mole of fuel. 
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These equations have incorporated the following physical approximations; the 

R• • 
gases are all ideal, velocities are much less than the speed of sound, z • << :-

g 

so that the variation in p:. implied by hydrostatic equilibrium can be neglected 

leaving p:, independent of position, no species diffusion driven by pressure and 

temperature gradients, constant specific heat, no radiation and a single global 

chemical reaction. 

This last assumption is valid for reactions with fast chemical kinetics in 

which case the reaction takes place inside a sheet much thinner than the boun­

dary layer thickness. This flame sheet will be taken to have negligible thickness, 

both oxidizer and reactant being totally consumed on the plane at y • = 0. 

Applying this approximation along with the Howarth Transformation 

and defining 

£"=z· 

.....,. . 
1L = 1L 

(2.9) 

(2.10) 

• • • • • • • • .a • .a • with the additional assumptions that p X = p ... A:., p µ, = p..,µ., p D, = p., D, ... 

and that c; is constant, (2.1) and (2.2) reduce to 
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{Ju_. av-
--+ --
a£' Bi/ (2.11) 

,,.,,. ,,.,,. [ . l 2 ,,.,,. ,,.,,. au ...,. au P- • • a u 
u --+ 1J --= -- 1 g + ~ --ar &Y p• ... ay-2 (2.12) 

(2.13) 

y> 0 (2.14) 

_.8Yo ...,.8Yo D• B2 Yo 
u --+v --= o --

BX' By - fJi/e 
y< 0 (2.15) 

The assumption that the molecular weights of oxidizer and pro~ucts are the 

same combined with the equation of state (2.6) reduces the buoyancy term in 

equation (2.12) to 

P- • T • [ . l [ . l P. - 1 g = r:. - 1 g 2.16) 

To obtain the boundary and matching conditions at y = 0, equations (2.3) and 

(2.5) must be examined. The fiame sheet approximation is equivalent to assum­

ing that the mass and heat production terms in these equations are delta 
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functions situated at v·= 0. If the mass consumption of fuel is given by 

m.; = -m ·ex•) 6(y• ). then equation (2.8) gives 

. • . .( • ) ,t( • ) mo = -<;om x u y 

(2.17) 

Integrating equations (2.3) and (2.5) then gives 

(2.18) 

and assuming c; is const 

(2.19) 

where the square brackets indicate jumps in the quantities inside from y. = o+ 

to y • = o-. Using Y, = 0 for y • < 0 and Yo = 0 for y • > O and the conditions for 

application of the Howarth Transformation, these equations reduce to 

y=O (2.20) 

and 

(2.21) 

These two conditions along with continuity of r•, u •• 11 • and µ •:;;: make up the 
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matching conditions at r = 0. 

The governing equations (2.11) - (2.15). with the addition of (2.16), the match­

ing conditions at r = 0 and boundary conditions at infinity, can now be solved 

by a similarity transformation. Introducing the streamfuction 1• such that 

(2.22) 

where 

fJ = (2.23) 

where Tj is the constant temperature at the flame. The dimensionless tempera­

ture and normalised mass fractions are 

r• - To ... 
1'= ----Tj- To ... 

Y, 
ICr= -­

Yr. 

Yo 
ICo: -­

Yo -

(2.24) 
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By substituting for r•, Y, and y • in equation (2.19), [ Tj - 1] is found to be 
To. 

constant. The governing equations now become 

t"' + 3U" - 2(f)2 + ~ = o .,., < 0 

(2.25) 

1J > 0 

'+ 3.Pr~~· = 0 1J ~ 0 (2.26) 

(2.27) 

where the prime denotes differentiation by "7· From equations (2.22) - (2.23) the 

transformed velocities are found to be 

~=4 
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l [ T • I ] 1 I l • 4 

v- = -411: ~~ g ( ! t - ~ f) 
4v.r 

(2.28) 

The boundary conditions at infinity are 

as17 ... -- (2.29) 

[ ~~: -1 I ,,. ... ,,,. = -+-----+-

- [ Tf -1) 
To. 

as 17 ... co (2.30) 

1 
2 • 

Po- _ 1 
• 

= 2[.!.f-- 1] To. 

PF-
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J 
The matching and jump conditions at 1J = 0 are 

ICF = JCo = 0 

a.t 1] = 0 (2.31) 

t. f, f' continuous 

The remaining matching condition gives [ Tf -1] in terms of «o+), «o-), 1e.F(o) 
To ... 

,.,.Yi 
"t" F •. 

and the parameter • • Ler 
cpTo. 

(2.32) 

• •D• 
Where LeF -- p ct Fw Th 1 t· . d d t t Th e sou ion is epen en on seven parame ers. e 

effective stoichiometric ratio (i.e the effective ratio of fuel/oxidizer consumed at 

the flame): 

(2.33) 
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The effective heating value of the fuel: 

.... 
Q= 

The ratio of molecular weights: 

The temperature ratio of fuel and oxidizer at infinity: 

.... [ r;_ I T = ---1 .. r· o-

(2.34) 

(2.35) 

(2.36) 

as well as the Prandtl number and Schmidt numbers of fuel and oxidizer. The 

density ratio of fuel to oxidizer at infinity can be expressed in terms of fl and 

T. as 

[ P~- - 1] = (M+l)T. +fl 
PFm 

(2.37) 

The equations could now be solved for any choice of these seven parameters. 

The rest of the chapter will deal with the special case when the Lewis number of 

fuel and oxidizer are unity. This allows the useful simplification 

_T~j_-_To_· ... _ = (1-~ fj 
"r = (1 - ~ r• r• (r"",-r."" .. ) I - F• 

1] < 0 l 
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ICO = (1 -11) 11 > 0 

then equations (2.31 ), (2.32), (2.33) and (2.38) give 

"" _ [ Ti ] - ;[ Q + f. J T1 - -.--1 - ..... 
To. 1+, 

The final form of the governing equations is 

f"+3U"-2(f)2 + 1' = o 11 < o 

f"+3U"-2(f)2 + (M ICF + 1)1' + ! ICF = 0 
T1 

where"' is given in terms of 1'; T.,; and Qby equations(2.38) and (2.39). 

11' + 3.Pr (1'. = 0 

with boundary conditions 

f, ,, ... 0 as 1'J ... -co 

¥. 
,,. ... - as 1'J ... co 

Ti 

[ 
(il + 1) ¥. + ill~ 

E' ... "' 
2T1 

as 1'J ... co 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 
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and matching conditions at fJ = 0 

i'(O) = 1 

a.t 17 = 0 (2.44) 

t, t', t", continuous 

2.2. Numerical Solution 

The asymptotic behaviour of t and 1'- as 1'J ~ -ac is given by 

(2.45) 

where the '1( 's are constants to be determined. These expressions are used as 

the starting point for a shooting method procedure. Values of a. 1, a.2 and a. 3 are 

assumed and equations (2.40) and (2.41) integrated from, fJ = -f]8 to 

fJ = 17.where fl• is sufficiently large that equation (2.45) is valid. If the values 

b1 = '1'{0)-1, b2 = t'(1'J8 )-f(ac) and b3 = t7(11.)-17(ac) are not zero to within a 

8b 
specified tolerance the Jacobian -

8 
' is approximately determined by taking 

ai 

small deviations about the guessed values of each of the a., in turn. Newton's 

method is then used to produce a new guess for the IZ('s . This is repeated until 

the solution converges. Checks are performed to insure the solution is indepen­

dent of choice of integration end point 17. and mesh size. In general this method 

required very good guesses for the IZ('s, however once one solution has been 
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found, it is possible to find others by taking small increments in the parameters. 

2.3. Results 

r;... -
All the results presented are for Pr = 0.72 and -. -= 1 (i.e T .. = 0). Fig-

To ... 

ure (2.2) shows the velocity and temperature profiles for a symmetric flame (i.e 

- Mo rp = 1.0 and -.-= 1.0). The structure of this problem closely resembles that of 
M1 

free-convection over a vertical heated plate, the latter utilizing the no-slip con­

dition at y • = 0 instead of the zero shear stress condition appropriate to the 

present problem. A useful check on the numerical computation was obtained by 

using the no-slip condition and comparing with the results of Ostrach, reference 

(2.13), 1952, since. although Ostrach used the Boussinesq approximation, the 

ordinary differential equations obtained in his analysis are identical to the 

present set of equations except for the lack of a species conservation equation. 

Removal of the no-slip condition leads to higher peak vertical velocities and 

higher entrainment velocities. As a consequence, the flame has a somewhat 

smaller boundary layer thickness than the wall flow, since the increased entrain­

ment aids the flow of reaCtants to the flame and retards the diffusion of heat 

away from it. 

Three examples of non-unit stoichiometric ratio are shown in figures (2.3) -

(2.6). The effective fuel/oxidizer mass consumption ratios are ; = 0.232, - -rp = 0.058 and rp = 0.029, the last two corresponding to the stoichiometric ratios 

of methane and hydrogen burning in air. The flames now exhibit a large hor­

izontal flow through the flame in the direction of the fuel. This flow carries hot 

combustion products to the fuel side of the flame causing the maximum vertical 

velocity to be displaced into the fuel. It also dilutes the fuel near the flame, 

decreasing the concentration gradients and thus decreasing the diffusion velo­

city of the fuel while doing the reverse in the oxidizer. Fuel and oxidizer are 

thereby supplied to the flame in the stoichiometric ratio. As a consequence, the 
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thermal and species boundary layers are considerably increased in the fuel and 

decreased in the oxidizer. In figure (2.5), the Howarth Transformation has been 

inverted for the case of rfJ = 0.058 with -!-- 1 = 6. Note the large horizontal .... [ r· j 
To.,, 

velocity through the flame and the increased asymmetry of the flame. 

In figures (2. 7) and (2.8), some parameters of interest have been plotted 

against ;. These parameters are: 

The maximum vertical velocity 

-1 

U := U~a:z: [ Q g •x • 12 
max 4 4 (2.46) 

Note that the velocity has been normalised using Q, the effective heating value 

of the fuel, rather than -!- - 1 , since Q is more nearly constant for real [ 
T• j """ 

To., 

fuels as the stoichiometric ratio is changed, thus giving a better physical 

representation of how the peak velocity varies. The relation between 

Q, rfJ, and -!-- 1 is given by equation (2.39). ...... .... [ r• j . 
To .. 

Q will also be used in all the fol-

lowing normalisations. 

The mass entrainment of oxidizer 

. [ ...., . 1-1 m := Vo.., Q g 4 
• 4 • .2 • v.. 4v .. x 

(2.47) 

the mass fiux of fluid through the flame 

pjvj [ Q • l ~1 rh1 = __....__.~ g 
4p • "• 4" .. •'ilx • o .. v.. ..., 

(2.46) 
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the fuel consumption rate 

m., = (2.49) 

the buoyancy 

(2.50) 

and the enthalpy thickness of the boundary layer on each side of the flame 

[ l 
1 - - ( . . ) = .L Q g • 4 • T - T 0 .. 

~H+ - 2 4v:.2:r: • fo ( Tj-r; .. ) 
• 'U J • -.-u.y 

Umu 

6H.;;;;; (2.51) 

In figure (2.7), m.,. Umax and m.1 are plotted against;. Umax and m,, the oxi-

- "' dizer entrainment, decrease as rp ... 0 with Q held constant, since the flame 

temperature is decreasing. On the other hand, the mass flow through the flame, 

m.1 , increases to a maximum near ; = 0.05 where it has reached over 60% of the 
..... 

entrained mass. For smaller values of rp, m.1 declines since the total mass flux 

available is decreasing rapidly. This large flow through the flame is again illus-

6 n 
trated in figure (2.8) where the ratio of enthalpy thicknesses ~has reached 

H_ 
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7.63 at ; = 0.058, showing that most of the hot fluid in the plume is on the fuel 

side of the flame. Figure (2.B) also shows a decrease in the fuel consumption 

"' rate, mr. and a decrease in the buoyancy p as rp decreases. Although total 

enthalpy thickness (6n+ + 6n_} has increased, tending to increase the buoyancy 

due to increased physical size of the plume, the decrease in Tj with Q held con­

stant dominates so that the buoyancy decreases. Tables (2.1) and (2.2) give the 

numerical values of the flow parameters for the cases studied in figures (2.2) 

and figures (2.4) and (2.5). 

Figures (2.9) - (2.13) show the effects of changing the fuel density at infinity 
.... 

for a flame with rp = 1.0. As the fuel density decreases, it rises in a natural con-

.L 
vection flow relative to the oxidizer. This flow has vertical velocities "'(height) 2 

.=!.. 
and horizontal velocities """(height) 4 towards the flame. The non-zero vertical 

velocity, which becomes a boundary condition on the boundary layer flow at 

y • = oa, imposes a shear on the basic flow. The maximum vertical velocity, 
,. 

shown in figure (2.12), is thus displaced towards the fuel and increases as p~ .... is 
Po .... 

decreased. The horizontal' flow, whlch would be present even in the absence of a 

reaction, helps to carry fuel to the flame, increasing the concentration and con­

centration gradient of the fuel near the ftame, thus causing a higher fuel con­

sumption rate, and decreasing the enthalpy thicknesses, shown in figure (2.13) . 

• PFm 
The buoyancy added to the flow by the combustion process decreases as -,. -

Po ... 

decreases, since the total thickness of the boundary layer has decreased. Figure 

(2.12) also shows a small mass flux through the flame and an increase in the 

mass of oxidizer entrained. 

In figures (2.14) and (2.15), the two special cases of methane and hydrogen 

burning in air are presented. These exhibit the combined effects of non-unit 

stoichiometric ratio and a fuel - oxidizer density difference at infinity. The 



-25-

hydrogen/ air tiame has the most severe asymmetries of any practical combus­

tion reaction. The numerical values for the methane/air tiame are given in 

table (2.3). In table (2.4), numerical values for t(O), f(O), f'(O) and ¢(0) are 

presented for all the cases studied. 

These solutions are valid in the absence of any mean translational velocity 

ahead of the point at which the tiame is initiated. The importance of an exter­

nal uniform tiow, is measured by the Froude number 

u~ 
F'r=-.... gx 

which is a measure of the relative importance of the buoyant velocity ( propor-

1 

tional to [[ :t. 1 ]u ·x ·] 2) and external velocity u:.. lf the Froude number is 

much smaller than one, the present solutions constitute a close approximation; 

if it is much greater than one, the tiow will be described to first order by a shear 

tiow in the absence of gravity. 
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Figure (2.7) 
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Figure (2.8) 
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Figure (2.12) 
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Figure (2.13) 
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Table (2.1). Streamfunction t and Temperature 1'- for a Symmetric Flame. 

c;= 1. fl=,,_= o. Pr= o.72) 

f] t t' t'' t'" ,,. ,,. . ,,. " 
0.0 0.0000 0.4573 0.0000 -0.5817 1.0000 -0.7010 0.0000 
0.2 0.0907 0.4467 -0.1018 -0.4340 0.0607 -0.6874 0.1347 
0.4 0.1775 0.4187 -0.1734 -0.2838 0.7267 -0.6485 0.2487 
0.6 0.2574 0.3792 -0.2163 -0.1479 0.6026 -0.5902 0.3282 
0.8 0.3288 0.3338 -0.2343 -0.0375 0.4915 -0.5198 0.3692 
1.0 0.3909 0.2868 -0.2333 0.0430 0.3950 -0.4448 0.3756 
1.2 0.4436 0.2414 -0.2190 0.0946 0.3134 -0.3713 0.3558 
1.4 0.4877 0.1997 -0.1970 0.1219 0.2461 -0.3036 0.3198 
1.6 0.5238 0.1628 -0.1715 0.1310 0.1915 -0.2439 0.2760 
1.8 0.5531 0.1311 -0.1454 0.1278 0.1479 -0.1933 0.2309 
2.0 0.5766 0.1045 -0.1208 0.1173 0.1136 -0.1514 0.1886 
2.2 0.5953 0.0826 -0.0987 0.1032 0.0868 -0.1175 0.1511 
2.4 0.6100 0.0648 -0.0796 0.0880 0.0661 -0.0906 0.1193 
2.6 0.6214 0.0506 -0.0635 0.0733 0.0502 -0.0694 0.0932 
2.8 0.6304 0.0393 -0.0502 0.0600 0.0380 -0.0530 0.0721 
3.0 0.6373 0.0303 -0.0394 0.0484 0.0287 -0.0403 0.0554 
3.2 0.6427 0.0234 -0.0307 0.0386 0.0217 -0.0305 0.0424 
3.4 0.6468 0.0179 -0.0238 0.0305 0.0164 -0.0231 0.0323 
3.6 0.6499 0.0137 -0.0184 0.0239 0.0123 -0.0175 0.0245 
3.8 0.6523 0.0105 -0.0142 0.0187 0.0093 -0.0132 0.0186 
4.0 0.6542 0.0080 -0.0109 0.0145 0.0070 -0.0099 0.0141 
4.2 0.6556 0.0061 -0.0083 0.0112 0.0053 -0.0075 0.0106 
4.4 0.6566 0.0046 -0.0064 0.0086 0.0040 -0.0056 0.0080 
4.6 0.6574 0.0035 -0.0048 0.0066 0.0030 -0.0042 0.0060 
4.8 0.6580 0.0027 -0.0037 0.0051 0.0022 -0.0032 0.0045 
5.0 0.6585 0.0020 -Q.0028 0.0039 0.0017 -0.0024 0.0034 
5.4 0.6591 0.0012 -0.0016 0.0022 0.0009 -0.0014 0.0019 
5.8 0.6595 0.0007 -0.0009 0.0013 0.0005 -0.0008 0.0011 
6.2 0.6597 0.0004 -0.0005 0.0007 0.0003 -0.0004 0.0006 
6.6 0.6598 0.0002 -0.0003 0.0004 0.0002 -0.0002 0.0004 
7.0 0.6599 0.0001 -0.0002 0.0002 0.0002 -0.0001 0.0002 
7.4 0.6599 0.0001 -0.0001 0.0001 0.0000 -0.0001 0.0001 
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Table (2.2). Streamfunction t and Temperature 17- for a Flame with 

; = 0.058, ii = T. = 0, Pr = 0.72 ( 'l"JE is the similarity variable after inverting 

the Howarth transformation for ft= 6.) 

,,, 'fJE t f f' t'" 17- "'I "',, 
0.0 0.0000 -0.7092 0.3064 0.2956 -0.1833 1.0000 1.7458 2.6743 

-0.2 -1.2113 -0.7644 0.2459 0.2996 0.1075 0.7004 1.2693 2.0958 
-0.4 -2.1157 -0.8078 0.1891 0.2640 0.2265 0.4849 0.9034 1.5764 
-0.6 -2.8011 -0.8407 0.1411 0.2153 0.2500 0.3327 0.6326 1.1487 
-0.B -3.3320 -0.8649 0.1030 0.1670 0.2278 0.2268 0.4375 0.8174 
-1.0 -3.7590 -0.8825 0.0739 0.1253 0.1886 0.1539 0.2999 0.5717 
-1.2 -4.1120 -0.8950 0.0523 0.0917 0.1476 0.1041 0.2043 0.3949 
-1.4 -4.4153 -0.9038 0.0367 0.0659 0.1112 0.0702 0.1385 0.2703 
-1.6 -4.6849 -0.9099 0.0255 0.0467 0.0816 0.0473 0.0936 0.1839 
-1.8 -4.9318 -0.9142 0.0176 0.0328 0.0588 0.0318 0.0631 0.1246 
-2.0 -5.1633 -0.9172 0.0121 0.0228 0.0418 0.0214 0.0425 0.0842 
-2.4 -5.5987 -0.9206 0.0057 0.0109 0.0204' 0.0096 0.0192 0.0382 
-2.8 -6.0147 -0.9221 0.0026 0.0051 0.0097 0.0043 0.0087 0.0173 
-3.2 -6.4219 -0.9229 0.0012 0.0024 0.0046 0.0020 0.0039 0.0078 
-3.6 -6.8251 -0.9232 0.0005 0.0011 0.0021 0.0009 0.0018 0.0035 
-4.0 -7.2266 -0.9234 0.0002 0.0005 0.0010 0.0004 0.0008 0.0016 
-4.4 -7.6273 -0.9234 0.0001 0.0002 0.0004 0.0002 0.0004 0.0007 
-4.8 -8.0275 -0.9235 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003 
0.0 0.0000 -0.7092 0.3064 0.2956 -0.1833 1.0000 -0.1013 -0.1551 
0.2 1.3865 -0.6423 0.3616 0.2550 -0.2237 0.9764 -0.1356 -0.1882 
0.4 2.7403 -0.5652 0.4078 0.2062 -0.2630 0.9453 -0.1761 -0.2150 
0.6 4.0518 -0.4798 0.4436 0.1502 -0.2960 0.9057 -0.2208 -0.2288 
0.8 5.3102 -0.3885 0.4675 0.0887 -0.3165 0.8570 -0.2663 -0.2235 
1.0 6.5048 -0.2937 0.4789 0.0248 -0.3189 0.7994 -0.3087 -0.1958 
1.1 7.0750 -0.2457 0.4798 -0.0068 -0.3123 0.7676 -0.3272 -0.1736 
1.2 7.6255 -0.1978 . 0.4775 -0.0375 -0.3002 0.7340 -0.3432 -0.1467 
1.4 8.6641 -0.1035 0.4643 -0.0939 -0.2609 0.6629 -0.3663 -0.0818 
1.6 9.6150 -0.0128 0.4406 -0.1408 -0.2056 0.5884 -0.3755 -0.0104 
1.8 10.4762 0.0722 0.4088 -0.1756 -0.1414 0.5136 -0.3706 0.0578 
2.0 11.2486 0.1503 0.3713 -0.1973 -0.0764 0.4410 -0.3532 0.1147 
2.2 11.9365 0.2205 0.3307 -0.2065 -0.0176 0.3730 -0.3259 0.1552 
2.4 12.5463 0.2825 0.2894 -0.2051 0.0302 0.3111 -0.2922 0.1783 
2.6 13.0860 0.3364 0.2492 -0.1953 0.0650 0.2563 -0.2556 0.1857 
2.8 13.5645 0.3824 0.2116 -0.1799 0.0871 0.2089 -0.2183 0.1807 
3.0 13.9903 0.4212 0.1775 -0.1612 0.0981 0.1687 -0.1839 0.1673 
3.4 14.7170 0.4804 0.1209 -0.1215 0.0968 0.1075 -0.1243 0.1290 
3.8 15.3231 0.5200 0.0797 -0.0859 0.0797 0.0670 -0.0806 0.0906 
4.2 15.8506 0.5459 0.0512 -0.0581 0.0593 0.0412 -0.0508 0.0599 
4.6 16.3265 0.5623 0.0322 -0.0381 0.0414 0.0250 -0.0315 0.0382 
5.0 16.7755 0.5725 0.0198 -0.0244 0.0277 C.0150 -0.0193 0.0238 
5.4 17.2037 0.5787 0.0120 -0.0154 0.0181 0.0090 -0.0117 0.0146 
5.8 17.6205 0.5824 0.0071 -0.0096 0.0115 0.0053 -0.0071 0.0089 
6.2 18.0302 0.5846 0.0040 -0.0059 0.0073 0.0030 -0.0043 0.0054 
6.6 18.4358 0.5858 0.0022 -0.0035 0.0045 0.0017 -0.0026 0.0033 
7.0 18.8388 0.5865 0.0011 -0.0021 0.0028 0.0009 -0.0016 0.0020 
7.4 19.2403 0.5868 0.0004 -0.0012 0.0017 0.0004 -0.0009 0.0012 
7.8 19.6409 0.5869 0.0001 -0.0007 0.0011 0.0001 -0.0006 0.0007 
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Table (2.3). Streamfunction t and Temperature ~ for a Flame with 

; = 0.058, ii= 0.81. f. = 0, T, = 6.58 and Pr = 0.72 

"7 t f t" t"' ~ ~· ~" 

0.0 -0.7469 0.2991 0.3138 -0.1179 1.0000 1.8136 2.9259 
-0.2 -0.8004 0.2362 0.3063 0.1558 0.6911 1.2978 2.2436 
-0.4 -0.8416 0.1789 0.2630 0.2558 0.4723 0.9098 1.6543 
-0.6 -0.8726 0.1316 0.2100 0.2642 0.3201 0.6281 1.1838 
-0.8 -0.8951 0.0947 0.1600 0.2319 0.2156 0.4286 0.8287 
-1.0 -0.9111 0.0671 0.1180 0.1870 0.1446 0.2901 0.5709 
-1.2 -0.9224 0.0469 0.0851 0.1432 0.0967 0.1952 0.3889 
-1.4 -0.9303 0.0325 0.0603 0.1059 0.0645 0.1308 0.2628 
-1.6 -0.9357 0.0223 0.0422 0.0765 0.0430 0.0874 0.1767 
-1.8 -0.9394 0.0152 0.0292 0.0543 0.0286 0.0583 0.1183 
-2.0 -0.9419 0.0104 0.0201 0.0380 0.0190 0.0388 0.0790 
-2.4 -0.9448 0.0047 0.0093 0.0181 0.0084 0.0172 0.0351 
-2.8 -0.9461 0.0021 0.0043 0.0084 0.0037 0.0076 0.0155 

-3.2 -0.9467 0.0010 0.0019 0.0039 0.0016 0.0034 0.0069 
-3.6 -0.9470 0.0004 0.0009 0.0017 0.0007 0.0015 0.0030 

-4.0 -0.9471 0.0002 0.0004 0.0008 0.0003 0.0007 0.0013 
-4.4 -0.9471 0.0001 0.0002 0.0003 0.0001 0.0003 0.0006 
-4.8 -0.9472 0.0000 0.0001 0.0002 0.0001 0.0001 0.0003 

0.0 -0.7469 0.2991 0.3138 -0.1179 1.0000 -0.1052 -0.1697 

0.2 -0.6810 0.3593 0.2868 -0.1538 0.9753 -0.1433 -0.2107 

0.4 -0.6036 0.4133 0.2519 -0.1956 0.9422 -0.1891 -0.2466 

0.6 -0.5162 0.4595 0.2083 -0.2402 0.8992 -0.2410 -0.2687 

0.8 -0.4205 0.4960 0.1560 -0.2814 0.8456 -0.2951 -0.2680 

1.0 -0.3185 0.5214 0.0966 -0.3107 0.7814 -0.3462 -0.2382 

1.2 -0.2127 0.5344 0.0332 -0.3190 0.7078 -0.3883 -0.1784 

1.3 -0.1592 0.5361 . 0.0015 -0.3130 0.6681 -0.4043 -0.1390 

1.4 -0.1056 0.5347 -0.0292 -0.2998 0.6270 -0.4160 -0.0949 

1.6 0.0004 0.5232 -0.0848 -0.2524 0.5426 -0.4255 0.0003 

1.8 0.1030 0.5016 -0.1287 -0.1830 0.4581 -0.4161 0.0926 

2.0 0.2005 0.4727 -0.1573 -0.1027 0.3773 -0.3896 0.1687 
2.2 0.2918 0.4397 -0.1699 -0.0246 0.3031 -0.3502 0.2207 

2.4 0.3763 0.4057 -0.1680 0.0406 0.2377 -0.3031 0.2463 

2.6 0.4542 0.3733 -0.1550 0.0864 0.1821 -0.2532 0.2484 

2.8 0.5259 0.3442 -0.1348 0.1116 0.1363 -0.2049 0.2327 

3.0 0.5922 0.3195 -0.1115 0.1189 0.0999 -0.1609 0.2058 

3.4 0.7123 0.2841 -0.0669 0.0987 0.0503 -0.0915 0.1408 

3.8 0.8216 0.2642 -0.0346 0.0630 0.0233 -0.0471 0.0836 

4.2 0.9251 0.2547 -0.0157 0.0334 0.0100 -0.0222 0.0443 

4.6 1.0260 0.2505 -0.0063 0.0152 0.0039 -0.0095 0.0211 

5.0 1.1258 0.2489 -0.0023 0.0061 0.0014 -0.0038 0.0092 

5.4 1.2252 0.2483 -0.0007 0.0022 0.0005 -0.0014 0.0036 

5.8 1.3246 0.2482 -0.0002 0.0007 0.0001 -0.0005 0.0013 

6.2 1.4238 0.2481 -0.0001 0.0002 0.0000 -0.0001 0.0004 

6.4 1.4734 0.2461 0.0000 0.0001 0.0000 -G.0001 0.0002 
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Table (2.4). Flow parameters for flames shown in figures (2.2) - (2.6), figures 

(2.9) - (2.11) and figures (2.14) - (2.15) 

• 1~-1] HO) f (0) f'(O) 1' '+(O) rp PF-
To .. 

1.0 1.0 0.0 0.4574 0.0 0.7010 

0.232 1.0 -0.5078 0.3717 0.2600 0.2902 

0.058 1.0 -0.7092 0.3064 0.2956 0.1013 

0.029 1.0 -0.8334 0.2651 0.2976 0.05701 

1.0 0.25 6.0 -0.0726 0.5858 0.3091 0.8418 

1.0 0.125 6.0 -0.1093 0.7020 0.6044 0.9339 

0.058 0.5525 6.58 -0.7469 0.2991 0.3138 0.1052 

0.029 0.069 6.83 -1.0881 0.2320 0.4266 0.07137 
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Chapter 3. 

FORMULATION OF THE LOCAL STABILITY PROBLEM 

In this chapter, the theory for the stability of the buoyant diffusion fiame is 

formulated utilizing the appropriate extension of the Orr-Sommerfeld lineariza­

tion of the field equations. The steady boundary layer tlol\-, assumed to be 

essentially parallel over distances comparable to a disturbance wave length, is 

perturbed by sinusoidal disturbances in the temperature, composition and velo­

city profiles. The field equations are then linearized by dropping all terms 

involving the multiplication of disturbance order quantities, resulting in a sixth 

order system of linear ordinary differential equations. The history and theory of 

this method is reviewed by Betchov and Criminale, rP.ference (3.1), 1967. 

The equations derived in this chapter differ considerably from those used in 

previous investigations of boundary layer flows. Laminar jet tlow, studied 

analytically by Pai, reference (3.Z), 1951, Curle, reference (3.3), 1956, and 

Tatsumi and Kakutani, reference (3.4), 1958, and numerically by Kaplun, refer­

ence (3.5), 1964, is similal" to the buoyant tlame in that it is a boundary-free 

flow, however it lacks the coupling of temperature and velocity through the body 

force term in the equations of motion. Plapp, references (3.6) and (3.7), 1957, 

obtained the governing disturbance equations for natural convection tlows, but 

neglected variations in density in all but the body force term. These equations 

were used by Nachtsheim, reference (3.B), 1963, to study the fiow over a heated 

wall and by Pera and Gebhart, reference (3.9), 1971. to study the buoyant 

plume. Both investigations showed that the coupling due to buoyancy could not 

be ignored, since it destabilized the tlow considerably at low Reynolds numbers. 

For the buoyant diffusion flame, it is no longer possible to exclude the effects 

of density variation in all but the body force term, since these variations can be 

very large. The equations developed below therefore use the full disturbance 
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equations tor a variable density tluid derived by Lees and Lin, reference (3.10), 

1946, and adapt them to the natural convection problem posed by the buoyant 

flame. 

3.1. Governing Equations 

The equations describing the non-steady, two dimensional motion of a binary 

gas mixture, with the x axis vertically upward, are 

Continuity: 

(3.1) 

Vertical Momentum: 

(3.2) 

Horizontal Momentum: 

(3.3) 

Energy: 

(3.4) 

Species: 
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State: 

(3.6) 

Here it has been assumed that no species ditfusion is driven by pressure or tem­

perature gradients. A superscript • denotes a dimensional quantity, e~.e:V,e.:V 

are the components of the rate of strain tensor and .,.~,.,.:V,.,..:V are the com­

ponents of the stress tensor. 

(3.7) 

(3.8) 

The coefficients of viscosity µ; and µ; and the coefficients of heat conductivity 

k • and diffusion Dt are taken to be known functions of temperature. 

Consider a motion which is slightly disturbed from a steady state. It is con­

venient to separate any quantity v•(z •,y •,t •) describing this motion into a 
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steady part rcz•.y•) and a small disturbance V'(z•.y•,t•) 

T,.( • • • ) -·c • • ) .... , • • • ) .. % ,y ,t = v % ,y + v % ,y ,t 

By substituting expressions of this type into the governing equations (3.1)-(3.8) 

and neglecting terms quadratic in the small disturbance, a linear system of dis­

turbance equations is obtained. If the steady tlow is parallel or nearly parallel, 

such as the boundary layer solution developed in chapter 2 for large Reynolds 

numbers, further simplifications can be made using 

The steady tlow quantities are therefore taken to be independent of z •. A 

sinusoidal form is assumed for the disturbances, and the variables non-

dimensionalised as follows 

• 
'U • = u(y) +I (y) eia(a: -ct) 
,!La 

• e... = p(y) + r (y) ei«(a: - ct) 
p. 
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• 
µ,: = µ,(y) + m.(y) eia(% -ct) 

µ,1_ 

p:,Dt 1 ) 1 i c ') -.---= -µ(y + -m(y) ea% -c:. 
µ,1• Sc Sc 

where, for the buoyant difiusion .flame, 

• c 
-. =c 
'ILo 

• % -.-=z 
6 

• [[ T, I . ·J ~ 'l.t.0 = 2 r::- 1 g Z 

(3.9) 

(3.10a) 
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(3.lOb) 

Lees and Lin,reference (3.10), 1946, first obtained the disturbance equations for 

a compressible ftuid using the internal energy equation. This was replaced with 

the enthalpy equation by Lees and Reshotko reference (3.11), 1962. The follow­

ing equations differ from those of Lees and Reshotko only by the addition of the 

buoyancy term in the vertical momentum equation and by normalising the pres­

sure by p;u;2 rather than p:.. 
Continuity: 

(3.11) 

Vertical Momentum: 

_ _ 1_[-rM2p1T _ sl + _2_(~ -µ,)a2(irp' -/) 
Fr TJ 3Re 

(3.12) 

+ ie [m.u" + m'u' + µ'(/' + ia2rp)) 

Horizontal Momentum: 
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+ ::. (µ. - µ) ('!'. +if') + :. [im:".i' + 2µ'q>' + tc,,.' -µ')('I'' + if) l (3.13) 

Energy: 

ap(i(u - c)s+ T '9'] = PrlRe (µ(s"'" - a 2Sj + (mT '}' + µ's') + 

(3.14) 

Note that this energy disturbance equation is valid outside the infinitesimal 

region of the reaction zone. 

State: 

.... 
2 r s 

"11/,f 11' = -+ --
I p T (3.15) 

In these equations, a prime denoted differentiation with respect to the non­

dimensional variable y. The species disturbance equation has not been given 

since in the limit of Mach number becoming zero, the energy and species distur­

bance equations are identical. In the preceding equations, the Reynolds 

number, Re. Froude number, Fr and Mach number Mare 

•z• 'Uou 
Re=-.-. 

v .. 
'Uo2 

Pr = -.-.-. 
g 6 

where 7 is the ratio of specific heats. Note that in the present case. the 

(3.16) 
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Reynolds and Froude numbers are proportional 

Fr= [~i -+· 
The Mach number is now taken to be zero in equations (3.11)-(3.15). Eliminating 

the pressure, 1T , between equations (3.12) and (3.13), substituting for rp' and rp" 

from equation (3.11) and for p = r-1 from the unperturbed equation of state 

yields 

~i(u -c)(/' -ia2rp) + iu'(u - c) ~ + u"rp]- a~: [i(u -c)J] = 

(3.17) 

ie ((mu")'+ (m.'u')' + a2mu' + µ"(!' + ia.2rp)) 

It is now convenient to define the variables s and 1' by 

(3.18a) 
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(3.lBb) 

Since viscosity is a function of temperature 

, = ~ = 8µ 8 T = [It_- 11. ~, 
µ, 8y 8T8y T. µ (3.19) 

where jL= :~ . Also, the fluctuating viscosity can be related to the temperature 

fluctuation through 

m =s~ = [IL-1]sµ, 
BT T. 

(3.20) 

Substituting for these expressions in equation (3.17) gives 

/"' = [IL- 1]{a2 .'.!.:..[1 + 2T µ l - iaRe ~u - c)} / + 
T. T ;) µT T . . 

{2a2 + iaRe (u - c) -[IL-1Ji!:_'lf - [IL-1]2 
~1''2} /' -

µT T. µ, T. µ, 

2 [It_- 1] i!:_,, f /" + 
T.. µ, 

{-ia4 + a.Re (u" + a2(u -c)) + [ r, - 1][ia21-- ia2 i!:_ef -
µT T.. T µ, 
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(3.21) 

[ r, - 1]{- 2~+ 2'6' + iaRe (u - c)u' - i!:_u"' - 2a2i!:_u, + 
T. a T µT3 µT T µ µ 

ia.PrRe jJ, (u - c }u' - [ T1 - 1]hM_1''u" + M..u•-fJ' - ( #72u·it] + 
µT µ T. lµ µ µ 

This equation along with continuity 

[IL-1] 
rp' =-if+ T.T (1''rp +i(u -c}s) (3.22) 

and energy 

8 ,, = a.PrRe 1''rp + fa.2 + ia.PrRe (u _ c) -[!1_ __ 11 k_-6· _ (3.23) 
µT µT T. µ 
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.!L._ 1 /:!_1'- '2 s - 2 .!L._ 1 /:!_1'- 's' [ T ]
2 

•• } [ T 1 · 
T. µ, T. µ J 

constitute the governing equations for small sinusoidal disturbances from a 

parallel steady tlow for a variable density fluid. Note taking the limit 

[ ~~ - 1 J = 0 in all terms except the Reynolds number results in the same equa­

tions as those derived by Plapp, references(3.6), (3.7), 1957, using the Boussinesq 

approximation, which neglects the effects of density variation in all terms 

except the body force term in the vertical momentum equation. 

3.2. Boundary and Matching ConditioDB 

3.2.1. Matching Conditions a.t the Flame. The presence of a fian;ie sheet 

within the convecting fluid introduces a set of matching conditions which must 

be applied there. To obtain the appropriate conditions on the temperature dis­

turbance, s, consider the energy and species conservation equations, (3.4) and 

(3.5). Neglecting dissipation effects, and with c; constant, these can be written 

as 

·[81' .B1' .B1'1-M .D.BYtl ~ .D.BYil .. P --+ u --+ 1J - p ~ + p . + 'In. Bt • Bx• By • Bx • " oz • By • ' By • .. ...,, 

The difficulty of dealing with the heat and species production terms q • and rh;,• 

can be bypassed by use of the Schvab-Zeldovich variable 



-58-

(3.24a) 

= t• + YF-f .Yo 
1+1· 1+1· 

(3.24b) 

• • • . m 
where qc= ~and J ·= . ~ . Assuming unit Lewis number, the governing equa-m, m.0 

tion for Z is 

(3.25) 

with boundary conditions 

z ... 1 as y ... co, z ... o as y ... -co (3.26) 

Assume that Z(z •,y •,t •) is known for arbitrary initial conditions. At the flame 

Y, = Yo = 0, thus 

(3.27) 

The temperature at the dame is therefore always given by the adiabatic dame 

temperature regardless of the initial conditions, so the disturbance tempera­

ture at the dame must vanish. In addition, dit!erentiating equation (3.24b) and 

evaluating at the dame gives 

at the /la.me (3.28) 
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Furthermore, equations (3.24a) and (3.24b) give 

T-T. -----1-Y, 
T1 -T. 

= 1- Yo 

.... 

71 > 0 

71 < 0 

the disturbance mass fractions, }(,are therefore given by 

~ =-s 

so equation (3.28) can be used as a condition on the disturbance temperature at 

the flame. The flame position, no longer constrained to be at 71 = 0, can be 

taken as 

(3.29) 

The perturbation in the temperature at the flame now has two components; the 

temperature disturbance s, and the perturbation imposed on the steady flow by 

disturbing the flame position away from y = 0. This latter component can be 

evaluated by taking a Taylor series expansion about y = 0. 

T~ = Ti + ('e(a(z - et)( Tj - T:. )1'~(0) + · · · at y = ("ei«(z - et) (3.30a) 

r: = Tf + ~e(a:(z -et>( Tj - r:. )1'~(0) + · · · at y = ('eia(:i: - ct) (3.30b) 

where the subscripts + and - ref er to evaluating the quantity on the fuel and 

oxidizer side of the flame respectively. Since the temperature at the flame must 
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remain at the adiabatic flame temperature, the boundary condition on the dis­

turbance temperature is 

s + = -(" 1'~(0) (3.31a) 

s - = -(" 1'.'..(0) (3.31b) 

Expanding the left hand sides in Taylor series about y = 0 allows this condition 

to be applied at y = 0. Similarly equation (3.28) gives 

at y = 0 (3.32) 

The matching condition on the velocity distribution must be obtained from the 

equations of motion (3.2) and (3.3). Density p •, viscosity µt and velocities u • 

and v • are continuous, therefore integrating equation (3.2) from 

y~ = ("e\a{s -ct)_& to yZ = ('eia(s -ct)+& and letting & ... 0 gives 

where the square brackets denote a jump in the enclosed quantity across the 

flame. Sinceµ; is continuous, this becomes 

[1· + <-u"J = 0 at y = 0 (3.33) 

Forming the vorticity equation by differentiating equation (3.2) with respect to 

y •and equation (3.3) with respect to z • and integrating from y: toy: gives 
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Once again, the disturbance order equation is obtained by expanding the steady 

solution in Taylor series about y = 0 and substituting to get 

[µ'(/' + (tu" (O)) + (m.' + ("µ"(O})u'] + [µ(/" + ('u"' (0)) + (m + ~µ'(O)u"] 

Using the disturbance continuity equation (3.22) to replace rp' and equations 

(3.19) and (3.20) to replaceµ',µ" and m gives 

' (3.34) 

In summary, the matching conditions at y = 0 are 

<P , I continuous 

[r + ('u."] = o 

s + = -('1'+' , s _ = -('1'_' 
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(3.35) 

In the special case of a symmetric undisturbed flow, the disturbance can be 

expressed as a linear combination of antisymmetric and symmetric distur-

bances. The matching conditions can then be simplified to give boundary condi­

tions at y = 0. For an antisymmetric disturbance 

I= o 

. 2 I - (!' + ru" )11+') + .,, ~ ( ~ - i (( u - c )'11+') at y = 0 (3.36) 

;,,q , , rd' 
S + = - .. v+ I s + = -.. v+ 

For a symmetric disturbance 

~=/' =s+=(=O at y = 0 (3.37) 
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3.2.2. Repla.c:ement of the boundary conditions a.t infinity. 

Two different numerical algorithms are used to obtain a solution. These are 

the shooting method of Hieber and Gebhart, reference (3.12), 1971. and the 

difference method of Keller and Cebeci described in Cebeci and Bradshaw, refer­

ence (3.13), 1977. Both methods require a knowledge of the asymptotic 

behaviour of the solution as y ... 00 • For large y, the governing equations (3.21)­

(3.23) reduce to 

(3.38) 

/"' = (2a2 - i(JRe)f' + {-ia4 - a 2{JRe)rp + 

(3.39) 

s" = a 2s - i{JPrRe s (3.40) 

Nachtsheim, reference (3.7), 1963, obtained the solution to these equations in 

the limit [ ~: - 1 J ... 0. When [ ~- - 1] is non-zero, these solutions are slightly 

changed and are of the form 

I ... e~ (3.41a) 

rp ... A/, s ... Bf {3.41b) 

where the quantities A, A and B are given by 
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-i 
Au =±a, A1:1:: = ;---, Bu,, = 0 

n1:1: 

As± = ± (a2 - i{JPrRe )ff 

--i i,B"Re
2
Pr(1 - Pr)[ i. -+ 

As:=--+-~--~----.----------.-

"8. >.a.[AN. -•[ ~: -+.B2Re (1 -Pr>] 

= -{32Re2Pr (1 - Pr) 

A~: -i[ i. -1]cxp2Re (1 -Pr) 

(3.42a) 

(3.42b) 

(3.42c) 

The general solution of equations (3.38)-(3.40) which must match the numerical 

solution of equations (3.21)-(3.23) at the edge of the boundary layer, y = y 8 , is 
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/ " = ' 2 c e'-14li• + ' 2 c e>-1-V• + ' 2 c e"24Y. + ' 2 c e'-e...v. + "l+ 1+ "I- 1- "2+ 2+ "2- 2-

(3.43) 

In order to satisfy the condition that all disturbances vanish as y --. ca , it is 

necessary that cl+= c2+ =cs+= 0. 

Solving equations (3.43) for c 1+,c2+ and Cs+ using Cramer's rule gives three 6x6 

determinants which when equated to zero provide three boundary condition 

equations to be applied a"t y = y.. These are 

s' + >..s+S = 0 (3.44) 

(1 -Pr}] s' 

+ I 1 2+ 1+ ' 0 
[ 

T l >..
2 

.X -- c s = 
T. >.5+ 

(3.45) 
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!>..:+ - icx.p2Re[-Ti __ 1] (1 -Pr)] 
I"+ Av.+!' ->..f+(/ + i>..2+9') - -----2--T------------s' 

>..3+(A2+ + As+) 

+ .!..L_ _ 1 c 1 + 2+ s' - 0 
[ 

T I >,.2 A 
T. >..~+ -

(3.46) 

To avoid numerical diffl.culties when (J is small, equation (3.45) is subtracted 

from equation (3.46) to give 

[AS. -ia,B
2Re[ ~- 1] (I -Pr)l •. 

{>1.1+ + A3+)(A2+ + 'Aa+)'A~+ 

+ _f_ _ 1 c 1 + 2+ s' = 0 
[ 

T I A A 
T.. >..l+ 

(3.47) 

3.3. Numerical Solution 

The eigenvalue problem posed by equations (3.21)-(3.23) with matching condi­

tions, equations (3.35) at y = 0 and boundary conditions, equations (3.44),(3.45) 

and (3.4 7) at y = y. is solved using two different numerical algorithms. The first 

is the shooting method of Hieber and Gebhart, reference (3.12), 1971. In this 

method, the asymptotic expressions for/ ·9' ands given by equations (3.41) and 

(3.42) are used directly as the starting point for the integration. Since the 

governing equations are linear, three bounded, linearly independent solutions 

can be obtained by separately using each of the exponentiahy decaying 
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asymptotic forms in turn. If the undisturbed flow is asymmetric, three more 

solutions are obtained by integrating from y = -y,. That is f.,,,rp, and si must be 

found such that 

J - e"<-11, ' - ' i = l, 3 at y = y, 

i = 4, 6 at y = -y, 

The solution can then be expressed as 

where the coefficient of f 1 has been chosen as unity, thereby fixing the arbi­

trary scale of the disturbance level. The six complex constants C2-C8 and (' (the 

flame position) are determined by satisfying six of the seven matching condi­

tions at y = 0. The seventh matching condition at y = 0 will be satisfied only if 

the four parameters, real and imaginary parts of a,{J and Re , are appropriate. 

Note that since there is only one remaining complex boundary condition to be 

satisfied, two of these four parameters may be specified, the other two consti­

tuting the eigenvalues of the problem. Since the governing equations are non­

linear in o..,{J and Re , the eigenvalue must be determined using an iteration pro­

cedure. If, for example, the remaining boundary condition to be satisfied is rp 

continuous at y = 0, the real and imaginary parts of z = rp(o+) - rp(o-) can be 

used as nonlinear functions of a,{J and Re. By taking small increments in two of 
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the parameters, approximate derivatives of the real and imaginary parts of z 

with respect to those parameters can be obtained. Newton's method, or any 

other non-linear equation solver can then be used to tl.nd the values of the two 

parameters which satisfy z = 0. 

The routine employed to integrate the governing equations was a CIT library 

routine using a Runge-Kutta-Gill starting procedure and an Adams-Moulton 

predictor-corrector formula for each subsequent step. Hieber and Gebhart, 

reference (3.12) obtained 1% accuracy in determining the real and imaginary 

parts of a when using this method to calclate the stability of a natural convec­

tion boundary layer generated by a vertical plate dissipating a uniform heat 

flux. 

The second numerical method is a finite difference technique due to Keller 

and Cebeci described in Bradshaw and Cebeci, reference (3.13), 1977. It involves 

writing the governing equations as a system of twelve real first order equations 

of the form 

i=l,2, ... 12, y>O 

where 

f 1 =Re(~+), f 2 =Im(~+). f5 =Re(/+), 4 =Im(/+) 

f 15 =Re(/+'), fe =Im(/+'), f 7 =Re(/~). fe =Im(/~) 

f 9 = Re(s+). f10 = Im(s+). f 11 = Re(s+'). f 12 = Im(s+') 

If the undisturbed flow is asymmetric twelve more equations are obtained for 
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variables in the negative half plane, y < 0, by substituting y' = -y in the 

governing equations (3.21)-(3.23). Both sets of equations are thenvalid in the 

range 0 < y < y •• which is divided into J segments. The derivatives are then 

replaced by a finite difference approximation evaluated at the mid-point of each 

segment. 

_ 1 _ 1 _ ([rt+r1-1l[v1+Y1-1l [T' J} fl - .L( - llysfn ~· ~,a,(J,Re ;Pr, T. - 1 

i = 1, 24 i = 0, J (3.48) 

where f/ is the value of~ evaluated at y = Y;· the end point of the jth segment. 

An additional twelve conditions, six at each of y = y. and y = -y •. (j = J}, are 

obtained from the boundary conditions, equations (3.44), (3.45) and (3.47). (' 

can be eliminated from the matching conditions, equations (3.35) to leave twelve 

more equations for the variables at y = 0, (i = 0). These equations are of the 

form 

fnf fl,O,a,(J,Re;Pr,[ ~: -1]} = 0 

(3.49) 

Equations (3.48) and (3.49) constitute a 24(J+1) set of homogeneous equations 

in the 24(J+1) unknowns f/, i = O, .. J, i = 1, .. 24. To obtain a non-trivial solution 

for the f/'s, the determinant of the 24(J+l) x 24(J+l) coefficient matrix, which 

is non-linear in a,p and Re , must be zero. To find the eigenvalues which 
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accomplish this, a special iteration procedure is employed. Instead of using the 

homogeneous boundary conditions, equations (3.49), at y = 0, the condition 

(s +' + ('l';) + t •(s _, + ~:) is replaced by 

(3.50) 

thus fixing the arbitrary amplitude of the disturbance. The value of the two 

unspecified parameters, say aR and a1. where the subscripts refer to the real 

and imaginary parts of a, must be determined so that the dropped boundary 

condition is satisfied. 

The complete system of difference equations and altered boundary conditions 

can be written as 

(3.51) 

where A1 = f/ such that l = i + 24;, i = 1, .. 24.; = O, .. J i.e the A1's are the unk­

nown quantities f, evaluat~d at each of the (J+l) mesh points in turn. The solu­

tion of equation (3.51) can be obtained by the block elimination method 

described in Bradshaw and Cebeci, reference (3.13), Appendix 7A. Now with {J 

and Re fixed 

The boundary condition which must still be satisfied is 

(3.52a) 



-71-

(3.52b) 

Here (" has been eliminated using equations (3.49) and the substitution y' = -y 

has been made for y < 0 as it was in the governing equations. The two equa­

tions (3.52) are solved using Newton's method. Specifically if a.R and a/ are the 

11th iterates, then the (11 + l)th iterates are determined by using 

aJr + t) = a.R + 6a.R and aJv + 1> = af + 6af in equation (3.52), expanding about 

6a.R = 6a}' = 0 and retaining only linear terms in the expansion. This gives the 

linear system 

[~v [~v 
zf + ~ 6a.R + aaiJ da}' = 0 (3.53a) 

(3.53b) 

where z{ = z"(aJ,an. Equations (3.53) can be solved to give 
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The derivatives of z 1 and z 2 are easily obtained by difierentiating equation (3.51) 

R[ru" = -[ aR lvll" 
00.J J Bci;J 

and substituting in equations (3.52). Solving for all of the required derivatives is 

therefore accomplished by solving two linear systems with the sa.m.e coefficient 

m.atriz R , already computed and factored, that was used to solve equation 

(3.51). This provides an efficient way to improve the guessed values of o.R and o.1 . 

The disadvantage of this method is the large amount of storage required by the 

coefficient matrix. 

3.4. Inviscid Stability Equations 

By setting Re =co in equations (3.21)-(3.23), the inviscid Orr-Sommerfeld 

equation for variable density fiow is found to be 

(3.54) 

with boundary conditions 

q;(O) = 0 , q; ..,. 0 as y ..,. co (Symmetric Disturbance) (3.55a) 

q;'(O) = O , rp .... O as y .... co (Antisymmetric Disturbance) (3.55b) 

The solution for the eigenvalue is easily obtained by employing a shooting 

method starting from the asymptotic behaviour q; .... e-av as y .... co, integrating 
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~o y = 0, and iterating to satisfy the appropriate boundary condition. If the 

undisturbed fiow is asymmetric the integration is also performed from negative 

infinity using rp -+ eat1 as y -+ -co and the matching conditions <p, rp' continuous 

are imposed at y = 0. A discussion of the difficulties associated with calculating 

neutral and stable eigenvalues {i.e a.1 ~ 0) is contained in Lin, reference (3.14), 

1955, chapter 8. 
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Chapter4. 

THE INSTABilJTY OF BUOYANT DIFFUSION FLAJlES 

Although the stability of the convecting flow generated by a diffusion flame 

bears a superficial similarity to the corresponding problem for the laminar 

buoyant plume, Pera and Gebhart, reference (4.1), 1971, the differences are very 

significant. 

First, ~he steady velocity and temperature profiles are quite different from 

those of the buoyant plume, particularly the temperature profile, which has 

both a constant value and a discontinuity in its slope at the flame. The 

differences are even more pronounced by non-unit stoichiometry, when the 

flame becomes very asymmetric. Second, the presence of the flame sheet intro­

duces a set of matching conditions on the velocity and temperature distur­

bances at y =O, quite different from the simple continuity requirements for the 

plume. Finally, all analyses of the buoyant plume have assumed that density 

variations are important only in the body force term of the equations of motion. 

This approximation, attributed to Boussinesq, is not applicable for the flame, 

where density difierences in the steady :flow are large compared to unity. 

Four different base :flows have been considered in this chapter, these being 

the symmetric :flame, i.e unit stoichiometric ratio, employing the Boussinesq 

approximation, which is obtained by artificially setting [ ~~ - 1 j = 0 in all terms 

of the stability equations except the Reynolds number, . and with [ ~: - 1 j = 6, 

and the asymmetric :flame with a stoichiometric ratio the same as methane 

burning in air, also with both the Boussinesq approximation and [ ;~ - 1] = 6. 

In all cases, the fuel and oxidizer are assumed to have the same density at 

infinity and are therefore quiescent outside the boundary layer. These base 
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profiles are shown in figures (2.2)-(2.5). and have unit Lewis number and 

Pr = 0.72. Symmetric disturbances were found to be much more stable than 

antisymmetric disturbances, so the results presented in this chapter are for the 

antisymmetric mode. 

The results for a symmetric flame using the Boussinesq approximation are 

given in figures (4.1)-(4.7). Figures (4.1) and (4.2) show the dimensionless fre­

quency, (J, and real part of the wave number a.R plotted against Reynolds 

number for several choices of the dimensionless spatial amplification rate a.1. At 

a Reynolds number of 200, the neutral stability curve (a1 = 0) has closely 

approached its asymptote of (J = 0.444, aR = 1.42 obtained by solving the invis­

cid Orr-Sommerfeld equation. Lowering the Reynolds number decreases the fre­

quency and wave number of the neutral curve but increases the amplification 

rates, especially for low frequency disturbances. Since it is the growth in the 

amplitude of the disturbance as it is convected downstream which leads to tran­

sition and turbulence, Smith, reference (4.2), 1956, the increased amplification 

rates at low Reynolds number indicate that viscosity has a destabilising 

influence on the flow. 

An important feature of the stability diagram, figure (4.1), is that the neutral 

stability curve has no minimum. This is somewhat surprising, since laminar jet 

flow does exhibit a critical Reynolds number, below which all disturbances are 

stable. This was first demonstrated analytically by Curle, reference (4.3), 1956, 

and calculated numerically by Kaplan, reference (4.4), 1964. In the case of the 

buoyant plume, Pera and Gebhart, reference (4.1). 1971, no critical Reynolds 

number was found, indicating that this might be a feature of boundary-free, 

natural convection flows, in which, unlike the laminar jet, total momentum is 

not constant due to the effects of buoyancy. In the present case, the neutral 

stability curve is found to cross the zero frequency axis and continue to 

indefinitely large negative frequencies as the Reynolds number is reduced. It 

can also be seen in figure (4.1) that some of the constant amplification rate 
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contours also cross the {J = 0 axis. 

At first it might seem that these disturbances, which have a phase velocity 

vertically downwards, must be stable since amplification occurs as disturbances 

propagate in the upwards direction, however the group velocity, given by 

CG= ~PR is positive, and since the group velocity is associated with the energy 
v<l.Jl 

propagation of the disturbance, these disturbances are amplified. In a series of 

papers, references (4.5)-(4.8), (1963, 1965a,b, 1968), Gaster proposed that spa-

tial and temporal amplification rates can be related by the linearized formula 

-o..n 
rx1 = --cltemp + O(c/) 

CG 
(4.1) 

Thus for the disturbances to grow with time, the product o..1cc must be negative. 

By considering a laminar boundary layer disturbed by a point source of the 

form 

q (:z: ,t) = 6(z) cosc.>t t > 0 

=O t < 0 

which simulates a vibrating ribbon, Gaster, 1965b, showed that spatially growing 

disturbances result and that the disturbance propagates downstream if 

8a.R 
8fJn > O. 

Consider figure ( 4.3) which gives an and a1 as functions of {J at a Reynolds 

number of 10. The eigenvalue solution at this Reynolds number is quite compli­

cated due to the presence of discontinuities which will be discussed presently. 

First, consider the branch of the solution which exists for {J > 0. At a frequency 
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(1 = 0.149, a.1 = 0, thus the disturbance is neutrally stable. As (J is reduced, the 

wave number a.R decreases to a minimum near (J = -0.018 , after which it 

increases until this branch ceases to be valid at (1 ~ -0.045. The minimum at 

(1 s::i -0.018 represents a change in the sign of cc. and is therefore a limiting sta­

bility curve for this solution branch. Consider (1 to be a complex function of a. 

Then 

thus 

(4.2) 

The group velocity is therefore positive for -0.18 < (1 < -0.149, so these distur­

bances propagate vertically upwards. Thus, since a.1 < 0, these disturbances are 

unstable. For -0.45 < (1 < -0.018, cc is negative and the disturbances are 

stable. 

Now consider the behaviour near (J = -0.045. The asymptotic behaviour as 

y ..... oo of the solution is given by equations (3.41) and (3.42). One of the three 

independent solutions as y ..... oo is given by 
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1. 
f ... e-Ca2-f.,Re)21/ asy-+co 

Consider A2 = a.2 - ilffle = (a.J - a.1) + i (2aRa1 - {JRe ). When p > 0, a 1 < aR and 

'A2 is in the fourth quadrant of the complex plane, figure ( 4.4). As (3 is reduced, 

a.1 increases and cx.R decreases until at (J ~ -0.011, cx.1 and aR are equal. "A.2 now 

enters the third quadrant of the complex plane. At (1 s::l -0.045, the imaginary 

part of Jt.2 becomes zero. If the same branch of the square root is used as the 

imaginary part of Jt.2 crosses zero to become positive, the real part of "A.2 will 

change sign from positive to negative, thus violating the boundary condition 

that disturbances must vanish as y ... "" . This solution branch therefore is no 

longer valid for p < -0.045. 

Now consider the branch which exists for large negative pin figure (4.3). The 

group velocity is positive for -0.159 s (J s -0.03 then changes sign for 

-0.03 s (:J s -0.019. At p ~ -0.019, by an argument exactly analogous to the 

preceding one, it can be seen that the boundary condition at infinity is violated 

.1.. 
due to a change of sign in the asymptotic form f -+ e-Ca

2
-(fJPrRe)

2
11. Similarly at 

{J ~ -0.159, aR changes sign, causing this branch to become invalid. A third 

branch also exists which does not lose validity in this manner, however over its 

entire calculated range, its group velocity remains negative, therefore this 

branch is not investigated further. Below {J = -0.159, no unstable solutions 

appeared. 

Returning to figure (4.1), this behaviour has been summarised. The dashed 

line which marks the limiting stability curve for negative (J corresponds to the 

loss of validity of the solution when a.R changes sign. The dashed lines which are 

shown near the p = 0 axis for small Reynolds numbers indicate either the loss of 

validity of a solution branch, or the change in sign of cc if this occurs first, as it 

did in figure (4.3). The position of these lines is very approximate due to the 
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excessive number of calculations necessary to obtain accuracy. Note that at 

very low Reynolds numbers, where the amplification rates start to decline, these 

discontinuities in the solution no longer occur. It is therefore possible to take a 

path between any two points in the (:J - Re plane, along which a.R and a1 vary 

continuously. 

The solution of the inviscid Orr-Sommerfeld equations for this flow is 

presented in :figure (4.5). Note that the maximum amplification rate is slightly 

less than a.1 = - 0.18, so the a.1 = - 0.18 contours shown in figures ( 4.1) and 

(4.2) close at some finite Reynolds number. The negative phase velocity branch 

of the solution is also present in the inviscid limit, but could not be determined 

in the range -0.0058 < p < 0. This difficulty can be examined by considering 

sc(y) . ( ) the inviscid equation for the function I (y) = ( ) , Lln, reference 4.9 , u -c 

1955, chapter 8. 

(4.3) 

Multiplying this equation by the complex conjugate off and integrating over the 

range -oo < y < oo gives 

(4.4) 

where the first term has been integrated by parts once. Consider the real part 

of this integral 

Re(/) = /_:[Cu - cR)2 - cf][ I I' 12 + (ak - alll/ l2]dy l 
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J (4.0) 

where 

If cxJ < o..1. this relation can clearly be satisfied, however if o..J < a_» and aJ is 

sufficiently small, the second term in this expression can become small com­

pared to the first and the solution will not exist. In figure (4.5), a.j becomes less 

than a.j at (J R:i -0.0058. The solution either ceases to exist shortly after this 

point, or it changes very rapidly. There is some numerical evidence to suggest 

that the latter is the case, however convergence became very slow, making the 

results inconclusive. Note that the inviscid solution for the symmetric flame 

with [ ~: -1] = 6, figure (4.13), and also !or the buoyant plume, presented in 

the next chapter, do not display this behaviour; the negative phase velocity solu­

tion is continuous up to (3 i:: 0. 

It should be noted that at low Reynolds number, both the parallel ft.ow 

assumption used in the stability theory, and the boundary layer simplification 

used to find the steady base !low become poor approximations. Non-parallel 

effects have been studied for the laminar jet by Haaland, reference (4.10), 1972, 

and Bajaj and Garg, reference (4.11), 1977, who accounted for only some of the 

non-parallel terms, and more recently by Garg, reference (4.12), 1981, who 

included the effects of the transverse velocity component, the streamwise varia­

tion of the base ft.ow and of the disturbance amplitude, wave number and growth 

rate. Garg found that including these effects increased the critical Reynolds 

number from Rec ~ 4 to Rec: R:i 21.6 and moved the lower branch of the neutral 

stability curve to higher frequencies. For the buoyant plume, non-parallel 
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effects have been studied by Haaland and Sparrow, reference (4.13), 1973, and 

more comprehensively by Hieber and Nash, reference (4.14), 1975. Hieber and 

Nash used a higher order boundary-layer theory for the steady base fl.ow, but 

did not consider streamwise variation of the disturbance amplitude. They found 

that a critical Reynolds number, Rec 1::1 15, does exist, below which all distur­

bances are stable, and that the neutral stability curve does have a lower branch. 

It is therefore expected that the low Reynolds number region in the present 

analysis would also be considerably moditied by removing the parallel fiow 

assumption. In particular, the negative phase velocity region of the stability 

region of the diagram is likely to be significantly different, since these distur­

bances have very long wavelengths. 

Figures (4.6) and (4.7) give a more physical representation of the solution. 

Here the frequency and wave number have been non-dimensionalised using fixed 

time and length scales, rather than using the boundary layer thickness and velo­

city to supply scales which vary with Reynolds number. The new variables, 

denoted by a superscript +,are related to the dimensional variables, denoted by 

a superscript • and the previous dimensionless variables by 

.L -1 
3 -

=a Re 3 (4.6) 

It is now clear that all frequencies eventually become unstable as the Reynolds 

1 

number is increased, since the neutral curve has an asymptote p+ ... 0.444Re S: 
The most amplified disturbances will, however, be at the lower frequencies which 
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become unstable at small Reynolds numbers. 

The efiect of non-unit stoichiometry is examined in figures (4.B) and (4.9). 

This calculation is for a stoichiometric ratio the same as methane burning in 

air, and also uses the Boussinesq approximation. The stability diagrams are 

very similar in form to those for the symmetric flame, figures (4.1) and (4.2). 

The neutral stability curve has moved to lower frequencies, however the 

amplification rates are somewhat increased. The asymmetry of the flame there­

fore slightly destabilises the flame. 

The coupling between the temperature and momentum disturbance equa­

tions is inversely proportional to Reynolds number, and furthermore, when the 

Boussinesq approximation is employed, the steady temperature profile appears 

only in the temperature disturbance equation. Any differences between the sta­

bility of the symmetric and asymmetric flames at large Reynolds numbers must 

therefore arise from differences in the velocity profiles alone. Consider figures 

(2.2) and (2.4). Most of the asymmetry of the flow in figure (2.4) is contained in 

the temperature and mass fraction profiles. If these are ignored, the velocity 

profile is seen to be quite ·similar to that for the symmetric flame. It is there­

fore not unreasonable that non-unit stoichiometry has a relatively small effect 

on the stability of the flame, especially at large Reynolds numbers. 

A much greater effect on the stability curve is obtained when the Boussinesq 

approximation is removed. Consider the stability of the symmetric flame with 

[ ~: - 1) = 6, shown in figures (4.10) to (4.15). In this calculation, the relation 

between viscosity and temperature is taken to be ~= • , from White, 
. [f1. 0.66 

µ,.. T .. 

reference (4.15), 1974. This formula is accurate to within ± 4%. in the tempera­

ture range 210° - 1900° K. The neutral stability curve has shifted to frequencies 

a factor of ten lower than when the Boussinesq approximation was employed 

and the amplification rates are also considerably reduced. Furthermore, the 
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neutral stability curve for positive phase velocity waves is no longer the limiting 

curve for instability. Instead it has been replaced by the line of discontinuity 

corresponding to the loss of validity of the solution as a.R changes sign. This is 

shown in figure (4.10) by a dashed line which starts at Re= 20, fJ = -0.045, and 

continues to larger Reynolds numbers. These disturbances have positive group 

velocities, despite a negative phase velocity, and clearly play an important role 

in the instability of the :fiame when large density variations are considered. 

The dashed line which extends to smaller Reynolds numbers, starting at 

Re = 20, {3 = -0.045, also indicates a limiting stability curve, but now it 

corresponds to a change in the sign of the group velocity rather than in the sign 

of aR. This is shown more clearly in figure (4.12) which shows the variation of <XR 

and a1 with fJ at Re = 10. The change in the sign of 
0
:; near {3 = -0.04 indicates 

a change in the sign of the group velocity. For {3 < -0.04, disturbances are pro­

pagated in the vertically downward direction and decay in amplitude. Once 

again the dashed lines near the fJ = 0 axis in figure (4.10) indicate a loss of vali­

dity of a branch of the solution as discussed previously. 

The inviscid solution is presented in figure (4.13). In comparison with figure 

(4.5) where the Boussinesq approximation was employed, there are several 

points of interest. The maximum amplification rates are approximately the 

same in the two cases, which is somewhat surprising since for Reynolds numbers 

less than 200, the amplification rates were significantly smaller when the Bous­

sinesq approximation was removed. The relative importance of the positive and 

negative frequency regions has changed considerably, the negative frequency 

branch now extending to higher frequencies than the positive branch. The nega­

tive branch also exhibits a change in the sign of the group velocity at 

{3 R:f -0.018. For disturbances with frequencies in the range 0 < fJ < -0.018, 

amplification does not occur, but for -0.112 < {3 < -0.018, the disturbances are 

unstable. 
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In figures (4.14) and (4.15), the dimensionless form of equation (4.6) is used. 

Once again, it is clear that all frequencies eventually become unstable, however 

frequencies less than 10 Hz will undergo greater amplification than higher fre­

quencies. These highly amplified disturbances have wavelengths of a few centim­

eters. 

In figures (4.16) and (4.17) the asymmetry of the base flow is again seen to 

modify the stability diagram by a relatively small amount. The flame is some­

what destabilised however, since both the limiting stability curves and the 

amplification rates are moved to higher values. 

The etfect of removing the Boussinesq approximation is demonstrated in 

figures (4.18) and (4.19). Here the inviscid Orr-Sommerfeld equation for vari­

able density flows had been solved for the range of .flame temperatures 

0 < [ ~ -1] < 10. Figure (4.18) shows the inviscid asymptote af{ and pN for 

the neutral stability curve, af = 0, the phase velocity of the neutral disturbance 

cN and the asymptote a.f, pL, of the limiting stability curve a.fl = 0, as a function 

of [ ~: -'-1]. All. show a large change as [ ~: - 1] tnereases from zero to ten, 

especially pN which decreases by a factor of ten and a.H which decreases by a 

factor of three. 

In figure (4.19) the temperature dependence of the length and time scales 

used for non-dimensionalisation has been removed. The new variables are 

• [T ].!!.. 
p = _[_u_:_.e_.s...i;f;;...!_[_z: __ -.-li-= (J T~ - 1 4 
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a= 
1 

a•"'2z • [IL ]4 
[ g :~ .. J ! = a T - - I 

(4.7) 

c = c = c ~-1 2 • [ T l.L 
2.,;g? T .. 

For [ ~: -1] > 2, these show little variation with flame temperature except for 

-pL, the negative frequency at which aR = q and er, which is the ratio between the 

phase velocity of the neutral disturbance cN, and the maximum velocity in the 

flow. 

In summary, it has been found that the convective flow generated by a verti­

cal diffusion flame is very unstable, all disturbance frequencies eventually 

becoming unstable at sufficiently large Reynolds numbers. A new unstable 

regime has been discovered, consisting of waves with negative phase velocity but 

positive group velocity. These disturbances have very long wavelengths making 

the parallel tlow assumption questionable, however their existence is confirmed 

by solving the inviscid disturbance equations. Since the wavelength of these dis­

turbances is long compared to the plume thickness, the stability of the plume 

might profitably be investigated by an analysis considering the plume thickness 

to be negligibly small compared to the wavelength. Variation of flow parameters, 

such as momentum tlux and buoyancy, with Reynolds number could then be 

included and their effects on the stability of the flow examined. This has been 

undertaken in Chapter 6. 

Comparison of the flame stability diagrams using the Boussinesq approxima­

tion with those for the buoyant plume, determined by Pera and Gebhart, refer­

ence (4.1), 1971, shows some similarity in the neutral stability curve, however 
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more extensive calculations are required for the buoyant plume before other 

features of the stability diagrams can be compared. This will be pursued in 

Chapter 5. 

Finally, it is found that the variable density effects due to high temperature 

differences in the fiame can not be adequately handled using the Boussinesq 

approximation. Instead the full variable density stability equations, developed 

in Chapter 3 must be employed. 
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Chapter 5. 

STABIIJTY OF PLANE BUOYANT PLUMES. 

The plane buoyant plume arising from a horizontal line heat source has been 

the subject of extensive research originating with Zeldovich, reference (5.1). 

1937, who described the natural convection plumes arising from a point and 

from a horizontal line source. More recently, a steady laminar self-similar solu­

tion has been obtained by employing the boundary layer and Boussinesq approx­

imations. The solutions have been calculated numerically by Fujii, ref ere nee 

(5.2), 1963, Gebhart, Pera and Schorr, reference (5.3), 1970, who have per­

formed an extensive literature survey, and more accurately by Fujii, Morioka 

and Uehara, reference (5.4), 1973. Experimental studies of the steady buoyant 

plume in air have been performed by Brodowicz and Kierkus, reference (5.5), 

1966, and Forstrom and Sparrow, reference (5.6), 1967. These experiments 

exhibited a centerline temperature difference some 15% less than the theoreti­

cal prediction, but did obey the similarity scaling laws of the analysis. 

The stability of the steady flow was first investigated by Pera and Gebhart, 

reference (5.7), 1971, who used the Tollmien-Schlichting small disturbance 

theory to obtain a neutral stability curve for the flow. Their analysis did not 

reveal a critical Reynolds number or a lower branch to the neutral curve. They 

also performed some experiments confirming the results of the stability 

analysis. By taking account of the non-parallel nature of the base flow, Haaland 

and Sparrow, reference (5.8), 1973, and more recently Hieber and Nash, refer­

ence (5.9), 1975, who included a higher-order boundary layer solution for the 

steady flow, found a critical Reynolds number and established the position of 

the lower branch of the neutral curve. 

For the purpose of comparison with the flame stability results, more exten­

sive calculations employing the parallel !low assumption were performed and 
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are discussed in this chapter, and the efiect of removing the Boussinesq approx-

imation is examined. 

5.1. Steady Solution 

By employing the boundary layer approximation and the Howarth Transfo::-­

mation in a manner analogous to chapter two, the following similarity equations 

are obtained 

-d.' + 12 Pr({1')' = 0 
5 

subject to the boundary conditions 

ff = t = ,,. f = 0 a.t 1'J = 0 

f ..... 0, 1' .... 0 a.s'l'J .... 00 

(5.1) 

(5.2) 

(5.3) 

where the prime denotes differentiation with respect to the similarity variable 1J 

Re 11• ~ • 
17=-4 .:fa .. y x p .. 

(5.4) 

and the streamfunction 1• is given by 

(5.5) 

where 
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- [ 'it 
Q = • ·r·1 · µ.,.cp ... 

(5.6) 

and Q; is the heat generated by the line source per unit length. The difference 

between the centerline temperature r: and the ambient temperature r:. is 

given by 

_o __ l = ~ [ r: J -r:. Re 
(5.7) 

the velocity components by 

[[
To ]••~ 

-fr.=~= 4 r:;-1 g x l:' 

ay• 4 .. 

11' = • 1J • + u • I: . . dy • = - .:::i-.-[;i1 "~;i1 0",,. 
P- ox p... ox 

(5.B) 

and the temperature by 
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(5.9) 

This formulation has assumed that c; is constant, p•µ• = p:,µ; and p•·>.: = p;)....:, 

where >.. is the thermal conductivity. The energy equation, (5.2), may be 

integrated once to give 

C1 is determined to be zero from the boundary conditions at '7 = 0. Integrating 

again gives 

Since t is positive and becomes constant for large 17, the condition ~ _. 0 as 

'I"/ _. aa is not independent, but is implied by the other boundary conditions. Note 

that for the tlame, this was not the case since the energy equation is 

'fl'+ 3.Pr(~ I = 0 

Integrating once then gives 

and C is not determined from the boundary conditions at 7'} = 0. 

For the plume, the condition that the total energy convected across any hor­

izontal plane is equal to the total heat input 
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Q• ·1· ·r· ·d • p = Cp __ P u y 

is satisfied automatically because of the chosen dimensionless form. The fifth 

boundary condition is therefore taken to be an arbitrary normalisation. 

Gebhart et al., reference (5.3), used the condition 19{0) = 1 while Fujii preferred 

the condition I = J_:(''l'J d1J = 1. In the present work, the normalisation of 

Gebhart et al. is used. They obtain the value f(O) = 0.6618 for a Prandtl number 

Pr= 0.7. 

5. 2. Linear Stability Analysis 

ln this section, the small disturbance equations developed in chapter two are 

used to investigate the stability of the buoyant plume. The matching conditions 

at the centerline of the plume are not the same as the matching conditions at 

the flame, however. Instead they are replaced by continuity of the temperature 

disturbance and its derivative, s, s', and of the velocities, the shear stress and 

its derivative, q;, f, f', !". Since the steady flow is symmetric, the disturbances 

can be decomposed into symmetric and antisymmetric components, the 

antisymmetric component being the more unstable. The matching conditions at 

the centerline can then be written as boundary conditions 

q;(O) = f' (0) = s' (0) = 0 (Symmetric disturbances) 

f (0) = /"(O) = s(O) = 0 (Antisymmetric disturbances) (5.10) 

The results presented are for the buoyant plume with Pr = 0.7 both using the 

Boussinesq approximation, and with Q; = 5B.6Btu/hr ft which was studied 

experimentally by Pera and Gebhart, reference (5.7). It should be noted that 

since temperatures are not large in the plume, decaying as the inverse of the 

Reynolds number, equation (5.7), the use of the Boussinesq approximation 
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should not greatly affect the resulting stability diagram. As for the flame, the 

results given are for the more unstable antisymmetric disturbances. 

Figures (5.1) and (5.2) show the results for Q; = 0. The neutral curve is in 

excellent agreement with that obtained by Pera and Gebhart in the range of 

Reynolds numbers they considered. In comparison with the symmetric flame, 

tlgures (4.1) and (4.2), the buoyant plume exhibits many of the same features. 

There is no lower branch to the neutral stability curve since it continues to 

negative frequencies. A negative phase velocity, positive group velocity region, 

not considered in previous investigations, does exist and extends from very 

small Reynolds numbers through to infinite Reynolds number. 

The neutral curve occurs, however at dimensionless frequencies some 40;'~ 

higher than for the flame, while the amplification rates are somewhat reduce>d 

at low Reynolds numbers and somewhat higher at large Reynolds numbers. The 

inviscid results, tlgure (5.3), are in excellent agreement with the calculations of 

Haaland and Sparrow, reference (5.8), apart from the negative frequency region 

which they do not consider. Figure (5.4) gives more detail at Re = 10. Note the 

considerable similarity between this figure and figure (4.3) which shows the sta­

bility of the flame at Re= 10. Once again there are discontinuities in the solu­

tion corresponding to a change in the asymptotic behaviour of the solution 

branch from exponential decay to exponential growth, as discussed in chapter 

four. 

Removing the Boussinesq approximation results in a slightly modified stabil­

ity diagram. Figures (5.5) and (5.6) show the results for Q; = 58.6 Btu/hr ft. 

The neutral curve and constant amplification rate contours have been shifted to 

lower frequencies, especially at small Reynolds numbers, otherwise the stability 

diagram is similar to that employing the Boussinesq approximation. 

In figures (5.7) and (5.8), the frequency and wave number have been renor­

malised using physical scales which do not vary with Reynolds number. The new 
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variables, denoted by a superscript +, are related to the dimensional variables, 

denoted by a superscript •, and the previous dimensionless variables by 

[~
2 ~ 

+ - • v ... a -a _ • = 
Qg 

~ 
a Re 8 (5.11) 

where Q is defined in equation (5.6). The differences between the buoyant plume 

and the symmetric flame now become more apparent. The buoyant plume, 

employing the Boussinesq approximation, has a critical frequency p+ R:! 0.13, 

above which all disturbances are stable, while all frequencies eventually become 

unstable in the symmetric flame. The dashed line in figures (5.7) and (5.B) is the 

neutral curve with ~ = 58.6 Btu/hr ft, (Q = 7.56). The critical frequency for 

this curve p+ = 0.105 corresponds to a real frequency of 11.5Hz, which agrees 

well with the experimentally determined value of 12Hz obtained by Pera and 

Gebhart. They suggested that the discrepancy between this frequency and their 

calculated critical frequency of 15 Hz might be explained by the difference 

between the experimentally introduced disturbance and the perfect antisym­

metric form assumed for the computations. The present analysis indicates, how­

ever, that the primary reason for this discrepancy is instead the neglect of den­

sity variation effects in terms other than the buoyancy term in the equation of 

vertical momentum when using the Boussinesq approximation. 

There is a considerable change in the stability diagram when non-parallel 

effects are accounted for, particularly at low Reynolds numbers. The calcula­

tions of Haaland and Sparrow, reference (5.8), and Hieber and Nash, reference 

(5.9), show the existence of a lower branch of the neutral stability curve with a 
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critical Reynolds number Re= 15. At a Reynolds number Re= 120, however, the 

neutral curve and the a.1 = -0.1 contour obtained by Haaland and Sparrow are 

quite close to the results presented in this chapter using the parallel flow 

assumption. The maximum amplification rate obtained from the present 

analysis is however somewhat higher. Neither Haaland and Sparrow, nor Hieber 

and Nash considered disturbances with negative phase velocity. The exact shape 

of the negative phase velocity region when non-parallel effects are included is 

therefore unknown, however it seems reasonable to hypothesize that this region 

will also exhibit a critical Reynolds number and will become in effect a second 

unstable mode of disturbance. 

Hieber and Nash comment that the characteristic slow meandering of buoy­

ant plumes is not accounted for by the previous linear stability analyses, since 

the observed frequencies at low Reynolds number are much less than those 

predicted by the lower branch of the neutral stability curve. It is possible that a 

full non-parallel analysis of the negative phase velocity region might account for 

this instability. 

Transition to turbulence may be predicted from figure (5.5) for the plume 

and figure (4.10) for the flame, using the empirically based correlation between 

the observed transition to turbulence and the growth in the amplitude of the 

disturbance. For forced-fl.ow boundary layers, Smith, reference (5.10), 1957, 

established that transition occurred when the disturbance was amplified by a 

factor of e 9• For natural convection boundary layers, Hieber and Gebhart, refer­

ence (5.11), 1971, obtained better correlation with a value of e 10. Assuming this 

latter value is appropriate for the buoyant plume and flame, figure (5.5) leads to 

a transition around Rer = 140 for the plume, while the positive phase velocity 

region of figure (4.10) predicts Rer Rj 250 for the flame. The negative phase 

velocity region would lead to somewhat earlier transition, around ReT = 200, 

however this region is likely to be greatly modified by non-parallel effects. The 

buoyant tlame is thus considerably more stable than the plume. 
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Q; = 58.6 Btu/hr ft. Frequency-Reynolds number diagram with local non­
dimensionalisation. 
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Chapter 6. 

STABILITY OF A BUOYANT FLAJlE SHEET TO IDNG WAVELENGTH DISTURBANCES 

6.1. Formulation 

In Chapter 4, the importance of long wavelength disturbances was discussed, 

especially for waves with negative phase velocity. Disturbances of this kind are 

amenable to an analytic treatment where the thickness of the flame and associ­

ated convecting fluid layer is considered to be negligibly small compared to the 

disturbance wavelength. The resulting simplification of the problem allows the 

dependence of the integrated :flow properties, such as momentum flux and buoy­

ancy, on vertical height to be considered. The flow properties of interest are: 

The mass flux M•, given by 

where 

and 

M
• s . . -. -----,-- m. w = C1x •L• µ.., 

g --1 
!.. T. 

[ 
·[ r, J ~ 

x = Re 3 = 4 .a x • 
v. 

(6.1) 

(6.2) 

(6.3) 

The quantities m. • and w • are the effective density and velocity of the :flame 

averaged over its thickness, and L is the length of :flame in the transverse direc­

tion. The momentum flux J•, given by 



-129-

(6.4) 

where 

(6.5) 

The entrainment velocities in the fuel and oxidizer, v;± , given by 

[ ·[IL- ] ·]~ g T. 1 v. 

(6.6) 

Using the expressions for the mass and momentum tlux in the plume, the aver­

age density m" can be obtained. 

• c2 1 m i --------- = -x4 
~ Cz 

(6.7) 

L 

For a symmetric tlame, the constants are found to be 

C1 = 1.32, G! = 0.394, (: ... = ± 0.6599 (6.8) 

In order to formulate the stability problem, it is necessary to find the steady 

velocity field generated by entrainment of tluid into the tlame. This depends on 

the particular geometry being considered, so for the remainder of this chapter, 

it will be assumed that the tlow is bounded by a wall at z = 0, as shown in figure 
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(6.1}. To further simplify the problem, the fiame will also be assumed to be sym­

metric. The steady potential fiow must then satisfy the following governing 

equations and boundary conditions 

2 • 
V 9'o+ = 0 

B • =1.. 
9'o+ =-Ax•" 

fJy. 

·c··, c· ., 9'0- z ,y = 9'o+ z ,-y 

on z• = 0 

(6.9) 

where the + and - subscripts refer to the fuel and oxidizer side of the fiame 

respectively and A is a known positive constant from equation (6.6). These 

equations are satisfied by the corner fiow whose complex potential Wo+ is given 

by 

W• ( ) • ( • • ) • • ( • • ) o+ z = 9'o+ z ,y + 'L'lflo+ z ,y 

,;i_ 

= -4A (-iz)•4 
7r 3cos 8 

(6.10) 

where z • = z • + iy •. Then the vertical velocity at the fiame, Vo+. is given by 
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. [~ I :A " • =:-Uo+ =Re dz1 ···=z· = - tan8 z 

Other quantities which will be required are 

A2 • 
u 'Po+ 
By.a 

.::5.. 
-A 1r •" --tan-z 
4 B 

=A.. 
A •" -z 
4 

(6.11) 

(6.12) 

For small disturbances, the complete potential describing non-steady motion of 

the flame can be found by considering a small perturbation about the steady 

solution 

.( . . ) . ( . . ) . ( . . . ) 'I'± z .y = 9'0± z .y + 9'1± % .y ,t (6.13) 

Two matching conditions are obtained across the flame from the kinematic and 

dynamic requirements which must be satisfied. The kinematic condition is 

obtained by expanding equation (6.13) in a Taylor series about y• = 0 to obtain 

the horizontal velocity at the fiame 

A • A2 • 

• - ~+ ,..u 'Po+ 
11+ - • .. e2 + .... 

By By 
Brpt+ + --.-+ .... 
By 

- • K._ .K._ 
-v8 + + • +u+ • at ax (6.14) 

J 
thus 
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(6.15) 

Similarly 

(6.16) 

The dynamic matching condition is obtained by considering conservation of hor­

izontal momentum for the control volume shown in figure (6.2). 

M [. ~] • • • .a • .a • • K_ • 8 P- -p+ + (poov- -p.v+) - m w • + w • 
8t 8x 

(6.17) 

Using the Bernoulli equation, the pressure difference across the tlame is found 

to be 

• • • 8rp+ 8rp- p... .a .a .a .a [ . ~ . 
P- -p+ =p. at• - at• + ~(u+ +v+ )-(u_ +v~ >) (6.18) 

Subtracting equation (6.17} from equation (6.18) gives 

l 
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Substituting from equation (6.14) for v;, using 

• • • B 'Po+ 2 • I 
U.+ = U.o+ + (" Bx"By" 11·=0 + .... 

and linearising, noting that the zeroeth order is satisfied identically, i.e. the 

steady potentials, 'Po+ and 'PD-• satisfy the dynamic matching condition, gives 

This can be somewhat simplified by use of the steady mass conservation equa­

tion 

.( . . ) ~ .. ) p. v,_ - v,+ = .• ,m w 
d.x 

and by noting that, from conservation of vertical momentum, the buoyancy, fr, 

of the plume can be related to the momentum fiux by 
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a-- f-( • ···> ·~ • d f_- • .e~ • d.J. ,.. = - P· - P g u.y = d.x • _P u u.y = d.x • 

The dynamic matching condition at y • = 0 is thus given by 

[
8 • ~- • • rfJ1+ 1.1rfJ1- • • • • ~ 

p. --.-- • + p.(v8 _ -v.+)u0+ • + 
at 8t ax 

Pressure difierence across the flame due to non-steady perturbation 

Inertial reaction due to Inertial reaction due to Component of buoyancy 

acceleration mass · momentum flux force perpendicular 

to flame sheet 

The symmetry of the problem allows the simplification of determining only 

one potential. rp•(x•,y•,t•) = rtJt+(x•,y•,t•) = -rpt_(x•,-y•,t• ). Using this and 

the following length and time scales for non-dimensionalisation 

l 
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1 
3 

(6.21) 

the dynamic matching condition reduces to 

-1 - -1 c -5 Br,, -a>- -ar/J s --
.:=.L-- Cs z 2 ~- C4- z 4 .:;.z:__ -:r: 2 ~ = at B:r: oz 4 

at y = 0 (6.22) 

where all variables are non-dimensional. The kinematic conditon, equation 

(6.15), becomes 

at y = 0 (6.23) 

The constants in these equations are given in equation (6.8) and (6.24). 

(6.24) 

The problem has thus been reduced to determining a potential 9'(.x ,y ,t) and 

flame position (tz ,t) such that 

v 29' = 0 % > 0, y > 0 
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an z = 0 

on z = 0 

a.s ..../z2 + y2 ... oo 

(6.25) 

and satisfying matching conditions at y = O given by equations (6.22) and (6.23) 

and initial conditions f and :r specified at t = 0. 

6.2. .Asymptotic Solution 

Consider the non-dimensional variable 

• % • 
% = -=4% 

l 

If 11: = 2x10-c5m2/s, the kinematic viscosity of air at 350° K, and [ ~- - 1 J = 5, 

then z > 1 if z • > 0.05mm. It would therefore seem reasonable to examine the 

asymptotic behaviour of the solution for large z . 

Consider a harmonic function rp with :i specified on y = 0. Then 

8rp I - 1 J_., Y {jrp I 

81J'z,y) - rr - (.:r: -t)2 + y2 ay't,O)dt 

thus 
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8rp , _ 1 J• (z - () 8rp , 
'Bz'z,y) - ;f - (.:z: -t)2 + y2 BY't,O)dt 

If rp is symmetric about .:z: = 0 then 

EfL- ~ v r· z fJrp 't- O)dt-
8.:z: - 1T p. Jo .:z:2 _ t2 ay''>• '> on y = 0 

where the integral is to be evaluated as a principal value. Thus from equation 

(6.23), an expression can be obtained for :: in terms of f and :f. Substituting 

in equation (6.22) and differentiating with respect to .:z: yields the following 

integro-differential equation for f. 

(6.26) 

Because all coefficients are independent of time, solutions may be restricted to 

the form 

~.:z: ,t) = ("(z )e>-t (6.27) 

Now consider the integral on the left-hand side of equation (6.26) 
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Since equation (6.26) is linear, ("can be taken to be a complex valued function of 

x, which can be extended analytically into the z = x + iy plane by substituting 

z = x. The integral I can then be determined by integration around a contour 

in the first quadrant of the z = t + ix plane, as shown in figure (6.3). Then 

ic 2 x £2 fn (ijd.z = p.v ho.. 2 x 2 fn a>c1. t -
x - x -t 

- w ho 2 x 2 fn (ix)id.x +ho 2 :z: 2 2t-o R e""'fn (Re""')d.1' 
x +x z -Re 

- tri (Residue a.t z = :z: ) = 0 

assuming that the only pole occurs at z = x. The first integral on the right-hand 

side is the desired integral I, the second term is of order L assuming 
x .. 

J;, fn(ix)d.x exists, and the third integral vanishes as R ... oo provided 

~ !/n(z) I ... 0 as lz I ... 00 • Thus the integral equation (6.26) can be approxi­

mated by 
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This equation has an irregular singular point at z = oo, therefore a solution of 

the form, see Bender and Orszag, reference (6.1), 1978, chapter 3, 

{ = eS(;,) (6.29) 

is assumed. Substituting in equation (6.28) gives 

-s 15 l -s -1 3- 3 1 - -
- -z 2 S + -x 2 = =--csx 2 S' + Csx 2 (S'' + s2) 

4 8 2 

-1 s -s 
- 3C1x 4'AS' + 4C1z 4 'A(S'' + S'2) + ~ Ce.z TS 

. 1 5 

+ 5x4c2(S'' + S 2) + 2z4c2((s)8 + 3S'S'' + S'") 

Assuming (S')8 >> S'", (S')8 >> S''S', (S')2 >> S'' and keeping only the highest 

powers in x gives 
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(6.30) 

This equation could be solved directly for S' and integrated, however it is easier 

to try a solution of the form 

7 6 5 

S = koZ 12 +.k1z 12 + k2z 'i2 + .... 

Substituting in equation (6.30) then gives 
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etc 

Solving these equations gives 

7 ·[~~ J:2k 0 = 1. 2CeJ ' 

(6.31) 

etc 

To tl..nd the leading behaviour near the singular point at infinity, let 

S(x) = k(z) + C(x) 

~ ?-n .1._ 

where k (x) = E z 12 ""'k 0z 12 a.s z -+ DO and C(z) << k (z) a.s z -+ DO. Then 
n =O 

to leading order 

3k' 2 C' + 3k"k' = O 
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thus 

The asymptotic behaviour of the solution is therefore given by 

as :z: -+ co (6.32) 

where 

7-n - --k (:z:) .... E kn:z: i2 
n =O 

(6.33) 

with the A:n's given in equation (6.31). In order to satisfy the boundary condi­

tion :£ e" = 0 at :z: = 0 for all time, either X must be real or both the real and 

imaginary parts of ~(" at :z: = 0 must vanish. The latter requirement imposes 
v:Z: . 

too many conditions on (" and will not be able to be satisfied in general. The con­

dition that X is real leaves two solutions that satisfy the conditions for integra­

tion around the contour in the first quadrant, these being the solutions with 

Re (k (:z:)) < 0 as :z: -+ 0, and are given by 

, (2cpJ{g_it 7- J - 451Cal 2Ce) z + .... 
}I.> 0 (6.34) 

and 
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L ~ .&m.. .L .::::L ..L "fil~3 z 12 8 3 -\~gn(>.)r~ 6% 12 
I2 7(2C2 j 9 2C2 j 

:z: e 

~r~ .L .::::L J 7 3 2C1 >.,2 3 6 -~ C2 {2c2J z + .... 
(6.35) 

All these solutions decay exponentially with :z: as x -> ""' , and thus become small 

compared to the neglected portion of the integral, which decreases like .!._ as . x 

x -> ""'. If>.. is small however, the exponential decay will be sufficiently slow that 

2 7 

a region with :r: large, but >..vx or >.. 3 x 12 of order one will exist. In this region, 

the asymptotic forms given in equations (6.34) and (6.35) will be valid. 

The preceding analysis indicates that instability results primarily due to the 

2 • • .2 

action of centrifugal forces, Fe = J• ~= m ~ , where r is the radius of cur-
ax• T 

vature of the flame, balanced by the force required to overcome the inertia of 

the external fluid, p,: ~;: . ·Shorter wavelengths are therefore amplified at faster 

rates than long wavelengths, since they have smaller radii of curvature, thus 

increasing the centrifugal forces. The analysis, however, becomes invalid for 

small wavelengths so non-linear effects must presumably limit the temporal 

growth rate. 

Direct comparison of these results, which deal with a primarily temporal in-

stability, with the results of the local analysis of Chapter 4, which assumes spa­

tial amplification, is somewhat difficult, however there are some points of simi­

larity. Rewriting the expressions for the asymptotic forms using the local non-

dimensionalisation of Chapter 4 shows that the disturbance approaches an 

inviscid asymptote with the same Reynolds number dependence, apart from the 

5 

algebraic terms x 12 multiplying the exponential term, as the inviscid asymptote 



-144-

for the local stability analysis, shown in figure (4.13). Taking just the first term 

in the exponent of equation (6.34) gives 

a.. 
(Ji~ 0.4a.J 

2 

(6.36) 

To agree well with this, a-R and a.1 would have to grow like p3 in figure (4.13), 

which is not true except for perhaps a small region near (J = 0. However, using 

Gaster's relation, reference (6.2), 1963, given in equation (4.1), and equation 

(4.2) for the group velocity, to obtain an estimate of {3;, from figure (4.13) gives 

(6.36) 

which when compared to equation (6.36) gives remarkably good agreement in 

predicting amplification rates. 
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Chapter 7. 

CONCLUDING REMARKS 

It has been the aim of this thesis to present a detailed description of the 

structure and stability of the convecting fluid flow generated by a diffusion 

flame. The geometry selected for the steady problem is the most fundamental 

example of a buoyant diffusion flame available, yet has practical significance for 

many real situations from candle flames to fires in buildings. Use of the 

Howarth transformation to allow large density variations to be accommodated is 

an important part of both this steady analysis and the stability analysis that fol­

lows. Modelling of real fuels is accomplished by selecting appropriate 

stoichiometric ratios and density ratios of fuel to oxidizer, and the results show 

extreme asymmetries in the flow fields for common reactants, with much of the 

entrained air being 13wept through the flame sheet in the form of hot combus-

tion products. This results in a convecting plume on the fuel side of the flame 
• 

much larger than on the oxidizer side, which retards the diffusion of fuel to the 

flame and preheats it ove~ a considerable region before reaction with the oxi­

dizer takes place. This might lead to decomposition of the fuel outside of the 

thin region where the re~ction is assumed to occur. 

The question of the stability of the laminar solution is of importance in deter­

mining when the steady laminar description of the flow is applicable. Local 

linear stability analysis including all the variable density terms produced some 

interesting and unusual results. First, it was found that using the Boussinesq 

approximation to neglect density variations except in the body force term of the 

vertical momentum equation was not applicable to the flame. Removing this 

assumption made an order of magnitude difference in the position of the neu­

tral stability curve, dramatically increasing the calculated stability of the flow. 

Reexamining the stability of the plane buoyant plume without the Boussinesq 

approximation also produced a marked change in the results, agreement with 
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experiment being considerably improved. Second, although the flame fl.ow bears 

a superficial similarity to the buoyant plume above a line source, the several 

differences cause a large difference in the predicted behaviour of the two flows 

when perturbed. Third, a new unstable region consisting of waves with negative 

phase velocity but positive group velocity was found for both the buoyant flame 

and the buoyant plume. These waves have very long wavelengths, making the 

parallel fl.ow assumption in the stability analysis questionable near the start of 

the flame, i.e at low Reynolds number, but persist to infinite Reynolds number 

where the assumption is valid. Full non-parallel calculations will probably 

change the shape of this region, however these waves are still expected to play 

an important role in the instability of buoyant flows. Finally, the asymmetry of 

the flow for real fuels did not markedly affect the stability. Empirically inter­

preting the stability diagrams to obtain an expected transition point gives 

Refl 250 or typically around 7cm above the start of the flame. This is consider­

ably more stable than the buoyant plume with ReT ~ 140. 

Since the local analysis can not take account of the changing fluid properties 

in the flow, such as momentum and mass fluxes, an analytic technique treating 

the flame and associated plume as having negligible thickness compared to dis­

turbances of long wavelength was undertaken. This showed that the primary 

cause of instability was centrifugal forces generated by the momentum flux fol­

lowing a curved path. Limited comparison with the local analysis gave reason­

able agreement for disturbance amplifi~ation rates at large Reynolds numbers. 


