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ABSTRACT

The present work is an experimental and theoretical investigation of the pos­

sible forces of fluid dynamic origin that can act on a turbomachine rotor partic­

ularly when it is situated off its normal center position. An experimental facility, 

the Rotor Force Test Facility, has been designed and constructed in order to 

measure these kinds of forces acting on a centrifugal pump impeller when the 

latter is made to whirl in a slightly eccentric circular orbit. The rotor speed, 

eccentric orbital radii and whirl speed could be varied independently. The scope 

of the present experimental work consists of measuring quasi-steady forces on 

the impeller as it whirls slowly about the axis of the pump rotation. These forces 

are due to interaction between the impeller and volute; they are decomposed 

into force components relative to the geometric center of the volute and to 

those proportional to displacement from this center. These latter are inter­

preted as stiffness matrices. These matrices were measured on two widely 

differing volute types and both were found to have the property of being skew- 

symmetric. It can be shown that a stiffness matrix of this type can lead to 

dynamic instability of the impeller shaft system in certain circumstances. This 

new experimental finding may explain some operational problems of 'high 

speed" hydraulic machinery.

In the theoretical part of this thesis, a somewhat more physical model of a 

rotor pump is proposed other than has been used heretofore in most works 

namely an actuator disk having infinitely many blades. As a simplification it is 

assumed that the flow held is irrotational. Forces and stiffness matrices are cal­

culated on this basis but the stiffness matrix so found does not reveal the skew- 

symmetric property of the experiments.
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Chapter 1

INTRODUCTION

1.1. Historical Background

The word turbomachine is now used generally to describe rotating machines 

whose function is to change the energy level of a flowing medium primarily by 

momentum exchange. A pump or compressor increases the total head or pres­

sure of the fluid whereas a turbine decreases it and so extracts energy from the 

flow. The history of such machines goes back as far as the Archimedes Spiral 

used to pump water from one level to another. But it was not until a century or 

so ago that rapid progress was made in the state of the art coupled with the 

development of the electric motor, electric generator and steam turbine. In 

these intervening years the design of turbomachinery and the various mechani­

cal elements surrounding the rotor such as the casing, interstage seals, shaft 

support bearings, motors, etc has become quite intricate. Yet many aspects of 

design and manufacturing remain the exclusive property of the various private 

companies concerned with specific application requirements usually being 

satisfied from "catalog" data. Ordinarily this is sufficient for commercial service.

However as the need for more efficient, compact, reliable and economic tur­

bomachines has developed, economic competition has become more dependent 

on fine details. Sometimes only a one or two percent difference in efficiency is 

sufficient to result in a lost order (this is more true for irrigation pumps and 

hydraulic turbines than for boiler feed pumps where reliability is the primary 

factor). Recently a significant engineering step was taken in the creation of the 

world's highest power-to-weight ratio turbomachine (see Ek [36]), namely the 

High Pressure Fuel Turbopump of the Space Shuttle. This machine absorbs 
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77,000 hp yet weighs only 760 pounds! A variety of problems emerged in the 

development of this device such as destructive rotor whirl (see next section). 

Although most of these problems were not new to the engineering community, 

the risk of an aborted mission was far too great to risk ad-hoc fixes. More 

research was therefore needed in order to understand the behaviour of the vari­

ous components of this system in particular and of other turbomachines in gen­

eral despite all of the current industrial understanding of the state of the art 

and the excellent reference books available on the general subject of tur­

bomachine design (e.g. Wislicenus [66], Stepanofï [63]).

In the following sections we describe one of the major problems encountered 

during turbomachine operation, namely rotor whirl. We then discuss its prob­

able causes with particular emphasis on the effect of the Sow through the rotor 

and its immediate surroundings (such as the diffuser, volutes, etc.). We Anally 

present the goals of the present research which deal with the measurements 

and estimates of quasi-steady hydrodynamic forces acting on the whirling rotor 

of a pump.

1.2. General Description of Turbomachine Rotor Whirl

When a new engineering design is introduced, e.g., the Space Shuttle Main 

Engine, or even when an established design is operated under unusual condi­

tions such as part-loading or overspeed, rotor structural problems manifest 

themselves mainly through rotor shaft vibrations and may cause heavy damage. 

One important aspect of these vibrations is rotor whirl. Rotor whirl occurs when 

the rotor of a machine operates off-center or follows a path or orbit; a dynami­

cally unstable regime is then said to occur if this orbit is increasing in size with 

time. One can resolve the forces acting on the whirling turbomachine rotor into 

forces normal and tangential to the whirl path for every instant of time (see for 

example Thompson [64]). The tangential force is the driving or damping force; a 
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positive value (in the direction of orbital motion) excites whirl while a negative 

one is stabilizing and damps the motion (see Giberson [37]). The simplest case 

of rotor whirl is the synchronous one in which the rotor center whirls at the 

speed of shaft rotation. The driving force in synchronous whirl is usually mass 

unbalance (see Vance et al [65]) and the amplitude of oscillations can be con­

trolled by balancing and operation away from the critical speeds (see next sec­

tion for definitions). However in many applications of rotating equipment such 

as the Space Shuttle's engines, steam turbines, multistage compressors etc, sub- 

synchronous whirl has been observed; here the orbital frequency of vibration is 

less than shaft speed. Rotor whirl is not always damaging: every rotor-shaft sys­

tem has a built-in degree of flexibility and there is no cause for concern if rotor 

oscillations do not exceed a certain tolerance level. When this margin is 

exceeded, however, rotor whirl may become dangerous since rubbing can occur 

if the minimum clearance is exceeded leading to seal failures, reduction of 

efficiency, large bearing forces and mechanical destruction. This can even cause 

explosions in the case of liquid oxygen pumps.

Examples of Rotor Whirl The occurrence of problems related to the Space 

Shuttle Main Engine was first made available to the public in a series of newspa­

per articles in early 1976. According to a Los Angeles Times article (by G. Alex­

ander, L.A. Times, Part 1, Page 4, April 1, 1978), a special panel of engineers was 

convened in april 1978 to investigate problems plaguing the Space Shuttle liquid 

propelled rocket engines; this panel recommended that the space agency (NASA) 

"devote more time and effort to ground tests of the engines even if this delayed 

the flight tests". In tests at the space agency's Mississipi facility, the engines 

experienced "cracks, fractures, leaks and looseness". Most of these problems 

occurred in the rotating machinery, i.e., the four high speed, turbine-driven 

pumps that deliver the liquid hydrogen and liquid oxygen propellants to the 

combustion chamber under high pressure. Examples of the difficulties
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encountered then were 'high, vibration-induced stresses in the High Pressure 

Fuel Turbopump (HPFTP) turbine blades, major leakages through shaft seals in 

the High Pressure Oxygen Turbopump (HPOTP), inability of the fuel (hydrogen) 

pump to operate at the inlet propellant pressures for which it was designed and 

low efficiencies".

The article did not mention that a severe rotor whirl was encountered in the 

HPFTP. Typical values during early testing of the HPFTP showed a forward pre­

cession of the shaft at less than shaft speed at a frequency typically 0.5 to 0.56 

of the shaft speed with bearing loads rapidly increasing in a nonlinear manner 

until a destructive limit cycle was attained (see Ek [36]). The roots of these 

problems were never completely understood.

Rotor whirl problems are not just limited to the Space Shuttle. Many conven­

tional machines from re-injection compressors in the North Sea oilfields to 

boiler feed-pumps are also affected. The Electric Power Research Institute (EPRI) 

has identified power trip-outs due to turbine rotor whirl as a significant contri­

butor to power plant downtime. To dramatize this effect we will quote two 

further examples from held experiences at the Phillips Petroleum Company (see 

Doyle [34]). The first of these occurred at the Ekoflsk oilfield in the North Sea. In 

this compressor facility, gas is received at 66 bars and is boosted through two 

parallel compressor trains to 625 bars. Each train consists of two 15,000 kW 

units in series. Each casing contains B stages with back-to-back impeller con­

struction. A whirling phenomenon developed in which the rotors experienced 

large amplitude vibrations. Early testing consisted of adjusting seal clearances, 

adding seal grooves, adjusting lube oil temperatures and testing numerous bear­

ing configurations to no avail. After a great loss in operating time, the problem 

was finally solved by the installation of squeeze-film dampers on the bearings, 

coupled with an increase in the shaft diameter and a decrease in the bearing 
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span. The second example is that of the Hewett Gas Plant in England. This plant 

consists of six identical 3,000 kW centrifugal compressor units pumping gas 

from wells located 17 miles offshore. All compressors were located on shore. 

These consisted of single stage back-to-back parallel flow impellers, operating at 

13,750 rpm with five-lobe pressure-pad journal bearings. Some of the units 

started to experience whirl at a frequency about two thirds of the running speed 

with amplitudes large enough to cause damage. Yet other identical units did not 

develop any problems. Many changes including rebalancing of the units were 

made, all yielding temporary relief. Lost time in maintainance was great. Even 

though all units are still in operation today, their reliability is doubtful. Further­

more it is not known why among six identical units under identical conditions of 

operation some experience rotor whirl while others do not.

These kinds of problems were addressed at the first workshop on Rotor­

dynamic Instability Problems in High-Performance Turbomachinery [25]; 

Organisers Childs, Hendrichs and Vance state in their preface that "Although 

techniques have been developed to cope with units that prove to be unstable, 

the degree of understanding is completely inadequate to design stable high- 

performance turbomachinery."

1.3. Possible Causes of Rotor Whirl

It is well known that the operation of a turbomachine at a speed close to or 

equal to the critical frequencies of its rotating parts causes severe oscillations 

or rotor whirl. Indeed the concept of critical speed was originally called "whirl 

speed", and the textbooks by Den Hartog [32] and Bevan [9] remain basic refer­

ences on the subject. For illustration we quote a simple example from Bevan; 

here a single rotor of mass m is attached in the middle of a vertical shaft of 

négligeable mass and lateral stiffness k. The whole assembly rotates around the 

vertical axis. By equating the radial outward centrifugal force (due to an initial 
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horizontal deflection) to the inward elastic pull exerted by the shaft, one can 

show the rotor deflection will grow infinitely large as the shaft speed approaches 

Vk∕⅛ι. This particular speed is called the "first critical speed". Bevan goes on to 

show that the critical speeds are those of the free transverse vibrations of the 

same shaft.

The first critical speed appeared to be an unsurmountable barrier for the 

pioneer turbomachine designers as it was then believed to be the highest limit of 

rotor operation. However in 1695, Gustave De Laval became the first person to 

demonstrate experimentally that a steam turbine was capable of sustained 

operation above the lowest lateral flexural resonance speed, or first critical. 

Designers were then free to increase operating speeds and utilize all the poten­

tial benefits of higher speeds. However as the pressure and delivery flow ratings 

of turbomachines were then Increased, serious nonsynchronous whirling prob­

lems have appeared in some machines which were designed to operate above the 

first shaft flexural critical speed. We find it convenient to discuss these new 

causes of whirl by classifying them as mechanically-induced and fluid 

dynamically-induced.

Mechanically-Induced Sources of Whirl We will describe three major causes 

of mechanically-induced rotor whirl. First rotating shafts with non-isotropic 

stiffness and inertia caused, for example, by a keyway anchoring the rotor onto 

the shaft, can excite rotor whirl: as the shaft rotates the amount of deflection 

changes creating a parametric exciting effect. We refer the reader to the work of 

Crandall and Brosens [30] for an in-depth stability analysis on the subject. 

Secondly internal damping caused by multipiece shafts as well as pressed fits 

and collars on the shaft create a rotating internal hysteresis that promotes 

rotor whirl provided the rotor speed is above the shaft critical (see Newkirk [54] 

and Kimball [47]). The whirl speed is then equal to the first critical of the 
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system. Finally rotor whirl can occur when a rub is initiated between the sta­

tionary and rotating parts of a turbomachine. Many analyses of this 

phenomenon are reported, e.g. [8,23,26,32,35]. These findings are summarized in 

a recent article by Goggin [38] in which he presented various field experiences 

involving rub-induced instabilities. Control of rotor whirl was then achieved 

through alignment or avoided through minor speed increases. In his experi­

ments, half-rotor speed forward whirl has been observed most frequently.

Fluid Dynamic Sources of Whirl In general rotor whirl of fluid dynamic ori­

gins can be traced back to journal bearings, various seals (e.g. neck ring or 

interstage seals) and also to the presence of the rotor in the flow. Journal bear­

ing and seal forces are somewhat similar. As an example of journal bearing 

effects we mention "oil whip" (see Hori [42]) which is excited by fluid him bearing 

forces when the shaft speed reaches at least twice the first critical speed. Adams 

[2] built a test rig for for the testing of journal bearing forces due to shaft whirl; 

however he has no published experimental results so far. An excellent survey of 

past theoretical and experimental works on seal forces and their rotordynamic 

coefficients (i.e stiffness, damping and inertia effects) was presented by Childs et 

al [24,27]. These authors also describe an experiment that has the capabilities 

of measuring these dynamic coefficients by whirling various seal configurations; 

however their experiments are still incomplete at the time of writing.

Recently it has been increasingly recognized that hydrodynamic effects due to 

the presence of the rotor itself, in addition to the seals and bearings, can cause 

serious rotor whirl. Such problems have been experienced not only in steam tur­

bines (Alford [5] and Pollman et al [58]) but also in large compressors (Thomp­

son [64] and Doyle [34]) and in high speed pumps (Ek [36]). Here the flow 

through the turbomachine rotor and its surroundings induces a fluid dynamic 

force on the rotor shaft that may be a cause for rotor whirl. Unfortunately
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there have been few attempts to measure these fluid dynamic forces as well as 

to develop theoretical models for them. The conventional area of fluid mechanic 

research in turbomachines has concentrated on the internal flows of non­

whirling stages. This literature is truly vast in the extent and we cite only the 

references [1,11,12] which are experimental in nature, the references [28,46,49] 

which are theoretical in nature and the recent explosion in the number of 

numerical treatments of internal fluid Hows (Japikse [45]). This thesis is con­

cerned with the measurement and estimates of the radial or rotordynamic 

forces caused by the flow trough an impeller. In the next section we discuss pre­

vious works and introduce rotordynamic coefficients due to the presence of the 

rotor in the flow.

1.4. Steady and Unsteady Forces Due to the Presence of the Rotor

The Steady-State Radial Force Many impellers discharge flow into casing 

channels of gradually increasing area called "volutes". These volutes are 

designed to '⅛atch" the impeller for certain modes of operation (rotational 

speeds and through-flow rates) called "design conditions". Generally at the 

design condition the unit has its best efficiency point and the volute is so 

matched to the impeller to minimize flow disturbances at the entrance or 

tongue of the volute. Any departure of the impeller from these operating modes 

are referred to as "off-design conditions". Among the problems with which a 

pump designer must cope is the steady unbalanced radial load on the impeller 

caused by the nonuniformity of the static pressures and velocities within the 

volute, particularly at off-design conditions. Lawaczek [50] in 1913 modified a 

conventional volute to reduce high bearing temperatures caused by a high 

radial load. He installed a vane within the volute and corrected the problem. 

Later "double volutes" were used to balance these steady impeller forces for all 

flow rates. This result brings out the importance of the volute. Previously the
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impeller was thought to be responsible for all the work on the flow and the 

volute's influence on this work was limited to the losses . Yet as the influential 

paper by Worster [67] shows, the two parts, impeller and volute, do not act 

independently of each other. Worster goes on to show that the volute and 

impeller are matched to each other at the best efficiency point of the combina­

tion. This best efficiency point is determined by the volute characteristic and 

thus the best efficiency point of the complete pump can be changed by changing 

the volute design. When the impeller and volute are "matched" together the pres­

sure distribution around the impeller at the inlet of the volute diffuser is uni­

form. When the flow rate is different from this design value, the pressure distri­

bution at the impeller discharge is not uniform. As a result of this nonunifor­

mity each portion of the impeller discharge tends to operate at a different flow 

rate and therefore produces a different total head rise. Fluid losses from 

mismatched volute and flow angles then ensue. Similar findings on somewhat 

simplified volutes were also reported by Bowerman and Acosta [12]. In his excel­

lent literature search on the influence of the volute and its various parameters 

on the How characteristics of a pump, Caignaert [16] emphasizes the impor­

tance of volute geometry: in particular the separate effects of volute cross­

sections, volute angles at the cutwater, volute inlet widths and volute base diam­

eters on through-flow velocities and pressure distributions are described in 

detail.

But the mismatch resulting from operation away from the volute design also 

has the effect of causing the previously mentioned radial force to be exerted on 

the impeller. Figure 1.1 shows a schematic of a pump within a volute casing. For 

a given impeller/volute geometry, How rate and rotational speed, an instantane­

ous force E. (not shown in Fig. 1.1) is exerted on the rotor system, this force is 

the sum of the steady radial force (shown as Fp in Fig. 1.1) and of a dynamic (or 

unsteady) force due flow disturbances at the rotor speed due to impeller blades
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passing the volute entrance.

Thus a first step in any rotordynamic analysis is the evaluation of the steady­

state radial force F⅛, The literature dealing with this force is quite extensive. 

Many of the earlier references are based on the semi-empirical relation quoted 

by Stepanofî [63]:

Fo = KΔPtdgWs (1.1)

where ΔP⅛ represents the total head rise across the pump while dg is the 

impeller outlet diameter and Wg is the impeller outlet width, including the 

shrouds. K is a parameter depending on the type of volute casing used and on 

flow rate. For single volute (i.e. increasing area single casing volute) pumps:

K = 0.36 [ 1 - (Q∕Q^ ] (1.2)

where Q is the Row rate and the design flow rate. Notice the maximum thrust 

occurs at shutoff (when Q = 0). For a concentric casing (i.e circular constant 

cross-sectional area volute ) pumps Stepanoff expresses the parameters as

K = 0.36 (Q/Q„) . (1.3)

Here the radial force is zero at zero capacity.

Others have also measured radial forces. Agostinelli et al [4] measured bear­

ing reactions of centrifugal pumps of different specific speeds with single 

volutes, double volutes and concentric casings; Iversen et al [44] measured 

radial forces as well as discharge pressure distributions for an impeller volute 

configuration. Biheller [10] measured radial forces on the impeller of a
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centrifugal pump with volute, semi-volute and fully concentric casing in order to 

derive an equation enabling prediction of expected forces based only on pump 

geometry, operating speed and capacity. Theoretical calculations of the radial 

force are discussed in Chapter 5.

The radial force is thus an important parameter to know so that shaft 

stiffness, radial wear-ring clearances and bearing loads can be properly deter­

mined. It seems somewhat surprising, however, that given this important com­

ponent there is little data to guide the designer. The work of Stepanoff and the 

prementioned references apply only to a very special line of pumps. But for 

design reasons one may wish to change the geometric proportions, employ 

diffuser vanes, offset scrolls, etc, all of which necessitate further laboratory test­

ing. For example even in the recent detailed reference book by Balje [7], or in 

the older but influential books by Wislicenus [66] and Kovats [46], no informa­

tion on this impeller-volute interaction is to be found.

Hydrodynamic Stiffness Matrix Colding-Jorgensen [29] first introduced the 

concept of hydrodynamic stiffness matrices in order to express steady rotor 

forces, other than the previously defined radial force, for the case of having the 

impeller not centered in the volute. He solved a theoretical case that is docu­

mented in Chapter 5. Here even at design flow we may still expect a hydraulic 

force to be exerted on the impeller caused by the distortion of the streamlines 

within the volute from the diplacement from the geometric center.

The displacement of the impeller from the geometric center of the volute can 

arise from many sources, e.g., manufacturing tolerances, weight, vibrational dis­

turbances, unbalanced forces or blade cut-water forces etc. In this situation the 

hydraulic forces caused by the relative displacement of the impeller and volute 

may be likened to act like a "spring". The explanation is simple: let us suppose 

that at the well-matched condition at the design point there is no volute force
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on the impeller at all; we should expect then that if the impeller is moved from 

the center a hydraulically-caused force proportional to this distance should 

develop. This is, plainly, a different type of force than the previously described 

radial force. For a fixed eccentric position (having radial coordinates ε and %) of 

the rotor with the axes shown in Fig 1.2, one can define a hydrodynamic stiffness 

matrix [K] as follows:

[K] (1.4)

where F„ is the new steady impeller force for the displaced position and Fp is the 

corresponding radial force of Fig 1.1 for the same mode of operation. It is cus­

tomary to represent [K] in the form

[K] =
Kχx Kχγ

(1.5)

In components the force Fχ can be written

F∞ = Kxx .X + Kχγ .Y

Fχr - Kγχ X + Kγγ -Y (1.6)

where X and Y represent the displacement of the impeller from its concentric 

position. To interpret this formula suppose that the rotor is displaced along the 

X-axis ( that is Y=0 ); then Fχχ = Kχχ.X. which is a purely outward force. But at 

the same time the other term of Eq. 1.6 yields a force in the Y-direction perpen­

dicular to the displacement, namely Kχγ.Y. Alternatively we can arrange X=0 so 
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then there is a radial force Kγγ.Y and a force perpendicular to the displacement 

Kγχ-X-

This kind of behaviour is typical of any elastic system such as a shaft weak­

ened on one side by a keyway, bending of an angle with unequal legs, etc. But for 

all elastic systems it is known Kχγ = Kγχ. When this concept is applied to the fluid 

dynamic force of a displaced rotor the terms Kχγ and Kγχ will be referred to as 

the 'hydrodynamic cross-coupling coefficients", and it will be shown that they 

are responsible for the force tangential to the whirl orbit (section 1.2). The 

matrix [K] will then be called the hydrodynamic stiffness matrix.

In a real pump the hydrodynamic stiffness matrix is part of a total stiffness 

matrix [KT] that also include the stiffness of the shaft, seals and bearings and it 

is similarly defined to be

[KT] =
KT⅛χ KTχγ

KTγχ KTγγ
(1-7)

In general, KTχχ and KTγγ are assumed to be caused mainly by the elastic 

stiffness of the impeller shaft and bearings and the hydro dynamic stiffness 

coefficients Kχχ etc. are neglected. The exceptions are few, in particular Alford 

[5] for axial flow machines and Thompson [64] for centrifugal compressors 

include an aerodynamic cross-coupling coefficient in the elastic matrix of Eq. 

1.7.

Documentation of hydrodynamic stiffness forces and matrices is exceedingly 

sparse as we have mentioned. For centrifugal pumps, for example, only very lim­

ited experimentation by Domm and Hergt [33] and Hergt and Krieger [39] can 

be found in the literature. Domm and Hergt measured forces on an impeller for
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two equal eccentricities (but different angular positions) for various flow rates. 

Their results were not interpreted using the concept of hydrodynamic stiffness 

matrices. Hergt and Krieger measured forces on an impeller for three different 

flow rates but for various eccentricities and angular positions. One of their con­

clusions is that the forces seemed to be proportionnai to the eccentricity for the 

three flow rates tested but there was still no attempt to deduce stiffness 

matrices. Besides Colding-Jorgensen [29], Chamieh [20], Allaire et al [6] and 

Sato and Allaire [60] calculated hydrodynamic stiffness matrices using very sim­

ple impeller flow models, their results along with the description of different 

impeller models are discussed in Chapter 5.

Hydrodynamic Damping and Inertia Matrices. Let us now suppose that we 

move the impeller center of Fig. 1.2 on a given trajectory. There will be two main 

frequencies of interest, the rotational speed of the shaft Ω and the whirl speed 

cj of the displaced center. Also assume that these two quantities are constant. 

The total force H acting on the impeller can be decomposed again into steady 

and unsteady components. The steady components are the radial force Fpand 

the "spring force" Fχ defined earlier. The unsteady components are now subhar­

monics and superharmonics of the rotor speed and of the whirl speed. The 

latter, along with spring force ⅜, can be written symbolically as a generalized 

force F⅛, where

F^_= [A(ω∕Ω)]
'X'

.Y,
(1.8)

[A(ω ∕Ω )] is a generalized hydro dynamic force matrix which depends implicitely 

on whirl speed. When ω = 0, the case of the non-whirling displaced impeller 

should be recovered. The quantity [A(ω ∕Ω )] can be determined if forces acting 

on a rotor for a given impeller volute configuration are measured for a given
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rotor speed 0 , whirl orbit and variable whirl speed ω. It may also be possible to 

decompose F∏ into a series of polynomial expansions in powers of ω or, alterna­

tively, time derivatives of the displacement vector

X
⅛L= [K]

⅛'

.Y.
[C] + higher harmonics (1.9)

Here (Χ,Ϋ) represent the rotor center velocity and (Χ,Ϋ) the rotor center 

acceleration. The terms [C] and [M] can then be called the hydrodynamic damp­

ing and inertia matrices respectively as they are in the corresponding represen­

tation of annular seal forces [24,27].

The hydrodynamic force expressed in Eq. 1.8 or 1.9 should then include all 

factors of importance to shaft stability or critical speed computations. The 

coefficient matrices [K], [C] and [M] of Eq. 1.9 should then be independent of 

frequency M but will depend upon the impeller-casing geometry, rotation speed 

and volumetric flow rate. Up to the present time we are aware of only one exper­

iment in which these coefficients (or more properly, [A] of Eq. 1.8) were meas­

ured, namely that of Ohashi and Shoji [57]. Their test impeller was installed in a 

large "vaneless" diffuser with the result that stiffness term [K] in Eq. 1.9 was very 

small and could not be detected. A summary of their results is that [C] provided 

a positive damping but that this result depended somewhat on flow coefficient.

1.5. Goals of the Present Research

We have seen how little is known of the fluid dynamic forces acting on a tur­

bomachine rotor due to the impeller through-flow. Whether these forces are sta­

bilizing or destabilizing for rotor dynamics is simply not known. We propose 

herein to measure these overall impeller forces and express them in terms of an 

appropriate force matrix and to determine the effect of whirl frequency on this 
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matrix.

Our main, intent at the time the present experiments were initiated was to be 

able to contribute to the understanding of the fluid dynamic mechanisms caus­

ing the severe whirl problem encountered in the High Pressure Fuel Turbopump 

(HPFTP) of the Space Shuttle (Ek [36]). Therefore we chose to model one of the 

two double suction impellers of the HPFTP having a dimensionless specific speed 

of about Ng = 0.6 (see nomenclature). Other turbomachines such as axial 

pumps, compressors or turbines may also be subject to the same effect but the 

present work is strictly concerned with radial flow machines and for this pur­

pose a special test facility was designed, constructed and installed in the 

Dynamic Pump Test Facility at the Institute [14,31]. This work is to be carried 

out in several stages; in the first stage, forces are to be measured on a centrifu­

gal pump impeller made to whirl at a low speed on a given circular orbit. The 

second stage of this work is to measure these impeller forces over a wide range 

of whirl speed/impeller speed ratios. The present thesis is concerned with only 

the first stage of work; the forces then are the essentially "quasi-static" ones 

previously described. The design of this apparatus, the "Rotor Force Test Facil­

ity", is described in the next three chapters together with the means of collect­

ing and analysing the obtained data and the calibration of the force-measuring 

devices. These experimental results are then expressed in the light of existing 

knowledge of radial forces and hydrodynamic stiffness matrices. To our 

knowledge these are the first such measurements to be made. Chapter 5 intro­

duces several theoretical impellers flow-models that have been used in the past 

to estimate volute-impeller forces and damping forces together with a new 

simplified actuator model. Finally these findings are summarized in Chapter 6 

where it is concluded that the structure of the experimentally-measured 

stiffness matrix could result in a shaft whirl if damping is insufficient.
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Fig. l.ι. Schematic of a pump concentrically located within a volute (see also text).

Fig. 1.2. Schematic of a pump eccentrically located within a volute (see also text).
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Chapter 2

EXPERIMENTAL FACILITY

2.1. Basic Design Requirements

The main objective of this research is a critical examination of the hydro­

dynamic forces which influence the dynamics of a centrifugal pump rotor sys­

tem. Basically it is intended to construct a facility which will have sufficient 

flexibility to measure the various sources of steady and unsteady fluid dynamic 

forces acting on the rotor of a pump. In addition it should be designed such that 

various geometries of impeller, volute, stator, blade-tip clearance, etc, might be 

used to examine different basic mechanisms responsible for these forces. As 

mentioned earlier in section 1.5, we are interested primarily in the investigation 

of centrifugal pumps that model one of the two double-suction impellers of the 

HPFTP and other generically similar machines. Fortunately, a testing facility 

that provided the basic hydraulic circuits already existed; this closed loop sys­

tem, the Dynamic Pump Test Facility (DPTF), is geared for continuous pump 

operation and will be described in section 2.3 along with the modifications that 

were made for it.

One of our design objectives was to investigate a large number of volute 

configurations. One design approach was to make them of lightweight fiberglass 

construction but this would necessitate mounting them in a pressure housing to 

reduce the pressure differences across the walls of these volutes. The other con­

cept was to use conventional pump construction which would have, it was 

believed, interfered with instrumentation. But this proved to be very expensive 

and the first approach was subsequently adopted. The pressure housing was 

then mounted on the existing base of the DPTF and permitted easy installation 
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of various impellers and volutes without disturbing the rest of the system. It will 

be described with great detail in section 2.6.3.

Another design objective was to use as much of the existing equipment of the 

DPTF without major modifications. In particular an existing 20 hp motor (see 

also section 2.6.1) with a maximum rotative speed of 1750 revolutions per 

minutes (rpm) was to be used to power the rotor pump. This maximum power 

rating along with the 0.6 specific speed line of pumps used (which is representa­

tive of many centrifugal pump applications) and their expected radius dictated 

having a maximum rotor shaft speed of 3500 rpm; this was achieved by altering 

the gearing ratios of an existing gear box (section 2.6.1) and coupling it between 

the main motor and the drive shaft. A constraint for the system is an eight inch 

distance between the centerline of the pipings of the DPTF and its existing base; 

for that reason the maximum radius for any pump volute system was chosen to 

be less than eight inches. The maximum pressure rise across the pump was then 

calculated to be around 70 psi (⅛.B2 x 10^ N∕m^). In addition the minimum pres­

sure necessary to eliminate cavitation was estimated to be around 25 psig. The 

pressure housing was then designed for a pressure of 150 psi (1.036 x 10^ N∕m^) 

in order to be able to accommodate in the future lower specific speed pumps 

having a higher total head rise. This design pressure was also consistent with the 

pump loop capabilities and allowed sufficient flexibility in setting the datum 

pressure of the system which was necessary, for example, in cavitation experi­

ments.

Two possible methods were then considered in order to measure impeller 

forces:

(i) Displace the impeller and measure forces directly on the rotor
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(ii) Displace the volute and measure forces on the volute housing.

Method (i) was adopted for it seemed easier for the quasi-steady forces and 

essential for rapidly whirling impellers. The next objective was to measure and 

distinguish the coefficient matrices [K], [C] and [M] of Eq. 1.9. For this purpose 

the impeller must be whirled on some controllable eccentric path. The simplest 

such path is a circular one. A mechanism that was able to impose circular orbits 

of whirl with variable eccentricity ranging from zero to 1/16 inch (1.59 mm) was 

first conceived. But this seemed too difficult to manufacture with adequate 

tolerance and for that reason a single eccentric setting was adopted in order to 

have a better controlled experiment. This preliminary setting was intended to be 

0.0500 inches but was determined to be 0.0495 inches (1.26 mm) after fabrica­

tion. It is thought that this value of eccentricity would yield significant "stiffness" 

forces with respect to the radial forces (section 1.4) based on the experimental 

findings of Domm and Hergt [33] and Hergt and Krieger [39].

Before we present the newly designed system we would emphasize care must 

be taken to measure fluid dynamic forces due to the presence of the rotor only 

and to the flow through the rotor. Seal and bearing forces are not wanted in this 

work and for this reason it was necessary to eliminate their effect on the force 

measuring system. Such a system was proposed which will be described in sec­

tion 2.2. Furthermore the entire rotor bearing support system operates well 

below its first critical frequency for all unsteady force measurements.

All the previous requirements are now realized in the schematic diagram 

shown in Fig. 2.1 in which forces on an impeller (1) are to be determined. This 

new facility will be called the "Rotor Force Test Facility" or RFTF. A volute or 

diffuser-volute system surrounds the impeller (not shown in the sketch). Flow 

and pressure parameters across the pump are provided through the piping cir­

cuits of the DPTF (also not shown). The rotor angular speed of rotation (Ω) is
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provided by a main motor drive (4) through shaft A1A2A3A⅛. Section Aι⅛ of this 

main shaft is orbited around line BtBg (stationary) on a circular path of known 

eccentricity e at a known angular whirl speed ω. A separate motor drives the 

eccentric mechanism responsible for the whirl (both are not shown in the 

sketch). The radial misalignment between sections AjAg and A3A4 of the main 

shaft is permitted by a flexible coupling (2). The dynamometers systems (DI 

and D2) used to measure impeller forces are described in detail in the subse­

quent sections.

2.2. Preliminary Design of the Force Measuring Assembly

The forces acting on the rotor may be measured in two ways:

(a) in a frame rotating with the rotor

(b) in a stationary frame.

Both methods have their advantages. In (a) no intermediate members inter­

fere with the direct sensing of the impeller forces and the rotating mass of the 

measuring system (shown as DI in Fig. 2.1) can be quite small thereby permit­

ting a relatively high frequency response. However, the signals must be led from 

a rotating member to external stationary equipment (a slip ring assembly (3) is 

indicated in Fig. 2.1 for this purpose). An external force measuring system or 

dynamometer does not have this problem but it must accept support loads of 

the drive system and eccentric mechanism as well as the forces exerted on the 

impeller or rotor. Such a dynamometer will clearly be more massive but it is in 

a way more straightforward than an internal rotating one. The external type was 

adopted by Hergt and Krieger [39], for example.

In the beginning phases of the design study for the force measuring system, 

both methods (a) and (b) were considered to be quite feasible, but the internal 

rotating dynamometer would require more development time than an external 
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one would. For that reason it was proposed to implement first an external 

dynamometer (method b) which would be intended primarily to measure forces 

at a low frequency compared to shaft speed and to make provision for the sub­

sequent installation of a rotating dynamometer. Thus two stages of work were 

contemplated, a first one with external dynamometer which would measure pri­

marily external volute forces and a second stage which would in principle be 

able to measure all forces and moments acting on the impeller up to blade rate 

frequencies. The present thesis as previously mentioned is concerned only with 

the first stage of work.

Whichever force measuring system is adopted it is clear that three forces and 

three moments are required to restrain and position the impeller in its whirling 

orbit. It would be extremely usefull to measure all of these but in the present 

context of impeller or rotor-volute interactions, it is plain that only one force is 

really essential for this purpose, namely the vector force F∏ of Eq. 1.6 acting on 

the impeller center. The thrust, torque and in-plane moments acting on the 

impeller (or impeller support mechanism) are not essential for this purpose. 

Thus at the outset it was decided to react out these components by floating the 

entire eccentric drive mechanism (symbolically represented in the dotted lines 

of Fig. 2.1) by a set of parallel flexures, one end of which restrains the eccentric 

mechanism (impeller and bearings, etc) and the other is grounded. The "floating" 

end of the flexure fixture must be restrained by a force and a moment. For 

practical reasons, three force cells are to be used for this purpose, one in the 

vertical direction and two in the horizontal direction displaced vertically from 

each other (as is common practice in the design of external force balances used 

in experimental fluid mechanics). Thus it can be seen that the axis of this exter­

nal dynamometer (D2 in Fig. 2.1) will of necessity be that about which the 

impeller whirls or line BιBg in Fig. 2.1 rather than of the volute center as is de­

picted in Fig. 1.2. This turns out, however, not to present any difficulty.
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In the beginning of this work we did not have a very clear idea of the magni­

tude to be expected of the impeller forces as a function of eccentricity. For this 

reason the external dynamometer was sized to accept the largest steady radial 

force to be estimated from Stepanofî's formula (Eq. 1.1). These design features 

of the external dynamometer and that of the entire RFTF will be described more 

completely following a brief description of the pump test facility and the test 

pump parameters to be chosen.

2.3. Dynamic Pump Test Facility

The Rotor Pump Test Facility (RFTF) as described in the previous sections has 

been incorporated as a part of another existing facility, the Dynamic Pump Test 

Facility (DPTF). The DPTF is shown in Fig. 2.2 before any changes were made. 

This facility was described in great detail by Ng [55] and Braisted [13]. It is basi­

cally a closed pump loop that provides steady and unsteady pressure and flow 

rate controls necessary for the impeller to be tested. It was originally designed 

to obtain transfer functions of several cavitating inducers (refs. [13,15,55,56]).

Figure 2.3 shows the DPTF after the addition of the RFTF. The DPTF was 

slightly modified due to the fact that our preliminary testings dealt only with 

steady state-flows and steady-state pressure drops across the pump. Conse­

quently only the turbine flowmeter (25) was used to determine the flow rate. The 

3.5 MW laser station (Fig. 2.2) previously used to measure velocity profiles was 

removed along with the downstream LDV measuring station. A straight piece of 

piping (29) replaced the downstream electro- magnetic flowmeter (17) which was 

needed for another experiment. The siren phase-lock drive (22,24) was disman­

tled along with the shaft that connected the upstream and downstream fluctua- 

tor valves (21). These siren valves were responsible for the' pressure and mass 

disturbances introduced during the study of dynamic transfer functions. Lastly 

the sintered bronze component of each fluctuator valve (Fig. 2.2 of Ng [55]) was
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removed in order to minimize friction in the loop.

A brief description of parts of the DPTF used during experimentation is in 

order. Distilled water was used in the system and metal corrosion was prevented 

by addition of a sodium chromate solution. The water was deaerated frequently 

in order to get rid of dissolved air that might resurface at low pressure points of 

the pump loop and interfere with experimentation. Direction of the flow is clock­

wise as seen in Fig. 2.3. Only the turbine flowmeter (25) was used to measure 

flow rate (ref. [55]). Its output was calibrated to give flow rates directly in gal­

lons per minutes (gpm), and was read by a voltmeter. The silent valve (27) was 

used to regulate these flow rates. It is a throttling system that allows preset How 

rates to be accurately maintained in the loop (see also [55]). A plastic bladder 

consisting of an inner tube and located inside the reservoir assembly (23) was 

used to fix the static datum pressure of the system. Pressures upstream and 

downstream of the rotor were measured independently using a set of two Stat­

ham pressure transducers and also a mercury manometer (see also Chapter 3 

for pressure calibrations). Finally water temperature was maintained at 70° F 

during each test run. A heat exchanger located inside the reservoir assembly 

and using chilled water provided the necessary cooling.

Fig. 2.4 provides recent photographs of the entire facility.

2.4. Test Model lmpeller(s)

As mentioned earlier we modelled one of the two double suction impellers of 

the HPFTP (section 1.2; also see Ek [36]). A six-inch diameter seven vane centri­

fugal pump was originally designed for the present experimental work using the 

methods described by Stepanofï [63], Lazarkiewicz and Troskolanski [51], and 

Sabersky, Acosta and Hauptmann [59]. However the Byron-Jackson Company of 

Commerce, California offered us a pump impeller of comparable characteristics. 

Impeller X is a five-bladed centrifugal pump with an outer diameter of 162 mm 
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(6.375 in.) and a discharge angle of 25 degrees. A machine drawing of the Anal 

product is shown in Fig. 2.5 and two photographs are included as Fig. 2.6. This 

impeller was cast in bronze and has a specific speed of 0.57. All data presented 

in this thesis were obtained using Impeller X.

2.5. Pump Volutes

A well-matched trapezoidal cross-section volute (Volute A) was designed to be 

used with Impeller X. Design procedures are described in Lazarkiewicz and 

Troskolanski [51]. Figures 2.7a,b are machine drawings showing the main dimen­

sions of Volute A and cross-sections at selected points around the circumference 

of the base circle. We will also refer to Fig. 2.10 for a photograph of Volute A. 

The largest area of this volute is Ay = 20.75 cm^ (3.22 in^). The cross-sectional 

area at any angle, &, starting from the cutwater, is Aγθ°∕360. In the machine 

drawing of Fig 2.7b, station 0 represents the cutwater while each subsequent 

station (I, II, etc) represents angular increments of 45 degrees thereof. This 

volute was fabricated in-house. A wooden pattern was fabricated, Aberglassed 

and Anally gel-coated to increase waterproofing and durability of the material. 

The ratio of the base circle diameter to impeller diameter is 1.13, a higher than 

average value yet useful as we intend to use "tight" volutes for comparison in 

future exp erim entation.

A deliberately mismatched circular volute was also fabricated out of Aber- 

glass for use with Impeller X. Volute B is the 'largest" such collector that could 

be Atted in our pump housing. It has a 5.42 cm (2.25 in.) constant circular 

cross-section and is shown in Fig. 2.8.
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2. S. Description of the Rotor Force Test Facilty

The existing base (38) of Fig. 2.3 upon which the DPTF was mounted was 

extended to accommodate the addition of the RFTF. The new components that 

make up the RFTF consist of a pump housing permitting a variety of different 

designs of pump volutes, an eccentric drive mechanism, and an external balance 

to measure steady-state impeller forces. These components and others are 

described in what follows.

2.6.1. ½⅛tπ- Λfofor, Gear 7¾xr and 5ha∕⅛ττg . It will be recalled that an exist­

ing 20 hp motor was available in the system. This open loop SCR variable speed 

d.c. motor (1 in Fig. 2.3) was manufactured by Sabina Electric and had a top 

speed of 1750 rpm. The rotation speed was increased by means of a gear box (3) 

with a step-up ratio of two (manufacturer: Vi-Star Gear Co, Inc.) to bring the 

maximum possible rotor shaft speed of 3500 rpm. A shafting system made out 

of several parts connected the pump impeller to the motor. The first section 

(symbolized by in Fig. 2.1) was made out of stainless steel and is an integral 

part of the eccentric drive mechanism (section 2.6.4). End Aγ was tapered to 

accept the rotating dynamometer of section 2.2 (or a dummy balance when the 

external dynamometer was used) upon which the impeller was mounted. In 

order to account for the misalignment between the rotor center and the volute 

center (section A2A3 in Fig. 2.1), a twelve inch long double flexing full-floating 

shaft Thomas coupling (7,8 in Fig. 2.3) was incorporated between the gear box 

and the eccentric drive. A section of shafting made out of steel was used to con­

nect this flexible coupling to the gear box (see also Fig. 2.3). Provision was made 

to extend this shaft through and beyond the gear box in order to allow for 

instrumentation, such as a slip ring assembly or an optical encoder, to be 

mounted on it. The gear box and the motor drive were then connected through a 

shaft fitted with a coupling (2 in Fig. 2.3) in case some misalignment was present 

between these two units. Finally the shafting system is hollow starting from the
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impeller all the way to the gear box assembly to permit wiring from the internal 

balance (section 2.2) to go through to the slip-ring assembly (4).

2.6.2. J¾mp ⅛eed Λfαynef⅛c P⅛c⅛-τzp . To measure the rotor shaft speed, a 

magnetic pick-up transducer was placed 1/B in. (3.18 mm) from a sixty-four 

tooth steel wheel (6) mounted on the pump shaft between the gear box and the 

flexible coupling. The rotor speed was read in rpm on an HP 5302A universal 

counter. To obtain that, the number of voltage pulses per second had to be mul­

tiplied by the factor 60/64 before feeding it into the frequency counter. This was 

done through a frequency divider/multiplier manufactured by Shapiro 

Scientific Instruments, Anaheim, California. The sixty-four tooth gear was used 

because its signal will be used in the future to set the whirl speed at some known 

fraction of the shaft speed using digital instrumentation.

2.6.3. Pump 7½rusτπy . As mentioned in section 2.1 a large "container" 

stressed for 150 psig was designed according to the ASME Boiler and Pressure 

Vessel Code of 1977 with a recommended safety factor of two. This casing is 

numbered (13) in Fig. 2.3, and will accommodate several impeller-volute 

configurations. Figure 2.9 is a machine drawing of the cross-section of the work­

ing part of the RFTF along with two elevation views. This pump housing (1) is 

shown here with an enclosed impeller (5) and volute (2) configuration. It is a hol­

low hooded cylindrical 356-T6 aluminum casting with a cover plate machined 

out of Al 2024. This assembly contains the inlet connection (3), the pump inlet 

bell (4) which guides the inlet flow through the rotor and a hange that 

discharges how from the volute. The housing is equipped with several drain and 

vent valves to insure proper hooding. Provision was also made in the housing 

casting to accept three optical displacement probes (7) and to permit internal 

static pressure measurement tubes to be led to outside instrumentation.
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Figure 2.10 is a photograph of the housing after removal of the cover plate. 

One can clearly see the volute and impeller and the housing exit flange.

2.6.4. 7⅞ceτiMc .Drive AfecAcwMsm. . An eccentric drive mechanism may be 

seen in the cross-section of assembly drawing Fig. 2.9. It consists of the previ­

ously mentioned stainless steel inner shaft (10), in addition to a set of inner 

bearings (13) enclosed between this shaft and an inner bearing carrier (9) and a 

set of outer bearings (12) enclosed between the inner bearing carrier and an 

outer bearing carrier (8). The centerlines of the two bearing pairs are eccentric 

to each other in the inner bearing carrier (1.26 mm) so that rotation of the 

sprocket (11) causes the orbiting motion. This sprocket is mounted on the inner 

bearing carrier and is driven via a chain or belt by an external motor whose 

rotative speed is a fraction of shaft speed. It is this inner bearing carrier that 

was originally conceived (section 2.1) to have a variable eccentricity. Although 

this was quite feasible, we did not opt for it in the present work. The outer bear­

ing carrier may be mounted rigidly to the pump housing or it may be mounted 

on a flexure face (14) connected to the pump housing (through the force­

measuring parts of the external balance system of section 2.2). Finally all ele­

ments were machined out of stainless steel.

The eccentric drive and its internal bearing system are water sealed from the 

pump housing by means of two face seals (22,23). It should be noted failure of 

the inner face seals (22) will result in the flooding of the inner bearing carrier. 

Therefore these face seals are designed not to run eccentrically otherwise they 

do not seal.

Figure 2.11 shows a photograph of the eccentric drive dismounted from the 

RFTF. Impeller X can be seen mounted at one end of the shaft.
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2.7. External Dynamometer

The goals of the external dynamometer as mentioned in section 2.2 are to 

measure steady forces (acting on the rotor of a pump) at a low frequency com­

pared to shaft speed. We also mentioned using three force cells (one in the verti­

cal direction and two in the horizontal directions) in order to restrain the float­

ing end of the entire impeller-eccentric drive mechanism. Many possible 

methods of measuring the forces were investigated. In one method, the three 

force cells would act as elastic restraints while displacements of the floating 

impeller-ecentric drive mechanism would be measured either optically or 

mechanically and calibrated accordingly to give the corresponding forces. In 

another method, strain gauges would be mounted on these elastic restraints 

and direct readouts would yield the appropriate forces. In yet another method, 

the possibility of having positive position force feedback controls was briefly 

investigated; each force cell would then consist of a ferrous element surrounded 

by a magnetic coil that would react proportionally to the imposed force. The 

method of strain gauged force cells was Anally adopted since it was the most 

direct and cost-effective method to measure impeller forces; the force cell 

characteristics and their strain gauge elements will be described subsequently 

in this section under the heading of 'External Balance Measuring Elements".

The external balance thus described was intended to be used with relatively 

small whirl speeds in order to measure steady and quasi-steady forces (section 

2.2). For this purpose a small 1/75 hp d.c. motor manufactured by the Bodine 

Electric Company was selected and mounted on the flexure face (14 of Fig. 2.9) 

of the floating assembly so that all chain drive forces are internal to the system. 

This motor produces a steady whirl speed of 3 rpm in either the forward or 

backward direction and it is shown in the photographs of Fig. 2.12. The purpose 

of a small whirl speed instead of merely displacing the impeller center to a Axed 

eccentric position inside the volute was to allow continuous sampling of the
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forces at all locations of the shaft around the circular orbit. This will be dis­

cussed later under the section on 'Instrumentation".

Axial Flexures. The eccentric drive mechanism was supported by a flexure 

assembly to permit only translating motions perpendicular to the rotor shaft. 

Three identical stainless steel axial flexures (16 in Fig. 2.9), made to a carefully 

controlled gauge length, are mounted at equally spaced positions around the 

circumference of the flexure face (lé) in order to maintain the floating unit in 

this configuration. These axial flexures also react out the hydrostatic thrust on 

the eccentric drive, any moment acting on the impeller and the component of 

torque due to the angular misalignment of the drive shaft. Each flexure is 8.750 

inches (222.25 mm) long and is bolted axially to the pump housing (ground) at 

one end and to the heating flexure face at the other. They are hexagonal in 

cross-section (1.125 inches or 28.58 mm is the closest dimension) except for two 

circular cross-sections of 0.25 inches (6.35 mm) in diameter near each end as 

shown in Fig. 2.9. Calibration of the force balance assembly (Chapter 3) proved 

these circular areas to be small enough to minimize radial coupling yet strong 

enough to resist the tensile load caused by pressurizing the pump housing.

External Balance Measuring Elements. We now fully describe the strain- 

gauged force cells briefly mentioned at the onset of this section. These elements 

(15) are mounted radially between the floating flexure face (14) and ground as 

shown in the right elevation view of Fig 2.9. They are designed to allow radial 

forces of up to 150 lbf (667.2 N); this was calculated using Stepanofï's formula 

(Eq. 1.1) based on the worst possible operating conditions of shut-off (no flow 

through the pump) at the maximum shaft speed of 3500 rpm. The balance sys­

tem, since it is not infinitely rigid, was caged in order to prevent contact 

between the rotor and the volute. For this purpose, a circular gap of 16 mils 

(0.41 mm) was provided around the flexure face to permit floating without
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contact with ground. This gap is shown in the top photograph of Fig. 2.13 and it 

brought the maximum possible eccentric distance between rotor and volute 

centers to 1.87 mm (counting the imposed eccentricity of 1.26 mm).

All the previous requirements on maximum loading and displacements are 

now gathered together as we require the stiffness of the external balance to be 

around 10,000 lbf∕in (1.75 x 10^ N/meter) in both horizontal and vertical direc­

tions. The load cells were then designed as bending elements rather than tension 

members because of the low value of this stiffness. Among various designs of 

bending members, a proof-ring concept design was finally adopted. Aluminum 

2024 was selected as material instead of steel in order to limit the size of these 

force cells. Aluminum is also easier to machine and has good heat dissipation 

properties thus reducing the wait time for the strain gauges to come to thermal 

equilibrium. Two of the three strain-gauged flexures were then mounted hor­

izontally (Figs. 2.9 and 2.12) equally spaced from the shaft center for measure­

ment of the horizontal force and torque; the other was mounted vertically to 

measure vertical force. In order to prevent interactions due to motions in the 

axial and radial directions, each flexure axis was thinned down to 0.040 in. (1.02 

mm) at four places in two different perpendicular planes. Figure 2.14 is a 

machine drawing representing a typical load cell element. Four strain gauges 

were then mounted on each load cell (as shown in Fig. 2.14) and wired in a full 

bridge. These strain gauges were Denfoil all purpose high temperature platinum 

foil gauges type AP1832NE with a 350 ⅛ 1 ohms resistance and a gauge factor of 

4.66 ⅛ 1 % (catalog data). The high gauge factor was necessary to get good sen­

sitivities; in fact the smallest force reading that could be detected by each load 

cell was around 0.01 lbf (0.044 N). Semi-conductor strain gauges having much 

higher sensitivities were not considered for this project in order to minimize 

time and temperature related drifts. Finally gaging was done by the Able Cor­

poration of Anaheim, California.
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To summarize all of the above the external balance consisted of three strain- 

gauged aluminum flexures and was used with the entire impeller-eccentric drive 

mechanism floating on soft spring supports attached to the ceiling (Fig. 2.12). 

This spring, with a stiffness of 60 lbf/in (1.4 x 10^ N∕m), cancelled the dead­

weight of the floating assembly while a turnbuckle attached to it could be 

adjusted to maintain the uniform gap of 16 mils (0.41 mm); this insured the 

whirl orbit centerline would coincide with the volute centerline when the pump 

was not in operation.

Miscellaneous Items.

(i) A connection had to be provided between the hooded pump housing (sta­

tionary) and the eccentric drive mechanism (floating) in order to avoid water 

leaks out of the system. A set of soft neoprene bellows (17) was mounted as 

shown schematically in Fig. 2.9. Various problems arose at first such as loading 

hysteresis phenomena and nonrelaxation during calibration of the external bal­

ance. Many bellows configurations were tested until a satisfactory one was 

found. It involves using thin neoprene (3/32 in. or 2.36 mm) and gluing it on well 

rounded surfaces (fillets) .

ii) Static calibrations of the internal balance were accomplished by hanging 

weights via a system of gears and pulleys. Calibration results and the data 

aquisition system will be fully described in the next chapter.

iii) The whole rotor/shafting/eccentric drive unit is shown in its bolted posi­

tion in Fig. 2.9. By tightening the axial flexures (16) on to the floating flexure 

table (14) then removing various bolts (16) and spacers (19) the unit can be 

made to float. Adjusting the spring assembly turnbuckle will yield the desired 

centering efïect.
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iv) The first critical speed of the external balance was around 20 Hz. It was 

believed that the system could then measure dynamic signals of up to BO per­

cent of this Arst critical. This might be useful in the future for the probing of 

the dynamic forces other than the quasi-steady forces as described in section 

1.4.

2.8. Impeller Face Seals

In order to control leakage Aows from the volute into the inlet and the back 

of the pump-housing sections, two sets of radial face seals (20,21) were installed 

as shown in Fig. 2.9. These face seals were selected rather than the usual radial 

wear rings as these would interfere with the measurement of radial forces. Two 

sets of clearances were investigated with the radial face seals. One was con­

sidered a normal clearance in which both face seals are backed 0.14 mm (5.5 

mils) from Impeller X; inlet leakage was then estimated to be around two per­

cent of the design Row rate. The other clearance is a deliberately large max­

imum clearance of 0.79 mm (31 mils) where inlet leakage losses are about twelve 

percent of the design Aow rate. No experiments were made with the seals in con­

tact as we do not want rubbing between a stationary and a rotating part of the 

turbomachine to occur since this was described in section 1.3 to be a source for 

rotor whirl.

2.9. Instrumentation

The basic unit around which the data processing was accomplished is the 

Shapiro Digital Signal Processor (SDSP) manufactured by Shapiro ScientiAc 

Instruments, Anaheim, California. Originally this device was driven by a clean 

external reference signal and sampled eight channels of input data up to 128 

times per reference signal cycle. These samples are stored in bu5ers which 

number 12B times the number of channels. It proceeds to accumulate the sam­

pled values for up to 10,000 cycles; the result is Anally an average cycle of data
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for each channel represented by up to 128 digital values per channel. These 

values are then transmitted to a central computer at Caltech for digital process­

ing. The present SDSP can sample reference signals up to 40 Hz.

However the present investigation deals only with the measurement of 

steady-state radial and displacement-related forces. This dictated the use of the 

3 rpm motor of section 2.7 as the reference signal for the SDSP in order to aver­

age out higher frequency-related forces. This low frequency of 0.05 Hz was below 

the reference frequency range of the SDSP, thereby dictating some 

modifications. An optical encoder was mounted to the shaft of the 3 rpm motor 

as shown in the bottom photograph of Fig. 2.1'2. This Rotaswitch shaft encoder, 

with the capability of emiting a square wave output of 1024 times the whirl fre­

quency, was indexed to emit a sharp voltage outburst for every whirl cycle. This 

signal always corresponded to a given unchanged position of the rotor center on 

the orbit path and was used as a "start" position for sampling runs. The SDSP 

was then phase-locked to the optical encoder and a switch was added to provide 

encoder triggering as well as the previous external reference signals. A detailed 

explanation of the various data acquisition techniques can be found in Chapter 

3.

Three Vishay Strain Gauge Conditioning Amplifiers were purchased to power 

each strain gauge bridge of the external balance measuring elements. Each one 

of these instruments contained a variable d.c. power supply, a variable amplifier 

bank with gains from 1 to 11,000 and six low-pass active Butterworth filters. 

Finally we refer to [13] and [55] for any additional instrumentation dealing with 

the DPTF.
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3.10. Comparison with other Existing Test Rigs

The present set-up is hereby compared with two recent test rigs designed by 

Ohashi and Shoji et al [57] and by Adams et al [8] respectively. The goals of the 

former one are similar to ours and they are the measurement of fluid dynamic 

forces acting on a whirling centrifugal pump (see also section 1.4). However 

their apparatus is quite different from the present one. Their eccentric drive 

mechanism is somewhat simpler and permitted various eccentric setting but 

they measured the forces using load cells mounted on the bearing closest to the 

impeller (see Fig. 2 of [57]). Furthermore the omission of a volute in their test­

ings raises questions regarding the relevance of the results with respect to com­

plete turbomachines. We believe that the present test rig is carefully designed 

to accept complete pump impeller systems and for more fundamental measure­

ments. Furthermore the proximity of ball bearings to the load cells of Ohashi et 

al's experiment might prove to be a source of noise in the analysis of the load 

cell response; no such effects are expected to arise in the measuring systems of 

section 2.2.

The test rig of Adams et al's is quite similar to ours (Fig. 23 of [2]). It will be 

used, however, for an entirely different purpose which is the measurement of 

fluid annulus forces in journal bearings. Some operational problems due to 

tolerances have arisen since a variable eccentric mechanism was used. There is 

no published data on their experiments at the time of this writing.
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SEE POCKET INSERT AT END OF THESIS

Fig. 2.3. The Dynamic Pump Test Facility after the addition of the Rotor Force Test 
Facility.
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.'÷ '

Fig. 2.4. Photographs of the current test facility of Fig. 2.3.
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Fig. 2.6. Photographs of Impeller X.
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SEE POCKET INSERT AT END OF THESIS

Fig. 2.9. Machine drawing of the impe∏er, volute. interna! balance, eccentric drive, 
pump housing and external balance assembly of the Rotor Force Test Facil­
ity. Pump housing (1); volute (2); inlet connection (3); inlet bell (4): 
impeller (5); internal balance (6); proximity probes (7); eccentric drive 
mechanism: outer bearing carrier (8), inner bearing carrier (9), main shaft 
(10), orbiting motion sprocket (11) and bearings (12,13); external balance: 
flexure face (14), flexure elements (15) and axial flexures (16); bellows (17): 
bolts linking floating system and ground (18); spacers (19); impeller front 
face seals (20) and back face seals (21); eccentric drive inner face seals (22) 
and outer face seals (23).
Note: The system is shown in its caged position. Removal of bolts (18) and 
spacers (19) will make unit float (see also text).
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⅛⅛!⅝⅛

Fig. 2.iO. The pump housing, Volute A and Impeller X.

Fig. 2.11. The eccentric drive disassembled from the Rotor Force Test Facility. 
Impeller X can be seen mounted at the end of the drive shaft.
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Fig. 2.12. Photographs of the Rotor Force Test Facility.
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Fig. 2.13. Close-up of the External Balance load cell elements showing the gap between 
the floating flexure face and ground.
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Chapter 3

EXPERIMENTAL PROCEDURES AND DATA REDUCTION TECHNIQUES

3.1. Introduction

In this chapter we discuss the experimental procedures and data reduction 

techniques used during the course of the present studies. It will be recalled that 

the experimental objectives are the measurement of steady and quasi-steady 

fluid dynamic impeller forces for a given centrifugal pump impeller located 

inside a volute casing. These forces are interpreted as a radial force at the 

center of the volute and a force proportional to the displacement from this 

center. These second type of forces are presented in the form of hydro dynamic 

stiffness matrices as defined in section 1.4. In addition static pressure distribu­

tions around the volute periphery are numerically integrated to determine the 

static pressure component of these forces.

We have tested an impeller, denoted as Impeller X, along with two different 

volutes (sections 2.4 and 2.5). The first volute (A) was tested with two face seal 

clearances (see section 2.6) of 0.14mm and 0.79mm; the second volute (B) was 

tested with a 0.79mm face seal clearance only. As described in the previous 

chapter, the whirl speed was maintained at 3 rpm for data sampling purposes 

except for a few experiments in which the whirl motor was stopped and the 

impeller locked in a fixed eccentric position. These experiments were designed 

to check our quasi-steady whirl assumptions and required a slightly modified 

measurement technique that will be described in Chapter 4. Rotor speeds and 

impeller flow rates were held steady while collecting data on a given test run. 

Rotor speeds of 600, BOO, 1000, 1200, 2000 and 2400 rpm were tested along with 

flow rates ranging from shut-off (zero flow rate) to the maximum the pump loop
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would allow (around 330 gpm at 2400 rpm). The results will be given in dimen­

sionless form. In what follows we define some pump characteristics, present 

pressure and force calibration data and explain the experimental and data 

reduction techniques.

3.2. Pump Flow Coefficient

The flow coefficient y of a centrifugal pump such as Impeller Xis a dimension­

less term usually defined on the basis of quantities at the outer radius by the 

how rate through the pump over impeller tip speed times impeller discharge 

area (see also nomenclature). This was calculated using the flow rate Q meas­

ured using the turbine flowmeter of section 2.3. and the rotor speed N measured 

using the pump speed magnetic pick-up of section 2.6.2. It is customary to show 

force results plotted versus flow coefficient and we have done so in the presenta­

tion of data in Chapter 4.

3.3. Total Head Coefficient and Pressure Calibration Techniques

The total head coefficient Ψ of a pump is a dimensionless quantity usually 

defined as the total pressure rise across the pump over twice the dynamic head 

based on impeller tip speed (see also nomenclature). Two Statham pressure 

transducers were used to measure the static pressure rise across the pump. 

These are described in section 2.5.2 of Ng [55] along with their signal condition­

ing systems (Burr-Brown 3620L∕16 operational amplifiers). The upstream pres­

sure transducer was mounted on section (20) of Fig. 2.3 while the downstream 

pressure transducer was fitted to the screen barrel (31). These two sections had 

a different cross-sectional area necessitating a small dynamic head correction in 

order to obtain the total pressure rise across the pump. Both pressure trans­

ducers were calibrated against a precise Heise pressure gauge prior to each test 

run. Figure 3.1 shows a typical 0-15 psi (0-1.03 x 10^ N∕m^) calibration curve for 

each pressure transducer. The output signal (in volts) was fairly proportional to 
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the static pressure (in psi). Two calibration slopes and C⅛ were defined for the 

upstream and downstream pressure transducers respectively (units: psi/volts). 

The output signal of each transducer was then fed to the Shapiro Digital Signal 

Processor (SDSP) of section 2.9 and averaged over a test run. The natural fre­

quency of the pressure transducers as supplied by the manufacturers is around 

10,000 Hz in air. The catalog data did not provide a cross-section of these pres­

sure transducers but it was estimated that their natural frequency in water 

would still be much higher than the 0.05 Hz sampling rate frequency (whirl 

speed). Therefore we were confident about their use in our experiment.

3.4. Dimensionless Radial Force and Stiffness Matrix

The radial force vector Fp as defined in section 1.4 is non-dimensionalized by 

the dynamic head based on impeller tip speed times the discharge area of the 

impeller. The dimensionless radial vector force Fp is then defined as

(3.1)

where F∏ is the normalizing force, namely

Fκ = ρl½r⅛∕2 - (3-2)

Similarly the hydrodynamic stiffness matrix [K] of section 1.4 is non- 

dimensionalized by the normalizing force divided by the radius of the impeller 

(= Fκ∕⅜). Dimensionless hydro dynamic stiffness matrix [K*] for Impeller X is 

then defined as

[K'] = [K]∕(pt‰2rg) . (3.3)

In Chapter 4 where Fp and [K*] are plotted usually versus flow rate y, there has
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been a name change from radial forces to average volute forces and from hydro­

dynamic stiffness matrices to hydro dynamic force matrices. This was done in 

anticipation of the damping and acceleration matrices to be measured in the 

near future.

3.5. Calibration of the External Balance

Static calibration of the external balance force measuring elements (section 

2.7) was conducted prior to each group of test runs. Each of the three strain 

gauge bridges was powered by a constant 10 v.d.c supply from the Vishay Condi­

tioning Amplifiers (section 2.9). Amplification was set to obtain approximatively 

one volt signal for each ten lbf (4.54 kgf) loading in either the vertical or hor­

izontal directions. Calibrations were then performed by known forces applied by 

systems of wires, pulleys and weights. The top photograph of Fig. 2.12 shows cali­

bration set-up rigs on which some of the pulleys were mounted. The vertical load 

cell was calibrated independently from the two horizontal ones in both tension 

and compression. The two signals from the horizontal load cells were added to 

provide the total horizontal force which was then calibrated in tension and 

compression. A typical calibration curve for the vertical load cell is provided in 

Fig. 3.2 over a loading range of -15 to +15 lbf (-6.81 to +6.Bl kgf). The two hor­

izontal load cells exhibited a similar type of behaviour and therefore are not 

shown on the graph. Linearity of calibrations was within one percent over the 

maximum range of loading (-20 to +20 kgf). In addition the horizontal/vertical 

interaction was also found to be less than one percent for the worst case. As an 

illustrative example, the slope of calibration in Fig. 3.2 is about 10.13 lbf/volt. 

The equivalent slope of calibration of the horizontal load cells (not shown here) 

was about 9.98 lbf/volt. Departure from linearity of the results as well as the 

maximum interaction were found to be less than 0.7 percent.
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High calibration linearity and low interactions seemed to justify the use of 

the axial flexures and neoprene bellows of section 2.7 and the proper floating 

procedures. In fact the neoprene bellows were designed such that the slope of 

calibration would be insensitive to the hydrostatic pressure inside the bellows 

chamber. To illustrate that point the bellows chamber pressure for the calibra­

tions of Fig. 3.2 was B psig (5.5. x 10* N/m^); when increased to 13 psig (B.9 x 10* 

N∕m^), the slopes of calibration were only increased to 10.14 lbf∕volt for the 

vertical load cell and to 9.99 lbf/volt for the horizontal ones.

3.6. Experimental Techniques

A standard routine was followed during experimentation; the external bal­

ance was first calibrated maintaining the same bellows chamber pressure 

expected during test runs. The three preamplified strain gauge bridge signals 

were then filtered using 10 Hz low pass Butterworth Alters before being fed into 

three SDSP channels. These 10 Hz Alters eliminated high frequency noise that 

could saturate the SDSP (having a 10 volts maximum input). The validity of their 

use is justiAed later in this chapter. Other signals monitored were those of the 

two Statham pressure transducers of section 3.3. The SDSP was used well under 

its maximum capacity of eight channels, 12B sampled points per reference sig­

nal and 10,000 cycles of sampled data. In fact each of the Ave input channels 

was sampled at 32 equally spaced positions of each rotation of the eccentricity. 

Furthermore this sampling was continued for 15 rotations in order to obtain 

averages for each of the 32 geometric positions. This represents an optimum 

data collecting time of 5 minutes for one set of data. The strain gauge bridge 

signals were balanced (zeroed) for a given Axed impeller eccentric position and 

angular orientation within the volute prior to each test run. Finally Aow rates 

and rotor speeds were visually recorded every 60 sec and averaged after each 

test run (see section 3.9 on drift errors).
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The unfiltered signals of the external balance load cells were also recorded on 

magnetic tape and processed through a digital spectrum analyser. The major 

peak was observed at the 3 rpm whirl frequency. Much smaller peaks also 

occurred at higher harmonics of this whirl frequency. The largest observed mag­

nitude of the second harmonic was always less than ten percent of the funda­

mental indicating that the impeller forces at the small eccentricity employed 

vary quite sinusoidally around the circular eccentric orbit and that this varia­

tion can be accurately represented by a stiffness matrix. More data on this 

spectral analysis can be found in Chapter 4.

Finally linearity of the stiffness matrix with respect to the imposed eccentri­

city has been assumed in view of the experimental data of Hergt and Krieger 

[39] described in section 1.4.

3.7. Data Reduction

We wish now to extract average volute forces (radial forces) and hydro­

dynamic force matrices (stiffness matices) from data collected from the exter­

nal balance load cells. Let us first show that damping and acceleration forces 

are negligible. In here we approximate the magnitudes of these forces by

Fo ≈ pQεcj

for the damping force and by

F⅛≈ MεcjS

(3.4)

(3.5)

for the acceleration force, ε represents eccentricity (1.26mm), ω is the whirl 

speed (3rpm), p is the density of water at 70° F (62.4 lbm/ft ), Q is flow rate 

(maximum of 500 gpm used) and M is the mass of the rotating part (maximum
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of 140 lb used). Substitutions of these values yields Fo ≈ 2.8 x 10^^s lbf (1.27 x 

10^s kgf) and F⅛ ≈ 1.8 x 10"^ lbf (8.2 x 10"* kgf). Hence damping and accelera­

tion forces are, in theory, negligible. As a result the force F∏ of Eq. 1.9 can be 

assumed to be a "stiffness force" only, that is,

⅞ ≈ [K]
(X'

[Y,
(3.6)

Here we neglected higher harmonics in view of the spectral analysis of the force 

signals (section 3.6 and later section 4.2). We now proceed to calculate the 

stiffness matrix [K].

The geometry and notation of the impeller shaft location, external balance 

load cells and volute position are shown in Fig. 3.3 (viewed from the pump inlet). 

The center of the volute and the center of whirl are made to coincide through 

proper floating procedures (section 2.7) such that t⅛ is minimized; ideally 6y 

should be zero before any test run. The flexure system, though quite stiff, has 

some deflection due to the hydrodynamic forces on the impeller; indeed this 

deflection ≤,is monitored by the external balance elements. One consequence of 

this is that the actual position of the shaft center is a combination of the 

1.26mm eccentricity plus the deflection of the flexure system. All of the data on 

impeller forces were corrected for this effect. If g_is the instantaneous shaft 

center due to the imposed eccentricity of 1.26mm and [Kg] is the stiffnesss 

matrix of the flexure system (measured by loading under conditions of no 

motion), then the actual instantaneous position of the shaft is

i=f-+≤ι ≤-=[Kg]-∖EL (3.7)

where E. is the instantaneous force acting on the rotor (and therefore on the
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floating assembly) for a particular test run due to the Ω and ω motions. The 

design value of [Kg] as explained in section 2.7 was to have been around 10,000 

lbf/in in the vertical and horizontal directions but this was later measured to be

[Ks] =
k. 0 11,000 0

0 kb 0 8,300
lbf/ίη . (3.B)

We now proceed to eliminate the tare forces due to the whirling of the eccentric 

mass and to the non-isotropic stiffness of the rotating flexible coupling by sub­

stracting data from two properly zeroed test runs. The first run is one in which 

hydrodynamic impeller forces are to be actually determined (rotor speeds of 

600 rpm and higher). The other run features low rotor speeds of less than 30 

rpm and was thus called a "zero run" This procedure was justified because (i) 

impeller forces will be seen to increase quadratically with rotor speed and 

because (ii) no perceptible forces could be measured using this technique when 

the impeller was removed and whirling experiments were initiated (see "No 

Impeller" results in Chapter 4). Letting f_be the total force acting on the impeller 

for a "zero run" , then the net instantaneous displacement due to a purely 

hydrodynamic force (IL-1) is

Æ= 3_+ [Ks]-i(Er-D . (3.9)

We now express IL and I_into components in the horizontal and vertical coordi­

nates of the external balance as shown in Fig 3.3. We then have

Xι+Xs

Xs
(3.10a)
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and

L=
X, + Xg

(3.10b)

Xi or Xi being the amplified averaged voltage signal (in volts) from each of the 

three measuring load cells for any of the 33 orbital positions sampled. Here i=l, 

2 represent the two horizontal load cells while i=3 represents the vertical one. 

The whole set of signals, (X{, xj, is now decomposed in a Fourier series with the 

whirl speed ω as basic frequency. X⅛ and x,. will then denote the averaged values 

for the 32 orbital positions while (X,g, x⅛) and (X⅛, x⅛) are respectively the in- 

phase and quadrature components of the first harmonic of these signals with 

respect to the "start" position of sampling or index line of Fig. 3.3 (see also sec­

tion 2.9). We now decompose the net displacement of Eq. 3.9 into a similar 

Fourier series in cj. The average volute force Fp can now be associated with the 

mean position of the shaft center and the first harmonic F^_ of (E-^^f) can be 

associated with the first harmonic of . ⅞,. The hydrodynamic force matrix, 

[K] is then equal to

¾L= [K]⅛, . (3.11)

We now proceed to give expressions for each component of this matrix. For sim­

plicity first set

XjH * (Xij + X2j * Xij * X2j) - s∏ (3.12a)

and
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YjV=(X3j-X3j).Sv (3.12b)

where j = o, s and c denote average, fundamental in-phase and fundamental in­

quadrature elements respectively. S∏ and Sy are the respective slopes of calibra­

tion for the horizontal and vertical external balance load cell elements 

expressed in lbf/volt. Also let ot be the index line angle measured from the hor­

izontal line of Fig. 3.3 and τ be the volute's cutwater angular position. The 

dimensionless average volute force Fp and hydrodynamic force matrix [K'] can 

then be expressed in the volute coordinates (X,Y) as they are seen to make up 

the hydrodynamic steady-state impeller force F, of section 1.4, namely,

(3.13a)

Here

and

⅛L= Foe* =
1 ÷o

Fκ X⅜inτ + Y^<

X^cosτ - Y^sinr
(3.13b)

COST

[κ*] = Kχχ Kχγ-

Kγχ Kγγ
(3.13c)

with
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S[sγy - cX^] + C[cX^ - sγV] + P
'g2 , C≈'
εka'εkb

i sint⅛
ε . k. ⅛.

cos<x
ε

χy γy
k. ⅛ ε^kakb

S[cX^ - sYyj + C[cXy - sYyj - scP _1_____
εk. ε⅛

1 sinα
ε

⅛, XL' 
kg kb

cosα 
ε

⅛ Xi
. k. k⅛

; P
ε^kgkb

Kγχ - J3_ 
εFκ

-S[sXy + cYyj + C[sXy + cYy] - scP _1_____ 1_
εkg ε⅛⅛

< sinα
ε kg kb

, cosα
ε

⅛
kg kb ε^kgkb

Kγγ - 1*3 
εFκ

S[sX^ + cγyj + C[sχH + cγyj + P

iγH γVsmα ^Λ____^c_
ε ka k⅛

cosn 
ε

P 
ε^ka⅛

where s = sinτ, c = cosτ, S = sin(<x + τ), C = cos(α ÷ τ) and P = X∑⅛y - X^Y^.

One last point of interest is to determine the locus of equilibrium points (Æ) 

inside the volute for which the steady state-hydrodynamic force F, is zero. From 

Eq. 3.13a

X∕⅛

γ∕⅛
= [Ks]-' ⅛ - [K'Γ- Fi

Γ2
(3.14)
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where j≤Lis the average value of Æ(=ÎKsl*^Fp).

Fp and its components, along with [K*] and are plotted in Chapter 4.

3.8. Computer Programs

The SDSP is linked to a PDP-10 central computer. After test runs are com­

pleted all of the data are accumulated on hies before being processed. Fig. 3.4 

shows a self-explanatory flow diagram leading to the calculation of the desired 

quantities. STDFO is the master program designed to read data files along with 

other various inputs and print results in their most convenient forms. Its vari­

ous tasks include conversions of hexadecimal numbers (as stored by SDSP) into 

decimal forms, subtractions of "zero run" test values from actual test runs 

values , along with decompositions of all signals into Fourier series with whirl 

speed as basic frequency.

3.9. Experimental Errors

Drift Errors. Rotor speeds and pump flow rates were read by digital voltme­

ters and showed negligible drifts or oscillations. In an effort to further reduce 

these errors, readings of these values were initiated for every three cycles of 

whirl (equivalent to one minute actual time) and only average values were used 

in STDFO. Usually rotor speeds drifted no more than ⅛ 5 rpm about their mean 

computed value, representing an error less than one percent for the slowest 

speed of 600 rpm. Similarly how rates were read to within ⅛ 0.25 gpm again 

representing errors of the order of one percent for the slowest how rate tested 

(other than for shut-off operation).

Index Location The index angle α as documented in Fig. 3.3 was located using 

an oscilloscope in order to detect the sharp voltage outburst for each whirl 

cycle. This was done by rotating the whirl motor back and forth until a satisfac­

tory position was found. The rotor orbital angular position was then measured.
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We feel this angle was accurately determined to within ⅛ 3 degrees. This type of 

error cannot affect the magnitude of the forces but affects their phase angle in 

relation to the volute's cutwater (i.e the individual magnitudes of the com­

ponents of the hydrodynamic force matrix).

Filter Characteristics Each strain gauge signal was filtered using a 10 Hz 

Butterworth low pass filters (section 3.6). Their sine wave response 

(output/input), as supplied by the manufacturers, is equal to one for the sam­

pling frequency of 0.05 Hz. However their step response (or time lag) is about 

0.13 sec, which corresponds to about 2.4 degrees angular lag. This error affects 

the system in the same way the index angle does.

Machining and Manufacturing Errors. Machining and manufacturing errors 

are indeed very small. Among those that affect our dimensionless hydrodynamic 

impeller forces are the eccentricity and outer radius and width of the impeller. 

The set eccentricity was measured to be 0.0495 ± 0.0002 in. with a relative error 

of 0.4 percent. Impeller dimensions were also found to have a relative error less 

than 0.2 percent. An important source of error somewhat independent of 

manufacturing was the locating of the volute coordinates with respect to the 

external balance coordinates (angle in Fig. 3.3). This was done to within 2 

degrees and affects measurements the same way the index angle does.

Calibration Errors These are the errors in judging the slopes of calibration of 

the pressure transducers (C^, Cj) and of the external balance load cell elements 

(Sκ, Sy). It was felt that the accuracy of these slopes was well within a one per­

cent relative error. Measurements of the stiffness of the flexure system (k. and 

⅛⅛) were conducted with a relative error of Ave percent but this was toned down 

by the fact that it barely affects the hydrodynamic force matrix results of Eq. 

3.13c since it enters as a correction term because the load cell elements are not 

inAnitely rigid. This correction amounts to less than ten percent of the total 
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magnitudes of each coefficient of [K*] for the maximum load encountered dur

ing experimentation.
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Fig. 3.1. Typical calibration curves for the two pressure transducers.
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LOAD, !bf

Fig. 3.2. Typical calibration curve for the vertical load cell of the external balance 
(No. 3 in Fig. 3.3). Bellows chamber pressure of 8 psig, 10 volts d.c. bridge 
excitation and amplification of 171 times the original signal.
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VERTICAL

Fιg. 3.3. Schematic of forces and iocations within the impelier-volute system as seen 
from the inlet.
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Chapter 4

EXPERIΠENTAL RESULTS AND DISCUSSIONS

4.1. Introduction

AU experimental, results derived from the present course of studies are 

presented in this chapter. The main features of the various plots and figures are 

pointed out. An in-depth discussion is also included in each section to describe 

the corresponding result.

4.2. Spectral Analysis

As mentioned in the previous chapter the external balance load cell signals 

were recorded on magnetic tape and processed through a digital spectrum ana­

lyser in order to investigate their content. A four-channel HP-3960 instrumenta­

tion recorder was used to tape the three unfiltered signals simultaneously. In 

order to reduce the relative noise generated by the recording equipment, these 

signals were preamplified to the maximum recorder input band using the tape 

recorder built-in amplifiers, then calibrated by recording a known sine wave 

from a signal generator. The range of frequencies of interest was under 150 Hz 

which proved satisfactory for the present measurements as the frequency 

response of the HP recorder was fairly flat up to 5 kHz. The power spectra of the 

load cell signals were then computed and plotted by a Spectral Dynamic Cor­

poration Model SD360 digital signal processor. The system has an internal digi­

tizer so that analog data can be loaded directly from the tape recorder. The 

sampling rate depends on the predetermined frequency; 2048 points are sam­

pled during a basic time unit equal to 500/fmax where f^χ is the highest fre­

quency in the analysis range. Thus a sample is taken every (0.5∕2.048f∏,ax) 

seconds or approximately four points during a cycle of the highest frequency. In



-69-

order to accurately observe harmonics of the whirl speed (ω = 0.05 Hz) as well as 

the fundamental (and maybe higher higher harmonics) of the rotor speed, Ω , it 

was necessary to use the smallest frequency range available on the signal 

processor(0-10 Hz range). Therefore a preliminary taping of a rotor speed of 

300 rpm (5 Hz) was initiated and analysed. Figures 4.1 and 4.2 present the power 

spectra of horizontal load cell No. 1 as dehned in Fig. 3.3 and of the vertical load 

cell (No. 3) respectively. Horizontal load cell No. 2 presented similar findings as 

load cell No. 1 and therefore will not be documented for the 300 rpm tests. Fig­

ure 4.1a,b shows the power spectum of the horizontal load cell for the minimum 

range of 0-10 Hz. The various harmonics in ω can be clearly distinguished espe­

cially on the log plot. The 20 d.b. attenuation between the fundamental and the 

second harmonic is somewhat typical of all results and could be confirmed by 

the Fourier decomposition initiated by the master program, STDFO (section 3.8). 

in fact the maximum amplitude of the second harmonic for any of the load cell 

signals encountered by STDFO was at most ten percent of the fundamental. 

Moreover the power spectrum of any dynamometer output failed to show any 

other major peaks between the whirl speed ω and the rotor speed 0 , i.e., no 

subharmonics of Ω could be found. These two considerations point out to the 

validity of the data reduction technique where only the average values (d.c.) and 

the fundamentals in ω of the three load cell signals are needed to determine 

average volute forces and hydrodynamic force matrices. Furthermore it is gen­

erally agreed (although we cannot prove it) that the absence of harmonics 

higher than the fundamental implies the linearity of the signals with respect to 

the eccentricity of the rotor center (ε).

A brief description of other observed peaks is in order. Superharmonics of 

the rotor speed as well as various natural frequencies of the floating external 

balance assembly can be seen on the expanded 0-50 Hz frequency range of Figs. 

4.1c and 4.2b. These peaks are still present in Fig. 4.3 where a more realistic
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rotor speed of 1010 rpm was taped, analysed and plotted for each of the load 

cell outputs and for a 0-150 Hz frequency range. Among the superharmonics in 

Ω (denoted by 2Ω , 3Ω ,etc.), we would like to point out the predominance of the 

blade passage frequency peak (5Ω). On the other hand the natural frequencies 

of the floating system (denoted by 1, 2,... for each graph) represent fixed quanti­

ties, independent of rotor speed, that can be theoretically shown to exist. For 

example the 22 Hz peak of Fig. 4.2 is the calculated natural frequency of motion 

in the vertical direction of Fig. 3.3. The high frequency noise (100 Hz and higher) 

present in Fig. 4.3 was not investigated because it is out of the range of interest 

for this work.

4.3. Performance Characteristic Curves of Impeller X

Figure 4.4 presents the performance characteristics of Impeller X within 

Volute A for the two face seal clearances of 0.14 and 0.79 mm and for these 

values the leakage flow back to the inlet of the impeller was about two percent 

and twelve percent of design flow rate respectively. This plot is quite typical for 

such impeller/volute configurations and is independent of rotor speed. A notice­

able degradation occurs when the seal gaps are increased as the total head 

coefficient decreases by about 0.04. Figure 4.5 compares the performance 

characteristics of Impeller X within Volutes A or B for the same maximum seal 

clearance of 0.79 mm. It is somewhat surprising that the "circular" volute (B) 

outperforms the "well-matched" volute (A) above the design Gow coefficient of 

Volute A (p = 0.092). This is a plus for this type of volute widely used for slurry 

applications as well as in the oil industry field.

It is always desirable to measure complete performance characteristics 

including efficiency but in the present experiment provision was not made to 

measure torque in the present apparatus for all volutes; as a result we are 

unable to report the efficiency for these two volute types. Tests performed by 
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Byron-Jackson on a sixteen stage pump using Impeller X reveal that the overall 

pump efficiency was 77 percent at a how coefficient of 0.080.

4.4. Average Volute Forces; Results and Discussion

The reduced data for the dimensionless average volute force acting on 

Impeller X due to Volutes A or B are presented in Figs. 4.6 through 4.11; these 

include the magnitude, direction and individual force components. These forces 

are also defined by Eq. 3.13b. The data for the "well-matched" volute (A) for a 

face seal clearance of 0.14 mm are shown in Fig. 4.6. Here Fo is plotted versus 

flow coefficient for various rotor speeds. Some results for both a forward 3 rpm 

sampling orbit speed (ω > 0) and a reverse orbit speed of 3 rpm (ω < 0) are 

shown to confirm that this orbit speed had little effect on the results. The non- 

dimensionalized force data for different shaft speeds (600 up to 2000 rpm) is in 

substantial agreement though there would appear to be a slight increase in the 

magnitude of the force coefficient at low flow coefficients when rotor speed was 

increased. It seems likely that this is a Reynolds number effect. From a practical 

viewpoint it is clear that the Impeller X and Volute A are well matched at their 

design flow coefficient of 0.092 since the force on the impeller is virtually zero in 

this operating stage. The magnitude of the dimensionless force is then seen to 

vary linearly with flow coefficients above and below design. In fact,

Fo = l-69p - 0.15 (4.1)

for ⅛ 0.092 for all rotor speeds and

0.155-1.6p≤F0< 0.17-1.76p (4.2)

for y ≤ 0.092. Here the lower bound applies for rotor speeds of 600, 800 and 

1000 rpm while the upper bound is for the rotor speed of 2000 rpm. Values of Fo
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at shut-off range from 0.155 to 0.17 which is ten to twenty percent higher than 

the calculated value suggested by Stepanoff [63]. For completeness the direction 

of this force with respect to a line joining the center to the tongue of the volute 

is shown in Fig. 4.7. It is surprising that this angle is somewhat independent of 

rotor speed or flow coefficient and depends only on the position of operation of 

the rotor with respect to the design flow coefficient of 0.092. In fact this force 

angle is about -90 degrees for flow coefficients above design, and about +70 

degrees for flow coefficients below design. This result should be valuable in the 

design of shafts and rotor structures for this particular impeller/volute 

configuration as the line of action of the radial force is constant depending on 

the side of operation with respect to design.

Also shown in Figs. 4.6 and 4.7 are the experimental results of Agostinelli, 

Nobles and Mockridge [4] and Iversen, Rolling and Carlson [44] for pumps with 

specific speeds of 0.61 and 0.36 respectively. The former are in close agreement 

with the present results since the specific speed of the present Impeller 

X/Volute A combination is 0.57. The results of Iversen et al for a lower specific 

speed also appear consistent with the present results. For clarity, another set of 

experimental results by Domm and Hergt [33] is presented in Fig. 4.6. These 

results for a similar volute (having a spiral angle of 86.3 degrees) appear to be 

in substantial disagreement (lower forces by a factor of two or three) with the 

present results shown in Fig. 4.6. There is unfortunately insufficient data in that 

report to determine if that discrepancy is due to a different volute design or to 

different experimental procedures.

Figure 4.8 also presents the dimensionless force components of the average 

volute force. Included in the plot are the theoretical results of Domm and Hergt 

[33] and Colding-Jorgensen [29] for volutes with spiral angles of about 86 

degrees. These theories are based on the impeller being modeled by a source-
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vortex at its centerline and by assuming potential flow throughout the pump 

stage. Volute A has a similar angle when projected on the radial plane of the 

impeller. However Volute A is fully three-dimensional and the equivalent spiral 

angle obtained by unwrapping its area would be about B3 degrees. Under these 

assumptions the data of Colding-Jorgensen appears more consistent with the 

experiments than what is actually shown in Fig. 4.8. Unfortunately we cannot 

initiate a similar "correction" with the results of Domm and Hergt as the 

theoretical example of reference [33] featured only a volute angle of 86.3 

degrees.

We have also investigated the effects on the average volute force due to either 

an increase in the face seal clearances or due to a volute change. Figures 4.9, 

4.10 and 4.11 show data for Volutes A and B for the maximum front and back 

face seal clearances of 0.79 mm. The magnitudes, directions (and therefore also 

cartesian components) of the average volute force for Volute A exhibited almost 

no change for the two face seal clearances at least for the two rotor speeds 

tested (600 and 800 rpm); this is somewhat surprising because the total head 

changed significantly. We can only conclude that the how distribution in the 

volute is affected by the leakage flow.

Different results were found for the circular Volute (B). Instead of the linearly 

decreasing force magnitude with decreasing Row rate as predicted by Stepanoff 

[63] (Eq. 1.3), we observe a Rat region for Row coefficients about 0.07 in which 

the normalized force magnitude is about 0.055. For decreasing Row coefficients 

below 0.07 the previously predicted linearly decreasing pattern is recovered with 

an intercept for shut-off at about 0.0155. Manufacturing imperfections and lack 

of perfect centering might be the cause for the force not vanishing there. Con­

trary to the Rndings on volute A, the force angle e as documented in Fig. 4.10 is 

not constant with Row coefficient. Finally we should point out that the two 
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speeds of BOO and 1300 rpm tested with volute B seemed to be in general agree­

ment with respect to the normalization process.

4.5. Hydrodynamic Force Matrices

Non-dimensional hydrodynamic force matrix coefficients, K,*. are presented in 

Figs. 4.12 through 4.15; these contain all the information on how the forces 

presented in Figs. 4.6 to 4.11 vary as the position of the impeller center changes 

provided the change is within the linear region. These coefficients are also given 

by Eq. 3.13c. Figure 4.12 presents data for Volute A, for face seal clearances of 

0.14 mm, for various Row rates and for rotor speeds of N = 600, 800 and 1000 

rpm. We observe that the variation with is consistent with that anticipated by 

the non-dimensionalization and that the components vary only modestly with 

flow coefficient, y, for values above about 0.03. Finally all of the measured K,* 

show a tendency to drop as we approach shut-off but they do not vanish there.

The theoretical results of Colding-Jorgensen [29] based on the source/vortex 

model of the impeller which are also depicted in Fig. 4.12 exhibit substential 

disagreement with the measurements. This model will be discussed in Chapter 5. 

The diagonal components Kχχ and Kγγ are about one third of those of the 

present experiment. The off-diagonal or "cross-coupling" terms also differ from 

the present values and the calculated values of Kγχ exhibit a change in sign 

unlike its experimental counterpart.

It is worthwhile to examine closely the structure of the [K*] matrix before 

presenting the remaining force matrix data; in fact the hydrodynamic force 

matrix of Fig. 4.12 implies that the fluid forces will tend to excite a whirl motion 

of the impeller. This force matrix can be presented approximately in the form
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[κ*] = 2.0 -0.9

.0.9 2.0
(4-3)

over the range 0.04 < p? < 0.14. It is therefore a combination of a diagonal and a 

skew-symmetric matrix. The former will simply reduce the structural stiffness 

matrix and in many cases this hydrodynamic effect will be small. The skew- 

symmetric or cross-coupling terms are much more important. Since Kχγ and Kγχ 

are of opposite sign, their effect is to tend to destabilize the rotor. This is easy to 

show; suppose that the impeller of Fig. 1.2 lies on the X-axis of the volute (Y=0). 

It now experiences an upward Y-force equal to 0.9X∕⅞ (in dimensionless form); if 

the impeller is now moved to the positive Y-axis (since the impeller is pushed 

that way) a negative X-force equal to -0.9Y∕⅞ (in dimensionless form) is 

developed. The new result is that the impeller center tends to be pushed around 

the center of the volute. In short, if the impeller were made to move in such a 

motion (slowly), work could be extracted from the impeller, just like a turbine! 

Presumably if the impeller shaft center were free to move (as it is in actual 

pumps) rotation or whirl of the shaft center would take place. The rotordynamic 

consequences of such excitation will, of course, depend on the damping matrix 

as well (see for example Adams and Padovan [3]). In other words this whirl 

motion will be suppressed if the damping force due to the whirling motion is 

sufficient. However since Kχγ and Kγχ are proportional to N^, it follows that if 

damping increases more slowly with N, then there will always be a speed above 

which the excitation will exceed the damping. This is easy to show using the 

experimental results of Ohashi and Shoji [57] that were briefly discussed in sec­

tion 1.4. Their test impeller was installed in a large "vaneless" diffuser with the 

result that the cross coupling stiffness terms Kχγ and Kγχ were very small and 

could not be detected. However the damping matrix was; in fact positive damp­

ing was found resulting in a "negative" tangential force (see also section 1.2). By 
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equating this negative tangential force (Fig. Ba of [57] for example) to our "posi­

tive" tangential force (calculated using Kχγ of Fig. 4.12), inception speed of rotor 

whirl can be predicted. Disregarding the fact that we are comparing two 

different pump/volute systems, one can show using these results rotor whirl to 

occur at Ω > l.lω for design conditions and at Ω > 4ω for shut-off conditions. 

Here Ω is rotor speed while ω is whirl speed. Hence we see the possibility of non- 

synchronous whirling when this whirl speed cj is equal to the first critical. Future 

measurements using the internal balance of section 2.2 will examine the hydro­

dynamic contributions to the damping and mass matrices in order to extend the 

kind of results obtained by Ohashi and Shoji et al which will allow more quanti­

tative analysis of hydrodynamically induced whirl. Nevertheless we see from this 

example that hydrodynamic stiffness due to the flow through the rotor and its 

surroundings can then be seen to be a possible cause of "rough running" of 

pumps.

We now examine the effect of parameter variation on the normalized force 

matrix. We tested higher rotor speeds than in Fig 4.12 and found a slight 

increase in the magnitudes of K,] as shown in Fig. 4.13 for the rotor speeds of 

1200 (ω > 0), 1200 (ω < 0) and 2000 rpm. We take this to be some kind of Rey­

nolds number effect. By imposing forward and backward orbital motions (at N = 

1200 rpm) it can also be seen how little is the effect of the 3 rpm whirl speed on 

the force matrix results. Data have also been obtained with face seal clearances 

of 0.79 mm and the results are shown in Fig. 4.14. These findings are qualita­

tively similar to that of Fig. 4.12 except that the magnitude of all the com­

ponents is roughly at most twenty percent larger for the larger clearances.

Results for the circular volute (B) are shown in Fig. 4.15. The force matrix 

data for this volute are hereby expressed in the coordinates of Volute A since it 

was difficult to define the cutwater of the circular volute and because 
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comparison between the two volutes could then be initiated . The results for the 

circular volute were surprising in the sense that the skew-symmetric effect was 

even clearer and that, contrary to Volute A, the K⅛* coefficients increased with 

decreasing flow rate.

In conclusion no change in the experimental parameters altered the skew- 

symmetric behaviour of the [K'] matrix. Even the magnitudes of the Kj' 

coefficients seemed to be around the same values for different volutes and 

operating conditions. This is indeed a new finding valuable for any serious rotor­

dynamic analysis.

4.6. Auxiliary Experiments

Figures ⅛.16 and 4.17 present the force coefficient data for a number of tests 

performed with the objective of assessing the source of the large forces present 

at conditions of no flow (p = 0) for the case of Volute A. Figure 4.16 deals with 

face seal clearances of 0.14 mm while the larger clearances of 0.79 mm were 

investigated in Fig. 4.17. All of the normalized data presented appeared to be vir­

tually independent of shaft speed indicating that forces are proportional to the 

square of tip speed. The lack of any appreciable force in the absence of the 

impeller (No Impeller points of Fig. 4.16) was one of the main reasons for sub­

tracting the data of a "zero run" from the data of an actual run in Section 3.7 on 

"data reduction" techniques; this shows the force to be truly due to the presence 

of the rotor only. Other experiments conducted consisted of testing a solid 

impeller having the same dimensions of Impeller X and of testing Impeller X with 

its inlet and/or exit blocked by a sheet of metal. The data for the solid impeller 

and for Impeller X having its inlet and exit blocked were quite similar for both 

face seal clearances. We conclude that this force coefficient component (about 

0.045) is due to disk friction effects and to the induced pressure gradient acting 

on the entire exterior surfaces of the impeller. The force coefficient for Impeller
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X with its exit blocked was about 0.055 showing that the inlet recirculation 

effects are somewhat negligible with respect to the force momemtum exchange 

with the impeller. The data with only the impeller inlet blocked are signiAcantly 

higher, probably because the outer recirculation effects are greater than in the 

previous case. This force coefficient was also twenty percent higher for the 

smaller face seal clearances, the reason of which is not entirely known at this 

time. Finally the force data for the flow blocked exterior to the impeller (shut­

off) are signiAcantly higher still. Here a solid plate was inserted in the Aow 

about three diameters upstream of the impeller. Disturbance of the Aow 

through the impeller was even greater than in all of the previous cases and a 

substantial inlet vortex swirl could be observed between the solid plate wall and 

the inlet of the impeller.

For completeness we have plotted in Fig. 4.16 the dimensionless force matrix 

coefficients, K,'. for each of the experiments of Fig. 4.16. The most signiAcant 

result is the absence of "stiSness" when the impeller was removed (No Impeller 

points); the highest value of any component was less than three percent of its 

counterpart for design Aow when the impeller was present. This con∩rms again 

the fact that the stiAness force so measured is due to the presence of the rotor 

only. The force matrix of the solid impeller gives a clear idea on how much disk 

friction accounts for the total force matrix of the actual impeller; results for 

the solid impeller were four times smaller than for design conditions. For com­

pleteness we also give the hydrodynamic force for Impeller X with its inlet 

and/or exit blocked. Their values were at most twice that of the solid impeller. 

Finally all matrices remained skew-symmetric at all time.
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4.7. Hydrodynamic Centers

The locus of equilibrium positions of Impeller X within Volutes A or B was 

computed according to Eq. 3.14 and plotted in Figs. 4.19 and 4.20 for the coordi­

nates of Volute A only; when the impeller center coincides with the plotted 

'hydrodynamic center" the impeller force is zero. The position of the 'hydro­

dynamic center" for Impeller X, for Volute A and for face seal clearances of 0.14 

mm is presented as a function of flow coefficient in Fig. 4.19. These equilibrium 

positions were independent of rotor speed and exhibited a 'linear" region 

between the How co efficients of 0.055 and 0.122 with the hydrodynamic center 

and the volute center coinciding at the design flow coefficient of 0.092. An excit­

ing finding is the possibility of having the rotor shaft move on a straight path 

according to flow coefficient so that the hydrodynamic forces acting on the 

impeller are minimized. Such a device might be able to prevent failures in high- 

performance turbomachinery as these operate at high rotor speeds and there­

fore they exhibit large radial forces. Finally it is seen that these data are con­

sistent with that of Domm and Hergt [33] for a similar volute.

The positions of the hydrodynamic centers of Volutes A and B is also shown in 

Fig. 4.20 for the larger face seal clearances of 0.79 mm. Volute A exhibited the 

same previous linear behaviour with all hydrodynamic center positions being 

slightly shifted upwards towards the second quadrant. The hydro dynamic 

centers for volute B were less sensitive with flow coefficient and approached the 

center of the volute as we neared shut-off.

4.8. Static Pressure Measurements in the Volute

Instrumentation. Static pressure distributions within Volute A were meas­

ured by means of the static pressure taps shown in Fig. 4.21 for four fixed posi­

tions of the eccentricity (the positions "closest", 'farthest", "right" and 'left" 

shown in Fig. 3.3) and various flow coefficients. The main intent is a break-up of
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the hydro dynamic forces into static pressure forces, disk friction forces and 

momentum flux forces. A bank of inverted water manometers was used to meas­

ure pressure differences for the sixteen taps of Fig. 4.31 and reference them 

with respect to the downstream total pressure as measured by an accurate 

Heise gauge. These values were fed to a PDP-10 computer and processed into 

useful form using a program with initials "CP". The pressure distributions are 

then presented non-dimensionally using a pressure coefficient, Cp, based on the 

downstream total pressure and the dynamic head based on impeller tip speed 

(see nomenclature). Cp is then plotted versus the angle starting from the cutwa­

ter of the volute. Finally program "CP" fits various spline curves through these 

pressure distributions in order to carry a numerical integration to get the 

forces due to the static pressure only for each of the four impeller positions. 

These forces are then compared to the actual impeller forces measured simul­

taneously for the same eccentric position.

Static Pressure Distributions Typical static pressure distributions in the 

impeller discharge how are presented in Figs. 4.22 to 4.25 for various flow 

coefficients of Impeller X within Volute A and for the larger face seal clearances 

of 0.79 mm. Each figure represents one of the four eccentric positions of Fig. 3.3 

for the fixed rotor speed of 600 rpm. The form and magnitude of the pressure 

variations are similar to those measured by Iversen et al [44] and to those 

predicted theoretically by Kurokawa [49]. The most important feature is the 

static pressure discontinuity that occurs about the cutwater (in here we com­

pare the values of Cp at &=0° and Φ=360°) particularly at off-design flow 

coefficients. However at or close to the design value of 0.092, the static pressure 

is quite uniform around the volute periphery. This is to be expected in view of 

the discussion in section 1.4 on the radial force. Finally we should emphasize the 

disagreement between the front pressure taps and the back pressure taps (see 

Fig. 4.21) measurements particularly at low flow coefficients. This points out 
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that the flow coming out of the impeller is not symmetrical with respect to the 

centerline of the volute cross-section.

Static Pressure Forces. Figures 4.26 through 4.29 present the X and Y com­

ponents of the static pressure forces expressed in the coordinates of Volute A 

for each of the four eccentric positions and compare them with the total force 

components on the impeller measured by the external balance for the same 

impeller location. Note that the static pressure component is not sufficient in 

itself to explain the measured total force. This is contrary to the results 

obtained by Iversen et al [44]; they observed significant agreement between 

these forces. Their static pressure force results are plotted in Fig. 4.26 for com­

parison. They exhibit the same general trend as ours but are much larger in 

magnitudes; this is perhaps due to the lower specific speed pump used (0.36 

instead of 0.57). On the other hand we conclude that the discrepancy in the 

forces presented in Figs. 4.26 to 4.29 is due to a difference in net flux of momen­

tum in and out of the volute. Some measure of the order of magnitude of this 

momentum flux difference can be obtained by evaluation of the momentum flux 

force at the discharge of the volute; when non-dimensionalized in the same 

manner as the forces, it has a value of 4.14 (in the Y-direction). This is of the 

same order of magnitude as the forces. We conclude that the non-isotropy of the 

momentum flux leaving the impeller is an important contributor to the impeller 

forces.

Static Pressure Force Matrix We estimated the magnitude of a hydrodynamic 

force matrix [KP] due to the static pressure force components only. An approxi­

mate formula was derived for each non-dimensionalized component that is,

KP½c = Fχc * Fχr
2ε∕⅜

(4.4a)



-82-

KP⅛ =
2ε∕⅜

(4.4b)

KP^χ =
2ε∕t⅛

(4.4c)

KPγγ =
Fγr-F⅛

2ε∕tg
(4.4d)

where Fj* is the static force component (in the X or Y direction) for each of the 

four eccentric positions tested . Here i = X, Y represent direction while sub­

scripts c, f, r and 1 represent the four eccentric positions (closest, farthest, right 

and left respectively) of Fig. 3.3. ε is the imposed eccentricity and rg is the outer 

radius of Impeller X. The normalized static pressure force matrix for a rotor 

speed of 600 rpm and for face seal clearances of 0.79 mm is shown in Fig. 4.14. 

It transpires that the components of this matrix represent only about 20 per­

cent of the magnitude of the corresponding total hydrodynamic force matrix 

components. In addition we have shown earlier that disk friction contributes to 

about 25 percent of this matrix. We therefore conclude that the non-isotropy of 

the momentum flux is the primary contributor to the "stiffness" matrix. This 

fact emphasizes the need for direct measurement of the forces on the impeller 

rather than estimating the latter by integrating pressure distributions around 

the base circle of the volute.
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4.9. Additional Measurements

We carried independent experiments in order to check the validity of the 

Shapiro Digital Signal Processor, computer program STDFO and the continuous 

data sampling procedures. In these experiments impeller forces were measured 

for each of the four eccentric positions of Fig. 3.3 for both volutes, face seal 

clearances and for various flow rates and rotor speeds. The experimental tech­

nique was simple; the strain gauge signal conditioning amplifiers were zeroed for 

any of the four eccentric positions for a low rotor speed (less than 30 rpm) and 

the corresponding load cell signals were read on digital voltmeters where an 

average value was selected in case of oscillations. We then bring the rotor speed 

up to test speed and read the new averaged value. The difference between these 

two readings is the averaged hydrodynamic impeller force for the given eccen­

tric position. It is then straightforward to calculate an equivalent normalized 

force matrix using a similar formula to Eq. 4.4. Figure 4.30 shows the magni­

tude and direction of the average force for the four eccentric positions, Volute 

A, rotor speed of 1000 rpm, face seal clearances of 0.14 mm and for various flow 

coefficients. These data are similar in content to the data in Figs. 4.6 and 4.7. 

Figure 4.31 shows the corresponding calculated force matrix coefficients. These 

compare nicely to the ones of Fig. 4.12. Finally the calculated force matrix 

coefficients of Volute B are shown in Fig. 4.32 for a rotor speed of B00 rpm and a 

face seal clearance of 0.79 mm. Here the agreement is less in magnitudes but 

the major trends are preserved. In conclusion we are confident that our con­

tinuous sampling method is justifiable and yields better data.

4.10. Concluding Remarks

We have presented measurements of the steady-state hydrodynamic forces on 

a centrifugal pump impeller as a function of position within two geometrically 

different volutes. These correspond to the forces experienced by the impeller at 

zero whirl frequency. The hydrodynamic force matrices derived from these
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measurements exhibit both diagonal and oA-diagonal terms of substantial mag­

nitude. The oil-diagonal or cross-coupling terms are of the form which would 

tend to excite a whirl motion in a rotordynamic analysis of the pump. This may 

be the cause of "rough running" reported in many pumps.

Static pressure measurements in the impeller discharge flow show that the 

hydrodynamic force on the impeller contains a substantial component due to 

the non-isotropy of the net momentum flux leaving the impeller. Moreover a 

similar breakdown of the contributions to the stiffness matrices reveals that the 

major component of these matrices results from the non-isotropy of the 

momentum Aux.

Future plans should include direct measurement of the forces due to the 

momentum Aux leaving the impeller and the study of other impeller/volute 

conAgurations particularly vaned diAusers. Finally measurement of forces at 

non-zero whirl frequencies should be initiated in order to obtain a complete pic­

ture of the rotordynamic consequences of these hydro dynamic forces.
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Fig. 4.1. Spectrum of horizontal load cell No. 1 as defined in Fig. 3.3 for a rotor 
speed of 300 rpm. a) 0-10 Hz, b) 0-10 Hz in a log plot, and c) 0-50 Hz.
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Fig. 4.2. Spectrum of the vertical load cell (No. 3 as defined in Fig. 3.3) for a rotor 
speed of 300 rpm. a) 0-10 Hz, and b) 0-50 Hz.
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ία)
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Fig. 4.3. Spectrum of a) horizontal load cell No. 1, b) horizontal load cell No. 2, and 
c) vertical load cell No. 3 for 0-150 Hz and for a rotor speed of 1010 rpm.
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Fig. 4.4. Performance charcteristics of Impeller X inside Volute A for the front and 

back face seal clearances of 0.14 and 0.79 mm. Open and closed symbols 
represent data for ω>0 and ω<0 respectively.
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Fig. 4.5. Performance characteristics of Impeffer X inside Vofute A (open symboιs) 

and Volute B (dosed symbols) for the front and back face sea! cfearances of 
0.79 mm.
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Fig. 4.6. Normalized average voiute force for Impeiler X, Volute A and face seal 

clearances of 0.14 mm. Open and closed symbols represent data for ω>0 
and ω<0 respectively. Comparison is made with with Iversen et al [44] bear­
ing reactions and Agostinelli et al [4] experimental data.
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Fig. 4.7. Direction of average volute force plotted in Fig. 4.6 expressed in the volute 

coordinate system. 0 is the angle between the direction of the average force 
and the line joining the center to the tongue of the volute. Open and closed 
symbols represent data for ω>0 and ω<0 respectively.
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Fig. 4.8. Normalized average voiute force components of Figs. 4.6 and 4.7 are shown 
along with the works of Domm and Hergt [33] and Colding-Jorgensen [29] 
having volute angles of 86.3° and 86° respectively. Impeller X, Volute A and 
face seal clearances of 0.14 mm.
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Fig. 4.9. Normalized average volute force for Impeller X and face seal clearances of 

0.79 mm. Open and closed symbols represent data for Volutes A and B 
respectively.
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Fig. 4.10. Direction of average volute force of Fig. 4.9 expressed in Volute A coordi­

nate system. Open and closed symbols represent data for Volutes A and B 
respectively.
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Fig. 4.11. Normalized average volute force components of Figs. 4.9 and 4.10 are 
shown for Impeller X, Volutes A and B and for face seal clearances of 0.79 
mm. Rotor speeds in rpm and their corresponding symbols are shown in 
brackets.
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Fig. 4.12. Normalized force matrix coefficients as defined in text for Impeller X, 

Volute A and face seal clearances of 0.14 mm. Shaft speed - 600 rprm∆ 
,A; 800 rpm:O,t; 1000 rpm:Q,H. Values of Kχχ, K^γ and Kγχ are 
represented by open symbols; values of Kγγ by closed symbols. Comparison 
is made with Colding-Jorgensen"s [291 theoretical stiffness matrix calcula­
tions with a volute angle of 86°.
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Fig. 4.13. Normalized force matrix coefficients as defined in text for Impeller X, 

Volute A and face seal clearances of 0.14 mm. Shaft speed = 1200 rpm 
(ω>0)ιC,⅜ι 1200 rpm (ω<0)C,W ; 2000 rpm: V, V- Values of K⅛χ, K⅛γ 
and Kγχ are represented by open symbols; values of Kγγ by closed symbols.
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Fig. 4.14. Normalized force matrix coefficients as defined in text for Impeller X, 

Volute A and face seal clearances of 0.79 mm. Shaft speed = 600 
rpm:A,A; 800 rpm: O,Φ- Values of K⅛χ, Kχγ and Kγχ are represented by 
open symbols; values of Kγγ by closed symbols. The normalized static pres­
sure force matrix for a shaft speed of 600 rpm is shown by the symbols 
+, <7, X and ⅝ .
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Fig. 4.15. Normalized force matrix coefficients as defined in text for Impeller X.

Volute B and face seal clearances of 0.79 mm. Shaft speed = 800 
rprmO,Φι 1200 rpιmθ>,φ. Values of K⅛χ, K⅛γ and Kγχ are represented by 
open symbols; values of Kγγ by closed symbols.
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Fig. 4.16. The normalized average volute force is shown as a function of shaft speed 
for various auxiliary experiments conducted for Impeller X, Volute A and 
face seal clearances of 0.14 mm.
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Fig. 4.17. The normalized average volute force is shown as a function of shaft speed 
for various auxiliary experiments conducted for Impeller X. Volute A and 
face seal clearances of 0.79 mm. Numbers in brackets represent flow coeffi­
cients when sufficient quantities of liquid flowing through the front and 
back face seal gaps could be detected in the pump loop.
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Fig. 4.18. Normalized force matrix coefficients as defined in text for the various auxili­
ary experiments described in Fig. 4.16 for Impeller X. Volute A and face 
seal clearances of 0.14 mm. The data when the impeller was removed are 
presented by the symbol x for any of the four normalized force matrix coef­
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Fig. 4.19. Locus of equilibrium positions of ImpeHer X within Voιute A for face seal 

clearances of 0.14 mm for various flow rates. Solid line indicates experi­
mental data of Domm and Hergt [331 for a volute angle of 86.3°.
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Fig. 4.20. Locus of equilibrium positions of Impeller X within Volutes A and B for 
face seal clearances of 0.79 mm and for various flow rates. Rotor speeds in 
rpm and their corresponding symbols are shown in brackets.
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Fig. 4.21. Schematic showing main dimensions and static measurement points within 
Volute A. There are eight pressure taps more or less equally spaced around 
the volute circumference on the front and back.
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90° )80° 270° 360°VOLUTE ANGLE STARUNG FROM TONGUE , 0
Fig. 4.22. Pressure coefficients for various ∩ow rates for a rotor speed of 600 rpm.

Impeller X, Volute A and face seal clearances of 0.79 mm. The shaft center
position is at the "closest" point as defined by Fig. 3.3. Solid lines represent
the front pressure taps and dashed lines the back pressure taps of Fig. 4.21.
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!g- 4.23. Pressure coefïïcients for various ∩ow rates for a rotor speed of 600 rpm.
Impeller X, Volute A and face seal clearances of 0.79 mm. The shaft center
position is at the "farthest" point as defined by Fig. 3.3. Solid lines represent
the front pressure taps and dashed lines the back pressure taps of Fig. 4.21.
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Fig. 4.24 Pressure coefficients for various ffow rates for a rotor speed of 600 rpm.

ImpeUer X, Volute A and face seal clearances of 0.79 mm. The shaft center
position is at the "right" point as defined by Fig. 3.3. Solid lines represent the
front pressure taps and dashed lines the back pressure taps of Fig. 4.21.
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Fig. 4.25. Pressure coefficients for various flow rates for a rotor speed of 600 rpm.
Impeller X, Volute A and face seal clearances of 0.79 mm. The shaft center
position is at the "left" point as defined by Fig. 3.3. Solid lines represent the
front pressure taps and dashed lines the back pressure taps of Fig. 4.21.
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Fig. 4.26. Normalized impeller forces and static pressure forces of Fig. 4.22 for rotor

speeds of 600 and 800 rpm for Impeller X, Volute A and face seal clear­
ances of 0.79 mm. The shaft center position is at the "closest" point as
defined by Fig. 3.3. Comparison is made with Iversen et al [44] static pres­
sure volute forces.
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Fig. 4.27. Normalized impeller forces and static pressure forces of Fig. 4.23 for rotor 
speeds of 600 and 800 rpm for Impeller X, Volute A and face seal clear­
ances of 0.79 mm. The shaft center position is at the "farthest" point as 
defined by Fig. 3.3. Rotor speeds in rpm and their corresponding symbols 
are shown in brackets.
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Fig. 4.28. Normalized impeller forces and static pressure forces of Fig. 4.24 for rotor
speeds of 600 and 800 rpm for Impeller X, Volute A and face seal clear­
ances of 0.79 mm. The shaft center position is at the "right" point as defined
by Fig. 3.3. Rotor speeds in rpm and their corresponding symbols are shown
in brackets.
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Fig. 4.29. Normalized impe∏er forces and static pressure forces of Fig. 4.25 for rotor 
speeds of 600 and 800 rpm for Impeller X, Vofute A and face seaf clear­
ances of 0.79 mm. The shaft center position is at the "feft" point as defined 
by Fig. 3.3. Rotor speeds in rpm and their corresponding symbols are shown 
in brackets.
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Fig. 4.30. Magnitudes and phase angles of normalized average impeller forces for four 

eccentric positions defined in Fig. 3.3. (closest: O; farthest: 0>; right: EJ; 
left∆). Impeller X, Volute A, face seal clearances of 0.14 mm and rotor 
speed of 1000 rpm.
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Fig. 4.31. Calculated normalized force matrix coefficients as defined by Eq. 4.4 in text 

using the volute forces of Fig. 4.30. Impeller X, Volute A, face seal clear­
ances of 0.14 mm and rotor speed of 1000 rpm.
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Fig. 4.32. Calculated normalized force matrix coefficients as defined by Eq. 4.4 in text 
using Impe∏er X, Vofute B (circular), face seal clearances of 0.79 mm and 
rotor speed of 800 rpm.
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Cħapter 5

CALCULATIONS OF HYDRODYNAMIC RADIAL FORCES

AND STIFFNESS MATRICES OF AN IMPELLER 

ECCENTRICALLY LOCATED WITHIN A VOLUTE

5.1. Impeller Physical Models-Previous Works

In the previous four chapters we have introduced and discussed an experi­

mental procedure to measure quasi-steady fluid dynamic forces acting on a 

whirling centrifugal pump impeller. We have shown that the flow through the 

rotor of such a turbo ma chine may result in forces acting on the supporting 

shaft which could contribute to dynamic instability. Engineers generally agree 

that model and full scale testings are the only ways to predict stable tur­

bomachinery operation. However this can prove to be costly for every new prod­

uct. It would therefore be beneficial to be able to predict rotor forces using 

analytical methods. Several rotor-volute models have been created for this pur­

pose. We would like to mention the "one-dimensional" volute flow model of Loret 

[52] which provides good estimates of off-design volute pressure distributions, 

and the "quasi-one-dimensional" model of Kurokawa [49] which permits a rota­

tional volute Row and predicts experimental measurements of volute velocity 

distributions fairly well. By far, however, the most favored approach to analysis 

of the volute flow distribution is that of two-dimensional potential flows with a 

vortex singularity distribution to represent the volute. The simplest impeller 

model used for that purpose is the source-vortex model. This model of a centri­

fugal pump or compressor stage with a vaneless volute was first suggested by 

Csanady [31] and represents the impeller by an equivalent source-vortex con­

centrated at a single point at the rotor center as shown in Fig. 5.1. The source 

strength Q, representing impeller flow rate, and the vortex strength Γ,
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representing impeller circulation, are related to geometric parameters of this 

impeller. Csanady calculated pressure distributions at the volute contour of a 

casing with a logarithmic spiral contour using conformal representation 

methods. However the works of Do mm and Hergt [33] and Colding-Jorgensen 

[29] using the source-vortex model are perhaps best known. Domm and Hergt 

calculated impeller forces for concentric and eccentric (but Axed) impeller posi­

tions with respect to the volute. They distributed vortices on the volute trace 

and carried out computations with the aid of singularity theory. Here dauert 

series were used in accordance with Schlichting's [60] and HofTmeister's [41] 

procedures in order to calculate the strength of the unknown volute vorticity 

distribution. Later Colding-Jorgensen extended these computations by letting 

the source-vortex representing the impeller have an arbitrary but small eccen­

tricity and velocity in order to calculate radial forces along with stiffness and 

damping matrices as deAned in section 1.4. He used a method developed by Hess 

[40] in order to calculate his unknown volute singularity distribution. In Chapter 

4 we compared these previous works to our measured forces and there con­

cluded that this simple potential Aow model was insufficient to predict accurate 

radial forces (see Fig. 4.8). Colding-Jorgensen's stiffness matrices as shown in 

Fig. 4.12 also seriously under-predicted our measured stiffness matrices and 

most important, they do not predict the skew-symmetric property of these 

matrices.

A much more sophisticated two-dimensional, unsteady lifting-surface compu­

tation with volute and Anite number of impeller vanes was presented by Imaichi 

et al [43] and Shoji and 0hashi [62]. Rotor blades were assumed to have no 

thickness and impeller wakes were represented by a Anite number of rotating 

vortex sheets as shown in Fig. 5.2. Both 7 (representing blade vortex distribu­

tion) and 7ι (representing trailing vortex sheet) have to be found in addition to 

any singularity distribution on the volute when such a device was present.
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Imaichi et al calculated radial forces and torque acting on a stationary concen­

tric impeller enclosed within a volute. The intent of their work, however, was the 

calculation of pressure fluctuations and impeller vanes-volute tongue unsteady 

reactions rather than of the hydrodynamic forces. Shoji and Ohashi used the 

same impeller model to calculate forces on a whirling centrifugal pump in an 

unbounded medium. Their work showed that impeller whirl without a volute 

results in positive damping (a stabilizing efleet). Very recently Sato and Allaire 

[60] solved the case of an unbounded rotor pump or compressor, with finite 

thickness and number of blades, undergoing synchronous whirl. The assumption 

of irrotational potential flow was postulated as no trailing vortex wakes were 

included in the computations. Finite element computational techniques were 

used to solve for the flow. A control volume formulation was then used to calcu­

late aerodynamic forces. The computed stiffness matrices differ widely from the 

present measured ones. The diagonal elements of their computed matrix are 

about 15 percent of the measured diagonal terms. Furthermore the computed 

cross-coupling terms predicted backward whirl; this is contrary to what was 

observed in the present experiment.

However Imaichi et al, Shoji and Ohashi and Sato and Allaire failed to solve 

the case of a whirling impeller enclosed within a volute due to inherent compu­

tational difficulties. We have proposed elsewhere (Chamieh and Acosta [18], 

Chamieh et al [19] and Chamieh [20]) a model of intermediate complexity; 

namely to replace the source-vortex of Csanady by an actuator impeller having 

an infinite number of vanes with the blade angle and dimensions of the actual 

impeller. Thus as in the original Euler theory, vane-angle geometry is preserved. 

Therefore the rotor vanes are replaced, in principle, by a set of body forces. 

Such a model has the advantage that internal losses can be accounted for and 

apparent mass and damping effects (but not blade to blade effects) can be 

predicted. Allaire et al [6] have used this model from a kinematic standpoint to
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calculate stiffness matrices of a pump in an unbounded flow but the apparent 

mass effect was neglected. The importance of this latter effect is shown in 

Appendix A. In what follows, we sketch a theory based on the actuator disk 

model from which hydrodynamic radial forces and stiffness matrices are calcu­

lated. In this theory it is assumed that the flow in the volute space is a potential 

flow; this is the same assumption inherent in the impeller source-vortex distri­

bution. It is known that the How external to the impeller must be rotational 

when volute and impeller are not matched. To this extent a further approxima­

tion is inherent in this assumption which should be minimal at the volute design 

how. Lastly numerical procedures and numerical results are described and com­

parisons with experiments are initiated.

5.2. The Concentric Problem-Radial Forces

The Problem The physical arrangement of the actuator impeller located at 

the center of a logarithmic volute is shown in Fig. 5.3. As a first step we would 

like to compute radial forces only and therefore assume zero eccentricity (i.e. 

impeller and volute have the same set of coordinates). The distances and ⅜ 

represent the inlet and exit radii of the actual impeller. We assume that the 

actuator impeller rotates at angular speed Ω as shown and that the relative how 

is perfectly guided by the vanes having stagger angle To model the incoming 

how, a source of strength Q and a prerotation Γ have been placed at the impeller 

center. The volute is replaced by a log spiral whose equation is

6 = ⅛e^ . (5.1)

Here θ = 0is the leading edge angle and θ = θ¾is the trailing edge angle, is 

the total angle subtended by the volute. The assumptions of inc ompr es sib ility 

and irrotationality inside and outside of the volute are postulated. The how is 

considered inviscid and two-dimensional. As pointed out by many early workers,
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it is convenient to work with a linear cascade instead of a circular one and this 

is effected through the transformation

z = X + iy = irgln(ξ7⅛) (5.2)

The volute thus appears as a straight line with equation (see Fig. 5.4)

y = -ax + rgln(<5./Tg) (5.3)

and is represented with a period rgθκ- The volute is a streamline and this is 

represented by a vortex distribution *y(x) on the volute trace. Thus the problem 

to be solved is to determine this vorticity distribution subject to the require­

ment that the flow leaving the actuator impeller be perfectly guided. Once this is 

done forces can be determined by the Blasius theorem and later on, for the case 

of the displaced impeller, the hydrodynamic stiffness matrix can be computed. 

The first step then is the calculation of the basic flow singularity of a vortex ele­

ment of the volute satisfying the flow tangency condition of the impeller exit.

Interaction of a Singularity with an Actuator Cascade Suppose in the upper 

half z-plane of Fig. 5.4 a singularity is located at z = z„, and let the disturbance 

velocity due to this singularity be denoted wg = u⅛ - ivg . Because of the presence 

of the actuator cascade, additional velocities w, = u, - iv, (non singular for y > 

0) will be induced resulting in the complex velocity

Wt = wg + Wj = Ut - ivt . (5.4)

In addition to these perturbations, there is a basic uniform flow through the 

actuator cascade given by
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Ue = -Γ2∕2πr3 (5.5a)

with Γg = 2πΩ r^ - Qtan^ and by

Vg = Q∕Q7rr3 (5.5b)

where Γg, Q are the circulation and flow rate respectively leaving the impeller.

This basic how was calculated by satisfying the how tangency condition

(Ωrg-V.)^ = tan^[v^ (5.6)

at the voluteless impeller exit in the radial plane of Fig. 5.3. An equivalent how 

tangency condition must be satisfied by the perturbation complex velocity w^. In

the cascade plane of Fig. 5.4 this becomes

Ud + Uj = (Vd + Vj)tanp (5.7)

at the impeller exit (y = 0*). This is equivalent to requiring

??Ut + κvt = 0

on y = 0* with 77 = 1 and κ = -tan^. Thus w⅛ has to satisfy a mixed boundary con­

dition on y = 0*. This turns out to be neatly handled by the methods described 

by Cheng and Rott [22]. Assuming that

Wd = Wd(z-Z<,) ,



-123-

the induced disturbance Wj is

Wj = (5.B)

which is seen merely to be an image of wg in the cascade plane. This is easy to 

show; let

H(z) = (η + uc)w⅛ .

Then Real' H(z) = τyu⅛ + ∕cvt is required to be zero on the real axis. Now set

H(z) = (?? + i≠c)wg(z-z.) -(η- bc)wg(z-z.) . (5.9)

so that on y=0, H(x,0) is the difference of two complex conjugate functions

and is therefore purely imaginary. In particular if we have a vortex element

Wg = -iΓ'∕2π(z-Zo) (5.10a)

then

w, = -iΓ'e^∕2π(z-z.) . (5.10b)

The problem shown in Fig 5.4 requires an inhnite array of vortex elements; it 

is instantly recognized that Eqs. 5.10 lead to familiar forms for this repeating 

sum. We imagine now distributing vortex elements y(x) along the volute trace 

using Eqs. 5.10a,b as the kernel. In the notation of Fig. 5.4 we get the complex 

velocity
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o
Wt = — y

4πrg 7(x«)dx. cot
Z-Zp

2rg + e^cot
z-z.
2rg (5.11)

Here Xp = 0 is the volute tongue and x. = —Γgθg is the trailing edge of the volute 

where we arbitrarily require y(xp=-Γ2⅝) = 0. z. = x. + iyo(Xo) represents points 

on the volute trace with y given by Eq. 5.3 .

The second term of Eq. 5.11 is the new contribution of the present model over 

that of Domm and Hergt [33] and Colding-Jorgensen [29]. There is a slight addi­

tional complication as this second term gives a finite contribution U„ and V„ to 

the basic velocities of Eqs. 5.5. In order to preserve continuity equation far 

downstream, we must subtract this effect. V., the downstream contribution of 

the image sources located at z = ⅞, is given by

V°° = ∕ 7(x°)dXp . (5.12a)
⅛7ΓΓg χ°=-rg(⅛

As U„ and V„ must also satisfy the tangency condition of Eq. 5.7, U„ is then 

given by

U. = ..∕ 7(x.)dx. . (5.12b)

The complete flow held W? = U? - iV? will then be

Uf — Ut + Ug — U∞ (5.13a)
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V⅛ = Vt + Y⅛ * Y" - (5.13b)

To sum up we have solved for the flow held (Uγ, Vτ) in terms of the unknown 

vorticity distribution y. In order to solve for y, we require no flow through the 

volute surface. This in turn yields the volute flow tangency condition (see also 

Eq. 5.3)

⅛L=-a =
dx

Vr
Uγ

Substituting for Uγ and Vγ gives the integral equation

4-i
∕ y(^)Kv(X'4)d^ =
-ι

4(aΓg - Q)
(5.14b)

for the strength of the vortex sheet y. Here the coordinates of the volute have 

been appropriately stretched (^ = 1 + 2Xo∕⅜(⅜ and X' = 1 + 2x∕i*gθg) and the 

terms U^, have been incorporated into the singular kernel Ky(X'.^).

Kv(X',^) =
sin ⅛(x-0 + asinh ⅞L(X-0

cosh (x-0 — cos ⅞-(X'-⅛)

(cos2^+asin2^)sin ⅛(X'-O + (acos20-sin20)sinh ^L(X'+^)-Yι

cosh ^-(X'+^)-Yι — cos

where = 21n(<!./i-2) + a⅝- The next and usual step is to express the y
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distribution in the Glauert-Birbaum series

*χ(λ) = Aocoty- + ∑ A⅛sin(kλ)
2 ⅛=i

(5.14d)

for = cosλ and to solve for the A⅛'s by any of several now standard methods. 

This will be discussed under numerical procedures in section 5.4 as we now 

proceed to calculate the radial force acting on the impeller in terms of the A⅛ 

coefficients.

The Radial Force. Our task now is to determine the force IL on the actuator 

impeller; it may be readily shown that this force is equal to the negative of the 

forces on the volute (Fy) and the source-vortex (⅜) at the impeller center. To 

show this, consider a control surface surrounding the system and extending 

infinitely large. The total force acting on this control surface is equal to the sum 

of the forces required to maintain the volute, impeller and source-vortex at 

their respective Axed positions. However the Row as seen from far away (r-*∞) 

behaves like a source Aow of strength Q on top of a vortical Aow of constant 

prerotation. Hence no force is expected on the control surface andE.= -⅜.-⅜.. (5.15)

Both volute and source-vortex forces can be found by application of the Blasius 

theorem.

(i) Volute Force Consider a control volume Cf enclosing the volute (but not

the impeller) in the radial plane of Fig. 5.3 (not shown in Fig. 5.3). The complex

conjugate of the volute force is given by application of the Blasius theorem, i.e.,
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(5.16a)

It is somewhat easier to work in the linear plane. C, is then the transform of C⅛

and is shown in Fig. 5.4. Using the mapping function of Eq. 5.2, we And

(5.16b)

Here W? = U<r — iV? represents the total flow held as given by Eqs. 5.13. It is 

simpler to write W? as

W? = wt + Wo ,

where Wt is given by Eq. 5.11 and W. is a combination of the basic flow of Eqs. 5.5 

and of U„ and V≈, of Eqs. 5.12. In fact

W. = U. - iV.

= (Us-U.)-i(VB-V.) 

= -⅛∕2πrg - &gL-22s2^_ + - Q^-⅛^(Ao+⅞L) (5-17)

where Eq. 5.14d has been used to substitute for the vorticity distribution of Eqs.

5.12 . It can be seen that Wo is regular while w⅛ presents a singular behaviour 

inside C^. Hence the complex conjugate of the volute force is
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— 2^ w⅛ e*^^dz . (5.16c)

TERM I TERM II

We evaluate 5.16c term by term using using Eq. 5.11 to express w⅛! the first term

7(x.)dx. cot
Z-Zp

2rg
+ e^cot

z z^
2rg dz

piW. 7(x.)dx. [
c,

This integral exchange is allowed as contour C, encloses but does not intersect 

the path of the integral in x„. Evaluating the contour integral yields

0
I = -pW. ∕ 7(x.) e*^°^ dx. (5.18a)

Further substitutions in order to split the preceding integral in X and Y com­

ponents of the volute's coordinates yields 

I = -
∕"⅛θM

2 (U.Uι +V.Ug) + i(U.Ug -V.U,) (5.18b)

with U. and V. given by Eq. 5.17. Ut and Ug are definite integrals involving the A⅛ 

coefficients:
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i co
Uι = J* Ao(l + cosλ) + ∑A⅛sinλsinkλ 

o [
. cos

⅛=1

^-(cosλ - 1)

. exp ^-(cosλ - 1) - ln(d.∕⅜-2) dλ (5.18c)

Ua = y ⅝(1 + cosλ) + ∑ A⅛sinλsinkλ, . si 
0 k=l

. sm'
<⅛
-y-(cosλ - 1)

. exp ^-(cosλ - 1) - ln(d.∕i-2) dλ . (5.16d)

The second term of Eq. 5.16c is harder to evaluate. After substituting for Wt from

Eq. 5.11

II = __ É__
32π⅛^

∕ ∕ 7(χ.)7(χ'.)dχodx'. y e*'^
-^2⅛ -I-2⅛[ C,

cot
Z-Zp

2rg
cot

Z-z'o

2r2
+ e^cot

Z-Zp

2r2 ,
(5.19a)

Here w⅛ has been split into two integrals with Xp and x'. as dummy variables and 

the contour integral has been exchanged with the double integration integrals 

as it encloses but does not intersect their path. z. = x. + iyo(Xp) and 

z 0 = x'p + iy'o(x'p) with y.(Xp) and y'o(x'o) being given by Eq. 5.3. Evaluation of 

the contour integral gives
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II = pi
4πrg

ο ο
∕ ∕ 7(x.)7(x'.)dx.dx'. e^

*!*g9⅛ -Tg⅝

+ e2*⅝ot Z.-Z.

3Γ2 .

requiring further splitting of this second integral. The only singular term,

cot< (Zo - Z'.)∕2rg

part, cot'

, is split into a purely singular part, 2rg∕(Zc, - z'„), and a regular

(z. - z'.)^rg — 2rg∕(zo — z'o). We now wish to evaluate three integrals

composing term 11. The first one

Ila = ..rL·
4τrrg

o o
∕ ∕ y(x.)7(x'.)e^

^I⅛⅝

2rg
z. - z'.

dXodx'. (5.20a)

is equal to

pi( 1 + ia)
2π(l + a^)

∕ γ(x.)dx.e^≈ ∕
^*!⅛⅜i "*^B⅛ X. - x'o

which, upon a change in the integrand of x. = rg⅜(cosλ — 1)∕2 and 

x'o = rgθ^(cosλ — 1)∕2 becomes a familiar expression for use of the relation

coskλ' dλ' 
cosλ — cosλ

sinkλ 
sinλ (5.20b)

Further substitutions of γ in terms of the dauert series of Eq. 5.14d give
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4(1 + ⅛3)
-aSι —Sg + (5.20c)

Si and Sg are deAnite integrals involving the A⅛ coeAicients

-Ac + ∑A⅛coskλ 
k=l

. COS γ-(cosλ - 1) . exp -^(cosλ - 1) -ln(⅛∕ħg) dλ (5.20d)

and

π -
Sg = y Ao( 1 + cosλ) 

o
∑ A⅛sinλsinkλ . -Ao + ∑ A⅛coskλ

k=ik=l
÷

. sin ^-(cosλ — 1) exp -^-(cosλ - 1) - ln(d.∕⅜-g) dλ (5.20e)

The last two integrals of term II are lengthy but straightforward to evaluate. We 

will sum up our findings by giving the volute force

⅛- - PΓgθM
2

DΓpΘM
(aSι + Sg)

PΓ2θg

16τr {Sg + S5cos2^ + Sgsin2^)
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+ i{ ^^-(U.Ug -V.Uι) +
4(l+a^)

(aSg — Si)

prgθg
16π

{-S4 + S5sin2^ - Secos2β)} (5.21)

Here U∏. Vo. Uι, Ug, Si and Sg have been previously dehned. For completeness 

S3, S4, Sg and Sg will be given in Appendix B.

(ii) Source-Vortex Force. The vector force exerted upon the inlet source­

vortex is

Fs-=-pYL(Q-ιΓ) (5.22)

where ¾ is the velocity induced at the impeller center by all disturbances except 

from the source-vortex itself. In the radial plane of Fig. 5.3, the inner flow 

(r < rι) can be expanded in a power serie of = re'^. The complex velocity of 

such a how held is

Wι(ι)=⅜^-+Bo + Bιι + Bgι3+--- (5.23)

with Bo, Bi. Bg , ... being complex constants. Obviously

YL=⅜ - (5.24)

It is simpler to work in the cascade plane where
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Wι(z) = - Boie^ - B^gi [e . , (5.25)

and only the second term of the series needs to be evaluated. To sum up we need 

to find the behaviour of Eq. 5.25 at upstream infinity (y → —∞). The downstream 

solution of the flow field (W? of Eq. 5.13) and the upstream solution are linked 

through the continuity equation requiring the normal velocity *V⅛(x,0) to be the 

same across the cascade at y = -rg ln(rg∕i*ι). The downstream solution was 

obtained through the distribution of vorticity on the volute trace (at z∏) and its 

equivalent source-vortex images in the conjugate plane (at ⅜). To construct the 

upstream solution we have to disallow all upstream singularities and add 

"corresponding" disturbances downstream such as Vτ(x,O) is preserved. For the 

example of Eqs. 5.1.a,b the total disturbances that has to be distributed on the 

volute trace in order to remove upstream singularities and preserve Vτ(xO) is

Γ'* ( -sin20 + i(l + cos20) (5.26)

In order to have Vi x,-rgln(rg∕⅛*ι) = Vτ(x,0) these total disturbances must be dis­

placed by a constant vector depending on cascade geometry (in our case case 

equal to —rgθg — ir2ln(rg∕l*1) ). This fact is ignored in the present calculation as 

the flow at upstream infinity is independent of this vector. Indeed it can be 

checked that the current flow field formed by a summation of the disturbances 

of Eq. 5.26 and of the basic Row of Eqs. 5.5 minus U. and V. of of Eqs. 5.12 gives 

the right source flow at upstream infinity. By expansion of the complex velocity 

of this upstream flow one finds
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(5.37)

This integral is similar to the one of Eq. 4.1Ba. Thus

⅛-= - ¾Γ (9 ^ ιΓ) t U,sin2^ - Ug( 1 + COS2P)

— i Ugsin2^ + Uι(l + cos2^) (5.2B)

where Uι and Ug are defined through Eqs. 5.18c,d. Hence the total force on the 

impeller is entirely defined.

5.3. The Eccentric Problem-Stifïness Coefficients

We are now concerned with the calculation of the forces on the impeller when 

it is displaced a distance ε relative to the center of the volute. For convenience 

we refer all quantities to the impeller center and thus the volute appears dis­

placed as in Fig. 5.5. The method of solution is similar to the one described for 

the concentric case. The same mapping function of Eq. 5.2 yields a distorted 

volute shape in the linear cascade plane. In what follows it is assumed ε∕⅜<< 1 

so that the volute equation is approximately

y = -ax + rgln(⅛∕⅜) + cos(x∕i⅛ + ^)- a sin(x∕i*g + %) . (5.29)

As was done before, vorticity y is distributed along the preceding volute trace. A 

further simplifying assumption is postulated, in that impeller and volute 

operate close to their mutual design flow rate, Qjes' This means that for a given 

flow rate Q, the basic velocities of Eq. 5.5 are linked to the volute angle
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represented by a and to (Q⅛e, — Q) through

Vg /Ug — —a + h + 0 (h^) ,

where h = (Q⅛g - Q)∕Q⅛es « ]a∣. The vorticity 7 then becomes of order ε (or h). 

The How Geld is again given by Eq. 5.13 as the vorticity has been distributed back 

to the original average trace of the volute (Eq. 5.3) with an error of order ε^. 

Only the tangency flow condition of Eq. 5.14a bears a change on the expression 

for y. We now make use of the distorted shape of Eq. 5.29 to substitute for the 

expression (dy∕dx) in Eq. 5.14a in order to derive the integral equation for the 

vortex sheet density y(x). We proceed in the now standard way but first set

ε 
rg

y(x)=y°(x) + -yC(x) cos%, + y"(x) sinψ' (5.31)

and upon substitution of Eqs. 5.30 and 5.31 into Eq. 5.14a we find the set of

integral equations

÷ι hΓg
∕ 7°⅛) Kv(X.ι)<⅛ = (5.32a)

+ι
∕ y'(ι) Kv(X',ι)<½ = 
-1

a⅛g(X-l)

sin (5.32b)e 2

+ι
∕ 7"(^) Kγ(X'4)d^ =
-I

4(l+a^
⅛0⅛

(5.32c)

Here Ky(X'.ι) is the same as before in Eq. 5.14c. Solution of these equations is
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identical to what was previously done as we express each of the distributions in 

the Glauert-Birbaum series by

γ*(λ) = Ac cot^- + ∑ A⅛ sin(kλ) (5.32d)

where superscript (i) is either (o). (c) or (s) corresponding to Eq. 5.32a,b,c 

respectively. We may now proceed to calculate the force on the impeller EJor the 

eccentric case. This is again equal to the negative of the forces on the volute and 

source-vortex at the origin. The previous force calculations still hold. However 

the force on the volute is somewhat simpler as we drop the definite integrals 

S,. Sg. - - , Sg due to their dependence on which is of order ε^. Furthermore 

U„ and V. of Eq. 5.17 can be substituted by Ug and Vg of Eqs. 5.5a,b with an error 

of order ε^ only. Finally all of these forces are now gathered together with the 

approximation that ε∕⅞ « 1 and going directly to the final result it is found 

that

E.= ⅜.+ [K]
—εcos*%,

-εsin%,.
(5.33a)

Here Fq is the radial force (components Fqχ and Fqγ) for the concentric case and 

is independent of the impeller center angular position %. [K] is the "stiffness 

matrix" of the impeller-volute interaction expressed with respect to the volute 

(note: this is why we have a minus sign in the vector position). Furthermore,

[K] =
Kχx Kχγ

Kyχ Kγγ
(5.33b)

The components Fqχ, Fqγ and those of [K] are determined by the coefficients of
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the dauert series of Eq. 5.33d. Defining

and

u⅛ = y exp 
o

-^-(cosλ - 1) - ln(g./i-a) . cos

A⅛(l + cosλ) + ∑A⅛ sinλ sinkλ
⅛=ι

⅛Qτtτ
-^=-(cosλ - 1) - ln(<5o∕⅛)

Ao(l + cosλ) + ∑A⅛ sinλ sinkλ
⅛=ι

(⅜r

-^-(cosλ - 1)

dλ

. sin

dλ (5.34a)

where (i) = (o), (c) or (s) (see Eqs. 5.32a,b,c) and letting

τ _ Q (tan^ + sin3j8) _ Γ (1 + cos2^) ∩
2πrg 2∏T2

(5.34b)

and

Q cos2^ _ Γ sin2^
2πr2 2πr2

(5.34c)

then one finds for Foχ, Foγ, Kχχ, Kχγ, Kγχ and Κγγ:

Fox - (LU? + MU⅞) (5.35a)

u' = ∕ exp 
o

PΓ2⅛
2
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Foγ= (5.35b)

and

Kχχ=-^-(LUf+ MU⅞) (5.35c)

Kχγ= (LU? + MU½) (5.35d)

Kγχ = g (MU? LU^) (5.35e)

KYY=-^(MU?-LU^) . (5.35f)

Concluding Remarks and Non-Dimensionalization it should be noted that all 

force results and stiffness coefficients obtained here are expressed per unit 

width as we are treating a purely two-dimensional model. Non- 

dimensionalization is then carried for a quick comparison with experimental 

results. All forces are normalized by the dynamic head based on tip speed 

(=pΩ⅛g∕2) times the impeller discharge area per unit width ( =Ag∕bg). All 

stiffnesses are normalized by the dynamic head based on tip speed times the 

discharge area per unit width over the radius of the impeller (=rg). In conclusion 

direct comparison with experimental data can be initiated if all force results of 

Eq. 5.35a are divided by τrpΩ^rg and if all stiffness results of Eq. 5.35b are 

divided by πpΩ ⅝g.
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5.4. Numerical Procedures-Solution of the Vorticity Distribution

We wish to introduce a general method of solution for any of the Fredholm 

integral equations encountered in the previous sections of this chapter in order 

to solve for any vorticity distribution 7(^). In general

∕ 7(ί) Kv(X'4) d⅞ = F(X')
-ι

is the type of equation to be solved with Kγ(X',f) being given by Eq. 5.14c and 

F(X') being any arbitrary but continuous function of X'. Solution of this integral 

equation follows the steps outlined by Mani [53]. These formal steps are as fol­

lows:

1. Let X' = cose and = cosλ so that as X', run from -1 to +1, e and λ run 

from π to 0. The kernel Ky(X'4) of Eq. 5.14c is also of the form

Κν(Χ',ί) = ÷ Kvn(X'.ι) . (5.36)

where KγR is the regular part of Ky once the singularity is removed. KγR contains 

all the image terms (w,).

2. Assume for 7(c0sλ) the usual Glauert-Birbaum airfoil type series of Eqs. 

5.14d and 5.33d with the square root singularity at the leading edge 

(⅛ = 1 or λ = 0) and with all terms vanishing at the trailing edge due to the 

Kutta-Joukowski condition = —1 or λ = ττ). Then

7(λ) = Aocot^-+ ∑A⅛sin(kλ) .
⅛ ],= 1
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We will truncate this serie at k = N thereby keeping N+l coefficients to be calcu­

lated. N will be determined according to the needs of accuracy.

3. Compute the first N+l coefficients, i.e. Co, ' , C^, in the Fourier analysis 

of

F(X') = Co + ∑ C⅛cos(kθ) . (5.37)
k=l

4. compute (N+l)(N+2) coefficients in the double Fourier series expansion of

Kvn(X∖ι) = ∑ Σ B⅛ cos(le) cos(mλ) . (5.38)
1=0 m=0

Evaluate Boo, Boι, ' ' , Bκ,N+ι.

5. Upon substitution of all the preceding in the integral equation we find the

dauert coefficients to satisfy the following set of simultaneous equations 

Ao

N
+ ∑ A∏ 

n≈2

+ A,

+ Bp^-1∕4 — Br,n+1∕⅛ = Cr∕⅜T (5.39)

with r = 0. 1, ..., N. ‰ is the Kronecker delta function equal to zero if r ≠ n and 

equal to one if r = n.

The numerical procedure is straightforward. Select any arbitrary N and solve

the simultaneous set of equations defined above to check for the convergence of

the A⅛ coefficients; increase the value of N as needed. Impeller forces and
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stiffness matrices can then be calculated by truncating any definite integral 

involving these coefficients above order N then evaluating it. We now concentrate 

our attention to the expressions for U} and U⅛ of Eq. 5.34a since these are the 

end products concerning the dauert series prior to the actual calculation of the 

stiffness matrices. It can then be checked that the maximum k = N needed there 

is equal to 9 provided A⅛+ι < A⅛ for k ≥ 5; this is due to the presence of the term 

(sinλsinkλ) in the integrals in λ from 0 to π. Thus only ten terms 

(Ao, At, ' ' , As) of any given dauert series need to be accurately calculated 

since a decreasing pattern for these coefficients is expected after the first few 

terms. The error of truncating U‡ and Ug was then estimated to be much less 

than than 0.1 percent. The only other difficulty consists of estimating the 

influence of higher harmonics (Αγο, A^, - - - ) on the magnitudes of the first ten 

dauert coefficients via Eq. 5.39. Values of N=14 (15 terms) and N=19 (20 terms) 

were then tried with négligeable effects on the magnitudes of the first ten terms 

(and thus on U} and Ug also). Hence we will restrict ourselves to the calculation 

of the first ten dauert coefficients for each of the integral equations defined in 

5.32a,b,c.

5.5. The Computing Programs and Notes on their Use

The main intent of this theoretical work was the calculation of the hydro­

dynamic stiffness matrices exclusively. Therefore the methods of section 5.3 

were numerically investigated instead of the methods of section 5.2 dealing with 

the calculation of radial forces only. For this purpose, two computing programs 

have been developed for the solution of Eqs. 5.32 a,b,c (for γ°(^), γ^⅛) and γ"(^)) 

and for the subsequent calculation of the normalized stiffness matrices. The by­

product of these calculations was the linearized radial force, as defined by Eq. 

5.35a, for how rates close to design. We should emphasize again, however, that 

the correct way to tackle the radial force problem is through the full set of cal­

culations defined in section 5.2. Of the two developed computing programs the
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first one performs the double Fourier analysis of the kernel Kyκ(X',^) and the 

Fourier analysis of F(X'). It then solves the set of simultaneous equations (5.39) 

by matrix inversion in order to compute Uι and U⅛ of Eq. 5.34a. This program, 

called 'FORCE", is written in Fortran IV Η-Extended version and can be operated 

on an IBM 370/3032. The second program, called "TEST", calculates the normal­

ized forces and stiffness matrices of Eq. 5.35a,b as a function of inlet swirl circu­

lation Γ over flow rate Q. It is written in Fortran ΓV and can be operated on a 

PDP-11. Finally both programs are reproduced in Appendix C.

Program FORCE The Anal objective of 'FORCE" is the computation of 

Uj and U⅛ of Eq. 5.34a. The data provided consist of geometric quantities such as 

impeller radius (R2), blade leaving angle (BETA), tongue radius (DN), volute angle 

cotangent (ADN) and total angle subtended by the volute (TETMAX). Other 

inputs included How rate (Q), design flow rate (QDES) and rotor speed (OMEGA). 

The number of harmonics used in the computations (previously N+l) is denoted 

by NHL In view of the previous discussion we set NHI = 10. Throughout this pro­

gram all numerical integrations are carried out using Romberg integration sub­

routines (for more information see Ref. [17]). Matrix inversion of Eq. 5.39 was 

carried out by a Caltech subroutine with initials 'EQSOV". This simultaneous 

equation solver with iterative improvement is included at the end of Appendix C 

for the convenience of the reader.

A brief description of the various steps followed is in order. The double 

Fourier cosine series (Bj∏J of Eq. 5.3B is evaluated first through numerical dou­

ble integration using two Romberg subroutines, "doubin" and 'lnteg". The accu­

racy of integration could be varied by increasing the number of subdivisions 

defined by the input integer mMAX (note that Romberg subroutines use power of 

two subdivisions, i.e. in this case, g∞MAX subdivisions were used). This is the most 

expensive part of the program and a compromise had to be made between
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accuracy and cost. A value of mMAX = 7 was found to be satisfactory for NHI=10 

and yielded estimated convergence accuracies of better than 0.1 percent. Print­

outs of all results were initiated for mMAX = 7 as well as for mMAX = 6 and 

mMAX = 5 in order to check this estimation. The total time required for these 

computations on an IBM 370/3032 was in the vis cinit y of 4500 seconds. The next 

step was the evaluation of coefficients C⅛ of Eq. 5.37 using Romberg subroutine 

"rinteg" with 2^° subdivisions (accuracies of better than 10 digits). Finally after 

the dauert series were computed using Caltech subroutine 'ΕQS0V", U‡ and U⅛ 

were evaluated using Romberg subroutines "ginteg" and "gintgg" with 2*° subdivi­

sions (accuracies of better than 10 digits).

Program TEST. Program 'TEST" accepts the values of the six integrals calcu­

lated by 'FORCE" along with the ratio of the inlet swirl circulation over how rate 

Q (denoted by R). It prints out the normalized radial forces (F<jχ and F<⅛ of Eq. 

5.35a) along with their slopes (with respect to (Qdes *^ Q)∕Qdes ) and the normal­

ized stiffness matrices (K^ of Eq. 5.35b). These results can then be readily com­

pared to other experimental or theoretical data.

5.6. Numerical· Results and Conclusions

A test case using the data of Impeller X and Volute A was computed in order 

to compare our theory with our experimental results. An impeller radius of 81 

mm and rotor blade angle of 25 degrees were selected in addition to a volute 

tongue radius of 91 mm and volute angle of 61.9 degrees. The total angle sub­

tended by the volute was assumed equal to 396 degrees. Flow conditions were set 

to be the same encountered by Impeller X during experimentation; a design flow 

coefficient of 0.092 was used with a rotor speed of 104.7 rad/sec (about 1000 

rpm) and a design flow rate of 0.4 m^∕⅛ec∕in (equivalent to 99.7 gpm for Impeller 

X). Figures 5.6 a,b present data about the slopes of the normalized radial force 

components and stiffness matrix components. The linearity of such results with
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respect to Γ∕Q is predicted by Eqs. 5.35a,b. In a real pump inlet swirl circulation 

Γ is determined mainly by the presence of vanes at the inlet portions of the 

pump. In our experiments no such vanes were utilized; Γ∕Q is then most prob­

ably zero.

We first compare the slopes of Fig. 5.6a with actual data presented in Fig. 4.8. 

The calculated values are found to be an order of magnitude larger than the 

measured ones; this effect might be due to our simplifying assumptions as the 

primary motive of this theory was the calculation of stiffness matrices. The 

correct way to get these forces is the one featured in section 5.8. This is beyond 

the scope of the present work.

The normalized stiffness matrix is plotted in Fig. 5.6b. For Γ7Q = 0 it is mainly 

a diagonal matrix. The diagonal elements Kχχ and Kγγ are around 0.5 which is 

four to five times less than what was measured. Their effect is to push the 

impeller towards the volute. The absence of "cross-coupling" terms is an indica­

tion that this potential flow theory failed to predict any inherent rotordynamic 

instability. Furthermore these data were somewhat similar to Colding- 

Jorgensen's simple source-vortex impeller model results [89].

In order to get a better comparison between theory and experiments we 

should subtract the effects of disk friction of section 4.6 (amounting to about 25 

percent of the total stiffness matrix) from the experimental results; these 

effects cannot be recovered in the theory as we are treating a two-dimensional 

model. Furthermore rotational effects should be included in the impeller 

discharge flow in order to get better modelling of real ∩ows. We have suggested 

in the past [19] a method dealing with the interaction of a moving cascade with 

a row of singularities. Vorticity was then assumed to be small enough to be car­

ried on the mean Row streamlines and a method of solution was introduced 

accordingly. A similar type of calculation should be carried for the case of the
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displaced impeller located inside a logarithmic volute in order to better the 

present theory.

Even though the present simplified potential flow model failed to duplicate 

the experimental results of Chapter 4, it is still perhaps useful in estimating 

trends of the stiffness matrix as a function of impeller and volute parameters. 

Here we separately vary rotor blade angle, volute angle and tongue radius. Fig­

ure 5.7 is a table showing the corresponding effects on the stiffness matrix 

coefficients for Γ∕Q = 0. "Normal" condition represents the data given at the 

onset of this section. The main findings can be summarized as follows: no 

changes in the stiffness matrix components were detected when the rotor blade 

angle was increased from 20 to 25 to 30 degrees. However as the volute tongue 

radius was increased, the diagonal elements of the stiffness matrix decreased 

accordingly; this decrease was equal to 15 percent of the original values for a 

tongue gap (⅛, ^^ r⅛) of twice the original one and to 38 percent for a tongue gap 

of four times the original gap. These diagonal terms also decreased, as would be 

expected, when volute angle was decreased. Cross-coupling terms, however, 

remained small at all times.

In conclusion this theory failed to duplicate the experimental results on the 

stiffness matrix, as can be attested to by the absence of cross-coupling terms 

responsible for rotor whirl. Furthermore the diagonal elements were smaller by 

a ratio of four to Ave times. Their tendency is to push the impeller towards the 

walls of the volute which agrees with experimental findings. Future improve­

ments should include entrance losses and rotational flows at the discharge 

using the same procedures described in reference [19].
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VOLUTE

Fig. 5.1. Source-vortex model used by Csanady [31], Domm and Hergt [33] and 
Colding-Jorgensen [29] (see also text).

Fig. 5.2. Schematic of the rotor model used by Shoji and Ohashi [62] and Imaichi et 
al [43]. It has a finite number of blades (modeled by vortex sheet -γ) and 
trailing wakes (modeled by vortex sheet *γ,).
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Fig. 5.3. Impeller and volute representation in the physical plane.
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Fig. 5.4. Impeller and volute representation in the cascade plane.
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Fig. 5.5. The eccentric problem. The impeller is displaced from its original centered 
position to calculate the stiffness matrix.
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Fig. 5.6a. The slopes of the dimensionless radial force components are shown versus 
inlet swirl circulation over flow rate.

Fig. 5.6b. The normalized stiffness matrix coefficients are shown as a function of inlet 
swirl circulation over flow rate.
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---------------  —-------- -—.
Impeιter∕Vo!ute Parameters

⅝
Kyy

*
Kχy

X
Kyχ

(X)
Normat Case 0.555 0.467 0.05t 0.016

(XX)/3=20° 0.554 0.470 0.022 0.045

(XX)
β=30° 0.557 0.464 0.079 -0.0t2

(XX)
= t02 mm 0.475 0.393 0.026 0.030

(XX)= !23 mm 0.35t 0.285 0.001 0.040

(XX)
Votute Angie = 74° 0.422 0.26t -0.050 0.074

(X)
Normαt Case depicts the test conditions used in Figs.
5.6 a,b where r⅛ = 8imm , δo= 9!mm , /3=25°, 
0M = 396°, votute angte = 8t.9° and design f)ow 
coefficient = 0.092 .

(χ⅝)
On!y parameter that was changed from Normat Case.

Fig. 5.7. Table showing impeller and volute parameter effects on the dimensionless 
stiffness matrix coefficients due to various geometric changes for Γ∕Q - 0.
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Chapter 6

SUMMARY AND CONCLUSIONS

A facility to measure steady and unsteady fluid forces acting on a whirling 

pump-rotor modelling one of the two double suction impellers of the HPFTP of 

the Space Shuttle was designed and constructed. The angular speed of the whirl 

as well as that of the impeller could be independently varied although the eccen­

tricity of the whirling shaft was Axed. Only the steady-state vector forces arising 

from the quasi-static displacement of the rotor within the surrounding casing 

are measured herein. To accomplish this the whirl speed was maintained 

sufficiently slow to be equivalent to a quasi-steady change in rotor center posi­

tion and to permit a continuous sampling of forces exerted on the impeller. 

These steady impeller forces are interpreted as an average volute force at the 

whirl center and a force proportional to this displacement from the center. The 

average volute forces are usually called radial forces. Experiments were made on 

two different types of volutes; the first is a "conventional" volute in which the col­

lection area grows linearly with angular position around the impeller, and the 

second is a simple toroid or "circular" volute of constant cross-sectional area 

with tangential discharge.

Here we summarize our An dings on radial forces:

i) the magnitudes of the radial forces scale with the square of rotor speed 

with some slight departure for the higher rotor speeds and low Aow 

coefficients.

ii) the agreement with most past experience is good.
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iii) for the conventional volute the magnitude of the radial force is found 

to vanish at the design flow coefficient. Above and below this design value a 

linear behaviour (with respect to how coefficient) is detected. Values of the 

forces are in close agreement with the experimental results of Agostinelli et 

al [4] and Iversen et al [44] but not so much with the experimental results 

of Domm and Hergt [33]. The overall magnitudes of the radial forces were 

lower for the circular volute. A linear decrease in these magnitudes was 

observed towards shut-off but the force did not vanish there due to possible 

manufacturing imperfections.

iv) in order to minimize radial wear ring interference with the measure­

ments of radial forces, two set of radial face seals were selected to control 

leakage flows from the volute into the inlet and the back of the pump hous­

ing. There was then no noticeable change in radial force magnitudes when 

the front and back face seal clearances were increased from 0.14 to a max­

imum possible value of 0.79 mm (inlet leakage flows of two and twelve per­

cent respectively). No experiments were conducted, however, with the seals 

in contact.

v) potential flow theories [29,33] underestimate the radial forces up to a 

factor of two.

One of the major results concerns the force due to the displacement of the 

impeller from the center of the volute. This additional fluid force is interpreted 

in terms of a "stiffness" matrix multiplying the position vector of the displaced 

impeller; linearity of this relationship is assumed. These matrices have been 

measured for the first time and their main features can be summarized as fol­

lows:
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vi) each component of the hydrodynamic stiffness matrix scales with the 

square of rotor speed.

vii) the new and most important finding is that for both volutes, the 

stiffness matrix is the sum of a diagonal and skew-symmetric matrix and 

the diagonal terms give a negative spring constant. This finding may have a 

bearing on the "rough running" reported in many pumps.

viii) a two dimensional flow model of an impeller and volute was made with 

the impeller being represented by an actuator having an infinite number of 

vanes. The flow is assumed to be irrotational as in earlier impeller-volute 

models. The diagonal terms of the stiffness matrix are underpredicted by a 

factor of four and the important properties of the off diagonal terms are not 

predicted. From this it seems clear that such theories must include the 

effects of flow rotationality known to be present in such flows.

ix) a solid impeller having the same geometric dimensions as the one 

tested was used to estimate disk friction effects for shut-off conditions. The 

stiffness matrix so found was 25 percent of that at the design flow 

coefficient for the case of the conventional volute.

x) detailed measurements of static pressure distributions around the cir­

cumference of the conventional volute were made for various locations of 

the impeller center (on the whirl orbit) in order to determine how much the 

static pressure forces are responsible for the radial forces and stiffness 

matrices. The static pressure force components were smaller than the radial 

force components and they do not exhibit the same sign for the X-direction; 

this was in disagreement with Iversen et al [44]. Furthermore the static 
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pressure matrix (de∩ned similarly as the stiffness matrix using static pres­

sure forces only) came up to about 20 percent of the total measured 

stiffness matrix. These results show that the steady hydrodynamic impeller 

force contains a substantial component due to the non-isotropy of the net 

momemtum flux leaving the impeller.

As a Anal comment, we have shown by direct measurements that the steady 

Auid dynamic impeller forces caused by the volute can induce rotor whirl. Addi­

tional measurements of forces at non-zero whirl are needed in the future to 

obtain damping and inertia forces so that stability criteria can be evaluated.
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Appendix A

DYNAMIC FORCES ON A WHIRLING CENTRIFUGAL ACTUATOR

IMPELLER IN AN UNBOUNDED MEDIUM-APPARENT

MASS EFFECTS AND STABILITY ANALYSIS

A.l. Statement of the Problem

As an application on the many uses of the actuator disk as defined in Chapter 

V, we will introduce a simple calculation of the forces acting on a whirling 

impeller in an unbounded medium. The problem to be solved is shown in Fig. A.l. 

Here a rotor with an infinite number of vanes of arbitrary shape and blade angle 

is assumed to whirl about a stationary point with a constant eccentricity ε and 

a constant whirl speed ω. Let us denote the rotor center's instantaneous coordi­

nates by (ε , %), where % = Mt. t being time. Flow passes through the rotor from a 

source Q located either at the rotor center (whirling) or at the center of whirl 

(stationary). There may also be a preswirl circulation Γ. The assumptions of 

incompressible and inviscid flow are postulated. The equations of motion for the 

fluid in a frame attached to the rotor are 

where W_is the relative velocity, Ω is the impeller angular speed, p is the static 

pressure, p is the density, F∏ is the body force representing the action of the 

vanes in a frictionless flow and a∏ is the acceleration of the center of the rotor. 

It is assumed that there is no "shock loss" at the inlet of the impeller when the 

inlet relative Dow angle does not match the vane angle there. We can identify 

three regions of the flow through the impeller sketched in Fig. A.l; in the inlet 
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region, I, the body force Fg is zero as we assume the Gow to be irrotational there. 

Region II is de⅛ned as the area occupied by the impeller between its inner radius 

Γγ and its outer radius Γg. There the body force Fg is perpendicular to the blades 

and hence also to JL the relative velocity. Region III is defined as the exit region 

for r > ⅜. The flow there is inherently rotational. Progress is readily made how­

ever if we assume irrotationality in the exit region leaving the problem of 

entrance losses and outer vortical flows to a subsequent paper.

A.2. Problem Formulation

The flow in regions I and III is seen to be irrotational and incompressible 

hence

V 2 / = 0 (A.2)

there, p' is the usual potential velocity. The flow must satisfy kinematic condi­

tions of the moving, rotating blade row. In addition, it is assumed that the velo­

city leaving the blades in region III is parallel to them there; this is the 

equivalent of the Kutta condition. To solve the problem illustrated in Fig. A. 1, it 

is convenient to solve two simpler ones indicated in Figs. A.2a,b. In this the 

kinematic problem is decomposed to that of determining the flow held and 

forces on the impeller due to the acceleration a∏ of the center of a non-rotating 

wheel having zero through how, and second that due to the rotating impeller 

with through flow moving at speed Evidently (see Fig. A.l)

Vκ =iωee^ (A.3a)

and
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aκ = (A.3b)

In the present problem all of the essential unsteady effects are due to the 

acceleration of the rotor center. It is convenient to solve both the acceleration 

and velocity fields relative to the center of the moving impeller.

Two cases concerning the position of the center of the source-vortex (Q,Γ) are 

treated; the first one involves having it coincide with the center of the impeller 

while in the second case the source-vortex center is stationary at the origin of 

the whirl coordinates. Both cases can also feature "shrouded" and "unshrouded" 

impellers. In the "shrouded" case we use the fact that real pumps have axial 

inlets. Therefore this inlet flow can contribute only to a momentum drag due to 

the presence of the source in the absence of pre swirl. There the force on the 

impeller is

vol·
d(vol.) + pj V(V.n)ds + j puds

where

vol. is the volume between r = Γt and r = rg

a. is the acceleration far from the impeller (=-a∏)

as is the acceleration relative to the blades

⅜Lis the velocity relative to the reference frame xy of a rotating blade

p is the static pressure

C3 is the contour enclosing the impeller at r = rg 

ruis the normal vector to the contour Cg.

In the "unshrouded" case the inlet flow is assumed to be radial, i.e., a fully 

two-dimensional model is considered. There the force on the impeller is
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E-=p∕

vol·
(⅛B * a-) d(vol.) + pj° V(V.n)ds + J* pnds

- V(V.n)ds - y pnds , (A.4b)
Ci Ci

where Ci is the contour at the impeller entrance (r = Γι). We will first calculate 

the forces due to the acceleration held for the various cases under considera­

tion.

A. 3. The Acceleration Field-Apparent Mass eCEect

It is somewhat more convenient to work with the acceleration potential

Φ = -p½) (A.5)

since the equations of motion are then

aι = V Φι for r < Γγ

a∏ = V Φ∏ + Fj3½) . ri < r < rg

and

a∏j = V Φm r > rg (A.6)

for the three regions shown if Fig. A.2a . The conditions to be sati&ed are
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V Φ∏ι -* a^_ as r → ∞ , (A.7a)

and continuity of the acceleration component in the radial direction at the 

boundaries of region 11, i.e.,

⅛ (r=rg . &) = a,∏ (r=rg . θ) (A,7bl)

ar∏ (r=r, , θ) = a^ (r=rι , e) . (A.7b2)

The force held of Eq. A.6 must be perpendicular to the acceleration held (this is 

the how tangency condition) so that 

ar∏ (r=rι , θ+∆e) = a^ (r=Γg , φ) ι*3 

fl
(A.7c)

where ∆Φ is the angular difference subtended by one blade.

An additional relation is necessary in order to solve for the acceleration 

potentials of Eq. A.5 . The pressure field must be finite at the origin. The 

acceleration potential Φ, since it is proportional to the physical pressure, must 

be single valued. This means that if the potential is got by integrating Eqs. A.6 

around a closed contour as shown in Fig. A.2a, we must have

ΔΦ = Φ⅛ - Φ. + Φc - Φ⅛ + Φd - Φc + Φ& - Φ⅛ = 0 - (A.B) 

Each of these differences occurs within a different region of the flow. That por­

tion within the impeller, region II, is integrated along a blade so that Fg makes

no contribution there. We need solutions of Φ for regions III and I since these are
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connected by the continuity relations of Eq. A.7. Clearly V ⅝ = 0 and hence pos­

sible solutions are of the form

Φ∏ι = a<,rcos(θ-^)+ ∑ r^ (a⅛coske + b⅛sinke) (A.9a)
k=l

forr>rgand

⅛ι = ∑ r (a'⅛coske + b'hsinkθ) (A.9b)
k=l

for r < Γγ. The coeGlcients a⅛, b⅛ and a'⅛, b'⅛ are connected by the matching con­

ditions of Eq. A.7b and through Eq. A.6. The terms of Eq. A.6 within region II are 

evaluated readily by noting that

⅝ι (r.e) = — ⅛ (i⅛ . e) -

In this way we And that a⅛ = b⅛ = a'⅛ = b'⅛ = 0, k > 3 and that

Φ∏ι (r,θ) = a.rcos(e rg c 
y2 g + c (A,10a)1 +

and

2
2 + cΦι (r,&) = a.r — r

cos(e - - ∆θ) (A.10b)

where
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*⅛
- Γ dr 

c rcos^(r) (A.10c)

Here ^(r) is the vane angle as a function of position on the blade. For a loga­

rithmic blade, 0(r) = 0 = constant and

ln(r2∕h)
cos^(⅛S)

(A-10d)

It is perhaps worthwhile to mention that the acceleration in the inner region I is 

a linear one proportional to a∏ but in general it is in a different direction by the 

amount ∆θ except for a radial impeller where ∆θ = p = 0. Forces due to the cen­

trifugal acceleration can now be found using parts of the momentum equation 

(Eqs. A.⅛a,b). Closed form solutions for logarithmic and radial impellers can 

then be expressed as

⅜-= -εω≈e^ Μ. , (A. 11 a)

that is a pure centripetal force. Μ. represents the added mass effect and is 

equal to 

Μ. = πpr^ 2c
2 + c (A. lib)+ 1 -

in the case of an unshrouded impeller. Fig. A.3 shows this added mass normal­

ized by πpr^ plotted versus rotor blade angle p for various values of rγ∕Tg. It is 

perhaps worthwhile to note the apparent mass to be three times the displaced 

mass of the impeller when → 0. This result is valid for radial and logarithmic 



-163-

impellers.

A. 4. The Velocity Field for the Case of the Source-Vortex at

the Origin of the Moving Impeller. Stability Analysis

Here we seek the velocity held of the rotating impeller immersed in the steady 

velocity held V. of Fig. A 3 . The velocity potentials p' in regions I and III have 

precisely the same form as Eqs. A.9a,b except that source and vortex terms are 

added; we have also the same continuity condition of Eq. A.7b wherein the radial 

velocities must conserve volume how. Also far from the impeller

V → V- - (A. 12)

There is one principal difference however which is the how leaving the impeller is 

assumed to be tangent to the blades there. This requires

3⅛⅛
r8θ

8⅛⅛
8r at r = rg . (A. 13)

It is also understood that ε is such as the how is outward there. For %⅛ we have 

Q Γρ °°ώπ = -V.rsin(⅛ - + ^-lnr + g^-θ+ ∑ r^*< (a⅛coskθ + b⅛sinkθ) (A. 14)

We have then, by application of Eq. A.13

Γ2 = 2πr^Ω - Qtan⅛9 ,

and for an impeller of arbitrary blade shape
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^m(r.⅛) = τr^^+ θ - V.rsin(e-%) + -^-V.sin(e - % - ^9)
2ττ 2τr r

For a radial blade (^3 = 0) , the influence of the flow past the impeller is that of a 

simple doublet. The inner solution is readily found and consists of a uniform 

Row, the source and the original vortex at the center. For completeness,

⅞q(r,θ) = lnr + ⅛-⅛ - 2V*,r^-cos0sin(⅛ - % 0 - ∆θ) .
27T 2TΓ

(A.16)

Pressure may be calculated from the Bernouilli Equation in the steady refer­

ence frame of Fig. A.2b and with this the momentum equation (Eqs. A.4a,b) can 

be applied to obtain the resultant force due to the motion of the impeller. For 

axial inlets ("shrouded" case)

ΓiL=pV.Γ2e^ (A.17)

where e∑js a unit vector aligned with the axis of whirl 0'0 of Fig. A.l. F'yis then 

merely a lift force that cannot contribute to rotor dynamic instability. However 

for an "unshrouded" impeller we must add the contributions of the pressure 

force and momentum Aux on the inner contour, C⅛ of Fig. A.l . Then the force is

2V. s^Qcos(0 + Δ&) - Γsin(^ + Δ&) (A.16)⅛ .
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It is clear that the presence of a tangential component (terms in e^ may 

enhance rotor whirl. In fact for ∣ 0 ∣ < 90° and for

Qcos(0 + ∆e) > Γsin(0 + ∆θ) (A. 19)

self-excitation is achieved. Fig. A.4 shows the magnitude of the normalized 

tangential force (terms in e⅛ ∕hQV°°) for various logarithmic rotor blade angles & 

Γ∕Q ratios and for rι∕⅜ = 0.5. When this tangential force is positive, the theory 

predicts an unstable regime. This is even true for Impeller X (p = 25°) for 

Γ∕Q < 1. The prediction that F⅛, a damping force, be destabilizing for such a 

simple case is contrary to what was observed experimentally by 0hashi and Shoji 

[57]. The main conclusion is that this theory is unsatisfactory unless vortex 

shedding and viscous losses are added to the analysis.

A. 5. The Velocity Field for the Case of a Stationary

Source-Vortex at the Center of Whirl

We wish now to investigate the case of a stationary inlet source. For simplicity 

we have neglected prerotation Γ. The problem can still be split into the two 

simpler ones of Figs. A.2a,b . The acceleration held is the same as in section A.3 

with the force on the impeller due to the acceleration of the rotor center given 

by Eqs. A.l la,b. The outer velocity Reid of region III also remains unchanged with 

the force due to the motion of the impeller given by Eq. A. 17 for the "shrouded" 

case. The only diR⅛rence comes from the inner Row solution of region I as seen 

in Fig. A.2a. We will then have a different "unshrouded" impeller force resulting 

from the source seen as being displaced from the origin of the impeller by the 

given eccentricity ε (this is not shown in Fig. A.2). Solution of the inner Row Reid 

is achieved through use of the circle theorem to satisfy the proper boundary 

conditions at the impeller inlet (r = rj. There the radial velocity is
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Vri(rι,Φ) = ------2V. ⅛2θs^sin(e-^-^-Δe) . (A.20a)
2?Γr^ r*t

Then the tangential velocity at r = Γι becomes

______ εsin(⅛ — ______
+ r^ + 2erιcos(θ — ^)

— 2V. ^-cos^sin(⅛ - - ∆e) . (20b)

Contributions of the pressure and momentum Mux on the inner contour Ci can 

then be evaluated. These consist of a series of definite integrals somewhat hard 

to evaluate. Finally one finds

F⅛= pV.Γg - ρ fg - 2V. p-Qcosβsin(^ + ∆e) e

(A.21)

It is interesting to note the similarity between Eqs. A.IB and A.21 for Γ = 0. They 

both exhibit the same tangential force and almost the same radial force except 

for the term involving Q^. Therefore the same conclusions about the inadequacy 

of this theory apply. For completeness, we will refer to Fig. A.4 for the case 

Γ∕Q = 0 to illustrate the tangential component of the preceding damping force.
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A.6. Concluding Remarks

The forces on a whirling impeller in an unbounded medium are seen to con­

sist of a "centrifugal" effect due to the apparent mass and an inwards 'lift" force 

due to the circulation about the rotor for the case of an axial inlet, whether this 

inlet is stationary or whirling with the impeller .These are conservative forces 

which may be useful carrying out a vibration analysis, and they cannot lead to 

any form of unusual rotor vibration excitation. However when the inlet flow is 

purely radial, a tangential self-exciting or self-damping force can exist depend­

ing on blade geometry. It is perhaps interesting that the value of this tangential 

force does not depend on the relative position/motion of the inlet source. These 

findings, however, contradict known experimental results that show this force to 

be of a damping nature.

Certain improvements to the calculations can be readily imagined; for exam­

ple, an incident angle-dependent shock loss would lead to a rotational outer flow 

having a different result from the present one. This will be the subject of future 

reports.



168 -

REG)O
N m ⅛L o o

c3
Z

⅛-

5 ⅛5
⅛D"

⅛
Ë Cω

cφ

ω 
O 
Z 
>^ 
z
E
ω 
-w
t/5

!U
Έ

<U
¾

s

<1>

H

<
.⅛



-169-

ve
lo

ci
ty

 fie
ld

 du
e t

o t
he

 m
ot

io
n o

f p
oi

nt
 O

 re
la

tiv
e t

o O
' o

f F
ig

. A
. 1

.



- 170 -

m
ed

iu
m

 plo
tte

d ve
rs

us
 rot

or
 Ma

de
 ang

te
 /? 

fo
r va

rio
us

 inl
et

 ove
r ou

tle
t 

ra
di

us
 ra

tio
s. A

 fo
ga

rit
hm

ic
 bl

ad
e s

ha
pe

 is 
as

su
m

ed
.

'gsVΛ) !N3dVddV 03ZiΠWdON



-171-

fo
r a

ll p
os

iti
ve

 va
!u

es
 wh

iie
 a 

sta
bl

e r
eg

im
e e

xi
ts f

or
 al

l ne
ga

tiv
e v

al
ue

s. F
or

 
co

m
pa

ris
on

 pu
rp

os
es

, Im
pe

lle
r X

 ha
s a

n e
xi

t b
la

de
 an

gl
e o

f 2
5°

.

∞Λ0<∕∕^^j '30d0d ΙV)1N3DNV1 O3Z∩V^dON



- 172 -

Appendix B

EXPRESSIONS FOR S3, S4, Sg AND Sg

We herein give the full expresions for S3, S⅛, S5 and Sg as de∩ned in Equation

5.21. These are

π π
S3 = "'

0 0
= y^y Ao( 1 + cosλ) + ∑ A⅛sinλsinkλ dλdλ' 

k=ι

Ag( 1 + cosλ') + ∑ A⅛sinλ'sinkλ' 
k=ι

. exp
a⅛

2

1
(cosλ - 1) - ln(<5t,∕i'3)

sin[-^-(cosλ-l)] sin[^-(cosλ-cosλ')] + cos[^-(cosλ-l)] sinh[-^-(cosλ-cosλ)]
____ 2_______________ 2_____________________ 2_________________ 2______________  

cosh[^^-(cosλ-cosλ')] - cos[-^-(cosλ-cosλ')]

and

4
(1 + a^) (cosλ - cosλ)

(B.l)

" " w '
= yy Ao( 1 + cosλ) + ∑ A⅛sinλsinkλ dλdλ'

⅛=ι

ιτ π

S4
0 0

Ag(l + cosλ') + ∑ A⅛sinλ'sinkλ'
, k=l

. exp -(cosλ - 1) - ln(⅛)∕⅞)2
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cosh[-^^-(cosλ-cosλ')] - cos[^-(cosλ — cosλ)]

for Sg and S⅜ and

cos

(1 + ⅛2) (cosλ - cosλ)

DJ
(B.2)4

fr π
S5 = yy Ao(l + cosλ) + ∑A⅛sinλsinkλ dλdλ' 

0 0 k=ιk=ι

Ao(l + cosλ') + ∑ A]<sinλ'sinkλ' 
k=l

. exp (cosλ - 1) - ln(<5o∕⅛*2) (B.3)
3

sin[-y-(cosλ-l)]sin[^-(cosλ-cosλ)]+cos[^-(cosλ-l)]sinh[-^-(cosλ+cosλ) Yj 

cosh[-^^(cosλ + cosλ') — Yι] — cos[ -y-(cosλ — cosλ)]
8

and

π π

S6
^⅛ 0

= if ]Ao(l + cosλ) + ∑ A⅛sinλsinkλ dλdλ' 
- - ⅛=1

Ao(l + cosλ') + ∑A⅛sinλ'sinkλ',
k=l

. exp ^-(cosλ - 1) - ln(⅛,∕⅞) (B.4)
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θκf &&r , 3-θτj ,
cos[ -^-(cosλ-l)]sin[ (cosλ-cosλ )] -sin[ -g-(cosλ-l)]sinh[ ——(cosλ+cosλ)-Yι]

cosh[ (cosλ + cosλ) — Yι] - cos[^-(cosλ — cosλ')]

for S5 and Sg with Yt = 21n(<5o∕⅜) + aθg.
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Apρendix C

COMPUTER PROGRAMS

c.l. Program FORCE

c This Programs is the property of Dimitri S. CHAM I EH.
c Subroutines written by P. C. CHEE.
c It computes all the numbers needed for the calculation of forces 
c acting on an actuator disk impeller eccentrically located within 
c a logarithmic spiral volute with the assumptions of irrotational 
c inviscid flows, small eccentricities and flow rates close to 
c design. Along with program TEST it computes dimensionless impeller 
c force components and dimensionless stiffness matrix components, 
c For use on IBM 370/3032
c
c....................lιAIN PROGRAM..........................
c
∕∕FORCE JOB(*****,***,***),"FORCE',TIME=12 0,CLAS S=X
∕*JOBPARM REGION=5COK
∕*JOBPARM LINES=15
∕∕ EXEC FORTXCLG,PARM.FORT=^OPTIMIZE(2÷T
∕∕FORT.SYSIK DD *

IMPLICIT REAL*8(A-H,O-Z) 
REAL*4 DDZERO(21),DDCC(21),DDCS(21), 

GZ(21),GZ1(21),GZ2(21), 
GC(21),GC1(21),GC2(21), 
GS(21),GS1(21),GS2(21), 
DDEXB(50,21),DDBXBl(50,21),DDBXB2(50,21)

DIMENSION BFOUR(21,22),B1(21,22),B2(21,22), 
BXB(21,21),BXB1(21,21),BXB2(21,21), 
CZFOUR(21),CCFC(21),CSFS(21)

c C0mi0U∕ÇF/DN,R2,ADN,TETMAX,BETA,PI,TAU2
common ih
common ∕bcf∕ib,jb
common limn

c
c Impeller and volute geometric data and flow conditions data.
c DATA OHEGA,Q,QDES∕104.7D0,4.1D0,4.3D0∕

DN=0.3D0
ADN=0.1418D0
R2=0.265D0 
BETA=0.436D0 
PI=DARCOS(-1.0D0) 
TETMAX=2.2D0*PI 
QH=(QDES-Q)∕QDES 
TAU2=2.0D0*PI*OHEGA*R2*R2-Q*DTAN(BETA)

c
c Enter number of harmonics and Romberg integration number.
c KHI=10

mMAX=7 
limn=NHI 
NHI2=HEI+1

WRITE(6,2000)DN,R2,ADN,TETMAX,BETA,PI,TAU2,OMEGA,0,ODES, 
QH,NHi,NHi2,mMAX

2000 FORMAT(IX/IX.^DN=^,D14.7∕1X,"R2=",D14.7∕1X,"ADN=^,D14.7∕ 
1X,"TETMAX= ,D21.14∕1X,^BETA=^.D14.7∕1X 'PI=',D21.14/ 
1X,^TAU2=^ ,Dil .14/IX,^OHEGA=^ ,D14.7∕lx∕Q=^ ,D14.7∕ 
1X,^QDES=",D14.7∕1X,^QH=^,D21.14/IX,^NKI=',I3∕1X, 
^N⅛l2=∖I3hx,'mHAX=^,I3∕∕)
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Evaluation of the double Fourier serie expansions of the kernel.
BFOUR(ib,ib) corresponds to mMax, Bl(ib,jb) to mliax-1 and 
B2(ib,jb) to mlIAX-2.

2005

2010

10
20

WRITE(6,2005)
FORI4AT(iX,"BFOUR(L,M) ; Left to Right decreasing mMAX"∕) 
do 20 ib=i,NHI

do 10 jb=l,NHI2
call doubin(ssg,ib,jb,mMAX)
call doubin(ssgl,ib,jb,n^IAX-l)
call doubin(ssg2, ib, jb,mliAX-2)
write(6,2010) ιb,jb,ssg,ssgl,ssg2 
format(lx,12,2x,12,jχ,d21.14,3χ,d21.14,3x,d21.14) 
BFOUR(ib,jb)=ssg
Bl(ib,ib)=ssgl
B2(ib,jb)≈ssg2

continue
continue

Evaluation of the Cosine Fourier serie expansion of the right 
hand side of the integral equation. CZFOUR corresponds to Eq. 
5.32a, CCFC to Eq. 5.32b and CSFS to Eq.5.32c. These results 
are automatically divided by PI as they appear in Eq. 5.39.

2015

2020

30

WRITE(6,2015)
F0RMAT(∕∕lx,^Right Hand Side Fourier Decompositions^/) 
do 30 ih=l,NHI

CZFOUR(ih)=O.OdO
if(ih.eq.l)CZFOUR(1)=4.0D0*QH^TAU2∕(R2*TETMAX*PI) 
call rinteg(sfc,sfs)
CCFC(ih)=sfc⅛4.0d0⅛(l .0d0+ADN*ADh)*TAU2/(TETî*iAX"DH^Pl)
CSFS(ih)=sfs^4.0d0⅛(l.0d0+ADN^ADN)*TAU2∕(TETM2.X*DN-Pl)

WRITE(6.2020)ih,CZFOUR(ih),ih,CCFC(ih).ih,CSFS(ih)
FORHAT(1X.^CZFOUR(^,I2 ')= ,D21.14,5x∕cCFC(",I2,O=∖

D2i.l4,5X,^C⅜sι',I2 O=^,Dil.l4)
DDZERO(ih)=CZFOUR(ih)
DDCS(ih)=CSFS(ih)
DDCC(ih)=CCFC(ih)
CONTINUE

c

c

c

Simultaneous equation matrix as defined by Eq. 5.39.

DO 40 1=1,NHI

BXB(I,1)=BFOUR(I,1)+BFOUR(I,2)∕2.0DO
BXB1(I,1)=B1(I,1)+B1(I,2)∕2.0DO
IF(l!⅛⅛BXBι^iHι=B⅛(i⅛42^D0∕TETI-iAX

IF(I.EQ.1)BXB1(I,1)=BXB1(I,1)-4.ODO∕TETMAX
IF(I.EQ.1)BXB2(I,1)=BXB2(I,1)-4.ODO∕TETHAX

BXB(I,2)=BFOUR(I.1)∕2.0DO-BFOUR(I,3)∕4.0DO
BXB1(I,2)=BHI,1)∕2.ODO-B1(I,3)∕4^ODO
BXB2(I,2)=B2(I,1)∕2.0DO-B2(I,3)∕4.0DO
IF(I.EQ.2)BXB(I,2)=BXB(I,2)+4.ODO∕TEΩ½X
IF(I.EQ.2)BXB1(I,2)=BXB1 I,2)+4.0D0∕TETMAX
IF(l.EQ.2)BXB2(I,2)=BXB2(I,2)+4.0D0∕TETHAX

DO 40 J=3,NHI
BXB(I,J)=(BFOUR(I,J-1)-BFOUR(I.J+1))∕4.0DO
BXBl(I,J)=(Bl(I,J-l)-Bl(l,j+n)∕4.0D0
BXB2(I,J)=(B2(I,J-1)-B2(I,J+1))∕4.ODO
IF(I.EQ.J)BXB(I,J)=BXB(I,J)+4.0D0∕TETM∕,X
IF(I.EQ.J)BXB1(I,J)=BXB1(I,J)+4.ODO∕TETMAX
IF(I.EQ.J)BXB2(I,J)=BXB2(l,J)+4.0D0∕TETI'iAX
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40 CONTINUE
WRITE(6,2030)

2030 FORKAT(1X∕∕1X,'I , J',15X,'BXB',24X,'BXB1',24X,'BXB2'∕)
DO 50 1=1,NHI
DO 50 J=1,NHI
DDBXB(I,J)=BXB(I,J)
DDBXBl(I,j)=BXBl(I,J)
DDBXB2(I,J)=BXB2(I,J)
WRITE(6,2040)I,J,BXB(I,J),BXB1(I,J),BXB2(I,J)

2040 FORMAT(1X,I2,',',I2,5X,D21.14,4X,D21.14,4X,D21.14)
50 CONTINUE

c
c Evaluate dauert series terms. EQSOV is a simultaneous equation 
c solver with iterative improvement and is a CALTECH subroutine.
c GZ, GZ1 and GZ2 belong to Eq. 5.32a for mMAX, mMAX-1 and mHax-2. 
c GC, GC1 and GC2 belong to Eq. 5.32b for mMAX, mMAX-1 and mUax-2. 
c GS, GS1 and GS2 belong to Eq. 5.32c for mMAX, mMAX-1 and mMax-2.
c

CALL EQSOV(NHI,DDBXB,DDZERO,10,0.00001,GZ,IT1,2)
CALL EQSOV(NHI,DDBXB1,DDZERO,10,0.00001,GZ1,IT2,2) 
CALL EQSOV(NHI,DDBXB2,DDZERO,10,0.00001,GZ2,IT3,2) 
CALL EQSOV(NHI,DDBXB,DDCC,10,0.00001,GC,IT4,2) 
CALL EQSOV(NHI,DDBXB1,DDCC,10,0.00001,GCl,IT5,2) 
CALL EQSOV(NHI,DDBXB2,DDCC,10,0.00001,GC2,IT6,2) 
CALL EQSOV(NHI,DDBXB,DDCS,10,0.00001,GS,IT7,2) 
CALL EQSOV(NHI,DDBXB1,DDCS,10,0.00001,GS1,IT8,2) 
CALL EQSOV(NHI,DDBXB2,DDCS,10,0.00001,GS2,IT9,2)

2050

2060
60

2070
70

2080
80

WRITE(6,2050)lTl,IT2,IT3,IT4,IT5,IT6,IT7,IT8,IT9
FORHAT(1X∕∕1X,'Conversion Iteratrons in order (1 to 

9I5∕∕1X,' GLAUERT COEFFICIENTS : ZEROTH, COSINE 
'AND SINE BLOCKS'∕3xyFrom left to right, mMAX, 
'mHAX-l and mHAX-2 Blocks'//)

DO 60 1=1,NHI
WRITE(6,2060)1,CZ(I),GZ1(I),GZ2(I)
FORMAT(1X,I3,5X,E14.7,5X,E14.7,5X,E14.7)
CONTINUE
DO 70 1=1,NHI
WRITE(6,2O7O)I,GC(I),GC1(I),GC2(I) 
FORMAT(1X,I3,5X,E14.7,5X,E14.7,5X,E14.7)
CONTINUE
DO 80 1=1,NHI
WRITE(6,2O8O)I,GS(I),GS1(I),GS2(I) 
FORlιAT(lX,I3,5X,E14 J,5X,E14.7,5X,E14.7) 
CONTINUE

9):;,

y

c
c Evaluation of Ul and U2 according to Eq. 5.34a.
c

call 
call 
call 
call 
call 
call 
call 
call 
call

call 
call 
call 
call 
call 
call 
call 
call 
call

ginteg(sgz,GZ) 
ginteg(sgzl,GZ1 
ginteg(sgz2,GZ2 
ginteg(sgc,GC) 
gιnteg(sgcl,GCl 
ginteg(sgc2,GC2 
gιnteg(sgs.GS) 
grnteg(sgsl,GS1 
ginteg(sgs2,GS2 

ι

}
gintgg(suz,GZ) 
gintgg(suzl,GZ1) 
gintgg(suz2,GZ2) 
gιntgg(suc.GC) 
gintgg(sucl,GCl) 
gintgg(suc2,GC2) 
gintgg(sus,GS) 
gintgg(susl,GSl) 
gintgg(sus2,GS2)
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2090

c

write(6,2090)sgz,sgzl,sgz2,sgc,sgcl,sgc2,sgs,sgsl,sgs2, 
suz,suzl,suz2,sue,sucl,suc2,sus,susl,sus2

Format(∕∕IX,"FRŒ1 LEFT TO RIGHT DECREASING ntMAX BLOCKS"/ 
1X,"U1ZERO'∕1X,D21.14,5X,D21.14,5X,D21.14∕∕ 
1X,"U1COS"∕1X,D21.14,5X,D21.14,5X,D21.1⅛∕∕ 
1X,"U1SIN"∕1X,D21.14,5X.D21.14,5X,D21.14/∕ 
1X,"U2ZERO"∕1X,D21.14,5X.D21.14,5X,D21.14∕∕ 
1X,"U2COS"∕1X,D21.14,5X,D21.14,5X,D21.14∕∕ 
1X,"U2SIN"∕1X,D21.14,5X,D21.14,5X,D21.14∕∕)

STOP
END

O O 
O O U

 
U (J

210
200

230
220

Double Fourier decomposition subroutine

subroutine doubin(ssf,ib,jb,m)
IMPLICIT REAL⅛8(A-H.O-Z) 
double precision t(z0,20) 
double precision ssf 
pi=darcos(-l.0d0) 
a=0.0d0 
b=pi
call integ(a,fa,ib,jb,πι)
call integ(b,fb,ib,jb,m)

ml=m+l
do 200 k=l,ml 

t(l,k)=(fa+fb)*(b-a)∕(2*⅛k) 
if (k.eq.l) go to 200 

ml2=2⅛*(k-l)-l
do 210 n=l,ml2

call inte⅛(a+n*(b-a)∕2*^(k-l),fyc,ib,jb,m) 
t(l,k)=t(i,k)+(b-a)*fyc∕(2**(⅛-D) 

continue
continue
do 220 i=l, m

mi=]iι-i+l 
do 230 j^=l,mi

t^i+]*, j+l) = ((4**i)*t(i, j+2)-t(i, j+l))∕((4**i)-l) 

cont inue 
continue 
ssf=t(m+l,l) 
return 
end

c
Subroutine of the double Fourier decomposition subroutine

300
310

subroutine integ(yc,sf,ib,jb,m)
IMPLICIT REAL*8(A-H.0-Z)
double precision t(2θ,2θ)
double precision sf 
ρi=darcos(-l.0d0) 
a=0.0d0 
b=pi

ml=πt+l
do 310 k=l,ml

t(l,k)=(fnk(a,yc)+fnk(b,yc))*(b-a)∕(2**k)
if (k.eq.l) go to 310 

ml2=2**(k-l)-l
do 300 n=l,ml2 

t(l,k)=(b-a)*fnk(a÷π*(b-a)∕2**(k-l),yc)∕(2**(k-l))  
*+t(l,k)

continue
cont inue
do 330 i=l, in

mi=m-i+l
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320
330

t(ι+]^ j+l)=((4**i)*t(i,j+2)-t(i,j+l))∕((4**i)-l)

continue 
continue
sf=t(m+l,1)
return 
end

c
c Single Fourier decomposition subroutine 
c

subroutine rinteg(sfc,sfs)
IMPLICIT REAL*8(A-H,O-Z) 
double precision tc(20,20),ts(20,20) 
common rh
pi=darcos(-l.0d0)
a=0.0d0
b=pi
m=10
do ICO kl=l,20

do 110 k2=l,20 
tc(kl,k2)=C 
ts(kl,k2)=0 

110 cont inue
100 continue

ml=m+l
do 120 k=l,ml

tc(l,k)=(fnc(a,ih)+fnc(b,ih))*(b-a)∕(2**k) 
ts(l,k)=(fns(a,ihj+fns(b,ih))*(b-a)∕(2*^k)

do 130 n≈l,ml2
tc(l,k)=(b-a)*fnc(a+π^(b-a)∕2**(k-l),ih)∕(2**(k-l)) 

*+tc11.k)
* ts(1,k)=(b-a)*fns(a+n^(b-a)∕2*⅛(k-l),ih)∕(2*^(k-l)) 

*+ts(1,k)
130 continue
120 continue

do 140 i=l, m

150
140

mi=m-ι÷l 
do 150 ji=l,mi

continue
sfc=tc(m+l,1) 
sfs=ts(m+l,1)
return 
end

c
c Subroutine for the evaluation of Ul. 
c

subroutine ginteg(sf,XMAT) 
IMPLICIT REAL*8(A-H,O-Z) 
REAL*4 XMAT(21) 
double precision t(20,20) 
double precision sf 
pi=darcos(-l.0d0) 
a=0.0d0 
b≈pi 
m=10

ml=m+l
do 400 k=l.ml

do 410 n=l.ml2 
t(l,k)=(b-a)*fng(a+n*(b-a)∕2**(k-l),XMAT)∕(2**(k-l)) 

*+t(l,k)
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410 continue
400 continue

do 430 i=l, m
mi=m-i+l

do 420 j j = l,mi 
t(ι+^j+l) = ((4^i)^t(i, j+2)-t(i, j+l))∕((4^i)-l) 

420 continue
430 continue

sf=t(m+l,1)
return
end

c 
c 
c

Subroutine for the evaluation of U2

450
440

460
470

subroutine gintgg(sf,XMAT)
IMPLICIT REAL*8(A-H,O-Z)
REAL*4 XMAT(21)
double precision t(20,20)
double precision,sf
pi=darcos(-l.0d0)
a=0.0d0
b=pi
m=ιθ

r.tl =m+1
do 440 k=l,ml 

t(l,k)=(fgg(a,XUAT)+fgg(b,XUAT))*(b-a)∕(2-⅛^k) 
if (k.eq.1) go to 440

ml2=2**(k-l)-l
do 450 n=l,ml2 

t(l,k)=(b-a)^fgg(a+n-(b-a)∕2^(k-l),XMAT)∕(2⅛⅛(k-l)) 
^+t(1,k)

continue
cont inue
do 470 i=l, m

∏ii=m-i÷l
do 460 jj=l,mi

t(ι+i^j+l)=((4^*i)^t(i,j+2)-t(i,j+l))∕((4^^i)-l) 

continue 
cont inue 
sf=t(m+l,l) 
return 
end

c

c
c
c

c

Regular part of the kernel function (see Eq. 5.36).

function fnk(tet,dlan)
IMPLICIT REAL*8(A-H,O-Z)
COMMON∕CF∕DH.R2,ADN,TETMAX,BETA,PI,TAU2 
common/bcf∕ib,jb

Yl=2.0DQ*DLQG(DN∕R2)+ADN*TETMAX
SX=DCOS(TET)
SZ=DCOS(DLAN)
XMZ =TETMAX*(SX-SZ)∕2.0D0
XPZ=ADN*TETMAX*(SX+SZ)/2.0D0-Yl
DENO1=DCOSH(ADN^XMZ)-DCOS(XMZ)
DENO2=DCOSH(XPZ)-DCOS(XMZ)
CPS=DCOS(2.0D0*BETA)+ADN*DSIN(2.0D0^BETA)
CMS=ADN*DCOS(2.0D0*B ETA)-DSIN(2.0D0*BETA)
FKV=(CPS*DSIN(XMZ ) +CMS^DSINH(XPZ ) )∕DENO2-DSIN(2.0D0⅛ETA)-

ADN*(1.0D0-DCOS(2.0D0*BETA))
c
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on Test singular part

IF(DABS(SX-SZ).LE.1.0D-3) GO TO 1
CBC=(DSIN(XHZ)+ADN*DSINH(ADN*XMZ))∕DEN01-2.0DO∕XMZ 
FKV=FKV+CBC
GO TO 2

1 ZZ1=1.ODO+ADN*ADN*ADN*ADK*ADN*ADN
ZZ1=ZZ1∕((1.0D0+ADK*ADH)^90.0D0)
ZZ1=ZZ1-(1.0D0-ADN^ADN)*(1.0D0-ADR⅛ADN)∕72.0DC 
TLEB=ZZI"XMZ ^XMZ ⅛XMZ
TLEB=TLEB-(1.0D0-ADN*ADN)^XHZ∕6.0D0 
FKV=FKV+TLEB

2 CONTINUE

if((ib.eq.l).and.(jb.eq.l))fnk=FKV∕(PI^PI) 
if((ib.eq.l).and.(ιb.ne.l))fnk=(2.CdQ*FKV∕(PI^PI))  

. *dcos((ib-l)*DLAH)
if((ib.ne.1).and.(jb.eq.l))fnk=(2.0d0*FKV∕(PI⅛Pl)) 

. '⅛dcos((ib-l)*TET)
if((ib.ne.1).and.(ib.ne.1))fnk=(⅛.OdO*FKV∕(PI^PI)) 

. ^dcos((ib-1)^TET)^dcos((jb-l)^DLAN)
RETURN
END

Function of right hand side of Eq. 5.32b.

double precision function fnc(tet,nh)
IMPLICIT REAL*8(A-H,O-Z)
COMMON∕CF∕DE,R2,ADN,TETUAX.BETA,PI,TAU2 
X=DCOS(IET)
FC=DEXP(ADK*TETMAX*(X-1)/2.ODO)*DSIN(TETMAX*(X-1)∕2.0D0) 
if (nh.eq.l) fnc=(l∕pi)^fc
if tnh.ne.l) fnc=(2∕ρi)^fc^dcos((nh-l)"tet) 
RETURN
END

Function of right hand side of Eq. 5.32c.

double precision function fns(tet,nh)
IMPLICIT REAL*8(A-H,O-Z)
COMMON∕ CF∕D1., R2 ,ADN, TETMAX, BETA, PI, TAU2 
X=DCOS(TET)
FS=pEXP(ADN⅛TEH^X^(X-l)∕2.0DG)*DCOS(TETMAX^(X-l)∕2.0D0) 
if (nh.eq.l) fns=(l∕ρi)*fs
if (nh.ne.l) fns=(2∕ρi)^fs*dccs((nh-l)*tet) 
RETURN
END

Function of Ul.

double precision function fng(x,XHAT)
IMPLICIT REAL*8(A-R,O-Z)
REAL*⅛ XKAT(21)
COMMON/CF∕DN,R2,ADN,TETMAX,BETA,PI,TAU2 
common limn 
sx=DCOS(x) 
exl=ADN*TETNAX*(sx-l.ODO)∕2.OdO-DLOG(DN∕R2) 
facl=DEXP(exl)*DCOS(TETMAX*(sx-1.0D0)∕2.0D0) 
fac2=XI-^T(l)^(l .0d0+sx) 
do 500 k=2,limn

fac2=fac2 + XMAT(k)*DSIN(x)*DSIN((k-l)⅛)
500 continue

fng=facl*fac2
RETURN
END
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c
c Function of U2.
c

double precision function f⅛g(x,XHAT)
IMPLICIT REAL*8(A-H,0-Z)
REAL*4 XHAT(21)
COMMON∕CF∕DN,R2,ADN,TETMAX,BETA,PI,TAU2 
common limn 
sx=DCOS(x)
exl=ADN*TETMAX*(sx-1.ODG)/2.OdO-DLOG(DN∕R2) 
facl = (DEXP(exl))⅛SIN(TE^IAX*(sx-1.0D0)∕2.0D0) 
fac2=Xl½T(l)*(l.0d0+sx)
do 600 k=2,limn

fac2=fac2 + XMAT(k)^DSIN(x)*DSIN((k-l)⅛) 
600 continue

fgg=facl*fac2
RETURN
END

C.2. Program TEST

c This program is the exclusive property of Dimitri S, CHAHIEH. 
c It takes the values of the six integrals (U1 and U2) defined by 
c Eq. 5.34a and computed by program FORCE then computes the 
c dimensionless average impeller force components along with the 
c dimensionless impeller stiffness matrix, all as a function of 
c of geometries, flow rate, rotor speed and inlet prerotation 
c (swirl) over flow rate ratio.
c

IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 KXX,KXY,KYX,KYY 
PI=DACOS(-1.0D0)
TETLAX=2.2D0*PI 
BETA=0.436D0 
OMEGA=104.7DC 
0=4.1DQ 
()DES=4.3D0 
QH=(QDES-Q)∕QDES 
R2=0.265D0 
TYPE 10 ,

10 FORMAT!//" Ratio of inlet swirl/flow rate (TAU∕Q) = ",$) 
ACCEPT * R
WRITE(6,I00)R2,BETA,TETMAX,OMEGA,Q,QDES,QE

100 FORMAT(∕IX,"Radius of impeller (ft) = ",D14.7/IX,"Blade ",
. "leaving angle (rad) = "^D14.7∕lX,"Total angle subte"
. "nded by volute (rad) = ,D14.7∕1X,"Rotor speed (raα"'
. "/sec) = ",D14.7/IX,"Flow rate Q (cubic ft/sec/ft) =
. D14.7/IX,"Design flow rate QDES (cubic ft/sec/ft) = " '

D14.7∕lx,"h = ^,dl4.7)
c
c Write values of integrals as defined by Eq. 5.34a. These integrals 
c are the end product of the previous program, with initials ''FORCE".
c U1ZERO=-I.35855695d0

U2ZERO=1.64210806d0 
UlCOS=15.6695486dO 
U2COS=G.539614429d0 
UlSIN=2.27123174029d0 
U2SIN=-13.06792545d0

c
c Define L and H of Eq. 5.34b.
<^ XL=Q⅛(DTAN(BETA)+DSIN(2.0D0*BETA)-R^(l.0D0+DCOS(2.0D0^BETA)))

. ∕(2.0D0*PI*R2)-CMEGA⅛2
XH=-Q⅛(COS(2.ODO^B ETA)+R^SIN(2.0D0^EETA))∕(2.ODO-PI*R2)

c
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no Calculate dimensionless force and slope.

FN=2.0DO*PI*OMEGA*OMEGA*R2*R2 
FIOX=TETMAX*(XL*U1ZERO+XM⅛U2ZERO)∕FK 
F IOY=TETMAX*( XM*U 1Z ERO-XL^U2 Z ERO)∕FN 
SX=FIOX∕QH
SY=FIOY∕QH ,
AX=180.ODO*DATAN(SX)∕PI
AY=180.0D0*DATAN(SY)∕PI

Calculate dimensionless stiffness matrix.

KXX=-TETMAX*(XL*U1COS+XM*U2 COS)∕FN
KXY=-TETI-IAX*(XL*U1SIN+XM-U2SIN)∕FN
KYX=-TETMAX* ( XM ^U 1COS-XL*U 2 CO S)∕F N
KYY=-TEΩiAX*(XM⅛UlSIN-XL⅛U2SIN)∕FN

110
WRITE(6,UO)FIOX,FIOY,SX,AX.SY,AY,KXX,KXY,KYX,KYY 
F0RMAT(∕30X'IN X-DIR : ',D14.7/IX,'NORMALIZED FORCE ',

'COMPONENTS'∕30X,'IN Y-DIR : ',D14.7∕1X,
'SLOPE AND SLOPE ANGLE (DEGREES) IN X-DIR : ',D14.7,4X, 
D14.7/IX,'SLOPE AND SLOPE ANGLE (DEGREES) IN Y-DIR : ',

'* KXX=',D14.7,5X,'KXY=' ,D14.7,' *'∕1X,
'NORMALIZED STIFFNESS MATRIX= ⅛⅛⅛*⅛⅛**⅛⅛*⅛⅛⅛⅛**⅛⅛⅛', 

∕32X, ** 1⅛Y^^- ,
D14. ? . 5X^KYY=' ,D14.7,' ^'∕32X,' ",

STOP
END 

.3. Subroutine EQSOV

SUBROUTINE EQSOV(H,BDKTX,V,ITER,EPS,F,IT, INEW)

WRITTEN BY KIKU MATSUMOTO, CALIFORNIA INSTITUTE OF TECHNOLOGY
EQSOV DATE OF OBJECT DECK 04-11-72

M = ORDER OF MATRIX
BDMTX = TWO- DIMENSIONAL ARRAY OF COEFFICIENTS

V = RIGHT-HAND VECTOR
ITER = MAXIMUM NUMBER OF ITERATIONS DESIRED 

EPS = TOLERANCE FOR CONVERGENCE (.GE. 1.E-7) 
F = RESULTING VECTOR '
IT = OUTPUT FROM ROUTINE SPECIFYING NUMBER OF ITERATIONS ACTUALLY 
INEW (FIRST CALL) SET INEW .NE. 1

(LATER CALLS) IF THE MATRIX IS UNCHANGED AND ONLY THE 
COLUMN VECTOR B IS CHANGED, THEN SET INEW = 1

COMMON/EQSVB∕SGI
DIMENSION BDMTX(50,50), V(50), F(50), X(50),

1 A(5O,5O),IDX(5O).XT(50)
DOUBLE PRECISION ⅛ 
IF(M.EO.1) GO TO 210 
N = M ^
IT = 0

DO 91 = 1,N
X(I) = V(I)
F(I) =0.0

9 CONTINUE
Nl =N - 1

IF (INEW .EQ. 1) GO TO 181
DO 10 I = 1, N
DO 10 J = l, N
A(I.J) = BDMTX(I,J)

1C CONTINUE
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C

C 
c

c 
c

c

DO 12 I = 1,N
12 IDX(I) = I

SGI = 0
DO 60 I = 2, N
PARTIAL PIVOTING, CHECK FOR FAX ELEMENT IN (1-1)ST COLUMN.
AMX = ABS(A(I-1,I-1))
IM1 =1-1
JMX = IH1
DO 16 J = I,N
ABSA ≈ ABS(A(J,I-1))
IF(AUX .GE. ABSA) GO TO 16
AMX = ABSA
JMX = J

16 CONTINUE
IF(JMX .EQ. IM1) GO TO 20
MOVE THE ROW WITH MAX A(J,I-1) TO (I-1)ST ROW.

DO 18 K = 1,N
T = A(I-1,K)
A(I-1,K) = A(JHX,K)

18 A(JMX,K) = T
11 = IDX(I-1)
IDX(I-1) = IDX(JMX)
IDX(JUX) = II
XI = X(I-1)
X(I-1) = X(JMX)
X(JMX) = XI
SGI = 1.0

20 CONTINUE
IF(A(I-1,I-1) .EO. 0.) GO TO 200
DO 55 J = I, N
CX = A(J,I-1) ∕ A(I-1,I-1)
K2 = I
DO 50 K = I, N
A(J,K2) = A(J,K2) - CX * A(I-1,K2)
K2 = K2 + 1

50 CONTINUE
A(J,I-1) = CX

55 CONTINUE
60 CONTINUE
FORWARD PASS - OPERATE ON RIGHT HAND SIDE AS
ON MATRIX
62 CONTINUE

DO 70 I = 2, N
DO 65 J = I, H
X(J) = X(J) - X(I-1) * A(J,I-1)

65 CONTINUE
70 CONTINUE

BACKWARD PASS - SOLVE FOR AX = B
X(N) = X(N) ∕ A(N,N)

DO 80 I = 1, Ml
SUM =0.0
12 = N - I + 1
DO 75 J = 12, N
SUM = SUN + A(I2-1,J) * X(J)

75 CONTINUE
X(12-l) = (X(12-1)-SUM) ∕ A(I2-1,I2-1)

80 CONTINUE
DO 90 I = 1, N
F(I) = F(I) + X(I)

90 CONTINUE
IF(IT.EQ.ITER) RETURN
IT = IT + 1
DO 95 I = 1, N
IF(ABS(F(I)).LT.1.0E-10) GO TO 95
IF(ABS( X(I)∕F(I)) .GT. EPS) GO TO 150

95 CONTINUE
FINISHED

RETURN
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C DOUBLE PRECISION MATRIX MULTIPLICATION
150 CONTINUE

DO 170 I = 1, N
R = 0.0D0
DO 160 J = 1, N
R = R + BDHTX(I,J) F(J)

160 CONTINUE
X(I) = V(I) - R

170 CONTINUE
181 IF(SG1 .EQ. 0.0) GO TO 62

C IF SGI .NE. 0, PERMUTE X BEFORE PERFORMING FORWARD PASS. 
DO 182 1=1,N

182 XT(I) = X(I)
DO 184 I = 1,N
K = IDX(I)

184 X(I) = XT(K)
GO TO 62

200 11 = I - 1
WRITE (6,510) 11

510 FORMAT!/IX 25HERROR RETURN FROM SEQSOV 110,
1 35HDIAGONAL TERM REDUCED TO ZERO ∕ )

RETURN
210 CONTINUE

IT = 0
F(l) = V(1)∕BDMTX(1,1)

RETURN­
ER D
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