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ABSTRACT 

Granular materials flowing down an inclined chute were studied experimen­

tally and analytically. Characteristics of convective heat transfer to granular 

flows were also investigated experimentally and numerically. 

Experiments on continuous, steady flows of granular materials in an inclined 

chute were conducted with the objectives of understanding the characteristics of 

chute flows and of acquiring information on the rheological behavior of granular 

material flow. Two neighboring fibre optic displacement probes were employed 

to measure mean velocity, one component of velocity fluctuations, and linear 

concentration at the wall and free surface boundaries. A shear gauge was also 

developed to make direct measurement of shear stress at the chute base. Mea­

surements of solid fraction, velocity, shear rate, and velocity fluctuations were 

analyzed to understand the chute flow characteristics, and the rheological behav­

ior of granular materials was studied with the present experimental data. The 

vertical profiles of mean velocity, velocity fluctuation, and solid fraction were also 

obtained at the sidewalls. 

Existing constitutive equations and governing equations were used to solve 

for fully developed chute flows of granular materials, and thus the boundary 

value problem was formulated with two parameters (the coefficient of restitution 

between particles, and the chute inclination) and three boundary values at the 

chute base wall (the values of solid fraction, granular temperature, and mean 

~elocity at the wall). The boundary value problem was numerically solved by 

the "shooting method." The boundary conditions at the free surface were sat­

isfied by the proper choice of a gradient of granular temperature at the wall. 

The results show a significant role played by granular conduction in determining 

the profiles of granular temperature, solid fraction, and mean velocity in chute 

flows. These analytical results were also compared with the present experimental 

measurements and with the computer simulations by other investigators in the 
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literature. 

Experiments on heat transfer to granular flows over a flat heating plate 

were conducted with three sizes of glass beads, polystyrene beads, and mustard 

seeds. A modification on the existing model for the convective heat transfer was 

made using the effective Nusselt number and the effective Peclet number, which 

include the effects of solid fraction variations. The slightly modified model could 

describe the heat transfer characteristics of both fa.st and slow flows (supercritical 

and subcritical flows). 

A numerical analysis of the convective heat transfer to granular flows was 

also performed. The results were compared with the present experimental data, 

and reasonable agreement was found in the comparison. 
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CHAPTER 1 

INTRODUCTION 

A granular material is an assembly of discrete solid particles dispersed in a 

fluid or vacuum. The solid particles are in contact or near contact with other par­

ticles. Thus the granular material should be distinguished from other solid-fluid 

systems such as dilute suspensions. The role of the interstitial fluid in deter­

mining the dynamics of granular materials varies in its importance. Bagnold 

[1954] distinguished three different regimes of flow behavior, namely, macrovis­

cous, transitional, and grain inertia regimes. Classification of a particular shear 

flow was made using the so-called "Bagnold number," 

Ba = >. ! Ppd
2 (~:)Iµ, 

where >. is a parameter related to the solid fraction, Pp the particle density, d 

the particle diameter, du/dy the shear rate, andµ the dynamic viscosity of the 

interstitial fluid. In the macroviscous regime, corresponding to small Bagnold 

number, the viscosity of an interstitial fluid plays a significant role in mechanics 

of momentum transport. On the other hand, the interstitial fluid in the grain 

inertia regime, corresponding to large Bagnold number, plays a minor role, and 

the behavior of a granular flow is governed largely by direct interactions between 

particles. In the present work, air was always the interstitial fluid, and particle 

diameters were larger than about 0.5 mm and the density of particles was much 

larger than that of air. Therefore, most granular flows fall into the grain inertia 

regime, and the interstitial fluid effect in the momentum transfer mechanism is 

considered negligible. 

However, the interstitial fluid always plays a major role in the convective 

heat transfer mechanism. For example, Wunschmann and Schliinder [1980] made 

heat transfer measurements from heated surfaces to granular materials in various 

interstitial gas pressures. The results show that the heat transfer rate is much 

less under vacuum, indicating the importance of the interstitial fluid as the heat 
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transfer mechanism. 

Information on the mechanics of granular materials is important in many 

technological and scientific contexts. For example, mineral and powder pro­

cessing, transports of plastics and dry chemicals, handling of grain, coal, and 

shale, flows in pebble bed nuclear reactors, snow avalanches, and even dynam­

ics of planetary rings demand a better understanding of flow characteristics and 

fundamental rheological behaviors of the materials. The understanding of the 

characteristics of convective heat transfer in granular materials is also important 

in process industry, chemical industry, and nuclear or solar energy industry. For 

example, many applications in chemical processing require precise temperature 

control, and heating or cooling of the granular products is often necessary before 

packaging and storage. 

1.1 SHEAR FLOW OF GRANULAR MATERIALS 

The rapid flow of granular materials is characterized by high deformation 

rates, and this rapid shearing motion of the flow causes collisions between par­

ticles, generating random motions of those particles. The random motions con­

stitute a so-called granular temperature, which is a measure of the fluctuation 

energy in the granular material. Just like the normal thermodynamic temper­

ature, granular temperature is conducted if there is any temperature gradient. 

That is, fluctuation energy flows from a region of high fluctuation energy to a 

region of low fluctuation energy by the process of granular conduction. 

Though many studies on granular materials draw the analogy with the ki­

netic theory of gases, there are differences between granular materials and gas 

molecules. One of the major differences is that the collisions between granular 

particles are inelastic. This implies that energy dissipation due to inelastic col­

lisions plays an important role in the mechanism of fluctuation energy balance. 

Therefore, the generation of fluctuation energy due to shear motions, its dissi­

pation due to inelastic collisions, and granular conduction should balance in the 
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fluctuation energy equation of the system. When fluctuation energy generated by 

shear motion is greater than energy dissipation, the excessive energy is conducted 

out of the system. In the opposite case, the deficient energy is conducted into 

the system from the outside. One of the purposes of this thesis was to examine 

this balance of fluctuation energy in a granular fl.ow. 

Conventional fluid mechanics assumes no-slip conditions which determine 

the local velocity and temperature independently of the flow field. For granular 

flow, however, there is velocity slip at the boundary in general. Furthermore, the 

boundary of the system performs shear work on the flow, generating fluctuation 

energy. At the same time, collisions of particles with the wall boundary dissipate 

the energy. Therefore, the boundary of the system may serve as either a source 

or a sink of fluctuation energy, depending on which of generation and dissipa­

tion dominates (see Jenkins and Richman [1986]). These boundary conditions 

of granular fl.ow can not be obtained independently of the flow field, and stud­

ies on the slip velocity and fluctuation energy flux at the boundary face many 

difficulties. Thus, in the present work, an emphasis was put on measurements 

of various flow properties at the wall boundary, such as slip velocity, velocity 

fluctuations at the wall, and local solid fraction near the wall. Furthermore, the 

effect of the surface condition on these boundary properties was investigated by 

making measurements with various surface conditions. 

Our knowledge of the rheological behavior of rapidly flowing granular mate­

rials has been advanced by theoretical works. For example, Ogawa et al. [1980), 

Savage and Jeffrey [1981], Jenkins and Savage [1983], and Lun et al. [1984] have 

provided constitutive relations that lead to a comprehension of how stresses are 

associated with solid fraction, shear rate, and granular temperature, and how 

fluctuation energy flux is related to granular temperature, solid fraction, and 

their gradients. Savage and Jeffrey [1981] introduced the nondimensional pa­

rameter, S, which is the ratio of the characteristic mean shear velocity to the 

granular temperature, and stress components were expressed as integrals involv-
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ing S. Jenkins and Savage [1983] extended the analysis of Savage and Jeffrey 

by including energy dissipation due to inelastic collisions. In addition to the 

collisional contribution to the stresses, Lun et al. [19841 included the kinetic con­

tribution that was assumed to be negligible in Jenkins and Savage's analysis. It 

was found that at high solid fraction the collisional contribution dominates in 

the mechanism of momentum transport but the kinetic contribution is dominant 

at low solid fraction where collisions are infrequent and particles move long dis­

tances between collisions. (The review papers by Savage [1984] and Campbell 

[1989b] give thorough coverage of many theoretical works.) 

For simple shear flow where uniform velocity gradient, temperature, and 

density are assumed (and therefore there is no granular conduction), all the 

theoretical analyses predict the same behavior as Bagnold [1954] described in 

connection with his experiments, namely, 

2 (du)2 . T: · - p f· ·(v)d -,, - p ,, dy 

where Tii is the stress tensor, Pp the particle density, /ii a tensor function of the 

solid fraction v, d the particle diameter, and du/ dy the local mean shear rate. 

Lun et al. [1984] presented a solution for simple shear flow, and the parameter 

S was obtained as a function of solid fraction and the coefficient of restitution. 

In application to chute flows, however, the nonuniformity of velocity gradient, 

granular temperature, and solid fraction over the depth of flow complicates the 

solution of the equations for chute flows. Furthermore, theoretical works have 

faced difficulties due to lack of knowledge of appropriate boundary conditions 

both at solid walls and at the free surface. 

In addition to particle interactions with the wall boundary, interactions be­

tween particles also remain to be explored for further understanding of the rheo­

logical behavior. The coefficient of restitution and the surface friction of particles 

may be represented as two major properties of particles. The effect of a vari­

able coefficient of restitution that depends on the particle impact velocity has 

been studied by Lun and Savage [1986]. It has been found that the coefficient of 
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restitution, which increases with decreasing impact velocity, causes the stresses 

to vary with the shear rate raised to a power less than two. The effect of particle 

rotation and surface friction in collisions between particles have also been studied 

by Lun and Savage [1987], Jenkins and Richman [1985], and Nakagawa [1988]. 

When the surface friction was included in the theory, calculations became too 

complicated. Therefore, the inclusion of the surface friction was applied only to 

special cases of very limited value. 

Computer simulations of simple shear flows or Couette flows (for example, 

Campbell and Brennen [1985a], Walton and Braun [1986a, b], Campbell and 

Gong [1986], and Campbell [1989]) have added considerably to our knowledge of 

the rheology of granular material flows. For example, anisotropy of the granular 

temperature as solid fraction decreases has been found in most computer sim­

ulations while many theoretical works assume the temperature to be isotropic. 

Relatively little work has been done on the computer simulation of gravity flows. 

Campbell and Brennen [1985b] simulated chute flows with two-dimensional disks, 

presenting the profiles of velocity, solid fraction, and granular temperature over 

the depth of flow. Walton et al. [1988] have used three-dimensional spheres to 

simulate gravity flow of particles through arrays of cylindrical horizontal rods 

and down inclined chutes. Both have employed periodic boundaries, which im­

ply steady, fully developed flow. Complicated interactions between particles and 

between particles and walls require further investigation. The effect of a variable 

coefficient of restitution has also been examined in the computer simulation by 

Walton and Braun [1986b]. The results manifested a deviation from those of 

the constant coefficient of restitution in a manner similar to that of Lun and 

Savage [1986], but the calculated stresses were significantly lower than those of 

experimental studies and Lun and Savage. 

On the other hand, progress in experimental methods for granular materials 

has been very limited, being hindered by obvious difficulties involved in making 

point measurements of velocity, solid fraction, and granular temperature in the 
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interior of granular flows. For example, the granular temperature, in spite of 

its importance, had not been experimentally measured until Ahn et al. [1988] 

used fibre optic displacement probes to measure one component of the granular 

temperature. The present state of the experimental information on granular flows 

consists of a number of Couette fl.ow studies (e.g., Savage and McKeown [1983], 

Savage and Sayed [1984], Hanes and Inman [1985], Craig et al. [1986]) and several 

studies of flows down inclined chutes (e.g., Ridgway and Rupp [1970], Bailard 

[1978], Augenstein and Hogg [1978], Savage [1979], Sayed and Savage [1983], 

Patton et al. [1987], and Ahn et al. [1988, 1989a]). The understandable initial 

objective of some of the Couette flow experiments, such as those of Savage and 

McKeown, was to produce a simple shear flow with uniform velocity gradient, 

uniform solid fraction, and hopefully, uniform granular temperature. To this 

end the surfaces of the solid walls were roughened to create a no-slip condition 

at the wall. Practical engineering circumstances require the knowledge of how 

to model the conditions for smooth walls at which slip occurs. This presents 

some difficulties because the boundary conditions on the velocity and granular 

temperature at the smooth walls are far from clear (see, for example, Campbell 

[1988]). 

Only recently has the numerical analysis of the flow of granular materials 

been attempted, partly because the constitutive relations have been unclear and 

partly because the boundary conditions still remain uncertain. Johnson and 

Jackson [1987] proposed constitutive relations in which frictional and collisional­

translational mechanisms are combined for stress transmission. Furthermore, 

they developed boundary conditions at the wall, which relate friction force and 

slip velocity at the wall with the large-scale roughness of the surface, and relate 

the wall-particle coefficient of restitution and fluctuation energy flux at the wall. 

Both relations were described in terms of local density and granular tempera­

ture. Using these boundary conditions, Johnson and Jackson l1988) attempted 

to numerically solve the chute flow of granular materials. Clearly the limitations 
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involved in an analytical approach to granular material flows lie in the postu­

lated constitutive relations and boundary conditions and in the assumption that 

a continuum approach has validity. Therefore, without thorough understanding 

of constitutive relations and boundary conditions, the analytical results will be 

of limited value. Furthermore, the continuum assumption implies that the anal­

ysis will be of dubious validity when the depth of flow becomes less than several 

particle diameters. 

Chute flows differ from Couette flows and have a "conduction" of granular 

temperature as indicated in the computer simulation of Campbell and Brennen 

[1985b]. In their work, a boundary layer next to the wall had a lower solid 

fraction and higher granular temperature than the bulk further from the wall, 

indicating a conduction from the boundary layer to the bulk. However, exper­

imental measurements through the sidewalls by Ahn et al. [1989a] show that 

the solid fraction monotonically decreases with distance from the wall, and that 

the granular temperature is conducted from the free surface to the chute base. 

The analysis of fully developed chute fl.ow by Ahn et al. [1989b] shows that the 

granular temperature can be conducted either from the wall boundary to the 

free surface, or from the free surface to the wall, depending on the values of 

the coefficient of restitution and the angle of chute inclination. The results also 

show a significant role played by the granular conduction in determining the 

profiles of granular temperature, solid fraction, and velocity. Furthermore, the 

granular conduction term and the dissipation term are found to be comparable 

in magnitude. 

In chapter 3 of the present work, experiments on continuous, steady flows 

of granular materials down an inclined chute have been presented. With the 

help of two neighboring fibre optic probes, the vertical profiles of mean velocity, 

velocity fluctuation, and linear concentration were obtained at the sidewalls. 

Measurements of some basic ft.ow properties such as solid fraction, velocity, shear 

rate, and velocity fluctuation were analyzed to understand the characteristics of 
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the chute flow. Finally, the rheological behavior of granular materials was studied 

with the experimental data. In chapter 4, the analysis of fully developed chute 

flow has been conducted to understand the nature of granular conduction and its 

role in determining the profiles of granular temperature, solid fraction, and mean 

velocity. The governing and constitutive equations of Lun et al. [1984] have been 

employed, and the results have been compared with the present experimental 

data and other computer simulations. 

1.2 HEAT TRANSFER TO GRANULAR FLOWS 

Convective heat transfer to gas-solid flows occurs in many engineering dis­

ciplines. In fluidized beds, gas flow causes the fluidization of particles which 

have only local velocity fluctuations with zero mean velocity. In packed beds, 

when there is a pressure gradient across the bed, gas flows around stationary 

particles. On the other hand, in moving beds or granular flows in an inclined 

chute, particles are transported by gravity while the interstitial gas is considered 

stationary. 

In these gas-solid flows, heat transfer between the wall boundaries and the 

flows is involved, and the heat transfer characteristics are affected by the wall 

surface condition, such as the roughness of the wall boundaries, and the shape 

of the particles. The solid fraction is an important property of the flow and it 

has a major influence on the heat transfer characteristics. Especially, the local 

solid fraction near wall boundaries plays an important role in determining heat 

transfer between the wall boundaries and the flows. 

Although fluidized beds, packed beds, and granular flows are inherently 

different from one another, many similarities exist in heat transfer characteristics. 

For example, in gas fluidized beds, the heat transfer coefficient increases with the 

fluidizing gas velocity, reaches a maximum, and slightly decreases with the further 

increase of gas velocity. (See, for example, Gelperin and Einstein \1971).) When 

the surface in packed beds is vibrated {see Muchowski [1980]), heat transfer 
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is improved as the frequency increases slowly for a given amplitude. But for 

further increase, the heat transfer coefficient reaches a maximum, and then falls 

for larger frequencies of vibration. The same phenomenon is also observed in heat 

transfer to granular flows in an inclined chute (see Spelt et al. [1982] and Patton 

et al. [1986]). That is, for high solid fraction, the increase of granular velocity 

improves convective heat transfer. As the velocity increases further, heat transfer 

coefficient reaches a maximum, after which heat transfer decreases because of 

the decrease of solid fraction. In spite of these similarities among fluidized beds, 

packed beds, and moving beds, however, the transfer of knowledge from one type 

of fl.ow to another is somewhat limited. 

The heat transfer in gas-solid flows involves the following mechanisms: 

1. Wall-to-particle heat transfer. 

i) Heat transfer through gaseous gap between the wall and particles. 

ii) Heat transfer through the contact points between the wall and particles. 

iii) Radiation between the wall and particles. 

2. Heat conduction in the bulk of the fl.ow. 

3. Heat convection by particle motions. 

4. Radiation between particles and gas. 

Heat conduction in the bulk of the fl.ow was examined by Bauer and 

Schliinder [1978a, b]. They developed a model for the thermal conductivity 

without gas fl.ow, and the model was compared with numerous experimental 

data. They also obtained the effective thermal conductivity when there is gas 

fl.ow, with the assumption that the effective thermal conductivity is the sum of a 

convective transport due to the fl.ow and of conduction in discrete solid phases. 

The analysis of heat convection by particle motions is more difficult mainly 

because the particle motions themselves are not well known. Campbell and Wang 

[1986] have obtained the effective conductivity of shearing particle flows in an 

annular Couette shear cell. It has been shown that the effective conductivity can 

be decomposed into two parts. One is a configurational component which is a 
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function of solid fraction, and the other is a dynamic component which appears 

to be linearly proportional to the shear rate. 

Recently the analysis of heat conduction through direct contact points be­

tween two surfaces has received considerable attention. For example, the micro­

electronic industry has studied heat conduction through contact points to elim­

inate the heat generated from microchips (for example, see Eid and Antonetti 

[1986]). In gas-solid flows, it has been found that heat conduction through the 

contact point contributes little to the overall heat transfer process except for 

the case in which solid particles with high thermal conductivity such as metal 

particles are used in a high vacuum. (See Wunschmann and Schliinder [1980], 

and Sun and Chen [1986]). In experiments in a room temperature environment, 

radiation contribution can also be neglected in the analysis. 

While an interstitial gas plays little role in momentum transfer, heat con­

duction through the interstitial gas in the gap between the wall and a particle 

is the most important heat transfer mechanism in gas-solid flows. In many heat 

transfer models developed in the last decade, the gaseous gap between the wall 

and a particle is represented as a thermal contact resistance. Schliinder [1980, 

1984] proposed an expression for the thermal contact resistance, which is based 

on physical fundamentals. Sullivan [1972] developed a model for convective heat 

transfer to granular flows. The model contains an experimental constant describ­

ing the thermal contact resistance between particles and the wall. For flows with 

high velocity, the contact resistance plays a particularly significant role. The 

model was correlated well with Sullivan's experimental data taken in a vertical 

hopper. For moving beds or stirred beds, Schliinder [1984] developed a model 

combining the contact resistance at the wall and the heat penetration resistance 

of the bulk. The model presented by Schliinder is, in fact, of the same form as 

that of Sullivan if the residence time of the moving bed on the heating wall is 

regarded as the velocity term in Sullivan's work. 

The models of Sullivan and Schliinder, however, fail to predict the behavior 
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of fast flows with low solid fraction. In experiments in an inclined chute, Spelt et 

al. [1982] show that Sullivan's correlation accurately describes the characteristic 

of heat transfer to slow flows, but overpredicts results for fast flows. Patton et 

al. [1986] have found that for slow flows with high solid fraction (or subcritical 

flows) heat transfer characteristics follow Sullivan's correlation, but that once 

flows become supercritical with high velocity and low density the heat transfer 

rate decreases, deviating from the prediction of Sullivan, because of the decrease 

in solid fraction. In order to consider the effect of solid fraction variations, they 

have developed a model using Reynolds analogy. One of the disadvantages in the 

model, however, is that, in addition to the experimental constant for the thermal 

contact resistance, another parameter for solid fraction variation needs to be 

determined experimentally. Therefore, it is desirable to develop a simpler model 

which may be derived from more fundamental understanding of heat transfer 

characteristics. 

In the present work, the models developed by Sullivan and Schliinder have 

been modified to include the effect of solid fraction variations, so that the slightly 

modified model may describe the heat transfer characteristics of both fast and 

slow flows (supercritical and subcritical flows). Furthermore, in order to ex­

plore a possibility of using numerical method for heat transfer analysis, a simple 

numerical analysis has been conducted. One of the advantages of the present 

analysis is that heat transfer can be predicted without determining any experi­

mental constant. However, further improvement associated with assumptions in 

the analysis is required. 
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CHAPTER 2 

ANALYTICAL BACKGROUND 

Some of the existing governing equations and constitutive equations for gran­

ular material flows, especially those of Lun et al. [1984], will be reviewed in this 

chapter. They will serve as the framework for the analysis of fully developed 

chute flow, and the rheological models will be compared with the present exper­

imental data. 

2.1 GOVERNING AND CONSTITUTIVE EQUATIONS 

The continuity equation, the momentum equations, and the translational 

fluctuation energy equation for granular materials are written in continuum forms 

as follows: 

dp - = -pV·u 
dt 
du 

p- = pb-V .p 
dt 

3 dT 
-p- = -P : Vu - V · q - I 
2 dt 

(2.1) 

(2.2) 

(2.3) 

In these equations, p = Ppl.I represents the bulk density, where Pp is the particle 

density and v is the solid fraction. The bulk velocity and the body force per 

unit mass are represented by u and b respectively, and P is the stress tensor. 

The granular temperature, T, is defined by k{(u'2 ) + (v12 ) + (w'2)) where u', 

v', and w' are the three velocity fluctuation components. Finally, q is the flux 

of fluctuation energy, and / is the rate of the dissipation of fluctuation energy 

per unit volume. In the translational fluctuation energy equation, the term 

-P : Vu represents the work done to the system by the stresses, and the so­

called conduction term, -V · q, represents the fluctuation energy added to the 

system through the conduction of granular temperature. 

The literature contains many proposed constitutive equations. Most of them, 

however, are not applicable over the entire range of solid fraction. For example, 
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the expressions of Jenkins and Savage [1983] fail at the boundary of the free 

surface of the chute fl.ow. Only the results presented by Lun et al. [1984] seem 

to be satisfactory for application to chute flows. Following Lun et al., the total 

stress tensor is written as 

(2.4) 

where I is the identity matrix and Sis given as S = !(u,,;+u;,,)- iuk,kCij· The 

particle diameter is d, and 71 = (1 + ev)/2 where ep is the coefficient of restitution 

for collisions between particles. The flux vector of fluctuation energy is 

(2.5) 

and the rate of dissipation per unit volume is 

(2.6) 

Here g1(v,ep),g2(v,ep),g3(v,ep),g4(v,ep), and gs(v,ep) are the functions of v 

and ep as follows: 

And go, the radial distribution function, is chosen as suggested by Lun and Savage 

[1986], as follows: 

( )

-2.sv• 

go= 1- :* , 
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where v* is the. maximum shearable solid fraction for spherical particles. It 

should be noted that g1 , 92, g3, and gs are positive quantities for all v and ep 

while g4 is always negative. Furthermore, gl and g0 vanish as 11 ---+ 0 while go, 

g2, g3, g4 , and all the derivatives of go, gi, 92, g3, g4 with respect to v do not 

vanish as v---+ 0. 

2.2 APPLICATION TO TWO-DIMENSIONAL FLOW 

For two-dimensional steady flow, the constitutive equations for the normal 

and shear stresses become 

(2.7) 

(2.8) 

where x and y are coordinates in the flow direction and in the direction normal 

to the flow respectively. In' most flows where no significant acceleration in the 

x-direction exists, the second term in equation (2.7) can be neglected, and thus 

the normal stresses are approximated as 

(2.9) 

For simple shear fl.ow where the velocity gradient is constant with uniform density 

and granular temperature, or for fully developed flow where all the quantities are 

invariant in the flow direction, equation (2.9) is the exact expression of equation 

(2.7). From equation (2.5), they-component of fluctuation energy flux is given 

as 

q11 = -pµd(g3T! ~: + g4T1 ~:). 
The dissipation term in equation (2.6) remains unchanged. 

2.2.1 Simple Shear Flow 

(2.10) 

For simple shear flow with uniform density and granular temperature, the 

continuity equation and the momentum equations are automatically satisfied. 

Since no fluctuation energy flux exists in the flow (see equation (2.10)), the 
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conduction term in the energy equation (2.3) vanishes. Therefore, the shear 

work term and the dissipation term should balance, and the fluctuation energy 

equation (2.3) simplifies to 

au 
O = -P11 :i: ay - "I· (2.11) 

Using this equation with (2.6) and (2.8), the ratio of the characteristic velocity 

gradient to the granular temperature is obtained as follows: 

d
du 
- .1 

S - ---5!JL - (g5) ~ 
- T1 - g2 . (2.12) 

Note that S is a function only of v and eP. Therefore, (2.9) and (2.8) can be 

written as follows: 

(2.13) 

(2.14) 

The ratio of shear stress to normal stress, or friction coefficient, is also a function 

only of v and ep. 

2.2.2 Fully Developed Chute Flow 

In fully developed flow in an inclined chute, the derivatives parallel to the 

plane are zero. Therefore, the continuity equation (2.1) is automatically satisfied, 

and the momentum equations (2.2) become 

(2.15) 

(2.16) 

where (} is the angle of the chute inclination and g is the gravitational acceleration. 

Note that for the fully developed chute flow -Pyx/ Pyy =tan 0. From equations 

(2.8) and (2.9), therefore, S is given by 

ddu 
dy gl 

S = T-i = g
2 

tanO. (2.17) 
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It should be noted that S is a function not only of v and ep but also of tanO. 

And since v varies over the depth of the chute fl.ow, S also varies, tending to zero 

at the free surface. Under these circumstances (2.9) and (2.8) can be written as 

(2.18) 

(2.19) 

Since fully developed chute fl.ow does not have uniform temperature and 

solid fraction over the depth of fl.ow, the conduction term remains in the en­

ergy equation (2.3) and it plays an important role in determining the profiles of 

granular temperature, solid fraction, and velocity (see Ahn et al. [1989b]}. The 

fluctuation energy equation simplifies to 

(2.20) 

These characteristics of chute flows will be important in considering the 

experimental results presented in the next chapter, and the governing equations 

and the constitutive equations for fully developed chute fl.ow will be employed in 

the analysis presented in chapter 4. 



- 17 -

CHAPTER 3 

EXPERIMENTAL STUDY OF SHEAR FLOWS 

OF GRANULAR MATERIALS 

3.1 APPARATUS AND PROCEDURE 

Granular materials flowing down an inclined chute were studied experimen­

tally to understand the characteristics of chute flows and to acquire information 

on the rheological behavior of granular flows. 

The present experiments were conducted in a long rectangular aluminum 

channel or chute, 7.62cm wide and 1.2m long. The aluminum base of the chute 

was 3.2 mm thick, and the aluminum sidewalls were 6.4 mm thick and 10.2 cm 

high. The chute was installed in a continuous flow, granular material facility, as 

previously described in Patton [1985] (see Figure 3.1). Slight modification was 

made on the facility built by Patton to accommodate a chute of smaller width 

and shorter length than that of Patton. The material entered the chute from an 

upper feed hopper and was collected in a collecting hopper from which, in turn, 

a mechanical conveyor delivered the material to the upper hopper. The conveyor 

was about 6 m long and capable of delivering coarse sand at a maximum flow 

rate of 70 tons per hour. The channel was positioned at different angles, 8, to the 

horizontal, from about 13° to 36°. Measurements were taken only after a steady 

state flow had been established. The flow into the channel was regulated by a 

vertical gate, and the opening between the gate and the channel base is referred 

to as the entrance gate height, h0 • 

In these experiments two sizes of glass beads were used as granular materials; 

one is of mean diameter d = 1.26 mm with 2.9% standard deviation, and the other 

has d = 3.04 mm with 7.2% standard deviation. The maximum shearable solid 

fraction, v*, of the 1.26 mm beads is 0.61. For the 3.04 mm beads, v* is 0.59. 

The density of both granular materials is Pp = 2500 kg/m3 • 

Two important instruments were used in the experiments; one is a gauge to 
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measure shear stress, and the other is a set of two fibre optic probes to measure 

mean velocity and velocity fluctuation. In order to measure shear stress of flowing 

material at the chute base, a rectangular hole, 11.4 cm long and 3.8 cm wide, was 

cut into the chute base and replaced by a plate supported by strain-gauged 

flexures sensitive to the shearing force applied to the plate. (See Figure 3.2). 

The clearance between the plate and the rest of the chute base was adjusted to 

be about 0.2 mm, much smaller than the particle sizes. Nevertheless, dirt would 

occasionally get trapped in the gap, and this necessitated cleaning of the gap and 

calibration of the gauge prior to each measurement. Calibration of this balance 

was achieved by placing weights on the plate with the channel set at various 

inclinations. The detailed procedure was as follows. The channel was set at an 

inclination of about 13°, and an offset voltage was read from the strain gauge. A 

50 or 100 gram weight was placed on the shear plate, and the voltage difference 

was measured. This procedure was repeated at a different inclination of about 

27°. The two voltage differences, the inclination angles, and the mass of the 

weight were used to obtain two calibration coefficients corresponding to the shear 

and normal forces on the plate. After calibration, from about 5 seconds before 

a fl.ow started until about 10 seconds after the flow became steady, signals from 

the strain gauge were continuously read by a data acquisition system. The shear 

stress was then calculated from the average voltage output from the gauge, the 

calibration coefficients, and the normal stress calculated from the measurements 

of the flow depth and the mean solid fraction. 

A system of fibre optic probes, similar to that originally devised by Savage 

[1979], was developed to measure particle velocities and their fluctuations at the 

chute base, the free surface, and the sidewalls. The system consisted of two MTI 

fibre optic displacement probes set with their faces flush in a lucite plug which 

was, in turn, either set flush in the chute base or sidewalls or held close to the free 

surface of the fl.owing granular material. The probe faces were 1.6 mm in diameter 

and of the type in which one semi-circle of the face consisted of transmitting fibres 
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and the other of receiving fibres. The specific geometry is shown in Figure 3.3. 

The distance between two displacement probes was selected to be about two 

particle diameters. This distance was carefully calibrated by placing the probes 

close to a revolving drum to which particles had been glued, and comparing the 

drum peripheral velocity with the velocity measured from the probe output. 

The output from these velocity measuring devices was processed in the fol­

lowing way. First the signals from each of the two displacement probes were si­

multaneously digitized and stored using a data acquisition system that consisted 

of an analog-digital converter connected to the Zenith 140 personal computer. 

The sampling rate was adjusted so that, whatever the mean velocity of parti­

cles was, each of the two records detected the passage of 300 ,.., 600 particles. 

The time was measured by the 8253 Intel Programmable Timer installed inside 

the computer. The fastest sampling rate, at which most data were taken, was 

about 32 microseconds. Each record contained 8000 samples, and the total record 

time was about 0.5 second for most flows. The two records were digitally cross­

correlated over the entire record in order to obtain the mean particle velocity, u. 

Figure 3.4 shows typical signals from the two probes, and the cross-correlation 

of these signals is presented in Figure 3.5. Furthermore, as shown in Figure 3.4, 

thresholds were set to identify the peaks on the two records corresponding to 

the passage of a particular particle. Since an average value of the time interval 

between the two peaks was obtained from the cross-correlation, identification 

of the two peaks of a particular particle in the two records was rather easily 

performed. When no such correspondence could be firmly established or where 

the peak was below a certain threshold, the data were discarded for the pur­

poses of this second part of the analysis. However, where positive identification 

was made, the velocity of that individual particle was obtained from the time 

interval between the peaks it generated on the two records. In this way, a set 

of instantaneous particle velocities were obtained, and ensemble-averaging was 

used to obtain both the mean velocity, u, and the root-mean-square of velocity 
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fluctuation, u'. Though the latter represents only one component of velocity 

fluctuations, it should be some measure of granular temperature. Finally, the 

number of particle passages per unit time detected by the pro be was divided by 

the mean velocity to obtain the characteristic particle spacing, s, and in turn the 

linear concentration, V1D, was calculated as V1D = d/ s where d is the particle 

diameter. An estimate of the local solid fraction near the wall, Vu11 was calcu­

lated using Vw = 7rvfD/6. All of these procedures (taking data, cross-correlating, 

searching and setting the most effective thresholds, identifying the peaks of par­

ticles, and calculation) were automatically controlled by the personal computer. 

In order to enhance the speed of the procedures, the computer was supported 

by the 8087-2 Numeric Coprocessor, and it typically took about a minute to 

complete the whole calculation. 

In addition, point probes were used to record the depth, h, of flow at several 

longitudinal locations in the channel. Mass fl.ow rate, m, was obtained by timed 

collection of material discharging from the chute. Mean velocities at the chute 

base and at the free surface obtained by the fibre optic probes were averaged to 

give the average mean velocity, um, over the depth of the flow. For most flows, 

h was from 0.6 to 3cm, m from 0.4 to 3kg/sec, and Um from 0.4 to 3m/sec. 

A mean solid fraction, Vm, could then be obtained as Vm = m/ pphbum where 

b is the channel width. Furthermore, mean shear rate was calculated as !:iu/h 

where !:iu is the difference between the two velocities at the base and at the 

free surface, and h is the depth of the fl.ow. Normal stress was calculated by 

TN = Ppllmgh cos fJ where g is the gravitational acceleration, and shear stress, rs, 

was measured directly by the shear gauge. All the above measurements except for 

shear stress were made at two stations located at 72 cm and 98 cm downstream 

from the entrance gate. The shear gauge was located in the middle of these two 

stations. It should be noted that llw, u, u.', 1"N, and rs are local properties while 

llm and !:iu/ h represent quantities averaged over the depth of fl.ow. 

The procedure used to acquire the data was as follows. The angle of the 
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chute inclination and the entrance gate opening were set. After a steady flow was 

established, mean velocity, velocity fluctuations, and linear concentration both 

at the chute base and at the free surface were measured using two fibre optic 

probes at a station. If necessary, this procedure was repeated. The fibre optic 

probes were moved to another station, and measurements of various quantities 

were repeated. During these measurements, the mass flow rate and the depths 

of flow were measured several times. Then the gap between the shear plate 

and the rest of the chute base was cleansed, and calibration of the shear gauge 

was performed. After calibration a steady flow was established and the shear 

stress was measured. Cleaning of the gap, calibration of the shear gauge, and 

measurement of shear stress were repeated if necessary. 

Measurements of Uw, u,,, and u~ were repeatable within ±1 %, ±3%, and 

± 12% respectively. The scatter in measurements of the mass flow rate was 

less than 1 % of the average value. Repeatability of measurements of stresses 

was about ±2%. Most errors in the whole procedure seemed to result from 

measurement of the depth of fl.ow because the free surface was not well-defined. 

Preliminary tests suggested that the fl.ow could be influenced by the surface 

conditions of the chute base. Indeed the data were quite sensitive to the degree 

of the cleanliness of the aluminum chute base. Therefore, it was possible to 

create different surface conditions with the aluminum chute by controlling the 

cleanliness. In addition, a very thin film of liquid rubber (Latex) was applied 

to the chute base to give a totally different surface condition. This film was 

about 0.2 mm thick. Before conducting experiments, the chute was run long 

enough to achieve a steady state surface condition. With these precautions, data 

will be classified in this presentation by whether the chute base was "smooth," 

"moderately smooth," or "rubberized." To systematically characterize these 

different surface conditions, Coulombic friction coefficients were measured using 

the shear gauge and a block to which glass beads were glued. That is, after 

calibrating the shear gauge, a block under which glass beads were glued was set 
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in motion to slide down over the shear gauge. The whole signal was stored into the 

data acquisition system, and was carefully read to obtain the shear force exerted 

by the block upon the shear gauge. Two blocks with different weights (about 

10 and 30 grams) were used to examine the effect of the normal force variation. 

No significant difference was observed. The surface condition of the aluminum 

plate of the shear gauge was maintained as close to that of the chute base as 

possible. The kinematic Coulombic friction coefficient of the smooth surface was 

0.15; the moderately smooth and rubberized surface had coefficients of 0.22 and 

0.38 respectively. Furthermore, smooth and moderately smooth surfaces yielded 

coefficients of restitution different from that of the rubber-coated surface; the 

former was 0. 7 while the latter 0.5. These coefficients of restitution, ew, between 

the wall surface and a particle should be distinguished from that between two 

particles, ep. 

3.2 PRELIMINARY MEASUREMENTS 

3.2.1 Transverse Profiles 

Originally the chute was designed to be wide enough to yield almost two­

dimensional flow. To examine the effect of the sidewalls (and the extent to which 

this objective was achieved), fibre optic probe measurements were made at several 

lateral locations with various chute inclinations. The 1.26 mm glass beads were 

used in measurements of the transverse velocity profiles, and the surfaces of the 

aluminum chute base as well as the sidewalls were smooth. Velocities normalized 

by the velocity at the centerline are plotted in Figure 3.6. Comparison of the 

profiles on the free surface and on the chute base indicates that the flow at the 

free surface is more uniform and less affected by the sidewall than the flow at the 

base. This is a "corner effect" in which particles in the corner are slowed both 

by the chute base and the side wall. One could visually observe that particles in 

the corner were arranged in a distinct line that had high solid fraction and low 

velocity. It should also be noted from Figure 3.6 that the higher the velocity (or 
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the higher the chute inclination), the less significant the sidewall effect. Thus 

nonuniformity due to the sidewall was significant only at the base and at low 

velocities (low inclinations). We were particularly concerned about the sidewall 

effect on the shear gauge whose width was one half of that of the channel. The 

above results indicated that this sidewall effect would be very small. 

3.3.2 Vertical Profiles 

Vertical profiles were obtained by making measurements through lucite win­

dows in the sidewalls. Savage [1979] made similar efforts to obtain velocity pro­

files at the sidewalls using fibre optic probes. Bailard [1978] obtained the vertical 

profiles of velocity and solid fraction by measuring cumulative mass flux profiles. 

Campbell and Brennen [1985b] in the computer simulation with circular discs 

obtained the profiles of velocity, granular temperature, and solid fraction. In the 

present work, fibre optic probes were used to measure velocity, its fluctuation, 

and linear concentration. It should be noted that, usually, fully developed fl.ow 

could not be achieved because of the finite length of the chute. 

Examples of vertical profiles for 3.04 mm glass beads with the rubberized 

surface are presented in Figure 3.7. The angle of the chute inclination was 17.8°. 

As illustrated in Figure 3.7 (a), velocity profile is fairly linear except within 

a distance of about one particle diameter from the base. The uniform velocity 

within the distance of one particle diameter indicates that there is a distinct layer 

at the corner, preventing particles from entering the layer from above, assuring 

the existence of the "corner effect." Note that the ratio of velocity at the base to 

that at the free surface is about one half, which is comparable with the results of 

the computer simulation by Campbell and Brennen [1985b]. This result should 

be distinguished from those of Savage [1979] and Bailard [1978] where almost zero 

velocity was obtained at the chute surfaces roughened by rough rubber sheets or 

attached particles. 

Velocities at the center of the chute, both at the base and the free surface, are 

shown in Figure 3.7 (a) for comparison with the velocities at the sidewall. At the 
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free surface, the v:elocities at the center and at the sidewall are almost equal. But 

at the base there is some discrepancy due to the corner effect. This characteristic 

of the data suggests that the velocity profile in the center of the chute is similar 

to that at the sidewall except within one particle diameter distance from the 

base. An assumed velocity profile at the center is shown by the dotted line in 

Figure 3.7 (a). We also conclude from these observations that the shear rate, 

du/ dy, can be approximated by the difference between the base and free surface 

velocities, Au, divided by the depth, h, of the flow. This approximation has been 

used throughout the analysis which follows. 

The profile of velocity fluctuations at the sidewall is presented in Figure 

3.7 (b). It can be seen that the profile is fairly linear, and that fluctuations 

are larger at the free surface than at the chute base. Comparison between the 

sidewall and center values is also included in Figure 3.7 (b). At the free surface, 

no significant di:ff erence is encountered between the velocity fluctuations at the 

sidewall and at the center. But at the base, a small discrepancy is observed, 

which is again believed to be due to the corner effect. This fairly linear profile for 

velocity fluctuation was observed in most flows. Furthermore, the fluctuations 

were always higher at the free surface than at the base of the chute. These 

overall features are in contrast to the results obtained by Campbell and Brennen 

[1985bJ. In their computer simulation, granular temperature near the solid wall 

was substantially higher than near the free surface, and the profile was far from 

linear. We believe this difference is probably due to the fact that 0.6 was used 

for ep in the computer simulation while ep for glass beads is more like 0.95 (Lun 

and Savage [1986]; refer to Ahn et al. [1989b] for more detail). 

When Figure 3. 7 (b) is closely examined, it raises some complicated prob­

lems in measurements of granular flows. For instance, a slight peak in the velocity 

:fluctuation was consistently observed at a distance of one particle diameter from 

the chute base. This location coincides with the interface between the first and 

second layers of particles, which are quite distinct because of the corner effect. 
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Within each distinct layer, the fibre optic probes measure only longitudinal fluc­

tuations for the particles within that layer. At the interface, however, particles 

from both layers contribute, and hence the difference in the mean velocities in 

the two layers enters into the result. Therefore, the fluctuations at the interface 

were observed to be slightly higher than elsewhere. 

The profile of linear concentration, V1D, is presented in Figure 3.7 (c). Again, 

in the region near the base, the locations of the first and second layers and their 

interface can be determined by the details of the profile. The peak at y / d :::::::: 0.5 

indicates the location of the center of the first layer; the interfacial region has a 

lower concentration; the peak at y / d :::::::: 1. 7 corresponds to the center location of 

the second layer. This detailed structure seems to disappear above the second 

layer. Near the free surface, the linear concentration decreases gradually, and as 

a result it is difficult to determine the depth of flow accurately. 

The monotonic decrease of solid fraction with distance from the wall as 

shown in Figure 3.7 (c) was a somewhat unexpected result. From previous exper­

iments (Bailard [1978]) and from computer simulations (Campbell and Brennen 

[1985b]), it has been observed that solid fraction increases with distance from the 

base and it vanishes at the free surface after it achieves its maximum in the bulk. 

One of the reasons may be the difference in the boundary conditions used in the 

experiments. The experiments of Bailard used the surface on which particles 

were glued to create a no-slip condition at the boundary. On the other hand, the 

present experiments used relatively smooth surfaces. The discrepancy between 

the present data and the result of Campbell and Brennen may arise from the 

fact that the value of ep used by Campbell and Brennen is different from that 

of the glass beads in the present experiments. The results of Ahn et al. [1989b] 

show that the profile of solid fraction can be either of Campbell and Brennen or 

of the present one, depending on the value of ep. 

Sidewall measurements at a higher angle of chute inclination with the rub­

berized surface and 3.04 mm glass beads are presented in Figure 3.8. The angle 
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was 22. 7°, and the entrance gate opening was chosen to be smaller than that of 

Figure 3.7. The general features of the profiles are similar to those of Figure 3.7. 

The velocity profile is again fairly linear. The velocity fluctuation increases with 

distance from the chute base. The density profile exhibits monotonic decrease 

from the base to the free surface. Compared to the results of Figure 3.7, which 

were obtained at 8 = 17 .8°, there is about a 40% increase in velocity and about a 

100% increase in velocity fluctuation; the solid fraction gradient near the wall is 

larger than that of Figure 3.7. Measurements at the center of the chute are also 

plotted in Figure 3.8. Just as in Figure 3.7 (a), at the free surface the velocity at 

the center is equal to that at the sidewall while at the chute base some discrep­

ancy is observed due to the corner effect. The fact that the detailed structure 

of the layers in the velocity profile is indistinct compared to that of Figure 3. 7 

indicates there is a convective process between the first and second layers. 

Measurements on the smooth aluminum chute base are presented in Figure 

3.9. The chute inclination was 22. 7°, and the 1.26 mm glass beads were used. 

Compared to the data on the rubberized surface, the profiles of velocity and 

velocity fluctuation are more uniform. The velocity at the wall is more than 80% 

of that at the free surface. Velocity fluctuation is fairly uniform although there 

is a slight increase with distance from the chute base. The detailed structure of 

the layers due to the corner effect is clearly observed in all the profiles. 

3.3 PRESENTATION OF EXPERIMENTAL DATA 

3.3.1 Experimental Data on Basic Flow Properties 

In this section, we examine how basic flow properties (such as velocities, 

velocity fluctuation, and shear rate) vary with solid fraction. Two kinds of solid 

fraction are used in this presentation; mean solid fraction, Vm, and wall solid 

fraction, Vw. The mean solid fraction is an average value over the depth of flow, 

and the wall solid fraction describes a density in the vicinity of the chute base. 

Because it is calculated from a measurement of linear concentration, the wall 
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solid fraction may not represent accurately the local solid fraction near the wall, 

but it is at lea.st a qualitative, comparative measure. 

The ratio of velocity at the wall, Uw, to velocity at the free surface, u,,, is 

plotted against mean solid fraction in Figure 3.10. Different symbols are used 

for different surface conditions. For the smooth surface, the ratio uw/u,, is fairly 

constant and greater than 0.9, implying that the velocity profile over the depth 

is close to uniform. On the other hand, for the rubberized surface, the ratio 

increases with decreasing llm· In other words, the lower the solid fraction, the 

more uniform the velocity profile. Note the rather sudden change of uw/u,, at 

llm ~ 0.1, which will be discussed later. As expected, the data for the moderately 

smooth surface lie between those for the smooth surface and the rubberized 

surface. 

The mean shear rate, !::i.u/h, is plotted against mean solid fraction in Figure 

3.11. For the smooth surface (see Figure 3.11 (a)), the shear rate monotonically 

increases with decreasing Lim· (Recall, however, uw/u,, remains constant as shown 

in Figure 3.10.) On the other hand, the moderately smooth. and rubberized 

surfaces (see Figures 3.11 (b) and (c)) yield shear rates which first increase and 

then decrease as the solid fraction decreases. The values of Lim at which the shear 

rate is a maximum are about 0.3 for the moderately smooth surface, and about 

0.2 for the rubberized surface regardless of the particle size. Note that the steep 

change of the shear rate at Lim ~ 0.1 for the rubberized surface corresponds to 

that of uui/u,, in Figure 3.10. 

The variation of the velocity fluctuation at the wall, u~, with wall solid 

fraction is examined in Figure 3.12 (a). Regardless of surface conditions, u~ 

increases with decreasing Llw. The use of wall solid fraction was essential for the 

examination of the local quantity u~. To illustrate this, the local quantity u.~ 

was plotted against the mean quantity Lim as shown in Figure 3.12 (b). The 

use of the mean quantity with the local quantity leads to a wide scattering of 

the data. If examined more closely, the data reflected a strong dependency on 
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the entrance gate opening ho. As observed in Figure 3.12 (b), the data have a 

distinct line for each h0 • This is because the mean solid fraction is closely related 

to h 0 • Note that fully developed fl.ow was not achieved in the present experiments 

(this will be discussed later). Therefore, the test section was directly affected by 

entrance conditions governed by h0 • When Vw is used, the dependency on h0 

largely disappears as shown in Figure 3.12 (c). 

It is also interesting to present the velocity fluctuation in a nondimension­

alized form. In Figure 3.13, the velocity fluctuation normalized by the mean 

velocity is plotted against wall solid fraction. Note all the quantities are local 

values measured at the wall. The ratio of u~ to Uw for the rubberized surface is 

larger than that for the smooth surface. The ratio u~/uw for the smooth sur­

face shows little variation with Vw. For the moderately smooth surface, u'w/uw 
changes only mildly with Vw. However, the rubberized surface clearly shows the 

increase of u~ / Uw with decreasing Vw. 

3.3.2 Experimental Data on Friction Coefficient 

As previously mentioned, shear stress was directly measured by the shear 

gauge, and normal stress was calculated as PpVmgh cos fJ where Pp is the density 

of particles, g is the gravitational acceleration, h is the depth of fl.ow, and () is 

the angle of the chute inclination. Note both stresses were measured at the chute 

base wall. Recall from section 3.1 that kinematic Coulombic friction coefficients, 

µ 0 , were measured for each surface condition; 0.15 for the smooth surface, 0.22 

for the moderately smooth surface, and 0.38 for the rubberized surface. 

The ratio of shear stress to normal stress, or friction coefficient, f, is plotted 

against wall solid fraction in Figure 3.14. For the smooth and moderately smooth 

surfaces, friction coefficients appear to be fairly constant. Furthermore, the val­

ues of friction coefficients are comparable to the kinematic Coulombic friction 

coefficients for each surface (though f is slightly higher than µ 0 ). On the other 

hand, for the rubberized surf ace, the friction coefficient is a decreasing function of 

solid fraction. And the Coulombic friction coefficient for the rubberized surface 
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does not seem to directly affect the friction coefficient for the flowing material. 

Therefore it may be concluded that the different surface conditions result in quite 

different types of boundary condition at the wall. 

In Figure 3.15, the friction coefficient is plotted against velocity fluctuation 

normalized by mean velocity, or u'w/uw. For the smooth and moderately smooth 

surfaces, all the data are clustered at one region. For the rubberized surface, f 
seems to correlate quite well with u'w / Uw; f increases with increasing u.~ / U.w. 

This phenomenon is independent of particle size. 

3.3.3 Experimental Results on Rheological Behavior 

The rheological behavior of granular material will be examined in this sec­

tion. Stresses measured at the wall of the chute base will be related to the density, 

the shear rate, and/ or the velocity fluctuation. In particular, following the rhe­

ological models by Lun et al. [1984J, stresses will be normalized by Pp(u'w) 2 (see 

equation (2.9), for any kind. of flow), by p11 (d6.u/ h)u'w (see equation (2.8), for 

any kind of flow), by p11 (d6.u/h) 2 (see equations (2.13) and (2.14), for simple 

shear flow), and by Pp(d6.u/h)2 / tan2 () (see equations (2.18) and (2.19), for fully 

developed flow). Comparisons with the results of Lun et al. will also be made. 

Note Lun et al. assume that the granular temperature is isotropic. Furthermore, 

they do not include the effect of particle rotation and surface friction. There­

fore, some discrepancy may be expected in the comparison with the experimental 

data. 

Normal stress normalized by p11 ( u'w) 2 is plotted against wall solid fraction 

in Figure 3.16 (a). Good correlation is found between the normalized stress and 

wall solid fraction with the former increasing with the latter. The data show no 

effect of surface conditions; all the data from the smooth, moderately smooth, 

and rubberized surfaces are fairly well correlated. When the normalized normal 

stress is plotted against the mean solid fraction as shown in Figure 3.16 (b), the 

data are more scattered. This may be explained by realizing that the normalized 

stress is a local quantity which should be related to the local wall solid fraction 
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rather than the mean solid fraction. In both figures, results for the rheological 

model postulated by Lun et al. [1984] (see equation (2.9)) are also plotted using 

T = (u'2 ). 

Shear stress normalized by Pp ( dA u / h) u'w is plotted against wall solid frac­

tion in Figure 3.17 (a). The normalized shear stress increases with increasing 

solid fraction. The data are also well correlated regardless of surface conditions. 

The results of Lun et al. [1984] (see equation (2.8)) are shown in the same fig­

ure for comparison. The discrepancy between the theoretical and experimental 

results is substantial. The normalized shear stress is presented again with mean 

solid fraction in Figure 3.17 (b). 

In Figures 3.18 and 3.19, stresses normalized by Pp(dAu/h)2 are plotted 

against wall solid fraction and mean solid fraction. Lun et al. [1984] suggest that 

the stresses normalized by Pp(dAu/h) 2 should be functions only of 11 and ep for 

the case of simple shear flow (see equations (2.13} and (2.14}). The normalized 

normal stress is plotted in Figure 3.18 and, contrary to the suggestion of Lun et 

al., the data exhibit a dependency on the surface conditions; the data for each 

surface condition appear to conform to a different function over a wide range of 

solid fraction. These distinct curves for different surface conditions are indepen­

dent of particle sizes. The rubberized surface clearly shows two asymptotes both 

at the high and low solid fractions. As 11 approaches its maximum shear limit, 11*, 

the normalized stress increases, and as 11 ---+- 0 a sharp increase is also observed. 

The data for the moderately smooth surf ace lie slightly above the data for the 

rubberized surface. The asymptote at low solid fraction shown in the data for the 

rubberized surface is not found in the data for the moderately smooth surface; 

the data cease decreasing and stay unvarying with decreasing solid fraction. The 

data taken from the smooth surface decreases monotonically with decreasing 11. 

The results from Lun et al. are also presented in Figure 3.18. The shear stress 

normalized by Pp(dAu/h) 2 is plotted in Figure 3.19, and the results are similar 

to those of Figure 3.18. 
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Normal stress normalized by Pv ( dA t£ / h) 2 / tan 2 fJ and shear stress normalized 

by Pv(dAu/h) 2 / tanfJ are presented in Figures 3.20 and 3.21. The experimental 

data are too widely scattered to find any correlation with solid fraction. The 

data also show some dependency on surface conditions. Results for the rheolog­

ical model presented by Lun et al. for fully developed flow are also plotted in 

Figures 3.20 and 3.21 (see equations (2.18) and (2.19)). Discrepancies between 

the experimental data and the theoretical results are substantial. 

Finally, the parameter introduced by Savage and Jeffrey [1981], 

is examined. Lun et al. [1984] suggest that S or S /tan fJ should be a function 

only of v and ep for the case of simple shear flow or fully developed flow re­

spectively. (See equations (2.12) and (2.17).) In Figure 3.22, d(Au/h)/u~ as 

an approximation of S is plotted against wall solid fraction, and the approxima­

tion of S /tan fJ is presented in Figure 3.23. In both figures, the data are widely 

scattered, showing strong dependency on surface conditions. For the rubberized 

surface, however, the data seem to increase with increasing v. 

From the experimental results on rheological behavior presented in this sec­

tion, we observe that the data are fairly well correlated when the stresses are 

presented following the models of equations (2.8) and (2.9). When the stresses 

are normalized following the model for simple shear flow, the data exhibit a de­

pendency on the surf ace conditions. When the stresses are normalized following 

the models for fully developed flow, the data are widely scattered. These will be 

discussed in the next section. 

3.4 DISCUSSION 

3.4.1 The Characteristics of Chute Flows 

It is apparent from Figure 3.10 that the surface condition has considerable 

influence on the characteristics of chute flow. Different results have been achieved 
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by several authors when different surface conditions are used. For example, 

Bailard [1978] used a surface on which grains were glued, and Savage [1979] 

applied roughened rubber sheets to the surface. In both cases, the ratio of Uw 

to u 11 was close to zero. Augenstein and Hogg [1978] obtained various uw/u 11 for 

various surface roughnesses. When a smooth surface with high friction coefficient 

was used by Campbell and Brennen [1985b] in computer simulations, the ratio of 

uw to u 11 was about 0.4 ,...,, 0.5. The rubberized surface of the present experiments, 

therefore, is similar to those cases in Campbell and Brennen in which a no-slip 

condition at the contact surface was assumed. Despite these data, the present 

state of knowledge does not allow prediction of the slip at the wall. Indeed 

the features of the surface or of the flow which determine the slip are not well 

understood. 

The surface conditions also influence velocity fluctuations at the wall as 

observed in Figure 3.13. For the smooth and moderately smooth surfaces, the 

ratio of u.'w to Uw is low and fairly constant. On the other hand, u'w/uw for 

the rubberized surface is high and increases as solid fraction decreases. These 

observations may imply the following: The rubberized surface is characterized 

by large velocity fluctuations particularly at lower solid fractions. The high 

fluctuations and the low solid fraction allow particles to move more freely from 

one location to another. One of the effects by these random motions is a decrease 

of velocity gradient in the direction normal to the fl.ow. That is, when particles 

move from a layer with low mean velocity to a subsequent layer with high velocity, 

the mean velocity of the layer with high velocity is reduced. When particles move 

due to random motion from the upper layer with high mean velocity to the lower 

layer with low mean velocity, the opposite is true. This phenomenon is consistent 

with experimental observations. For the rubberized surface, Uw / u 11 rather sharply 

increases at v ::::::'. 0.1 as the solid fraction is decreased (see Figure 3.10). As also 

observed in Figure 3.11 (c), the shear rate decreases as solid fraction decreases. 

For the smooth surface shown in Figure 3.11 (a), however, this decrease of the 
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shear rate is not observed since no substantial velocity fluctuation exists (see the 

data for the smooth surface in Figure 3.13). 

3.4.2 Friction Coefficient and Boundary Conditions 

In the present work, an attempt to investigate boundary conditions was 

made by changing chute surface conditions. The Coulombic friction coefficient, 

µc, was measured for each surface since it was anticipated that µc would be a 

major factor which determines whether or not particles slip when in contact with 

a solid boundary. Here the word "slip" means the tangential slip between the 

contact surfaces of the particle and the wall. The slip velocity is different from a 

velocity at the wall, tLw, which is the velocity of the particle center extrapolated 

to the wall. Clearly, even when slip velocity is zero, a particle touching the wall 

may roll and thus have non-zero center velocity. 

When a particle collides with a wall such that the shear stress at the contact 

point exceeds a shear stress limit which the surface can withstand for the given 

normal stress at the contact point, slip will occur. Then the ratio of the shear 

stress to the normal stress at the contact point is adjusted to the Coulombic 

friction coefficient of the surface, i.e. f = µc. On the other hand, when the ratio 

of rs to TN at the impact does not exceed µc, there will be no slip between the 

contact surfaces of the particle and the wall. In this case f is different from µc. 

As seen in Figure 3.14, friction coefficients for the smooth and moderately 

smooth surfaces seem to be fairly constant. But for the rubberized surface the 

friction coefficient decreases with increasing solid fraction. Decreasing friction 

coefficients with increasing v were also observed in the shear cell experiments of 

Savage and Sayed [1984] and in the computer simulations of Campbell [1989a]. 

However, the constant friction coefficients of the smooth and moderately smooth 

surfaces have not been observed previously. To explain these observations, we 

suggest the following. For the smooth and moderately smooth surf aces, slip 

occurs at the contact between particles and the surfaces, and the slip condition 

results in the constant friction coefficients equal to µc. On the other hand, the 
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varying friction coefficient for the rubberized surface suggests a no-slip condition 

at the boundary. The high Coulombic friction coefficient of the rubberized surface 

would inhibit any slip at the contact between particles and the surface. 

When there is no slip, the following relation results from a simple analysis 

of the oblique impact of a single sphere on the fl.at surface [see appendix A]: 

f = :_(l - w1r) tana1 
7 U1 1 + ew 

where w1 is the rotational rate before impact, r is the radius of the sphere, and 

u 1 is the velocity tangential to the wall before impact. The impact angle a 1 

is defined by tan- 1(uifvi) where v1 is the velocity normal to the wall before 

impact, and ew is the wall-particle coefficient of restitution. In this equation, the 

friction coefficient or the ratio of Ts to TN at the surface depends on the ratio 

of rotational velocity to tangential velocity, w1r/ui, and on the impact angle, 

tana1. 

In the present experiments, the value of tan a 1 could not be estimated. 

Another factor influencing f is the ratio of the rotational velocity wr to the 

tangential velocity u before impact. Campbell [1988] has shown that next to the 

wall w is considerably larger than the mean value, but that with a small distance 

from the wall w is slightly less than the mean value. Therefore, when a particle 

next to the wall with high w hits the wall, the friction coefficient will be low, but 

if a particle at a distance from the wall with low w comes down and collides with 

the wall, the friction coefficient will be relatively high. 

These phenomena suggest a possible explanation for the decrease in the 

friction coefficient as the solid fraction increases. At low solid fraction, particles 

move more freely from one layer to another. Thus more particles in the upper 

layers with small values of wr ju move down to the boundary and collide with 

the wall. Because friction is measured in a statistical sense as a sum of frictions 

due to individual particles colliding with the wall, f is therefore high at low solid 

fraction. On the other hand, at high solid fraction and low granular temperature, 

very few particles in the upper layer with low wr / u penetrate to the wall. As 
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a result, particles next to the wall with high rotational velocity will dominate 

collisions at the wall. Thus f would be smaller at high solid fraction. 

This explanation appears to be consistent with the data for the rubberized 

surface where no slip is expected (see Figure 3.14). The general trend of de­

creasing f with increasing v holds independent of particle size. In Figure 3.15, 

f is plotted against u'w / uw. When higher u'w / Uw exists, particles with low w 

in the upper layer more easily move down to the boundary and collide with the 

wall. That is, as u'w / uw increases, the intrusion of particles with low w from the 

upper layer into the boundary becomes more frequent, causing f to increase. As 

a result, the friction coefficient appears to be a fairly linear function of u'w/uw 

for the rubberized surface. 

For the smooth and moderately smooth surfaces, slip occurs and µc controls 

the boundary conditions. Therefore, f is comparable to µc (see Figure 3.14), 

and f is unrelated to u'w/uw (see Figure 3.15). (However, one might argue 

from Figure 3.15 that for the smooth and moderately smooth surfaces f is small 

because u'w / Uw is small. Then it may be concluded that regardless of the surface 

conditions f has a fairly linear relation to u'w / Uw.) 

3.4.3 Stresses and Rheological Behavior 

In Figures 3.16 (a) and 3.17 (a), the experimental data are fairly well cor­

related when stresses are normalized following the rheological models by Lun et 

al. [1984]. The models should hold for any flow whether it is a fully developed 

flow or not. The data are also internally consistent, independent of the surface 

boundary conditions. However, when the stresses are normalized following the 

model for simple shear flow of Lun et al., the experimental data show the de­

pendency on the surface conditions, as presented in Figures 3.18 and 3.19. This 

may be because chute flows differ in many ways from simple shear fl.ow. 

The chute flows in the present experiments were not fully developed. This 

is confirmed by comparing friction coefficient with the tangent value of the chute 

inclination angle. The ratio of tan 0 to f is plotted in Figure 3.24. If fl.ow is fully 
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developed, the ratio should be 1. The results show that most of the data do not 

correspond to fully developed flows. Therefore, when these data are presented 

in Figures 3.20 and 3.21 following the models for fully developed fl.ow, consid­

erable scatter is observed. However, some fully developed flows are obtained 

with the rubberized surface. With this idea in mind, shear stress normalized 

by Pv(d~u/h) 2 /tanfJ is plotted again in Figure 3.25 using only data for which 

tanfJ// < 1.25. Note that the normal stress normalized by Pp(d~u/h) 2/tan2 0 

is in fact identical with the normalized shear stress in the case of tan f) ::::::. f. The 

scatter shown in Figures 3.20 and 3.21 disappears from Figure 3.25, and all the 

data are rather well correlated. In Figure 3.26, S /tan (J is plotted for only those 

data for which tan 8 / f < 1.25. The data are again in good correlation contrary 

to the scatter found in Figure 3.23. The selected data also agree well with the 

rheological behavior suggested by Lun et al. [1984] (see equation (2.17)). 

From investigations of yarious rheological models, it may be concluded that 

the rheological models for general flow (equations (2.8) and (2.9)) give good 

correlation to the present experimental data (see Figures 3.16 and 3.17). The 

rheological model for fully developed flow (equation (2.18) or (2.19)) is also con­

firmed by some selected experimental data which are close to fully developed 

flow (see Figure 3.25). 
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CHAPTER 4 

ANALYSIS OF THE FULLY DEVELOPED CHUTE FLOW 

OF GRANULAR MATERIALS 

4.1 FORMULATION OF THE BOUNDARY VALUE PROBLEM 

In the present analysis of fully developed chute flow, the constitutive equa­

tions of Lun et al. [1984] for granular materials are used along with the basic 

equations of motions. As presented in chapter 2, the momentum equations and 

the translational fluctuation energy equation for fully developed chute flow are 

as follows: 

8P a;y = - Ppl/9 cos (), (4.1) 

8Pyz . fJ ay = PpV9 sm , (4.2) 

au 8qy 
-Pvz ay - ay - "Y = O, (4.3) 

where () is the angle of the chute inclination, and g is the gravitational accelera­

tion. Note that for the fully developed chute flow -Pyz/Pyy = tan9. 

The constitutive equations of normal and shear stresses for fully developed 

chute flow are also presented in chapter 2 as 

Pyy = Pp91T, 

au ! 
Pyz = -ppd92 By T , 

and they-component of fluctuation energy flux is 

The rate of dissipation per unit volume is given as 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

In the above expressions, u1, 92, 93, g4 , and 95 are functions of v and ep as shown 

in chapter 2. 
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Equations (4~1)-(4.3) with (4.4)-(4.7), after nondimensionalization, can be 

written in the following form: 

(4.8) 

(4.9) 

au• = 91T•t tanD. 
ay• 92 

(4.10) 

Here the dimensionless spatial coordinate y*, granular temperature T*, and mean 

velocity u* are defined by: 
• y 

y = -, 
d 

T* - T 
- gdcosfJ' 

• t£ 
u = . 

y'gdcosfJ 

And in g~, g~, g~, and g~ the dashes denote diff erentia.tion with respect to v. 

These differential equations are nonlinear, and must be solved simultaneously. 

Equations (4.8) and (4.9) can be solved for 11 and T*; u• follows from equation 

( 4.10). It is important to note that v and T* have solutions independent of u *. 

The above system of differential equations (4.8)-(4.10) requires boundary 

conditions both at the wall of the chute base and at the free surface. At the 

free surface, v must vanish as y• goes to infinity, and the energy flux, q11 , must 

be zero. When all the conditions are examined carefully, it is obvious that if 

aT* I ay• vanishes at the free surface then all the other conditions are automat­

ically satisfied. When this gradient of the granular temperature tends to zero 

at the free surf ace, the gradient of solid fraction is always negative, and thus 
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the solid fraction· vanishes in an approximately exponential manner. Since the 

solid fraction vanishes at the free surface, the gradient of the solid fraction tends 

to zero. Therefore, the energy flux vanishes because both gradients of granular 

temperature and solid fraction vanish at the free surface. Note that the gradient 

of mean velocity also vanishes since the solid fraction tends to zero at the free 

surface. Therefore, all the stresses and their derivatives vanish as v goes to zero, 

satisfying the momentum equations at the free surface. The energy equation is 

also satisfied since all three terms in the equation ( 4.3) vanish independently at 

the free surface. 

Hence the boundary value problem is formulated as follows: The differential 

equations, (4.8), (4.9), and (4.10), are to be solved with three boundary values 

at the wall (v, T*, and u* at y* = 0), and one boundary condition at the free 

surface ( 8T* / 8y* = 0 at y* = oo). A "shooting method" has been chosen to 

solve this boundary value problem. That is, for given v, T*, and u* at the wall, 

a guess is made for the value of 8T* / 8y* at y* = 0. With these four values, the 

above differential equations are integrated from y* = 0 to y* = oo. H 8T* / 8y* 

at y* = oo is not zero after integration, another 8T* / 8y* at y* = 0 is tried. 

This iterative procedure is continued until 8T* / 8y* at y* = oo becomes zero. In 

practice, iterations were done until the ratio of the temperature gradient at the 

free surface to that at the wall became about 10-6 , and the differential equations 

were for most cases integrated up toy*= 10 - 100. A fourth order Runge-Kutta 

method was employed, and no convergence problems were encountered. 

In order to check the above system of differential equations, an alternative 

way has been sought in appendix B. No difference was found between the results 

of the two methods. 

The above boundary value problem has two parameters ( ep and tan 9) and 

three boundary values (v, T*, and u*) at the wall. It is clear that the two 

parameters are physically appropriate. But the three boundary values at the 

wall may demand further physical interpretation. In a chute flow, the opening 



- 40-

of an entrance gate controls mass fl.ow rate, m, and the surface condition of 

the chute base provides two more physical constraints, namely, the wall-particle 

coefficient of restitution, ew, and the roughness of the surface, c5. More generally 

the last two conditions may be considered as conditions governing the normal 

and tangential impulses experienced by particles when they collide with the wall. 

The combination of the three conditions (such as m, ew, and c5) with the two 

parameters ( ep and tan 0) determines the three boundary values, 11, T*, and u * 

at the wall, and thus characterizes the entire flow. H a particular combination 

of 11, T*, and u* a.t the wall does not satisfy the wall boundary conditions, there 

may be a problem with the convergence of 11 to zero at the free surface, implying 

that there is no realistic solution with those parameters and wall boundary val­

ues. Therefore, once 11, T*, and u* are properly chosen to satisfy the boundary 

conditions at the wall, all the free surface conditions are automatically satisfied. 

It is noteworthy that the boundary conditions at the free surface are auto­

matically satisfied in the present analysis. In other literature, there have been 

efforts to satisfy the free surface boundary conditions using various techniques. 

For example, Johnson and Jackson [1988] have attempted a numerical analysis 

similar to the present one. In their analysis the spatial coordinate, Y, was nor­

malized by h, the depth of flow. Since h is not well defined, it was necessary to 

define a small layer adjacent to the free surface. The location of this layer was 

then defined as h, and a boundary value problem was solved between Y = 0 and 

Y = h. Later the results near Y = h were matched to asymptotic low density 

solutions in the neighborhood of the free surface. The asymptotic solutions were 

obtained by demanding that the solid fraction and the derivatives of velocity and 

granular temperature vanish as Y --+ oo. 

4.2 RESULTS OF ANALYSIS AND COMPARISONS 

4.2.1 Results of Analysis 

As described earlier, the fl.ow properties, 11, T*, and u*, were obtained as 



- 41-

functions of y*, the distance from the chute base normalized by the particle 

diameter. Each result was specified by the two parameters, ep and tan8, and 

three boundary values at the wall, llw, T;, and u:,. The results for .../T* and u* 

were normalized by VT:, and u:, respectively. 

Though two parameters and three boundary values created numerous vari­

ations, the results could be classified into two distinct types and a transitional 

type according to the form of the granular temperature profile. The first type is 

illustrated by the solution shown in Figure 4.1 for which ep = 0.95, tan 9 = 0.4, 

T* = 2, llw = 0.2, and u* = 10. Note that granular temperature increases with 

distance from the wall. The profile of solid fraction exhibits a monotonic decrease 

from the wall to the free surface, and it is clear that solid fraction vanishes at 

the free surface. The profile of mean velocity appears to be roughly parabolic. 

Near the wall the profile is fairly linear, and the velocity gradient tends to zero 

at the free surface. The physical location of the free surface, h, is ill-defined in 

view of the solid fraction profile. One might reach different conclusions about 

the value of h depending on whether the granular temperature or the velocity 

profile is being examined. 

Obvious differences in the profile of the granular temperature occur for the 

second type illustrated in Figure 4.2 for which e,, = 0.6 and the other values 

remain unchanged. First of all, the temperature gradient is now negative. The 

variation of the magnitude of the temperature with distance from the chute base 

is substantial. The different choice of the value of the coefficient of restitution 

also results in a particular type of solid fraction profile, where the maximum 

solid fraction is achieved in the center of the flow and lower densities occur both 

at the wall and at the free surface. In this case, the free surface is more clearly 

defined. 

Finally, a transitional type that contains features of both the first and second 

types is illustrated in Figure 4.3. Note that ep = 0.8 and llw = 0.3 while the other 

parameter and boundary values are not changed. The granular temperature first 
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increases with distance from the wall boundary, then decreases at larger distances 

from the wall, and then becomes uniform near the free surface. The profile of 

solid fraction is similar to that of the first type. 

The question of when each of these types of granular temperature profiles 

occurs will be discussed later. In this presentation, the first, second, and last 

types will be referred to as Type I, Type II, and Type III, respectively. 

The effect of the variation of the parameter tan IJ is investigated in Figure 

4.4. The results show that higher gradients of granular temperature and velocity 

arise from a. higher angle of chute inclination, and the depth of ftow also increases. 

This is consistent with a physical understanding of the chute flow. That is, for 

a higher inclination angle, particles move faster and collide with greater impact, 

resulting in the increase of granular temperature and velocity gradient. The 

increase of the overall granular temperature causes dilatation near the wall, which 

is accompanied by an increase in the depth of flow. As a result, the solid fraction 

for the higher chute inclination is lower near the wall but higher at a distance 

from the wall. 

The effect of the variation of boundary values at the wall is examined in Fig­

ures 4.5 and 4.6. Comparison shows that a larger value of granular temperature 

at the wall results in an increase in the granular temperature gradient and thus 

the overall granular temperature. As a consequence, (see equation ( 4.10)), the 

gradient of mean velocity also increases. The increase of granular temperature 

is also accompanied by an increase in the depth of flow. These results are con­

sistent with the observation of the present experiments in chapter 3 (though the 

details are not included). On the surface where higher temperature is created, 

higher gradients of temperature and velocity are observed, and the depth of flow 

is increased. 

The effect of the variation of solid fraction at the wall is examined in Figure 

4.6. When a larger solid fraction is prescribed at the wall, the granular temper­

ature, the depth of flow, and the mean velocity all increase significantly. These 
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results agree with the experimental observations. In order to have a high solid 

fraction at a given chute inclination, the mass fl.ow rate needs to be large, and 

this implies a deeper fl.ow. 

4.2.2 Comparison with Experimental Results 

Few experimental data are available for comparison with these analytical 

results. In particular, there are almost no measurements of granular temperature. 

Furthermore, the wall boundary conditions are not sufficiently well understood 

to allow us to estimate the values of T*, v, and u * at the wall. The experiments 

of chapter 3 or Ahn et al. [1989al represent a.n attempt to acquire the necessary 

data. In measurements through the sidewalls, the profiles of one component of 

granular temperature, mean velocity, and linear concentration were obtained. 

For comparison with the present results, granular temperature and solid fraction 

are obtained from one component of granular temperature, ( u'2), and linear 

concentration, v1D, by taking T = (u'2 ) and v = 7rVlD/6. Furthermore the 

value of ep = 0.95 is appropriate for the glass beads used in the experiments 

(see Lun and Savage [1986]} and this value of e,, is employed in all the results 

presented. 

In a strict sense the solid fraction goes to zero at the wall since the particles 

are spherical. As a result, the appropriate wall solid fraction to be used in 

the corresponding continuum model is rather unclear. Therefore two candidate 

choices a.re employed in the comparisons which follow. One is the solid fraction 

which was obtained at the measurement location closest to the wall. The other 

is the maximum solid fraction which was usually obtained at between a half and 

one particle diameter distance from the wall. 

Experimental data in Figure 3.9 for 1.26 mm diameter glass beads flowing 

down a chute with a smooth aluminum surface are compared with the present 

analysis in Figure 4. 7. The chute inclination angle 8 was 22. 7°, and the boundary 

values at the wall, T~ = 0.935 and u:, = 11.3 are taken from the experiments. 

Two wall solid fractions are used as described above, namely, 0.205 and 0.304. 
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The profile of granular temperature from the experiments shows a general in­

crease of temperature with distance from the wall. This increasing feature is 

predicted by the present analysis. With Vw = 0.205, the magnitude of granular 

temperature is also well predicted. Moreover, the monotonic decrease of solid 

fraction with distance from the wall is consistent with the experiments. Near 

the wall, the result for the case of Vw = 0.304 shows better agreement with the 

experiments, but at the free surface the present analytical result deviates from 

the experiments. For Vw = 0.205, the depth of flow of the analysis is consistent 

with that of the experiments while there is slight discrepancy near the wall. In 

addition, good agreement is observed between the profiles of mean velocity for 

the case of Vw = 0.205. 

For the second comparison, experimental data in Figure 3.8 with a rubber­

coated chute base are presen~ed again in Figure 4.8. This rubber-coated surface 

created quite different boundary conditions; compared to a smooth aluminum 

surface, the depth of fl.ow was high, mean velocity was usually low, and both the 

gradients of mean velocity and granular temperature were high. In the experi­

ments, the 3.04 mm glass beads were used, and the chute inclination angle was 

22. 7°. Boundary values at the wall, T~ = 0.44 and u!, = 4.388 are taken from 

the experiments, and Viv = 0.179 and Vw = 0.244 are chosen as alternative solid 

fractions at the wall. Considerable discrepancy is observed between the profiles 

of granular temperature. The present analysis yields almost uniform granular 

temperature while the experimental data display significant granular conduction 

from the free surface to the wall. On the other hand, a remarkable agreement 

is found in the profiles of solid fraction, especially in the case of Vw = 0.244. 

The depth of :flow as well as the general shape of solid fraction profile is well 

predicted in the present analysis. In the profiles of mean velocity, a deviation 

of the analysis from the experimental data is found. The discrepancies found 

in the profiles of granular temperature and mean velocity could be a result of 

the experimental flow not being fully developed. One might surmise that this 
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flow would obtain a higher granular temperature as it became fully developed. 

H a larger value of T.,: is input to the present analysis, considerable increases of 

granular temperature and mean velocity result (as shown in Figure 4.5). 

4.2.8 Comparison with Computer Simulation 

Comparison of the present analysis can also be made with the computer 

simulations of Campbell and Brennen [1985bJ. The results of Campbell and 

Brennen for () = 30° or tan 6 = 0.577, ev = 0.6, and ew = 0.8 and their Type A 

boundary condition are presented in Figure 4.9. The results with two-dimensional 

disks were converted into three-dimensional values by taking v = 4v;D/3.Ji and 

T = !( (u12) + (v12 ) ). The boundary values were T.,: = 7, u:, = 14, and Vw = 0.14. 

The results of the present analysis with these parameters and boundary values are 

shown in Figure 4.9. When tan() = 0.577 is used as a parameter in the analysis, 

a fundamental difference is found. The results of Campbell and Brennen a.re of 

Type II while the present analysis yields a Type III flow. However, when tan()= 

0.45 is used for the analysis, comparison shows excellent agreement between the 

analysis and the computer simulation. Both profiles of granular temperature 

have negative gradients, and their magnitudes a.re also in good agreement. The 

profiles of solid fraction are qualitatively similar, and the depth of flow is also 

well predicted. A discrepancy in the magnitude of solid fraction may a.rise from 

the fact that the computer simulations were done with two-dimensional disks. 

In the case of tan 6 = 0.45, the mean velocity profiles also show good agreement 

between the computer simulation and the present analysis. 

In short, good agreement is achieved in the case of tan 8 = 0.45, which is 

slightly different from the value of the computer simulation. This may imply 

that the present analysis confirms the possibility of the existence of Type II flow 

but does not accurately predict when that type of flow takes place. 

The results of Camp bell and Brennen's computer simulations at the small 

chute angle of 9 = 20° could not be reproduced by the present analysis. The 

analysis yielded a Type II temperature profile while the computer simulations 
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produced a type of plug flow. That is, the minimum granular temperature was 

achieved in the center of the fl.ow, and higher temperature occurred both at the 

wall and at the free surface. The solid fraction profile of the analysis was similar 

to Type I while the computer simulation result had the profile of Type II. 

Comparisons of the present analysis with experiments and computer simu­

lations lead to the following conclusions. The experimental data are similar to 

Type I flow in which a positive temperature gradient and monotonically decreas­

ing solid fraction are observed. The present analysis also produces the results of 

Type I as long as the boundary values are properly chosen. The general profiles 

of flow properties are well predicted though some discrepancies in their magni­

tudes are observed. On the other hand, the computer simulations have Type II 

flows for sufficiently high chute inclinations. The granular temperature decreases 

with distance from the wall, and the solid fraction increases near the wall and 

decreases with further distance from the wall. These results can also be produced 

by the present analysis when a slight change in the parameter tan fJ is made. 

The fundamental difference between the experimental results and the com­

puter simulations is the value of the coefficient of restitution ( e,, = 0.95 for the 

experiments and e,, = 0.6 for the computer simulations). The different values of 

e,, result in Type I flow for the experiments and in Type II flow for the computer 

simulations. This will be discussed further in the next section. 

4.3 THE NATURE OF GRANULAR CONDUCTION 

For fully developed chute flows, the translational fluctuation energy equation 

( 4.3) may be written as follows: 

W+Q-1=0 

where W is the rate of the work done by stresses to the system per unit volume, 

Q is the rate of the fluctuation energy added to the system per unit volume 

through the conduction of granular temperature, and '"Y is the dissipation rate 
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per unit volume .. For a simple shear flow, the conduction term disappears from 

the energy equation. But for chute flows the role of the conduction term or its 

magnitude compared to other terms has never been clear. In this section the 

fundamental nature of the conduction term will be discussed. 

Equation (2.17) makes it possible to evaluate the work done by shear stress, 

and thus all the terms in the fluctuation energy equation are given as follows: 

2 
W* = ~T*-ltan2 8, 

g2 

"'I*= gsT*t, 

Q* = ,.,,. - w•' 

where W*, "'I*, and Q* are shear work term, dissipation term, and granular con­

duction term nondimensionalized by Pp (gd cos 8) i / d. Furthermore, it is recalled 

that 

Q• = - aq• 
ay•' 

where q*, the fluctuation energy flux nondimensionalized by Pp(gd cos 8)-i, is 

given as 

* ( T* .i aT* • .i av ) q = - 93 ., -- + g4T ., - • ay• ay• 

It can be noted from the constitutive equations that 'Y* is quite sensitive to 

the value of ep while W* is less sensitive, and that 'Y* vanishes as ep approaches 

1. Therefore, for large ep (e.g., 0.95) W* is larger than 'Y*, and this results in a 

negative value of Q*. The opposite is true for small ep such as 0.6. For a positive 

Q*, the gradient of q* is negative, and a positive gradient of q* is achieved for 

negative Q*. But the boundary condition at the free surface requires that q* -+ 0 

as y* -+ oo. Consequently, for a fixed v, a negative value of q* is obtained for all 

y* in the case of a positive gradient of q*, and a positive value of q* in the case 

of a negative gradient of q*. In other words, for a sufficiently large ep, a negative 

energy flux, q*, is achieved along with a negative granular conduction term, Q*. 

And for a sufficiently small ep, a positive Q* results in a positive energy flux. 
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As v varies over the depth of the flow, however, the above argument may 

need modification. The effects of v and tan 8 on the conduction term can be 

examined a.long with the effect of ep a.s follows. The zero of Q* is found by 

examining the following equation for Q*: 

2 
Q* =(gs - ~ tan2 8)T*l = O. 

92 

This is solved as shown in Figure 4.10. Each curve represents zeros of Q* for a 

given ep. If tan() is greater than the value on the curve for a given v, negative 

values of Q* are obtained, and if tan() is smaller, then Q* > 0. For example, for 

tan(} = 0.4, negative values of Q* result for all v in the case of ep = 0.95, but 

positive values result in the case of ep = 0.6. 

The effects of ep, v, and tan() on the conduction term, were examined in 

detail for solutions of Type I, Type II, and Type III Hows. The energy flux, q*, 

and the conduction term, Q*, are plotted in Figures 4.11 (a), (b), and (c) with 

the same parameters and boundary values as given in Figures 4.1, 4.2, and 4.3 

respectively. As expected from the results of Figure 4.10 in the case of ep = 0.95 

and tan(} = 0.4, negative Q* is achieved in Figure 4.11 (a) and thus negative q*. 

But for ep = 0.6 and tan 8 = 0.4 in Figure 4.11 (b), positive Q* and q* emerge, 

which are in accordance with the results of Figure 4.10. When q* is negative at 

the wall boundary, it means that the wall absorbs the fluctuation energy. For 

this case, the granular temperature is expected to be low near the wall while high 

temperature is exhibited at the free surf ace, and thus the fluctuation energy is 

conducted from the free surface to the wall. The generation of fluctuation energy 

through shear motion feeds fluctuation energy into the bulk, where it is partly 

absorbed at the wall boundary and partly dissipated away. On the other hand, 

positive fluctuation energy flux at the wall implies that the wall should supply 

energy to the flow. Unless energy is provided to granular materials through the 

wall (for example, by vibrating the chute base), there can be no such positive 

fluctuation energy flux and therefore no such fl.ow. (Note that changes to granular 

material flows wrought by vibration are well known in industrial practice.) In the 
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experiments of chapter 3, when the angle of the chute inclination was less than 

about 12°, there was no fl.ow unless the chute was agitated. This is consistent 

with the results of Figure 4.10 in which the zero of Q* for e11 = 0.95 is achieved 

at tan 8 ~ 0.22. 

With this idea in mind, it is interesting to study a hypothetical experiment 

in which there is no shear motion but granular materials are allowed to have 

granular temperature which might be supplied by wall vibration. Then fluctu­

ation energy will be conducted from the wall and should be dissipated inside 

the bulk. Now let us examine such a state using the present analysis. The mean 

velocity and its gradient are zero, and tan 8 = 0. From Figure 4.10, it is expected 

that the conduction term will be positive for all values of the coefficient of resti­

tution. The solutions are illustrated in Figure 4.12, in which e11 = 0.9 and 0.95, 

tan 8 = O, llw = 0.2, and T,! = 5. As expected, the solutions are of Type II be­

cause of a positive conduction term. Temperature decreases with distance from 

the wall, and solid fraction increases near the wall but decreases with further 

distance from the wall. Comparison between the results for different values of ep 

show, as expected, that for low e11 the fluctuation energy dissipates faster than 

for high e11 • Therefore, the case of the lower e11 results in a lower temperature at 

the free surf ace. 

At this point, it is necessary to study how solid fraction varies with granular 

temperature. Physically it is clear that it is difficult for particles to stay close in 

the presence of high temperature. Therefore, when the temperature is high, the 

solid fraction is low. The variation of solid fraction with granular temperature 

can be explained in more detail by using equation (4.8): 

av 1 ( 8T*) 
ay• = - g~T· v + 91 ay• . 

When the temperature gradient is negative, the solid fraction gradient can be 

positive since both gi and g~ are always positive. Therefore, when the tem­

perature decreases significantly with distance from the wall, the solid fraction 

increases near the wall as shown in Figures 4.2 and 4.12. Furthermore, when 
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the temperature is lower, the magnitude of the solid fraction gradient is higher. 

Hence the solid fraction for ep = 0.9 increases more than for ep = 0.95 as shown 

in Figure 4.12. The equation (4.8) also explains the variation of solid fraction 

near the free surface. Near the free surface, gi tends to 1, g1 is the same order 

as v, and the temperature gradient is negligible. Therefore, v decreases approx­

imately as e-11 • /T•. When the temperature is low at the free surface, a rapid 

decrease of solid fraction occurs. Therefore, the free surface is clearly defined 

as shown in Figure 4.2. On the other hand, when the temperature is high near 

the free surface, the solid fraction decreases slowly with distance, resulting in 

the case of Figure 4.1. These phenomena can also be observed from Figure 4.12 

where lower T* at the free surface results in a sharper decrease of v (see the case 

of ep = 0.9). 

Figure 4.11 (c) is an interesting case for which q* and Q"" start with negative 

values but become positive and tend to zero as the free surface is approached. 

The boundary values at the wall ( 11 = 0.3) and the two parameters ( ep = 0.8 and 

tan 8 = 0.4) give a negative value of Q* from Figure 4.10. As v decreases from 

the wall to the free surface, a positive Q* is to be obtained from Figure 4.10. 

This particular profile of energy flux over the depth gives rise to the particular 

shape of temperature profile in Figure 4.3. Note from Figure 4.11 (c) that a local 

maximum of q* is achieved when Q* = 0. 

The fundamental question of the magnitude of conduction term in the chute 

flow is answered in Figure 4.13 where the ratio of the conduction term to the 

dissipation term is plotted against y*. Figures 4.13 (a), (b), and (c) are the 

results from cases of Figures 4.1, 4.2, and 4.3 respectively. In none of Figures 

4.13 (a) and (b) is the conduction term insignificant relative to the dissipation 

term. In a transitional case such as Figure 4.13 (c), the conduction term is 

relatively smaller than the dissipation term. In fact, the ratio of the conduction 

term to the dissipation term is given as follows: 

Q* 2 
- = 1- ~tan2 6. 
1* g2g5 
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In Figure 4.14, g1
2 / g2gs normalized by the value at v = 0 is plotted as a function 

of v and ep. Note that g1
2 /g2g5 at v = 0 is given as follows: 

Therefore, Q* /"f* varies from 1 (when 6 = 0) to -oo (when eP = 1), and con­

duction is always important. In general, the magnitude of the ratio is large for 

large ep, and small for small ep. When negative conduction exists, a higher chute 

inclination yields a larger value for the ratio. That is, for a higher chute inclina­

tion, the conduction term plays a more important role relative to the dissipation 

term than for a lower chute inclination. When the conduction is positive, the 

opposite is true. 

Since w• / "f * = 1-Q* / "f *, the shear work term is small compared to the dis­

sipation term when the conduction term is positive. When the conduction term 

is negative, w• /"t* is relatively large. (Note the comparison between Figures 

4.13 (a) and (b).) When w• /"t* is small (such as in Figure 4.13 (b)), granular 

temperature is low because fluctuation energy is slowly generated by the shear 

work. Furthermore, the flow dissipates well because of a low coefficient of resti­

tution. As a result, the high density at the center of the flow is not dilated as 

shown in Figure 4.2. 
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CHAPTER 5 

EXPERIMENTAL STUDY OF HEAT TRANSFER 

TO GRANULAR FLOWS 

5.1 APPARATUS AND PROCEDURE 

Convective heat transfer to granular material fl.owing down an inclined chute 

has been studied experimentally. Since this experimental program was conducted 

during the early stages of the entire research, the experimental facilities and 

instruments were relatively simple compared to those for the experiments on 

shear Hows of granular materials. 

In general, the basic design of the overall experimental setup was similar 

to that of Spelt [1981J. A hopper with about 100 liter capacity was installed 

on the top of the hopper stand, and from the hopper granular materials were 

discharged into the chute. At the exit of the chute the discharging materials 

were collected using a container. The granular materials in the container were 

manually fed back into the hopper. The chute was pivoted at the middle of 

the hopper stand, and was supported by a bar which was in turn supported by 

two cantilevered support arms extending from the hopper stand. The angle of 

the chute inclination was adjusted by changing the location of the bar along the 

support arms. The dimensions of the chute were the same as those in the shear 

flow experiment; 7 .62 cm wide and 1.2 m long. 

The previous works (Spelt [1981] and Patton [1985]) had indicated that the 

electrostatic charge within flowing granular materials could be a problem af­

fecting the reproducibility of results. Indeed, the buildup of static charge was 

observed in the present experiments with the small 0.50mm glass beads. (How­

ever, the buildup was insignificant with the other materials of larger particle 

diameters.) Therefore, all the parts of the chute were made of aluminum, and 

the whole experimental setup was electrically grounded in order to minimize the 

effect of electrostatic charge. 



- 53 -

The test section consisted of a heating plate; 5.1 cm wide and 15.2 cm long. 

A rectangular hole, 6.3cm wide and 17.2cm long, was cut into the chute base 

and replaced by the heating plate. The heating plate comprised a copper plate, 

a heating element, a phenolic plate, and a guard heating element, which were 

glued together on the top of each other using an epoxy with a high thermal con­

ductivity. (See Figure 5.1.) In order to create constant temperature condition 

at the wall, copper was chosen as the top portion of the heating plate because 

of its high thermal conductivity. Under the copper plate was a 50 W ribbon 

heater manufactured by Sierracin/Thermal Systems. The electrical resistance of 

the heater was measured, and thus the power output of the heater was calcu­

lated reading the voltage across the heater. The variation of the resistance with 

temperature appeared to be insignificant, and it was neglected in calculating the 

power output. 

The phenolic plate and the guard heater were used to insulate the bottom of 

the heater under the copper plate. Once the power output of the top heater was 

selected so as to yield a reasonable temperature difference between the flowing 

material and the copper plate, the temperature under the phenolic plate was 

adjusted by the guard heater. By adjusting two temperatures on the top and 

bottom of the phenolic plate to be close to each other, the heat transfer across the 

phenolic plate was minimized, and most of the heat generated by the top heater 

could be assumed to be convected to the flowing granular material. The top and 

guard heaters were identical, and their powers were independently controlled by 

two 120 V A.C. variable autotransformers. The thicknesses of the copper and 

phenolic plates were 1.2 mm and 6.4 mm respectively. 

The heating plate was installed with four setscrews in the holes at the chute 

base. The gap between the heat plate and the chute base was filled first with 

styrofoam and then with the product "Bond-0" (a bonding resin) as shown in 

Figure 5.1. The bonding resin allowed a smooth transition from the chute base 

to the heating plate, eliminating possible flow disturbance due to the gap. 
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All the temperatures were measured using 0.13 mm thick Type K chromel­

alumel thermocouples. These thermocouples were all connected to a rotary 

switch mounted in an insulated box. The thermocouple voltages, which were 

read with a microvoltmeter, were converted into temperature using the following 

calibration curve: 

e = -0.210 + o.029s4 x v 0
·976 , 

where e is temperature in °C, and vis the thermocouple voltage in microvolts. 

The above curve was obtained from the table of National Bureau of Standards 

over the temperature range of 10° ,...., 60°C. 

The temperature of the upstream flow was measured with a thermocouple 

which was glued in between two small pieces of copper. This thermocouple was 

located in a small reservoir between the hopper and the entrance gate. 

Nine thermocouples were placed under the copper plate in order to obtain 

the average temperature of the copper plate. The thermocouples on the cop­

per plate were of the series-junction type. The chrome! and alum.el wires were 

separately welded to the bottom of the copper plate. This ensured that the ther­

mocouples were in good contact with the copper plate, so that they would read 

the accurate temperature of the copper plate. If a thermocouple were in bad 

contact with the copper plate, a voltage across the thermocouple would appear 

clearly erroneous. 

In addition to the thermocouples on the copper plate, three thermocouples 

were located on each side of the phenolic plate. Ideally the two temperatures 

on the top and bottom of the phenolic plate were to be the same by adjusting 

the power output of the guard heater. However, since in fact there was always 

a slight temperature difference, the heat flux across the phenolic plate had to be 

calculated. In most cases, the temperature difference was controlled to be less 

than 0.2 °C, and the heat flux through the phenolic plate was much less than 

1 % of the heat convected to the fl.ow. The thermal conductivity of the phenolic 

plate was measured to be about 0.3 W /m · °C. 
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In order to estimate heat loss through the sty:i-':'lfoam and the "Bond-0" in 

the gap between the heating plate and the chute base, three thermocouples were 

located in the chute base outside the gap and opposite the heating plate. The 

exact locations are shown in Figure 5.1. The heat loss coefficient through the 

gap was calibrated in the following way: The copper plate was covered with a 

5 cm thick styrofoam. The average temperature of the copper plate was mea­

sured. The maximum heat loss through the styrofoam insulator was estimated 

by considering the thermal conductivity of styrofoam, the thickness and area of 

the styrofoam, and the temperature difference between the copper plate and the 

room. The heat loss through the insulator appeared to be no more than 10% of 

the total heat generation during this calibration. Heat loss through the phenolic 

plate was also estimated by measuring temperature difference across the pheno­

lic plate. Therefore, the net heat flux through the gap was calculated from the 

total heat generation less the heat losses through the styrofoam insulator and 

the phenolic plate. The average temperature difference across the gap was also 

measured. Thus the heat loss coefficient through the gap was calibrated with 

±5% repeatability and found to be 0.11 W /°C. During the experiments, the 

total heat loss through the gap was usually less than 10% of the heat convected 

to the flow, but in some cases it reached up to about 20%. 

The depth of flow was measured at two locations upstream and downstream 

of the heating plate. The techniques of measuring the depth of How and mass 

flow rate were the same as those of the shear flow experiment. Since the use of 

the fibre optic probes had not been developed when this heat transfer experiment 

was conducted, measurements of velocity and solid fraction were made using the 

techniques developed by Patton [1985]. Once the flow reached a steady state, 

two parallel plates were pushed into the flow. The material trapped between the 

two plates was carefully collected and measured. The mean solid fraction, llm, 

was then determined as 
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where M is the mass of the material captured between the plates, Pp the density 

of the solid particle, b the width of the chute, h the depth of flow, and L the 

distance between the plates. From the mean solid fraction and mass flow rate, 

the mean velocity over the depth of fl.ow was obtained. After the use of fibre optic 

probes was developed, this method was compared with the technique using the 

fibre optic probes. The results were similar when the flows were slow. However, 

as the flow velocity increased, the discrepancy between two methods became 

larger; the method using two plates always yielded higher mean solid fraction, 

in some cases, by as much as 35%. This discrepancy is probably caused by the 

difficulty of inserting the parallel plate and the inaccuracy of this procedure, 

particularly at high velocity. 

In order to obtain very slow flows with high solid fraction, an aluminum 

plate was clamped over the end of the chute. This plate formed a weir over 

or under which granular material had to flow. H a Froude number is defined as 

Fr = U / v' gh cos 6 (where U is the mean velocity, g the gravitational acceleration, 

h the depth of flow, and 6 the angle of the chute inclination), then these very 

slow flows are all subcritical in the sense that Fr is less than 1. 

The experiments were conducted with three different sizes of glass beads 

(0.50 mm, 1.26 mm, and 3.04 mm) in order to examine the effect of particle size. 

In addition, 3.15 mm polystyrene beads and 2.22 mm mustard seeds were also 

used because their thermal properties and densities are quite different from those 

of glass beads. Measurements of the thermal conductivity and diffusivity of 

each material were made and the details are included in appendix C. Specific 

heat capacity was calculated from the density, the thermal conductivity, and the 

thermal diffusivity. All these are listed in Table 1. Most values are in good 

agreement with those measured by Sullivan {1973]. 

The procedure used to acquire the heat transfer data was as follows. First, 

the angle of chute inclination and the entrance gate opening were set. As a 

fl.ow was established, the power output of the top heater was adjusted to yield a 
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reasonable temperature difference between the fl.owing materials and the copper 

plate. Then the power output of the guard heater was adjusted with great care 

to make the temperature difference across the phenolic plate as small as possible. 

The temperature difference between the fl.ow and the copper plate was usually 

about 20°C, and the temperature difference across the phenolic plate was less 

than 0.2°C. When a steady state was achieved, the mass fl.ow rate and the 

depth of fl.ow were measured. Following this, all the temperatures were quickly 

recorded. Finally, the mean solid fraction was measured. The whole procedure 

took 15 ,..., 25 minutes. 

5.2 PRESENTATION OF EXPERIMENTAL DATA 

Granular fl.ow in an inclined chute shares some of the characteristics of the 

open channel flow of liquids. When a flow is in a subcritical regime, it is depen­

dent on the downstream conditions. The fl.ow is slow and characterized by high 

solid fraction. On the other hand, a supercritical flow has a relatively low solid 

fraction, and the granular material flows rapidly down the chute. The variation 

of solid fraction with Froude number is shown in Figure 5.2. In the subcritical 

regime (Fr< 1), the solid fraction shows little variation with Froude number, and 

its value is about 0.6. But when flows are in the supercritical regime (Fr > 1), 

the solid fraction varies substantially with Froude number. 

The heat transfer to granular flows is also characterized by the two flow 

regimes as shown in Figure 5.3. In the subcritical regime, the heat transfer rate 

increases with increasing Froude number. For each granular material, the max­

imum heat transfer rate occurs just before the flow changes into a supercritical 

flow. But once the fl.ow becomes supercritical, the heat transfer rate decreases 

with increasing Froude number in spite of the increase of velocity. This is because 

the decrease of solid fraction with Froude number causes the heat transfer rate 

to decrease. It should also be noted that the smaller the particle diameter, the 

larger the heat transfer coefficient. 
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Following the works of Sullivan and Sabersky [1975] and Patton et al. [1986], 

the present data are plotted in terms of the modified Nusselt number, Nu*, and 

the modified Peclet number, Pe*, where 

Nu*= hd 
k ' g 

Pe*= UL ( d )2 (k0 )2. 
a 0 L kg 

(5.1) 

(5.2) 

In the above, h is the convection heat transfer coefficient, d the particle diameter, 

L the length of the heating plate, U the mean velocity. And kg is the thermal 

conductivity of gas, and k0 and a 0 are the thermal conductivity and diffusivity 

of the granular material measured at the critical solid fraction. Note that air 

was used as the interstitial gas in all of the present experiments. In Figure 5.4, 

for a given material, Nu* increases with increasing Pe*, and after it reaches 

a maximum, Nu* decreases with further increase in Pe*. This phenomenon is 

closely associated with that of Figure 5.3, in that the data for increasing Nu* with 

increasing Pe* correspond to the subcritical fl.ow, and the data for decreasing Nu* 

with high Pe* a.re in the supercritical regime. In other words, the heat transfer 

rate increases with increasing velocity since the solid fraction remains near the 

critical solid fraction. Once the flows become supercritical, Nu* decreases because 

of the decrease of solid fraction as Pe* increases. All the granular materials show 

similar trends, and all the data in the subcritical regime form a single curve 

regardless of particle size or material. This is the same phenomenon observed 

by Patton et al. [1986], and the single curve has been predicted from the model 

developed by Sullivan and Sabersky [1975]: 

1 
Nu* = ------,== 

x+ v:a' (5.3) 

where x is an experimental constant. For the present data x = 0.025 is chosen 

while Sullivan and Sabersky used x = 0.085. In Figure 5.4, the equation (5.3) 

with x = 0.025 is also presented. 
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The above model of Sullivan and Sabersky predicts the data quite satisfac­

torily in the subcritical regime where granular materials fl.ow slowly with high 

solid fraction, but it fails to predict the behavior of the heat transfer as the ft ow 

becomes supercritical. This incompleteness of the model leads to the introduc­

tion of two new parameters; the effective Nusselt number, Nu:ff, and the effective 

Peclet number, Pe:ff. 

The effective N usselt number and the effective Peclet number are defined as 

follows: 

{5.4) 

(5.5) 

where ke and O!e are the effective thermal conductivity and diffusivity of granular 

materials at a given mean solid fraction. The effective thermal conductivity is 

obtained from the results ofGelperin and Einstein [1971] as follows: 

ke v(l - k,.,/ka) 
kQ = l + k,,/ka + 0.28(1 - 1.1)0.6S{leg/1c.)-O.l&' 

(5.6) 

where v is the solid fraction, and kg/ k. is the ratio of the thermal conductivity 

of gas to the thermal conductivity of the solid particle. The effective thermal 

diffusivity is obtained as 
ke 

O!e=--, 
Pp//Cp 

where Pp is the particle density, and Cp is the specific heat capacity of the solid 

particle. The effective Nusselt number and the effective Peclet number simply 

take into account the variation of solid fraction which was neglected in the Sul­

livan and Sabersky formula. Note that when the mean solid fraction is equal to 

the critical solid fraction, the effective Nusselt and Peclet numbers are identical 

with the modified Nusselt and Peclet numbers. 

The data for glass beads are plotted in Figure 5.5 using the effective coordi­

nates. All the data points follow the shape of a single curve fairly well regardless 

of the flow regime. This may be explained by considering that when the effective 
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thermal conductivity and diffusivity are used for the data with solid fraction less 

than the critical value, the effective Nusselt number becomes larger than the 

modified one, and the effective Pedet number becomes smaller. AE. a. result, the 

data in the supercritical regime in Figure 5.4 are shifted to the predicted curve 

for the subcritical regime. Therefore, when the effective Nusselt number and the 

effective Peclet number are introduced, all the data in both fl.ow regimes can be 

represented reasonably well by a single equation which is of the same form as that 

developed by Sullivan and Sabersky (equation (5.3)). The following expression 

using the effective Nusselt and Peclet numbers is plotted in Figure 5.5. 

(5.7) 

where the value for x is chosen as 0.025. 

The data with materials different from glass beads are also plotted in Figure 

5.6. The data for polystyrene beads and mustard seeds in the subcritical regime 

are well correlated with glass beads. But the data. for polystyrene beads and 

mustard seeds in the supercritical regime are deviated from equation (5.7) for 

reasons that are not yet fully understood. 

5.3 DISCUSSION 

The necessity of introducing the effective Nusselt number and the effective 

Peclet number is associated with the fact that granular flow is a compressible flow. 

This calls for modifications to the previous N usselt number and Peclet number of 

Sullivan and Sabersky (equations (5.1) and (5.2)) which were used for fairly con­

stant high density flows. The new parameters should include density-dependent 

terms which can account for any kind of flow with various solid fractions. In the 

present work, the effective Nusselt number and the effective Peclet number have 

been defined using the effective thermal conductivity and diffusivity which vary 

with the density of the granular medium. This has made it possible to predict 

the rate of heat transfer to various flows using the single expression (5.7). The 
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effective parameter system unifies both subcritical and supercritical flow regimes 

with a single equation. Therefore, once the velocity and mean solid fraction of 

a flow are measured along with information on the properties of th.e granular 

medium, the heat transfer rate can be determined by equation (5. 7) provided 

the experimental constant x is known. In this section, the nature of x and the 

physical meaning of equation (5.7) will be discussed. 

The nature of the constant x has been investigated by several authors. Sulli­

van [1973] and Sullivan and Sabersky [1975] introduced the thermal conductance 

between particles and the wall (or the wall-particle heat transfer coefficient, hwp)· 

They postulated that the wall-particle heat transfer coefficient be proportional 

to the conductivity of the interstitial gas kg, and to the inverse of the particle 

characteristic length d (or the particle diameter). Therefore, the dimensionless 

proportionality constant x was defined as x = hwpd/ kg. They also suggested that 

x should vary with changes .in the local geometrical arrangement of particles near 

the wall. That is, a different wall surface condition such as the roughness of the 

wall or a different shape of particles would change the value for X· 

Schliinder [1980, 1984] also developed an expression for hwp' namely, 

4kg [ ( 2l + 28 ) ( d ) l hwp = </>Ad 1 + d ln 1 + 21 + 20 - 1 , {5.8) 

where </>A is the surface coverage factor, l is the modified mean free path of gas 

molecules, and o is the roughness of the surfaces. The surface coverage factor 

has a value of about 0.85 at the critical solid fraction. The value for l is given as 

1.7 x 10-7 m by Schliinder or 2.7 x 10-1 m by Martin [1984] for air at 1 atm and 

300° K. The equation (5.8) was obtained integrating the local conduction flux 

across the gas-filled gap between a sphere and a plane at a point contact. 

The results of both Sullivan and Sabersky [1975] and Schliinder [1984] in­

dicate that hwp is proportional to the reciprocal of the particle diameter. This 

implies that the smaller the particle diameter, the larger the total convection 

heat transfer coefficient. This relation between the diameter and the heat trans­

fer rate is supported to some extent by Figure 5.3 in which the heat transfer rate 



-62 -

is larger for the smaller particles. 

The results of Schliinder suggest that x should not be constant but rather 

given as 

X = 4</>A [ ( 1 + 2l : 26) ln ( 1 + 2l : 26) - 1]. (5.9) 

It states that x is a function of d and 6 as well as </>A. The surface coverage factor 

</>A, which is defined as the area on the wall surf ace projected by particles per 

unit area, must vary with solid fraction. Furthermore, for rapid flows with low 

solid fraction, particles are not in constant contact with the wall surface, and the 

distance between the particles and the wall serves as the roughness 6, changing 

the value for X· Hence it is clear that the value of x should be dependent on the 

solid fraction v. Therefore, in what follows, x and hwp will denote the constant 

values at the critical solid fraction which characterizes subcritical fiows, and h~P 

will be used for the density-dependent quantity at various v. 

Following the procedure of Schliinder (1984], a modified model can be de­

veloped in which the contact resistance at the wall and the heat penetration 

resistance of the bulk are density-dependent. For the contact resistance, h~P will 

be used instead of hwp· In the term for the heat penetration resistance, Pe;ff 

will be used in place of Pe*. Then the equation (5.3) of Sullivan and Sabersky, 

which is virtually the same as that of Schliinder, becomes 

hd 
kg = 

1 

kg Vi ft" 
h~pd+Ty~ 

This expression is not directly useful because it is almost impossible to estimate 

h~P with the present knowledge. After slight manipulation, the above equation 

can be arranged as 

hd 1 
k h h 
gl--+-

h~p hwp 

1 
(5.10) 

Note that equation (5.10) is identical to equation (5.3) when v becomes the 

critical solid fraction. For solid fraction much less than the critical solid fraction, 
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the following assumptions are made: 

h 
- ,...,,, 1 and 
h~p 

----
hwp kc• 

Then the right-hand side of equation (5.10) becomes Nu;tf and thus the whole 

equation becomes identical to equation (5.7). 

The first approximation, h - h~P' comes from the assumption that, for low 

solid fraction, the contact resistance at the wall is much larger than the heat 

penetration resistance in the bulk and thus plays a more important role in deter­

mining the overall heat transfer coefficient. The breakdown of this assumption 

may occur either when the particle diameter is small and thus the contact re­

sistance at the wall becomes small (see equation (5.8)), or when the thermal 

conductivity of the material is low and thus the heat penetration resistance be­

comes large. In either case, the contact resistance at the wall is comparable to 

the heat penetration resistance, and the approximation of h - h~P is not valid. 

The second approximation may be explained as follows: First of all, 

Note that the first approximation, h/h~P - 1, can be used again. Furthermore, 

since the difference between hwp and h~P comes from the increasing spacing 

between the wall and particles due to the decrease of solid fraction, which also 

causes the change from kc toke, one may assume that 

Hence comes the second approximation. The validity and breakdown of the as­

sumptions may be observed from Figure 5.5 where 1.26 mm and 3.04 mm glass 

beads are well correlated with equation (5.7) but a slight scatter is found with 

0.50mm glass beads. From Figure 5.6, it is also observed that glass beads (rel­

atively good conductor) are well correlated with equation (5.7) but polystyrene 

beads (poor conductor) are not well correlated. 
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The difficulty in determining the value for X at the critical solid fraction is 

associated with the complexity of the local geometric arrangement of particles. In 

particular, the roughness o significantly affects the value for X· This may explain 

why the value for x of the present experiments is different from that of Sullivan 

and Sabersky. First, the difference in cleanliness of the surfaces of the heating 

plates used in two experiments may result in different values for x. Second, it 

may be noted that the experiment of Sullivan and Sabersky was conducted with 

a vertical rectangular pipe while the present experiment has been done in an 

inclined chute. As a result, in the experiment of Sullivan and Sabersky, once a 

particle moves off the wall, it takes a longer time for the particle to come back to 

the wall. But in the present experiment in an inclined chute, the particles that 

are slightly above the wall come into contact with the wall in a relatively shorter 

time because of normal velocity due to gravity. Therefore, for high density flows, 

the experiment of Sullivan . and Sabersky is expected to have a larger average 

gaseous gap between the particles and the wall. This larger average gaseous 

gap serves as larger roughness of the wall surf ace in the equation of Schliinder. 

Consequently, the value for x in Sullivan and Sabersky's experiment is larger 

than that in the present experiment. 

As a brief summary, the prediction of heat transfer rate in both the subcrit­

ical and supercritical regimes becomes possible using the single expression (5. 7) 

with the effective Nusselt number and Peclet number. However, the breakdown 

of the use of equation ( 5. 7) is also observed for the case in which the particle 

diameter is small or the thermal conductivity of the material is low. The esti­

mate of the constant x using a simple analysis is limited because of complexities 

in the surface conditions, the particle shapes, and the specific configurations of 

experimental facilities. 
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CHAPTER 6 

NUMERICAL ANALYSIS OF HEAT TRANSFER 

TO GRANULAR FLOWS 

The purpose of the present numerical analysis of heat transfer is to explore 

the possibility of using numerical methods in heat transfer problems on granular 

flows. In particular, heat transfer in the supercritical flow regime is of prime 

interest. The basic idea behind the present numerical analysis is that the heat 

transfer rate should be related to velocity and local density near the wall, pro­

vided that the particle random motion in the direction normal to the wall is not 

an important factor in the heat transfer process. The analysis requires a precise 

description of the density profile near the wall. 

6.1 DENSITY-VARYING SINGLE PHASE CONTINUUM MODEL 

6.1.1 Energy Equation and Boundary Conditions 

For a two-dimensional flow in which the x-direction is the direction of flow 

and the y-direction is the direction normal to a flat plate, the energy equation is 

represented as 

pcuae = ~(kae) ax ay ay ' 
where 9 is the thermodynamic temperature. A simple calculation shows that 

the dissipation term in the energy equation of granular materials is negligible 

in the present application. For granular flows, the density p and the thermal 

conductivity k vary with y and their profiles are required. The combination of 

density and specific heat capacity of the granular medium, pc, may be approxi­

mated by PpVCp, which is the value for the solid particle phase, since the density 

of the solid particle is much larger than that of gas. The major breakdown of 

this approximation occurs very close to the wall where v is very low. However, 

when the interstitial gas is quasi-stationary near the wall, the gaseous quantity 

(pcu) gas plays little role in the convective heat transfer equation because the gas 
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heat flux (pcu.)gaa is negligible relative to the heat flux of the solid particles. 

Consequently the present numerical analysis makes the following assump­

tions: 

1) The interstitial gas is quasi-stationary. This is especially critical very near 

the wall where the solid fraction is very low. Because the no slip condi­

tion at the wall applies to the interstitial gas, this assumption is probably 

reasonable. The gas motions caused by particle motions are assumed to be 

negligible in heat transfer mechanism. 

2) The solid phase has a constant uniform velocity denoted as U. This as­

sumption is reasonable because only the region near the wall is important in 

heat transfer and within the small region the velocity is fairly uniform. This 

assumption was later verified by including the effect of velocity gradient in 

the energy equation though details of this are not included here. 

Hence the granular medium is described as a single phase continuum, and in the 

energy equation pcu is approximated by ppllcpU. 

A constant wall temperature condition has been imposed from the leading 

edge of the heating plate to the trailing edge. The length of the heating plate is 

denoted as L. Then the boundary conditions are as follows: 

0(x,O) = eUI for 0 ~ z < L, 

0(x,O) = 0 for x < O, 

0(x,oo) = 0. 

The temperature, spatial coordinates, and thermal conductivity are nondi­

mensionalized as follows: 

0 
0*=-, 

0w 
* x x = -, 

L 
* y y = -, 

d 

k* = !:. k' 
fJ 
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The energy equation then becomes 

vPe .. 80* = ~(k*ae*) 
ax* 8y* 8y* ' 

where 

Pe** = UL(!!:.) 2 (kc).!.. 
ac L kg Ve 

And the boundary conditions become 

0*(x* ,0) = 1 for 0 :$; x* :$; 1, 

E>*(x*,O) = 0 for x* < O, 

e * ( x*' 00) = 0. 

6.1.2 Profiles of Solid Fraction and Thermal Conductivity 

(6.1) 

(6.2) 

Granular flows in an inclined chute are characterized by complex density 

profiles. The density of a flow varies along the chute and also varies over the 

depth of flow. Furthermore, due to the detailed shape of particles and the random 

motion of particles, the density profile near the wall is extremely complex. Since 

the region near the wall is important in heat transfer process, it is necessary to 

examine the density profile near the wall in detail. 

As a first approximation the heat transfer analysis employs the following 

assumptions. 

1) There is no active convective motion in the y-direction due to random par­

ticle motion. Therefore, particles in the first layer next to the wall remain 

in the first layer. 

2) Only the first layer next to the wall is of prime concern in the heat transfer 

to supercritical flows. In other words, the thermal boundary layer for rapid 

flows is in most cases less than one diameter in thickness. This assumption 

was validated by examining temperature profiles in the results. 

3) Within the first layer, particles are uniformly or randomly distributed. 

Because of the nature of these assumptions, the analysis may be valid only for 

rapid granular flows (or supercritical flows). 

With the above assumptions, the local density of uniformly distributed par­

ticles over the space of the first layer is obtained. The height of the first layer is 
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assumed to be the characteristic particle spacing s, which is calculated from the 

mean solid fraction llm as 

If llm is greater than 11" /6, then s* is assumed to be 1; in other words, all the 

particles are in contact with the wall if llm is greater than 11" /6. 
It is assumed that the centers of particles are uniformly distributed between 

y = d/2 and y = s - d/2. Then the following solid fraction profile is obtained. 

For 0 ~ y* ~ ( s* - 1), 

s* 
11(y*) = llm (3y* 2 

- 2y*3
). 

s* -1 
(6.3) 

For (s* - 1) ::; y* ::; 1, 

v(y*) = 11ms*(-6y*2 + 6s*y* - 2s*2 +s*+1). (6.4) 

The region above y = d or y* = 1 is not taken into consideration. The solid 

fraction profile 11(11*) is a.n increasing function of y*, and it is also assumed that 

11(y*) is equal to llm above y~ at which 11(y*) becomes llm· 

For example, the solid fraction profile in case of 11,.,. = 0.4 is illustrated 

in Figure 6.1 (a). Since s* = 1.09 for llm = 0.4, equation (6.3) is used for 

0 < y* < 0.09. According to equation (6.4), the mean solid fraction is achieved 

at y~ = 0.24. Therefore, equation (6.4) is used for 0.09 < y* < 0.24, and 

v(y*) = 11,.,. above y* = 0.24. 

This profile, including the sudden change of solid fraction at y~, seems 

rather artificial. However, it is found that the results of the numerical analysis 

are quite insensitive to the form of the profile above y~, provided the flow is 

rapid with high Pe**. For slow flows with low Pe**, the thermal boundary layer 

must be larger than one particle diameter, and the above profile may be no longer 

appropriate for the heat transfer analysis. 

The profile of thermal conductivity is obtained from the result of Gelperin 

and Einstein [1971], which is shown in equation (5.6). The solid fraction profile 
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obtained above is used in equation (5.6). The ratio ka/k9 = 35, 8.4, and 6.7 

are selected for glass, mustard seed, and polystyrene respectively. The profile of 

thermal conductivity for I.Im= 0.4 is shown in Figure 6.1 (b). 

6.1.3 Numerical Schemes 

With the profiles of solid fraction and thermal conductivity, and with one 

parameter, Pe**, the equation (6.1) is numerically solved for 0* using a simple 

explicit method. At a grid point (xi, yj), where xi = ill.x* and yj = i ll.y* with 

i, i = 1, 2, 3 ... , the equation (6.1) is approximated as 

where 1.1; and kj are the values at yj. A criterion for the stability of the system 

is 

.¢.x* (k* * k* ) 1 - 2(fl.y•)2v;Pe** ;-1 + 2k; + ;+1 > 0. 

Since 1.1; has the minimum at j = 1, the stability condition becomes 

The instability of the system was a problem, especially for flows with low Pe** 

and 1.1. 

The modified N usselt number is defined as 

The last term in the above expression can be obtained integrating the equation 

(6.1) from y* = 0 toy*= oo. Therefore, 

Nu*= fo00 

vPe** ~~: dy*. 

The integration was done numerically, and the Nusselt number was averaged over 

the heating plate. 
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6.2 RESULTS OF ANALYSIS AND COMPARISON 

6.2.1 Results of Analysis 

The present numerical analysis involves a large number of assumptions 

which, in particular, may cease to be valid for slow flows with high solid fraction. 

However, in order to examine how high the mean solid fraction can be, results 

were obtained even for high solid fraction. 

In Figure 6.2, the modified Nusselt number Nu* is plotted against the Peclet 

number Pe** for various mean solid fraction, Jim.. For a given solid fraction, 

Nu* increases with Pe**, and for a given Pe**, Nu* increases with Vm. But 

Nu* at Jim.= 0.6 seems to be underestimated when the increments of Nu* with 

increasing Jim. are considered. This may be because the solid fraction profiles 

were not accurately determined for high solid fraction. For example, when "'"' 

is greater than 11" /6 ~ 0.52, the characteristic spacing s* is unity. It implies that 

there is little distinction in cases of Jim > 0.52. Therefore, the increment of Nu* 

between Jim = 0.5 and 0.6 appears to be small. 

It may be interesting to compare the results with the case in which the con­

stant heat flux at the wall is assumed as a boundary condition. Figure 6.3 shows 

there is only a slight difference between the results for the two boundary condi­

tions. This also assures that any deviation from the constant wall temperature 

condition has little effect on the heat transfer results. 

Another parameter in the present analysis is the thermal conductivity ratio 

of solid phase to gas phase. As shown in Figure 6.1 (b), the ratio k, /kg influences 

the profile of the thermal conductivity of the granular medium. The effect of 

k, /kg on the numerical results is demonstrated in Figure 6.4 in which the cases 

of k, /kg = 35 and 6. 7 are compared. For low mean solid fraction, the results 

are little affected by the values of k4 /k0 • But as solid fraction increases, the 

difference becomes substantial. 

Finally, the temperature profiles at the trailing edge (x* = 1) are investi-
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gated for various Pe** and llm. The effect of Pe** on the temperature profile 

is shown in Figure 6.5. The higher the Peclet number, the smaller the thermal 

boundary layer. Note that for Pe** > 100 the thickness of the thermal boundary 

layer is less than one particle diameter, as required by the assumptions behind 

the solid fraction profile. In Figure 6.6, the effect of llm for a given Pe** is exam­

ined. For lower mean solid fraction, a thicker thermal boundary layer is observed. 

Physically, for low solid fraction, particles can move more freely in the direction 

normal to the fiat plate. As a result, heat is convected to a location further from 

the fiat plate through the vertical motions of particles. Analytically, a higher 

solid fraction plays a role similar to a higher Peclet number (see equation (6.1)). 

In the present analysis, a lower mean solid fraction results in a larger character­

istic particle spacing and thus a larger height of the first layer where particles are 

in random motions or uniformly distributed. This is consistent with the previous 

physical argument. Howev:er, this observation should not be confused with the 

fact that for a higher mean solid fraction the overall heat transfer rate is larger 

(see Figure 6.2). 

6.2.2 Comparison with Experimental Data 

In Figure 6. 7, the results of the numerical analysis for k, / k9 = 35 are com­

pared with the present experimental data for three sizes of glass beads. Different 

symbols are used for different mean solid fractions. In general, the numerical re­

sults show the same magnitudes and the same trends as the experimental data. 

However, as anticipated earlier, the Nusselt number obtained numerically for 

llm = 0.6 is somewhat smaller than that of the experimental data. This indi­

cates that the present analysis may not be accurate for the flows with high solid 

fraction. Nevertheless, the discrepancy between the analysis and the experimen­

tal data for high solid fraction does not appear to be substantial. 

In Figure 6.8, the experimental data with polystyrene beads (k,/ku = 6.7) 

and mustard seeds (k,/kg = 8.4) are also plotted along with the data for glass 

beads (k,/k9 = 35). The numerical results agree well with all the experimental 
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data. This may be because, though dependent on the value of ka /kg, the numer­

ical results for low solid fraction are little affected by the values of ka/ku (see 

Figure 6.4). 

In spite of numerous assumptions involved in the energy equation and the 

profiles of solid fraction and thermal conductivity, the present results demon­

strate that the basic mechanism is sufficiently well understood to justify using 

numerical methods in heat transfer analysis. When the details of flow conditions 

near the wall are better understood, the numerical approach to heat transfer 

problems may be improved. 
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CHAPTER 7 

SUMMARY AND CONCLUSION 

Experimental Study of Shear Flows of Granular Materials 

Experiments on continuous, steady flows of granular materials down an in­

clined chute have been made with the objectives of understanding the character­

istics of chute flows, and of acquiring information on the rheological behavior of 

granular materials. Two neighboring fibre optic displacement probes were used 

to measure (1) the mean velocity by cross-correlating two signals from the probes, 

(2) one component of velocity fluctuations by identifying each particle from the 

signals and thus obtaining the velocity of each particle, and (3) the mean par­

ticle spacing at the boundaries by counting the frequency of particle passage. 

The mean particle spacing also gave qualitative information on density near the 

boundaries. In addition, a strain-gauged plate was employed to directly mea­

sure shear stress at the chute base. The surface of the chute base was carefully 

controlled to yield three distinct surface conditions; smooth aluminum surface, 

moderately smooth aluminum surface, rubber-coated surface. Each surface con­

dition was characterized by Coulombic friction coefficient and the coefficient of 

restitution between the chute base and a particle. 

The preliminary experiments indicate that the flow at the free surface is less 

affected by the sidewalls than at the chute base; the transverse velocity profile at 

the free surface is close to uniform. It is also observed that the higher the velocity 

(or the higher the chute inclination), the less significant the sidewall effect. 

Vertical profiles of velocity, velocity fluctuation, and linear concentration 

have been measured through lucite windows in the sidewalls. The velocity profile 

is fairly linear except for the region within the distance of one particle diameter 

from the chute base. Velocity fluctuation increases with distance from the chute 

base. This granular conduction from the bulk of the flow to the chute base wall is 

opposite to what we observe from the results of Campbell and Brennen [1985b). 
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The results of Ahn et al. [1989b] or chapter 4 in the present thesis indicate that 

granular temperature can be conducted either toward or away from the chute 

base, depending on the value of the particle-particle coefficient of restitution and 

the chute inclination. In the present measurements, linear concentration always 

decreases monotonically with distance from the chute base. This result is also 

different from the results found in the other literature. The surface condition 

of the chute base plays an important role in the above profiles. The profiles 

of velocity and its fluctuation with the smooth surface (the surface with low 

Coulombic friction coefficient) are more uniform than those with the rubber­

coated surface (the surface with high Coulombic friction coefficient). 

The characteristics of the chute fl.ow of granular materials have been studied 

by measuring various basic fl.ow properties. The experimental data are strongly 

affected by the surface condition of the chute base. The ratio of velocity fluctu­

ation to mean velocity is fairly constant for the smooth and moderately smooth 

surfaces, but for the rubberized surface it clearly increases as the solid fraction 

decreases. And the ratio for the rubberized surface is much larger than those for 

the smooth and moderately smooth surfaces. Regardless of the surface condi­

tions, the mean shear rate increases at high solid fraction with decreasing solid 

fraction. But for the rubberized surface the mean shear rate shows a drastic 

decrease at low solid fraction. The high ratio of velocity fluctuation to mean 

velocity causes particles to move from one location to another more frequently, 

and as a result the velocity gradient is reduced. For the smooth surface where 

the ratio is low, the decrease of mean shear rate is not observed with decreasing 

solid fraction. 

The variation of friction coefficient with solid fraction is similar to that of 

the ratio of velocity fluctuation to mean velocity. For the smooth and moderately 

smooth surfaces, the friction coefficient is fairly constant. But for the rubber­

ized surface, it increases with decreasing solid fraction. As a result, the friction 

coefficient appears to be a linear function of the ratio of velocity fluctuation to 
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mean velocity. 

The stress measurements have also been used to study the rheological be­

havior of granular material. In particular, the rheological models presented by 

Lun et al. [1984] have been compared with the experimental results. The rheo­

logical models for general flow (equations (2.8) and (2.9)) give good correlation 

to the present experimental data. With the smooth and moderately smooth sur­

faces, it was not possible to create fully developed flow, probably because of low 

Coulombic friction coefficients for the surfaces. But some selected experimental 

data with the rubberized surface, which are close to fully developed flow, are well 

correlated with the rheological models for fully developed flow (equation (2.18) 

or (2.19)). Since the chute flows of the present experiments are characterized 

by granular conduction, the rheological models for simple shear flow (equations 

(2.13) and (2.14)) do not provide good correlation for the present experimental 

data. 

Analysis of the Fully Developed Chute Flow of Granular Materials 

The analysis of fully developed flow has been conducted to investigate the 

role of granular conduction in determining the profiles of granular temperature, 

solid fraction, and mean velocity. The governing equations and the constitutive 

relations presented by Lun et al. [1984] have been employed in the present anal­

ysis, and the boundary value problem has been formulated with two parameters 

( ep and tan 6). This boundary value problem has been numerically solved by the 

"shooting method." Three boundary values at the wall (v,,,, T,,,, and uw) are 

required for the solution, and the boundary conditions at the free surface are 

met by adjusting the gradient of temperature at the wall. The results show all 

the boundary conditions at the free surface are satisfied once the wall boundary 

conditions are properly chosen; at the free surface, v vanishes, and the gradients 

of v, T, and u also vanish, satisfying the condition of no energy flux at the free 

surface. 
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The solutions fall into two categories, and the two parameters ( ep and tan 0) 

determine which type of flow will occur. The first type has a granular tem­

perature which increases from the wall boundary to the free surface. The solid 

fraction monotonically decreases with distance from the chute base, and the free 

surface is not well defined. The second type exhibits high temperature near the 

chute base, and a rapid decrease of the temperature as the free surface is ap­

proached. In the latter type the solid fraction is low at both boundaries but 

high in the center of the flow, and the free surface is rather clearly defined. A 

transitional type is also found which exhibits features of both the first and second 

types of flow; the temperature increases near the wall but decreases thereafter. 

The solid fraction has a profile similar to the first type. 

These profiles are closely connected to the role of the granular conduction 

term in the fluctuation energy equation. The conduction term, which depends on 

ep, tan 6, and v, determines the energy flux, and thus the gradients of granular 

temperature and solid fraction, causing different profiles to occur. The conduc­

tion term appears to be significant in magnitude compared to the dissipation 

term. This behavior is fundamentally different from simple shear flow in which 

no conduction exists. 

The effect of the variations of the parameter and wall boundary values is 

also studied. As the chute inclination angle increases, granular temperature, 

mean velocity, and the depth of flow increase. A higher granular temperature at 

the wall also causes a.n overall increase in temperature, mea.n velocity, and fl.ow 

depth. An increase in the solid fraction at the wall also yields the same result. 

Comparisons with experiments and computer simulations have been made. 

The experiments of Ahn et al. [1989a] or section 3.2.2 in the present thesis cor­

respond with Type I flows. The experimental data show that, with distance 

from the chute base, the solid fraction decreases monotonically, and granular 

temperature increases, indicating granular conduction from the free surface to 

the wall. The results of the present analysis are consistent with those data. The 
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general profiles of fl.ow properties are well predicted though some discrepancies 

in their magnitudes are observed. On the other hand, the computer simulations 

by Campbell and Brennen [1985bl correspond to Type II flows. Granular con­

duction from the wall to the free surface is observed, and the solid fraction is low 

at both boundaries but high in the bulk. Good agreement between the present 

analysis and the computer simulations is found when a slightly different value of 

the parameter tan 9 is used as an input. The decrease of granular temperature 

with distance from the wall is well predicted, and the profile of solid fraction 

is similar to that of the computer simulations. Some discrepancies may be due 

to the fact that the computer simulations were conducted with two-dimensional 

disks. 

The different types of fl.ow occurring in the experiments and the computer 

simulations are the results of the different values of the coefficient of restitution 

appropriate to those circumstances. A high value of ep, such as the value of 

about 0.95 in the experiments, causes the granular temperature to be conducted 

from the free surface to the wall, and a low value of ep, such as the value of 0.6 

used in the computer simulations, results in granular conduction in the opposite 

direction. 

Experimental Study of Heat Transfer to Granular Flows 

The convective heat transfer to granular flows has been studied experimen­

tally. Three sizes of glass beads, polystyrene beads, and mustard seeds were used 

to investigate the effects of different particle size and different thermal proper­

ties. The fiat heating plate was installed at the hole cut into the chute base, 

and temperatures were measured using thermocouples. The results, similar to 

those of Patton et al. [1986], are characterized by the two fl.ow regimes. In the 

subcritical regime the heat transfer rate increases with increasing velocity, but 

in the supercritical regime the heat transfer rate decreases with decreasing solid 

fraction as the velocity increases further. 
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In order to accommodate the variation of solid fraction, the previous model 

of Sullivan and Sabersky [1975] has been slightly modified using the effective 

Nusselt number and the effective Peclet number, which include the terms depen­

dent on solid fraction. The modified model has provided a single expression (5.7) 

to describe the heat transfer characteristics of both fast and slow flows (super­

critical and subcritical flows). The experimental data are fairly well correlated 

with the modified model though some data with polystyrene beads (poor con­

ductor) substantially deviate from the prediction of the model. The value of the 

experimental constant x in the present experiments is found to be different from 

that of Sullivan and Sabersky, because of different configurations of experimental 

facilities. The determination of x still remains for further study. 

Numerical Analysis of Heat Transfer to Granular Materials 

The numerical analysis of convective heat transfer to granular materials has 

been performed. The prime objective of the present numerical analysis was to 

explore the feasibility of using numerical methods in heat transfer problems on 

granular flows. The basic idea behind the present numerical analysis was that 

the heat transfer rate should be related to the velocity and the local density near 

the heating plate, provided that the particle motion in the direction normal to 

the wall is not an important factor in the heat transfer process. 

The density-varying single phase continuum model has been developed for 

numerical analysis. The two-dimensional energy equation was simplified by as­

suming that the interstitial gas is quasi-stationary and that the solid phase has a 

constant uniform velocity. The governing equation has one parameter (the Peclet 

number, Pe**) and requires the profiles of solid fraction and thermal conductiv­

ity. The solid fraction profile has been obtained assuming that only the layer 

next to the wall is of importance in the heat transfer process and that within 

the layer particles are uniformly or randomly distributed. With these assump­

tions the profile depends only on the mean solid fraction. The profile of thermal 
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conductivity has been determined with the solid fraction profile and the result 

of Gelperin and Einstein [1971] which contains the parameter k 8 /ku· A constant 

wall temperature condition has been chosen as the boundary condition, and the 

equation has been solved using a simple explicit method. 

The results are presented in terms of the Nusselt number Nu*, the Peclet 

number Pe**, and the mean solid fraction Lim. For a given Vm, Nu* increases 

with Pe**, and for a given Pe**, Nu* increases with Lim. The effect of a different 

boundary condition such as a constant wall heat flux and the effect of the vari­

ation of k8 /kg have been studied, and no significant effect has been found. The 

temperature profile at the trailing edge has also been presented. The thermal 

boundary layer appears to be less than one particle diameter thick for higher 

Peclet numbers (e.g., Pe** > 100). Finally, the numerical results have been 

compared with the experimental data obtained in chapter 5, and reasonable 

agreement is observed in the comparison. 
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APPENDIX A 

THE OBLIQUE IMPACT OF INELASTIC SPHERES 

Nomenclature 

ew wall-particle coefficient of restitution in direction normal to the wall 

f friction coefficient defined as the ratio of Jz to J11 

I momentum of inertia of the sphere about its center 

Jz, J11 tangential and normal components of the impulse at the wall 

K ratio of the radius of gyration to the radius of the sphere; (I/mr2 ) 112 

m mass of the sphere 

r radius of the sphere 

Ua slip velocity at the contact surf ace 

u 1 , u2 tangential velocities before and after impact 

v1 , v2 normal velocities before and after impact 

a 1 impact angle given by tan-1(u.1/v1) 

µ, Coulombic friction coefficient 

wi, w2 rotational rates before and after impact 

Introduction 

A simple analysis is developed for the oblique impact of an inelastic sphere on 

a half-space. Two solutions are obtained, depending on the boundary conditions. 

When slip occurs at the contact point between the sphere and the wall during 

the entire collision process, one solution is obtained with an assumption that the 

ratio of the tangential impulse to the normal impulse, the friction coefficient f, 
should be constant, equal to Coulombic friction coefficient,µ,. The other solution 

is obtained when no slip condition at the contact point is assumed; in this case, 

appropriate tangential conditions are sought to equate the tangential velocity 

after impact, u2 , to its rotational velocity, w2 r, and f is not necessary to remain 

constant. 
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In some cases in which impact angles are relatively low for a given surface 

condition, negative slip between the contact surf aces may occur due to the elastic 

recovery of the surface (see Maw et al. [1976, 1981]). In this analysis the negative 

slip will be neglected because of its application to the chute flow where high 

impact angles are expected. 

In the derivation, it is assumed that µ is constant, and that ew is also 

constant, independent of the impact angle and impact velocity. In the analysis 

the values of µ and ew are assumed to be known. 

Analysis 

Taking all the quantities as positive by choosing a proper direction for each 

vector quantity, the following relations are obtained from linear and angular 

momentum conservations (see Figure A.1). 

And at the contact point, 

And from the assumption, 

Jz = m(u1 - u2), 

J'll = m(v1 + v2), 

Jzr = I(w2 - wt). 

Now we have five equations with six unknowns; Jz, J 11 , u2, v2, w2, and Ua. 

Therefore, we need one more condition to solve the system. Note that the case 

in which w1r /u1 > 1 is excluded. 

a) For the case in which slip occurs: 

The friction coefficient, or the ratio of Jz to J 11 , is assumed to be equal to 

µ. That is, 
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Then, letting K 2 .= I/mr2 and tana1 = uifv1, the quantities after impact are 

derived as follows: 

V2 = ewV1, 

U2 = l _ µ(1 + ew), 
u1 tana1 

U, = 1 _ (l + _.!._) µ(1 + ew) 
u1 K 2 tana1 

w2r 1 µ(1 + ew) w1r 
-=- +-
U1 K 2 tana1 u1 · 

Note K 2 = 2 / 5 for a sphere. 

b) For the case in which no slip occurs: 

From no slip condition, we have U, = 0. Then 

V2 = ewVi, 

u2 = 1 (l + K 2w1r), 
U1 1 + K 2 U1 

w2r = 1 (l + K 2w1r). 
U1 1 + K 2 U1 

And the friction coefficient is given as 

In the above equation, it should be noted that f cannot exceed µ. When the 

ratio of Jz to J 11 is greater thanµ, slip occurs and the solution does not hold any 

more. 
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APPENDIX B 

ANALYSIS OF THE FULLY DEVELOPED CHUTE FLOW 

Two momentum equations (4.1) and (4.2), and the fluctuation energy equa­

tion (4.3), with (4.4)-(4.7), may be reduced to the following alternative forms: 

Note that 91 through 95 are functions of ep and v, and thus q*, T*, v, and u* 

are functions of ep and y*. ~ addition to two parameters ( ep and tan IJ), three 

boundary values (T*, v, and u*) are given at the wall. The boundary value 

problem was solved by a "shooting method." The energy flux at the wall, q:i, is 

chosen by trial and error to satisfy the boundary condition at the free surface, 

which is q* -+ 0 as y* -+ oo. 

The integration was done by a simple scheme such as the well-known trape­

zoid rule, and the differential equations were solved by the Euler method. There 

were no problems with convergence, and these simple methods were sufficient to 

study the general characteristics of the chute flows. 
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APPENDIX C 

MEASUREMENTS OF THERMAL PROPERTIES 

C.1 THERMAL DIFFUSIVITY 

In order to measure thermal diffusivity, the semi-infinite medium is con­

sidered which is maintained at an initial temperature e, and then is suddenly 

elevated and maintained at a temperature 9 0 • The temperature distribution at 

any x position in the medium is given as a function of time T as follows: 

9(x,T) - 9 0 = erf X ' 

e, - 0o 2y'QT 
where erf is the Gauss error function. 

The principal apparatus is a four by four inch copper plate attached to a 

heater whose power output is controlled by a variable autotransformer. One 

thermocouple measures the temperature of the copper plate, and the other ther­

mocouple is located at the distance x from the center of the copper plate to 

measure the temperature of the granular medium. The experimental procedure 

begins with a rapid increase in the copper plate temperature to some 9 0 which 

is about 25°C above the initial temperature e,. In order to maintain 0o, the 

power output of the heater is controlled as time proceeds. The temperature at 

the position x is recorded every minute. Usually r = 20 min. and x ......, 2 cm were 

chosen in calculating a. It took about a minute to raise the copper plate temper­

ature from e, to 0o, and the temperature 0o was maintained with a tolerance 

of 0.3°C. 

C.2 THERMAL CONDUCTIVITY 

The semi-infinite medium with the initial temperature e, is again considered 

to directly measure thermal conductivity. At T = O, the surface is suddenly 

exposed to a constant heat flux q0 • The solution for this case is (see Holman 

[1981]) 

q0 {2v;;T (-x2
) ( x )} 0(x,r) - ei = - --exp -- - x 1-erf-- . 

k Ji 4ar 2ya:i 
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Once the thermal diffusivity a is known, therefore, the thermal conductivity k 

can be obtained by measuring q0 , r, x, and E>(x,r). 

A four by four inch heater is placed in the granular medium, and a ther­

mocouple is located at the distance x from the center of the heater. After the 

heater is turned on, the heat flux, the elapsed time, and the temperature at x 

are recorded at regular intervals. The power output of the heater was usually 

about 1500 W / m2 , and the distance x was about 2 cm. Various values for r were 

used in calculating k using the previous measurements of a. 

The specific heat capacity c was then obtained using the values of a and k 

as follows: 
k 

c=---
PpVoa 

Since the density of the interstitial gas is far lower than that of the solid particles, 

the above approximation is valid. All the properties were measured at the critical 

solid fraction v0 • 



glass glass glass 
beads beads beads 

diameter (mm) 3.04 1.26 0.50 

standard deviation (%) 7.2 2.9 14.9 

critical solid fraction 0.59 0.61 0.60 

solid density (kg/m3 ) 2500 2500 2500 

thermal conductivity (W /m · °C) 0.20 0.20 0.20 

thermal diffusivity (m2 /s) 1.5 x 10-1 1.5 x 10-1 1.5 x 10-1 

Table 1. Properties of granular materials 

polystyrene 
beads 

3.15 

19.7 

0.58 

1010 

0.073 

0.93 x 10-1 

mustard 
seeds 

2.22 

12.6 

0.64 

1100 

0.092 

0.87 x 10-1 

(0 
....... 
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Figure 3.1. Schematic of the experimental facility. 
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Figure 3.2. Schematic of the shear gauge. 
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Figure 3.3. Geometry of the faces of the two displacement probes used for velocity 
measurements with the 1.26 mm diameter glass beads. 
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Figure 6.7. Comparison of the numerical results for ka/ku = 35 with the experimental 
data for glass beads. x, Vin < 0.15; \J, 0.15 < Vm. < 0.25; D, 0.25 < Vm. < 
0.35; 6, 0.35 < Vm < 0.45; T, 0.45 < Vm < 0.55; +, 0.55 < Vm· 
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Figure 6.8. Comparison of the numerical results for k./ k., = 35 with the experimental 
data for glass beads, polystyrene beads, and mustard seeds. x, Vm < 0.15; 
v, 0.15 < Vni. < 0.25; D, 0.25 < Vni. < 0.35; l::., 0.35 < Vni. < 0.45; T' 
0.45 < Vm < 0.55; +, 0.55 < Vm· 
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(a) Before impact (b) After impact 
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Figure A.1 Diagram of the oblique impact of an inelastic sphere; (a) before impact and 
(b) after impact. 
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