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ABSTRACT

We consider two semiclassical hadron models, the MIT bag model
and a generalization, the confined free quark model. The low momentum
transfer matrix elements of some of the S-wave hadrons are derived and
compared with experiment in both models, and we conclude that the con-
straints imposed on the latter model by the MLT model are largely
justified by experiment. We then generalize the MIT model to include
lowest order gluon exchange spin-spin forces between quarks and remove
some degeneracies of the zeroth order MIT model. Finally we predict
the masses and magnetic moments of some of the hypothetical charmed

hadrons.
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t. Introduction

Recently there has been a great deal of interest in semi-classical
models of hadron structure which impose quark confinement ab initio, and
which are simple enough to allow a large class of hadron interactions
to be treated numerically 1_¥1 The most/successful of these models in
terms of agreement with experiment is the MIT bag model, which was
introduced by A. Chodos, B. Jaffe, K. Johnson, C. Thorn, and V.
Weisskopf in 1974 ’. The initial form of this model was a "bag' of
massless quarks confined to a spherical region by (1) the addition of
a constant "bag strength" to the Lagrangian density, and (2) the con-
straint that the quark fields vanished outside the bag. The imposition
of Poincaré invariance required step (1) to render the model nontrivial.
The generalization ta massive quarks was then carried out concurrently

3,4,8
>77"and the MIT group introduced corrections

3
due to zero point fluctuations and quark-gluon interactions .

by several groups in 1975

In this thesis we introduce a generalization of the MIT model
which abandons Poincaré invariance and hence the power to predict
hadron spectra. This allows us to investigate a larger model parai.-
s gpace in treating weak and electromagnetic matrix elements,
which serves as a check on the more restrictive bag model parameters.
We then generalize the bag model to massive quarks (which is now a
well known result) and obtain a value for the strange quark mass.
This allows us to predict a number of SU(6) violations due to this

mass, some of which are well-satisfied. Finally we consider gluon



effects in a fashion which is quite different from the appreach of
the MIT group and estimate the size of some masg splittings of S-wave

hadrons that result from the lowest order quark-gluon interactiom.



IT.Explicit CFQM (Confined Free Quark Model) Wave Functions

In much of the following we shall obtain explicit numbers for
quark model calculations using the simplest possible assumption for
confined quark wave functions; the quarks are assumed to be continad
(by an unspecified mechanism) to a spherical region of radius a and

are free within that region.

The first-quantized quark wavefunctions satisfy

(é-mgp QL% 0 r<a
IA": 0 rya

and the normalization integral for a l-quark wavefunction is

i
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for the special case 1?3‘5 the normalization integral givesexplicitly
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where piwma, €3Wae . For each }f= '!5.:

(6) and the explicit spinors(3) determine a three parameter quark

. %t s+~ the mormalization

wavefunction Vy': C% (;))t’ @, W ) where ¥, q)i = kjta' and a is the

well radius. If we wish we may take wm = (0, since most quark model

results are insensitive to small changes (£50 Hev) in m.

For reference purposes we now work out the matrix elements of

various Dirac matrices between quark states. For the lowest mode (‘{)

we may determine these with some trivial algebra;
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ST = =80T kgl ()T 6.0
Y“-,’&“};:e'w (5 “test 9%)
KTy = <TIFIY ©,1)

Now we are prepared to treat the electromagnetic and weak current matrix

elements between our CFQM quark states.



A. Electromagnetic Interactions

The electromagnetic interaction of hadrons and photons is of the

form

L = T4 (10)

e
where the hadron electromagnetic current ]} is assumed to be a sum

of minimal-coupling type quark currents;

ew ; (q,): - T . (11)
Tf‘ ‘.zr; 1 Z; ! ll%le.t

This form of Sa)is appropriate to pointlike quarks with no anomalous
magnetic moment term . The directly measurable electromagnetic
matrix element of individual hadrons are

(1) diagonal matrix elements:

electric and magnetic form factors Gg(g*), Gu(g*)

These may be interpreted nonrelativistically as Fourier transforms
of the charge and magnetization densities of the hadron in question .
In particular their values at ¢1=0 are the electric charge and magnetic
dipole moment of the hadron.

(2) off diagonal matrix elements:

electric and magnetic multipole transition moments

24
These are the matrix elements of the EM. currenkt J between

two different hadrons. The transition moments we shall calculate are



for magnetic dipele transitions with JP-—— ‘* , which are the best known

experimentally.

Diagonal Matrix Elements
First we consider the diagonal matrix elements <hadron lT

’hadron)

—
The magnetic dipole moment B of a hadron is defined as its interaction

with a static magnetic field

- —
H; - -8B (12)
In the Coulomb gauge AO = 0, A= -;-E‘ -1:, so we find from z 3
= = - _‘. - Te =
Hy Z‘x AR w) B (13)
80 Ty - = T ewm
MPrnl = 7 2d 4
and the total magnetic moment operate!r is r. j r(x)
N
= = X
B 1lst =¥ '#1) (14)
so
Bt bl | 85 de, #x(7,78) [y as
The F operator 1is diagonal in quark space so the total moment is just
The required integral

the weighted sum of individual quark moments.

for free quark spherical wavefunctions gives the result;



pe(T) T e}“‘ij("

1Ge ‘[I(_{n‘lo)*‘ﬁ.l(s z,\] ) (16)

P = T g :
where (X.., = J ‘1 13_,{(1' 13*""(1 sl for \‘\\M( )>modes

X,

and T(,x,) = [ v!"h(a]y‘d»l

i

A special case that is easily solvable is JP- , the lowest modes;

eL X'!.(?.«»wlz.\) '%Mli,}[l(o‘x,)0],_‘1(,':,)]-' (17)

-1
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where T (o,2,) {l-jv(zx, )} T(h,) =2 U*j. (22,) -21,(1.)‘1

We note that[rl’las required by dimensional analysis: for m =0 Y ek
To illustrate the dependence of the quark magnetic moment om the para-
meters ( X, ,W\;) we have explicitly computed and plotted 7—;—’1‘ (z”ms:—'—O)
in Fig. A and 2:,3.- (% =25 way »a= 1.4 {.)in Fig B.

The first graph also indicates the experimental value of
P,(proton), which gives us an approximate value for a ofA 1.5 fm
assuming z°~2. . The fit to the remaining baryons will be discussed

below.
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The second graph shows the fairly strong dependence of r(-{-*) on the

quark mass; a value of M1‘= 300Hercuts the quark moment at w,=0 by~50%.

¥
We shall see that this effect is observable in the A (1115) baryon
moment.

To obtain the hadron moments we form the matrix element
< hadron| ')I | hadron) , which gives P,(hadron) as a sum over quark
moments. Naive quark model calculations set t‘f‘zh‘ -2 s proportional
ta the quark charges, but this approximation is unjustified in view of
the strong W

% dependence of r\.and the large mass of the strange quark.

Keeping the moments separate, we obtain for the octet baryons‘,

Pe ~ Jf(ql““' Pd> l“u"‘f(ql‘fh) Pa® Bs (18,1-h)
Pi'b = %(qru‘ l}.,) ‘ r‘l’t .|§ (Zru*zr‘d'r‘s) ‘tLt'= %(qrd- }15)

rl-g-o=%(qr‘s'f“u) r:-:'-; %(ql“s'l“d)

Clearly the strongest breaking of the SU(3) moment ratios due to
wmsM»w,  Will be observable in the A and the = ‘'s.

To make some specific predictions we assume ac=|H ';“""‘u“‘“d =0,
'Z°=Z , and calculate the ratios M (octet baryon)/H,P as a function of
W The result of this calculation, together with the experimental

data, is shown in Fig. C. The deviation of the well-known L and A
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moments from the SU(6) results are correctly given to 1 std. deviation
by WAgA200MHer, though the splittings shown are rather sensitive to
the choice of ¥, ; a value of ¥,= 2.5 changes the strange quark mass
required to f£it the Ha from ~150 Hev to ~250 Mew . We also note that
the predicted = moment deviates further from the experimental result
as we increase W, In view of the large error bars and the quali-
tatively correct SU(6) breaking of the T and\it is possible that the

=. experiment was in error.

Now we consider diagonal matrix elements between hadrons with
different momenta (form factors). In view of the lack of data for
metastable baryaons we shall consider only the nucleon form factors.

In eP elastic scattering the most general form of the proton

vertex consistent with current conservation and Lorentz invariance

is

ef"rP T e [ ﬂ(f)?’r ‘* —é‘—r’-:-f-ﬂ(f)c' v % } (19)
| L P

This gives the invariant amplitude F

M7 et Bl Vo) Tolp) L (pmpdut g (pa) (20)

which, on squaring and summing over spins, leads to the well known

13
Rosenbluth cross section . The relation of the form factors Fl,}?z tao

the electric and magnetic form factors which we shall calculate is

Gela?)  Fiiy) + By

Gn (f) * F‘(‘j"') *Kfm(f)

(21)
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As previously stated, Gy (0) = 1 and G (0) = #:' = gﬁ-, the gyro-

magnetic ratio. The form factors are related to/o(x) and 1(x)by 14

Gﬁ(f') =}% s X r("(\t)e E /e r:atow (22)
G, () ?u “Z‘F (F:9)-3, ) }/e-,m-,a,.~
where the charge and current densities are

%) Ze H

j‘( Z. E‘o“f

First consider the electric form factorsj for quarks in Uﬂa%’uwde

we find for a single quark

LA

(‘1")= "l'ﬂ‘el a j‘( 1( %7)[1(‘1 ’L'X(‘l) } " (23)

and for a hadron we have

Gely?) ){-[ CTRLAR W B W B e

For large gf the proton will not recoil coherently, so the Cg we
calculate above cannot be compared with the experimentally measured
form factor above l%“"lég:. Since the nucleon form factors are
crudely of the form __l-) (\- %)—1 for 3_"(0 we can see that only

the first two terms in the expansion in 1 are important for 1“ (36¢o)

The first two terms are
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L o
Gelq?) = l-Tedlgl+ . (25a, b)

where
. SJ.‘x r"f(f’) =

(rom.s. charge radius)z,

The GE (qz) integral may be carried out explicitly for -‘,:+quarks in the

limit qz*-' 0 - the result is

Y"’L = qw*: Q; [A(Xo) *LtB(Xo)] i (26)

Q xf

where

A
Ale) = 2 - 1—-‘3:‘-3}3 -t (a2,

3
B () : -’%* g ‘xf' + Apun 2% ‘,‘_?zk*;':;(x:—%)m 2%,

For the proton we know experimentally that rQ (P) = %392.03% fw %5
If we assume massless quarks this gives a region in the
(a,xo) parameter space which is shown in Fig.D. Clearly, fitting the
experimental er(P) does not constrain X, but instead gives us
approximate limits on the proton radius a%®1.1%,| fu . In this figure
we also indicate the curve a(x o) determined by imposing the physical
value of the proton gyromagnetic ratio 97 2.‘4‘1’3.16The curves are some-
what inconsistent, but the best agreement is obtained by choosing

a,x to lie in the region Ladw$absiNin, 2.0 £ ,42.6
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For q2 larger than .25 Gev2 we can't neglect terms of O(q4) in
evaluating GE (qz) and so we evaluate numerically the integral (24).
The form factor Gp (qz) resulting from the choices xo==2 (2=.75, 1.,

1.25 fm) and xo=2°5 (2=.75,1.,1.25 fm) are shown in Figs. Eand F
respectively. It is apparent that for Igl 2. 4 Gev the free quark

model form factors are unsatisfactory -~ the experimental proton

GE (g2), taken from Price et al 1> , indicate that the real quark wave-
functions have much larger contributions from spatial frequencies ﬁ
(.5 fm) "~} than do the free quark wavefunctions. In a phrase, the free
quark wavefunctions vary too slowly.

One might speculate that a moderate (~100 Mev) quark mass could
sharpen the quark wavefunctions near their origin sufficiently to improve
the medium q2 behavior of the proton GE (qz) form factor. This effect
is shown to be insignificant in Fig. G, where we plot GE (qz) for
xo=2., a=1,25 fm, and mq=0 and 500 Mev.

Now we consider the magnetic form factor, The messy integral
given previously is derived from the result given by Sachs 14 ,which is

equivalent to the operator equation

- - (27)
- L tx —b ~—
jf’x K(x)e i = T3 C’M(‘i‘)
where the two dimensional space on which the ¥ andi‘ operate is
the j=% baryon spin space. For a spin 1‘ baryon we have
(28)

L

-
1q.%

V(i) ES‘P" <3»ﬂi(:”8ﬁ> eV uie 2',\3,« ¥y A,y o°.“.i\"““9% Gn(f)
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in cartesian components,

This equation only holds if V(q)= V(q) (%q, so we have

N e

&g <BAf@IBD S - e O, 1316, (¢) (29)

As an explicit example we consider a spin ?} proton with CFQM

quark wavefunctions. From the SU(6) decomposition of | PAY? we have

<PALRIRAY = -‘3'1 STt + Cullfluly + dtl31at) ~2<dll g\JDl

= Sludatiglary = Carlzlaryd (30

One may evaluate the quark matrix elements explicitly to find

(Ql T l*}r?) = Ze%ﬁl.d:j’(.hr)j‘(‘"')m&é‘ Ee‘}(h) vabp (1)
Then we have, assuming the u and d quark wavefunctions are the same,
<SPAHITIPY = ed(dad & (32)

In spherical harmonics and spherical components this is

<PAFIRY = I ebllr)d -y, aeY 8 ) (33)
=-2 J_%-;ie;(\w) 7:0(11)
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We may now Fourier transform this vector;

RO PR A BRI Py pa] BE
SMERNNENE RN

- Hvr)’/‘. N >
) %'-37_‘- e [ e84, () I T Aty (34)

Comparison of this result with (27) gives

C’M(f = %I‘Ir‘ﬂ(u)j'(iv) dr

where we have implicitly replaced \'c'f\by g. Recalling the specific

form for ¥ (kr) we found in (31) this becomes

Ghtj:) - &Juu’ 10(1‘ \1 el j‘(ﬂ.“) dv
2o
- ?T):.d @
= (v)
ey jn oly) .04, L300) &y 55

We may check this result by taking the small ga limit;

GM(‘j‘ ) = ?E'J}‘d“"— JII 19(\1)1‘(\”(‘«1 -tel-‘-:

For massless quarks we may simplify the normalization of the integral
in (35) slightly;
Xo

1) = Az, 2 2
Gn(i) = i(x:_m,xb)S\(.‘o(vﬂd‘(\ﬂ«j\(}z’[)civl
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To compare this result with experiment we fix a(xo) such that GM(o) =
'%3(“{{") which means that we stay on the curve shown in Fig. D.
Choosing other values of a,xo means that our curve starts at GM(o) #
%2 (expt), though the functional dependence on q2 will be qualitatively

the same as the constrained curves. We have previously discussed
}'LP (a,xo) , so we lose nothing by fixing GM(O) at a convenient value.
The resulting GM(qz) for various X and the experimental data are
shown in Fig. H. If we introduce a quark mass of 500 Mev and
calculate the effect on GM(qz) as we did previously with GE(qZ) we
find that the scale of the magnetic moment decreases significantly
but that the explicit q2 dependence does not appreciably change.
(Fig. I). The samé qualitative qz behavior with respect to m was
seen in GE(q?‘) .

In conclusion, we find that our model predictions for both nuclesn
form factors fall too rapidly with q2 f or\q,z!?.ozs Gevz, though they are

not unreasonable for \q2l£ .25 G‘xev2 and spacelike.
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Off-Diagonal Electromagnetic Matrix Elements

Now we consider off~diagonal matrix elements of the electro-
em
magnetic current <hadron'| T \hadron) (36)

which to lowest order are responsible for transitions between two
different baryons or mesons with the emission (or absorption) of a
single photon. Expanding the photon field in I;m A P in states of

definite IP we find that the photon can have the following ]'P;

y=h2.. P= (,-)1 electric multipole (23 -pole)
transitions
AN 1,2 P= (—) 1+ magnetic ZJ-pole transitions
. ’Q . "

The resulting selection rules on allowed IP, J P for each case are

obvious.

In the long wavelength approximation (kr4£ 1) the partial rate for 2 -pole

transitions is of the form H

n (2R pole electric) ~ E,d (ka)zg k

(37)

4

I* (2" pole magnetic)~ Mx ol (ka)ﬂk

where a is the approximate extent of the hadron, k is the photon-.energy,

and E 1 and M { are functions of £ which decrease rapidly with increasing
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Q . To get an idea of the rates we expect for each multipole we can
plug in some typical numbers for a (1.2 fm) and k, (300 Mev) in a

table reproduced in Ret.l7 with the result:

Order of magnitude widths for multipole transitions; kf 300 Mev,

a=1.2 fm, [ in Mev, for §»BY transitions.

multipole electric magnetic (assuming 933)
{=1 17; 2 Mev 17; .5 Mev e
4 =2 2*: .1 Mev 27; .05 Mev
4 =3 37; .01 Mev 3%: .002 Mev
Since these numbers are derived assumim‘g only the first term in the
214
photon radial wavefunction jx(kr)‘»%—-——-:; i is important, they are clearly
..

only very crude guesses for our case with ka~ 2. Leaving out the
higher terms of order (kr)bz' as we have done overestimates the size
of the interaction j“(x)AF(x) for raa, especially for large £
(assuming the quark e.m. current i,, doesn't vary rapidly with r). We
shall consider the effect of using the correct photon and quark wave-
functions to calculate the transition rates later.

From the table above it is clear that electric dipole radiative
transitions are the most important when they are not forbidden by a
selection rule. The available data, however a.: concerned with
transitions between the lowest lying baryon octet and decimet
Big ('.3;) +—Bg (£¥)¥ ) and the vector and pseudoscalar meson nomets
(M8 +1( 1) =Mg. (07)Y ). Clearly only (+) parity transitions are
allowed, so electric dipole transitions are excluded; the dominant

matrix element for the observed photon emissions are magnetic dipole
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(1+) transitions, with perhaps some contribution from the electric
quadrupole (2 ) term ¥ In the long wavelength approximation the

transition rate for the decay AHBD’(I ) where A is unpolarized is

(38)
i ( hadron A +— hadron BY (1+)) Z 6! ‘h‘ kyZmeans sum over
[hadron BY
polarizations

FI;. is the transition magnetic moment, i.e. the expectation value sf the
[

magnetic moment operator}: between the two hadron states;

f‘h <Lm)ro» A l Z f ’x e}F X 1}743_ “\mlm. ’B_;> (39)

Assuming that we may neglect recoil effects this is just an integral over

quark wavefunctions at rest. We may now consider specific reactions.

W  AT—PY

The experimental value for the partial width of this reaction iSlS .b5% 04 Mev,

First we shall calculate the partial width using the naive SU(6) quark
model, then we shall do the same calculation using explicit quark

wavefunctions.

* If the decay is caused by a single quarkw» quark transition in -L"' modeg
we of course have AL= 1 only and expect pure magnetic dipole tran31t10ns.
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+
Assume the A has 3‘= "/z , then the P has jg =7 and the Y j.!=1. The

transition moment between these states is

fay = <aviiglv gy (40)
180,31y = S ehutdt> + doe ] (41)

| ﬁ" T, C\‘C.
"P,%,"» s .\I‘:\_-F } 'X(lu.féluf> ‘el. “1(_> - (lu_fuj J?> +.1 ‘,erufs.)
(42)
° By = V5] <RI - <atl glud> ©
assuming (44)

a<qlydp = Slq.q)

This is not a trivial assumption, since quark wavefunctions for hadrons
of different radii (in the free quark model, for example) or of different
momenta will not necessarily be orthonormal. Our assumption §qr\3'>9
= S {.,;‘1') here implies that we neglect recoil and that the quark wave-
functions in the 14>and | Plare the same.

In the naive quark model the quark wavefunctions are just two

] o

component Pauli spinors; u(?)’i_ol . u(l)=i_a] , and the magnetic

moment operator is taken to be

Fs~ %“f“‘i (45)
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where I is an undetermined scale. (Note that we found previously ™
that the assumption |F¥l«eq made here is unable to account for the

observed strange baryon magnetic moments)., With this ansatz

we find
Fif -3 pi'ri,‘)} (46)
3
Then F(ah »Py) = ‘.}{_ }*’kv (47)
z 2
with k.,‘ \M“ —np
2 M,
F, may be related to the proton moment by the simple observation
of (18a)
1
PP= <‘P"‘;‘ t‘l3l?»§-"> ) '3"'(’4}‘“— F‘X 5 using (45):
472 LN -
=5(5¢) 3 3Y) iy
So we predict for the Ml decay rate of A.‘;I; — 13'/—..)/!
N
'3/-.‘/; - q Pe k? (46)

Physical numbers are M = 1211, Mev. M_ = 939, Mev, k = 241, Mev,

P

* See pp.l10, equations (18 a-h) and Fig. C.
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FF’2~7°13 — so we obtain (with e =d)

(A= PY) = HOL Kew (47)

We may obtain the other matrix elements using the Wigner-Eckart
theorem, once we show that the magnetic moment opera’cor)'l transforms

as an irreducible vector under the rotation group:

An irreducible tensor T(ri) with respect to SO(3) satisfies the com—-
mutation relations

\l_._
[T 797 = L) -les] T,

) (48)

YIE ,lej] = MTM

If these are satisfied the matrix elements of the irreducible tensor
operator Tu) between any two basis vectors of irreducible representa-
tions ©f the rotation group will be of the form
I 3
HUTHVR S

(_2) = Lo
<lw\]Trl“'w> \j_{;:“ <£}J,jw,5w> (49)

)
where <.\ “T( \l 3'> is the reduced matrix element of T.

Recall the definition ofF:

R 7 50
Hi = T € X A (50)
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First we infinitesimally rotate i ;

under an infinitesimal rotation about the z-axis,
2N A - : -
x) = 1/(1)*-:{'&6:‘ Yix) (51)
76 = ov@ D-dosJzllvtos Juw)

= T(;)*w(j,,'i‘,b)

(52)

SO 0

’R‘O QLR&)“ x= (&\"L&j“j_'_‘wi‘ ,13);"‘ 1; - i&)b'-i; (Ii)'ij (53)
which is equivalent to (48),

This must be satisfied if { transforms as an irreducible vector under

the rotation group. (D(l) (w) is the 3-dimensional matrix rep. of a
rotation about the z-axis and D(l) (J,) is the 3-dimensional rep., of J,. If
we change the components of j to the spherical components Ja e

jo = j3, we find that our infinitesimal rotation becomes

31.;* ll.)/i.‘_. , §1°= O This means the matrix representing

Iz in the basis we have chosen is

»0“’(@: [l ° _‘J (55)
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a little more work gives us the matrix representatives of IX and Iy:

o | o

{0 { i) .
ol (.‘x) = T‘{“ oo i &( (lts): —}f L ?—L (54, c)

These are the familiar spin-1 reps. of the rotation group generators, so
the spherical components of 7 indeed transform as an irreducible spin-1
tensor under the rotation group.

It is trivial to show that the components of I3 transform similarly,

. - = e , ,
sO we now consider how [ ﬂitransform under an infinitesimal rotation;

for a rotation about the z-axis,

8\"‘= %(S'i'hhis‘s" -8141-231,) = %('nglj.\"wt‘z
(56)

3‘\,\,,- "LJ’A, 3}43-0

These are just the transformation laws we found for i, so by analogy

we can form a spin-1 irreducible tensor operator out of F;

";—i'(t*.*“t*t) r‘i-
l Fa He
= lpip) p-

T (57)

U]

Having demonstrated this well known fact we return to the problem of

calculating the matrix elements of }'f between all possible polarization

states of 1A+> and P>
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The Wigner-Eckart theorem (19) tells us that all these matrix elements

may be determined from a single reduced matrix element;
<& | S [P RS R LS S N Y (58)
one previously determined matrix element (48) gives us
<% !r“‘n‘ Y= rrnf (59)
so the remaining matrix elements are
<At wl \‘L‘:\ Py = J‘Z,—gﬂrp (rw's DT wd (60)

explicitly this gives

<% lrf,"lh Sve -—%—?—ﬁ
OISR R "
CEOTEY = G T

<""-zl Wl-$% =4, Z-g'}z
<“}t‘°“i“\7 S, ‘1:1-—.—14

w—

]

v

(Y

(61, a=-e)

g
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We may now return to (46) and calculate the naive SU(6) quark model

rate for unpolarized A+H P2f,
- 4 Blod, 7.8 .'i-.grg-'-’--sfo
"= '1'(1-»\)L X AUERE Tl ky T402Ker (62

which is just the rate for polarized A;_H?,_b’decay. This teaches us that
we need not do the sum over all polarization states to obtain the decay
rate, since the isotropy of space insures that a particle with spin up

decays just as fast as one "standing on his head.”

+
Now we calculate the A v P)’ lifetime using the free quark model
wavefunctions. If we again assume that the initial |8 has j3 =34
we find for the transition moment

B k) P Tey CORIT T (7O 69

+
Inserting explicit ‘; wavefunctions and assuming that the quark masses

and hadron model radii are all equal gives the result

Poyg ™~ %[J’ ! Suth @@ luld - <Jﬂrrmdx>2 (64)
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If the quark wavefunctions are the same in both cases,1%,=|), this
gives

Fg - -E 'i;—-"ef(.n.ic) s-i,"‘.ﬂ

for the Cartesian comps.

of }T, or (65)

W 2‘! -
Pl'— ® 3JL—\eI («,x&? ‘-°.°1 for the spherical comps. of }.v.m

,f(a,XQX~ 2* j‘“ J“'{ ‘10(11 1(\1‘4\1 (66)

This gives for the width AwPY (38)

024wt ( )’-AZ % z
B = 1 (dsad ate”
! APy 31 Lg o X 5‘,731-(1)1'(‘134‘?} (67)

o

For massless guarks &“1 .a+a A [‘ 1 ('xo) l , and the above result
simplifies to

: (68)
'Z:"AJ’\ Xo

= (_z-)z’( Lz N xo(z*@( ZZQ) - %_“AM 1%e :
Catrapy W 450



-29-

Since the same integral appeared in the magnetic moment calculation,
3

we may once again write [T(A*»?Y) in terms of f‘:ky , where the P is

now the value calculated from the free quark wavefunctions. (The

naive SU(6) calculation takes Pe @S input.)

The result is

3 12
M(a*=PY) = T peky (69)

which is exactly the SU(6) rate as P(f‘?,ky)' Carrying out the above
calculation with massive quarks gives the same result. The fact that
these calculations all give the above result is not surprising, since
we are calculating the transition magnetic momént between 1&Y> and
1P> assuming that the up(down) quark wavefunctions in the 1a*»and
IP> are identical. This assumption implies lF“ e \Fr‘ where the
constant of proportionality is an SU(6) Clebsch~Gordon coefficient that
doesn't depend on the structure of the quark wavefunctions.

Experimentally we know

‘P(A*\-;?Y) . M. P(A‘;\—-?ﬂ ~ 1.4y (70)
- 1
_‘16- He ©y Har ¢ by

instead of 1., with an uncertainty of about 10% due to uncertainty in

the A"'total width., This test of the SU(6) quark model is independent
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of the assumed quark wave functions, so one or more of our other
assumptions must be in significant error. These assumptions are:

1) long wavelength approximation for the emitted photon

2) neglect of recoil effects

3) equlvalence of lw s ! jud e 1 |4>&, and H} quark wavefunctions

4) neglect of whatever amplitude the P> and 1A*» have to be in

exotic (other thanlqgd) states.

First we shall see how serious the long wavelength approximation
was by recalculating the decay rate without assuming k),o.« 1, This
assumption is especially suspect because k,‘ a~1.,5, although the
decreasing behavior of 1.'_;‘1 as x increases suggests that the long
wavelength approx. led us to overestimate \"(A*"“‘?Y). “This implies

that will be less than one when done correctly, giving

Te ~ L3
1 Sk
even poocrer agreement with the experimental value of ~1.44, We
shall see that this premonition is indeed correct.
The ﬁ—matrix element for single photon emission from a spin-—%

fermion is 20

3;“ 3 iJJ"xZI(x) : -dmjﬁx Z_&')A((x) lpi(x) * (71)

;://\f

* We note that two. conventlons for e are. in common .:age; ratlon—
alized", e /+ﬂ = (e g. refs. 12,19) and "unratlonallzed", e2 =

(e.g. refs. 16,18). Using < directly avoids this ambiguity.
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The photon wavefunction A | is a plane wave normalized to L—E-!‘:Ef-"l
¢ unit vslyme J
A ( ) _ et ( "'Lr" . —LL.‘.-x) (72)
P Jﬁ;_\!: € ¢
where the pblariza{ion vector satisfies éf"‘f‘z 0, et = -1.

Without loss of generality we may choose the two independent polariza-

tion vectors to be totally transverse;

- ) ¢ - %
e“’=(o,e“') ) e;z . (O,EU)

=) =(2) A (73)
p e L evLk,

3
The transition cuwrrent euff ‘»L; =i; is easily evaluated using the
CFQM *‘-,:‘\r quark wavefunctions (5); for the calculation of the rate

At; H’P,_Y we require only the quark spin-flip transition current
- k]

-

’—1.;1(?) = {4mwd 7’;1\‘ k= Al ’."‘:1‘1‘0"§1'(L")§1“5a’Mé’—we@

(74)

The outgoing photon has k

polarization vectors to be

SO
g(.‘) - N A
= chpk*tswcpk
~U-) - A A x
€ = 'xmgkm@m-%we,,_w(pk I YN J
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and the projection of the transition current along each of these is

;S". 'ém s - IT‘-?j(r) Y'o (ﬂ)ei‘e“

—

‘S':LN = -t@%(r) sy‘o(ﬂ)mbkglvu ._J-":‘ Yﬂ (.ﬂ)m Q\‘k 7o

where g(r) = 72 [q7q «141&)1‘(‘“)

XX ! !
S Gy () Y () 4 (L)

and inserting it in the s—matrix (71) , assuming Wy <w; gives us

Expanding the plane wave e~

the result

$O‘)_ STT"&(A);‘\"J“JI)JJ3 —--‘. g()-)

Vo Jzky * 4 Wom“r) Y, (@) REAR %il()w)
77

Other photon angular momenta clearly don't contribute, as one sees

from (76). Explicitly doing the integral for each polarization state

gives
(v vt . . _
3“ = —Jz):r j;r 3(*31,(\43;-) dr e B.e ﬂ%(m*w-u;\ = "J‘I'\V%ZEWQS‘P"S( )
() .
whe;'e <



The rate to shoot off a photon of each polarization is then as usual

1R £k
r‘(\\ =\ T . S{.‘ . V— zwi (78)

w
\'—T ) s photon phase space
rate /vol

fermion phase space

Doing the substitutions for $kgives

rm - k; N

3T
Recall S LS Y
B [
SO

ros gy | f"z‘i“‘i'“‘v') u

(79)

A
@, polarized photon emission width

A
Similarly we may obtain the width for photon emission with e =0, 3

1))
\"m=3\"L (80)

So the total width for ifhﬁw is

re g gl i) ®
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In the long wavelength approximation this gives
a T
321‘" 3 1 5 3 \
A AT 82
M 27k )i (82)

We can easily check this unlikely looking result - we know the long

wavelength M1 dipole transition rate from (38)
4 p g2y 0
T3 \Hzl ky
and we know the transition magnetic moment from (50)

Pr T ;A“‘x?ﬁ

where '3'; is given by (74). A little work gives us
t

Koo “—‘I 3(44'- b1,1,08 (83)

in cartesian components, so

Il s T [[eqoe] (89
and finally
2 2
™ |3
= % L‘f [if‘%%(r‘) JC] (85)

which is exactly the long wavelength limit feund in (82),



-35-

We are primarily interested in the importance of the long wavelength
assumption, so we just look at the ratio of the widths I and r;

calculated with and without L;-«‘ assumed;

%o _‘_(I_Q_ 1
g=lly) _ 1% [‘(Lio(‘gﬂ‘l)j'( 1) dy (86)
r;(\tar“'() 0«,&) j; %31‘5(1)1,(\0 3‘1

For a specific case we again consider A**"?b’, with kv" ~l.5,

which gives

[

l,,z 3
e | LD “
R

Evaluating this function for 04x43 and K,a = 1.5,we find the

following behavior;

.8 - //£
R(x_) f .7 e
(‘L.’m’ LS) s L

0 1.0 xo' 2.0 3.0
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So we find that not making the long wavelength approximation leads to

a lower prediction of the width for A*H?Y ;

C(a=Pr) = RED T PPY asinny ke 1)

with R(xo) A ,75~,8 for reasonable values of X (2-3). The correction
factor R(xo) is model dependent, so we can no longer make a wave-
function independent statement analogous to (69), though the slow
dependence of R (xo) on xo tells us that the short wavelength correction
to (69) will be about a 20~30% decrease unless the wavefunctions are

radically different than the CFQM functions.
Our result for the CFQM functions is then

r{a'—Pr) = R(z.) %‘zp; ey (88)

- GH > T (AT —PY)
—
Llﬁ?‘ld. ‘gA'f = K(xo) ~ ’73_..%
P ¥

which is worse than the long wavelength result of 1, (Recall that
the experimental value is 1.4-1,5,) Clearly we have found an
effect that can't be neglected, but we have also found that including

it makes our agreement with experiment poorer,
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Now we consider some meson magnetic dipole decays. The

available data=z-z concerned with the decays of the low lying £ = 0

*
vector nonet (p,p,w,K) into the pseudoscalar nonet (, N, K -

as of 1975 the available data s

reaction
f"‘—"sr’Y
K KYY
K — KoY
wr— Y
W ’IY
@ Y
o ’lb)
=¥
‘t' ey LJX

' (kew)

35+10
4380
75435
870+80
< 50
5.7%2.1
65+15
< 270
< 80

21-25

ky (Mev
372.
309.
307,
380,
200,
501.
362,
170.

158.

First we shall calculate the rates for an"’X, and /0‘ ' using the

naive quark model just to be certain that we understand how to do

meson decays. As with AY=PY we choose a particular polarization

channel (1-){-1 — (O.—)O(Y)‘f“l and use the long wavelength

approximation;

where

(38)

| o™> (89)
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is the usual transition moment. The naive SU(6) quark decompositions

for the mesons we are considering are:

)“=4!—_—.( wtaty o[ it3t) L= lutat) (90)

lwe> = 3-(1utaly -lulaty -l ataly + 133 3d)

I = = bldiaty « 14t al)) (91)

for the 3 we have

Foge = <ol gl = i (Gt plady- Satlplaly ¢t lasys ol 118 (s2)

Since our theory is charge conjugation invariant we can treat the

antiquark matrix elements as quark matrix elements with e—,i'--e% ;

Fore T (gutipletd - gatllaldy) (93)
or, assuming the u and | quarks have identical wavefunctions,

Fw,fﬁ: gf” 9% (74)

* We assume w-@ mixing such that the ¢ is pure ss.



for naive SU(6) with F= %1 PE"; this gives

Fuv’ = & S“'-;'Q} » \Fw‘ﬂ""!l:r} (35)

1,1

SO o 3 (96)
M (o ytY) = 8 ky 4 -

The last line assumes the quark wavefunctions are the same in both
the nucleons (where we found r= ,,L?) and in the mesons - we will of

course drop this assumption and use a meson f for these calculations

if necessary and just say that meson quarks look different than baryon

quarks.,

Plugging in numbers, we find (;.n“\. p t‘P)

M (o—w3) = 1190 Kev 97)

Compared with the experimental I'= 870480 Kev this result is not bad,
although it neglects recoil effects, which can't be much larger than
for wemw®y . For the present we shall continue neglecting recoil to
see how well the other reactions fit into the nonrelativistic SU(6)

prediction (they deviate substantially from nonrel. SU(B)).
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Afterward we shall put in an estimate of recoil effects and see how
strongly it affects the SU(6) pattern of mesonic magnetic dipole decay

rates. Now we merely state the results for the other two reactions

neglecting recoil.

(98)

3
F(prm=y) = 3o ptky = 2595 22- 123 Keo
Ar (99)
P(K*D‘—"K"B’\: %r"k: = 271 Kev

which we compare to the experimental values

r'(f"r-—--;r"X) = 35%10 Kev
(100)

C(K* = K°¥) = #5£35 Keo

These are both a factor of three low. A priori we could claim that the
discrepancies are due to recoil or short photon wavelength effects,
but we must also explain why the A)Hn"'i result was in fairly good
agreement with experiment. The failure of the P calculation and the
success of the W are a great surprise to anyone who believes (1) the

SU(6) quark decomposition of these states is correct and (2) the quark
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wavefunctions in the w and p are similar., We shall se that there are
reasons to believe that the f" H'n"i expt. is in error,

We stated previously that the scale of the magnetic moment
operatorF might be changed from the ppWe found for baryons; to test
our result independently *:f’i;x and complications from the strange quark

v Y)
, r'(t wd)
mass we look at \"(wv—*rr‘” ;

r'(p"Htr'f) = L {wg-w "'-) ) (101)
] = =,l03
Plo=m?) T (- ) |

Experimentally %ﬁ;)) = ,040+.012, so we still have a prediction from
(3]

naive SU(6) which is 5 standard deviations from the experimental result.
, , «° °

For those who distrust the }) experiment we note that the K w—s KoY

experiment, with a similar deviation from the w rate and SU(6), was

done by a different group. We have yet to see how recoil corrections

affect these rates, but it is clear that the experiments are inconsistent

with recoil-neglecting SU(6).

The last reaction for which therea-:good data is e 77 , SO we

treat it also; there is some Yt—)!' mixing,

4>

o>

N -
Qs L LY — ainb[ 2D (102)

d

A Dy 1>+ e QS ‘?_.>
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with Qs~ - 100. In view of the crudeness of the results for }: and

*
K ° decay we don't expect a small 8, to matter much, but we include

it anyway. As above we work out ,1; :

<RIy = Gotatlp o {lutaly o v lstsly st

%fzg: g “:'i:ol

<o lE18Y = Gratlg L smsly -lstatde 3

i g%—;»r\!,-i.ﬁ

so we find
<ol ElyY = FIF (e [T i) 114,03

Vgl = 5[5 plnd T wd) {1,503

and for the widths we find

C(emy¥) s q§di (%Y(m%'ﬁ‘mgsyg

F’Lv""‘tﬂ: %(%&) (wbs‘ﬁ‘wésﬁ‘: =303 Keo .

-

s>

(103)

(104)

(105)

(106)
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Comparing this with the experimental value I;H;Pﬂsi&we see that this
reaction too is inconsistent with [}, ey and the assumption of SU(6)
symmetry neglecting recoil.

Are these rates particularly sensitive to the assumed quark wave
functions? As with the A*\*?‘fdecay we answer this question by
replacing the two component naive SU(6) Pauli spinors by the four
component CFQM Dirac spinsrs with X and a left as free parameters.

Again assuming that u and d quarks have the same wavefunction

leads to the w result

FW ;fl;; 51” E;\&Qﬁ (107)

where the quark spinors are given by (5a,b) and the magnetic moment

operator is (39). For massless quarks the matrix element in (107) is

<gll -‘:*;Hl% L%r:r(xc NTRIRY: (108)
where
T(%)= Zd;: J 1(310(1)1‘(’1) clvz (109)
SO
T Y PR P (110)
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and the decay rate in the long wavelength approximation is

Mwoned) =

We know the integral in (109) from its previous occurrence in AY+PY

decay (68);
%o

J 1131‘,("0'&,(\0&‘1 = ‘}{ i 1,(1*0&17‘, - %A.u 2x, ]
so we may evaluate (110) explicitly;

2, (2+wn 22, ~}£mzzo]z l<3
XE ~ A%, J IR

F(A:""W"X) 1? [ (111)

To relate this width to p, as does the naive Su(b) quark model requires
the unreasonable assumptions Xo(mesons)'-"xo(baryons), a (mesons) =
a (baryons). If we do make these assumptions we should get the naive

SU(6) result; from (17) and (18, a) we have

(112)

H = Sf—{x(z*MZ'Xo)" MZXQ}
P 6 ‘t, - At 2o

so we verify that the above assumptions cast (111) in the form (96):

(.“"'" “’°Y) 3 Hf (not true in general)
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More generally the meson parameters will be different fr=r: the baryon
parameters, The question we want to ask is how rapidly (111) varies
as a function of X (and a, which is obvious). To illustrate this

variation we give QC(QH“'X; %o ,o.) for various values of a and X

f:ijzunf]’;x,.o.) in Kev expt ' = 870+80 kev
naive SU(6)[= 1190 kev
X a=1.0fm 1.2fm 1.4fm
1.5 ] 412 594 808
2,0 | 556 801 1080
2.5 | 563 810 1102

Table B

ey width in the long wavelength approximation neglecting w°® recoil

For X in the range we found to be reasonable for baryon models

(ZﬁxO’; 2,5) we see that almost all the dependence of M is on a,

the width is very insensitive to Xge (The scale of the numbers in

Table B cannot be taken seriously in view of the two approximations

made in calculating the width, long photon wavelength and no w° recoil.)
We considered the effect of not assuming long photons on the

width calculation in the discussion of A*WPY where we found that the

SU(6) result was svppressed by a factor R(xc, k,a) which for the CFQM
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is given by (87). For wwnw®Y we have k? =380 Mev,so kya~2.5,and

Y

the suppression factor may be evaluated numerically to give R(%:2, L,a)= H2E,
As we have seen it is possible to scale down the naive quark

model 1'»0°¥ width by a factor of 2 by including the effects of short

photons or reduced meson radius, so the "anomalously small" widths

o ]
of kK*—KY¥ and so forth are not hard to account for. The paradox which

we can't explain at this level is

(113)

Clrewd) | L g4+ 012
r'LuHrr°T) “?;

The near equality of the}a and w masses leads us to bélieve they are
similar internally, differing principally in isospin. The photons in
these reactions are very close in energy, so w recoil and short Y
effects should be approximately equal., These assertions and the single
quark spin flip model of these decays leads us to relate the [ ratio to

an SU(6) coefficient, which gives

F’(g‘ —w¥) s (114)
Mur—wey) 9

One possible explanation for this measured deviation from the
SU(6) prediction is that the large admixture of Iq§A>*in the standard
quark model Iqq)y states is responsible for a modification of the SU(6)
transition moment ratios. This is of course a difficult effect to estimate,

although with a number of approximations we may see how large we

By A we mean a nzutral colored vector gluon.
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expect this effect to be. If we jump ahead to the bag model and
consider mixing between the 1q3) and lowest lying IqGA) states through
the g—ﬁ?ﬁ Xr?’Aa Yukawa part of the quark-gluon lagrangian, we may
estimate the amount of mixing by fitting the Tr/o splitting as a function of
q. Then we may work out the matrix elements (\‘\F\o‘)with no free
parameters. This messy (and inconsistent, since we find large mixing
angles which imply that we probably have significant mixing with other
configurations) calculation is deferred to Appendix D; the result we
find is that |Fm,.\1=‘i | Frulz . The mixing angles are the same for the
(-n'f) and ('rm) in this approximation, m_=m w)) W, , and the angles
cancel out of the ratio of the moments, changing only the overall
scale. Presumably mixing with gluons will correct ratios of transition
moments of strange and nonstrange mesons, but we haven't treated this
problem. The upshot of all this is that we can find no effect which
modifies the SU(6) prediction of Murry)/ r‘(.y'Hv'b’) ~9 , sowe
tenatively claim that the P~ —— f experiment is in error. This is

a difficult experiment involving P— production in a nuclear Coulomb
field by a w~ beam, which has amplitudes to go through a photon or
through strong P" production within the nucleus. In the above
experiment both effects are sizable, and the relative phase of the two
must be known in order to find the size of the electromagnetic amplitude.
In doing this the authors of the experiment find two solutions,P=8’0=\OKeV23

and I =35+ 10 Kev, the former of which (which is consistent with

SU(6) and the wws w°¥ rate) they reject. We suggest that the former
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solution is correct, simply because we can find no mechanism which
allows the lower rate. Of course there remains apparent SU(6)
violation in the rates K'DH K'Y and cp\—-n{l which has given credence

to the first such reported violation and has led to a flock of theoretical
papers on the form of the SU(6) violation (which incidently are unable
to consistently explain all four of the measured rates given above

with the exception of one model with four free parameters). These
papers have in common two essential ingredients; (1) acceptance of
the f"""ﬂ"b} experiment of Gobbi et al%3which we question, and (2)
neglect of recoil effects. Now we consider how bad the latter approxi-
mation is., It is a straightforward but tedious exercise to compute the
change in the quark overlap integrals once the w is boosted, but lack
of time prevents this exercise from being carried out with the CFQM
wavefunctions. Instead we merely quote the result of doing this in

the relativistic harmonic oscillator quark model of Feynman, Kislinger,
and Ravndal 27 | These fellows find that including quark recoil in
photoelectric meson decays modifies the nonrelativistic SU(6) quark

model prediction as

Z\M(t') 3 _ _
m)] r‘(\ =0 K;Ib md) (115)

r‘(l- —0 Y ')feco'\lmlo-) = [
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In the limit w(17) 3 w(0") (which is not unreasonable for some of

the decays) we find that the predicted rate is énhanced by a factor

of 8 over the nonrel, SU(6) prediction. In addition, if there is a large
spread in the range of m(17)/m (07) in the measured decays (which
there is), we expect the recoil effects to significantly modify the
pattern of decay rates predicted by SU(6). For convenience we start
with the rate known with the greatest certainty, [}, E,Y=37°t 80  Kev,
and use the above recoil factor to predict the other decay rates with

SU(6) and with/without recoil included. The results we find are;

Mesonic M1 Decay Rates With FKR Recoil Factor

la ‘z/l_. 2 .nonrel. SU(6)
reaction P )"n"‘ SU(6) with recoil expt.
werwey 1 input input 870+80
et 5 91+8.3 88+8. 1 35+10 Delieved
f — - - incorrect
2 [
KT KY 3 200+19 87+8.0 75435
< ,
¥ 2 He) 160415 73+6.7 65+15
(we take Bs="10°), $(85) = 1*&1.\,.',.49;:»»:9‘—%&"9,
Table C

There are a number of other effects such as suppression of the strange
quark moment which further modify these predictions by up to 40%

for some cases7which will be treated in a letter on M1 mesonic decays, 26
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together with predictions for other rates which are experimentally
known only as upper limits at present. The essential point of our
argument is seen above, however; the FKR recoil factor brings the
wre R*°K° . and @y transition moments into agreement with the
experimental results to within experimental error. Only the /o"'n'"
moment breaks the pattern, and we hold that this experiment is wrong.
It follows that the theoretical work on SU(6) Violationzs'sois based on
an invalid interpretation of experiment (recoil neglect) and is thus
simply ill-motivated. An interesting calculation would be to explicitly

work out the recoil effects in the CFQM and Bag models to see how

model dependent these effects really are.
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The decay 1 meson ’—“1‘1‘.

The production of the heavy {l -particles in eYe™ colliding beam
experiments has given rise to a great deal of interest in the process e'e™ +>

hadrons. The largest contributions to this must go through a virtual photon:

-

kS

ot i L\Awwi

At current energies we expect diagrams of this form to make the only important
contribution. We wish to avoid the complication of recoil effects in the
hadron production so we study instead the inverse reaction, in particular

the decay of a vector meson to e¥e™ 'l

A\ e~
vector i *T ¢ (
meson . g
< et
gluc exchange indicated
schematically
This process is equivalent to the well-known problem P*r"t—-—ae*e‘

except for the gluon effects, if we assume that quarks are Dirac fermions.

The lowest order diagram for r.‘\‘ t,’&-—!e"e" is trivial to evaluate, with

the result
'{‘:g . " 2w
Yrd 1= 2 a Padwm Yrd™ l# S sHhme
s« )= [ ey (l*‘ 's‘(.“‘c*“‘)* ) o T 17 TR w S wm
e 35 {1 lwm t s s ~qth poe
-t [I- 5]

(116)

Suppose we had confined the initial r*r:‘ pair to a volume V
and calculated the rate for the reaction, keeping V'  finite. We then

find, assuming mr>>ne_)

erat mly o rd
r‘. r’r‘l""g*t.)? iV (lf‘ "_?) Wy s‘\'qw\;' (117,8)

We may connect this to the order of magnitude ln\'—'e"“e,' rate by

a simple argumenty
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the s of VHQ*'Q- is clearly s=\n; , and we simply call the wmuons quarks

in r\*r." — ete” , which gives a rate
Zwig | TN _
r(VHc*e ) wra (“ -\::}) < _3.") (119)
Wya

with two limiting cases for very light or heavy quarks;

u"— 1 < > M1‘<< M‘U

Vi ete) ~
r( qm‘ 341 ( 4\ o ~ " (120a,b)

€
where <fé> is the mean quark charge weighted by the amplitude to £ind

each type of Li‘i) pair in the meson.

To see whether or not this order of magnitude estimate is correct

we look at some . specific decays: 31,32
Reachion Rabe (Keo)
f°H°+‘_ L.32¢% 13
AadS 139t 1.1
B —"ete” L¥58% 173 (121a,...,h)
pr— ete” .33 £ o

‘PH r“"t‘- 'Oq t.ls

fr—ete” 4 * .&



Y r-’p" = 4.8 .6 xev

<+
l‘L'b—-g“’e" = 2.2~ L.6Kev

First consider the 0 - ete” decay, assuming m_ << m

The rate is proportional to the sum of the uu and dd annihilation
amplitudes squared;
*
74 [&(y)-L (D] 4
P(r"He*c") ~erad JT( 3)“3’{'(‘3” = M-;qi (123)
’ - ' d

- *
With a 1~ 159 Mev. and mV = mp = 770 Mev, we find
F(la‘*-*-*:) ~.3b Kav (124)

which is in error by a factor of ~ 20. 1In the conventional phenomenoclogy
of v = e+e- an arbitrary factor is introduced at this point to correct the
scale of these rates, for which there is some justification ; the rate

is proportional to (the amplitude to find the guark and antiquark at zero
separation)2 , which we have no way of knowing without solving a model of

quark dynamics explicitly for l uﬁ(") 12. Our incorrect result above merely
[l
<lg

gives fof this correction factor later, but for the moment we shall assume

indicates that >> 1 in the p-meson. We shall see what the bag model

]![.Le)l"/(W.(_ﬂ{"}iR is a universal constant for the light vector mesons (which
implies that this ratio is spin-independent), and concern ourselves
only with ratios of rates, i.e. P(V‘F‘Q.*..)/P(V‘HQ’Q-)§ First we consider the

cases for which we expect \M} Ko™

;_:),_ =9 (125)
2 3

* This follows from the zeroth order bag model with qu= 120 Mev.
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r (P.H e"e‘l
(s ete™)
This case is in good agreement. Now we consider the effect of an

= 8.34% 2.10, (126)

Experimentally

appreciable lepton mass (r*f;) on this ratio.

If we don't neglect w, we find ')

4
r‘g-_f"a“’”l*P‘): q\ﬂ\‘ '11. L
r'(.r",o*"e*c‘) [l— ;ﬁ] h‘z%] W\g‘«‘*r,wv—
al-1 (%‘:-,)4 ‘ﬁf,«‘ (127)

here Mvﬂ-.?-?Gev and Mr“-,\Gev so we find
r'(r'w'-'r.*};‘)/P(f,wl—’e*e‘) ~ 338 (128)

which is unity to the accuracy of the experimentally measured rates;

C{p°v— -
Y ‘{".:) = 1.5b%,33 (129)
Plperete) [
M0 pt )
,,( —F 2.5 (130)
T (> ete~) exe\'
For the '0° Hifg.- the increased lepton mass seems experimentally to

increase the rate, although the effect is not large compared to the experimental

errors. The Wr l"*f‘. decay is unfortunately known only as an upper limit.

To treat the ?H,Q*[decays with our model, we take vus = 270 Mev
as found previously from the decimet baryonst,zs assuming WM, = 0.

We have an unknown parameter, the correction factor I‘I(O)ll/dﬂ(_x) >

which we expect to be different for the strange quark, due to its mass, although

we have no way of estimating it here. If we simply assume this correction factor
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- Ml et ')
is the same as it is in la° —ete we predict the ratio —%ee |
F(r”—"ﬂ*e')

Clerat) = &.(“&j’(&; )3(\* 2("%)‘) = 108 (131)

r (_r’ i'-'e"a') 1 Cp

where we have taken %P- = 1.022 which results from the bag model with

b 4
Bj‘i = 120 Mev, ms= 270 Mev (which is only a 7% correction to the simpler
assumption o, =Q,)
F Y

From the experimental rates, we find

E&f.it‘::)_. = .210% .o28 (132)
(e be™)
which is significantly larger than the rate we predict assuming ll.l—["))z/(ll“z}

is the same in the r°a.ul<9 . Explicitly, if we assume that the change in

the rate from our prediction is due to changes in ll[.v(c)lt/<‘qv(x)|"> EYV

we find
Rew) = .927% .233 (133)
’K(f) exr)(
= 1.941- .259 13
‘k(r)Lx# (134)
We may also calculate the ratio of correction factors ‘L(cp)/ﬁ(f‘) by comparing
the rates to r.*!)' for these two mesons. There we find
1. u‘w‘ T ‘It
Plemury) | Rlg) 2wya, [l*l"" ’-‘a;‘:] -4 3 (135)
Y 20,°) T wga Y T
(o ) RR) T W ag [14,1__3_.] .(1-4%)([ Sy
\Mf ' @ \Mf

_ 1824 Re)
1824 K(r’) (136)

- which is experimentally

f.
Tlempy) .105% L0242 137
o * - ( )
rlprpty)
so the /.1*)4' decay gives the ratio of correction factors as
({CUR g;“ 133 (138)

l("’)
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which is not consistent with the result 1.94 % .259 found in comparing the
ete” decay rates of the P and f‘ . We are not able to explain the

difference in the two results with this simple model.

Another prediction made by our model is l"‘(cp\—-' r."y.') /r‘(ce\-eg*,_')

which is predicted to be

Tlerpny) ).y %&;UZ""—" H gt ] = .999
T lorete) ~ N Wl (139)

(1+2 35)

which is essentially unity.

The experimental result is

r'(ceb—-* rt-"w’
-~ £13
Pl <" <7 legs LI8%0 (140)

As with the /3‘ we find a branching ratio two standard deviations from unity,

although here it deviates in the opposite direction . Our simple models give
this ratio as close to unity for both cases, so we don't understand the

apparent deviation.

Finally, we consider the very heavy % particles. Here we have

We ~ |Gey D o'~ 3Ges , SO we predict a rate

M eten) > Pl )- e =R = WS R(K) Ko (141)
U— ¢
where we have used a = .7 Fm as will be found in section IV when we treat

glue effects in the vector and pseudoscalar mesons; thé correction factor RE)
due to peaking of -the amplitude to find the ¢ and € quarks at zero separation
has been left free. Experimentally, we know Pu""‘@"@')"’ 4y3r. b Kevw

so we find for R(Y})

" +
R(Y) = 29.17 3.b (142)

and essentially the same result for ¥ l-—-ar\*'r.‘, For the {' we predict

F(# ke ) = Mg —p ,r) * 070 R(¥) Kev : (143)



-57-

where we take %%- = 1.19, as suggested by fitting the (,1« and {LI masses in the
zeroth order bag model. For the ([.' we have experimentally PUI‘H?{)= 2.2t0.6 Kev,
which gives R($') = 36.8% 8.6, _ (144)

which is somewhat larger than the ¥ result we found previously. We note that

the amplitude to find these heavy quarks at the >same point is of the same

order of magnitude as the amplitude to find the light and strange quarks at

the same point. Unfortunately we have no model of gquark-quark interactions
which we may use here to calculate how large R should be and how strongly

it should depend on the quark mass.

If we use the bag model quark spineors instead of assuming that the quarks are
uniformly distributed, we will of course find that R(v) 2 W‘,(b”z/<w.,,(xnt>$}
although this peaking effect is much less than the experimental values of
R(v) ~ 20-40 for conventional and charmed vector mesons. For the sake of
completeness we shall explicitly work out the correction factor R predicted

0 33
by the bag model for the f/' andf .

Our two quark wavefunction for the #(3095) is of the form

Rl 3 ‘ -t -l — — B
HORARE- ( u*f.’ v'i(&) * ui(n) LAY ) (145)
where u and v are the spinors corresponding to the quark states in the ¢, For
the lL both t; mJ i‘ are in the ground state, so we have
— \ e - —t -l
TERARS (u.‘(“‘)ui(ﬁ) + uitr‘\u;(n\) (146)

our previous assumption that the quarks were uniformly distributed gives
ufu(,) = Q(_.,...)ujuo where ubis a constant spiner. We know that the {annihilation
amplitude:(‘is proportional to the[amplitude to find 1 awd a at the same
point],z which is
A" ~ (& lwe=)
~ 8. UG FOIT

The ratio of this (amplitude)2 to the case of uniformly distributed quarks is

(147)
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PN L LSl
o™ = 02, e, | WR,2II

We shall compensate for the neglect of X dependence of the quark wave

(148)

functions in the rate for YMeYe™ by multiplying the uniform quark rate by this

factor.

For the case of the ¥(3095), the above attenuation factor becomes

- V"“’x \u('x'”“
R) [pr @ 1? ]2.

or, specializing further to the bag model

(149)

Jz'KL 4
Ry) - X 21T
3 Mx{.;U‘m“ﬂ (150)

where .F( La”l) = 10(‘1)1 *ILZ»&\‘-“[Y‘

Another effect we have neglected is that the physical \¢> is not pure lc?> ’
but has an amplitude to 'be L2 . \cZA}, lez AAS . \c?t\_'j} NN

of which only the lcz> configuration contributes to L/-\-—-, ete” to lowest
order. If we parameterize the |4 as |Y)= MQ‘ e +~‘“9¢‘eu«rs>
then the rate for #H Q+e- will be suppressed by l(al “)!13 uﬂ‘éy from our
calculated rate for a pure lc?.) (/- . Assembling all these factors we obtain

a rate for U + e*e™ which is

34, \r]a’x PIGI
CRRUJRITES
r Ri¥)

[
An estimate .of the mixing angle 94, (given in section IV)gives Q“ “-Z?i so

Fldrete) = 7| w™By (151)

cos® 99- ~ .3 . Since my is fixed @nd hence myc/ (a)) ,our only independent

free parameter here is a.

If we use the parameters: which follow from fitting the ¥ and ¥' masses

( we2ll Gev | a = .644 fm) we obtain a rate

F‘(.ll“‘e*z‘) = .Sq Ke" (152)
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which is a factor of 5 below the experimental rate of 4.8t 0.6 Kev.

Now we consider the effect of our quark wavefunction and mixing angle
corrections on the rates we predicted earlier for the light vector mesons.

As with the %i‘iehr we predict a corrected rate

3 * ' .
(yeter) = iq; < RV w0, (153)

kN
Wy

where the correction factor with bag model wavefunctions is (assuming

massless quarks),

%o T
gt o0l
X _[’tzoi 1 ;1 1 : 1 = 1070 56
i g‘l‘[%(‘l) ’*j.(‘t) 1411 2,7 2.043

Since the experimental rate for f“&—ae*e_ gives 'R(f") I\.ZD)

Riv)=

it is clear that a calculation of the rate for V*‘ltl-which neglects the
:
short-range quark-quark interaction in obtaining ’ﬂ(o)! will give a result .

which is an order of magnitude too low.
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Weak Interactions

We shall consider here only the low energy semileptonic baryon decays of
the form
{
B — By,
L
which we assume are described adequately for our purposes by the current-
current interaction

- wnL - maL mol
NI P Cladrons) + T (leghows ) (155)

where

and Tr‘\“‘ s -‘Z;Xr(l-)'s)l{t‘ e b + 4’;"‘"’“ Q,_] +\“C-
o - 0. :Cabbls awl‘e
AR AR AL thee.
For simplicity we shall neglect the effect of recoil of the final baryon B,
which is probably justified only for neutron B-decay. The hadronic weak
current for BB is
T (38 s <E 0807 (16 <dlagd ot 1 slaia0, V187 + e
In the nonrelativistic limit we shall see that only one component of i‘has
a nonvanishing contribution to the spin-flip and nonflip transition amplitudes.
By comparing the numerical coefficient of this component for plane-wave quark
wave functions and for the explicit' CFQM spinors we shall see what effect
our modified wave functions have on the usual SU(8) predictions for ﬂAand 9y -
First we do neutron B-decay with plane waves (SU(6)) and with CFQM

spinors. Consider the no spin-£flip contribution to the nucleonic weak current:

I = <?,?W,§Yr(l'7;)lu><“mé¢}lN,ﬁ thee. (156)

We now decompose this into quarks and look at the vector and axial vector

currents individually. If we approximate the real quark spinors with rest
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Dirac spincrs we find for these two currents
- - 157
VP(MH?\) = VP(MHP)ﬂV wﬂg‘ ‘gpo“ﬂgc ¢ )

Qr(m\-*?) 2 ~a,(vop)g e e‘=sr3<-’t’,1xc-ilu><ala,ﬁmg‘;g pacetde (158)

where‘!}'randarare Vr and Ql"’ normalized to unity. We note that only a single

component of ’Irsurvives nonrelativistically in each case, as promised. We
shall use these equations (with AwB; for strangeness changing decays) as our

defining equations for the vector and axial vector weak transition moments

aA and 9y - Clearly for nonrelativistic SU(8) we have (Le N\""P.Q-TJ;)

. _5S b
ael L At TE e R --3 as9)
VP

To obtain %ﬁ (NHP)with CFQM spinors we simply insert the explicit coordinate
v

dependent spinors in the expansion forTr, in terms of quarks and do the overlap

integral; the result is

V‘A (M H’P) = Sre “(gc , $¢ av (,N H'P) = l (160)

which is obvious if the neutron and proton  quark wave functions are

+
identical, since the integral is just the normalization integral J‘J:’x 4-3‘41’\ .

Similarly we find

a”(mﬂ?) = Sv.s ‘F(r\‘—x') 53' w8,

2 A Xy 1
Hpa) = 3= f 40 2 404y

is a wave function dependent correction to the axial-vector moment.

161)
where

Thus we find

Y

= -2
‘3'; VP 3?(}“1,) (162)
CFQA
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This correction function F(l"‘h‘) is explicitly

T(ox)- J_::_‘I( L)
T(0%) * AT (%)

(163)

{‘(v‘xo) =

where

Xa

I(Q,xo\) K J ’lzio(ﬂm‘i (164 )

[

The numerical value of ;ﬁ‘(w H’P) as a function of ¥, and W\a{ for a particular
v
a (\4%w) is shown explicitly in Fig. K, and the constraint }u(x,) required to

34
reproduce the experimental value in_} ==~|.28%.0| 1s given in Fig. L. It
AV INes Pey,

is clear that a ¥ of 2.0-2.5 as suggested by the proton Y and gyromagnetic
ratio leads to a quark mass on the order of {60Mer.. This is consistent
because AT and % drop by only ~6% and ~13% respectively when we increase

w, from O to 100 MeV, so we can increaseaby ~10% and get o s 3p, and %%

b
all correct to within about 10%. We hasten to point out that %ﬁ-is quite
v

\vw’?

sensitive to variation of other parameters than the quark mass. As an example
we show the variation of %&. in the nucleon as a function of a vector potential
v

well (as well asa scalar, which is a mass) in Fig./, and it is clear that a

vector well of a depth comparable to the hypothetical quark mass would also

give 2a correctly. Our model is simply not realistic enough to determine
Vinbe

the light quark masses to any accuracy by fitting the experimental nucleon

parameters, since we are not able to rule out effects such as the effective

vector potential (glue,/o -mesons?) alluded to above. For this reason we

shall usually assume that the light quark masses are zero unless we are

considering the effect of small deviations in ™, 4 on observable hadron proper-

ties (for example, isemultiplet splittings).

Now we consider the strangeness changing semileptonic decays. First we

will look in some detail at the best known decay AP ¥ . As previously
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we are interested in seeing the effect of our CFAQM quark wavefunctions on
the nonrelativistic SU(8) predictions aA and 9, -+ We construct the hadronic

weak current

Tt e) = O T U0 1) ) b LAY vl (165)

Here we note that the quark projection operator |u»{s| suffers from an
ambiguity, as the A quark wavefunctions will not in general be the same as
the P quark wavefunctions. In practice for S-wave baryons the difference
(from different hadron model radii) will be small, so the effect of assuming
that |u){s| means ’LQX<S‘A rather than forcing all our hadron models to have
the same radii is not significant.

Once again we neglect recoil and first approximate the quarks by rest

Dirac spinors, which gives for the vector and axial-vector currents

VA (hpr) =S <Pt Ty, Gl I e
( 166)
: E—:S‘m <'v,m>,r>we‘ “—'@Sr‘,mlh % 9, f\"fﬁ-ﬁ

where\d& is an up quark spinor with the same wavefunction as thel\s—quark.
(They are identical in nonrelativistic SU(6) in any case.)

Similarly

0 A =P = =S <R TR LS, A Dt <=5 s, (199

- -3
S0 3,\ \sn(@) N J:

which gives the SU(8) result Avat

3& = - ] (168)
]y |Sv(®)
Are?
9 35
The experimental result is 3. = ~,bH%,07 , which is 5 standard deviations
v Ara P

from the SU(8) prediction. In neutron B-decay we found that the quark model
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prediction was a factor of 1.33 larger than experiment and that the CFQM

wavefunctions could be chosen to give Eﬁ\ correctly with massless quarks
vV NP
by taking x:\.é, . TForAp-decay we again expect that realistic quark wave-

N

g

functions will give a more reasonable value for since the SU(8) prediction

for ?A is again too large (this time by ~50%).
Qv [ p

Previously we assumed that the neutron and proton had the same radius; to

keep the number of parameters down to a manageable size we assume the same 2
for the P andA. We further assume massless light quarks and a universal
mode number X=ka for all quarks (the latter assumption is the most serious,
and the bag model in particular does not satisfy it). After all these

assumptions we have only the two parameters Ps= Wsa and X which SA/QV depends
Are

on. The insertion of the CFQM wavefunctions in the expressions for the
vector and axial-vector currents then proceeds exactly as with the decay

NrTPe ™y, , and we find

A—

v

A & '
AP s‘z(r\;"x.) (]_69)
CRQM

where F"(t"“") is given by

) S'J3x ¢+(w‘:os Yﬁb’gfs z”(\o\'\’\) I(‘le‘ - -’%—S'I(\‘XB
flux) = - (170)
o [ 4% 4 (o) Yl T(ox) + RTOx)

Ve

where

O
j;: Jrs"x "‘“'S

Had we made the more realistic choice xjxs which gives three free parameters

we would have found instead

Tlox,s) = J_;s' I(l,x,,z;)
I(Q‘XQ‘Xs) ¥ /p‘{g 1(1,Xo,x‘i)

a7nn)

;,_(r.«,x,)z;) =
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X,
where I(l‘x.‘xs} T f‘(l{lb’)ﬁﬁ %H) . To make the problem easily
o

visualizable, however, we assume %, =%;iX and use the earlier form for

&(P’” x) . A plot of the %2‘-\ we predict in this fastion for ArTPey,
Aviamrp
for various values of ¥ and Ms is given in Fig. N, together with the region in
X, r.s space determined by the experimental value 3.;‘_ = - |Hz oF s
q dv Are Pe”Ug
A

‘We note that the dependence of —a-;on psis rather slow, so we can't expect to
estimate the strange quark mass with any certainty from this experiment alone.
We do learn (once again) thatX is in the range 142473 for the strange
quark as well as the nonstrange quarks, which correlates well with the magnetic
moment and charge radius results. The remainder of the baryon semileptonic
decays may be treated similarly, but we shall defer these calculations to

the section on the bag model, which will give us a value for Ms to use in

our expression for the weak current matrix elements.



-66-

III. Review of the zeroth order bag model

Now that we are familiar with some of the properties of a hadron
model éonsisting of free quarks confined to a spherical region, we
may begin our study of the MIT bag model. This model, which was
introduced by Chodos et al.l in 1974, assumes that quarks are free
massless pointlike Dirac Fermions constrained to lie within a sphere
of radius a. The confinement mechanism is the addition of a constant
term BO’ the bag strength, to the lagrangian density within the quark
sphere only. When one imposes the boundary conditions (1) no component
of the quark electric current density normal to the bag surface, and

(2) conservation of the Poincaré charges P _ and Mru, one finds that the

r.

radius and energy of the rest bag are completely determined by the bag

/

2
strength parameter Bé 4(Mev). In their next paper Chodos et al. fitted

this parameter to the mean non-strange S-wave baryon mass of ~ 1180

1/4
0

model predicts a proton gyromagnetic ratio gp = 2.64 (compared to 2.793

Mev, which led them to the value B = 120 Mev. This massless quark

experimentally), a nucleon gA/gV = -1.09 (experimentally - 1.25 = .01),

and a proton rms charge radius r., = 1.00 fm (experimentally .89 * .03

Q
fm, for small qz). This phenomenological success in explaining nucleon
properties which depend primarily on the quark wave functions inside
the nucleon led to the generalization of the bag model to bags contain-
ing massive quarks3’4$§d later gluons and excited quark states. (The

latter problems are very difficult in that the two boundary conditions

one imposes on the bag surface are not satisfied on a sphere in general
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when the bag contains vector gluons or non S-wave quarks*.) The massive
quark bag gives predictions of the pattern of SU(6) symmetry breaking

of the octet and decimet baryon masses, magnetic moments, axial vector
charges, and rms charge radii, although only the first three are cur-

rently accessible to experiment. The decimet masses are fit rather

1/4

8
0 ms) = (124 Mev, 270 Mev), and with this value for the

well by (B
strange quark mass one obtains explicit values for the magnetic moments
and gA/gV of the strange octet baryons, some of which are known experi-
mentally. The moments, with the exception of the Eiﬂmoment, agree
rather well, although the L N gA/gV is broken from the SU(6) result
in the wrong direction.

One of the worst results of the bag model is the degeneracy of
states differing only in the quark spin orientation, that is the neglect
of the strong spin-spin interaction, which is presumably due to vector
gluon exchange. Neglect of this effect predicts degeneracy between
the Efr], [PA], and so forth. The result of including gluon effects,

which we cannot do consistently in a spherical bag, will be considered

later.

Details of the zeroth order (spherical) bag model

Here we shall be rather schematic, due to the large number of
papers which treat the zeroth order bag model in great detail. We

assume that the strong interaction lagrangian is of the form

S 2=1
*With the exception of free quark spinors.

2=0
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"M )l)‘ 2’ +x1‘ (‘%’, 3):«) (172)
o (F)

and further that the effect of ;x: is to strongly bind the quarks and

S"nué

gluons to a spherical region of radius a within which its effects may

be neglected:

zo(-“') + xox‘% r < a
5“'\"0\\.3 ~ 0 r)Q

X

(173)

What conditions must we impose to neglect the region r > a and still
have current conservation and Poincaré invariance? TFirst, we must

impose that the normal component of the quark current is zero:

er Y¢ 0|, Cam

A
where \‘ is the 4-normal, which is at rest v[r=L0,\") . Second, we
must impose conservation of P, and /1‘.., . To illustrate how this works

r

we just consider ? :

,Fr - SéiuT ) where Ai}f J‘iv 13“‘ (175)

A
and .7v is a timelike normal.

Taking :i" =é° we have
3 -
'Pr(*'\ : IJ X -‘—ro (%) (176)

! 4 .
We must impose PI"U;) z?r(.'b ) to have a Poincare invariant theory.
Now we consider a 4-dimensional surface integral with ends that are

3-integrals over the bag volume:
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1 A(x")

Lo
_-_.,;'f__--______;ts

) —_—
' 1
. ;‘i/—-i-—,? A
JJE”TP' ! fT.wtm’x - f T. % =0 m
A! 4

. L}
by Gauss's law. Since we want 'Fr to be constant we must force the

first integral to be zero, aund it is easy to see that Trv\f‘, must be
zero everywhere on the bag surface. Thus we are led to the second

boundary condition
T':w ¥ 70 l:; (178)

It is easy to show that the first boundary condition E%‘I“{-O is

X . _ =4y 8 :
obtained from the linear conditions 1%4"’ V # With our conventlions
the (4+) lends to a (+) parity ground state of lower energy than the
lowest (-) energy state, so we take the boundary condition l’{’/ '-'Il’ g
as physical. (The opposite result follows from the (-) choice.) For a
massless Dirac field T;v is (after some partial integration),

|

- T - (179)
17‘\)' z‘urﬁnlr ¥,rY‘u4] 1

o Too s ‘%[W'I,f?d“]_ (180)

Applying the linear b.c. L%U"lf to this gives

J = E (T ) ) s

-!-‘\0\’ ‘1“
Thus the general second boundary condition for a free fermion and free

gluon bag model is
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\ } (182)
'{3\.. (TU—) * Trv (‘3\"“2) W~ © ‘§

Now we have to make some assumption about the form of 'l_r,, (glue).

Neglecting it completely doesn't work, because we then find

T - )
brtw) -o\* (183

which cannot be satisfied for free fermions confined to a finite
sphere. The next simplest assumption is to just assume that the glue
contributes a constant to the lagrangian, which we call (—B‘), so as

to give a (+) contribution to the hamiltonian. This gives a T
)

T (.3lue) : 3.,3,« (184)

and the second boundary condition becomes *

') (T¢) v 7\’81( e, L" (185)

This and the linear condition 114 Uh are the two boundary conditions
one imposes in the zeroth order bag model, and which determine the
P +

surface # For free quarks in the lowest mode with j =1/2 ’E‘I'is
a function of r only, and we have

F¥) + 2By =0 | as6)

Fpdpe 3 ol 2

This can only be satisfied for nrf (O,r), so the surface must be a

sphere, with the two boundary conditions

L =4 ] e %; (vy) - } (187a,b)
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Inside the sphere ¥ must satisfy the free Dirac equation:

(188)

¢¢ =0 r{a
For a given mode these three equations together with the requirement

that the fermion spinor be normalized to one particle in the sphere,

; -
jéx ll'h'l‘ - 1 (189)
completely determine the bag model wavefunctions as a function of the

single parameter B. If we have more than one quark field {S“q} ‘these

equations generalize to

bt ’..,., , #HO J“‘”“DL Vg

c,,(M - -13]

It is easy to see that the set of quark wavefunctions allowed in this

(190)

massless quark spherical bag model is a subset of the free quark model

introduced previously

Free dimensional params. Free dimless params Wave eq. for §s

CFQM a, {m} XE‘cn , mode numbers -w ® r4a
q > %
of 1
q
Bag Model B, (or a)
(these we related by mode numbers of i % L =0 rLa
the quadratic b.c.) (X determined by 3
lin. b.c.)
Massive Quark | B(or a), {m } mode numbers of l,L L#- )4 =0 r&
Bag Medel (see above)? (see above) 1
Massive Quark ™ - B(or a), {m } mode numbers of ¥ ,A (¢-w = Sourtes
Bag Model with (see above) 4 2. a v
Yang-Mills gluons (see above) Q Ar: ,SF

* e include these generalizations for comparison although they have not
yet been treated.
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Since the first two bag models are specializations of the CFQM, most
of the results we found for the CFQM can be used to obtain the predic-
tions of the first two spherical bag models. There are only two problems.
First, we must do some trivial algebra with the CFQM spinors to obtain
the constraints on the {#h} imposed by the two boundary conditions.
Second, we note that there is a fundamental difference between the
CFQM and bag model, in that the bag model imposes Poincaré invariance
as an additional constraint. This means that all the Poincaré charges
(energy,'g, HTO) are well determined in the bag model, so we can
obtain prédictions for the hadron spectrum. In the CFQM,confinement
is imposed by an unspecified external force (~ infinitely high potential
well extending to infinity), so we can't say what the energy of the
entire system is. 1In this sense the bag model is a clear improvement
over the CFQM.

Now we recall the solutions of (P-m)¥ = 0, r < a we found with
definite total J that satisfy the spherical boundary conditions* and

see what the two boundary conditions require:

o 1°(Lr)
..';ui

q‘{_f‘. (-{gt) = e
, ""‘S'U‘r)i inbet? ] A J:;:

xotkr) ot
"Pg:-n;l (.i:)") T dy L [MQQ “P] ¢ -
g .‘\ hr)

(191)

% +
Only 7%= 1/27 work here; states with higher J don't satisfy the second
boundary condition on a sphere.
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[ L (”‘mb ]
AN "
Xxi) = A Det® g
q-"{.a (x‘) ‘- 1.(.\1.') €
' o

4

~wq O

[ & 40 [amde
f '
q'_!:‘ x(z,“’-) = ol k \ J B-w)‘t

o
| 4o (kr)

The condition 1 4 =¥ gives
f

y<a

X
{wm Zi = i (! rqed])
SR
where X ’l( & |, h-.- wqa, . As claimed, with a as our independent

%

dimensional parameter (and {mq} fixed) the '"shape parameters" {xq}

(192)

must satisfy an eigenvalué equation, rather than being free as in the
CFQM. (Since this boundary condition is imposed to keep 1(rj =C)lr_

r Ta
it might be argued that it is necessary in the CFQM too, but we left

it out there simply because it is so restrictive.) For the massless

quark case we have

x%
w e = ] a 54 (193)
t ¥ | 5 %y ( par ‘1)

which we can solve numerically for each successive radial excitation:

x(+ par.) = ka x(- par.) = ka

A
1 2.043 3.812
2

5.396 7.002
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For mq # 0 we have a trancendental equation to solve which depends
on the parameter rt} CL s 0—‘&%4‘” but the solutions turn out to

depend rather weakly on P

Ll 2(p30) L (preo) L_(p=0) g _(u==)
1 2.043 ™ 3.812 4.49
2 5.?96 2mr 7.(302 7.73
. . Vi . .

In general one may show that the nth radial excitation mode numbers

x(in) (r\) (X parity) are within the bounds
w w)
(w-idr L™ () £ ww s ()

W <~x"“’(.r) L (wed)

Thus imposing the first boundary condition (187a) has given us a mass-

(194)

momentum constraint of the form ka = z(tn) (ma).

4 functions -x( )(r) is given in Fig. .

A graph of the first

Now we impose the second (quadratic) boundary condition (187b)

which gives Poincaré invariance:
(T = -
%;:( = "2B|,.

Plugging in the explicit massive quark spinors gives

(195)
B = 7 "lwdto. 10(10') (e 7)) (2 ‘,M.li)
where € *wa* ;}TF‘} . ThlS is 31mply a constraint relating the

radius a and the bag strength B, for given quark masses {m_}, which

tells us that we need only one of these two (a,B) dimensional parameters;
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the other is then determined by the second boundary condition. 1In
practice we shall usually eliminate a and use Bjyas our model defining
parameter, implicitly hoping that it is somehow fundamental to have
a universal confining pressure. B, has units of (energy)é, so we shall
usually quote B%/Q(Mev).

The final constraint is normalization, Il}g 'ﬁ ng ’1 V?_ , which !
we also had to impose for the CFQM. This integral determines our

+
normalization constants for the two jp = 1/27 cases as

Vz

’ '
) 1t & - 2 Yo
dy "xi'—qﬁ:‘ “"' ‘%10(1)'(\:%).50(1)) (196)
The equations {190 ) with the Dirac equation generalized to massive

quarks completely determine the bag model for a given number of quarks

1/4

and their mode numbers, masses, and the bag pressure Bo . Now we are
ready to compare our results with real hadron properties. Most §f these
calculations were carried out with the CFQ model (which has quark
wavefunctions of which the bag model wavefunctions are a subset) and

exhibited as a function of xilkq and a(fm). For the nucleons with

mq $ a = we may save some work by simply working out the location of

1/4
0

mq = m for the quark masses. The location of the bag model solutions

the bag model ¥ (B , mq;?) in the X, a plane. We assume a constant
is shown in Fig.T .
We hasten to point out that most of the earlier CFQM calculations

were done assuming md = 0, so we can read off bag model hadron properties

from the earlier work for mq = ( only. For example, for a Bé/4 = 150 Mev,
m_ = 0 proton we find M = 1.47 Gev, a = 1.10 fm, X, = 2.04, and

q proton 0



-_76_

from Figs.fL;w in the CFQM section we may estimate rQ ~> 80 fm,
gp'N-Z.l. The correct numbers are a = 1.099 fm, XO = 2.043, rQ = ,801L
fm, and gp = 2.114.

Now that we have our normalized spinors we wish to gain some
intuition regarding their quark momentum spectrum. A Fourier de-
composition of the spinors into plane wave spinors of all momenta
% gives the following result for mq = 0: Our spinors are a super-—
position of plane waves with all directions of momenta ﬁ equally likely,

with the amplitude to find a given scale of momentum F‘=\?‘ a delta
function for l;‘-= w = xo/a as is required by the constraint that
the quarks lie on their mass shell. For mq # 0 we find a similiar
result; in this case the quarks satisfy the free massive Dirac equation,
so the momentum spectrum is proportional to &( ‘;l2+ m2 - wz).

The first point of phenomenological interest is the hadron spectrum
predicted by the bag model. Since the CFQM assumed an unspecified
confinement mechanism we were not able to obtain hadron masses. Bag

model confinement is due to the BO term in the lagrangian, however, so

we may trivially evaluate H to obtain

- —_— 3
H b S lao CPX = SJ X (Z(‘J‘.qj‘ 4‘1_) +’B°) (197)
\-4& 1 ?
Taking the matrix element of this operator between hadron states gives

us the mass of the hadron. For example, for a hypothetical massless

quark bag at rest we find

M1 - <3" HH) = % + ‘5_;;,331 (198)
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The second boundary condition (187b) here becomes

LY S { )t
’hr'Bca" = xff;)::): (199)

so we find

+ 212("")1"(1)2% = Hx

3(1-4,0") 3a (200)

where we have used the first boundary condition to simplify this result.

Similarly for a bag containing n massless quarks we find

3y |
Mo, =n Mg (201)

3

This is oﬁe of the well known problems of the zeroth order bag model;
a bag containing six quarks (an exotic) weighs less than two baryons
with the same bag strength. If this were true all nuclei would be
étrongly unstable and would coalesce into giant 3N-quark hadroms. At
least one model of gluon effects corrects this difficulty‘3 and gives
a deuteron that weighs less than a 6-quark exotic by ~ 300 Mev, so
this problem is not to be taken seriously. For the most part we will
simply ignore the exotic n-quark states, assuming that they are actually
above the non-exotic masses and hence are very broad objects.

Now we shall specialize to S-wave baryons, since the meson spec—
trum is so strongly broken by gluon effects. If we assume that the

light quarks are massless we find for the non-strange S-wave baryon

(P,A) mass
y!

Yy
o__3 . {
MP)A : X . X’B"“ : %}13391“

(202)

3 2.043 =
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The units of BO are clearly (Mev)4. In their first phenomenological
bag model paper (which treats non-strange baryons only) Chodos et al.

have chosen the mean multiplicity weighted[PA] mass of 1180 Mev as a

determination of BO’ which gives Bé/4 ~ 120 Mev. Their hope is that
3/4 is a fundamental constant for a large class of
1/4
0

the bag strength B
hadrons, so that one may fix B and determine other parameters such
as the strange quark mass and the medium—q2 quark-gluon coupling
constant. We shall see that this hope is justified in the zeroth order
model for S-wave baryons and perhaps P-wave baryons, although certainly
not for charmed mesons. The non-charmed S-wave mesons have a number
of difficulties due to large gluon effects, although they too require
a bag strength on the order of the 120 Mev we use for baryons.

To treat the strange baryons we need to know the strange quark
mass. We obtain a value for m by assuming m, =my = 0 as usual and

3/4 = 124 Mev to give the A mass as 1211 Mev, following which

fixing B
k% -
we vary m_ to give a best fit to the E ";"_, , and L masses. The bag

mass with massive quarks is a simple generalization of the previous

result (198),
M= [ %'an“ + %_ e}] a” (203)

where a (BO, {1%, Ph}) is determined by the infamous second boundary
condition (187b). This fit to the decimet masses is shown in Fig.Q,
and we obtain from it a value of 270 * 20 Mev.8 Independent of this

work the MIT group ;btained a value for m_ (in a bag model including
gluons and zero-point energy shift effects) of 279 Mev%ﬁdch is con-

sistent with ours.
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With the wvalue m_ = 270 * 20 MeV we may now see how well the

1/4
0

to correctly give the proton mass, and the Z,A, and = masses then

octet masses come out. For the octet we lower B to 96 MeV in order

8
come out with no free parameters. This bag model has no dependence on

spin symmetry or isospin, so the Z and A are degenerate;

decimet: BlO = (].24MeV)4 octet: B8 = (96MeV)
resonance predicted mass (MeV) resonance predicted mass (MeV)
A(1211) 1212 (fixes BlO) N(940) 939 (fixes BS)
Z'(1385) 1377 £ 15 A(1115) 1110 + 16
’5'(1530) 1539 * 29 2 (1193) 1110 £ 16
N (1672) 1703 £ 43 =(1317) 1282 + 30

The S-wave meson masses are too badly broken by gluon effects to
be treated similarly. A simple example of this is seen in comparing
the 7 and the/) . If we assume a single bag strength for all S-wave

- mesons we find mg = mlp while experimentally m/, ~ 5.5 mq , which makes
any attempt to learn about these mesons from only their masses and the
free quark bag model predictions rather futile. In the baryons we
observe a similar effect; the state with more (#*) quark pairs is
experimentally the more massive of the states predicted to be degenerate

in the bag model, as for example m, = 1211 MeV , mp = 939 MeV. In the

3

baryons, however, this effect is not as large as in the mesons and
there is some hope that it may be treated as a perturbation. We shall

look at the meson masses more seriously when we consider gluon effects,

1/4

but for the moment we merely observe that a qf bag with BO = 120 MeV
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has a mass mqq = 865 MeV, which is not far from the/o mass n? = 770 MeV.
For the remainder of the S-wave baryon calculations here we assume
m = 270 MeV, mu =my = 0, and Bé/4 = 120 MeV. With these numbers

we may predict the host of baryon properties (magnetic moments, electro-
magnetic form factors, weak and electromagnetic transition moments,

and fL*Xfl‘ decay rates) that we derived for the CFQM model. To

keep the list finite, however, we stop with the octet baryon magnetic
moments (which we can trust due to the lack of recoil effects) and

gA/gV for semileptonic decays. The numbers we find are8 3

Magnetic moments

resonance quark moment (hadron). bag nonrel SU(6) expt
composition P(proton)' model

P(938) %(4‘““-,3) = 1(g =2.643) = 1(g,=2.793) =1

N(939) %“P‘d“l‘u) - 2/3 (0%) - 2/3 ~ 6849

A(1115) Bs - .233£.006 (-9%) - 1/3 - .24£.02

s"(1189) %(4,*“-&) .959+.003 (~1%) 1 .927+.165

$°(1193) %‘(zl"ﬁz}‘d”t‘s) .298+.002 (-3%) 1/3 -

£ (1198) %(4r‘d't"s> - .363£.002 (+1%) - 1/3 - .53:.13

T°(1314) —31—(4% B - .527£.009 (-5%) - 2/3 -

T (1321) %(4& ) - .200£.008 (-13%) - 1/3 - .69%.27

Table D
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L 8
Weak transition moments

decay &y g, (SU(6)) /g, s8,(Cab.)/g; g,(bag)/g; 8,/gy(expt.)
N—TPes, 1 -1.67 ~1.26 ~1.09 ~1.250%.009
T I%o, -2 - .67 - .41 - 44 —
Z*HI\J%‘Z 0 g, -.816 g,= —-69 g~ --53 g,= -.62¢.03
O O | .33 b .22 -
AT, Y372 -1.00 - .69 - .72 ~ .653£.054
27Ny, 1 .33 A .24 .435+.035
=T N 372 - .33 - .13 - .24 —
I e 7172 -1.67 ~1.26 -1.19 —

.Table E

In the magnetic moments we quote t&% for m = 270 = 20 MeV with a bag

strength of Bé/4 = 120 MeV, which gives the scale gp = 2.643 (experi-

mentally gp = 2.793). Since there is some variation of PB/V? with
1/4

the somewhat arbitrary parameter BO , we also quote the change in
this ratio when we use Bé/4 = 96 MeV which correctly gives the proton

mass. Simple dimensional arguments tell us that the scale changes to
g_ = 3.304, so the 120 MeV numbers are presumably more reliable for
magnetic moments.

As with the CFQM magnetic moments we find that the strange quark’s
mass reduces its contribution to the baryon magnetic moment, which is
seen in the fall of the Amoment from the SU(6) wvalue —Jir‘y to -.23 VP
as we increase m_ from 0 to 270 MeV. This compares quite well with the

experimental result (-.24 i'OZ)F@' Similarly we expect the £ moment



-82-

to be larger than the SU(6) prediction, which is confirmed experimentally.
The only serious discrepancy is the ™ moment, which we previously
claimed to be a possible experimental error.

The behavior of PB/PP as a function of mS is shown explicitly
in Fig.R .

The semileptonic weak gA/gV coefficients we derive with m_ = 270
MeV do not come out as well as the magnetic moments. The Z™ A and
A P decays agree fairly well with experiment, though the LN decay
prediction breaks SU(6) in the wrong direction. For comparison we
include the predictions of the Cabibbo octet model of weak decays with
the currently accepted coefficients (D,F) = (.85, '41)34. Any SU(6)
quark theory with only quark currents'in its lagrangian which neglects
recoil will give F/D = 2/3 for these decays, with only the scale
arbitrary. Comparison with the F,D above clearly tells us that any
such quark theory will have trouble fitting these coefficients, since
they give F/D = .48. The nonrelativistic SU(6) model is equivalent
to the Cabibbo theory with D = 1 (hence F = 2/3), while the bag model
with m = 270 MeV gives D = .65 for S =0 and D= .72 for S =1
decays. It would be interesting to see whether or not the inclusion
of recoil effects significantly changes the erroneous F/D = 2/3 con-
straint forced on us by a recoilless quark model. Another possible
source of significant correction to gA/gV is the mixing of lqqq»states
withquqA)states through the strong interaction lagrangian, which can
presumably be obtained by fitting the[PA] mass difference. This mixing

will also modify the magnetic moments we predicted previously.
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Now we abandon the more serious topics for a short while and
mention the results we find for some random classical electromagnetic
calculations. The first question we consider is whether or not the
mean isomultiplet splitting we see in the baryon octet (about -5 Mev/e)
has anything to do with classical electromagnetism. One would naively
expect that this splitting is due to (md - mu) rather than to the
classical electromagnetic field energy. In the bag model we can
explicitly check this hypothesis. We proceed as follows; (1) ¢construct
the electric current jr for each quark within a baryon, (2) solve for
A  inside the baryon (vector spherical harmonics simplify the math
considerably), (3) sbtain the classical e.m self energy as E = Sf&j-ﬂ,
Typical energy shifts we find in this fashion for Bé/4 = 120 Mev are
on the order of .5 Mev, an order of magnitude too small to account for
isomultiplet splittings. We are thus led to the suspicion that (md - mu)
~ 10 Mev (assuming my, m, << mS) which gives the desired 5 Mev splitting.
The second calculation we perform is to obtain the charge density
within each octet baryon, which we previously did implicitly in finding
the electric and magnetic form factors for nucleons. At that time we
did not treat the strange baryons, and our results there are rather
amusing. The heavy strange quark mass confines that negatively charged
quark to a smaller mean radius than the u and d quarks, so that for
hadrons containing both u and s quarks the charge distribution may
actually change sign. In Fig. S we explicitly show the charge distri-

1/4
0

bution we find for the proton and the lambda with B = 120 Mev and

m, = 270 Mev. The N with its heavy strange quark is negative on the
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inside and positive on the outside, rather like an exotic piece of
confection. Such predictions are of course impossible to check without
data on the A,electric form factor, although we note that the bag model
does rather well witth weak and electromagnetic properties for which
data exist. The proton electromagnetic form factors, however, are
quite well known, and we can certainly use the small q2 behavior of these
form factors (i.e., gp and rQ) as independent tests of the validity

1/4

of the bag model parameter BO = 120 Mev that Chodos et al. suggest.

Fitting the experimental proton electric form factor15 gives a value of
rQ = .89 * .03 fermis. If we assume massless light quarks we may read
off the limits for Bé/4

Figs.D and P. The result is B

that fitting rQ imposes simply by staring at

1/4 _
0

with the 120 Mev value suggested by the mean nonstrange baryon mass of

135 £ 5 Mev, which compares well

1180 Mev, but not so well with the 96 Mev required to give Mp = 939 Mev.

1/4
0]

50 Mev.) Since we have not yet estimated the downward shift in the

(The 135 £ 5 Mev value we find for B gives a proton mass of 1320 *
proton energy due to the spin-spin force (which we naively expect to
be on the order of theDPAanss difference), we can only say that this
result is superficially reasonable. The question of the size of the
gluon shift of the proton energy will be considered in the section on
glue effects.

Previously we noted that the large splitting of thew andf mesons
which the bag model predicts to be degenerate made the fitting of
these masses a very ambiguous exercise, although use of the usual

proton bag strength of 120 Mev gives a meson mass on the order of the
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/O mass (mqq = 865 Mev). TFortunately, however, data on rQ of the

pion are available from a T e~ (hydrogen-electron) experiment recently

done at Dubna36 . The value of r, quoted by this JINR-IHEP-UCLA

Q
collaboration is .78 f'gg fermis. Since we do not expect rQ to be

"
particularly sensitive to the admixture of {qgAand lqi¥»states in the
pion (unlike mﬂ), we may obtain an estimate of the mesonic bag strength

1/4 () in the zeroth order

0 Q
bag model. This is shown in Fig.T , where we find Bé/ACﬂ) = 140 tig

1/4 with the 135 * 5 Mev obtained by fitting

0
. 1/4
rQ(P) gives some credence to the hope that BO

S-wave hadrons. The pion mass predicted by this range of B

enormous; My, = 1010 f%ﬁg Mev. If this model is correct (and if the

B merely by fitting this experimental r

Mev. Comparison of this B

is a constant for the

1/4

is
0

experimental r_ quoted above is correct) we expect that the quark-

Q

gluon coupling will shift this zeroth order pion bag model mass down-

ward by about 1 Gev.
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V.Glue Mixing Effects

We have seen that the hadron structure assumed in the bag model, i.e. free
quarks confined to a spherical region by a constant pressure, reproduces to
lowest order some well known hadron properties. In particular the S-wave baryon
properties (magnetic moments, transition magnetic moments, nucleon charge radii,
and axial vector weak transition moments) come out surprisingly well for such
a simple model.

There remain very strong forces in hadrons that are not included in this
"zeroth order'" bag model. The strongest is evidently the spin-spin force
responsible for the splittings ™ kexe* , PA , and numerous others. 1In
addition there is the force responsible for the large wnn' splittings, which
is presumably distinct from the spin-spin force.

The most popular model for the origin df4the spin-spin force at present is

the well known colored quark - Yang-Mills SU(3) vector gluon theory, which is

described by the lagrangian

S T A

a .
—A r’\) + acﬂ.kf- A:A: (205)

_sly N af | S e (20k)
7 %{41(94-%)4 YRR TATY ST
‘: aQ
Gl“ Aulr
ic.iel are the SU(3) structure coefficients and i”ﬂ are the 3 representation of

the SU(3) generators.

Attempts to include the effects of such an interaction between the quarks
in extended quark models have thus far followed two lines. The first is to
assume the quarks are nonrelativistic and to use the well known Breit effective
hamiltonian for single massless vector exchange as one does with positronium,
which was carried out byl .%jula, Georgi, and Glashow37 . Their phenomonological

paper uses no explicit quark wavefunctions and is instead content to just
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estimate the size of mass splittings and deviations from na¥ve SU(8) electro-
magnetic properties of baryons,given various terms in the Breit hamiltonian.
They find that the S-wave meson and baryon splittings and the P-wave baryon
splittings can successfully be explained in this fashion, although each multiplet
must be fit separately (they have no model for quark excited states). Another
interesting speculation advanced in this paper is that the 11' splitting is due
to mixing with a two-gluon intermediate state, which they cannot evaluate with
any certainty. As is pointed out by the authors of the second approach, quark
dynamics are certainly relativistic and the assumption of the Breit ".amiltonian
is of questionable validity. The alternate method of including gluon effects,
due to the MIT group > , 1s to treat the octet of colored gluons as classical

‘u? } 2

exactly as one would do in classical electromagnetism. Since this group is

—_ a
fields excited by the color currents of the quarks 1; = % U—?_r A )

working with the bag model they find it necessary to arbitrarily '"toss out" the

part of the field A;’ that doesn't satisfy the linear boundary condition for
3
a spherical hadron . This ad hoc proceZurs is said to not significantly

alter their results. With this prescription a "mixed bag'" model of hadrons is
obtained that depends on four parameters; o, = %%; ,'Ze(finite part of zero
point energy 'K\\.J'..\ ), B, andwm, . The fit obtained to the S-wave baryons and
mesons is quite good, although the n comes out ~300 MeV and the Y‘and 1' remain
a problem. The ‘,n‘ masses are speculatively attributed to mixing with a two
gluon state, as DeRbdjula et. al, suggest. Problems with this approach are that
fitting baryon masses with the gluon interaction requires a smaller baryon, so
the scale of the magnetic moments fallsby about 30% from the reasonable zeroth
order bag value . Similarly the nucleon and pion ns fall by about 30%, leaving
them in quite significant disagreement with the experimental result. Yet

another problem is that this approach apparently does not give similarly reason-
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able values for the P-wave baryon masses.

We would like to include gluon effects in the bag model in order to explain
the observed spin-dependent mass splittings, and we shall consider an approach
which treats quarks and gluons symmetrically. The scheme we use is as follows;
we assume that a meson is |wd = q\3§> +-H<3_'§A> ‘*C\qﬁAA) * ... and truncate the
Hilbert space at \tﬁ_A > so our mesons have amplitudes to be the normal ]15}
states with some admixture of the exotic ]iiA > states. The confining effect
of many-gluon exchange which is mocked by ﬁa is assumed to be the same for all
such states. This is still an infinite dimensional Hilbert space, since we
have states with all possible quark and gluon angular momenta and all radial
excitations of thosgstates. To make this calculafion tractable we consider a
further truncated Hilbert space consisting only of the non-exotic SU(8) quark
state and the lowest lying quark-gluon state. Tossing out all the higher states
in our Hilbeft space of course makes this a shadow of the original problem,
although it will hopefully illustrate the salient features of the analogous
mixed bag model problem with a more complete Hilbert space.

First we develop the bag model with vector constituents, as we need to
know the quark-gluon wave functions in order to construct our perturbation

Hamiltonian in the truncated Hilbert space. The boundary conditions imposed on
3

a confined vector Yang-Mills field as obtained by Ghsdss et.al. are
a i ¥ a (206)
=0 76,68
‘(r(‘rv S 4 r.v r.\) o ;’

Since we are considering perturbations about :=0 for the medium.gfgluon effects,

we impose instead the boundary conditions

Ty Fr:=0 yFoF "B, (207)

}
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Ao % _a % (208)
Fro ® Avy Ay

The low 1_"g1uons, represented by B, are of course left turned on always.

We are to consider only lowest order effects inq, so we obtain the quark-gluon
bag states assuming initially no interaction between the quarks and gluons,
i.e. 3=O . This means that the gluons are just an octet of colored photons
with no self-coupling, so we may treat the equivalent problem of a bag with
quarks and (confined) photons as constituziT:.

We choose our gauge such that A;SO, so the Lorentz condition Al"l“=o implies
5—5 =O*. Combining the gluon spin and orbital angular momer.tum to form a

state with definite i,j,,_ gives us vector spherical harmonics for the gluon wave-

functions;

= §_ ;.1 (,.) ij () (209)

— ; A ““:7.-. ;1‘;3)
where y_]lwz Z <3w~ ‘ Ls,l ‘“"s>\4$ (ﬂ) L and g;’ z (210)
: L)

— - L3 - .
Imposing V*A=*0 and (V +w‘)A=O gives two sets of solutions for given | ;

¢ o ~wt (211)
AS %’il-( ‘Y.“-{m ‘l:: 1§»g)y) (Ll l ‘ electric multipoles
e(R)= (-
(212)
- 4 (wr) jyw Q-mf magnetic multipoles
! P(R) = ()

The linear boundary condition for a bag at rest gives the two conditions

=0 = flx(vxst | (213)

..._ft
>|
[

o

" The instantaneous Coulomb interaction which we ignore gives no contribution, as
the ig_?;;(i\\)state has zero color charge density.
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For each set of multipoles this implies, for a spherical bag,

£, .S - (214)
A_)v* 13_,(«»:.‘) + jjﬂ(““\ = 0O = ’ll(wa) 331

AN 3 (215)
Ajw : jlﬂ(wa\ = T 1J+‘Lwa) JEJ

Since a is fixed by BO, these are eigenvalue equations for wa for electric
and magnetic multipole gluons respectively. ( The two constraints in (214)
are equivalent.)

Now we .must satisfy the quadratic boundary condition in (206), or more

properly its generalization to the mixed bag problem:

- L ¥ -
2 Gro GroL"*-»)-l(_Eq') L} = 28, (216)

Setting g = 0 and again assuming a spherical bag, this gives

K- lﬁl"q; + (lTU)!é =238, (217)

-—
I1f we take a particular magnetic multipole field for the gluon, %rﬁ(ua)%y“ ,
J

the second boundary condition term in brackets on the left hand side of

(217) becomes - = 2 g+t 2y x
RE a_"‘u"'[«h(ud WJS"“ ey jJ“(“’) 1\/“-\\»\\ (218)

— iR

- WP IT L B g e (VT ved)]
2\-J+‘ jl#l e JJ‘\"% 2‘_}+' j“"l j‘\'l 1‘-\\“ Jj-ynm C. <.
which has explicit dependence on the solid angle. We thus reach the well
known result that it is inconsistent with the two boundary conditions to put
constituents with orbital angular momentum in a spherical bag in general.
Rather than concern ourselves with the very complicated problem of nonspherical
perturbations of the bag model 39 we simply allow the bag strength variation as

a function of the solid angle as is necessary to satisfy the linear and

quadratic boundary conditions on a spherical surface. Furthur, the average
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pressure over the surface (’B(Sﬂ) we assume to be the universal bag constant B.

This ad hoc prescription is necessary to make even this simple model solvable.

Having made this assumption the second b.c. becomes, for a magnetic l-f'tlé gluon,

lQ "'ga’
.ql;‘: { ) - Z_i-l‘h- 7._\-&\1 HLMJ ] dv <Eu’>-ﬂ-, 2’3"19 (219)

or, using the first boundary condition,

143‘ l-)

[ 4 (wa)" - Azlj& ‘(w..)’-} - é_; {TYY - 2B, L} (220)

The coefficient ais determined by the normalization condition of N gluons per

bag;
wea

- | MV ) *
- -HJ?‘ (€1 181 - h %1 173-;! 15_‘(\‘\ 2 ”,SJH,( }47 (221)
z 3-7_—}.,—_!.”\(»4)

X
Q.\ = “st"& (222)

where X‘\'-' o is the gluon mode number, which is a solution of the first

boundary condition (215);
(x,)= -'-‘-—-1 (x,)

114 Vo g g s

The lowest lying gluon state is the 3?= \"' magnetic dipole gluon, for which we

have

‘L;(?‘a) = ‘;71.,_(2«) X, 2.744 oo (223)
(0 )
The integral I ('lﬁi-‘r"‘p'\ = 2-177 so the normalization of the gluon field
is

= 2.5724" (220)
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- - - it
A s 2.5%12a ',f‘ (2.7‘1"1 A )Y,.\.e . (225)

LY
w= 2. 144a"!

Since the massless gluons do not carry a scale of length the gluon term in the

second boundary condition (216) must by dimensional arguments be of the form

=$ ?U, xnl o1 (226)

where the numerical coefficient Z is in general

PR
- -z- Grl’ Gr\)

l.t
Xy v g+l L)
. %)
¢ (4 ()"~ Ay,
211’11} 2w I (xy) (1).("‘) T A (227)
This result means that from the point of view of the quarks in the bag (given
our assumptions about the boundary conditions and with 331:(>)the only effect of

putting a gluon in the bag is to replace the bag strength with a lower effective

bag strength

- 1 -4 (228
Bae = B, -t 2[4,3]a )
for our lowest |t gluon we find ZI\,Z.TH“] »,43L% . To quote some numbers we
compare the 919 baryon bag with a ‘enA configuration with A in the lowest ¥ mode

(massless quarks)s

31% 933A(1Y)
E(Aes) 133 1549
!Gw) .31 [.S l
'y 120 09.4
qz“(Hvﬂ [

So the no gluon and lowest one gluon baryon states are separated by about 300 MeV.

If the qgA coupling is not small we shall have sizable mixing between glueless
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and glue containing states. This is not at all surprising, since it is the

qQA coupling that we expect to separate the masses of the np , PA , and so forth.
As an example the mixing of the usual quark states and exotic quark-and-glue
states we shall consider the np system.

We shall work only to lowest order in g so we take only the Yukawa term in the

Yang-Mills glue and colored quark lagrangian (204);

— ~ Q a
= - - ([. +
b4 %E;(?s m by -q BN E AL + T (AY) (229)
It is easy to see that the gA'3 term in the lagrangian (204) will not in itself
give rise to a mp splitting, so we neglect this term.

To lowest order in g with these approximations our mesons are of the form

R

L4300+ O3 193 A7,

17 = lagh 0(3”13”;» (230)

where the 3‘1§>l are the conventional quark model states and thei[eﬁA’?}s are
quark and gluon states having the same quantum numbers as the w and p rgspectively.
We consider mixing with the lowest gluon mode only, which is a magnetic dipole
gluon (T"P). There is an electric dipole gluon state which lies very close in
energy to the M1 gluon, but this state will notcombine with the ground state of
the q4 system to form a negative parity state without relative orbital angular
momentum. For this reason it is not unreasonable to consider only the M1 gluon
state as a first approximation.
Now we consider which of the possible lg{iA(Hﬂ) ground states we expect to mix
with the \4ﬁ>ﬂ and the \gq)r by determining the allowed spins and parities;
A: TPe1*
Tt-0 | %EA (\-)>

T'=" l93A (07,17, 27) )
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There is only one candidate state to mix with thel#ﬁ)w , a P20 state in which
the quark-antiquark pair is in an %fl state. We have two states to mix with the
*
ggifﬁb)with %50 and gsl respectively. To find the np masses predicted by our
3 3

'
model as a function of'B!" and q, we need only find the matrix elements of the

Yukawa part of the quark-gluon interaction hamiltonian,

Hy = ‘gz_jéx IF%V\,Q“%'A (231)
%

following which we may diagonalize the perturbed hamiltonian matrix. This will
tell us the energy eigenvalues En, Ep, and the mixing angles between the |‘§) and
\iik) substates. The principal difficulty in this calculation is the technical
problem of explicitly constructing the color singlet \%EA)states and obtaining
the matrix element of HI , as we have three quark colors, eight gluon colors,
and eight groups of terms in the interaction HI . There is also some subtlety in

dealing with the combinatorics of colored antiquarks. First, we name our quark

colors;
™m ¢ ¢ & cyan
(232)
l"’tpk 3 co\ow) = m = magenta
- y = yellow

1

The m,c quarks form a color 3V{2) isodoublet, with Iz ey '“;J gy,

These correspond to the AALL of quark flavor. The antiquarks transform accord-
ing to the conjugate representation D*(é)of the color SU(3) group, which implies that
the three dimensional color generator matrices for the antiquarks are the negative
transposes of the colo? quark generators. By merely rearranging the =n':!-

quark basis states and introducing some phases we may construct a basis of colored

antiquarks for which the conventional N\ matrices act as color generators.

Explicitly, this is
- (233)

\u\»(‘o»\‘ i colos 7 =

Nl
'
H
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We may combine these states to form overall|q§) color octet and singlet states.
In terms of explicit colors, these states are;

Color octets: - lM‘ﬁ) - “1>
%‘G(‘ :.E) i-twvz) "2‘33’))

we =N m hei - lem (234)

Iwed é(lcc) | )) lewY

"1?'> = ,\jv_"\>

Color singlet;
l - — bt
ﬁ(\cc>"‘lm%>*‘\‘3\3>)
(235)
The color octet states are arranged to have the same " ¢ - m isospin " and " y

"

strangeness as the corresponding well known baryon octet states. We also

have the color octet of gluons

1A,> 1A

[ANY
[Ag-? | Age? |Acs>

(236)
The solution to the problem of constructing a color singlet ]q'c'f) state is given
above. To construct a color singlet \qc’;A> state, however, we must vectorially
combine the color octet {q3) and |AY basis states, using the <,§_\33) SU(3)
Clebsch-Gordon coefficients, To within overall mormalization, the color singlet
combination is;
‘15A(.L)> b ‘Q”>|A~;0> *‘QA> \A"S + (a\l ‘\t\)"ﬂk\‘) - lQP7‘AE~> - (a.“ ck«;qeé)

(237)
where lQN> = “M'\i)

In view of the large number of terms we shall deal with it is probzbly wiser to

deal with cartesian labels 1,...,8 for the color state vectors than the particle
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labels p,...., . The relation between these different bases is obvious up to

overall phases, e.g.

] .
FA(EH) ) = if‘;(lutbnlA(z») (238)
It is necessary for our purposes to have correct relative phases between the

states in our matrix element. We may obtain a consistent set of states by adopt-

45

ing the phase conventions of de Swart' , which requires that the matrix elements

"

of the " isospin " operators and K+_(which raises both " isospin " and " hyper-

1 1"

charge " ) all be positive if nonzero. We may also relate the " particle " and
cartesian components of the N matrices of color SU(3) by requiring that their
commutators with'f,K* give the same linear combination of \ matrices as the linear
combination of particle states we obtain by operating on the corresponding initial

-—
state with I and K . For example,

Kel=™> = 12 «[FIAY (239)
implies
(3 -
[o7 0k, A2 1 = 5 (3ee 0T 00) (240)

We fix the phase of the N s by choosing

SR = L (hy+idg) (241)

in the conventional representation of the A\ matrices.4i The resulting A " particle "

matrices are

_ Meridz _Agtids
—— —
= )
X.-Z:Az E _?_i‘! - X\“'Z‘- L (242)
Aq-i)ts - XL'ZX'J
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We may check these phases by forming the dot product x(ﬂlx(Z)lin terms of particle
states as given previously;
OV R RV LR SO YD LIVES Leiee

= (et AL g MG -y )y eiA g M) -id G
Z 7 z

ok DYCRYO RSO ISV PSR YO W YA RES VO ISV C3 NOOR) I €2

This, to an irrelevant factor of 2, is exactly the cartesian scalar product which

1 "

we expect. The value of this exercise is that we may now take the " particle

| 98> bilinear color octet states and recast them as the cartesian components )QQ,

as this problem is isomorphic to the problem of relating the A " particle " and

cartesian components. Explicitly we find

Q.Y = ;‘% (1w *-lc.\?»)) | QY = %{Uw? )"\ci:)) \Q-ﬁbi?(\ﬁ) "\\mu'-‘a))
194 = "‘é (1 WZ¥ +1eq?) lQs¥ s ft'-_»’: (\\"E)"\L?ﬁ) \Qg?‘é(\wQ)*H&?) (244)
\Q;)"é(‘v«ﬁ) "‘\“")) | Qs> = ““‘m(\cl> *\w&>'2l\ﬁ>)

This increase in complexity is compensated for by the fact that our color singlet

state may now be written as

laga (> = f Ll lar 1Ay« +1001AY ] (245)

To complete the construction of our basis states we must now bring in the quark
and gluon spins. Our convention for antiquarks is that {3 #> has jz=%’ and under

charge conjugation

Glaty = |3TY = 131y
C‘,lg‘tV gty =13y (246)
Now we consider the 1q@Y = and p states. The full state is simply a direct product
of the color and spin substates, so we find
g3 (eler L, TT2 1), 2 "si‘ (1et21y + Ll &S +1u151>)

(247)
1435 * 15 (letaiy=lelaty v hutmid- o)
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Similarly we may combine the spins and colors in the \dﬁA) states to obtain

J,Jz=1,1 and 0,0 states to mix with the p and n respectively. There, we have

FL000 <L) A =2 115 1Ay ]

\fﬁ”br i 11&’1 (248)
= L

3pis " (L =HD) LAY 1,30

l43A T = ﬁ [ LAWY =& (11D~ UD) A + (112 |AGY] (249)

where |A(H), |A(0)), and JA()) are gluon states with J,= 1,0,and -1 respectively.

The full |qJA) states are
3

- 27w [ty s1o i) a0 = 17 Qut 1y 1 &g 1) ] 157!
qi = ‘? .
Z_T'.r[IQ;N)'\Q;lﬁl\A;(\»)) 443°©

Y (250)

and

8
- - 'l—- N - --‘— -
14342 = E—igg?[l(?.ﬁ)‘A:U) 2 (10D 10 INA; (> + Qi1 A (] (PD)

The additional flavor degree of freedom is a trivial modification of this result.
Now we consider the matrix elements of our interaction hamiltonian (231) between

these {qQ) and |q3A) states. In terms of cartesian components this hamiltonian is

~l

3 ——
HI = IZM JPX_:‘ﬁ ’4‘

where the sphericalY and

oy E LA i ;
VYA s - g Z TN, Rl -7, AC-Y A 52

components are

>l

Va=7 gy, 20y, (253)
As our cartesian color components do not have a preferred direction, the full
matrix element of HI will simply be the number of cartesian colors (8) times the
matrix element of any one of these. It is at this stage that we see the advantage
of using this color bases.
Before we evaluate the H_ matrix elements explicitly, we should note whether or

I

not we expect any of them to be zero. The only nontrivial quark and gluon quantum
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number which we haven't explicitly comserved is charge conjugation, which is of
course conserved by the strong interaction. Our matrix element and the properties

of the individual components under charge conjugation are;

W, = <qa@IKADN 4 - Alqg (L1710, (L)Y
\_\"I:__J "‘G_, ‘¥¥ e )

<
where ﬂc and ﬂdare phases.(ﬂc= +1,-1 for the n and p respectively) Obviously we

(254)

require that the |q4A) and lqG> states have the same C-parity. Under C, most of
the lq§> substates change their color.magnetic quantum numbers in a complicated
fashion, but if we restrict our attention to the 3(2?) or 8(A) components we see
only a change in phase;

193AY = ¢, 1QpY LAY v+ g 1QAYIALY + ¢31Qyo7 ALY (255)

GlgaRY = <, 10z 1A+ r cyme 16, "'AM’C37a§?f°5'At’><256>

Our |[qdA> states are d—eigenstates, so the phases T Q ,...,Tb ,Th must all be
P A >l

the same phase Tb ;

Ta® " Vq3a (257)

For a color singlet|qg)pair ﬂq@=(ﬁ2*i where s and { are the combined iq§) spin and
relative orbital angular momentum respectively. Theiq@rpair in the }qgA) state

has the same C-parity as a \q§, pair in a color singlet;

4+s
af-~ a - (258)
o) TagA |

Thus, we find

d“\.;n > (-)m’fﬁm (259)
3,4



-100-

As we have no relative orbital angular momentum between the quarks in our states,
we simply have a charge conjugation phase of (—}Sfi(ﬁ)§x . The initial \qg@?>
state must have the same €-parity as the |qgA) :tate, since our strong Yukawa
terntfz.doesn't change the C-parity of the states it operates on. The initial

S.=
state has C-parity (-) 1% so this is equivalent to the statement

<a§Al§T3’.A“¢-AQI=}§> =0 (252)
unless S‘ﬁr(m= S'{»‘-.lt‘ (2 =O)
This has an important consequence. One state we were to mix with the }qa@ has

‘Sziﬁﬂ: 1 , 80 the matrix element

) f (261)

In truncating our Hilbert space to the lowest lying quark and gluon states for
which the matrix element of the interaction hamiltonian is nonzero, we have
reduced the problem of computing the mp splitting to a model problem in which we
are simply diagonalizing a 2%2 hamiltonian for each of the two mesons. Before
we proceed, however, we should consider the question of whether or not we expect
the model to give results of increased accuracy when we add more of the excited
quark and gluon states to our small Hilbert space. Although the only way to
actually answer this question is to explicitly bring in these excited states, we
can naively say that the model will not be greatly improved for two reasons.
First, the bag model has many more excited states than we expect in a real
physical quark and gluon theory, as a result of not removing the CM motion of
the constituents. ( We discuss this problem in Appendix B .) Second, we have

no reason to believe that our free, on mass shell bag model states bare more
than a passing resemblance to the pigsical meson state vectors, so including

more of these states need not give a more accurate picture of the real mesons.
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Now we return to our 2x2 wp mixing problem. First, we note that our C-parity

'qq” matrix elements must

argument predicts that one of the p méésnkéhﬁAiVHI

be zero ;

51§(5€”A\H1\1§>P =0 (262)

This zero we shall check to insure the correctness of our C-parity argument,
We have previously constructed the full 1q§> and lq§A) p meson basis states in
(247) and (250) respectively. We expect to find that the hamiltonian (252)
between (247) and the (250) sqq= 1 state gives zero. Before we proceed, we
may simplify our calculation somewhat furthsr by introducing a shorthand
notation for our matrix elements. In a bag model without color but otherwise

identical to the model we have been considering, we define

b

<qt\<A(o)\J'¢¥¢-7\'J3x Icﬁ)’-i (263)

This allows us to write a colorless hamiltonian as a combination of projection

operators;

Hpledoeless) = = g [ TF0-R = - g1 {10 =104l ] A<l .
» - g2 { I@Y<el [ 131 gt -1l -1gngan gy igil]
o ( - 18w <ol [igr gl \w(arl]um—mo\[:%»(%u 519G} +he.
(264)
~3% % I Alo) (11“” +]I§‘°’) B 5, (ch-) "]Igm )
* WIIM.) (Iq(ﬂ *Egc-n) } the.

Our SU(3) color hamiltonian (252) is simply a sum of eight such sets of

(265)

projection operators, one for each c3rtesian component of the color octet gluon

field;

g
HI ($UL’5) (e“’"\ = '3? ,Z'[IA'U’) (IITLO)*]Iiil“)-'”l rhe.
L ‘ L

(266)
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Where the colored quark and gluon projection operators are

2 . 267
I, 0 ® 1A <o) (267)
- 268
-Eq,;(o) = )‘[ l%“><%t\ ‘\q‘)(i&'l ( )
- - - - (269)
I[g;m = )«;[lé’,T)(gﬂ-\ql)(gM]
We may further write the A matrices as quark color projection operators,
Mt [l rlmyel - 1o0¢R1 - 1mY42l] (270)
which allows us to write thes:ﬁfi.)s as operators like
nq,m = letdmt Hluty el = 1>l ] =i <et] (271)
and
Lyw® 1215 <@t - 1wty LEth e Tadd i+ hmivdan | (272)
Now we evaluate the p-meson HI matrix elements. First, we have

2
r<1§‘(sro)A‘ HI\%E)P'-' _3? :Z“(ﬁ’(s:o)A\'IIA(:‘LF)-)(I[:;(_)«»IL.‘.:L_) ) Ha)ﬁ ) 831 <—i:1=>

a 47:33-; (<Q.m-<c>.m)(m:g.‘.,+ET_,'J.,)(\mfmm.m\@qe})(A‘bnnA‘w,o)(273>

i
We note
oy w® leld<mt] HwlddLerl - i".,rta‘l)<,.—.t\ﬂa.x><zﬂ
(274)
and 1@ = f‘f(lwt7*\=ﬁ>) (275)

so we find

<Hpd>= %ﬁ?[<m?2”‘<wl€ﬂ rerEd -<<.mﬂ][m><,,n #ludd<et]
‘-la)(;rl-1=¢><zﬂ][l<rat>*lwh=t>wmﬁ] * - ;%:s#o (276)

which is exactly as expected by our C-parity argument. Now we evaluate the

o meson matrix element which must be zero by C-parity conservation ;
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K6 0AIHZ1GEY * =893 <og Al T (g 4 Ty BT, o (T4 oo
*Oqe ) Ty, = I3 attmsaw 1Ty 0102 (@ rile<eut) (I,

*Hi.(,-) ) —JT <A"°) lEA,lo)l°> <Qttt‘ (EQO“’*E%»‘”)] L\ﬁ??‘)*‘“?i ) "M“U)}
1 277)

The quark matrix elements are

(<a,1t1+<q,011) (Irq“-, +I\:§.(.,)( L2t ¢ Wl &Y $1g251Y) = 0 278
<@t (g o +Tg 0 )T+ It &S et g 1Y) = 0

So we find for our full matrix element

Sq3tssNAlHr |3y, = © (279)
as we expect for states of opposite C-parity.
To obtain.a number for the size of this perturbation we simply evaluate § ag

defined in (263) for quarks and gluons in the lowest bag model modes. Using

equations (9g), (212), (215), (225), we find

T= [T FT ¢ t> <A R oY £y (280)
« JB [ {td,ﬁ,(md,cwxwm)] Ia, 1.tm) Voo (D] |
= __qJ'&_‘lI id-t:‘ (Q ﬁ) A J Y 50(7)1 (,‘)1 ( \1)47 (281)

For massless quarks we have;é 1,%= 2 043, and doing this integral with %y

(gluon) = 2.744 gives the result

€= -i % (282)

where ¢, = .196 and a is the radius of either the lq§Por |qJAY state. (We have

assumed the difference in the radii of the two states is small). The parameters

!
we find for the unperturbed bag model states with BJM= 120 Mev are; -
alfecmis) E(Hau)
L
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If we take a~1.33 fermis, we have

2 ~-129.% Mev (283)

so our hamiltonian matrix element is numerically

P <1§(sﬁ=o)A| H:\cﬁ),ge 1135.3 Mev 280

*
For a strong coupling ofq5?5%==l , this gives an off diagonal matrix element of

<¥§A\Hz‘ﬂ§>= 1H4%0. Mev (285)

Which is indeed of the correct order of magnitude if we are to account for the
o splitting in this fashion.

Now we consider the problem of mixing thelqﬁ?x state (247)with the exotic
1q3A>n state (251) through the interaction hamiltonian (266). We form the matrix
element of HI between the lqa;h state exactly as we did for the p meson above,
and we find the result

,,<%§M”:\‘ﬁ>r= Yiﬁ (286)
We recall that the energy scaleZis defined in (263) and is given numerically in
(283).

At this point we note that a great simplification is possible in dealing

with the color combinatorics of our meson configuration mixing problem. The

matrix elements of the hamiltonian we must evaluate here are all of the form

- A, _
<aa@ oA *-a" [z L) (287)
— ﬁr. -’
where the numbers refer to the color SU(3) transformation properties of the

state vectors. As the color SU(3) assignments of these states do not change in
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the p to the n problem, these matrix elements must be proportional to the matrix
elements of state vectors with the same spins in an Abelian ( no color degree of

freedom ) theory. Thus,

- ! i = gl —
<:1{3_{,%,} é(D <At.‘~} { j;k'l\ %ia“*k 5.""}> (288)

with T=qU7¢ RREIAA Y (289)
o [al

We have of course assumed that the corresponding spin states are identical. The
numerical value of N we find by doing the Abelian version of the p mixing problem.

Our states are

Tazy = latst 290
.3'113, 11:1«/ ( )
I “{5_:3\1}\'> 2»5:—?3-"?"‘?‘}%‘% 2 "’i: 33,1"“3”} lalony Ve n%
EEAEA PR NG A D AR A IR R R (291)

and the colorless hamiltonian is given in (264). The matrix element we find is

s et \ M e
;i:\, (= ‘?g\,ﬁ, 'HI (colorless) ’,}4? 'i" = 1% 4 (292)

Py 3

We then obtain the ratio N of the color SU(3) and colorless matrix elements by

comparison with (276);

2
(ie) =
M=l g 3

(23 T

Proceeding similarly, we may show that the corresponding n-meson matrix element

in the colorless theory and the new equivalent colorless interaction are

?? 2
- 1 AU e o T - N -
e 33hi g ledoriens D igTh » oo = 27T 33 (294)
v N
e S Y - L( — -
}(x (co‘m}asc):—{47¢~A=—-¥:@:\a9‘75‘/'A (295)

‘T"o.
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<

betreen lq4; and

This is of course only true for matrix elements of H qgA7

I
states with the color assignments which we have considered here. Presumably
similar relations may be derived relating other color SU(3) matrix elements to
corresponding Abelian matrix elements in terms of SU(3) Racah coefficients. A
knowledge of these mp coefficients would be a useful tool in calculations of
this nature. As a final aside on this general topic, we note that the inter=-

action strength ratio N we would have found for color SU(3) quarks and gluons

in our meson problem is

- - T———
N color SU(n) = g Si?’fz} (296)

This tells us that the size of the HI matrix element‘we find for color
SU(3) is alreadyf§7§ﬁof the matrix element we find for mesons in a model with
an infinite number of colors. ( Of course we don't suggest that n is greater
than three physically, as we would then have trouble explaining !qqq» baryons
as color singlets.)

Now we return to the np mass problem. Rather then use the parameters

given on p.103 for the bag model states with an assumed value of the bag

Y
0

and g ) to the experimental masses. From the parameters given on p.103,

bt

strength, we shall instead fit the two free parameters in our model ( B for a

we may write the =n and p hamiltonian matrices for an arbitrary bag strength

in an equivalent theory as

e e P .
%g‘ ?si?{ f:l
Ho= | S |
-“- i ' p imq - j (297)
(=33 . S (1t e o
{ 22& =y o 2,
where E1 and E2 are the unperturbed Eqﬂ and quA state energies, respectively.

- 17y
As the only independent scale of energy in this problem is a 1 or Bé‘, we may

factor this scale out of the hamiltonians ;
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- ~
IR PR Ry ey
1y | P =1 " | Y
Ret o P |* (298)
i Y Ny | R P 2355 n, |
Loy ] L7 L

We find the lowest energy eigenvalues of these matrices, which we identify with
the physical n and p mesons respectively, by introducing a rotation between the

\qq > and }qdA> states;

(299)

where the angles %p s éﬂ are chosen to diagonalize the hamiltonians Hp and H .

The energy eigenvalues we find are

I T S N ARt B2 -
P B it Sl B e S R B AR
4y
werbw, Fremany™ L a1 (300)
oo ; i e LR N Sa
[’ oS ! 2 v & .

The unperturbed bag model state parameters ny and n, we may write down from Eqq,

EqdA, %qd, and 2qdA, and we know <y from (282);
n, *SHE v, 3.1 2.7 .14 (301)

Now we simply fit Ep'= .77 Gev and E“ = .14 Gev by adjusting a-1 and <, =. The

19
.{ii

e

]

¥

values we find for these parameters are

-
£
S
L
i
(AN
wvi

a=,3ae}
( and hence 3,"' = {76 Mev. ) (302)

If we recall that the color Yang-Mills coupling 3 and the equivalent Abelian

. s 4 .
coupling £ are related by %=2§3 , we see that our color model at this level looks
¥

like an Abelian coupling of strength

#-
ol

e

Ay =

22

[t
=
‘"‘i
]

i (303)

Thus, a moderately strong color SU(3) coupling leuds to mass splittings which
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would require a very strong coupling to reproduce in an Abelian theory.

One way in which we may check the consistency of our model to some extent
is by noting the size of the mixing angles 85 and ep defined in (299). 1If these
angles are near m, we have driven our system into " saturation ", and we expect
that significant fractions of the physical meson states are the heavier excited
bag model states which we have left out of our model. The mixing angles we find

here are

\)“_3~a1 _\
tan br= - ”
BN
TIRT - (304)
'g:cwx QF = J—Lji'———_——

where we have introduced

wanne

gl f 21218 _ theag

-,

-, fAN JT () (305)

oy
i
]

T

For the numbers given above we find

q =2.04
4 (306)

which gives numerical wvalues for the mixing angles of

§,="3%.1° .= 31.9 (307)

In terms of probabilities, this implies that the |# is ~361§qu7ﬁ and the ip» is
~28;§{q§A>b. Clearly, we have driven our model near saturation, so it seems
likely that other excited states contribute sigrnificantly to the physical x and

p meson states. The general features of the mixing, however, should not look
particularly different than the model we have sketched here, although many more

states are involved.
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The masses and mixing angles we found in this w, p model as a function of f are
shown explicitly in Figures V and W. To find the numbers given in these figures
we approached the problem slightly differently, using o = %(qu + 4qgA) as the
seale of length through which we define nys wz, and so forth (297,8). This

approach leads to parameters

F=239  (as71.18) ’8;'[” 133.5 Mey (308)

which we shall use for the remaining light meson calculation.
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Now that we have approximate values for 'Bovq and £ to fit the masses of
the T andl) it will be of interest to see whether or not the value of w; required
to fit the K mass is near the 270 MeV value obtained in fitting the decimet in
the lowest order bag model.

The K(49S) and K¥(®12) we may treat similarly to the andf considered
previously, except that we must include the effect of the strange quark mass on
the tﬁA overlap integrals,

We expand the physical |¢Pas

lie*> = MQ,_\Kf) + ,wé,bl K:*D (* weglec J) (309)
where

K+ =S-‘:~’i‘ ( lutsl) - (ul?f))
IKERY = (IREGVACY <L IA « LY D) C

so as previously we find quark currents

RITTIREED = & (Kl §lat) # KLl st))
SR TRITY = = <t luty = <M Isty
KA TIREAY = = (Katlglaly + < TIsLY)

4]

(311)

New we find for the matrix element

£ = ~<kF| *%(‘7;74‘%)'71\. |2 A = 51 (5 (w) + $(ws)) (312)

where § is defined in the h‘;>>‘f’oA> mixing problem;

X

J‘lz’io(’l)is(‘l)ﬁv (%‘1)4% (313)
, I(X.,,X.)
Using the bag model parameter :B°l\!: 192.5 Meyr as with the and)o gives the

g = q@(q.&)(&fa@)ﬂz

1>a
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unperturbed|KYand leA) the following properties (&.,. wm, =100,200, and 300 Hw)j

Kftwgdéo 26w .36er  Kohrmgloew 260 3G

sm“(nm) iHY ¥ 150y EYY3 2104 214 2225
Redios (G} | 770 748 %Y _3%S 874 312

2(s qark) | 2.20% | 2.335 | 2.437% 2.227F | 2.3 2.473
(s qoerk) | 490 570 | .b4b 56l | .Sqb | 4%
k(;;',?,.,n 2.37% 3.04 3.18 2.54 2.1 2.3Y

For simplicity we take the K: quark wavefunctions to compute the overlap
integrals T(xx,) in E(\u‘) defined above. This will lead to an overall error
of “5%, but the same procedure was used in computing the n‘/: splitting. The
result for each case is

T(2.107) = . 32b0 T(2.335) = ,34Ml T(2.437) = 3918
so the overlap g(m}) is (314)

28 (0oHew) = .37 o' 2€(200Hes) = 350 &' 28 (300Me0)=.32% o

*95.0 e =399 M =347 M

We see that the effect of a wy~300Hev is a suppression of the tﬁA overlap
integral by ~10%. As with the n we may now obtain the Kenergy and mixing angle

with the K:A configuration as a function of f;
= - ~2 T AR = L -~
By = Z -A {1437 = 7(EE) A= T(En-E)

= $:(10sl) g

A plot of the K and K¥ masses we find as a function of Mg is given in

(315)
L% éh. =

Fig. X . It is clear that the model is too crude to allow an accurate determina-
tion of w, using the Y{‘,f values of Ec:/‘* and ¥, since fitting \MKrequires

Wg ~ 370 Nes and We requires 150 MeV. The best fit to both masses is given by
w2270 Mey , which gives MK='-405 Mw) \be 380 Meyw . The fact that this is
the same value of wm, which we obtained by fitting the baryon decimet in the

glueless bag model is of course coincidental, although it is reassuring that both
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approaches give similar values for .. The K and\('mixing angles for £x10 do
not deviate from the w and/o mixing angles by more than a degree, so they are

not quoted here.
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A topic of current interest which we are now able to consider is the mass
of the pseudoscalar analogue of the 1)1-(3!09) vector meson. We shall use values
of ’B:/q and wm, which correctly give the fand QLI masses, ’B‘:/‘*: 215 Mev and

w =l | (Gev , as is shown in Figure . Having fit the l/a(zws‘) exactly we
shall obtain a value for MX; as a function of qggwhich we found to be ol 3
in fitting the ™p splitting. ( The X_is the pseudoscalar S-wave cc meson.)

First consider the ‘P(SIOS); we assume mixing between the states ]l/°> =

|e12t) and the txcﬁ) state

|1 AY = & (letl) =Lelat ) (AW (316)

through the interaction Hamiltonian (in the Coulomb gauge),

Ho =Z‘_‘*(E1_7 ‘#1) A (317)

which gives the off-diagonal matrix element

&= <kIH 1z AY = -7} JPX (SF¥cA)-R (318)

Using the explicit form for the quark current ( 9g,h) we find

€ =45(wme) = h‘ai%J—%‘F}Jr‘fsoﬂdj‘(k“xj.(é*““ (319)

-

in terms of which the l)"energy and mixing angle are

bei 0= J1+3 - (320)
aw 9y = .. 28
} G- %)

where 2 =-§-_-(\E¢°+ E"w\) and A";.'(Exc A*E'k) as with thef . We have estimated

E,=%-{E+T

i
the Balq and wm, necessary to correctly give the Y and N masses, neglecting

, ,
glue effects, as 'BJ“-:ZS Mev s mc=1.1Gev . For simplicity we shall use
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these parameters and calculate Mlc/wsL rather than worry about getting \Ml’_ to

agree exactly with experiment. The parameters we find for the unperturbed ¢°

and X Astates are; wean
Fuerqy (o) | 3090 3340
W . )
«QA\US (}w) ,LL‘L{ . ?-SO , Lﬁ? Q|Q = 2572 (l a&\uov\s
% 23% | 230 | 2.39 7y = 2. H4
A 341 | 365 | 323
cZ:a} |.o0l |.058 1.036

&

%o A

Since the radii and quark parameters of these two states are similar we take

the mean values of ﬂa)d:a.s x’)and a in our estimate of the 1§A overlap integrals.
3

With the values given above we find

Yo

2)(u2a?) 3 JF A
& =2;§(\_\ Qw‘) - ;. (ﬂ\‘ )(‘:;:) J? j‘t’%«:“ﬂj»(‘l)m( ’_%: 12“”1 (321
: = 20k« 59.5 1 Mo
so our numerical prediction for E,,('H is
‘2
E}(})’ 3.48 ~i.143+.00334;‘]/ Gev (322)

Now we consider the effect of glue on the X, . We expand this state as

ey = ey |2, » 4 b LAY (+ uql«ki) (323)
where
12,y = g (letaLd —lela)
(324)

LAY = 1 (LA IAGY =L (HIAGY + L4 1AG))

so the matrix element of the hamiltonian is
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of=

RN AL ARV S @ B i (EE) A

. — (325)
- (FFL)-AG

which eventually becomes

€ ="2J7 S(116e) (326)

= = 1031 § Gev

This predicts for the pseudoscalar energy Ezc(n

‘ \a

Ee (=348 -L48+ o0t ] Gew (327)

The scale of the masses is somewhat arbitrary, so we consider only the predicted

t
ratio Ex‘(H/Eu("‘) , which for our values of ’BQI“ and%- comes out

"

S 1-Lomteeatis™y] ~  (-Louzvosuds]® ;| o ek
- Ve e {

BN 1-[onzezaas'w]™ |- [oizzron7d, ]! 28

If we use the value of f we found in fitting the r/: splitting £ = 8.9 correspond-

ing to °('s= 1.18, we find

Ei9a)
E (k=990 -

If we now impose E,_: 3.09 bey we find Exc 22.F26ew . This result compares

(329)

favorably with the recently reported evidence for a pseudoscalar cc state with
Ee™~28 Gwm'. The fact that our simple prescription gives the ¢ |”—0O  mass
difference this well with no free parameters gives support to the hope that the
most important part of the quark-gluon interaction in determining meson mass
splittings is the Yukawa term. For comparison of our value of ds with others

a plot of Ex‘(&,)/Ep(d‘s) is given in Fig. 2 . We also give the mass ratios
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EXCA('*’B /E}_(&s) )Ey.A(")/EV (&;\), and the mixing angles 94'9x‘ which are numerically

e
\ ¥ J,om +059td;

E 1+ 1.60%5 -

Bk LY - Al 1804 (330)
Ey | = J.o2+.0m%, e 9"‘ .27 [ds |
EM‘A - ‘ + J,MZZ*,OI‘WS .L é _ l - ’ 1+H‘83‘$

P——“-—————" q -
E-lf- \ - J,o\z?. + 01t T 220J s

We note that our mixing angles for d = 1.l are Qv_=2?° and éz:-gqf’ , which
are small enough to make our naive mixing scheme credible. This was not the
case with the ™ splitting where the mixing angles approached £45° , although
the value of o, we found there works reasonably well in giving the xcy'splitting.
An interesting result of the xc'-l- problem is that the l‘ch> and W-A>vector
and pseudoscalar states are not shifted very far from their initial energies,
so these states (with admixtures of 3"{' and &q_A:...which we have neglected)
presumably exist in the general neighborhood of the energies we estimate here,

*<= annihila-

W, ~4.56es and \MLM'\-L!ﬂGw . The | |xA) state is produced in e
tion as is the \4*5 , and its principal' decay mechanism must be gluon annihila-
tion to produce a quark pair. The quarks made by the gluon form a color octet,

so each must accompany one ¢f the ¢ quarks to decay to color singlet mesons

—— " .
W—\’: «?\QN.A [AS > 4> lf"ﬂfﬂm..b
E51

+

. " { o 2> — 1D 1D TS

< IF*> F—> & a$se M6w+
. 1 wassive

The signature of these largely |ezA) vector mesons will be (1) strong decays

o 7

»»O0p

into (ci)(j\_) rather than (cz)(‘ﬁ) for the reasons given above, (2) suppression
of the rate to e%™ by {;M"Qy_ , because only the |c<Z) component may annihilate
into a photon, and presumably (3) the existznce of a 6~ |cZAY state A S60 Mev

above the vector state which will also decay into '.D*D',. .., rather than X, .. .



-117-

A possible candidate for the |czA) vector is the recently reported 4-('-!4!'4)42,
which has a partial width to ete” of 44t ,I4 Kev . If we extrapolate the
rate for ¥ > e+ e~ of Y3*0.L KeV to a meson with m = 4,41l GeV and assume
the enhancement factor at zero separation is unchanged (see the section on

| " ote™), we would predict a S(‘-“‘He*e' rate

r'(k’-(‘l#l) — e*‘c') =24+ .% Kev (331)

extrapolating from the ¥'(3L45) rate of 2.2t .3 KeV gives

M (L) — etem) = .5+, 2 Kevw (332)

These rates are too large by factors of 5.5 and 3.5 respectively. If we
pretend that the q-(LlH) is the largely |cZA) state and use the value of 34“2?°
we found in the section on cié&»cEA mixing, we would predict a rate to eve”™ which
is suppressed by %«Jeq ~2b6 ;

522,08 Kev ($row ¥)

M (ezA (4y14) ¥ ete™) = (333)

.39+,05 Keo (feom &)
Both estimates overlap the experimental result of HY¥,1YWeu.

*e™ is certainly not a proof that the

This simple estimate of the rate to e
4 .‘-ﬂ is largely |ccA). More convincing evidence would be the discovery that
the ™K mass distribution in ’~I»(LL'-1) decays peaks at about !.%% (¢ (mass of the D's)
as would be expected from the predomintnce of decays like
$(y4) — DFp”
L__a KO“.-
Kewt
Y(y.4) —— DD __
L=
KO o

™
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Other decays are suppressed by L““QC.,_L,’ Mzgy- , or the larger mass of the
strange-charmed mesons .

Thus far in treating the charmed particles we have assumed the parameters
BQ"‘:ztS Mev and w.=l.1Gev , which result from fitting the Y(3105)and
4’(35(5) masses with the lowest order bag model (neglecting gluon effects).

The two constraint curves 'Be'l" (\AA.:_) that result from taking the (3185) to be two
lowest mode quarks and the l{-'(aﬁS) to be one lowest mode quark and one first-
radially-excited mode quark are shown in Fig.U ; clearly we have a solution of
these two constraints at ’B:h‘ =215 Mev and w.=l.l6ev, The failure of

6 ‘
attempts in the literature to correctly find the $ and 4 masses is due to the

l]q ~

° {40 f‘\ev (motivated by the light hadrons) is a universal

assumption that B
constraint applicable to the ¢ mesons as well. We find that this assumption
is invalid and that the fand I/—'are‘ somewhat smaller than conventional hadrons.
To be more explicit we find for vq for each of these with the above parameters
Y}(W".’ﬁé Yo ,T‘QU!-’) = ,4Y5S9 }u , which we may compare with the measured T
charge radius v, (w) =, ?8:?2 LMBG.

A question which rises immediately is the spectrum of charmed mesons other
than the ¥and Ll—lwhich are predicted by the bag model with these parameters. We
display here only those levels composed of _‘=‘/z quarks, i.e. those states
which rigorously satisfy the bag model constraints. There will of course be
other nonspherical states whose energies could be estimated in a spherical bag
approximation, but lack of time excludes their treatment here. The €§ mesons
(withfia lj.ght u,&)ors quark) we treat by arbitrarily fixing the mass of the
lowest states (D's) at |.3 Gev . This mass is chosen to give the 4'1 stability
(M‘,\\.XS (,N) and to allow the ~50 MeV wide bump seen in e%e” annihilation at
~3.95 GeV to decay strongly to DD (mbﬁms Geu). This fixes the bag strength

]
for the ci mesons at ’BQIq =148 Mev , and the energies we predict for the
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lowest lying states, neglecting gluon effects, are given in Table F. The mass
we use for the cU (D) pseudoscalar meson in this table was guessed in April 1976.
The D resonance has since been found (m.=!.84t.0554Ges) together with a candidate
first excited state (w%”szﬁzwssw)ag We note that scaling down all the cU and

¢S masses in Table F by%%%

predicts a first excited state at Mo l«®50si= 2,002 Gev,
in close agreement with the observed mass. By analogy with these successes, we
expect to find the elusive F pseudoscalar meson at MF = 2,017 Gev, and MF*= 2.157.

We note in passing that in comparison with the situation of the light
mesons, the charmed (cC) meson spectrum is a more tractable laboratory in which
to study the mixing of pure quark and exotic gluon states. The reason for this
assertion is that our off diagonal Yukawa matrix element <qgAlF-A} q§’which
mixed the |qq? and !qdAy states in the p meson is essentially a number times lga-
for quarks and gluons in the lowest mode, where.L Ez@{“ﬁﬂﬁﬁgé for the w and p.
For charmed quarks we typically have,£~u3, which implies that the amplitude to
find a |c@A) state in a mostly |c€) meson will be abouti@ the corresponding
| qgAPmeson admixture in the light mesons. Thus, the charmed mesons should not
only lie closer to the energies predicted by the bag model than do the corres-
ponding light hadrons, they shesull be less contaminated with Hilbert space vectors
containing different constituents as well.

Finally we might also predict the masses of the exotic |{q3i", Y9qq!*> ,
\Kﬁ>,... states in the bag model, but we are limited by not knowing the value
of the bag model parameter B?ito use for these states., The range of values we

A
have used previously in fitting hadron msgsses (B;* = 96 to 215 Mev) is too large

to allow us to make reasonably precise predictions for these exotic states.
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state T <Y ey

Vs 1900 (wpsH)[0T] | 205S  [07]| 3090 (wpt) 1]
RIRY 2040 2197 33562
100PD 2244 2320 —

\ae) 23k 2442 3585

L (29)(1s D 2233 2397 3492 (wgot) £17]
1(19)2sH 2531 2597 _
12907 2544 2822 3901

1P zs)Y 2439 2704 —

Table F_

Energies of ¢g and <€ mesons in the bag model

*(ﬂeu)

( See text pp.l18-119.)
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A final topic in the world of charmed particles which we shall treat
is the magnetic moments of the S-wave charmed baryons. Excepting the group
theory of SU(8) necessary to derive the quark decdmposition of each of these
baryons, as is summarized in Appendix G, this is a trivial generalization of

the previous CFQM and Bag model sections on baryon magnetic moments.

The baryons in the JP=“£+ 32 representation of SU(8) have been dubbed 43
as follows;
Y
»
¥ i*Q"' 4
o i
TS SRS SOUN. .
N +c; °p
‘g LS, 2 N L U
W +S° 0o _o +s-p Z+
z AZ e ¢3:0
+ ozl
T° * <=2
°__ R o:_Q
= = c+Y
Q=I," 7

In terms of the quark magnetic moments Pu,Me, M, and ;J.g we find for each

charmed baryon the magnetic moment (with p = cqp, T e %ud + c%y c4uc)5

Bacyon ©1 % °3 9 ygfgfﬁ;)
c, L 0 o -4 1,537
! 5% 0-3 202
th 0 i‘3' 0 ._13. =100
Cr 0 0 0 | 489
AT 6 0 o | 483
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A 6 6 o | 489
S* $% o -5 | .z40
g 6 % % -3 -313
T® 6 6 % -3 - .37
Xa® -$ 0 0 % 237
XS 6 -0 % 350
N o 0-%5 % . 304

To obtain a bag model prediction for these moments we have taken \Mu’g=0

W, 2Fbev , and Wet |l Gev as found in the zeroth order bag model previously.
The bag strength we take to be ’B:’q = 140 Hev, which gives a lowest charmed
baryon mass of 1446« These predictions differ from SU(8) in that the scale
of the strange and especially the charmed quark moments are suppressed
relative to the nonstrange quark moments by their large masses, and with the
bag model we have a model of this suppression with no free parameters.

With the above choices for %Aikandiggm we find that Jﬁi is suppressed by up

to 80% from the naive SU(B) ratio of unity, so our predictions show substantial
deviation from SU(8). It is of course not likely that these moments will be
measured in the near future. The transition moments between neutral charmed
baryons such as A%’ may well be known soon, however, as the magnetic dipole
decay of the heavier of these into the lighter will be the principi. decay
mode unless they are very close in energy.
These matrix elements will also show considerable suppression of the naive
SU(B) prediction of the charmed quark contribution to the total magnetic

-dipole decay rate.



Conclusion

We have treated some of the weak and electromagnetic properties of
strongly interacting particles in two models which impose quark confinement
as an initial constraint. The first model, which is a generalized bag
model without Poincaré invariance, allows us to determine reasonable values
for the quark wave function parametersz;akq_(mode number), a (hadron model
radius), andimﬁ(quark masses) from a number of experimentally measured weak
and electromagnetic matrix elements. The values we find for these parameters
are generally in good agreement with the values we are forced to take by
the requirement of Poincaré invariance in the second (bag) model. This
lends credence to the reasonableness of the low momentum transfer matrix
elements given by the bag model which do not involve quark production or
annihilation. For a process involving quark-antiquark annihilation we find
that these models are incomplete, however, and that a sharp peaking of the
amplitude to find 333 péir at zero separation inside a meson exists which is
not allowed for in either model. Finally we consider gluon effects in the
hadronic mass spectrum and show that a relatively small color SU(3) Yang-
Mills coupling gives rise to large quark-gluon configuration mixing which
lifts the degeneracies observed in the S-wave meson states in the zeroth order

bag model.
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=L - Fig. A

T T T 1 I B I _
Magnetic moment as p(Xp=ka) for fixed a (massless fermion)
) p(Xo)
lg> = _.....L:v gp = 20Mpf(Xg) f(Xo)= Lo @&
(Mga=5)
a=5/Mp= 1.05fm 130
expt-e
0.5\ a=6/Mp=1.26fm \ —1es
a=7/Mp=1.47fm" /
0.4 —2.0
\ NEE m\zn-_mmﬁa\
0.3 —1.5
N\Fa
¢4 0.2} 1.0
O.1+ —0.5
o111 1| | _ _ 1 g
O 04 0810 1.5 2.0 , 3.0 4.0 5.0
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_ ! r _

+ .
Free _._uu-_M massive quark magnetic moment for X5=2,a=1.4 fm as Esnv

_ _
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1.0

Magnetic moment ratio
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L _ _ )
gp=2.793
I.5F ]
rq=0.92 fm \\\.\\\\\\\\\\\\
rp=0.86fm
1.0 ]
0*3»
Experimental gp and rq for CFQM proton
9p=2.793 Q° 0.89+0.03fm (z=3.40+0.24)
0.5 -
0 | _ | |
1.0 1.5 2.0 2.5 3.0
Xo m...w. D

3.5
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Proton omEmv form factor (Price et al.)

omEmv calc for massless free quark model

ﬂcw. R
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Proton OmEm:qu factor (Price et al.)

Ge(q?) calc in massless free quark model with
Xg=2.5,a=0.75,1,1.25 fm
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0.5

_u«o*o:_OmEmv form foctor (Price et al)

Gg(q2) calc in free quark model with Xg=2,
BnnO. 500Mev, a=1.25fm

Bnumoozm<
v a=1.25fm
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Proton Gy(g2) form factor (Price et al)

Gmla?) cale in free quark model

with Xp=2.0,2.5, 3.0

a{Xp) constrained to give wp= ip(expt)

Xp0=2.0,a=1.46fm
Xp=2.5,a=145fm
Xp=3.0, a=1.70fm




-132-

Proton o_,\_Emv form factor (Price et al.)

ozEmv calc in free quark model with X5=2.0, a=1.45 fm —

for mg=0,500 Mev a(Xp) chosen so pp(mg=

O)=ppl(expt)
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Region in (g, Xp) giving T'(A+—= PY)=0.58 Mev to 10%

accuracy. (Free quark model neglecting recoil)
16
Note T = @..xw \:w (a, Xg).

This region gives pp (a, Xp) ~1.2-1.3 p (expt.)

2.0

2.5 3.0
Xo= ka
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300 mq(Xg) required to give Mm.ut_.muwo._ in N —= Pe™ 7, 213
for a=14fm w(Xg) curve is universal (Va)
. \ \
. /,
mq | 200} .42
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T

Nucleon properties with massless quarks

in attractive scalar well
(= vector well)

Bo”/4=120Mev

- —— — ——

intercept ~ Bo'/4

scalar

intercept ~ BO'/4

scalar
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|

015 P Change density of bag model baryons B
. m,=270 Mev  BY:120 Mev
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~ ~ I
1.5 Pion charge radius rq(Bg)
in the bag mode! with mq=0
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]vA>

Two state problem: Iqa> and
‘qu>*lp> and |7> in mixed

2.0 bag model BY#=193.5 Mev chosen

so mp =0.77 Gev, m7=0.14 Gev
(at £=8.9)
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]

l

l

Two state problem: |qg> and lqga>

T, p Mixing angles 84, 6p

| > =cos 6, [a@> + sin 6, |qTA>

|72 = cos 8, |qq> +sin 6,|qgA>
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| 1 I
4 my and my*(mg) in the |gg> and |qqA >
ﬁ problem - Bg'/% and f chosen to give
f m .. and mp correctly |
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Mass of the " and R, (£=1cC
MWE 3.105 Gev determines B

]

) in the bag model-

6/4 given mg.

2.0
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APPENDIX A CONVENTIONS AND INTEGRALS

44
We use the conventions of Bjorken and Drell for Dirac matrices,

spinors, and the metric ;

Apo © [‘-‘”-t] 7a['5 ?]

(A1)

v

Yo VY, ¢ |z T e L1001

We also note that some of the integrals left as implicit functions

. . . . . . . 45
in the text may be carried out explicitly in terms of special functions ~ ;

I(l,xa) = :’121,2(*0141 = %‘f Ifh(x,Y' "4 (x,) Agm (xo)] (A2)
- Xo "
PO = g g0 B LT () T, ) 3 )

(A3)



-152-

APPENDIX B BAG MODEL EXCITED STATES

The problems of combining angular momenta to form excited hadron
states in the bag model and in free space are similar but not identical.
The bag model tends to have more possible states for a given set of basis
states, due to the fact that the relative center of mass motion of the
constituents has not been removed. Here we shall illustrate the differ-
ences between the two cases and obtain a suitable set of labels for the
bag model states.

First, consider the problem of constructing a state of total
angular momentum J from two particles with spins Sy and Sy- Normally
we assume that physics is translationally invariant, so we may remove
the location of the center of mass of the two particles from the
description of their relative motion. The assumption of invariance of
the problem with respect to rotations about the center of mass leads to
the conservation of the relative angular momentum of the two particles,
which we may combine with the two intrinsic angular momenta sl’2 to

obtain a state of total angular momentum J and Z-projection J,;17Y:Hl7;

| TM; Lo 5,8 (B1)

Independent sets of states are obtained by first combining two
of the three available angular momenta.%i 817 and S, to make an inter-
mediate angular momentunlg, and then combining the third angular
momentum., For example, suppose we combine the two spins 51 and Sy to

make an intermediate angular momentum ?;
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— — - -
J = 2.-._, “?a +s; = 'Q"-*? (B2)

-2

We may simultaneously dlagonallze Q; and S‘, which gives us states

-2 - - L
which are eigenstates of J J 2 ,3 »815 and S,3

13
VIM 4,85, 5.0 = Z_ (M f": i ) ( : ?.SF\;) 42wy (B3)
H.LPP-’M, 'h'f“'s‘s‘f"J
Alternatively we could have comblnedaq ,withone of the spins to make
a different intermediate angular momentum j; these states are related
to the above |JM% states by Racah coefficients.

In a cavity, combining the angular momenta of two particles
proceeds differently. There is no translational invariance, so we may
not remove the center of mass motion of the two particles from the
problem. The physics of a single particle in the cavity is globally
invariant only with respect to rotations about the center of the cavity,
so we have a conserved angular momentum for a particle only about that
point. Each particle has such an angular momentum; we may combine this

orbital angular momentum il

make a total angular momentum for that particle.

with the particle's intrinsic spin'gl to

- s Q ﬁ-_" @4)

%
The one particle states with definite 33 are obtained by adding

—

the spin and orbital angular momenta El and 11 about the center of the

cavity;

IR MRS

oY = Z_ (o N

YL Nsomep> o



-154-

z =
These states have diagonal Tl,ﬁs, s{} and jiz

The one-quark solutions of the free Dirac equation which we
discussed previously, the CFQM wavefunctions, are superpositions of
these one particle state vectors with jl and S1 fixed, summed over,?‘,

( The free Dirac hamiltonian mixes states with different Q;,

lfs"/;l
] 2 i
‘ .\“\l> e - c l| i 2 ‘ J_‘M‘_ 6)
d gpc-ﬂm&.k 4l Q‘Eﬁ- ( Wy “‘-‘t‘) | 4 r)\z y> (B

- T

s0 f‘is not diagonal for quark state vectors which are energy eigen-
states). In constructing a many quark state in a cavity the most
natural basis is one in which the quarks are eigenstates of the free
Dirac hamiltonian, so we simply combine the above one-quark states to
form a state of total angular momentum 3;
- —md -
I=J'!' + ...

' T (B 7)

The orbital angular momenta 21, 22,... have been summed over implicitly
in constructing simultaneous eigenstates of ﬁ;, T;,... and the free
Dirac hamiltonian. There are two independent ways of combining spin
and orbital angular momenta to form an energy eigenstate(icjti}, so we
require an additional label to identify these cavity states. 1In the
nonrelativistic limit (Jiquark¥* = ) only one of the orbital angular
momenta contributes to the state vector, so we may identify it by this
ﬁ‘value. Alternately we may distinguish the two states with identical
sS4 and jl by their spatial parities, which\are opposite. For example,

with s.=j =Y, we have

191
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l;.‘ o, ¥ wave

“,3 '/t. ) 'P wa«.)

'j,"‘/t 3 @ ’9‘)>

(B8)

"

TRUNEEN

In combining many quark state vectors to form excited hadron cavity
states we must of course specify these labels as well as the quark
angular momenta.

To construct an n-gluon state we proceed similarly and combine
one-gluon state vectors which are eigenstates of the free gluon
hamiltonian. The individual spins and angular momenta in the cavity

must sum to a total angular momentum J;

-t e

T=Qss, s v, . v M esa (89)

Unlike the free quark hamiltonian, the free gluon hamiltonian does

not mix one-particle states with different orbital angular momenta.

-1 -
This means that we may diagonalize all the§2¢Eandﬁsf%simultaneously,

-

and we could combine the individual angular momenta in any way we

%

wish  without creating undue complexity. In particular we choose

to imitate the quark case and combine the 1i and E; to form one-

T
particle total angular momenta ”} (also diagonal), which we then

combine to form the total J ;

i‘ - - -~
- A 'S L* . e +j*
‘ (B10)
- roli-
5Lt 2:+s; (B11)

One important result of working in a cavity is that we have more
excited states than in the free particle case, as a result of not re-
* We note, however, that the transversality constraint Au u=0 mixes

bd

= j+ 1 states for electric multipole gluons,
J g
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moving the center of mass motion. A simple example of this is the

construction of a two quark state with distinguishable quarks. Suppose
. -+ . .
that we wish to construct a JP= 0  state. Outside the cavity we can

do this in only one way; we combine the two spins to make a state with

sP= 1-, to which we add a unit of relative orbital angular momentum
g - P to == s
2‘% =1 to make J' = 0el»|”, In the cavity, however, each quark has

+
an orbital angular momentum, and we have two independent JP= 0

states;
10*>, 2 |42 ,@ =D ® 12 'h,@,2())
- (B12)
‘0#>,_ : “" ‘l:.‘ e =)ol It '/,) Py (+]>
These states will not in general be degenerate in energy. However,
alll J®PDstates which we may construct from
‘3,’ h,®,: ‘-"’)lj,;‘lt, Q’,=C"7 (B13)

will be degenerate in the zeroth order bag model, as will all such

states we may construct from the second set. As a shorthand notation

for all such states, we simply write the degree of radial excitation
(1,2,...) and the orbital angular momentum carried by each quark in

the nonrelativistic limit. Thus, we have

fo*>, < | (AN(aP)Y

(B14)

where [(1¥3(1P7 is an abbreviation for a degenerate set of states with

negative parity and spins j=2,1,0. This is the notation which we use

to label the charmed meson bag model energy levels in Table F.
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As a last observation, we note that these additional excited
states of the bag model relative to the free space problem make any
comparison of the bag states with experimentally measured resonance

masses an ambiguous <zuiercise.
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APPENDIX C SU4) 20 1/2" BARYONS

When one generalizes the SU(6) quark model to SU(8) by intro-
ducing the two charmed quark states |et) and |cl), one finds that the
26-dimensional irreducible representation of SU(6) spanned by the light
S-wave baryons is contained in a 120 in SU(8). This 120 contains a JP = 1/Z+
SU(4) 20 and a 3/2+ SU(4) 29L° The quark decomposition of the charmed
baryons in the 1/2+ 20 part of the SU(8) 120 we have derived and reproduced
below. The correct relative phéses of these states have not been determined,
as they were not required for our purposes. The notation used for the
baryons is that of Ref. 43, and the 1/2+ 20 weight diagram is displayed
in the text, p.1%1.

Baryon Quark Decomposition

s 1P = g 20l s ) = (letud 31 rall penns wtuldt )]
lcH 1y = 1P, 1) (4 )

lC.+,T> = '};‘S Z(lﬂ‘éf:l) +all rnms) “(\u?41c1> * Qf) - (\ulé?d> ’l'a.?.).g
{c2, 1> IV, (urs <)

lc;\-’f) = J_I_’_?%» (lufJTCL> 'l-o‘.r.) ”(\uld‘fc_fy +q.e‘)i
XS5 85 = G (=)

Azh—acz)

Iy = s (539

oy = v (D29)

A% = lek 1 (ums) 5 [ =12 (553) 5 1o 1o, (43%)
5509 = 4§ 2l1etstely vapd ~(1dstet rap) - fudstetyeap)]

1stY = It (ud)

[A 1S (s+>e)

1]

(C1 a-k)
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APPENDIX D GLUONIC M1 TRANSITION MOMENT CORRECTION

Mixing of the naive SU(6) quark states normally given in hadron
decompositions with states containing vector gluons modifies many of
the classical SU(6) predictions. Here we consider the effect of mixing
the |qa> and lowest lying |qqA> states as discussed in section IV of
the text on the px and uw transition moments.

These moments are defined as

Hop = < ln|x>
E&m = <wl§!n> o
where ; = T p (e /e) s ‘qk> <qk] (2)
q,N 1 d

is the magnetic moment operator. We assume a universal scale 1 for
the light quark moments.
Mixing the ]q§> and [qu> gives a generalized meson decomposition

of the form

lp> cos Gp lqi> + sin Gp Iqu>

(D3)

hu> cos Gw ]qa> + sin Gw lqu>

and similarly for the remaining mesons.
Since the mixing angles fﬁmgare charge independent, the relative

+0—]H d+0- > will be the same as in the

sizes of the matrix elements < x
lqi > -only meson decomposition. This implies that the reduced matrix
elements of the I = 0 and I = 1 parts of the magnetic moment operator
will change by at most a common scale, and the well known SU(6) results
for the ratios of moments will be unchanged. In particular we may show
that

(cos 6. cos 8, - sin 6 sin Lf?')z
T 2
( cos 6y cos Qp - sin 6 sin 6, //3")

9 if 6 =6
® P

<o |plx® 5|2
< o™ |F|n™ >

= 9

(D4)



-160-

We will find Gw = ep if the qa, qqA mixing hamiltonian is isospin
independent. As the mixing is due to the strong interaction we expect
that this is indeed the case, neglecting small electromagnetic effects.

The overall scale of these moments changes as

- 2

|< vln|x >]mixed = (cos 9 cos 8 - sin 8_ sin 6 /fZ_S')2
= 2 k14 p, b1 p,w

‘< vln‘ﬂ >‘naive SU(6) (D5)

In section IV our model of this mixing gives Gp o~ 37°, 6’t ~ -390,
k]

which gives a suppression of the moments of

2 .
mixed ~ .71
2 (D6)

naive SU(6)

< u,,>l

< 8,.>]

We thus find a suppression of the absolute rates for ML vector
meson decays of about 30 % due to mixing of the qi and qu exotic
states. This effect will be much larger between states which do not

have mixing angles of opposite sign as defined here.
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APPENDIX E GLUONIC AP MASS SPLITTING

In section IV we developed the concept of gluon constituents in
the bag model and used a truncated Hilbert space to estimate the strong
Yukawa coupling required to give the S-wave mesons the observed spin-spin
splitting.

In this appendix we shall treat the P and A baryon masses using
the same approximations in order to estimate the amount of exotic mixing
in the baryons and to compare our result with the well known AP splitting
of ~ 300 Mev.

As previously we consider mixing only between the lowest lying
qqqA exotic states with magnetic dipole gluons and the usual SU(6) qqq
baryon states. The states wﬂich we expect to mix, taking sz(P) = 1/2 and

sz(A) = 3/2, are

Proton Basis States Delta Basis States
Pty " 117 [86 A0 147
IPAAS,, = 11 | AA PRV 152 -
|84,y = 127 | P, A ,3/1>31+=!L>
We aszsumzonly the Yukawa part of the quark-gluon strong interaction

. .. . . 2 —
namiltonian (204) is important in these medium-~q splittings. Between
two baryon color singlet states the Yukawa term gives a matrix element

of the form

- A
<111 ,<¢lol-,Ll HI ‘113 ,ce\ﬁl) = <111 ,L\ qz’;-a' 3[4& E;, Vr-;_-'f;, A. ‘111»-
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which is the matrix element we find for a Yukawa quark-gluon theory with

a different coupling constant K and without a color degree of freedom,

s -
<‘&1 .co\wlh:liai,ca‘w L» - é‘%&\ % K]\A X 4‘;: ,r 411 Ar. | 1117 (E3)
where {K{= i§8/3 for this case. We work in a gauge in which Ao(x) = 0,

so we have in our effective colorless theory the matrix element
3 —— - - —
<tugt Y = =< UL BRI Y = ~<InZ T Y ey
To determine the mixing of the basis states in the physical proton
and delta we need only diagonalize the hamiltonian matrix of this operator
between the two sets of basis states given above., First we note that this

operator is a flavor isospin singlet in the limit m,=m so the matrix

d)
elements < PO‘HIIAOA > and < AolHllPoA > must vanish identically in the
limit of isomultiplet degeneracy and negligible electromagnetic effects.

We expand the physical states as linear combinations of the states which

are mixed strongly by HI;

P, = wQF |15 “'A«'MP 2%

(E5)
LA = wad 14 + 4 ¥]S> =

We call the nonzero matrix elements

A= <zl E= LSIH |4 (E6)

in terms of which we may find the mixing angles B,y and the physical state

energies EP’ EA’ EPA’ EAA' These angles and energies are

L 4
{“F= 2A EP = 3{ E.E, - (£.-E.) |+ 4]Al

et QL (A) ) (ee)

where are the energies E of the basis states before the mixing

1,2 P,,P,A

hamiltonian HI is turned on. The results for the A are given by the sub-
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stitutions B - y, A - B, and P = A. The initial energies are unchanged,
as E1 = E4 and E2 = ES' Now we need only determine the matrix elements

and initial energies. For the proton we have

11y = == (20614LotD # 21Dl * 214 1oty = Jutuldt —lutd told -l iterd
'\uléﬁ;?) - Idtu‘.\af) - \&1;{{0&) - \u‘ufc“‘)) = "P,ﬁ)
l1> = E \A(*))‘?.,,l) —ElA(°)>‘?n.1‘> = "POA)t>

(E8)
where 1?4 =-$ (1‘"4"““‘\>+ oL = leteldy - )
LA = 11 g, (5 1% 47 41 VAGY =11 oo, (Po1%, o605

so the matrix element is

A= <zIH 1= - KSJ‘,‘ [F;- AWIRI- LR IZT IRt ~J5 <AOIRLY  ED
} RERIE AT

We assume the basis states all have approximately the same radii, which

gives for the quark currents and gluon fields

SUEUGLARICIME T3ty = - gV
-A—:»,)(")’ = 1q‘1‘(ur) _Y:.* K-{‘,o)b‘)‘ - "'“\3. (u’)"q"w* (E10)

where g(r) is defined in (231) and the gluon field parameters are defined

in (209-218). This gives for the H_ matrix element

I
Az -E?lfg
T t.3) laa)l 1 2° . (E1D)
< “f:j:gaa,a)(. )M }Q

where

‘(’je(‘v’j'(‘l)d‘(.t’?:‘?) dv

For massless quarks and a magnetic dipole gluon in the lowest bag model

s s . , -1
modes this is simply a constant times Ka

K S= C,K‘a—' (E12)

Evaluating this constant numerically gives c, = .3929 /2.
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! i

In an SU(3) theory we havel!gi= B3k/8!for this baryon problem,

color

which gives the proton energy and mixing angle B as functions of the strong

coupling constant Ot = gzléﬂ;

- 16 cog T _.5_135_1_.1
.L)Mré- Q(E;E,)“I /‘+ (g{‘% ] EP * E-‘ E‘ (E’. E‘}/\'* (Ez’Eu)zﬁz

(E13)
Similarly we may treat the A-AA mixing problem. There we find the result

B = -f5 A, which gives for the corresponding A parameters;

taw Y= - 1635 coq EA.--!,:-[E%-(E-E‘) ]+—7-Q3}3—}

3(EcE)e Ip/ |+ - "°’l} R (<X
- T
(ecE) (E14)

The AP mass splitting we find is

160wee ds Terd
l 3aTc dg
E -ky ® ‘”(EZ‘E,) /l LYy — ' 2 (E15)
a e z (B-E)a RGN
which is less then zero, contrary to reality. If we use the numerical
1/4

results we found for El’ EZ’ and a for the basis states with B '= 120 Mev

(pp. 92) we find
= 3%

(s =

RINER :
Lo b = E.z 1.3L — 18% [J1+5.523  Gev
~P* T 1+5.52%, P ;

Nt

(E16)
law Ve -—b06s E, = 1.3¢ - .138{127.4x, Gew
‘*Ji*i’?-é;{s
For the value as =].!2 found in considering meson spin-spin splittings,
we obtain the numerical results;
o
pr32, E.71.0] Ge Y= -41° ) E,=.b776e0

(E17)
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Although we obtain qualitatively the correct splitting, it has the
wrong sign. There are two plausible explanations for this invalid result;
(1) other states contribute significantly to the physical proton and delta,
which reverses the sign of the splitting, or (2) the bag model wavefunctions
for the lqqq7and lqqqA) states without the center of mass motion removed
simply give matrix elements unlike the physical state matrix elements.

The fact that the classical gluon field model of the MIT groupig gives
this splitting reasonably well seems to imply that (1) is correct, as the
classical result should follow in the limit of taking a very large number
of gluonic states in computing the enefgy shifts.

As we have not found the set of basis states which gives the AP
mass splitting reasonably well, we can't expect to obtain valid estimates
of gluonic corrections to the classical SU(6) predictions of baryon pro-
perties. This very interesting problem requires a more complete model of
the baryon, i.e. a larger initial Hilbert space of quark and gluon basis
states. An attempt to carry out this extension in the bag model would be
flawed by the presence of many more basis states than would be found in
the quark-gluon theory itself, due to the existence of the bag as an
extra degree of freedom. For this reason enlarging the Hilbert space in
the bag model would probably not lead to a useful description of the phy-

sical baryon states.
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