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Abstract 

Conventional optical memory discs store information in the form of pits embossed 

on the disc. The minimum size of the pit ma2rks is limited by the resolution of the 

optical system used to read the disc. Our in~estiga~tions, presented in this thesis, are 

primarily concerned with the question, "Can an optical disc memory be designed so 

that an optical system can recover inf~rma~tion from symbols (pit marks or otherwise) 

which are nornlally unresolved?" When an optical system can determine unresolved 

feaiures of an object, then superresolution has been accomplished. 

We describe an experiment to recover information about lines wit11 a width one- 

fifth the minimum resolvable feature size. The result uncovers an important difference 

between an optical memory and a classical optical imaging system: in an optical 

memory, we can use a priori information about the finite number of possible stored 

states. The next investigation is for superresolution in depth, rather than for a la,teral 

direction. We select the method of conoscopic holography and dem~nstra~te the ability 

to nlea,sure the depth of a reflecting surface with an accuracy better than one-tenth 

the depth of focus of the optical system. 

To allow the design and analysis of a memory format, we formulate an integral 

method to ~a~lculate diffraction for lazge numerical aperture focused beams on non- 

periodic two-dimensional structures. The numerical method is tested for numerical 

convergence and accuracy, and some compa>risons of nunlerical results and experimen- 

ta,l nleasurements axe also shown. We then use the numerical method extensively to 

analyze a variety of formats and structures. 
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Chapter 1 Introduction 

The transrnissioli of information via an optical ima,ging system is an incredibly im- 

portant tool in life and science. From human vision to telescopes, microscopes, and 

optical discs, all optical imaging systems have a spatially distributed input (object), 

and they transmit information about the object to form an image at the output. Tlle 

optical system's resolution is its ability to transmit size and spacing informaiion about 

features of the object. For example, the resolving a$bility of a telescope determines 

how close two stars can be before the telescope transmits them as one smeared object 

ra,ther than two distinguishable ones. Traditionally, resolutio~l of an optical system is 

defined as the minimum distance between to point sources on the object so that two 

distinguishable reproductions appear in the image. Any technique to extract more 

ac~ura~te  information about the spattial distribution in the image than what is allowed 

by resolved reconstructions is a techniclue for superresolution. 

The literature on superresoh~tion, the limitations of superresolution, a,nd various 

methods to increase the capacity of optical dais storage beyond the resolution limit 

is quite substantial. Most approaches involve estimating the amplitude and phase 

of spatial frequencies beyond the optical system's cutoff. The mathematical basis 

for these inethods is the fa,ct that if an analytic function is known exactly for a 

finite region, then the function can be determined uniquely for all space. Since the 

Fourier transform of a spatially bounded object is an analytic function, then, in 

principle, a limited number of lneasureinents in the Fourier plane of an optical system 

should give enough information to reconstruct the object with any resolution desired. 

Methods of analytic continuation involve algorit hms for estimating the entire Fourier 

transform, including evanescent waves, of an object based on measurements in the 

Fourier plane [16]. Schmidt-Weinmaz expanded on this theme by representing the 

far field of an object in terms of nonuniform pla~lewaves (planewaves with a complex 

wave vector) rather than simply uniform plus evanescent planewaves [43, 44, 451. 



There was some work in the 1960's and 1970's to directly measure the e~a~nescent 

fields, rather than attempt to estimate the evanescent spatial frequencies, of an object. 

11lt erference and diffra<ct ion involving evanescent waves generated at the surface of a 

medium by total internal reflection of light at the boundary with a denser medium was 

studied by Nassenstein [47, 481. Lukosz and Wuthricll recorded holographic gratings 

where at least one of the incident fields was evanescent [46], aiid Bryngdahl recorded 

holograms constructed with a propagating object beam and an evanescent reference 

beam [49]. An example of how a hologram can be made using an evanescent field 

is to coat a planar waveguide with the recording film. The reference beam is then 

coupled into the waveguide, and the object beam is incident on the film fro111 above. 

Beca,use the field propapjatiiig in a dialectric wamguide has a,n evanescent field tint 

travels outside the waveguide, the reference bean1 will have an evanescent field in the 

filrn. The resultiilg hologram recorded by the filrn will be the interfereilce between 

the evanescent field a,nd the object beam. 

Any superresolution method is limited by the noise preselit in the measurement. 

The theoretical limit to superresolution in the presence of shot noise was trea,ted 

separately by Gabor [I] a,iid, specifically for astronomical observations, by Lucy [2] .  

Gabor also a)ttempted to relate the field of informa,tion theory (only a few years old 

at the time) to optical iniaging and communication. 

An optical menlory has an important advantage over other optical imaging sys- 

tems: the input object can be designed using specifications that can serve as n priori 

information to aid the optical system when attempting to read. In contrast. an as- 

tronomer cannot design the composition of the stars, and so he has little a priori 

informa.tion about his object before he aims his telescope. However, a data storage 

system is designed with a specific format, and the set of states allowed by the format 

is given to the optical imaging system. Because of this difference, the possibilities for 

superresolution, or maximiziilg the illformart ion content, of an optical memory can be 

better than for other optical iniaging systems. 

Consider the optical disc memory ass an information cha,nnel (figure 1.1). Source 

inforlnation is encoded onto the disc in the form of spatial structures according to 
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Figure 1.1: The optical disc memory as an information channel. 

some convention. At a later time, an optical system attempts to read the information 

by measuring the optical response to the the spatial structures. Thus, the channel 

consists of the disc and the optical system. This channel has a different input alphabet 

and output alphabet. The input alphabet consists of the spatial structures, while the 

output alphabet is the set of corresponding measurements resulting from the optical 

imaging system. The channel encoder relates the source information (perhaps the 

output of a source encoder) to the physical structures on the disc, and the decoder 

works backward with the output of the optical system. Errors occur when noise in the 

channel causes an output to be either unrecognizable or resembling an output for the 

wrong input. A channel's capacity is defined as the maximum amount of information 

tha8t can be reliably transmitted across the channel, and it depends on the nature of 

the channel's codewords and the amount of noise present. 

The published work regarding the improvement of an optical disc's storage density 

can be divided into two broad categories. One genera,l approach is to modify the 

optical system's transfer function through some nonlinearity in the optical medium or 

through optical techniques such as apodization. For example, Bouwhuis and Spruit [3] 

use a nonlinear substrate layer over the information pits and show that the optical 

transfer function widens with spot power. Yanagisawa and Ohsawa (41 coat a disc 

with a nonlinear material, whose transparency is dependent on the incident light 

intensity, modifies the illumination spot and effectively broadens the optical system's 

numerical aperture by up to a factor of three. Rather than use a nonlinearity to affect 

the illumination spot, a group at the Sony Corporate Research Laboratories [5]  placed 



a nonlinear layer with the information layer in a magneto-optic memory that, when 

heated by the illumination spot, causes the information to temporaxily disappear. 

Since, as the spot moves from one mark to the next, the first xilark di~a~ppears, there 

will be no crosstalk between a mark and the previous mark. However, the crosstalk 

between a mark and the following mark will still be present. This system can he 

represented by an asymmetric optical transfer function. 

The other general approach is to accept the linear optical system as given and 

modify the storage format and use signal processing to resolve the information. The 

work presented in this thesis is of this type. One example is pit edge position mod- 

ulation, presented by Kobayashi [6]. In this for~llat the center of each pit is constant 

and the minimum pit width is resolvable by the optical system, but the position of 

each edge of each pit is modulated and the minil~luni position difference is a srliall 

fra2ction of a resolution element. Another method [7] squeezes the track pitch to asbout 

half the spot size. The crosstalk between the tracks is reduced by rea,ding with tlrree 

staggered illurnination spots. The spots are staggered at least one spot size in the 

tracli direction and half a spot size in the radial direction. The signal from each spot 

is given an appr~pria~te time delay, and then a transversal filter and equalizer produce 

the desired output. Foreshadowing our approa,ch in Chapter 5 ,  Ooki [8] desigiied a 

formast interleaving tracks of two different types of pits. One set of tracks use pits 

with the sta*ndard one-quarter wave depth, and the other set of tracks use pits with 

a depth of X/18. The shallow pits are interleaved between the standard tracks, which 

are spaced at the standa.rd pitch. Thus, the information density is doubled. To read 

from the memory, the detection inclucles a a waveguide incorporating the electro-optic 

effect in the detection arm. By adjusting the phase difference between two propagat- 

ing modes in the waveguide, the phase signal fro111 the shallow pits can be separated 

from the amplitude signal of the standard track. Although their intended application 

was nlagnetic media, the modified Viterbi algorithm developed by Zeng and Moon [9] 

improves the perf~rnia~nce of Viterbi decoding in a jitter doillinant channel, the type 

of channel that describes the optical disc. Perhaps, their Viterbi algorithm could be 

combined with Kobayashi's technique, or our technique of Chapter 2. Many more 



ideas for using superresolution in optical discs has been published in the literature, 

and we have only presented a sampling to introduce previous work related to the 

research presented in this thesis. 

We start our investigation of the limits of information density of optical memories 

by considering the limits of the linear optical system. In Chapter 2 we describe a2n 

experiment to recover information about lines with a width one-fifth the minimum 

resolvable feature size. The result uncovers a.n importaat difference between a8n optical 

memory a.nd a classical optical imaging system: in an optical mernory, we call use 

a prior% iisforrnatiois about the finite number of possible stored states. Therefore, 

we only need to measure which state is present; we do not need to a,ctua,lly i~na~ge 

the state, which would require far more spatial bandwidth. We then try a simple 

a,nd direct approach to the recovery of stored states (pattern of subwavelength lines). 

By co~nparing fax field diffraction measurements of the unknown state to previous 

measurements of known states and the use of a silnple algorithm to make decisions, 

a sequence of states is decoded and the error rate is measured. 

While Chapter 2 is concerned with the resolution of subwavelength pastterns in 

the lateral dimensions, Chapter 3 investigates resolving information stored as depth, 

i.e. the direction of optical propagation. We select the method of conoscopic holog- 

raphy and demonstrate the ability to measure the depth of a reflecting surface with 

an accuracy better than one-tenth the depth of focus. However, since the stored in- 

formation only increases with the logari tllm of the number of available depths, but 

the inverse square of the useful lateral dimension, depth encoding alone cannot give 

nluch improvement in storage density. 

After demonstrating the possibility of storing information with unresolvable fea- 

tures and the utility of depth in Chapters 2 and 3, the last two chapters are devoted 

toward the design a memory to best use these properties. We cannot be in a posi- 

tion to design a memory, or a set of states, that are in any way optimal without a 

satisfactory model of the optical diffraction for such structures. Chapter 4 is devoted 

to the development of a rigorous nunserical method for calculating such diffraction. 

We give the detailed formulation of an integral method designed specifically for large 
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numerical aperture focused beams with nonperiodic structures in two dimensions. 

The numerical method is tested for numerical convergeilce and a,ccllracy, and some 

con~pa~risolis of numerical results axid experimental measurements are also shown. 

We sta,rt Chapter 5 by applying the nunlerical method developed in Chapter 4 

to analyze the optical disc memory format now in use for the compact disc and the 

forinat proposed for the future digital video disc. With the use of the numerical 

method, we discover some subwavelength structures that exhibit remarkably different 

behavior for the two polarizations of the electric field with respect to the groove 

direction. To take advantage of tliese differences, we design a detector which measures 

the amplitude and phase rela,tionship of one p~lariza~tioli with respect to the other. 

A series of futuristic formats which use subwavelength fea8tures and variable depth 

designed to rnaske optimal use of the polarization differences. We dub this i~iethod 

"TM/TE Signaling." 



Chapter 2 Measurement of Unresolvable 

Binary Patterns 

2.1 Introduction 

Resolution in a.n imaging system is limited by its spatial bandwidth. If two pits are 

close together in the object plane, then their inlages in an image plane of an optical 

system will bp smeared together so that they will he difficult to distinguish. In tile 

absence of noise, however, one can always determine that the object corrta.ins two 

pits, no lnatter how close they are or how smeared the image is, because an optical 

imaging system performs a linear and unique transformatioli from the object to tlie 

image. Since tlie Fourier plane contains the same informakion a,s the image plane, but 

in a different representation, the Fourier plane image is also unique. The method of 

analytic continuation[l6] is an attempt to exceed the resolutioli limit by relying on 

the uniqueness of tlie Fourier image. This method predicts the Fourier plane image 

at spatial frequencies beyond those recovered by the imaging system based on the 

part of the Fourier plane that was mea.sured. The reconstructed Fourier plane can 

then be used to calculate an image with greater resolution tha,n otherwise permitted. 

In the presence of noise, however, the predicted part of the Fourier plane will be 

severely donliliated by the noise, and this method will not provide any resolution 

improvement. Thus, noise is what makes two closely spaced objects indistinguishable 

in an optical imaging system, and analytic continuation can only be effective when 

tlie noise level is very low. 

Recovering information in a noisy channel is a somewhat different problem from 

iinaging a completely unkliown object. In a digital memory the information is stored 

by recording codewords which axe elements fro111 a finite set. To read from the mem- 

ory, the detection scheme merely needs to decide which of the possible codewords is 
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present. This problem is very different from the cla$ssical imaging resolution prob- 

lem. Imalging is essentially measurement without any a p riori knowledge, whereas, in 

the meniory detection problem, the set of possible codewords is known heforelma~td. 

Because of this difference, we would not expect tlie classical resolution limits for 

imaging to becolxle fundamental liniits for the density of atn optical memory. When 

the codewords are constructed of features much smaller than the resolution limit of 

tlie optical system, the question becomes how do we determine which codeword is 

present without requiring a reconstructed image. As in analytic continuation, we 

can rely on the uniqueness of the Fourier plane representation. However, there is no 

need to predict the Fourier image for the higher spatial frequencies. We can simply 

compare the measured Fourier plane image to the finite set of Fourier plane ilxages 

corresponding to the finite set of possible codewords and pick the "closest" one. 

Our first task is to demonstrate that, in fact, codewords constructed of unresolv- 

able elements can result in unique measurenients in ail optical i~xiaging system. In 

our demonstration, we will use the Fourier plane of the optical imaging systmm. I11 

order to liniit the nurnber of possible codewords. the illumination will be a tightly 

focused spot. As a result, the space bandwidth product of tlie optical system will 

be near one. Because the object has such a wide spaJtial bandu~idth, while the space 

bandwidth product of tlie iniaging system is near one, we expect the intensity in the 

Fourier plane to be slowly varying across the plajne. We will measure changes in the 

Fourier plane intensity while scanning a test pattern, consistilig of lines one-fifth to 

one-tenth the width of the mininium resolution element, across the focused illumi- 

nation spot. The repeatability of these intensity changes will demonstrate that the 

presence of different codewords can be detected. 

The same principle can be used with an image of the illuminated region rather than 

the Fourier plane representation. However, the image of the region illuminated by the 

small spot will be a bright spot, somehow modulated by the codeword. Because of 

the huge variation in brightmess in the image plane, in contrast to the slowly varying 

iiltensi t y across the Fourier plane, the dynamic range requirement of the recording 

device would be much larger if we were to use the image plane rapther than the Fourier 



plan. 

After the preliminary demonstration of uniqueness in the Fourier image plane for 

unresolva,ble codewords, we are still left with tlie problem of decoding the Fourier 

plane meas~irements and recovering the actual information. In section 2.3 we will 

discuss the design of the test patterns and codewords as well as a decoding algo- 

ritlim. 'rlie decoding algorithlli will use a majority rule to take advantage of repeated 

measurements while scanning the codewords. The decoding will he applied to Fourier 

plane ~nea~surements in an experiment to demonstrate the recovery of information arnd 

determine tlie bit error rate and the a~cliievable channel inforniation capacity. After 

the successful decoding den1oiistra,tion using exprrimental data, we will determine 

the iruprovement thatt an optimal decoding scheme, such as Viterbi decoding, can 

offer. The Vi terbi algorit 11111 is a iliaximum likelihood decoder designed for decoding 

sequences of noisy chailnel symbols, and it is usually applied along with convolutional 

error correcting codes. We will adapt this algorithm to our specific problem and mea- 

sure its perf~rrna~nce improvement over majority rule with a coinputer simulation. 

2.2 Measuring the Presence of Unresolvable Pat- 

terns 

The first step in delllolistrating the possibility of recovering informat ion from optical 

features sr~~aller t hail the classical resoltit ion limit is to show that ineas~ra~ble differ- 

ences exist in the optical measurement of different patterns of unresolvable features. 

The resolution of a microscope with coherent illumination is about X/M [12], where 

X is the wavelength of tlie illunlinatioli and M is the numerical aperture of the mi- 

croscope objective. For X = 0.6328~111 and A4 = 0.7, tlie resolution limit is about 

0.9pm. 

We had a sample fabricated that contained patterns of O.lpm and 0.2pm lines. 

The sample wa.s fabricated at the Jet Propulsion Laboratory (JPL) using electron 

brain lithography with a direct write, lift-off method. The pakterns consisted of a 
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Figure 2.1 : Experimental setup for measuring the intensity in the reflected Fourier 
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silicon substrate with lines of platinum on a titanium adhesion layer. The titanium 

layer was about 75A high and the platinum added about another ~ O O A  in height to 

the lines. All the lines were 10pm long so that we could restrict our superresolution 

measurement to one direction. In the other direction, the lines were arranged in 

repeating patterns with a period of lpm. Having repeating patterns served two 

purposes: since the lines cannot be resolved we need to use the repetition of the 

pat terns as an aid to independently determine the current location of the illumination 

spot, and by comparing measurements spaced lpin apart we can estimate the amount 

of noise in the measurement process. 

The optical measurement system is shown in figure 2.1. The laser illumination 

ha>s a ~a~velength of X = 0.6328pm, and M = 0.7 for the microscope objective. A spa- 

tial filter (not shown) expands the laser beam a i d  ensures a nearly uniform incident 



bean1 to the objective. The objective focuses the incident beam to a spot on the test 

sample and then collects the reflected diffra'cted light. A pair of lenses, forming a 4-f 

system, image the back focal plane (the Fourier plane) of the microscope objective 

onto the CCD ca+mera. The light separated by the beam splitter and not used for 

illuininating the sa,mple can be used to a,djust the focus of the illumination spot on 

the sample by inserting a mirror to form an interferometer. When the ill~unination 

spot is exactly on the surface of the sample, the reflected light becornes a collimated 

plai~ewave (assuming a bla,iik region on the sample is used). In this case, the iilterfer- 

ence pattern formed by the reflection of the focused spot aJnd the reflected plauewave 

fro111 the mirror haJs either 110 fringes, or straight line friiiges, depending on the angle 

of the mirror. If the illumination spot on the sample is out of focus, then the inter- 

ference pattern has curved friiiges. We found that this is a very sensitive nletllod for 

g~a~ra~irteeing the focus of the illuiriiiiatioll spot. 

Since the test pattern has variation in only one direction, we only need to use 

a cross section of the CCD image. For all of our mea.surements, we used a window 

on the CCD image thaat was the complete length of the image in the direction of 

variation and about five or ten pixels in the other direction. The intensity of the 

pixels within the window was then averaged across the narrow direction. The result 

was a one-dimensional graph of intensity versus position in oile direction of the CCD. 

After each mea.surement, the test pattern was translasted O.lpm in the direct'ion of 

variation and a new CCD image recorded. Since we are interested in determining 

the chailge in the CXD image resulting from cha8nges in the test pattern, we calcu- 

lated the difference between each successive intensity profile from the previous profile. 

These difference profiles are wha,t we considered as the signal. Figure 2.2 shows some 

examples of the signal from different parts of the test pattern, and figure 2.3 shows 

two signals measured froill locations on the test pattern l pm apart. Because of the 

l p m  periodicity in the test pa'tterns, the two signals in figure 2.3 should be identic,al, 

and any difference is due to noise in the optical system and inexact movement by 

the tran~la~tioil stage. We measured the noise level present by following the saxlie 

differencing procedure for several steps when no pattern is present. The root mean 



-300 I I I I 

0 100 200 
h9111184.27.dif 

300 

300 
200 
100 . - 

V) 
s 
a, 0 
E -100 - 

-200 
-300 

0 100 200 
h9111184.24.dif 

300 

300 r 17- t --v- 

-300 0 I I 

0 100 200 300 
pixel # 

Figure 2.2: Intensity difference profiles measured for different test patterns 



-300 -- 
I I t I- 

0 100 200 300 
pixel # 

Figure 2.3: Intensity difference profiles measured l pm apart show the measureinent 
is repeat a'ble 

squared (rms) level was then calcula,ted for each pixel. From this noise measurement 

and typical signal measurements, we surmise a signal to noise ratio of about five or 

six. We also found that a significant amount of the signal was simply due to the 

difference in reflection between the platinum and silicon. This difference in reflection 

gives the zero spatial frequency signal, and since our system misses the high spatial 

frequencies, this d~mina~iirr  of the reflectance is not surprising. 

Figures 2.2 and 2.3 demonstrate our first goal. The first figure shows that signifi- 

cant, measurable features in the reflected field can be measured for features that are 

well beyond the classical resolution limit. Each profile in the figure, itself a measure of 

the change in the reflected intensity profile resulting from a 0.lpm shift of a pattern, 

sllows a strong signal well above the noise level. In addition, the three graphs, taken 

froni different regions of the test pat tern, have significant differences in their shape, 

and these differences iinply the possibility of assigning measured intensity pat terns 

to different test patterns so that, given an intensity pattern, the corresponding test 



pattern ran be determined. Figure 2.3 simply demonstrates that all these measured 

differences are not noise or somehow accidental. Of course, we can in no way claim 

tha3t these patterns of 0.1p111 lines are being resolved. Our only statement is that we 

can measure changes in the reflected intensity profiles for different pat terns. 

The results of these measurements can be better understood by consideriilg that 

we made the intensity measurements close to the Fourier plane of the objective lens. 

Because of the linearity of the Fourier transform operation, the Fourier transform of 

each pattern is unique. However, because the pattern consists of lines thajt atre smaller 

than the resolution limit, much of the power in the Fourier transform lies outside the 

aperture of the objective lens. Therefore, only a part of the Fourier transform of the 

pattern is available to be measured. An image of the paitern could not be forined 

with mother lens because not enough of the Fourier field is available. However, 

our experiment shows that even though not enough of the Fourier field is available to 

resolve the pa,ttern, enough of the field is present so that a difference can be measured 

between the Fourier fields for the different patterns. Naturally, because we are only 

measuring intensity and not phase, some degenera,cy will be present between patterns 

tha.t would only have a difference in phase in their Fourier patterns. Many of these 

degeneracies are eliminated, however, because of the shape of the illu~uina~ting spot. 

2.3 The Inverse Problem: Decoding the Message 

from Far Field Measurements 

Now that we have established that different intensity profiles can he reliably mea- 

sured for different patterns of unresolvable lines, we would like to solve the inverse 

problem--determine which pattern is recorded by measuring its reflected intensity 

profile. To a,ccomplish this data recovery, we take advantage of three principles. The 

first principle is to taIke advantage of the property e~ta~blished in the la,st section. 

Since intensity profiles are distinctive for different recorded patterns, we should be 

able to measure a profile and, somehow, relalte it ba,ck to the recorded pattern. How- 



ever, since the intensity profiles do not necessarily have a one to one correspondence 

with the set of codewords, this property alone is not enough. The secoiid principle 

is that if the disc is shifted by one pit between each measurement, then each pit is 

illuminated N times, where N is the number of pits per spot size. This property 

implies that there is redundancy in the measurements. We will take a!clvantage of this 

redundancy when decodiilg the measurements. The last principle is that we know a 

p ~ i o i - i  all the possible patterns; the pit pattern illuminated at any one time can only 

be one of 2N patterns. We shall make use of each of these principles in an attempt 

to experiment ally demonstrate reading a set of sub-wavelengt h lines. 

2.3.1 The Test Patterns and Codewords 

Our test patterns for this experiment were fa,bricated at JPL in a sirnilar rna.nner 

as the sample for the previous measurements. For this experiment, we wanted all 

the possible pa,tterns that fall within a lp1n space. Using 0.2pm lines, there are 

32 such patterns. As in the previous measurement, patterns were repeated every 

Ipm. Because many pa8tterils are simply shifted versions of other patterns, only 

seven basic repeating patterns were required. For example, if the codeword 10000 

(corresponding to a single 0.2prn line and a 0.8pin gap) is repeated, 1000010000, 

and then the illuniinated spot is shifted 0.4pm, the resulting illuminated codeword is 

00010. 

Since the test patterns are made up of 0.2pin lines, and we can make translation 

steps of O.lpm, we cajn add another level of redundancy. We consider the codewords 

to colisist of five lines so that the illumination spot, which is about lpnl  wide, covers 

one codeword. Since a measurement is made after each 0.lpm step, each line is 

measured, as part of soine codeword, ten times. To ease the decoding algorithm, 

we will consider this scheme to consist of a precoder which codes an information 

codeword, c E C, where C is the set of all codewords consisting of five information 

bits, C = (0, lI5, to a channel symbol, i: E 6, the set of codewords consisting of ten 
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cha.nne1 bits, C = (0, 1)''. The precoder perforins the mapping, 

With this precoder, each channel bit is now represented by a 0.1pm line. The precoder 

ensures, however, that a channel bit never appears alone, so that all the lines and 

spaces will be inultiples of 0.2pm. The number of channel symbols is now 63, the 32 

ii~forixiation codewords plus these codewords shifted by 0.lpm. 

2.3.2 Forming the Training Set 

We first need to record the Fourier plane patterns for the 63 channel symbols in 

order to form a training set. The training set can be considered a set of "perfect" 

exainples matching a Fourier plane intensity pattern to each channel symhol. When 

attempting to decode measurements of unknown symbols, we will use the training set 

to inatch Fourier plane measurements. Creating the training set is a chicken-and-egg 

type problem, because we want to know which symbol we are measuring, hut the 

only illformation we have is the ineasurenleilt of the symbol. Our solution to this 

problerrl is to rely on the l pm periodicity of the symbols. Because platinum has a 

greater reflectivity than silicon, the total reflected intensity oscillates with a period of 

l p m  as the patterns are translated under the illumination spot. For example, channel 

symbols with four neighboring platinuill lines will have the brightest reflection when 

the syinbol is {0,0,0,1, I ,  1,1,0,0, O), and the dimmest reflection when the symbol is 

(1,1,0,0,0,0,0,0,1,1). Then, from knowing which block is current and which specific 

intensity profiles correspond to the reflected intensity peaks, the specific assignments 

of channel syi~ibols to nieasured intensity profiles can be made. Since each block 

contaiils seven repetitions of a channel symbol, we call record each symbol seven 

times and use as the training set profile for each symbol the average Fourier intensity 

profile for that symbol. 
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2.3.3 Decoding the Test Set 

Our goal is to measure the far field intensity profiles of a set of unknown patterns 

and attempt to determine the arrangenlent of the measured lines. As expla,iiied 

above, each measurenlent is made after the sample is translated O.lpm, resulting in 

a sequence of redundant measurements. Decoding a sequence of measured profiles 

resulting from a pa,ttern of unkown cha,nnel synlbols is a two step process. The first 

step is to compare each mea,sured profile to the training set measx~rernents to find 

tlie channel symbol that has an intensity profile closest (by some measure) to tlie 

measured profile. The result of this first step is a sequence of channel symbols which 

sho~lld overlap beca,use of the redundancy generated by measuring with O.1pm shifts. 

The second step is to recover the message syinbols from the channel symbols, utilizing 

the redundancy to eliminate errors. Many different methods can be used to perform 

the decoding. The method tha>t we used, and the one that we will describe here, uses 

a simple majority rule to decide each bit. 

The unknown symbols are patterns siinilar to the ones used to generate the train- 

ing set, but written in a clifferelit location on the sample. In the first decoding step, 

each measured profile is compared against the stored training set, apnd the codeword 

corresponding to the training set profile which has the smallest Euclidean dista,nce 

froin the measured profile is selected. The Euclidean distance between a measured 

and stored inteilsity profile is 

where h. is the index for the training set codeword, p; is the intensity of pixel i iu~~lber  

1, a4nd tlie profile has M pixels. The Euclidean distance metric is not the only choice 

for this type of decoding. Another choice might be a correlation type metric. The 

Euclidean distance actually contains the correlation of the profiles; this term becomes 

apparent when expanding the square in the Euclidean distance. The Euclidean dis- 

tance metric, however, also contains terms relating to the total power in each profile. 

Since we already know that our measured profiles contain intensities only of the low 
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spatial frequency colnpoilents of the reflected field, we expect differellces in total re- 

flected power to be a very sig~lificant factor in distinguishing codewords. Our method 

described in the last section for measuring the training set also shows the importance 

in accounting for differences in total intensity. 

Using the Euclidean distance measure, we want to choose the channel syinbol fro111 

the training set that correspollds to the intensity profile with the least distance f ron~  

the measured profile. For lneasurenlent number t ,  the decoded channel syrnbol is, 

2' E 6 such that Df = min D:. (2.3) 
k 

A sequence of measurements, each after a 0. lpm step, produces a sequence of min- 

imum distance channel symbols, {. . .i.'-', i.', i.t+l.. .). As explained in section 2.3.1, 

each channel symbol consists of ten bits, sad a8s explained above, tf and ?'+' over- 

la.p by nine bits. Conversely, each channel bit is incorporated into tell sequential 

channel symbols. By staggering the received channel symbols, each column should 

contain the identical channel bit. For exanlple, consider the received channel symbol. 

= {a0, a l ,  a2, a3, n4, as, ae, a?, as, as}. We ca,n arrange it and the next nine codewords 

in the following manner: 

From the alsove diagram, we see that in the process of choosing the channel codeword 

with the minilnum distance profile to the measured profile, we have taken tell guesses 

a,t the channel bit ag. One simple solution for the final decision of this bit is a, majority 

rule: count the number of ones in a column, and, if the number is greater than five, 

decode the channel bit as a one. 

After the majority rule decision, we have estimates of the channel bits. However, 
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we still need one more step in the decoding process-decoding the 1nessa)ge hits from 

the channel bits. As described in section 2.3.1, the precoder fornls two channel 

bits from each message bit. For this last task in recoveriilg the message, errors in 

synchronicity will cause severe problems. For our purposes, we will assume perfect 

synchronicity, although we will see that in the meassuremelit , synchronicity errors 

will he apparent. In a practical system the synchronicity problem is solved by using 

a.11 additional source code. Assuming that we have perfect synchronicity and that 

we know which two chaun~l  bits belong to the same message bit, our majority rule 

decoding algorith~n is modified to count the number of times two neighboring chanilel 

bits were decoded as a one. 

2.3.4 Bit Error Rate and Information Capacity 

In our llleasuvernent of an independent test set of 420 cl~a~linel bits using the illten- 

sity profiles stored from a training set as described in the previous two sections, we 

obtained a channel symbol error rate of greater than 112. However, since there were 

63 codewords, this error rate is significantly better than random guessing. After the 

decoding, only two message bit errors occurred. The occurrence of two bit errors out 

of 420 channel bits corresponds to a bit error rate on the order of loM2. In addition, 12 

synchronicity errors occurred. Having measured the bit error rate, we can now make 

a statement about the information capacity of storing inforiliation and recoveriilg it 

with this method. If we consider the whole process, starting with a random message, 

writing 0.2pm lines accordilig to a precoded message, and ineasuring and decoding 

as described to produce the estimated message at the output, we can assume a bi- 

nary symmetric chan~lel as a representation. The iliformatio~i ca,pacity of a binary 

sylnrnetric channel is [I 41 

C = 1 - H(t) bits/channel symbol, (2.4) 
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where t is the pr~ba~bility of a channel bit error, and H ( c )  is the entropy function, 

H(t) = - t log, (t) - (1 - t) log,(l - t). (2.5) 

For our measurement of channel bit error rate of about 10-,, the corresponding cha,n- 

nel capacity is about 0.92 bits per channel bit, or 4.6 bits per pni since the ~ha~nnt.1 

has 5 nlessage bits per pm. 

2.4 Alternative Decoding Schemes Using Viterbi 

Decoding 

The lnajority rule decoding, while simple to implement, is probably not the best 

method. Although our majority rule decoder utilizes the measuremeut redundancy 

for each pit, it does not a,ccount for the history of all the other pits sliding beneath the 

spot. Each mea.surement of a specific pit is affected by the other pits appea,ring within 

a snlall distance both before and after, and the measurement of ea,ch of these pits are 

affected I)y other pits, and so on. The majority rule decoder treats measurement as an 

independent trial, whereas if we were to account for previous measurements, certain 

possibilities in the current measurenlent would be eliminated. For example, a,ss~~ming 

again perfect synchronicity, if a pit pattern is somehow known to be (ao, a l ,  az, a3, a4), 

then the measurerrlent after the disc is shifted by one pit must be (al,  a,, a3, a,, as), 

a,nd the only unknown for this pit pattern is as. The majority rule decoder would 

treat the shifted pattern as completely unknown and compare its measurement to all 

possibilities, even though only two possibilities exist. 

A decoding method that fully accounts for the effect of history is Viterbi decod- 

ing [Is]. The Viterbi decoder algorithm is designed to decode sequences of bit vectors 

generated by a convolutional code algorithnl. Convolutional codes are characterized 

by an input information bit vector, a finite state machine, and an output bit vector. 

The output bit vector at any point in the sequence depends on the current state of the 

machine and the input hits. The input bits are the information bits, and the output 



bit vector is tlie chaniiel symbol that is transmitted to the receiver. At the receiver, 

the Viterbi algorithm reconstructs the encoder's path through state space along with 

the information bit sequence. Convolutional codes purposely add redundancy to an 

information stream so that errors that occur after transmission over a noisy channel 

can be corrected by tlle receiver. The redundancy in our sub-wavelength pit menlory 

was not designed in any optimal way as a convolutional code would be. However, a 

similar redundancy is present, and the Viterbi algorithm can be adapted to decode 

the measurelnents in order to take full advantage of the redunclancy. The cost of using 

a Viterbi decoder is tlie added complexity of tlie decoder and increased sensitivity 

to synchroiiizatioi~ errors. The purpose of this section is to explain how the Viterbi 

algoritli~n can be adapted to decode the redundant mea,sureme~lts of our pits, and 

then to compare it to the majority rule algoritl~nl i11 both error rate and complexity. 

2.4.1 Review of Viterbi Decoding 

The best way to consider Viterbi decoding is to think of the information sequence as 

tlie drscription of the time evolution of a finite state machine. A finite state machine 

has a set of possible states, Q, and its state at time step i is q, t Q. For every 

information bit, a,, input to the machine, tlie machine performs two operations: it 

produces an output vector, y,(a,; q,), and it moves to a new state, q,+, . Tlie new state 

depmds on the previous state and the input bit. In addition, the finite state maclline 

is required to have a one-to-one correspondence between an input bit sequence and a 

path through state space, the sequence, q, = {qO, q ~ , .  . . , qA). Similarly, a one-to-one 

correspondence between a path through state space and tlie sequelice of outputs must 

also exist. 

When the outputs, y,, are transniitted across a noisy channel, a Viterbi decoder 

receiving the corrupted sequence, j., , will compute the most likely path through state 

space that produced these outputs. The most likely information sequence is the 

sequence that corresponds to the most likely path through state space. For a decoding 

scheme to be optimal, it must consider all possible sequences. At each time step, the 
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Figure 2.4: The path through state space with its associated metrics. At each time 
step, the Viterbi decoder considers all the possible states (aligned vertically), and 
their associated pa(t1i history, ij, and its metric, D. 

number of possible sequences doubles, since the next bit call be a one or a zero. To 

keep up with this expoi~ential growth in possibilities, the decoder needs to eliminate 

half the possibilities at each time step. This principle of eliinination aIt the same rate 

as the rate of growth is the basis for the Viterbi algorithm. Figure 2.4 outlines the 

process of one time sequence. Each vertical set of states represents all the possible 

machine states. Associated with each state at each time step is a path, ij, of mirlinlum 

metric that ends at that state. Associated with that path is its metric, D. Each 

possible machine state has branches leading out to two states ast the next time step, 

and each state at the next time step has two possible branches leading in froin the 

previous time step. Each branch also has an associated output vector, y(a;  q) .  

Consider the state, q ,  att time step i + 1. It has two branches leading into it, and 

each branch comes from a sta,te with an associated path history a,nd metric. However, 

from time step i + 1 forward, since the two bra,nches merge at state q, they will follow 

identical paths. Therefore, at this time step, we can elliininate the less likely. For 

example, suppose at time step i $1 the two branches leading into state q are fro111 the 
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stakes q0 and ql. State q0 has the associated path $' and metric DP, and q1 has ijt and 

Di . The output associated with the hranch from qo to q is ~ ( n ' ;  q0), and the output 

for the other branch is y(al;  ql).  We want to eliminate the least likely possibility. 

Then, the new nletric for state q is 

where d(y,, y )  is a distance measure betwee11 the received noisy channel symbol, 9i, 
and the branch label y .  The new path for state q is updated to iji+l = { i j : ,  g-'). In this 

manner, the path history and associated metric are updated for each state during 

each time step. At the end of the information sequence, the overall most likely path 

is the one with lowest associated metric. However, since most information sequences 

are quite long, waiting until the end is impractical. Typically, the path histories are 

truncated after a certain fixed length. The decoder output at each time step is then 

the oldest bit of the path with the lowest metric. 

2.4.2 Applying Viterbi Decoding to Measuremer~ts of the 

Small Pits 

To adapt the Viterbi algorithm to our problem of decoding the Fourier plane mea- 

surements of the small lines, we need to define the states, the branch la,bels, and 

the metric. There a,re inany possibilities, a.nd proving that one choice is better than 

a,nother, except by simulation, is very difficult. Perhaps the most natural choice is 

to define the finite state inachine as having thirty-two states, described by the five 

inessage bits tha,t are illuminated by the focused spot. If the test pattern steps to 

the left, then the time evolution in state space describes the left most bit sliding out 

from under the spot while a new bit slides in from the right, and the other four bits 

shift one place to the left. The branch label, the finite state machine's output, is 

the intensity measurement in the Fourier plane for the current state. Since two steps 

and two measurements will be made before the next state is completely under the 
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spot, we can add to tlie branch label the mea.sureinent after the first step. Thus, the 

branch label is the pair of vectors, 

In the above equation, I (u;  q) represents the intensity in the Fourier plane along 

the rc axis, when the state q is illuminated. The state q, represeiits the state q af- 

ter a single step of O.lpm so that the first half of the iiiput message bit a is now 

illuminated. TJsing channel symbols, if q = {no, no, a l ,  a1 , az, az, as, a3, ad, ad), then 

q, = {ao, a l ,  a l ,  az, az, as, a:3, ad, ad, a5), where a5 is the next iiiput message bit. Look- 

ing at the state at the next titne step, we clearly see tha't it has two branches leading 

in: one sta.te is for the exiting bit equal to one, and the other for the exiting bit equal 

to zero. The last definition that we need to make is tlie metric. Assuming tha,t we 

sonlellow know, possibly t hrough measurement as we did for the majority rule decod- 

ing, "perfect" examples of the branch labels, we can define the metric using Euclideail 

tlistances between two successive iioisy measurements and the two intensity profiles 

in the branch labels so tlia,t 

d ( f i ,  y(a;  q)) = C(i io (u)  - I (u;  q))2 -I- C(iil(~) - I(u; ~ C L ) ) ~ .  (2.8) 
U, 7L 

A h 

Iio and Iil a,re two noisy nieasurements made one step apart, and, a,s previously st'ated. 

we are assuming perfect synchronization. 

2.4.3 Comparison of Majority Rule and Viterbi Decoding by 

Numerical Simulat ion 

Now that we have described how Viterbi decoding can be used instead of the majority 

rule decoder employed in the experiment in section 2.3, we need to compare the two 

methods to determine if Viterbi decoding offers a significant improvement. In the 

experi~nenta~l measurement of bit error rake, our sample contained only a few hundred 

independent message bits. If Viterbi decoding has a,ny improvemelit on the ma<jority 



rule decoding, we would not be able to experimentally measure the improved bit error 

ra,te simply beca.use not enough bits are present to make a, reaasona8ble measurement. 

Instead, we use a ~iumerical estimate. 

Our numerical simulation uses scalar diffraction theory to calculate the Fourier 

plane intensity patterns. Normally, diffraction from objects with feature sizes less 

than the wavelengtl~ require vector diffraction theory for an accurate calculation. 

However, our main focus with this nunierical siniulation is the comparison of the 

two decoding methods. As long as the intensity patterns calculated with the simpler 

scala,r diffract ion nlalint ain rea~ona~ble distances in relation to the message codewords, 

then any significa.nt difference in the performa,nce of the two decoding methods sllould 

generalize to the case of vector diffraction. 

The silii~~lation algorithl~i for measuring bit error rate as a function of signal to 

noise ratio (SNR) is shown in figure 2.5. The branch labels are first calculated with 

scalar diffraction and tabula.ted. A random number generator produces a niessa&ge bit 

which is sent to the precoder. The precoder fornis tlie appropriate channel symbol, 

and its channel output (Fourier plane measurement) is taken from the t a,bulated scalar 

diffraction calcula,tion. White Gaussian noise is added to each of the eleven equally 

spaced points in the Fourier plane, thus forming the noisy channel data. Because the 

channel sy~~ibols do riot ha,ve zero mean, the symbol energy used to determine the 

signal to noise ratio (SNR) must first have the mean subtracted. Our nunierical sim- 

ulatiorl does not include jitter noise so that the assumption of perfect synchronization 

is satisfied. The decoder, whether the Viterbi algorithm or the majority rule algo- 

rithm, takes the noisy channel data and uses the stored branch labels to produce an 

output bit. Finally, the output bit is compared to the original message bit. Figure 2.6 

plots the bit error rates as a function of SNR for both tlie majority rule algorithm 

used in tlie experiment and the adapted Viterbi algorithm as described above. We 

also included a, plot for the raw symbol error rate. Specifically, we used the symbols 

for the Viterbi decoding scheme, and we counted a symbol error whenever the branch 

with tlie minimum distance to the noisy symbol was not the same as the symbol 

before noise was added. 



Figure 2.5: Simulating a noisy channel with Viterbi decoding or majority rule decod- 
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Figure 2.6: Comparison of the bit error rates for the Viterbi algorithm a'nd the 
majority rule algorithm as well as the raw symbol error rate. 



While our simulation demonstrates that Viterbi decoding can improve the decod- 

ing of uliknown, unresolvable pit patterns, the simulation neglected several factors. 

The simulation assunies perfect synchronization between the channel bits and the 

measurements. If jitter noise were present, then there would be errors resultitlg from 

missing, repeated, or off center channel bits. In these ca,ses, accounting for path his- 

tory might actually become a liability, since a liiissing bit would ha,ve the effect of 

a state jump that has no corresponding branch. The noise that was added to the 

Fourier plane intensity profiles was independelit from one point in the Fourier plane 

to another. This independence is mostly true for noise sources at the detectors, but 

for noise sources at the sample, for example, a dust spot covering a line, would have 

an effect across the Fourier plane. Thus, noise related to sample fabrication and the 

optical system would result in correlated noise in the Fourier plane measurement. One 

possihle solution might he to add white noise to the channel symbol before using the 

scalar diffract ion model, and then add more to the calculated Fourier plane intensity 

profile. 

2.5 Conclusion 

We started by stating the differences between imaging a completely unknown object. 

and deciding which pattern, from a fiiiite set of possible pa$tterns, is present. By 

rnakiilg use of a priori information, patterns with features well beyond the resolu- 

tion limit can be detected. First we demonstrated that simple llleasurements in the 

Fourier plane can distinguish between different patterns. We were then able to decode 

and make decisions about which patterns were present by making use of redundant 

measurements. IJsilig a simple majority rule decoder, we were able to decode pat- 

terns of O.2pm lines with a bit error rate of about Finally, we simulated the 

decision process to estimate the improvement that Viterbi decoding can offer over the 

inajority rule algorithm. 



Chapter 3 Surface Depth Measurement 

with Conoscopic Holography 

3.1 Introduction 

I11 the last chapter we considered the resolution of snia811 feakures in the transverse di- 

rection across a sample. In this chapter we investigate the resolution of measuremelits 

of depth. Since we eventually want to measure the depth of snlall features, we will 

keep the same basic optical configuration of a beam focused through a high ~~umerical  

aperture lens onto a sample. For this type of system, the depth of the illuminated 

region of the sample is best nieasured relative to the focal plane. Therefore, for the 

remainder of the cha'pter, we will refer to depth as the distance to the focal plane. 

The basic purpose of this investigation is to evaluate the possibility of using depth 

encoding in an optical memory. 

There are several methods for measuring depth. One obvious method of measur- 

ing small changes in the depth of a reflecting surface is interferonietry. In fact, we 

explained in tlie last chapter how we used an interferometer to accurately f o c ~ ~ s  the 

incident spot. The basic problem with interferometry is that the fringes are ambigu- 

ous for depths greater than half a wavelength. Two ways to solve the anibiguity is 

to use two wavelengths or to use the information contained in the curvature of the 

fringes. The fringes will have curvature if the reflecting surface is not in the focal 

plane. 

Another common system for measuring depth is the confocal microscope. In a 

confocal microscope, the reflected spot is imaged onto a pinhole. If the reflecting 

surface moves out of the focal plane, then the image of the focused spot at the 

pinhole will also move out of the pinhole plane, resulting in less light passing through 

the pinhole. Unless the pinhole is actively swept along the axis for each measurement, 



then simply nleasuring the intensity that passes through the pinhole is ambiguous. 

because the intensity alone does not determine whether the imaged spot is hefore or 

a8fter the pinhole. 

The method that we will consider in this chapter is conoscopic holography. Cone- 

scopic holography has the advanta,ge of being a8s accurate a's confocal inicroscopy a%nd 

much siinpler to adapt to quick depth measurements. Also, conoscopic holography 

has no inherent ambiguity. In the next section, we describe conoscopic holography 

in detail. We then describe the optimal design of a pit depth memory with the re- 

striction that the encoded pits are big enough to allow a simple depth i~leasurement 

technique. I11 section 3.4 we merge conoscopic holography and the pit depth mem- 

ory. In this sectioii we also describe a significa~~t feasture of consocopic l~ologra~phy for 

depth ineasurement-t he trade-off between unambiguous ra,nge and sensitivity is a 

simple design parameter. We tested our conoscopic measurement system with sample 

pits, and we describe the results at the end. 

3.2 Conoscopic Holography 

Conoscopic hol~gra~phy, invented by Sirat and Psaltis [10, 111, is similar to cnnven- 

tional holography and interferometry in the sense tha,t it meassures wavefront curva- 

ture. However, conoscopic holography works with the pola.rization of the light, and 

the light can be either coherent or incoherent. The basic configuration for conoscopic 

holography is shown in figure 3.1. Light eina,nating from a point source is pola,rized 

and passes through a birefringent crystal. Because the light from a point source has 

a spherical wavefront, the light passing through the crystal is comprised of a spec- 

trum of pla,newaves. The electric field of each planewave is rotated by the crystal's 

birefringence, and the crystal's birefringence depends on the planewave's angle with 

respect to the crystal's optical axis. The analyzer after the crysta,l will pass only those 

planewaves whose polarization was rotated the right amount by the crystal. The re- 

sulting intensity on the screen consists of circular fringes, where the fringe spacing 

depends on the angular spectrum and distance to the point source, and the center of 
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Figure 3.1: Basic conoscopic holography configuration. 

the fringes corresponds to the lateral position of the point source. 

Consider a single planewave emanating from the point source. The electric field of 

the planewave has both an Ex and an E y  component. Taking the optical axis of the 

crystal to be the t axis of the system, suppose that the direction of propagation of 

the planewave is cos(6)i +sin(@)$. Then, propagation through the crystal will cause a 

phase delay of approximately ejhoL for Ex, and ejkne(@IL for Ey , where no and la, are 

the ordinary and extraordinary index of refraction for the crystal. The extraordinary 

index of refraction is a function of the angle of propagation and is given approximately 

by [12] 

If the polarizer is oriented to pass light with polarization 45' to the y axis, then 

"interference" between the Ex and E y  polarizations will result when the electric field 

is projected onto the analyzer, 
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The intensity on the screen resulting from a point source located at the point, P, with 

intensity, I(P), is then 

The fringe spacing on the screen depends on the sin20 term. If the angle 0 is kept 

reasonably small, as is typically the case, then we can make the paraxial approxima- 

sin2@ x [(s - x')' + (y - y')2]/r2. 

We can now see tha3t the fringe spacing on the screen ha8s a strong dependence on 

I, the distance from the point source to the screen, and the center of the fringes 

corresponds to the lateral position of the point source. If more than one point source 

were present, then the intensity on the screen would be the sum of the fringes from 

each point source. 

3.3 Design of a Pit Depth Memory 

We wish to design the pit format to maximize the information density over the area of 

the memory. Obviously, we will achieve the rnaxinlum density when the pit area is as 

s~nall  as possible and the variation in pit depth is as large as possible. Tlle apniount of 

information that the depth of each pit can represent depends on the range of possible 

depths tlmt the pit can have and the average uncertainty of the depth measurement. 

The uncertainty, or noise, that is inherently present when measuring the depth of 

a pit has several sources. Fabrication niay have ilonuniforniities so that pits with 

the same no~ninal value will have different actual depths. Sources of noise for the 

rnea2surernent include all the traditional noises, such as laser noise and vibrations, as 

well ass, for a spinning disc, jitter. If all these uncertanties are combined into one 

number, a,, then the number of discernible pit depths out of a maximum depth, L, is 

about Lla,. The amount of information ca,rried by each pit, measured in bits, would 



then equal to log, (Llo, ) . 

The limit at ion to the maximum allowable pit depth conles from the depth of focus 

of the illuminating spot. When reading from an optical memory, laser light is focused 

by an objective lens onto each pit as the disc rotates. The width of the spot at the 

focal plane is approximately X/iM, where X is the wavelength and M is the objective's 

numerical aperture. The spot maintains this approximate width over the depth of 

focns, which is about X / 2 M 2  [21]. However, the spot width becomes approximately 

proportional to z outside the depth of focus. If the focal plane correspollds to the 

ixiiddle pit depth level, then the spot width at the top- depth equal to zero-equals 

the spot size at the bottom--depth equal to maximum. The limitation on the max- 

inlurll depth is then the depth at which the spot width becomes so wide that effects 

such as crosstalk with neighboring pits beconie a problem. 

We have just explained two forces deterini~ling the maximum pit depth, L. The 

amouilt of information each pit can store is proportional to the logarithm of L and 

calls for a large L. In contrast, the limited depth of focus requires a limited L,  and the 

spatial pit density, determined by the illaximum spot width, is proportional to 1 /L2. 

To calculate the optiillum L,  we plot the information density, I = log,(L/oi)/zu2 

bits/pn2,  where ru is the spot width for a defocus of ,312. (figure 3.2). The graph 

shows that for an objective with M = 0J"i' the optimum L is about LOpt 0.6X, and 

that it does not strongly depend on o,. 

In summary, if we are to improve the information density of an optical disc memory 

by employing pit depth encoding, then the range of available pit depths is limited. 

IJsing overly large pit depths would require increasing the lateral dimensions of the 

pit, causing a loss in pit density and overall information density. Given the limit on 

maximum pit depth, the rlieasurement resolution, oz, becomes the crucial parameter. 

The uncertainty must be reduced, by good fabrication and a sensitive measuren~ent 

technique, to the order of L/4 or L/8, without any increase in the pit width, for pit 

depth encoding to be a viable improvement. 
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Figure 3.2: Information density ass a function of the allowable pit depth, L. 

3.4 System Design for a Conoscopic Pit Depth 

Memory 

We now wish to adapt the conoscopic technique to measure the depth of pits in our op- 

tical memory. We will see that with conoscopic holography, we can design the system 

for specific sensitivity and tlnambiguous range of measurement. Another important 

advantage that this technique has over interferometry and confocal microscopy is that 

sensitivity to alignment and vibrations are reduced. For the pit depth rnrmory, we 

are mai~lly interested in measuring the depth of a pit. Measurenlent of the lateral 

position of the pit is automatic from the rotation of the disc and the positioil of the 

objective lens along the track. We can assume that the current tracking techniques 

used on an optical disc ca'n be used on our pit depth memory. If we consider the re- 

flection of a focused spot from the bottom of a pit as the point source for a conoscopic 

system, then measuring the distance 2 gives the depth of the pit. If the objrctive is 

placed so tha,t the reflecting surface of the pit is exactly in the focal plane of the lms, 

then the reflected light will be collimated by the lens. Variation in the pit depth will 

cause vacriation in the collimation of the return light, and this varia'tion is what we 



will rnea,sure with the conoscopic system. 

The placement of the birefringeilt crystal has three possibilities. It can be placed 

between the lens and the disc surface, in the collimated reflected light, or the lens 

itself can incorporate hirefringelit material. Placing the crystal in the path of the 

focused light has some severe disadvantages. First, pr~pa~gation of the focusing light 

throllgli tlie crystal will induce spherical alberration, increasing the size of the focused 

spot. The objective lens call be redesigned to account for the aber~a~tion, except 

that the aberration will be slightly different for each polarization. Further, the space 

between tlie objective lens and the disc is only a few millimeters. Since the length 

of the crystal directly affects the sensitivity of the ~neasurement, we would like to 

use a crystal longer than a few millimeters. Finally, the sensitivity and unambiguous 

range of the measurement will be fixed by the numerical aperture of the objective 

lens. We would like to be able to adjust these parameters to fit our needs. We did not 

investigate the use of a lens made from a birefringent material because of the difficulty 

in obtainiiig such a lens. Perhaps in the future, with the development of birefriiigent 

diffractive optical elements, the use of a birefri~lgent lens in conoscopic holography 

can 11e pursued. Figure 3.3 shows a tilted crystal placed in the path of the nearly 

collirnatecl light reflected from the bottom of a pit. If the pit depth, 2 ,  is exactly equal 

to the focal plane of the objective lens, then the light propagating through the crystal 

is exactly collimated and no fringes will appear on the screen. By tilting the crystal, 

the angle B in 3.3 becoines biased by the angle of the crystal. When the reflected light 

is collimated, the intensity on the screen oscillates from bright to dark as the crystal 

is tilted. Because the fringe spacing has a quadratic dependence on sinB, the fringe 

spacing, or the rate of oscillation, becomes faster for greater tilts. Therefore, tilting 

the crystal increases the systeins sensitivity to changes in the reflected light's degree 

of collimation. Since the degree of collimation depends on the pit depth in relation 

to the focal plane of the objective lens, the conoscopic system with the tilted crystal 

is a,n effective technique for measuring the pit dept 11. 

Becaruse speed is very irnporta4nt in an optical memory, we would like to keep the 

number of detectors small and the complexity of decoding limited. For example, if we 
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Figure 3.3: Conoscopic pit depth measurement with a tilted crystal. 

were to design a system that counted fringes to determine the pit depth, then both 

the number of detectors would have to be large, and a time consuming algorithm 

would have to used. However, if the number of detectors is limited, then there will 

be ambiguous pit depths. The ambiguity results when the fringe spacing becomes 

smaller than twice the detector spacing. This aliasing will cause the detectors to 

measure the same intensity pattern as though the fringes were very large. 

Our solution is to set the unambiguous range of measurement equal to the max- 

imum range of pit depths. We can set the unambiguous ra,nge of measurement by 

adjusting the tilt of the crystal. As we have already mentioned, tilting the crystal 

increases the fringe sensitivity to changes in pit depth. Therefore, we need only to 

find the crystal tilt where a change from no fringes to one fringe corresponds to a 

change in the pit depth of half its maximum. The reason we specify a change in pit 

depth of half the maximum is because we are assuming that the focal plane of the ob- 

jective lens is at half the maximum pit depth. In that case, the fringe caused by zero 

pit depth is 180" out of phase with the fringe caused by maximum pit depth. With 
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this design where we use a single fringe for maximum pit depth, only two detectors 

are required in the output plane. The detectors can be connected to a differential 

amplifier so that the voltage is zero for a pit of half depth, positive for a pit of full 

depth, and negative for a pit of zero depth. 

As is shown in figure 3.3, an optical path length difference, D, between the ordi- 

nary, Do, and extraordinary, D,, rays of half a waveleligth will cause the fornlatioll 

of one fringe on the screen. From the figure, we know that the optical path length 

difference is 

where 4, and (I, are the angles the ordinary and extraordinary rays make with the 

crystal surface normal, and we have assumed that the optical axis of the crystal is 

perpendicular to the crystal surface. Snell's law relates the ray angles with the crystal 

ti1 t angle, $, so that D call be expressed as a function of the crystal tilt angle as 

By using Silell's law in e q ~ a ~ t i o n  3.6, we have implicitly made the approxiixation that 

the direciion of propagation inside the crystal is normal to the electric field, which is 

not correct for a birefringmt crystal. However, as long as the angle 4~ is kept small, 

this approximation yields useful results. When the point source (bottom surface of 

the pit) is exactly in the focal plane of the Iens, then the angle $ is constant over the 

whole cry st a1 entrance. However, if the source is defocused, then the entrance angle 

depends on the lateral position along the crystal. We will call the angular deviation 

fro111 collimation Zj" (.T, 31, s being the lateral position and z the dist ante from the lens 

to the point source. With this notation the angle between a ray entering the crystal 

and the crystal normal is $1 + 9!1'(2,t). For small deviations from focus, the angular 



fuiiction is approximately, 

where f is the foca,l length of the lens. At the exit of the crystal, tlie ordina,ry 

and extraordinary rays that coincide did not enter the crystal at the sa,me lateral 

position. The lateral shift, &x, can be calculated a,s a function of the crystal tilt from 

the geoinetry and Snell's la,w, and it is 

The path length difference between the ordinary aild extraordinary razys that coincide 

at the crystal exit can now be determined by substitutiiig for $ in equa,tion 3.6 

The ordinary and extraordinary rays that coincide at tlie crystal exit have slightly 

different propagation directions because they caine fro111 different lateral positions 

at the entrance, but we will ignore this difference so that the optical patli length 

difference as a function of lateral position at tlie crystal exit is the same at tlle polar- 

izer. As we have already discussed, the polarizer "interferes" the ordinary polarized 

light against tlie extraordinary polarized light by taking the projection of tlie electric 

field, preferably onto a direction 45' with respect to the ordinary or extraordinary 

directions. Since the ordinary light is phase delayed by D(JJ;  z) with respect to the 

extraordinary light, the intensity after the polarizer is proportional to 

E~lua~tions 3. '7,3.9, atnd 3.10 completely deternline the fringe spacing for various crystal 
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Figure 3.4: Optical path length difference as a function of tilt for a 37mm calcite 
crystal and a lens of l"P1 = 0.7. 

tilts and lens defocusing. 

Our stated goal is to choose a crystal tilt thak produces half a fringe when the 

defocus is half the niaximuln pit depth. The lateral extent (the maximum .r value) is 

a,pproximately the lens's focal length multiplied by its numerical aperture. To have 

half a fringe we require 

Figure 3.4 plots the above difference in optical path length as a functioil of crystal 

tilt, 1 / ~ ,  for L=37mrn, no - n,=0.17 (calcite crystal), N1=0.7, and the rnaxilnunl de- 

focus, t=1.5pnl. From the graph we see that a crystal tilt of about 21" satisfies the 

condition 3.11. To verify this calculation we compared the image after the output 

polarizer for two cases (figure 3.5). The image, "21 degree tilt, focused," is the cono- 

scopic image for a reflecting surface placed exactly in the focal plane of the objective 

lens, and the image, "21 degree tilt, defocused 1.5 micron," shows the resulting fringe 

when the reflecting surface is displaced from the focal plane by 1.5pm. Both figures 
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21 degree tilt, focused 

21 degree tilt, defocused 1.5 micron 

Figure 3.5: Measured conoscopic patterns 



Figure 3.6: Linea,r Response 

clearly show the la4teral displacement between the ordina,ry and extra~rdina~ry beams, 

and the "interference" occurs only where they overlap. The image actuaily shows 

two fringes. Our calculation was for a point source movement of 1.5/1111. However, 

because in our experiment we instead moved a reflective surface without changing 

the focus of the incident light, the corresponding point source Inovenlent is twice the 

movement of the reflective surface. 

To measure the sensitivity to changes in z ,  we used one detector and an iris to 

block half the fringe. A reflecting planar surface was then stepped through the focal 

plane of an objective lens with N1 = 0.7. The steps were 0.lpin. Figure 3.6 shows the 

intensity at the detector as a function of defocus. The crystal tilt for this ineasurement 

was about 12". The graph shows a relatively linear response over a 3pm range. 

We now can design the conoscopic measurement to produce one fringe for a spec- 

ified displacement (and the ~omplirnenta~ry fringe for an equal displacement in the 
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Figure 3.7: Conoscopic read head 

opposite direction). The best way to measure the one fringe with a small number of 

detectors is to place two detectors symmetrically across the fringe and subtract their 

currents in a differential amplifier. Also, to utilize all the available light, a polarizing 

beam splitter should be used instead of the polarizer. Duplicate and c~inplimenta~ry 

detector planes are at the output of the beam splitter. Subtracting the signal from 

each detector pair gives a stronger conoscopic signal, and adding them gives a signal 

with the conoscopic part removed. The addition signal can be used for controls such 

as the tracking servo. The conoscopic read head for a pit depth encoded memory is 

show11 in figure 3.7. 

3.5 Pit Depth Measurement Results 

To test the principle of the conoscopic read head with actual pits, we had a sample 

fabricated with patterns of pits with various widths and depths. The sample was 

fabricated at the Jet Propulsion Laboratory (JPL) using electron beam lithography. 



Pits of va'ryiiig depth were created in PMMA by modulating the electron beam expo- 

sure. The sample was then made reflective by evaporating about 200 A of aluminum 

onto the surface. Figure 3.8 shows two scanning electron microscope (SEM) pictures 

tarken from different regions of the sample. 

Our measurements were made with a system similar to figure 3.7, except that we 

used only one detector and an iris in the detector plane so that only half a fringe 

would be visible. The wavelength was 0.6328~1~1, and the 1% was 0.7. To mea8sure the 

conoscopic signal as the staircase of pits passes under the spot, we first positioned 

a pit with half the full depth under the spot and set the objective lens focus and 

the crystal tilt. Figure 3.9a shows the conoscopic response as a staircase of 4pm pit,s 

passes undernea.tli the spot. The response shows an overall linear dependence on pit 

depth. The fast oscillations are due to diffraction as tlle spot traverses tlie edges of the 

pits. I11 the SEM picture some roughness at the bottom of the deeper pits is evident, 

and diEraction from this roughness seems to disturb the conoscopic signal. We also 

performed the same measurement after renloviiig t lie polarizer (figure 3.9 b. Without 

the polarizer, we are simply measuring reflected intensity and no coiloscopic signal is 

present. We know that the response measured in figure 3.9a is truly the conoscopic 

response because without the polarizer there is no signal present. The sharp drop 

that occurs at the same location in both responses is apparently diffraction due to a 

ridge that in the saniple as a result of a small placement error during the lithography. 

When we tried the same measurement with tlie l pm wide pits, diffraction from the 

pits dominated over the conoscopic signal so that there was little difference between 

the conoscopic measurement and the measurement without the pola'rizer. Switching 

to an objective lens with a iluinerical aperture of 0.9 did not ma,ke any improvement. 

3.6 Conclusion 

Conoscopic holography is capable of measuring the depth of a surface with very high 

accuracy. In our first experimmt, we translated a reflecting surfa'ce through a focused 

spot and measured the relative distance of the surface without the axnbiguity that 
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Figure 3.8: 4pm and lpm wide staircases of pits in the JPL sample 
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Figure 3.9: Detected light intensity versus pit depth a. conoscopic method b. polarizer 
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would be present in an interferornetric system or a confocal system. The accuracy in 

depth of our basic conoscopic system was better than O.1pm. 

When we applied the conoscopic depth measuring system to an optical memory 

with pit depth encoding, we found that for the small pits of an ordinary optical 

memory, the conoscopic signal was lost to the eflects of diffraction. We were successful 

in demonstrating the conoscopic system with pits that were 4pm wide. However, the 

inforination density with 4pm pits of 16 levels is only about 1 bit/pm2. This density 

is not any real iri~provement over current state of the art. If we make the pit smaller, 

then diffraction effects ruin any direct measurement of the pit depth. Therefore. 

to make ally iinproveinent on the current optical disc storage density. even using 

pit depth encoding, we need a better model which includes accurate prediction of 

diflract ion. 



Chapter 4 Rigorous Diffraction of 

Focused Spots on Small Structures 

4.1 Introduction 

In Chalpter 2 we learned that the far field diffra'ction of a subwa'velength structure 

can l ~ e  large enough to enable recovery of information about the structllre, and the 

results from Chapter 3 illustrated the necessity of considering the diffraction if we 

are to inlprove data storage capacity of a planar medium. An accurate tool for 

niodeling diffracttion from subwavelength ~truct~ures would be a useful tool to proceed 

further. With an accurate diffraction model, we would be able to design structures 

with desirable far field properties. For example, we could search for patterns that have 

far fields that are rnaxinlally separated in the manner of Chapter 2. Another use of 

a model is to explain the diffraction phenomena observed in Chapter 3 .  Other uses 

might he for the inspection of submicron features fabricated in the microelectrollics 

industry and for the analysis of optical memory formats. 

111 this chapter, we will develop a method to numerically calculate diffraction for 

focused laser spots incident on subwavelength structures. Properties of a method 

that would be desirable a,re accuracy, simplicity, and c~mputa~tional efficiency. It 

must work for tightly foc,used spots with large numerical apertures, a,nd nonperiodic, 

asymmetric surfaces. In the measurements described in Chapter 2, we found that 

significant differelices existed for the TE  and TM polarizations, especially for the 

deeper structures. Therefore, we cannot expect any scalar diffraction method to give 

satisfactory results. In fa2ct, significant differences in the diffraction for TE  and TM 

fields will be exploited in the next chapter. 

There are several numerical vector diffraction liietbods described in various pub- 

lications. We want to select the method that best suits our particular problem. Most 
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iiurllerical methods, however? are designed for periodic structures and planewave in- 

cidence. For exa~ilple, the integral method invented by Petit and iliiproved on by 

Wirgin [22, 241, the coupled-mode methods [41, 421, and the coupled-wave meth- 

ods [34, 35 ? 36, 371 make these assumptions. Beca,use these well-developed methods 

are not appropriate for our problem, we must take a step backwards and sta.rt with 

a more general approach. The two most general approaches to numerical solutions 

of Maxwell's equations are the integral approach and the differential approach. Ex- 

amples of some differential approaches are finite differences, finite eleineilt analysis, 

and the more recent finite difference time domain (FDTD) method. In general, these 

methods are best when the problem is contained wit#hin finite boundaries? or when 

the fields on a boundary or iiiitial conditions are known exactly. However, since we 

are working with incident fields with sources far from the structure, and the structure 

is not a perfect conductor-ilnplying that our boundary conditions are continuity of 

the fields not the fields themselves-these types of differential metliods would have to 

he adapted. The most natural approach seems to be the integral method as described 

in De Hoop [Is]. 

In this chapter we will develop and test a numerical diffraction method based on 

coupled integral equations. Beginlling with lWaxwell's equations, the ~nathemat ical 

forinl~lation derives expressiolls for the electric and magnetic fields inside a volume. 

Each expression involves a coiivolution of the tangential fields on the volume's sur- 

face with the electromagnetic Green's function. These same expressions are writ ten 

a second time to use the tangential surface fields to calculate the fields outside the 

volume. After matching boundary conditions by equating the tangential components 

of the fields on either side of the surface (inside and outside the volunle), coupled in- 

tegral equations are formed for the tangential fields theniselves. Writing a computer 

program to numerically solve the coupled integral equations is not simple, and we will 

make several choices in the implementation, which will be described. Any compli- 

cated numerical method needs to be fully tested for both ~nistakes in the formulation 

and overall numerical accuracy, and we will describe several methods of testing. In 

section 4.3 we will compare the convergence properties of our integral method to the 
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Figure 4.1: The basic diffraction model addressed in this chapter. 

rigorous coupled-wave method[34]. We chose to compare against this method because 

of its popularity and simplicity. In the last section, we will compare results of our 

numerical met hod to experimental diffraction measurements for two cases. 

4.2 Integral Method 

Our diffraction model (figure 4.1) consists of a substrate surface with a known con- 

tour and an incident field resulting from a beam focused through an objective with 

a known numerical aperture. Most numerical diffraction approaches, such as the 

coupled-wave and coupled mode methods, require a periodic diffracting structure 

and a planewave incident field. For a focused incident spot on a single groove, these 

methods could be used by making the grating period large and separately accounting 

for each planewave that makes up the focused spot. However, the number of orders 

required in the diffra'ction calculation, because of the large period, will cause a bur- 

den on time and memory of the computation, and this computation time must be 

multiplied by the number of planewaves that are to be considered in composing the 

focused spot. Therefore, we decided to pursue a more direct integration technique 

which will allow us to calculate the diffraction directly from the focused incident field 

and a single groove. 
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Otller alternatives to the integra,l met hod are finite differences, finite difference 

time dosnaiii, and finite element analysis. The advantages of these iiiethods are that 

numerical isltegra,tiosls are not required, and, for finite differences, the formulation 

is sonlewbat simpler. The disadvantages of these methods are that grid points are 

placed throughout the whole volume, rather than just on the surface as in the integral 

method. With such a large number of grid points, the matrices become very large, 

although sparse. Other questions about t hese methods are the convergence properties 

and how to restrict the boundaries which are at infinity. In suillmary, however, one 

cannot decisively say that one method is better than all the rest for solving our class 

of problems, and our choice of the integral method is sisnply a cl~oice. 

We will formulate the numerical approach in two basic steps. First, we will derive 

the coupled integral equations for the fields in all space for the simple, general problem 

of ail arbitrary incident field scattered from a single object. In the second part, we 

will make specific choices and shape the equations to numerically solve our specific 

type of diffraction problem. After describing our nus~lerical algorithm, we will discuss 

various methods for testing the ilumerical results, and, in that last section, we will 

compare ilurnerical results to experiment a1 n~ea,surement. 

4.2. l Detailed Formulation 

The formulation for the integral method of numerical diffraction is described in detail 

by de Hoop[18] and Pasman[lS], and specific operator matrices for the two polariza- 

tions in two-dimensional diffraction problems are given in the appendix of Dil and 

Jacobs [l'7]. In the formulation presented here, we start with Maxwell's equations for 

the fields with an arbitrary geometry (figure 4.2), and solve for the fields in each 

region in terms of the tangential fields at the bouildary between the two regions. 

The tangential fields can also be thought of as surface electric and niagiietic currents, 

which act as sources for the scattered fields in each region. By integratiiig Maxwell's 

equations, we express the fields in each region with integral operators on the surface 

currents. The operators include convolution integrals of the surface currents with the 



Figure 4.2: General Diffraction Geometry 

free space Green's function. The boundary conditions are continuity of the tangential 

fields from one region to the other, and this condition is easily enforced with the 

surface currents. Finally, by setting the unknown fields expressed by the operators 

auct the surface currents on the surface as well, we are left with two coupled integral 

eclua,tiol~s. 

Preliminaries 

In the derivation, we need the following identity for the Fourier transform of the curl 

of a vector field. The Fourier tra,nsforin of a vector field, A(T) ,  is 

Because we define the Fourier transform of the vector field only over a fixed volume, 

V(r) ,  we are implying that the inverse Fourier transform of ~ ( k )  returns a valid 

vector field only over V(r ). Tha,t is, 

A ( r )  T E V 

~ - l { . A ( k ) }  = /// eiksr A(k)  dk +A(?) T E (4.2) 
2 71. 

all k 0 elsewhere. 

We now form a,n identity for the Fourier tra.nsfor1-n of the curl of a vector by using 

the vector identity for the curl of a scalar times a vector along with Gauss's theorem. 



First, 

and then integrating and applying Gauss's theorem, we have the result,, 

where ii is the unit normal vector on S pointing away from I/: 

Starting with Maxwell's Equations.. . 

Starting with Maxwell's equations for time-harmonic (em"' dependence) fields in a 

linear, isotropic, homogeneous, and source free medium, we will move to the Fourier 

domain arlcl solve for the fields in all space in terms of the ta,ngential fields at the 

surfatce. At the end, we will take the inverse Fourier transform, using the convolution 

theorem. The result will be two coupled equaltions for the electric and magnetic 

fields in terms of integrals of the Green's function with the surface currents. In our 

forn~ulatioli, the surface currents will act as sources so that once these currents are 

known, the fields at any point in space can be calcula.ted by integrating over the 

sources with the appropriate Green's function. If the medium inside the volunle 

were inl~onlogeneous, then diffraction would not only orcur on the surface, but also 

inside the volume. In that case, we would require volume source cllrrents ass well ass 

the surface currents. In the formulation in deHoop [IS], inhomogeneous media are 

considered and the volume source currents are included. Our purpose is to consider 

the interface between two homogeneous media. For example, an optical disc menlory 

consists of pits in an aluminum coated disc with a polycarbonate covering. Even 

though the aluminum covering is thin, aluminlim is highly conductive so that the 

fields will not penetrate very deeply, and we can consider the volume to be filled with 

aluminum. The incident ~ned i~ im  in this example is the p~lyca~rbonate. Because both 

the aluminum and polycarbonate are homogeneous, we do not need to consider the 
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volume source currents, and our formulation will only use the surfa,ce currents. 

We use, as a convention, a complex t to account for induced current in the medium. 

If we let t = t' + jf",  then -jwt'E + J = (-jwtf + a ) E  = - jwtE,  with a = wc". 

Taking the Fourier transform of Maxwell's equations, 

and using 4.4, we obtain 

F('V x E) =b ii x E(rs) e- jk-r ,  dr,  + j k  x k ( k )  = j w p ~ ( k )  ( 4 . 6 ~ ~ )  

S(T 

We llave used r, to indicate the independent variable along the surface of the volume. 

The vector fields 6 x E(T,) and 6 x H(T,) are equal to the tangential components of 

E( r ,) a>nd H (r ,) , respectively, at the surface except that they point tangentially to 

the surface and perpendi~ula~rly to E(r, ) and H(T ,J. These tangential components 

call be thought of ass surface currents, and the boundary conditions require continuity 

of these surface currents. As a convenience, we define these surface currents as 

In equations 4.6a and 4.6b, the terms with surface integrals can now be written as 

Fourier transforms of the surface currents. Substituting the definitions into 4.6a and 

4.6b, we obtain the coupled equations 
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Our next step is to solve equations 4.8a and 4.81, for E and H in terms j,,,, a1ld 

j ,,,. If we consider j ,,,,, and j,$,, as lcnown, then 4.8a and 4.8b form two equations 

with two unknowns. We can write an equation for i!?' ( H )  by substituting 4.Xa into 

4.8b to eliluinate fi ( 4.8h into 4.8a to eliminate a). Using the vector identity 

j k  x j k  x A = )kI2A + jk ( jk  A )  and the two additional relations, 

formed by taking j k .  eq~a~t ions  4.5a and 4.8b, we obtain expressions for i!?' ( I%) The 

resulting equations apre 

In the above expressions, we have used the notation k2 = u2p/lt, which is a constant 

inside the volume and is riot to be confused with /kI2, which is the squared magnitude 

of the illdependent variable in Fourier space. 

The filial step is to take the inverse Fourier transforms of equatioiis 4.10, making 

use of the convolution theorem. As is shown in appendix A, the inverse Fourier 

transform of the first term in each of equations 4.10 is the Green's function for free 

space propagation: 

where we have chosen as a convention that Irn{k) > 0. For convenience, we will notate 
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Figure 4.3: DifIracking surface with the incident field generated by distant sources 

Field descriptioil source free in 
F1 t o t a l f i e ld inh  T/1 
Fo total field in I/'o 
F; incident field K 
Fs scattered field T/o 

Table 4.1: The fields and their source-free regions. 

Matching Boundary Coilditions 

Our diffraction problem is for a boundary between two optically different, homoge- 

neous i~ledia (figure 4.3). This geometry consists of two volumes, and I/;. Note that 

we place the sources of the incident field in i/o In our initial statement of Maxwell's 

equations, we assumed a source-free region. Therefore, we can only write expressioiis 

for fields that are source-free in a particular region. Following de Hoop[lS], we will 

work with the fields summarized in table 4.1. For each field, we will write an ex- 

pression for it in the region where it is source-free. The boundary conditions require 

equality of the tangential components of the total fields in each region, Fo and Fs, at 

the surface. However, note that Fo is not source free in any region. We can decom- 

pose Fo into its incident, Fi, a!nd scattered, Fs, pa,rts, and each of these components 

has a source free region. After equating the tangential components of Fo and F1 at 

the surface, the final result is a set of coupled integral equations for the unknown 



surface currents. 

Equations 4.15 express the fields inside a volunie in terms of operators on the tan- 

gential fields at a surface. Using operators, we can simplify the notation significantly. 

Let be the operator matrix, J be the vector of surface currents, and F  be the vector 

of fields. Then, 

aOlrd equations 4.1 3 ' 1. 2econle 

F ( T )  T E I.r 

f ( ~ ;  ~ , ) J ( T , )  = $ F ( r )  r t S (4.19) 

0 elsewhere. 

In region 0, ko = w J E ,  GO(r;  T , )  = ( 1 / 4 ~ 1 r  - r s l ) e ~ k ~ r - T s ~ ,  and f ( O )  is the 

corresponding operator. Similarly, f (l) is the operator for region 1. 

We now have a coliveliient formula with which to express the fields in each region 

in terms of the tangential fields on the surface of our diffracting object. Solving first 

for the fields in 1/;, we apply equa,tion 4.19 a,nd obtain the result, 

The fields in region 0 can be separated into an incident field and a scattered field, 

F o ( r )  = F, (T)  + F i ( r )  By definition, the incident field has its sources somewhere in 
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I/b, and it is the field that would be present if the medium in region 1 were optically 

identical to the medium in region 0. The sources for the scattered field are the surface 

currents on S. In our formulation for the solutioil of the fields in a regioli (res~~lt ing 

in formula 4.19), we chose the for~n of Maxwell's equations for a source-free region. 

Therefore, we must be careful about how we apply the formula to the incident a i d  

scattered fields. Siiice the scattered field is source-free in h, we can solve for it there 

with 

The minus sign for the operakor in the above formula indicates that we retain the 

convention that the surface normal points into &. The incident field, however, is not 

source-free in Vo, and so, we cannot directly write an expression for it there. Instead, 

we express the incident field in V1, 

We use the opera.tor r(") for the incident field in & because we defined the incident 

field as the field that would be present in 1/, if this medium had no optica21 contrast 

with the medium in Vo. Subtracting 4.22 fro111 4.21, and substituting Fo = F; + F,, 

we obtain the relation, 

We are now at a crossroads. Equations 4.20 and 4.23 make up a number of 

equations equal to four tinles the number of unknowns. Wirgin [24] and Pasman [19], 



wlie~l solving for diffraction from periodic gratings for planewave incidence, use an 

approach that avoids both explicit integral equations and integrals across singularities. 

In the third part of each of 4.20 and 4.23, the right-hand sides are known. Because the 

grating is periodic and only one plaiiewave is incident, the fields and surface c~lrrents 

can he expanded into their Fourier componeats, and a simple matrix equation results 

for tlie solution of the coefficients. The last step is to use the coefficients in the 

forward matrix equation that results from the first parts of 4.20 and 4.23 to solve for 

the diffracted planewave coefficients. In addition, this whole process can be perforined 

with either the electric fields or the magnetic fields (the second factor of two reduction 

in the number of required equations). To use this method to solve our problem, where 

the diffracting surface is not periodic and the incident field is not a planewave, three 

sampling grids would have to be generated: the surface S, a surface somewhere in 

V ; ,  and a surface sorilewhere in &. Then, basis functions for ea,ch grid would have to 

he chosen. Whether the cost of the added step is worth the benefit of avoitling tlie 

singularities is not clear. Perhaps this approach can be investiga.ted in the future. 

The approach followed by de Hoop[18] and Dil and Jacobs[17], and the one that we 

will follow here, is to concentrate on the fields at the surface for the right-hand sides 

of 4.20 and 4.23. Selecting the ta,ngeiltial components of the equations (multiplying 

the equations by li x ), Fredholm integral equations of the first kind appear. The four 

integral equations, along with the boundary condition, need to be combined to forin 
,- v ,- --a 

J(') 
two equations with two unknowns, 1:: 1 , and k n o w  i 1 - h a l i d  sides, 15.i1 . The 

boundary condition, equality of the tangential components on the surface, apre writ ten 

a s l i ~ F ~  = i i x F 1  = J. 

One solution is to select the tangential components of 4.20 and 4.23 and then add 

the two equations together (we will use I' = li x F): 

Setting J1 = Jo = J (the boundary condition), we have our final coupled integral 



equak ions, 

for the ~inknowr~ surface currents, J. 

4.2.2 Numerical Solution of the Integral Equations 

As is explained in [17, 18, 19, 26, 271, we numerically solve the integral equations in 

4.25 by first approximating the surface currents with basis function expansions. As a 

result, each of the unknowii surface currents in 4.25 becolnes a vector of coefficients. 

The vector of hasis functions is placed with the operators so that each of the four 

operators in 4.25 becollies a row vector of operators where each element ilicludes a 

convolutioli of the Green's function and a basis function. If a basis function is chosen 

so that the expansion converges uniformly to the surface current, then the expansion 

itself introduces no error. However, the expansion inust be truncated so that the 

numerical program can work with finite vectors, and this truncation introduces error. 

The integrals in the operator matrix cannot be nunlerically evaluated until values 

for r are chosen. Choosing a value of T corresponds to choosing a point on the surface 

where we want to calculate the fields with the operator matrix. We choose values of 

r by representing the surface as a set of grid points. In the inost general approach, 

rather than calculating the fields at specific grid points on the surface, weighting 

functions on the surface could he chosen and the fields calculated according to those 

weightping functions. Weighting functio~is made up of a set of evenly spaced delta 

fiinctions is equivalent to choosing a set of grid points on the surface and calculating 

the fields at these grid points. Solving the fields only at a fixed set of grid points 

does not introduce error, except tha3t the incident field on the right-hand side of the 

equation must also be sampled and truncated according to the weighting functions 

or grid points. Since each operator for each basis function must be numerically 

calculated for each grid point, the four operators in 4.25 now become four matrices. 

Each column of each matrix is for a paxticular basis function, and each row is for 
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a specific grid point. De Hoop[18] and Poggio and Miller[%7] give some discussion 

rega,rding various choices for basis functions and weighting functions. 

We are now ready to tackle the cornputation of the diffracted fields. In the last 

section we formulated the integral equations in a ma,nner independent of geometry 

and without a'ny assumptions about the fields. From this point, we will make a series 

of choices which will tailor the numerical calculations to our specific needs. We are 

interested in tightly focused incident fields ahnd single deep diffracting structures with 

a size on the order of the wavelength of the source. These structures asre assumed to 

lie in an infinite half plane filled with a mediunl of complex refractive index nl .  After 

each simplification we will rewrite the operator matrices. Each operator matrix will 
-, 

Going to two dimensions: TE and TM 

When the surface and all the fields are independent of a particular direction, say the 

ij direction, then the integrals can be immediately perforined aloiig the y axis beca2use 

only the Green's functioil has aeny dependence on y. The Green's function heconles 

which is the Hankel function of the first kind and order zero, and R = / r  - r,I. 

The remaining integration required to calculate each matrix element is a contour 

integral in the z-z plane. Since all the integrations are now contour integrations. 

the independent variable is better described as a scalar, s, which is the length along 

the contour starting from the point on the contour where .E = 0 (see figure 4.4). 

The value of s at ally point along the contour is calculated in the standard manner, 

s ix)  = J : ( d s / d ~ ) ( x ~ )  d x f .  The unit vectors .i aiicl 6, which point tangentially and 

normally, respectively, to the contour, will ease the notation for the formulation in 

two dimensions. We have chose11 the direction of .i so that .i x li = 3. 
Another consequeilce of the indepeildence in the y direction is that the problem 



Figure 4.4: A diffracting structure and the coordinate systenis for a two dimensional 
prohleln. 

splits into two independent polarizations: E = Eij, (TE) atnd H = Hij (TM). These 

polariza8tions are independent because an incident field with one of these polarizations 

will scatter only to fields of the same pola,rization. If we assume the TE  pola,rization, 

for example, then the magnetic field hazs the direction H = HT.i + and the 

surface currents have tlie directions 

With the surface currents fixed to these directions and independent of y, the solution 

fields in equations 4.15 have directions consistent with the TE  field. Therefore, the 

integral equations are completely self-consistent with only TE fields present. The 

principle is the same for the TM polarization. 

For the reduction of the integral equations, we will assume the TE  polarization. 

The results for the TM polarization are in appendix B. E<nowing the specific directions 

of the surface currents, we can simplify the matrix of operators. Specifically, we see 

that in r12 there is a term, 
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Since we made the assumption that all functiolls asre independent in y, this term must 

be zero. Substituting these surface currents into the matrix elements, 

J8?7Tz(rs) = -h(s) x V' x Jrn (GI (R) - G ~ ( R ) )  J ~ , ~  (s')?[s') d.sf 
-03 

fitis) X 
J8?m(~8) = - [Jm (k:GI (R) - kiG0(R)) Jstn2 (s')?(s')dsf 

J W P  -0.3 

I"22 J87e(r8) = - f i , ( ~ )  x V x J m  -0c3 (GI (R) - GO@)) J~?~(s')$G!s'~ 

where we have asstuned ,u = p 1  = ,uo. 

Choice of Basis Function 

We now want to expand the surface current on a set of basis functions. In general, a, 

function can be represented by the e~pa~nsion, 

where el(x) are the basis functions, and al are coefficients. In [17, 191, the surfa,ce 

currents are assumed to be approximately constant over small segments, making the 

basis functions rect functions ( rect(r) = 1 when 1x1 < , and 0 otherwise). This 

approach works well when the incident field has a small angular spectrum, such as a 

planewave. However, when the incident field is a tightly focused spot, then the nuxnber 

of grid points required to satisfactorily describe the incident field becomes very large, 

even when the diffracting surface is a flat plane. In our problem we know that the 

incident field has a large but finite angular spectrum. That the angular spectrum 

of the incident field is finite is guaranteed by the fact that the incident field comes 

from far away so that only propagating planewaves can reach the diffracting surface. 



A good choice of ba.sis fuiictions might then be sinc functions (sincjr) = sin(.r)/x). 

The Nyquist sarnpli~ig theorem states that a function of finite bandwidth (a,ngular 

spectrum) is identically equal to a sum of evenly spaced samples weighted by sinc 

functions, if the sa'nlple rate is at least twice tlie highest frequency (pla,newave angle) 

of the function. That is, f jz) = El f ( ln l  W )  sinc(nWGr - d), if W is greater tlia8n or 

rqttal to the bandwidth of f ( r ) .  As a result, the iiicident field and surfa.ce currents call 

be perfectly represented lrry a set of sinc basis functions if tlie diffracting surfa,ce is a 

flat plane. For diffracting surfa.ces that are not a flat plane, however, the incident field 

is 110 longer a siinple Fourier trailsform of its angula,r spectrum, and a sampling rate 

greater tha,n the Nyquist frequency is normally required. This higher sa,mpling rastr 

correspoi~ds to allowing for evanescent waves in other iiumerical approaches, such as 

coupled-wave. Intuitively, we would expect the sampled rate required for good results 

to increase abs the surface becomes less like a flat surface, a,nd our numerical results 

support this rule. The disadvantage of sine basis functions is that the integral in each 

of the matrix elements now has infinite limits, whereas with rect basis functions, the 

integral is only over the region where the rect is nonzero. Compared to rect ba,sis 

fullstions as used by [17, 191, sinc basis fit~lctions are superior for flat and nearly flat 

surfaces. However, for deep and narrow grooves in the diffracting surface, which basis 

fuilctioli is better is not clear. 

The expa.nsioii of tlie surface currents is of the form, 

N 
Js,,,, (s) = C at sinc(b W s  - r l )  

I=-N 

N 
Js,, (s) = C bl sinc(ko Ws - ~ l ) .  

z=-N 

The unaliased bandwidth of the surface currents is determined by W. The coefficients, 

ni and bl, are sa,mples of tlie surface currents at the grid points s = nl/k$V. We halve 

trul~cated the expansion to 2N $ 1 terms. Substituting the basis functions into the 



matrix elmlents, and placing the coefficients in the vector of unknowns, 

h(s) x 
= - [Iw ( ( R )  - ?c~Go(R)) sinc(koWsf - -1) dsf 

jup -m 

and the vector of unknowns is J = [r:] . 

Handling the Singularities 

We now wish to resolve the derivatives iri the matrix elements. The derivatives are 

with respect to the field point, ~ ( s ) ,  not the independent variable of integration, 

s'. As we already mentioned, we cannot simply reverse the order of differentiation 

and integration because the integration includes the point, sf  = s ,  where the Hankel 

function haps a logarithmic singularity of the nature[29], 

where y is Euler's constant. Because each integrand colitains the subtraction, GI (R)- 

Go(&), the singularity cancels, and the integrand has the finite limit 

2 
lim [H!" (kl R) - Hi1) ( ko  R)] = j -(log ( kl ) - log (lco)). 
R+O 7f 
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However, this c.anc,elation does not oc,cur for the first term of rzl,, wllere 

which has an integrable singularity at R = 0. Fortunately, this tern1 does not involve 

a derivative. In tlie TM case, the term with the second derivative will have the 

integra,ble singularity. In that case, tlie form of the singulaxity must be subtracted 

froin the integrand before differentiating. Subtracting singularities will be discussed 

ill the next section. 

To calculate the derivatives, we use the chain rule, 

VHil)(kR) = - k ~ { ~ ' ( k l i ) ( ~ R ) ,  

V R  = ( ( r  - st)? + ( 2  - zt)5)/R. 

Since the second term of has two derivatives, we must now exanlille tlle nature 

of the singularity of k ~ , ( l ) ( k R ) .  Fortunately, the subtraction in the integrand again 

causes the singularity to cancel: 

Taking the second deri~a~tive of this term will produce a singularity simila,r to the 

si~igula~rity in the first term of rz1, .  We will discuss integraking across these singu- 

la,rities in the next section. The equations for the niatrix elements are simplified by 

iiitroducilig the functions, 



Completing the derivatives in equatioiis 4.32, they become 

j @ 
1 1  = s 1 R ( s f  R )  s i c  - ni) ds' 

-up 03 r12 = - i(s)/ ( H ~ ~ R )  - j )  s i n s  - TI) iist 
4 - OCi 

(4.401,) 
r 

1 
- -(+(s) 2 VR) (+(sf) VR) ( x ~ ( R )  - ~ ~ ( 8 ) ) )  

(4.40~) 

- +(s) . V (?(sf) . VR) 'R~(R)  sinc(koWsf - nl) ds' 

'h!l (R) ( ~ ( s j  VR) siiic(koWs' - T Z )  ds'. (4.40d) 

With the a.id of a few additional relations, all the integrands above can be numerically 

calculated. For the ternis with l i ( s )  aiid +(s)-,  we nerd the relations, 

Also, 

+ ( S ]  V(+(S') VR) = -!i R +(st) - (+(sf) VR) (+(s) VR)] , 

which is easily calculated. If the contour has a region where dzldz becomes infinite 

(or large enough that nuiilerical round off errors will cause problems), then in those 

regions, equations 4.41 aiid 4.42 must be repla,ced with forms using dzldz and dsldz. 

Finally, we will set the units of the electric and nlagnetic fields by choosing Jz = 1. 
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This choice fixes w p  = ko. Equations 4.37, 4.39, 4.40, 4.41, 4.42, and 4.43 now give 

the completed recipe for calculating the integrands for any pair of s ,  s f  011 the contour. 

Integrating along the Contour 

Choosing as one of the grid poiilts, s,, = ~ m / k ~ M i ,  we calculate each matrix element 

for each n2,l pair by numerically integrating the appr~pr ia~te  term from e q ~ a ~ t i o n  4.40 

along the contour. I11 principle any of the various numerical q~ladra,ture routines would 

work well. Since the grid points are evenly spaced in s, the simplest a,pproa,ch might 

13e to use a sta,ndalrd Gaussia,n quadrature routine to integra,te froin grid point to grid 

point. With this idea, all the grid points, quadrature points, and their x, 2 ,  d l ,  ds, and 

Hankel function values can be tabulated a,t the start of the calculation. Obviously, 

the nuruerical integratioll cannot be performed to the infinite limits. However, since 

~ i ' ) ( k ~ )  sinc(kr) cc (Ax)-$ sin(ks)efik" as s -+ 0, the integration need not go too 

far before tlne error becomes small. 

The last remaining hurdle, as we already mentioned, is integrating across the 

singularity in the matrix elenlents These singularities occur only when m = 1. 

Otherwise, s, falls on a 11~11 of the sinc function, and the sine function goes to zero 

sufficiently fast to eliminate the singularity. One method to integrate those diagonal 

terms with the singularity is to subtract the form of the singularity and integrate it 

separately [25, 201. The tern1 beconles 

/d H ~ ( K )  sinc(/c,+~s' - TZ) dsf = lb 1 ( R  i c ( s f  - ail 

Outside the interval ~onta~ining the singularity, a < sf < 6, the subtraction is not 

necessary. In the formula, Rl indicates that R is calculated from the grid point sl 

to sf, and si = s,, is the grid point for both the basis function and the source point. 
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'I'he TM ca,se is treated slightly differently because a singularity also appears in tlie 

term with the double derivative. The correct approach is to subtract the singularity 

before differentiating, and then differentiating the extra a,syrnptotic terms along with 

the rest. 

Incident Field 

The right-hand side of the general matrix equation 4.25 is the tangential component 

of the ilicidelit field calculated at the grid points s,. Many different niodels for the 

incident fields can be used. However, restrictions must be placed on the incident field if 

the nulrlerical problem is to remain practical. As we rnentiorled in the formulation, one 

source of error is the truncation of the grid points. The truncation is only reasoliable 

if the power flow across the surface at tlie missing grid points is negligible. Therefore, 

only incident fields with finite power concentrated over a relatively small region can be 

allowed. For example, planewaves cannot be handled with this method, but focused 

spots are permitted. 

Figure 4.1 shows a lens focusing light onto the diffracting surface. A perfect 

leils transforms the light distribution at its front focal plane into a distribution of 

planewaves [16]. If B(u)  represents the amplitude and phase of the TE electric field 

at the Front focal plane of the lens, where u is the transverse coordinate in this plane, 

then tlze incident field behind the lens is 

The incident magnetic field follows from Maxwell's equakions, 

As long as r and i are sufficiently small, the integra21s for the incident fields are easily 
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calculated nunierically. In most of our simula~tions, we used 

where N1 corresportds to the numerical aperture of the lens. The incident surface 

currents for the right-hand side of the iriatrix equation are then 

The incident fields for the TM case are completely analogous: H,(rc, 2) is calculated 

from tlie front focal pla,ne distribution, a ~ l d  the electric field components are derived 

from the curl of H. 

Far Field 

Once the matrix elenlents and the incident field vector axe calculated, the matrix 

equation is solved using a standard numerical routine. The solution vector contains 

the coefficients ai, bl which can be substituted into 4.31 to find the actual surface 

currents anywhere on tlie contour. Unfortunately, tlhe ta8ngentiasl fields at the contour 

cannot be directly measured. IJseful results of this diffraction calculation would be 

the arnpli t~~de and phase in the far field, since these quantities can be experimentally 

measured. To calcula.te tlie far field, we use the first part of equation 4.23 to calculate 

the scattered electric field (magnetic field in the TM case). For this calculation, we 

use a far field approxilnation for the Hankel function, and we simplify the integrand 

in equation 4.23 by ignoring terms that have a dependence on r stronger than 1 1 0 .  

The electric far field can then be calculated by a simple numerical integration. 

As a preliminary, we will first examine the Ha,nkel function for large arguments: 

~ t l  p~ 1 J Z e j k R e j  2 [2n+-ll for JkRI >> 1121. 



I:, 
Figure 4.5: Coordinate system for the far field calculation. 

In the far field (figure 4.51, I T  I >> I T ,  1, so that using using cylindricall coordinates for 

T ,  

R = J(r  sin B - x , ) ~  + (--r cos B - 2s)2 N 1- - jxs sin B - is cos 0 ) .  

Substituting this value of R into the asymptotic form of the Hankel function, nre 

obta.in the Green's fuiiction for the far field, 

Equation 4.23 for the TE case is 

Since the field point is now in the far field, the iritegratio~l is not across a singularity, 

and the curl may be resolved directly: 
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where we have ignored terms with r - i  dependency. Making the al3propriate substi- 

tutioils and ignoring the eib7" /fi factor, the electric far field is 

2ko iX! 
- E( H )  = ~ y 7 - t  - ej? / [(72z(sf) sin H - nZ ( s f  1 cos H )  J~~~~~ ( s f )  

7r - cw 

+ J ,  ( s f )  C-jko(:c(s ' )  sin@-;(st) cost?) 
s , e  I ds'. (4.54) 

The integration in the above formula is easily performed nulnerically because all the 

grid points and surface currents have already been tabulated. Values for 0 car1 he 

chose11 arbitrarily, although values that lie within the objective lens are generally used. 

In some of our calculations we will use the far field intensity, which is proportional to 

the rrlagliitude squared of the electric field, and in Chapter 5 we will also make use 

of the phase of the far field. 

4.2.3 Testing the Program's Results 

Before we can start using a computer program to predict diffraction behavior, we 

must have some confidence that the program is both numerically stable and an accu- 

ra8te represent a,t ion of the mat hematical formulation. The literat ure suggests several 

met hods for testing the numerical result s[17, 18, 221. These lnet hods iliclude compar- 

iiig nunlerical results against a,nalytic solutions for the sinall class of known solutions, 

checkii~g that the numerical solution sakisfies the appropriate power conservation 

laws, testing reciprocity relations with the numerical method, testing the nulxierical 

results with the extinction cross-section theorem, and checking the convergence of the 

numerical results for decreasing grid spacing and increasing rnactrix rank. 

We found that different checks were useful at different stages of forming the nu- 

liierical computer program. For the problein of a planar interface, a problem for which 

analytic solutions are known, only the matrix elements of and I'2l are nonzero. 

We took advantage of this fact by using the planar interface problem to scrutinize 

the calculation of the rnakrix elements rzl, the inost complicated calculations and, 

therefore, the most likely to contain errors. Power conservation relakions, discussed 



in more detail in the next section, proved useful when putting together the various 

components of the overall calculation. If, for example, a sign error were presmt in 

one of the incident fields, then power conservation would not follow. These two tests 

ensure that the computer program is an error free represent &ion of the formulated 

equations. However, they do not, in general, test the ~lurnerical stability and accuracy 

of the computer program. The best nietliod to evaluate the numerical stability of the 

computer program is simply to run the program repeatedly for the same problem 

with a,n increasing number of grid points. If the numerical solution converges in a 

reasonable manner, then the numerical program is stable, at least for the particular 

problem that was computed. The numerical accuracy of the solution can be esti- 

mated from the convergeilce data. The last check that we will discuss is a nenr check 

specifically for the tlie parameter W, the scale of the sinc functions, and, thus, the 

inverse of the grid spacing. This method uses the Fast Fourier Transform (FFT) of 

the surface curreilts to check tlie validity of the assumption that they are baildlimited 

to 1/v* 

Power Flow 

Our power conservatioir rule is simply that the time a.veraged power flow transmitted 

across the contour boundary plus the power reflected froin tlie boundary is equal 

to the power in tlie incident field. Unlike formulations that use a planewave as the 

incident field, our treatment can only use incident fields with finite power. In this 

section, we will first show that the power flow across a bouildary can be calculated 

with the surface currents. Applying this formulation and the orthogonality of the 

sinc functions, we will derive tlie formulas for calculating the transmitted, reflected, 

and incident power from the surface current coefficients. 

The time averaged electr~magnet~ic power flow across a surface is found by inte- 

grating the norinal coinponent of the real part of the Poynting vector [33]: 

Re{E x H * )  6 ds. 
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Hatvilig formulated the problem in two dimensions, we are ignoring the integration 

in the ij direction. However, the normal cornpolielit of the Poynting vector can be 

represented using surface currents. From the definition of the surface currents, 

In our two-dimensional treatment, we already know the directions of the surface 

current vectors. For the TE case, 

stud the time asvexaged power flow across the surface is 

Note that we have changed the sign of the integrand so that the power flow is from 

I/; into 1/;, opposite the direction of 6. Substituting the ba>sis function expansiorls of 

the surface currents, equations 4.31, into the expressioli for the average power 4.58, 

we obtain the power flow in terms of the surface current coefficients, 

This last formula results from the orthogonality relation, 

2'7- 
sinc(koWs' - ~l j sinc(ko Ws' - T I ' )  ds' = - 

2 w  

where 1  and 1' are integers and = 1 e~ 1  = 1'. 

The power calculated in equation 4.59 gives the total power flow across the bound- 

ary, which is the transmitted power. To test the power coliservation relaption, 
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we also need to calc~lla~te the incident power, < P(" >>, aild reflected power, < P(') > . 

The incident power is simply the power flow across the boui~dary for the case where 

there is no optical contrast between the two regions. In that case, a1 = a[ ' )  and bl = 

bf". Substitution of these coefficients, already calculated as the right-hand side of tlie 

matrix equation, into 4.59 gives < P( ' )  > . To calculate the reflected power, we must 

first separate tlie tangential fields into incident and scattered fields. As stated in the 

for~nulation of the integral equations, tlie total fields in Vo can be separated into the 

incident fields and the reflected scattered fields. The boundary condition ensures that 

the surface currents are representations at t hr  boundary of the ta,xigential fields of 1.i 

as well as 1/,. Therefore, we can also separate the surface currents into incident and 

reflected components: 

Expanding the surface currents for the reflected fields on the same sinc hasis set, the 

orthogotiality of the haasis functions gives 

The reflected power can now be calculated using tlie coefficients a!") and bj') in 4.59. 

Convergence of the numerical results means that if a calculation is repeated several 

times with a smaller grid spacing each time, then the numerical results will beco~lie 

more accurate with each repetition. In our case, we must test convergence for both 

decreasing grid spacing (increasing W ) ,  and increasing number of grid points with a 

fixed grid spacing. The latter test is because we do not have a periodic structure, 

and we approximated the integral to infinity by just integrating as far as we made 

grid points. Convergence testing is very important and must always be perfor~ned 

before trustworthy results can be obtained. In every numerical calculation, there is 
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a t~xa~de-off between accura8cy and computation time. By considering the convergerice 

properties, a grid spacing cahn be chosen which gives satisfactory accuracy for a rea- 

sonable computation time. Naturally, the convergence estimation it self will require 

long computation time since the test must necessarily extend to grid spacing smaller 

than required. Also. the test must be carried to grid spacings small enough to de- 

termine if the results are oscillating or converging. uniformly. Finally, the n~lmrrical 

results for the surface currents and the fax field will converge at different rates for 

different contour points or far field angles, dependiilg on the particular contour. 

Checking the Sample Rate with the FFT 

The choice of sizzc functioiis for tlie basis fu~lctions of the surface current allows for 

a new type of convergence check. As we stated earlier, expanding a function on a 

basis set of sinc functioils makes tlie implicit assumption that the function is strictly 

ba,ndlimited. Also, the coeEcients, ai, bl, are samples of the surface currents aft the 

points s = nl/koW. If the surface currents are in fact bandlimited, then their Fourier 

transforms. which can he calculated since we know the fuiictions exactly everywhere, 

should show a cutoff frequency. If we calculate the Fast Fourier Transforms (FFT) 

of the surface current coefficient s, the highest frequency bin will correspond to the 

cutoff frequency of tlie bandlimited functions. Therefore, if the FFT's of the surface 

current coefficients have significant amplitudes in the high frequency bins, then we 

can reassonably assuixie that there is aliasing aiid that the grid spacing needs to be 

shortened (the bandwidth, W, needs to he increased). 

Example: Single Groove in Silicon, TE Illumination 

This example problem simulates measurement of the depth of a groove etched in 

silicon. I11 semicoilductor fabrication, single grooves a8nd pits with a lateral dimension 

as small as a quarter micron are etched one micron or inore into a substrate, usually 

silicon. Conceivably, a useful quality control measurement would he to measure the 

diffraction of a spot of laser light focused onto the groove or pit. The measured 

diffraction could then be compared to a "perfect" example and a quality determination 
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Figure 4.6: Groove contour for a = 1, Q = 0.5, a.nd v = 

made. The sensitivity of this type of measurement could be numerically estinlated by 

calculating the changes in diffract ion pat terns for grooves with varying parameters. 

For the purpose of illustrating the convergence properties of the numerical method, 

we chose a single groove 1 prn deep and 1 ,urn wide. A11 objective lens with a numer- 

ical aperture of 0.6 focuses light onto the groove and ca,ptures the reflected far field 

with the same aperture. The wavelength of the light is 0.6328pm, and the index of 

refraction of silicon at this wavelength is approximately 3.88 $ j0.02 [30]. Because 

our integra,l method does have a requireinent that the boundary have a continuous 

first. derivative, we cannot use a rectangular groove with sharp corners. We used a, 

super-gaussian profile which is of the form, z(x) = aexp(-(X/O)'). Figure 4.6 shows 

tlle groove sl~a~pe, and t11 contour was trunca,ted at s = f 4 p1n for these calculations. 

Table 4.2 shows the convergence for the reflected, transmitted, a8nd total power 

for an increasing number of grid points. Notice that for the calculation with 83 grid 

points, the reflected and transmitted power values are both nonphysical, but the sul11 

is actually close to one. Also, when more grid poiilts are used, R and T os~illa~te as 

they converge. As an absolute limitation to the value of using the numerical progra,ni 

to predict the far field intensity, we have plotted the successive cha'nge to the far field 



Table 4.2: Power conservation test for the integral method converges for a siiigle 
groove in silicon. 

calcula.tion as the nuinerical solution converges (figure 4.7). The one graph that is 

very different from the rest is for the trial with 83 grid points. The other fax field 

plots converge, but not uniformly for all the points. Notice the strong oscillation 

of the far field as sin& approaches the m~rnerica~l aperture of 0.6. These oscillations 

are sii~lila~r to the Gibbs phei~omenon for truncated Fourier transforms. They appea.r 

here because of the similarity between the far field calculation (equation 4.c54) and 

a Fourier transform. Also, the integration for the far field calculation is truncated 

a,s the contour is truncated. The Gibbs pheiloi~lenoil ~scilla~tions can be reduced by 

weighting the contour integration for the far field calculation with an appropriate 

window function. 

The final check is the FFT of the surface currents. Figure 4.8 shows the amplitude 

of the FFrI' of J,,,, for two different values of the grid spacing. W. A sample rate of 

W = 5 corresponds to 83 grid points, and W = 10 corresponds to 165 grid points. 

The llighest contour spatial frequency for the first case is 5k0, and the FFT shows 

large amplitudes there. Therefore, the surfa,ce currents are highly aliased with this 

sample However, for the g r a t e r  sample rate of 10ko, the amplitude of the FFT 

goes to zero a,t the higher contour spa.tial frequencies. The result of aliasing brings 

energy that should be at higher freyuencies into the lower contour spatial frequencies, 

distorting the calculated surface currents. This principle explains why the far field 

calcula,tion for 83 grid points was significailtly different in shape from the others. 



Figure 4.7: Clollvergence of the far field for the integral method. The plot nmrked 
N = 83 is for the calculatio~i using 83 grid points. 
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Figure 4.8: Fast Fourier Transfornl a,mplitude of J, , ,  for two different grid spac- 
ings (sample rate). The sample rate of 5k0 correspo~ds to 83 grid points, and 10ko 
corresponds to 165 grid points. The first is severely alia,sed, while the lakter is not. 
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4.3 Comparison to Rigorous Coupled-Wave Anal- 

ysis 

To test the merits of our iiitegral method approaLcb, and to give further insight as to 

its application, we will compare it to the Rigorous Coupled Wave A~ialysis (RCFtTA). 

We chose RCWA as a hasis for cornpa,rison because RCWA is very popular in the 

literature, and it has many advantages over other, older methods for calculating 

diffraction. RCWA's strengths, aside from being a completely rigorous method, are 

its versatility and simplicity. However, RCWA is not quite suited to the diffraction 

problems that we are concerned with. It requires a periodic structure, preferably with 

a period no larger than a few wavelengths, and a planewave incident field. Because 

we are coneenled with diffraction from single structures, and we use a tightly focused 

spot as the iiicident field, we would have to lnake adaptations to both the statement 

of our c1iEraction problem and the RCWA method to obtain reasonable results. The 

nature of these adaptantions will be discussed in section 4.3.2. In the nest section, 

we will describe the method, although we will not give the complete mathematical 

formulation. We will also discuss the types of diffraction problelns that RC'TiCiA is 

best suited for and other general features of RCWA that are iiistructive. Our goal is 

to compare numerical results from our integral method program to results froin the 

RCXVA for similar diffraction problems. Two specific examplrs will be discussrd, and 

we will see that in our limited class of problems, our integral method will prove more 

reliable than the RCWPII, 

4.3.1 Overview of RCWA 

The detailed formulation for RCWA was first published by Moharam and Gaylord [34, 

351, and our favorite treatment was published by the binary optics group at the 

Massachusetts Institute of Technology Lincoln Laboratory [37 ] .  They also supplied 

us with the FORTRAN source code for their coupled-wave program. In this section 

we will a'tternpt to explain the method without a rigorous formulation. Our intention 
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Figure 4.9: Diffraction geometry for the RCWA method. 

is to give the reader who is unfamiliar with the method enough understanding so 

that the following discussions aiid co~~iparisons can be understood. The diffraction 

geometry of RCWA is shown in figure 4.9. The figure shows three regions: t he incident 

field is in region I; the grating is in region 11; and the transmitted fields are in the 

substrate region 111. In general, the grating region can he inhomogeneous in the z 

direction as well, so that the permittivity is a function of both r and z ,  c 2 ( x ,  c). In 

that case, the region would be approximated by a stack of layers, where for each layer 

the permittivity is coilstant in the z direction. Naturally, the permittivity of each 

la.yer must be periodic in z with the same period. The only other requirement is that 

the boundary between each layer is planar and parallel to the x-y plane. 

Because of the periodicity of the grating, an incident planewave iiiteracts only 

with other planewaves which have angles related to the incident plaiiewave by the 

Floquet condition, k1 sin 0, = kl sin Bo - 2 ~ i / d ,  where Bo is the angle of the iilcident 

planewave, d is the grating period, and i is an integer. Consequently, an iiicident 

planewave can only diffract to planewaves with angles specified by the same relation. 



The starting point for RCWA method is to writle the fields in the three regions as 

sums of planewaves all related by the Floquet condition. For the TE case, 

E,(r. c )  = C Q;e - j ( k c ,  x4-klzt Z) + C ~ ~ ~ - ~ ( k ~ ~ x - k l z ~ z )  
2 E I, ( I .  Ma) 

i i 

E, (z, ,z) = C si (.z)e-jbt 

The magnetic fields, H,(:r, z ) ,  in regions I and 111 are easily found froni the electric 

fields since these regions are hoinogeneous. The periodicity is manifested in the above 

equations because kXt = kl sin go - 2rri/d, kl,% = JR, and k3,f = d m .  
The Q; are the ki~own incident planewave coefficients, and Bo is the know11 angle of 

one of the incident planewaves. Note, however, that if the incident field consists of 

more tha'n one plaviiewa8ve, they must be separated in angle by an integer inultiple 

of 2rrld. Otherwise, the different incident planewaves will have diffraction orders in 

different directions with no overlap. 

After setting up the diffraction problem illto these s~liils of pla,nenraves, the RCWA 

method solves for the reflection and transmission coefficients, Ri and Ti, i11 two steps. 

Tlie first step is to use Maxwell's equations in the granting region to express $;(I.) 

and lJ ; (c)  a,s coupled first-order differential equa,tioiis. These equations a,re numeri- 

cally solved to obtain the eigenvalues and eigenvectors of the fields in terins of the 

plane~a~ves.  Tlie Si(z) and Tr i (z)  functions can then be written in terms of thrse 

eigenvalues and eigenvectors. The second step is to equate the tangentia.1 fields of the 

various regions at the boundaries to enforce the bounda,ry conditions. A matrix equa- 

tion for the coefficie~its is the result. Since this method naturally gives the coefficients 

of each diffracted planewave, the solutioii for the fax field is automatic. In summary, 

t he numerical method consists of first solving for the eigenvalues aslid eigenvectors in 

each grating layer, and then solving a matrix equation which equates the fields at the 
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boundaries. 

The power of this method results from its simplicity and versatility. The nu- 

merical methods are uncomplicated-high quality nuinerical routines for calculating 

the eigenvalues arid eigenvect ors are readily available. The versat ili ty comes from 

the ability to coilstruct almost any periodic structure by stacking layers. For exam- 

ple, stacking layers allows coilstructio~~ of sinusoidal boundaries, slanted phase a d  

amplitude gratings, gratings with "hanging cliffs," and gratings with thin films and 

coatings. The cost of having several layers is that the eigenvalues and eigenvectors for 

each layer must be calculated ~epa~rately. Also, the matrix equation for the boundary 

condition grows with the number of layers. Both of these calculations are conlpnta- 

tionally expensive. 

The requirement of periodicity also imposes some limitations, and, as we sliall 

see, this method loses its power when the period of the grating becomes too large. 

This requirement also becomes a burden if the incident field is composed of many 

planewaves, for example when the incident field is a focused spot. Wlien the grating 

period is no laurger than one or two wavelengths, very few of the incident plaiiewa,ves 

will have the required relation nlentioned above, and the whole cal~ula~tion must 

be repeated for each iiicident pla,newa,ve. Another disadvantage of allowing oiily 

planrwave incidence is the possibility of missing diffraction effects where the reflection 

or trans~llission coefficient chaiiges suddelily with incident angle. Examples of such 

phenomena atre Wood's anoillalies in metallic gratings alld dielectric resonant gra,tings. 

4.3.2 Cornparison of Numerical Results 

To further justify our use of the integral formulation, we will directly coilipare tlie 

numerical results of two specific cases where our integral met hod has superior qualities 

over the RCWA method. To make the cornpaIrison fair, we would like to use each 

method to calculate tlie diffraction for identicall structures. However, each method 

makes inherently differellt assumptioils about the structure. 

The RCWA assumes that the difiractillg structure is periodic, whereas our integral 
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method assumes that all the releva'nt features and fields lie within a sinall region of tlie 

surface. Because of this difference, our integral inethod is better suited for calculating 

the cliEraction from a single groove. To aldapt the problem so that the RC'1Z;A call 

be used, we ca,n define tlie structure as periodic with a large period. Since wr  are 

interested in the diffraction of a focused spot, niaking the period larger than the spot 

wiclth should be stifficient. 

Creating the focused spot for the incident field is also a problem with the RCWA. 

Because the RCWA allows only incident planewaves, the focused spot must he ap- 

proximated by a finite sum of planewaves. Each calculatioii can include more than 

one incident planewave only if the planewave angles are sepaxated by integer multiples 

of 2rr/d, as explained in the last section. In general, if other incident planewaves are 

desired, then the whole calculation must be repeated for each planewave. However, 

in the case where the grating period is made large to approximate a single groove? the 

spacing, 271.14 is small, and niany pla,newaves can be incl~icled in a single calculation. 

Of course, tlie implicatioii is that the number of diRra,ctioil orders in tlie calculation 

will also be very large resulting in a long calculation. 

Another distinction between the two inethods is the treatment of sharp corners 

in the difiacting structure. The RCWA treats the diffracting structure as a stack 

of layered gratings. At the interfaace between two layers, discontinuities between tlie 

gratings of eacll layer will haove the effect of producing sharp corners, a,nd sta.bility 

of the i~urnerical results should be affected by their presence. If rounded corners 

are desired-- real physical structures never have infinitely slia,rp corners-t hen the 

structure will have to be represented by many layers? increasing the length of the 

calculation. Our im plementation of the integral met hod requires that the contour 

have a finite first derivative at each grid point. We enforce this condition by requiring 

a srrlooth contour. 

We will compare the convergence properties of each method for two separate 

problems. The first problem will be for a focused TE ilicident field on a single groove 

etched in silicon; we already discussed the convergence properties for the integral 

met hod for this diEra$ction problem in section 4.2.3. This problem will demonstrate 



the above principles regarding the treatment of a single, nonperiodic structure asnd 

a focused incident field. The secoiid example will be for a TM incident field focused 

onto a siiiusoidal aluniinunl grating. We made this choice in ~repara~tion for the 

analysis of compact disc formats which are usually constructed with an aluminum 

reflecting film. While the grating period for these structures is small enough for 

the practical applicatioli of RCWA, Li and Haggansj381 have reported tha.t RC\iVA is 

slow to converge for gratings made in highly conductive mediav. Also, we still have the 

issue of replicating a focused spot, and, since the period is small, a,pproximating the 

focused spot with many planewaves will require many repetitions of the caslculat8ion. 

To mea.sure the convergence properties of each method, we will study the behavior 

of power and far field quantities for increasing accuracy. Accuracy is determilled 

by tlie number of diffraction orders included in the calculation for RCWA. We will 

consider the convergence of tlie reflected power, transmitted power, and their sum. 

As e~pla~ined in section 4.2.3, the tra,ns~nit ted and reflected power flows are calculated 

across tlie same boundary in the integral method. Therefore, we wollld always expect 

their sun1 to equal one, even if there is absorption in the medium. For tlie RCWA 

method, however, the tot a1 reflected or transmitted power is calculated by summing 

the diffraction efficiencies for tlie reflected or transmitted diffracted orders. Ill effect, 

the sumination of the reflected orders represents the power flow across tlie region 

Ilregion I1 boundary, and tlie sumniation of the transmitted orders represents the 

power flow across the region II/region I11 boundary. Since these boundaries are 

different, we would expect the sum of the reflected power and the transmitted power 

to he less than one if there is absorption in the grating region. However, we would 

still expect this sum to converge. 

TE Example: Deep Groove with a Long Period 

The first example problem is the same silicon groove that we used as an example for 

demonstrating the convergence tests in section 4.2.3. To make this problem suitable 

for the coupled-wave method, we set the grating period to 10pm. Since the real part 

of the index of refraction for silicon is equal to 3.88 at this wavelength, the mlrnber of 



Table 4.3: Power conservation test for the coupled-wave method shows no convergence 
for a 10pm period grating in silicon. 

tra*lismit ted propagating planewaves will be 122. Therefore, to test the convergence 

of the coupled-wave method, we will start with this number of orders and check if 

the results converge as the number of orders is increased. Table 4.3 shows the result 

of the reflected 0 order, transmitted 0 order, and the power conservation sum for 

all calculated orders for a single normally incident planewave. In fact, the result 

appears to be astable. We have traced the cause of this behavior to the presence of 

very large real eigenvalues. Because of the exponential decay of the plallewaves with 

real eigenvalues, l~umerical accuracy is lost at the second boundary, and the matrix 

becomes neaxly singular. The result is large round-off errors. If convergence ca,nnot 

be attained for a single planenrave incident, then, clearly, there is no need to pursue 

further the issue of filling the numerical aperture with pla,newaves. 

For the case of a single deep groove, RCWA runs into a "catch-22" type problem. 

If the grating period is too small, the grating is a poor approxima,tion of a, single 

groove. and if the period is too large, the nunlerical results become unstable if all 

the propagating waves are to be used in the calculation. However, for approxinlately 

the same cost in computation time, the integral method converged to four dec5mal 

pla,ces for power conservation. The convergence was not uniform a>cross the far field, 

however, and in the worst cases, only two decimal places were ~ignifica~nt. 

TM Example: Aluminum Grating with a Wood's Anomaly 

This example is taken from the context of optical conipact disc (CD) memories. 

Optical discs consist of an aluminum surface with small depressions written in cir- 
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cular tracks. The tracks form a grati~lg in the radia81 direction. The infornlation is 

represented by the presence (or lack of presence) of a depression, and it is read by 

measuring the diffraction from a focused spot of laser light. As the disc rotates, t l ~ e  

laser spot moves along tlie track measuring the presence of a pit. The diffraction 

pattern is determined by the track period and the pit shape. If the track period is 

reduced, then the disc can hold more data. For example, the new SD CD format[39] 

reduces the track period to 0.74pm from 1.6pm for tlie older audio CD format. 

Wood's anomalies[31] occur for gratings in highly conductive media. When a 

planewave is polarized witli the electric field perpendicular to tlie grating (TM) and 

is incident on the grating at an angle so that a diffracted order propagates parallel to 

grating surface, then i~iost of the incident power will be diffracted into this diffracted 

order, aiid very little light will be reflected. This phe~lomeiion was first discoverecl by 

Wood[32] and explained by Lord Rayleigh[40]. That the RCWA method is slow to 

converge for this situation has been previously reported[38]. If our integral method 

is to be useful for analyzing diffraction froin optical disc formats, then it must have 

reasonable convergence properties for highly conductive media, even in the difficult 

rralin of a Wood's anomaly. 

For our comparison, we will study the diffraction of TM polarized light from an 

aluininuin grating with a grating period equal to the light's wavelength. Figure 4.10 

shows the diffraction geometry. When the grating period is equal to tlie wavelength 

of tlie incident light. then the Wood's anoinaly occurs for the angle of iiicidence equal 

to zero. At this incidence angle, only the plus and minus first diffraction orders are 

present, and they are at the grazing angle along the surface. Therefore, to use the 

RCW4 method to calculate the diffracted far field for a focused spot would require 

repeated calculations to fill the the numerical aperture witli incident planewaves. 

Also, the incident planewaves would have to he chosen densely enough to properly 

describe the variation around the anomaly. 

Figure 4.11 shows tlie convergence results for both the RCWA and integral meth- 

ods. The calculation using the integral method was performed for a nEL = 0.6, and the 

truncation length for the contour was s = &6.9/~rn. The figure shows the convergence 



0.5 , I 1 I I 

Air n=1.0 

Figure 4.10: Diffraction grating used in comparison of RCWA and the integral 
method. 

behavior of the amplitude of the far field at sin0 = 0, the total reflected power, the 

total transmitted power, and the power conservation test, R + T. Note that while the 

total reflected and transmitted power and the power conservation all seem to converge 

very quickly, the reflected far field at sin0 = 0 converges much more slowly. In fact, 

the value oscillates. However, no matter how finely we grid the contour, the solution 

remains numerically stable. 

The RCWA calculation was for a single incident planewave at t9 = 0. The bottom 

graph in figure 4.11 plots the diffraction efficiency for the reflected zero order and 

the sum of the diffraction efficiencies of the reflected and transmitted orders. While 

the sum should be less than one since the aluminum is highly absorptive, it should 

nevertheless converge. These diffraction efficiencies show no convergence for an in- 

creasing number or orders. Since the numerical method does not converge for a single 

incident planewave, it would certainly not be useful to attempt the calculation for all 
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Figure 4.11: Conlparison of RCWA and our integral method for a TM incident field 
onto a sinusoidal aluminum grating. 
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Figure 4.12: setup for measuresnent of diffracted far field for focused incident fields 

the incident pla,newaves in the aperture. In conclusion, for this paarticular probleln of 

a TM field vt~ith a shallow aluminum grating, our integral method is more useful then 

the RCWA rnetlxod for cajlcula,ting the diffracted field. 

4.4 Experimental Verification 

Before we call confidently use our numerical method to predict the diffraction behavior 

for various structures and incident fields, we would like to coinpare some calculalt ions 

to actual diff~a~ction measurements. If the comparison is reasonable, then we can 

proceed to use our nlethod as a design tool without having to fabricate a sample for 

each intermediate design. 

Thp diffracted far field for each sample was measured in a similar manner to the 

Fourier plane measurements in Chapter 2. Figure 4.12 diagrams the laboratory setup. 

The iris between 11 and 1"'s imaged onto the entrance pupil of the objective lens, 

reducing the numerical aperture of the incident field. The full numerical aspertuse 
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of the objective lens is used to capture the reflected field. The back focal plallel or 

Fourier plaPne, of the objective is imaged by 14 a8nd 15 onto the CCD calmera,, where an 

intensity profile is measured. Tlie reference mirror is used to focus the illurnillation 

spot, and the shutter is closed when diffraction ineasurerneilt s a.re recordecl. 

The measurement of the far field is for a three-dimensional spot, but o w  riuinerical 

calculation is only for two dimensions. A true comparison would he for the incident 

illurnillation being formed by a cylindrical lens rather than the spherical objective 

used. We use a cross section of the measured far field and ignore the effect of the 

spot profile in the other direction. If the test pattern is truly independent of one 

direction, then we can argue that no planewa.ve with an angle in tliat dimension can 

he diffracted so that its angle in that dimension will change. Therefore, a cross section 

in the direction of interest should contain no diffractioll of plalnewaves that would notl 

be present if the objective were a cylinder. 

4.4.1 An Aluminum Grating with TM Incidence 

The first test sample consists of sinusoidal gratings i11 Alunlinum. The gratings were 

fabricated by the Rochester Photonics Corporation using a rastered laser spot to ex- 

pose a photoresist. After the photoresist was developed to form the grating, a coating 

of approxi~nately 500A of alunlinurn was evaporated onto the grating. Finally, the 

actual depth and profile of the grating was i~~easured with a11 atomic force ~nicroscope 

at the Jet Propulsion Laboratory. The surface measureinent showed that the grating 

was quite sinusoidal with a peak to valley height of 0.185j~m. Tlie grating period was 

1 .Opm. 

For this grating, the Wood's anomaly should be quite evident. We can estimate 

the angular location where we expect to see strong absorption by calculatiiig which 

planewave angle is coupled into the planewave traveling parallel to the surface by 

the grating. We will use the Floquet condition, siii0, = sin0, -+ i X / d ,  where 8, is the 

reflected angle, 0, is the incident angle, and I is an integer. Then, setting the reflected 

angle to sin& = 1, we expect the adnomalous absorption at the incident angles, 



Figure 4.13: Reflected Fourier plane for aluminum grating with T M  inc.idence clearly 
showing the Wood's anomalies. 

for this aluminum grating with X=0.6328pm. Consequently, we expect to measure 

notches in the reflection at these angles. 

Figure 4.13 shows the CCD image of the Fourier plane for a focused TM spot on the 

aluminum grating. This image contains several interesting features. The numerical 

aperture for the incident spot was about 0.6, which is equal to the maximum sin0 of 

the incident planewaves. The $1 and -1 diffracted orders are shifted sin0 = X/d = 

0.6328/1.0 = 0.6328, thus forming the two partial circles that do not quite meet in 

the center. The faint complete circle that fills in the background is the zero order 

reflected spot. Small bands at the top and bottom of the zero order spot are diffracted 
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Figure 4.14: Measurement versus cal~vlla~tion for the sinusoidal alunlinum grating 
with the Wood's anomalies clearly evident as null in the reflected far field. 

light captured because the numerical aperture for the collection of the reflected light 

was about 0.7, which is larger than the numerical aperture for the incident light. 

Finally, the two dark arcs within each diffracted order result from the absorption of 

the Wood's anomalies. The darker band is for the +1 angle in the above table, and 

the other is for the +2 angle. 

The numerical simulation for this problem was calculated for a sinusoidal surface 

in a medium with index of refraction 1.5+j7.3 [30]. With the imaginary part of 

tbc index of refraction so large, the optical field is only about 2.7% of the i~~cident 

amplitude at a depth of 500.k. Therefore, approximating the thin film of aluminum 

by filling the whole volume with aluminum is reasonable. Figure 4.14 compares the 

numerical result to a vertical cross section ta,ken from the image. Agreement is quite 

good at the smaller angles, and the nulls in the reflected power due to the Wood's 

anomalies are quite evident and occur very close to the predicted angles. The small 



94 

difference in the null angle between the numerical result and the measured cross 

section co11ld come from a difference in the actual llunierical aperture and the one 

used in the numerical calculation, since the horizontal scale of the measured data 

was scaled to tlie calculated data assulnilig the nunlerical aperture used for each was 

identical. The vertical scale for each plot was derived by matching the rneasured 

and calculated reflection for a planar aluminum interface. We are pleased with the 

correspondence between calculated and measured data. 

4.4.2 A Single Groove in Gallium Arseliide 

Returning to diffrahon from single structures, we used grooves etched into galli~rni 

arsenide for our second experiment. The fabrication was performed at Professor 

Scherer's laboratory by his student, Chuan-cheng Cheng, at Caltecli. The pho- 

tographs in figure 4.15 are of one of the etched grooves and were taken by a scar~ning 

electron microscope. The first photograph is a top view of the groove and shows the 

groove width, which is about 0.35pm wide. The bottom photograph shows a side 

view of the groove. To allow this view, a mask was formed across the grooves and 

then the substrate wa,s etched away, opening the groove to the side. This phot~gra~ph 

was taken at a 60' angle, and direct measurement of the groove's depth from this 

picture is difficult. The groove height was measured by comparing the groove to the 

large etch height, which could he measured with a surface profiler. The groove depth 

was mea,sured to he about 0.6 5pm. The groove shape was estimated by the sha,pe in 

figure 4.16, which was constructed from a raised cosine pulse. 

The measurement of the diffracted far field was performed by sliding tlie groove 

underneath the illuminatiiig spot. At each O.1pm step, the intensity profile at the 

CCID wajs recorded. Figure 4.17 conlpares the mea,sured and calculated faar fields 

for the illulllinating spot centered on the groove and for the illuminating spot away 

from tlie groove. While the overall change in intensity level between on and off the 

groove seems to agree between the calculated a,nd measured data, there are a few 

disappoiriting features. The peak in the measured intensity in the middle of the far 



Figure 4.15: Scanning electron microscope photographs of the groove etched in GaAs 
and used in the diffraction measurement. The top photograph is a top view showing 
the width of the groove, and the bottom photograph is a side view showing the groove 
shape. 



Figure 4.16: The contour used to represent the groove in ga'lliunl arsenide. 

sine 

Figure 4.17: Measurement versus calculation for the groove etched in GaAs with TE 
ilicidence. 



field is aln artifact of light reflected from a leiis surface that comes to a focus in the 

CCD plane; these pea,ks ca$n be ignored. The reflected field calc~llated for the absence 

of a groove is simply the Fresnel reflection coefficients, and this reflection increases 

with far field angle for TE illumination. However, the rneasured intensity pat tern 

does not seem to satisfy this. Figure 4.18 compa8res the complete calculation for the 

groove shifting underneath the spot with the measurement. Again, the peak running 

down the middle of the measured data call be ignored. Features in coinmon with 

tlie calculated and measured da,ta are the waves on the left side of the plots. One 

difference is that the slope on the front left part is steeper for the nleasured data than 

for calculated data. In conclusion, it appears that while the numerical calculation 

successfully predicts general shapes and trends for these single grooves, its value in 

quant it at ivr meazsurement needs to further evaluated. 

4.5 Conclusion: What's the Program Good For? 

Need a method to calculate vector diffraction for foc~lsecl spots. Most methods require 

planem~aves and gratings. We are interested in two class of problems: deep structures 

in se~niconductor nlat$erials and optical disc inenlory formats. We saw that for these 

problems, the integral method formulated in this cha,pter performs much better tliasn 

the popular rigorous coupled-wave method. 

When using our integral program, tthere are certa,in things t l ~ a ~ t  we must be awa,re 

of. 1. Must always check convergence and choose a sanlpling grid spacing tha,t 

has good accuracy, but is not so fine that computation time is ilnreasonable. 2. 

Truncate the contour a,s wide aps possible because of the Gibbs phenomenon. Of 

course, increasing the length of the contour used will also lengthen the computation 

time. Beca'use of the Gibbs phenomenon oscillations, we cannot expect high frequency 

features in the far field to be accurate predictions of measurement. 3. The contour 

lnust be smooth. Vertical walls and ledges could be formulasted by using tlie derivative 

in z for tliese pazts. We have not tried any contours with these properties, and so we 

cannot inaJke a statement about the convergence of the solution in these cases. 
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Measurement, GaAs Groove, TE 

pixel # 

Figure 4.18: The far field intensity profile a.s the incident spot is shifted away from 
the groove. The top graph is calculated from the integral methocl and the bottom 
graph is the ~nea~sured data. 
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Appendix A Fourier Transform of the Free Space 

Green's Function 

To prove the inverse Fourier transform relation for the free space Green's function 

sta8ted in equation 4.1 1, we start with the Green's function and compute the forward 

Fourier transforin. Thus, the Fourier transfor111 of the Green's function is 

-jk.~ 2 R sine dR dB dq5. 

This integral is easily computed in the H and 4 c~ordina~tes by expanding /k T /  = 

RlkI cose, aAnd performing the cha,nge in ~aria~bles u = cos0. The final integral is 

For this integral to he bounded, we must assume the Im{kl) > 0. The solutioi~ to 

this integral is our desired Fourier tra,nsforni, 

a.nd our proof is complete. 

Appendix B Integral Equations for the TM case 

Ehr the TM case, the directions of JS,, and J,,, are reversed and mirrored with 

respect to their directions for the TE case, so that 
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Becaruse of this antisymmetry, the matrix elements I'll and for the TM case a,re 

exa,ctly mirrored to the TE  case in the manner, 

rTf: = r;:, and r:: = r::. 

The other ~liatrix elements sere 

The integrand in is equal to Xo(R), which ha,s an integrable singularity as R -+ 0. 

The nulnerical illtegration of this term is explained in section 4.2.2, and we do not 

repeat it here. The second term of is more troublesome, however, because it has 

an integrable singularity and a second derivative of the integral. 

The solution is to subtract the form of the singularity and integrate it separately. 

Once the singularity is subtracted from the integrand, we execute the derivatives 

inside the integral. First, we ease the nota,tion with a few definitions. We let 

and write the second term of as 

0 2  

[ I  = v 3 )  s i c  - si )tisf. 

The siligularity in the integrand has the limiting forin as R -+ 0, 

Within a fixed region around the singular point st = s ,  we subtract 3t3(R) from the 
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integrancl a'nd integrate it separately, 

l' - sfl)dst = 

2 k. 1 ko 
j-[-(b - a)  + (s - a )  log(-(s - a))  + (b - s) log(-(b - s))]. (4.74) 

T 2 2 

Applying the double deri~a~tive with respect to s ,  and alssunling that a and b can be 

chosen such that b - s = s - a ,  the result is the coiistant 

dl" 
Q"R = - 

4 1 1  [ @3([3 - ~ ' 1 )  dsf = (- - -)*  
ds2 . ' ~ ( 6 - a )  1;; 1;; 

After subtracting the singularity from the integrand, the int)egralid is no longer 

singular, and the derivatives may be carried out inside the integral. Similar to the 

TIC case, rue define the functions 

and the resulting formula for the matrix element is 

- ?(s) . v (?(sf) . DR) xflTM(R) sinc(ko Ws' - nl) (4.77) 1 
completing the recipe for the T M  matrix elements. 



Chapter 5 Analysis and Design of 

Optical Disc Formats 

5.1 Introduction 

In the previous chapter, we developed a rigorous numerical diffraction rnethod and 

demonstrated its utility by analyzing its convergence properties and its accuracy 

compared witli real measured data. In Chapter 2 we discovered that we could measure 

differences in the faer field diffraction pattern when the diffracting structure consisted 

of subwa,velength structures, but we had no inethod of designing, or even predicting, 

the far field response. We stated that if we could design diffracting structures so that 

their differeilces in the far field were maximized, the11 we could improve the cha8nne12s 

SNR and bit error rate. The ilumerical method developed in Chapter 4 gives us that 

tool, a>nd in this chapter we utilize this tool for the design of optical disc memory 

for~na,t s. 

We st art the investigatioli by analyzing currently used and proposed disc formats. 

Since our method is only designed for two-dimensional problems, we cannot solve the 

complete problem of diffraction from pits witli finite width and length. We will use 

our numerical diffraction rnethod to look exclusively at the diffraction from the track 

structures. ilie choose to analyze the track structure, as opposed to the pit length 

in the direction of disc movement, because a decrease in track spacing pays bigger 

dividends in storage density. The channel bit length (smallest incremental change 

in pit length that represents one bit of information) in the direction of inoveilient is 

already a small fraction of the illumination spot in the current formats. Run length 

limiting type coding restricts the actual minimum pit length for a small cost in overall 

density, but the channel bit length is still the import ailt paIrameter that determines 

information density in the direction of movement. No such coding can br used in the 



radial direction, and so squeezing tlie tracks together has an imnlediately significailt 

effect on the storage density. 

The recently proposed disc format for the Digital Video Disc (DVD) has a smaller 

track pitch in relation to the illunliiiation spot size than the older audio Compact 

Disc (CD) . However, the DVD format maintains the principle of avoiding cross-t alk 

between tracks by specifying the track pitch just large enough so that neighboring 

tracks are outside the spot width when the spot is centered on one track. We would 

like to investigate tlie effect of diffraction on the far field signal if we make the tracks 

pitch even smaller so that the illumination spot covers more than one pit. We have 

two lessons tha,t prompt us in this direction. In Chapter 2, we sa,w that when several 

pits lie within the illuminatiiig spot, the informakion can still be recovered if the far 

field sig~lals are distinct and the nuiliber of possible syinbols is a finite set. With 

the development of our numerical method, we can now easily in~estiga~te the fax 

field sigiial cotlstellations for different formats and desigii one with good qualities. 

Tile srcolid lesson is from the example in section 4.4.1 rega,rding TM diffraction 

fro111 an aluminum structure. We saw some interesting effects when the incident 

illurniiiat,ion is polarized in tlie TM direction, and these effects are not present for 

the T E  polari~a~tion. Therefore, we expect that we can design disc formats, which a,re 

usually fabricated by covering an embossed disc with an aluminum film, so that tlie 

diffraction for the two polarizations is very different. We will see when we design our 

experiix~enta~l formais that we will be able to use the TE polarized reflected field as a 

reference for measuring ainplitude and phase of the TM polarized reflected field. 

Our perusal through the diffraction effects of different CD track structures will 

completely ignore some important issues. Because our numerical method is only for 

two-dimmsional structures, we will completely ignore the effect of finite pit length. 

(We will call the pit dimension in the tracking direction the pit length and the pit 

dimensioil in the radial direction the pit width.) This effect ought not to be ignored, 

because just as the new DVD format reduces the track pitch, it also reduces the 

minimum pit length. In fact, the rni~iirnum pit length for this format is less than 

ha,lf the spot width. Clearly, a short pit will have a'n effect on the far field diffraction 
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papttern. Another issue that we will ignore when we discuss our futuristic formats will 

be how to illaster and reproduce such formats. We assume that reproduction could be 

a stamping process similar to current methods, but the niastering process would he 

much inore complicated because of the extremely close positioning of tracks and the 

possibility of multiple pit depths. The technique required for the optical disc head to 

maintain tracking will probably need to be significantly different for discs with a fu- 

turistic format than for a current format, and this issue will also be ignored. Although 

these issues are quite important, our results will still be informative hecause of the 

new ideas that we will present regatrding tlle use of polarization in signaling constel- 

lations. Even if all our futuristic formats presented here prove impractical because 

of one of the ignored issues, we still believe that the general principle of polarization 

signaling call increase tlie information capacity of optical discs. In addition, the idea 

of polarization sigiialing and designing subwavelength structures to have desirable far 

field properties is an iinportant extension of the superresolutioi~ ideas presented in 

Chapter 2. 

We start our investigation by analyzing the current optica.1 disc formats. The 

analysis of the DVD forinat will be the first to show large differences between the TE 

and T M  reflected far fields. Proceeding with our own experimental formats (the DS 

formats). we will analyze the differences in the diffraction for the two polarizations, 

aiicl we will develop a workiilg model to explain the diffraction. After designing a 

quadrature detector to measure the ainplitude and phase of the TM field with respect 

to the T E  field, we use the working diffraction model in tlie la,st section to design pit 

st ructures with prescribed far field quadrature properties. 
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5.2 Current Formats 

The following is a short ta,ble comparing the disc formats of the old CD and the lieuT 

DVD [39]. 

wavelength 
wavelength in medium 
numerical aperture 
spot size (AIM) 
track pitch 
sinallest pit length 
channel bit length 
approximate density 

DVD 
650nm or 635nm 
433nm or 423nrn 
0.6 
1.06pm 
0.740,um 
0.400~l~m 
0.133pnl 
5.8 b i t s / / ~ m ~  

The optica81 signal resulting froin the interaction of the illuminating spot arid the 

pit is ~isually described in the literature with scalar diffraction [l9, 211. We will SPP 

that a scalar description is satisfactory for the CD and only partly so for the DVI). 

According to a scalar model, a pit depth of a q~mrter wave would cause the center of 

the reflected fa9r field to be dark because the light reflected from the hottom of the pit 

destructively interferes with the light reflected from the surface around the pit. To 

obtain the best contrast, the pit width is made albout one-third the spot size, since 

the central one-third of the spot contains about half its power. Thus, the presence of 

a pit causes a dark reflection, and its absence causes a bright reflection. 

The basic construction of these discs is by injection ~nolding a polycarbonate sub- 

strate onto a nickel master, which is patterned with the information. The inforn~atiori 

side of tlle polycarbonate is then sputtered with a 100A coating of aluminum, and then 

a protective coating is added on top of the aluminum [23]. To read the information, a 

focused spot of light enters the polycarbonate side of the disc and is reflected by the 

aluminum so that the reflected light is collected by the same lens a1nd aperture that 

focused it. As a result the interface that serves as the diffraction contour is between 

polycarbonate and aluminum. To use our integral method prograin developed in the 

last chapter, we set 110, the index of refraction of the incident medium, to 1.5, the 

approximate index of refraction of polycarbonate. Because of this incident medium, 



the wavelength of the incident light inside the ~nediurn is two-thirds the free space 

wavelengt~h. However, the incident spot width is not different than if the incident 

medium were free spa,ce, because the angular spectrum of the incident field is also 

reduced by a factor of 1.5 due to refraction at the polycarhonate-air interface. The 

result is that inside the polycarbonate, the incident field wabvelength am1 nunle~ica~l 

aperture are reduced by the same factor. In the siniulations, and in all the results 

that follow, we describe the pit's diniensioils in terms of the wavelength inside the 

polycarbonate. The index of refraction of alunlinurn is sornewllat wavelength depen- 

dent. For the CD format we use nl = 2.7 + j8.6, and for tlie DVD simulations we use 

nl = 1.5 + j7.6[30]. 

The contours used in the numerical simulation were generated with raised cosine 

fx~ilctions which have the form 

The raised cosine function llas the convenient property that its first derivative is 

continuous, and the width and slope of the sides can be determined independently by 

the choice of IT aiid r. 

If a scalar model is to be a satisfactory predictor of actual measurement, then the 

diffraction for TI3 and TM waves must be tlie same. Dil and Jacobs[l7] calculated 

that the phase depth (electric field pha>se at the bottom of the pit conlpared to the 

pha.se at the top surface) of aluniinum pits is different for the TE a,nd TM polarized 

fields. Our question for this section is: to w11a.t extent is the diffraction different for 

TE  and TM fields for the CD format, and is there a significant change for the snialler 

pit width of the DVD format? 
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Figure 5.1: The contours used in the numerical sirnula.tions for CD and DVD  format,^. 

The pit depths were varied in steps of oneeighth wavelength. 

5.2.1 Audio CD 

The track pitch and pit cross sectioils used in our calculations axe shown in figure 5.1. 

The a,pproximate spot width of the illumination (x AIM) is also indicated i11 the 

graphs. Note that for the CD format, the track pitch is about equal to the spot 

width, whereas the track pitch for the DVD format brings the neighboring pits up to 

the edge of the illurnillation spot. For each format the pit depth was va,ried in steps 

of X/Sno. As mentioned above, the real formats specify that the pit depth is A/4ilo, a, 

qua,rter wave. 

In the scalar approximation of the reflected signal for the CD formak, described by 

Braa2t [21], the tracks are treated as a diffraction grating. Even though the illuminating 

spot only covers one track, the system can still be considered as a diffra'ction grating 

with discrete diffraction orders if we coilsides the planewaves that compose the spot 

one at a time. Because the grating period is approximately equal to X/M, half of the 

first diEra8cted order overlaps with half of the zero diffra,cted order inside the objective 



Figure 5.2: The fax field intensity pa,ttern for TE and TM illurninadtion of the (ID 
format with the pit depth equal to one quarter wave. 

lens aperture. For a pit depth of one-quarter wave, the first diffracted order is T out 

of phase with the zero order so that there is no reflected field within the aperture. 

The far field intensity calculated by the integra,l method program is compared to the 

scalar prediction in figure 5.2, for a one-quarter wave pit depth. The results show 

that the TE  sand TM fields have very similar behavior for these pits, and the scalar 

approximattion a8grees well with both. 

The computer simulations were calculated for increasing pit depth because we 

want to know if the scalar concept of a phase grating is appropriate, and if our results 

agree with the results of Dil and Jacobs regarding the difference in effective pit depth 

for the TE  and TM polarizations. To measure the effective pit depth, we look at the 

phase of J,,,(x = 0), the electric surface current a8t the center of the pit. Figure 5.3 

plots the pit phase depth and corresponding central far field intensity (at sin0 = 0) 

as a function of actual pit depth. As also predicted by Dil a>nd Jacobs, the phase of 

the electric field at the bottom of the pit is less for the TE field than for the TM field. 



pit depth [wavelengths] 

Figure 5.3: Calculated pit phase depth and far field intensity for the audio CD format. 
The pit phase depth is the the phase of the J,,, at the center of the pit. The bottom 
graph is the intensity in the center of the far field (sin8 = 0). 
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In both cases, the phase depth is quite linear with respect pit depth, implying thatt 

the phase grating principle is quite accurate. The far field intensity is also coilsistent 

since it varies approxilnately sinusoidally with twice the phase depth of the pit,. Note 

that the slope of the pha,se depth change is slightly less for the TE than for the TM, 

a,nd this difference has the expected effect on the far field intensity. The coliclusion 

of our simulations for the CD format is that the scalar approximations used in the 

literature to design a,nd explain the format is quite satisfactory. 

5.2.2 DVD (the new Digital Video Disc Format) 

The irnproveinent in track density froin CD to DVD is quite significant. Not only is 

the objective numerical aperture increased and the wavelength decreased to produce 

a si~ialler spot width, but the track pitch is significailtly less than the spot width. 

As with the CD format, the pit width is about one-third the spot size, but since the 

spot size for the DVD format was de~rea~sed by increasing the numerical aperture, the 

pit width relative to the wavelength is smaller for the DVD format than for the CD 

format. This reduction in the ratio of the pit width to the wavelength has a significant 

effect on the phase grating view as described for the C;D format. The phase depth of 

the pit is now quite different for the TE and TM fields, as is sliown in figure 5.4. The 

phase of t l ~ e  TM field is still an accurate representation of the actual pit depth, but 

the TI3 field does not seem to be as strongly affected. The central far field intensity 

has the appropriate variation corresponding to the pit pha,se depth. This difference in 

the far field intensity variation for the different polarizations stimulates an interesting 

idea for the doubling of tthe information density. Rather thaa each pit ha8ving two 

possible depths, zero or one-quarter wave as in the current DVD format, each pit 

can have four possible depths, and the depth can be distinguished by the relative far 

field response of the TE and TM polarizations. The dashed vertical lines in fa8r field 

plot of figure 5.4 indicate pit depths where four states are distinguishable. By placing 

a polarizing beamsplitter in the return path and duplicating the standard detector 

array in each leg, the refiection of each polarization can be measured independently, 
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Figure 5.4: Calculated pit phase depth and far field intensity for the DVD format. 
The da3shecl vertical lines indicate which pit depths can be used to represent four 
logical states. 
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Figure 5.5: Pit phase depth for different pit widths with the pit depth equal to a 
quarter wave. In the region where the pit width is between X/2 ( A  is adjusted for tlle 
index of refraction of t he incident medium) and A,  the phazse depth for TE  illuinina~tion 
varies almost a quarter wave, but it remains fairly constant for TM illumination. 

doubling the information density of each pit. 

Why should the TE polarization behave so differently for the CD and DVD for- 

mats? The biggest change between the two formats, froln the point of view calculatiilg 

diffraction, seems to be the pit width in relation to the wavelength. For both formats, 

the pit width is approximately one-third (AIM), but the numerical aperture illcreases 

by one-third for the DVD format, thereby reducing the pit width in relation to the 

wavelength. To study the effect of changing the pit width, we calculated the pit phase 

depth for the DVD format as a function of pit width (figure 5.5). In thr  region where 

the pit width va.ries between X/2 and X (here X is tlle wavelength in the polycarbonate 

medium), the pl~a~se clepth of the TM wave remains fairly constant while the phase 

depth of the TE wave increases close to the qua,rter wave depth of the pit. Therefore, 

tlie pit width appears to be crucial to the penetration of the TE wave into the pit. 

We can explain the difference between the TE  and TM dependence on the pit 

width by coilsidering the case of a plane, parallel waveguide with perfectly conducting 

walls. The fields in this waveguide consists of discrete modes, as restricted by tlie 

boundary conclitions of the tangential electric field at the walls. The TE  polarization 

for the pit corresponds to the electric field parallel to the walls of the waveguide, a,nd 
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the solutions for the electric field inside the waveguide are, 

where d is the width of the waveguide, and p is an integer. When the magnetic field 

is parallel to the walls, the solutiolis are, 

Each mode, corresponding to an integer value of p, has a cutoff width, dy = pa/k.  For 

widths smaller than d:, k, is imaginary, a,nd the field amplitude weakens exponentially 

in 3. For the mode p = 0 ,  the TE solution is E, = 0 ;  there ca2n be no TE  fields. 

However, there is a TM solution for p = 0 : H w = e f i Z .  The cutoff width for tlre 

11 = I rnode is rl; = X/2, a,nd both TE and TM have propagating solutio~is for this 

lliotle when cl > d i .  Therefore, when d < X/2, only evanescent TE  waves can exist 

while the TM zero mode can still propagate. Here lies the essential difference between 

the TE  fields and the TM fields in our pit width calculations described above. When 

the pit width falls below half a wavelength, the TE fields can no longer penetra,te 

the pit, while the TM fields ca,n still propagate down the pit and back. Our ba.sic 

principle, that we will exploit with our designs in the next section, is that by making 

the pit width small, we can have pits that the TM field sees, and the TE  field does 

not. 

5.3 The Nature of the TM/TE Signal 

By making the pit width small enough, we have uncovered a powerful new design 

parameter with which we ca3n increase the information capacity of each pit. The 

behavior of the TE  and TM reflected fields can be affected in very differelit ways. 

In this section, we will further investigate the nature of the difference in reflected 

far field for the two pola.riza.tions. In particular, we would like to know just how 

closely the TM fa,r field matches the scalar prediction. If the match is reassonable, 
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Figure 5.6: The DS-2 formats test the effect of va,riable track pitch using na,rrow pits. 

then designing a format to create a specific far field signal would become very simple. 

In the following two simulations, we test the affect on the far field caused by diff~rent 

pit spa,cing and pit depth. Each simulation will use pit widths on the order of half 

wavelength, and the TM far field will he compared to a scalar model. 

Any format that uses only one pit depth has an obvious advantage in fabri~a~tion. If 

we also want to keep the pit width small, then the only parameter left is the distance 

between pits, and this is the parameter that is varied in the DS-2 format. Figure 5.6 

shows the variation of the period used in the simulation, along with the spot size. The 

pit tleptli was set to a quarter wave to maximize the far field modulation. Figure 5.7 

shows the central far field power and phase for the TE, TM and scalar cases. The 

scaJa,r points were c.alculated with a simple inodel treating the pit structure als a phasse 

rnasli. We used the formula 

for the scalar calculation. The far field phase for the scalar calculation agrees very well 

with the rigorous TM calculation. However, the far field power for ea,cli seems to have 

exactly the opposite trend. For both amplitude a*nd phase, the TE field seerns to be 
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Figure 5.7: Power a.nd phase in the center of the far field for the DS-2 format. The 
scalar calculation a,grees well with the TM case in pha,se, hut very poorly in power. 

rather unaffected by the pits, as we expected. Our lessons from the DS-2 calculation 

are: a scala,r imodel predicts the TM phase but not the amplitude; modulation of the 

distance between pits alone cannot modulate the far field phase the full range; and 

we ca,n ignore the small region between the pits when using a scalar model to predict 

the T M  far field plia,se. 

ITsiiig a sillall distance between pits, so that the illumination spot covers several pits, 

haes at least the potential for sigiiificant ga,ins in information density. We simply need 

to find a way to distinguish between various states. Therefore, in this forinat we 

keep the distance between pits small, and va,ry the depth of the pits. We know from 

the DS-2 format tha8t with the pits close together and a quarter wave deep, the TM 

far field will have a la,rge a,mplitude, even though the scalar model predicts a small 

amplitude. Without making an attenipt to explain this phenomenon, we will simply 
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Figure 5.8: The DS-3 formats test the effect of variable pit depth using narrow pits 
with a high duty cycle. 

modify our model by stating that the TM field is not affected by the sinall regions 

between the pits. With this adjusted model, we predict that with closely spaced pits 

of the same depth, the TM field will be phase modulated by the pits, aiid it will also 

hatve a large reflection in amplitude since there is no diffraction fro111 an, effectively, 

planar surface. If the TM far field amplitude remains high, and the TM far field 

phase continues to be modulated by the pit depth, then we have discovered a inethod 

to modulate tlie TM phase with respect to the TE phase. We test this model with 

the DS-3 format. The pit structures for the DS-3 calculations (figure 5.8) consist 

of closely spared pits, all with tlie same depth. The calculations are repeated for 

different depths in steps of one-eighth wavelength. 

The first question is does the far field intensity remain approximately constant for 

all the pit depths. The graphs in figure 5.9 plot the far field intensity as a filiiction 

of far field angle a,nd pit depth. The far field intensity seems to fall gradually with 

increasing pit depth, probably as a result of diffraction with the pit walls. One 

inlportant point is that tlie intensities for the TE  and the TM fields behave siillilarly. 

The far field phases for the TE and TM far fields is quite different, however 

(figure 5.10). Except for the step in pit depth, the TE far field pha2se remains almost 

constant, while the TM far field phase retains its linear dependence. This result is 

quite striking - while the TM far field is phase modulated by the pit structure, the 
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Figure 5.9: Far field intensity as a function of far field angle (sind) and pit depth for 
the DS-3 format. 
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Figure 5.10: Electric field pha,se at the center of the reflected far field (sin8 = 0) for 
the DS-3 format with varying pit depth. 

TE far field remains unaffected, and both reta.in large far field intensities for all the 

pit depths. The obvious suggestion is some sort of phase modulation of the T M  field 

using the TE  field as a reference, and this approach is pursued in the next section. 

As a result of the DS-2 a,nd DS-3 simulations? we have a working model of the 

diffraction of the TE  arid TM fields with these structures of small pits. As long as 

the pit width is on the order of half the wavelengtll, the TE field is unaffected by 

the pit structure (except for the first one-eighth wave in pit depth), and its far field 

arnplitnde aiid phase are approximately the same as if there were no pits. The TM 

field? on the other hand, seems to follow a scalar diffraction rule if we coiisider only the 

reflection from the pit bottoins and ignore the small regions between the pits. With 

this difhaction model, we can proceed to design some formats that have desirable 

features. 

5.4 TM/TE Signaling with Quadrature Detection 

Now that we know how to modulate the amplitude and phase of the TM far field with 

respect to the TE far field, we need to invent a method of detecting this modulation. 

The next section expla,ins our proposal for detecting the TM field in quadrature using 

tIhe TE  field a,s a reference. This detection scheme has an a8dvantage over interferomet- 



ric detection because of the ease with which both the real and imaginary parts of the 

TM field can be detected. This type of detection allows full two-dimensional signaling 

in the nlanner of time domain communications systems. After the description of the 

quadrature detect or, we design some signal coilst ellat ions using our diffract ion model 

developed in the last section, and we calculate the far field outputs. Analogous to 

t iine domain cominunications systems, we display the results in signal constellations. 

5.4.1 A TM/TE Quadrature Detector 

The f~tndamental idea behind TEITM signaling is to i~lodulate the phase and am- 

plitude of the TM reflected far field with respect to the TE  field. We have seen 

with tlie simulations that we can design the tra,ck format so that the 'PM field is 

significai~tl y affected, while the TE field is essentially unaffected. Noril~ally, phase 

of an optical field cannot be detected without interfering it with a reference optical 

field. In TE/TM signaling. we will illurnillate the diffracting structure with both 

TE polarized and TM polarized fields. Because the TM field is much more stroiigly 

affected by tlie diffraction than the TE field, we can use the TE field as a reference to 

analyze the phase and a,rllplitude cha,nge in the TM field. Measuring the relationship 

between the two orthogonally polarized fields is similar to the conoscopic principle 

discussed in chapter 3. The advantage of using the TE  field as a reference, rather 

than constructing a traditional interferometer by splitting off part of the TM field 

before the diffrac,tion and interfering the two parts, is that coherence length, stability, 

and ~ibra~tions a,re not an issue. Another advantage is the ease of meaasuring both 

the in-phase and quadrature components. To meassure both in-phase and quadrature 

components of an electromagnetic field using traditional interferometry would reyuire 

a separate reference leg with an optical path length one-quarter wave different from 

the first reference leg. 

Consider the electric field apt the center of the fax field propagating in the 2 direc- 

tion. We will assume that we ha8ve a single planewave, since, in reality, we ca8n always 

place an aperture on the detector in the Fourier plane to restrict spatial co~nponents. 
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Figure 5.11: In-phase and quadrature detection of the TM far field using the TE field 
as a reference. 

If desired, the electric fields and corresponding detector voltages used in the following 

formulation can be considered as functions of far field angle. In addition, we will use 

the convention that the TE reflected field is polarized in the z direction, so that the 

TM electric field points in the y direction. Then the total electric far field is 

where we have ignored the factor of ej("-"? The quadrature detector illustrated in 

figure 5.11 is comprised of four detectors. The in-phase leg consists of a polarizing 

beam splitter rotated 45' with respect to the s axis. This rotated analyzer "interferes" 

the TE  and TM polarized waves as in the conoscopic system. The quadrature leg is 

the same as the in-phase leg except that it also retards the TE  component by one- 

quarter wave with respect to the TM component, so that the electric field in this leg 

is 
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The 7i-/2 phase shift in the reference results from the quarter-wave ~eta~rda~tion and 

leads to the quadrature detection. In both legs, the signal bias due to measuring 

intensity is rerr~oved by subtracting the complementary outputs of the polarizing 

b~amsplitters. The voltages at detectors A and C are 

and the voltages at detectors B and D are 

The differential amplifiers in eat& leg subtxact the bias terlils illlierent in measuring 

intensity. The resulting in-phase and quadrature voltages appearing at the outputs 

of the differe~ltial a,lnplifiers are 

As long as a ,  and 4, remain stable, this quadrature detector will measure both the 

in-phase and quadrature components of the TM field. Because the TE field is also 

slightly modulated by the diEra,ction, however, we should keep in mind when designing 

the signal constellatioll thak the TM field should be lnodulated relative to the TI3 

field. If a ,  is also so~nehow modulated, or is noisy, it can be normalized by adding 

to the detector a third leg with a polarizer positioned to pass the TE  field and block 

the TM field. This leg will siniply measure n,, so that it may be divided out of If' 

and VQ. There is no simple way to also account for instability in the phase of the TE  

field. 



Since the quadrature detector allows the detection of the phase of the TM field with 

respect to tlie phase of the TE field, we can modify the DS-3 format into a phase shift 

keyed (PSI<) channel. In an eight symbol PSK constellation (8-PSK), each symbol 

has unit amplitude but has a phase of i.rr/$, for integer i .  Because the symbol phase 

represents the phase difference between the TE and TM reflected far fields, we can 

choose the pit depths for each symbol from figure 5.10. The following table lists 

the symbol phase and the corresponding pit depth used to crea.te the DS-3.1 8-PSK 

forlriat : 

symbol # qe - 4 %  depth symbol # 4, - +,, depth 
0 0 0 4 -T 0.32X 

Table 5.1: Quadrature phase and correspo~iding pit depth. 

We calculated the diffracted far fields for the DS-3 pit structure (figure 5.8) using 

the pit depths in table 5.1. The in-phase and qua,drature detector voltages were then 

calculated and plotted in the form of a signal constellahtion (figure 5.12). In this figure 

we plotted V1 along the real a,xis and IfQ along the imaginary axis for each calculated 

fax field point where the far field angle 1 sin81 < 0.2. Restricting the far field angle 

simply rneans that an aperture is placed in the Fourier plane. For the pit depth equal 

to zero, the constellation point lies on the real axis because there is no phase difference 

between the two polarizations. As the pit depth increases, the constellation points 

move in a clocltwise direction because the phase of the TM far field is increasing faster 

than the TE far field phase. The result is a circular constellation characteristic of 

PSI?; modulation. 



Figure 5.12: The in-phase (real) and q~a~drature  (imaginary) constellation showing 
phase i~iodulation for the DS-3 format. Eajch constellation point is constnlcted with 
the quadrature detector calculated points for the various far field angles, and each 
is labbeled with the corresponding pit depth (in wavelengths). The constellation was 
generated by applying the quadrature detector to the calculated TE and T M  far fields 
inside a ~~urnerical aperture of 0.2. 



The fabrication of multiple pit depths inay prove costly. What sort of signal constel- 

lations are achievable if we are restricted to a single pit depth, but we use a DS-3 type 

of format wit11 several closely spaced small pits? The limitation of only one pit depth 

implies that each pit can only contribute a phase of zero (zero pit depth) or a far 

field phase equal to twice the effective pit depth. However, since the amplitude of tllc 

incideilt field has a nonuniform shape across the tra,ck, some pits impress their pllase 

shift more strongly than others onto the far field. The modulation on t h ~  center of 

the TM far field, using a scalar approxiinattion, is of the form 

CM 

hM (ti) = Lm sinc(kMx) rect ( *) e-?a$24ejkux dx , 
i 7- 

where ar is 1 or 0, v is the spacing between pits, T is the width of ea'ch pit, and q5 is 

the effective pha,se depth of a pit. Because the rect fuilctioils do not overlap (the pits 

a.re disjoint) we can rewrite the far field expression to consider the effect of each pit 

separately as 

ignoring the small space between pits. Each integral in equation 5.11 is essentially 

a weighting for each pit depending on the strength of the incident field 011 thatt pit. 

Since the phase contribution of each pit is restricted to either zero or 2 4 ,  the possible 

signal constellations are straight lines. One end point of the constellation is for the 

symbol where each ai = 0, and the other end point is for each a,  = 1. Therefore, the 

optinluin phase depth is 2 4  = n, producing a signal constellation along the real axis, 

and this type of constellation is known as Pulse Amplitude Modulation (PAM). 

The next step for this design is to choose sets of a; which form distinct constellation 

points. Since the central one-third of the illuminating spot contains about half of the 

illunlination power, we will divide the track into six pits, as shown in figure 5.13, 

rather thasl five as in the DS-3 formats. To estimate the relative effect of each pit on 
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Figure 5.13: Track format for DS-6.0 PAM modulation. 

the far field, we calculated the integral in equation 5.11 at u = 0, the center of the 

far field, for each pit, resulting in the simple approximation, 

To make an eight point constellation, we want to choose eight sets of so that ETM(0) 

for each set is evenly spaced along the real axis. Fixing the end points at ETM(0) = 

- 1, and ErM(0) = 1, the other six points will be at ETM(0) = {f 0.64, k0.43.10.11). 

The pit patterns that achieve this constellation are shown in t a b l ~  5.2. Notice that 

Table 5.2: The choices of pit patterns for each signall co~lstellation value. 

the co~lstellation points (ETM(0)) are not evenly spaced. Evenly spaced points would 

be separated by a distance of 217 R 0.29, and from equation 5.12 we see that this 

~epa~ration distance is not possible. The tabulated choices are the best possible given 



Figure 5.14: Signal coilstellation for the eight point DS-6.0 for~nat with the detector 
M = 0.1. 

ecluation 5.12. Naturally, this design assumes that the TE field will be completely 

unaffected by the presence of the pits. We know from the DS-3 format that T E  

field will have some small phase change froin the pits. Therefore, we should expect 

tlie calculated coilst ellat ion for the above pit pat teriis to deviate soniewhat froill a 

straight line. Figure 5.14 shows the calculated signal constellation for the DS-6.0 

PAM format. The constellation point corresponding to no pits present, sylllbol #7, 

is on tlie real axis, which is the correct position. However, because the TE field does 

beconle solliewhat modulated by the presence of the pits, and the calculated TM field 

varies from the scalar design rule, the quadrature component does not remain zero. 

The distance bet ween the constellation points reflects the unevenness described in the 

design. However, the symbols are unique and unambiguous, and we have successfully 

designed a signal constellation that requires only one pit depth. 



The formats for the 8-PSK (DS-3.1) and the 8-PAM (DS-6.0) point to the trade-off 

betweeii the simplicity of lmving only one pit depth a i d  a signal constellation which 

has greater distances between the signal points. A grea.ter distance betweeii con- 

stellation points implies better signal to noise ratio (SNRJ which can be utilized to 

either irnprove tlie hit error rate or add more signal points and illcrease tlie infor- 

mation content. However, the 8-PSE; constellation is not an optimum choice in this 

respect. We will now describe an 8 point Quadrature Amplitude Modulation (QAM) 

signal constellation that has better point separation properties and only requires half 

as ma,ny pit depths. Returniilg to the DS-6.0 $-PAM format, suppose we modulate 

the two central pits together with one depth and tlie four outside pits togetlier with 

another. Then, the design eqxratioil equivalent to equation 5.12 has the form, 

where t l ~ e  outside four pits have a phase depth equal to q$o, and the central two pits 

have a phase depth equal to qb0 + $il. Figure 5.15 plots the constellations for this 

design equation a,s a function of for four different values of 4 o .  Considering the 

signal points marked in the figure, we realize that only four phase depths axe required. 

Each of the signal points corresponds to sollie coinbination of = 0,n /2 ,  n, 3n/2, 

and dl = 0, n/2, n ,  3 ~ 1 2 .  For our simulation, w~ made the choices shown in table 5.3. 

To encode these phase depths onto a pit structure, we used six pits avs in the DS-6.0 

Ta,ble 5.3: The choices of pit phase depth patterns for the 8-QAM constellation. 

forinai (figure 5.131, except that pits 1,2,5,6 were give11 a phase depth equal to 4*, and 



Figure 5.15: Plots of equation 5.13 for q50 = 0, ~ / 2 ,  T ,  3 ~ 1 2 .  The signal co~lstellation 
points for 8-Q AM modulation are numbered. 



Figure 5.16: Signa61 coilstellation for the DS-6.1 format, using detector n"l = 0.1. 

pii.s 3 and 4 werr set to a phase depth of +o + $PI. Notice that the pha,sr depth clloice 

for symbol #1 could lla,ve been +o = 0 and = n/2,  but this region of shallow 

phase depth is where the TE polarizatioii is most affected by challging pit depth. 

Therefore, better results of rotating the TM field without relative change to the TE  

field were attained with the phase choices giver1 in the table. The pit depths used 

in the simulation were taeken from table 5.1. Tlie calculated constellatioil for the fax 

field angle ( sin@/ < 0.1 is shown in figure 5.16. The constellation points for synlbols 

#0,2,4,6 are placed very close to their inteilded locations, but the other symbols, 

pa'rtic~la~rly #5,7, seem to be slightly offset. Perhaps different choices of qbo and or 

the pit depths for these symbols would improve their locations. In general, however, 

the constellation demonstrates a signaling format having better symbol separaLtion 

than the DS-6.0 8-PAM format with half the number of required pit depths aks the 

DS-3.1 8-PSK formalt. 



When designing the 8-QAM system for the DS-6.1 format, we explained that some 

of the constellation points, namely synibols # 1,3,5,7, could be encoded with several 

different choices of pit phase depth patterns. If we could find some other way to 

distinguish between two different pit patterns tha!t have the same TE/TM quadrature 

signal, then we could add more symbols increasing the information density. 111 fact, 

there is one more degree of freedom yet to be exploited by these formats-variation in 

the far field pat tern. In the DS-6.1 format, we chose pit pat terns that were syinm~tric, 

and syrninetric pit patterns result in symmetric far field patterns. If, instead, we set 

pits 1,2,3 to a phase depth equal to q50, and pits 4,5,6 tjo a phase depth of &o + 
then we can get the same quadrature constellation in the center of the fa.r field, but 

the far field will be asymmetric for symbols #1,3,5,7. The far field would still be 

synirnetric for synibols #0,2,4,6 because for these symbols all the pits have the sanie 

dept h. Reversing the asyininetry would construct another four symbols, for a tot a1 

of sixteen symbols. 

However, the in-phase and quadrature voltages cannot distinguish between all the 

syinbols. To determine the asymmetry in the far field, we measure the TM far field 

alone (whicli requires an additional leg in the quadrature detector). The TM field is 

11sed for the symnietry measure, and not the TE field, because the TM far field is 

nlore significantly affected by the pit structure than the TE, and, therefore, we would 

expect asyinnletries to be more pronounced in the TM far field. The measurement is 

niade by splitting the far field in half and detecting each half separately; one detector 

( I I  ) measures the iniensity for the fa8r field angles / sin0 / < 0, and the other (t$) for 

I sin@( > 0. We define the measure of asymmetry, 111 = V+ - 1.'. The results of the 

sixteen point sinlulation is shown in a constellation plot (figure 5.17). In this rep- 

resent at ion, each of the constellation poiiits # 1,3,5,7 represents three symbols, each 

with a different value of 12.1. Thus, each of the sixteen symbols can be distinguished by 

cornbirlation of Vi, VQ, and M ,  and the format can represent four bits of information, 

whereass the DS-6.1 8-QAM format can only represent three bits. NaturaJly, the cost 



Figure 5.17: 16 point signal constellation for the DS-6.2 forma-t. The qua,dra*ture 
detection is within a M = 0.1, and the asymmetry detection is for a detector N1 = 0.5. 

is more con~plexity due to the requirements for the symmetry measure. 

5.5 TE/TM Quadrature Measurement for Surface 

Metrology 

As minimuin feature sizes in microelectronic fabrication are reduced below 0.25pm, 

the quality control inspection required at each step of the fabrication process in a large 

scale microelectronics facility becomes a very difficult problem. Not only does the 

reduced feature size allow more devices per wafer, but with more devices, more layers 

of interconnections are required. Two specific features that are difficult to ulea.sure 

a.re contact holes etched through oxide layers for the purpose of contacting a circuit 

device with metallization, and capacitor trenches etched into the silicon substrate for 
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DRAM cell fabrication. Before each metallization step, contact holes are etched in the 

covering oxide down to the device layer where contact is desired. Because the device 

width can be as small as 0.25pm, and the coiltact hole can be lnicrolileters in depth, 

these holes have a very large aspect ratio. A DRAM cell collsists of a capacitor and 

a transistor. The information is stored by charging the capacitor, and the capacitor 

is accessed for reading and writing by the transistor. In general, the ~apacita~nce is 

proportional to the area of the capacitor, and a large capacitance is clesirrd for a 

DRAM cell. However, to fit more capacitors onto a chip, the area of each capacitor 

must be made small, contrary to the desire for a large capacitance. To solve this 

problem of a capacitor that uses a small amount of chip surface area but also has the 

required capacitance, some DRAM processes form the capacitor by etching a deep 

arid narrow trench, depositing a thin oxide along the walls of the trench, and then 

filling the trench with a conducting material. Thus, the capacitor is formed along 

the walls of the trench resulting in a large capacitor area. Yet, the chip surface area 

occupied by the trench capacitor is equal to the width of the trench, which can be as 

small as the lithography allows. 

There are several quality control issues with both the contact hole and trench 

capacitor fabrication. For the contact bole, the depth of the hole is very important 

since the hole must make contact with the proper layer. For the trench capacitor, 

the depth and shape are very important, but the unifor~nity of the oxide layer is 

crucial. Currently, these structures can only be measured with an electron beam 

~ilicroscope. Not only in an electron beam microscope far to slow and expensive to 

inspect every wafer in a fabrication process, but inally electron n~icroscope techniques 

require cutting the wafer so that the structure's profile can be measured. 

Electron microscopy is too slow and expensive to use on-line, and measuring trench 

depth requires destructively cutting the sample to expose its profile. Optical micro- 

scopes call barely resolve these structures, and they do not provide accurate depth 

information. Interference methods, such as the commercially available white light in- 

terference microscope, have excellent depth measuring ability, but they cannot mea- 

sure t he depth of structures smaller than the resolution limit or structures wi t11 large 
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aspect ratios. As a result, when a wafer is etched defectively, the problem cannot be 

discovered until electrical tests are performed later in the fabrication process, wastillg 

valuable time and resources on needless productio~i steps on a defective wafer. 

The previous examples in this chapter of diffraction from a groove were for alu- 

~iiiiiurn structures with visible red light. 4 t  that wavelength, silicon is only about 30% 

reflective [4]. As a result, when a red spot is focused onto a silicon st,ructure deeper 

than about a wavelength, most of the incident liglit that enters the groove is never 

reflected back out because of severe absorption by the groove walls. We saw this effect 

with the measurement of the gallium axsenide sample in Chapter 4. Without light 

reflected from the groove, there can be no polari~a~tion quadrature signal. Our solu- 

tion is to illu~nillate the groove with DUV light. As an example, a I irF excil~ler laser 

emits at a wavelength of 248111x1, and a high pressure mercury arc laamp can emit a.t 

25inrn. Both of these sources are conlinercially available and currently being used in 

microelectronic lithography. At these wavelengths, silicon is very conductive, and its 

reflectivity goes up to about 70% 141. Another benefit of using the DUV light is that 

we can relax the nu1iierica.l aperture requirelnellts of the illuminating system, since 

the illuminating spot size is approximately the wavelength divided by the numerical 

aperture. We siniulated the TE/TM quadrature detector response to a 0.25pnr wide 

groove in silicon for increasing groove depth. We perfornled the sinlulation with a 

wavelength of 248nm, corresponding to a KrF excimer laser. Illuminating the groove 

with light at a waveleiigth where silicoil is most reflective gives the best measurement 

sigiial since we are measuring the reflected light. At 24811111, the index of refraction of 

silicon is about 1.6+j3.6 [4]. Figure 5.18 shows the TE/TNl quadrature response for 

the groove depth varying from zero to four wavelengths (0.992pm). The horizontal 

axis of this graph shows the in-phase voltage, 1/1, from the polarization quadrature 

detector, and the vertical axis shows the quadrature voltage output. Each point 

plotted, represented by a triangle, is for a different trench depth in the calulation. 

Thus, the (V', VQ) coordiiiate corresponds to the detector response for that trench 

depth. The graph shows how the phase difference between the T E  and TM rotates as 

the trench deepens, causing a spiral gra,ph. If the measurement of the trench could 



Figure 5.18: The TE/TM quadrature signal for a 0 . 2 5 ~ 1 ~  wide groove in silicon for 
increa'sing groove depth. The depth is incremented in steps of X/4 from 0 to 4X. The 
wavelength X = 0.248nm, the numerical aperture for the incident light is 0.6, a8nd tlre 
nuinerical aperture for collecting the reflected light is 0.1. 

be made i n  s i t u ,  then the opera4tor could precisely stop the etching process at the 

depth by watching the the detector output. If the nleasurement is not made in s i tu .  

then the an instrument would measure the voltage pair (I/;, 16) for each treuch. If 

the measured voltage pair equals the expected voltage pair, then the trench passes. 

Otherwise, tlie etching process has been defective. 

There is no requirement for a coherent source for the polarization quadrature 

measurement. The T E  and TM fields travel exactly the same optical path. Therefore, 

coherence length is not an issue. In fact, there may be an advantage to using an 

incoherent source. With illcoherent imalging, we can iinage the reflection of each 

trench in parallel. By placing lenses in the polarization quadrature systern(figure 5.19, 

we can image the polarization quadrature response for each trench onto a detector 
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Figure 5.19: The polarization quadrature system for measuring the parameters of a 
trench. Only one leg of the polarization quadrature detector is shown. The added 
lenses before the detectors allows imaging as in a traditional microscope. 

in an array of detectors. In this way, we can measure the polarization quadrature 

response for as many trenches in parallel as the optical imaging system and detector 

array can handle. 

5.6 Conclusion 

We started this chapter by simulating the diffraction for the current optical disc 

formats. While the generally accepted scalar model is reasonable for the older CD- 

aLudio format, it begins to fail for the smaller pit widths of the newer DVD format. 

In fact, the difference between the TE and TM diffraction for this format suggested 

a method of doubling the information density by using multiple pit depths and a 

polarizing beam splitter. 

To gain a better understanding of the different diffraction effects for the TE and 

T M  polarizations, we designed to experimental formats, DS-2 and DS-3, to test the 

applicability of normal scalar type diffraction models. We found that for pit widths 

smaller than about half a wavelength, the TE field is relatively undiffracted by the pit 

structure, and we explained this phenomenon by comparing the pit to a plane parallel 



waveguide. I11 this waveguide, no TE fields can propagate when the width is less than 

half the wavelength. For the TM diffraction, we found that describing the diffraction 

as pha,se modulation from the bottom surface of the pits, and ignoring altogether the 

small regions between closely spaced pits, was satisfactory in predicting the diffracted 

far field. 

Making full use of our new-found a,bility to modulate the amplitude a.nd phase 

of the TM far field independently of the TE field requires a special detector. Our 

quadrature detector measures the complete amplitude and phase of the TM far field 

using the TE far field as a reference. This detector can be useful i11 any application 

tliat uses some sort polarization modulation a8s a signal. Finally, we realized our 

ancient goal of Chapter 1; we designed a set of patterns consisting of subwavelength 

features that had some sort of optimal far field behavior. The far field behavior took 

the form of a signal constellation, and we were able to design the pla,cenient of the 

signal points, thereby maximizing the distance between symbols. Whereas ill Chapter 

2 we simply measured whaltever distance happened to be present between symbols, 

the synlbol constellations for the DS-3.1 a8nd DS-6 formats were actua.lly designed to 

lia've certain properties. 
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