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ABSTRACT

BOUNDARY CURRENT EFFECTS IN

MAGNETOHYDRODYNAMICS WITH ANISOTROPIC CONDUCTIVITY

Thesis by

Richard Franklin Smisek

A theoretical investigation is conducted to determine the effects
of currents flowing through a boundary into the magnetohydrodynamic
flow of an inviscid, incompressible fluid with anisotropic conductiv-
ify. The particular arrangement of an externally applied magnetic
field parallel to the velocity field is investigated for two flow
geometries; (i) semi-infinite flow over a conducting flat wall, and
(ii) channel flow between a conducting lower wall and an insulating
upper wall. 1In both cases the applied boundary currents are assumed
to be sinusoidal in shape and flow into the fluid normal to the
boundary.

A small perturbation analysis is used to linearize the macro-
‘scopic steady flow equations of a fully ionized.gas. A Cartesian
coordinate system is adopted in which the x-axis is in the flow
direction and the y-axis is normal to the conducting wall. The pro=-
blem is considered two dimensional from the standpoint that the per-~
turbed quantities are independent of the z~coordinate although the
z-components are, in general, non-zero. The general solution to the
linearized equations is obtained for case (i). Because of the com-

plexity of this solution, it is studied in detail only in the limits
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~of small and large magnetic Reynold's number. Solutions for case (ii)
are obtained in the limits of small and large magnetic Reynold's
number by applying the limiting procedure to the linearized equat ions
before solving them.

in the 1imit of sméll magnetic Reynold's number for both cases
(i) and (ii), the magnetic and velocity field vector; are composed of
an irrotational part and a rotational part. The irrotational portion
always remains in the x-y plane. However, the rotational portion and,
hence, the currents lie in a plane which is rotated about the x-axis;
the angle between this plane and the x-y plane being strongly depen-
dent upon the degree of anisotropy in the fluid's electrical conduc-
tivity. The currents in the fluid form symmetric loops Closing at
» the conducting boundary. Anisotropic effects on the magnitude of the
magnetic and velocity field components and the currents éré generally
moderate except near the conducting wall. At this wall the x ahd z
current components can become quite large for strong aﬁisotropic con-
ductivity. Both the irrotational and rotational portions of the vel-
‘ocity field vector behave in a manner analogou$ to ordinary-incom-
pfessible flow with the applied sinusoidal boundary current in the
flat wall replaced by a solid sinusoida1 wall.

In the limit of large magnetic Reynold's number. for both cases
(i) and (ii), anisotropic effects are absent to the order of the
inverse square root of the magnetic Reynold's number. In addition,
the currents and field perturbations are found to be confined to a

thin magnetic boundary layer near the conducting wall. The currents
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lie entirely in the x-y plane and again form loops closing at the
conductiﬁg boundary, but are steeply inclined toward the x-axis.
The x-component of the current flowing in the fluid is found to be
larger than the applied boundary current by a factor of the square

root "of the magnetic Reynold's number.
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I. TINTRODUCTION

In the magnetohydrodynamic flow of an ionized gas, the inter-
action of the magnetic field with the charged particles in the fluid
coupled with the collisions between particles give rise to Hall
currents. These currents are responsible for what is commonly called
anisotropic conductivity of the fluid. Derivations of the flow
equations of a fully ionized gas, including Hall currents, are given
by Cowling (1), Spitzer (2), and Delcroix (3).

If currents are introduced into the fluid through a bbundary,
they also will interact with the fluid and the magnetic field. It
is the effects produced by these boundary currents in a fluid of
anisotropic conductivity that is the subject of this thesis. In
particular, a theoretical investigation is conducted for an externally
~applied magnetic field parallel to the velocity field for two flow
geometries; (i) semi-infinite flow over a conducting flat wall, and
(ii) channel flow between a conducting lower wall and an insulating
upper wall. In both cases the boundary currents are assumed sinu-
;oida] in shape and flow into the fluid normal to the:boundary-

Linearization of the macroscopic steady flow equations of a
fully ionized gas is accomplished using the small perturbation method
in a manner identical to that of Sonnerup (4). A Cartesian coord-
inate system is adopted in which the x-axis is in the flow direction
and the y-axis is normal to the conducting wall. The problem is con-
sidered two dimensional from the standpoint that the perturbed

quantities are independent of the z-coordinate although the z-com-



ponents are, in general, non-zero. The general solution to the
linearized equations is obtained for the semi-infinite flow case.
This solution is studied in detail in the limits of small and large
magnetic Reynold's number. In the channel flow case, so]utionﬁ are
obtained in the limits of small and large magnetic Reynold's number
by applying the limiting procedure to the linearized flow equations

first.



-3~

II. ANISOTROPIC CONDUCTIVITY

The basic equation which describes the effects of electrical
conductivity in a conducting fluid is the generalized form of Ohm's
law. When a conducting fluid flows in the presence of an electric
field, Ohm's law relates the current density to the electric field;
the constant of proportionality being the scalar conductivity. However,
if a magnetic field is also present, a Hall current is introduced due
to the interaction of the magnetic field with the charged particles
in the fluid and collisions between particles. It is this Hall current
which causes the anisotropic conductivity effects in magnetohydrodyn-
amic flows.

The generalized form of Ohm's law is derived inlreferences (n,
(2}, and (3) for a fully ionized gas consisting of two components
(ions and électrons) and where electrical neutrality is maintained
overall. _Assuming (1) that the velocity of the electrons relative to
the ions is small, (ii) the mass velocity of the gas is:the velocity
of the ions (since the mass ratio of ions to electrons is \afge)z (iii)
no fluid stresses exist (only hydrodynamic pressure), and {iv) on the
average the electrons lose their entire momentum in each collision
with ions, then the steady state form of Ohm's law in a coordinate

system moving with the mass velocity of the gas is
- Txl =l B+ uzxH +(-
F-(8F) §xil = c[E+ufxH +(7e) VR ]

where electromagnetic units have been used and

current density vector

magnetic field vector

i
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E = electric field vector

- - \

q = fluid velocity vector

o = scalar electric conductivity

B = magnetic permeability (in emu, p = | in free space)
n = number of electrons (or ions) per unit volume

-e = electron charge

Pe = electron partial pressure

w = cyclotron frequency of electrons

T = mean time between collisions of electrons with ions

Expressions for the electron cyclotron frequency and scalar conduc-

tivity, respectively, are

w = e H
=
_ me*T

c = g

wherenneis the electron mass.

(2.2)

(2.3)

The form of Ohm's law most suitable for the analysis to be con-

ducted is that of equation (2.1). However, some additional

on the nature of anisotropic conductivity will be presented for

completeness. Equation (2.1) can be written as

— - P
L4

i = cE’ + (“’Wq'-)erH

where the electric field E' is the sum of the electric field

CE""“?"F‘) seen by an observer moving with the gas velocity q

remarks

(2.4)
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and the electric field (Vﬂ%/hug) produced by the pressure distri-
bution in the gas. The terni[(%ﬁz)éZk;q ] is the Hall current arising
from the particle drift across the electric field due to the presence
of the magnetic field. The Hall current is small for dense gases

and weak magnetic fields since many collisions take place during

the time needed for an electron to make a complete turn around a
magnetic field line. It is large for rareified gases and/or strong
magnetic fields since the electrons can spiral freely between
collisions. It is this latter case that is of interest hereiﬁ since
it may cause strong anisotropy in the electric conductivity.

The anisotropic effect of the Hall current is most easily seen
by solving for the current density vector. Assuming that the mag-
netic field is in the x-direction in a right-handed Cartesian co-
ordinate system, the current density may be found by crossing
equation (2.4) with ﬁ; using vector identities, and substituting for

- -
(j x H) in equation (2.4). The result is

#1r= rra7 (Ey — @7 Ey) o

j/}: [+w 7 (wTE +E’)')

It is easily seen that the current density depends strongly on the

factor wt, which is the ratio of the electron cyclotron frequency to
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the electron collision frequency with ions. When this factor is
“small, the Hall current is small and Ohm's law reduces to the

isotropic form:

—

ﬂ‘,__: O‘E, | (2.6)

The anisotropic form of Ohm's law, equation (2.5), can be put into a
matrix form which possesses tensor properties under orthogonal
transformations; hence the term "tensor conductivity” which is some-

times used synonymously with anisotropic conductivity. This matrix

representation is

R 2 /

4’4 [+w?T O @ E/x-

/ - o  wr c/ (2.7)
14|~ Tvarr? ¥ |

avas o wr | E.
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III. THE GOVERNING EQUATIONS

The équations governing magnetohydrodynamics are the appropriate
forms of Ohm's law, Maxwell's equations, and the equations of fluid
mechanics including all necessary electromagnetic terms. Becadse of
the complexity of the equations resulting from combining the above
sets of equations in their general form, several simplifying
assumptions will now be made. First, only fully ionized, electrically
neutral, non-viscous gases will be considered so that Ohm's law can
be expressed in the form of equation (2.1) for steady state-conditions.
In electromagnetic units, the steady state Maxwell's equations for a

moving non-polarized medium are

vl E = I.,LT]'CZ/g

V'H =0 (3.1)
VXE =0

VxH'=L+1T;

where convective currents and the vacuum displacement current have
been neglected, ¢ is the speed of light in a vacﬁum and f; is the
electric charge density.

As a further simplifying assumption, only incompressible flows

will be considered. The continuity of mass equation then becomes

V%’ =0 (3.2)
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The momentum equations for steady state, incompressible, non-viscous

" flows are

f’%'vgb«”—‘—V/P +,L(;XI--{. (3.3)

where £ is the fluid mass density and p is the pressure.
Ohm's law and the momentum equations will now be linearized by
the introduction of small perturbations in the magnetic and velocity

fields as follows:

) —
H=H+4
— = -
F=U.+d
The unperturbed magnetic and velocity field vectors He and U, are

assumed to be constant in space and time while the perturbation

g - . . :
vectors h and u are small in comparison to the unperturbed vectors.

LAl < |H.]
lu[< |U.

(3.5)

Taking the curl of Ohm's law, equation (2.1), in order to
eliminate the pressure, using Maxwell's equations and some vector
identities, and introducing equations (3.4) produces the following

linearized form of Ohm's law upon neglect of higher order terms.
H,c VU -U-vA (3.6)
_ { 2 W T\
- LI-'n'ovu[V I~(Ho )Ha-V(VXI)]
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e.u H,

m, (3.7)

where (D, =

Similarly, the momentum equation can be linearized to the following

form.
ﬁ-v§~;#;ﬁ~vj=—V(%+zfr‘7—ﬂ-]) (3.8)

A more useful form of the momentum equation is obtained by taking

the curl of equation (3.8).

U,,’Vﬂ = 4_?( Ho'vs (3.9)
where _(—i = VX_LI

n

—5' VXI (3.10)

It should be noted that so far no conditions have been imposed
on the orientation of the magnetic and velocity fields. In the case
to be considered here, the magnetic and velocity fields are parallel
and will be assumed to be in the x-direction. Inserting this infor-
mation into quations (3.6) and (3.9) results in the following forms

of Ohm's law and the momentum equations for parallel fields.

QE___ _ / e ég .
M. Sx U%’%“Mam(v/ﬁ“wfa_i) (310

and

U%_h:=/uHo_-E:.
DY

TP (3.12)

Equation (3.12) can be integrated to give

i

= _(U
T =(me) A +U V¢ (219
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where ¢ is a function satisfying Laplace's equation and m is the
Alfvén number; i.e., the ratio of the fluid speed to the speed of

ordinary Alfvén waves. The Alfvén number is given by the formula

24} .
m = (——-—————477?& *  (3.14
/MHOZ (' )
Taking the curl of equation (3.1l) and substituting equation (3.12)

into the result gives
) _ o2F 3
Y. Sre V & w,T(VX érx) (3.15)

where k is defined as
,& — mt—|
= 4Mou [ o (3.16)

The assumption will now be made that the problem under consider-
ation is fwo dimensional in the sense that the so]utidn depends on
only one other coordinate in addition to the x-coordinate. Choosing
the solution to be independent of the z-coordinate, this assumption

takes the form

3
.___-_:o /.
3/3’ (3.17)
Although no variation of the solution with the z-coordinate is
allowed under this assumption, the z-components of the solution can
be non-zero functions of the x and y-coordinates. On the basis of
. this assumption, equation (3.15) can be reduced to the following two

scalar equations.
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Vb =4 3’_&1.+w,7'9.);§&_ (3.18)
X4 Y d=

V'E, =k —wrd V4, (2.19)

Combined with the appropriate boundary conditions, equations
(3.18), (3.19), (3.13), and (3.11) allow the magnetic and velocity
field perturbations to be found. Using the last of Maxwell's
equations (3.1} determines the currents flowing in the fluid and use
of Ohm's law {2.1) allows determination of the electric field. Once
the electric field is known, the first of Maxwell's equatidns {3.1)
determines the electric charge density distribution. Finally, the
pressure field can be determined by substituting the velocity field
given by equation (3.13) into the momentum equation (3.8) and inte-

grating. The result is

f—ﬁ = —P U U, : (3.20)

where po is the unperturbed pressure and U, is the x-component of

the perturbation velocity. Similarly, the pressure coefficient is

C. = — AUz (3.21)
? [OA

Although only the magnetic and velocity field perturbations and
the currents flowing in the fluid will be determined in the subse-

quent analysis, the above equations allow any quantity of interest to

be evaluated.
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IV. SEMI-INFINITE FLOW OVER A FLAT WALL WITH
SINUSOIDAL BOUNDARY CURRENTS
The equations just derived will now be used to investigate‘the _
effects of boundary currents in the magnetohydrodynamic flow of;an
anisotropically conducting fluid. In particular, flow of Semi-infinite
“extent over a flat conducting wall through which sinusoidal cqrrents
are induced into the fluid will be considered here. A general solution
will be obtained valid for arbitrary magnetic Reynold's number and
W,T. Approximate solutions will then be obtained in the lihit&/pf
small and large magnetic Reynold's number.
A. GENERAL SOLUTION
One of ‘the simplest and; yet, one of the most usefu]vboundafy ’
current distributions that can be specified is one having a sinusoidal
profile. éolutions for boundary currents of any arbitrary profile of
interest can, in principle, be ;onstructed from the sinusoidél boﬁndary
current solution using Fourier superposition. Therefore, the effects
of sinusoidal]y»distributed boundary currents will be investigated
here.

- The geometrical arrangement to be considered is as‘shOWn in
Figure I. The unperturbed magnetic and velocity fields are ﬁara]]e]
and in the x-direction. The flat wall is considered to be of infinite
extent in the x and z-directions and, for the purposes of this
investigation, can be considered infinitely thick. It is supposed
that the wall is a non-magnetic conductor which has the séme magnetic

permeability as the fluid. In addition, it is assumed that no electric
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fields exist in the wall parallel to the boundary. Thus, the only

non-zero cgrrent component in the wall is in the y-direction. It is
further assumed that this current flows undistorted and undiminished
through the wall. This requires that the current throughout the wall

be equal to the current at the boundary.

3

z'/\/)L

fu=J e

W 7 717 7 ;l/l/l/ »r‘/X

FIGURE |

GEOMETRICAL ARRANGEMENT OF THE SEMI-INFINITE FLOW CASE

Using complex notation, the boundary current induced into the

fluid through the conducting wall is specified to be

. 13y, 2
fo = Jée (4.1)

A

where J is the amplitude of the boundary current and (ZHVA) is equal
to the wave length of the current distribution. In order to obtain
solutions valid within the small perturbation approach used to
linearize the equations governing this problem, it is ﬁecessary to

restrict the magnitude of the boundary current amplitude according to

following inequality.

J < £H, | (4.2)
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The electromagnetic fields in the fluid and the conducting wall
are coupled at the boundary. Because of this coupling, it is necessary,
in effect, to solve for the fields in the wall as well as in the Fiuild.
The boundary conditions that will be applied are as follows:

(1) the normal component of the current density vector is con-

tinuous across the boundary

(ii) no fluid flows through the surface of the wall
{iii) the components of the magnetic field perturbation vector

are continuous across the boundary

(iv) both the magnetic field and velocity field perturbations

vanish as y approaches positive infinity

(v) the x and y-components of the magnetic field perturbétion

vector vanish as y approaches negative infinity while the
z~component remains finite.
Condition (iii) is equivalent to specifying that no surface currents
exist at the boundary. In condition {v), the z-componenf of the
magnetic field perturbation is not allowed to vanish since ifs deriva-
tive specifies the current flowing in the wall.

From Maxwell's equations (3.1) we have

V- h =0 (4.3)
VX}{=47T7}
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Since the only current in the wall is in the y-direction and is equal
to the value at the boundary given by equation (4.1), equations [4.3)

reduce to the following four scalar equations.

3 %’ = 0O (4.5)
.A )
%f‘é’ = —grJe"” NG

shy _ b

)2 S Y =0 (4.7)

A stream-type function ™ will now be introduced which is defined by
the following equations.
%o‘- _éy«

_ Y
/'g#_a

Il

Equations (4.8) automatically satisfy equation (4.4) and when intro-
duced into equation (4.7) result in the following form of Laplace's

equation.

Q/N
-
hré
-

.
+
Y
|
I
O

(4.9)

2
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This equation is easily solved by separation of variables to give,

using boundary condition (v),

(B)e"

where A is a complex constant to be determined. Thus, except for the

—

(4.10)

constant A, the x and y-components of the magnetic field in the wall
are determined. The z-component is easily found from equations (4.5)
and (4.6) with the result that the magnetic field perturbations in

the wall are

A

s

AL+ A
iAe 4

I

LA+ Ay (4.11)

The magnetic field perturbations in the fluid are determined
using equations (3.18) and (3.19). By eliminating gg»from these
eqUations, the following fourth order partial differential equation

for,£7 is obtained.

2 3y P
y© 3+ (¥+) wé% S

34 2
‘Zﬁ(a/x”ma,) v 3 Y (4.12

where ¥ is defined as
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Ve
( |+ w7 ) (4.13)

If a particular solution of the form
tAx—cy
A4, =Ke (4-14)
7

is substituted into equation (4.12) and the coefficients of the
exponential in the resulting algebraic equation are equated, it is
found that equation (4.14) is a possible solution if € takes on any

of the four values given below.

A& v, 1Y%
c=t []+ w?’+‘;" Lw? 7‘ A”L‘L 71)2] (4.15)

Since by boundary condition (iv) the magnetic field perturbations must
vanish as y approaches infinity, the negative values of C oufside the
outer square root are not valid for the physical problem at hand. The
remaining two values of € are physically allowable and,-for convenience
will be denoted by & and £ as follows:

of = /\[I“"“w 2 +z,<€+ W T(‘_'_tl-az’,f.rz)'/a]'/z

2 'A. | 3
A= A [}*‘2%“4 7,z+_%x_ - 2'“f%r )!027,5) _]

Thus, it has been determined that the z-component of the magnetic

field perturbation has a particular solution of the form
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A

LAK -y -8y
= (ce v ce) (417
Since,A? and ??.are related by equations (3.18) and (3.!9),.5?.must
also have the same form as equation (4.17). By definition
g = b—’—éf'_. M«-

7"’ 3 é# (4.18)

and, therefore,/A and/ﬁi,must also have the form of equation (4.17).

%
Thus, the particular solution for the perturbed magnetic field :in the

fluid is

e (c,e i, e’)

>
R
i

' ZA al -8 .19
jfzeoc(cse ?I’+C6€ (‘f') | (4.19

4 = e (e, e™)

el .
Since h must be divergence free, the following relations between con-

stants must hold.

C5=—-&—C3

(4.20)

c =iA ¢

4

]
w

The homogeneous solution in the fluid corresponding to the magnetic

field being both divergence free and curl free is easily seen to be
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4= et

/ﬁ%z 'Be (4.21)

where B is a complex constant and boundary condition (iv) has again
been used. Since the equations are linear, the general solution is
obtained by combining the homogeneous and particular solutions. Thus

in the fluid the magnetic field perturbations are given by

A, = e (ee™rc,e e, e?)

' . A A - <Y s 4 .

%7:—26 (Be lf"_‘xc3e _,__}_C#'e ) (4.22)
LA ~ o -4

//49,= c C e LN c,€e 7/)

wnlipn
Since the components of h are continuous across the boundary by
boundary condition (iii), the components of equations (4.11) and (4.22)
may be equated at the boundary. This results in the following

relations between coefficients.
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C3=T(£(—_—ES[,5’(B+£A)—/\(B—Z'A)] (4.23)

C, =~ 5ttp [#(B+iA)-M(B-1A)]

It will be noted that boundary condition (i) is automatically satis-
fied by the first of equations (4.23). If equations (4.18), (4.22),
and (4.23) are substituted into equation (3.18), the following two

equations emerge by equating the coefficients of like exponentials.

(-iA=N) i jar (o))
[6(B+iA)-A(B-iA)) (x-6)

(4.24)

(ﬂﬂl’flﬂé‘/\a) Ca — w, T (6~ X)
[«(B+A)-\(B-iA)] (x-4)

(4.25)

Similarly, by substitution into equation (3.19) the following two

equations are obtained.
- ?.wdTAz(a(_ﬂ) C' \
[#(B+iR)- X(B-4A) ] (4.26)
i w, T K (A-8) C,
[«(B+iA)- \(B-iA)]

(o-idk- )=

(4.27)

(iR =
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Taking the ratio of equations (4.24) and (4.26) results in

+ A (el=8)C,

ﬁ(B‘HA)"A(B—‘ZA): (o(z__)‘z)‘/z

(4,28)
Likewise, the ratio of equations (4.25) and 4.27) produces:
A\ AN o ‘AN («-8)C, \

The £ signs occur since only the squares of the quantities on
the left hand side of equations (4.28) and {4.29) can be determined.
By substitution of equation (4.28) back into either equation (4.24)
or equation (4.26) and examining the limiting cases in which L&/kl is
allowed to approach zero or infinity, it is found that only the nega~-
tive sign is applicable in equation (4.28). Using a similar procedure
it is also found that only the negative sign is applicable for
‘equation (4.29). Substitution of these results into equations (4.23)

produces the following expressions for the complex constants C2, (3

and Cs.

C, = :ig&gkz - C,

14 C,
C3 = — m& (4.30)
C. = 18Cs
y =

722 124
(8*-X)*
Solving for the complex constant B from equations (4.28) and (4.29),

using the negative signs, gives
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3 K+A \2 B+A\%
BZ_Z_[(“‘/\> C, — (3,.,\) C2] (4.31)
Since C, is given by equation (4.23) in terms of Cy, only the
constant Cy remains to be determined for the complete solution of the
magnetic field in the fluid. This last undetermined constant will be
obtained by equating coefficients of like exponentials in the linear-
ized form of Ohm's law (3.11). However, it is necessary to obtain a

solution for the velocity field first. The velocity pertufbathn

vector is given by equation (3.13).

J'—”—(—I—L“‘)I-J—ILqu | (3.13)

m*H,
Since V°¢=0 and by boundary condition (iv) the velocity

perturbations must vanish as y approaches infinity, the proper

expression for ¢ is easily seen to be
iAx - ‘
b=pe"" 7  (4.32)

By boundary condition (i1i) the y-component of the velocity must be
zero at wall. Using this condition, the complex constant D is found

to be

sz;nZH,(B+’o'\TCs*£‘"C+> | (4-39

The y-component of Ohm's law (3.11), after substitution for the

velocities using (3.13), is
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Wr/uU[(/m C)J' ogma:;,] V//; +w’f (4.34)

Substituting equations (4.22) and (4.32) into equation (4.34) and

-A
equating coefficients of € £ leads to the result that

) - i s

Using equations {4.30, {4.31), and (4.33) to solve for the final un-

determined constant produces the faollawing result.

C___wrz'J (6+))m* -2  (4.36)
N (D) 2)}+(¢2 ,\,_)yz[(ou)‘ *-24]

Thus the exact solution for the perturbations of the magnetic and
velocity fields has been completely determined. The detem ination of
any other quantities of interest, such as the currents flowing in the
flufd, can be accomplished as outlined previously on page il;

The pertinent equations for the magnetic and velocity field per-
turbations are the following: (4.22), (4.16), (4.36), (4.30), (4.31),
(3.13), (4.32), and (4.33). These equations form a very formidable set
with the basic character of the solution being oBscured by the complex-
ity of the expressions. In the limits of small and large magnetic
Reynold's number considerably simplified approximate solutions can be
obtained and the features in these limits demonstrated; These approx-
imate solutions are presented below.

B. SMALL MAGNETIC REYNOLD'S NUMBER APPROXIMATION
For the problem under consideration, the magnetic Reynold's

number 1is
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Rm'z 4”&-’“12 (4.37)

It will be noticed that the magnetic Reynold's number is closely re-
lated to k as previously defined in equation (3.16). The relationship

. between the magnetic Reynold’'s number and k is

Rm\ =(_ﬂ%_l‘)4)\k; o (4.38)

In order to expand the exponents &« and & given by equations (4.16)

in the limit of small magnetic Reynold's number, it is necessary to

assume that

4«

With this assumption, the various constants in the general solution

are found to approach the following values.
X = YA

4miJ
G=

C, =0
4.40
_+myJ 4o
Cs = A Wo T
C, =0
— 2'n’J<X+[ )'/2
A Y-

B
D=- 2mwi(r-1) J
T M wT
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Substituting these values into equations (4.22) results in the
-following representation for the magnetic field perturbations in

the limit of small magnetic Reynold's number.

; —¥A - A
% :melA')é[xe 7_%(2“_!)6 ‘f]

v ro.7
ariJ M K4 Ay | (4.41)
%?:W € € ?_(X+l>e ] |

J o= arid e“¢~YA%
YA

Using equations (3.13), (4.32), and(4.33) determines the veloéity‘

field perturbations in the limit of small magnetic Reynold's number -

They are 7
| A ~¥A -A
U = M el ,x'(xe 7/__ e 3’)

v mrH AT

- A/ -¥A -\ : |

g i J U, _iAe—¥ly
Uy = m2H, A €

- -
Now, using Maxwell's equation va=4-1r7 , the currents flowing in the

fluid become
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jo=—iyge M

. =

. A =3\

pr= o e (4.43)
: A=Y

d’f)r: LU.TJ eu\/x Y

Eliminating @, in favor of it's equivalent ¥ and taking the real part
of the complex expressions, the vector form of the magnetic field

becomes

A YT y+i\2 -\ - ) =N
(779) K =~ 2() € Meossn L -sinie ;)

-¥A e . 4.44)
r S e (cos Ax l,,—j'ism)wly (

(xl’__l)}’z
¥ d
i T )

Similarly, the velocity field vector is

: U - A - , -
(ﬁzr?r%l) {% =7 Gzl__,)'yg e 5r(cos Ax L, - Sin Ax 37)

0 - - (4.49)
+F (

. _ —_I- . *
T € (co8 e = Fsinindy
2 5\ - :
_ .._._(Yx") sin Ak 37)

and the current density vector is

7 -¥A , -+ -
4=ye H(sin de L+ cos a4y (4.46)
2 1\ -
+OL—-I—) cos M 1

Y 2
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_— —p

where i, iy, and i, are the unit vectors in the x, y, and z-directions

respectively. These expressions can be simplified by defining a new

unit vector ?; in the y-z plane (see Figure 2) as
— —- b,
G
= — +( ¥ - 447
4
x b
)
/;
: ¥:-1)"*
sSith e =-—\r‘
éf C0S B8 "’l‘
T
T ¥
Y
\\\\—unit circle
FIGURE 2

DEFINITION OF THE f-AXIS

Denoting the direction of T; by f’, where the magnitude of j’is equal

to ¥y, the magnetic and velocity field vectors can be written as the

sum of two similar vectors;

— i

I= /l{: +/£2 | (4.48)

where (m)/};' = —E—(T:T) e cospx i, Sin e 23. (4.49)

A\ T Y ~Af T o T
(75) b =g € (cos e T msindn ) o0
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and J:a‘+az (4-5')
A

U _ ] —A'j' - N -~
i )fff ——m,&e (COS A% Z,,;"Sln)\/)ﬁ l,,) (4.52)

m*H, A U, ¥ -Af e , - :
( ) U: (-1 c (COS M 1, —Sth M Ly ) (4.53)

— — - ——
It will be noted that hy and U; are in the x-y plane while hy and U,

are in the x~f plane. The currents are entirely in the x-¥ plane and

are given by
i -Azfr - -
-§-= ye (szn Al + Cos Ax 2,) (4.54)

The two vector ?; and Ea are irrotational and so contribute nothing
to the currents and vorticity, respectively. The currents flowing

in fhe fluid are due entirely to the.H} portion of the magnetic field
perturbation and the vorticity present in the fluid is, likewise, due
entirely to the.u; portion of the velocity field perturbation.

The expressions for the magnetic field, velocity field, and
currents do not involve the magnetic Reynold's number éxp]icitly and,
therefore, do not depend upon the absoiute magnitude of the magnetic
Reynold's number. It is only required that the magnetic Reynold's
number be small enough for the inequality (4.39) to hold. As might be
expected in this limiting case, the magnetic field and currents do
not depend upon the unperturbed velocity U, and, therefore, behave

as though the fluid is stationary.
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Figures 3, 4, and 5 show the variation of the magnetic field,
velocity ffeld, and current components as a function of X? with w7 as
a parameter. Note that different scales have been used in Figures 3
and 4 for the three components. These figqures show that near the wall
the x and y-components of the magnetic and velocity fields are con-
siderably smaller than the corresponding component in the z-direction
while the current components are all of comparible magnitude for w,T
of order one. 1In the limit of isotropic conductivity (¢, = O or
¥=1), the x and y-components of the magnetic and velocity fields
disappear as does the z-component of the current. In the opposite
limit of strong anisotropy, the x and z-components of the current’
near the wall are considerably greater than the induced boundary
current. In all cases the dependence on Ax is very strong and, for
al]'practieal purposes, the boundary current effects are limited to
values offA?rless than about three.

In the lTimit of small magnetic Reynold's number, the current
lines lie entirely in the x-f plane as shown in Figure 6. Each
cgrrent line is symmetric about the F-axis and forms aélosed loop
with the wall. The current lines, when referred to theﬁt—f‘plane,
are functions of Ax and AT only and are independent of the various
parameters involved; i.e., l&, fﬂ,,“%q', and J. The only dependence
on a parameter occurs in the orientation of the &T¥ plane. Since the
tangent of the angle which the #x~F plane makes with the x-y plane is
equal toWw,T, the unperturbed magnetic field serves to orient the

n~f plane through its effect on the electron cyclotron frequency.
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FIGURE 3

MAGNETIC FIELD COMPONENTS .IN THE SEMI-INFINITE FLOW CASE
FOR SMALL MAGNETIC REYNOLD'S NUMBER
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Ay
A
wT= 0o
0.5 \
7 :::Et ‘:—2
- |
| | ; A _(/mzAHa U,
-0.5 -0.25 o 0.25 o5 \#TJ /U, cos Ay
A
¥
42
/—' (e} :—U)aT
7 /—35
N\
| 1 | i :(MZAHO) Uy
-0.2 -0.{ 0 o.l o2 4mJ JU,sth A
| | _(m‘la/\Hg) Ugy
o.5 L0 \4#TJ JU, sinAx

FIGURE 4

VELOCITY COMPONENTS IN THE SEMI-INFINITE FLOW CASE
FOR SMALL MAGNETIC REYNOLD'S NUMBER
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1 i |

-2 -l o I 2 Jsiham
| L > 7?

-2 -~ J cos A
I | > ‘17

-2 - 0 i 2 J cos A

FIGURE 5

CURRENT COMPONENTS IN THE SEMI-INFINITE FLOW CASE
FOR SMALL MAGNETIC REYNOLD'S NUMBER
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An interesting analogy can be made between the velocity per-
turbations calculated here and those due to ordinary incompressible
flow over a wavy wall. If the wavy wall is expressed as y =€ €0S AKX,

the ordinary incompressible flow velocity perturbation vector is
- -Ay - . -
u= é,\U; e (COS v I, — Sin Ax Z,, ) (4.55)

By comparing equation (4.55) to equations (4.52) and (4.53), it can be
seen that, in the limit of small magnetic Reynold's number, the veloc-
ity perturbations obtained with sinusoidal boundary currenté in an
anisotropically conducting fluid are of the same form as the velocity
perturbations due to ordinary incompressible flow over a wavy wall.
For the irrotational portion a; given by equation (4.52), the

equivalent wave height is given by

_ 4 J ] (4.56)
€= — me H, >‘z<xz_l>‘/z .

while for the rotational part U, given by equation (5.16), the

equivalent wave height is given by

€= 4T ¥YJ
~ mPH N (Y1)

Thus, since the solution for incompressible flow over a wavy wall is

(4.57)

well known, the hydrodynamic effects of the problem under considera-

tion are also well known by analogy.
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C. LARGE MAGNETIC REYNOLD'S NUMBER APPROXIMATION
In order to expand the exponents &« and £ in the limit of large
magnetic Reynold's number, it is necessary to assume that

I-f\%- > | (4.58)

and, in addition, that W4T is of the order of unity. It is now con-

venient to make the following definition.

as (B - GRS e

With this definition and the above assumptions, the various constants

in the general solution are found to approach the following values.

o = (1ti))\a

6 =(1ti) \a
__2mid
C, = =

2mwiJ (4.60)

Wy
I
0
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Where the symbol (Itl) appears, the positive sign is to be taken when
,A>C7(corre5ponding to superalfvénic flow) and the negative sign when

AKC)(corresponding to subalfénic flow). Substitution of the above

constants into equations (4.22) results in the following represénta-

tion for the magnetic field perturbations in the limit of large

magnetic Reynold's number.

(4.61)
/g i ez’A/x—-(Itz')/\a-g'

7 A

Since D = 0, the velocity field in the limit of large magnetic

Reynold's number is strictly proportional to the magnetic field, and
is given by

3 -7

(4.62)
The currents flowing in the fluid in this Timit are

% =-i(1xd)aJ gt

fy=J eim-(:rz»\ay (4.63)
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The unit vectors in the x, y, and z-directions will again be
o — -

dencted by Lx, if , and 57 respectively. Taking the real part of the
above complex expressions, the vector forms of the magnetic and
velocity field perturbations and the currents flowing in the flﬁid,

for,£>0, are

i

- - A ;
A = —if:—‘] e Y sin Mx-ay) Ly

>~ 4Tl oAy T
U =—224" o Sih Ma~ay)
m*H, \ % (4.64)
> -\ -
% =Je %{Q[COS' AMz—ay) +sin )\(44"“7)] Ly
+ cos Ax-ay) _l'; }
and for)@<0 are
- d —-la . ->
b == 4L)\J e ¥ sin Mr+ay) i,
- 4rJU, A i
W =-"205 € sin Az+ay) o, (4.65)

= -7 &** {a[cos Mnray) - sin Mwrag)|

|
l

~ CO0S A(away) }; }
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The solutions obtained are independent of aw,T and, hence, anisotropfc
‘effects aré absent to the order of the approximation méde. Small
anisotropic effects of the order of fﬂ;%zdo occur but will not be
considered here since they are far overshadowed by the isotropi;
solution.

Opposite to the case of small magnetic Reynold's number, all
quantities involved depend strongly on the actual magnitude of the
magnetic Reynold's number, which is contained in the parameter.Cl.
Although the solution in the limit of large magnetic Reynold’s?ﬂumber
is independent of the anisotropy of the fluid's conductivity, the -
unperturbed magnetic field does affect the solution through the Alfvén
number,. which js also contained in the parameter Q.

Figures 7, 8, and 9 show the variation of the magnetic field,
Ve]bcity fiéld, and current components with Aay'For various values of
Mc.  Note that the ordinates of all three figures are magnified by the
square root of the magnetic Reynold's number while in ngure‘8‘the
abscissa is reducéd by the same factor. It is easily seen ffom these
figures that the boundary current effects are eséentiaily limited to
values oan% less than about three. Since for large magneiic
Reynold's numbers @ is much greater than unity, A? must be much less
than unity for currents to flow in the fluid. Thus, the dominating
characteristic of this solution is the existence éf a thin magnetic
boundary layer close to the wall within which the urrents are con-
fined. Also indicated in these figures are some of the wave charact-

eristics, A(/x—ay)r_ constant.
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The current lines in the x-y plane are shown in Figure 10. As
’ih Figureé 7 through 9, the ordinate is magnified by the square root
of the magnetic Reynold's number. The current lines shown are
functions of Ax and )ta-g/ only and are independent of all other péra-
meters involved. As in the small magnetic Reynold's number case, the
currents form closed loops with the wall but are no longer symmetrical.
In the physical plane, the current loops shown would be inclined very
sharply toward the x-axis; the degree of inclination depending upon
the square root of the magnetic Reynold's number. »J e

Because of the interesting analogy that was made bétween the
velocity solutions obtained in the limit of small magnetic Reynold's
number and ordinary incompressible flow over a wavy wall, it seems
reasonable thaf a similar analogy with ordinary supersonic flow over
a wavy wali might be made in the present case of large magnétié
Reynold's number. Although the velocity obtained in this lafter
case has wave type solutions characteristic of ordinar?fsupersonic
flows, it is exponentially damped in y and the presence of ohly a
z-componént makes an analogy impossible.

. It is interesting to note that the x-component of the current

flowing in the fluid is a factor @ larger than the y-componeﬁt of
the current, even though it is the y-component at the boundary which
is causing the perturbations in the flow. Thus, this magnetohydro-
dynamic flow acts as a very effective current amplifier; an increase
of § in the app]iedbboundary current produces an increase ofcls in

the x-component of the current in the fluid at the wall. 'Because the
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factor @ is proportional to the square root of the magnetic Reynold's
‘number, this amplifying effect can be very significant. Since the
currents are very strongly damped in the y-direction, it is at the
boundary itself where the largest currents are produced. Referring
back to the case of small magnetic Reynold's number, equations (4.43)
show a similar amplification takes place. There, however, it is the
anisotropy of the fluid's conductivity that produces an amplification

of both the x and z-components.
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V. CHANNEL FLOW WITH SINUSOIDAL BOUNDARY
CURRENTS IN ONE WALL

The channel flow problem can be solved in general form using the
same procedures used in the semi-infinite flow case. However, the
solution of the channel flow problem is much more complex becauée of
the large increase in the number of constants which must be evaluated
using the appropriate boundary conditions. Since detai]edlexamination
of the semi-infinite flow problem has been restricted to the limiting
cases of small and large magnetic Reynold's number, the approximate
forms of the governing equations for these two limiting cases are
solved for the channel flow problem instead of obtaining the general
solution. Before proceeding to solve these limiting cases, a definitive
statement of the problem and the applicable boundary conditions will
be given.

The geometrical arrangement of the channel flow problemAbeing
considered is as shown in Figure !1. Once again the unperturbed
magnetic and velocity fields are parallel and in the x—dfrection.
However, the fluid now flows between two parallel flat walls which are
a distance b apart. For the purposes of this inQestigation both walls
are considered to be of infinite extent in the x and z-directions and,
in addition, infinitely thick. The lower wall is assumed to be a
non-magnetic conductor having the same permeability as'the Fluid and,
as in the semi-infinite flow case, the only non-zero current component
in this wall is in the y-direction with a magnitude equal to the
current at the boundary. It is supposed that the upper wall is a

non-magnetic insulator in which no currents exist.
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FIGURE 1

GEOMETRICAL ARRANGEMENT OF THE CHANNEL FLOW CASE

The boundary current induced into the fluid through the conducting
wall is again specified to be sinusoidal in profile and, using complex

notation, is given by
. LAne
jbw = \T e (5.1)

where JKAH, for valid solutions to be obtained withinlthe small
perturbation approach being used. The boundary conditions that will
be applied, which are very similar to those used.in the semi-infinite
flow case, are as follows:

(i) the normal component of the current demsity vector is

continuous across the boundaries of both Qalls
(i) no fluid flows through the surface of either wall
(1ii) the components of the magnetic field perturbation vector

are continuous across the boundaries of both walls
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(iv) the magnetic field perturbation components
in the upper wall vanish as y approaches positive
infinity

(v) the x and y-components of the magnetic field pertuﬁbation

vector in the lower wall vanish as y approaches negative
infinity while the z-component remains finite.
Condition (iii) is equivalent to specifying that no surface currents
exist at either boundary while, once again, the z-component of the
magnetic field perturbation in the conducting wall is not aflowed to
vanish by condition (v) since its derivative specifies the current
flowing in that wall.

Note that this problem reduces to the semi-infinite flow problem
as the distance between the walls is allowed to become very large. It
will be seéh later that the solutions obtained for the channel flow
problem dQ indeed reduce to the semi~infinite flow solutions.as b
approaches infinity in the limit. Also note that by siﬁple super-
position of the solution to the problem considered here and the solution
to the same problem with the positions of the conducting and insulating
walls reversed results in the solution to the channel flow problem
with two conducting walls.

As a final preparatory step before proceeding with the actual
solution of the limiting cases of the channel flow problem, the
applicable governing equations will be put into non-dimensional form.

The dimensionless variables to be used are
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nw

t

*

”
¢
A

*
#

(5.2)

—
—

*=
€ = TH;

where subscripts have been omitted. Using equation (3.13) to

eliminate the velocity terms from Ohm's law (3.11) and substituting
the above dimensionless variables results in the following dimension-

less form of Ohm's law.

AM _(m* A 3
P (mn‘-l) Y ve (5.3
Y 7 Y

Similarly, the dimensionless forms of equations (3.18) and (3.19) are

SAy Sy _ A VA >Ey 4
W Ty TN d T e

(5.5)

w(é’{, - o, )
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A. SMALL MAGNETIC REYNOLD'S NUMBER APPROXIMATION
In the limit of small magnetic Reynold's number, it will be

assumed  that the inequality

f%/ & | (5.6

is valid where k is related to the magnetic Reynold's number by

equation (4.38).

er = (ané‘r) Lf— (4.38)

Since é:&; and é:é; are of the same order of magnitude, the
dac* onc®
first term on the right of equation (5.4) is negligible compared
with the first term on the left because of the inequality (5.6).
Simitarly, the first term on the right of equation (5.5) can be
neglected }h comparison with the first term on the left. Far moderate
values of W,T the remaining terms are of comparable magnitude and,

in terms of dimensional varfables, the equations to be éolved are
2
VA = wy 22 - (5.7)
(5.8)

A stream type function will now be introduced by the following

defining equations which identically satisfy Maxwell's equation

V- Ah=0.
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(5.9)
4= 3
¥ ot
Using equations (5.9) and the definition of 57 in equations (5.7)
and (5.8) results in the following single equation for the stream
function Y.
2 2 .
vz(é,\’)+—'zéa’u>=0 (5.10)
Y % ¥ 9 %z
This equation can be integrated immediately to give
S 2 2 ,
é—:f PN i = (5.11)

T Ng T

where @ is a function defined by

§;72€9 =0 . v (5.12)
The solution of equation (5.12) is easily found by separation of

variables to be

éA/x,(

o=e™(Ae A e) e

,
where A: and A, are complex constants. The particular solution of-

equation (5.11) is then found to be

i -A |
V=g A/"(A,e Y+A,_€A?) (5.14)
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and it is obvious that the homogeneous solution is given by

1 YA
YoeMae M iaet) o

Thus, by adding the particular and homogeneous solutions, the éeneral

solution for the stream Function is found to be

iA -A A ~¥) Yy
Y=e “(A,e tA,€ 7/+-A3(3 #l+A,,€ 5’) (5.16)

Thus, the x and y-components of the magnetic field perturbation vector

can be determined by substitution of equation (5.16) into equations
(5.9).

The z-component is obtained from equation (5.7) by noting that

V% —w’régw—wofgq—cvzﬂhw,?‘v%f - )

Thi's equatlon integrates immediately to give

/g :

g =T N : (5.18)

where N is a function defined by

2 | - - (5.19)
The function W\ has the same form as © given by equation (5.13). Thus,

the form of all components of the magnetic field perturbation vector

in the fluid have been determined and are given by
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LTI I = )
j?m:)\e‘ M(A|€ ?—'Aze?_,,XAsex %_XAqex 7)
M o =7 )
%?Zl)\et (Ale 7+AZGA?+A36 ?+A‘+e ‘t) (5.20)

. iAn -A A %A
}{}:zw,'r)\e (Ase 7+A(,e ’+Aae ¥ ';«+A4ew\?)

Inside the lower wall, the magnetic field again has the form

of equation (4.11).

) A+ A
‘Aﬁqu = E% 631 iy
8 A +A
/ﬁ%.‘: Bl ez * (5.21)
/g B priJ ez'/{'ic
¥ A

In the upper wall where no currents exist, the magnetic field is both
divergence free and curl free. The form of the magnetic field in

this wall is

eiAm—A(y-,l—)

. (A —A(y-4)
s, B, e 7 (5.22)
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Note that boundary condition (i) is automatically satisfied by

- eduations.(S.?l) and (5.22); i.e., the normal current at the lower
boundary is the induced boundary current j& and at the upper boundary
no current flows through the surface of the wall.

Since the components of the magnetic field are continuous at both
boundaries by boundary condition (iii), equations (5.20) can be
equated to equations (5.21) at the lower boundary and to equations
(5.22) at the upper boundary. In this manner, the constants Ay, Ay,
As, and As are related to As and As. At this point it is cbnvenient
to introduce the following definitions for some repeatedly occurring

combinations of terms.

_ ~(4-DAL
Q,=1-€

' ~(3+) A& )
Q3El~e . (5.23)

Nt
Q=l-¢€
—2Ak

CDSEEI -€
Qé |- ez,\/&

Using this notation, equating components of the magnetic field per-

in

turbations at the two boundaries results in
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A = —%(Y+I)A3 + 'zL(Y")A.,.

1!

A= 7 -0(1-Q,)A, - 3(+)(1-Q,) A,

(5.24)

As = )\zﬂ;gs -(8:) As —(—C%>A+

Ac = ,\;;,w;fJQb - (3;>Aa B (’8—:)/\4

In the limit of small magnetic Reynold's number as defined by

the inequality (5.6), the left hand side of the dimensionless form
of Ohm's Taw (5.3) can be neglected in comparison to the right hand
_side. Thus, to the order of the approximation made in obtaining
equations (5.20) for the magnetic field perturbations, Ohm’é Law is

VoA - wr g =0 | (5.25)

Substituting the expressions already obtained for the magnetic field
perturbations into the above form of Ohm's law and equating coeffi-
cients of like exponentials results in the determination of the

remaining constants A; and A,.

/\ _ 4rd ( Qe—Qy )
37 NwTrT \QQU-QQ,

(5.26)

/\. _4rJ ( Q- Qs )
l\"— Azon Qle_Q_; Qtl-
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Evaluating all the constants Al through As and substituting into

- equation {(5.20) results in the following expressions for the magnetic

field components.

A ~¥A -\ A
4,=422 &Y (vk, € Lk, ek ek, )

iJ zA -
/g m(K,ent-K e +K e K‘,e’\?) (5.27)

+

s J AR -%A YA
4, = il ™ (ke Tk, e"")

where the constants K; through K; are defined as follows:

K = Qe~Qu
‘ RQQ - QR; Qy

Il

K ~— __Q-Qs
2= TR -Q,a.

(5.28)

(¥-1(Q,- Q1) — (¥+1) (Q2 - Qa)
2 (Qz Q?.- Qqu-)

I

K,

K _ ¥Qs
- QQZ QJQq.

The velocity field perturbations are again determined from

equation (3.13), which is

T = (g ) A + 0.9 e
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where V77ﬁ=C). USing separation of variables, ¢ is easily found to be
RLL’ - A
¢=e""(pefrp,e?) (5.29)

The y-component of the velocity now becomes

| JU, il ~¥ $hy
Uy=iibas € LK€ Trkoe

im*H, Pw,T - Ay | (5.30)
+(K3+ 4rJ Di)e

+(K _Z/n? H,)\w,TD, e*” »
4 4rJ 2
Since no fluid flows through the surface of the walls, Uy vénisheS'at

both walls. Using these conditions results in the following relations

for Dt and D2.
D, = sty [(2)k + () K, ]

0=~ sy [(§)k (&) vk]

Combining terms gives the following result for the velocity field

(5.31)

perturbations.

A ~¥A ¥A
U= i € [rke yk,e™
-) A
- Le,Le l"']

Q5 Ql,
JU, i« YAy ¥y (5-22)
_ 4 o 0 -
Y mriaer € [Ke TTKe
_ e *?J
&< "] |

! rA ~¥A YA
iy AETE e e
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The currents flowing in the fluid are determined from Maxwell's

equation VxH= ¢4 . They are

. i - ¥A
o= -iv7 € (ke -k, &™)

i

. zA ~¥Ay
her (e ) o

, A -¥A
fp=arT €7 (K € Fag, e™)

Once again the perturbation vectors can be put into a simplified
-
form by the introduction of the unit vector ly in the y-z plané (see

Figure 2 on page 27). This unit vector is defined by equation (4.47)

as

\

[ 2%
o

= % ['i'; + (zr‘-l)"a E;] (4.47)

Denoting the direction of if by T, where the magnitude éf‘f is equal
to X%, the magnetic and velocity field vectors can again be written
as the sum of two similar vectors. Taking the real part of the

complex expressions and eliminating W, in favor of its equivalent

Y, these vectaors are

/Z—’: :"" _ (5.34)
o (A = [ ke T

_(ng‘)‘ + K4CA7’)SMML ;f; ]
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__(K'e—'\f+Kze'\f)sz'h A Zo J

and U= U, +U, (5.37)
- A <

where (.m_l_zﬂel) LI ———-,/ [( '?_. __e—.g,)cos Ak z, (5.38)
4rJ s (Y*=N"*L\ Qs Q, *

ol

Ay Ay =
- = £ >sz’n Ax 2, ]
( Q& # 1.

m*Ho A ) Uy ¥ _Af Af = (s.39)
4rJ )U;——-(x"—/)”" (K,e -K, € )cos)mz g, .\

(k& e )sinan 7 ]

- —rpe . .
As in the semi-infinite flow case, the vectors h; and Uy are in the
. 3 ng ne - - -
x-y plane while the vectors h, and U, are in the x-f plane. In addition
-l -
the vectors hy and U; are once more irrotational and so do not con-
tribute to the currents and vorticity, respectively. The currents,

’ -
which are due to h2 only, are vectorially represented as.
i

-1¥ APy T -
Foolke sl
Y 7 i B

+ (K € 4K, € )eas he i

As can be seen, the currents are contained entirely in the x-F plane.
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The variation of the coefficients Ki, Koy Kz, Ki» 1/Qs and 1/Q4
with Af and @7 is shown in Figure 12. It is easily seen in this
figure that as Ak approaches infinity, Ky, -Ks;, and '/Qs approach unity
while Kz, K4, and 1/Qe approach zero. These are just the values
required for the channel flow solution to reduce to the semi-infinite
.flow solution. Thus, as required, the channel flow solution obtained
coincides with the semi-infinite flow solution as the upper wall moves
to infinity.

Figures 13, 14, and I5 show the variation of the magnetfc:ije]d,
velocity field, and current components as a function of (y/b) for two
values of Af (0.25 and 1.0) andw,7= |. The current lines in the x-¥
plane are shown in Figure 16 for Ad= 0.5 and w,7 = 1. Each current
line again forms a closed loop with the wall symmetric about the
f-axis and;)as would be expected, resembles a compressed version of
the current lines in the semi-infinite flow case.

Generally speaking, most of the characteristics of the semi-
infinite flow casé are also applicable to the channel flow case
presently being considered. Therefore, they wilf not bé repeated
here and only the effects produced by the insulating wall will be
discussed. |

Because of the rapid rate at which the coefficients shown in
Figure 12 approach their limiting values as AJ‘increases, it might be
thought that the effect of the insulating wall is essentially limited
to values of A less than unity. That this is not the caée’is amply

demonstrated in Figures 13, |4, and 15. 1In these figures, it can be
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FIGURE 12

CHANNEL FLOW COEFFICIENTS FOR SMALL MAGNETIC REYNOLD'S NUMBER
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FIGURE 13 '

MAGNETIC FIELD COMPONENTS IN THE CHANNEL FLOW CASE.
FOR SMALL MAGNETIC REYNOLD'S NUMBER
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FIGURE 14

VELOCITY COMPONENTS IN THE CHANNEL FLOW CASE
FOR SMALL MAGNETIC REYNOLD'S NUMBER
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CURRENT COMPONENTS IN THE CHANNEL FLOW CASE
FOR SMALL MAGNETIC REYNOLD'S NUMBER
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CURRENT LINES IN THE CHANNEL FLOW CASE
FOR SMALL MAGNETIC REYNOLD'S NUMBER
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seen that for \J of unity, the componenté do not approach very c]osé]y
the valueshof thé semi-infinite flow case as shown in Figures 3, 4,
and 5. In actuality, the influence of the insulating wall is appre-
ciable until the walls are far eﬁough apart that the perturbatiéns
die out before reaching the upper wall. This occurs at avvalue of
Ak of approximately three as can be seen in Figures 3, 4, and 5. Thus,
the influence of the insulating wall extends to values of Af of
approximately three even though the coefficients shown in Figure [2
approach their limiting values at about unity. The reason fhiséoccurs
is due to the fact that in the component equations the coefficients,
which decay exponentially withAﬁ', are multiplied by exponentials in
A?; some of which can grow rather than decay. These growing eprneh—
tials tend‘to retard the decay of the component with Ajn

At thé other end of the scale, Figure 12 shows that all the
coefficiehts approach infinity as Al approaches zero. Sinceithe 
approach to this problem has been that of a small perfurEation
analysis, the distance between the walls cannot be so smallvfhat the
perturbed quantities become appreciable in comparison té the ‘unper-
turbed values. It appears that for moderate values of aUT,vthe lower
limit on the distance between the walls is a value of A5'0f>approxif
mately one tenth.

Several interesting features are produced by the presence of the
insulating wall. First, as the channel height decreases and the effect
of the insulating wall becomes appreciable, the x and y-components of

the velocity steadily decrease in magnitude. In fact, the y-component
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effectively disappears for A less than unity. The z-component, on
the other Hand, changes from an exponential decay when the channel
height is large to a very nearly linear velocity profile across the
height of the channel when Ak is less than unity. These featurés are
easily seen in Fiqgure l4. Generally speaking, the effect of the
insulating wall on the magnetic field perturbations, as shown in
Figure 13, is the same as those just described for the velocity field
perturbations.

Perhaps the most interesting features produced by the presence of
the insulating wall occur in the currents flowing in the fluid.
Decreasing the channel height causes the y and z-components to change
from an.exponential decay, corresponding to no effect produced by the
insulating wall (as in the semi-infinite flow case shown in Figure 5,
page 32), £6 a very nearly linear decay across the channel height
when Aﬂ-is less than unity (see Figure 15). In addition, two signi-
ficant effects occur simultaneously in the x-component of the current
as the channel height becomes small. First, the strong exponential
decay present when the insulating wall is far away changes to.a very
moderate decay when Aﬂ'approaches unity and, as M- decreases further,
the magnitude of the x-component becomes virtually constant across the
height of the channel. Second, the magnitude of x-component of the
current density increases rapidly as M- decreases below a value of
about ocne. This increase in magnitude is inversely proportional to the
channel height since the total current flowing through any y-z plane

must be conserved.
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B. LARGE MAGNETIC REYNOLD'S NUMBER APPROXIMATION
It will be assumed that, in the limit of large magnetic

Reynold's number, the inequality

Hi—/>>‘ (5.41)

is valid and, in addition, that w7 is of the order of unity. This
inequality will now be used to reduce the dimensionless equations
(5.4) and (5.5) to the forms appropriate for this llmttlng case.

3.h% YA
Since 5—4} and S are of the same order of magnltude,

the first term on the left of equation (5.4) can be neglected in
comparison with the first term on the right by virtue of the inequality
L ' 355\' Bz E* | ‘
(5.41). Similarly, because S;?? and S&Tj? are of the same order,
the first term on the left of equation (5.5) can be neglected in
comparison with the first term on the right. Substituting'the

YEX

resulting ¢xpreSsion for SZ?} obtained from equation (5.4) into the

reduced form of equation (5.5) results in
YEX a XAy,
37’-1‘2?’ +CU°T Y% *a (r— /g

s [ 3 - -x-éf%)%; ]

(5.42)

j* )’R* 51 *
Now, since &7 is of order one and 5 3;?@ , and éafé} are all of

the same order, the first term inside both square brackets can be
neglected in comparison with the second term. Thus, in the limit of
large magnetic Reynold's number the governing equations; in

dimensional form, become
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2

(3g ~A%) 4, = wr (o4
o* > _

(Agz A5 )g =0 (5.4

Equation (5.44) is easily solved by separation of variables. The

result is
iAn -(1t)ray (1x)ray
E, =€ |[G€ +@G, € J (5.45)
where Gy and G, are complex constants to be determined and @ is as

previously defined by equation (4.59).

= (Ao (Rl

The positive sign in the symbol (1 *i) is to be taken when k>o
(superalfvénic flow) and the negative sign when 4k<o0 (subalfvénic
flow) . |
Substituting the expression for §y given by equation (5.45) into
equation (5.43) produces the following equation ﬁ:rzﬂ,.
S A, ~ 3,
oY’ N (5.46)

—(i1ti)hay
LI PY

: A £ )
_ l}\onez rx[Gle e(m a#]

The homogeneous solution to this equation has the same form as

equation (5.45)
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| iAx —(I1xi)ra (1xi)hay
4,=e" 6, P g, ] (547

For the particular solution, assume.£7 is of the form

' vAx | ‘
/ﬂ7: e +y) | (5.48)

where f(y) is a function of y only.
Substituting this form of/A7 into equation (5.46) results in the

following total differential equation for f(y).

d°f
dy* . (5.49)
. —(1ti)Aaay (1ti)hay
- w,T
=iher e’ g, e
The‘particular solution to this equation is easily found to be
_utz'))\a.g, (1zi)pray . :
w,T .
Fly=-jody [6,e " g, &Y | (5-50)

Thus, combining the homogeneous and particular solutions, the z=

component of tHe'magnetic field perturbation is found to be

e ~(ti)Aay |
/K’Y [(G ~MG, V/) - (5.51)

+ (G, +M Gz‘f) e(ltz’))\a#]

where the complex constant M is defined as

(5.52)
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In order to determine the x and y-components of the magnetic
field, a stream type function’ will be used once again. This
function automatically satisfies Maxwell's equation *H=0 and is

defined by

J oo

(5.53)

By definition

= oA, a,ﬂ ‘
. g’} ML 5, 7(5.‘54)

Introducing equations (5.45) and (5.53) into equation (5.54) results

in the following equation for the stream function V.

vz_,)u _ e""“[cg,e—('imatﬁi e(zta‘)).a?J | (5.55)

2

The homogeneous solution of this equation is easily found to be

‘:A/L 7 —A? P A*) . P
— : 5.56
y=e"(a,e g e (59
The particular solution will be assumed to be of the form
A .
— .57)
Y=1e g | (5.5
where g (y) is a function of y only. Substitution of equation (5.57)

into equation (5.55) results in the following total differential

equation for g(y).
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2., SEY (1ti)ha
j—i&_ —AZ}= G, e ?+ G, € vAss (5.58)

This equation is easily solved to give

(G e_(;ti)Aa-y_\_ G e(tti))\ay') (5.59)

i

o
7’(?) T (rypNva

where the fact that @1 has been used. Thus, the stream function

2

Y, upon combination of the homogeneous and particular soiutions, is

Ax ~(1td)ra - (1ti)Aa

(5.60)
-A A
+ G5 € 7y G, € %}

where the primed constants of equation (5.56) have been replaced by
equivalent unprimed constants for convenience.
Using equations (5.53), the magnetic field perturbations in the

limit of large magnetic Reynold's number become

, ~(1*)Aay
/4 = (l*i oY e (1t )a-G' € (5.613

—(1ti)ag, "N

- »
ra.et —g, e’\?]l

O
I

ul/sc —(1ti)Aa (1té)ra
[,6, ¢ Ut

(lti 2 o (5.61b)

rese 't g et |
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[ A . . ~(i1ti))a
jf‘z‘(f’ﬁﬁe {[Z(‘il)aﬁs‘”"ﬂ'ﬁfﬂe 4 (5.61c)

+[20£1)aG, +iwra, 4] e"*"““?}

The magnetic field perturbations in the lower wall have the same

form as in the previous cases considered, which is

. ¢ Ax +/\ﬂf
4, =iB €

A+ A
(3‘ f (5.62)

I

A, = B,
_ smlJ A
//{? =5 °

As in the small magnetic Reynold's number case, the magnetic field

perturbations in the upper wall are

B ez',loz —A(y-4)

é‘
i\

4

Ag _ ;B ez’z{m—-)\(gr-,d—) (5.63)
¥ ¥

= O

S
|

¥

Since the magnetic field components are continuous across both
boundaries by boundary condition (iii), equations (5.6!) can be
equated to equations (5.62) at the lower boundary and to equations

(5.63) at the upper boundary. The resulting relations between co-
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efficients are

G 4'”’[5( R[ )_ l-wo,-r/g' Gl R?_—GZRI)
. 2(1ti)a R,~R»

wrmiJ R )+ jon/& GiRz2~G. R
2(jti)a| R, -R, )
(5.64)

ng 'é_L (I-té)a— (GZ‘G:)

(Gl

| .
Gé é‘“iz)a.e ¢-Rz

where, for convenience, the complex constants Ry and R,, which are

defined as follows, have been introduced.

R _ e(ttc'))\a,ﬂ—
{ =

(5.65)
—([tz')/\a.ﬁ'
R,= €

The remaining undetermined constants GY and Gz are found by
solving for the velocity field perturbations using equation (3.13)
and introducing the magnetic and velocity field expressions fnto the
form of Ohm's law appropriate for the large magnetic Reynold's
number approximation. The coefficients of like exponentials are
then equated and the undetermined constants Gy and Gz obtained.

Since the function ¢ in the defining equation for the velocity

perturbations, equation (3.13), satisfies Laplace's equation, it has
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the form
A -3
¢=¢ m(Da e i, e**) (5.66)

Thus, the y-component of the velocity becomes

rAx

_ i U, € ~(iti)day (1td)Aay
Uy = R (200 G e +G, €

(5.67)

+(Gs +im*H, D3)e_)‘?
+(Gé-—z'/ma/—/, D‘F) e*?]

Equating u} to zero at bath boundaries according to boundary con-

dition (ii) results in the following expressions for D5 and D,.

D3 - ZmH, (ftz')zAzaz [( S‘)::-A’/Zz) “

e*-Rr
+(sz'nh YA )G2+2G5] (5.69)

. -AL
4= ZmH, (25 L\ SR TE )
-4
sinh Ak ) 72 ¢

In the limit of large magnetic Reynold's number, the only
simplification that can be made in the dimensionless form of Ohm's
law (5.3) is to neglect the first term on the right hand side of the
equation in comparison to the first term on the left hand side.

Making this simplification, the dimensicnal form of Ohm's law becomes
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)j; m? d _ o4 _9_% .
A o —_(/mz—}) V= Jy? “T S (5:6)

Substitution of the expressions for the magnetic field perturbafions
into the z-component of the above equation and equating coefficients

of like exponentials leads to the result that
GI = GZ = 0
G — 4'77‘2‘.]- R(
3 - A R’-Ra

- 477'1"] ( R (5.70)
G«L‘ )

)
|

=D, =0

where it has been assumed that

)\agﬁ <<’ (5.71)

Thus, the channel! flow magnetic field perturbations in the limit

of large magnetic Reynold's number are
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y (5.72)

//;?_ srid ( ﬁé"’ﬁ; > g (Einay ( R’%Z ) eaief)mo"rj

while the velocity field perturbations are

U,=o
U. =0 (5.73)
¢
_ 4miJU, o1, R —(;+z)Ao.g, (tijray
L(? /M"HA € [( (Rl R}_)G ]
The current flowing in the fluid is determined from Maxwell's
equation VXFT=41T;. The current components are
. . ) A7 R - (1ti)Aay U:rt'),\a}«
= —if]+ N
fu = -ilie)ar € (R ) € (B ) 1]

= ()" ()] s

f3=0©
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The real part of the complex coefficients in the above equations

will be denoted by the following expressions.

. R, ~ |
Ks‘ = Re(Ru-Rz) - l _ e—zm.a—
(5.75)

K = Re(R Rz_)— |- ézxaj—

Taking the real part of equations (5.72), (5.73), and (5.74), the
vector form of the magnetic and velocity perturbations and the

currents flowing in the fluid, for A>O , become

r'e J ~-Aa Aa , _ -
ST @) s T

U 42‘,7;]0( e*“}« K, e 7)szn Alx-ay) l

' -A . -
_ J{Q[Ks o ag'_ KéeA“%j[cos A(u—ag,)+szn/\(/x—a7)_" Zoa (5.76)
-A s
+ (Ks e 0‘7’+ Ké emf)cos A(fx-a.y), Z} }
and, for ,£<o ,> are |
- -Aa a . e
. j = — "L/\ﬂ'J(}(s_e 7, K, e'\ 7) Sth /\(May) l,

— ~\a Aa
U = ‘/‘Z}{?(Ks 3' K e #)sznA(lx-l-a_y) Z (5.77)

7= i s e fsns- o]

-4 -+
+ (Kse a’; K‘ e*"-r) cos A(x+ay) 19, }
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The variation of the coefficients Ks and K4 with Aab is shown in
Figure 17. It is easily seen that as Aab becomes large, the co-
efficients asymptotically approach the values required for the channel
flow solution to reduce to the semi-infinite flow solution; namely,

Ks approaches unity and K4 approaches zero. Thus, as required, the
‘channel flow solution obtained coincides with the semi~infinite flow
solution as the upper wall moves to infinity.

Since the ordinate of Figure |7 is magnified by the factor a,
the actual channel height required for the influence of the upper
wall to be appreciable is quite small. Once again, the solution in
the Timit of large magnetic Reynold's number is independent of the
anisotropy of the fluid conductivity but does depend strongly on the
actual magnitude of the magnetic Reynold's number.

‘ Figuréé 18, 19, and 20 show the variation of the magnetic field,
velocity field, and current components as a function of {y/b) for two
values of Aab (0.4 and 1.0). Note that the abscissa of Figure 19 is
reduced by a factor 4. Generally speaking, most of the characteris-
tics of the semi-infinite flow case are also applicable to the channel
flow case being considered here.

Inspection of Figures 18 and 20 show that the z-components of
the magnetic field and velocity and the y-component of the current are
not appreciably affected by varying the channel height. The x-
component of the current, however, is significantly affected by the
variation of the channel height as can be seen in Figure [9. Its

behavior is very similar to that of the small magnetic Reynold's
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CHANNEL FLOW COEFFICIENTS
FOR LARGE MAGNETIC REYNOLD'S NUMBER
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number case just considered. The strong exponential decay present
when the ihsu]ating wall is far away changes to a very moderate, al-
most linear decrease as lab approaches unity and, as Aab decreases
further, the magnitude of the x-component of the current density

becomes very nearly constant across the height of the channel.
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VI. CONCLUDING REMARKS

In the limit of small magnetic Reynold's number for both the
semi-infinite flow and channel flow cases, the magnetic and velocity
field vectors are composed of an irrotational and a rotationa]fpart.
The irrotational portion always remains in the x-y plane. However, the
rotational portion and, hence, the currents lie in a plane which is
rotated about the x-axis; the angle between this plane and the x-y
plane being strongly dependent upon the degree of anisotropy in the
fluid's electrical conductivity. This rotational effect ch]d be
used to determine the degree of anisotropy of a conducting fluid
experimentally.

Anisotropic effects on the magnitude of the magnetic and.
velocity field components and the currents are generally moderate
except nea;'the con&ucting wall. At this wall the x and z-components
of the current can become quite large for strong anisotropic conduc-
tivity. In the channel flow case, the x-component of the current
becomes large as the channel height becomes small for all degrees of
anisotropy. In both the semi-infinite and channel flow cases, the
currents in the fluid form symmetric loops closing at the conducting
boundary.

Both the irrotational and rotational portions of the velocity
field vector behave in a manner analogous to ordinary incompressible
flow with the applied sinusoidal boundary current in the flat wall
replaced by a solid sinusoidal wall. Since the hydrodynamic effects

of ordinary fluid flow over a wavy wall are well known, the
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hydrodynamic effects of a conducting fluid over a flat wall with
-sinusoidal boundary currents are also well known by analogy.

In the limit of large magnetic Reynold's number for both fhe
semi-infinite flow and channel flow cases, anisotropic effects are
absent. to the order of the inverse square root of the magnetic
Reynold's number. In addition, the currents and field perturbations
are confined to a thin magnetic boundary layer near the condUCting
wall. The currents lie entirely in the x-y plane and again form
loops closing at the conducting boundary, but are steeply iﬁc]éned'
toward the x-axis. At the conducting wall, the x-component of the
current in the fluid is larger than the applied boundary current by
a féctor of the square root of the magnetic Reynold's number..~Thus;
in the limit of large magnetic Reynold's number, the magnetohydro-
dynamic fléw considered acts as a current amplifier; a‘small.boundary

current controls a large current in the fluid.
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