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ABSTRACT

Part 1

A problem which arises in the analysis of the emergency core cooling
system of a nuclear reactor is the rewetting of the fuel rods following a
loss of coolant accident. Due to the high initial temperatures in the
rods, the emergency coolant initially flashes to steam on contact,
effectively insulating the rods from the coolant. It is observed
experimentally, however, that a constant velocity traveling quench front

is set up on the surface of the rod, moving from the cold to the hot end.

We approximate the rod by an infinite two-dimensional slab with
adiabatic boundary conditions ahead of the quench front, and a constant
heat transfer coefficient behind in the wet region. The temperature at
the front is found using Fourier transforms and an exact Wierner-Hopf
Factorization. Using a reversion of series, the dimensionless velocity of
the quench front (Peclet number) for a small dimensionless heat transfer
coefficient A (Biot number) is found approximately to lowest order in A.
This approximate quench front velocity is found to be in agreement with

the known front velocity for a one-dimensional slab.

Part 11

Contour integrals of the form I(l;g) = f g(z)exp[Aw(z;a)]dz are
C

z
considered for a large parameter A. In problems of interest, the exponent

w is assumed to have simple saddle points at z = ai, i=1,2,3 which are

allowed to coalesce, forming a single saddle of order three. Using a
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conformal map, the integral I is shown to be asymptotically equivalent to

2

the study of the canonical integral J(A;Y) = f exp[k(—%— +-%—t2)]dt,
C‘t

which has simple saddles at t = 0, £ Y., By applying the method of

steepest descent, the complete asymptotic behavior of J(A;Y) is obtained

for A + ®, uniformly as v > O.
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PART I

THE ANALYSIS OF THE REWETTING OF A VERTICAL SLAB

USING A WIENER-HOPF TECHNIQUE



I. INTRODUCTION

During the past few years, especially since the Three Mile Island
accident, the design safety of nuclear power plants has come under in-
creasing scrutiny. A nuclear reactor is a very complex device, at the
heart of which is the core assembly containing the fuel elements. In
round numbers, a typical reactor core contains approximately 100 tons of
enriched uranium oxide, arranged in tens of thousands of thin cylindrical
fuel rods. This core is enclosed in a steel pressure vessel a few meters
in diameter and about 10 meters high, with walls about 30 centimeters
thick. It is cooled by two or more independent water loops, which trans-
fer the heat to steam turbines. The approximate cost of the entire system

is $1 billion.

One of the technical problems associated with the safety of the
nuclear fission reactors is that of modeling the effectiveness of the
emergency core cooling system (ECCS). After a loss of coolant accident
(LOCA), the temperature in the cladding of the fuel rod elements in the
core increases due to the decay heat from fission products and heat energy
stored in the rods prior to the accident. This decay heat is far from
negligible [1]. Approximately 7% of the total energy output of an opera-
ting reactor is from fission product decay. Thus, in a typical reactor
operating at a total power level of 3000 MW, 210 MW come from fission
decay. Following a shutdown, the decay heat drops very rapidly: after one
minute it drops from 210 MW to 120 MW; after one hour it is down to 30 MW,

though still large by any standard. Unless this substantial "afterheat"”
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is removed, the cladding material (a zirconium alloy) will begin to oxi-
dize; ultimately the core itself will melt, with the possible consequence

of releasing radiocactive products into the environment.

Fortunately, this "China Syndrome"” scenario can be precluded.
Following the LOCA, water is forced into the core by the ECCS either by
spraying from the top (for boiling water reactors) or via reflooding from
the bottom (for pressurized water reactors). Cooling an overheated fuel
rod requires that the liquid water be in contact with the surface of the
rod. However, as a result of the high temperatures attained in the clad-
ding prior to the arrival of the emergency coolant, the water does not
initially wet the surface of the clad. Instead, it instantly flashes to
steam, forming a thin film on the surface of the cladding. This Leiden-
frost layer effectively prevents cooling of the fuel rod elements due to

the poor heat conductivity of steam.

The surface of the cladding does cool, however, though the mechan-
isms are not entirely understood at present. It has been proposed in the
engineering literature [é], [3], based on some empirical results, that the
flow of heat along the temperature gradient from the hot part to the
cooler part of the surface provides enough cooling to establish a travel-
ing quench front moving from the cold to the hot end of the rod. Behind
the quench front, the water is able to rewet the surface (maintain con-
tact) and provide a high heat transfer normal to the surface. Ahead of
the quench front the steam insulates the cladding and provides a low heat

transfer normal to the surface.

The quench front itself is characterized by violent nucleate boiling

(or sputtering) at the leading edge of the film. The position of the



quench front is determined by a critical temperature TO’ called the sput-
tering temperature, which is the temperature on the surface of the clad-

ding at the position of the front. That is, the surface of the cladding is
at temperature T < TO behind the quench front, and at T > TO ahead of the

front. This situation is illustrated in Figure 1-1 for the case of top

spray.

Many experiments have been performed on the subjects of quenching
and rewetting. A review of the results can be found in [4]. It was found
experimentally that the rewetting velocity was nearly constant with time,
and that it was a function of coolant flow rate, coolant temperature, and
pressure. Clearly, the important quantity of physical importance is the
determination of the quench front velocity, for this ultimately determines
the rate at which heat is transferred to the coolant. The solution of the
temperature distribution within the rod is of secondary importance. In
our analysis, we will exploit the observation that the quench front veloc-
ity is constant by finding traveling wave solutions, which in turn will be

used to find the velocity of the quench front.
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II. FORMULATION OF THE PROBLEM

In this section, we formulate the dimensionless version of the model
equations which will then be solved using Fourier transforms and a Wiener-—

Hopf technique.

Approximating a single fuel rod by an infinitely long cylinder, we

can write the heat equation in the cladding

{r<r

2 ) 1

pe 3T _ 3%T 13 (3T - .
k 9ot 3x2 + T or (r Br) <x<

t >0

with a given initial temperature distribution

T(x,r,0) given.

Assume at the outer radius r = r1 that due to top spray or reflooding

hf(T—TS) , if T X TO at r = r1 s

k = .
9T 0 if T > TO at r r, .

At the inner radius r = ro, assume that there is no normal heat

transfer, i.e.,

Finally, at the ends of the rod

T(- »,r,t) =T (cool end)

(hot end) .

[
3

T(+ *,r,t) =



In the above equations, the density is p, specific heat ¢, thermal
conductivity k, heat transfer coefficient h, sputtering temperature TO,
saturation temperature Ts’ and wall temperature TW, all constant. The
heat transfer function is f(T—TS), which we will assume to be linear

(Newton cooling).

Before proceeding further, the boundary conditions on the inner and
outer radii of the cladding deserve further comment. Though we have
chosen the "standard” ones, several alternate boundary conditions have

been considered in the literature in varying degrees of detail.

In particular, at the outer radius r = ry we have assumed adiabatic
conditions with a zero heat transfer coefficient in the dry region ahead
of the quench front. Other models exist [5] in which the downstream heat
transfer coefficient is nonzero, though smaller than the upstream coeffi-
cient. However, these models have only a limited range of application and

do not agree well with experimental results.

At the inner radius r = r, we have assumed that the cladding is
completely insulated. This cannot be entirely correct in that it ignores
the effect of the fission decay heat altogether. The rationale in ignor-
ing the decay heat is that the heat flux across the inner radius r = r,
due to fission decay is small compared to the very large values
(10-100 MW m_z) reached in the quenching process itself. 1In [6] an
approximate integral technique is used to obtain approximate solutions in

the case of small internal heat generation.



In the equations and boundary conditions above, we next approximate
the cylindrical geometry by a two-dimensional slab. TIf we nondimensional-

ize the equations for a nondimensional temperature u = u(x,y,t),

30 32w 3% \
Tt = <x<®, 0<y<l, t>0

ox ay
u(x,y,0) given
Jdu
dyly=0 0 > -1
3u ) -Au y=1 , 0<uX u,
ay Y=1 0 N u <u<1l

C

u(— m’Y3t) =0 ] u(+ w’Y’t) =1

Here A is the dimensionless heat transfer coefficient or Biot number and

is given by

= D -
A = x (r1 ro) .

The dimensionless sputtering temperature u, is

Both A and u, are known constants.

Next, assume traveling wave solutions of the form

u(x,y,t) = u(x",y)



where x° = x-pt, and where p is the (unknown) dimensionless velocity of
the quench front or Peclet number. Note that by changing to a moving co-
ordinate system, we fix the location of the quench front at x”~ = 0, y = 1.

Finally, in order to simplify the subsequent analysis, let x”7 = x“p; then

dropping the primes we have

2 2

2 37u Jdu 3 u

P ot P gt —5=0
9x dy

o 8
AN
<X
AN
~ 8

y=0

-Au , 0<u<u ,or x<0
y= c

(2.2)
u(- =,y) =0
u(+ »,y) =1

u(0,1) =

[

C

p unknown . : /}

That this problem even has a solution has been investigated in a

forthcoming publication by B. Nicolaenko and B. Wendroff [7]. Briefly,
they found that there exists a unique pair (p,u) (depending on A and uc)
with p > 0, u(x,y) > 0. 1In addition, uy(x,y) >0 for y# 0 and vy # 1, and

ux(x,y) > 0.

Numerical solutions of (2.2) have been obtained in [8] using an
eigenfunction expansion technique, by finite differences in [9], and by

finite differences using isotherms as a coordinate in [10]. For the case
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where the two-dimensional problem is reduced to one dimension by inte-
grating the y-dependence, numerical solutions have been obtained for small

values of A [11], [12] and for large values of A in [13].

Asymptotic solutions using a Wierner-Hopf technique with an approxi-
mate kernel substitution have been examined in [14] for large and small
Biot numbers, and an empirical formula for the continuous range of Biot

numbers has been obtained from this work in [15].

In this thesis we shall obtain asymptotic solutions for the quench
front velocity using a Wierner-Hopf technique and the exact kernel

factorization.

To solve (2.2), we would like to apply a Fourier transform in x.

Unfortunately, the boundary condition at x = + ® is inappropriate for
this, especially in light of the subsequent Wierner-Hopf analysis. How-
ever, the trivial change in the dependent variable

V(X)Y) =1 - u(X’Y)

will markedly simplify the development. With this change (2.2) becomes

82v ov 1 Bzv )
et =4+ — =0
2 ax 2 2
ox P oy
v
_33"‘%0 =0
By i —A(v!y___l -1), x<0 >
Jyly=1 0 , x>0 (2.3)
V(— co,y) =
v(+ ©,y) = 0
v(0,1) =1 -u, = Vo - J
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If we define the Fourier transform pair

[~

V(E,y) = —— [ v(x,y)ei*tax
V2 —e
(2.4)
T i
v(x,y) = — [ v(g,me*ar
/7T e
the differential equation in (2.3) transforms to
d2V 20,2
—5 = P (E7+E] V(E,y) = 0
dy
with solutions
V(&y) = C(&;p)coshyy + B(;p)sinhyy . (2.5)

In (2.5) v = py/F:2 + if , where we consider the positive branch of the

square root for definiteness.

If we routinely transform the boundary conditions on the sides of

Xg

; ; i .
the slab, we reach an impasse, since v(x,l)e must be integrated on the

half-line x < 0, and this is unknown. This leads us to define

V(6 = = [ vix,ye Fax
y2n 0
(2.6)
1 0 igx
V_<€’y) = — f V(X,Y)e dx
/T e

so that
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V(E,y) =V, (E,y) + V_(&,y). (2.7)

In general, V+(€,y) defines an analytiic function of the complex variable
€ in some upper half-plane Im(&) > T_. Likewise, V_(&,y) defines a
function analytic in a lower half-plane Im(%) < Tys where 7_ < T,> SO that

the inversion integral in (2.4) may be deformed anywhere in the overlap

strip T_ < Im(§) < T, .
Next, since

av_(&,y) dv_(&,y)
avees,y) _ - + . )
dy e R A LT Ol A o

the boundary conditions on the sides of the slab imply that

VZ(£,0) = Vi(§,0) = V7(§,0) =0 )
V;(E,l) = 0
A 0 i&x
VI(E,1) = -AV_(E,1) + — [ e dx (2.8)
- /21 - ?
= -A[V_(&,1) + g(&)]
where g(&) = , provided
V2mE Im(&) < 0 . )

Applying (2.7 and {(2.8) to (2.5), we find that

B(&;p) = 0
-A[V_(8,1)+g(8) ]
C(g;p) = vsInhy , so that
V(E,1) = V,(E,1) + V_(£,1) = T2 [V_(E,1) + g(&) Jeothy .
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Rearranging this last equation slightly yields

\
V,(E,1) + R(E)V_(E,1) + N(&) = 0
where
R(E) = 1 +——-—-A°°$h7 > (2.9)
_ Acothy
N(E) = ——— &(&) J

The functions K(£) and N(&) are known and will be shown to be analytic and
nonzero in the strip f_ < Im(E&) < Tye Thus, (2.9) is a single equation in
the unknowns V+(€,1) and V_(&,1), valid in the strip. We will solve it

for V+(§,1) and V_(&,1) using a Wiener-Hopf factorization technique.

The fundamental step in the Wiener-Hopf procedure for the solution

of this equation is to factor the expression K(£) such that

K_(&)

K+(€)

R(E) =

b

where K (%) is analytic and nonzero in Im(E) < 1, and where K+(€) is

-+

analytic and nonzero in Im(§) > T_. This will be accomplished in Section

IIT. The product factorization above allows us to rewrite (2.9) as

K+(£)V+(E,1) + K_(&)V_(&,1) + K+(E) N(E) = 0 . (2.10)

Next, we factor K+(£) N(&€) as a sum

K (&) N(E) = R (&) +R_(§) ,
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using the same * conventions as above. The sum factorization will be

obtained in Section 1IV.

With this result we can rearrange (2.10), defining the function E(£)

as
K, (E)V, (&,1) + R (&) = -K_(E)V_(§,1)-R_(&) = E(§) . (2.11)

E(§) is originally defined only in the strip 1_ < Im(§) < T, However,
since the first part of (2.11) is analytic for Im(&) > 1_ and the second
part is analytic for Im(§) < T,, we are able to analytically continue E(§)

to the entire plane so that E(E) is an entire function.

Finally, using asymptotic properties of the functions K+(€),
V+(E,1), R+(E), K_(&), V_(&,1), and R_(&) as |£€] » » in their respective
half-planes, we will show in Section V that E(§) tends to zero as £ tends
to infinity. By Liouville”s theorem then, E(£) = 0 allowing us to solve

for V+(E,1) and V_(&,1) explicitly as

| R, (8) ~R_(E)
V+(€,1)=E3’§)—— , and V_(E,',1)=‘K—__“(“g;')w .

This allows us to invert the transform, solving for v.

Before moving to the sum and product factorizations, we close this
section with the determination of the regions of analyticity of V+(E,1)
and V_(£,1). 1In order to do so, we need to consider the growth of v(x,y)

as X » t o in 0 < y < 1.
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For x > 0, the characteristic functions of (2.3) are

2 2
exp[(— %-— %- //{ + 4n ; ) x] cos(nmy) ; n=0,1,2, ...

The complete solution will be a sum of homogeneous solutions of the form

o 1 1 4n’n?
v(x,y) = Zo A, exp[(-5 - 5 ﬁ + — ) x Jeos(nmy) ,
n=

where the An’s are unknown expansion coefficients. Therefore, for x large
and positive, v(x,y) = O(e~x). Referring to the definition of V+(£,y) in

(2.6), we conclude that V+(€,1) is analytic in Im(g&) > -1.

In the half-strip x < 0, 0 < y < 1, we use a slightly different
technique. Since v(x,y) is bounded for all x < 0, we obtain using (2.6)
the (crude) estimate that V_(§,1) is analytic in Im(g) < 0. Note that
this correlates well with the observation that g(&) in (2.8) is defined

for Im(§) < 0.
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ITITI. PRODUCT FACTORIZATION

In this section, we exhibit the explicit product factorization that
allows us to write

K (&)

= A cothy -
K(&) =1 + 3 K+(€) s (3.1)

where K_(&) is analytic and free of zeros in the lower half-plane Im(§) <

T and where K+(£) is analytic and free of zeros in the upper half-plane

Im(E) > T_.

The procedure we will follow in obtaining a product factorization of
K(&) is well known [16] and relies on the Weierstrass Factor Theorem [17].
Briefly, it states that if K(&) is entire and can be expanded in an
infinite product, and if K(&) is even, then we may write

L 2
K(E)= K(0) T {1 - (&) }

n=1 n

me

where & = % En are the (simple) zeros of K(&). This allows us to

decompose K(&) as a product of the form

K(g) = K+(€)K_(€) , where

K, () = {k(0)}1/2™¥(®) . £

I {1 + £ } exp(I-%—) . (3.2)
n=1 n n

In (3.2) the exponential factors exp(¥F E/gn) are inserted into the
infinite piroducts to ensure absolute convergence in their respective half-

planes. The function X (&) also deserves comment. For the moment, X (&) is



17

any arbitrary entire function, and can be chosen later so that the factors

K+(£) and K_(&) have algebraic behavior as & tends to infinity.

For (3.1), we need to factor K(£) as a quotient. Some preliminary
manipulation is required first, however. At first glance we seem doomed

to failure since K(&) is not an even function of £. However, if we let

E=a-14i/2 , (3.3)

2 2 1 . .
then & + 1& = « +-Z which is even, so that K = K(@) is an even function

of the variable «.

In order to facilitate further analysis, we will consider K, K+, and
K_ as functions of the complex variable a and perform the factorizations in
the complex a-plane. We note in passing that as functions of a, V+(a,1) is
analytic in Im(a) > --% and V_(a,1) is analytic in Im(a) < +-%, using the
results obtained at the end of Section II. Next, for the function K(a) we

/2
notice that the branch point singularities of y = p/a +1/4 are removable,
so that K(a) is meromorphic. Therefore, if we rewrite K(a) as the quotient

of two entire functions L{a) and M(a) such that

where L(a) Ysinhy + Acoshy

M(a) Ysinhy s then

we may factor L(a) and M(0) individually.
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The expression L(a) has simple imaginary zeros at Yy = £ ipn

satisfying tanp = A/pn. Therefore L{u) may be written in factor form as

® 2
Lo = &4 1 (1+-1)
n=1 o
n
. , /2 o , 1/2
=Al I [(1+J‘_7) +£§E’_]exp(—1 P)} {1 [1+-P ;) - 1ap, p(Hi%RY]
n=1 4p n P n=1 4pn n n
Hence L(a) = L_a/L+(a) where
Ly = a2 1 (14 By 4 L0B] p(zion)
=1 4p n n
n
and (3.4)
- ” 1/2
= A e I (_(1-!-_—--———) - ____J exp(w——) .
L+(a) n=1 Apn2 pn pn

Now L_(®) is analytic and free of zeros in the lower half-plane Im(a) <

912 1 1/2 1
—5 +-Z) (or for sure Im(a) < 79. Likewise l/L+(a) is analytic and
P 0,2 . 1/2
free of zeros in the upper half-plane Im(a) > —(——E-+ ZJ (or for sure
p

Im(a) > ~-%). We also note that for n sufficiently large and positive

2
pn = (ﬂ-l)'ﬂ + ‘—————-——(n_f)'n_ + O(f—j)

Next, consider M(a) = YsinhY. As it stands, we cannot factor M(a)
directly since Y = 0 is a double zero. However, if we consider instead

sinhY/Y (with a removable singularity at Y = 0) we may factor it as
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R L 2
sinhy Y
= 0 (1+ )
Y n=1 nznz
0 2 1/2 i . P 2 1/2
= { I [(1+ P ) + lap]exp(_lap)} { I [1+ p ) - iap exp(ij_'g.?.
n=1 4 2n2 nmn n=1 4n2n2 nm ] nm )}
. 2 sinhy .
Then, using M(a) Y Y » we find that
M (o)
M(a) = W , Where
L 1 p’ 2 iap -iop
M () =p(zHia) T [(1+ 57) o] exp(R)
n=1 4nn
and (3.5)
1/2
1 1 ® p2 iap +iap
= p(—‘—id) I (]. + = -] exp|——~=
M+(a) 2 n=1 [ 4n2ﬂ2) nw} ( nm J

Here M_(a) is analytic and free of zeros in In(a) <-% and TR

analytic and free of zeros in Im(a) > - %w

Finally, since K(a) = %%%% » We obtain from (3.4) and (3.5) that
. , 1/2
1/2 X(a) p iap -lap
A% n [(1+ )+ ] exp( )
L (@) n=1 4pn2 Py oy
K (a) = M (a) = 173 (3.6)
- - 2
1, i A
plgtia) 1 [(1+ —F5) + 222 exp(iR
n=1 4n“7
1

is analytic and free of zeros in Im(a) > - X and
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) 5 1/2
1/2 +X(a) p ia iap
A" Te Il [(1 + =) - J EXPL“‘)

M+(a) =1 4 n n
R (@ " Lo " - , 172 (3.7

1 )
Prte) 1 [(1+ By - 298] (s )
n=1 4n"w

is analytic and free of zeros in Im(a) > -1 This completes the

Tk
K_(a)
factorization of K(a) =-E—(ay « In closing this section, we will now
+

obtain the asymptotic behaviors ofK#(a) and K_(a) as a tends to infinity
in their respective half-planes. This information will be of further use
in Sections IV and V. Recall first that for n large and positive that P
= (n-)n + O(%). This suggests writing the infinite product expansions in

(3.6) and (3.7) in a slightly different form, say for K _(a) as

1/2
1/2 -X{(a) 2 . .
K(a) =A_© {(1+ -2 19P} exp(Tiap)

(5 + 1pa) bo, 1 °1

- 5 1/2

I [(1 + __._P_._) + _1_9‘.9.} exp(:_l_g_B)
n=2 4pn2 ‘ a °n

- , 172 .
10+ B) + 22 exp(Z2R)

n=1 4n"n

Now for |a sufficiently large, we may neglect the terms pthpnz and
p2/4n2ﬂ2 relative to unity. Hence, since e~ (n-1)T as n » =, we find

that K _(a) is of the order
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-X -1 > i -iap
e (@) a exp(—;gg) I [1 + —g%] exp( nn)
1 n=1
o ® iap -iap
1ol =T ene(S0E)
= 0(exp(-X(a) - Egﬁ) as lal » ® in Im(a) < %-.
1
Likewise, it can be shown that
K:%ay = 0(exp(X(a) + %?E)) as lal » ® in Im(a) > - %-.

Until this point, the function X(a) has been arbitrary, though entire; we
can now fix the value of X(a) by requiring that K _(a) and K+(a) have

algebraic behavior as |a] + ® in their respective half-planes. Clearly,

we set
X(a) = =22 | (3.8)
P1
so that
K (@) = 0(1) as |a|] + = in Ima) <-%
(3.9
K+(a) = 0(1) as |al + = in Im{a) > — %—.

Note also that

K(a) = 0(1) as |a| » = in - % < Im(a) <% ) (3.10)
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Iv. SUM DECOMPOSITION

The topic of this section is the sum factorization of the expression

R(E) = K (5) 225 g(e) = R, () + R_(8)
where
g(E) = —:—, Im(&) <O .
Yo &

In terms of the new independent variable &, this can be rewritten,

Al K+(a) cothy

R(a) = . (4.1)

IT Y (@ - 3)

We will factor this expression into a sum R+(a) + R_(a) where R+(a) is
analytic in the upper half-plane Im(ca) > - %—, and R_(a) is analytic in

the lower half-plane Im(2) < +-% .

Ag in the case of the product factorization, the general procedure
for sum decomposition is well known; several examples are given in [16]

and [18]. The appropriate sum factorization theorem states that
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if (i) R(a) is analytic in 7_ < 1 < T, (a0 = 0+ 1i71)

(i1) IrR(a)} < |5|_k ; k = constant > 0 as Jo| +®»in1_< 1< 1

then

where

R(a) = R+(a) + R_(a) where

R, (@)

R_(@)

1
27i

-1
2ni

i
J R(E) 4¢
, T-o %>
-0 ¢
wrid
ORE) 4,
— >
—wp1d ¢

T_<edTCd< T, .

analytic for 7 > T_

analytic for 1T < T,

(4.2)

Schematically the situation is illustrated in Figure 4-1 in the complex

L-plane, where for our purposes we have T_ = - %-and T, =%

T:.l_
+2
______ —_——_— e - —
d
>
oo (say)
C
>
T_=1%
_______ e . — —
z-plane

Figure 4-1
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In the strip - %—( T < +-%, R(a) is analytic and Y ~p& as |a| »> =

so that cothY = 0(1l) as |a] *+ «® there. Also, since K+(a) = 0(1) as |a] + o

inT> - %—, we conclude that

)=o) as ol »®in -2 < T <+,
g

R(@) = Of 5

QNP*

Therefore, the hypotheses of (4.2) are satisfied.

To evaluate the integrals in (4.2) it would seem expedient to close

the contours in the upper half-plane Im(Z) > —-% , since K+(C) is analytic

R(Z)
c—a

the complications from calculating the residue at that point preclude

i
there. However, the integrand also has a double pole at g = 7 and
closing the contours from above as a viable choice. In order to close the
contours in the lower half-plane though, we need an alternate expression
for K+(C)since the infinite products of that function only converge for

Im(Z) > —-% . Recalling that

K_(%)

K—(c)'=
+ Acothy

K(%)

K, () = :

we can rewrite the integrand as

R(Z) _ AiX_(Z)coshy

L-a

VIm(g-a)(g- %O(YsinhY + Acoshy)

AiK_(Z)cothy

= »

V2m (C—a)(C—-%)(Y + Acothy)
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1

Now, in Im(z) < 5 we see that the integrand has a simple pole at
/P2 1
¢ = a, and an infinite sequence of simple poles at g = -i/“f +-Z = —imk,
P v
k =1,2,3,,.., where cotpk =-KE . If we consider the infinite sequence of
. m 1y . # 1
rectangular contours Ck with lower corners at i~§ (k +-§)—1-5(k+ 7), we

find that cothy = 0(1) on Ck so that the integrand is O(ig) on Ck' Hence
IfC | as k * ® and the integrals for R+(a) and R_(a) are reduced to a sum
k

of residues. After some fairly routine calculations we obtain that

2 . A
ALV P K (1o )
R() = —— ) 15, 2.2 :
V21 p° k=1 wk(wk+-§)(pk+A +A)(a+1wk)
2
. o o} K_[—iw )
R(®) = R(®) + Ty
V21 p° k=1 wk(wk+‘§)(pk+A +A)(a+1wk)
AiK (a)coshy
= 1 (4.3)
Vam (a—-j)(ysinhy + AcoshY]
2 .
A ,w pkK_[—lwk)
t— RVIVIY, :
V21 p” k=l wk(wk+-§](pk+A +A)(a+1wk)
—————
where w, = lfkf~+-l k=1,2 -
k // 2 4 2t
p
P
and where cotpk = i )
In the sum decomposition above, R+(a) is analytic in Im(a) > -‘l,

and R (o) is analytic in Im(a) < +-%. Also, since K_(—iwk) = 0(1l) for k

large, we see that the general term in the series is 0(1/k3) so that

convergence is absolute. Finally, we close with the observation that
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R (a) = 0(%) as ol »® in Im(a) > -%
(4.4)
1 , 1
R (a) = O(—&) as |a] * @ in Im(a) < 5
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V. INVERSION OF THE TRANSFORM

A. ANALYTIC CONTINUATION

We are now in a position to determine the integral function E(a)

from equation (2.11), which in terms of the variable o can be rewritten

E(a) = K+(a)V+(a,1) + R+(a) = -K_(a)V_(a,1) = R_(a) . (5.1)

We recall from (3.9) that

\
K (a) = 0(l) as la] +* in Im(a) <-%
K, (a) = 0(1) as lal + ©» in Im(a) > - %-,
and from (4.4) that > (5.2)

R (a) = 061) as |al » » in Im(a) > -1
+ o 2

1 | . 1
R_(2) = 0(z) as la|l »= in Im(a) <5 . )

In order to determine the asymptotic behavior of V+(a,1) and V_(a,1)

in their respective half-planes, recall from (2.3) that v(x,1) =» v,

+
constant as x * 0 on y = 1, so that

V+(a,1) = v(x,l)dx ~ as lal » ® in Im(a) > - %—,

1 f“ eiax ex/Z const
V2r 0

and likewise,
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const 1

V_(a,1) - L fo 10X ex/2 v(x,1)dx ~ as la]l + @ in Im(a) < -5
2 - (5.3)

Using (5.1)-(5.3) we see that when Im(c) <-%, E(a) goes to zero as
o] » o, Similarly, when Im(a) > - 13 E(a) behaves as 0(1/a) as |al + .
Thus, since E(a) is an entire function, we therefore conclude that

E(a) = 0. We have finally then

&

2 ,
V.(a,1) = Ry Ai = oy k(1w )
+ R p2K+(°‘) k=1.“’k(‘”k+ %)("12{+ A2+A)(°‘+iwk)
and
v (aly = -R_(@) _ -AicoshY
- k(o) (a-%)(ysinhY + Acoshy)
AL o pi K_(—iwk)
) A 3 K . (5.4)
Y21 p°K_(@) k=1 o, (0 + 5)(ep+ A"+A)(otiw, )

B. INVERSION OF THE TRANSFORM

In this section we will invert the transform and obtain a series
representation for the spattering temperature v, on the surface of the

slab y = 1 at x = 0.

Now, using (2.5) and the results of (2.8), we find that in terms of a,

]

V(e,y) = C(a;p) cosh(Yy) ,

[V, (2,1) + V_(a,1)]
coshy

where C(a;p)
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Upon inversion using (2.4),

o"x/2 T+1T TV, (a,1) + V_(a,1)" 1
v(x,y) = cosh(vy)e
VIT —erit coshy

ox
da ,

1 1
where -3 <1< +‘§ .

As mentioned previously, the actual temperature distribution within
the solid is of less importance than the velocity of the quench front
itself. Thus, focusing on the surface of the slab y = 1 we find as ex-

pected that

e_X/2 e+t -iax
v(x,1) = J [V (e,1) + V_(a,1)]e " da, (5.5)
V2 —oo+iT

where V+(u,1) and V_(a,l) are given by (5.4). 1In the integral (5.5) we
close the contour above or below depending on whether x < 0 or x > 0. We

now consider the two cases separately.
Case 1: x <0 and . x =20
Here we consider the contour integral

e—x/2 -iax
yo= % [V,(e,1) + V_(a,1)]e " *da ,
W

where T is the contour obtained from (5.5), closing in the upper half-

plane Im(a) > - %u Note first of all that V+(a,1) = —R+(a)/K+(a) is
analytic in Im(a) > - %3 and hence will contribute nothing to the

integral. Next, since

1+ AcothY] ,

K_(@) = K (a)K(a) = K, ()] =
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the term V_(a,1) may be rewritten using (5.4) as

-R_(@) -Aicoshy
V_(a,1) = MO

V2w (a—%)(YsinhY + Acoshy)

2 i
Aiysinhy P K_{-1u, )
T, 2.3 >

- (5.6)
Y2 p2K+(0£)(YSinhY + Acoshy) k=1 wk(wk+§)(pk+A +A](o¢+iwk)

in order to simplify the calculation of residues. In the first term of

(5.6) we have in the upper half-plane a simple pole at a = i/2 and an

p_2
infinite sequence of simple poles at a = i —E§-+-% = iwn, n=1,2,3,"""
P

corresponding to the zeros of yYsinhY + Acoshy at y = +ipn satisfying

cot Py = pn/A. The second term of (5.6) only has simple poles at g = iwn,
since K+(a) is nonzero and analytic, and since the infinite series is
analytic in Im(a) > - %w If we consider the sequence of rectangular
contours Cn with upper corners at %-(n +-%)(il+i), we find that cothy =
0(1l) on Cn; in a fashion similar to our experiences in Section IV, lfc | >
0 as n *» », Hence, the evaluation of (5.5) can be obtained from the szm

of residues of terms of (5.6). 1In standard fashion, we find that for x < O

pZexp[(w - 3)x]

v(x,1) = 1 - & )

2 1 2,.2
p n=1 wn(wn—-f)(pn+A +A)
2 1 2 .
LA oi ppexpl (o~ 7)x] 3 Py K (-1 )
4 & . 2 2 _ 1y 2 2 ’
P n=1 wnK+(1wn)(pn+A +A) k=1 wk(wk+ 2)(pk+A +A)(wn+wk)
where w = k=1,2 """,

satisfying cot p, = pk/A . (5.7)
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In the first series above, the general term is O(l/nz) for n large.
The terms in the iterated series behave as O(l/nz) and O(l/k3), so that
the series in (5.7) will then converge uniformly and absolutely for x < 0.
Also, as x * - ©, we see that v(x,1) + 1 in agreement with the boundary
condition from (2.3). We note in passing that when x = 0, the temperature
v(0,1) = A is the (known) sputtering temperature. We shall make use of
this observation in the next section to obtain an approximate value of the

quench front velocity p, when p < < 1.

Case II: x>0

In this case we close the contour in the lower half-plane Im(w) <-%.

The only part of the integrand which contributes to the contour integral

is V+(a,1) which can be rewritten

-R (@)
+
Vo (0,1) = ———
+ K+(a)
2 .
Ai(YsinhY + AcoshY) . pk K—( 1wk) (5.8)
VZu sz (@) ysinhy k=1 w (w +l)(p2+A2+A)(a+iw )
- k*Mk 28k k
Note first of all that the simple poles in the infinite series at o = —iwk

are removable, since these are precisely the zeros of the factor Ysinhy +

Acoshy in the numerator. Otherwise, the only other singularities in the

7772
in

lower half-plane are at ¢ = -i/2 and o = —icn, where o, = /=5 +

/o

£

n=1,2,... . Therefore, for x > 0,
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V1) = A ———7——9-x b iy
p4 K_(-1/2) k=1 wk(pi+A2+A)(wk2— %J
N oo exp[(—ﬁn-*%—)x_] E QiK_(—lwk) } 5.9
=1 Ok (7o) 21w (p2ea%a) (w+ 1) (w -0 ) 3:9)
n= n R NN k' 2/\% %

For x large, and positive, we see that v(x,l) = O(e—x), in agreement with
our asymptotic analysis from Section II. However, there may be some
convergence problems with the iterated series in (5.9). 1In particular,
when k = n+l, the term wWe=0, is then O(l/nz), and series may fail to
converge at all. For this reason, we shall use the series (5.7) instead

in finding the velocity of the quench front.
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VI. REVERSION OF THE SERIES. THE APPROXIMATE VELOCITY OF THE QUENCH

FRONT. DISCUSSION.

At this point we are ready to find the velocity p of the quench
front. On the surface of the slab at x = 0, y = 1, the temperature v(0,1)

= v_1is the sputtering temperature, a known constant. From (5.7) we see

c
that
=) p2
A n
v =1-— Z
2 1 2.2
¢ p~ n=1 wn(wn— iJ(pn+A +A)
A2 b przl ® pk K_(—iwk)
Tz 2.2 Ty, 2.2 ’
p =1 w K (ie )(pn+A +A) k=1 mk(wk+ 5)(pk+A +A ) (0 Fw )
/2
/Pr o1
where wk = // —§~+<Z , k=1,2, ..., (6.1)
P
satisfying cotp, = pk/A .

It should be emphaéized that the results of (6.1) are exact within
the approximations of our model. 1In principle, we would like to revert
the series above and solve for p = p(A,vc,pk). Unfortunately, given the
complicated nature of (6.1), especially due to the infinite products
K+(iwn) and K_(—iwk), such a task seems hopeless. Instead, we opt for an
approximation to (6.1) valid when both the quench front velocity p and the

Biot number A are small.

It is reasonable to assume that both p and A are small together
since the mechanism responsible for the existence of the quench front is

the temperature gradient between the hot and cold portions of the slab;
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when the heat transfer coefficient A is small, the temperature gradient is

small, and so the velocity of the quench front should also be small.

When the two—dimensional problem we have considered is reduced to
one dimension by integrating out the y-dependence of the differential

equations, the velocity of the quench front [11], [12] is given exactly by

p= /o (1v ) . (6.2)

c

The approximate solution proposed for the two-dimensionnal problem should
compare closely with the one-dimensional solution (6.2), since an
agsumption in that model is that the temperature variations in y are

small, and this is true only for a small heat transfer coefficient.

For our problem, we will show that the solution of (6.1) for p is

given by (6.2) accurate up to terms of 0(A).

To begin, we recall that the Py are roots of the transcendental
equation cotp, = pk/A. It can easily be shown that for A sufficiently

small,

p, = VE (1 - £+ o(a?)) . (6.3)

We also recall that for n large,

p_ = (n-1)7 +T$TYTT + o(%) . (6.4)

Actually, this later result is also the expansion for G when A is small, and
is reasonably accurate even for n = 2. In [19], the roots of cotp, = pk/A are

tabulated and are repeated here in Table 6-1 for different values of A.
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A ey Pq Py

0 ™ = 3.14159 27 = 6.28319 31 = 9.42478

0.05 3.15743 6.29113 9.43008

0.15 3.18860 6.30696 9.44067

0.25 3.21910 6.32270 9.45122

0.50 3.29231 6.36162 9.47749
Table 6-1

Next, we make use of these results in simplifying the infinite
products in K+ and K_. 1If we recall from (3.6) and (3.7) the definitions
of K+ and K_, it is clear that K _(-o) = 1/K+(a). Thus, we need only

consider the form of K+, which can be written using (3.8) as

1
il 2 - pw -pw
1 2 k
G 1 100 2l Slenl 50
K(iwk) = n= nm :
pw © 2 = pw -puw
/K exp(—) T [(1+ B)Pe 5 ] exp( =)
pl n=1 4p n n
n
(6.5)
> %’ P POy
: )
(% + pwk) nzl [(1+ 4n2ﬂ2) + nﬂ]eXP( nn)
) 2 %—pwk ) il 2 %— pw, ~PWy
AL(1+25) +=] 1 [(1+ E5)% = Jexp(—=)
491 P17 n=2 bp n n
=
/ 1
where W = y ;%'+'Z s k=1,2,
S

satisfying cotp, = pk/A .
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Using the behavior of the pk’s from (6.3) and (6.4), it can be shown that

the quotient of infinite products in (6.5) behaves as

1

© 2 = pw pw
P 2 k k 2 ; -
nfl [(1+ lmznz) + —] exp(—:) 1 + 0(A%) if k=1
1 -

had 2 5 pw -pw.
i [(1+_.p_2)2+—-]e><p( ) 1 +0(A) 4if k> 2.
n=2 4p n n

Hence, after some simplification we can write

) oy (3 + puy) |
K, (iw) = T +0(4), k>1. (6.6)
2 2 PW,

I+ 2+

Armed with this result, we can approximate (6.1) by truncating each series
at the first term. It can be shown that such a seemingly crude approxi-

mation introduces errors of O0(A) at most so that

2
v o=1- : $ A0 S+ 04)
(pwl)(pwl_plz) Dl(pwl)(p/z + Pwl)
2
Ap1
where § = —5 T - (6.7)
p1 + A + A

The validity of this truncation is further reinforced when we consider

that the series in (6.1) converge rapidly as (lij or (lg) depending on the
n k

appropriate summation index.
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We next note that under the approximation (6.3),
A 2 2
6 =3 (1 -3 A+o0(A )]

so that (6.7) becomes

2
v =1- A/2 + A7/2 + 0(4) , (6.8)
(pw, )(pw =p/2)  (pw )(p/2 + pu,)

/o pZ
where pwl = / p1 + Z— .
As a check of our approximations, we note that if p = O, then v, should

equal the (modified) upstream temperature of 1 from (2.3). 1In this case

(6.8) reduces to
v =1+ 0(4) ,

C

as expected.

Finally, if p < < 1 it can be shown that

7
/

P= (1-v_ ) + 0(A) . (6.9)
v Ve ¢

S

As pointed out earlier, the leading term in this expansion is the exact

solution for a one-dimensional slab.

It is also worth comparing our results with those obtained in [14]
using an approximate kernel factorization and a nonrigorous asymptotic
analysis. Again, we find exact agreement for the velocity of the quench
front to lowest order, pointing to the validity of the choice of the

approximate kernel in that analysis.



[1]

[2]

(31

[4]

[3]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

38

REFERENCES

H. Moss, D. L. Sills, eds., "The Three Mile Island Nuclear
Accident: Lessons and Implications,"” Annals of the New York
Academy of Sciences 365 (1981).

B. Duffey, D. T. C. Porthouse, "The Physics of Rewetting in Water
Reactor Emergency Core Cooling,” Nuc. Eng. Des. 25 (1973),
379-394.

S. Thompson, “"On the Process of Rewetting a Hot Surface by a
Falling Liquid Film,"” Nuc. Eng. Des. 31 (1974), 234-245.

Butterworth, R. G. Owen, "The Quenching of Hot Surfaces by Top
and Bottom Flooding - a Review," AERE Report R7992, AERE
Harwell, Oxfordshire, England (March 1975).

J. Carbajo, A. D. Siegel, "Review and Comparison Among the
Different Models for Rewetting in LWR”s,” Nuc. Eng. Des. 58
(1980), 33-44.

S. Yao, "Rewetting of a Vertical Surface with Internmal Heat
Generation, Proc. Solar and Nuclear Heat Transfer, AIChE
Symposium 73 (164) (1976), 46-50.

cited in: H. T. Laguer, B. Wendroff, "Bounds for the Model Quench

Front,"” LA-UR-80-727, Los Alamos Scientific Laboratory
(1980).

W. E. Coney, "Calculations on the Rewetting of Hot Surfaces,”
Nuc. Eng. Des. 31 (1974), 246-259.

G. M. Andersen, P. Hansen, "Two-Dimensional Heat Conduction in
Rewetting Phenomenon,” Report No. NORHAV-D-6, Danish Atomic
Energy Commission Research Establishment, Risd, Denmark
(1974).

Durack, B. Wendroff, "Computing a Two-Dimensional Quench Front,”
Nucl. Sci. Eng. 64 (1977), 187-191.

Semeria, B. Martinet, “Colefaction Spots on a Heating Wall:
Temperature Distribution and Resorption,” Proc. Inst. Mech.

Eng. 180 (1965), 192-205.

Yamanouchi, "Effect of Core Spray Cooling in Transient State
After Loss of Coolant Accident,” J. Nucl. Sci. Tech. 5

(1968), 547-558.

Wendroff, "A Surface Approximation for Quench Front Motion,"
LA~-UR-77-2565, Los Alamos Scientific Laboratory (1977).



39

[14] C. L. Tien, L. S. Yao, "Analysis of Conduction-Controlled Rewetting
of a Vertical Surface," J. Heat Transfer 97 (1975), 161-165.

[15] S. S. Dua, C. L. Tien, "A Generalized Two-Parameter Relation for
Conduction~Controlled Rewetting of a Hot Vertical Surface,”
Int. J. Heat Mass Transfer 20 (1977), 174-176.

[16] B. Noble, Methods Base on the Wiener-Hopf Technique for the Solution
of Partial Differential Equations, Pergamon Press (1958).

17} E. cC. Titchmarsh, Theory of Functions, 2nd Ed., Oxford University
Press (1939).

[18] G. F. Carrier, M. Krook, C. E. Pearson, Functions of a Complex
Variable, McGraw-Hill (1966).

[19] M. Abramowitz, I. A, Stegun, ed., Handbook of Mathematical
Functions, Dover (1972).




40

PART 11

ASYMPTOTIC EXPANSIONS OF INTEGRALS
WITH

THREE COALESCING SADDLE POINTS
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I. INTRODUCTION

A great deal of research has been devoted to problems of wave
propagation in dispersive media in which the dispersive waves are defined

by integrals of the form
I(x,t) = [ g(k) exp|i(kx-wt)]|dk , (1.1)
T

where w = w(k) is called the dispersion relation. 1In simple cases, the
asymptotic behavior of (1.1) for large t, say, can easily be evaluated by

the method of statiomary phase. In this situation the dominant behavior

of the integral is governed by the critical points k = ki satisfying

(1.2)

Qalﬂ-
~le
|
X

Recently, an interest has arisen in integrals such as (1.1) con-
taining multiple critical points that are allowed to coalesce forming a
single critical point of higher order; specifically, the case of three
simple critical points coalescing to form a third order critical point.
Physically, such problems can arise in the interaction of surface and
internal waves [l], wave trains in stratified shear flows [2], and in the
field structure of a cylindrical electromagnetic wave train in the neigh-
borhood of a line focus [3]. Using standard asymptotic techniques such as
the methods of stationary phase or steepest descent, the asymptotic
behavior of the integral for distinct critical points or for coalesced
critical points is well known. What has not been considered previously,
however, is the uniform asymptotic behavior governing the coalescence of

the three critical points into one.



42

From another viewpoint, we can examine this problem by allowing the

group velocity dw/dk in (1.2) to depend on some parameter 6 as in

dw
I = G50 (1.3)

where a typical Cg is sketched in Figure 1-1 for varying 6. We see that

Figure 1-1

as 0 » 60, the distinct critical points coalesce. In terms of I, where t
is the large parameter, we seek an asymptotic expansion of I as t » =,

uniformly as 6 » 60.

Mathematically, integrals with two coalescing saddle points have

been examined extensively in the literature. The fundamental papers in

this area, due to Chester, Friedman, and Ursell [4], and later Friedman
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[5], express the uniform asymptotic behavior in terms of Airy functions and
their derivatives. Some results in the more general problem of p coales-
cing critical points (p > 2) are presented in [6] by Bleistein in terms of
"generalized” Airy functions. 1In all cases, the critical step in the
asymptotic analysis is the transformation of the given integral (such as
(1.1)) into a simpler "canonical" integral that exhibits the same proper-
ties. For two coalescing saddle points, the canonical integral is the

Airy Integral; hence the resulting solutions are related to Airy

Functions.

The situation involving three coalescing critical points is not
nearly as well formulated as the case for two saddle points, probably due
in part to its more infrequent occurrence in nature, but also because the
solutions are not expressible in terms of known simple functions. Pearcey

{3] and Hughes [1] consider the canonical integrals (Pearcey Functions?)

y 1 412
I(x,y) = f exp[l(z- -5 xul - yu)]du (1.4)
-0
X 2 4 3
and show that the three critical points present for y= < 55 X coalesce on
the cusped curve y2 =-%7 x3. Using the method of stationmary phase, they

obtain the leading (one term) behavior om and off the cusp of coalescence.

Our approach to this problem is to adopt a much simpler canonical

integral than (1.4), namely the contour integral

h 42,
JQs3Y) = [ exp[A(— + 5 t7)Jde (1.5)

€t
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for some appropriately chosen contour Ct' This form has
advantage over (l.4) of having explicitly factorable

t =0, +Y. As Y tends to zero, the three saddle points

origin. We find the complete asymptotic expansion of (1.

uniformly as Y + O using the method of steepest descent.
notation and formalism of our analysis has been borrowed
and Handelsman [7] in their expository discussion of the

coalescing saddle points.

the immediate
saddle points at
coalesce to the
5) for A > o«
Much of the
from Bleistein

case of two
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IT1. FORMULATION OF THE PROBLEM

In this section, we consider contour integrals of the form

I(A;e) = [ g(z) exp[iw(z;o)ldz , (2.1)

C
z

with parameters A€ R and &, where o = (al,az,aB), for a, & C. We shall
assume that g(z) and w(z;®) are analytic functions of z in a simply
connected domain D which contains the contour Cz and the points z = Qs

z =0, and z = a,. We further assume that the exponent w(z;o) has simple

2 3
saddle points at z = al’ 2= %), 2=0, provided that oy # G,y a # Gy
al # 03. Therefore,
ow
-a—z' (aisg) =0
and (2.2)
32w
_3—‘2_‘ (ai;g) # 0 H i= 19293
z

provided that the a, are distinct. To simplify the analysis, we shall
assume that all other saddle points of the exponent w lie in the valleys
of w. The contour Cz may be of infinite extent, but must approach

infinity in the valleys.

We next suppose that the three saddle points are free to move in D
and in particular that they can coalesce there, forming a saddle of order

3. Thus, when a; = o, = 04,



w(ay30) = w (o538 =w, (o;50) =0
and (2.3)
wzzzz(aiiﬁ) $0 i=1,2,3.

Our objective is to find an asymptotic expansion of I(X;a) as A >
which is valid uniformly as the ai coalesce in D. In what follows, we
shall adopt much of the nomenclature of Bleistein and Handelsman in [7].
Briefly, the idea is to introduce a new variable of integration, say t,
which simplifies the exponent w(z;2) while retaining all of the basic
properties in (2.2) and (2.3). Thus, the transformation z = z(t) should
be a one~to-one conformal map of the domain D containing all the saddle

points of interest onto a domain D, in the complex t-plane while being as

1

simple as possible. Under this change, the exponent w becomes
w(z;a) = w(z(t);a) = o(t;a) .

In order to satisfy (2.2) and (2.3), the simplest form for ¢ would be a

polynomial of degree 4. One possible choice for ¢ would be

w(z(t);g) = —24 - Y(c;l) t3 + I;E t2 +8 , (2.4)
for some comstants Y,c, and 8. In this representation, the critical
points are located at t =Y, t = 0, and t = —=yc for y # 0. As y » 0, the
saddle points coalesce at the origin of the t-plane. In actuality, how-
ever, we may choose an even simpler form for the exponent w by setting

c=1 in (2.4), yet still retaining the salient characteristics of (2.2) and

(2.3) above. We have then that
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w(z(e);a) = o(t37) = -+t + 8 . (2.5)

From another viewpoint, the choice of the "canonical™ polynomial
(2.5) is (conformally) equivalent to any other polynomial having three
distinct saddle points in that we can always find a bilinear transforma-
tion, conformal in the extended plane, which maps three distinct points

into three distinct points.

In order that the transformation z = z(t) is a conformal map of D
onto Dy, we must require that dz/dt is finite and nonzero for all t in Dl

and all z in D. By differentiating (2.5) with respect to t, we find that

. dz _ -t> + ¥t
2(t) =-§ = Z . (2.6)

Clearly, the only difficulties in this expression arise when t = 0, * ¥
and when w, = 0 at one of the saddle points z = oy s i=1,2,3. Thus, at
the outset, we need to impose the condition that saddle points in the

t-plane correspond to saddle points in the z-plane, say

1
t=0 L===> z = a, (2.7)
t - -y === z=a, .

Hence we obtain the expressions

g = w(aziﬁj

Y = 4lw(ayse) - wlaysa)]

4[W(a3;9_) - W(az;g)] (2.8)
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It should be noted at this point that (2.8) does not determine Y uniquely.
In particular, we shall need to specify the appropriate branch of the

fourth root, a consideration to be addressed later in this section.

With the assignment of saddle points in (2.7), the expression for
z(t) in (2.6) is indeterminate at any one of the critical points.

Applying L Hospital”s rule, we find that

2 ,.2
. -3t° +
(Z(t))z = “;"—(';(YE—)— (2.9
t=1v,0 zz' =it =t v,0
zZ = Q, zZ = .
1 1

which is finite and nonzero provided that Y # 0. If Y = O (corresponding

to the coalescence of the saddle points), then we must apply L Hospital’s

rule twice more so that

- 4 —6
(z(t)) . = ;r*“—TETET (2.10)
Y=0=t zzzz"  ’—' {y=0=t
z=a, =a,=a, z=0,=a,=0,

which is finite and nonzero.

Thus, under the transformation (2.5) we can rewrite (2.1) as

I(Az0) = [ Gy(t;a) exp[Ag(t;y)]dt , (2.11)
C
t

dz
where Gy(t;0) = glz(v)) 37
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and where Ct is the image of Cz in the t-plane. 1In performing the
asymptotic expansion of (2.11) we will need to deform the contour Ct to
the steepest descent paths through the saddle points. If Ct is of
infinite extent, it must approach infinity in the valleys of the exponent.
from (2.5), we see that exp[k¢(t;¥)} vanishes as |t| + =, independent of Y
in any one of the four sectors

1

1
T (n —-Z) < arg(t) <-§ (n + ZJ , n=0,1,2,3 .

2
By hypothesis, Ct must begin and end in these sectors.

At this juncture we are prepared to return to the unanswered
question of a branch assignment for Yy in equation (2.8). 1In a related
note, we have seen that a necessary condition for the conformality of the
transformation z = z(t) is that Y and B are defined by (2.7) and (2.8).
Whether these conditions are sufficient for a conformal map to exist is
unknown. In the analysis of two coalescing saddle points, Chester,
Friedman and Ursell [4] have shown that the canonical polynomial ¢ (in
this case of degree 3) and the conditions corresponding to (2.7) and
(2.8) have just one branch which defines a conformal map of the domain D
containing the saddle points and the contour Cz’ When there are more
than two critical points, Bleistein [6] has shown that in the neighbor-
hood of each point in the z-plane, the transformation z = z(t) of the
exponent w is locally (1-1) analytic in all variables. Following this
work, we will assume that where required, the transformation z = z(t) is
globally (1-1) analytic. Next, in order to resolve the ambiguity surround-

ing the branch choice for vy in (2.8), consider the transformation z = z(t)

which maps the contour Cz in the z~plane into, say, Ct in the t-plane as
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shown in Figure 2-1. Examining the transformation in the neighborhood of

the origin of the t-plane, we may define &4t =t to be the image of iz

z - uz,where t is an arbitrary point on Ct and z its preimage on Cz- For

the above choice of Ct we see

Az

%2

(a) z-plane (b) t-plane

Figure 2-1. The contour CZ and its image Ct. The shaded regions in (b)

denote the sectors %{n - %) < arg(t) < ;{n +-%), n=0,1,2,3.

that

i

5 < arg(at) < u (2.12)

Since we know that approximately

é(t) ~ AN¥ >
£=0 At

we see using (2.9) that
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2 2
2 ~ Y°(at)
(8z)" 2 — . (2.13)
wzz(uz,a)
Taking the argument of both sides of (2.13) yields
) 2w (ay50)
arg(4t)” < arg 5 I
Y
Finally, from (2.12) we find that
arg(4z) + 2 arg(w__(a,3u4)) - o < ar (Y) < arg(sz) + = arg(w_ (u,3u)] - =
2 zz' 2°— g & 2 zz" 2°= 2
(2.14)

thus restricting Y to a sector in the complex plane having an angle of
/2, and fixing the branch of the fourth root. Clearly, we could have

chosen for Ct any of the other three contours ending in neighboring shaded

sectors in the t-plane of Figure 2-1.

Returning to equation(2-11), our next task is to expand the
amplitude term Go(t;g) to simplify the derivation of the uniform

asymptotic expansion. To this end, we set
Ga(t;u) = + gt + g t? + (tB—th) Q, (t;a) (2.15)
0t T B T Bt T 8y o ‘52 y

where 8o 81> and 8, are constants and where Qo(t;g) is by hypothesis an
analytic function of t in Dl' With QO regular, it should be noted that
the last term in (2.15) vanishes at the critical points t = 0, % v.
Because of this, the contribution of the final term to the asymptotic

behavior as A * ® is lessened. We will exploit this observation later in

obtaining the complete asymptotic expansion for the integral.
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If we set t = 0, ¥ Y in (2.15) we find that

8y = 6,(05%)

_GO(Y;_C:) - G-

8 = 7Y (2.16)

) Go(Y;9) + Go(=Y34) — 2G,5(059)

g
2 2Y2

The expressions for 81 amd 89 have removable singularities for Y = 0.

Using L Hospital”s rule,

dGO(O;Q)
Y0 1 dt
2 (2.17)
d4%6,(05%)
lim gz = ‘-‘-‘—2——-——_ .
Y+0 dt
With 82 81> and -9 from above, we can solve for Q as
Go(t;4) — gy — 8t - 82t2
Qy(t;9) = C— ; (2.18)

t -yt

where, in this equation, the right hand side is indeterminate at t=0, * Y.
As usual, appealing to L Hospital”s rule, we obtain that as t + O
Go(Y32) = Go(=Y;9) = 2YG,(0;9)

lim Q. (t;u) = ,
gv0 O T 2v3

(2.19)

which is finite provided Y # O. When Y * 0, (2.19) becomes indeterminate

so that
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Gy (0;9)
lim 1im Qo(tgg) = 3 (2.20)
Y*+0 t*0

Likewise, as t > * vy |

Go(*Y;2) - gy ¥ 2vg,
Lim Q) (t;2) = 7 , (2.21)
2y

which is also indeterminate as Y + 0. As before, we find that

Gy(0;9)
lim lim Qo(t;g) = 3 (2.22)
Y+0 taty

Finally, if we insert (2.15) into (2.11) using (2.5) we conclude

that
AB b 2
I(A;a) = e f (g t+g, t+g t2) exp{l(—£4-+-1— tz)jdt + R (Aj0) ,
ot ¢ C0T°1TE2 2 o\
t
where
AB ' 4 2.2
Roe) = e [ (£-rP0q (650 expA(Th- + X jar (2.23)
C
t

If the asymptotic properties of the integrals in (2.23) were known for
AT ®oand Y 2 0, our work would be complete. Unfortunately, they are not,
nor do the integrals seem to be expressible in terms of "known" simple
functions. Therefore, our next undertaking, in Section III, is a

digression on the asymptotic expansion of integrals of the form

IO = [ exp{A(T-+ Ly t2)ar (2.24)
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as A + = for Yy + 0. In point, the expressions will be simplified if

instead we consider

2 ta
H(¢) = [ exp(et” - Jdr (2.25)
C
t

where J and H are related by

2.1/2
W(xy) = Al KA ) . (2.26)

Following this, in Section IV, we will obtain an asymptotic expansion for

I(A ) in (2.23) in terms of H and its derivatives.
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IITI. ASYMPTOTIC BEHAVIOR OF THE CANONICAL INTEGRAL

The topic of this section is the asymptotic analysis of the integral

Iumy = [ exp AT+ Yy ) ae (3.1)
c
t

In (3.1) we will examine two different regimes for the parameters A and Y.
In the first case we shall examine the behavior of (3.1) for XA large and

positive and Y nonzero. In the second we will consider the behavior for A

large and positive and Y small or zero.
A. BEHAVIOR AS A + = FOR Y # O.

In order to facilitate an analysis using the method of steepest

descent, we let t Yt© in (3.1). After dropping primes,

J(av) = v [ exp(k g(t))de (3.2)
Ct
2 4
where g(t) ﬁ-%— - %—
(3.3)
4
and where k= Ay .

The central idea in the method of steepest descent is to deform the
original contour Ct to the steepest path of descent through the
appropriate saddle points of the exponent g(t). On the steepest paths,
Im(g(t)) is constant, and in particular on the steepest path of descent
Re(g(t)) is decreasing away from the saddle points. For our problem, the

saddle points are the solutions of
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g’(t) =0,
which are (3.4)
t=0, 1.
We find that
g(0) =0
(3.5)
1
g(#) =4
so that if t = x + iy, the steepest paths are given by
| 2 2
Imig(t) | = xy(1 - x“ +y J=o0. (3.6)
as sketched in Figure 3-1.
Y
N
< ~ < ~
o~ -1 7 ~ +1 7 X
\\ 4
t-plane

2
Figure 3-1. Steepest paths x = 0, y = 0, and xz-y = 1.

Arrows indicate
direction of decreasing Re(g(t)) .

In order to complete the picture of the global topography, we also

need to find the level curves Re(g(t)) = constant through each of the



(3.7)
(3.8)
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The level curve through the saddle at the origin is given

saddle points.

by Re(g(t)) = Re(g(0)) = 0, or

y2 = 3x2—1 + /8x4 - 4x2 + 1.

1
Likewise, the level curves through t = ¥ 1 are given by Re(g(t)) =7 » Or

y2 = 3x2 -1-2 2x4 - xz

The configuration for our problem is
t-plane

0000,

Geometrically, the level curves give the boundaries between the hills and

valleys of the saddle points.
sketched roughly in Figure 3-2.

Level curves and steepest paths for g(t).

lm valleys of t = 0

Figure 3-2.

L\\\\‘ valleys of t = £ 1
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We note immediately that the saddle point t = 0 lies entirely in the
valleys of the saddles at t = * 1. This implies that for any steepest
path contour through the origin and either of the saddles at t = * 1, the
contribution from the saddle at the origin will be exponentially smaller
and hence asymptotically negligible compared with the contributions from
t =% 1. Since the topography is symmetric with respect to the y-axis,
the above analysis suggests that for the deformed contours we consider one
contour involving only the saddle at the origin, and another contour
involving any combination of the other saddle points. For definiteness,
let Cl denote the conttour from left to right along the Re(t)-axis, and
Jl(X;Y) the corresponding integral. Likewise, we let Cy denote the

contour from bottom to top along the Im(t)-axis passing only through the

saddle at the origin, and JZ(X;Y) the integral involving C2.

For the path along the Re(t)-axis we let
g(t) - g(* 1) = -s , where s e R , (3.9)
and non-negative on the path of integration. Thus

Iy ~vel foTRs (dtyy (3.10)
1 ds
C
1
which is a Laplace-type integral. The next step in the procedure is to
find (gg), and in particular, to expand gé-in the vicinity of the saddle

points (i.e., where s = 0) since that is where the major contribution to

the integral occurs. Using (3.9) we have that
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so that referring to Figure 3-3,

1

4 s (1 + 2 v5)2

-1

on

on

9 s (1 +2 /s)L/?

-1

s s (1 -2 /3

1

)177 on

[=9)=N
RN ad

2¥s (1 - 2 »fs‘)lf2

on

(3.11)

If we expand the expressions in parentheses in each of the denominators of

(3.11) in a series involving powers of Vs, the integral in (3.10 can be

evaluated using Watson”s Lemma.

Y
| +C2
A
| W7TTTv(fTTII{ |
0 M
—
B
t-plane

Figure 3-3.

Valleys are shaded.
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We find after some fairly routine calculations that

1 2

= {r(en+ 1)} 220

k 2
J (A7) ~2Y exp(3) ) (3.12)
1 4 n=0 (2n)! F'%- k2n+l/2
as k > ® in == < arg(k) < < .
2 2
For the second integral, this time along the path CZ’ we let
g(t) = -s , where s €R (3.13)

since g(0) = 0. As before, the variable s is non-negative and decreasing

away from the saddle point at t = 0 on CZ' As in the previous case

ks d
I,(57) ~ ¥ é e S(Eg)ds . (3.14)

2

. dt .
Here, the expression for — is somewhat more complicated. Referring to

ds
Figure 3-3,
8- L2 ey Y)Y ey 2 s
2/'s
(3.15)
gt - L7320 )Y (a2 s
2vs

When we expand for s small, there does not seem to be a simple formula for

the expansion coefficients. Instead, we have that

dt

dt *in/2 z c Sn—l/2 (3.16)
ds n

=1
2 n=0
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where in this expression

ENVEI ) o)
3=0

and where (1 + (l44s)

2

= (3 -G -G ) (R -5

j!

and (l+l;s)_1/2 = z h, s

[]

J=1 .

The first few coefficients are given explicitly by

Co =72 c, = =3
Y2 11!
C2=—__3_§._._. ) 03=~:_E_T9_:_3__
22 21 4y2 31
c, = 2QE35 .
8v2 4!

Finally, if we substitute (3.16) into (3.14) we find that

I, (YY) ~Yi ) ¢ ,
2 2=0 n kn+1

as k + « in-—E—-11 < arg(k) <-§

® o 1yd 0d qemegenepos .
1+ ) (-1)-" 2 (1.? 3°T(23-1)) gJ

sd ) ?(3.17)

(3.18)



62

where the Cn are given by (3.17). We close this portion of the asymptotic
analysis by noting that in terms of the original variables, the leading

term behavior of (3.12) and (3.18) is given by

oy 2 en() 1) X
N ~ »>
(3.19)
VZ2i T(&)
Ja(A3Y) ~ as A + =
2 yal/2

B. BEHAVIOR AS A + @ FOR Y + 0.

In this case, for Y small, we begin our analysis by convérting the

integral in (3.1) into a differential equation. Letting t = —%71 in
A
(3.1), we find after dropping primes that
JOGY) = = HCE)
2 _ %
where H(z) = [ exp(;t —-Z-)dt s
C
t (3.20)
2,1/2
A
and where z = JL??_-— .

We can convert the integral for H(Z) in (3.20) into a differential

equation in the independent variable ¢ by integrating by parts as

4 4

H(Z) = t exp(gt?- %—)l - [ (2et?- 4 exp(gt?- —Z—-)dt .
€ C

The boundary term vanishes on C leaving

t’
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H77(5) - 20H7(8) - H(Z) = 0 (3.21)
where the primes denote differentiation with respect to the argument. The
behavior of equation (3.21) near %=0 can be found easily since the origin

is an ordinary point of the differential equation. It can be shown that

WO ay | o & 2
n=0 (2m)! I(3)
(3.22)
2 3
v zn"(‘”’z) 2n+1
+d1 Z 3 c s
n=0 (2n+1)! r(ZJ

for some constants dO and dl to be determined. The series in (3.22) have

an infinite radius of convergence since every finite point is ordinary.
We note that given a contour Ct, the integral solution for H(Z) in (3.20)
is unique, whereas the series solution (3.22) is determined only within
multiplicative constants dO and dl. In order to fix dO and dl’ we merely
evaluate (3.20) and (3.22) explicitly when ¢ = 0. 1If we adopt the
convention that Hl(c) and Hz(c) are the solutions involving the contours

Cl and C2 respectively from Section III-A, we find from (3.20) that
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4 N
1 = | e - T rdy
€
—th/4 V2
Hy(0) = [ &t /har -2 r(7)
)
? (3.23)
2 —t4/4 3
HI(0) = [ t% at = v2 r(z)
C
1
2 -t%/4 3
H7(0) = [t e dt =2 1 7(3) )
€

Finally, solving for dO and dl’ we have that

2n 1 2n+1 3
b -2 52 r(n+ 7) 20, 25 Mot 2) nm
T 5 T (ony Tt 2 ]
1 2 L T (o) 2 bt T
(3.24)
2n 1 2n+1 3
N A R G VA N 7z Mot ) one
) =251 ] —— 3T Am 12y Ay
2 27 5T e NN ¢ TS DY

It should be mentioned that in addition to the solutions Hl(c) and
Hz(c), it can easily be shown that Hl(—c) and Hz(-c) also solve (3.21).
Since only any two solutions are linearly independent, there must be a

functional relationship connecting the others. In fact, it is that

Hy(&) = 1 H (-7)
and (3.25)
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These linear functional relations can be used to extend the range of ¢ in
the asymptotic behavior of the canonical integral for large arguments in

Part A.

Converting back to the original variables, the behavior when Y = 0

is given by

1 VY7 1
Jl(A;O) = g7E F(Z)
(3.26)

A = '
JZ( 30) A1/4 2
We close this section by finding the leading term béhavior of H(Z)
in (3.21) near ¢ = %, Clearly, this will serve to check our results from
Part A of this section. The point at infinity is an irregular singular
point of the differential equation; asymptotically, the solutions can be

shown to behave like

2
eC
H(Z) ~ 173 as g > o
4
and 1 Y2>\1/2
H(Z) ~ 377 where z = (3.27)
z

modulo some multiplicative constants. We note that in terms of the
original variables, the results of (3.27) are in qualitative agreement with

the leading term behavior in (3.19) using the method of steepest descent.
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Iv. THE COMPLETE ASYMPTOTIC EXPANSION

At this point we are prepared to return to equation (2.23), armed
with the knowledge of the asymptotic expansions of the canonical

integrals, either J1 5 OT H1 2 from the preceeding section.
] b

We note first of all, due to symmetry in the integrand on the

contours C1 or C2’ that the term involving 8, cancels in (2.23), leaving

4 2

AB 2 . t Y .2

11,20‘;3) ~ e (f: (go+g2t ) exp[A(- 7t t )lat + Ry (B0
1,2
1,2
(4.1)
AB 3.2 v —t4 Y2 2

where R0 (A30) ~e" [ (t -y t)QO(t;a) exp[l(—z-+-—§ t )]dt s

1,2 o -

1,2

and where I1 or I2 denote the integral I(Aig) deformed from Ct to either
of the contours C1 or C2 respectively. 1In terms of H1 and H2’ (4.1) can

be rewritten

2,1/2 g 2,1/
A8, Bo Y°A 2 YA2
Asa) ~ - . .
I 29 ~e [—7—)\1 7 H o, ) + 57 H (5] + Rol Z(A,g)
b
2_ %
where we recall H1 2(C) = | exp[Ct - Z_Jdt . (4.2)
b
c
1,2

In RO we integrate by parts and find that due to vanishing boundary terms

4

N

1 A8 -t 2
Rol 2(>\;g) ~5e (f: 6,859 exp[A(—— + 12— t%)Jae
>

1,2

where Gl(tig) =-§E Qo(tig) . (4.3)
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The integral in (4.3) is of the same form as that in (2.11) except that it
is multiplied by 1/XA and hence is of lower asymptotic order. If we

continue to integrate by parts (N + 1) times we obtain that

1 1
A8 1,2 Yixz) Nog,, H 2(7222) Bint2 -
I a0 ~e s — ] SR 2 = ]+ R,
’ A n=0 A A n=0 A
1 AB -t Y 2
where RN(A;g)rv ;ﬁif e f GN+1(t;g) exp[k(—z—v+-§— t )]dt . (4.4)
C
1,2

In this expansion, the coefficients g, are given recursively by the

formulae
8,y < GL(05) N
) G (V; ) = G (-7;2)
g4n+1 B 2Y
G (Y5 + G (=75 @) - 26 (0;0)
Bint2 = 22 P (4.5)

] _ 2 3_.2 .
Gn(t*g) = 84n + g4n+lt + g4n+2t + (t Y t)Qn(t’g)

d
where Gn+1(t;g il Qn(t[g) . y

Formally, the procedure of repeated integration by parts can be continued

indefinitely to yield the complete asymptotic expansion of I1 Z(A;E).
H]

In an effort to consolidate the relevant equations, we now list the
asymptotic expansions of H, 2(C) from the preceding section. From
2

(3.24) we have directly that for 7 small,



2n 1 2n+1 3
2 E 27w ) 50 g5 E 2 (ot 7) pon
H, (%) = 5= g+ = z
1 2 =0 (2n)! 2 n=0 (2n+1)!
(4.6)
2n 1 2n+1 3
H.(Z) = /fg g 2 P(“+‘Z) C2n _ /fi g 2 P(“+'Z) C2n+1
2 2 n=0 (2n)! 2 n=0 (2n+1)!
Next, when £ * ® we have from (3.12) and (3.18) using (3.20) that
1
(@) ~ Y2 exp(cD) | Hzmi”
H,(Z) ~ exp(cg
Cl 2 n=0 (7n)'2 (1) 4n
(4.7)
1
s P(n+ —J
Y2 i 2 n
H,(Z) ~ } C ———n , in larg(z)]l <X .
2 2CI72 n=p ™ 22n Z;2n A
The functional relations
Hy(g) = 1 H, (%)
(4.8)

Hy(=¢) = 1 H,(2)

also allow us to extend the validity of the expansions in (4.7) to other

regions of the complex Z-plane.

The expansion (4.4) for I1 2(1;39 involves the functions H1 2(C)
bl b
whose asymptotic properties are given above in (4.6) and (4.7). The
advantage of such an expansion in terms of H is that a single formula

(namely (4.4)) yields the smooth transition as Y * 0 when A + ®, That is
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to say, we know that for distinct simple saddle points (i.e., when Y # 0)
the algebraic order of 11,2 should be 0(1%757. Likewise, when all three
saddle points coalesce to form a third order saddle (Y = 0) the algebraic
order is 0(;%7Zj. That this same behavior is exhibited by (4.4) can easily
be shown by examining the leading order behavior of H1,2' After some

manipulation we find the asymptotic formulae

4

1 ) Y
21(5) exp[A(8 + 7]
(4.9)
vZi (1),
L,(A0) ~ 172 , as A > for Y £0
A Y
and
vz F(%—)eABgO
L (A;0) ~
(4.10)
Y2i P(%JeABgO
I.(A;0) ~ , as A > for y =0

in agreement with the heuristic results in the preceeding discussion.
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