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APPLICATION OF PRANDTL'S ACCELERATION POTENTIAL
TO IATTICE THEORY

A: Bo Shieh
I. Imtroduction

The lattice theory has important applications, espécially
to the design of airscrews and turbine blades. The problem of a
stationary lattice in a uniform flow has been treated by several
authors using different methods. Karman and Burgers used the
method of conformal transformation (Ref. 5, p. 91), while
Pistolesi used the method of voftex distribution (Ref. 4). This
article deals with the combined use of conformal transformation
and scceleration potential for the solution of the problem.

In the following treatment, ths basic idea of the
acceleration potential, as it was introduced by L. Prandtl, is
first reviewed, and then shown how it can be applied to the
solution of steady-state two-dimensional problems. The method
is then applied to the determination of the lift and moment of
a stationary lattice in a uniform flow. A new expression for

the moment 1s obtained by this method.
II. The Accelsration Potential

The equation of motion for a non=viscous incompressible

fluid, if the body force is neglected, is given by

Fetop )
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where q, p and p are the velocity, pressure and density of the
fluid respectively. For the acceleration vector 5%— s & scalar
function f can be defined such that

_ 43
Ve =t (2)

Then Eq. (1) becomes

Fvp=-vyp (3)

where ¥ 1s called the acceleration potential (Prandtl, ref.2).
In applications, both ¥ and p can be taken as zero at infinlity,

then Eq. (3) givea

re=cp (4)

Hence there exists a very simple relation between the pressure
field and the acceleration potential.

In the so-called linearized theory where the perturbation
velocity q' of the fluid is assumed to be everywhere small as
compared with the uniform velocity U in the x=-direction, so that

-0
Then, by neglecting higher order terms, Eq. (2) may be written as
ét Ix (3)
The equation of continuity in this case is

v-i’: ) (6)
Taking the divergence on both sides of Eq. (5) gives

vif =0 (7)
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Hence the acceleration potential satisfies the Iaplace's
differential equation for the linearized theory.

IIT. The Method of Acceleration Potential

The method of solving two-dimensional problems by the use of

acceleration potential is to find a complex potential function.
” . . !
F(x+ty) = P (x,4y) +e y(x,y)
’ 7 ! (8)
to satisfy the boundary conditions. In Eq. (8), ¥ 1is the

acceleration potential and Y is the conjugate function of y ,
The two functions ¥ and y satisfy the so-called Cauchy-Riemann

relations:

or 2%
2 x 'Btj

'Ef . v (2)
ay ax )

which give the accelerations of the fluid in the x- and y=
direction respectively It is evident from Eq.(9) that both ¢
and ¥ satisfy the Laplace's differential equation.

To obtain the boundary condition for the complex function
(8), consider a stationary thin airfoil. The equation of the
airfoil can be represented by

¥ = y(x) (10)
Then the vertical velocity of the fluid adjacent to the
airfoil will be

N~ _ 4y
U

dx (11)
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FProm Eq.(9), for steady state:

"d—\t_ _—f (12)

h.

Integrating both sides of Eq.(12) with respect to x and assuming
that both ¥ and v are zero at infinity gives, on the boundary:

' dy

==Jv = -l 7x

(13)

The restriction now imposed on the complex function (8) is that
the imaginary part must satisfy the boundary condition (13}).
In addition, the function must also satisfy the condition at
Z=12 which will be considered later.

IV. The Stationary Lattice

The above method is now applied to the problem of a stationary
lattice in a uniform flow fjeld, as shown in Pig.l, where the
uniform velocity U is at a small inclination « to the lattice.

In treating this problem, the conformal representation of ths
lattice will be first considered.
1. Conformal Representation of the Lattice.

Using the idea of "hydrodynamic analogy" (see Ref. 5, p. 84
and p. 92), a mupping function between a unit circle and a non-
staggered lattice composed of straight airfoils (see Pig.l) can

be constructed ag follows:

)"“’E’}

h
Z=7[L05 +L0jg‘“—

o<kl (14)

where k is the parameter of conformal transformation. In the

expression (14), it is to be noted that for kqﬂu}(— » the term
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I*K 44 positive, while -%—ﬁ— is negative, the negative behavior

y-k K
of the latter term can be eliminated by writing (14), with the

introduction of an unimportant additive constant,; as:

° "" ? s
=;“-[ *L"?.t j o<kl (15)

1
K

» T ///"—-‘\\\\
U ? o
B NP4

Z-P'ane j’—F!ane

Fig. |

On the unit circle ¢-2°, the transformation equation (15),
owing to the many-valued nature of the logarithmic function,

# gives
h 14 2keem d K2
X = - 105 "
an l-2kweg 3+ K
(16)
y = nh n is any Integer.

# Here the value of 2nw has been added only to the imaginary part
L

of Tog i%%-, for the reason that only the exterilor region of the

unit circle l¢]=1 is to be considered.
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which are the equations‘of the boundaries of the non-staggered
lattice composed of straight airfoils. The chord of each airfoil
can be easily found from the first equation of (16) by calculating
the maximum and minimum x-coordinates and by subtracting one from

the other, there results:

¢l p (17)
which may be expressed as
ko= fanh 2= 18)
Por very small k, Eq.(17) can be approximated, by taking only
the first term of the series expansion, as:
C = LLLS (19)

T

It is to be observed that in the expression (19), when k becomes
infinitely small, h will become infinitely large, if ¢ is fixed.
The product hk, however, will remain to be finite and is equal to
—T{TC- - Hence it appears that the Cirst-term approximation for very
small k i3 really the limiting case k— O which corresponds to the

case of a single flat plate.
2. The Complex Potential Punction

The complex potential function for the flow past the none
staggered lattice will be of the form:

Pif = U (imix) P (20)

where 9f+£y' represents the disturbance function:; « is the angle

between the direction of the uniform velocity U and the chord line
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of each airfoil of the lattice, and this angle is assumed to be
small. The conditions which determine the function (19) are the
following:

(a) On the boundary, %:o, ¥ = 0, according to Eq.(13).

gy = V=
(b) Condition at z sit~, when expressed in terms of ¢y, will be

(‘/I'*”-‘F)(S:i_k = finite — O, as k — O

The meaning of the second condition is that the disturbance func-
tion ¥+ J\f' has to be finite at the finite points of the § =plane;
but as k-0, these points approach to infinity, and the problenm
reduces to that of a single flat plate, accordingly ¢ +.y' has to
vanish. ‘

The complex potential function which satisfies the conditions
(a) and (b)) is found to be

2oyt 14 /(zf

. 2 N
+ M = Jmsct ) + —————
prof o= UT(mex) AT T (21)
On the unit circle y;g:s, the real part of (21) is
2 .I-/(L v l-cos g
Py = Ut U (22)

where the subscript b denotes the value of the quantity on the

boundary.
3. Determination of the Lift and Moment
The 1lift is calculated by

L=§pdx (23)
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By substituting (4) and the series expansion of x from (16),

there is obtained:

-__. " k J:nﬂ9 dé 24
L /(fy; T ) (24)
Eq.(24), after substituting §, from (22), becomes

(25)

Ly

(] e k?

14.8 F Y 13

l.d/ /-ca:a)z ¥ “emne deo

[

%8 ynto the

To evaluate the integral in Eq.(25), expand """ )
following series:
w ' v LN bl
Slﬁhl - ('l)”" J = L CM;G + _(.:...:.’._}_(.-"-—3—) 509‘/0
Sem B
LS IR a-l Bt
(IO s ) by (1) * (2¢0c8) }
L
where n 1s odd.
Then integrating gives
. ‘_I
n ) R S h@ 2z “a I 7
) 4 : de = Tk 1w A (26)
/(l M“)ngl’;' Sig 8 Azl de.
[+
® ¥,
L (a2t} '3/' _il_
where U, = I- E';*" I ¥ o2
te to n terms.

Substituting (26) into (25), the result is
I

nel 3

4/:/._..-11« z k (—f)

which can be simplified to
b8
/= wphk n
I+ &

(27)
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if the 1ift 1s expressed in the form:

P

Zue (28)
2

L=C‘_

Then the 1lift coefficient is given by

-g.ﬁ_l‘._—-x (29)

€= ¥ 1+ k*
which, in view of (18), may be expressed as
4 ul2
(= 4g~ lankd (30)
The moment is calculated by

= § pyxdx (31)

By substituting (4) and the series expansion of x from (16), there

is obtained:

T ‘A; o oo 2 men=i) - )
M:// ('fﬁ){-%’é'éi k ~— cor (1m-1)6 Sin (rn-1) 0} ds (32)
.

Usaing the identity:
cos(2m=1)8 sin(2n-1)0 = %{-sin2(m—n)9fsin2(m+n-l)9]

the expression (32) can be written in the form:

By T o
M:if—; fy 5 (o stmimd dé (33)
™ ‘L h:l,‘,--
P mppasa o mianl
A
S
where (= ”Z ‘;:T ”_Z, 'f(—T min-]
LR X = %,

Bq.(33), after introducing }fb from (22), becomes

T

1 L -+ 5,},»:0
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The integral in Eq.(34) can be evaluated by expanding i?f;- into

the following series:

' 2
Sin 218 - l")% ¢ mcos8 - ._':.'..{:_.-_‘.'—) 50439
1w Li

v e B4l mel
4 h(h.‘;g_l»)(h-"f) “:!’a - e d (_,) (l Y3 0} j
¢
where m 1s sven.

Then integrating gives

w Y Ilh"a
/ (1- usé} 2 (o =28 Y /0 =T Z»f [I) m (25)
A e e ==
| omim=2) 3
where Vaszsms- 3 ¢ 2
'Y kN
h"m—l)("’ ‘f)_{._i.,--- tom terms,
5 6 ¢ <

Substituting (35) into (34), the result is

.B-+I
ke S T Y
m 1+k° mzs 4
which can be simplified to
' z/’/,ljd/ i+ k" :
= - 36
M 4 TR (36)
If the moment 1s expreassed in the form:
P 3 2
M= C —-Uc (37)
Then the moment coefficient is given by
o(/ I+k
== 3 TTh (38)

C:--——:c(/ymz—" (39)
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It is interesting to note that in the limiting case k-0, which
corresponds to the case of a single flat plate; the expressions (29)

and (38), in view of (19), are reduced respectively to

c,= 2T« (40)
T
CM= --.-2-0( (41)

which are the well-known results for a flat-plate airfoil.

V. Results

The exprsssions for the 1lift and moment are

2

T U e (28)

1
€3
Ni=p

c Lo’ (37)

L M

]

~ o

where C,_ and C,, are given by Eqs.(30) and (39)

b T ,

C = f ¢ tand 5 (30)
4h- we

Cw-”_c.:aj?u«[zh (39)

It is better to re-writse Eqs.{(30) and (39) as

c, = 2w (42)
c, = -_273.)\« (43)

where o and A are interference factors which are given by

s 22 tanl T (44)
¢ 2h
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l'l
)\:}% /760’&[—};— (45)

The relations (44) and (45) may be represented in graphical forms
by plotting ¢ and A sagainst the chord-gap ratio ﬁ-, 88 shown
in PFig.2. Prom the figure, it is sesen that as the chord-gap
ratioi— increases, the values of 7 and » decrease, that is,

the Interference effect increases.
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08 :\\\
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List of Symbols

gap betwesen airfolls of the lattice
chord of each airfoll of the lattics
parameter of conformal transformation

Te

kstmm'4h

O<k<l

1
kt e
Bk )
s+ /s =1
-b tanh—-a- Xeca S
h 2

imaginary unit, used in connection with the complex
potential function

imaginary wmit, used In connection with the harmonic
functions of time

amplitude of the oscillation of each airfoil of the
lattice

time, also used as the variable of integration
velocity

acceleration

uniform velocity in the x-direction

L o = 11rt

(o}
I'uf'
M_ e = moment

and ns = quasi-steady 1lift and moment respectively

-

a function, but not of z, as given by Eq.(68)

and Q = functions of k and s, as defined by Rys.(54)

and (51) respectively
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q.
1]

b

Note ¢

and G,= functions of b and jv, as defined by Eqs.(74)
and (76) respectively

G,

and I, = real and imaginery parts of -
Ga + Gz

[}

end P functions of b and j¥, as defined by Eqs.(80)

and (81} respecti‘vely

density of fluid

acceleration potential, also used as the phase angle
conjugate functiom of

circular frequency of the oscillation

-:Z—/‘-: tanh)./u
'
— 10
Iy gcoshz/,.
i @
4h :
[A N4
=7 =-reduced - frequency
wa _ ¥
27y I

The subscript o has the meaning, such as

t

J'u)f

R VIR

The subscript b denotes the value of & quantity

on the boundary.
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HON=-STATIONARY IATTICE THEORY

A. H. Shish

I. Introduction

The problem of non-stationary lattice composed of straight
airfoils in a uniform flow is treated by the combined use of
conformal transformation and acceleration potential. The given
conditions in ths physical z=-plane are first transformed to
those in the ¥ =-plane (the transformed plane). Then the complex
potential function is expressed directly in the ¥ =plane in terms
of the boundary conditions in this plane. This procédure is quite
similar to the expressing of the complex velocity directly in
terms of ¢ (see Ref. 3), and it greatly simplifies the sclution
of certain airfoil problems.

In the following treatment, the method of acceleration
potential used to solve two-dimensional problems is firat
introduced. The method is then applied to the determination
of the lift and moment of a non=stationary lattice in a uniform
flows. The results obtained.involve Gamma-functions together
with hypergeometric functions of the complex variable. For
numerical calculation, the expressions for the 1ift and moment
are reduced to simpler forms (without approximation). The
calculated results are represented graphically by curves with
different valuss of chord=gap ratio i& and the reduced frequency
Y . It 1is found that in order to keep the amplitudes of the
periodic 1ift and moment at their lowest valuses, the optimum
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conditions are: -;- 1.5 and Y= 0.5 .« PFollowing this,

the physical interpretation of the 1ift and moment equations
is given. The equations lor calculating the amplitudes of the
periodic 1lift and moment at any values of -%- and ¥ are

finally summarized.
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II. The Method of Accelesration Potential

In the steady flow of a non-viscous incompressible fluid,
if the body force 1is neglected, it can be shown that there
exists a very simple relation between the pressure field and

the acceleration potential

Le=-p (1)

where p and p are the pressure and density of the fluid
respectively, and ¥ Iis the accoleration potemntial. In the
so-called linearized theory where the perturbation velocity
of the fluld is assumed to be everywhere small as compared
with the uniform velocity U , the acceleration potential
satisfles the Laplace's differential equation, v'y=o0.

The method of acceleration potential used to solve two =

dimensional problems is to find a complex potential function
P(x+1y) = ¢(x,5) + Ly(x,7) (2)

to satisfy the boundary condition. In Eq.(2), ¥ 1is the
acceleration potential and ¥ is the conjugate function of 7 .
The two functions ¥ and ¥ satisfy the so-called

Cauchy =— Riemann relations:

¥ 0¥
Ix 2y
y_‘éi (5)
3y ~  dx

which give the accelsrations in the x- and y-direction respec-

tively. It is evident from (3) that both ¢y and ¥ satisfy the
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faplaceis differential equation.

To obtain the boundary condition for the complex function
(2), consider a non-stationary thin airfoil. The equation of
the airfoil may be represented by

7= y(x,*t) (4)
then the vertical velocity and vertical acceleration of the

fluid adjacent to the airfoil will be

.y 2y
‘/b }?*Uax (5)

2V, 23
a6=°—t— +U~3—; (6)

respectively, where the subscript b denotes the value on the
boundary. The restrictions imposed on the complex function
{2) may now be stated as follows: The complex function (2)
must satisfy the following three conditions:

(a) On the boundary,

3
ST (")
{b} In the fluid,
LS AL
RIS TP P (8)

where v 1s the velocity of the fluid which has to satisfy
the condition of continuity at the edge of the airfoil.
This corresponds to the so-called "Kutta-Joukowski condition®

21
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in the classical theory that the velocity is to be finite at
the trailing edge.
(¢) The condition at 2= e , which will be considered

later,
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IIT. The Nén-Stationary Lattice

The above method is now applied to the problem of & non =
stationary lattice in a uniform flow field, as shown in Fig.l,
where the fluid is floﬁing at & uniform velocity U to the
lattice. 1In treating this problem, the conformal representa-
tion of the lattice will be first considered.

1. Conformal Representation of the Lattice

The equation for the conformal transformation of the non =

staggered lattice composed of straight airfoils to a unit

circle (see Fig.l) may be expressed as

) {[‘j-;w-k + Log 7+5'} o <k<] (9)
K

~On the unit circle, {:.e‘a , the transformation equation (9),

owing to the many-valued nature of the logarithmic function,*

gives .
b/ I+ 2k 8 +k
Xz — 40§ - 2
2N 4 J-2Kkwn @ +k l
(10)
Y= nh n is any integer [

which are the equations of the boundaries of the non-staggered
lattice composed of straight airfoils. The chord of each

airfoil can be easily found from the first equation of (10)

# Here the value of 2nw has been added only to the imaginary
)

&

part of LOg_{-j% , for the reason that only the exterior
K

region of the unit circle [%|=1 13 to be considered.

23
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by calculating the maximum and minimum X-coordinates and by

subtracting one from the other. There results:

k 1+ k :
c:f—-/zr;-’—:—; (11)
which may be expressed as
e
= 12
k tanh o (12)

y
f I
h
U # 0 x ¢
1 c ] -i Sy -k 0—/;/H ﬁ
z-plane ¥-plane
Fig. |
On colving Eq.(10) for ¥ s there 1s obtained
v mZ / 2 2 14 -
.= btanh—h- t b tanh (—h— ) - 1 (13}
where b= k(k+ -;1:-) (14)

It 1s to be observed thaet the Inverse function (13) is =
two~valued function of z . The sign before the radical must

be chosen carefully. In later developments, the region
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outside the unit circle [Y[= 1 and along the negative real
axis will be considered. For this case, y=‘2;', the proper

expression to be used is

WX 2 3, WX (4]
= -/t (EX) . (15)

The Complex Potential Punction
Iet the oscillation of each airfoll of the lattice be

a harmonic function of time; thus
y:yoe (16)

where Yo and w are the amplitude and circular frequency of the
oscillation respectively. Then the velocity and acceleration
of the fluid ad jacent to each airfoil will be

tut
Joyge’” (17)

b

_;uf

1
e (18)

®
o
"

Substlituting (18) into (7) and integrating gives, on the lattice

boundary, the following expression for ¥ :

st
¥, = (o x + a)e’" (19)

where A is a function which will be determined later.
‘wl

Iet hﬂ/c“!“

Then Eq.(19) gives

2
‘)“06= w yOX'PA (20)
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Introducing the series expansion of x from (10) into (20), the

expression becomess

Lae]

k
2h-|

2h ey |
VAL = u‘yo E, cos(2n-1)6 + A (21)

which gives the condition on the boundary of the unit circle in
the Y =planse. The more complicated problem of fluid flow in the
physical z-plane has now been reduced to a much simpler one in
the 4 -plane with the condition (21) together with the condition
at j‘:i-%— which corresponds to z=te according to the transfor-
mation equation (9).

The next step 1s to find a complex potential function of the

form:
Paiyz - R ------—-kw-i cos(2n-1)8 +A (Y +:¥) (22)
® o~ x Yo 2= ! !

azi
where ¥ +i% represents the disturbance function which has to
gatisfy the following two conditions:

(a) {'%)m:' =1, according to Eq.(21) l
(23)

L

(b} l){u')f)j_.t = finite = 0, as k= 0 (
Tk

The meaning of the second condition is that the disturbance
function ¥+{¥ has to be finite at the finite points of the
¥ -plane; but as k -+ 0O, these points approach to infinity,
and the problem reduces to that of a single flat plates
accordingly the disturbance function ¥ +.¥ has to vanish.
One more remark which should be made here is that the mers
points ]: to0 on the ¢ -plane have nothing to do with the

boundary-condition consideration, as there arse no corresponding

26
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points on the physical z-plane.
The complex potential function which satisfiss the conditions
(25) 1is found to be

“‘ ) k“"' N 144 1+ k"
Beddo s 79 2 Ty T ey (24)

1./1 1N k ° . ]
fo=7“+2 535 dom (rne1) 6 3 ATTE sin (25)

Before going to the determination of the function A, it is
expedient to consider the 1ift and moment first. -

3¢ Determination of the Lift and Moment
The 1lift is of the form:
st

L= Loe (26)

where L, is given by
L= fﬁd dx (27)

By substituting (1) and the series expansion of x from
(10), there is obtained:

\
/( /ofo‘) --—z k't sin(zn-l)e/de (28)

where ¥,; 1is given by Eq.(25). Since the integrand is an
even function; Eq.(28), after substituting %y Trom (25),

becomes
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;(m.u-l)

_ S'f/lt s [am- éfmllnvl)ﬂlfa \‘
s S W ,E,z““”z.-, ) |
¢ (29)
+_‘ifA"k" /” /- cos 8 Zku..ma’o
m 1+ k* S @ nzd,}-
8
The first integral in (29) is readily evaluated:
7 s{men=i) .
s f k sin (vme1) 8 Sim (1n-] 6 0
=y a2l 1 e
’ (30)
w2 klhnd/ T st kY {
- 7 - 2 —= Ay —— z
2 p=g in-| ¥ ]’ k /
To evaluate the second integral in (29), expand J?ﬁ:
into the following series:
&1 % "-i"}(r‘i"-,,"
smad g [ A e e 2 ¥y
‘-,ha L1 Lg
LT PSS N Py & et ad )
LRI )~ )c é -t 1) * (unﬁ) ;
I !
when n is odd.
Then integrating gives
mel
va [ad L] -5 .
j (1 cod) 5_- PLELLOW P Skt o (31)
;,.8
PYYN I LEEN TN
[]
where
AT RN LTk bt WA B
" > o2 JLS $ 2

4 .- to n terms.

4



Substituting (30) and (31) into (29), the result 1is

1k 1+ &Y.
L‘ s —;r— wéj"]? ,_kl.

-k k" (ﬁ) U;
+¢f/'4 )+ k* Z./J

which can be simplified to

. _ 2Ph 14 k* Yphk A
L-—ﬂ"'"'*)yo log I‘k".f e

which, in view of (12), may be expressed as

2Ph
L°=

whére A remains to be determined.

The moment is also of the form:z

where M, is given by

=)6‘/:°£xa/x

By substituting (1) and the series expansion of x from (10)

into (35), there is obtained:

4/," s o s{mena)

. .‘
or [ettal [ $E 25 A el st

Using the 1dentity:

cos(2m=-1)4 sin(2n-1)0= ﬁ[-smz (m-n)6+sin 2 (min-1) oj

the expresgsion (36) can be written in the form:

-"PA/ 9’0‘(. . s:;zma(/g

where
- ku' ,_u L/n«rln-l} k;[»u»h-//‘ |
R
L= 1a-] oy LS W Lh-l

3
"
-

~=fn lo h—=S +2 t nh——-
Yo g cO8 o5 th a o

Page

(32)

(33)

(34)

(35)

(36)

(37)
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and Y, 1is given by Eq. (25). Since the integrand is an even
function, Eq. (37), after introducing ¥, from (25), becomes

FY- 2]

H
M, =‘£r;Lf .u‘j, / J L sin(20-1) 8 )_ Cip Sinimg dé

ITTER LS Mz

(38)
I— Il-ha
L L / (1-co16) E o g ¥
Wk
™ ot w880 = L kmrur—). 3
]
k e e
where Cp. s Z A= * Z ( A= me h=-1 /
bz, ¥ het. ¥

The first integral in (38) is zero because of the orthogonality

of the trigcmcmefrie functions. The second integral in (38)

sinmé

s1nz into the following

can be evaluated by expanding

series:

i

. £ i [
bem8 i) {"‘"o SRlmhi)

Sinb K]

. - = 14
+ "'("t"“"'"’)Lo:rs--"*l'!)‘4‘(1“‘9) Z
3 !

when m is even.
~Then integrating gives

7 Swmb = -?*l
j (,__(‘osa Z C -—-;—--—‘ 9 = = Z C" ('l) ) V“'f (39)
Fo 1'/' 2 "ltlll/-‘
Hhere Voot 3
~T I T8 ¥ 2

R mim=t(m g ¢

o

n; s

- to m terms,

= {w
LS

Substituting (39) into (38), the result is

% 1 =" '" +1
M o= ___‘*:" kS )Ty
LERA XY

¢ 1+k"

which can be simplified to



which, in view of (12), may be expressed as

v . _ _2FPn"
Mo- s

c

4 log ooshg

where A remalns to be determined.

4. Dotermination of the Punction A.

h
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(40)

(41)

The function A will be determined by the condition (8).

By substituting

jot

s

into (8) and after cancelling out the term e

there is obtained:

¥ _ -,
- 77 =) Wy, +U
B e e

] Ve ;I__ =

or £ (g‘x- + U ‘fn)
Integrating the above by using the
P finits at
'OSJUJH. at

one cbtains:
_,'m. -

.-J'wyvﬂ v "'é/ 4

- B

LIEN

where Y, 1is given by Eq. (24)

Write \/:g A1,€4y1

‘Wt

Jw

vV, 2

conditions-

X

e
3
®

= OO

c
X = - e
2

o
v

&LL
x|

dx

(42)

(43)
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Then Eq. (43) becomes
e LE o gux
) .ﬁ = l.e v {Aﬁ+ﬁ)dx '
TR U £ dx  dx (44)
where
i
. In b I+k '{ (45)
! /+k‘ /+3/
‘ ol va-f .
by + e —
s 7 s e 2 T g (46)

Notice that there is a singularity at Y= =1 for % and in order
to make the first integral in (48) integrable, it is convenient
to integrate this by parts, using the following conditions:

¥ = finite at X = = o0
*=‘1 at x=--§-
<
‘Thus . .
- Juwx A S PLL
Y S -U U
[JU#,/“J‘ RS (47)
X . {‘u

By substituting (47) into (44) and after transposing,
there is obtained:

. LA
Jugue M- [ e T SRy
A= L i (48)
et L
£ Y —iu— £ v )‘,dx

The integrals in Eq. (48) will now be considered.

On the negative real axis, Y=r e , Eq. (45) gives

32



2 I-klr

R

17 g3kt ger

Now, from Eq. (15)

r=st/st=|

X c
e = an CRRTECTLT L
where 8 b tanh X< >

After some calculation, ¥ can be expressed as

Yo=1-2
where
Q- -k s 1=kt 1
1+ kt S 1+ k" Sereg
L& Jux __J.a.“.’_‘ -£ _._.._J."“‘
Then 3 iTT- . U 10 2 v J
£ Vdx = =— 2 - 2 Q dx
¢ (]
J
- ol -0

Similarly, from Eq.(46), with § = ra'’

ey
Y o=- byt f L. SR
'-.‘ - ‘ T 7. et 2h- }'m-l

where
-k s
/: N 7+ k" I
Then c .‘Jx J'w‘ -£ !'i.df
AT a4 - TIT [ e Y opdx
2 Y LD dx = Wy U ol
x T /

Substituting (52) and (55) into (48) gives
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(49)

(50)

(51)

(52)

(53)

(54)

(55)
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PR
/‘ e Y pPdx
A Wy, U Je (56)
J‘ af jU’
j 2 Y @ax

Using the following substitutions:

§= =D tanh-:-x-
b

(57)

M
¥

s

wjo

7]

L}
b=t

ettt e

A’J‘f.U /‘-‘;
Az —im — ; 3 (58)

where P and Q are giveh by BEqs. (54) and (51) respectively.
Before proceeding further, it is advisable here to examine

the limiting case k = 0.

5. The Limiting Case k = 0O
Consider the limiting case k- 0O which corresponds to a

single flat plate.
For k<<1l, Eq<(1ll) can be approximated, by taking only the first

term of the series expansion, as

4hk (59)




Page 35

‘and for -3-«.1 o

b

1+£ 3
log '_l’ = T (60)
b
1
where b= (k4 )

Substituting (60) Into (58) gives

hk
bW 207 .
/ 2 U wli+k) /" ’/:
@ I- =
as 280 2 . s (61)
J 6 . Jw 34k
j o U Tk & _4s
[ /-i—:

For k == O

s b =» o

s Bge(6l), in virtue of (59), becomes

oo ,.}_‘:-‘t
P T

S ds
. . J /.£ Vs 62
A.—.-jU7. /w _.L.}ifg / ( )
a 7 /3t

£-1

which can be expressed in terms of the modified Bessel
funnctions of the second kind, thus

) . K,‘)V)
A= =)Wy U

(63)
Kotj¥) 4 K (j9)

where J o we
]
) is called the reduced frequency.

For k =» O, the lift and moment expressions (33) and (41)
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become respectively

,L°=l'.ﬁ_c.u)7 «e-ﬁl"cA (64)
Mg =~ 7L (65)

The results obtained, as given by Egqs. (63), (64) and (65) check
with those obtained by Karman and Sears {Ref <6}«

6. Evaluation of the Integrals
The integrals in Eq.(58) will now be evaluated. Using the

notations:

. S ). Le L 6
“* “Zn 20 Ly (66)

Then Eq.(61) becomes

AJJ)VY P a5
&y, U / *A s P
A= j% ! - (67)
457 a d
$
[ ( 5‘3) LI_JL

By substituting (51) and (54) into (67), ome obtains:

G,
= -Jh‘yoU G, +Gl (68)
where
bts 2 ds
/( T (69)
) Y
- b+g ! l ds
G=‘/ (5] s (701

!

These Integrals (69) and (70) can be evaluated by means of
the following substitutions:



be-sg_ 1 b=l \
b -8 € b=l

b(b+l)=b(b=1)%
belé(b=-1)t &

. -2b(b*-1)dt
482 To+T+ (b-1)t]"

Page

(71)

Pirst, consider the integral (69). By substituting (71)

‘into (69) and after reducing, there is obtained:

. ] boi
v ~ale
b-1 \/ -i4) ¥ /
G.SI__L,;_.'_( *") /t J / b+t St
) 3 PR T |
A =
Introducing the series expansion
-l o A
bt b7 x 13 (22-1) ( /,_,) "
[!-(64-‘) J n:o 2.y i oy
into (75)) then
. Creiy \
Y AVA N L L N SRl O M
T e——— s b-! / :
afig +I) reo 004 an ie1/ / 'T;f;%r‘ &
) /
- _,__'__—(_f_:_'_ /4/!:. 13ee (amet) 1ot M /' t""./{ y |
l/’;:—_. b'f’) rso Z"f"' ) b‘f') /I—:—t— }

Using the formulas:

(72)

37
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/n tﬁ-’jf '[{ r(-i‘)r[mflfj’/)
o Vi-t | [(m+4)¥)
123+ {Lhat) ”1) . Fi{a+1)

29 1k 1 i)

Eq.(75) can thus be expressed in terms of the Gamma-functions.

Ki /L-c)}.{f r(n-a--z'-j,"’(nij) ; L-I)“‘ E
\ . }

=6 (7 T (nedejr) b | (74)

| b\ E T ) P Uakia)Y) g
( ) 4%0 E r("+£ B .‘/) ( b"’i; }
I

This can also be expressed in terms of the hypergeometric

functions (see Ref. 7, p.288).

., .
-"'L_' "l":—l'\] 8 "L"'} f'/“lv Y, L4t (é:‘l'l )
Gl-z/f:—,(-fll (2 )’ AR Jo g /I ?
. \ (75)
] ! b= ,H’JIV i _l Lo By ‘é:’, |
g ) P2 s R
where L ) ] I‘(%)f‘/.f)
' 8(zJv) = "'r“'—l’(:,*j.r"’)

The integral (70) can be evaluated in a similar manner by
using the substitutions (71)}. The result is

A

/ oot JY e r(h-f—z/-)]"(n-/-/'r) f b1
Yot (T;T) szo L0 T (nttt)r) \ 641/

-/

G

If)Y: r/hf{)r{"‘fl'ij) Vb_l \“'

aLsa Er(”'f"z’--#).)') b'i’l/ J

L= (%)

1b /by !

or sxpressed as:
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§-1t . / LJ
25;“— (6+|) B(%')f) F_(? J7 lfjf b+|)

, (77)
i b1t l*j{ P i B F R b1 ,.l.‘ »
i —— ———— "‘r“’ ¥ - Y,' - \4 —e—— !
! b/ ( b+1) 8 (= ) F ( A A (b+l/ /
7. Pormulas for the Lift and Moment
The formulas for the 1ift and moment are now summarized
below:
jot
L = tbe (26)
jwt
H = Moe : (34)
2Pn
LO = ——;r_w Yo log coshz/u-l-th.ﬂ.tanhz/u (33)
2fh
o= = 22 4 10gcosniu (41)
A= =0y U g (68)
= = Wy
179" "¢ sq,

where G, and G, are given by (74) and (76), or by (75) and (77)

respectively.



Page 40

V. Numerical Calculation

Lot

G,

R+ 1, TN (78)

Substituting (74) and (76) into (78) and after cancelling out
the term

o b=t \]Y rd)riy)
7 51 e

gives the following expression:

) 14B-F (
R +;1 79)
2’ 14E-P~ (1+E+F)
where met)
oo Limel) 1 -
2 - (ntd)(neyv)
E= I (4 = (80)
mz o hso (nfl)/h-fzfjf)
@, w amd] l‘*%)(”fj)/)
FeIZ7lmm) T miimtor (s1)
o m+z +1 nzo (nﬁ)/hfz J

The next step is to substitute Ra-}-j I, into the 1ift and

moment equations and then to express them in non-dimensional

forms. This is done as follows:

By substituting (68}, (78)
into (33,

(43) and then into (28), (34), one obtains:

[:}ﬂwj,/7

e

.t ? (82)
b Ratjls) Tanhsp | 2 )
-1f ({}uj.( oty Za fal!
M=l lf‘
L

J 9o (Ra+ ) da /7cr/{z/~1:tlw

(83)
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In the stationary lattice theory, the 1lift and moment have been

shown to be

L= 2/hU« tanh:u (84)
_ 2fn" .

M = = —~== Ux logcoshix . (85)

. J“‘”‘t %
Now replace U« by =)y 8 in the above equations

) )alf

I‘s = -2thJuJyoe tanh zm (86)

T 'uf

2fh - J

Mg = - Ujuy,e logcosh 2 ph (87)

where L, end M, may be called the quasi-steady lift and
moment respectively.

Introducing the notations:

7 =

tanh 2 g (88)

A=

1
T logcosh z/u {89)

which have been called the interference factors in the
stationary lattice theory.
Then Eqe.(82) and (83) can be expressed in the foliowing

non-dimensional forms:

. "
Here the negative sign means that when Yy = juyoejw is in

the upward direction, the psrturbation velocity U= is downward.



A 2yye k) of
R (It A = | e
8 s
L_ . }"M
ALNERE A
Ll - /p? 2042
where ‘.-fj '/Ra* (It iq.")

M L 2
N -/Ra-l' Ia

a
A
) IR+ i-;_—\)
¢, = tan
Ry
I
-1 a
Y = tan
H R
a

Y, and ¥4 are the phase angles relative to the directions

of L, and M, respectively.

The calculation were performed at various values -E— and Y .

The results of calculation are plotted in Figs. 2-5.
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(90)

(1)

(92)

(93)

(94)

(95)
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V. Discussion of Results

Since complex quantities may be represented graphically
by points in a plane or by vectors drawn from the origin to
these points, in Figs. 2 and 3 are plotted the vector diagrams

which give the complete information about the vectors % and

s
M L M -
T with their varying magnitudes h.;‘ and il and vary

ing phase angles ¥, and ¢, at different values of -9h- and ¥ .
In Figs. 4 and 5 are plotted the dlagrams which give the values
of —%—‘ and }—M-‘ at different values of — and Y . From
S Mg h
Fig.5, 1t 1s seen that fo -9]5--- 1.5, the value af --%%—l
. s

practically constant at the lowest value 0.5 for all values of

remains

Y ; while from Fig. 4, it is seen that for V= 0.5, the value

of —%—-'l remeins practically constant at the approximate
)

lowest value 0.60 for all valuss of -9h—.

For discussion of the above results, write Egqs. (86) and

(87) in the following forms:

Ly= o, of (08174 (96)
M= | My o) 8 Tin) (97)
where JL)= T!ﬁUlc--gf 2Ty (98)
[1,)= rﬁuzcl.—:’!-%xV (99)
f - tan -« - --—’2'- (100)

f,,=tan = = -g. (101)
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Then Egs. (90) and (91) can be written as

‘ w

£e i ing) o (8T (102)
. T

R AL SICTAA (103)

it has been seen that for a fixed value of {%e 1.5, the lowest

valuss <of L and |_M_| occur at a low value of V=0.5 .
Tl Mgl

At this low value of ¥ -, it is evident from Eqs. (98) and (99)
that for -;-;- fixed, the values of |Lg| and |Mg] will also be
low. Thus it may be concluded that the lowest amplitudes of
L and M occur approximately at €E==1.5 and V=0.5 . In
practical applications, the amplitudes of the periodic 1lift
and moment € and M should be kept at their lowest values.

Hence

may be considered as the optimum conditions.

At these conditions,

L.

‘T;l" 0.60 (105)
M|

El = 0,50 (106)
|| = O.415mpT e 2 (107)

|Mg| = 0.150mg " 2 (108)
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The next discussion is to give the physical meaning to the
two terms in Eq.(82) 1In Eq.(82), the 1ift may be conasidered as
consisting of two parts: A

wt

k3
2Lh. 'y 10gcoshiue’ (109)

T

L,= (

T,= -[2fh)'uy°(na+)‘ I) tanhz/t}ejwt (110)
It should be noted here that the two terms L, and L, correspond
to the two terms in the complex potential expression (24). The
physical meaning of L, and T, may now be stated as follows: the
1ift L, is produced due to the reaction of the accelerated
messes, while the 1ift L, is produced due to the circulation
about each airfoll of the lattice. The 1lift L, which may be
called the apparent-mass 1ift, acts through the center of each
airfoil, while the 1lift L, produces the moment about the center
of each airfoil, and its line of action can be obtained from
Eqs. (83) and (110).

- S .S
M 1
For k = O, xz—rz':-TG (112)

This result checks again with that obtained by Karman and
Sears (Ref.8).



VI. Summary of Equations
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The equations for calculating the amplitudes of the periodic

1ift and moment at any values of -ﬁ- and Y are now summarized

below:

EARC

]
"

=
i

' @
i) el o/ &

1L 1. [g I,y
[/ Byt (I, + S2V)

1+B=F
1+E-F-1§(1+g+p)

mzo bl K20 ("*H/(”‘fi"f/"’)

:0 _ ndl m L +.r
Pos 3 »..ul (5 I) ' (ntd)(n+, ).

m=g t3 ol Azo (nfl}lh*:,f"jy)

(102)

(103)

(92)

(93)

(98)
(99)

(79)

(80)

(81)

(14)

(12)
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4h

| .
= === tanh 2
o - a

i
= == ]oOg cosh 2
A T g 4

We
Y 20
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(88)

(89)

(66)
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