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ABSTRACT 

Far away from an electromagnetic source the normal Doppler 

shifts in frequency occur - a red shift for receding and a blue shift 

for approaching. As indicated by previous work with an infinitesimal 

dipole, different frequency shifts occur when the source and observer 

move closer together, into the near-zone. These "near-zone Doppler 

effects" are investigated for general sources and subsequently two 

specific examples are presented. 

The general results show that near-zone shifts are similar to far­

zone shifts, but the local phase velocity must be used, i.e. 

w' ~ w(l + ~vv ). In the far zone the phase velocity is the speed of 
- ph 

light; in the near zone it differs. Fundamentally, the distance 

between surfaces of constant phase in the near zone is changed. The 

surfaces of constant phase for the waves are no longer spherical, but 

more ellipsoidal or spheroidal, so that a moving observer sees a 

different frequency shift. 

Two specific examples are presented to indicate the actual 

magnitude of near-zone effects. The examples include a prolate 

spheroidal antenna and a circular aperture. 

Once the magnitude of the effects is determined, the measurability 

of near-zone Doppler effects is discussed. The investigation 

concentrates on Fresnel zone effects due to the rneas~rernent problem. 

Finally, it is shown that for an electrically large wire 

antenna (the spheroidal example} near-zone Doppler effects are 

measurable. 
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INTRODUCTION 

A red shift when receding, a blue shift when approaching - such 

are the well-known Doppler shifts or Doppler effects IlJ on 

electromagnetic radiation in free-space d~e to relative motion of the 

source and observer. Interestingly, these well-known shifts do not 

always occur as expected. Frank [2] and K. S. H. Lee I3J have shown 

that in some dispersive media an "inverse noppler effect" can occur 

where a red shift is observed when approaching. Papas, Engheta, and 

Mickelson [4] have shown that the near-zone field of a free-space 

dipole also presents similar inverse shifts. In addition, it was shown 

that the near-zone effects could provide range and polarization infor­

mation, as well as velocity, by measuring the various field components 

separately. The purpose of this dissertation is to further investigate 

these effects. 

This investigation, including the general discussion of measur­

ability, provides insight into the practical application of these 

results. Maxwell's equations I5] will be used to show that many sources 

have near-zone Doppler effects which are not identical to far field 

effects. Some will be shown simply to go from a far field blue shift 

through zero to a far field red shift. Others will be shown to have 

"inverse" effects in the near-zone. Fields of some specific antennas 

that can be computed exactly or with accurate near-zone approximations 

will be used to show the general existence and spatial extent of these 

effects. 
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The spatial extent relates to the rneasurability or practical applica­

tion of the results. A detailed description of the problems involved 

in measuring the effects will help point out the source features 

required for producing measurable results. 

The various chapters of this dissertation will describe the 

investigation of the near-zone and inverse Doppler effects. Chapter 1 

presents general results applicable to any source, (derived directly 

from the covariance of Maxwell's equations under Lorentz transformation). 

Chapter 2 reviews the results of the dipole and goes on to present 

results for a prolate spheroidal antenna and a circular aperture. 

Chapter 3 discusses the measurability of the effects and implications 

of the results of Chapters 1 and 2. This discussion leads to an 

example of a source with measurable effects. Chapter 4 provides a 

final summary and conclusions of this work. 
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CHAPTER 1. GENERAL BACKGROUND AND RESULTS 

Many near .. zone ca lcul at ions have been made in the past I6J, but 

the basic purpose was to obtain amplitude information, usually to 

infer far-zone gain patterns from near-zone measurements. The near­

zone Doppler effects, in contrast, are derived from the phase of the 

fields. We can, however, apply much of the same nomenclature and many 

of the analytic or calculation techniques used in this previous work 

to the phase problem. 

The theory applicable to the near-zone Doppler effects involves 

Lorentz transformations and appropriate approximations to the field 

equations. The phase of the transformed field components will be used 

to formulate a frequency shift function encompassing the near-zone 

Doppler shift. A discussion of general near-zone approximations based 

on previous work will indicate methods to be used in the investigation 

of our phase problem. The general background material of this chapter 

will not only provide a common framework for discussion of the specific 

examples of the next chapter, but will also indicate the specific types 

of antennas (or sources) to consider in those examples. 

Now, back to the Lorentz transformations •.. Consider the 

inertial frames of tbe source and observer. Let K be the source frame, 

K' be the observer frame, and v be the relative velocity of K' with 

respect to K. Also, let the coordinate frames be similarly oriented and 

coincident at t = t' = 0 as shown in Figure l. The field equations in 

the observer frame are then I7J: 
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Figure 1 Source and Observer Reference Frames 

K' 
z' 

K is the source frame (0 is the origin) 

-1 r 

K1 is the observer frame (O' is the origin) 
v is the relative velocity 
P is the point of observation (fixed in K') 

r is the source vector to P 

• -, - • - I A - v A for t > 0 
r'is the observer vector top {" 
lfo te . If r - 0. 1 • e . P - 0 , r - _ v for t < 0 

where r, v are unit vectors along r, v respectively. 
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E' = y(E + s x cB) + ( 1-y) I . s 8 
sz 

cB' = y(cB-8xI) + (1-y) cs· Ss 
132 

( l ) 

(2) 

where I, Bare the electric and magnetic fields of the source, sis 

the normalized relative velocity (i.e. i3 = v/c, where c is the speed 

of light), and y E (1 - 82 )-l/2. The coordinate transformations may 

similarly be written I7]: 

r-· s r = r' + yS ct I + (y-1 ) __ ._ 8 
82 

Ct : "'( (Ct I + r' • s) 

( 3) 

(4) 

where the equations are for the source frame coordinates in terms of 

those of the observer. This will be useful later. We will return to 

these equations during the derivation of the Doppler effect. 

The field function important for the Doppler effect is, as already 

mentioned, the phase, or more precisely, the frequency. The frequency 

will be defined here as a time derivative of the phase (i.e. w' = - ~t'~). 

The pbase ¢ must now be determined so that the Doppler effect may be 

investigated. 

In the observer frame K', a component of the field along the ~· 

direction may be written: 
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~· · E' = (R + i I)e-iwt (5) 

where R and I are the real and imaginary parts respectively, and it is 

assumed that the source has harmonic time dependence. This may also be 

written 

(6) 

where A= (R2 + 12
)
112 • The phase is 

-1 (I) ¢ = e - wt = tan R - wt (7) 

Note that we leave <Pin source coordinates r,t; this will simp1ify the 

mathematics. 

Now, the frequency measured by the observer is 

w' = - ~t' (6-wt), 

To evaluate w1 ~ note: 

d _ ,- ) dt af dr Cit' i\ r 't = (ff'" • at + dt I • "Jf 

Using equations (3) and (4), we obtain 

~t' f(r,t) 
Clf - \7f = y - + ycB · at 

thus 

w' = yw[l F . v eJ 
- k 

(8) 

(9) 

( 10) 

( 11) 

where w =kc. To maintain consistency with Papas, et al.14], we write 



this as 7 

w' = yw[ 1 - Sn] (12) 

where 
" 

n = 13 v e ( 13) k 

and s = K 13 • 

Before proceeding, we should discuss this function "n" to see 

some fundamental things about near-zone Doppler effects. First, we 

will discuss the phase velocity in both the observer and source 

frames; then, we will return to our definition of frequency. Recall 

the definition of phase velocity [ 8]: 

w 
- ~ 

F 
, or more generally, 

vph = e . vcp 
w ( 14) 

A 

where e is a unit vector along the direction of measurement. Si nee, 

in our case we measure only at the origin in the observer frame, we 

do not measure phase velocity, but rather the change in time of the 

• I - -.QL received phase, 1.e. w - dt• . The phase velocity of the source 

frame, however, is measured and has interesting properties in the 
w 

near-zone. There vph =,.... If we choose~= B, i.e. the 
e · V¢ 

direction along which motion is eventually to be considered, 

w 
( 1 5) 
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so, 
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~c~ = s · Vp = ~ • v (e t) = a ve 
vph w le µ r - w µ k 

or more strikingly, 

w' = y w (l - f-) . 
ph 

(16) 

( 17) 

( 18) 

The near-zone Doppler effects are similar to far-zone Doppler effects, 

except we must replace the far-zone phase velocity, c, by the near-zone 

phase velocity, which varies as a function of position. 

Alternatively, the function n = ~c~ could be thought of as 
vph 

representing an index of refraction for a dielectric (or permeable 

media for magnetic fields) that varies with position. The equivalent 

dielectric is 

( 19) 

This interpretation may be somewhat artificial, although knowledge of 

waves in dielectric media might add some insight into the process. 

Probably more important is the fact that variations in dielectric 

"constant" of the same order as these shifts cannot be distinguished. 

Thus shifts must be larger than any equivalent local dielectric 

variations in the medium in which measurements are being made. 

The far .. zone 11 plane waves" (actually spherical surfaces) simply 

no longer exist in the near field. When the source is near, the waves 
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are distorted much as they might be in certain dielectric media. 

Also, the first features of the source to be noticed in the new 

waves would be the approximate size or maximum linear dimension, i.e. 

some crude information about the source itself. This idea will be 

borne out in the pages that follow. We will return to these ideas after 

we do some further calculations of n to see what forms it actually 

takes. 

To obtain the variations in n, we must determine the phase of 

-1 (I) the fields. This can be done directly, by evaluating e as tan R ~ 

and then taking the derivatives; or we can use the fields directly. 

This can be seen as follows: 

u,· th - 1 ( I) d b . + • (, <) ~ e = tan R an y using equa~1on ·~ 

" 
n = s v e = ~ (vI) R - (vR)I 

k k 12 + R2 
( 20) 

By ignoring the e -iwt time dependence, we can substitute 

" -* " * n• r· n' E' n' . E' + n' . t' I = 2i 
and R = 2 

( 21 ) 

where the asterisk represents complex conjugation. Eta may then be 

written 

" 

n = !mag 
s k v (~I , r·) 

n' · r· 
(22) 
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where Imag { } indicates the imaginary part. Either equation (13) 

or this one may be used to evaluate n. 

Recall that in the equation for the frequency (12), the shift 

is already first order in s. When considering small velocities, and 

retaining frequency shifts only to first order in B, approximations 

may be made as follows: 

y ::::: 1 

['::::: [ 

n' ::::: n 

so, 

n ::::: Imag 

" 
s . v (~ . n 

k 

( n · I) 

A similar equation can be written for the components of B. 

( 23) 

(24) 

A brief discussion of n is worthwhile to point out the expected 

values of this frequency shift function in the far-zone and for 

inverse effects. As the source approaches from far away n = -1, 

that is w' = w(l+S). There is a blue shift. As it recedes n = +l, 

w1 
::::: w{1-S), and there is a red shift. If, as the source approaches, 

n changes from negative to positive prior to passing the observer, an 

inverse Doppler effect has occurred. This can only occur in the near­

zone; Doppler effects in the far zone are well known and are the two 

cases n = + 1 just presented. Even if an inverse effect does not 
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occur, the near-zone value of n may deviate from+ 1. In fact, the 

details of the frequency shifts, represented by n, will emphasize 

this case throughout this work. 

Now that we have derived the near-zone equations in terms of 

the fields, it is necessary to explicitly describe the source fields. 

The field components for general source distributions will first be 

written exactly and subsequently appropriate approximations can be made. 

Two types of sources will be considered - current distributions and 

apertures. For current sources the fields may be written (see Appendix 

J i kR . kR 1 .... . 
cB = µwk _e_ I 1 - J Rx Jdr1 • e-iwt 

J 4nkR kR 

where J is the current density of the source, and R = lr-r' •I, 
R = (r-r'')/jr-r''I· For aperture distributions the fields may be 

written (see Appendix II) 

. t J A .... i kR . kR l I = 2k 2 e _, w R x (a )( E) _e - ( 1 - ) dr1 1 

4nkR · kR 
A 

cB = 2k2 e-iwt J Rx (~ )( cB) eikR (ikR-1) d-r'' 
4nkR - kR 

A 

(26) 

(27) 

(28) 
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where E and B inside the integrals represent the total fields in the 

aperture; a is the nonnal to the aperture pointing into the diffracted 

region. 

Now that the exact field descriptions have been given, we will 

examine appropriate approximations. The results of previous near-zone 

work [9-11] indicate useful near-zone integral approximations. These 

results also aid in understanding what we might expect the spatial extent 

of the near-zone effects to be. Several good discussions of the near-

zone and its limited extent are found in the above cited literature. The 

essence of these discussions will be surrmarized here. 

The fields of a source are corrmonly divided into three regions -

the reactive near field, tbe radiating near field and the far fie1d. 

The reactive near field comnonly extends at most a few wavelengths from 

the source. It includes field tenns which decrease faster than (kr)-
1

, 

and~ in general, no appro~imations can be made to the integral 

equations. Beyond this distance the radiating fields predominate. 

The radiating near field extends for a distance of approximately 202 /A, 

where D is the maximum linear dimension of the source and A is the wave-

length. In this region the gain pattern varies as a function of 

distance from the source, and integral approximations similar to the 

Fresnel approximations are conmon1y applied. The radiating far field 

extends to infinity. In this region the gain pattern does not vary as 

a function of distance and the Fraunhofer or similar approximations are 

usually made. 
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Our investigation of near-zone effects concentrates primarily 

on the radiating near field region. This is where integral 

approximations are useful and somewhat well understood. As just 

mentioned, this region is commonly assumed to extend a distance 

20 2 

A 
This limit is derived from the phase approximations made in the 

i k 1 r-r' · 1 _ integral equations, i.e. in e . If the phase contributions at r 

from points near the source center (r 1 1 ~ 0) and the source boundary 

(f' 1 = 0/2) differ by more than f~ = 22.5°, the Fresnel approximation 

must be used. This is equivalent to saying the Fresnel approximation 

must be used if the relative path lengths differ by more than A/16. If 

a similar criterion is applied to the subsequent tenn in the phase 

expansion, an inner boundary of the Fresnel zone may be obtained 

R = ¥ (~) l/3. Similar criteria may be imposed on the relative 

magnitudes of amplitude terms. The limits of our region of interest 

are thus outlined and are shown in Figure 2. 

This discussion, as presented in Figure 2, is meant as a guide to 

give us understanding; it is not a presentation of definitive limits 

for the radiating near field for all possible antennas. For example, 

as will be discussed further, supergain antennas may extend the Fresnel 

zone much beyond 202 /A. An example cited in Hansen [11] describes 

noticeable effects to 2202 /A. Also the Fresnel amplitude approximations 

may not be valid at some distance from the source greater than that 

depicted. In either case we will use these region boundaries to give 
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1000 

RADIATING 
FAR FIELD 

100 RADIATING NEAR FIELD 

R 
D 

10 

2 4 

FRESNEL APPROX I MAT IONS 

PHASE LIMITS-- R = l (Q )113 

D 2 A 

10 

:\\0~ 
sO'--\) REACTIVE 

NEAR FIELD 

100 
D -A. 

1000 

* Figure 2 Spatial Extent of Approximation Regions 

* This is a compilation of various works [10-11], each of which 
makes similar but slightly different assumptions about the phase 
and amplitude approximations of the Fresnel zone. 
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us a starting point. The implications of these boundaries for the near-

zone Doppler effects include a requirement for electrically large or 

high gain antennas. It is obvious that for measurability and practical 

usefulness we would like the near-zone extent to be as far reaching 

as possible. If we use the 20 2 /A criterion as the crude boundary of 

the near-zone, the spatial extent of near-zone effects could only be 

increased by making D larger relative to A. We would also like to be 

as far from the source as possible, i.e. we want~~ ~D to be large. 

This means we need electrically large antennas, or, alternatively, since 
D2 

the gain of a transmitting antenna is roughly proportional to A2 , we 

could use high gain antennas. Supergain antennas might be appropriate. 

These antennas provide higher directivity than common antennas, i.e. 

supergain, and might provide near-zone effects even further from the 

source. There are, however, serious practical limitations in the use 

of supergain antennas. The problems in practical application become 

evident when we realize that tolerances of the current or aperture 

-10 distribution on the order of l part in 10 may be required to 

increase directivity by a factor of 16fll] and may or may not increase 

the spatial extent of the near-zone Doppler effects. Since the purpose 

here is to investigate the generality of the near-zone effects, and not 

to find the best source available (even with practical limitations) we 

will not delve into these antennas further. 
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Next, we will make a series expansion of the fields to obtain the 

Fresnel approximation showing the relative magnitudes of the frequency 

shifts as the observer first measures the near-zone fields of the 

source. We proceed by making a series expansion of the field 

equations (25-28). The electric field of the aperture antenna will be 

used in an example of this expansion. 

~ . r =J ~ 
n=l 

A0 (e,qi,e' 1 ,cp 11 ,r 11
) eikR n" -- - - · r· · ( r' · ) d r-· · 

(kr)n (29) 

where only the amplitude terms are expanded. For the Fresnel zone, only 

A1 is kept and only up to quadratic terms are kept in the phase. Thus 

A J k2r• '2 
" l i(kr-wt) i k 
n . E ~ - e e 2 r n . E(r' I ) dr' I 

kr 
(30) 

Now, to calculate n, re ca 11 

" ·n} S·'V( 
n ~ Imag 

k n 

n·E 

We will assume that measurement is made at the origin of the observer 
" " 

frame K'; then, as shown in Figure 1, i3 is proportional tor, i.e. 
" " {+l t > 0 
~ = rs where s = _1 t < 0 . This will simplify the results by avoiding 

confusion with aberration effects [7]. So 
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{ 

d A -) ~ (n · E) 
n = s Imag · r~ _ . 

n · E 
(31) 

Now, applying the derivative to the series expansion (29) for the 

aperture case yields 

J} kzr' 12 
i 

kzr112 
2kr A 

e (n · r·, )dr' · 

( 1 - 1- Real A ... ) 
n = s -

k 2 r2 f ik2r112 

\_ 
. e 2kr fn • f' I )dr' I ( 32) 
A \II 

where Fresnel approximations have been used and r· I is the aperture 

field. (Only first order amplitude terms and quadratic phase terms 

were kept). If the integral of the numerator were large compared with 

the denominator the assumption that only first order amplitude terms 

need to be kept would break down. This, and other details, are found 

in Appendix I I. 

Similar expansions for the other field equations, as shown in the 

Appendices, lead to the same result for the appropriate field co~ponent. 

For the current source electric field 

n z s ( 1 - - 1- Re a 1 
k2r2 J k2r112 

e i 2kr 
J 

A 

(n · J)dr'' 

+ ... ) 
A 

(n · J)dr'' 

( 33) 
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Note that if no radiating field component exists, for instance in 

the radial direction, the Fresnel approximation, which gives the 

radiating near field, is useless. Second and higher order amplitude 

terms of the reactive near field must be included in order to measure 

fields and frequency shifts since no Fresnel zone field exists. It is 

thus apparent that generally the only field components with appreciable 

shifts in the Fresnel zone are the same far field radiating components. 

The results of equations (32) and (33) (including corrrnents from 

the Appendices on the magnitude of the shifts in the Fresnel zone) 

indicate that no 11 inverse 11 Doppler effects are generally present in the 

Fresnel zone. For "inverse" effects, we must then look into the re-

active near field; the measurability then comes into question, as 

discussed in Chapter 3, since only a few wavelengths are available 

over which to measure (resolve) the shift. The much more general 

near-zone frequency shifts are fractional corrections to the far-

zone values, and in fact, were shown to be 

jawj :e (-v-)w 
vph 

A simple example may help to give insight into the near-zone 

effects. If a linear source of length D is radiating electromagnetic 

waves, we might expect surfaces of constant phase in the outer region 

of the near zone to not be quite spherical, but more elliptical, or 

rather spheroidal with the curvature related to D. The wavelength 



19 

(distance between surfaces of constant phase differing by 2n} of far zone 

radiation might be slightly different from that of the near zone. 

(The near-zone distance will be shown to be larger). Now, with a moving 

source, the frequency of the waves as measured by the observer will 

include a Doppler shift just as in the far-zone case; however, since 

the distance between surfaces of constant phase is larger in the near 

zone than the far zone the actual shift will be reduced for both 

approaching and receding sources. 

Specific examples of various antennas and source distributions are 

given in the next chapter. The general results of this chapter will be 

used to choose the specific examples to be presented, and the results 

for the examples will be demonstrated in the limits of the Fresnel or 

similar approximations. 
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CHAPTER 2 - SPECIFIC EXAMPLES 

The purpose of this chapter is first to review the importance of 

the previous near-zone Doppler work for the case of an infinitesimal 

dipole I 4] and gain some insight from "it, as well as the results of 

the last chapter. This insight will then lead us to investigations of 

two antennas - an electrically large prolate spheroidal antenna and a 

large aperture. 

A. Review 

The previous work on an infinitesimal dipole showed three 

interesting results. 

(l} Doppler effects, different from the far-zone effects, were 

present in the near-zone of an electromagnetic source and 

possibly in many or all such sources. 

(2) The near-zone effects differed depending upon which 

component of the electric field or magnetic field was measured. 

(3) The near-zone shifts depended on the distance between the 

source and observer, thus giving information about range, in 

addition to the normal far-zone velocity infonnation. 

This chapter will investigate further these results for two specific 

source types. 

Although the exact details of measurability are left to Chapter 3, 

it is evident from the previous discussion of Chapter l that the 
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infinitesimal dipole is not a particularly good candidate for measur­

able effects far from the source. This dipole is essentially an 

approximation to a real source where~<< l; it simply does not fulfill 

the e1ectrical1y large criterion. It remains then to find sources with 

fields that may be calculated exactly or with accurate near-zone 

approximations, but that are electrically large or high gain. 

Luckily, the prolate spheroidal antenna fields may be calculated 

exactly and circular aperture fields may be calculated accurately in 

the Fresnel zone. These two sources can both be electrically large. 

The resulting near-zone Doppler effects will be presented with 

appropriate limitations indicated. 

B. Prolate Spheroidal ( 11 Cigar-Shaped 11
) Antenna 

For a perfectly conducting prolate spheroidal antenna aligned 

with the z-axis and center-driven by an axially symnetric source field 

linearly polarized in a direction parallel to the axis [12]: 

- A - • 'V -
cB = cB 4> ¢, and E = 1 k .x cB . (34) 

Prolate spheroidal coordinates are a convenient set to use to describe 

the fields, since in source free regions this coordinate system is 

one in which Maxwell's equation separate [13]. The coordinates 

are labeled (~,n,¢) and are somewhat similar to a nonnalized set of 

(.r,e,qi) since for large r, (;,n,qi) + C0~2 , cose, <P) where D is 
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De0 D 

I 

Figure 3 Prolate Spheroidal Coordinate System I 14] 

E,2) ( r
2 

+ 1) ±_ - f r
4 

- 2cos28 _r_
2

- + 1 
= (D/2) 2 -y (D/2) 4 (D/2) 2 

n2 2 

DACTUAL = s
0
D is the actual antenna length 

D is the distance between foci 
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the approximate antenna 1 ength for narrow spheroids (_see Figure 3). 

The magnetic field can be expanded in terms of the spheroidal 

functions as: 

(35) 

where al are determined by boundary conditions and c = kD/2. s1,l 

and R1,i3) are the appropriate angular and radial prolate spheroidal 

wave functions, respectively. The notation followed here and many of 

the fonnulae used in derivations are from Flarrrner [14]. 

The electric field may be derived from 

- 'J -
E = i k .x cB 

The resulting field is: 

. - ( ~ 
. -1wt t (3) r = 1 e r a I -n s ( n) R (;) 
(k 012 ) t (l-n2)112ci;2-n2)1;2 i,t 1,t 

l=l 

dR <3 ) (!;) A 

1,l J n 

di; 
( 36) 
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We will concentrate on an idealized case of antennas with 

lengths that are multiple half-wavelengths. In this special case, 

D n A. k 2 = P 2 , or D = P 2 
where P is an integer. The equations now simplify imnense1y. Before 

writing them, we must discuss the implications of symmetrical 

excitation. Due to this symmetry the angular functions must be 

symmetric; this implies l must be odd I15]. In addition, P must be 

odd so that the anguiar functions are finite at n = .:'.:_ 1. The 

.resulting simplifications follow. 

( ) exp [+ i i (P~-2£}] 
R _3 . (f;) = 

J +i P~£; 
(-1 r e 

],2£.-1 . p TI (t2-1)1/2 
2 

where we let l = 2£.-1 since it must be odd. 

(-l)l-1(2l)! 
51,2t-1(n) = 22l-l(l-l)!l! 

TI TI cos P 2 n cos P 2 n 
= f(t) 

(l-n2)1/2 (.l-n2)l/2 

Also, 

dS n sin(P ~ nl ncos(P ~ nl 
f(t) I- P - · + j 

2 (l-n2)1/2 (l-n2)3/2 
-= 
dn 

( 37) 

(38) 

{39) 

Now, we rewrite the fields substituting the above simplifications. 
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00 

l cos(P ~ n) 
cB =Ir a2£_1f(l)(-l) J 112 

l=l (1-rt) 

If we let K =Ir a2£_1f(l)(-1)£], then 
l=l 

+i P ~ ~ -iwt 
e 
------cp 

p ¥-<~2-1 )_1/2 
(40) 

(41) 

Note that the boundary conditions are now entirely encompassed by K, 

and all we assume is that the excitation provides multiple half­

wave1engths. 

It is also useful to write the fields along the spherical 

coordinate directions, as our measurements will be made while approaching 

or receding along the radial direction. The magnetic field does not 

change; the electric field is: 

• PTI • t +1 2 ~ -1w 

I= K _e ____ e----1-1
-
2 

{[-i~sin(P ~ n)+ ncos(P ~ nJJ ; 
P ~(;2-n2)(~2+n2-l) 

We must next determine the frequency shift function 11 n11 (_not to be 

confused with the coordinate n). For the prolate case, the values of 

"n" can be determined exactly. 
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First, the magnetic field is relatively simple . .Measurement must 

be made along the ¢ direction to some extent, or no field is present; 
A 

for now, we will assume n = ¢ . Then, if we notice the phase, 

e = P ~; - wt = k ¥; -wt, (43) 

and we use 

n = 8 • v (e) 
k 

we obtain 

where we have used the expansions 

~ ( r ) (1 + -
2
1 sin 2 e (D/ 2)

2
) and ~ ~ D/2 rz ' 

n ~ cose 

Then, in the equatorial plane, 

(44) 

( 45) 

(46) 

(47) 

This is exactly the same result that came out of the general current 

source discussions of Chapter l and Appendix I. 
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The electric field is much more complicated. The result for 

I · e ; s 

p :I!. 
2 

[- (£:2-1)£;(3;2+3112-2) si~P7TTJ + n(l-n2) ~; (;2-1)] } 

(~2-n2)(;2+n2-1)l/2In2(1-n2)2sin2(f! n)+ ~z(;2-1)2cos2( P ~ n)] 

( 48) 

and for r . r is 

~ n [(~2+11 2_ 2 ) sin pmi +EE.. (l 2)] 2 2 n -n }· 
( 49) 

In the equatorial plane, the coordinate n = 0 and the second 

terms vanish for both e and r so that the identical result applies; 

11 f] II ~ S ( l - l ~) ( 50) E 8 r2 · 

Several results should be noted for these fields. First, fields 
" along directions other than e for E, and¢ for B, vanish in the Fresnel 

zone, i.e. there are no other 11 radiating" components, and thus no Fresnel 
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zone Doppler effects. The radial component of r has relatively small 

amplitude and may not be detectable where these approximations are 

valid. Also, the electrically large criterion did not play a role in 

the "first order" results presented; i.e. n8 and nE are independent of 

P to this order. However, for measurement the possibility that P may be 

large is important and will be used in Chapter 3. The frequency 

measured in the cases above is the same for all components. 

w' = w ( 1 - Sn) 

02 = w 11 - ss ( 1 - 8r 2 1J , (51) 

thus no information is available on the source except the distance 

to the observer. From the above equation (51}, it may be seen that the 

phase velocity 

c (52) 02 
1 - 8r2 

i.e. the phase velocity and wavelength increase in the near-zone as 

shown. Finally the equivalent dielectric is 

(53) 

so that dielectric variations of the same order of magnitude would lead 

to mistaken results. 
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Since n can be calculated exactly for the prolate spheroid, it 

is interesting to record and discuss the results in comparison with the 

infinitesimal dipole case. n8, nE , and nE are plotted for various 
e r 

angles of approach (i.e. e not just equal n/2) and for various P values. 

The earliest changes from far field values occur as expected (as ~~ 2 ), 
see Figures 4-11. 

Figures 4 and 5 depict n for an electrically large antenna 

(f > 10). The results show that the shifts predicted occur to 

R 2 h D
2 

• • b 1 h 5% A R 2 h f IT < , w ere - 1 s in error y ess t an o. s IT < t e requency 
8r2 

shifts approach zero, as we might expect - a smooth transition from 

blue to red as the source passes the observer 

w1 = w (1 - S) ~ w ~ w (l + S) . 

For larger antennas similar results are obtained (data were taken to 

~ ~ 1000). Several angles were used for approach of the source; all 

yielded the identical results. 

The smaller antennas, however, show the effects presented for the 

infinitesimal dipole. The magnetic field has no inverse effect, however 

the electric field does. This is shown in Figures 6 through 11. The 

first near zone shifts in n are as predicted to~~ 2. (Recall the 
D R shift was independent of p or I to this order). Below IT~ 2, the 

inverse effects may occur. For.the case presented, with~= 0.5, 

'5- < 2 implies~< 1; we thus note that inverse effects are only 

observed in the reactive near field within a wavelength or so of the 

source. 
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Prolate Spheroidal Antenna ( ¥ = 0.5, p = 1) 

Same angles as in Figures 6, 7. Again, note inverse effects. 
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C. Circular Aperture Antenna 

As a second example, we will investigate the circular aperture. 

We will assume Fresnel approximations where the total aperture field 

is approximated by the incident aperture field, and observations are 

made only near or along the central axis of the aperture (see Appendix 

I I). 

We wi11 assume the incident field is a uniform plane wave 

propagating in the y direction; 

- K i(ky-wt) A E. = e z • 
1 

( 54) 

Also, let the aperture be centered at the origin of the y = 0 plane, 

and let the circular diameter be D. We will measure the z component 

of the field while motion is along the y axis. The set-up then 

looks very similar to that shown in Figure II-1 of Appendix II. Also 

referring to the Appendix, we recall equation (II-6) 

I· 
A e 1-:-.,..--iky J .k2

r"
2 

n = -i 2k 2 
4nky e 2ky 

- -iwt K dr 1 1 e (55) 

A 

where we substituted the incident field for z • E;. The result for 

Ez is 

• k2D2 
1--

E = K eiky (l _ e 8ky ) e-iwt 
z 

(56) 
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In this equation it may be seen that there are two fundamentally 

separate waves propagating in the Fresnel zone, a plane wave and a 

scattered \Jave. These two waves interfere as may be seen in second 

equation, until in the far field one wave remains. 

This case presents problems for frequency measurement since there 

are actually two frequencies present. The definition of n assumes a 

monochromatic signal with slowly varying frequency, and an even more 

slowly varying amplitude. With the present definition, n becomes 

02 
n = s(l - 16y2) 

[+l when receding from aperture 
Here s indicates\:'l when approaching aperture 

This is just the derivative of the phase. The amplitude, however, 

varies as rapidly as the near-zone correction term. This eliminates 

the possibility of measuring the frequency shift as defined. 

The amplitude fluctuations are a common feature of aperture sources. 

They are caused by the interference of the incident wave and scattered 

wave in the Fresnel region. The circular aperture is a particularly 

appropriate example. If the aperture is divided into annular rings, 

sometimes called "Fresnel Zones" [8 ], with the path length from 

successive rings to a point along the axis of R, R + ~ , R + A, 

R + 3 ~, ... it can be observed that successive rings interfere; 

they are out of phase by 180°. Depending upon the aperture diameter 

some finite number of the rings will fit. If an even number of rings 
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are present the field is nearly zero. If an odd number is included the 

field takes on its maximum locally. 

This simple idea predicts exactly the same results as those 

obtained mathematically for the circular aperture and gives some insight 

into possible general problems with amplitude variations in the Fresnel 

region. It shouid be noted, however, that if the aperture distribution 

does not have uniform phase, as with plane wave incidence, the 

interference pattern will change. The prolate spheroid has a current 

distribution which is not LJniforrn. In the limit of a very thin spheroid 

the current goes as cos(kz). 
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D. Observations 

Before we discuss the measurability of the frequency shift, we 

should observe some of the implications of the results for the examples 

just given. 

The general formulae of Chapter 1 and these examples demonstrate 

tne generality of near-zone Doppler effects. Several more specific 

examples could be given, however, the point has been made that the 

effects do exist as originally suggested [ 4] and not just for the 

inifinitesimal dipole, but for most sources. We then further suggest 

that the results of this chapter have broader application. 

The prolate spheroidal fields (40) and (41), reduce in the far 

zone to those of simple center driven wire antennas [7]. 

i(kr-wt) cos(k ¥ cose) e A 

cB rv K ¢ 
kr sine 

ei(kr-wt) D cos(k 2 cose) 
I '\; K e 

kr sine 

D TI where k 2 = p 2 . 

The same frequency shift predicted might then be expected to occur for 

thin wire antennas with similar excitation. Thus, the first near-zone 

effects might be 

w' rv w (1 - f3s(l - .!L)) 
8r 2 
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where D is the wire length, and r z vt. 

The circular aperture with a plane wave incident is certainly 

not an isolated case of the applicability of the aperture results of 

Chapter 1 and Appendix II. Other shaped apertures, like elliptical 

or square should have similar Fresnel zone shifts; and other incident 

fields, should produce some shifts, although they will not be identical 

to those of the plane wave. However, there probably will be similar 

complications with interfering waves for other apertures 

that may preclude measurable effects; each case would have to be dealt 

with individually. 

There seems little doubt, however, that the frequency shifts of 

the near-zone fields generally exist. Now we just have to rr~asure 

them. 
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CHAPTER 3 - MEASURABILITY AND PRACTICAL APPLICATION OF RESULTS 

The questions of measurabi1ity fall into three categories: 

(1) frequency definition, 

(2) near-zone measurement problems, and 

(3) spatial extent and magnitude of effects. 

The definition of frequency as the time derivative of the 

received phase is applicable so long as the amplitude of the field 

varies slowly compared with the phase. As was pointed out in the 

circular aperture example of the last chapter, care must be taken in 

the Fresnel zone to assure that amplitude variations occurring during 

the measurement interval do not interfere with the frequency determina-

tion. For the prolate case in the equatorial plane it can be seen 

that the variations are slow. 

ei(e - wt) 
= K--------~-

k ¥ (1 + r 2 /(D/2) 2 )l/2 

So, 

Thus for large kr, the amplitude variations may be held small so long 

as ~ >>1. The main component of variation is the normal ~r dependence 

of spherical waves. For the circular aperture case, the amplitude 

variations are not small, however, and our frequency definition is no 

longer precise. The interfering waves provide a common problem in FM 

. receivers [16]. In this case it is especially severe since the 
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amplitudes of the two wayes are equal. 

Other near-zone measurement problems result from the interference 

of the measuring device with the near-zone field. This is basically a 

question of relative size and location. The transmitting antenna must 

be large compared with the receiver aperture and device size, so that 

no appreciable change is made to the near-zone fields of the source. 

Also, the receiver should be located as far from the source as possible 

during measurement to further reduce the possibility of interference. 

The many issues related to near-zone measurements are discussed by 

Dyson [6 ]. This article also includes an extensive bibliography on 

the subject. 

Another 11 interference 11 problem results if the media through which 

the measurements are taking place has dielectric (or permeability) 

fluctuations that are on the same order of magnitude as the shifts. 

As pointed out in Chapter 1, the dielectric equivalent to the shift n 

is 

£(r) ~ £ n2 (r). 
0 

Thus, if £(r) varies as the source approaches or recedes, it may be 

impossible to distinguish this variation from the near-zone effects. 

This makes it necessary to have sufficient frequency shifts in the 

near-zone so that no indeterminacy will exist. 

If we assume now that some devices are available to measure the 

fields and received frequency, then we still must be able to resolve 

the small shifts that are inherent with 1ow B and in the Fresnel zone. 

The distance over which we can measure the frequency shift is limited; 
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recall r = vt, i.e. the source is either approaching and will pass us 

or receding and will soon be in the far zone. 

We will now show that the required distance (time) for measuring 

a shift must be greater than ~/Ian! (~/vlanj), where ~is the 

wavelength of radiation and Jani is the near-zone shift in then 

function and v is the relative velocity. To see this result, recall 

f '= f (1 - Sn) with w = 2nf 

where f is the transmitted frequency, B is the relative speed and 

n is the function of position which varies as the source approaches or 

recedes. The shift in frequency to be measured when In I changes from l 

by an, i . e. In! = l + an, is: 

l~f I = f s · Ian! (62) 

This requires a measurement time T, where T ~ lf = f Blan! in order to 

resolve the shift (from simple uncertainty arguments). The source must 

be near the observer long enough for this measurement to take place. 

If R is the available measurement distance, or 

R = Bet, (63) 

then in order to measure (resolve) the shift, 
-

(64) 

i.e. t > T, the measurement time available must exceed the required 
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resolution time. Thus, in order to measure this shift it must occur 

a number of wavelengths from the source related to the magnitude of 

the shift I on I· In the pro 1 ate spheroid case of Chapter 2, 

02 
n = s (1 - -) 

8r 2 

0 
Br 2 

0 

where r is the distance at which the shift we are going to try to 
0 

resolve first occurs during approach of the source. Then, 

r 2 

( 65) 

R > 8 - 0
- A (66) 

02 

for resolution; but r~ > R, and thus rn is the maximum distance 
u - v 

available for measurement. If r
0 

were available (R = r
0

), 

R (~) 
R2 > l or -R- > 1 (67) 
8 1)2 I. 8(0) 

For~= 4, a shift Ion! of less than 1% occurs, see (65). ~must be 

greater than 32 in order to resolve the shift. (Note that in this 

prolate case, P, the number of half-wavelengths, must be greater than 64). 

An additional complication arises if the shift continues to change 

(i.e. n varies) during the measurement process. This variation should 

either be small, or, slowly increase the shift in the same direction as 

in the example just cited, so that some resolution is possible. 

For~= 4 and~= 1000 we would have 4000A to resolve 

a shift Ion! that begins as 118 After a few hundred A we would 
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have surely resolved the shift, and we would still be near R z 4D. 

This example dealt with approaching sources. For receding 

so~rces, as is indicated in the formula (65) the shifts are initially 

larger and become $maller. The resolution problem, however, is 

essentially the same. 

The measurability of the near-zone Doppler effect has now been 

shown to depend on the available measurement distance, and the 

magnitude of the frequency shift. The general assumption that high 

gain or electrically large electromagnetic sources were the most useful 

in the near zone has been demonstrated. The choice of investigation 

of the Fresnel zone was thus appropriate. So, overall we have shown 

that for adequately large sources the near-zone Doppler effects have 

a real possibility of being measurable. 
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CHAPTER 4 - SUMMARY AND CONCLUSIONS 

Summary: 

The ideas of previous work with the infinitesimal dipole f4] 

have been extended to show the generality of near-zone Doppler effects 

and to indicate the possibility of measurement for electrically large 

antennas. Of the three interesting features brought out by the 

previous work; 

(1) existence of near-zone effects 

(2) different effects for each field component being 

measured, and 

(3) range information availability; 

all were found present to some extent for the electromagnetic sources 

investigated. In a zone where measurement was practical, the Fresnel 

zone, near-zone effects were shown to exist and range information was 

available to a practical limit. The resolution of range was limited 

to the distance through which the source moved during the measurement. 

The frequency shifts in the Fresnel zone for the wire antenna with 

low relative velocity were 

02 
w' = w(l + S (1 - BR2 )) 

where S = Y.was the normalized relative velocity, D was the antenna 
c 

length, and R = lvtl was the distance between source and observer as 

they approached (or receded) radially. Both field components 

lB¢,E8) had this same shift in the Fresnel zone and thus the 

information suggested by the second feature above was not available. 
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It was shown that in the extreme near zone of a smaller wire antenna 

this information was theoretically available although measurement 

there would be impractical. 

The circular aperture example served to point out d possible 

pitfall in measuring frequencies in the Fresnel zone. The interfering 

incident and scattered waves caused amplitude fluctuations that were 

as large as the near-zone frequency correction, thus prohibiting the 

measurement, i.e. resoiution, of the sma11 additional shift. 

A more general form of the Doppler shift, conducive to the 

understanding of the frequency shift was also described. The form was 

WI : W ( 1 + _v_) 
- yph 

where vph was the source frame phase velocity. The reasoning went as 

follows. The source had surfaces of constant phase which, in the 

near zone, were not spherical. This 11 distortion" of the normally 

spherical waves was a contributor to the Doppler shift being 

measured by an observer. As in the normal Doppler effect, the observer 

measured a different distance between the surfaces of constant phase 

than that identified by the source as one wavelength (2n in phase). 

The actual distorted waves of the near zone, however, had a slightly 

different distance between constant phase surfaces than those of 

spherical waves (or plane waves). This difference was precisely related 

to the frequency shift by the phase velocity as described. Thus near­

zone Doppler effects were the same as fat-zone Doppler effects, but 



46 

with the local phase velocity replacing the far-zone phase ve1ocity, 

c. The distortion of the wave fronts produced by the proximity of 

the source was responsible for the correction to the nonnal far-zone 

red or blue shifts. thus producing the near-zone Doppler effects. 

Conclusions: 

The general theoretical existence of near zone Doppler effects 

has been demonstrated. These effects may be described by 

w' :::: w (1 + __!.___} 
- vph 

where vph is the local phase velocity and the + signs are for 

approaching and receding. The measurable effects found for the sources 

investigated were in the Fresnel zone. The previous indications of the 

dipole work that range information was available were shown to be 

generally true. The indication that additional information might be 

available by measuring each field component separately was shown not 

to be useful in the Fresnel zone. Small corrections to the far-zone 

Doppler shifts were found to be measurable but no measurable 11 inverse" 

Doppler effects were discovered. 
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APPENDIX I - CURRENT SOURCE FIELDS 

The current source fields will be derived from Maxwell 1 s 

equations exactly. Then, a series expansion of the amplitude in terms 

of (krf 1 will be used to determine the approximate fields and the 

associated Doppler effects as the source approaches the observer. As 

in Chapter 1, we will assume that terms only of first order in 6, the 

normalized relative velocity, need to be kept. 

The fields due to a harmonic current distribution are written 

as I7J. (See Figure I-1): 

E = iwkµ [U + - v V'] -- • J(r1 )dr1 e-iw J - 1 eikR . t 

k2 4nkR 
(I- 1 ) 

. J ikR 
cB = wkµ (t 'V) ~nkR x J(r' )dr' e-iwt ( I-2) 

where R = Ir - r 1 
I I' r being the vector from the origin of the source 

frame to the point where the field is measured and rl I being a vector 

from the source origin to a point of the current distribution,V' applies 

only to the point of measurement (r); and u is the unit dyadic. After 

the derivatives are taken, the fields become: 

I= J(r' I )drl I e-iwt 

{I-3) 

- f eikR ikR-1 A - - .. ;wt 
cB = w11k 4nkR [ kR :] Rx J(r' 1 )dr 11 e (I-4) 
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K 
z 

Figure I-1 Current Source Coordinates 

0 is the origin of the source frame K 

O' is the origin of the observer frame K1 

J is the vector current density 



r- - r-·· where R = ----
1-r - r 11 1 
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These are the exact field equations. We will also need the derivatives 

of these equations since 

{ 
s . ~ (f . 

n = Imag _k A 

E · n 

The required derivatives may be obtained from the following exact 

expressions where vector component subscripts are used to retain the 

proper order. 

1KK "' A 2 2 . A A 2 2 . J 
.. - r 

iw:µk _e_ ~ i(R -S s)[u (k R +ikR-l)+R R (-k R -31kR+3)J 
4nkR l. l l mn k2R2 m n k2R2 

-iwt e 

WJ.l k _e - i ( R - S s ) [ 1 - :] ( R .x J) + R I- 1 + J ( R x J)_m 
4nkR l l kR m l k2 R2 

(I-5) 

J ikR { A A "kR 1 A "' 2"kR 3 A 

+ IikR-lJ (u x J) \dr" e-iwt (I-6) 
k2R2 hn j 
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" The 11 Ss 11 term has been pulled out to simplify results. 

: g and in order to calculate n we need 

Rec a 11, 

-(+l t s- -1 t 

• where n is the unit vector along the field component being measured. 

If the measurement point is taken at the origin of the observer frame, 

then Ss = r as shown in Figure 1 of Chapter l. R reduces in first 
"' order to r so that the first tenn in both integrals vanishes to first 

order. The purpose in writing these functions out explicitly is for 

series expansions beyond the normal Fresnel zone case. First, we will 

use the Fresnel case; expansions beyond the first order in amplitude 

will then be used only to show the limitations of the approximations 

used. 

Tbe approximations to be made are: 

(1) r · r 11 = 0, the antenna will approach us oriented orthogonal 

to the motion, and with minimal radial extent 

(2) n • r = O, we will measure the fields along directions 

orthogonal to the motion; also no Fresnel field 

exists in the radial direction 

(3) r·J, assume essentially no radial current 

( 4) 

.k2r''2 

eikR _ eikr 1 2kr ~ e , we will expand the phase to second order 
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The field functions then become: 

. J .k2r112 , kr , 2k ,... . t 
I· n = iwµk _e_ e r (n · J) dr'' e-iw 

4nkr 
(I-7) 

cB. n = iwµk eikrfe ;k;~~·2 (~ (; .x J) ) dr', e-iwt (I-8) 
4nkr 

,... \l - " 
S·-(E·n)= k 

(- " 1 ik 2 r' ' 2 ~ 1 2kr " -iwt J 
.k2r112 

is E • n) + iwµks I- - - J e (n·J)dr'' e 
kr 2k 2 r 2 (I-9) 

A \l A 

S • k ( cB • n) = 

is(cB·~) + iwµks eikrf- _1 _ ik 2 r'' 2J 
4nkr kr 2k 2 r 2 

Now n may be written 

s · t (E · ~) 
(I · n) , or 

• k2rl I 2 

l 2kr A A • 

e (n·(rxJ) )dr' 'e-iwt 
(I-10) 

+ .. ) (I-11) 
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Also, for the magnetic field 

n8 = Imag 

,.. \J ,.. 
B • - (cB. · n) k - . 

(_cB • n) , or 

(I-12) 

The frequency observed is then w' z w (l - Bn). 

As shown in Chapter 1, the first term after the far field 

term in the expansion for n. is second order in (kr)-1. The 

expressions in parentheses will comnonly be on the order of~ k2 D2
, 

where Dis the largest dimension of the source. Thus, 

n z l _ l.!t_+ (I-13) 
· 8 r 2 

For r ~ 40, the correction in the Fresnel field is less than 1%. 

It should be noted that the ratio given in parentheses is only 

part of a series expansion. The following expansions show the limits 

of the approximation and point out that if the numerator 

integral were significant in comparison with (kr)2, a similar tenn 

would appear in tbe extended expansion of the field itself (in the 

denominator). If tenns in both the numerator and denominator are 

expanded to second order -



n =s (1+Ima 
E 

n8 =s (1 + Imag J. 
.k2r11 2 
1 2kr e 

J 
.k r' I 
1 2kr e 
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[ - _1 - _;_ {2+k2r' •2)J(~·J)dr'. 
kr k2 r 2 2 - ) 

~ 
( 1 _._ 11, 2 I I 2 ) ~ 

-r;::-i\ r A k2 I 12 A A A 

[1 +L - 2 Jn. J r (n. r' • )( r • •. J) dr'' 
kr k2 r 2 k2 r 2 

(I-14) 

f- -1 - -. ;_ (2+k 2 r 12 }](~·(~xJ))dr1 ' 
J.,. kr K2 r 2 2 ) 

[1+.L- kzr112J(~·(~xJ))dr" 
kr k2 r 2 

(I-15) 

We see that the quadratic amplitude term (k 2 r'' 2
) also appears 

in the denominator, thus the near-zone corrections ton in (I-11) and 

(I-12) cannot be large or the approximations used break down. Thus, 

n cannot change sign in the Fresnel region, i.e. no inverse Doppler 

effects can occur there. 
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APPENDIX I I - APERTURE DJ STRIBUTIONS 

The fields to the right of the aperture are given by Il 7J 

integrals over the aperture (A) fields: 

and 

r = 2k' t " J c ~ x r" l :::: di'" , 

cB = 2k 2 Y .x k 

A 

J
- A _ e ikR 

(a x cB' •) 4nkR 

A 

dr 1 
I 

{I I-1) 

(I I-2) 

where a is the normal to the aperture pointing to the right (see 

Figure II-1) and E1
' s 811 are the total aperture fields. These may be 

writt~n J " 
E = 2k 2 R x 

A ikR .kR 1 
(a ){ E' I ) _e - ( 1 - ) 

4nkR kR dr' I (I I-3) 

A 

and 

J" A ikR .kR 1 
cB = 2k 2 Rx (a x cB4 ')~nkR (\R- ) dr'' (I I-4) 

A 

where the notation is as in Appendix I. Since the equations are the 

same,we will proceed as in Appendix I but using only the electric 

field. 
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Figure II-1 Aperture Distribution Coordinates 

0 is the origin of the source frame K 

01 is the origin of the observer frame K' 

and the point of observation 
A 

a is the unit vector normal to the aperture 

D is the maximum dimension of the aperture 

~ 

r 
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For aperture fields we will only be measuring either the 

approaching or the receding fields. ·using the approximations of 

Appendix I, we obtain: 

..... ..... "' ikr i(~ 2 r 112 ) i r ,.... . 
s.·V'(E.n)~+is(E·n)+is2k 2 _e_ [+.L+ 2 ] e 2kr (n·E' 1 )d?'e-iwt J 

1 k2 112 

k 4nkr kr k2r2 · 

•. r • k2rl I 2 
A 

0 
1 kr 1 A 

e -iwt <I· n) = - i2k2 -~ -J e 2kr Cn ·r11
) dr' I 4nkr 

A A A "' A A 

where a = r, n . Ir .x (r x E")]=- n • r· 'n . Ir' 

So, now n may be written 

l 1 2~ A jj 
.k2r' 12 

t<2r''2 e ~r (n·I'') 
n = s(l - - 1

- Real 
k2r2 1 2kr A J.

.k2r112 

e ( n • r• I ) dr1 
I 

(+i for receding 
where s =<-1 for approaching 

( 

A 

x (r xE'')] 

( II-5) 

(I I-6) 

= 0. 

(II-7) 

The field functions may similarly be expanded to higher orders in the 

amplitude showing quadratic amplitude terms in the field itself. This 

limits the magnitude of the shift as before .. A more important 

approximation, however, is used for most actual aperture field 

calculations; the total aperture field E' I will be approximated by the 

incident aperture field. (This approximation may cause limitations 

even before higher order amplitude expansions of the fields). 
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