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Abstract

A homogeneous machine architecture, consisting of a regular
interconnection of many identical elements, exploits the economic benefits
of VLSI technology. A concurrent programming medel is presented that is
related te object oriented languages such as Simula and Smalltalk.
Techniques are developed which permit the execution of general purpose
object oriented programs on a homogeneous machine. Both the hardware
architecture and the supporting software algorithms are demonstrated to
scale their performance with the size of the system.

The program cbjects communicate by passing messages. Objects may
move about in the system and may have an arbitrary pointer topslogy. A
distributed, on-the-fly garbage collection algorithm is presented which
operates by message passing. Simulation of the algorithm demonstrates its
ability to collect obsolete objects over the entire machine with acceptable
overhead costs. Algorithms for maintaining the locality of object references
and for implementing a virtual object capability are also presented.

To insure the absence of hardware bottlenecks, a number of
interconnection strategies sre discussed and sirnulated for use in a
homogeneous machine. Of those considered, the Boolean N-cube connection
is demonstrated to provide the necessary characteristics.

The object oriented machine will provide increased performance as its
size is increased. It can execute a general purpose, concurrent, object
ocriented language where the size of the machine and its interconnection
topoleogy are transparent to the programmer.
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Chapter 1

Introduction

1.1. Homogenesous Hachines

This thesis addresses the design and use of a class of ensemble
architectures [SeitzB2] called homegeneous machines. A homogeneous
machine is a collection of nominally identical processors, each with its own
storage, executing programs concurrently, and passing messages over a

regular communication structure.

This basic hardware model, shown in Figure 1-1, makes no presumption
about the topology or bandwidth of the communication structure, nor about
details of the processors such as their instruction sets. However, the
performance of such a system will depend directly on the performance of the
individual processors and of the communication structure. The case of a
single computer or collection of personal computers on a local network
would fit this hardware model, and programs written for a large ensemble
should certainly be executable on a single machine or collection of personal
computers. However, the hardware environment under consideration here is
one containing a large number of nominally identical processors, typically
thousands, or from as few as 16 to perhaps 84K (K=1024). One simple way to
express a central objective of this research is to understand how to achieve a

situation in which "The more processors, the more performance.”
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These architectures will be regarded as relatively "general purpose”
computers in that {1) they are programmakbkle, and in a style to be presented
which makes no demands that the programmer know anything about the
communication structure of the particular homogeneous machine executing
the code, and (2) the homogeneous machine is no more specialized to a
specific set of problems than other "general purpose” computers, but
provides a high level of performance to all concurrent programming
problems, including those for which the algorithms have no regular or fixed

pattern of communication.

Most of the extensively studied VLSI architectures are special purpose
systems, perhaps because performance on chips is very sensitive to the
communication plan of the chip [Sutherland?7], and the communication
characteristics of a system afe more difficult to generalize than, for
exarnple, its operation set. While special purpose machines can always be
constructed to solve specific problems faster and more economically than
general purpose computers, one must expect that there will always remain a
class of applications that are either so unstructured that they are not suited
to a rigid hardware structure, or for which there is insufficient demand to

justify the design and construction of a special purpese machine.

The term unstructured is used here to describe concurrent programs or
algorithms for which the graph of communication between the elements of
the computation either varies with input data or for which no regular pattern
can be discerned. Many problems are of this type. These problems may have
irregular and dynamically changing communication graphs and require a
machine and programming notation that permit irregular and variable

communication.
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Structured problems, such as matrix manipulation, signal processing,
sorting and others where the communication graph is known before hand,
adapt well to a homogenecus machine. However, for these problems special
purpose machines can be designed which will out perform a general purpose
homogeneous machine. In this thesis, the term general purpose will include
applicability to problems for which the logical communication graph changes
dynamibaﬂy or is irregular or unknewn,

The topology used to interconnect the parts of the machine is of great
interest. It is clear that the communication capabilities of the network must
be high to support the execution of interesting problems. The resulting
structure must provide minimum communication delays yet must also be
practical. Another important characteristic of the communication structure
is expandability. The requirement that machine performance scale with the
size of the systém means that the hardware communication structure must
not degrade or cost substantially more per processor as it is increased in its

extent.

The hardware structure of the homogenecus machine i‘s ‘clearly
motivated by certain characteristics of VLSI technology, as discussed in, for
example, [SeitzB2] and references cited there. Advances in the integratea
circuit fabrication technology over the past 20 years and those anticipated
create opportunities to build systems of greater complexity and switching
speed at a dramatically lower cost per function. Thus systems of thousands
of processors are not outrageous to contemplate. They are well within the
capabilities of present technology. Replication is an intrinsic characteristic
of VLSI techﬁology. and is well exploited by the homogeneous rmachine. The

cost in delay, area, and energy of long distance communication on and
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between chips suggest that single processors will be fast and efficient only if
relatively small. The opportunity for periormance is in ceoncurrency. The

homogensous machine satisfies these criteria very well also.

The advances in integrated circuit technology have created an
cpportunity for computer designers that must be accompanied by advances
in concurrent programming technigues before they can be exploited, and
vice versa. A number of concurrent programming notaticns have been
proposed but have remained research toys, if only because they lack a
suitable machine architecture on which they could be used. The underlying
model of concurrency presumed by a programming noltation must also be
shared and supported by a concurrent hardware structure. Althoughitisin
many circles just another "motherhocd and apple pie” statement, this thesis

treats the hardware and software together.

The von Neumman notion of a randomly accessible memory word as the
basic unit of sequential machines and programs cannot survive in a
homogeneous environment. The definition of a homogeneous machine makes
the accessibility of the state of the machine a function of distance. The
greater the distance between the need for a particular unit of information
and the physical location of it, the greater the time required to obtain it.
Locality in a homogeneocus machine is achieved when it can be observed that
the probability that two concurrent processes will communicate with each
other decreases as the distance between them increases. A concurrent
programming methodology must take this fact of life into account. In this
thesis, the notion of the program 'object” is used as the basic concept
around which the programming model and the machine architecture are

built. Objects are certainly not the only programming paradigm possible for
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homogeneous machines, bul are the model assumed for this thesis.

Objects and object-orient programming are derived from the concepls
of Simula [Birtwhistle?3] and Smalltalk [Ingalls?8)]. The object is an instance
of a user defined data type. It contains local data which may be operated
upon by the procedures defined for its particular type. The procedures are
called attributes and their code may be shared by any objects of the defined
type. Objects are referred to by the contents of reference variables which
hold pointers. These pointers merely address the indicated cbject and
identify its type; they do not indicate the physical location of the object.

If, as Backus [Backus78] suggests, programming can be liberated from
the von Neumann style, the hardware structures that are constructed to
‘support these new styles must certainly avoid the von Neumann bottleneck.
This bottleneck is the narrow pipe through which all memory accesses must
flow in conventional machines. This bottleneck is present, and is even more
choked, in machines with multiple processors connected to a single memory.
The choking may be somewhat relieved by increasing the cost and
complexity of the system with such techniques as the interleaving of
mernory, crossbar switches and other "stunt” boxes [Thornton70], but the
effectiveness of these techniques is necessarily limited by space, time, and

cost considerations.

If the von Neumann bottleneck iz to be removed, then its large,
monolithic address space must become distributed among the various
processors of a system. Also, the semantics of an "address” will grow beyond
its current meaning which defines it as a fixed size word in a very large set of
words. In an object oriented homogeneous machine, the address becomes a

reference variable or peinter referring to an object. Objects are the basic



-

units from‘ which data structures are built. Procedural attributes are
defined for classes of objects and become a set of operaticns that manipulate
the data contained in an instance of an cbject. These concepls are found in
Simula and other languages and have been extended to operating systems by
Hydra [Jones73]. In a system consisting of numerous processors each with
their own "object memory”, all access to an object within the memory of a
particular processor is controlled by that processor. Objects commmunicate

only by passing messages to other objects for which they contain a pointer.

ijectsr are distributed among the processors of a homogeneous
machine and may be moved between them at any time to preserve the
locality of communication. Objects are constrained to fit wholly within any
given processor. They may execute concurrently where provided for by the
programmer and where the opportunity exists. Objects may create other
objects but cannot explicitly destroy other objects. Reference variables may
be overwritten, copied and sent to other objects in messsages, These
operations result in a dynamic system where both the positions of the
objects and the topology of their pointers change continuously. There can be
no restrictions on the kinds of structures that might be generated (e.g.
cycles in the pointers rmust be permitted). There is no way to enforce such
restrictions nor is there any desire to. A garbage collection facility is
required by an object oriented language to identify and eliminate
inaccessible objects.

The object concept is powerful enough to have a broader interpretation,

one that allows it to provide many of the facilities required to build complete

systems. The files and directories in the file system of a machine running
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UNIX! [Ritchie74] may be thought of as objects of whose iype is implied by the
operating systemn. If a number of such machines are connected via a
network and links are permitted in a machine pointing at files or directories
in another machine, essentially the same object-oriented situation can be
seen to exist. Distributed database systems [YuB1] permitting multiple,
concurrent access have a similar need to resolve the status of objects

residing in multiple machines.

To meet the requirement that performance scale with system size, not
only must the hardware communication facilities be suitable but software
components, such as, message handling, garbage collection and resource
allocation must also avoid algorithms and techniques that degrade as the
system grows. The process of garbage collection is of great concern since
the determination of whether or not a given object is referenced anywhere in

the system is a global question, and was studied extensively in this research.

A number of principles of implementation might now be stated to
provide the reader with a concrete picture of an object oriented

programming system for a homogeneous machine.

Each proéessor contains its own memorf to which it has exclusive
access. Theré is no shared memory. Each processor/memory node runs its
own copy of an operating system, which may be better thought of as a run
time system. This code is always resident in the processor's memory and
serves to support a particular programming environment that pervades the

entire system of processors.

The memory associated with each processor may include disk storage.

If mass storage peripherals are present on a processor, they can be regarded

1 UNIX is a Trademark of Bell Laboratories.
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as logically part of the processor’s memory. No distinction is drawn in this

thesis between objects stored in random access memory and those stored on

disks if they are under the control of the same processer.

To permit the migration of programs from small machines to a large
ensemble of machines will require a programming language common to both.
Both the development and the execution of programs for small problems
may occur on small, single processor machines. If large ensembles of
processors are to be used to increase the prefermance of such programs, the
language used must be supported on both types of machines. Where they
exist, concurrent programming languages perform poorly on single
sequential machines. Sequential languages, by definition, are unable to take
advantage of the concurrency available in a homogeneous machine, A

programming model must be found that is suitable to both envircnments,

1.2. Helated Efforts

A number of special purpose ensemble machines exist and many others
have been proposed [Kung78,Browning80,Seitz82]. The unit replicated in
these structures is typically a very small machine, either not programmable
or with so little program storage that one could not include a run-time
system to distribute work across the machine in execution. All such
decisions must be made by the programmer and/or compiler in advance of
execution. Machines of this type are highly specialized to and effective for
specific regular problems, such as, the manipulation of large matrices or

solutions to various graph problems.
The Torus [MartinB81] and the Homogeneous Machine of [LocanthiB0],

incorporate more complex processors have achieve a correspondingly

greater degree of generality. A concurrent programming notation, after the
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style of Hoare's CSP [Hoare7B], is proposed for the Torus machine and a
functional subset of LISP serves as the basis for Locanthi's machine. These
machines are general purpose to the extent that their programming
notations are suitable for application to various problems. In both of> these
machines, the communication between the processors is restricted to a
particular topology, hence the class of programs permitted by these
machines and their programming Vn‘otation is likewise resiricted.
Specifically, these two machines permit tree-like computation graphs.
Computations occur in the leaves of the hierarchy and the concurrent
compo>nents of the computétion are crealed and destroyed at the leaves,

expanding and contracting the logical graph of the computation.

The Actor model of programming bears many similarities to object
oriented programming and the Apiary machine of Hewitt [Hewitt80] is
centered about these concepts. The Apiary machine is a toroidial mesh of
processing elements that are each host to a number of Actors. The goals éf
the Apiary machine and the programming model of Actors are directed at a

general class of artificial intelligence problems.

1.3. Scope and Cutline

This thesis presents the ingredients necessary to a homogeneous
machine and e;n object oriented programming environment. Chapter 2
presents a programming model centered about object oriented
programming. Extensions and restrictions of existing object oriented
languages are presented which permit a hardware structure to support a
message passing programming model with concurrency. Chapter 3 presents
a new algorithm which enables the system to recover the resources occupied

by inaccessible objects. The algorithm is shown to scale satisfactorily with
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the size of the system. Chapter 4 addresses the requirements of the
underlying hardware structure. Various interconmection stralegies are
evaluated with respect to their performance and cost, with the conéhzsion
that a Boolean N-cube is attractive for the numbers of processors that might
be used. Both the garbage collection algorithm and the interconnection
topologies are evaluated by detailed simulation. In Chapter 5, topics related
to the support of object communication and preserving object locality are

addressed.

1.4. Conciusion

The conclusion of the thesis supports the contention that a highly
concurrent programming environment can be implemented in a
homogéneous machine. The use of a Boolean N-cube interconnection, the
program object metaphor and a distributed, on-the-fly garbage collection
algorithm provide a system which will have a level of performance that is
proportional to its size. Machines of very large sizes may be built to solve
large problems where concurrency is part of the solution program. The
general purpose nature of object criented programming makes this type of
machine as generally useful as conventional single processor machines, Ité
ability to provide more performance by adding more hardware and its low
per part cost due to its homogeneity make it a very good candidate as a VLSI

architecture in years to come,
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Chapter 2

Concurrent, Object-Oriented Programming

2.1. Introduction

This chapter presents a programming metaphor suitable for use with a
highly concurrent machine architecture. This prograrnming construct is
derived from the Simula class concept [Birtwhistle?3] and is related to
similar concepts in other programming languages such as CLU [Liskov?77],
Smalltalk [Ingalls78] and ALPHARD [Wulf76]. Many of the concepts of object
oriented programming have appeared in other languages, such as in the

Actor Systern [ClingerB1].

The machine architecture presented in succeeding chapters exploits the
concurrency expressed in programs by managing the execution of objects on
a collection of connected processors. The physical structure and
organization of the machine are transparent to the objects. Several
interconnection strategies may be used, however, some strategies will
perform better than others. The structure's appropriateness to applications
is evident only in its performance. Extensions to the physical structure can
be made indefinitely without modifications to the existing parts or to the
programming model of the machine seen by its users, Such expansions reéult

in increased performance for concurrent programs.

Other methods have been found to exploit concurrency. These methods

generally fall into two categories. First, machines have been presented
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which are designed to solve particular classes of problems very well. The
concurrency achievable in these machines is inherent in the algorithm or is
explicitly programmmed by the user. Examples of such machines are systolic
arrays {Kung?B] and the tree machine [BrowningB80]. Both of these ma‘chines
are well oriented to matrix operations. Sorting, searching and graph
problermns have also been adapted to the iree machine. Attention to the
details of the rigid hardware architecture make programming these
machines difficult. Moreover, problems that perform Weﬂ at one particular

size may not work at all if the size of the problem is increased.

The second category is what may be called reduction machines
[Berkling75]. The primary means of partitioning problems into concurrent
parts is the separate evaluation of the parameters of procedure calls. These
machines are typically directed at a particular language. The hormogeneous
machine described by [LocanthiB0] is based on LISP and derives much of its
advantage by concurrent evaluation of the CAR and CDR of LISP expressioné,
The machine presented in [Mago79] operates in a simpler but somewhat
analogous manner without the caching of LISP nodes proposed in the
Locanthi's machine. A reduction machine incorporrréting data flow conéépts

has been proposed [Treleaven80].

The Torus machine [MartinB1] makes use of a twisted toroid to support
the concurrent executioﬁ of procedure calls. The two procedures each run
in a neighboring processor and may themselves initiate additional
concurrent behavior. When a procedure returns its result it terminates and
is destroyed. A tree of concurrently executing procedures is mapped onto
the surface of a torus. A twist is applied to the torus in each dimension to

increase the duty cycle of the individual processors. The Torus machine is a
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member of a rare set of novel architectures that have been implemented.

The data-flow concept bears a close relationship to object oriented
programming. The operators and the topology of token flow between them is
fixed in static data-flow programs. The primary difference between object-
oriented and data-flow programming is that objects, which may be thought of
as operators, may be created and disposed of at a high rate and the
communication between them is of a dynamic topeology, while in a static
data-flow machine operators are typically long lived and communicate in a
fixed pattern. Machines proposed to execute data-flow programs such as
[Demnis74] and [Davis78] have an explicit concept of message passing
between program elements. In some cases, such as [ArvindB81] the data-flow
machines exhibit some similarities with reduction machines where recursive

procedures have been implemented.

Computer programs have traditionally been treated as single, albeit
large, sequential machines [Backus7B]. Most programming languages such
as FORTRAN, ALGOL and APL permit only a strictly sequential specification of
algorithms. This development is a natural one since the machines on which
such programs are run provide no additional benefits for program
specifications containing potential concurrency. Programming languages
have been available since the 1960s that allow the user to indicate
concurrency in programs {Simula 87), and since then others havé come into
being such as Concurrent Pascal [Brinch Hansen75]. Many ideas have been
offered to programmers to provide them with notations that include the
concept of concurrency such as in CSP [Hoare?B]. As arule, these languages
have addressed only the notational and semantic issues and have ignored any

notion of locality among program components,
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In several cases concurrent programming languages have presumed a
particular hardware environment where two or more processors have equal
access to a single memory. A number of machines of this type exist on the
market, which may explain some of the attractiveness of this environment.
However, we consider here a broader situation where the time required to
access data in the system is a function of the physical distance to the data.
This relationship effectively prevents the use of techniques such as shared
variables to implement program constructs like semaphores. Any type of
global variable is prohibited. To decrease the communication delay between
various objects,rthe dgstance between those objects will be made small.
Maintaining locality by moving data is possible only where the data is part of
an object and the object can be moved en maosse to increase its ability to
communicate with other objects. Moving data to increase locality is not
possible without the grouping of data and program code into ngat,
independent bundles like objects. With the object concept the user muét
partition programs into bundles of code and data providing the homogeneous
machine with the ability to retain locality among the objects at run time.
Without the preservation of locality, communication between program
components becomes so excessive thal comparatively little computation is

done,

Ideally, the languages in which programs are written should make the
specification of Ioc_ality both convenient for the programmer and a natural
part of the language syntax. Block structured languages such as Algol,
l;‘ascal and PL/1 approach this goal by imposing scoping rules on the
programmmer. Simula and Smalltalk go one more step and provide a
convenient means to associate data with program. The object construction

of these languages not only brings together related pieces of data but also
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identifies the program code which is to operate on that data.

2.2. Overview of Simula

Simula is a derivative of ALGOL 80, and as the name implies, is useful in
programming simulation problems. It is also a general purpoese language in
which a large body of code has been written for computer aided design,
system support and graphics applications. Simula uses a superset of ALGOL
B0 syntax with several important additions. Program data in Simula can
reside either on a stack, as in ALGOL, or in a dynamic memory area or heap.
The data items that reside in the heap are termed objects and are instances
of data type definitions. As references between and among objects are
changed under program control, a garbage collection procedure is used to

remove inaccesgsible objects and to compact the heap.

In this section we present some of the major features of Simula. A
famniliarity with the ALGOL programming language is assumed. A complete

description of Simula can be found in [Birtwhistle73].

The Simula object is the ‘basflc data abstraction mechanism of the
language. Objects are defined by CLASS declarations which are written by
the programmer to describe an entity that consists of local data and a set of
procedures. The procedures of the CLASS that are accessible to other
objects are called attributes and may be regarded as a set of operations
defined on objects of the CLASS. The name of the CLASS is regarded as the
name of a data type to which all instances of the CLASS belong. Objects are
instances of a CLASS declaration and are created explicitly with the NEW
statement. The local data is unique to each instance of the CLASS. The
procedure attributes of an object are code that is shared among all instances

of the object's CLASS. The reference variable is an atomic data type that can
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hold a pointer to an object. The name of the reference variable is used to
indicate the object to which the variable currently refers and is the means

by which the remote attributes of the object are invoked.

Simula supports a set of atomic data types consisting of integer,
Boolean, real and character variables, A representation for text and
operations on text are also included. In addition, arrays of the atomic data
types may be specified. User defined data types are termed CLASSes by
Simula and consist of a collection of variables and procedures. A reference
variable is a pointer that refers to a specific instance of a class. Reference
variables are declared to be of a specific type and can only contain pointers
to instances of a particular class or they may contain the null pointer
(NONE). The operator '":-" is used in Simula to assign a reference variable a
pointer. Objects may contain reference variables to other objects permitting
arbitrary data structures to be constructed. Listed below is a simple Simula

program.
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BEGIN
CLASS Point{x,y); REAL X,y
BEGIN
REF(Point) Next;

REF(Point) PROCEDURE Copy:
Copy :- NEW Point(x,y);

REF(Point) PROCEDURE Scale(r); REAL r;

BEGIN

X .= X*r;

y =y,

Scale ;- THIS Point;
END;

END of CLASS Point;
REF(Point) pt,ptlist;

pt :- NEW Point(1,5);
pt.Next :- pt.Copy;
ptlist :- NEW Point(2,6);

ptlist.next :- pt.Scale(10);
END;

In this program, class point is defined with 5 atiributes. The real
variables x and y hold the coordinates of the point. The reference variable
Next may hold a pointer to some other point so that a linked list of point
objects may be constructed. The procedure attributes Copy and Scale define
operations on point objects. Attributes of classes are invoked by using the
name of a reference variable followed by the name of the attribute separated
by adot ("."). Procedure attributes may or may not require parameters, and

they may return a value as shown here.

Within the block defining class point, procedures and their code may
reference data attributes as local variables as seen in procedure Scale.
Outside of this block, the scope rules make all the declarations of data and

procedures with class peint invisible except as attributes of point objects.

Instances of objects are created using the NEW statement. This

statement allocates space for the object in the heap and returns as its value
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o

a reference variable pointing to it. In the program, the reference variable pt
is assigned the value of a NEW statement. The attribute Next of the newly
created point is then assigned a pointer to another new point created using
the Copy attribute defined for point objects. At the end of the program the

data structure is as follows.

ptlist — Point{x=8,y=8,Next]

pt - > Point{x=10,y=50,Next}
Point{x=1,y=5,Next=NONE}

Classes can be defined with any attributes the programmer determines
are necessary. Instances of objects can be made and manipulated to
perform any task. An important characteristic of programs written in this
manner is that the code that operates on the data of a class instance is
identifiable and modular. The procedures Copy and Scale in the example are
shared by all instances of point objects. Thus, the existence of a point object

implies the need for the specific code associated with class point.

The type checking of Simula is strong, that is, all variables and
procedures are assigned a type and only legal operations are permitted
between various types, whether user defined or built-in. Simula permits the
relaxation of type checking with two features, subclasses and virtual
procedures.

Subclasses allow a hierarchical grouping of classes and permit the
definition of one class to inherit attributes from tile definition of another
class. A justification fbr subclasses is in [Ingalls78]. In the following example
class "person” is defined. Classes “man” and “woman’ are defined as

subclasses of "person'.
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BEGIN
CLASS Person(Name); TEXT Name;
BEGIN
I Attributes of Person ;
END of CLASS Person;
Person CLASS Man,
BEGIN
I Attributes Unique to Man ;
END of CLASS Man;
Person CLASS Wemnan;
BEGIN
! Attributes Unique to Woman ;
END of CLASS Woman;

END;

Instances of all three classes are regarded as instances of "Person' in
type checking. Therefore. a reference variable of type "Person" rmay contain
a pointer to objects of any of these three classes. Also, any attributes
defined in "Person” are also part of "Man" and "Women". Where conflicts
arise in the names of attributes, the declarations of the subclass override
those of the superclass. The scope of the code in a subclass includes the
corresponding block level in the superclass. That is, the procedures and
data declared in the attributes of "Person" are visible to the code in the

"Man' and "Women'' definitions.

When a class hierarchy is constructed, the attributes have fixed
meanings using the subclass mechanism shown in the example. it may be
desirable to permit the definition of a subclass to redefine attributes that
would otherwise be inherited from its superclass. IL may also be desired to
give the superélass acéess to the attributes of a subclass, based on the exact
class membership of an object at run-time. The Simula VIRTUAL mechanism
provides these abilities as another method of relaxing the otherwise rigid

typing and scoping rules.
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Briefly, the virtual mechanism consists of declaring one or mmore
attributes of a class to be VIRTUAL but without actually defining the
attribute. Subclasses may define or redefine the attribute name, though
such definitions and declarations must match the type of the VIRTUAL
attribute. When a virtual attribute of an object is invoked, the attribute
definition of the lowest subclass to which the object belongs is used. This is
in contrast to using the class of the reference variable to determine which

set of attributes are applicable,

2.3. Extensions for Concurrency

Simula objects are modular with regard to both their data and their
code. The user definitions of Simula CLASSes partition data with the
procedures that will modify the data, making objects that are modular and
independent except wherev they interact with other objects. The dot operator
(".") is used to invoke the attributes of objects in Simula. When an object

attribute  is invoked a message is sent to the object containing any

parameters required by the attribute.
pt.Scale(R);

This Simula statement can be interpreted as the sending of a message to the
object referred to by pt containing the name "Scale" and the value of the
parameter R. The analogous operation in Smalltalk is actually presented by
Ingalls as message passing. If objects can then stand alone with their own
code and data and have the ability to send and receive messages from other

objects, they can execute concurrently.

Simula comes equipped with its own facilities for concurrency. These
are the RESUME and DETACH statements and are used, in conjunction with

other Simula features, to provide the simulation facilities for which Simmula
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was originally intended. These two commands implement a context switch
between Simula objects. Objects each have their own stack and "program
counter”, thus permitting program control to be transferred from one to
another just as jobs are multiplexed in a time shared system. The RESUME
command suspends the execution of the current object and resumes
execution of a named object from where it was last suspended. The DETACH
cornmand suspends the current object and resumes the main program.
These features provide no synchronization mechanisms and require very
detailed attention by the programmer. Also, locality and modularity are
degraded by these facilities. It is clear that the intention of these features
was to support simulation and not concurrent programming. Simula does
provide each object instance with its own stack so that the execution of each
object may utilize recursion and block structuring as would any Algol-like
progrém. While the RESUME and DETACH facilities may be unsuitable for the
purposes here, concurrent execution does require that each object contaiz;,

as part of its state, a stack of display records.

Objects communicate by invoking the attributes of other objects. To
permit objects to be located in physically separate processors, the action of
invoking an attribute in an object and receiving a result must be
implemented by message passing. All communication between objects is via
a message passing facility. The hardﬁrare facilities and the run time system
of the homogeneous machine implement the passing of messages between
objects. The following characteristics of this message passing system are

assumed.

(1) Messages sent concurrently by different source objects but intended for

the same destination object arrive at the destination in an arbitrary
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order.

(2) Successive messages sent from a particular source object to the same
destination object arrive at the destination object in the order they are

sent.

(3) Meésages received by an object are received whole. Any assembly of

pieces of the message is transparent to the recipient.

(4) All messages will eventually reach their destination and need never be

retransmitted. All error handling is transparent to the objects.

(5) Messages received by an object are assured of being intended for that

object. An object will not receive fnessages not intended for it.

(6) The only prerequisite needed to send a message to an object is that the

sender have a reference variable identifying the object.

Objects are self contained and may execute concurrently. Given
independent cobjects which communicate via a message passing mechanisrﬁ,
we propose a model of concurrent programming for the object-oriented
environment. The extensions take the form of conventions placed on the
passing of message between objects. Means are introduced whereby objectsv
may execute concurrently, as well as synchronize with the completion of the
activities of other objects. The original semantics of Simula remain in effect,
except where the added conventions of message passing are felt. In a
succeeding section restrictions are placed on the language to prevent the

expression of programs that would require global communication.

The activation of an object attribute sends a message to the object and
may initiate concurrent execution between the sender and the receiver. The
following program segment will cause the object executing this code and the

vector object pointed to by Vec to execute concurrently.



-24-

Vec - <expression returning a pointer to a vector>;

Vec.sort;
a:=b+cg

The syntax of Simula indicates that no result is expected for the statement
“Vec.sort” and the execution of the sort operation by the vector object may
proceed independent of the requester. Thus, the reguester will go on to
execute the assignment of “a” while the vector object sorts its elements. In

the program segment below, a resull is expected by the requester.

Vec - <expression returning a pointer to a vector>;

e ;= 'Vec.elemt(i);
a:=b+c;

In this example, the syntax indicates that the value of an object attribute is
required by the requester. The requesting object is then made to wait until
the result is sent in a response before executing the assignment of the result
to “c" and then the assignment of "a". If "Vec.elemt(i)" is present in any
context where a result is expected, such as in the assignment above, or as a
parameter or in an expression, the object making the request of the vector
will stop all execution until the vector has responded with a value. When the

response has arrived, the requestor has then been synchronized with the

activities of the vector object.

The termination of an attribute at a destination object may send a result
which is received by the original sender as the Valué of the attribute. An
object attribute returns a result using the syntax and semantics of returning
a value from a procedure. There is, however, one difference. As shown

above, the requesting object may not require a result even though the
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attribute requested may be defined to return a result. The syntax and
semnantics of Simula indicate whether or not one is required by the requester
and the requester makes this known to the destination object in its message.
Thus, if the requester's message indicates that no result is required, then the
destination object will not send a result regardless of the destination object’s
definition.

The messages received by an object are acted upon one at a timme. This
restriction is severe, and is a different choice than was made for the Actor
model [ClingerB1], but permits a simplified programming style where many

of the details of concurrent programming are hidden.

The restriction that only one message may be acted upon at a time
provides several important characteristics for the objects. First, it insures
that the data of an object is "guarded". That is, the code that might modify
it is a "critical region” and there is "mutual exclusion” among those
attributes that might change it. The concepts of critical regions and mutual
exclusion are synchrom’zétions that must be available in concurrent
programs to insure a particular behavior by the program. Permitting only
one attribute of an object to be executed at a time prevents the modification
of the object’s state by another attribute in ways that programmer did not
specify.

Messages are queued for each cbject attribute in the order in which they
arrive. When the object has finished executing the attribute associated with
one message, it may then begin the execution of the actions associated with
the next message in any of the object's attribute queues. The selection of
the attribute queue from which to take a message is arbitrary unless the

selection is controlled by the specification of the object's class. If all the
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attribute queues are empty, the object waits in an idle state for a message.
A message would typically contain a set of actual parameters supplied by
another 'object which holds a reference variable identifying the objAect in
question. If the originator of the message and the definition of the attribute
require ‘a result to be sent to the originator, the transmission of the result

occurs when the execution of the atiribute terminates.

The transmission of a message to an object is caused by the activation of
an attribute of an object referred to by a reference variable. The
transmission of a result is caused by the termination of the attribute of the
object where a result is defined for the attribute and required by the
originator. The syntax of these operations is the same as that used in
conventional Simula for the invocation of attributes and for returning values
from procedures. This is in contrast to the CSP notation [Hoare78] where
the "?" and "I" operators are used explicitly to receive and transmit from and
to named communication channels. The channels between CSP prografn
components must be declared ‘and both the sender and receiver must be
executing the output and input operators, respectively, for the

communication to take place.

One new language feature is added to Simula to permit the programmer
to control the otherwise arbitrary selection of attribute queues. The SELECT
statement is made part of an attribute declaration where seleétion of
messages from the associated message queue are to be conditional. If no
SELECT statement is present in the attribute deélaration, the attribute may
be arbitrarily selected whenever an attribute terminates and there is a
message waiting in the attribute's queue. If present, the SELECT statement

takes a Boolean expression as an argument. The attribute is left out of the
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arbitrary selection when the value of the expression is false. An arbitrary
selection is made among those attributes for which there are messages and
whose SELECT expression evaluates as true, or for which there is no SELECT
statement. The Boolean expression may contain any of the relational and
logical operations of the language and may contain references to any of the
object's local data itemns. In addition, the expression may use the names of
attributes. Where the names of attributes appear in the expression, they
have a value of true when the message queue of the named attribute is non-
empty, the value is false if the queue is empty. Examples of the SELECT
statement can berseen in the Gaussian elimination example in a succeeding
section. This statement is the only feature added to the syntax of Simula for

the purposes of concurrent programming.

The restriction that only one message may be removed from the
attribute queues and acted upon at a time provides a synchronization with
other objects. In addition, due to property (2) of the message passing
system, an object sending a message to another object is assured that all
other messages that have been sent in advance will be received, and further,
all other messages invoking the same attribute will have been acted upon
when it receives a response to its message. This use of a FIFO as a message
queue for each attribute is a means of controlling the non-determinism
introduced by the arbitrary ordering of the message passing system. The
selection of which attribute is to be executed when there are messages
waiting in several attribute queues may be controlled by the programmer
with the SELECT statement where a completely arbitrary choice is

undesirable,
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Objects ﬁay activate tasks in other objects without suspending their
own execution. Synchronization between concurrently executing objects
takes place when the originator again sends a message to the "slave" object.
Since the “slave” object must finish the previous, selected task before acting
on the new message, any response by the "slave” object indicates the
completion of all previous tasks as selected by the "slave” object. Of course,
the originating object may wait on an initial response from the object, thus
precluding any opportunity for concurrency, or having once initiated a task
in another object, the originator may never synchronize with the "slave" but

may indirectly cause a third party to do so.

To preserve the sequence of operations programmed in the objects, one
proviso must be added to the initiation of concurrent behavior. While an
object sending a message to another object for which no response is
indicated need not wait for execution of the attribute, it is necessary that
the message be put in the attribute queue of the destination object before
another message is slent by the originator. Property (2) of the message
passing system is intended to assure, however implemented, that any
messages that might be sent to the destination object as a result of further
execution byb the originator will be acted upon after the first message or
under control of the attribute selection logic. Thus, the sequence of

operations as specified by the progr'ammer is preserved,

An example of these types of interactions between objects is often found
in an object containing a vector (or array) of other objects. After loading the
vector object with references to various other objects, the controlling object
or an object to which a reference to the vector has been passed may instruct

the vector to sort itself. Since this operation does not require a result to be
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produced immediately, the controlling object may go on about its business
until it requires an element of the sorted vector. Any object reguesting a
particular element of the vector will be made to wait until the vector has
completed the sort, if in the vector object a SELECT statement is used to
prevent the selection of requests for elements when a sort request is
present. Any requests for elements made after a sort request is placed in
the sort attribute queﬁe will not be executed until after the vector is sorted.
At the completion of the sort the vector object will service a new message
fromr its attribute queues. By sending the a response for an element request
containing trher 7dresirréd élement, tﬁe requesting obje?:t is released for further
execution. In this way, any nummber of objects which hold handles referring

to the vector are synchronized with the completion of the sort.

Of course, no guarantees are made as Lo which of several messages from
independent objects will arrive first at the vector object. Non-deterministic
behavior, resulting from races between objects, is certainly possible. The
programmer is responsible for insuring that objects which expect the vector
to be sorted dd not make requésts before the vector begins the sort
operation. The programmer is assisted in maintaining this sequencing by
using SELECT to assure that all execution following the lransmission of the

sort message to the vector will find the vector to have been sorted.

The opportunities for concurrency presented here are explicitly
programmed. Additional implicit concurrency can be had if objects that
would otherwise wait for the response to a message continue execution until
the response is actually required by the program code. In some cases, the
parameters to procedure calls could be evaluated concurrently since

procedures cannot be entered until all of the actual pérameters are present.
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These types of optimizations by the compiler or interpreters are not
expected to be a major factor in the benefits provided by this type of
distributed architecture but are available to compiler writers. The "futures"

construct of the Actor system [Hewitt77] is based on this idea.

To add -concurrency to an object-oriented language we have merely
changed the semantics of invoking an object attribute. Instead of calling a
procedure defined in the object's class definition, we send the object a
message. If a value is required from the attribute, execution is suspended
until it is available. This situation will appear the same as if a procedure had
been called in a conventional language. If no response is required, execution
continues. The object at the destination may continue or begin execution as
well. Synchronization between the objects is accomplished by the message
passing mechanism. The attribute FIFOs or queues insure mutual exclusion

between the various attributes of the object.

2.4. Restrictions to Limit Global Communication

To enforce a degree of locality among the objects and data of a program,
some modifications to the scoping rules and construction of programs are

required.

ALGOL scoping rules permit program code to access any data declared
in any textually enclosing block. In Simula, for instance, data declared at
the highest level are visible and can be manipulated by all code in the
prograrﬁ, including the code internal to class definitions. Such global
variables cannot be permitted in a distributed machine of the type discussed
here. Nof only would their access require excessive communication but they
would be lacking the synchronization required to support reliable concurrent

behavior. Without synchronization between the concurrent objects,
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medifications and accesses to global variables would have no controlied
sequence making deterministic program behavior difficult if not impossible.

Therefore global variables cannot be permitted.

The message passing model for objects requires that all data related to
the execution of an object be either part of its internal state or arrive as part
of a message. This model does not allow for the direct access to global
variables provided in conventional languages. It also does not ailow the
internal state or data attributes of objects to be directly accessed as
permitted by Simula. As a result, only procedural attributes of objects are
accessible to other objects and all access and modifications to the data

attributes must be accomplished using the procedural attributes.

To avoid global variables and other nonlocal access to data, the following
restriction is made. Variable declarations may be made only within the body
of a CLASS declaration. Further, variables declared are visible only within
the immediately enclosing CLASS declaration. In other words, variables are
declared only within objects and may be accessed directly only by the code

defined as part of that object.

The passing of parameters to object attributes must likewise be
restricted. To provide the destination object with the data required by its
attributes, all parameters to attributes must be passed by value. Passing
parameters by reference and by name would result in a loss of locality,
where the data required by the object could reside at some other location in
the system. If, for example, an array is a parameter to an attribute, the
contents of the array must be incorporated in the message to the object
attribute. In the case of reference variables, the value of the reference

variable is transmitted, however, the value of a reference variable is the
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actual pointer to an object. The restriction that parameters be passed by

value thus permits the passing of pointers to objects in messages.

Class definitions can be nested to any depth, and normal scoping rules
apply to the class names. The scoping of data does not permit access across
class boundaries. The definition of procedures can cross class boundaries
only if the prooedure restricts ils access to its own local variables and
parameters. Procedures that manipulate internal class data cannot be
called from other classes as these accesses would have same problems as
global variables. Of course, the definition of a subclass may access all the
data and procedures defined in the superclass as though the code of the

subclass were actually within the body of the superclass.

Instances of objects can be seen to be a subset of the concept of a
distributed process [Brinch Hansen78]. Objects may execute concurrently
as do distributed processes and they communicate via message passing.
Distributed processes communicate and synchronize by procedure calls and
guarded regions. The message passing of objeéts is made to appear as
procedure calls and the attributes of the objects are mutually exclusive,
implementing a set of guarded regions for each object. Like an object. a
distributed process may access only its own variables. Unlike distributedl
processes, o-bjects cannot be interleaved, meaning that the attributes of an
object cannot be used concurrently as can external requests of distribﬁted
processes. Objects are less genefal in ﬁature than distribuf;ed processes
with the intention that objects be better suited to execution in a

homogeneous machine.

To é.llow objects to be distributed among many processors and their

memories, we have restricted their definition such that all access to an
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object by other objects is exclusively through a message passing facility.
Direct access to an object's internal data is therefore prevented. An object
may manipulate its own data or it may send messages to other cbjects to
indirectly affect their data. If one or more variables must be ”sharezi" by a
number of objects, then the variables may themselves be contained in an
object and a pointer to the object can be given to all those objects that
require access to the variables. In this way, all the techniques of sequential
ianguages can yet be used but are made to fit within the distinct boundaries
of objects. In exchange for these restrictions, concurrency is made available
and caﬁ be _tél;eﬁ advantage ”c;f withéﬁt explicitly sp;acifying critical regions,

semaphores or other types of synchronization mechanisms.

2.5. Concurrent Programming Examples

To illustrate the usefulness of the modified version of Simula described

above, several example concurrent programs are presented.

2.5.1. Two Dimensional Shapes Clipping

One of the most common tasks of interactive graphics programs is the
display of two dimensional shapes on a plotting device. In the process 6f
djs_pléymg shapés, ‘thev shapes must be transformed and clipped to fit the
space and coordinate system of the plotter. The clipping of shapes is the
procéss of removing those parts of the ﬁgures that fall outside of the plotting
window. The plotting window is a rectangle denoted by upper and lower

bounds in the Y dimension and right and left bounds in the X dimension.

In this example, the task of clipping is pipelined into four concurrent
objects. Various sequential algorithms exist to perform fast clipping

[Newman?9]. These algorithms have been highly optimized for single
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sequential mabchines. In the example here, a brute force technigue is used
where each of four objects clips line segments against one of the four sides of
the window. Each of the four objects performs a simpler task than the single
sequential \methods, and since the four objects are pipelined and rMng
concurrently, the effective rate at which line segments are clipped is greater

than the sequential method, if other factors remain equal.

In the example, a Window object is defined. The initialization attribute
(Init) constructs a linear list of four Clipper objects. At the end of the list is
a pointer to the plotting device which is not defined here. It is assufned that
the plotting device has a attribute which plots the line segments. When the
Clip attribute of the window object is invoked by another object holding a
pointer to the window, a list of line segments is sent to the window which the

window then puts through the pipeline of Clipper objects.

The Clipper objects each have their own Val variable which is the lirnit
that they clip line segments to. They also may have a reference variable to
either a plotting device or the next clipping object in the pipeline. In this
example, only one of the clipping attribufes are used in each of the four
clipping objects. The window invokes ClipAbove in the first clipper, then the
first clipper may invoke ClipBelow in ihe second, and so forth until the last

clipper object invokes an attribute of the piotting device,

FEach Clipper object receives line segments from its successor in the
pipeline. Tt performs some simple tests to determine if the line segment is
fully on cne side or the rot‘ﬁer of its limit, If the line is totally outside of the
window limit, then the clipper attribute terminates and will go on to process
the next line segment. If the line segment is completely on the other side of

the limit, then it passes it on intact to the next clipper object, or to the
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plotter. If the line segment straddles the limit, then a new line segment is

computed and sent on to the next clipper.

In every case where a line segment is sent via an attribute to a clipper
object or to the plotting device, no response is called for, pernﬁtting
concurrent execution of all the objects in the pipeline. Thus, line segments
can be "pumped” through the pipe at a rate determined by the slowest of the

objects.
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Window:;

CLASS Clipper;
BEGIN

! Data of Clipper Objects;
REAL Val;

" REF(Clipper)NextClip; ! Next Clipper in Pipeline ;

REF{Plotter)PlotDevice;
! Attributes of Clipper Objects ;

REF(Clipper) PROCEDURE Init(InitialVal,InitialNext,InitialDev);
REAL InitialVal; REF(Clipper)InitialNext; REF(Plotter)InitialDev;
BEGIN '

Val := InitialVal;

NextClip :- InitialNext,;

PlotDevice :- InitialDev;

Init :- THIS Clipper;
END of Init;

PROCEDURE ClipAbove(X1,Y1,X2,Y2); REAL X1,Y1X2.Y2;
IFYi>Val OR Y2>Val THEN BEGIN
IF Y1>Val AND Y2>Val THEN NextClip.ClipBelow(X1,Y1,X2,Y2)
ELSE BEGIN
REAL NewX;
NewX := X1+(Val-Y1)*(X2-X1)/(Y2-Y1)
IF Y1>Y2 THEN NextClip.ClipBelow(X1,Y1,NewX,Val)
ELSE NextClip.ClipBelow(X2,Y2,NewX, Val);
END;
END of ClipAbove;

PROCEDURE ClipBelow(X1,Y1,X2,Y2); REAL X1,Y1,X2,YR;
IF Y1<Val OR Y2<Val THEN BEGIN
IF Y1<Val AND Y2<Val THEN NextClip.ClipRight(X1,Y1,X2,Y2)
ELSE BEGIN
REAL NewX;
NewX := X1+(Val-Y1)*(X2-X1)/(Y2-Y1)
IF Y1<Y2 THEN NextClip.ClipRight(X1,Y1,NewX,Val)
ELSE NextClip.ClipRight(X2,Y2,NewX,Val);
END; T '
END of ClipBelow;

PROCEDURE ClipRight(X1,Y1,X2,Y2); REAL X1,Y1,X2,Y2;
IF X1>Val OR X2>Val THEN BEGIN
- IF X1>Val AND X2>Val THEN NextClip.ClipLeft(X1,Y1,X2,YR)
ELSE BEGIN
REAL NewY;
NewY := Y1+{Val-X1)*(Y2-Y1)/(X2-X1)
IF X1>X2 THEN NextClip.ClipLeft(X1,Y1,NewY,Val)
ELSE NextClip.ClipLeft(X2,Y2,NewY,Val);
END;
END of ClipRight;
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PROCEDURE, ClipLeft(X1,Y1,X2,Y2); REAL X1,Y1,X2,Y2;
IF X1<Val OR X2<Val THEN BEGIN
IF X1<Val AND X2<Val THEN PlotDev.Plot{X1,Y1 X2, YR)
ELSE BEGIN
REAL NewY,;
NewY := Y1+{(Val-X1) *(YB—YlB /(X2-X1)
IF X1<X2 THEN PlotDev.Plot{X1,Y1,NewY,Val)
FELSE PlotDev.Plot(X2,Y2 NewY,Val);
END;
END of ClipLeft;
END of CLASS Clipper;

! Data and Attributes of Class Window ;
REF(Clipper)Clp; ! Reference to the head of the Pipeline ;

REF(Window) PROCEDURE Init(PlottingDevice, RightLimit,LeftLimit,
UpperLimit,LowerLimit);
REF(Plotter)PlottingDevice;
REAL RightLimit,LeftLimit, UpperLimit,LowerLimit;
BEGIN
! Set up Pipeline of Clipper Objects ;
Clp :- NEW Clipper.Init{RightLimit, NONE, PlottingDevice);
Clp :- NEW Clipper.Init{LeftLimit,Clp,NONE);
Clp :- NEW Clipper.Init(UpperBound,Clp,NONE),
Clp :- NEW Clipper.Init(LowerBound,Clp,NONE);
Init :- THIS Window,
END of Init;

PROCEDURE Clip{(Vec): REF(Vector)Vec;
BEGIN
INTEGER 1, Len;
REF{Segment)Seg;
Len := Vec.Length;
| Take a list of line segments and put then into the ;
! Clipper Pipeline. Actually, handing the list to the ;
I Clipper would be better but less instructive. ;
FOR I:=1 STEP 1 UNTIL Len DO BEGIN
Seg :- Vec.Element(I);
Clp.ClipAbove(Seg.X1,Seg.Y1,Seg X2,5eg.Y2),
END;
END of Clip;

END of CLASS Window;

The example is not only conventional and simple in appearance but is also a
valid sequential program. If concurrency were not available and the
invocation of object attributes were implemented in normal Simula, this

program would still work as indicated. The model of concurrency proposed
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for Simula thus permits the concurrent specification of this algorithm with

enough sequential constraints to insure deterministic behavior,

2.5.2. Correlation

Correiation of digital signals is an operation commonly performed in
signal processing applications. In many cases, the intention is to find a
measure of how similar two signals are to each other. The recognition of
radar images and speech are typical applications. The correlation of two

sequences, z and y for delay d is given by the equation below.

1 N-d
Fy = N_dtzzjlzt'ynd

Where:

N = Number of samples in =z andy
d=0---m-2m-1m
The sequence K is the correlation of z and y for delays from 0 to m., ft
is clear that each element of K can be computed independently and hence
concurrently. If we wish to correlate some input signal z with and number of

different y patterns, these computations may be done in parallel as well.

In the following example, we have several sequences y to be correlated
with an input sequence z. For some m we wish to determine the sequence y
with the greatest value of Fy. This result would indicate which sequence ¥y

best matches z and with what delay d.

A class SingleCorrelate is defined which will compute #; for z and some
vy for a given d An object of class MultiCorrelate creates a SingleCorrelate
object for each sequence y in a list of sequences and for each delay value
desired. The MultiCorrelate object reﬁains no references to the

SingleCorrelate objects but instead gives each SingleCorrelate object a
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reference to itself. When the SingleCorrelate object has computed its Ry it
invokes the Take atiribute of the MultiCorrelate object to send its answer.
The Take atiribute tests the answer and records it if it is the largest recelved
up to that point. It also decrements a counter which indicates how many
answers are yet oulstanding. When all answers have been received, the
variable AnswerReady is set true to show that the answer is valid. A graph

showing the object structure used in this computation is found in Figure 2-1.



._40-

MultiCorrelate | __
Object
Single €orrelate
Objects
Spawn :
SingleCorrel 4
Objects
N
N
L\\ i
12
Wait for be
Results to
be received
i
Figure 2-1

Object Structure for Correlation
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CLASS MultiCorrelate;
BEGIN

CLASS SingleCorrelate;
BEGIN

REAL ARRAY'Y;
INTEGER Delay;
REF(MultiCorrelate)AnswerTo;

REF(SingleCorrelate) PROCEDURE Init{RefSig, SendAnswer,InitDelay);
REAL ARRAY RefSig; REF(MultiCorrelate)SendAnswer;
BEGIN
Y :- RefSig;
AnswerTo :- SendAnswer;
Delay := InitDelay;
Init :- THIS SingleCorrelate;
END of Init;

PROCEDURE CorrelateWith(X);

REAL ARRAY X;

BEGIN
REAL R,
INTEGER LL;
L := X Length-Delay,;
FORI:=1 STEP 1 UNTILL DO R := R + X[I] * Y[I+Delay};
AnswerTo.Take{R/L);

- END of Correlate;
END of CLASS SingleCorrelate;

! Data variables in which to hold the answer ;
INTEGER SelectY,SelectDelay;

REAL Answer;

BOOLFEAN AnswerReady;

REF(MultiCorrelate) PROCEDURE CorrelateAll(X, ListOfY M);
REAL ARRAY X: REF(Arraylist)ListOfY; INTEGER M;
BEGIN

INTEGER I,

Count := M * ListOfY.Length;

Answer := -Infinity;

AnswerReady := FALSE;

FOR I:=1 STEP 1 UNTIL ListOfY.Length DO BEGIN

FOR J:=1 STEP 1 UNTIL M DO
NEW SingleCorrelate
Int(ListOfY.Element(I), THIS MultiCorrelate,J)
.CorrelateWith(X);

END of FOR; ,

END of CorrelateAll;

PROCEDURE Take(R,M,WhichY); REAL SomeR; INTEGER M, WhichY;
BEGIN :
Count := Count - 1;
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IF R>Answer THEN BEGIN
Answer = R;
SelectY := WhichY;
SelectDelay := M;

END;

IF Count=0 THEN AnswerReady := TRUE;

END of Take;
END of MultiCorrelate;

As in the previous example, this program also performs properly if
executed sequentially. Here an object has been created for every basic loop
of the correlation function. Such a technique could potentially create very
large numbers of objects. If more objects are created than there are
processbfs available, then the execution time of the problem will increase in

proportion to the number of excess objects.

2.5.3. Gaussian Elimmination

The last concurrent programming example is an implementation of a
Gaussian elimination algorithm due to [JohnssonB1]. In this algorithm, an
array of computing elements is used to transform a banded matrix into an
upper triangular matrix where all the lower triangular elements are zero.
Other concurrent matrix algorithms have been proposed for direct
implementation in hardware such as the systolic array algorithms of
[Kung?B]. This type of computation is akin to data flow machines where a
fixed interconnection of computing elements operates on streams of input
data. The computing elements used in these machines are typically small,
containing arithmetic hardware such as multipliers and dividers and a
number of bytes of étate.

The Cpmputational array of [JohnssonB1] goes on to provide the facilities
necessary to solve a set of simultaneous equations. Figure 2-2 is a diagram

of the complete array. The cells at the far left of the array and at the very
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bottom produce the solution to the equations. The remaining portion of the
array takes streams of matrix elements from above and from the right and
produces the upper triangular matrix in the stack cells near the bottom.

The elements labeled with a Z in the diagram denote registers.



Figure 22

Computational Array for Gaussian Elimination
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In the following example program, we implement the Gaussian
elimination portion of the array. This problem differs substantially from the
foregoing examples because the concurrent objects must accept not one
stream of input messages but several and yet maintain i their
synchronization. The SELECT statement is used to cause the objects to
accept the input of the specific data elements only when that data element is
lacking. Like a data flow operator, each object waits until it has all the
inputs it expects and then "fires". When it fires it computes its outputs and
sends them to its neighboring cells in the array.

In the implementation here, some liberties have been taken with the Z
elements. In the program, these delay or storage elements are placed in the
cells such thaf each cell uses the current inputs and never the previous
inputs. The dotted line in Figure 2-1 shows the contents of each type of cell.
Also, to avoid unnecessary complexity in this example, the extraction of the

upper triangular matrix from the stacks is omitted.

In the example below, a super class Cell is defined. The attributes of
Cell are Ainherited by each of its subclasses CenterCell, SideCell, StackCell
and InputCelL It also defines the virtual procedure TryToFire which is te be
found in each of the subclasses. Not all of thé subclasses will make use of all
the attributes of class Cell. Oth_ef than the Init attribute of Cell which sets
the ogjects pbinters to its neighbors in the arréy, the other sttributes are
defined for passing data values. When a Cell object receives a data value, it
saves it, sets a flag and tries to kﬁre. The SELECT statement prevents more of
the same data itemn from being accepted until the object actually fires and
resets the flags. If the object has all the values it requires then it does fire.

When it fires, it clears all its flags and then waits for more messages.
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Aside from the objects visible in Figure 2-1, an InputCell class is also
defined to provide input data to the top and right sides of the array. These
objects contain a stream of input data set up by another program object.
The streams must contain enough ""dummy" data values at the end and ‘at the
beginning to cause all the real data in the array to be pushed into the

StackCell objects as the Gaussian elimination process completes.
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CLASS GaussElim;
BEGIN

CLASS Cell;

BEGIN
VIRTUAL: PROCEDURE TryToFire;
BOOLEAN Haveleft,Havel.ower, HaveDiag;
REAL Left,Lower,Diag,;
REF(Cell)LeftCell,RightCell, UpperCell, LowerCell,
o UpDiagCell, LoDiagCell;

PROCEDURE Init{1t,Rt,Up,Lo,Ud,Ld)
REF(Cell)Lt,Rt,Up,Lo,Ud Ld;
BEGIN
' Haveleft := HaveLower := HaveDiag := FALSE;
LeftCell - Lt;
RightCell :- Rt;
UpperCell :- Up;
LowerCell :- Lo;
UpDiagCell :- Ud;
LoDiagCell :- 1d;
END of Init;

PROCEDURE Takeleft(Val); REAL Val; SELECT (NOT Haveleft);
BEGIN

Left ;= Val;

Haveleft := TRUE,

TryToFire;
END of Takeleft;

PROCEDURE TakeLower(Val); REAL Val; SELECT (NOT HaveLower);
BEGIN

Lower :=Val;

HaveLower := TRUE;

TryToFire;
END of TakeLower;

PROCEDURE TakeDiag(Val); REAL Val; SELECT (NOT HaveDiag);
BEGIN :

Diag := Val;

HaveDiag := TRUE;

TryToFire;
END of TakeDiag;

END of CLASS Cell;

Cell CLASS CenterCell;
BEGIN

PROCEDURE TryToFire;

IF Haveleft AND HaveDiag AND HaveLower THEN BEGIN
Haveleft := HaveDiag := HaveLower := FALSE;
RightCell. Takeleft(Left);
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UpperCell. TakeLower({Lower);
LoDiagCell.TakeUpper(Diag-Left*Lower);
END of TryToFire;

END of CLASS CenterCell;

Cell CLASS SideCell;
BEGIN

PROCEDURE TryToFire;

IF HaveDiag AND Havelower THEN BEGIN
HaveDiag := Havelower := FALSE,;
RightCell.TakeLeft(Diag/Lower);

END of TryToFire;

END of CLASS SideCell;
Cell CLASS StackCell;

BEGIN
REF(Stack)Stk;

REF(StackCell) PROCEDURE SetStk(S): REF(Stack)S;

BEGIN Stk :- S; SetStk :- THIS Cell; END;

PROCEDURE TryToFire;

IF HaveDiag THEN BEGIN
HaveDiag := FALSE;
UpperCell.TakeLower{Diag),
Stk.Push(Diag);

END of TryToFire;

END of CLASS StackCell;

Cell CLASS InputCell;

BEGIN

" REF(Vector)Stream;
INTEGER I,

PROCEDURE Go(S); REF(Vector)S; BEGIN
BEGIN
Yo 1i=0
Stream :- S;
Havelower := TRUE,;
END of Go;

PROCEDURE TryToFire;
IF HaveLower OR LowerCell==NONE THEN BEGIN
HaveLower := FALSE;
IF Stream.Length>] THEN BEGIN
I:=1+1,
LoDiagCell. TakeDiag(Stream.Element(1));
END;
END of TryToFire;
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END of CLASS InputCelj;

REF(GaussElim) PROCEDURE Init(N,M,V); INTEGER M,N; REF(Vector)V;
BEGIN
REF(Cell) ARRAY A[O:N+1,0:M+1]
INTEGER LJ;
FOR I.=0 STEP 1 UNTIL N+1 DO BEGIN
' FOR 1.=0 STEP 1 UNTIL M+1 DO BEGIN
IF J=0 THEN A[1,J] :- NEW InputCell
ELSE IF J=M+1 AND I<N+1 THEN
A[1,J] :- NEW StackCell. SetStk(NEW Stack)
ELSE IF I=0 THEN A[I,JP - NEW SideCell
ELSE IF I=N+1 THEN A[1,J] :- NEW InputCell
ELSE IF I<N+1 THEN A[1,J] :- NEW CenterCell;
END; '
END;
FOR I:=0 STEP 1 UNTIL N+1 DO BEGIN
FOR J:=0 STEP 1 UNTIL M+1 DO BEGIN
IF J=0 AND I>0 THEN
A[1,J].Init(NONE, NONE,NONE, A[1,J+1],NONE,A[I-1,J+1])
ELSE IF J=M+1 AND I<N+1 THEN
A[1,J].Init(NONE, NONE, A[1,J-1], NONE, A[1+1,J-1], NONE)
ELSE IF [=0 THEN A[1,J]
 Init(NONE,A[1,J].A[1,J-1].A[1,J+1],A[1+1,J-1]. NONE)
ELSE IF I=N+1 THEN
A[1,J].Init(NONE, NONE,NONE, A[1-1,J], NONE, A[1-1,J+1])
ELSE JF I<N+1 THEN
A[1,3].Init(A[1-1,0],A[1+1.9],A[L,J-1],A[1,J+1],
A[T+1.0°1],A[1-1,3+1]);
END;
END;
FOR I:=1 STEP 1 UNTIL N DO A[1,0] QUA InputCell.Go(V[I]);
FOR J:=1 STEP 1 UNTIL M DO A[N+1,J] QUA InputCell. Go{V[J+N]);
END of Init; '

END of CLASS GaussElim;

The Init attribute of class GaussElim constructs an array of Cell objects.

It first creates the objects, putting pointers to them into an array. It then

makes anothe.r pass through the array initializing the Cell objects with

peinters to their heighbors. Then the InputCell objects along the upper and

right sides of the array are each given a stream of input data permitting

them to begin pushing the data into the array. After all the data in the

streamns is exhausted, the upper triangular matrix is stored in the StackCell

objects along the bottom of the array.
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When the array cells are initialized the flags in the InputCells are set on.
This action puts the array in a state from which it will proceed. Until the
matrix has filled the array, zero data values will circulate in the array. This
type of operation is the same as that defined for the hal;dware

implementation of [JohnssonB1].

For this example it is evident that the concurrency and synchronization
required for data flow problems is available in this programming model. The
SELECT statement, used to control under what conditions attributes may be
selected, is the means for synchronizing each object with the availability of
its multiple inputs. Unlike the two previous example programs, the program
for Gaussian elimination is not executable as a normal sequential Simula
program, as the SELECT statement has no meaining in sequential

environment.

2.6. Comparison with CSP

The CSP notation [Hoare78] is a means of expressing concurrent
programs. This notation includes the concept of processes and messages.
Explicit operators represent the sending and receiving of messages.
Messages are not queued and require the sender to execute a send operation
and the receiver to execute the receive operation at the same time. This

action results in a strong means of synchrenizing two processes.

The Bounded Buffer problem described by Hoare is shown below in CSP
notation. This CSP program describes a process X which takes objects of
type "portion” trénsmitted by "producer” and stores them in "buffer” until
requested by "consumer", In CSP notation the source and destination of

send and receive operations are unique processes.
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X
buffer:(0..9) portion;
in,outiinteger; in:=0; oul:=0;
comment O0<out<in=<out+10;
*[in < out + 10; producer?buffer(in mod 10) » in:=in + 1
sout < in; consumer?more() -» consumer!buffer{out mod 10); -
out :=out +1

]

If process X is considered to be an object, and producer and consumer
its attributes, each with an associated message queue, we see that process X
can implement a FIFO object for any number of producers and consumers.
Any object that produces objects of type portion may send the portions to X
ilsing tltrle' ;;rod'ucrér a’-ctribl'lte.u As long as the buffer array is not full, these
messages will be accepted by the input command and the portion stored in
buffer. Objects that request portions may do so by invoking the consumer
atiribute. As long as the buffer is not empty, process X will answer consumer

messages with the transmission of a portion.
The following code is a concurrent Simula description of a FIFO object.

CLASS Fifo;
BEGIN
"~ REF(Portion) ARRAY Buffer[0:9];
INTEGER In,Out;

~ PROCEDURE Put(P); REF(Portion)P; SELECT In < Out+10;
BEGIN
Buffer[Mod({In,10)] := P;
. In:=In+1;
END of Put;
REF(Portion) PROCEDURE Get; SELECT Out < In;
BEGIN
Get :- Buffer[Mod(Out,10)];
Out := Out + 1;
END of Get;

END of CLASS Fifo;

A close correspondence can be observed between the guarded input

commands of the CSP representation of the FIFO and the attribute
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declarations of concurrent BSimula with their SELECT statements.
Concurrent Simula permits the definition of objects which ére a subset of
CSP processes. As part of the language, concurrent Simula builds a repetitve
command around a series of alternative guarded input commands to
implement the selection and initiation of an object attribute. The Boolean
expressions that may be associated with the SELECT statement are the
guards for the attribufes. Outputs from the attributes are implied by their

termination rather than programmed explicitly.

CSP is a more expressive notation that, if used to describe the objects of
the homogeneous machine, permits a more concise representation than
concurrent Simula. In particular, CSP provides a convenient means of
expressing the input of several messages concurrently. Using a CSP style
notation, the CenterCell of the Gaussian elimination array would be

described in the following manner.

CenterCell::
DiagC,LowerC,LeftC:Cell;
RightCell, UpperCell,LoDiag:Cell;
D,L,Low:Real;
*[DiagC?Diag(D) A LowerC?Lower(Low) A LeftC?Left(L) -
RightCell!Left(L);
UpperCell'Lower{Low);
LoDiag!Diag(D-L*Low);

A notation ﬁke CSP has the necessary expressiveness to cope with
objects having a message queue per attribute. The semantics of message
passing in the object oriented machine are somewhat different than those
defined by Hoare but can nevertheless be adapted to CSP notation. The CSP
description is more concise than the concurrent Simula description of the

example,
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A CSP notation could be used to program the homogeneous object-
oriented machine. It has explicit provisions for concurrency and message
passing. However, the explicit sending and receiving of messages put a
greater burden on the programmer by requiring the synchronization and
mutual exclusion needs of the program te be explicitly described, thus

expanding the opportunities for error.

2.7. Support Requirements

Arbitrary pointer topology provides clear possibilities for deadlock
between objects, Deadlock can but will not necessarily occur wherever the
user has generated a loop in the communication structure of the program
components. One method of preventing this possibility would be to restrict
the topology to a non-cyclic graph such as a tree. Such restrictions appear
to be so constraining as to render many of the advantages of this

programming style useless.

The most immediate deadlock situation can arise when an object holds a
pointer to itself. If, in the course of satisfying some message it has received,
it uses that handle and sends a message to itself for which it expects a
response, the object will be stuck. The new message it has sent to itself
cannot be acted upon and a response sent until it has completed the
execution of the current message. Howevef, the completion of the current
message is awaiting a response to the new message. At this poiﬁt the object
is hopelessly deadlocked. It is important to note that the mere holding of a
pointer that points to the object that holds it does not inevitably result in
deadlock. The code of the objects and the topology of the pointers must
conspire to create the deadlock situation. The example cited is the simplest

case of situations that may arise whenever a cycle appears in the
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communication between objects,

For the purpeses of this programming model, the object messages
queues are of a fixed size. The size can be either declared as part of the
object declaration or can by set to a defaull size by the system. If no limit is
placed on the size of a queue, then incoming messages could cause a queue
to grow to arbitrary size if the destination object is unable to service the
messages at the rate they arrive. Such growth could cause the space
allocated for message queues to become exhausted and deadlock to occur if
there is no limit on the length of message queues. With a limit on message
queues, objects sending messages to other objects may be suspended until

there is space available in the queue.

Deadlock can also occur with bounded queues where all the queues in a
cyclé become {ull with each object attemptling to transmit a message to
another. This condition must be recognized and dealt with by the
programmer. Bounded queues permit deadlock only among the objects
which own the queues. An attempt to simulate infinite queues in a system
with finite resources introduces possibility of deadlock to the processors, a

situation that can not be permitted.

To prove a program to be deadlock free would require some restriction
of the use of object pointers. Some types of communication structures have
been proved safe and live [OwickiB0], however, these structures represent a
severe restriction of the structures possible in the object environment
presented here. It may be possible to extend the proof techniques of
[ChenB2] to aid in the prevention of deadlock among the objects of a

program.
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The run time system which implements message passing and garbage
collection has internal access to all objects. For the purpoeses of debug only,
we can define a set of atiributes that are built-in to all objects and that are
recognized by the run-time system. These attributes would have to feturn

the foliowing information about an object.
(1) Object is Idle, Running or Waiting.

() If Waiting, return a reference to the object it is expecting a response

from.
(3) Return the object’s stack and current place of execution in its code.
(4) Return any of the object’s internal data items.
(5) Return a list of messages waiting to be processed by the object.

Given these abilities, a debugger could give the user a complete picture
of the state of a program. The debugger should also be able to manipulate
objects in an equivalent manner to allow the user to break a deadlock or

modify the state of an object.

The ability to manipulate objects via the run-time system implies that
some protection is required to preverit objects from arbkitrarily corrupting
each other. One solution to this problem is the addition of protection or
capabilities to object references [Jones?3]. Various fields in the object
reference would determine the legal operations that the holder of the

reference could expect the referenced object to perform.

The addition of capabilities to object references would not increase the
security of the system unless object references are made unforgeable. To
accomplish this goal, a tagged architecture such as the SYMBOL machine

[Rice71] or the Intel 432 [KahnB1] is required. A tagged architecture is a
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machine that recognizes data types at the hardware or firmware level. The

price for such security is usually reduced performance.

2.8B. Conclusions

We have presented a model for concurrent programming based on the
Simula object concept. The object is not unlike the distributed process
construct of Brinch Hansen [Brinch Hansen7B]. Objects communicate and
synchronize by passing messages. An object holding a reference to another
object is permitted to send messages to it and may optionally receive a
response, The messages directed at any given object are delivered via
attribute queues which order the messages and implement critical regions

within the object.

The sending of a message from one object to another is initiated by
invoking an object's attributes. If a reply to the message is required,
sequential execution of the object’s attributes proceeds while the requestizig
object waits. If no reply is desired, concurrent behavior is initiated. Both
the requesting object and the requested object may continue execution after
the fashion of processes in the Multics system [Spier69] or as would the

coroutines of Concurrent Pascal [Brinch Hansen75].

The message queues are ordered and messages may be removed only
after the termination of the actions associated with the previous message.
This feature makes each attfibute of an object a critical region so that there
is mutual exclusion between those routines that have access to the internal
variables of the object. Synchronization between objects is also provided by
insuring that all messages preceding a message in a queue must have been

acted upon before a response to the message can be sent.
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Concurrently executing processes must be prevented from modifying
state in an order not intended due to races between them. Critical regions,
for example, are intended to give the programmer a means of prev?nting
such behavior. The extensions to object oriented programming put all the
routines that have access to common variables in mutually exclusive regions
as a natural part of the language. The implementation is accomplished by
the use of queues. The programmer is left with the responsibility for
insuring that all sequences of messages are either legal or the programmer
must control the possible sequences of the program. Synchronization with
the cémpletion of one object's task is accomplished by merely querying the
object in question. The arrival of the response indicates the desired state

has been reached and thus synchronizes one object with another.

The extensions and restrictions proposed for a language like Simula add
little additional comple)dty to the syntax of the language. The effects are
most felt in the more restricted scoping rules preventing global variableé.
Example programs show that this notation can be conveniently used to write
concurrent programs. Sufficient means are available to the programmer to

insure repeatable behavior in the programs.
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Chapter 3

Garbage Collection

3.1. Introduction

Presented here is a scheme for the identification and elimination of
inaccessible program objects in a large multi-processor environment. The
problem of garbage collection has been an interesting problem for many
years among the implementors of various languages such as Algol 68 [Van
Wijngaarden69], Simula 67 [Birtwhistle73] and LISP [McCarthy80] which
proﬁde for dynamic allocation of data structures. Garbage collection has
been part of operating systems to alesser degree for sometime but tock on a
new importance with the implementation of Hydra on C.mmp [Wulf72,80].
Here, the operating system is distributed over a number of processors and
therefore, collection of garbage must take place across a number of distinct
address spaces concurrently with the operation of a number of processors

[Almes80].

Various implementations of LISP have dealt with the problem of garbage
collection. Early work [McCarthy60,Collins60] provided garbage collection
for LISP on a single processor. More recently, considerable effort has been
given to the use of multiple processors to execute LISP with at least one of
them responsible for garbage collection [Steele?5,Deutsch76,Wadler?8]. The
algorithm proposed by Dijkstra, et al [Dijkstra?8] has been proved correct

[Gries77]. In all cases, these algorithms are presumed by their authors to
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operate in a systern where every processor has equal or near equal access to
a single address space. Moreover, the problem of garbage collection in pure
LISP is somewhat more restricted than the more general case of Sirnula
[Arnborg72], insofar as LISP objects are of fixed size and LISP data

structures may be of a restricted topology.

Garbage objects can be identified in systems by reference counting
[Collins60]. This technique can be applied to most systermns, even those with
more than one processor. However, reference counting suffers from two
problems for which no acceptable solutions come to mind. First, self-
referential data structures or data structures with cyclic graphs can not be
identified as garbage by this method without the addition of multiple levels of
reference counts and a grouping concept as in [BobrowB0]. For some
environments, those which resirict the user to tree-like structures, this
problem may be tolerable but in a more general system it is not. Reference
counting also involves a very large computational overhead to keep th'e
reference counts ﬁp to date. Since each objecl’s reference counter must be
modified whenever and wherever a pointer to that object is copied or
overwritten, many simple operations become complex. In a multiprocessor
system, this cverhead is manifested either by a high communication traffic
or by a large number of memory accesses used‘ to updaf.e reference counts

as pointers are manipulated.

An object oriented system provides some simplifications not possible in
the LISP systems but aiso introduces new compie)dties. 1f each processor is
to control the access and function of its own set of objects, then the need for
notions of mutual exclusion, critical regions and indivisibility in the

operations of the processor is eliminated since it is the only entity in contact
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with its objects. However, the interactions among the processors of the
system raise new problems, such as their synchronization if they are to

perform such tasks as garbage collection.

3.2. The Object-Oriented Environment

Briefly, the environment consists of a large number of objects with a
structure of pointers between them of an arbitrary topology. The objects are
distributed over a number of processors and those objects that are
executing may change the topology of the pointers. Pointers are passed
from object to object in messages and objects may also be moved from one
processor to another. The object of garbage collection is to identify and
gﬁminate those objects which are inaccessible in the system and are idle.
The elimination of the garbage objects allows the resources occupied by

them to be allocated to new objects as they are created.

3.3. ADescription of the Algorithm

FEvery processor node which executes, stores or otherwise manipulates
objects must run a task in the background which is part of the overall
garbage collection process. These tasks, each in one of the processors in the
network, communicate with a central process which maintains overall
control of each phase of the garbage collection. The communication between
the central process and the various tasks in the processors is of a very low
bandwidth and serves only to synchronize the other tasks in a very coarse
way with respect to the stages of the garbage collection. The central process
may be implemented as a separate processor with dedicated communication
facilities to connect it to the other processors, or it may be merely another

background task executing in any processor and communicating via the
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same medium as the objecis in the system.

There are three phases to the collection process. The first is to unmark

all objects in the system. The second is to mark those objects which are not

garbage. And third, all unmarked objects are collected and the resources

they océupy are rmade available for allocation to new objects.

Di:

D2:

D3:

(1

(=)

(3)

Some definitions are needed:

A root object is one that is either executable or waiting for a response to
a message. An idle object, one that is wailing for a message, can

become executable if it receives a message.

A propagation path consists of a set of pointers from a root object to an
idle object. To send a message to an idle object, a propagation path
must exist.

A garbage object is one for which no propagation path exists.

The following conditions must also apply:

Each object must have an attribute of MARKED. This attribute is TRUE
after the gargabe collection task to which this object resides has
determined that this object is not garbage.

Fach object has an attribute of RECEIVEDMARK. This attribute is TRUE if
a processor other than the one in which the object resides has
determined that the object is not garbage and has sent a message to
this object's processor indicating this condition. A set RECEIVEDMARK is
essentially a request from one processor to another that a particular
object be marked. | |

Fach reference variable must have an attribute of MARKED. If a

reference variable is copied or sent to another object in a message, this
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attribute is preserved in the new copy or in the message. If this
attribute is TRUE, then the object that it refers to may be considered

MARKED.

(4) The communication facilities must not allow messages to be hidden from
all processors at any time. If messages in transit are inaccessible to
processors, then a copy of the message must be kept by the sender until
the message is known to have arrived al its destination. It is required
that every message in the system be accessible to at least one

processor at all times.

Qualitatively, the algorithm operates in the following manner. All of the
garbage collection tasks are told to unmark their objects and reference
variables. When this operation is completed, all the processors are told to
begin marking non-garbage objects. At first, this operation consists of
scanning all the objects in each processor and marking the ones that are
executable and recursively marking all the objects and reference variables
that can be reached by following pointers from the executable objects. If the
processor determines that an object, which resides in another processor, is
to be marked a message is sent to that object, wherever it does reside, to

cause it to be marked by its processor.

As long as a processor is in the mark phase, it must process incoming
messages in a different manner than usual. It must mark the recipient of
the message (if it has not already been marked) and it must mark any
objects referred to by reference variables in the message in cases where the
reference variables are not marked. Thﬁs, as the processors enter the mark

phase, waves of set mark attributes emanale from executable objects and
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from objects that are in involved in communication with each other. It is
assumed that the participants in an exchange of messages, and objects
referred lo in messages, are not garbage since they are obviously in use.
This use of the normal communication between objects as part éf the
marking process speeds up the rate at which garbage can be collected but
does not add to the message traffic. In effect, the object communication
performs a double duty during the mark phase. It accomplishes the function
programmed in the objects as well as identifies the objects involved as non-
garbage.

When the marking of objects has finished, the remaining unmarked
objects are collected as garbage. The resources belonging to these objects,
their name and disk space, are released for use by new objects. The cycle is

then repeated by again clearing all the mark attributes.

The processor controlling the phases of garbage‘ collection executes the
following task. The processor executing this task may be multiplexed among
other tasks as well, or it may be a dedicated processor. The algorithm is
described in a Simula-like syntax. Procedures such as "SendMessage" and
"SendMessageToAllProcéssors" are not shown in detail since they depend on
the particular hardware and software communication facilities available. It

is hoped that the function of the undefined procedures is self-evident.
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WHILE TRUE DO BEGIN

PROCEDURE WaitForAllDone;
BEGIN
BOOLEAN Done;
Done ;= FALSE,;
WHILE NOT Done DO
BEGIN
SendMessageToAllProcessors(''StartInterval");
WaitUntilAlAcknowledge;
SendMessageToAllProcessors("EndInterval™);
WaitUntilAllAcknowledge;
Done := ANDofAllDoneFlags;
END of While;
END of PROCEDURE WaitForAllDone;

SendMessageToAllProcessors("'ClearAllMarks");
WaitForAllDone;
SendMessageToAllProcessors{"'EndClearAliMarks");
WaitForAllDone;
IF TherelsARootObject THEN BEGIN

REF(Processor)Root;

Root :- ProcessorWithRootObject,;

Root.SendMessage(''MarkRootObject");
END of IF;
SendMessageToAllProcessors("MarkExecutableObjects");
WaitForAliDone;
SendMessageToAllProcessors('CollectUnmarkedObjects");
WaitForAlliDone;
SendMessageToAllProcessors{"EndCollectUnmarkedObjects');
SendMessageToAllProcessors("EndMarkingExecutableObjects');
WaitForAliDone;

END of Garbage Collector Control Loop;

The loop above contains no "critical regions” and none of its operations
must be “indivisible”". If this task shares a processor with other tasks, thé
processor may be removed from this task at any point in the loop. The only
effect such multiplexing may have is to reduce fhe rate at which garbage
collection proceeds by a very small amount, providing this task receives even
minimal service from the processor. The exclusive access given a processor
to the objectsV contained in its memory simplifies the interactions between
processors. The synchronization, mutual exclusion and other conditions that

must be met are embedded in the sequence of message passing. The
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indivisible operations that must exist in such a system are those of message

transmission and reception.

The messages sent to all the processors could be broadcast.»if the
connection medium permits it. The "WaitUntilAllAcknowledge” proéedure
must hold further execution until it is known that every processor has
received the previous message. This operation is the primary means by
which the processors and the controlling garbage collector task are
synchronized. This synchronization is of a very weak nature. The
acknowledgement of the processors could be detected by waiting until all the
processors pulling down an open-collector TTL signal have released it, or it
could be detected by the receipt of an acknowledging message from each
processor, depending on the communication facilities present. Some of the
message sequences in the above loop could be concatenated into single‘

messages but have been separated for clarity.

The "ANDofAllDoneFlags” is a hypothetical procedure which returﬁs
TRUE if the "DoneFlag” (described below) of every processor is TRUE. This
function could be performed by querying each processor with an exchange of
messages or with hardware, such és an open-collector signal wired to all the
proceésors. The "DoneFlag"” is defined to be Qaiid at the time a processor

does the ""AcknowledgeMessage” operation and until it receives its next

"StartInterval”’ message.

The determination of when all the marks in the system are clear or when
all the garbage objects have been collected or, most importantly, when all
the non-garbage objects have been marked is the mechanism that permits
this algorithm to work. The most difficult question is how to determine when

the marking of non-garbage objects is complete and to be assured that no
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more objects can be or will be marked. The collection phase cannot be

initiated until the marking is finished.

The "Startlnterval” and "EndInterval’ messages from the controlling
task delimit a span of time in each individual processor. The sequencring of
the controlling task insures, despite any skew in the arrival of the messages
at the processors, that a sub-interval ofv all the spans of time is common to

all the processors in the system.

It can be said that if, during some interval of time, not one of the
processors in the system marked any objects nor had any objects that were
waiting to be marked, no further marking can occur in the system. When an
processor receives a "Startinterval” message during a mark phase (but not
while in a collection phase) it scans all its objects for any that should be
marked but are not. If any objects are marke’d by the processor, its
"DoneFlag" will subsequently exhibit FALSE. During the interval the processor
may mark objects and will again record the fact if any are marked. When a
”EndInterval” message is received and no objects have been marked since
the interval began, the processor will again scan its objects and record any
that are marked. At the end of fhe interval the "DoneFlag” is displayed
indicating, if TRUE, that no marking was done or could have been done

during the interval in that processor.

If all the processors display a TRUE “DoneFlag” at the end of an interval,
then there were no objects marked in the entire system during that portion
of the interval shared by all the processors. It follows that if, over the entire
system, no objects were marked and no objects were waiting to be marked,
then the mark phase has finished. An object must be marked to cause other

objects to be marked. Therefore, if there are none to be marked and no
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marking has been done, there can be no further marking.

Several aspects of the sequence of messages initiated by the controlling
task should be noted. The collection phase has been made a part of the
marking phase. This relationship insures that any new objects created
before and during the collection phase are created marked and are
prevented from being collected as garbage. Otherwise, new objects could be
created with a FALSE mark bit after the marking is completed but before
collection, causing any such objects to be regarded as garbage. The
overlapping of the mark phase with the collection phase prevents this

situation.

In addition, there is what might be regarded as a spurious
"WaitForAllDone" procedure inserted between the end of the clear phase and
the beginning of the mark phase. This invocation serves only to insuré that
all of the processors have stopped clearing prior to beginning to mark. If the
situation arose Where some processors were already into the next mark
phase before others had recognized the end of the previous clear phase, not
only would confusion result in the state of various mark bits, but neither set
of processors could complei:e their respeétive phases since messages would

continue to arrive with marks in an unexpected state.

A detailed description of the functions that must be performed by each
processor as part of garbage collection is below. This description is shown as
a message dispatch routine ‘that intercepts and disposes of all the incoming
messagés of a processor. In an actual system, the mechanism associated
with receiving messages from the garbage collection controller may be quite

separate from the facilities used to process messages from other processors.
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The procedure below would be entered when a complete message is
available to the processor. Upon returning from the procedure the
processor's scheduler would select other tasks for execution. In the form
shown here, this procedure cannot be interrupted for the execution of

objects, but may be interrupted for other tasks.
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PROCEDURE DispatchMsg(Message); REF(Msg)Message;
BEGIN
BOOLEAN Clearing,Marking,Collecting, DoneFlag;

PROCEDURE MarkObject(abc); REF(Object)abc;
IF NOT abc.Marked THEN BEGIN
REF(ReferenceVariable)RefVar;
abe. Marked := TRUE;
abe.ReceivedMark := FALSE;
DoneFlag := FALSE;
FOR RefVar :- abc.FachRefVarInThisObject DO BEGIN
IF NOT RefVar Marked THEN BEGIN
RefVar.Marked := TRUE;
IF RefVar.Object. InThisProcessor THEN
MarkObject(RefVar.Object)
ELSE RefVar.Object.SendMessage(' 'TurnOnReceivedMark');
END;
END of FOR Loop;
END of PROCEDURE MarkObject,

PROCEDURE DoFunction;
BEGIN
REF({Object)Obj;
IF Clearing THEN BEGIN
FOR Obj :- FachObjectInThisProcessor DO BEGIN
IF NOT Obj.AliClear THEN BEGIN
ClearAllMarkBits(Obj);
DoneFlag := FALSE;
END;
END of FOR;
END ELSE
IF Marking AND NOT Collecting THEN BEGIN
FOR Obj :- EachObjectInThisProcessor DO
IF Obj.Executable OR Obj.ReceivedMark THEN MarkObject(Obj);
END ELSE
IF Collecting THEN BEGIN
FOR Obj :- BachObjectInThisProcessor DO BEGIN
IF NOT Obj.Marked THEN BEGIN
RecoverGarbageOb_]ect(ObJ)
DoneFlag := FALSE;
END;
END of FOR;
END of IF, _
END of PROCEDURE DoFunction;

IF Message Destination=GarbageCollector THEN BEGIN
- IF Message.Txt="ClearAllMarks" THEN Clearing:=TRUE
?FL%Eessage.Txt="EndClearAlU»’[arks” THEN Clearing: =FALSE
;EFL%Eessage Txt="MarkExecutableObjects" THEN Marking:=TRUE
FFL]?/IEE:BSSage.'I‘Xt=f'CollectUnmarkedObjects" THEN Collecting:=TRUE
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ELSE
IF Message. Txt="EndCollectUnmarkedObjects" THEN Collecting: =FALSE
ELSE
IF Message Txt="EndMarkingExecutableObjects’ THEN Marking:=FALSE
ELSE
IF Message. Txt="MarkRootObject” THEN MarkObject(RootObject)
ELSE :
IF Message.Txt="StartInterval" THEN BEGIN
AcknowledgeMessage;
DoneFlag := TRUE;
DoFunction;
END ELSE
IF Message.Txt="EndInterval” THEN BEGIN
IF DoneFlag THEN DoFunction;
AcknowledgeMessage;
END;
END ELSE
IF Message.IsObjectTransfer THEN BEGIN
REF(Object)Obj;
Obj :- Message.AsObject;
IF Obj.Marked AND NOT Marking THEN BEGIN
Obj.Marked := FALSE;
Obj.ReceivedMark := TRUE;
END;
PutObjectinProcessor(0Obj);
END ELSE BEGIN
REF(Object)Obj;
Obj :- Message.Destination;
IF Message.Txt="TurnOnReceivedMark” THEN BEGIN
IF Marking THEN MarkObject(Obj)
ELSE Obj.ReceivedMark := TRUE;
END ELSE
IF Marking THEN BEGIN
- REF{ReferenceVariable)RefVar;
MarkObject{Obj);
FOR RefVar :- Message.FachRefVar DO BEGIN
IF NOT RefVar.Marked THEN BEGIN
RefVar Marked := TRUE; ,
IF RefVar.Object.InThisProcessor THEN
- MarkObject(RefVar.Object)
ELSE RefVar.Object.SendMessage("'TurnOnReceivedMark");
END; ‘
END of FOR Loop;
GiveMessageToObject{Message);
END ELSE GiveMessageToObject(Message);
END of IF; '
END of Message Dispatcher;

One important part of the algorithm cannot be represented as part of a

message dispatch routine, This part of the algorithm must be invoked
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whenever a new object is to be created in a processor. It can be stated

simply as follows:

IF Marking THEN BEGIN
REF(Object)Obj;
Obj :- TheNewlyCreatedObject;
. Obj.Marked := TRUE;
END of IF;

This provision exists to insure that all objects created in a processor
while that processor is in a mark phase are created MARKED to prevent their

premature collection in the next phase.

Messages repfesénting objects that have been moved from one
processor to another are accounted for in the message dispatch procedure.
The only requirement placed by this algorithm on such messages is that if a
marked object arrives at a processor that is not yet in the mark phase, that
object becomes ﬁnmarked and acquires the attribute of RECEIVEDMARK
before becoming a bona fide resident of the processor. When the reoeivirig
processor enters the mark phase, it will note the attribute of RECEIVEDMARK

in the object and will mark it on the first pass.

In the “MarkObject" procedure, the attribute "EachRefVarInThisObject"
is taken to return each reference variable associated with the object in
question. Reference variables contained in unprocessed messages, or
contained in an internal stack must be included as well as those that are part

of the visible state of the object.

The generation of garbage by the system continues without regard for
the phases of garbage collection. At any time, reference Vériables may ‘be
overwritten with other reference variables. When all the reference variables
pointing a set of non-executable objects are destroyed, the objects become

garbage. This process occurs during the mark and collection phases and at -
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all other times as well. Objecls that have been marked and subsequently
become garbage will not be collected in the next collection phase. However,
it is guaranteed that the next time arcund through the mark phase, they will

not be marked and hence will be collected in the next cycle.

One refinement of the above algorithm would eliminate the clear phase.
After all the unmarked objects have been collected in the collection phase,
the remaining objects and their reference variables must all be marked.
Thus, only the sense of the mark bits needs to be changed to consider the
system cleared. A mark pass must set all the marks in the system to the
same value. In the routines above the value is TRUE (presumably a one). If,
instead of sending the "ClearAllMarks" message, a message indicating
“InvertMarkSense"” was sent, then on the next pass, a mark with a one in it
would be considered unmarked rather than marked. After that pass the
sense would again be inverted and so forth after each pass., This refinement
has not been shown in the algorithm to preserve its readability. If thi‘s
technique were adopted, a substantial fraction of the garbage collection

overhead would be eliminated.

3.4. Proof

An inforrﬁal proof is presented here that the garbage collection -

aigorithm operates correctly in the environment outlined.

By definitions D2 and D3, no root object can send a message to a
garbage object. Therefore, garbage objects can never become executable
and ﬁll remain idle. By D1 and D2, any idle objects that become executable
indicate the existence of a propagation path and cannot have been garbage
by D3. This proves that the set of root objects at any point in time is a

sufficient set from which to begin marking.
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The algorithm, as presented here, does its marking as part of a2 message
dispatch service. This implementation makes the entire recursive marking
of an object by the "MarkObject” procedure indivisible. This rather strong
restriction may not be necessary but enables other properties éf the
algorithm to be studied. This proof assumes that the marking of each
individual object, together with the object's reference variables is one
indivisible operation.

The following invariant relations must hold:

Pl: If an object is marked, all of the pointers contained in it are also

mmarked.,

The marking procedure marks an object and all its pointers in one
operation. All the pointers will remain marked if no unmarked peointers are
sent to the object in a message. All messages to an objectvare scanned for
unmarked pointers before being given to the object, assuring the P1 remains

true if the object remains in one processor.

The only case whereby an object may be unmarked is when it is moved
to a processor that is not in the mark phase. In this case, the object is
unmarked and its "ReceivedMark" flag is set to insure the processor marks it
when marking is eventually begun in that processor. Since messages passed
in a processor that is not in the mark phase may contain unmarked pointers,
a marked object moved into that processor is unmarked to preserve the
truth of P1.

P2: If a pointer is marked, then the object it points to must be either

marked or have been sent a message causing its "ReceivedMark" flag to

be set.
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The ''MarkObject" procedure and the code that scans messages for
unmarked pointers are the only points at which a pointer in a reference
variable is marked. Since at both places, the object referred to is Aeither

marked or sent the "ReceivedMark” message, P2 is maintained.
P3: For each unmarked non-garbage object, there exists a propagation path.

At the beginning of marking, a propagation path exists to all non-
garbage objects by the inverse of D3. The marking of the data structure
cannot modify the data structure and cannot, therefore, break a propagation
path. The only modification that the running objects can make on the data
structure is to redirect a reference variable from one non-garbage object to
another non-garbage object (newly created objects are non-garbage and are
created marked). The object pointed to by the modified reference variable
clearly has a propagation path, since by D1, the object pointing to it is a root
object. The original object pointed to may become garbage following the
modification and would not then violate P3. If two or more propagation paths
existed for the original object, then P3 is preserved since at least one

propagation path will remain.
For the algorithm to perform correctly, the following correctness

criteria must be met.

CC1:All garbage objects present at the start of marking will never be

marked.

CC2:At the completion of marking, no non-garbage object remains

unmarked.

If the root objects are marked, as shown in the "DoFunction” procedure,
then by P3, there will be a path from a marked object to all unmarked non-

garbage objects. P2 and P3 insure that once marked, objects and pointers
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will remain marked. It remains to prove that marking will complete with CC1

and CCR true.

By D3, there can be no propagation path to an object that is garbage
from the beginning of marking. To become marked, the object must be sent
a messége by a root object or it must be referred to in a message from a
root object. If no propagétion path exists from a root to a garbage object, it
can never be sent a message, preventing the "MarkObject" procedure from

being invoked on it. This assures that CC1 can never be violated.

To complete marking, a stable, detectable state must be reached. This
state must satisfy CC2. If all the processors eventually begin the marking of
objects, then all root objects will be marked. In the process of marking
objects, "ReceivedMark” messages are sent to objects referred to in other
processors. These messages can be produced only along existing
propagation paths, since marking begins with the root objecis. These
messages are only prodﬁced when an object is marked. If CC1 is satisfied,
then when all non-garbage objects are marked, no such additional message
can be produced. If all objects are marked, then by P1 and P2, all pointers of
non-garbage objects are marked. Since only non-garbage objects may
become root objects by D1 and D2, all pointers contained in messages
producéd by root objects must be marked. In this state, where all executing
(root) objects are marked, their messages contain only marked pointers and
where no objects have a '"ReceivedMark” flag set, is stable because hone of

the conditions that would cause "MarkObject" to be invoked exist.

This state satisfies CC2 because propagation paths remain to be followed
only as long as there are outstanding 'ReceivedMark” flags. The

"MarkObject" procedure would complete the marking of all the objects with
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propagation paths to a single root if all the objects were in the same
processor. Where the path leads out of the processor the "ReceivedMark"
message is used to cause another processor to continue the marking of a
path. As long as propagation paths remain te be marked, there must be
outstanding “ReceivedMark” flags. When no such flag is set in the system,

CC2 is met and marking is complete.

To detect completion, the "Startinterval” and "Endlnterval” messages
are used to delimit a period of time that is shared by all the processors in
the system. At the beginning of the interval, the processors scan their
objects for any that require marking, notably ones with the "ReceivedMark”
flag set. If any are marked, the fact is recorded. The processors also detect
whether any objects were marked or required marking during and at the end
of the interval. If, over all the processors, no objects were marked and hence

none had a true "ReceivedMark” flag, the marking has completed.

3.5. Simulation Resulls

To support the contention that the garbage collection algorithm
performs as described above, a discrete simulation of its components was
written and run giving every indication that it is a viable technique. The
simulation was implemented in Simula using the Demos simulation package
[Birtwhistle79]. A stochastic model of the executing objects was using to
represent a system of running objects. The objects were given the necessary
attributes and placed among a set of simulated processors each containing

the garbage collection routines defined above.

The model used to represent the executing objects was a set of
probabilities picked to insure that all the pathological cases of garbage

collection were well exercised. In the absence of any experience or data
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available for concurrent programs execuling on a collection of processors,

the numeric values were picked to be both acceptable within the scope of

experience on uni-processor systems and to be a true test of the algorithm.

The resulting simulation shows that for the situations encountered using the

model, the algorithm performed as expected. Some statistics were derived

from the simulation but these are more a description of the simulated

environment than a prediction of efficiency or performance.

(1

(2)

(3

(4)

(5)

(6)
(7)

The following is a detailed description of the model used for simulation.

The basic time-slice interval of a processor was an average of .0167
seconds with a standard deviation of .00B seconds. The time-slices of

each processor varied about the mean with a normal distribution.

The probability that a given time-slice was used by a processor to
service its garbage collection task was 0.50

The size of an object, in terms of the number of reference variables it

held was a normal distribution with a mean of 12 and a standard

deviation of 10. Once created, the size of the object remains fixed.

If a time-slice was used by a processor to execute objects, the number
of objects "touched" in that time was a uniform distribution from 1 to 5 -
(inclusive).

If an object was touched, the probability that it completed its execution,
becomiflg idle to await another message, within that time-slice was 0.12

The probability that it would cause a new object to be created was 0.10

The probability that it would be moved to another processor if touched

was 0.20
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(B) The probability that it would communicate with the objects for which it

had reference variables was 0.30

(9) If it communicated, the probability that any particular reference
variable contained in the object or in any of its "sub” objects was

transferred in a message was 0.15

Given the practical limitations of address space and processor
bandwidth, no more thém 38 processors could be simulated with 1800 objects
between them. The machine used for the simulation was a DECsystem-2060
running Simula version 5. The simulation that produced the results below
consumed approximately 10 hours of CPU time. The processors are defined
to have a capacily of one third fnore objects than the total number of objects
divided by the number of processors, giving an average utilization of 75%
armong the processors. No attempt was made in the simulation to prc;vide or
maintain locality between the objects. Here again, it was thought that
uniform communication between objects and hence between the processors
was a more rigorous test than one with some presumed degreev of locality or

a presumed topology.

The simulator dees not presume the existence of a "root” object. After
the initial set of objects is created in the simulated system, a random set
amounting to 40% of the total set of objects is set to be "executable”. The
simulation of the system proceeds with these objects until an equilibrium is
reached with some varying percentage of 1800 objects active at any given

time based solely on the simulated communication between the objects.

A check is built into the simulator to verify that the garbage collection

works. Prior to each mark phase, the simulated system is stopped and a
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conventional garbage collection is performed to construct a list of objects
known to be garbage at that instant. The objects in the list are left in place
in the system and merely noted for subssquent reference. After the
collection pass, the system is again stopped and the objects collected Ey the
algorithm are compared with those noted in the list. Every cbject in the list
must have been collected. If it was not, an error is generated since the
algorithm would have failed to collect objects it should have collected.
Failing to collect a garbager object ‘;'\fould eventually cause a system to fail as
the uncollected objects accumulate until they occupy all the resources of

the system.

A second check makes certain that after each collection pass there are
no referen;:es in the remaining objects to any of those previously collected.
Again, if any object in the system is found to contain a reference to an object
that the garbage collector has removed, an error is reported. Such a failure
would indicate that the algorithm had falsely collected an object that was not

garbage. Such an action would cause a fatal error in any real system.

At no time during the execution of the final simulator were any such
errors reported. While this fact is not a rigorous proof that the algorithm is
error free, it inspires a high degree of confidence that it does perform as
expected. The simulated system is known to produce all the pathological
pointer structures that might be expected to trouble the algoﬁthm. Also,
the built-in skew between the processors in the rate at which they poll for
messages from the the controlling garbage collector task insures that
synchronization problems, if any, arising from the differing states of the
processors would be detected. Interprocessor interactions, such as object

transfers and the transfer of reference variables in messages, are amplified
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in the simulator to aggravate any poessible weaknesses in the algorithm. No

weaknesses have been detected by simulation.
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Table 3-1

Statistical Data Taken from Simuiation

Item

Number of
Objects in
FEristence

Number of
Executable
Objecls

Number of
Mark  FHe-
petitions
per Cycle

Time Re-
gquired per

Cycle

Lifetime
of Objects

Number of
Objects
Collected
per Cycle

Observations

141754

26094

114

114

70877

114

Average
1613.631

703.869

4.044

2.607

6.816

621.728

Std.Dev.

271.287

54,122

0.245

0.183

B.C88

50.368

Minimum

1031.000

504.000

3.000

2.255

1.205

504.000

Maximum

1800.000

B45.000

5.000

3.023

s
©
©
s
e
[

769.000
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Table 32

Histogram of Number of Objects Collected Each Cycle

Objects Cycles Freq Cun

FOWD-OO MW

C 0 0.00 0.00 1
75 0 0.00 0.00 I
150 0 0.00 0.00 I
225 0 0.00 0.00 1
300 0 0.00 0.00 I
375 0 0.00 0.00 1
450 1 0.01 0.88 i*
525 41 0.386 36.84 JHEFFFFEFFFF AT T RR X
800 53 0.48 83.33 JHRFEFFEEF R ERERE LR RRERR R AR
8675 17 0.15 9B.26 Jreexrxrrxex
>750 P 0.02 100.00 1+



-B3-

Table 3-3

Histogram of Ubject Lifetimes

Age Objects Freq Cun

1 G 21028 DSD 2967 I#*************#****#***##**#*#
2 2 13987 D.08 35.27 [*rrrxxx

3 4 18995 027 6207 I***#***********#***********
4 6 10811 0.15  77.32  [**rkrrxrxrrrxxs
5 8 5B41 0.08 B5.B6  [****rx*=x
8 10 2392 0.03 BB.93 I**#
7 12 1251 0.02 90.70 I**

B 14 1717 0.02 93.12 I**

9 16 1184 0.02 94.76 I**

10 18 781 0.01 95.87 1%

11 20 345 0.00 96.35 1.

12 22 327 0.00 96.81 1.

13 24 348 0.00 97.30 1.

14 26 293 0.00 97.72 1.

15 28 210 0.00 98.01 1.

18 30 126 0.00 9B.19 1.

17 32 154 0.00 98.41 1.

1B 34 1B24 0.00 98.87 1.

19 36 119 0.00 9B.B3 1.

20 38 108 0.00 98.99 1.

21 40 61 0.00 99.07 I.

22 42 B5 0.00 99.19 1.

23 44 61 0.00 99.28 1.

24 46 70 0.00 99.38 1.

25 >4B 441 0.01 100.00 I*

The data tabui_ated above show the‘ characteristics of the running system
derived from the model chosen for simuiation. They also shoﬁf how the
garbage collection algorithm performs in this system. Of note is the
maximum of 5 iterations required to mark all non-garbage objects. It is also
worth noting, that in this sys';cem, approximately half of the 1600 objects in
existence are executable at any given time. The "notch"” in the lifetime
histogram at 2 seconds is due to the cycle time of the collection process.

With a cycle tinie of 2.6 seconds, any objects created during the mark phase
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of a cycle must wait until the next full cycle to be collected if they are made
garbage. This effect skews the graph of what would otherwise be a Poisson
distribution. Other interesting aspects are: An object has a 90% probability
of being c‘ollected as garbage within 4 cycles of the garbage collector.
Typically, one third to one half the existing objects aré collected each cycle,
These figures indicate a rapid turnover in the objects and thus a rapidly

changing data structure,

3.6. Performance Analysis

The simulation, despite the care with which thé. model parameters were
chosen, cannot give more than clues to how the algorithm might performin a
real system. The characteristics of an actual set of objects in a real system,
communicating with each other in some topology, executing and
manipulating pointers in some manner and migrating between processors, is
unknowable a priori and depends as much on the applicaticn of the system
as on the system itself. However, this garbage collection algorithm, while it
is intended to operate in such an environment, can be compared with
conventional garbage collectors on uni-processor systems. In addition, it is
important that the algorithm’s performance scale, as well as the number of

processors in the system increases.

The conventional garbage collection program running on a single
processor system must make at least two passes across the data structure it
manipulates, It must first follow every path from known non-garbage objects
to mark every object that can be reached. It must then make a pass
sequentially through the objects linking the garbage objects together or
compacting the non-garbage objects into a contiguous area of memory. This

second pass has a complexity of O(N) where N is either the number of
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garbage objects or the number of non-garbage objects depending on whether
the linking or compaction is to be done. If N is defined to be the total
number of objects, then O(N) is an upper bound for the complexity of the
second pass. In the first pass, every pointer must be followed to the object it
points to, and if the object has not already been visited, then it is marked
and all of that object’s pointers must be visited. Thus the complexity of this
pass is O(N,, +Np¢y where Ny, is the number of non-garbage objects and N
is the number of pointers contained in those objects. If the worst case is
assumed where none of the objects are garbage, the complexity for both
pass;ersr t;orgierthrezr' is O(RN +Nét). Further. if the avéfage number of pointers

contained in an object is M then we have O(N(R+M)). It should be noted that

both N and M are bounded by the address space of the machine and M>1.

For an individual processor in a multi-processor machine using the
algorithm presented here, the same observations can be made concerning
each pass of the combined mark and collect phases. If the data structure
being collected were contained wholly within that processor the complexity
of one pass would be O(N(2+M)) just as for the conventional garbage
collector. However, the messages that result in the marking of objects in
other processors and the migration of objects between processors cloud the
issue. Owing to the method by which the completion of a phase is
determined, both the mark pass and the collection péss are run a minimum
of twice over the objects in the processor. It should be evident that the
second and any subsequent scans by these routines will require less
computing since most, if not all, the objects will have been touched on the
first scan. If we assume the worst, this doubling of the scans increases the

complexity to O(RN(R+M)).
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In general, the passing of pointers and objects between processors and
the tracing of pointer paths between processors will increase the number of
scans {the number of times the loop in "WaitForAllDone" is executed) beyond
the minimum of two. The volume, pointer content, locality and speedrof the
message traffic in the system all affect this number. Both the applications
being run on the system and the hardware communication facilities will
determine how long unmarked or uncollected objects can exist in the system
once the mark phase has begun and thus how many scans {(of "DoFunction"”)
will be required to catch all the moving objects and reference variables.
Sinﬁﬂétion of the éystém where ;gmmuﬁication is Vt;ry fést. locality is non-
existent and pointer content of messages is high shows that no more than 5
scahs are needed and typically 4 are sufficient in a system of 38 processors.
For now, a number can be defined which is the average number of such scans
required for each complete cycle of the garbage collection tgsk. If this
number is represented by X then the complexity of one cycle in or{e
processor becomes O(XN(2+#)), where N is the number of objects held by
the processor and M is the average number of reference variables in an

object.

We can now compare the complexity of collecting garbage in a system
with one processor versus a system with many where this algorithm is used
and where the total number of objects is the same. The complexity of one
garbage collection pass in a single processor system remains O(N(2+M)).

However, the samme number of objects N distributed over P processors gives

a complexity of O( XN ?;M ). Therefore, whenever the ratio %(1 or when

P>X the multi-processor system exhibits less overhead in garbage collection

than its uni-processor counterpart, all other factors being equal. If 4 is used
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for X we find that 4 or more processors running the garbage collection
algorithm presented here perform better than a single processor. Real
values for X will have to await the construction of such machines and the

accumulation of experience with their use.

Aside from the overhead incurred by garbage collection, there is a
second important measure of the performance of an "on-the-fly" collection
algorithm. In a conventional dynamic programming environment with a
single processor, the sequential parbage collector is invoked when available
memory for new objects gets low or becomes exhausted. In this type of
system, the rate at which garbage is collected is made equal to the rate at
which it is generated on a short term basis because the garbage collection
occurs on demand. The "on-the-fly" algorithm presented here cannot be
invoked on demand, but instead proceeds to completion at its own rate and
then starts over. On a long term basis, it must also collect garbage at the
same rate it is generated. In the short term, if system resources get low, th;z
creation of new objects will have to wait for the commpletion of the current
collection cycle when the resources held by garbage objects are made

available.

The number of cycles the collection algorithm can perform per unit
time will determin_e the performance of systems that run near the limit of
their reéohrces. When the resources get very low, objects which try to
create new objects will be held from executing and the processors may spend
inordinate effort attempting to move its objects to ‘other processors. Of
course, as more and more objects are suspended, additional processor
bandwidth is available to perform garbage collection functions causing the

current cycle to complete sooner. Compared to the conventional garbage
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collector, the main factor in determining the speed with which cycles are
compieted is the factor X defined above. If X islarge enough to permit short
term depletion of resources in the system, then time devoted to object
execution will decrease and that devoted to garbage collection tasks will
increase in inverse proportion to the available resources. Providing a
thrashing condition can be avoided with all the processors attempting to
foist excess objects off on each other at the same time, this effect provides
negative feedback to balance the effort used to garbage collect versus that

used to execute objects.

3.7. lmplementaﬁon Considerations

At a minimurm, the integration of this garbage collection algorithm on a
set of processors does not require any additional hardware beyond that
which exists for the normal communication between objects. However, in
some situations, using the existing facilities may not be desirable. Two
capabilities make the communication between the controlling task and all
the processors much more efficient and convenient. These are a broadcast
~ capability and a wired-AND capability.

As can be seen from the description of the algorithm, the
"SendMessageToAllProcessors” operation is an important one to controlling
the phases of the collection process. It would be undesirable if this operation
had to be implemented as the sending of an individual message to each
proceséor in turn. If the number of processors is large, the communication
bandwidth used in doing so may be unacceptable. Also, the skew introduced
by the widely varied times at which the processors receive the messages will
increase the overhead (i.e. the factor X will increase) and slow the rate of

garbage collection. Clearly, for all but small systems, those with fewer than
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about 20 processors, a broadcast capability is necessary.

The  wired-AND  capability is helpful in  performing the
"ANDofAllDoneFlags” function in the contrelling task. Without the hardware
to assist in this function, each processor will be required to respond with a
message containing the state of its "DoneFlag”. Again, | the time and
bandwidth used in sending such messages will have a detrimental effect on
the performance of the system. The broadcast capability, if it exists, would
be of no help since each processor has an individual "DoneFlag”. However,
since the controlling task is only interested in whether or not all of the
"DoneFlags” are TRUE, a single wire using either an open-collector or open-
emitter technology could be used to perform the logical AND on the wire.
The “"WaitUntilAllAcknowledge” function could be implemented in the same
manner. A set of such signals, connected to every processor, would also
make the acknowledgement of garbage collector messages by the processors

much more convenient and efficient.

If a sufficient set of signals is connected to all the processors and to the
controlling task, the controlling task can be reduced to a small finite state
machine. A simple analysis shows that the necessary functions could be

provided with less that B sepa‘rate signals and possibly with as few as 4.

3.8. Scaling of the Algorithm

Of key importance is the ability of the algorithm to scale as the number
of processors and objects increase. Specifically, is the increased computing
bandwidth obtained by adding processors to the system still available as the
garbage collection operates over a larger number of pfocessors and objects?
It is evident from the description of the algorithm that global communication

is required between the controlling task and every other processor. In many
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systerns, such global communication prevents the systems from growing
effectively beyond some limit imposed by the cost or the delay introduced by

such communication facilities.

In the case where no broadcast facilities are present or where there is
no hardware support for the "ANDofAllDoneFlags" function, there is clearly a
delay in communication that grows linearly with the number of processors in
the system. For small systems this delay may be tolerable but in order to
build large systems consisting of thousands of processors, the broadcast and

wired function facilities must be presumed.

If, as proposed above, a small number of signals are to connect every
processor in parallel to the controlling task (or finite state machine), then all
of the processors of the system are to be connected in a linear array. There
must exist some other facility by which the objects communicate between
processors. The simmplest such connection is also a linear array or line such
as an Ethernet [Metcalfe?6]. Any other connection must be topologically
more complex. Thus the connection of all the processor te a multi-
conductor cable is on the same or on a simpler order than the network that

must exist to connect the processors for normal communication.

The next difficulty with the global communication is that of fan-out and
delay. Cleariy. no logic technology provides the means to directly connect
thousands of loads or sources to a single conductor as might be desired.
However, due to the simple manner in which the processors and the
controlling task communicate, a hierarchy of buffers can be constructed in a
tree structure to limit the fan-out and fan-in of the components. If parts are
used permitting a fan-out and fan-in of 16, then a system of 64K processors

would have only four levels of buffers. If the buffers introduce a delay of 25
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nancseconds each and the propagation delay of the transmission lines
between them is 900 nanoseconds (the delay seen across 800 feet of wire)
then a very conservative estimate of the maximum delay betweern the
contrelling task and the processors is one microsecond. For the purposes of
the garbage collection, this figure is so small it can be disregarded. The
delay is proportional to the logarithm of the number of procéssors and will
thus remain very low for even greater numbers of processors beyond the

capability of current technology to package and power such systems.

~ The number of iteriations of marking that must be executed by the
processors before completion of the mark phase (denoted by the factor X
above) must be investigated for large numbers of processors. To be a viable
collection algorithm, the number of iterations must remain small as the

number of processors is increased.

A number of processor configurations were simulated to test the effect
of increasing the nurnber of processors on the average time required to
complete a garbage collection cycle. In each case the average number of
objects per processor was maintained at approximately 25. All other factors

in the model were held at the values described above,
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Table 34
Simulation Results (with Message Polling)

Number of Average Average Number
Processors Cycle Time  of Repetitions per Cycle

1 D.52 2.0
2 0.78 2.4
4 1.19 3.1
B 1.62 3.3
18 1.91 3.2
32 2.33 3.3
64 2.72 3.5
Table 35

Simulation Results (with Message Interrupts)

Number of Average Average Number
Processors Cycle Time of Repetitions per Cycle

.260 2.00

1
2 290 2.85
4 .303 3.07
B .309 3.27

16 318 3.47

32 333 3.96

64 337 411

The average cycle time figures are computed in seconds. Because the
timing in the simulator has no basis in the hardware of a real system, the
absolute value of the numbers cannot hold much meaning. However, the

relationship between these numbers is indicative of how the algorithm scales
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as the number of processors in increased.

The simulator maintains no policy of locality to control the placement of
objects among processors. Thus, in cases where a non-executing path of
pointers and objects is strung across many processors and an object in the
path is referenced by a non-garbage object, it may take several repetitions

for the marking routines to follow the path through all the processors.

The average time required to complete a garbage collection cycle is
observed to rise at a linear rate with the logarithm of the number of
processors. The time to complete the cycle is a function of both the number
of repetitions required in the cycle and the time required for all the
processors to acknowledge messages, where polling is simulated. If
processors are interrupted upon the receipt of a message from the
controlling task, then there is essentially no skew between the processors
and minimum delay in the acknowledgment of the message. The data
tabulated for the simulation with interrupts are plotted in figures 1 and 2.
The short vertical bars represent one standard deviation of variance about

the average shown in the table.
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The figures above show that in the worst case, the number of garbage
collection cycles completed per unit time decreases linearly with the
logarithm of the number of processors. The average number of repetitions
required per cycle may grow linearly with the logarithm of the number of
processors as well but there is some evidence that it may roll off to a value
less than 5. In the best case, the average number of cycles per unit time
also becomes a constant, Where the performance of a particular system falls
between these two cases will be determined by the communication structure
of the machine and the degree of locality present in the objects and
processors, However, the worst case is seen to result in a performance of
the garbage collector proportional to the inverse of the logarithm of the
number of processors. If one merely extends the simulation figures to 64K
processors, we see that the cycle time of the algorithm would be about 6.6,
only 80% slower than 64 processors. The average number of objects per
processor is presumed to remain constant, meaning that the 64K processc;r
system contains 1,000 times the objects contained in the 64 processor
system. If the relationship is as suggested by these numbers, the algorithm

can be said to scale very well as the size of the system is increased.

3.9. Summary

A garbage collection algorithm has been presented which satisfies the
needs of systems consisting of large numbers of processors. The algorithm
has been demonstrated by simulating its operation. The unit of collectiqn,
the object, while a construct of programming languages, can be applied
broadly to a wide range of systems, includingi conventional file systems and

database systems.
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The collection algorithm benefits from, but does not require, hardware
communication facilities dedicated to the task of garbage collection. If these
facilities are present, the speed of the garbage collection decreases in
proportion to the logarithm of the number of processors, in the worst case.
The introduction of techniques to improve the locality of reference among
the objects in the processors will improve upon ‘the aiready acceptable

scaling characteristics of the algorithm.

The ability to collect garbage from data structures distributed among
many processors in an efficient manner is a necessary ingredient to the use
of very large distributed machines for general applications. Systems which
provide for concurrency by connecting multiple processors to a single
memory are necessarily limited in both size and performance. In the
environment considered here, processors are the sole masters of objects
resident in their private memories and communicate with other processors
by passing messvages through a communication network. The algorithm
presented here will support the distribution of data and computation across
a very large number of such processors without introducing more overhead
computaﬁon thf:{n conventional collection algorithms require on existing

systems.



-98-
Chaplter 4

Interconnection Issues

4.1. Intreduction

Considerable attention has been given to the analysis and development
of interconnection schemes for distributed computer systems. Barly work
was directed at solving the problems of telephone systems [Benes85]. Given
the computer architectures of the 1980's, much work has been and still is
devoted to providing the means to connect multiple processors to multiple
memery units [Lawrie"?B,Lang?S]. The rapid evolution of integrated circuit
technology has provoked interest in the interconnection of large numbers of
micro-computers [Wittie?76,81]. The existing work and analyses in this area
are extensive. The work presented here is oriented toward a specific
application not previously investigated. It is the purpose of this work to
determine what the characteristics of several network topologies are, and
how suitable they may be for the implementation of the object-oriented

environment described in Chapter 2.

We consider here the interconnection facilities required to support a
large number of physically small machines executing in an "object-oriented”
environment. Objects and their messages are typically small but the rate of

message production is usually high.

The processing nodes are substantial machines in their own right. To

distinguish them from the type of processor found in systolic arrays
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[Kung?B] or a tree machine [BrowningB0], they are 1-2 MIPS (million
instructions per second) and contain considerable private memory, perhaps
256K bytes to 1 Megabyte. Communication functions are handled by a
specialized processor which has direct access to the processor’s memory.
Thus, the processor/memory node is not affected by messages passing
through the node on their way to their destination. The instruction set and
the internal architecture of the processor/memory node are of a high
enough order to permit compilers to be written with some ease. In today's
technology, such a machine can be implemented on a single printed circuit

card. Over the next 10 years, advances in integrated circuit technologies

might be expected to reduce it to a single chip or chip carrier.

Systems built around processing nodes, as described above, could
contain thousands of nodes. Interconnecting large numbers of machines
together such that they are able to adequately support the object-oriented

environment places several requirements on the communication facilities.

(1) The communication facilities cannot be permitted to deadlock, despite
cyclic topology or cyclic message flow. Deadleck is a condition where all
or part of the network is unable to continue operation due to an

unresolveable contention for occupied resources.

() As the system is expanded to inciude more machines, local
communication must not be adversely affected. That is, increasing the
size of the sysiem must not slow down message traffic between
neighboring nodes.

(3) The system must expand easily. The addition ;)f processing nodes must
not require the reconnection of existing nodes, nor can it require

modifications to the nodes themselves.
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The systemm must be implementable. The cost of building the
communications network must be commensurate with the number of
processors in the system. For large numbers of processing nodes, the

cost and difficulty of building the network must not become intractable.

The average message delay exhibited by the system should be of the
same order as the delay involved in a procedure call. Since we cannot
expect all programs to be highly concurrent, the delay in sending
messages must be kept on a par with a procedure call in a conventional
computer. Thus, highly sequential programs will still run with
acceptable performance. It is desirable that communication delays be
balanced with computational delays in the processors to avoid

bottlenecks for concurrent programs.

The routing of messages must not require the presence of global
topology information in each machine. The communication processors
must not require a map to route messages. Such inforn:iation would
grow with number of nodes in the systern and become too large to

contain in each processing node.

Given the above restrictions, certain interconnection schemes can be

eliminated immediately as candidates. Complete interconnection has

obvious desirable communication properties but is unimplementable except

for very small numbers of nodes as it requires O(N?) communication links.

Likewise, a crossbar switch arrangement [Pippenger?5] is undesirable, since

it too Eecomes impossible to implement for large N, requiring N? switching

elements. A star configuration, while it appears to require only one link per

node with a special processor at the center of the star, actually requires a

crossbar switch at the center of the star if it is to function at an acceptlable
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performance level.

At the other end of the spectrum, there are schemes such as Ethernet
[Metcalfe76]. While such a network is quite simple to implement, the
message delay seen between any pair of nodes will clearly increasz as rmore
nodes are added, due to the increased contention in the system. This
characteristic of contention busses does not rule out their use in a hierarchy
or some other organization of multiple busses. The hypercube described in

[Wittie76] is an interesting case.

Another interesting topology is the cube connected cycle [WittieB1]. This
scheme employs rings of nodes at the vertices of a Boolean N-cube where
there are logsN nodes in each ring (N is the number of vertices in the
Boolean N-cube). Each node in the ring connects to its two neighbors in the
ring and also makes one connection to another vertex. The nodes would thus
have a fixed set of three connections, however, expansion of the system
requires inserting nodes into all of the existing rings, as well as adding
vertices. This massive rewiring of the system makes the cube connected

cyele undesirable at the outset.

Several interconnection tltopologies are investigated here as
representative of some class of structures. Specifically, the chordal ring, the
tree, the toroidal mesh and the Boolean N-cube have been studied. Fach
have been extensively simulated with variations in parameters, such as,
differing link data rates, queue lengths, number of processing rodes, ete.
The simulated message traffic was also varied. To permit the various
topologies to be compared on an equal basis, a model bf message locality is
presented which is independent of the dimensionality of the interconnection.

Use of this model permits the application of message traffic of equal locality
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Lo systems in which the measures of distance are widely different.

The simulation models and their results are discussed and conclusions
are drawn about the appropriateness of these interconnection structures for

use in an object-oriented machine.

4.2. Interconnection Topologies and Queuing Models

Four topologies have been simulated using a packet switching model of
message handling and using queues at various points to smooth out short
term congestion. To compare these various topologies on an equal basis all
faétors other than the interrconnection strategy are treated identically in the

following analyses.

Messages of arbitrary length are breken into fix sized packets for
transmission through the network. A fixed size packet permits hardware

queues and buffers to be of limited size.

Communication links are all assumed to be bit serial and full duplex.
Unless otherwise stated, it is assumed that the bit serial links have a
bandwidth of 20 Megabits per second. The systems under investigation here
are tightly coupled and physically compact to improve wireability and
communication speed. The maximum length of the links in such systems
should be well below 50 feet. Data rates as high as 50 Megabits per second
are achievable over such distances with conventional interconnection media.
Full duplex operation would require that each link consist of at least two
conductors, one for communication in each direction. Communication links
must be limited to one or two conductors, otherwise implementation of large

systems is made proporticnally more difficult.
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At each processing node, there exists the aforementioned processor and
its memeory as well as a communication processor with a high bandwidth,
parallel interface to the memory. The serial communication links are part of
the communication processor as are any associated packet queues. f‘igure

4-1is a block diagram of the model used to represent a processing node.

There exists a queue (FIFO) memory for each output communications
link. The queue is assumed to have a zero fall-through time and is of a fixed
size. Unless otherwise stated, the queue size of all queues is four packets.
There is also a queue between the object processor and the communication
processor for outgoing packets. Incoming packets are assumed to always

have a place in the memoeory.
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The packet size for these networks was chosen to be 256 bits of data.
Addresses, error codes, routing information, etc. are part of the packet but
are not included in the packet size. This size was choesen to avoid excessive
fragmentation and message assembly overhead and to give the hni(s an
acceptable duty cycle. Message passing languages are usually characterized
by a large volume of small messages. The parameter space over which these

networks have been simulated reflect these characteristics.

Message traffic is described by several parameters. The average
message length and a standard deviation, the average amount of
computational time spent between the generation of messages and its
standard deviation and the locality with which the destinations of the
messages are chosen. The parameterization of locality is discussed in a
sﬁcceeding section. Based on experience with Simula, an average message
length of 788 bits with a standard deviation of 256 bits was chosen Thus the
average message is three packels long, with a standard deviation of one

packet.

The rate at which messages are generated by each processor was chosen
to be high for two reasons. First, message passing languages tend to send
messages with a frequency approaching the rate at which other languages
execute procedure calls. The simulation of this type of operation requires a
correspondingly high rate of message production. Also, to obtain a good
comparison of the the topologies and to find their limitations, it is necessary
to saturate them. The rate of message production used in simulation here is
one message every 30 microseconds with a standard deviation of 15
microseconds. For a processor such as the Motorola 68000, this rate

corresponds to one message per B0 or 90 instructions.
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4.2 1. Tree Connection

The use of tree structures to connect machines is very common
[HorowitzB1]. It has several virtues that make it attractive. It has a planar
topology, thus guaranteeing that it can be implemented without unusual
effort. The routing of data from one node to another is accompiished with
simple algorithms local to the nodes. It is also deadlock free because it
contains no closed loops, preventing the possibility of cyclic dependencies

that would constitute deadlock.

The tree structure used here puts all the processing nodes at the leaves
of the tree. The remainder of the tree serves as a facility for communication
only. Nodes in the tree connect with their parents by mean of a
communication link as previously described. The links have a queue of
packets associated with messages traveling in each direction. Figure 4-2

illustrates the tree structure.
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A message or packet that is to be passed from one leaf node to ancther
must be forwarded to the closest common parent and then back towards the
leaves to the destination. There is one and only one such path between any
pair of processing nodes. Other tree-like structures have been propocsed,
usually containing communication paths between nodes at a given level. The
X-Tree [Despain?8] and [Harris77] both propose "horizontal” connections
between branches of the tree. The introduction of these paths produces
cycles in the interconnection graph and may thus introduce the possibility of

deadlock. This issue will be discussed in a succeeding section.

The branching ratio of the tree has a large effect on the communication
characteristics of the tree. A small branching ratio, such as 2, maximizes
the nurmnber of links a message must travel Lo reach its destination. A large
branching ratio reduces the height of the tree but as the number of links at
each parent node grows, so must the complexity and congestion of the nodg
grow. The extreme case, where the branching ratio equals the number of
processing nodes, produces the star structure with its complex central

switch,

For the purposes of this ’analysis, a branching ratio of 4 was chesen.
This results in commum'cation nodes with 5 connections making them fairly
easy to build. The height of a tree containing 64K processing nodes at the
leaves and having a branching ratio of 4 would be 8. The longest
communication pa;ch would then be 16 links. This distance is the same as the
longest path found in a Boolean N-cube of the same size. In general, the
maximum communication distance found in the tree is given by the
expression 2logy N where b is the branching ratio and N is the number of

processing nodes.
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Clearly, a branching ratio of 4 encourages local communication among
groups of 4 or fewer processing nodes. Whatever the branching ratio, the
tree structure imposes an increasingly severe penalty in situations where the
locality of communication involves more processing nodes than the

branching ratio.

Packets are routed easily in the tree. If a parent receives a packet with
a destination corresponding to one of its descendents, it sends {or queues)
the packet using the link which is a branch to that descendent. If the packet

is not for one of its descendents, the node sends the packet to its parent.

Congestion can be expected in the parent nodes if the production of
nonlocal messages by all the parent's descendents exceeds the bandwidth of
the link to the parent's parent. The packet queues between the parent and
its descendents will fill up with packets until the processing nodes are made
to wait before sending another message. The effective rate of message
production will be reduced to match the rate of message consumption at the
bottleneck by reducing the utilization of the processing nodes. This tradeoff
between processor utilization and cornmunication bandwidth may occur in all

communication networks and is not limited to the tree structure.

4 2.2. Chordal Ring Connection

The Chordal Ring connection is one in which N processors are connected
in a single closed loop with the addition of connections from each processor
to another processor‘ a fixed chord length along the circle. Figure 4-3 shows
a chordal ring connection of 16 processors. An analysis of chordal rings can
be found in [ArdenB1], where it is shown that the maximum length of an
optimum path between two nodes in a properly constructed chordal ring is

O(VT).
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The chordal ring, as used here, is made of processing nodes connected
by queued links as previously described. The chord length is chosen to be
VN to approximate the conditions of [ArdenB1]. In addition, as can be seen
in Figure 4-3, each node has 4 connections, two are part of the ring and 2 are
chord c‘onnectiohs. This addition gives the chordal ring a lower effective
diameter and give$ it the same degree connection as the mesh connection
described in the next section. The degree of connection (4) is close to that of
the tree connection (5) as well, making the comparison of the chordal ring

with the other connection strategies more equitable.

The links in the chordal ring are bi-directional permitting messages to
move in either direction around the links and chords. The routing algorithm
attempté to send packets to their destination by the shortest path. When a
packet is received at a node which is not its destination, the node decides
which of the other three connections to the node would send the paovkevt
closest to its destination. The message is then queued for the selected hnk.
If the selected"link queue is full the second choice is used, providing it is not
full. |

The chordal ring is a simple connection strategy of low degree. Though
it is not planar.i it would not be difficult to implement for even very large
numbers of procevssing nodes. Since it does have avcyclic graph, there is a
‘prob‘ab.ility tha’c it could deadlock unless other measures are taken. The
simulation results show how suitable this topology is for the needs of an

object-oriented machine.

4.2.3. Toroidal Mesh Connection

Two dimensional mesh connections are constructed by arranging

processing nodes at the vertices of a grid in a plane and connecting each
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node to its four nearest neighbors. Hexagonal arrays are constructed in a
similar manner. These types of connections have the advantage of being
inherently planar and of fixed degree. They are proposed for use in various
applications where the topology of communication can be made to matceh the
topology of the interconnection such as [MartinB1] and [Kung78]. Meshes of
higher dimensions can be constructéd as well [WittieB1] with increased

communication capabilities but incurring increased implementation costs.

Here we consider a two dimensional mesh with the edges of the mesh
wrapped around to form a toroid, This avoids difficulties with the boundary
conditions at the edge of the mesh and maintains a fixed degree of 4. The
edges are wrapped around without the twist introduced by [MartinB81]. The
toroidal nature of this connection is non-planar but can be easil}? provided
for in an implementation. One additional channel in each dimension and
between each row and column of nodes must be provided to accommodate
the wrap around connections. An illustration of the toroidal mesh is shown in

Figure 4-4.
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The maximum distances that must be traveled by packets in the mesh
are O(VN ) since they must travel a Manhattan path to their destination.
This is the same result as found by [ArdenB1] for the chordal ring. In the
configurations to be simulated, the mesh is always square and each ncae has
4 queued links as described for the other topologies. The routing of packets

in the mesh is determined és follows:

(1) The node addresses are viewed as coordinates and the distances to the

destination in directions north, south, east and west are determined.

(2) Inthe order of smallest distance, each queue in the associated direction
is polled and if space is available, the packet is queued there. If no
space is found in the gueue, the direction with the next larger distance
is polled.

(3) When all four gqueues have been polled and no space has been found, the

process repeats until the packet is gueued.

This procedure guarantees a minimum length path is used if there is no
traffic congestion. Where congestion occurs, an attempt is made to route
the message around the congested area. It is even possible for a packet to
be sent back along the same link it was sent if congestion is severe. If this

happens, a lesé congested path may be found for the packet.

Like the chordal ring connection, the mesh connection graph has cycles
giving it the potential to deadlock. Like the tree, the mesh connection
clearly favors local communication traffic with groups of 4 or 5 processing
nodes. As traffic becomes less localized, more congestion will occur in the

queues and the probability for deadlock will increase.
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4.2 4 Boolean Ncube Connection

The Boolean N-cube interconnection is a multi-dimensional, variable
degree strategy where nodes are connected to their neighbors in N-space.
The simplest definition of this interconnection is to first number all of the
nodes sequentially starting at 0, then connect all pairs of nedes whose
numbers have a Hamming distance of 1 (those whose numbers differ by only
one bit). Figure 4-5 shows a Boolean N-cube of 16 processors. The definition
requires that each processor have logsN connections, where N is the number
of processing nodes in the network. The Boolean N-cube can be considered
an extreme case of the toroidal mesh, where only two nodes are permitted in
- each dimension and the number of dimensions is increased to accommeodate

additional nodes.
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Figure 4-5

Boolean N-cube Connection
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The Boolean N-cube has long been an interesting interconnection
scheme for various dedicated computations [Pease?5]. It has been shown to
be functionally equivalent to several other schemes, such as, the perfect
shuffle [Stone71,Lang76], the Omega network [Lawrie73] and Benes' re-
arrangeable network [Benes85] by [ParkerB80]. Sullivan [Sullivan77] first
advocate its use to interconnect autonomous processing nodes. Because the
Boolean N-cube-is ubiquitous, simple and exhibits some obviously desirable
properties, it is investigated here. It is also clear that for large numbers of

numbers of nodes, the Boolean N-cube becomes increasing difficult to

implement. This issue will be taken up in a succeeding section.

The Boolean N-cube clearly contains cycles in its graph, making it
subject to deadlocking. The next section will shown how packets can be

routed to avoid deadlock with some loss of generality and bandwidth.

Given the same queued links used in the preceding interconnect
strategies, each node in the Boolean N-cube connects to one neighboring
node in each of the other dimensions. In the general case, routing the
packetls to their destinations by the shortest path is quite simple. Owing to
the original definition of the structure, each of the links to a given node
connect to all the other nbdes in the network whose addresses differ from its
own address by exactly one bit. Each link can then be associated with that
bit of the address which differs in the nodes it connects. When a node
receives a packet it performs an exclusive-OR operation between its address
and the address of the packet's destination. If the result is zero, then the
packet is at its destination. If not, the packet may be sent across any link
corresponding to a "one” bit in the result of the exclusive-OR. In this way,

successive nodes route the packet, changing one of the differing bits until
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the destination is reached. Where there is a choice of more than one link on
which to send the packet, the link whose queue is least full is selected to

avoid congestion and balance the traffic load.

The longest path between any two nodes in the network is O(logaN).
This is ‘a better characteristic than is found for the torocidal mesh or the
chordal ring whose maximum distances are O(VN ). It is comparable to the
tree in this respect but it should be noted that in the tree there is only one
path between any pair of nodes, and parts of that path are heavily shared by
cther paths. In the Boolean N-cube, for a pair of nodes with Hamming
distance m, there are m! paths of length m between them [Sullivan77].
There are longer paths as well but these are not considered here. It is
important to note that, in the Boolean N-cube, the farther a packet must

travel, the more paths there are for it to take.

4.3. Deadlock

Deadlock cannot be tolerated in any system unless its probability of
occurring is less than the probability that the system may experience a hard
fault that would render it unavailable. With the exception of the tree
coﬁnection, all the interconnection systems investigated éhow some danger
of deadlock. The tree connection is deadlock free because its graph contains
no cycles. The probability of deadlock in other networks is a function of the
size, queuing, topology and message traffic in the system. Without a priori
knowledge of the message traffic, the probability with which deadlock will

occur can not be determined.

The mechanism of deadlock requires several conditions. It requires at
least one cycle in the graph of interconnected queues. Also, it presumes that

a packet with any destination may appear in any queue. It is this last
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characteristic that the system designer has coniroel of, though, in some
cases, exercising this control can be otherwise undesirable. The following is

a proof of the existence of deadlock given the above assumptions.

(1) Extract any loop of interconnected queues from the system as shown in
Figure 4-6.
(2) Assurne that all the queues in the system are filled with packets.

Assume further that the queues are of a fixed and finite size {as they

must be in a real system).

(8) Assume that all the packets in the queues have a destination node within
the loop but one other than the node they next encounter {the node the
queues point at). If packets cannot change order in the queue it is only
necessary to assume that the first packet in the queue (the one that is

to be removed next) has a destination beyond the next node.
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Full Packet Queue
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Processing Node

Figure 4-6

A Deadlocked Loop of Communication Links
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The above situation is that of deadlock. The foliowing arguments prove
that the nodes and queues in the loop will never be able to change their state

and this state thus constitutes deadlock.

(1) To remove a packet from a queue, a node must either consume the
packet or place it in another queue. To consume the packet it must be
destined for that node. The situation is defined such that packets in the |
queues are never destined for the next node and thus cannot be
consumed. The packet cannot be moved to any other queue since they

are all filled.

() Thus, if no packets can be consumed, and no packets can be moved,

then no new space will ever become available in a queue.

(8) If no space ever becomes available in a queue, no node will ever be able

to move a packet, etc.

If the above state of the system is then deadlock, we must only show
thét it is a reachable state to prove that there is a probability of deadlock. It
should be noted, that the tree can never have the above state, since by its
definition, the queues pointing at the leaf nodes contain only packets
destined for the ieaf nodes. Thus, these packets are always consumable and

the queues pointing toward the leaves are always emptying.
To reach the described sta;ce, the [ollowing could happen:

(1) From a condition in which all the queues are empty, meaning there is no
traffic in the system during some interval in time, all the nodes begin
prodticing messages.

() The rate of message production exceeds the data rate of the links for a

long enough time such that messages fill the queues.
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(3) If all the messages are destined for nodes more than 1 link away, then
the queues are filled with messages of the type described above and the

system has reached the deadlocked state.

While the foregoing may seem somewhat contrived, it is only one state
and procedure constituting deadlock. If any portion of a system deadlocks,
it will increase the probability that other parts will dé so by causing queues
to remain filled and immcbile that would otherwise be available to the
system. In any case, if any part of the system deadlocks, even two nodes, the

failure is unacceptable.

Deadlock is not easily detected in the system and if detected it may not
be possible to unravel the system without some loss of state. It is necessary
that if deadlock occurs that it occur so infrequently as to be unnoticed when

compéred to other failures of the systerm.

4.3.1. Deadlock Avoidance in the Boolean Ncube

Given that the tree may not be the most desirable topolegy for
interconnecting nodes, it is possible to control message traffic in the Boolean
N-cube to prevent any possibility of deadlock. Equivalent controls may exist
for the chordal ring and the toroidal mesh. In general, if message traffic can
be controlled or restricted such that packets can always be consumed,
deadlock will nof occur. Also, if congestion can be detected, processing
nodes can be prevented from generating more messages until the congestion
is relieved again preventing deadlock. Both the toroidal mesh and the
chordal riﬁg can be modified from the general fofm shown here to a specific
system with provisions for avoiding deadlock. The Torus machine [ MartinB81]
uses a ibroidai mesh connection and avoids deadlock by restricting

communication between processing nodes to a fixed pattern.
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Sullivan [Sullivan77] presents a message routing procedure for nodes in
a Boolean N-cube which avoids deadlock, though he does not recognize this
characteristic in this reference. The procedure is less general than that
already presented for the Boolean N-cube. It permits messages to be routed
between any pair of nodes but restricts the flow to one particular path. The

procedure is restated here.

(1) Exclusive-OR the node address with the destination address of the

packet. If there is no difference, consume the packet.

(R) If there is a difference, send the packet to the link corresponding to the

leftmost differing bit of the two addresses.

The following is a proof that this routing procedure renders the Boolean

N-cube deadlock free.

(1) Packets in the queue of any link corresponding to the rightmost address
bit must always be destined for the next node and can therefore, always

be consumed by that node.

() Packets in the queue of any link corresponding to the second rightmost
bit must either be destined for the next node and can be consumed or
must go into the queue that is to the right of the link's position. Item 2
of the routing procedure above insures that any differring bits between
the currerit node addi"ess and the destination address must be to the
right of the bit corresponding to the link the packet was received from.
The rightfnost queue is the only queue that is logically to the right of the
second rightmost queue. If it is emptying, as in Item 1 above, then there
will be a place to put packets from this queue causing it to emptly as

well.
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(3) Apply the above argument to each successive bit of the address until the
leftmost bit is reached, proving that the queues corresponding to the

leftmost bit will always empty.
(4) If all the queues will eventually empty, then deadlock cannot occur.

Therefore, by using Sullivan's routing procedure, a Boolean N-cube
connection can be using without fear of deadlock. The single paths used by
the packets will be evenly distributed over the system. However, where local
congestion occurs, particular packets will be unable to circumvent the
congested gueues. This loss of generality can be expected to reduce the
performance of the Boolean N-cube from that achieved by original routing
algorithm presented here. If deadlock can be avoided in the mesh or ring
connections by restricting the routing of messages, their performance will be
reduced as well, because the number of choices available in routing

messages will be reduced.

The more restrictive routing procedure avoids the problem shown in
Figure 4-6 by controlling the destinations of packets that may be found in
the various queues. Using this procedure, no loop of queues can exist where

none of the packets can be consumed by the attached node.

4.3.2. ANan-Queued. Deadlock-Free Interconnection Structure

Deadlock arises in queued systems where conflict occurs over the
allocation of resources, in the form of queue slots. Once a queue slot has
been t;aken by a packe’t it cannot be released to another packet until the
first packet has been properly dispgsed of. In the previous section, deadlock
was avoided by insuring that queues always emptied, providing a constant
and guaranteed i;urnpver of resources. Another method of avoiding deadlock

is to not permit resources to be allocated until enough have been reserved
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for the entire operation. In a communication network, this means reserving
all the communication links required to send a message, send the message
and then release the links. The reservation of resources must be done in

such a way as to prevent deadlock as well.

In this section, we present a scheme of reserving and releasing links in a
Boolean N-cube connection that is deadlock free. This system contains no
concept of packets. Once an entire path, consisting of one or more links, is
reservéd to the message's destination, the entire message is sent en masse,
 The nodes pass the serialized data through from one link to the next with
little or no buffering permitting the message to be transmitted at the full

bandwidth of the link and with a very small propagation delay.

| The hardware at each node to connect one link to another, or to the
processing node, consists of a small crossbar switch. The size of the
crossbar switch is 1+loggN by 1+logeN where N is the number of processing
nodes in the system. The extra connection is for communication to and from
the processing node itself, The data paths in the crossbar have a width of 2
for full duplex communication. For large N, such as 64K, the crossbar switch
in each node is well within an acceptable size. For 64K processing nodes, the
crossbar switches must ha\f_e on the order of 272 switching elements.
Associated with each link, there must exist controi logic and sufficient state
to implement the reservation protocol and make connections in the crossbar

switch.
There are several definitions and rules that must be obeyed by the links
as they are manipulated. A link must be in one of the following states:

(1) UNRESERVED In this state, any path may reserve the link causing it to
become RESERVED,
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() RESERVED In this state, the link is reserved to a given path. Another
path may take the link and reserve it for itself if the priority of the new
path is greater than that of the path to which the link is currently

reserved.

(3) COMPLETED In this state, the link is assigned to a path and cannot be
reserved by any other path. Only the path to which the link is assigned

may change its state to UNRESERVED.

To establish a complete path to a destination node, the originating node
begins by attempting to reserve a link corresponding to a bit which differs
with the destination address. Inreserving a link, the node may be successful
and the same process is repeated at the next node until the destination is
reached. If the link is currently reserved, the node will wait or choose

another link for reservation, if there is a choice,

Once a link is reserved, it may yet be taken from the path by a path of
greater priority. The priority of paths is first determined by the number of
links they contain. The longer a path gets, the higher the priority of all its
reserved links. If a longer path attempts to reserve a link reserved to a
shorter path, the link wﬂlrbe taken from the shorter path and reserved by
the longer. The shorter, now broken, path is made to dissolve and reattempt
a new connection. If two paths attempting to reserve the same link have the
same length, the link will be reserved by the path originating at the highest
numbered node. In this way, no two paths have the same pﬁority. Unique

priorities prevent the paths from deadlocking over contention for the links.

When the last link in a path is reserved, all the links in the path become
COMPLETED. The path is then established and used for the duration of the

message transmission. After the entire message has been sent, all the links
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in the path are released by sending them to state UNRESERVED.

This procedure is used by all the nodes in sending messiages. Since none
of the the data in the message is stored in the network, the breaking of paths
involves no loss of data. As an added advantage, the message is sent in
order, eliminating the need for the reassembly of packets as required in
queued systems. The system does not deadlock, because one path will always
win any contention. Congestion of the network will result in many paths
being broken before they are completed, but since they are able to retry

until they do achieve a complete path, the system exhibits liveness.

This type of Boolean N-cube was also simulated to compare it with the
queuekd networks. In these simulations, each nodes has a queue of 4
messages produced by its processor, but there are no other queues in the
system. To change the state of a link, the simulations require enough time
to transfer 64 bits to the link, such that link reservations occur in a ﬁnit?
time. The link data rates and message traffic used are the same as those

used in the queued networks.

4.4 A Distance-Independent Measure of Locality

To make meaningful comparisons of performance among networks of
differing topolegy. the message traffic used to test them must have no
tbpology dependent notion of distance. In each of the topologies discussed
here, the distances seen from one processing node to another depend on the
particular network. A model of message traffic is required which is
independent of the network in question but can be applied to any network in
the same way that a program or set of objects can be executed on widely

different machine structures.
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To start, we introduce the concept of a "neighborhood”. From the point
of view of a single processing node in a network, its neighborhood is a set of
other processing nodes with which il will communicate with a probability
greater than some threshold 7. The size of the neighborhood is a meaéure of
message locality. If the neighborhood size was the same as the number of
nodes in the system, then traffic in the system could be said to be uniform.

- Every node would have an equal probability of communicating with any other
node. For small neighborhood sizes, traffic can be said to be very localized
where the probability that a node communicates with one of its neighborhood
gset is much higher than for other nodes. The size of the neighborhood is

denoted by a.

For given message traffic, the probability that a given node
éommunicates with any selected node can be determined. The nodes can
then be arranged by decreasing probability. The neighborhood is ideally the
first @ nodes in the ordered list, where a is Lo be a measure of locality. The
probability that each of the first ¢ nodes will communicate with the given
node will be greater than or equal to the theshold 7. The list can be
approximated by a geometric distribution where:

-

J(z)=ze®
The dependent variable z is the position in the list and f(z) is the
probability of communication with node at that position. The constant ¢ can
be thought of as the approximate size of the neighborhoed. The geometric
distribution has the desirable programming property of having a simple,
closed inverse. Also, its mean and variance are conveniently given as o and

2

a*®, respectively.
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In the simulations, the message locality is a parameter. The parameter
o is the desired size of the neighborhood and is used, as follows, to generate
appropriate message traffic. A number X is picked at random in the interval
between 0 and —i— . The inverse of the geometric distribution is used to find
what poéitionp in the list of nodes is represented by this probability:

p = —a Log, (aX)

At this point, p represents a randormly chosen number with the distribution
of the desired message traffic. It remains to select a corresponding
processing node in the network being simulated. This process converts the
number p to a corresponding distance in the network being simulated. That
is, a distance d is chosen which is the number of communication links that

must be traveled in the network to reach any one of p processing nodes.

This transformation is different for each network topology. For each of
the topologies in question, the follow relationships hold, describing how many
nodes K can be accessed by traveling exactly | cormmunication links, where

N is the total number of nodes in the network:;

(1) Boolean N-cube {0<I<logN)

_ (log N)!

~ 1(logN—1)!
(8) N-ary Tree (where b = branching ratio and 2=<1<2log, N)

Ly
R=(b-1)b?

(3) Two Dimensional Array (assuming large N and no boundaries)

R =41

(4) Chordal Ring (assuming large N)

k=41
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The above functions are integrated with respect to I {the number of
links) to produce a table. The table can be indexed by p to find the
corresponding entry which is the distence 2, in links, that must be traveled

to access p nodes.

Of the specific nodes that are found to be exactly distance d from the
node that is to send a message, one member of the set is chosen at random.
The chosen node is then sent a message in the simulated system. As all the
nodes in the network exhibit the same behavior and select the destinations
of their messages by the same method, the overall message traific has a

locality determined by the original parameter a.

In the simulation results, references to "Traffic" indicate the level of
message locality as set by . Asmall a, in £he range of 3 to 5, is highly local
traffic. An a of 12 or more may be regarded has substantially non-local
traffic for systems of less than 100 processing nodes. The parameter a has
no effect on message length or frequency, it affects only the destinations of

messages.

The intent of this model of traffic locality is that it be used to represent
commmmunication requirements of an object-oriented program. Since it is
possible for the same program to run on machines of different topology, the
parameter a has been made independent of distance. The simulation results
are normalized by the use of . The use of the parameter o in the simulated
traffic of each system gives an indication of how each will react to the same
class of applicétion programs. The group size, as represented by a,
describes a homogeneous program execution. Real programs may exhibit
nonhomogeneous communication by having objects with widely different

characteristics. The placement of objects in processors can cause
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nonhomogeneous communication among the processors. Such programs
might be better characterized as a composite set of several group sizes
rather than one group size. The following simulation results are based on
homogeneous programs whose locality of communication is characterized by

a single parameter a.

4.5. Simulation Results

For each of the interconnection strategies described, a simulation
program was written using the Demos simulation package [Birtwhistle79].
The size of the network, the message traffic, the queue sizes and the data
rate of the links were all parameters to the programs. In all, six network

types were simulated as listed in Table 4-1.

Table 4-1
Names of Networks Simulated

Name on Graphs Network Type

ARRAY Square Toroidal Mesh

TREE Tree with Branching Ratio 4
RING Chordal Ring

NCUBE Unrestricted Boolean N-cube
ECUBE Restricted Boolean N-cube
SCUBE Non-queued Boolean N-cube

The default parameters used in the simulations have been previously

described. Unless otherwise stated, the following parameters were used:

(1) link data rate: 20 Megabits per second
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(3)
(4)

(5)
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packet size: 256 bits
maximum number of packets in each queue: 4

distribution of message lengths: Normal distribution, mean 768 bits and

standard deviation of 258 bits

distribution of message intervals: Normal distribution, mean 30

microseconds and standard deviation of 15 microseconds

The simulated systems were '"run" for a simulated period of 2

milliseconds to cause them Lo reach an equilibritun. At this point, the data

collection facilities of the simulators were reset and the system was

simulated for 8 milliseconds. For most systems, several thousand messages

would be produced by each processing node and transmitted within this time

period. During this phase of execution, various statistical measures were

faken of the network performance. A characteristic listing of the results of a

simulation is found in Appendix B. The following is a list of those measures

that were selected as important to this application. These quantities are

displayed graphically in Appendix A.

(1)

(2)

(3)

Average message delay The mean time between the production of a
message by a processor and its completed receipt at its destination.
This is an overall measure of how good the network is at getting

messages to their destination with some given traffic density.

Average messoge deloy of messages fraveling distance 1 This is the
mean delay seen by messages traveling through exactly one
communication link. This delay is intended to measure how good the

network is at moving very local messages to their destinations.

Average puacket deloy The mean time required for a packet to reach its

destination. This number is clearly related to the average message
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delay but removes the influence of the message length and the situation
where one or more packels delay thé entire message. In graphs showing
this function, traces marked as SCUBE are plots of the time required tc.>
complete an unbroken path to the destination. The SCUBE I;Las no
packet concept.

Processor Ulilization This quanfity is a measure of what percentage of
time processors were not idle, waiting to place their next message in a
queue. When the queue between the processor and the communication
node is full the processor is made to wait until space for a packet is
available. For some level of message traffic, this percentage is a
measure of the bandwidth of the network as a whole, that is, its ability to

keep up with processor message production.

Port Utilization This quantity is the percentage of time the
communication links are actually being used to transmit data. This

number is their overall duty cycle.

The parameter space over which the networks were simulated was

narrowed to a specific area. Computing costs and address space limitations

prevented more than 96 processing nodes from being simulated in all but the

SCUBE configuration. To investigate the effects of scaling, the size of the

networks the range of B to 96 processors was heavily simulated. Also, the

effects of varying the link rate from 1 to 50 megabits per second were

simulated, as well as, average message lengths from 3 to B packets. Message

locality, as measured by the a parameter, was varied from 3 to 24 to

determine how well the various networks responded to iraffic of varying

locality.
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To measure the worst case traffic, the special case of uniferm traffic was
simulated. Uniform traffic is defined to be the case where any message has
an equal probability of being sent to any node in the network. This can be
considered the worst case, because if objects were scattered at randorﬁ over
the nodes, this type of message traffic would be the result. Surely, any
algorithm used to distribute the objects in the system would do no worse

than this.

Appendix A contains the bulk of the simulation data in graph form.
Here, the parameter space of B to 96 processors and a=3 to a=12 and
uniform traffic is explored. Interspersed within this chapter are some of the
more sigm‘ﬁcant results. Appendix B contains the complete set of data
output for one simulation. The network simulated was that of the NCUBE
with 64 processing nodes. The statistical measures and histograms are

typical of the data produced by the simulation programs.

In Figures 4-7 and 4-B the effect of message locality on the messagé
delay and processor utilization can be seen. It is quite clear that the RING
and TREE connections suffer severely as the locality parameter a is
increased. It is notable that the NCUBE connection actually improves or is
constant with decreased locality. This is explained by the fact that the
farther a message travels in the NCUBE, the more paths it has to choose
from. As the parameter a is increased, a larger percentage of the message
traffic is able to benefit from the increased number of paths. The ECUBE,
which restricts each message to one particular path, is seen to lose
performance slowly as messages are unable to avoid congestion. The SCUBE
suffers more severely since, less locality causes greater numbers of links to

be tied up in each message transfer. The best performers here, the NCUBE
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and ECUBE provide delays of less than 100 microseconds and are able to
support more than 75% of the processor message production under the

conditions stated.

The effect of varying link data rates on performance is seen in Figures
4-9 and 4—16. The average message delay does not fall below 100
microseconds in the RING, TREE and SCUBE until the data rate of the links
exceed 35 Megabits per second. As serial data rates above this figure are
difficult to implement, this limits the choices of suitable connection
schemes. One hundred microseconds is perhaps the upper limit of delays

that can be comparable to the delays involved in procedure calls.
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4.5.1. Deadiock

Deadlock was detected in several cases of simulation. This condition was
detected when most or all of the queues in the simulated system filled up
and packets ceased to move. The toroidal mesh was observed to deadlock
consisténtly for message localities of 5 or greater. For this reason, the
toroidal mesh is missing in most of the graphs. No attempt was made in the
simulation of the toriodal mesh or the chordal ring to find methods of
avoiding deadlock, though such methods may exist. To increase the
probability of deadlock, a special case traffic load was simulated. In these
simulations, the messages have an equal or uniform probability of being sent
to any node in the network. This traffic did cause the NCUBE to deadlock for
network sizes of 48, BO and 98 nodes. This condition is indicated by dotted
lines on some graphs. The ECUBE, SCUBE and TREE nevér exhibited any
propensity for deadlock, thus supporting the contention that they are

deadlock free.

The RING also never showed signs of deadlock. This is explained by the
relatively large leops found in the chordal ring connection. The more links
that constitute a loop, the lower the probability that they will all fill up. The
ease with which the toroidal mesh, with its small loops of 4 links, became
deadlocked bears out this contention. The NCUBE connection also has loops
as small as 4, but with its greater number of paths, it is less likely to fill its

queues.

452 Scahng of Communication Capabilities

One of the most important characteristics of interconnections
strategies is their performance as the size of the network is increased. A

topology which cannot maintain an acceptable level of performance for large
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numbers of nodes cannot be considered suitable for application in an object-

oriented machine.

In Figures 4-11 and 4-12 the characteristics of the networks are shown
as a function of the size of the network. In these figures, the message traffic
is highly localized with =3, The various forms of the Boolean N-cube all
improve as the number of nodes increase, due the the increasing degree of
connection. The TREE connection, with a branching ratio of 4, has a nearly
constant level of performance. With traffic of 3, most of the messages can be
routed in two links in the TREE regardless of its size. The ARRAY and RING
connections lose ﬁerformance steadily as the size of the system increases,
making them unsuitable. The same general behavior can be seen for other
values of o in Appeﬁdix A Figures 4-13 and 4-14 show rmmore pronounced
effects of scaling for a=B. The results of uniform traffic are shown in Figures

4-5 and 4-18,

Figure 4-17 shows how messages traveling through only one link are
affected by increasing system size. Here it is observed, that the RING and, to
some e;(tent, the TREE.connec’cion exhibit increased delay in lecal messages
as the system grows. Again, the variations of the Boolean N-cube show

increasing performance as the system is made larger.
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The‘sjmulation results clearly show, that of the topologies tested, only
the various forms of the Boolean N-cube maintain acceptable levels of
performance as the size of the system grows. As a Boolean N-cube is» made
larger, more communication links must be added than nodes, increasing the
performance of the structure. The ECUBE version of the Boolean N-cube is
observed to be only slightly less powerful than the NCUBE. The SCUBLE
performance scales well with system size but is considerably worse than the

ECUBE at all points.

4.6. Wireakility of the Boolean N—cube

The Boolean N-cube has been demonstrated to have many desirable
communication properties. It is not without its pitfalls, though. There are

two areas of concern about the Boolean N-cube.

This structure is inherently of a variable degree. That is, the number of
connections that must be made to each node in the network is a function of
the number of nodes. The ring, tree and mesh topologies are of fixed degree
havjng a constant number of connections for any network size. Clearly, the
increasing degree of the Boolean N-cube is partially responsible for its
desirable communication cheracteristics. The number of connections
required at each node in a Boolean N-cube is loggN, where N is the number
of nodes in the network. This relatiohship does not reqﬁire that the nodes be
individually modified as nodes are added to the network. A sufficient number
of connections can be provided at each node in advance of their need, such
that a large network can be built incrementally. If 16 connections can be
provided for, a network of 64K nodes can be built. Twenty connections could
as well be provided, but it is likely that other factors, such as, heat

dissipation‘, power distribution, space requirements and wireability will limnit
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the size of a system to less than one million processors.
The total number of conneclions in a Boolean N-cube connection is

12—\-7 logeaN. The wiring required by this topology thus increases more rapidly
than linearly with the number of processors. For any given interconnection
technolégy, there must then be a maximum practical limit to the size of a
Boolean N-cube as the costs of wiring each additional node increase. In this
section, it is shown that given present packaging and wiring technology, a
system as large as 64K processing nodes could be implemented. It appears
that this number is presently the practical limit, though may not remain so
with time. A system made up of this many processing nodes is clearly of a
significant size and guite beyond the processing capability and cost of

existing systems.

Given a sufficient level of integration, a processing node with 186
connections could fit in a 24 pin package. In this case half duplex
communication is assumed, where only one conductor is required per link.
Sixteen communication connections, four for the garbage collection
algorithm and four cpnnections for power and ground permit a standard 24
pin ceramic DIP to be utilized. This package can be mounted on a 0.8 inch by
1.4 inch grid. A 64K node network can be made up of such parts

interconnected by a hierarchy of printed circuit boards and backplanes,

The processing node chips are first mounted to a conventional printed
circuit board. A 4 by 3R array of these chips on a board would have a
minimum size of about 7 inches by 27 inches. The interconnection topology
requires that 9 connections leave the board for each processing node or 1152
signal wires. If board edge connectors are used with 10 connections per inch,

about 120 inches of connector are required. If both long edges of the board
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and both sides of the board are used, the long dimension of the board must
be at least 30 inches, allowing for power and ground connectlions. Using both
edges of the board requires the use of zero insertion force connectors like
those used in the Symbol machine [Cowart71]. These are cam opérated
connectors and are sormewhat exotic but workable. A simple analysis of the
wiring within a board reveals that 4 sigﬁal layers are sufficient to

interconnect the 128 chips and the edge connectors.

The boards can be mounted between a pair of backplanes. Half inch
spacing of the beards permits 84 boards to be mounted between a pair of 30
inch by 32 inch backplanes. This 64 board assembly of the packaging
hierarchy contains B192 processing nodes. The interconnection of boards to
each other within this unit could be made by wire-wrap on the two

backplanes.

To complete the system, B such units must be interconnected. Each of
the 8192 processing nodes within a unit has 3 external connections, requiring
each unit to provide three sets of B192 connections to other units. In
addition to the local connections, the pair of backplanes must provide for the
routing of these external connections. If two of the 3 sets of B1g92
connections are on one of the two backplanes, then 163B4 parallel wires must
be provided for. As these wires are of substantial length, they must be near
a ground plane to provide noise immunity and consistent impedance.
Printed circuit boards can permit 50 etched wires per inch. Thus, about 327
inches are required. For a 30 inch wide backplane, 12 layers are needed. A
backplane with these features would be unusual and not inexpensive but it is
well within the capabilities of current technology. Eighteen layer printed

circuit boards are used routinely in military and aerospace applications.



-152-

A method of organizing the B units required to complete the system is
shown in Figure 4-18. The dimensions of the backpanel pairs (about 30 by 32
by 10 inches) make the overall size of the system, less the power sugpﬁes,
about B feet long by 4 feet high by 3 feet deep. The connections shown
between the backplanes as bars in the drawing each represent 8192 wires.
These connections are difficult to provide. They could be made using a
flexible printed circuit board with a 30 inch by 3 inch block of wire wrap pin
connectors on each end for connection to the backplanes. Flexible printed
circuit technology or large guantities of ribbon cable could also be used.

The longest of these connections would be approximately 8 feet long.
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Power distribution can be accomplished at the edges of the backplanes.
The heat dissipation of such system could present a problem. If cach
processing node dissipates less than 0.25 watts, the system could be air
cooled, though with difficulty. Liquid cooling might very well be needed if the
processing nodes are not implemented in a low power technoiogy such as

CMOs.

With existing, though somewhat exotic, packaging techniques 64K
processing nodes can be connected in a Boolean N-cube. This size of system
is sufficient to be considered interesting and could yet grow with advances in

packaging and interconnection technologies.

477. Conclusions

It is the purpose of this chapter to show the existence of a suitable
topology for interconnecting large numbers of processing nodes to form an
object-oriented machine. Of the classes of structures investigated, only the
Boolean N-cube exhibits the performance and scaling characteristics
required. Owing to the possibility of deadlock, traffic routing must be
modified to prevent deadlock from occurring. A message routing scheme
- was presented which is deadlock free. A non-queued communication system
was presented which is also deadlock free and which scales well with system
size. However, the overall performance of this scheme was considerably
lower than that of the queued Boolean N-cube with restricted message
routing. This queued Boolean N-cube, using Sullivan's routing algorithm is

then the best choice, as it fulfills all of the requirements stated.

The choice of the Boolean N-cube as a suitable interconnection topology
does not imply that it is the only suitable topology. Other schemes may work

as well and have lower implernentation costs. Some variation of the
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hypercube structures proposed by [WittieB1] show some promise of this. The
relatively low duty cycle exhibited by the links in the Boolean N-cube
suggests that contention networks with a limited number of nodes per bus
might be used rather than point-to-point connections. It seems clear from
the simulation results presented here that networks of low degree generally

lack the performance and scaling necessary to this application.
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Chapter 5

A localized, Virtual Object Environment

5.1. Introduction

The object-oriented, homogeneous machine presented in the previous
chapters, raises some new problems. This chapter proposes potential
solutions to some of these problems. However, these solutions are
unsupported by analysis or simulation but provide a starting point from
which a working system can be designed. The methods presented here for
controlling the locality of reference and the locating of objects are heuristic
and do not lend themselves well to a priori study, A convincing analysis of
them will require a better understanding of concurrent object oriented
programining.

In the architecture described, objects must move within the structure
to provide real concurrency, to balance the processor and memory loads and
to maintain some degree of locality with each other. The merhories of the
processing nodes must not directly limit the number of objects that can
exist in the system at one time. Mass storage devices must be used to hold
inactive objects unﬁl they are referenced. As one object sends a message to
another object, it must be possible to determine the processo‘r in which the

destination object is located with some ease.

This chapter suggests solutions to these problems. In all cases the

solutions are of a heuristic nature and are greatly affected by the machine
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structure, the processihg nodeg, and the programs they execute. This
characteristic makes performance predictions difficult and unreliable. For
any particular set of heuristic procedures it is possible to contrive situations
in which they perform poorly. On the other hand, for any situation one can
usually contrive heuristics that will have the desired effect. The algorithms
presented here are analogous to the scheduler and swapping strategy in a
conventional system of today, in that, they will require "tuning” to achieve a

desired level of performance.

Three areas of concern are addressed. First, a strategy for moving
objects between processing nodes to preserve locality and concurrency is
presented. Related to this strategy is a means of providing an virtual object
environment, one in which an object need not be resident in a processing
node memory but may be stored on a device such as a disk until it is
referenced. A methbd for finding the processor in which a given object
fesides is also presented. As with the garbage collection algorithm, thesve
techniques must not require global éommum'cation but must use local data
to insure that they scale well as the size of the system is increased. The
systern is assumed to have a Boolean N-cube topology as suggested in

Chapter 4.

5.2. Maintaining Locality Among Object References

The most immediate need for moving objects from one processor to
another occurs when objects are being created in one processor and it
exhausts its heap area. We assume here that cbjects are always created in
the same processing node as their creator but may be subsequently moved.
When a processing node runs out of some resource, such as memory, it must

be able to send excess objects to another processor. Some of the objects
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may be garbage but cannot be presumed garbage until the garbage

collection algorithm completes its current cycle.

If objects cannot be moved between processors, there can be little
opportunity for concurrency, since the objects will have to share a single
processor. A message from an object that requires no response cannot
cause real concurrent behavior unless the source and destination objects are
in different processors. If, on the other hand, itwo objects consisiently
communicate with messages requiring a response, then‘ it is desirable to

place the objects in the same processor to minimize communication costs.

The motion of other objects and reference variables in the system may
result in excessive commmunication costs between objects. If several closely
related objects reside in distant processing nodes, there will be a longer
communication delay between them and more message traflic generated

than if the objects were resident in neighboring processors.

In data flow programs the objects or operators of the program are fixed
and communicate with each other by a fixed topology. For such systems, a
resource assignment can be worked out in advance of the program execution
to assign the operators te varicus procéssors in such a way as to min'imize
the cost of cormnunicétion in the program. The work of [WuB0] presents an
algorithm for this purpose. N

In the object-oriented environment, the topology of the commrnunication
changes as néw objects are éreated, as old objects are removed and as
reference pointeré are exchanged between objects. This dynamic behavior
requires a dynamic, run-time means of preserving some level of locality
between related objects. To make decisions concerning which objects to

move and where to move them, some measure of communication costs must
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be accumulated for each object. Storing and updating such data will, of

course, Consume resources.

Each object can have associated with it a quantity for each port 1of the
processing node. Each port can be thought of as a direction in N-space. If
the quahtity is constantly updated to reflect the amount of message traffic
to the object in each direction, a determination can be made of whether the
object should be moved. If one or more of the directional costs becomes
sufficiently larger than the others, it is an indication that a closely related
object resides in the associated direction. The object can then be moved to
the neighboring node in that direction, placing it closer to the source of the

message traffic.

Many heuristic schemes can be developed to make selections based on
such data. Here we present a simple scheme using several controlling
constants to regulate the policy of the decisions. With each object there is a
list of logN+1 variables, The additional gquantity is associated with traffic
within the object's processor, the other‘ quantities are each associated with a

communication port.

Ty = T,y LTy " " Xy

where d = loga(number of pﬂrocesso'rs-)

As the machine runs, the quantities are updated in the following
manner. This task could be dene by the communication processor or by
speciél purpose hardware to avoid unnecessary load on the the object

processeor.

For a Message on Port j

T e e + Msglenglh
7 J Rate
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‘ :Raie is a constant controlling how quickly z; responds to message
traffjic. A large value will reduce the effect recent traffic might have on the
value of z;.

.As execution proceeds, z; will rise with message traffic. If resources are
needﬁed.v or other factors warrant it, the objects may be tested in the
follo;wing manner to find candidates to be moved. A threshold value T is first
com;uted.

s d

d S
Resist is a constant controlling how strongly objects resist motion. Kesist
‘would usually be greater than 1, with larger values causing objects to move
less frequently for identical message traffic. The quantity 7 is a threshold
against which the individual z; areA tested. If any z; exceeds T then the
object will be moved. The largest z; selects the direction in which the object
is to be moved. The object is sent to the neighboring node connected to the

port associated with the z; and when it arrives all its z; are set to zero,

Te accommodate the needs of concurrency, a modification of this
procedure will push concurrent objects away from each other and attract
non-concurrent objects. If z, is incremented only when the message does
not require a response, then zg will become a measure of lost opportunities
for concurrency. Thus, if zg both exceeds i;he threshold and is the largest z;
then it indicates the object should be moved out of the processor it now
resides in and moved to one close by to take advantage of concurrency. If z,;
is incremented only for messages that require a response, then concurréntly

executing objects will not generally be moved into the same processor.

To prevent instabilities in the system, such as, objects chasing each

other or oscillating between processors, they must be given inertia. A simple
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time-of-day stamp on the object, made each time the object is moved, would
prevent the object from again being moved until a specific period of time had
elapsed. The period of time could be computed based on past behavior or
could be a constant. Too rapid movement of objects would consume
excessive communication bandwidth and adversely affect the ability of the

system to locate specific objects.

Variations in the controlling constants and in the details of the
procedure permit it to be adapted to a range of object environments. Before
machines of the type described here are built and programmed, it will be
very difficult to predict the effectiveness of heuristic methods such as these.
However, it is clear that this method is one that could dynamically preserve
the locality of reference in such a system. Since it makes its decisions on

purely local data it will scale well in progressively larger machines.

5.3. Providing a Virtual Object Space

As with conventional machines, the size of a program that can be
accomj:nodated by the system should not depend on the number of
processors or on how much physical memory they have. Paging and
segmentation techniques have evolved‘ in von Neumann architectﬁres to
make the memory address Space available to user prograrms independent of
real memory constraints. 'f‘he basic addressable unit of an object-oriented
machine is the object and this section presents a method for permitting a
machine to manipulate and exec‘ute more objects than it has physical

memory to store at one time.

Virtual memory, and hence virtual objects, are not really virtual at all
but are quite real. All such schemes require additional memory for those

parts of a program that do not fit into the machine's real memory. Usually
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this additional memory is a mass storage device such as a disk. Virtual
memory systems must allocate sufficient swapping space on a disk to store
the address spaces of some maximuimn number of processes. In a virtual
object environment, the size of the available mass storage devices will
determine the maximum number of objects that can be supported in the

system.

To prevent bottlenecks from being formed in the system, it is clear that
mass storage devices should be distributed among the processing nodes
rather than be concentrated at one location. The disks must be assigned to
processing nodes in such a way that all processing nodes can conveniently
communicate with the disk closest to them. In the Boolean N-cube this
effect can be had by assigning a disk to every processing node with a 0 mod 4
or 0 mod B address. This assignment would place one disk in the system for
every 4 or B nodes. The ratioc can be changed to distribute the desired
amount of storage throughout the machine. 1t is important that the ratio of
the number nodes to the number of disks be a power of 2 such that a
processing node need vonly clear the lower = bits of its own address to

generate the address of the nearest node with a disk, where 2" is the ratio.

During the execution of program objects, é node will be able to
periodically recover memory occupied by garbage but will also be called on
to create new objects and accept objects from other nodes. When the node's
memory resources become diminished, it will have to select objects to be
moved to free up the memory and processing resources they consume. The
preceding section showed how objects can be selected to be moved for
execution in other nodes with the intention of‘ reducing communication

delays and costs. Additionally, objects should be moved to the disk if they
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become inactive.

An inactive object is one that either has no messages to process, or one
that is waiting for a response from another object. If an object remains in
one of the above states for an extended period, it is clearly a good candidate
for removal to the disk. This condition is analogous to a page in a virtual
memory system that has not been recently referenced and is then swapped
out of memory to the disk to make room for another page. An object that
has no messages to process may be garbage as well as inactive, if it is
garbage it will be eliminated at the end of the next garbage collection cycle.
An object that is waiting for a response from another object is clearly not
garbage but can nevertheless be swapped to disk until the response is

available.

Objects can be time stamped when they send or receive messages or
engage in other computational activity. When the processor scans its objects
for candidates for removal, one criterion will be the length of the interval
since each object was last active. Objects can first be moved based on their
communication with other cbjects as suggested in the previous section. If
the node must eliminate more objects then it must select those that have
been inactive longest and move them to the closest node with a disk. The
time stamp allows the nodes to implement a least-recently-used algorithm on
inactive objects. The transfer of objects in this manner will cause them to be
considered to reside in the node with the disk. If messages are received for
these objects they will then resume their activity and perhaps be moved to

another processing node.

A processing node with a disk can be expected to receive a steady

stream of incoming inactive objects. Since all garbage objects will also be
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inactive objects, all garbage will eventually be sent fo these nodes unless
they are collected first. Also, as these nodes receive messages for their
objects, there will be a continual stream of re-activated objects moving away
from the nodes with disks. The difference in the volume of the two streams
will be the garbage objects left in the node and never referenced. The nodes
with disks must implement the garbage collection algeorithm just as any
other node must but they must include all the nodes on their disks in the

algorithm.

The special responsibilities of the nodes with disks require additional
hardware support. To operate the disk drive a specialized processor can
made part of the node communicating with the object memory. The
scanning of the disk in performance of the garbage collection algorithm can
be delegated partly to this processor. To maintain a level of performance
consistent with the other nodes in the system, the nodes with disks will
require space for a larger table of objects to accommodate those objects 0;1
the disk. The object tables that must exist in each node are further
discussed in the next section. To provide space for the table additional
memory must be available to nodes With disks. If the ’technology permits, an
additional level in the storage hierarchy could be added to these nodes in the
form of magnetic bubbles or CCDs. The decreased access time of these

devices would improve the response tirne of these nodes.

To some extent, the ac{dition of disks and their accouterments to the
system will destroy some of the homogeneity of the machine. However, mass
storage devices of some kind are a necessary ingredient to any real system
and must be included. Homogeneily is preserved if one considers that its

granularity has been increased so that the basic unit of replication in the
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system is a sel of 4 or B processing nodes, one of which includes a disk drive.

5.4. Locating Objects in the Network

One of the fundamental services the run-time systems executing in the
nodes must perform is the ability for one object to send a message to
another object regardless of what node it may reside in. The motion of
objects, whether for preservation of locality or for inactivity, will make an
object a moving target with respect to messages intended for it. Clearly, the
nodes do not have the memeory resources to store a table entry locating each
object in the systemn, nor could such tables be kept consistent as objects are
moved. In this section, the problem of maintaining a anall table and sending

messages Lo the proper processor are addressed.

To begin, each node will maintain a table‘ of a limited size, The table will
have to contain an entry for every object actually resident in the node,
therefore the size of the table will be related to the amount of real memory
available to the node. The table will contain entries for other objects as well.
Cbject identifiers will, no doubt, be large integers of perhaps 32 or more bits.
To efficiently access the table with object identifiers, the table will have to be

hash coded.

When a message is received by a node, or when an object in the node
atternpls to send a message, the table entry for the destination object is
accessed. If an entry exists, it will indicate the address of the node in which
the object was last know to reside. For incoming messages, the destination
node should be the address of the current node, if so, the message is given to
the indicated object. If the entry indicates some other node, then the object
has been moved and the entry was updated to point at the object's new

home. The message is then forwarded to the indicated node and a message
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is sent to the originator indicating the new node in which the object can be

found so that it can update its own table entry for that object.

For outgoing messages, the message is sent to the node indicated by the
table entry. The entry may refer to the same node and the message is
directed at another object in the same processor. Otherwise, a message is
sent to the node indicated by the table entry. If the destination node has no
entry for the destination object, it sends the message back to the originator

indicating the object is unknown.

When messages are returned because the destination object was
unknown to the destination node, or when there is no table entry for the
destination object of an outgoing message, the processing node must
determine where in the system the object resides. To determine the address
of an object, every node in the systemn must be asked if it "owns" the object
or objects in question. Sullivan [Su]livan??] presents an algorithm whereby a
message can be broadcast to all nodes in a Boolean N-cube with no
reduﬁdancy. The time required to do so is logegN. Using a broadcast
message, every nodé can be asked to respond to the originator of the
message if it owns any speciﬁed objects. Processors with disks must respond
even if the object is on rtheir disk, thus such nodes will require
correspondingly larger tables. The response is used by the originatér to

construct a new table entry for that object.

Since the tables are of a limited size and clearly cannot hold entries for
all the objects in the system, there must be a means of freeing space in the
table for new entries. Table entries, like objects, can be time stamped to
indicate the time of their last access. When additional space is required in

the table, old entries are destroyed on a least-recently-used basis. Entries
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for objects owned by the processor itself can never be purged until the

object is moved to another processing node.

The broadcast message used locate individual objects in the system is
global communication, and as such, cannot be used except infrequentiy. To
insure that probability of not finding a table entry is low, the tables have to
be large enough to hold a "working set” set of entries. The concept of a
working set of objects brings the issue back to one of locality. If those
objects that communicate frequently amongst each other do not reside in
neighboring processors, the number of entries that must be stored in the
object table will have to be large. Also, if objeclts are permitted to move
between nodes too gquickly, the forwarding of message will slow down
communication and increase the number of table entries used in the system.
A real, working system running substantial programs will be required to find
the best tradeoffs between these issues and to find a suitable range of

parameters for the object tables and the object transfer policies.
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Chapter 6

Conclusions and Summary

In this thesis, the essential elemments of a general purpose, homogeneous
machine have been presented. To provide a good fit with VLSI technology,
the machine would consist of a potentially large set of regularly connected
pr;bvttesksors, each ﬁth their 4ownw memory. | Whiléy maﬁy such machinés have
been proposed, none can be considered general purpose by the definition of
Chapter 1. To provide a general purpose programming environment, a
modification to object oriented languages such as Simmula was shown to
provide a convenient notation for concurrency as well as the modularity,

locality and compartmentalization necessary in the the system.

Object oriented languages provide a natural programming concept
which encourages the user to arrange programs as data objects which are
defined to include the operations related to them. Objects communicate
with other objects by passing messages. Messages are queued for each
object, where various objects may execute the operations required by the
messages concurrently. Concurrency has been made available to the
programmer by making a small extension to the semantics of message
passing. The simplicity of using object oriented programming concurrently
not only makes cornicurrént programming more convenient but makes the
specification of deterministic programs iess error prone. The utility of this
style of concurrent programming was illustrated with several practical

programring problems.
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Cne important characteristic of a homogeneous machine must be its
ability to provide increased performance in proportion to its size. To meet
this requirement neither the hardware not the sofiware can emplcy
techniques that degrade as the system grows. To permit perfermaeee to
scale upward, we have shown that the interconnection of the parts of the
machine must be of a higher degree than tree, ring or mesh connections
provide. Specifically, the Boolean N-cube connection has been shown to

provide the necessary performance for various sizes of systems.

In providing an object oriented environment in a homogeneous machine,
several new problems arise that are not found in conventional von Neumann
architectures. The first of these is distributed, on-the-fly garbage collection.
A new algorithm was developed which meets the needs of a homogeneous
machine. Its performance scales well for increasing numbers of elements in
the system. The algorithm is simple and sufficiently general purpose such
that it may find usage in other applications, such as distributed data basie
systems. The garbage collection algorithm does not depend on shared
variables or reference counts or on intricate pointer structures. 1t
accomplishes its task with a minimum of overhead costs. Simulation of the

algorithm has demonstrated that it performé adequately.

Locality must be maintained in a homogenecus architecture. Object
oriented programs are dynamic, where objects are created and destroyed at
a high rate and where object pointers change their topology rapidly. In a
dynamic environment, the objects must be enabled to move about in the
system, both to insure concurrent execution and to minimize
communication delays. A heuristic method was presented that preserves the

locality of references between objects in the system. Objects that can
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execute concurrently are moved to separate processing nodes so that they
may do so. Objects that communicate heavily are moved to neighboring
processing nodes to reduce commum;:ation delays. Methods for locating
objects in_the system and for moving less active objects to mass storage

devices have also been presented.

The sum of these techniques is a programming environment that
supports concurrent, object oriented programming on an ensemble of
identical processors. This system has the ability to provide greater
performance by the addition of more processors. This ability is seen only to
a small extent in exisﬁng machines, for which it may be possible to add only
two or three more processors to a system. This homogeneous architecture
will scale well for thousands of processors. The advancement of general
purpose programming to large numbers of processors requires the
algorithms and techniques described in this thesis. A suitable concurrent
programming language, a suitable interconnection topology, as well a:s
garbage collection and localization procedures which scale with system size,
have all been addressed and solved herein. In effect, we have shown how a
large number of interconnected processors can be programmed in a simple
style to Work together on the same problem without regard to the size of the

system or the exact nature of its components.

A full scale implementation of the system presented in this thesis will,
no doubt, raise new questions. An implementation will also provide the
opportunity to find suitable values for the many parameters of the system.
Some of the questions that must be answered are: What instruction set
architecture is best suited to object oriented languages? How much memory

should a processing node have? How large should mass storage devices be
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and how much additional memory will they require? How best to organize an

operating system and what should its functions be?

The object concept pervades the entire machine and can be expected to
be felt in the services the operating system. Many of the traditional
concepts of files, processes, tasks and jobs will be modified in such a system.
Any object can be thought of as an independent task or process. The
concept of a file as a sequence of bytes could be replaced by structures of
objects where attributes implement any access method the programmer
defines.

Ensemble machines, consisting of large numbers of identical parts,
should be able to provide a very high degree of reliability due to the
redundancy of the structure. If any single processor in a Boolean N-cube
structure fails, no other node in the structure is isolated. The structure
should be able io operate in a degraded configuration until such parts are
repaired. A more difficult problem is to provide the necessary data
redundancy and backqp in the system to permit the system to continue its
execution in the presence of a faulty node. As the number of nodes in the
structure grows larger, reliability issues will achieve greater importance.
One virtue that will remain with homogeneous machines of any size is their
ability to easily isolate and repair faulty nodes. The regularity of the
siructure mékes isolation of faults to the correct node much simpler than
fault isolation in large single processor machines and the use of identical
parts makes its repair trivial.

The next step to be taken in this line of research is the construction of a
test vehicle. Using existing microprocessor technology with the addition of

custom communication hardware, a processor/memory node can be built on
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a single printed circuit card. A machine consisting of 128 or 256 such boards
could be assembled in the space of several racks. Mass storage devices
would not be necessary in the test vehicle but could be added in tl;e future.
A run-time system based on the techniques and algorithms of Chapters 3 and
5 must be written to be resident in every processing node. A cross compiler

must be developed to compile concurrent Simula as presented in Chapter 2

for execution in the processors of the test vehicle.

A test Vehicle will validate the ideas presented in this thesis and will
enable suitable parameters to the heuristic algorithms of Chapter 5 to be
found. Given a compiler and run time system for the test vehicle, the means
to write general purpose prograrns for the machine will be available. As a
body of experience with programming a homogeneous, concurrent machine
- develops, the run time system of the machine can be improved to meet

requirements of real programs.

Until machines exist which provide positive incentives for concurrent
programming, concurrent notations and algorithms will be restricted to
research topics. With the advent of inexpensive computing structures made
possible by VLSi, such machines can now be economically constructed. This
thesis has shown how a system can be built around such a machine that will
fulfill the basic requirements éf general purpose programming. This
approach is a major departure from the von Neumann style of computer
architecture yet it fits well with both the integrated circuit technology and a

simple concurrent programming model.
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Appendix A

Network Simulation Results
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Processor Utilization vs. Network Size (a=B)
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Average Packet Delay vs. Network Size (a#B)
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Average Message Delay vs. Network Size (a=12)
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Processor Utilization vs. Network Size (a=12)
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Average Packet Delay vs. Network Size (a=12)
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Local Message Delay vs. Network Size (a=12)



Port Utilization

-200-

Traffic = 12

RING

NCUBE

q T ll T ] T l T [ i
8 16 32 48 - 64 80 96

Number of Processors
Figure A-20

Comm. Link Utilization vs. Network Size (a=12)
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Avg. Message Delay vs. Network Size (Unif. Traf)
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Avg. Packet Delay vs. Network Size (Unif. Traf)
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Boolean N-cube Connection Run on: 1981-06-05 at 0B:00:52
Nurtber of Processors: 64 (Dimension=8)

Communication Link Data Rate: 20 Megabits/sec

Packet Size: 2586

Nurber of Packets of Storage in Port Queue: 4

CLOCK TIME = 1.000E-02

[T It L i T L s T e e ey

* *
* REPORT *
* *

HEER R R E RN AR R R AR KR A R R AR KRR R KR E R R AR R R AR AR R R R AR R R R R R kR R R R kR Rk kR kR

DISTRIBUTIONS

Feoodk ok R g e Rt A Ak ok ok ok ok ok ok ek ke ke

TITLE /  {RE)SET/ OBS/TYPE / A/ B/ SEED
Msglength 2.000E-03 14373 NORMAL 768.000 256.000 33427485
MsgFrequency 2.000E-03 14378 NORMAL 3.000E-05 1.500E-05 22276755
Proc Source  2.000E-03 14380 UNIFORM 0.000 0.125 486847980

ACCUMULATES

de ok K F ¥ o kR ok ok o3 ko ok Rk k¥

TITLE / (RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMUM
Proc Active 7% 2.000E-03 28751 B4.428 4.548 65.625 98.438
Port Active % 2.000E-03 156937 32.696 2.623 23.698 40.885
Port Q Length 2.000E-03 156931 0.604 4.72BE-02 0.443 0.784
Transit Packs 2.000E-03 100835  244.971 19.032 177.000 314.000
Transit Msgs 2.000E-03 28753 92.215 6.596 70.000 118.000

SUMMARY

TITLE /  (RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMUM
Proc Select 2.000E-03 14373 8.600 8.074 0.500  61.967

CELL/LOWER LIM/ N/
0 -INFINITY . ©
.500 1025
.120 1008
740 912
.360 854
980 B14
600 690
220 662

g
:

.00 0.00 1

o7 7.183 I***************

.07 14.14 IGELEES EL TR L L )
20.49 IRAEAEE L EEE L L LS
.08 286 .43 JrEFrx xR EHERE
.08 32 09 IREAEEEE L EEE S
.05 36.90 IEEE LR R L L

.05 41.50 IEAEEEEE R L

2O U LI
BN N s D
cooocoooo
o
&



8 4.840 628  0.04 45.8B7 I*rrrrrrxs
9 5.460 578  0.04 49.B9  **srxss
10 6.080 513  0.04 53.46 I*x*xxx*
11 6.700 502  0.03 56.95 I**+rrrs
12 7.320 461  0.03 B0.16  I*#*=*x*
13 7.940 450  0.03 B3.29 I*ver+s
14 B.560 370  0.03 65.87 ]***s
15 9.180 343  0.02 6B.25 I**w**
16 9.800 351  0.02 70.70 I*res+
17  10.420 286  0.02 72.6B I***+
1B 11.040 274  0.02 74.59 Ix***
19  11.660 289  0.02 < 76.60 I****
20 12.280 256 0.02 7B.38 I****
21 12.900 232  0.02 BO.00 I***
22  13.520 231  0.02 B1.60 = I***
23  14.140 191  0.01 B2.93 I**+
24 14.760 175  0.01 B4.15 I**
25 . 15.380 167 = 0.01 B5.31 I**
26 16000 2111 0’15 100'00 I************###***************
SUMMARY
TITLE / (RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMUM
Msg Distance 2, 000E-03 14380 1.560 0.654 1.000 5.000
CELL/LOWER LIM/ N/ FREQ/ CWM :
0 -INFINITY 0 0.00 0.00 I
1 0.000 0 0.00 0.00 I
2 1‘000 7509 0‘52 5222 I******************************
3 2'000 5793 0'4_0 92.50 I******************#****
4 3.000 979  0.07 99,31 I*+++
5 4.000 90 0.01 99.94 I.
6 5.000 9 0.00 100.00 1.
7 6.000 0 0.00 100.00 I
SUMMARY
TITLE /  (RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMUM
Msg length  2.000E-03 14373 766.B30 255.279 -194.000 1698.000
CELL/LOWER LIM/ N/ FREQ/ CWM :
0 -INFINITY 17 0.00 0.12 1.
1 0.000 22 0.00 0.27 1.
2 61.440 44 0.00 0.58 I*
3 i22.880 B8  0.01  1.1B 1%+
4 1B4.320 128  0.01  2.07 I**+
5 245.760 234  0.02  3.69 I*++++
B 307.200 B33B 0.02  6.05 *texsss
7 386B.640 513  0.04  9.62  Ittrsrsreres
B 430.0B0 619  0.04 13.92 I#x#r+srxrrsss
9 491. 0'06 19'88 I**************#****

520

B57



10 552.960
11 B14.400
12 675.840
13 737.280
14 79B.720
15  B60.160
18 921.8600
17 983.040
18 1044.4B0
19 1105.920
20 1167.360
21 1228.800
22 1290.240
23 1351.680
24 1413.120
25 1474.560
26 1536.000

TITLE /

Msg Frequency 2.000E-03

CFLL/LOWER LIM/

0 -INFINITY
1 0.000
2 3.000E-06
3 6.000E-06
4 9.D00E-06
5 1.200E-05
6 1.500E-05
7 1.B00E-05
B 2.100E-05
9 2.400E-05
10 2,700E-05
11 3.000E-05
12 3.300E-05
13 3.600E-05
14 3.900E-05
15 4.200E-05
16 4.500E-05
17 4.B00E-05
iB 5.100E-05
19 5.400E-05
20 5.700E-05
21 6.000E-05
22 6.300E-05
23 6.600E-05
24 B.900E-05
25 7.200E-05
26 7.500E-05

1077  0.07 27.38
1243  0.09 36.03
1339 0.09 45.34
1325  0.09 54.56
1387  0.10 64.21
1251 0.09 72.91
1069 0,07 B0.35
829  0.08 B6.12
646  0.04 90.61
516  0.04 94.20
347  0.02 96.62
209 0.01 9B.07
119  D.01 9B.90
B2  0.01 99.47
38 0.00 99.72
26  0.00 99.90
14 0.00 100.00
(RE)SET/
N/ FREQ/ CWM :
0 0.00 0.00
426  0.03 2.96
222 0.02 4.51
304 0.02  6.62
453  0.03 9.78
524  0.04 13.42
648  0.05 17.93
BO9  0.06 23.56
851  0.06 29.48
957  0.07 36.14
1014  0.07 43.19
1052  0.07 50.51
921  0.08 56.92
882  0.06 63.06
793  0.08 68.57
737  0.05 73.70
639 0.04 7B.15
527  0.04 B1.81
430  0.03 B4.BO
337  0.02 B7.15
270  0.02 B9.03
212 0.01 90.50
231  0.02 92.11
166  0.01 93.27.
135  0.01 94.20
120 0.01 95.04
713 0.05 100.00

JHE R FEE TR F A FTERREE
[HE AR AR AR IR EEEE TR RE R AR RE
[t R FE AR KRR FERFE TR TR
JHEFFFFEFEFFEEFFF S FRERERRRFRRA
JHEEEE R FFF AR FE LR AE T AR TR AAR
TR F AR F R FF R AT EE TR AR RR AR
JHEFFF e e r e FF X FF T LT F T TR AR
I*****##****#*#***#

IEAE IR SR 20

AR AL E L L LT

IEEEZEET L

Tr*E*sr

J***

T**

I*

=

I.

SUMMARY

OBS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMUM
14373 3.061E-05 2.068E-05

0.0G0 1.640E-04

1

Treeesrterrss
Trerexs -

IEE LT

IR I T E LS

JH ek kE R R R RERE

IELEE e T LT e
IREAREE R R R R e L L
[retxr e rrkrkrxertrrrEhtt s
IEEEE R LR LR e L e
j##**************************#
THEr AR E AR E R R R ERREE R FF R
THkwkk ko dk ke kR R kR KRk k
THREER AR A KRR F LR FF R AE
JHERFER L AR R R AR TR R AR

THe stk kkkkkkk ok kF KK
THRE*Ex kA AR AR RRTTEE
IERELE T L L L L L

T e ot e ok ok e

IELEIIIT L

IELIITELE

JELEELE

JESEEELE

T ¥ kxx

IELET

Jrr*

Jrrresrtarkrerr ettt s



TITLE /

Message Delay 2.
CELL/LOWER LIM/

0 - INFINITY

1 0.000
5 1.000E-05
3 2.000E-05
4 3.000E-05
5 4.000E-05
6 5.000E-05
7 6.000E-05
B 7.000E-05
9 B.00DE-05
10 9.000E-05
11 1.000E-04
12 1.100E-04
13 1.200E-04
14 1.300E-04
15 1.400E-04
16 1.500E-04
17 1.600E-04
18 1.700E-04
19 1.BOOE-04
20 1.900E-04
21 2. 000E-04 -
22 2.100E-04
23 2.200E-04
24 2. 300E-04
25 2.400E-04
26 2.500E-04

TITLE /

-212-

SUMMARY

(RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMWM/ MAXIMUM
O00OE-03 143B0 5.134E-05 1.949E-05 1.2B0E-05 2.564E-04

N/ FREQ/ CWM :

0 0.00 0.00 I
0 0.00 0.00 I
141  0.01 0.98 I*
1321 0.09 10.17  I#x#stxrssx
4_022 0'28 38.14 I******************************
1062  0.07 45.52  *+*xrxxx
4060 0'28 73.78 I*##*********f#******#*********
1815 0.13 BB.3B  I**#ssxsssssss
B95  0.08 92.60  I**x*x**
468  0.03 95.86 I***
209 0.01 97.31 I**
179  0.01 98.55 I+
91  0.01 99.19 1I*
42  0.00 99.48 1.
35 0.00 99.72 1.
18 0.00 99.85 1.
9 0.00 99.91 1.
4 0.00 99.94 1.
3 0.00 99.96 1.
2 0.00 99.97 1.
1 0.00 99.98 1.
1 0.00 99.99 1.
0 0.00 99.99 I
1  0.00 99.99 I.
0 0.00 99.99 I
0 0.00 99.99 I
1 0.00 100.00 I.
SUMMARY
(RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMIM

Packet Delay 2.000E-03 50327 3.896E-05 1.BB9E-05 1.280E-05 2.564E-04

CFLL/LOWER LiIM/

[REN WY

HOQU@MNOUDDN-O

N/ FREQ/ CWM :

-INFINITY 0 0.00 0.00 1
0.000 0 0.00 0.00 1
1.000E-05 61886 0.12 12.29 Jrexerexdhrrkssn _
S 000E-05 13168 0.28 38.46 IR L
3. O00E-05 12984 0.26 64.26 R L L
4, 000E-05 3932 0.08 72.07 Jrekxkxkkx
5.000E-05 7936 0.16 B7.84 [resreerxrttxrrtsirs
6.000E-05 3271 0.086 94,34 ) B
7.000E-056 1327 0.03 96.97 Jrx*
B8.000E-05 699 0.01 98.36 I**
9. 000E-05 296 0.01 08.95 I*
1 229 0.00 99.41 I*

. 000E-04
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12 1.100E-04 123 0.00 99.85 1
13 1.200E-04 B1 0.00 99.81 1
14 1.300E-04 41 0.00 99.89 1
15 1.400E-04 23 0.00 ©99.94 1
16 1.500E-04 13 g0.00 ©99.96 1
17 1.600E-04 4 0.00 99,97 1
18 1.700E-04 7 0.00 99.99 1
19 1.B0O0E-04 3 g.00 99.89 1
20 1.900E-04 0 0.00 99.99 1
21 2.000E-04 1 0.00 99.89 1
22 2.100E-04 0 0.00 99.99 1
23 2.200E-04 1 0.00 100.00 1
24 2.300E-D4 0 0.00 100.00 1
25 2.400E-04 1 0.00 100.00 1
26 2.500E-04 1 0.00 1o00.00 1
SUMMARY
TITLE / (RE)SET/ O0BS/ AVERAGE/EST.ST.DV/ MINIMUM/ WMAXIMUM

Msg Delay D=1 2.000E-03 7509 4.979E-05 1, BR24E-05 1.280E-05 1.939E-04
CELL/LOWER LIM/ N/ FREQ/ CM :

0 -INFINITY 0 0.00 0.00 I
1 0.000 0 0.00 0.00 I

2 1.000E-05 141  0.02  1.88 I**

3 2.000E-05 B15  0.11 12.73  I****xtrssx

4 SOODE_05 1998 0_27 8934 I********#****************

5 4.000E-05 367  0.05 44.23 ]*****

6 5.000E_05 2358 0.31 7583 I***************#**************
7 6.000E-05 1023  0.14 BY9.25  [****#*rtrxxsx

B 7.000E-05 393  0.05 94,49 I*****

9 B.OOOE-05 191  0.03 97.03 ]**

10 9.000E-05 87 0.01 98.19 I*

11 1.000E-04 66  0.01 99.07 1I*

12 1.100E-04 32  0.00 99.49 1

13 1.200E-04 13  0.00 99.67 1

14 1.300E-04 11  0.00 99.81 I

15 1.400E-04 8 0.00 99.92 I

16 1.500E-04 3 0.00 99.96 I

17 1.600E-04 2 0.00 99.99 I

18 1.700E-04 0 0.00 99.99 1

19 1.BOCE-04 0 0.00 99.99 1
20 1.900E-04 1 0.00 100.00 1

SUMMARY
TITLE /  (RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMM

Msg Delay D=2 2.000E-03 5793 5.160E-05 2.049E-05 2.560E-05 2.564E-04

CELL/LOWER LIM/ N/ FREQ/ CWM :
0 -INFINITY 0 0.00 g6.00 1



DW= UM+

WO s b b et et s S (DD~ DUT D WO -

TITLE

Msg Delay D=3 2.000E-03

CELL/LOWER LIM/
- INFINITY

b o b b b fd e ekt
ONOUPHPWOHOODDDNINOUID DD

Ll el il R o <o M v = BN B o > B o ) IS N o B O I

0.000

. DODE-05
. 000E-05
.DOOE-05
.000E-05
. 0DOE-05
. 000E-05
. 000E-05
. 000E-05
.000E-05
. 000E-04
. 100E-04
. 200E-04
. 300E-04
. 400E-04
.500E-04
. 600E-04
. 700E-04
.BOOE-04
. 900E-04
. DODE-04
. 100E-04
. 200E-04
. 300E-04
. 400E-04
. 500E-04

/

0.000

. 000E-05
. 000E-05
. 000E-05
. 000E-05
. 000E-05
. 000E-05
. 00OE-05
. 000E-05
. 000E-05
.000E-04
. 100E-04
. 200E-04
. 300E-04
.400E-04
. 500E-04
. 600E-04
.700E-04

1

1

Jrexsxsxs
T*¥rFssr st rhFrrrr e FFRFFRRFHTRR
GRS TR LT 2"

IRAE AR SR R LR LR il S
[rRExExFrEn

Jrrxxxx

JH***

I**

1*

I*

S Bt ot oved et ] < ] < et ] forered Joed ot ] o

SUMMARY

0OBS/ AVERAGE/EST.ST.DV/ MINIMIM/ MAXIMUM

979 5.973E-056 1.913E-05 3.840E-05 1.B892E-04

0.00 0.00

0 0.00 0.00

508 0.09 B.73

1871 0.32 41.03

633 0.11 51.98

1301 D.22 74.42

584 0.10 B4.50

382 0.07 91.09

220 0.04 94.89

96 0.02 98.55

91 0.02 9B.12

46 0.01 98.91

R4 0.00 99.33

18 0.00 99.64

10 0.00 99.81

5 0.00 99.90

1 0.00 99.91

2 0.00 99.95

1 0.00 99.97

0 0.00 99.97

0 0.00 99.97

0 0.00 99.97

1 0.00 99.98

0 0.00 99.98

0 0.00 99.98

1 0.00 100.00
(RE)SET/

N/ FREQ/ CWM :

0 0.00 0.00

0 0.00 0.00

0 0.00 0.00

0 0.00 0.00

153 0.16 15.63

82 0.06 21.96

374 0.38 60.16

170 0.17 77.53

101 0.10 87.84

52 0.05 93.16

R4 0.02 95.81

19 0.02 97.55

11 0.01 9B.67

4 0.00 99.08

6 0.01 99.69

0 0.00 99.69

1 0.00 99.80

0 0.00 99.80

1 0.00 99.90

bromd o et

I

IR T EE RS

IEEE LT

THkkkk ok ko ko kok kR Rk Rk ok k
I EEEL T TR

Tr*exrxns

[**%x

I**

I**

I*

et et bl ot e
N B .
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19 1.BODE-04 1 0.00 100.00 1.
SUMMARY
TITLE /  (RE)SET/ OBS/ AVERAGE/EST.ST.DV/ MINIMUM/- MAXINMUM
Msg Delay D=4 2.D0CE-03 S0 6.B21E-0b5 2.093E-05 5.120E-05 2.09%E-04

CELL/1LOWER LIM/ N/ FREQ/ CWM :

0 - INFINITY 0O 0.00 0.00 I
1 0.000 0O 0.00 0.00 1
2 1.000E-05 0 ©0.00 0.00 I
3 2.000E-05 0 0.00 0.00 I
4 3.000E-05 0 0.00 0.00 I
5 4.000E-05 0O 0.00 0.00 I
6 S'DDOE_DS 27 0.30 SOOO I**********#****#*******
7 6'OODE-05 36 0'40 ‘?O_OO 1******************************
B 7.000E-05 16  0.1B B7.78  I*r*srxrxxrxxx
9 8.000E-05 4 0.04 92.22 I***
10 9.000E-05 2 0.02 94.44 1**
11 1.000E-04 1 0.01 95.56 1%
12 1.100E-04 2 0.02 97.78 I**
13 1.200F-04 1 0,01 98.89 1I*
14 1.300E-04 0 0.00 98.89 I
15 1.400F-04 0 0.00 98.89 I
16 1.500F-04 0 0.00 98.89 I
17 1.600F-04 O 0.00 98.89 I
18 1.700E-04 0 0.00 98.89 I
19 1.BOOE-04 — 0 ~ 0.00 98.89 1
20 1.900E-04 0O 0.00 98.89 I
21 2.000E-04 1 0.01 100.00 I*
SUMMARY
TITLE /  (RE)SET/ OBS/ AVFRAGE/EST.ST.DV/ MINIMUM/ MAXIMM
Msg Delay D=5 2.000E-03 9 9.055E-05 3.161E-05 6.400E-05 1.650E-04
CELL/LOWER LIM/ N/ FREQ/ CWM :
0 -INFINITY 0 0.00 0.00 I
1 0.000 0 0.00 0.00 I
2 1.000E-05 0 0.00 0.00 I
3 2.000E-05 0 0.00 0.00 I
4 3.000E-05 0 0.00 0.00 I
5 4.000E-05 0 0.00 0.00 I
6 5.000E-05 0 0.00 0.00 I
7 6.000E-05 2 0.22  22.22  Irtrrekrssssissastrss
8 7.0DOE_O5 3 0.33 55'56 I******#**********#************
9 8.000E-05 1 0.11  B6.687 I*#sxxxsxxx
10 9.000E-05 0 0.00 66.67 I
11 1.000E-04 2 0.22 BB.BY  IFrrrrrrrrsrtrrrrieix
12 1.100E-04 0 0.00 B88.89 I
1 0O 0.00 B8B.B9 I

.200E-04



14 1.300E-04
15 1.400E-04
16 1.500E-04
17 1.600E-04

OO0

-216-

0.00
0.00
D.00
0. .11

BB.89
88.89
B5.89
100.00

1
1
1
1

Fokokkk Rk FEF



