
The Extension of Object-Oriented Languages to a

Homogeneous, Concurrent Architecture

Thesis by

Charles Richard Lang, Jr.

In Partial Fulfiliment of Lhe Requirements

for the Degree of

Doctor of Philosophy

Computer Science Department

Tech.."lical Report Number 5014

California Institute of Technology

Pasadena, California

1982

(Submitted May 24, 1982)

ii

©Charles Richard Lang, 1982

All Rights Reserved

iii

.Acknowiedgem en ts

This thesis owes its completion to my anv1ser, Chuck Seitz, who both
pushed me along in the right direction and provided needed encouragement
and criticism of my ideas. I owe thanks to Mike Ullner and Jim Kajiya for
their advice concerning prograrnming languages and for their friendship. I
also appreciate the friendship of Dan Whelan who had to listen to a lot of my
griping along the way. I would like to tha.ri-.k Alain Martin for his many good
suggestions and incisive critique of tbis thesis.

For financial support I thar1k DARPA 1Nb.Jch sponsored t:bis research and
most of my work at Caltech.

The work described in this document was sponsored by the Defense Advanced
Research .Projects Agency, ARPA order 3771. and monitored by the Office of
Naval Research under contract N00014-79-C-0597.

iv

Abstract

A homogeneous macriine architecture, consisting of a regular
interconnection of many identical elements, exploits the econon1ic benefits
of 1lLSJ technology. A concurrent prograrrLL'Tiing model is presented that is
related to object oriented languages such as Simula and Smalltalk.
Techniques are developed which permit the execution of general purpose
object oriented programs on a homogeneous machine. Both the hardware
architecture and the supporting software aigorithms are demonstrated to
scale their performa.11ce with the size of the system.

The program objects communicate by passing messages. Objects may
move about in the system and may have an arbitrary pointer topology. A
distributed, on-the-fly garbage collection algorithm is presented w.l:1ich
operates by message passing. Simulation of the algoritb...m demonstrates its
ability to collect obsolete objects over the entire machine vvith acceptabie
overhead costs. JiJgorithms for maintaining the locality of object references
and for implementing a virtuaJ object capability are also presented.

To insure the absence of hardware bottlenecks. a number of
interconnection strategies are discussed and simulated for use in a
homogeneous machine. Of those considered, the Boolean N-cube connection
is demonstrated to provide the necessary characteristics.

111e object oriented machine will provide increased perform~11.ce as its
size is increased. It can execute a general purpose, concurrent, object
oriented language where the size of the machine and its interconnection
topoiogy are transparent to the programmer.

v

Table of Contents

Acknowledgements .. - iii

Abstract iv

Chapter 1: Introduction 1

1.1 Homogeneous Machines 1

1.2 Related Efforts ... 9

1.3 Scope and Outline .. 10

1.4 Conclusion 11

Chapter 2: Concurrent, Object-Oriented Programming 12

2.1Introduction... 12

2.2 Overview of Simula 16

2.3 Extensions for Concurrency -..... 2.1

2.4 Restrictions to Limit Global Communication 30

2.5 Concurrent Programming Examples 33

2.6 Comparison vvith CSP ... 50

2. 7 Support Requirements 53

2. B Conclusions 56

Chapter 3: Garbage Collection 58

3.1 Introduction... 58

3.2 The Object-Oriented Environment ... 60

3.3 A Description of the Algorithm 60

3.4 Proof .. 72

3.5 Simulation Results 76

vi

3.6 Performance Analysis .. 84

3. 7 Implementation Considerations 88

3.8 Scaling of the Algorithm .. _ 89

3.9 Summary ... 96

Chapter 4: Interconnection Issues 98

4.1 Introduction 98

4.2 Interconnection Topologies and Queuing Models 102

4.3 Deadlock .. 118

4.4 A Distance-Independent Measure of Locality 127

4.5 Simulation Results ... 131

4.6 Wire ability of the Boolean N-cube 149

4. 7 Conclusions 154

Chapter 5: A Localized, Virtual Object Environment 156

5.1 Introduction 156

5.2 Maintaining Locality Among Object References 157

5.3 Providing a Virtual Object Space ... 161

5.4 Locating Objects in the Network 165

Chapter 6: Conclusions a.D.d Surnmary 168

Bibliography 173

Appendix A: Network Simulation Results 180

Appendix B: Example Network Simulator Output 208

vii

Llst of Figures

1-1 Hard .. ware Model for a Homogeneous Machine

2-1 Object Structure for Correlation .. .

2-2 Computational Array for Gaussian Elimination

3-1 Cycle Time vs. LOG(Number of Processors)

3-2 Mark Repetitions vs. LOG(Number of Processors)

4-1 Processing Node Block Diagram

4-2 Tree Connection .. .

4-3 Chordal Riri...g Connection

4-4 Toroidal Mesh Connection

4-5 Boolean N-cube Con..>iection

4-6 A Deadlocked Loop of Communication Links

4-7 Message Delay vs. Message Locality

4-8 Processor Utilization vs. Message Locality

4-9 Message Delay vs. Link Data Rate

4-10 Processor Utilization vs. Link Data Rate

4-11 Message Delay vs. Network Size (a=3)

4-12 Processor Utilization vs. Network Size (a=3)

4-13 Message Delay vs. Network Size (a=B)

4-14 Processor Utilization vs. Network Size (a=8)

4-15 Message Delay vs. Network Size (Uniform Traffic)

4-16 Processor Utilization vs. Network Size (Unif. Traf)

4-17 Local Message Delay vs. Network Size (a=B)

2

40

44

94

95

104

107

110

113

116

120

136

137

138

139

142

143

144

145

146

147

148

viii

4-18 Top Level Interconnection of 64K Node Boolean N-cube

A-1 Average Message Delay vs. Network Size (a=3)

A-2 Processor Utilization vs. Network Size (a=3)

A-3 Average Packet Delay vs. Network Size (a.=3)

A-4 Local Message Delay vs. Network Size (a=3)

A-5 Comm. Link Utilization vs. Network Size (a=3)

A-6 Average Message Delay vs. Network Size (a=5)

A-7 Processor Utilization vs. Network Size (a=5)

A-8 Average Packet Delay vs. Network Size (a=5)

A-9 Local Message Delay vs. Network Size (a=5)

A-10 Com ... "'TI. Link Utilization vs. Network Size (a=5)

A-11 Average Message Delay vs. Network Size (a=8)

153

181

182

183

184

185

186

187

188

189

190

191

A-12 Processor Utilization vs. Network Size (a=8) 192

A-13 Average Packet Delay vs. Network Size (a=B) 193

A-14 Local Message Delay vs. Network Size (a=B) 194

A-15 Comm. Link Utilization vs. Network Size (a=B) 195

A-16 Average Message Delay vs. Network Size (a=12) 196

A-17 Processor Utilization vs. Network Size (a= 12) 197

A-18 Average Packet Delay vs. Network Size (a=12) 198

A-19 Local Message Delay vs. Network Size (a=12) 199

A-20 Comm. Link Utilization vs. Network Size (a=12) 200

A-21 Avg. Message Delay vs. Network Size (Unif. Traf) 201

A-22 Proc. Utilization vs. Network Size (Unif. Traf) 202

A-23 Avg. Packet Delay vs. Network Size (Unif. Traf) 203

ix

A-24 Local Msg. Delay vs. Network Size (Unif. Traf) 204

A-25 Comm. Link Util. vs. Network Size (Unif. Traf) ,. 205

A-2o"' Ava Mc:: a Delav n~ •K 0 sc::aae L<YJJ atb (6L Pro,... ~ -P) (:)" l\'..i.......,b· .J vt;i, l\i..._....,...., D .._. l_b 1 .,1.. .._.., 1 0.-U _ 206

A-27 Proc. Util. vs. Message Length (64 Proc.,a=B) 207

Llst oi Tables

3-1 Statistical Data Taken from Simulation..................................... Bl

3-2 Number of Objects Collected per Cycle :....... Bl

3-3 Histogram of Object Lifetimes B2

3-4 Simulation Results (with Message Polling) ;........................ 92

3-5 Simulation Results (with Message Interrupts) 92

4-1 Names of Networks Simulated ... 131

-1-

Chapter 1

Introduction

1.1. Homogeneous Machines

This thesis addresses the design and use of a class of ensemble

architectures [SeitzB2] called homogeneous machines. A homogeneous

machine is a collection of nominally identical processors, each with its own

storage, executing programs concurrently, and passir1g messages over a

regular communication structure.

This basic hardware model, shovvn in Figure 1-1, makes no presumption

about the topology or bandwidth of the commuilication structure, nor about

details of the processors such as their instruction sets. However, the

performance of such a system will depend directly on the performance of the

individual processors and of the communication structure. The case of a

single computer or collection of personal computers on a local network

would fit this hardware model, and programs ·written for a large ensemble

should certainly be executable on a single machine or collection of personal

computers. However, the hardware environment under consideration here is

one contairllng a large number of nominally identical processors, typically

thousands, or from as few as 16 to perhaps 64K (K=1024). One simple way to

express a central objective of this research is to understand how to achieve a

situation in which "The more processors, the more performance."

-2-

Regular Interconnection Network

0 0 0 0

Processing Nodes

Figure 1-1

Hardware Model for a Homogeneous Machine

-3-

These architectures l'l'ill be regarded as relatively "general purpose"

computers in that (1) they are programmable, and in a style to be presented

which makes no demands that the programmer know anything about the

communication structure of the particular homogeneous machine executLDg

the code, and (2) the homogeneous machine is no more specialized to a

specific set of problems than other "general purpose" computers, but

provides a high level of performance to all concurrent program..rning

problems, including those for which the algorithms have no regular or fLxed

pattern of communication.

Most of the extensively studied VLSI architectures are special purpose

systems. perhaps because performance on chips is very sensitive to the

communication plan of the chip [Sutherland??], and the communication

characteristics of a system are more difficult to generalize than, for

example, its operation set. While special purpose machines can al\vays be

constructed to solve specific problems faster and more economically than

general purpose computers, one must expect that there will always remain a

class of applications ,that are either so unstructured that they are not suited

to a rigid hardware structure, or for which there is insufficient demand to

justify the design and construction of a special purpose machine.

The term unstructured is used here to describe concurrent programs or

algorithms for which the graph of communication between the elements of

the computation either varies with input data or for which no regular pattern

can be discerned. Many problems are of this type. These problems may have

irregular and dynamically changing communication graphs and require a

machine and programming notation that permit irregular and variable

communication.

-4-

Structured problems, such as matrix manipulation, signal processing,

sorting and others where the communication graph is knov.n before band,

adapt well to a homogeneous machine. However, for these problems special

purpose machines can be designed which vvill out perform a general purpose

homogeneous machine. In this thesis, the term general purpose vnll include

applicability to problems for which the logical communication graph chru.--iges

dynamically or is irregular or unlmown.

The topology used to interconnect the parts of the machine is of great

interest. It is clear that the communication capabilities of the network must

be high to support the execution of interesting p:wblems. The resulting

structure must provide minimum communication delays yet must also be

practical . .A.nother important characteristic of the commu...riication structure

is expandability. The requirement that machine performance scale with the

size of the system means that the hardware comxnu...rlication structure must

not degrade or cost substantially more per processor as it is increased in its

extent.

The hardware structure of the homogeneous machLrie is clearly

motivated by certain characteristics of VLSI technology, as discussed in, for

example, [Seitz82] and references cited there. Advances in the integrated

circuit fabrication technology over the past 20 years and those anticipated

create opportunities to build systems of greater complexity and switching

speed at a dramatically lower cost per function. Thus systems of thousands

of processors are not outrageous to contemplate. They are well within the

capabilities of present technology. Replication is an intrinsic characteristic

of VLSI technology, and is well exploited by the homogeneous machine. The

cost in delay, area, and energy of long distance communication on and

-5-

between chips suggest that single processors will be fast and efficient only if

relatively small. The opportunity for performance is in concurrency. The

homogeneous machine satisfies these criteria very well also.

The advances in integrated circuit technology have created an

opportunity for computer designers that must be accompanied by advances

in concurrent progra..inmi...D.g techniques before they can be exploited, and

vice versa. A number of concurrent programming notations have been

proposed but have remained research toys, if only because they lack a

suitable machine architecture on which they could be used. The lli'"lderlying

model of concurrency presumed by a programming notation must also be

shared and supported by a concurrent hardware structure. Although it is in

many circles just another "motherhood and apple pie" statement, this thesis

treats the hardware and software together.

The von Neumman notion of a randomly accessible memory word as the

basic unit of sequential machines and programs cannot survive in a

homogeneous environment. The definition of a homogeneous machine makes

the accessibility of the state of the machine a function of distance. The

greater the distance between the need for a particular unit of information

and the physical location of it, the greater the time required to obtain it.

Locality in a homogeneous machine is achieved when it can be observed that

the probability that two concurrent processes vvill communicate ·with each

other decreases as the distance between them increases. A concurrent

programming methodology must take this fact of life into account. In this

thesis, the notion of the program "object" is used as the basic concept

around which the programming model and the machine architecture are

built. Objects are certainly not the only programming paradigm possible for

-6-

homogeneous machines, but are the model assumed for this thesis.

Objects and object-orient programming are derived from the concepts

of Simula [Birtwhistle73] and Smalltalk [Ingalls7B]. The object is an insta...11ce

of a user defined data type. It contains local data whjch may be operated

upon by the procedures defined for its particular type. The procedures are

called attributes and their code may be shared by any objects of the defined

type. Objects are referred to by the contents of reference variables which

hold pointers. These pointers merely address the indicated object and

identify its type; they do not indicate the physical location of the object.

If, as Backus [Backus78] suggests, prograrnrr1ing car1 be liberated from

the von NeTu."Ilann style, the hardware structures that are constructed to

support these new styles must certainly avoid the von Neumann bottleneck.

This bottleneck is the narrow pipe through which all memory accesses must

flow in conventional macbines. This bottleneck is present, and is even more

choked, in machines -vvith multiple processors connected to a single memory.

The choking may be somewhat relieved by increasing the cost and

complexity of the _system with such ted1niques as the interleaving of

memory, crossbar switches and other "stunt" boxes [Thornton70], but the

effectiveness of these techniques is necessarily limited by space, time, and

cost considerations.

If the von Neumann bottleneck is to be removed, then its large,

monolitbic address space must become distributed among the various

processors of a system . .Also, the semantics of an "address" ·will grow beyond

its current meaning which defines it as a fixed size word in a very large set of

words. In an object oriented homogeneous machine, the address becomes a

reference variable or pointer referring to an object. Objects are the basic

-7-

~'lits from which data structures are built. Procedural attributes are

defined for classes of objects and become a set of operations that w.anipulate

the data contained in an instance of an object. These concepts are found in

Simu1a and other languages and have been extended to operatLrig systems by

Hydra [Jones73]. In a system consisting of nu1nerous processors each ·with

their own "object memory", all access to an object ·within the memory of a

particular processor is controlled by that processor. Objects commu..11.icate

only by passing messages to other objects for which they contain a pointer.

Objects are distributed among the processors of a homogeneous

machine and may be moved between them at any time to preserve the

locality of communication. Objects are constrained to fit wholly 1\itl<.in any

given processor. They may execute concurrently where provided for by the

programmer and where the opportunity exists. Objects may create other _

objects but cannot explicitly destroy other objects. Reference variables may

be overwritten, copied and sent to other objects in messages. These

operations result i~ a dynamic system where both the positions of the

objects and the topology of their pointers change continuously. There can be

no restrictions on the kinds of structures that might be generated (e.g.

cycles in the pointers must be permitted). There is no way to enforce such

restrictions nor is there any desire to. A garbage collection facility is

required by an object oriented language to identify and eliminate

inaccessible objects.

The object concept is powerful enough to have a broader interpretation,

one that allows it to provide many of the facilities required to build complete

systems. The files and directories in the file system of a machine running

-8-

U.NIX1 [Ritchie74] may be thought of as objects of whose type is implied by the

operating system. If a number of such macrJ.nes are connected via a

network and links are permitted in a machine pointing at files or directories

in another machine, essentially the same object-oriented situation can be

seen to exist. Distributed database systems [YuBl] permitting multiple,

concurrent access have a similar need to resolve the status of objects

residing in multiple machines.

To meet the requirement that performance scale with system size, not

only must the hardware communication facilities be suitable but software

components, such as, message handlir1g, garbage collection and resource

allocation must also avoid algorithms and techniques that degrade as the

system grows. The process of garbage collection is of great concern since

the determination of whether or not a given object is referenced anywhere in

the system is a global question, and was studied extensively in this research ..

A number of principles of implementation might now be stated to

provide the reader with a concrete picture of an object oriented

programming system for a homogeneous machine.

Each processor contains its own memory to which it has exclusive

access. There is no shared memory. Each processor /memory node runs its

own copy of an operating system, which may be better thought of as a run

time system. This code is always resident in the processor's memory and

serves to support a particular programming environment that pervades the

entire system of processors.

The memory associated with each processor may include disk storage.

If mass storage peripherals are present on a processor, they can be regarded

1 UNIX is a Trademark of Bell Laboratories.

-9-

as logically part of the processor's memory. No distinction is dra.vm in t:his

thesis between objects stored in random access memory and those stored on

disks if they are under the control of the same processor.

To permit the migration of progra1ns from small machines to a large

ensemble of machines will require a programming language common to both.

Both the development and the execution of programs for small problems

may occur on small, single processor machines. If large ensembles of

processors are to be used to increase the preformance of such programs, the

language used must be supported on both types of machines. Where they

exist, concurrent programming languages perform poorly on single

sequential machines. Sequential languages, by definition, are unable to take

adva,"ltage of the concurrency available in a homogeneous machine. A

programming model must be foQrid that is suitable to both environments.

1.2. Related Efforts

A number of special purpose ensemble machines exist and many others

have been proposed [Kung78,Browning80,Seitz82]. The unit replicated in

these structures is typically a very small machine, either bot programmable

or with so little program storage that one could not include a run_-time

system to distribute work across the machine in execution. All such

decisions must be made by the programmer and/or compiler in advance of

execution. Machines of this type are highly specialized to and effective for

specific regular problems, such as, the manipulation of large matrices or

solutions to various graph problems.

The Torus [Martin81] and the Homogeneous Machine of [LocanthiBO],

incorporate more complex processors have achieve a correspondingly

greater degree of generality. A concurrent programming notation, after the

-10-

style of Hoare's CSP [Hoare78], is proposed for the Torus machine and a

functional subset of LlSP serves as the basis for Locanthi's machine. These

machines are general purpose to the eA'tent that their programming

notations are suitable for application to various problems. In both of these

machines, the communication between the processors is restricted to a

particular topology, hence the class of programs permitted by these

machines and their programming notation is likevvise restricted.

Specifically, these two machines permit tree-like computation graphs.

Computations occur in the leaves of the hierarchy and the concurrent

components of the computation are created and destroyed at the leaves,

e:x-pa..Dding and contracting the logical graph of the computation.

The Actor model of programming bears many similarities to object

oriented programming and the Apiary machine of Hev.itt [HevvittBO] is

centered about these concepts. The Apiary machine is a toroidial mesh of

processing elements that are each host to a number of Actors. Tne goals of

the Apiary machine and the programming model of Actors are directed at a

general class of artificial intelligence problems.

1.3. Scope and Outline

This thesis presents the ingredients necessary to a homogeneous

machine and an object oriented programming envirorunent. Chapter 2

presents a programming model centered about object oriented

programming. Extensions and restrictions of existing object oriented

languages are presented which permit a hardware structure to support a

message passing programming model with concurrency. Chapter 3 presents

a new algorithm which enables the system to recover the resources occupied

by inaccessible objects. The algorithm is shown to scale satisfactorily with

-11-

the size of the system. Chapter 4 addresses the requirements of the

underlying hardware structure. Various interconnection strategies are
;

evaluated ·with respect to their performa.._"'1.ce and cost, vvith the conclusion

that a Boolean N-cube is attractive for the numbers of processors that might

be used. Both the garbage collection algorithm and the interconnection

topologies are evaluated by detailed. simulation. In Chapter 5, topics related

to the support of object corr1...rnurlication and preserving object locality are

addressed.

1.4. Conclusion

The conclusion of the thesis supports the contention that a highly

concurrent programming environment can be implemented in a

homogeneous machine. The use of a Boolean N-cube interconnection, the

program object metaphor and a distributed, on-the-fly garbage collection

algorithm provide a system which v.,ill have a level of performance that is

proportional to its size. :Machines of very large sizes may be built to solve

large problems where concurrency is part of the solution program. The

general purpose nature of object oriented programming makes this type of

machine as generally useful as conventional single processor machines. Its

ability to provide more performance by adding more hardware and its low

per part cost due to its homogeneity make it a very good candidate as a VLSI

architecture in years to come.

-12-

Chapter 2

Concurrent, Object-Oriented Programming

2.1. Introduction

This chapter presents a programming metaphor suitable for use with a

highly concurrent machine architecture. This programming construct is

derived from the Simula class concept [Birtwhistle73] and is related to

similar concepts in other programming languages such as CLU [Liskov77].

Smalltalk [Ingalls78] and ALPI-li\RD [Wulf76]. Many of the concepts of object

oriented programming have appeared in other languages, such as in the

Actor System [ClingerBl].

The machine architecture presented in succeeding chapters exploits the

concurrency expressed in programs by managing the execution of objects on

a collection of connected processors. The physical structure and

organization of the machine are transparent to the objects. Several

interconnection strategies may be used, however, some strategies will

perform better than others. The structure's appropriateness to applications

is evident only in its performance. Extensions to the physical structure can

be made indefinitely without modifications to the existing parts or to the

programming model of the machine seen by its users. Such expansions result

in increased performance for concurrent programs.

Other methods have been found to exploit concurrency. These methods

generally fall into two categories. First, machines have been presented

-13-

whJch are designed to solve particular classes of problems very well. The

concurrency achievable in these machines is inherent in the algorithm or is

e2-.'Plicitly programmed by the user. Examples of such machines are systolic

arrays [Kung78] and the tree machine [BrowningBO]. Both of these machines

are well oriented to matrix operations. Sortiri...g, searching and graph

problems have also been adapted to the tree machine. Attention to the

details of the rigid hardware architecture make programming these

machines difficult. Moreover, problems that perform well at one particular

size may not work at all if the size of the problem is increased.

The second category is what may be called reduction machines

[Berkling75]. The primary means of partitioning problems into concurrent

parts is the separate evaluation of the parameters of procedure calls. These

machines are typically directed at a particular language. The homogeneous

machine described by [LocanthiBO] is based on LJSP and derives much of its

advantage by concurrent evaluation of the CA.-q and CDR of LlSP expressions.

The machine presented in [Mago79] operates in a simpler but somewhat

analogous manner without the caching of LlSP nodes proposed in the

Locanthi's machine. A reduction machine incorporating data flow concepts

has been proposed [TreleavenBO].

The Torus machine [MartinBl] makes use of a twisted toroid to support

the concurrent execution of procedure calls. The two procedures each run

in a neighboring processor and may themselves initiate additional

concurrent behavior. When a procedure returns its result it terminates and

is destroyed. A tree of concurrently executing procedures is mapped onto

the surface of a torus. A twist is applied to the torus in each dimension to

increase the duty cycle of the individual processors. The Torus machine is a

-14-

member of a rare set of novel architectures that have been implemented.

The data-flow concept bears a close relationship to object oriented

programming. The operators and the topology of token flow between them is

fixed in static data-flow programs. The primary difference between object

oriented and data-flow programming is that objects, which may be thought of

as operators, may be created and disposed of at a high rate and the

communication between them is of a dynamic topology, while in a static

data-flow machine operators are typically long lived and communicate in a

fixed pattern. Machines proposed to execute data-flow programs such as

[Dennis74] and [Davis78] have an explicit concept of message passing

between program elements. In some cases. such as [Arvind81] the data-flow

machines exhibit some similarities with reduction machines where recursive

procedures have been implemented.

Computer programs have traditionally been treated as single, albeit

large, sequential machines [Backus78]. Most programming languages such

as FORTRAN, ALGOL and APL permit only a strictly sequential specification of

algorithms. This development is a natural one since the machines on which

such programs are run provide no additional benefits for program

specifications containing potential concurrency. Programming languages

have been available since the 1960s that allow the user to indicate

concurrency in programs (Simula 67), and since then others have come into

being such as Concurrent Pascal [Brin.ch Hansen75]. Many ideas have been

offered to programmers to provide them with notations that include the

concept of concurrency such as in CSP [Hoare78]. As a rule, these languages

have addressed only the notational and semantic issues and have ignored any

notion of locality among program components.

-15-

In several cases concurrent programming laiiguages have presumed a

particular hardware environment where two or more processors have equal

access to a single memory. A nTu'Tiber of machines of this type exist on the

market, which may explain some of the attractiveness of this environi-nent.

However, we consider here a broader situation where the time required to

access data in the system is a function of the physical distance to the data.

This relationship effectively prevents the use of techniques such as shared

variables to implement program constructs like semaphores. Any type of

global variable is prohibited. To decrease the communication delay between

various objects, the distance between those objects tvill be made small.

Maintaining locality by moving data is possible only where the data is part of

an object and the object can be moved en masse to increase its ability to

communicate with other objects. Moving data to increase locality is not

possible without the grouping of data and program code into neat,

independent bundles like objects. With the object concept the user must

partition programs into bundles of code and data providing the homogeneous

machine with the ability to retain locality among the objects at run time.

Without the preservation of locality, communication b;=:tween program

components becomes so excessive that comparatively little computation is

done.

Ideally, the languages in which programs are written should make the

specification of locality both convenient for the programmer and a natural

part of the language syntax. Block structured languages such as Algol,

Pascal and PL/1 approach this goal by imposing scoping rules on the

programmer. Simula and Smalltalk go one more step and provide a

convenient means to associate data with program. The object construction

of these languages not only brings together related pieces of data but also

-16-

identifies the program code which is to operate on that data.

2.2. Overview of Simula

Simula is a derivative of ALGOL 60, and as the name implies, is useful in

programming simulation problems. It is also a general purpose lar1guage in

which a large body of code has been ·written for computer aided design.

system support and graphics applications. Simula uses a superset of ALGOL

60 syntax with several important additions. Program data in Simula can

reside either on a stack. as in ALGOL, or in a dynamic memory area or heap.

The data items that reside in the heap are termed objects and are instances

of data type definitions. As references between and among objects are

changed under program control, a garbage collection procedure is used to

remove inaccessible objects and to compact the heap.

In this section we present some of the major features of Simula. A

faroiliarity with the ALGOL programming language is assumed. A complete

description of Simula can be found in [Birtwhistle73].

The Simula object is the basic data abstraction mechanism of the

language. Objects are defined by CLASS declarations which are written by

the programmer to describe an entity that consists of local data and a set of

procedures. The procedures of the CLASS that are accessible to other

objects are called attributes and may be regarded as a set of operations

defined on objects of the CLASS. The name of the CLASS is regarded as the

name of a data type to which all instances of the CLASS belong. Objects are

instances of a CLASS declaration and are created explicitly with the NEW

statement. The local data is unique to each instance of the CLASS. The

procedure attributes of an object are code that is shared among all instances

of the object's CLASS. The reference variable is an atomic data type that can

-17-

hold a pointer to an object. The name of the reference variable is used to

indicate the object to wbJch the variable currently refers and is the means

by which the remote attributes of the object are invoked.

Simula supports a set of atomic data types consisting of integer,

Boolean, real and character variables. A representation for text and

operations on text are also included. In addition, arrays of the atomic data

.types may be specified. User defined data types are termed CI_ASSes by

Simula and consist of a collection of variables and procedures. A reference

variable is a pointer that refers to a specific instance of a class. Reference

variables are declared to be of a specific type and can only contain pointers

to instances of a particular class or they may contain the null pointer

(NONE). The operator ":-" is used in Simula to assign a reference variable a

pointer. Objects may contain reference variables to other objects permitting

arbitrary data structures to be constructed. Listed below is a simple Simula

program.

-18-

BEGIN

CLl\SS Point(x,y); REAL x,y;
BEGIN

REF(Point) Next;

REF(Point) PROCEDURE Copy;
Copy:- NEW Point(x,y);

REF(Point) PROCEDURE Scale(r); REAL r;
BEGIN

x := x*r;
y := y*r;
Scale :- THIS Point;

END;
END of CLASS Point;

REF(Point) pt,ptlist;

pt:- NEW Point(1,5);
pt.Next:- pt.Copy;
ptlist :- NEW Point(2,6);
ptlist.next :- pt. Scale(10);

END;

In this program, class point is defined with 5 attributes. The real

variables x and y hold the coordinates of the point. The reference variable

Next may hold a pointer to some other point so that a linked list of point

objects may be constructed. The procedure attributes Copy and Scale define

operations on point objects. Attributes of classes are invoked by using the

name of a reference variable followed by the name of the attribute separated

by a dot("."). Procedure attributes may or may not require parameters, and

they may return a value as shown here.

Within the block defining class point, procedures and their code may

reference data attributes as local variables as seen in procedure Scale.

Outside of this block. the scope rules make all the declarations of data and

procedures with class point invisible except as attributes of point objects.

Instances of objects are created using the NEW statement. This

statement allocates space for the object in the heap and returns as its value

-19-

a reference variable pointing to it. In the program, the reference variable pt

is assigned the value of a NEW statement. The attribute Nexi. of the newly

created point is then assigned a pointer to another new point created using

the Copy attribute defined for point objects. At the end of the program the

data structure is as follows.

ptlist ~ Point~x=2,y=6,Next~

~
pt ---....-----~ Pointf x= 1 O,y=50,Next~

~
Point~x=1,y=5,Next=NONE~

Classes can be defined with any attributes the progra_rnmer determines

are necessary. Instances of objects can be made and manipulated to

perform any task. An important characteristic of programs -vv-ritten in this

manner is that the code that operates on the data of a class instance is

identifiable and modular. The procedures Copy and Scale in the example are

shared by all instances of point objects. Thus, the existence of a point object

implies the need for the specific code associated with class point.

The type checking of Simula is strong, that is, all variables and

procedures are assigned a type and only legal operations are permitted

between various types, whether user defined or built-in. Simula permits the

relaxation of type checking with two features, subclasses and virtual

procedures.

Subclasses allow a hierarchical grouping of classes and permit the

definition of one class to inherit attributes from the definition of another

class. A justification for subclasses is in [Ingalls78]. In the following example

class "person" is defined. Classes "man" and "woman" are defined as

subclasses of "person".

-20-

BEGIN

CLl\SS Person(Name); TEA'T Name;
BEGIN

! Attributes of Person ;
END of CLASS Person;

Person CLASS Man;
BEGIN

! Attributes Un.ique to Man ;
END of CLASS Man;

Person CL;\SS Woman;
BEGIN

! Attributes Unique to Woman ;
END of CLASS Woman;

END;

Instances of all three classes are regarded as instances of "Person" in

type checking. Therefore, a reference variable of type "Person" may contain

a pointer to objects of any of these three classes. Also, any attributes

defined in "Person" are also part of "Man" and "Women". Where conflicts

arise in the names of attributes, the declarations of the subclass override

those of the superclass. The scope of the code in a subclass includes the

corresponding block level in the superclass. That is, the procedures and

data declared in the attributes of "Person" are visible to the code in the

"Man" and "Women" definitions.

When a class hierarchy is constructed, the attributes have fixed

meanings using the subclass mechanism shown in the example. It may be

desirable to permit the definition of a subclass to redefine attributes that

would otherwise be inherited from its superclass. It may also be desired to

give the superclass access to the attributes of a subclass, based on the exact

class membership of an object at run-time. The Simula VJRTUAL mechanism

provides these abilities as another method of relaxing the otherwise rigid

typing and scoping rules.

-21-

Briefly, the v~rtual mechanism consists of declaring one or more

attributes of a class to be VIRTUAL but ·without actually defining the

attribute. Subclasses may define or redefine the attribute name, though

such definitions and declarations must match the type of the VlRTUAL

attribute. When a virtual attribute of an object is invoked, the attribute

definition of the lowest subclass to which the object belongs is used. This is

in contrast to using the class of the reference variable to determine which

set of attributes are applicable.

2.3. Extensions for Concurrency

Simula objects are modular with regard to both their data and their

code. The user definitions of Simula CLASSes partition data with the

procedures that ¥till modify the data, making objects that are modular and

independent except where they interact with other objects. The dot operator

(".") is used to invoke the attributes of objects in Simula. When an object

attribute· is invoked a message is sent to the object containing any

parameters required by the attribute.

pt.Scale(R):

This Simula statement can be interpreted as the sending of a message to the

object referred to by pt containing the name "Scale" and the value of the

parameter R. The analogous operation in Smalltalk is actually presented by

Ingalls as message passing. If objects can then stand alone with their own

code and data and have the ability to send and receive messages from other

objects, they can execute concurrently.

Simula comes equipped with its own facilities for concurrency. These

are the RESUME and DETACH statements and are used, in conjunction with

other Simula features, to provide the simulation facilities for which Simula

-22-

was originally intended. These two commands implement a context svlitch

between Simula objects. Objects each have their ovn1 stack and "program

counter", thus permitting program control to be transferred from one to

another just as jobs are multiplexed in a time shared system. The RESUME

command suspends the execution of the current object and reswnes

execution of a named object from where it was last suspende~. The DETACH

command suspends the current object and resumes the main program.

These features provide no synchronization mechanisms and require very

detailed attention by the programmer. Also, locality and modularity are

degraded by these facilities. It is clear that the intention of these features

was to support simulation and not concurrent programming. Simula does

provide each object instance with its own stack so that the execution of each

object may utilize recursion and block structuring as would any Algol-like

program. While the RESUME and DETACH facilities may be unsuitable for the

purposes here, concurrent execution does require that each object contain,

as part of its state, a stack of display records.

Objects communicate by invoking the attributes of other objects. To

permit objects to be located in physically separate processors, the action of

invoking an attribute in an object and receiving a result must be

implemented by message passing. All communication between objects is via

a message passing facility. The hardware facilities and the run time system

of the homogeneous machine implement the passing of messages between

objects. The following characteristics of this message passing system are

assumed.

(1) Messages sent concurrently by different source objects but intended for

the same destination object arrive at the destination in an arbitrary

-23-

order.

(2) Successive messages sent from a particular source object to the same

destination object arrive at the destination object in the order they are

sent.

(3) Messages received by an object are received whole. Any assembly of

pieces of the message is transparent to the recipient.

(4) All messages will eventually reach their destination and need never be

retransmitted. All error handling is transparent to the objects.

(5) Messages received by an object are assured of being intended for that

object. An object will not receive messages not intended for it.

(6) The only prerequisite needed to send a message to an object is tl1at the

sender have a reference variable identifying the object.

Objects are self contained and may execute concurrently. Given

independent objects which communicate via a message passi11....g mechanism,

we propose a model of concurrent programming for the object-oriented

environment. The extensions take the form of conventions placed on the

passing of message between objects. Means are introduced whereby objects

may execute concurrently, as well as synchronize with the completion of the

activities of other objects. The original semantics of Simula remain in effect,

except where the added conventions of message passing are felt. In a

succeeding section restrictions are placed on the language to prevent the

expression of programs that would require global communication.

The activation of an object attribute sends a message to the object and

may initiate concurrent execution between the sender and the receiver. The

following program segment will cause the object executing this code and the

vector object pointed to by Vee to execute concurrently.

-24-

Vee :- <expression returning a pointer to a vector>;

Vee.sort;
a:= b + c;

The syntax of Simula indicates that no result is ex-pected for the statement

"Vee.sort" and the execution of the sort operation by the vector object may

proceed independent of the requester. Thus, the requester will go on to

execute the assign_ment of "a" while the vector object sorts its elements. In

the program segment below, a result is expected by the requester.

Vee :- <ex-pression returning a pointer to a vector>;

c := Vec.elemt(i);
a:= b + c;

In this example, the syntax indicates that the value of an object attribute is

required by the requester. The requesting object is then made to wait until

the result is sent in a response before executing the assign..YTient of the result

to "c" and then the assignment of "a". If "Vec.elemt(i)" is present in any

context where a result is expected, such as in the assignment above, or as a

parameter or in an expression, the object making the request of the vector

will stop all execution until the vector has responded with a value. When the

response has arrived, the requestor has then been synchronized with the

activities of the vector object.

The termination of an attribute at a destination object may send a result

which is received by the original sender as the value of the attribute. An

object attribute returns a result using the syntax and semantics of returning

a value from a procedure. There is, however, one difference. As shown

above, the requesting object may not require a result even though the

-25-

attribute requested may be defined to return a result. The syntax and

semantics of Simula indicate whether or not one is required by the requester

and the requester makes this known to the destination object in its message.

Thus, if the requester's message indicates that no result is required. then the

destination object will not send a result regardless of the destination object's

defii.lition.

The messages received by an object are acted upon one at a time. This

restriction is severe, and is a different choice than was made for the Actor

model [ClingerB1], but permits a simplified programming style where many

of the details of concurrent programming are hidden.

The restriction that only one message may be acted upon at a time

provides several important characteristics for the objects. First, it insures

that the data of an object is "guarded". That is, the code that might modify

it is a "critical region" and there is "mutual exclusion" among those

attributes that might change it. The concepts of critical regions and mutual

exclusion are synchronizations that must be available in concurrent

programs to insure a particular behavior by the program. Permitting only

one attribute of an object to be executed at a time prevents the modification

of the object's state by another attribute in ways that programmer did not

specify.

Messages are queued for each object attribute in the order in which they

arrive. When the object has finished executing the attribute associated with

one message, it may then begin the execution of the actions associated with

the next message in any of the object's attribute queues. The selection of

the attribute queue from which to take a message is arbitrary unless the

selection is controlled by the specification of the object's class. If all the

-26-

attribute queues are empty, the object waits in an idle state for a message.

A message would typically contain a set of actual parameters supplied by

another object which holds a reference variable identifying the object in

question. 1f the originator of the message and the definition of the attribute

require ·a result to be sent to the originator, the transmission of the result

occurs when the execution of the attribute terminates.

The transmission of a message to an object is caused by the activation of

an attribute of an object referred to by a reference variable. The

transmission of a result is caused by the termination of the attribute of the

object where a result is defined for the attribute and required by the

originator. The syntax of these operations is the same as that used in

conventional Simula for the invocation of attributes and for returning values

from procedures. This is in contrast to the CSP notation [Hoare78] where

the "?" and "!" operators are used explicitly to receive and transmit from and

to named communication channels. The channels between CSP program

components must be declared ·and both the sender and receiver must be

executing the output and input operators, respectively, for the

communication to take place.

One new language feature is added to Simula to permit the programmer

to control the otherwise arbitrary selection of attribute queues. The SELECT

statement is made part of an attribute declaration where selection of

messages from the associated message queue are to be conditional. If no

SELECT statement is present in the attribute declaration, the attribute may

be arbitrarily selected whenever an attribute terminates and there is a

message waiting in the attribute's queue. If present, the SELECT statement

takes a Boolean expression as an argument. The attribute is left out of the

-27-

arbitrary selection when the value of the e.x1wession is false. An arbitrary

selection is made among those attributes for which there are messages and

whose SELECT expression evaluates as true, or for which there is no SELECT

statement. The Boolean expression may contain any of the relational and

logical operations of the language and may contain references to any of the

object's local data items. In addition, the expression may use the names of

attributes. Where the names of attributes appear in the expression, they

have a value of true when the message queue of the named attribute is non

empty, the value is false if the queue is empty. Examples of the SELECT

statement can be seen in the Gaussian elimination example in a succeeding

section. This statement is the only feature added to the syntax of Simula for

the purposes of concurrent programming .

. The restriction that only one message may be removed from the

attribute queues and acted upon at a time provides a synchronization with

other objects. In addition, due to property (2) of the message passing

system, an object sending a message to another object is assured that all

other messages that have been sent in advance will be received, and further,

all other messages invoking the same attribute will have been acted upon

when it receives a response to its message. This use of a FIFO as a message

queue for each attribute is a means of controlling the non-determinism

introduced by the arbitrary ordering of the message passing system. The

selection of which attribute is to be executed when there are messages

waiting in several attribute queues may be controlled by the programmer

with the SELECT statement where a completely arbitrary choice is

undesirable.

-28-

Objects may activate tasks in other objects without suspending their

own execution. Synchronization between concurrently executing objects

takes place when the originator again sends a message to the "slave" object.

Since the "slave" object must finish the previous, selected task before acting

on the ·new message, any response by the "slave" object indicates the

completion of all previous tasks as selected by the "slave" object. Of course,

the originating object may wait on an initial response from the object, thus

precluding any opportunity for concurrency, or having once initiated a task

in another object, the originator may never synchronize with the "slave" but

may indirectly cause a third party to do so.

To preserve the sequence of operations programmed in the objects, one

proviso must be added to the initiation of concurrent behavior. While an

object sending a message to another object for which no response is

indicated need not wait for execution of the attribute, it is necessary that

the message be put in the attribute queue of the destination object before

another message is sent by the originator. Property (2) of the message

passing system is intended to assure, however implemented, that any

messages that might be sent to the destination object as a result of further

execution by the originator will be acted upon after the first message or

under control of the attribute selection logic. Thus, the sequence of

operations as specified by the programmer is preserved.

An example of these types of interactions between objects is often found

in an object containing a vector (or array) of other objects. After loading the

vector object with references to various other objects, the controlling object

or an object to which a reference to the vector has been passed may instruct

the vector to sort itself. Since this operation does not reqwre a result to be

~29-

produced immediately, the controlling object may go on about its business

until it requires an element of the sorted vector. Any object requesting a

particular element of the vector \\ill be made to wait until the vector has

completed the sort, if in the vector object a SELECT statement is used to

prevent the selection of requests for elements when a sort request is

present. Any requests for elements made after a sort request is placed in

the sort attribute queue will not be executed until after the vector is sorted.

At the completion of the sort the vector object will service a new message

from its attribute queues. By sending the a response for an element request

containing the desired element. the requesting object is released for further

execution. In this way, any number of objects which hold handles referring

to the vector are synchronized -with the completion of the sort.

Of course, no guarantees are made as to which of several messages from

independent objects will arrive first at the vector object. Non-deterministic

behavior, resulting from races between objects, is certainly possible. The

programmer is responsible for insuring that objects which expect the vector

to be sorted do not make requests before the vector begins the sort

operation. The programmer is assisted in maintaining this sequencing by

using SELECT to assure that all execution following the transmission of the

sort message to the vector will find the vector to have been sorted.

The opportunities for concurrency presented here are explicitly

programmed. Additional implicit concurrency can be had if objects that

would otherwise wait for the response to a message continue execution until

the response is actually required by the program code. In some cases, the

parameters to procedure calls could be evaluated concurrently since

procedures cannot be entered until all of the actual parameters are present.

-30-

These types of optimizations by the compiler or interpreters are not

e11.pected to be a major factor in the benefits provided by this type of

distributed architecture but are available to compiler writers. The "futures"

construct of the Actor system [He-witt77] is based on this idea.

To add concurrency to an object-oriented language we have merely

changed the semantics of invoking an object attribute. Instead of calling a

procedure defined in the object's class definition, we send the object a

message. If a value is required from the attribute, execution is suspended

until it is available. This situation will appear the same as if a procedure had

been called in a conventional language. If no response is required, execution

continues. The object at the destination may continue or begin execution as

well. Synchronization between the objects is accomplished by the message

passing mechanism. The attribute FIFOs or queues insure mutual exclusion

between the various attributes of the object.

2.4. Restrictions to Limit Global Communication

To enforce a degree of locality among the objects and data of a program.

some modifications to the scoping rules and construction of programs are

required.

ALGOL scoping rules permit program code to access any data declared

in any textually enclosing block. In Simula, for instance, data declared at

the highest level are visible and can be manipulated by all code in the

program, including the code internal to class definitions. Such global

variables cannot be permitted in a distributed machine of the type discussed

here. Not only would their access require excessive communication but they

would be lacking the synchronization required to support reliable concurrent

behavior. Without synchronization between the concurrent objects.

-31-

modifications and accesses to global variables would have no controlled

sequence making deterministic program behavior difficult if not impossible.

Therefore global variables cannot be permitted.

The message passing model for objects requires that all data related to

the execution of an object be either part of its internal state or arrive as part

of a message. This model does not allow for the direct access to global

variables provided in conventional languages. It also does not allow the

internal state or data attributes of objects to be directly accessed as

permitted by Simula. As a result, only procedural attributes of objects are

accessible to other objects and all access and modifications to the data

attributes must be accomplished using the procedural attributes.

To avoid global variables and other nonlocal access to data, the following

restriction is made. Variable declarations may be made only with.in the body

of a CLASS declaration. Further, variables declared are visible only within

the immediately enclosing CLASS declaration. In other words, variables are

declared only within objects and may be accessed directly only by the code

defined as part of that object.

The passing of parameters to object attributes must likewise be

restricted. To provide the destination object with the data required by its

attributes, all parameters to attributes must be passed by value. Passing

parameters by reference and by name would result in a loss of locality,

where the data required by the object could reside at some other location in

the system. If, for example, an array is a parameter to an attribute, the

contents of the array must be incorporated in the message to the object

attribute. In the case of reference variables, the value of the reference

variable is transmitted, however, the value of a reference variable is the

-32-

actual pointer to an object. The restriction that parameters be passed by

value thus permits the passing of pointers to objects in messages.

Class definitions can be nested to any depth, and normal scoping rules

apply to the class names. The scoping of data does not permit access across

class boundaries. The definition of procedures can cross class boundaries

only if the procedure restricts its access to its own local variables and

parameters. Procedures that manipulate internal class data cannot be

called from other classes as these accesses would have same problems as

global variables. Of course, the definition of a subclass may access all the

data and procedures defined in the superclass as though the code of the

subclass were actually Within the body of the superclass.

Instances of objects can be seen to be a subset of the concept of a

distributed process [Brinch Hansen78]. Objects may execute concurrently

as do distributed processes and they communicate via message passing.

Distributed processes communicate and synchronize by procedure calls and

guarded regions. The message passing of objects is made to appear as

procedure calls and the attributes of the objects are mutually exclusive,

implementing a set of guarded regions for each object. Like an object, a

distributed process may access only its own variables. Unlike distributed

processes, objects cannot be interleaved, meaning that the attributes of an

object cannot be used concurrently as can external requests of distributed

processes. Objects are less general in nature than distributed processes

with the intention that objects be better suited to execution in a

homogeneous machine.

To allow objects to be distributed among many processors and their

memories, we have restricted their definition such that all access to an

-33-

object by other objects is exclusively through a message passing facility.

Direct access to an object's internal data is therefore prevented. An object

may manipulate its own data or it may send messages to other objects to

indirectly affect their data. If one or more variables must be "shared" by a

number of objects, then the variables may themselves be contained in an

object and a pointer to the object can be given to all those objects that

require access to the variables. In this way, all the techniques of sequential

languages can yet be used but are made to fit within the distinct boundaries

of objects. In exchange for these restrictions, concurrency is made available

and can be taken advantage of without e};.i>licitly specifying critical regions.

semaphores or other types of synchronization mechanisms.

2.5. Concurrent Programming Examples

To illustrate the usefulness of the modified version of Simula described

above, several example concurrent programs are presented.

2.5.1. Two Dimensional Shapes Clipping

One of the most common tasks of interactive graphics programs is the

display of two dimensional shapes on a plotting device. In the process of

displaying shapes, the shapes must be transformed and clipped to fit the

space and coordinate system of the plotter. The clipping of shapes is the

process of removing those parts of the figures that fall outside of the plotting

window. The plotting window is a rectangle denoted by upper and lower

bounds in the Y dimension and right and left bounds in the X dimension.

In this example, the task of clipping is pipelined into four concurrent

objects. Various sequential algorithms exist to perform fast clipping

[Newman79]. These algorithms have been highly optimized for single

-34-

sequential machines. In the example here, a brute force technique is used

where each of four objects clips line segments against one of the four sides of

the vvindow. Each of the four objects performs a simpler task thai.-i the single

sequential methods, and since the four objects are pipelined and running

concurrently, the effective rate at which line segments are clipped is greater

than the sequential method, if other factors remain equal.

In the example, a Window object is defined. The initialization attribute

(Init) constructs a linear list of four Clipper objects. At the end of the list is

a pointer to the plotting device which is not defined here. It is assumed that

the plotting device has a attribute which plots the line segments. When the

Clip attribute of the window object is invoked by another object holding a

pointer to the window, a list of line segments is sent to the vvindow which the

window then puts through the pipeline of Clipper objects.

The Clipper objects each have their own Val variable which is the limit

that they clip line segments to. They also may have a reference variable to

either a plotting device or the next clipping object in the pipeline. In this

example, only one of the clipping attributes are used in each of the four

clipping objects. The window invokes ClipAbove in the first clipper, then the

first clipper may invoke ClipBelow in the second, and so forth until the last

clipper object invokes an attribute of the plotting device.

Each Clipper object receives line segments from its successor in the

pipeline. lt performs some simple tests to determine if the line segment is

fully on one side or the other of its limit. If the line is totally outside of the

window limit, then the clipper attribute terminates and will go on to process

the next line segment. If the line segment is completely on the other side of

the limit, then it passes it on intact to the next clipper object, or to the

-35-

plotter. If the line segment straddles the limit, then a new line segment is

computed and sent on to the ne;.,'t clipper.

In every case where a line segment is sent via an attribute to a clipper

object or to the plotting device, no response is called for, permitting

concurrent execution of all the objects in the pipeline. Thus. line segments

can be "pumped" through the pipe at a rate determined by the slowest of the

objects.

CLASS Window;
BEGIN

CLASS Clipper;
BEGIN

-36-

! Data of Clipper Objects :
REAL Val;
REF(Clipper)NextClip; ! Nex't Clipper in Pipeline;
REF(Plotter)PlotDevice;

! Attributes of Clipper Objects ;

REF(Clipper) PROCEDURE Init(InitialVal,InitialNext.InitialDev);
REAL InitialVal; REF(Clipper)InitialNext; REF(Plotter)InitialDev;
BEGIN

Val:= InitialVal;
NextClip :- InitialNext;
PlotDevice :- InitialDev;
Init :- THIS Clipper;

END of Init;

PROCEDURE ClipAbove(XLY1.X2,Y2): REAL Xl,Yl,X2,Y2;
IFY1>Val ORY2>Val THEN BEGIN

IF Yl>Val AND Y2>Val THEN NextClip.ClipBelow(Xl.Y1.X2,Y2)
ELSE BEGIN

REALNewX;
:NewX := Xl +(Val-Y1)*(X2-X1)/(Y2-Yl)
IFY1>Y2 THEN NextClip.ClipBelow(Xl.Yl.NewX,Val)
ELSE NextClip.ClipBelow(X2,Y2,NewX,Val);

END;
END of ClipAbove;

PROCEDURE ClipBelow(Xl,Yl,X2,Y2): REAL Xl,Yl,X2,Y2;
IFYl<Val ORY2<Val THEN BEGIN

IF Yl<Val AND Y2<Val THEN NextClip.ClipRight(Xl.Yl.X2,Y2)
ELSE BEGIN

REALNewX;
NewX := Xl+(Val-Yl)*(X2-Xl)/(Y2-Y1)
JF Y1 <Y2 THEN NextClip.ClipRight(Xl,Yl,NewX,VaI)
ELSE NextClip.ClipRight(X2,Y2,NewX,Val):

END;
END of ClipBelow;

PROCEDURE ClipRight(Xl,Y1,X2,Y2); REAL Xl,Yl,X2,Y2;
IFXl>Val ORX2>Val THEN BEGIN

IF Xl>Val AND X2>Val THEN NextClip.ClipLeft(X1.Yl.X2,Y2)
ELSE BEGIN

REALNewY:
NewY :=Yi +(Val-Xl)*(Y2-Y1)/(X2-Xl)
IF Xl>X2 THEN Nex'tClip.ClipLeft(X1.Yl.NewY,Val)
ELSE NextClip.ClipLeft(X2,Y2,NewY,Val);

END;
END of ClipRight;

-37-

PROCEDURE ClipLeft(Xl,Yl,X2,Y2); REAL Xl,Yl,X2,Y2;
IFXl<Val ORX2<Val TIIEN BEGIN

IF Xl<Val A.ND X2<Val THEN PlotDev.Plot(Xl,Yl,X2,Y2)
ELSE BEGIN

REALNewY;
NewY := Yl+(Val-Xl)*(Y2-Yl)/(X2-Xl)
IF Xl <X2 TIIEN PlotDev.Plot(Xl.Yl,NewY,Val)
ELSE PlotDev.Plot(X2,Y2,NewY,Val);

END;
END of ClipLeft;

END of CLASS Clipper;

! Data and Attributes of Class Window;

REF(Clipper)Clp; ! Reference to the head of the Pipeline ;

REF(Window) PROCEDURE Init(PlottingDevice,RightLimit,LeftLimit,
UpperLimit,LowerLimit);

REF(Plotter) Plot tingDevice:
REAL RightLlmit,LeftLlmit,UpperLimit,LowerLimit;
BEGIN

! Set up Pipeline of Clipper Objects ;
Clp :- NEW Clipper.Init(RightLimit,NONE,PlottingDevice);
Clp :- NEW Clipper.Init(LeftLimit,Clp,NONE);
Clp :- NEW Clipper.Init(UpperBound,Clp,NONE);
Clp :- NEW Clipper.Init(LowerBound,Clp,NONE);
Init :- TIIIS Window;

END of Init;

PROCEDURE Clip(Vec); REF(Vector)Vec;
BEGIN

INTEGER I.Len;
REF(Segment)Seg;
Len:= Vee.Length;
! Take a list of line segments and put then into the
! Clipper Pipeline. Actually, handing the list to the;
! Clipper would be better but less instructive.
FOR I:=l STEP 1 UNTIL Len DO BEGIN

Seg :- Vec.Element(I):
Clp.ClipAbove(Seg.Xl,Seg.Yl,Seg.X2,Seg.Y2);

END;
END of Clip;

END of CLASS Window;

The example is not only conventional and simple in appearance but is also a

valid sequential program. If concurrency were not available and the

invocation of object attributes were implemented in normal Simula, this

program would still work as indicated. The model of concurrency proposed

-38-

for Simula thus permits the concurrent specification of this algorithm with

enough sequential constraints to insure deterministic behavior.

2.5-2. Correlation

Correlation of digital signals is an operation commonly performed in

signal processing applications. In many cases, the intention is to find a

measure of how similar two signals are to each other. The recognition of

radar images and speech are typical applications. The correlation of two

sequences, x and y for delay d is given by the equation below.

Where:

N-a
- 1 """' Ra - N -d L.J xt Yt +a

t ::::1

N = Number of samples in x and y

d = 0 · · · m-2,m-1,m

The sequence R is the correlation of x and y for delays from 0 to m. It

is clear that each element of R can be computed independently and hence

concurrently. If we wish to correlate some input signal x with and number of

different y patterns, these computations may be done in parallel as well.

In the following example, we have several sequences y to be correlated

with an input sequence x. For some m we wish to determine the sequence y

with the greatest value of Ra. This result would indicate which sequence y

best matches x and with what delay d.

A class SingleCorrelate is defined which will compute Ra for x and some

y for a given d. An object of class MultiCorrelate creates a SingleCorrelate

object for each sequence y in a list of sequences and for each delay value

desired. The MultiCorrelate object retains no references to the

SingleCorrelate objects but instead gives each SingleCorrelate object a

-39-

reference to itself. When the SingleCorrelate object has computed its Ra. it

invokes the Take attribute of the MultiCorrelate object to send its answer.

The Take attribute tests the answer and records it if it is the largest received

up to that point. It also decrements a counter which indicates how many

an.swers are yet outstanding. When all answers have been received, the

variable AnswerReady is set true to show that the answer is valid. A graph

showing the object structure used in this computation is found in Figure 2-1.

MultiCorrelate
Object

Spawn
SingleCorrel
Objects

Wait for
Results to
be received

-40-

Figure 2-1

Single Correlate
Objects

Object Structure for Correlation

CLASS MultiCorrelate;
BEGIN

CLASS SingleCorrelate;
BEGIN

REAL ARRl\Y Y;

-41-

INTEGER Delay;
REF{MultiCorrelate)AnswerTo;

REF(SingleCorrelate) PROCEDURE Init(RefSig,SendAnswer,InitDelay);
REAL ARRAY RefSig; REF(MultiCorrelate)SendAnswer;
BEGIN

Y :- RefSig;
AnswerTo :- Send.Answer;
Delay : = InitDelay;
Init :- THIS SingleCorrelate;

END of Init;

PROCEDURE CorrelateWith(X);
REAL ARRAYX;
BEGIN

REALR;
INTEGER I,L:
L := X.Length-Delay;
FOR I:=l STEP 1 UNTIL L DOR:= R + X[I] * Y[I+Delay];
AnswerTo. Take(R/L);

END of Correlate;
END of CLA.SS SingleCorrelate;

! Data variables in which to hold the answer ;
INTEGER SelectY,SelectDelay;
REAL Answer;
BOOLEAN AnswerReady;

REF(MultiCorrelate) PROCEDURE CorrelateAll(X,ListOfY,M);
REAL ARRAY X: REF(ArrayList)ListOfY; INTEGER M;
BEGIN

INTEGER I;
Count:= M * ListOfY.Length;
Answer:= -Infinity;
AnswerReady :=FALSE;
FOR I:=l STEP 1 UNTIL ListOfY.Length DO BEGIN

FOR J:=l STEP 1 UNTIL M DO
NEW Si~leCorrelate

.Int\ListOfY.Element(I),THIS MultiCorrelate,J)
.CorrelateWith(X);

END of FOR;
END of CorrelateAll;

PROCEDURE Take(R.M,WhichY); REAL SomeR; INTEGER M,YlliichY;
BEGIN ·

Count:= Count - 1;

-42-

IF R>Answer THEN BEGIN
Answer:= R;
SelectY := WhichY;
SelectDelay : = M;

END;
IF Count=O THEN AnswerReady :=TRUE;

END of Take;
END of MultiCorrelate;

As in the previous example, this program also performs properly if

executed sequentially. Here an object has been created for every basic loop

of the correlation function. Such a technique could potentially create very

large numbers of objects. If more objects are created than there are

processors available, then the execution time of the problem \vill increase in

proportion to the number of excess objects.

2.5.3. Gaussian Elimination

The last concurrent programming example is an implementation of a

Gaussian elimination algorithm due to [JohnssonBl]. In this algorithm, an
array of computing elements is used to transform a banded matrLx into an

upper triangular matrix where all the lower triangular elements are zero.

Other concurrent matrix algorithms have been proposed for direct

implementation in hardware such as the systolic array algorithms of

[Kung78J. This type of computation is akin to data flow machines where a

fixed interconnection of computing elements operates on streams of input

data. The computing elements used in these machines are typically small,

containing arithmetic hardware such as multipliers and dividers and a

number of bytes of state.

The computational array of [JohnssonBl] goes on to provide the facilities

necessary to solve a set of simultaneous equations. Figure 2-2 is a diagram

of the complete array. The cells at the far left of the array and at the very

-43-

bottom produce the solution to the equations. The remainiri..g portion of the

array takes streams of matrix elements from above and from the right and

produces the upper triangular matrLx: in the stack cells near the bottom.

The elements labeled with a Z in the diagram denote registers.

-44-

Figure 2-2

Computational Array for Gaussian Elimination

-45-

In the following example program, we implement the Gaussian

elimination portion of the array. This problem differs substantially from the

foregoing examples because the concurrent objects must accept not one

stream of input messages but several and yet maLrttain their

synchronization. The SELECT statement is used to cause the objects to

accept the input of the specific data elements only when that data element is

lacking. Like a data flow operator, each object waits until it has all the

inputs it expects and then "fires". When it fires it computes its outputs and

sends them to its neighboring cells in the array.

In the implementation here, some liberties have been taken v.ith the Z

elements. In the program, these delay or storage elements are placed in the

cells such that each cell uses the current inputs and never the previous

inputs. The dotted line in Figure 2-1 shows the contents of each type of cell.

Also, to avoid unnecessary complexity in tbs example, the extraction of the

upper triangular matrix from the stacks is omitted.

In the example below, a super class Cell is defined. The attributes of

Cell are inherited by each of its subclasses CenterCell, SideCell, StackCell

and InputCell. It also defines the virtual procedure TryToFire which is to be

found in each of the subclasses. Not all of the subclasses will make use of all

the attributes of class Cell. Other than the Init attribute of Cell which sets

the objects pointers to its neighbors in the array, the other attributes are

defined for passing data values. When a Cell object receives a data value, it

saves it, sets a flag and tries to fire. The SELECT statement prevents more of

the same data item from being accepted until the object actually fires and

resets the flags. If the object has all the values it requires then it does fire.

When it fires, it clears all its flags and then waits for more messages.

-46-

Aside from the objects visible in Figure 2-1, an InputCell class is also

defined to provide input data to the top and right sides of the array. These

objects contain a stream of input data set up by another program object.

The streams must contain enough "dummy" data values at the end and at the

beginning to cause all the real data in the array to be pushed into the

StackCell objects as the Gaussian elimination process completes.

CLASS GaussElim;
BEGIN

CL.ti.SS Cell;
BEGIN

-47-

V1RTUAL: PROCEDURE TryToFire;
BOOLEA.i"l\J HaveLeft,HaveLower,HaveDiag;
REAL Left,Lower,Diag;
REF(Cell) LeftCell,RightCell, U pperCell, LowerCell,
. UpDiagCell,LoDiagCell;

PROCEDURE Init(Lt,Rt,Up,Lo,Ud,Ld)
REF(Cell)Lt,Rt,Up,Lo,Ud,Ld;
BEGIN

HaveLeft := HaveLower := HaveDiag :=FALSE;
LeftCell :- Lt;
RightCell :- Rt;
UpperCell :- Up;
LowerCell :- Lo;
UpDiagCell :- U d;
LoDiagCell :- Ld;

END of Init;

PROCEDURE TakeLeft(Val); REAL Val; SELECT (NOT HaveLeft);
BEGIN

Left:= Val;
HaveLeft : = TRUE;
TryToFire;

END of TakeLeft;

PROCEDURE TakeLower(Val); REAL Val; SELECT (NOT HaveLower);
BEGIN

Lower : = Val;
HaveLower : = TRUE;
TryToFire;

END of TakeLower;

P:ROCEDURE TakeDiag(Val); REAL Val; SELECT (NOT HaveDiag);
BEGIN

Diag : ::: Val;
HaveDiag : = TRUE;
TryToFire;

END of TakeDiag;

END of CLASS Cell;

Cell CLASS CenterCell;
BEGIN

PROCEDURE TryToFire;
IF HaveLeft AND HaveDiag AND HaveLower THEN BEGIN

HaveLeft := HaveDiag := HaveLower :=FALSE;
RightCell. TakeLeft(Left);

-48-

UpperCell.TakeLower(Lower);
LoDiagCell. Take Upper(Diag-Left *Lower);

END of TryToFire;

END of CLA.SS CenterCell;

Cell CLA.SS SideCell;
BEGIN

PROCEDURE TryToFire;
IF HaveDiag Ai"l'\JD HaveLower THEN BEGIN

HaveDiag : = Have Lower : = FALSE;
RightCell. TakeLeft(Diag /Lower);

END of TryToFire;

END of CLASS SideCell;

Cell CLASS StackCell;
BEGIN

REF(Stack)Stk;

REF(StackCell) PROCEDURE SetStk(S); REF(Stack)S;
BEGIN Stk :- S; SetStk :- THIS Cell; END;

PROCEDURE TryToFire;
IF HaveDiag THEN BEGIN

H aveDiag : = FALSE;
UpperCell. TakeLower(Diag);
Stk. Push(Diag);

END of TryToFire;

END of CLASS StackCell;

Cell CLASS InputCell;
BEGIN

REF(Vector)Stream;
INTEGER I;

PROCEDURE Go(S); REF(Vector)S; BEGIN
BEGIN

I:= O;
Stream:- S;
HaveLower : = TRUE;

END of Go;

PROCEDURE TryToFire;
IF HaveLower OR LowerCell==NONE THEN BEGIN

HaveLower :=FALSE;
IF Stream.Length>! THEN BEGIN

I :=I + 1;
LoDiagCell. TakeDiag (Stream.Element(I));

END;
END of TryToFire;

-49-

END of CLASS InputCell;

REF(GaussElim) PROCEDURE Init(N.M,V); INTEGER M,N; REF(Vector)V;
BEGIN

REF(Cell) ARRAY A[O:N+l,O:M+l]
INTEGER I,J;
FOR I: =O STEP 1 UNTIL N + 1 DO BEGIN

FOR I:=O STEP 1 UNTIL M+l DO BEGIN
IF J=O TIIEN A[I,J] :- NEW InputCell
ELSE IF J=M+l AND I<N+l THEN

A[I,J] :- NEW StackCell.SetStk(NEW Stack)
ELSE IF I=O THEN A[I.J] :- NEW SideCell
ELSE IF I=N+l THEN A[I.J] :- NEW InputCell
ELSE IF I<N+1 TIIEN A[I,J] :- NEW CenterCell;

END:
END;
FOR I:=O STEP 1 UNTIL N+l DO BEGIN

FOR J:=O STEP 1 UNTIL M+l DO BEGIN
IF J=O AND I>O TIIEN

A[I,J].Init(NONE,NONE,NONE,A[I,J+l],NONE,A[I-1,J+l])
ELSE IF J=M+1 AND I<N+1 THEN

A[I,J].Init(NONE,NONE,A[I,J-1],NONE,A[I+1,J-1],NONE)
ELSE IF I=O THEN A[I,J]

.Init(NONE,A[1,J],A[I.J-1],A[I,J + 1] ,A[I + 1,J-1],NONE)
ELSE IF I=N+l TIIEN

A[I,J].Init(NONE,NONE,NONE,A[I-1,J],NONE,A[I-1,J+l])
ELSE IF I <N + 1 TIIEN

END;
END;

A[I,J].Init(A[I-1,J],A[I + 1,J],A[I,J-1],A[I,J + 1],
A[I + 1,J-l],A[I-1,J + 1]);

FOR I:=1 STEP 1 UNTIL N DO A[I,O] QUA InputCell.Go(V[I]);
FOR J:=l STEP 1 UNTIL M DO A[N+l,J] QUA InputCell.Go(V[J+N]);

END of Init; .
END of CLASS GaussElim;

The Init attribute of class GaussElim constructs an array of Cell objects.

It first creates the objects, putting pointers to them into an array. It then

makes another pass through the array initializing the Cell objects with

pointers to their neighbors. Then the InputCell objects along the upper and

right sides of the array are each given a stream of input data permitting

them to begin pushing the data into the array. After all the data in the

streams is exhausted, the upper triangular matrix is stored in the StackCell

objects along the bottom of the array.

-50-

When the array cells are initialized the flags in the InputCells are set on.

This action puts the array in a state from which it will proceed. Until the

matrix has filled the array, zero data values -will circulate in the array. This

type of operation is the same as that defined for the hardware

implementation of [JohnssonBl].

For this example it is evident that the concurrency and synchronization

required for data flow problems is available in this programming model. The

SELECT statement, used to control under what conditions attributes may be

selected, is the means for synchronizing each object with the availability of

its multiple inputs. Unlike the two previous example programs, the program

for Gaussian elimination is not executable as a normal sequential Simula

program, as the SELECT statement has no meaining in sequential

environment.

2.6. Comparison with CSP

The CSP notation [Hoare78] is a means of expressing concurrent

programs. This notation includes the concept of processes and messages.

E::x-plicit operators represent the sending and receiving of messages.

Messages are not queued and require the sender to execute a send operation

and the receiver to execute the receive operation at the same time. This

action results in a strong means of synchronizing two processes.

The Bounded Buffer problem described by Hoare is shown below in CSP

notation. This CSP program describes a process X which takes objects of

type "portion" transmitted by "producer" and stores them in "buffer" until

requested by "consumer". In CSP notation the source and destination of

send and receive operations are unique processes.

-51-

X"
buffer:(0 .. 9) portion;
in,out:integer; in:=O; out:=O;
comment (}<::::out~in~out + 10;

*[in< out+ 10; producer?buffer(in mod 10) 4 in:= in+ 1
•out< in; consumer?more() 4 consumer!buffer(out mod 10); ·

out := out + 1
]

If process X is considered to be an object, and producer and consumer

its attributes, each with an associated message queue, we see that process X

can implement a FIFO object for any number of producers and consumers.

Any object that produces objects of type portion may send the portions to X

using the producer attribute. As long as the buffer array is not full, these

messages will be accepted by the input command and the portion stored in

buffer. Objects that request portions may do so by invoking the consumer

attribute. As long as the buffer is not empty, process X will answer consumer

messages with the transmission of a portion.

The following code is a concurrent Simula description of a FIFO object.

CLASS Fifo;
BEGIN

REF(Portion) ARRAY Buffer[0:9];
INTEGER ln,Out;

PROCEDURE Put(P); REF(Portion)P; SELECT In< Out+10;
BEGIN

~uffer[Mod(In, 10)] : = P;
In:= In+ 1;

END of Put;

REF(Portion) PROCEDURE Get; SELECT Out < In;
BEGIN

Get;- Buffer[Mod(Out,10)];
Out := Out+ 1;

END of Get;

END of CLASS Fifo;

A close correspondence can be observed between the guarded input

commands of the CSP representation of the FIFO and the attribute

-52-

declarations of concurrent Simula vvith their SELECT statements.

Concurrent Simula permits the definition of objects which are a subset of

CSP processes. AB part of the language, concurrent Simula builds a repetitve

command around a series of alternative guarded input commands to

implement the selection and initiation of an object attribute. The Boolean

e:x'Pressions that may be associated with the SELECT statement are the

guards for the attributes. Outputs from the attributes are implied by their

termination rather than programmed explicitly.

CSP is a more expressive notation that, if used to describe the objects of

the homogeneous machine, permits a more concise representation than

concurrent Simula. In particular, CSP provides a convenient means of

expressing the input of several messages concurrently. Using a CSP style

notation, the CenterCell of the Gaussian elimination array would be

described in the following manner.

CenterCell::
DiagC,LowerC,LenC:Cell;
Right Cell, UpperCell, LoDiag :Cell;
D.L,Low:Real;

*[DiagC?Diag(D) A LowerC?Lower(Low) A LeftC?Left(L) -+

RightCell!Left(L);
UpperCell!Lower(Low);
LoDiag!Diag(D-L*Low);

]

A notation like CSP has the necessary expressiveness to cope with

objects having a message queue per attribute. The semantics of message

passing in the object oriented machine are somewhat different than those

defined by Hoare but can nevertheless be adapted to CSP notation. The CSP

description is more concise than the concurrent Simula description of the

example.

-53-

A CSP notation could be used to program the homogeneous object

oriented machine. It has e:x'Plicit provisions for concurrency and message

passing. However, the explicit sending and receiving of messages put a

greater burden on the programmer by requiring the synchronization and

mutual exclusion needs of the program to be explicitly described, thus

eA.'Panding the opportunities for error.

2. 7. Support Requirements

Arbitrary pointer topology provides clear possibilities for deadlock

between objects. Deadlock can but will not necessarily occur wherever the

user has generated a loop in the communication structure of the program

components. One method of preventing this possibility would be to restrict

the topology to a non-cyclic graph such as a tree. Such restrictions appear

to be so constraining as to render many of the advantages of this

programming style useless.

The most immediate deadlock situation can arise when an object holds a

pointer to itself. If, in the course of satisfying some message it has received,

it uses that handle and sends a message to itself for which it expects a

response, the object will be stuck. The new message it has sent to itself

cannot be acted upon and a response sent until it has completed the

execution of the current message. However, the completion of the current

message is awaiting a response to the new message. At this point the object

is hopelessly deadlocked. It is important to note that the mere holding of a

pointer that points to the object that holds it does not inevitably result in

deadlock. The code of the objects and the topology of the pointers must

conspire to create the deadlock situation. The example cited is the simplest

case of situations that may arise whenever a cycle appears in the

-54-

communication between objects.

For the purposes of this programming model. the object messages

queues are of a fixed size. The size can be either declared as part of the

object declaration or can by set to a default size by the system. If no limit is

placed on the size of a queue, then incoming messages could cause a queue

to grow to arbitrary size if the destination object is unable to service the

messages at the rate they arrive. Such grmvth could cause the space

allocated for message queues to become eY.hausted and deadlock to occur if

there is no limit on the length of message queues. With a limit on message

queues, objects sending messages to other objects may be suspended until

there is space available in the queue.

Deadlock can also occur vvith bounded queues where all the queues in a

cycle become full Vvith each object attempting to transmit a message to

another. This condition must be recognized and dealt with by the

programmer. Bounded queues permit deadlock only among the objects

which own the queues. An attempt to simulate infinite queues in a system

with finite resources introduces possibility of deadlock to the processors, a

situation that can not be permitted.

To prove a program to be deadlock free would require some restriction

of the use of object pointers. Some types of communication structures have

been proved safe and live [OwickiBO], however, these structures represent a

severe restriction of the structures possible in the object environment

presented here. It may be possible to extend the proof techniques of

[Chen82] to aid in the prevention of deadlock among the objects of a

program.

-55-

The run time system which implements message passing and garbage

collection has internal access to all objects. For the purposes of debug only,

we can define a set of attributes that are built-in to all objects and that are

recognized by the run-time system. These attributes would have to return

the following information about an object.

(1) Object is Idle, Running or Waiting.

(2) If Waiting, return a reference to the object it is expecting a response

from.

(3) Return the object's stack and current place of execution in its code.

(4) Return any of the object's internal data items.

(5) Return a list of messages waiting to be processed by the object.

Given these abilities, a debugger could give the user a complete picture

of the state of a program. The debugger should also be able to manipulate

objects in an equivalent manner to allow the user to break a deadlock or

modify the state of an object.

The ability to manipulate objects via the run-time system implies that

some protection is required to prevent objects from arbitrarily corrupting

each other. One solution to this problem is the addition of protection or

capabilities to object references [Jones73]. Various fields in the object

reference would determine the legal operations that the holder of the

reference could expect the referenced object to perform.

The addition of capabilities to object references would not increase the

security of the system unless object references are made unforgeable. To

accomplish this goal, a tagged architecture such as the SYMBOL machine

[Rice71] or the Intel 432 [Kahn81] is required. A tagged architecture is a

-56-

machine that recognizes data types at the hardware or firmware level. The

price for such security is usually reduced performance.

2.B. Conclusions

We have presented a model for concurrent programming based on the

Simula object concept. The object is not unlike the distributed process

construct of Brinch Hansen [Brinch Hansen78]. Objects communicate and

synchronize by passing messages. An object holding a reference to another

object is permitted to send messages to it and may optionally receive a

response. The messages directed at any given object are delivered via

attribute queues which order the messages and implement critical regions

within the object.

The sending of a message from one object to another is initiated by

invoking an object's attributes. If a reply to the message is ·required,

sequential execution of the object's attributes proceeds while the requesting

object waits. If no reply is desired, concurrent behavior is initiated. Both

the requesting object and the requested object may continue execution after

the fashion of processes in the Multics system [Spier69] or as would the

coroutines of Concurrent Pascal [Brinch Hansen75].

The message queues are ordered and messages may be removed only

after the termination of the actions associated with the previous message.

This feature makes each attribute of an object a critical region so that there

is mutual exclusion between those routines that have access to the internal

variables of the object. Synchronization between objects is also provided by

insuring that all messages preceding a message in a queue must have been

acted upon before a response to the message can be sent.

-57-

Concurrently executing processes must be prevented from modifying

state in an order not intended due to races between them. Critical regions,

for example, are intended to give the programmer a means of preventir1g

such behavior. The extensions to object oriented programrriing put all the

routines that have access to common variables in mutually exclusive regions

as a natural part of the language. The implementation is accomplished by

the use of queues. Tue programmer is left with the responsibility for

insuring that all sequences of messages are either legal or the programmer

must control the possible sequences of the program. Synchronization with

the completion of one object's task is accomplished by merely querying the

object in question. Tue arrival of the response indicates the desired state

has been reached and thus synchronizes one object with another.

Tue extensions and restrictions proposed for a language like Simula add

little additional complexity to the syntax of the language. The effects are

most felt in the more restricted scoping rules preventing global variables.

Example programs show that this notation can be conveniently UBed to write

concurrent programs. Sufficient means are available to the programmer to

insure repeatable behavior in the programs.

-58-

Chapter 3

Garbage Collection

3.1. Introduction

Presented here is a scheme for the identification and elimination of

inaccessible program objects in a large multi-processor environment. The

problem of garbage collection has been an interesting problem for many

years among the implementors of various languages such as Algol 68 [Van

Wijngaarden69], Simula 67 [Birtwhlstle73] and LISP [McCarthy60] which

provide for dynamic allocation of data structures. Garbage collection has

been part of operating systems to a lesser degree for sometime but took on a

new importance with the implementation of Hydra on C.mmp [Wulf72,80].

Here, the operating system is distributed over a number of processors and

therefore, collection of garbage must take place across a number of distinct

address spaces concurrently with the operation of a number of processors

[Almes80].

Various implementations of LISP have dealt \'iith the problem of garbage

collection. Early work [McCarthy60,Collins60] provided garbage collection

for LISP on a single processor. More recently, considerable effort has been

given to the use of multiple processors to execute LlSP with at least one of

them responsible for garbage collection [Steele75,Deutsch76,Wadler76]. The

algorithm proposed by Dijkstra, et al [Dijkstra78] has been proved correct

[Gries77]. In all cases, these algorithms are presumed by their authors to

-59-

operate in a system where every processor has equal or near equal access to

a single address space. Moreover, the problem of garbage collection in pure

LlSP is somewhat more restricted than the more general case of Simula

[Arnborg72], insofar as LlSP objects are of fixed size and LJSP data

structures may be of a restricted topology.

Garbage objects can be identified in systems by reference counting

[Collins60]. This technique can be applied to most systems, even those with

more than one processor. However, reference counting suffers from two

problems for which no acceptable solutions come to mind. First. self

referential data structures or data structures with cyclic graphs can not be

identified as garbage by this method without the addition of multiple levels of

reference counts and a grouping concept as in [BobrowBO]. For some

environments, those which restrict the user to tree-like structures, this

problem may be tolerable but in a more general system it is not. Reference

counting also involves a very large computational overhead to keep the

reference counts ~p to date. Since each object's reference counter must be

modified whenever and wherever a pointer to that object is copied or

overwritten, many simple operations become complex. In a multiprocessor

system, this overhead is manifested either by a high communication traffic

or by a large number of memory accesses used to update reference counts

as pointers are manipulated.

An object oriented system provides some simplifications not possible in

the LlSP systems but also introduces new complexities. If each processor is

to control the access and function of its own set of objects, then the need for

notions of mutual exclusion, critical regions and indivisibility in the

operations of the processor is eliminated since it is the only entity in contact

-60-

vvith its objects. However, the interactions among the processors of the

system raise new problems, such as their synchronization if they are to

perform such tasks as garbage collection.

3.2. The Object-Oriented Environment

Briefly, the environment consists of a large number of objects with a

structure of pointers between them of an arbitrary topology. The objects are

distributed over a number of processors and those objects that are

executing may change the topology of the pointers. Pointers are passed

from object to object in messages and objects may also be moved from one

processor to another. The object of garbage collection is to identify and

eliminate those objects which are inaccessible in the system and are idle.

The elimination of the garbage objects allows the resources occupied by

them to be allocated to new objects as they are created.

3.3. A Description of the Algorithm

Every processor node which executes, stores or otherwise manipulates

objects must run a task in the background which is part of the overall

garbage collection process. These tasks, each in one of the processors in the

network, communicate with a central process which maintains overall

control of each phase of the garbage collection. The communication between

the central process and the various tasks in the processors is of a very low

bandwidth and serves only to synchronize the other tasks in a very coarse

way with respect to the stages of the garbage collection. The central process

may be implemented as a separate processor with dedicated communication

facilities to connect it to the other processors, or it may be merely another

background task executing in any processor and communicating via the

-61-

sa..'Tie medium as the objects in the system.

There are three phases to the collection process. The first is to unmark

all objects in the system. The second is to mark those objects which are not

garbage. And third, all unmarked objects are collected and the resources

they occupy are made available for allocation to new objects.

Some definitions are needed:

D1: A root object is one that is either executable or waiting for a response to

a message. An idle object, one that is waiting for a message, can

become executable if it receives a message.

D2: A propagation path consists of a set of pointers from a root object to an

idle object. To send a message to an idle object, a propagation path

must exist.

D3: A garbage object is one for which no propagation path exists.

The following conditions must also apply:

(1) Each object must have an attribute of MARKED. This attribute is TRUE

after the gargabe collection task to which this object resides has

determined that this object is not garbage.

(2) Each object has an attribute of RECEIVEDMARK. This attribute is TRUE if

a processor other than the one in which the object resides has

determined that the object is not garbage and has sent a message to

this object's processor indicating this condition. A set RECENEDMARK is

essentially a request from one processor to another that a particular

object be marked.

(3) Each reference variable must have an attribute of MARKED. If a

reference variable is copied or sent to another object in a message, this

-62-

attribute is preserved in the new copy or in the message. If this

attribute is TRUE, then the object that it refers to may be considered

MARKED.

(4) The communication facilities must not allow messages to be hidden from

all -processors at any time. If messages in transit are inaccessible to

processors, then a copy of the message must be kept by the sender until

the message is known to have arrived at its destination. It is required

that every message in the system be accessible to at least one

processor at all times.

Qualitatively, the algorithm operates in the following manner. All of the

garbage collection tasks are told to unmark their objects and reference

variables. When this operation is completed, all the processors are told to

begin marking non-garbage objects. At first, this operation consists ~f

scanning all the objects in each processor and marking the ones that are

executable and recursively marking all the objects and reference variables

that can be reached by following pointers from the executable objects. If the

processor determines that an object, which resides in another processor, is

to be marked a message is sent to that object, wherever it does reside, to

cause it to be marked by its processor.

As long as a processor is in the mark phase, it must process incoming

messages in a different manner than usual. It must mark the recipient of

the message (if it has not already been marked) and it must mark any

objects referred to by reference variables in the message in cases where the

reference variables are not marked. Thus, as the processors enter the mark

phase, waves of set mark attributes emanate from executable objects and

-63-

from objects that are in involved in comxnunication Vvith each other. It is

assun1ed that the participants in an exchange of messages, and objects

referred to in messages, are not garbage since they are obviously in use.

This use of the normal communication between objects as part of the

marking process speeds up the rate at which garbage can be collected but

does not add to the message traffic. In effect, the object communication

performs a double duty during the mark phase. It accomplishes the function

programmed in the objects as well as identifies the objects involved as non

garbagG.

When the marking of objects has finished, the remaining unmarked

objects are collected as garbage. The resources belonging to these objects,

their name and disk space, are released for use by new objects. The cycle is

then repeated by again clearing all the mark attributes.

The processor controlling the phases of garbage collection executes th.e

folloVving task. The processor executing this task may be multiplexed among

other tasks as well, or it may be a dedicated processor. The algorithm is

described in a Simula-like syntax. Procedures such as "SendMessage" and

"SendMessageToAllProcessors" are not shown in detail since they depend on

the particular hardware and software communication facilities available. It

is hoped that the function of the undefined procedures is self-evident.

-64-

WHILE TRUE DO BEGIN

PROCEDURE WaitForAllDone;
BEGIN

BOOLEAN Done;
Done : = FALSE;
VrttILE NOT Done DO
BEGIN

SendMessageToAllProcessors(''Startinterval");
Wait UntilAlLl\cknowledge;
SendMessageToAllProcessors(''Endinterval'');
WaitUntilAllAcknowledge;
Done : = ANDofAllDoneFlags;

END of While;
END of PROCEDURE W aitForAllDone;

SendMessageToAllProcessors(''ClearAllMarks");
WaitForAllDone;
SendMessag eToAllProce ssors(' 'End Clear AllMarks");
W aitForAllDone;
IF TherelsARootObject THEN BEGIN

REF(Proc ess or)Root;
Root :- ProcessorWithRootObject;
Root.SendMessage(''MarkRootObject'');

END of IF;
SendMessageToAllProcessors(''MarkExecutableObjects");
W aitForAllDone;
SendMessageToAllProcessors(''CollectUnmarkedObjects'');
W aitForAllDone;
SendMessageToAllProce ssors(''EndCollect UnmarkedObj ects'');
SendMessageToAllProcessors("EndMarkingExecutableObjects");
W aitForAllDone;

END of Garbage Collector Control Loop;

The loop above contains no "critical regions" and none of its operations

must be "indivisible". If this task shares a processor with other tasks, the

processor may be removed from this task at any point in the loop. The only

effect such multiplexing may have is to reduce the rate at which garbage

collection proceeds by a very small amount, providing this task receives even

minimal service from the processor. The exclusive access given a processor

to the objects contained in its memory simplifies the interactions between

processors. The synchronization, mutual exclusion and other conditions that

must be met are embedded in the sequence of message passing. The

-65-

indivisible operations that must exist in such a system are those of message

transmission and reception.

The messages sent to all the processors could be broadcast. if the

connection medium permits it. The "WaitUntilAlLAcknowledge" procedure

must hold further execution until it is knmm that every processor has

received the previous message. This operation is the primary means by

which the processors and the controlling garbage collector task are

synchronized. This synchronization is of a very weak nature. The

acknowledgement of the processors could be detected by waiting until all the

processors pulling down an open-collector TTL signal have released it, or it

could be detected by the receipt of an acknowledging message from each

processor, depending on the communication facilities present. Some of the

message sequences in the above loop could be concatenated into single

messages but have been separated for clarity.

The "ANDofA11DoneF1ags" is a hypothetical procedure which returns

TRUE if the "DoneFlag" (described below) of every processor is TRUE. This

function could be performed by querying each processor -with an exchange of

messages or with hardware, such as an open-collector signal wired to all the

processors. The "DoneFlag" is defined to be valid at the time a processor

does the "AcknowledgeMessage" operation and until it receives its next

"Startlnterval" message.

The determination of when all the marks in the system are clear or when

all the garbage objects have been collected or, most importantly, when ali

the non-garbage objects have been marked is the mechanism that permits

this algorithm to work. The most difficult question is how to determine when

the marking of non-garbage objects is complete and to be assured that no

-66-

more objects can be or will be marked. The collection phase canr10t be

initiated until the marking is fi.nished.

The "Startinterval" and "Endlnterval" messages from the controlling

task delimit a span of time in each indhidual processor. The sequencing of

the controlling task insures, despite any skew in the arrival of the messages

at the processors, that a sub-interval of all the spans of time is common to

all the processors in the system.

It can be said that if, during some interval of time, not one of the

processors in the system marked any objects nor had any objects that were

waiting to be marked, no further marking can occur in the system. Vfuen an

processor receives a "Startinterval" message during a mark phase (but not

while in a collection phase) it scans all its objects for any that should be

marked but are not. If any objects are marked by the processor, its

"DorieFlag" will subsequently exhibit FALSE. During the interval the processo,r

may mark objects and Will again record the fact if any are marked. When a

"End.Interval" message is received and no objects have been marked since

the interval began, the processor will again scan its objects a..TJ.d record any

that are marked. At the end of the interval the "DoneFlag" is displayed

indicating, if TRUE, that no marking was done or could have been done

during the interval in that processor.

If all the processors display a TRUE "DoneFlag" at the end of an interval,

then there were no objects marked in the entire system during that portion

of the interval shared by all the processors. It follows that if, over the entire

system, no objects were marked and no objects were waiting to be marked,

then the mark phase has finished. An object must be marked to cause other

objects to be marked. Therefore, if there are none to be marked and no

-67-

marking has been done, there can be no further marking.

Several aspects of the sequence of messages initiated by the controlling

task should be noted. The collection phase has been made a part _of the

marking phase. This relationship insures that any new objects created

before and during the collection phase are created marked and are

prevented from being collected as garbage. Otherwise, new objects could be

created -with a FALSE mark bit after the marking is completed but before

collection, causing any such objects to be regarded as garbage. The

overlapping of the _mark phase with the collection phase prevents this

situation.

In addition, there is what might be regarded as a spurious

"W aitForAllDone" procedure inserted between the end of the clear phase and

the beginning of the mark phase. This invocation serves only to insure that

all of the processors have stopped clearing prior to beginning tom.ark. If the

situation arose where some processors were already into the next mark

phase before others had recognized the end of the previous clear phase, not

only would confusion result in the state of various mark bits, but neither set

of processors could complete their respective phases since messages would

continue to arrive with marks in an unexpected state.

A detailed description of the functions that must be performed by each

processor as part of garbage collection is below. This description is shovvn as

a message dispatch routine that intercepts and disposes of all the incoming

messages of a processor. In an actual system, the mechanism associated

with receiving messages from the garbage collection controller may be quite

separate from the facilities used to process messages from other processors.

-68-

The procedure below would be entered when a complete message is

available to the processor. Upon returning from the procedure the

processor's scheduler would select other tasks for execution. Jn the form

shown here, this procedure cannot be interrupted for the execution of

objects, but may be interrupted for other tasks.

-69-

PROCEDURE DispatchMsg(Message); REF(Msg)Message;
BEGIN

BOOLEAN Clearing,Marking,Collecting,DoneFlag;

PROCEDURE MarkObject(abc); REF(Object)abc;
IF NOT abc.Marked THEN BEGIN

REF(ReferenceV ariable) RefV ar;
abc.Marked :=TRUE;
abc.ReceivedMark :=FALSE;
DoneFlag :=FALSE;
FOR RefVar :- abc.EachRefVarlnTbisObject DO BEGIN

IF NOT RefVar.Marked THEN BEGIN
RefVar.Marked :=TRUE;
IF RefVar.Object.InThisProcessor THEN
· MarkObject(RefVar.Object)
ELSE RefVar.Object.SendMessage("TurnOnReceivedMark");

E~1D;
END of FOR Loop;

END of PROCEDURE MarkObject;

PROCEDURE DoFunction;
BEGIN

REF(Object)Obj;
IF Clearing THEN BEGIN

FOR Obj :- EachObjectlnTbisProcessor DO BEGIN
IF NOT Obj.AllClear THEN BEGIN

ClearAllMarkBits(Obj);
DoneFlag :=FALSE;

END;
END of FOR;

END ELSE
IF Marking AND NOT Collecting THEN BEGIN

FOR Obj :- EachObjectlnTbisProcessor DO
IF Obj.Executable OR Obj.ReceivedMark THEN MarkObject(Obj);

END ELSE
IF Collecting THEN BEGIN

FOR Obj :- EachObjectlnTbisProcessor DO BEGIN
lF NOT Obj.Marked THEN BEGIN

RecoverGarbageObj ect(Obj);
DoneFlag : = FALSE;

END;
END of FOR;

END of IF;
END of PROCEDURE DoFunction;

IF Message.Destination=GarbageCollector THEN BEGIN
IF Message.Txt="ClearAllMarks" THEN Clearing:=TRUE
ELSE
IF Message.Txt="EndClearAllMarks" THEN Clearing:=FALSE
ELSE
iF Message.Txt="MarkExecutableObjects" THEN Marking:=TRUE
ELSE
IF Message.Txt="CollectUnmarkedObjects" THEN Collecting:=TRUE

-70-

ELSE
IF Message.Txt="EndCollectUnmarkedObjects" TIIEN Collecting:=FALSE
ELSE
IF Message.Txt="EndMarkingExecutableObjects" TIIEN Marking:=FALSE
ELSE
IF Message.Txt="MarkRootObject" THEN MarkObject(RootObject)
ELSE
IF Message.Txt="Startlnterval" TI-lEN BEGIN

AcknowledgeMessage;
DoneFlag : = TRUE;
DoFunction;

END ELSE
IF Message.Txt="Endlnterval" THEN BEGIN

IF DoneFlag THEN DoFunction;
AcknowledgeMessage;

END;
END ELSE
IF Message.IsObjectTransfer THEN BEGIN

REF(Object)Obj;
Obj :- Message.AsObject;
IF Obj.Marked AND NOT Marking THEN BEGIN

Obj.Marked:= FALSE;
Obj.ReceivedMark :=TRUE;

END;
PutObjectinProcessor(Obj);

END ELSE BEGIN
REF(Object)Obj;
Obj :- Message.Destination;
IF Message. Txt="TurnOnReceivedMark" THEN BEGIN

IF Marking THEN MarkObject(Obj)
ELSE Obj.ReceivedMark :=TRUE;

END ELSE
IF Marking THEN BEGIN

REF(ReferenceVariable)RefVar;
MarkObject(Obj);
FOR RefVar :- Message.EachRefVar DO BEGIN

IF NOT RefVar.Marked THEN BEGIN
RefVar.Marked :=TRUE;
IF RefVar.Object.InThisProcessor THEN

MarkObject(RefVar.Object)
ELSE RefVar.Object.SendMessage(''TurnOnReceivedMark");

END;
END of FOR Loop;
GiveMessageToObject(Message);

END ELSE GiveMessageToObject(Message);
END of IF;

END of Message Dispatcher;

One important part of the algorithm cannot be represented as part of a

message dispatch routine. This part of the algorithm must be invoked

-71-

whenever a new object is to be created in a processor. It can be stated

simply as follows:

IF Marking THEN BEGIN
REF(Object)Obj:
Obj :- TheNewlyCreatedObject;
Obj.Marked:= TRUE;

END of IF;

This provision exists to insure that all objects created in a processor

while that processor is in a mark phase are created MARKED to prevent their

premature collection in the next phase.

Messages representing objects that have been moved from one

processor to another are accounted for in the message dispatch procedure.

The only requirement placed by this algorithm on such messages is that if a

marked object arrives at a processor that is not yet in the mark phase, that

object becomes unmarked and acquires the attribute of RECEIVEDMARK

before becoming a bona fide resident of the processor. 1fuen the receivirig

processor enters the mark phase, it will note the attribute of RECEIVEDM..ot\RK

in the object and will mark it on the first pass.

In the "MarkObject" procedure, the attribute "EachRefVarinThisObject"

is taken to return each reference variable associated with the object in

question. Reference variables contained in unprocessed messages, or

contained in an internal stack must be included as well as those that are part

of the visible state of the object.

The generation of garbage by the system continues without regard for

the phases of garbage collection. At any time, reference variables may be

overwritten with other reference variables. When all the reference variables

pointing a set of non-executable objects are destroyed, the objects become

garbage. This process occurs during the mark and collection phases and at

-72-

all other times as well. Objects that have been marked and subsequently

become garbage will not be collected in the next collection phase. However,

it is guaranteed that the next time aroun_d through the mark phase, they will

not be marked and hence will be collected in the next cycle.

One refinement of the above algorithm would eliminate the clear phase.

After all the unmarked objects have been collected in the collection phase,

the remaining objects and their reference variables must all be marked.

Thus, only the sense of the mark bits needs to be changed to consider the

system cleared. A mark pass must set all the marks in the system to the

same value. In the routines above the value is TRUE (presumably a one). If,

instead of sending the "ClearAllMarks" message, a message LDdicating

"InvertMarkSense" was sent, then on the next pass, a mark with a one in it

would be considered unmarked rather than marked. After that pass the

sense would again be inverted and so forth after each pass. This refinement

has not been shown in the algorithm to preserve its readability. If this

technique were adopted, a substantial fraction of the garbage collection

overhead would be eliminated.

3.4-. Proof

An informal proof is presented here that the garbage collection

algorithm operates correctly in the environment outlined.

By definitions D2 and D3, no root object can send a message to a

garbage object. Therefore, garbage objects can never become executable

and will remain idle. By Dl and D2, any idle objects_ that become executable

indicate the existence of a propagation path and cannot have been garbage

by D3. This proves that the set of root objects at any point in time is a

sufficient set from which to begin marking.

-73-

The algorithm, as presented here, does its marking as part of a message

dispatch service. This implementation makes the entire recursive marking

of an object by the "MarkObject" procedure indtvisible. This rather _strong

restriction may not be necessary but enables other properties of the

algoritb..:i.11 to be studied. This proof assumes that the marking of each

individual object, together with the object's reference variables is one

indivisible operation.

The following invariant relations must hold:

Pl: If an object is marked, all of the pointers contained in it are also

marked ..

The marking procedure marks an object and all its pointers in one

operation. All the pointers will remain marked if no unmarked pointers are

sent to the object in a message. All messages to an object are scanned for

unmarked pointers before being given to the object. assuring the Pl remains

true if the object remains in one processor.

The only case whereby an object may be Ui.'lffiarked is when it is moved

to a processor that is not in the mark phase. In this case. the object is

unmarked and its "ReceivedMark" flag is set to insure the processor marks it

when marking is eventually begun in that processor. Since messages passed

in a processor that is not in the mark phase may contain unmarked pointers.

a marked object moved into that processor is unmarked to preserve the

truth of Pl.

P2: If a pointer is marked, then the object it points to must be either

marked or have been sent a message causing its "ReceivedMark" flag to

be set.

-74-

The "MarkObject" procedure and the code that scans messages for

unmarked pointers are the only points at which a pointer in a reference

variable is marked. Since at both places, the object referred to is either

marked or sent the "ReceivedMark" message. P2 is maintained.

P3: For each unmarked non-garbage object, there exists a propagation path.

At the begLnning of marking, a propagation path exists to all non

garbage objects by the inverse of D3. The marking of the data structure

cannot modify the data structure and cannot, therefore, break a propagation

path. The only modification that the running objects can make on the data

structure is to redirect a reference variable from one non-garbage object to

another non-garbage object (newly created objects are non-garbage and are

created marked). The object pointed to by the modified reference variable

clearly has a propagation path, since by Dl. the object pointing to it is a root

object. The original object pointed to may become garbage following the

modification and would not then violate P3. If two or more propagation paths

existed for the original object, then P3 is preserved since at least one

propagation path will remain.

For , the algorithm to perform correctly, the following correctness

criteria must be met.

CC1: All garbage objects present at the start of marking will never be

marked.

CC2: At the completion of marking, no non-garbage object remains

unmarked.

If the root objects are marked, as shown in the "DoFunction" procedure,

then by P3. there will be a path from a marked object to all unmarked non

garbage objects. P2 and P3 insure that once marked, objects and pointers

-75-

·will remain marked. It remains to prove that marking will complete with CCl

and CC2 true.

By D3, there can be no propagation path to a..TJ. object that is garbage

from the beginning of marking. To become marked, the object must be sent

a message by a root object or it must be referred to in a message from a

root object. If no propagation path exists from a root to a garbage object, it

can never be sent a message, preventing the "MarkObject" procedure from

being invoked on it. This assures that CCl can never be violated.

To complete marking, a stable, detectable state must be reached. This

state must satisfy CC2. If all the processors eventually begin the marking of

objects, then all root objects will be marked. In the process of marking

objects, "ReceivedMark" messages are sent to objects referred to in other

processors. These messages can be produced only along existing

propagation paths, since marking begins with the root objects. Thes.e

messages are only produced when an object is marked. If CCl is satisfied,

then when all non-garbage objects are marked, no such additional message

can be produced. If all objects are marked, then by Pl and P2, all pointers of

non-garbage objects are marked. Since only non-garbage objects may

become root objects by Dl and D2, all pointers contained in messages

produced by root objects must be marked. In this state, where all executing

(root) objects are marked, their messages contain only marked pointers and

where no objects have a "ReceivedMark" flag set, is stable because none of

the conditions that would cause "MarkObject" to be invoked exist.

This state satisfies CC2 because propagation paths remain to be followed

only as long as there are outstanding "ReceivedMark" flags. The

"MarkObject" procedure would complete the marking of all the objects with

-76-

propagation paths to a single root if all the objects were in the same

processor. ·where the path leads out of the processor the "ReceivedMark"

message is used to cause another processor to continue the marking of a

path. As long as propagation paths remain to be marked, there must be

outstanding "ReceivedMark" flags. When no such flag is set in the system,

CC2 is met and marking is complete.

To detect completion, the "Startlnterval" and "Endlnterval" messages

are used to delimit a period of time that is shared by all the processors in

the system. At the beginning of the interval, the processors scan their

objects for any that require marking, notably ones with the "ReceivedMark"

flag set. lf any are marked, the fact is recorded. The processors also detect

whether any objects were marked or required marking during and at the end

of the interval. If, over all the processors, no objects were marked and hence

none had a true "ReceivedMark" flag, the marking has completed.

3.5. Simulation Results

To support the contention that the garbage collection algorithm

performs as described above, a discrete simulation of its components was

written and run giving every indication that it is a viable technique. The

simulation was implemented in Simula using the Demos simulation package

[Birtwhistle79]. A stochastic model of the executing objects was using to

represent a system of running objects. The objects were given the necessary

attributes and placed among a set of simulated processors each containing

the garbage collection routines defined above.

The model used to represent the executing objects was a set of

probabilities picked to insure that all the pathological cases of garbage

collection were well exercised. In the absence of any experience or data

-77-

available for concurrent programs executing on a collection of processors,

the numeric values were picked to be both acceptable within the scope of

ezq>erience on uni-processor systems and to be a true test of the algorith...>n.

The resulting simulation shows that for the situations encountered using the

model, the algorithm performed as expected. Some statistics were derived

from the simulation but these are more a description of the simulated

environment than a prediction of efficiency or performance.

The foliowing is a detailed description of the model used for simulation.

(1) The basic time-slice interval of a processor was an average of .0167

seconds with a standard deviation of .008 seconds. The time-slices of

each processor varied about the mean with a normal distribution.

(2) The probability that a given time-slice was used by a processor to

service its garbage collection task was 0.50

(3) The size of an object, in terms of the number of reference variables it

held was a normal distribution with a mean of 12 and a standard

deviation of 10. Once created, the size of the object remains fixed.

(4) If a time-slice was used by a processor to execute objects, the number

of objects "touched" in that time was a uniform distribution from 1 to 5

(inclusive).

(5) If an object was touched, the probability that it completed its execution,

becoming idle to await another message, within that time-slice was 0. 12

(6) The probability that it would cause a new object to be created was 0.10

(7) The probability that it would be moved to another processor if touched

was 0.20

-78-

(B) The probability that it would communicate with the objects for which it

had reference variables was 0.30

(9) If it communicated, the probability that any particular reference

variable contained in the object or in any of its "sub" objects was

transferred in a message was 0.15

Given the practical limitations of address space and processor

bandwidth, no more tha...11. 36 processors could be simulated with 1800 objects

between them. The machine used for the simulation was a DECsystem-2060

running Simula version 5. The simulation that produced the results below

consumed approximately 10 hours of CPU time. The processors are defined

to have a capacity of one third more objects than the total number of objects

divided by the number of processors, giving an average utilization of 75%

among the processors. No attempt was made in the simulation to provide o;r

maintain locality between the objects. Here again, it was thought that

uniform communication between objects and hence between the processors

was a more rigorous test than one with some presumed degree of locality or

a presumed topology.

The simulator does not presume the existence of a "root" object. After

the initial set of objects is created in the simulated system, a random set

amounting to 40% of the total set of objects is set to be "executable". The

simulation of the system proceeds with these objects until an equilibrium is

reached with some varying percentage of 1800 objects active at any given

time based solely on the simulated communication between the objects.

A check is built into the simulator to verify that the garbage collection

works. Prior to each mark phase, the simulated system is stopped and a

-79-

conventional garbage collection is performed to construct a list of objects

knoYvn to be garbage at that instant. The objects in the list are left in place

in the system and merely noted for subsequent reference. After the

collection pass, the system is again stopped and the objects collected by the

algorithm are compared with those noted in the list. Every object in the list

must have been collected. If it was not, an error is generated since the

algorithm would have failed to collect objects it should have collected.

Failing to collect a garbage object would eventually cause a system to fail as

the uncollected objects accumulate until they occupy all the resources of

the system.

A second check makes certain that after each collection pass there are

no references in the remaining objects to any of those previously collected.

Again, if any object in the system is found to contain a reference to an object

that the garbage collector has removed, an error is reported. Such a failure

would indicate that the algorithm had falsely collected an object that was not

garbage. Such an action would cause a fatal error in any real system.

At no time during the execution of the final simulator were any such

errors reported. While this fact is not a rigorous proof that the algorithm is

error free, it inspires a high degree of confidence that it does perform as

expected. The simlliated system is known to produce all the pathological

pointer structures that might be expected to trouble the algorithm. Also,

the built-in skew between the processors in the rate at which they poll for

messages from the the controlling garbage collector task insures that

synchronization problems, if any, arising from the differing states of the

processors would be detected. Interprocessor interactions, such as object

transfers and the transfer of reference variables in messages, are amplified

-80-

in the simulator to aggravate any possible weaknesses in the algorithm. No

weaknesses have been detected by simulation.

-81-

Table 3-1

Statistical Data Taken from Simulation

Item Observations Average Std.Dev. Minimum Maximum

Number of 141754 1613.631 271.287 1031.000 1800.000
Objects in
Existence

Nu'mber of 226594 703.869 54.122 504.000 845.000
Executable
Objects

Number of 114 4.044 0.245 3.000 5.000
Mark Re-
petitions
per Cycle

Time Re- 114 2.607 0.163 2.255 3.023
quired per
Cycle

Lifetime 70877 6.816 8.088 1.205 199.451
of Objects

Nu'mber of 114 621.728 50.368 504.000 769.000
Objects
Collected
per Cycle

-82-

Table 3-2

Histogram of Number of Objects Collected Each Cycle

Objects Cycles Freq Crm

1 0 0 0.00 0.00 I
2 75 0 0.00 0.00 I
3 150 0 0.00 0.00 I
4 225 0 0.00 0.00 I
5 300 0 0.00 0.00 I
6 375 0 0.00 0.00 I
7 450 1 0.01 0.88 I*
8 525 41 0.36 36.84 !***********************
9 600 53 0.46 83.33 !******************************

10 675 17 0.15 98.25 I**********
11 >750 2 0.02 100.00 I*

-83-

Table 3-3

Histogram of Object Llietimes

Age Objects Freq Cun

1 0 21028 0.30 29.67 !******************************
2 2 3967 0.06 35.27 I******
3 4 18995 0.27 62.07 }***************************
4 6 10811 0.15 77.32 !***************
5 8 5841 0.08 85.56 I********
6 10 2392 0.03 BB.93 I***
7 12 1251 0.02 90.70 I**
8 14 1717 0.02 93.12 I**
9 16 1164 0.02 94.76 I**

10 18 781 0.01 95.87 I*
11 20 345 0.00 96.35 I.
12 22 327 0.00 96.81 I.
13 24 346 0.00 97.30 I.
14 26 293 0.00 97.72 I.
15 28 210 0.00 98.01 I.
16 30 126 0.00 98.19 I.
17 32 154 0.00 98.41 I.
18 34 184 0.00 98.67 I.
19 36 119 0.00 98.83 I.
20 38 108 0.00 98.99 I.
21 40 61 0.00 99.07 I.
22 42 85 0.00 99.19 I.
23 44 61 0.00 99.28 I.
24 46 70 0.00 99.38 I.
25 >48 441 0.01 100.00 I*

The data tabulated above show the characteristics of the running system

derived from the model chosen for simulation. They also show how the

garbage collection algorithm performs in this system. Of note is the

maximum of 5 iterations required to mark all non-garbage objects. It is also

worth noting, that in this system, approximately half of the 1600 objects in

existence are executable at any given time. The "notch" in the lifetime

histogram at 2 seconds is due to the cycle time of the collection process.

With a cycle time of 2.6 seconds, any objects created during the mark phase

-84-

of a cycle must wait until the next full cycle to be collected if they are made

garbage. This effect skews the graph of what would otherwise be a Poisson

distribution. Other ii.--iteresting aspects are: An object has a 90% probability

of being collected as garbage -within 4 cycles of the garbage collector.

Typically, one third to one half the existing objects are collected each cycle.

These figures indicate a rapid turnover in the objects and thus a rapidly

changing data structure.

3.6. Perf or.mance Analysis

The simulation, despite the care with which the model parameters were

chosen, cannot give more than clues to how the algorithm might perform in a

real system. The characteristics of an actual set of objects in a real system,

communicating with each other in some topology, executing and

manipulating pointers in some manner and migrating between processors, is

unknowable a priori and depends as much on the application of the system

as on the system itself. However, this garbage collection algorithm, while it

is intended to operate in such an environment, can be compared with

conventional garbage collectors on uni-processor systems. In addition, it is

important that the algorithm's performance scale, as well as the number of

processors in the system increases.

The conventional garbage collection program running on a single

processor system must make at least two passes across the data structure it

manipulates. It must first follow every path from known non-garbage objects

to mark every object that can be reached. It must then make a pass

sequentially through the objects linking the garbage objects together or

compacting the non-garbage objects into a contiguous area of memory. This

second pass has a complexity of O(N) where N is either the number of

-85-

garbage objects or the number of non-garbage objects depending on whether

the linking or compaction is to be done. If N is defined to be the total

number of objects, then O(N) is an upper bound for the complexity of the

second pass. In the first pass, every pointer must be followed to the object it

points to, and if the object has not already been visited, then it is marked

and all of that object's pointers must be visited. Thus the complexity of this

pass is O(N00 + Npt) where N00 is the number of non-garbage objects and Npt

is the number of pointers contained in those objects. If the worst case is

assumed where none of the objects are garbage, the complexity for both

passes together is 0(2N +Npt)' Further, if the average number of pointers

contained in an object is M then we have O(N(2+M)). It should be noted that

both N and M are bounded by the address space of the machine and M > 1.

For an individual processor in a multi-processor machine using the

algorithm presented here, the same observations can be made concerning

each pass of the combined mark and collect phases. If the data structure

being collected were contained wholly within that processor the complexity

of one pass would be O(N(2+M)) just as for the conventional garbage

collector. However, the messages that result in the marking of objects in

other processors and the migration of objects between processors cloud the

issue. Owing to the method by which the completion of a phase is

determined, both the mark pass and the collection pass are run a minimum

of twice over the objects in the processor. It should be evident that the

second and any subsequent scans by these routines will require less

computing since most, if not all, the objects will have been touched on the

first scan. If we assume the worst, this doubling of the scans increases the

complexity to 0(2N(2+M)).

-86-

In general, the passing of pointers and objects between processors and

the tracing of pointer paths between processors -vvill increase the number of

scans (the number of times the loop in "WaitForAllDone" is executed) beyond

the minimum of two. The volume, pointer content, locality and speed of the

message traffic in the system all affect tbs number. Both the applications

being run on the system and the hardware communication facilities will

determine how long unmarked or uncollected objects can exist in the system

once the mark phase has begun and thus how many scans (of "DoFunction")

will be required to catch all the moving objects and reference variables.

Simulation of the system where communication is very fast, locality is non

existent a..ri.d pointer content of messages is high shows that no more than 5

scans are needed and typically 4 are sufficient in a system of 36 processors.

For now, a number can be defined which is the average number of such scans

required for each complete cycle of the garbage collection task. If this

number is represented by X then the complexity of one cycle in one

processor becomes O(XN(Z+M)), where N is the number of objects held by

the processor and M is the average number of reference variables in an

object.

We can now compare the complexity of collecting garbage in a system

with one processor versus a system with many where this algorithm is used

and where the total number of objects is the same. The complexity of one

garbage collection pass in a single processor system remains O(N(2+M)).

However, the same number of objects N distributed over P processors gives

a complexity of 0(XN(~+M)). Therefore, whenever the ratio ~ <1 or when

P>X the multi-processor system exhibits less overhead in garbage collection

than its uni-processor counterpart, all other factors being equal. If 4 is used

-87-

for X we find that 4 or more processors ru,_'l.Iling the garbage collection

algorithm presented here perform better than a single processor. Real

values for X will have to await the construction of such machines and the

accumulation of experience with their use.

Aside from the overhead incurred by garbage collection, there is a

second important measure of the performance of an "on-the-fly" collection

algorithm. In a conventional dynamic programming environment with a

single processor, the sequential garbage collector is invoked when available

memory for ne"7" objects gets low or becomes exhausted. In this type of

system, the rate at which garbage is collected is made equal to the rate at

which it is generated on a short term basis because the garbage collection

occurs on demand. The "on-the-fly" algorithm presented here cannot be

invoked on demand, but instead proceeds to completion at its own rate and

then starts over. On a long term basis, it must also collect garbage at the

same rate it is generated. In the short term, if system resources get low, the

creation of new objects will have to wait for the completion of the current

collection cycle when the resources held by garbage objects are made

available.

The number of cycles the collection algorithm can perform per unit

time will determine the performance of systems that run near the limit of

their resources. When the resources get very low, objects which try to

create new objects will be held from executing and the processors may spend

inordinate effort attempting to move its objects to other processors. Of

course, as more and more objects are suspended, additional processor

bandwidth is available to perform garbage collection functions causing the

current cycle to complete sooner. Compared to the conventional garbage

-88-

collector, the main factor in determining the speed with which cycles are

completed is the factor X defined above. If Xis large enough to permit short

term depletion of resources in the system, then time devoted to object

execution will decrease and that devoted to garbage collection tasks will

increase in inverse proportion to the available resources. Providing a

thrashing condition can be avoided with all the processors attempting to

foist excess objects off on each other at the same time, this effect provides

negative feedback to balance the effort used to garbage collect versus that

used to execute objects.

3. 7. Implementation Considerations

At a minimum, the integration of this garbage collection algorithm on a

set of processors does not require any additional hardware beyond that

which exists for the normal communication between objects. However, in

some situations, using the existing facilities may not be desirable. Two

capabilities make the communication between the controlling task and all

the processors much more efficient and convenient. These are a broadcast

capability and a wired-AND capability.

As can be seen from the description of the algorithm, the

"SendMessageToAllProcessors" operation is an important one to controlling

the phases of the collection process. It would be undesirable if this operation

had to be implemented as the sending of an individual message to each

processor in turn. If the number of processors is large, the communication

bandwidth used in doing so may be unacceptable. Also, the skew introduced

by the widely varied times at which the processors receive the messages will

increase the overhead (i.e. the factor X will increase) and slow the rate of

garbage collection. Clearly, for all but small systems, those with fewer than

-89-

about 20 processors, a broadcast capability is necessary.

The wired-AND capability is helpful in performing the

"ANDofAllDoneFlags" function in the controlling task. Without the hardware

to assist in this function, each processor will be required to respond ·with a

message containing the state of its "DoneFlag". Again, the time and

bandwidth used in sending such messages will have a detrimental effect on

the performance of the system. The broadcast capability, if it exists, would

be of no help since each processor has an individual "DoneFlag". However,

sincE'. the controlling task is only interested in whether or not all of the

"DoneFlags" are TRUE, a single wire using either an open-collector or open-

emitter technology could be used to perform the logical AND on the wire.

The "WaitUntilAllAcknowledge" function could be implemented in the same

manner. A set of such signals, connected to every processor, would also

make the acknowledgement of garbage collector messages by the processors
'

much more convenient and efficient.

If a sufficient set of signals is connected to all the processors and to the

controlling task, the controlling task can be reduced to a small finite state

machine. A simple analysis shows that the necessary functions could be

provided with less that 8 separate signals and possibly with as few as 4.

3.8. Scaling of the Algorithm_

Of key importance is the ability of the algorithm to scale as the number

of processors and objects increase. Specifically, is the increased computing

bandwidth obtained by adding processors to the system still available as the

garbage collection operates over a larger number of processors and objects?

It is evident from the description of the algorithm that global communication

is required between the controlling task and every other processor. In many

-90-

systems, such global communication prevents the systems from growing

effectively beyond some limit imposed by the cost or the delay introduced by

such communication facilities.

In the case where no broadcast facilities are present or where there is

no hardware support for the "ANDofAllDoneFlags" function, there is clearly a

delay in communication that grows linearly with the number of processors in

the system. For small systems this delay may be tolerable but in order to

build large systems consisting of thousands of processors, the broadcast and

·wired function facilities_ must be presumed.

If, as proposed above, a small number of signals are to connect every

processor in parallel to the controlling task (or finite state machine), then all

of the processors of the system are to be connected in a linear array. There

must exist some other facility by which the objects communicate between

processors. The simplest such connection is also a linear array or line such

as an Ethernet [Metcalfe76]. Any other connection must be topologically

more complex. Thus the connection of all the processor to a rnulti

conductor cable is on the same or on a simpler order than the network that

must exist to connect the processors for normal communication.

The next difficulty with the global communication is that of fa.."1-out and

delay. Clearly, no logic technology provides the means to directly connect

thousands of loads or sources to a single conductor as might be desired.

However, due to the simple manner in which the processors and the

controlling task communicate, a hierarchy of buffers can be constructed in a

tree structure to limit the fan-out and fan-in of the components. If parts are

used permitting a fan-out and fan-in of 16, then a system of 64K processors

would have only four levels of buffers. If the buffers introduce a delay of 25

-91-

nanoseconds each and the propagation delay of the transmission lines

between them is 900 nanoseconds (the delay seen across 600 feet of 1Nire)

then a very conservative estimate of the maximw.-n delay bebveen the

controlling task and the processors is one microsecond. For the purposes of

the garbage collection, this figure is so small it can be disregarded. The

delay is proportional to the logarithm of the number of processors and will

thus remain very low for even greater num.bers of processors beyond the

capability of current technology to package and power such systems.

The number of iterations of marking that must be executed by the

processors before completion of the mark phase (denoted by the factor X

above) must be investigated for large numbers of processors. To be a viable

collection algorithm, the number of iterations must remain small as the

number of processors is increased.

A number of processor configurations were simulated to test the effect

of increasing the number of processors on the average time required to

complete a garbage collection cycle. In each case the average number of

objects per processor was maintained at approximately 25. All other factors

in the model were held at the values described above.

-92-

Table 3--4

Simulation Results (with Message Polling)

Number of Average
Processors Cycle Time

1 0.52
2 0.78
4 1.19
B 1.62

16 1.91
32 2.33
64 2.72

Average Number
of Repetitions per Cycle

2.0
2.4
3.1
3.3
3.2
3.3
3.5

Table 3-5

Simulation Results (with Message Interrupts)

Number of
Processors

1
2
4
B

16
32
64

Average
Cycle Time

.260

.290

.303

.309

.316

.333

.337

Average Number
of Repetitions per Cycle

2.00
2.85
3.07
3.27
3.47
3.96
4.11

Tue average cycle time figures are computed in seconds. Because the

timing in the simulator has no basis in the hardware of a real system, the

absolute value of the numbers cannot hold much meaning. However, the

relationship between these numbers is indicative of how the algorithm scales

-93-

as the number of processors in increased.

The simulator maintains no policy of locality to control the placement of

objects among processors. Thus. in cases where a non-executing path of

pointers and objects is strung across many processors and an object in the

path is referenced by a non-garbage object, it may take several repetitions

for the marking routines to follow the path through all the processors.

The average time required to complete a garbage collection cycle is

observed to rise at a linear rate with the logarithm of the number of

processors. The time to complete the cycle is a fu_nction of both the number

of repetitions required in the cycle and the time required for all the

processors to acknowledge messages, where polling is simulated. If

processors are interrupted upon the receipt of a message from the

controlling task, then there is essentially no skew between the processors

and minimum delay in the acknowledgment of the message. The dat.a

tabulated for the simulation with interrupts are plotted in figures 1 and 2.

The short vertical bars represent one standard deviation of variance about

the average shown in the table.

-94-

.35

.34

.33

.32

~ .31
c:
0
<J

"' ,.'.'.; . 30

"' E

;:: .29 ., ...
<J
>,
u .28

.27

.26

.25

.24

20 21

Number of Processors

Figure 3-1

Cycle Time vs. LOG(Number of Processors)

-95-

4.5

4.0

3.5

Ill

" 0
.u
.....

" 3.0 0.

" "'
"" ...
"' :>:

2.5

2.0

Number of Processors

Figure 3-2

Mark Repetitions vs. LOG(Number of Processors)

-96-

The figures above show that in the worst case, the number of garbage

collection cycles completed per unit time decreases linearly vvith the

logarithm of the mrrnber of processors. The average nurnber of repetitions

required per cycle may grow linearly with the logarithm of the number of

processors as well but there is some evidence that it may roll off to a value

less than 5. In the best case, the average number of cycles per unit time

also becomes a constant. Where the performance of a particular system falls

between these two cases will be determined by the communication structure

of the machine and the degree of locality present in the objects and

processors. However, the worst case is seen to result in a performance of

the garbage collector proportional to the inverse of the logarithm of the

number of processors. If one merely extends the simulation figures to 64K

processors, we see that the cycle time of the algorithm would be about 6.6,

only 60% slower than 64 processors. The average number of objects per

processor is presumed to remain constant, meaning that the 64K processor

system contains 1,000 times the objects contained in the 64 processor

system. If the relationship is as suggested by these numbers, the algorithm

can be said to scale very well as the size of the system is increased.

3.9. Summary

A garbage collection algorithm has been presented which satisfies the

needs of systems consisting of large numbers of processors. The algorithm

has been demonstrated by simulating its operation. The unit of collection,

the object, while a construct of programming languages, can be applied

broadly to a wide range of systems, including conventional file systems and

database systems.

-97-

The collection algorithm benefits from, but does not require, hardware

communication facilities dedicated to the task of garbage collection. If these

facilities are present, the speed of the garbage collection decreases in

proportion to the logarithm of the number of processors. in the worst case.

The introduction of techniques to improve the locality of reference among

the objects in the processors v.ill improve upon the already acceptable

scaling characteristics of the algorithm.

The ability to collect garbage from data structures distributed among

many processors in an efficient manner is a necessary ingredient to the use

of very large distributed machines for general applications. Systems which

provide for concurrency by connecting multiple processors to a single

memory are necessarily limited in both size and performance. In the

environment considered here, processors are the sole masters of objects

resident in their private memories and communicate with other processors

by passing messages through a communication network. The algorithm

presented here will support the distribution of data and computation across

a very large number of such processors without introducing more overhead

computation than conventional collection algorithm_s require on existing

systems.

-98-

Chapter4

Interconnection Issues

4.1. Introduction

Considerable attention has been given to the analysis and development

of interconnection schemes for distributed computer systems. Early work

was directed at solving the problems of telephone systems [Benes65]. Given

the computer architectures of the 1960's, much work has been and still is

devoted to providing the means to connect multiple processors to multiple

memory units [La\VTie73,Lang76]. The rapid evolution of integrated circuit

technology has provoked interest in the interconnection of large numbers of

micro-computers [Wittie76,81]. The existing work and analyses in this area

are extensive. The work presented here is oriented toward a specific

application not previously investigated. It is the purpose of this work to

determine what the characteristics of several network topologies are, and

how suitable they may be for the impiementation of the object-oriented

environment described in Chapter 2.

We consider here the interconnection facilities required to support a

large number of physically small machines executing in an "object-oriented"

environment. Objects and their messages are typically small but the rate of

message production is usually high.

The processing nodes are substantial machines in their own right. To

distinguish them from the type of processor found in systolic arrays

-99-

[Kung78] or a tree machine [BroVvningBO]. they are 1-2 MIPS (million

instructions per second) and contain considerable private memory, perhaps

256K bytes to 1 Megabyte. Communication functions are handled by a

specialized processor which has direct access to the processor's memory.

Thus, the processor /memory node is not affected by messages passing

through the node on their way to their destination. The instruction set and

the internal architecture of the processor /memory node are of a high

enough order to permit compilers to be written ·with some ease. In today's

technology, such a machine can be implemented on a single printed circuit

card. Over the next 10 years, advances in integrated circuit technologies

might be expected to reduce it to a single chip or chip carrier.

Systems built around processing nodes, as described above, could

contain thousands of nodes. Interconnecting large numbers of machines

together such that they are able to adequately support the object-oriente~

environment places several requirements on the communication facilities.

(1) The communication facilities cannot be permitted to deadlock, despite

cyclic topology or cyclic message flow. Deadlock is a condition where all

or part of the network is unable to continue operation due to an

unresolveable contention for occupied resources.

(2) As the system is expanded to include more machines, local

communication must not be adversely affected. That is, increasing the

size of the system must not slow down message traffic between

neighboring nodes.

(3) The system must expand easily. The addition of processing nodes must

not require the reconnection of existing nodes, nor can it require

modifications to the nodes themselves.

-100-

(4) The system must be implementable. The cost of building the

communications network must be commensurate with the number of

processors in the system. For large nun:ibers of processing nodes, the

cost and difficulty of building the network must not become intractable.

(5) The average message delay exhibited by the system should be of the

same order as the delay involved in a procedure call. Since we cannot

expect all programs to be highly concurrent, the delay in sending

messages must be kept on a par with a procedure call in a conventional

computer. Thus, highly sequential programs will still run with

acceptable performance. It is desirable that communication delays be

balanced with computational delays in the processors to avoid

bottlenecks for concurrent programs.

(6) The routing of messages must not require the presence of global

topology information in each machine. The corn..rnunication processor;s

must not require a map to route messages. Such information would

grow with number of nodes in the system and become too large to

contain in each processing node.

Given the above restrictions, certain interconnection schemes can be

eliminated immediately as candidates. Complete interconnection has

obvious desirable communication properties but is unimplementable except·

for very small numbers of nodes as it requires O(N2) communication links.

Likewise. a crossbar switch arrangement [Pippenger75] is undesirable, since

it too becomes impossible to implement for large N, requiring N2 switching

elements. A star configuration, while it appears to require only one link per

node with a special processor at the center of the star, actually requires a

crossbar switch at the center of the star if it is to function at an acceptable

-101-

performance level.

At the other end of the spectrum. there are schemes such as Ethernet

[Metcalfe76]. \iVhile such a network is quite simple to implement, the

message delay seen between any pair of nodes vrill clearly increase as more

nodes are added, due to the increased contention in the system. This

characteristic of contention busses does not rule out their use in a hierarchy

or some other organization of multiple busses. The hypercube described in

[Wittie76] is an interesting case.

Another interesting topology is the cube connected cycle [WittieBl]. This

scheme employs rings of nodes at the vertices of a Boolean N-cube where

there are log2N nodes in each ring (N is the number of vertices in the

Boolean N-cube). Each node in the ring connects to its two neighbors in the

ring and also makes one connection to another vertex. The nodes would thus

have a fixed set of three connections, however, expansion of the system

requires :inserting nodes into all of the existing rings, as well as adding

vertices. This massive rewiring of the system makes the cube connected

cycle undesirable at the outset.

Several interconnection topologies are investigated here as

representative of some class of structures. Specifically, the chordal ring. the

tree, the toroidal mesh and the Boolean N-cube have been studied. Each

have been extensively simulated with variations in parameters, such as,

differing link data rates, queue lengths, number of processing nodes, etc.

The simulated message traffic was also varied. To permit the various

topologies to be compared on an equal basis, a model of message locality is

presented which is independent of the dimensionality of the interconnection.

Use of this model permits the application of message traffic of equal locality

-102-

to systems in which the measures of distance are widely different.

The simulation models and their results are discussed and conclusions

are drawn about the appropriateness of these interconnection structures for

use in an object-oriented machine.

4.2. Interconnection Topologies and Queuing Models

Four topologies have been simulated using a packet svvitching model of

message handling and using queues at various points to smooth out short

term congestion. To compare these various topologies on an equal basis all

factors other than the interconnection strategy are treated identically in the

following analyses.

Messages of arbitrary length are broken into fix sized packets for

transmission through the network. A fixed size packet permits hardware

queues and buffers to be of limited size.

Communication links are all assumed to be bit serial and full duplex.

Unless otherwise stated, it is assumed that the bit serial links have a

bandwidth of 20 Megabits per second. The systems under investigation here

are tightly coupled and physically compact to improve wireability and

communication speed. The maximum length of the links in such systems

should be well below 50 feet. Data rates as high as 50 Megabits per second

are achievable over such distances with conventional interconnection media.

Full duplex operation would require that each link consist of at least two

conductors, one for communication in each direction. Communication links

must be limited to one or two conductors, otherwise implementation of large

systems is made proportionally more difficult.

-103-

At each processing node, there exists the aforementioned processor and

its memory as well as a communication processor -with a high bandvvidth,

parallel interface to the memory. The serial commu1lication links are part of

the communication processor as are any associated packet queues. Figure

4-1 is a block diagram of the model used to represent a processing node.

There exists a queue (FIFO) memory for each output communications

link. The queue is assumed to have a zero fall-through time and is of a fLxed

size. Unless otherwise stated, the queue size of all queues is four packets.

There is also a queue between the object processor and the communication

processor for outgoing packets. Incoming packets are assumed to always

have a place in the memory.

-104-

Communication Links to other nodes

/I\ 11\ /[\

Packet Queue

·-~

/[\. I\ /\

\V \! \!/

Communication Processor

~ ;-...

Object Processor

(1-2 MIPS) ...,.......,._

~ ,..

.... :.- /

Object Memory

(256K - lMB)

Figure 4-1

Processing Node Block Diagram

-105-

The packet size for these networks was chosen to be 256 bits of data.

Addresses. error codes, routing information, etc. are part of the packet but

are not included in the packet size. This size v1as chosen to avoid excessive

fragmentation and message assembly overhead and to give the links an

acceptable duty cycle. Message passing languages are usually characterized

by a large volume of small messages. The parameter space over which these

networks have been simulated reflect these characteristics.

Message traffic is described by several parameters. The average

message length and a standard deviation, the average amount of

computational time spent between the generation of messages and its

standard deviation and the locality -with which the destinations of the

messages are chosen. The parameterization of locality is discussed in a

succeeding section. Based on experience with Simula, an average message

length of 768 bits with a standard deviation of 256 bits was chosen. Thus the

average message is three packets long, with a standard deviation of one

packet.

The rate at which messages are generated by each processor was chosen

to be high for two reasons. First, message passing languages tend to send

messages with a frequency approaching the rate at which other languages

execute procedure calls. The simulation of this type of operation requires a

correspondingly high rate of message production. Also, to obtain a good

comparison of the the topologies and to find their limitations, it is necessary

to saturate them. The rate of message production used in simulation here is

one message every 30 microseconds with a standard deviation of 15

microseconds. For a processor such as the Motorola 68000. this rate

corresponds to one message per 80 or 90 instructions.

-106-

4.2.1. Tree Connection

The use of tree structures to connect machines is very common

[HorowitzBl]. It has several virtues that make it attractive. Jt has a planar

topology, thus guaranteeing that it can be implemented without unusual

effort. The routing of data from one node to an.other is accomplished with

simple algorithms local to the nodes. It is also deadlock free because it

contains no closed loops, preventing the possibility of cyclic dependencies

that would constitute deadlock.

The tree structure used here puts all the processir1g nodes at the leaves

of the tree. The remainder of the tree serves as a facility for communication

only. Nodes in the tree connect with their parents by mean of a

communication link as pre'yiously described. The links have a queue of

packets associated with messages traveling in each direction. Figure 4-2

illustrates the tree structure.

-107-

Internal Parent Node
for Packet Routing

Figure 4-2

Tree Connection

to Parent

-108-

A message or packet that is to be passed from one leaf node to another

must be forwarded to the closest common parent and then back towards the

leaves to the destination. There is one and only one such path between any

pair of processing nodes. Other tree-like structures have been proposed,

usually containing communication paths between nodes at a given level. The

X-Tree [Despain78] and [Harris77] both propose "horizontal" connections

between branches of the tree. The introduction of these paths produces

cycles in the interconnection graph and may thus introduce the possibility of

deadlock. This issue will be discussed in a succeeding section.

The branching ratio of the tree has a large effect on the communication

characteristics of the tree. A small branching ratio, such as 2, maximizes

the nurnber of links a message must travel to reach its destination. A large

branching ratio reduces the height of the tree but as the number of links at

each parent node grows, so must the complexity and congestion of the node

grow. The extreme case, where the branching ratio equals the number of

processing nodes, produces the star structure with its complex central

switch.

For the purposes of this analysis, a branching ratio of 4 was chosen.

This results in communication nodes with 5 connections making them fairly

easy to build. The height of a tree containing 64K processing nodes at the

leaves and having a branching ratio of 4 would be 8. The longest

communication path would then be 16 links. This distance is the same as the

longest path found in a Boolean N-cube of the same size. In general, the

maximum communication distance found in the tree is given by the

expression 2logbN where b is the branching ratio and N is the number of

processing nodes.

-109-

Clearly, a branching ratio of 4 encourages local communication among

groups of 4 or fewer processing nodes. Vfhatever the branching ratio, the

tree structure imposes an increasingly severe penalty in situations where the

locality of communication involves more processing nodes than the

branching ratio.

Packets are routed easily in the tree. If a parent receives a packet with

a destination corresponding to one of its descendents, it sends (or queues)

the packet using the link which is a branch to that descendent. If the packet

is not for one of its descendents, the node sends the packet to its parent.

Congestion can be expected in the parent nodes if the production of

nonlocal messages by all the parent's descendents exceeds the bandwidth of

the link to the parent's parent. The packet queues between the parent and

its descendents will fill up with packets until the processing nodes are made

to wait before sending another message. The effective rate of message

production will be reduced to match the rate of message consumption at the

bottleneck by reducing the utilization of the processing nodes. This tradeoff

between processor utilization and communication bandwidth may occur in all

communication networks and is not limited to the tree structure.

4.2.2. Chordal Ring Connection

The Chordal Ring connection is one in which N processors are connected

in a single closed loop with the addition of connections from each processor

to another processor a fixed chord length along the circle. Figure 4-3 shows

a chordal ring connection of 16 processors. An analysis of chordal rings can

be fciund in [ArdenB1], where it is shown that the maximum length of an

optimum path between two nodes in a properly constructed chordal ring is

0('1N).

-110-

figlll"e 4"'3

cnordal ~ CopnectiOI1

-111-

The chordal ring, as used here, is made of processing nodes connected

by queued links as previously described. The chord length is chosen to be

-.JN to approximate the conditions of [ArdenB1]. In addition, as can be seen

in Figure 4-3, each node has 4 connections, two are part of the ring and 2 are

chord connections. 'This addition gives the chordal ring a lower effective

diameter and gives it the same degree connection as the mesh connection

described in the next section. The degree of connection (4) is close to that of

the tree connection (5) as well, making the comparison of the chordal ring

with the other connection strategies more equitable.

The links in the chordal ring are bi-directional permitting messages to

move in either direction around the links and chords. The routing algorithm

attempts to send packets to their destination by the shortest path. When a

packet is received at a node which is not its destination, the node decides

which of the other three connections to the node would send the packet

closest to its destination. The message is then queued for the selected link.

If the selected link queue is full the second choice is used, providing it is not

full.

The chordal ring is a simple connection strategy of low degree. Though

it is not planar, it would not be difficult to implement for even very large

numbers of processing nodes. Since it does have a cyclic graph, there is a

probability that it could deadlock unless other measures are taken. The

simulation results show how suitable this topology is for the needs of an

object-oriented machine.

4.2.3. Toroidal Mesh Connection

Two dimensional mesh connections are constructed by arranging

processing nodes at the vertices of a grid in a plane and connecting each

-112-

node to its four nearest neighbors. Hexagonal arrays are constructed in a

similar manner. These types of connections have the advantage of being

inherently planar and of fixed degree. They are proposed for use in various

applications where the topology of communication can be made to match the

topology of the interconnection such as [MartinBl] and [Kung78]. Meshes of

higher dimensions can be constructed as well [WittieBl] with increased

communication capabilities but incurring increased implementation costs.

Here we consider a two dimensional mesh with the edges of the mesh

wrapped around to form a toroid. This avoids difficulties v.ith the boundary

conditions at the edge of the mesh and maintains a fixed degree of 4. The

edges are wrapped around without the twist introduced by [Martin81]. The

toroidal nature of this connection is non-planar but can be easily provided

for in an implementation. One additional channel in each dimension and

between each row and column of nodes must be provided to accommodat.e

the wrap around connections. An illustration of the toroidal mesh is shown in

Figure 4-4.

-113-

Figure 4-4

Toroidal Mesh Connection

-114-

The maximum distances that must be traveled by packets in the mesh

are 0(-..!Jil) since they must travel a Manhattan path to their destination.

This is the same result as found by [Arden81] for the chordal ring. In the

configurations to be simulated, the mesh is always square and each node has

4 queued links as described for the other topologies. The routing of packets

in the mesh is determined as follows:

(1) The node addresses are viewed as coordinates and the distances to the

destination in directions north, south, east and west are determined.

(2) In the order of smallest distance, each queue in the associated direction

is polled and if space is available, the packet is queued there. If no

space is found in the queue, the direction -with the next larger distance

is polled.

(3) Vi'hen all four queues have been polled and no space has been found, the

process repeats until the packet is queued.

This procedure guarantees a minimum length path is used if there is no

traffic congestion. Where congestion occurs, an attempt is made to route

the message around the congested area. It is even possible for a packet to

be sent back along the same link it was sent if congestion is severe. If this

happens, a less congested path may be found for the packet.

Like the chordal ring connection, the mesh connection graph has cycles

giving it the potential to deadlock. Like the tree, the mesh connection

clearly favors local communication traffic with groups of 4 or 5 processing

nodes. As traffic becomes less localized, more congestion will occur in the

queues and the probability for deadlock will increase.

-115-

4.2.4. Boolean N-cube Connection

The Boolean N-cube interconnection is a multi-dimensional. variable

degree strategy where nodes are connected to their neighbors in N-:space.

The simplest definition of this interconnection is to first number all of the

nodes sequentially starting at 0, then connect all pairs of n0des whose

numbers have a Hamming distance of 1 (those whose numbers differ by only

one bit). Figure 4-5 shows a Boolean N-cube of 16 processors. The definition

requires that each processor have log2N connections, where N is the number

of processing nodes in the network. The Boolean N-cube can be considered

an e:xi.reme case of the toroidal mesh, where only two nodes are permitted in

each dimension and the number of dimensions is increased to accommodate

additional nodes.

-116-

Figure 4-5

Boolean N-cube Connection

-117-

The Boolean N-cube has long been an interesting interconnection

scheme for various dedicated computations [Pease75]. It has been shown to

be functionally equivalent to several other schemes, such as, the perfect

shuffle [Stone71,Lang76], the Omega network [Lawrie73] and Benes' re

arrangeable network [Benes65] by [ParkerBO]. Sullivan [Sullivan77] first

advocate its use to interconnect autonomous processing nodes. Because the

Boolean N-cube is ubiquitous, simple and exhibits some obviously desirable

properties, it is investigated here. It is also clear that for large numbers of

numbers of nodes, the Boolean N-cube becomes increasing difficult to

implement. This issue will be taken up in a succeeding section.

The Boolean N-cube clearly contains cycles in its graph, making it

subject to deadlocking. The next section will shown how packets can be

routed to avoid deadlock with some loss of generality and bandvvidth.

Given the same queued links used in the preceding interconnect

strategies, each node in the Boolean N-cube connects to one neighboring

node in each of the other dimensions. In the general case, routing the

packets to their destinations by the shortest path is quite simple. Owing to

the original definition of the structure, each of the links to a given node

connect to all the other nodes in the network whose addresses differ from its

own address by exactly one bit. Each link can then be associated with that

bit of the address which differs in the nodes it connects. When a node

receives a packet it performs an exclusive-OR operation between its address

and the address of the packet's destination. If the result is zero, then the

packet is at its destination. If not, the packet may be sent across any link

corresponding to a "one" bit in the result of the exclusive-OR. In this way,

successive nodes route the packet, changing one of the differing bits until

-118-

the destination is reached. Where there is a choice of more than one link on

which to send the packet, the link whose queue is least full is selected to

avoid congestion and balance the traffic load.

The longest path between any two nodes in the network is O(log2N).

This is ·a better characteristic than is found for the toroidal mesh or the

chordal ring whose maximum distances are 0(-JJil). It is comparable to the

tree in this respect but it should be noted that in the tree there is only one

path between any pair of nodes, and parts of that path are heavily shared by

other paths. In the Boolean N-cube, for a pair of nodes with Hamming

distance m, there are ml paths of length m between them [Sullivan77].

There are longer paths as well but these are not considered here. It is

important to note that, in the Boolean N-cube, the farther a packet must

travel, the more paths there are for it to take.

4.3. Deadlock

Deadlock cannot be tolerated in any system unless its probability of

occurring is less than the probability that the system may experience a hard

fault that would render it unavailable. With the exception of the tree

connection, all the interconnection systems investigated show some danger

of deadlock. The tree connection is deadlock free because its graph contains

no cycles. The probability of deadlock in other networks is a function of the

size, queuing, topology and message traffic in the system. Without a priori

knowledge of the message traffic, the probability with which deadlock will

occur can not be determined.

The mechanism of deadlock requires several conditions. It requires at

least one cycle in the graph of interconnected queues. Also, it presumes that

a packet with any destination may appear in any queue. It is this last

-119-

characteristic that the system designer has control of, though, in some

cases, exercising this control can be otherVvise UtJ.desirable. The following is

a proof of the existence of deadlock given the above assuinptions.

(1) Extract ru"'ly loop of interconnected queues from the system as shown in

Figure 4-6.

(2) Assume that all the queues in the system are filled with packets.

Assume further that the queues are of a fixed and finite size (as they

must be in a real system).

(3) Asslli--ne that all the packets in the queues have a destination node within

the loop but one other than the node they next encounter (the node the

queues point at). If packets cannot change order in the queue it is only

necessary to assume that the first packet in the queue (the one that is

to be removed next) has a destination beyond the next node.

-120-

Full Packet Queue

>~

Processing Node

Flgure 4-6

A Deadlocked Loop of Communication links

-121-

The above situation is that of deadlock. Tne following arguments prove

that the nodes and queues in the loop -will never be able to change their state

and this state thus constitutes deadlock.

(1) To remove a packet from a queue, a node must either consu_me the

packet or place it in another queue. To consume the packet it must be

destined for that node. The situation is defined such that packets in the

queues are never destined for the ne:xi. node and thus cannot be

consum'ed. The packet cannot be moved to any other queue since they

are all filled.

(2) Thus, if no packets can be consumed, and no packets can be moved,

then no new space will ever become available in a queue.

(3) If no space ever becomes available in a queue, no node will ever be able

to move a packet, etc.

If the above state of the system is then deadlock, we must only show

that it is a reachable state to prove that there is a probability of deadlock. It

should be noted, that the tree can never have the above state, since by its

definition, the queues pointing at the leaf nodes contain only packets

destined for the leaf nodes. Thus, these packets are always consumable and

the queues pointing toward the leaves are always emptying.

To reach the described state, the following could happen:

(1) From a condition in which all the queues are empty, meaning there is no

traffic in the system during some interval in time, all the nodes begin

producing messages.

(2) The rate of message production exceeds the data rate of the links for a

long enough time such that messages fill the queues.

-122-

(3) If all the messages are destined for nodes more than 1 link away, then

the queues are filled with messages of the type described above and the

system has reached the deadlocked state.

V!rnle the foregoing may seem somewhat contrived, it is only one state

and procedure constituting deadlock. If any portion of a system deadlocks,

it will increase the probability that other parts will do so by causing queues

to remain filled and immobile that would otherwise be available to the

system. In any case, if any part of the system deadlocks, even two nodes, the

failure is unacceptable.

Deadlock is not easily detected in the system and if detected it may not

be possible to unravel the system without some loss of state. It is necessary

that if deadlock occurs that it occur so infrequently as to be unnoticed when

compared to other failures of the system.

4.3.1. Deadlock Avoidance in the Boolean N-cube

Given that the tree may not be the most desirable topology for

interconnecting nodes, it is possible to control message traffic in the Boolean

N-cube to prevent any possibility of deadlock. Equivalent controls may exist

for the chordal ring and the toroidal mesh. In general, if message traffic can

be controlled or restricted such that packets can always be consumed,

deadlock will not occur. Also, if congestion can be detected, processing

nodes can be prevented from generating more messages until the congestion

is relieved again preventing deadlock. Both the toroidal mesh and the

chordal ring can be modified from the general form shown here to a specific

system with provisions for avoiding deadlock. The Torus machine [MartinB1]

uses a toroidal mesh connection and avoids deadlock by restricting

communication between processing nodes to a fixed pattern.

-123-

Sullivan [Sullivan77] presents a message routing procedure for nodes in

a Boolean N-cube which avoids deadlock, though he does not recognize this

characteristic in this reference. The procedure is less general than that

already presented for the Boolean N-cube. It permits messages to be routed

between any pair of nodes but restricts the flow to one particular path. The

procedure is restated here.

(1) Exclusive-OR the node address with the destination address of the

packet. If there is no difference, consume the packet.

(2) If there is a difference, send the packet to the link corresponding to the

leftmost differing bit of the two addresses.

The following is a proof that this routing procedure renders the Boolean

N-cube deadlock free.

(1) Packets in the queue of any link corresponding to the rightmost address

bit must always be destined for the next node and can therefore, always

be consumed by that node.

(2) Packets in the queue of any link corresponding to the second rightmost

bit must either be destined for the next node and can be consumed or

must go into the queue that is to the right of the link's position. Item 2

of the routing procedure above insures that any differring bits between

the current node address and the destination address must be to the

right of the bit corresponding to the link the packet was received from.

The rightmost queue is the only queue that is logically to the right of the

second rightmost queue. If it is emptying, as in Item 1 above, then there

will be a place to put packets from this queue causing it to empty as

well.

-124-

(3) Apply the above argument to each successive bit of the address until the

leftmost bit is reached, proving that the queues corresponding to the

leftmost bit will always empty.

(4) If all the queues will eventually empty, then deadlock cannot occur.

Therefore, by using Sullivan's routing procedure, a Boolean N-cube

connection can be using without fear of deadlock. The single paths used by

the packets will be evenly distributed over the system. However, where local

congestion occurs, particular packets will be unable to circumvent the

congested queues. This loss of generality can be expected to reduce the

performance of the Boolean N-cube from that achieved by original routing

algorithm presented here. If deadlock can be avoided in the mesh or ring

coniJ.ections by restricting the routing of messages, their performance will be

reduced as well, because the number of choices available in routing

messages will be reduced.

The more restrictive routing procedure avoids the problem shown in

Figure 4-6 by controlling the destinations of packets that may be found in

the various queues. Using this procedure, no loop of queues can exist where

none of the packets can be consumed by the attached node.

4.3.2. ANon-Queued. Deadlock-Free Interconnection Structure

Deadlock arises in queued systems where conflict occurs over the

a]location of resources, in the form of queue slots. Once a queue slot has

been taken by a packet it cannot be released to another packet until the

first packet has been properly disposed of. In the previous section, deadlock

was avoided by insuring that queues always emptied, providing a constant

and guaranteed turnover of resources. Another method of avoiding deadlock

is to not permit resources to be allocated until enough have been reserved

-125-

for the entire operation. In a communication network, this means reserving

all the comrnunication links required to send a message, send the message

and then release the links. The reservation of resources mu.st be done in

such a way as to prevent deadlock as well.

In this section, we present a scheme of reserving and releasing links in a

Boolean N-cube connection that is deadlock free. This system contains no

concept of packets. Once an entire path, consisting of one or more links, is

reserved to the message's destination, the entire message is sent en masse.

The nodes pass the serialized data through from one link to the next with

little or no buffering permitting the message to be transmitted at the full

bandwidth of the link and with a very small propagation delay.

The hardware at each node to connect one link to another, or to the

processing node, consists of a small crossbar switch. The size of the

crossbar switch is 1+log2N by 1+log2N where N is the number of processing

nodes in the system. The extra connection is for communication to and from

the processing node itself. The data paths in the crossbar have a width of 2

for full duplex communication. For large N, such as 64K, the crossbar switch

in each node is well within an acceptable size. For 64K processing nodes, the

crossbar switches must have on the order of 272 switching elements.

Associated with each link, there must exist control logic and sufficient state

to implement the reservation protocol and make connections in the crossbar

switch.

There are several definitions and rules that must be obeyed by the links

as they are manipulated. A link must be in one of the following states:

(1) UNRESERVED In this state, any path may reserve the link causing it to

become RESERVED.

-126-

(2) RESERVED In ttis state, the link is reserved to a given path. Another

path may take the link and reserve it for itself if the priority of the new

path is greater than that of the path to which the link is currently

reserved.

(3) COMPLETED In this state, the link is assigned to a path and cannot be

reserved by any other path. Only the path to which the link is assigned

may change its state to UNRESERVED.

To establish a complete path to a destination node, the originating node

begins by attempti:ng to reserve a link corresponding to a bit which differs

with the destination address. In reserving a link, the node may be successful

and the same process is repeated at the next node until the destination is

reached. If the link is currently reserved, the node will wait or choose

another link for reservation, if there is a choice.

Once a link is reserved, it may yet be taken from the path by a path of

greater priority. The priority of paths is first determined by the number of

links they contain. The longer a path gets, the higher the priority of all its

reserved links. If a longer path attempts to reserve a link reserved to a

shorter path, the link will be taken from the shorter path and reserved by

the longer. The shorter. now broken, path is made to dissolve and reattempt

a new connection. If two paths attempting to reserve the same link have the

same length, the link will be reserved by the path originating at the highest

numbered node. In this way, no two paths have the same priority. Unique

priorities prevent the paths from deadlocking over contention for the links.

When the last link in a path is reserved, all the links in the path become

COMPLETED. The path is then established and used for the duration of the

message transmission. After the entire message has been sent, all the links

-127-

in the path are released by sending them to state UNRESERVED.

This procedure is used by all the nodes in sending messages. Since none

of the the data in the message is stored in the network, the brea..l<:ing of paths

involves no loss of data. As an added advantage, the message is sent in

order, eliminating the need for the reassembly of packets as required in

queued systems. The system does not deadlock. because one path ·will always

win any contention. Congestion of the network will result in many paths

being broken before they are completed, but since they are able to retry

until they do achieve a complete path, the system exhibits liveness.

This type of Boolean N-cube was also simulated to compare it with the

queued networks. In these simulations, each nodes has a queue of 4

messages produced by its processor, but there are no other queues in the

system. To change the state of a link, the simulations require enough time

to trruJ.sfer 64 bits to the link, such that link reservations occur in a finit,e

time. The link data rates and message traffic used are the same as those

used in the queued networks.

4.4. A Distance-Independent Measure of Locality

To make meaningful comparisons of performance among networks of

differing topology, the message traffic used to test them must have no

topology dependent notion of distance. In each of the topologies discussed

here, the distances seen from one processing node to another depend on the

particular network. A model of message traffic is required which is

independent of the network in question but can be applied to any network in

the same way that a program or set of objects can be executed on widely

different machine structures.

-128-

To start, we introduce the concept of a "neighborhood". From the point

of view of a single processing node in a network. its neighborhood is a set of

other processing nodes with which it will cornmlli"'licate v1-ith a probability

greater than some threshold T. The size of the neighborhood is a measure of

message locality. If the neighborhood size was the same as the number of

nodes in the system, then traffic in the system could be said to be uniform.

Every node would have an equal probability of communicating with any other

node. For small neighborhood sizes, traffic can be said to be very localized

where the probability that a node communicates Vii.th one of its neighborhood

set is much higher than for other nodes. The size of the neighborhood is

denoted by a.

For given message traffic, the probability that a given node

communicates with any selected node can be determined. The nodes can

then be arranged by decreasing probability. The neighborhood is ideally the

first a nodes in the ordered list, where a is to be a measure of locality. The

probability that each of the first a nodes will communicate with the given

node will be greater than or equal to the theshold T. The list can be

approximated by a geometric distribution where:

1 -.B<
f (x) = - e a

a
The dependent variable x is the position in the list and f (x) is the

probability of communication with node at that position. The constant a can

be thought of as the approximate size of the neighborhood. The geometric

distribution has the desirable programming property of having a simple,

closed inverse. Also, its mean and variance are conveniently given as a and

a 2 , respectively.

-129-

In the sh'Tlulations, the message locality is a parameter. The parameter

a is the desired size of the neighborhood and is used, as follows, to generate

appropriate message traffic. A number Xis picked at random in the interval

between 0 a.n.d l. The inverse of the geometric distribution is used to find
a

what positionp in the list of nodes is represented by this probability:

p =-a Loge (aX)

At this point, p represents a randomly chosen number with the distribution

of the desired message traffic. It remains to select a corresponding

processing node in the network being simulated. T'nis process converts the

number p to a corresponding distance in the network being simulated. That

is, a distance d is chosen which is the number of communication links that

must be traveled in the network to reach any one of p processing nodes.

This transformation is different for each network topology. For each of

the topologies in question, the follow relationships hold, describing how many

nodes R can be accessed by traveling exactly l communication links, where

N is the total number of nodes in the network:

(1) Boolean N-cube (O<l:-::;;logN)

R = (logN)!
l ! (logN -l)!

(2) N-ary Tree (where b = branching ratio and 2:-::;; l :-::;; 21ogb N)

.Li
R = (b-1)b 2

(3) Two Dimensional Array (assuming large N and no boundaries)

R =4l

(4) Chordal Ring (assuming large N)

R = 4l

-130-

The above functions are integrated with respect to l (the number of

links) to produce a table. The table can be indexed by p to find the

corresponding entry which is the distanced, in links, that must be traveled

to access p nodes.

Of the specific nodes that are found to be exactly distance d from the

node that is to send a message, one member of the set is chosen at random.

The chosen node is then sent a message in the simulated system. As all the

nodes in the network exhibit the same behavior and select the destinations

of their messages by the same method, the overall message trai"fic has a

locality determined by the original parameter a.

In the simulation results, references to "Traffic" indicate the level of

message locality as set by a. A small a, in the range of 3 to 5, is highly local

traffic. An a of 12 or more may be regarded has substantially non-local

traffic for systems of less than 100 processing nodes. The parameter a ha,s

no effect on message length or frequency, it affects only the destinations of

messages.

Tue intent of this model of traffic locality is that it be used to represent

communication requirements of an object-oriented program. Since it is

possible for the same program to run on machines of different topology, the

parameter a has been made independent of distance. The simulation results

are normalized by the use of a. The use of the parameter a in the simulated

traffic of each system gives an indication of how each will react to the same

class of application programs. The group size, as represented by a,

describes a homogeneous program execution. Real programs may exhibit

nonhomogeneous communication by having objects with widely different

characteristics. The placement of objects in processors can cause

-131-

nonhomogeneous communication among the processors. Such progra..'Tis

might be better characterized as a composite set of several group sizes

rather than one group size. The follovving simulation results are based on

homogeneous programs whose locality of communication is characterized by

a single parameter a.

4.5. Simulation Results

For each of the interconnection strategies described, a simulation

program was written using the Demos simulation package [Birtwhistle79].

The size of the network, the message traffic, the queue sizes and the data

rate of the links were all parameters to the prograi.'TIS. In all, sLx network

types were simulated as listed in Table 4-1.

Table 4-1

Names of Networks Simulated

Name on Graphs

ARRAY
TREE
RING
NCUBE
ECUBE
SC UBE

Network Type

Square Toroidal Mesh
Tree with Branching Ratio 4
Chordal Ring
Unrestricted Boolean N-cube
Restricted Boolean N-cube
Non-queued Boolean N-cube

The default parameters used in the simulations have been previously

described. Unless otherwise stated, the following parameters were used:

(1) link data rate: 20 Megabits per second

-132-

(2) packet size: 256 bits

(3) maximum number of packets in each queue: 4

(4) distribution of message lengths: Normal distribution, mean 768 bits and

standard deviation of 256 bits

(5) distribution of message intervals: Normal distribution, mean 30

microseconds and standard deviation of 15 microseconds

The simulated systems were "run" for a simulated period of 2

milliseconds to cause them to reach an equilibrium. At this point, the data

collection facilities of the simulators were reset and the system was

simulated for B milliseconds. For most systems, several thousand messages

would be produced by each processing node and transmitted -within this time

period. During this phase of execution, various statistical measures were

taken of the network performance. A characteristic listing of the results of a

simulation is found in Appendix B. The following is a list of those measures

that were selected as important to this application. These quantities are

displayed graphically in Appendix A.

(1) Average message delay The mean time between the production of a

message by a processor and its completed receipt at its destination.

This is an overall measure of how good the network is at getting

messages to their destination with some given traffic density.

(2) Average message delay of messages traveling distance 1 This is the

mean delay seen by messages traveling through exactly one

communication link. This delay is intended to measure how good the

network is at moving very local messages to their destinations.

(3) Average packet delay The mean time required for a packet to reach its

destination. This number is clearly related to the average message

-133-

delay but removes the influence of the message length and the situation

where one or more packets delay the entire message. In graphs showing

this function, traces marked as SCUBE are plots of the time required to

complete an unbroken path to the destination. The SCUBE has no

packet concept.

(4) Processor Utiliza.tion This quantity is a measure of what percentage of

time processors were not idle, waiting to place their next message in a

queue. When the queue between the processor and the communication

node is full the processor is made to wait until space for a packet is

available. For some level of message traffic, this percentage is a

measure of the bandvvidth of the network as a whole, that is, its ability to

keep up Vvith processor message production.

(5) Port Utilization This quantity is the percentage of time the

communication links are actually being used to transmit data. This

number is their overall duty cycle.

The parameter space over which the networks were simulated was

narrowed to a specific area. Computing costs and address space limitations

prevented more than 96 processing nodes from being simulated in all but the

SCUBE configuration. To investigate the effects of scaling, the size of the

networks the range of 8 to 96 processors was heavily simulated . .A.lso, the

effects of varying the link rate from 1 to 50 megabits per second were

simulated, as well as, average message lengths from 3 to 8 packets. Message

locality, as measured by the a :parameter, was varied from 3 to 24 to

determine how well the various networks responded to traffic of varying

locality.

-134-

To measure the worst case traffic, the special case of uniform traffic was

simulated. Unliorm traffic is defined to be the case where any message has

an equal probability of being sent to any node in the network This can be

considered the worst case, because if objects were scattered at random over

the nodes, this type of message traffic would be the result. Surely, any

algorithm used to distribute the objects in the system would do no worse

than this.

Appendix A contains the bulk of the sirnulation data in graph form.

Here, the parameter space of_8 to 96 processors and a=3 to a::::12 and

uniform traffic is explored. Interspersed within this chapter are some of the

more significant results. Appendix B contains the complete set of data

output for one simulation. The network simulated was that of the NCUBE

with 64 processing nodes. The statistical measures and histograms are

typical of the data produced by the simulation programs.

In Figures 4-7 and 4-8 the effect of message locality on the message

delay and processor utilization can be seen. It is quite clear that the RING

and TREE connections suffer severely as the iocality parameter a is

increased. It is notable that the NCUBE connection actually improves or is

constant with decreased locality. This is explained by the fact that the

farther a message travels in the NCUBE, the more paths it has to choose

from. As the parameter a is increased, a larger percentage of the message

traffic is able to benefit from the increased number of paths. The ECUBE.

which restricts each message to one particular path, is seen to lose

performance slowly as messages are unable to avoid congestion. The SCUBE

suffers more severely since, less locality causes greater numbers of links to

be tied up in each message transfer. The best performers here, the NCUBE

-135-

and ECUBE provide delays of less than 100 microseconds and are able to

support more than 75% of the processor message production under the

conditions stated.

The effect of varying link data rates on performance is seen in Figures

4-9 and 4-10. The average message delay does not fall below 100

microseconds in the RING, TREE and SCUBE until the data rate of the links

exceed 35 Megabits per second. As serial data rates above this figure are

difficult to implement, this limits the choices of suitable con...'lection

schemes. One hundred microseconds is perhaps the upper limit of delays

that can be comparable to the delays involved in procedure calls.

-136-

1000

900 I
ITREE

800

700

Number of Processors = 64
Link Rate = 20 Mb/second

600
,.-..

"' "O
.:
0
0
Q) 500 "' 0
I-<
()
5
>. 400 "'
Q)

0

Q)
Cl()

"' "' "' 300 SC UBE
Q)
:;:
Q)
Cl()

"' I-<
Q)

> 200 <

100 EC UBE

= ~
NCUBE

0

3 6 9 12 15 18 21 24 27 30

Message Traffic

Figure 4-7

Message Delay vs. Message Locality

c
0
cu
N

:::>

""' 0

"' "' GJ
CJ
0

""' "-

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0
3 6 9

-137-

NCUBE

12

Number of Processors = 64
Link Rate = 20 Mb/second

RING

TREE

15 18 21 24

Message Traffic

Figure 4-8

Processor Utilization vs. Message Locality

27 30

,-,
I/)

"O
I:
0
(,)
Q)
I/)

0 ...
(,)

..=,

1000

900

800

700

600

500

400

300

200

100

0

\
\

5

-138-

\ \ Number of Processors = 64
Traffic = 8

I \

\ \

\ \
\\
\ \RING

\
\

\ \

\
\

SCUB\

10 15 20 25 30 35 40

Link Rate (Megabits/second)

Jilgure 4-9

Message Delay vs. Link Data Rate

45 50

i::
0

.....
cd

"'

1.0

.9

.8

.7

.6

.5

:: .4
.....
::::>
k
0
V>
V>
(!)

g .3
k

0..

.2

.1

0
5

-139-

Number of Processors = 64
Traffic = 8

I
I
i
I (/ I SCUBE

I
/RING

I

10

I ,
I

I ,

//

15 20 25

I
I

I
I
I

I
)

~o 35

Link Rate (Megabits/second)

Figure 4-10

TREE

40

Processor Utilization vs. Llnk Data Rate

45 so

-140-

4.5. L Deadlock

Deadlock was detected in several cases of simulation. This condition was

detected when most or all of the queues in the simulated system filled up

and packets ceased to move. The toroidal mesh was observed to deadlock

consistently for message localities of 5 or greater. For this reason, the

toroidal mesh is missing in most of the graphs. No attempt was made in the

simulation of the toriodal mesh or the chordal ring to find methods of

avoiding deadlock. though such methods may exist. To increase the

probability of deadlock, a special case traffic load was simulated. In these

simulations, the messages have an equal or uniform probability of being sent

to any node in the network. This traffic did cause the NCUBE to deadlock for

network sizes of 48, 80 and 96 nodes. This condition is indicated by dotted

lines on some graphs. The ECUBE, SCUBE and TREE never exhibited any

propensity for deadlock, thus supporting the contention that they are

deadlock free.

The RING also never showed signs of deadlock. This is explained by the

relatively large loops found in the chordal ring connection. The more links

that. constitute a loop, the lower the probability that they will all fill up. The

ease with which the toroidal mesh, with its small loops of 4 links, became

deadlocked bears out this contention. The NCUBE connection also has loops

as small as 4, but with its greater number of paths, it is less likely to fill its

queues.

4.5.2. Scaling of Communication Capabilities

One of the most important characteristics of interconnections

strategies is their performance as the size of the network is increased. A

topology which cannot maintain an acceptable level of performance for large

-141-

numbers of nodes cannot be considered suitable for application in an object

oriented machine.

In Figures 4-11 and 4-12 the characteristics of the networks are shown

as a function of the size of the network. In these figures, the message traffic

is highly localized with a=3. The various forms of the Boolean N-cube all

improve as the number of nodes increase, due the the increasing degree of

connection. The TREE connection, with a branching ratio of 4, has a nearly

constant level of performance. With traffic of 3, most of the messages can be

routed in two links in the TREE regardless of its size. The ARRA.Y and RING

connections lose performance steadily as the size of the system increases,

making them unsuitable. The same general behavior can be seen for other

values of a in Appendix A. Figures 4-13 and 4-14 show more pronounced

effects of scaling for a =8. The results of uniform traffic are shown in Figures

4-5 and 4-16.

Figure 4-17 shows how messages traveling through only one link are

affected by increasing system size. Here it is observed, that the RING and, to

some extent, the TREE connection exhibit increased delay in local messages

as the system grows. Again, the variations of the Boolean N-cube show

increasing performance as the system is made larger.

1000

900

800

700

600

500

400

300

200

100

0

-142-

Traffic = 3

TREE -=-====---
SCUBE ------.. -----

----~-------ARRAY

?·~""" NC UBE

8 16 32 48
I

64

Number of Processors

flgure4-11

Message Delay vs. Network Size (a=3)

80 96

1.0

.9

.8

.7

.6
c:
0
µ
ct!
N5
µ
:::i

"" 0
I/)
I/)

C1l .4 u e
P..

• 3

.2

.1

0

-143-

Traffic = 3

NCUBE

ECUBE

\ ""'' ' \ ~ RING \ ~-----
SCUBE

i
\

/\
\ "' ~

8 16

\
TREE

' \

\
\

\
\

'v~ ARAAY

~

I
32 48 64

Number of Processors

Figure 4-12

80 96

Processor Utilization vs. Network Size (a::::3)

1000

900

800

,...... 700
"' "'O
i::
0
t)
Q)

"' 0
!-< 600 t)
e:,
>.
ctJ
Q)

Cl 500
Q)
OJ)
<ti

"' "' Q)
;:;::
Q) 400
bl)

ctJ

"" Q)

~

300

200

100

0

-144-

Traffic = 8

/\,

8 16 32

I
I

I

I'
48

I
I

!

I

I
Imo

I

I
I

I I
64

TREE

Number of Processors

Figure 4-13

Message Delay vs. Network Size (a=B)

SCUBE

EC UBE

NCUBE

BO

' \
\

\
\
\

I I
96

-145-

1.0

Traffic 8

.9

\ NCUBE
I

.8 y
I

\ ECUBE
.7 ' '

.6
c:

~
0

·.-! ..,
ctl
N SCUBE • .-1 .5

·.-! \ ..,
;:J

~
0

"' "' Q) .4 ()

0
\ ~ ,,,.

I

\
\

.3 \'

.2 TREE ~

.1

0

8 16 32 48 64 80 96

Number of Processors

Figure 4-14

Processor Utilization vs. Network Size (a=B)

,..,.,
"' "Cl
i::
0
t)
Q)

"' 0
!-<
t)
e

·'-'

>.

"'
Q)

c
Q)
OD

"' "' "' Q)

:::::
Q)
OD

"' !-<
Q)

> <

-146-

1000

Traffic = Uniform

900

800
/;-----

I

700
r~v

/
I

600

500

400

300

200 ·-
100 -------------------·-- -·-- -N-CU-BE- - -- - - - - - --

0
8 16 32 48

I
64

Number of Processors

Figure 4-15

80

Message Delay vs. Network Size (Uniform Traffic)

l
96

-147-

1.0

--Traffic = Uniform --------
.9

• 8

.7

.6

ECUBE
i::
0,
ctl .5 "',
:::>

'"' 0
I/) .4 I/)

Q)

u
0

'"' 0..

:3

.2

.1

0

8 16 32 48 . 64 80 96

Nwnber of Processors

Figure 4-16

Processor Utilization vs. Network Size (Unif. Traf)

......
I/)

-0
c:
0
u

1000

900

e:; 800
0

'"' (.)

-=-
Cl)
(.)

c:
al ...,
I/)
-0

700

t>ll 600
c:

......
Ql

>
o:!

'"' ...,
500

400

300

200

100

0
8 16

-148-

Traffic 8

,~-
/ ~

/'NG
I

I

NCUBE & ECUBE

32 48
I

64

Number of Processors

flgure4-17

so 96

Local Message Delay vs. Network Size (a:::8)

-149-

The simulation results clearly show, that of the topologies tested, only

the various forms of the Boolean N-cube maintain acceptable levels of

performance as the size of the system grows. As a Boolean N-cube is made

larger, more commurJcation lii"lks must be added than nodes, increasing the

performance of the structure. The ECUBE version of the Boolean N-cube is

observed to be only slightly less powerful than the NCUBE. The SCUBE

performance scales well with system size but is considerably worse than the

ECUBE at all points.

4.6. Wireability of the Boolean N-cube

The Boolean N-cube has been demonstrated to have many desirable

communication properties. It is not without its pitfalls, though. There are

two areas of concern about the Boolean N-cube.

This structure is inherently of a variable degree. That is, the number of

connections that must be made to each node in the network is a function of

the number of nodes. The ring, tree and mesh topologies are of fixed degree

having a constant number of connections for any network size. Clearly, the

increasing degree of the Boolean N-cube is partially responsible for its

desirable communication characteristics. The number of connections

required at each node in a Boolean N-cube is log2N, where N is the number

of nodes in the network. This relationship does not require that the nodes be

individually modified as nodes are added to the network. A sufficient number

of connections can be provided at each node in advance of their need, such

that a large network can be built incrementally. If 16 connections can be

provided for, a network of 64K nodes can be built. Twenty connections could

as well be provided, but it is likely that other factors, such as, heat

dissipation, power distribution, space requirements and wireability will limit

-150-

the size of a system to less than one million processors.

Tue total number of connections in a Boolean N-cube connection is

N "2 log2N. Tue wiring required by this topology thus increases more rapidly

than linearly w"ith the number of processors. For any given interconnection

technology, there must then be a maximum practical limit to the size of a

Boolean N-cube as the costs of wiring each additional node increase. In this

section, it is shown that given present packaging and wiring technology, a

system as large as 64K processing nodes could be implemented. It appears

that this number is presently the practical limit, though may not remain so

with time. A system made up of this many processing nodes is clearly of a

significant size and quite beyond the processing capability and cost of

e:Xisting systems.

Given a sufficient level of integration, a processing node with 16

connections could fit in a 24 pin package. In this case half duplex

communication is assumed, where only one conductor is required per link.

Sixteen communication connections, four for the garbage collection

algorithm and four connections for power and ground permit a standard 24

pin ceramic DIP to be utilized. This package can be mounted on a 0.8 inch by

1.4 inch grid. A 64K node network can be made up of such parts

interconnected by a hierarchy of printed circuit boards and backplanes.

Tue processing node chips are first mounted to a conventional printed

circuit board. A 4 by 32 array of these chips on a board would have a

minimum size of about 7 inches by 27 inches. The interconnection topology

requires that 9 connections leave the board for each processing node or 1152

signal wires. If board edge connectors are used with 10 connections per inch,

about 120 inches of connector are required. If both long edges of the board

-151-

and both sides of the board are used, the long dimension of the board must

be at least 30 inches, allowing for power and ground connections. L'sing both

edges of the board requires the use of zero insertion force connectors like

those used in the Symbol machine [Cowart71]. These are cam operated

connectors and are somewhat exotic but workable. A simple analysis of the

wiring within a board reveals that 4 signal layers are sufficient to

interconnect the 128 chips and the edge connectors.

The boards can be mounted between a pair of backplanes. Half inch

spacing of the boards permits 64 boards to be mounted between a pair of 30

inch by 32 inch backplanes. This 64 board assembly of the packaging

hierarchy contains 8192 processing nodes. The interconnection of boards to

each other within this unit could be made by -vvire-wrap on the two

backplanes.

To complete the system, 8 such units must be interconnected. Each of

the 8192 processing nodes within a unit has 3 external connections, requiring

each unit to provide three sets of 8192 connections to other units. In

addition to the local connections, the pair of backplanes must provide for the

routing of these external connections. If two of the 3 sets of 8192

connections are on one of the two backplanes, then 16384 parallel wires must

be provided for. As these wires are of substantial length, they must be near

a ground plane to provide noise immunity and consistent impedance.

Printed circuit boards can permit 50 etched wires per inch. Thus, about 327

inches are required. For a 30 inch wide backplane, 12 layers are needed. A

backplane with these features would be unusual and not inexpensive but it is

well within the capabilities of current technology. Eighteen layer printed

circuit boards are used routinely in military and aerospace applications.

-152-

A method of organizing the 8 units required to complete the system is

shoVvn in Figure 4-18. The dimensions of the backpanel pairs (about 30 by 32

by 10 inches) make the overall size of the system, less the pmver supplies,

about 8 feet long by 4 feet high by 3 feet deep. The connections shown

between the backplanes as bars in the dravving each represent 8192 wires.

These connections are difficult to provide. They could be made using a

flexible printed circuit board with a 30 inch by 3 inch block of wire wrap pin

connectors on each end for connection to the backplanes. Flexible printed

circuit technology or large quantities of ribbon cable could also be used.

The longest of these connections would be approximately 8 feet long.

-153-

Backpanel pair containing 64 boards c:-- Unit 0

Unit 1

Unit 2

Unit 3

Unit 7

Unit 6

connector
Unit 4

Figure 4-18

Top Level Interconnection of 64K Node Boolean N-cube

-154-

Power distribution can be accomplished at the edges of the backplanes.

The heat dissipation of such system could present a problem. If each

processing node dissipates less than 0.25 watts, the system could be air

cooled. though with difficulty. Liquid cooling might very well be needed if the

processing nodes are not implemented in a low power tech_nology such as

CMOS.

With existing, though somewhat exotic, packaging techniques 64K

processing nodes can be connected in a Boolean N-cube. This size of system

is sufficient to be considered interesting and could yet grow with advances in

packaging and interconnection technologies.

4.7. Conclusions

It is the purpose of this chapter to show the existence of a suitable

topology for interconnecting large numbers of processing nodes to form an

object-oriented machine. Of the ciasses of structures investigated, only the

Boolean N-cube exhibits the performance and scaling characteristics

required. Owing to the possibility of deadlock, traffic routing must be

modified to prevent deadlock from occurring. A message routing scheme

was presented which is deadlock free. A non-queued communication system

was presented which is also deadlock free and which scales well -with system

size. However, the overall performance of this scheme was considerably

lower than that of the queued Boolean N-cube with restricted message

routing. This queued Boolean N-cube, using Sullivan's routing algorithm is

then the best choice, as it fulfills all of the requirements stated.

The choice of the Boolean N-cube as a suitable interconnection topology

does not imply that it is the only suitable topology. Other schemes may work

ei.s well and have lower implementation costs. Some variation of the

-155-

hypercube structures proposed by [WittieBl] show some promise of this. The

relatively low duty cycle exhibited by the links in the Boolean N-cube

suggests that contention networks with a limited number of nodes per bus

might be used rather than point-to-point connections. It seems clear from

the simulation results presented here that networks of low degree generally

lack the performance arid scaling necessary to this application.

-156-

Chapter 5

A Localized. Vrrtual Object Environment

5.1. Int..""Oduction

The object-oriented, homogeneous machine presented in the previous

chapters, raises some new problems. This chapter proposes potential

solutions to some of these problems. However, these solutions are

unsupported by analysis or simulation but provide a starting point from

which a working system can be designed. The methods presented here for

controlling the locality of reference and the locating of objects are heuristic

and do not lend themselves well to a priori study. A convincing analysis of

them will require a better understanding of concurrent object oriented

programming.

In the architecture described, objects must move within the structure

to provide real concurrency, to balance the processor and memory loads and

to maintain some degree of locality with each other. The memories of the

processing nodes must not directly limit the number of objects that can

exist in the system at one time. Mass storage devices must be used to hold

inactive objects until they are referenced. As one object sends a message to

another object, it must be possible to determine the processor in which the

destination object is located with some ease.

This chapter suggests solutions to these problems. In all cases the

solutions are of a heuristic nature and are greatly affected by the machine

-157-

structure, the processing nodes, and the programs they execute. This

characteristic makes performac"lce predictions difficult and unreliable. For

any particular set of heuristic procedures it is possible to contrive situations

in which they perform poorly. On the other hand, for any situation one can

usually contrive heuristics that will have the desired effect. The algorithms

presented here are analogous to the scheduler and swapping strategy in a

conventional system of today, in that, they will require "tuning" to achieve a

desired level of performance.

Three areas of concern are addressed. First, a strategy for moving

objects between processing nodes to preserve locality and concurrency is

presented. Related to this strategy is a means of providing an virtual object

environment, one in wfi.ich an object need not be resident in a processing

node memory but may be stored on a device such as a disk until it is

referenced. A method for finding the processor in which a given object

resides is also presented. As with the garbage collection algorithm, these

techniques must not require global communication but must use local data

to insure that they scale well as the size of the system is increased. The

system is assumed to have a Boolean N-cube topology as suggested in

Chapter 4.

5.2. Maintaining Locality Among Object References

The most immediate need for moving objects from one processor to

another occurs when objects are being created in one processor and it

exhausts its heap area. We assume here that objects are always created in

the same processing node as their creator but may be subsequently moved.

When a processing node runs out of some resource, such as memory, it mu8t

be able to send excess objects to another processor. Some of the objects

-158-

may be garbage but cannot be presumed garbage until the garbage

collection algoritb.Jil completes its current cycle.

If objects cannot be moved between processors. there can be_ little

opportunity for concurrency, since the objects will have to share a single

processor. A message from an object that requires no response cannot

cause real concurrent behavior unless the source and destination objects are

in different processors. If, on the other hand, two objects consistently

communicate with messages requiring a response, then it is desirable to

place the objects in the same processor to minimize communication costs.

The motion of other objects and reference variables in the system may

result in excessive communication costs between objects. If several closely

related objects reside in distant processing nodes, there will be a longer

communication delay between them and more message traffic generated

than if the objects were resident in neighboring processors.

In data flow programs the objects or operators of the program are fixed

and communicate with each other by a fixed topology. For such systems, a

resource assignment can be worked out in advance of the program execution

to assign the operators to various processors in such a way as to minimize

the cost of communication i.n the program. The work of [WuBO] presents an

algorithm for this purpose.

In the object-oriented environment, the topology of the communication

changes as new objects are created, as old objects are removed and as

reference pointers are exchanged between objects. This dynamic behavior

requires a dynamic, run-time means of preserving some level of locality

between related objects. To make decisions concerning which objects to

move and where to move them, some measure of communication costs must

-159-

be accumulated for each object. Storing and updating such data will, of

course. consume resources.

Each object can have associated Vvith it a quantity for each port of the

processing node. Each port can be thought of as a direction in N-space. If

the quantity is constantly updated to reflect the amount of message traffic

to the object in each direction, a determination can be made of whether the

object should be moved. If one or more of the directional costs becomes

sufficiently larger than the others, it is an indication that a closely related

object resides in the associated direction. The object can then be moved to

the neighboring node in that direction, placing it closer to the source of the

message traffic.

Many heuristic schemes can be developed to make selections based on

such data. Here we present a simple scheme using several controlling

constants to regulate the policy of the decisions. With each object there is a

list of logN + 1 variables. The additional quantity is associated Y•ith traffic

within the object's processor, the other quantities are each associated with a

commUi.J.ication port.

where d = log2(num,ber of processors)

As the machine runs, the quantities are updated in the following

manner. This task could be done by the communication processor or by

special purpose hardware to avoid unnecessary load on the the object

processor.

Far a Message an Part j

MsgLength
Xj (-- x; + Rate

-160-

Rate is a constant controlling how quickly xi responds to message

traffic. A large value will reduce the effect recent traffic might have on the

value of xi.

As execution proceeds, xi will rise -vvith message traffic. If resources are

needed, or other factors warrant it, the objects may be tested in the

following manner to find candidates to be moved. A threshold value T is first

computed.

T - Resist~
- LJ:i;

d i=O

Resist is a constant controlling how strongly objects resist motion. Resist

would usually be greater than 1. with larger values causing objects to move

less frequently for identical message traffic. The quantity T is a threshold

against which the individual xi are tested. If any xi exceeds T then the

object vvill be moved. The largest xi selects the direction in which the object

is to be moved. The object is sent to the neighboring node connected to tb'e

port associated with the xi and when it arrives all its xi are set to zero.

To accommodate the needs of concurrency, a modification of this

procedure will push concurrent objects away from each other and attract

non-concurrent objects. If x 0 is incremented only when the message does

not require a response, then x 0 will become a measure of lost opportunities

for concurrency. Thus, if x 0 both exceeds the threshold and is the largest xi

then it indicates the object should be moved out of the processor it now

resides in and moved to one close by to take advantage of concurrency. If x 1

is incremented only for messages that require a response, then concurrently

executing objects will not generally be moved into the same processor.

To prevent instabilities in the system, such as, objects chasing each

other or oscillating between processors, they must be given inertia. A simple

-161-

th"Ile-of-day stamp on the object, made each time the object is moved, would

prevent the object from again being moved until a specific period of time had

elapsed. The period of time could be computed based on past behavior or

could be a constant. Too rapid movement of objects would consume

excessive communication bandwidth and adversely affect the ability of the

system to locate specific objects.

Variations in the controlling constants and in the details of the

procedure permit it to be adapted to a range of object environments. Before

machines of the type described here are built and programmed. it will be

very difficult to predict the effectiveness of heuristic methods such as these.

However, it is clear that tl-iis method is one that could dynamically preserve

the locality of reference in such a system. Since it makes its decisions on

purely local data it will scale well in progressively larger machines.

5.3. Providing a Virtual Object Space

As with conventional machines, the size of a program that can be

accommodated by the system should not depend on the number of

processors or on how much physical memory they have. Paging and

segmentation techniques have evolved in von Neumann architectures to

make the memory address space available to user programs independent of

real memory constraints. The basic addressable unit of an object-oriented

machine is the object and this section presents a method for permitting a

machine to manipulate and execute more objects than it has physical

memory to store at one time.

Virtual memory, and hence virtual objects, are not really virtual at all

but are quite real. All such schemes require additional memory for those

parts of a program that do not fit into the machine's real memory. Usually

-162-

this additional memory is a mass storage device such as a disk. Virtual

memory systems must allocate sufficient swapping space on a disk to store

the address spaces of some maximuxn nu..'Tlber of processes. In a virtual

object environment, the size of the available mass storage devices will

determine the maximum number of objects that can be supported in the

system.

To prevent bottlenecks from being formed in the system, it is clear that

mass storage devices should be distributed among the processing nodes

rather than be concentrated at one location. The disks must be assigned to

processing nodes in such a way that all processing nodes can conveniently

communicate with the disk closest to them. In the Boolean N-cube this

effect can be had by assigning a disk to every processing node with a 0 mod 4

or 0 mod B address. This assignment would place one disk in the system for

every 4 or 8 nodes. The ratio can be changed to distribute the desired

amount of storage throughout the machine. It is important that the ratio of

the number nodes to the number of disks be a power of 2 such that a

processing node need only clear the lower n bits of its own address to

generate the address of the nearest node with a disk, where zn is the ratio.

During the execution of program objects, a node will be able to

periodically recover memory occupied by garbage but will also be called on

to create new objects and accept objects from other nodes. When the node's

memory resources become diminished, it will have to select objects to be

moved to free up the memory and processing resources they consume. The

preceding section showed how objects can be selected to be moved for

execution in other nodes with the intention of reducing communication

delays and costs. Additionally, objects should be moved to the disk if they

-163-

become inactive.

An inactive object is one that either has no messages to process. or one

that is waiting for a response from another object. If an object remains in

one of the above states for an extended period, it is clearly a good candidate

for removal to the disk. This condition is analogous to a page in a virtual

memory system that has not been recently referenced and is then swapped

out of memory to the disk to make room for another page. An object that

has no messages to process may be garbage as well as inactive, if it is

garbage it will be eliminated at the end of the) next garbage collection cycle.

An object that is waiting for a response from another object is clearly not

garbage but can nevertheless be swapped to disk until the response is

available.

Objects can be time stamped when they send or receive messages or

engage in other computational activity. When the processor scans its objects

for candidates for removal, one criterion will be the length of the interval

since each object was last active. Objects can first be moved based on their

communication with other objects as suggested in the previous section. If

the node must eliminate more objects then it must select those that have

been inactive longest and move them to the closest node with a disk The

time stamp allows the nodes to implement a least-recently-used algorithm on

inactive objects. The transfer of objects in this manner will cause them to be

considered to reside in the node with the disk. If messages are received for

these objects they will then resume their activity and perhaps be moved to

another processing node.

A processing node with a disk can be expected to receive a steady

stream of incoming inactive objects. Since all garbage objects will also be

-164-

inactive objects, all garbage will eventually be sent to these nodes unless

they are collected first. Also, as these nodes receive messages for their

objects, there will be a continual stream of re-activated objects mov--ing away

from the nodes with disks. The difference in the volume of the two streams

will be the garbage objects left in the node and never referenced. The nodes

with disks must implement the garbage collection algorithm just as any

other node must but they must include all the nodes on their disks in the

algorithm.

The special responsibilities of the nodes Vtith disks require additional

hardware support. To operate the disk drive a specialized processor can

made part of the node communicating with the object memory. The

scanning of the disk in performance of the garbage collection algorithm can

be delegated partly to this processor. To maintain a level of performance

consistent with the other nodes in the system, the nodes with disks will

require space for a larger table of objects to accommodate those objects on

the disk. The object tables that must exist in each node are further

discussed in the next section. To provide space for the table additional

memory must be available to nodes with disks. If the technology permits, an

additional level in the storage hierarchy could be added to these nodes in the

form of magnetic bubbles or CCDs. The decreased access time of these

devices would improve the response time of these nodes.

To some extent, the addition of disks and their accouterments to the

system will destroy some of the homogeneity of the machine. However, mass

storage devices of some kind are a necessary ingredient to any real system

and must be included. Homogeneity is preserved if one considers that its

granularity has been increased so that the basic unit of replication in the

-165-

system is a set of 4 or 8 processing nodes, one of which includes a disk drive.

5.4. Locating Objects in the Network

One of the fundamental services tbe run-time systems executh"'"lg in the

nodes must perform is the ability for one object to send a message to

another object regardless of what node it may reside in. The motion of

objects, whether for preservation of locality or for inactivity, will make an

object a moving target with respect to messages intended for it. Clearly, the

nodes do not have the memory resources to store a table entry locating each

object in the system, nor could such tables be kept consistent as objects are

moved. In this section, the problem of maintaining a small table and sending

messages to the proper processor are addressed.

To begin, each node will maintain a table of a limited size. The table will

have to contain an entry for every object actually resident in the node,

therefore the size of the table will be related to the amount of real memory

available to the node. The table will contain entries for other objects as well.

Object identifiers will, no doubt, be large integers of perhaps 32 or more bits.

To efficiently access the table with object identifiers, the table will have to be

hash coded.

When a message is received by a node, or when an object in the node

attempts to send a message, the table entry for the destination object is

accessed. If an entry exists, it will indicate the address of the node in which

the object was last know to reside. For incoming messages, the destination

node should be the address of the current node, if so, the message is given to

the indicated object. If the entry indicates some other node, then the object

has been moved and the entry was updated to point at the object's new

home. The message is then forwarded to the indicated node and a message

-166-

is sent to the originator indicating the new node in which the object can be

fous1d so that it can update its own table entry for that object.

For outgoing messages, the message is sent to the node indicated by the

table entry. Tne entry may refer to the same node and the message is

directed at another object in the same processor. Otherwise, a message is

sent to the node indicated by the table entry. If the destination node has no

entry for the destination object, it sends the message back to the originator

indicating the object is unknown.

When messages are returned because the destination object was

unknown to the destination node, or when there is no table entry for the

destination object of an outgoing message, the processing node must

determine where in the system the object resides. To determine the address

of an object, every node in the system must be asked if it "oVv-ns" the object

or objects in question. Sullivan [Sullivan77] presents an algoritbm whereby ,a

message can be broadcast to all nodes in a Boolean N-cube with no

redundancy. The time required to do so is log2N. Using a broadcast

message, every node can be asked to respond to the originator of the

message if it owns any specified objects. Processors with disks must respond

even if the object is on their disk, thus such nodes will require

correspondingly larger tables. The response is used by the originator to

construct a new table entry for that object.

Since the tables are of a limited size and clearly cannot hold entries for

all the objects in the system, there must be a means of freeing space in the

table for new entries. Table entries, like objects, can be time stamped to

indicate the time of their last access. When additional space is required in

the table, old entries are destroyed on a least-recently-used basis. Entries

-167-

for objects ovmed by the processor itself can never be purged until the

object is moved to another processing node.

The broadcast message used locate individual objects in the system is

global communication, and as such, cannot be used except infrequently. To

insure that probability of not finding a table entry is low, the tables have to

be large enough to hold a "working set" set of entries. The concept of a

working set of objects brings the issue back to one of locality. If those

objects that communicate frequently amongst each other do not reside in

neighboring processors, the number of entries that must be stored in the

object table will have to be large. Also, if objects are permitted to move

between nodes too quickly, the forwarding of message will slow down

communication and increase the number of table entries used in the system.

A real, working system running substantial programs will be required to find

the best tradeoffs between these issues and to find a suitable range of

para.meters for the object tables and the object transfer policies.

-168-

Chapter 6

Conclusions and Summary

In this thesis, the essential elements of a general purpose, homogeneous

machine have been presented. To provide a good fit with VLSI technology,

the machine would consist of a potentially large set of regularly connected

processors, each with their own memory. While many such machines have

been proposed, none can be considered general purpose by the definition of

Chapter 1. To provide a general purpose programming environment, a

modification to object oriented languages such as Simula was shown to

provide a convenient notation for concurrency as well as the modularity,

locality and compartmentalization necessary in the the system.

Object oriented languages provide a natural programming concept

which encourages the user to arrange programs as data objects which are

defined to include the operations related to them. Objects communicate

with other objects by passing messages. Messages are queued for each

object, where various objects may execute the operations required by the

messages concurrently. Concurrency has been made available to the

programmer by making a small extension to the semantics of message

passing. The simplicity of using object oriented programming concurrently

not only makes concurrent· programming more convenient but makes the

specification of deterministic programs less error prone. The utility of this

style of concurrent programming was illustrated with several practical

programming problems.

-169-

One important characteristic of a homogeneous machine must be its

ability to provide increased performance in proportion to its size. To meet

this requirement neither the hardware not the software can employ

techniques that degrade as the system grows. To permit performance to

scale upward, we have shown that the interconnection of the parts of the

machine must be of a higher degree than tree, ring or mesh connections

provide. Specifically, the Boolean N-cube connection has been shown to

provide the necessary performance for various sizes of systems.

In providing an object oriented environment in a homogeneous machine,

several new problems arise that are not found in conventional von Neumann

architectures. The first of these is distributed, on-the-fly garbage collection.

A new algorithm was developed which meets the needs of a homogeneous

machine. Its performance scales well for increasing numbers of elements in

the system. The algorithm is simple and sufficiently general purpose such

that it may find usage in other applications, such as distributed data base

systems. The garbage collection algorithm does not depend on shared

variables or reference counts or on intricate pointer structures. It

accomplishes its task with a minimum of overhead costs. Simulation of the

algorithm has demonstrated that it performs adequately.

Locality must be maintained in a homogeneous architecture. Object

oriented programs are dynamic, where objects are created and destroyed at

a high rate and where object pointers change their topology rapidly. In a

dynamic environment, the objects must be enabled to move about in the

system, both to insure concurrent execution and to minimize

communication delays. A heuristic method was presented that preserves the

locality of references between objects in the system. Objects that can

-170-

execute concurrently are moved to separate processing nodes so that they

may do so. Objects that communicate heavily are moved to neighboring

processing nodes to reduce communication delays. Methods for locating

objects in the system and for moving less active objects to mass storage

devices have also been presented.

The sum of these techniques is a programming environment that

supports concurrent, object oriented programming on an er..semble of

identical processors. This system has the ability to provide greater

performance by the_ addition of more processors. Tbis ability is seen only to

a small extent in existing mac1'Jnes, for which it may be possible to add only

two or three more processors to a system. This homogeneous arcl1itecture

will scale well for thousands of processors. The advancement of general

purpose programming to large nu_rnbers of processors requires the

algorithms and techniques described in this thesis. A suitable concurrent

programming language, a suitable interconnection topology, as well as

garbage collection and localization procedures which scale with system size,

have all been addressed and solved herein. In effect, we have shoVlrn how a

large number of interconnected processors can be programmed in a simple

style to work together on the same problem without regard to the size of the

system or the exact nature of its components.

A fuli scale implementation of the system presented in this thesis will,

no doubt, raise new questions. An implementation will also provide the

opportunity to find suitable values for the many parameters of the system.

Some of the questions that must be answered are: What instruction set

architecture is best suited to object oriented languages? How much memory

should a processing node have? How large should mass storage devices be

-171-

and how much additional memory will they require? How best to organize an

operating system and what should its functions be?

The object concept pervades the entire machine and can be expected to

be felt in the services the operating system. Many of the traditional

concepts of files, processes, tasks and jobs will be modified in such a system.

Any object can be thought of as an independent task or process. The

concept of a file as a sequence of bytes could be replaced by structures of

objects where attributes implement any access method the programmer

defines.

Ensemble machines, consisting of large numbers of identical parts,

should be able to provide a very high degree of reliability due to the

redundancy of the structure. If any single processor in a Boolean N-cube

structure fails, no other node in the structure is isolated. The structure

should be able to operate in a degraded configuration until such parts ar,e

repaired. A more difficult problem is to provide the necessary data

redundancy and backup in the system to permit the system to continue its

execution in the presence of a faulty node. As the number of nodes in the

structure grows larger, reliability issues will achieve greater importance.

One virtue that will remain with homogeneous machines of any size is their

ability to easily isolate and repair faulty nodes. The regularity of the

structure makes isolation of faults to the correct node much simpler than

fault isolation in large single processor machines and the use of identical

parts makes its repair trivial.

The next step to be taken in this line of research is the construction of a

test vehicle. Using existing microprocessor technology with the addition of

custom communication hardware, a processor/memory node can be built on

-172-

a single printed circuit card. A machine consisting of 128 or 256 such boards

could be assembled in the space of several racks. Mass storage devices

would not be necessary in the test vehicle but could be added in the future.

A run-time system based on the teclliJiques and algorithms of Chapters 3 and

5 must be written to be resident in every processing node. A cross compiler

must be developed to compile concurrent Simula as presented in Chapter 2

for execution in the processors of the test vehicle.

A test vehicle will validate the ideas presented in this thesis and will

enable suitable parameters to the heuristic algorithms of Chapter 5 to be

found. Given a compiler and run time system for the test vehicle, the means

to write general purpose programs for the machine will be available. As a

body of experience with programming a homogeneous, concurrent machine

develops, the run time system of the machine can be improved to meet

requirements of real programs.

Until machines exist which provide positive incentives for concurrent

programming, concurrent notations and algorithms will be restricted to

research topics. With the advent of inexpensive computing structures made

possible by VLSI. such machines can now be economically constructed. This

thesis has shown how a system can be built around such a machine that will

fulfill the basic requirements of general purpose programming. This

approach is a major departure f:rom the von Neumann style of computer

architecture yet it fits well with both the integrated circuit technology and a

simple concurrent programming model.

-173-

Bibliography

[AlmesBO]
Guy T. Almes, "Garbage Collection in an Object-Oriented System", Ph.D
Thesis, Department of Computer Science, Carnegie-Mellon university,
Jurie 1980.

[Anderson75]
G. A. Anderson and E. D. Jensen, "Computer Interconnection Structures:
Taxonomy, Characteristics and Examples", ACM Com.puling Surveys,
Volume 7, pp. 197-213, December 1975.

[ArdenB1]
Bruce W. Arden and Hikyu Lee, "Analysis of Chordal Ring Network", IEEE
Transactions on Computers, Volume C-30, pp. 291-295, April 1981.

[Arnborg72]
Stefan Arnborg, "Storage Administration in a Virtual Memory Simula
System", BIT: Nordisk Tidskrift for Inform.alionsbehandling, Volume 12,
pp.125-141, 1972.

[Arvind81]
Arvind and Vinod Kathail, "A Multiple Processor Data Flow Machine that
Supports Generalized Procedures",Proceedings of the 8th Symposium
on Computer Architecture, pp.291-302, May 1981.

[Backus78]
John Backus, "Can Programming Be Liberated from the von Neumann
Style? A Functional Style and its Algebra of Programs",
Com.m.unications of the ACM, Volume 21, Number B, pp. 613-641, August
1978.

[Baker78]
Henry Baker, "Actor Systems for Real-Time Computation",
Massachusetts Institute of Technology, Laboratory for Computer
Science, TR-197, March 1978.

[Benes65]
V. E. Benes, Mathematical Theory of Connecting Nehwrks and
Telephone Traffic, Academic Press, New York, 1965.

[Bentley79]
J. Bentley and H. T. Kung, "A Tree Machine for Searching Problems",
Proceedings of the IEEE 1979 International Conference on Parallel
Processing, Bellaire, Michigan, August 1979.

[Berkling75]
K. J. Berkling, "Reduction Languages for Reduction Machines",
Proceedings of the 2nd Symposium on Com.puter Architecture, pp. 133-
140, 1975.

-174-

[Birtwblstle73]
G. M. Birtwblstle, 0-J Dahl, B. Myrhaug, K. Nygaard, Sim:ula Begin,
Petrocelli, New York. 1973.

(Birtwblstle79]
G. M. Birtwblstle, J)iscrete Event 1Jodelling on Simula, Macmillan; June
1979.

(BobrowBO]
D. G. Bobrow, "Managing Reentrant Structures Using Reference Counts",
ACM Transactions on Programming Languages and Systems, Volume 2,
pp.269-273, July 1980.

[BrowningBO]
Sally Browning, "The Tree Machine: A Highly Concurrent Computing
Environment", Ph.D Dissertation, Computer Science Department,
California Institute of Technology, 1980.

[Brinch Hansen75]
Per Brinch Hansen, "The Programming Language Concurrent Pascal",
IEEE Transactions on Software Engineering, Volume 1. Number 2, pp
199-207, June 1975.

[Brinch Hansen78]
Per Brinch Hansen, "Distributed Processes: A Concurrent Programming
Concept", Communications of the ACM, Volume 21. pp.934-941.
November 1978.

[Chen82]
Marina Chen, Martin Rem and Ronald Graham, "A Characterization of
Deadlock Free Resource Contentions", Computer Science Department,
Technical Report Number 4684, California Institute of Technology,
January 1982.

[Clinger81]
William D. Clinger, "Foundations of Actor Semantics", Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, AI-TR-
633, May 1981.

[Collins60]
George Collins, "A Method for Overlapping and Erasure of Llsts",
Communications of the ACM, Volume 3, pp.655-657, December 1960.

[Cowart71]
B. E. Cowart, R. Rice and S. F. Lundstrom, "The Physical Attributes and
Testing Aspects of the SYMBOL System'', Proceeding of the AFIPS Spring
Joint Computer Conference, Volume 38, pp. 589-600, Spring 1971.

(Davis78]
A. L. Davis, "The Arcbltecture and System Method of DDMl: A Recursively
Structured Data Driven Machine", Proceedings of the 5th Symposium on
Computer Architecture, pp.210-215, April 1978.

(Dennis74]
Jack B. Dennis and David P. Misuna~. "A Preliminary Design for a Basic

-175-

Data-Flow Processor", Proceedings of the 2nd Symposium on Computer
Architecture, pp. 126-132, December 1974.

(Despain78]
A. M. Despain and and D. A. Patterson, "X-Tree: A Tree Structured
Multiprocessor Computer _,\rchitecture", Proceedings of the 5th
Symposium on Computer Architecture, pp. 144-151, April 1978.

[Deutsch76]
L. Peter Deutsch and Daniel G. Bobrow, "An Efficient, Incremental,
Automatic Garbage Collector", Communications of the ACM, Volume 19,
pp. 522-526, September 1976.

[Dijkstra78]
Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten and E. F.
M. Steffens, "On-the-Fly Garbage Collection: An Exercise in Cooperation",
Communications of the ACM, Volume 21, pp.966-975, November 1978.

[FinkelBO]
R. A. Finkel and M. H. Solomon, "Processor Interconnection Strategies",
IEEE Transactions on Computers, Volume C-29, pp. 360-371, May 1980.

[Gries77]
David Gries, "An Exercise in Proving Programs Correct",
Communications of the ACM, Volume 20, pp.921-930, December 1977.

[Harris77]
J. A. Harris and D. R. Smith, "Hierarchical Multiprocessor Organizations",
Proceeding of the 4th Symposium on Computer Architecture, pp.41-48,
March 1977.

[Hewitt77]
Carl Hewitt, "Viewing Control Structures as Patterns for Passing
Messages", Artificial Intelligence, Volume 8, pp.323-364, 1977.

[Hewitt BO]
Carl Hewitt, "The Apiary Network Architecture for Knowledgeable
Systems", Conference Record of the 1980 LISP Conference, Stanford
University, August 1980.

[Hoare78]
C. A. R. Hoare, "Communicating Sequential Processes", Communications
of the ACM, Volume 21, Number B, pp. 666-677, August 1978.

[Horowitz81]
E. Horowitz and A. Zorat, "The Binary Tree as an Interconnection
Network: Applications to Multiprocessor System and VLSI", IEEE
Pransactions on Computers, Volume C-30, pp. 247-264, April 1981.

[Ingalls78]
Dan Ingalls, "The Smalltalk 76 Programming System: Design and

Implementation", Proceedings of the Pifth ACM Conference on
Principles of Programming Systems, pp. 9-16, January 1978.

-176-

[Johnsson81]
Lennart Johnsson, "Computational Arrays for Band Matrix Problems",
Department of Computer Science, Display File 4287, California Institute
of Technology, May 1981.

[Jones73]
Anita K. Jones, "Protection in Programmed Systems", Ph.D Thesis,
Department of Computer Science, Carnegie-Mellon University, 1973.

[Kahn81]
Kevin C. Kahn, William M Corwin, T. Don Dennis, Herman D'Hooge, David
E. Hubka, Llnda A. Hutchins, John T. Montague, Fred J. Pollack and
Michael R Gifkins, "iMAX: A Multiprocessor Operating System for an
Object-Based Computer", Operating Systems Review, ACM SIGOPS,
December 1981.

(Kung78]
H. T. Kung and C. E. Leiserson, "Systolic Arrays (for VLSI)", Technical
Report, Department of Computer Science, Carnegie-Mellon University,
December 1978.

(Lang76]
T. Lang, "Interconnections Between Processors and Memory Using the
Shuffle/Exchange Network", IEEE Transactior>.s on Computers, Volume
C-25, pp.496-503, May 1976.

[Lawrie73]
D. H. Lawrie, "Memory-Processor Connection Networks", Department of
Computer Science, University of Illinois, Report 557, February 1973.

[Liskov77]
Barbara Llskov, A. Snyder, R Atkinson and C. Schaffert, "Abstraction
Mechanisms in CLU", Communications of the ACM, Volume 20, Number 8,
pp. 564-576, August 1977.

[LocanthiBO]
Bart Locanthi, "The Homogeneous Machine", Ph.D Dissertation,
Computer Science Department, California Institute of Tecr.illology, 1980.

[Mago79]
Gyula Mago, "A Cellular, Language Directed Architecture", Proceedings
of the Caltech Conference on Very Large Scale Integration, pp.435-445,
January 1979.

[Martin81]
Alain Martin, "The Torus: An Exercise in Constructing a Processing
Surface", Proceedings of the Second Caltech Conference on l~ry Large
Scale Integration, January 1981.

[McCarthy60]
J. McCarthy, "Recursive Functions of Symbolic Expressions and their
Computation by Machine", Communications of the ACM, Volume 3,
pp.184-195, April 1960.

-177-

[Metcalfe76]
R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed Packet S\.'vitching
for Local Computer Networks", Communications of the ACJJ, Volume 19,
pp.395-403, July 1976.

[Moore79]
Gordon E. Moore, "Are We Really Ready for VLSI?", Proceedixigs of the
Caltech Conference on Very Large Scale Integration, pp.3-14, January
1979.

[Newman79]
William M. NeV\'Illan and Robert F. Sproull, "Chapter5: Clipping and
Windowing", Principles of Interactive Computer Graphics, McGraw-Hill,
Inc .. 1979.

[OusterhoutBO]
J. K. Ousterhaut et al, "Medusa: An Experiment ill Distributed Operating
System Structure", Communications of the ACM, Volume 23, pp. 92-105,
February 1980.

[OvvickiBO]
Susan Owicki and Leslie Lamport, "Proving Liveness Properties of
Concurrent Programs", Computer Systems Laboratory, Stanford
University, October 1980.

[ParkerBO]
D. S. Parker, "Notes on Shuffle/Exchange-Type Switching Networks",
IEEE Transactions on Computers, Volume C-29, pp.213-222, March 1980.

[Pease75]
M. C. Pease, "The Indirect Binary N-Cube Microprocessor Array", IEEE
Transactions on Computers, Volume C-26, pp.458-473, May 1977.

[Pippenger75]
N. Pippenger, "On Crossbar Switching Networks", IEEE Transact?.'.ons on
Communication, Volume COM-23, pp.646-659, June 1975.

[Rice71]
R. Rice and W. R. Smith, "SYMBOL - A Major Departure from Classic
Software Dominated von Neumann Computing Systems", Proceeding of
the AFIPS Spring Joint Computer Conference, Volume 38, pp.575-587,
Spring 1971.

[Ritchie74]
D. M. Ritchie and K. L. Thompson, "The UNIX Timesharing System",
Communications of the ACM, July 1974.

[Seitz82]
· Charles L. Seitz, "Ensemble Architectures for VLSI - A Survey and

Taxonomy", Proceedings of the Conference on Advanced Research in
VLSI, Massachusetts Institute of Technology, pp.130-135, January 1982.

[Snyder79]
Alan Snyder, "A Machine Architectt.ire to Support Object Oriented
Languages", Ph.D Thesis, Massachusetts Institute of Technology,

-178-

Laboratory for Computer Science, TR-209, March 1979.

[Spier69]
M. Spier and E. Organick, "The Multics Interprocess Communication
Facility", Proceedings of the 2nd Symposium on Operating Systems
Principles, Princeton University, October 1969.

[Steele75]
G. · L. Steele, "Multiprocessing Compactifying Garbage Collection",
Communications of the ACM, Volume 18. pp.495-508, September 1975.

[Stone71]
H. S. Stone, "Parallel Processing with the Perfect Shuffle", IEEE
Transactions on Computers, Volume C-20, pp.153-161, February 1971.

[Sullivan 77]
H. Sullivan and T. R. Bashkow, "A Large Scale Homogeneous, Fully
Distributed Parallel Machine I", Proceedings of the 4th Sympasium on
Computer Architecture, pp. 105-117, March 1977.

[Sutherland77]
I. E. Sutherland and C. A. Mead, "Microelectronics and Computer
Science", Scientific American, pp.210-228, September 1977.

[Thompson78]
C. D. Thompson, "Generalized Connection Networks for Parallel
Processor Intercommunication", IEEE Transactions on Computers,
Volume C-27, pp. 1119-1125, December 1978.

(Thornton70]
J. G. Thornton, Design of a Computer: The Control Data 6600, Scott,
Foresman and Co., 1970.

[Thurber? 4]
K. J. Thurber, "Interconnection Networks - A Survey and Assessment",
AFIPS Conference Proceedings, Volume 43, pp. 909-919, NCC 1974.

[TreleavenBO]
P. C. Treleaven and R. P. Hopkins, "Decentralised Computation",
Computing Laboratory, University of Newcastle upon Tyne, Number 157,
November 1980.

[Van Wijngaarden69]
A. Van Wijngaarden, ed. B. J. Maillous, J. Peck and C. Koster, Report of
the Algorithmic Language ALGOL 68, Springer-Verlag, 1969.

[Wadler76]
Philip L. Wadler, "Analysis of an Algorithm for Real Time Garbage
Collection", Communications of the ACM, Volume 19, pp.491-500,
September 1976.

[Wittie76]
L. D. Wittie, "Efficient Message Routing in Mega-micro-computer
Networks", Proceedings of the 3rd Symposium on Computer
Architecture, pp. 136-140, January 1976.

-179-

[Wittie81)
L. D. Wittie. "Communication Structures for Large Networks of
Microcomputers", IEEE Tr-ansactions on Computers, Volume C-30, pp.
264-273, April 1981.

[WuBO]
S. B. Wu, Interconnection Design and Resource Assignment for Large
Multi-m.icrocomputer Networks, Ph.D dissertation, Department of
Computer Science, Ohio State University, Columbus. Ohio, December
1980.

(Wulf72]
W. A. Wulf and C. G. Bell, "C.mmp - A Multi-Mini-Processor", Proceedings
of AFIPS Fall Joint Computer Conference, Volume 41, Part II. pp.765-
777, Fall 1972.

[Wulf76]
W. Wulf, R. London and
ALPHARD". Department
University, 1976.

[Wulf BO]

M. Shaw, "Abstraction and Verification in
of Computer Science, Carnegie-Mellon

William A. Wulf, Samuel Harbison and Roy Levin, Hydra/C. mrrip: An
Experimental Computer Systerri, McGraw-Hill, 1980.

[YuBl]
Kwang-I Yu, "Communicative Databases", Ph.D Thesis, Computer Science
Department.California Institute of Technology, 1981. -

-180-

Appendix A

Network Simulation Results

,-..

"' "" r::
0
u
Cl>

"' 0
I-<
u
5

1000

900

800

700

600

500

400

300

200

100

0

-181-

Traffic = 3

-------RING --------- ___-~ ~ARRAY
:;:.:> z ECUBE

NC UBE

8 16 32 48
I

64

Number of Processors

Figure A-1

80

Average Message Delay vs. Network Size (a==3)

96

-182-

1.0

"\ Traffic = 3

.9

\\ NCUBE
• B

ECUBE

• 7 .
\

,,

~ RING
•

\ .6 ~-~--
I

r:: I SCUBE
0

.,..;
.µ
<1l

/'\ N5
.µ
:::>
...
0
ti)

" \
ti)
QJ .4 u
0 ...

p..

~-\- TREE
' \

.3 \
\
\

\

\
.2 \

~ AAAAY

.1 ~

8 16 32 48 64 80 96

Number of Processors

FigureA-2

Processor Utilization vs. Network Size (a=3)

1000

900

BOO

,-..
Ul 700 "O
i:
0
0 .,
Ul
0
k
0 600
5
>.
"',

Q

.µ 500 .,
~
0

"' 0. .,
ct

400 "' k .,
>
<

300

200

100

0

-183-

Traffic 3

TREE

RING

------~-------------------ARRAY

~ ECUBE & NCUBE

SC UBE

8 16 32 48
I

64

Number of Processors

FigureA-3

80

Average Packet Delay vs. Network Size (a==3)

96

1000

~ 900
"' ..,
i::
0
I)
Cl)
II)

0 ,.., 800 I)
= '-'

Cl)
I)

i:: 700 cll .,.,
"',
Oil
i:: 600
Cl)

>
cll ,.., .,.,
VJ
O>
bO 500 ell
II)

"' Q)
::;:

......
0

>-. 400
ell
O>
Cl

IP
Oil
ell
H 300 IP

~

200

100

0

-184-

Traffic 3

SCUBE

TREE

~-&-E_C_U_B~

8 16 32 48
I

64

Number of Processors

flgureA-4

80

Local Message Delay vs. Network Size (a=3)

96

LO

.9

.8

.7

.6

i:::
0 .5
<ti ...,

.....

.....
::::>
.... .4
~
0

0..

.3

.2

.1

\
\

-185-

RING

TREE

\ ARRAY
'

Traffic "' 3

~~ SCUBE EC~~ _N_C_U-BE____ -

'-----=-~ -

8 16 32 48 64 80 96

Number of Processors

FigureA-5

Comm. Link Utilization vs. Network Size (a===3)

1000

900

800

700
,......
Ul

"O
I:
0
()

"' 600 Ul
0

"" ()
•M
i=
'-'

>.
ro 500
"' 0

"' co
ro
Ul
Ul 400
"' :::;:

"' co
ro
"" "' >
<: 300

200

100

0

-186-

Traffic 5

~RING _/

I V/-

8 16

I

I

32 48

I

I

I
64

Number of Processors

FigureA-6

TREE

SCUBE

EC UBE

NC UBE

I
80

Average Message Delay vs. Network Size (a=5)

I I

96

-187-

1.0

Traffic = S

.9

\
I

.8

EC UBE

.7

s::
.6 0

SCUBE "' N
;::) . 5
....
0

"' -"' /
Ill
u
0
....
c.. .4

\ RING
\
\

• 3

"" \
~ TREE

\,//c~
.2

.l

0

8 16 32 48 64 80 96

Number of Processors

Figure A-7

Processor Utilization vs. Network Size (a==5)

1000

900

800

700
.......
Ill

'"O
i:::
0
0
4l
Ill 600 0
I-<
0
e
~

>.
ctl

500 4l
0

+'
4l

-"" 0
ctl
0. 400
4l
bl)

"' I-<
4l
> <

300

200

100

0

-188-

Traffic 5

0 RING /
/ '-~/

I
I

I
I

I TREE

NCUBE

L ECUBE
SC UBE

8 16 32 48
I

64

Number of Processors

flgureA-8

80

Average Packet Delay vs. Network Size (a=5)

96

1000

900

,......
Vl

'"O
c:

800 0
u
Q)
Vl
0

"" u
5
.... 700
Q)
u
i:::
<ti,
Vl 600 '"O

~
i:::
Q)

>
ctl

"" 500,
Vl
Q)
~
ctl
Vl
Vl
Q) 400 :::::

.....
0

>.
ctl
Q)

c 300
Q)

~
ctl

"" Q)

~
200

100

0

-189-

Traffic s

I
K/

8 16 32 48

I

I
64

SC UBE

TREE

NCUBE & ECl'BE

80

Number of Processors

FigureA-9

Local Message Delay vs. Network Size (a=5)

96

-190-

1.0

Traffic = 5

.9

• B

.7
RING

.6 \
\

\
'

i:: .5 \ 0
.µ

\'v/> tll

~~'
"'

...... TREE
.µ
::::> .4 ..
"" 0 c..

• 3

.2

.1

B 16 32 48 64

Nwnber of Processors

Figure A-10

Comm. Llnk Utilization vs. Network Size (a=5)

1000

900

BOO

,...... 700 Ill
"'C
c:
0
0
(l)
Ill
0
I-< 600 0
,s
>..

"'
(l)

0 500
(l)
co

"' Cl)

"' (l)

::E
(l) 400
!:>()

"' I-<
Q)
:>
<

300

200

100

0

-191-

Traffic = 8

//\
I ' ' ' / ' \

l'.
\

\

I
I

I
I

I
TRE~

;(

8 16

I

32 48
I

64

Number of Processors

Figure A-11

SCUBE

EC UBE

NCUBE

80

Average Message Delay vs. Network Size (a::::B)

96

1.0

.9

.8

.7

.6
i::
0 .,.,
.µ
ell
N .,., .5 ,.,
.µ
::i

"" 0
Vl
Ul
Q) .4 (.)

0

"" 0..

.3

.2

.1

0

-192-

Traffic 8

\ NC UBE
I y
\ ECUBE

I

'

\ SCUBE

\
\

\
\
\
\ \G

TREE
~

'

8 16 32 48 64 80

Number of Processors

Figure A-12

Processor Utilization vs. Network Size (a=B)

I
96

-193-

1000

Traffic = 8

900

800

RING

,..... 700 A Ill (,,~ "'O
I:
0
u
C1l
Ill
0 600
"" u

.,.;

6

I >.
ai
C1l SOD Cl

...
C1l

I -"' u
ai

c..
C1l 400

~ bO
ai

"" C1l
> <

300

200

r1 100 NC UBE

~ EC UBE

SCUBE
0 I

8 16 32 48 64 80 96

Number of Processors

Figure A-13

Average Packet Delay vs. Network Size (a==B)

1000

900
,.....,

"']
0
tJ
II> 800
"' 0

'"' tJ
..5
.....
II>

700
tJ
i:

"'
"'
-0

00 600
i:
II>
>
"' '"'
"'

500
Q)
00

"' "' "' Q)
::;:

'+; 400
0

>.

"'
Q)

0

Q) 300 00

"' '"' Q)

~

200

100

0

-194-

Traffic 8

~-
// ~ ;NG

B 16 32

I

I
I

I

NCUBE & ECUBE

48
I

64

Number of Processors

Figure A-14

BO

Local Message Delay vs. Network Size (a==B)

96

-195-

1.0

Traffic = 8

.9

.8

.7

.6

RING

c:
0s .µ
<II
N
.µ
::>
.µ .4
"" 0

Cl.

.3

EC UBE

.2

.1

0

8 16 32 48 64 80 96

Number of Processors

FigureA-15

Comm. Llnk Utilization vs. Network Size (a=B)

1000

900

800

,....., 700
Ul

-0
i::
0
u
Ill
Ul
0
J.; 600 u
5
>.

"'
Ill
c 500
Ill
OD

"' Ul
Ul
Ill

::<:
<lJ 400
OD

"' J.;
<lJ

~

300

200

100

0

-196-

Traffic 12 ~RING
i ~
!
i

I
I
I :

/__./"

/-!- "" I " /

11~
I I

,I

8 16

I

/~~

32 48
I

64

Number of Processors

FigureA-16

NCUBE

80 96

Average Message Delay vs. Network Size (a=12)

1.0

.9

.8

.7

§ .6
.,..;
;..>
o;
N

.,..;

...... . ,..;
~ .5
I-<
0

"' "' Q)
(.)

0 t:. . 4

.3

.2

.1

0

-197-

Traffic = 12

\
\

EC UBE

SC UBE

~-

8 16 32 48 . 64 80 96

Nwnber of Processors

FigureA-17

Processor Utilization vs. Network Size (a=12)

-198-

1000

Traffic = 12

900

RING
BOO

f

700 I
,..... I
Ill

I "'O
t:
0 I u
C1l 600
Ill
0

""' u I '~_/
.....
E
~

>. I
I

ctl 500 I TREE
C1l

0

~
C1l

...:.: I
u

/
ctl 400 0..

C1l
bl)

ctl

""' C1l
>

I <
300

I
200

100 NCUBE

;z ECUBE

SC UBE

0 I
8 16 32 48 64 BO 96

Number of Processors

Figure A-18

Average Packet Delay vs. Network Size (a=12)

1000

900

,......
"' "O 800 i::
0
u
Q)

"' 0
I-<
u

-=-
700

.....
Ill
u
i::

"' 600 "'
"O

bl)
i::
Ill
> 500 "' I-<

"' Ill
bl)

"' "' 400 "' Ill
::<:
......
0

>.

"' 300 Ill
Cl

Q)

"° "' I-<
Ill
> < 200

100

0

-199-

Traffic 12

/ING

I
I

8 16

/ SCUBE

NCUBE & ECUBE

32 48
I

64

Number of Processors

FigureA-19

80

Local Message Delay vs. Network Size (a=12)

96

-200-

1.0

Traffic 12

.9

.8

.7

.6

r:: .5
0
"' "' ,....,4 :::>
....
0

""
.3

.2

.1

0

8 16 32 48 64 80 96

Number of Processors

Figure A-20

Comm. Link Utilization vs. Network Size (a=12)

1000

900

800

700

,....,
"' 600

"O
s::
0
0
Cll

"' 0

'"' 0 500
~
>..
ttl
Cll

0

Cll 400
bO
ttl
t1l
t1l
Cll
::;:
Cll
bO 300 ttl

'" Cll
> <

200

100

0

-201-

Traffic = Unifonn

.r-----
/

~~-
-------- --·------ - -- NcuBE-- -- - - - -

8 16 32 48
I

64

Number of Processors

Figure A-21

80 96

Avg. Message Delay vs. Network Size (Unif. Traf)

-202-

1.0

--Traffic = Uniform ____ ..--

.9

.8

.7

.6

ECUBE i=
0
+'
al .5 N
+'
::>
f.<
0
!/) .4 !/)
Cl)
()
0

"" CJ,.

~3

.2

.1

0

8 16 32 48 . 64 80 96

Number of Processors

FigureA-22

Proc. Utilization vs. Network Size (Unif. Traf)

1000

900

800

700

,....,
Cl)

"'O = 0
u 600 Q)
Cl)

0
lo<
u

-=-
>. 500 rd
Q)

0
...,
Q)

.>(
u 400 al

Q..

Q)
bl)
al
lo<
Q)

~ 300

200

100

0

-203-

Traffic = Uniform

SCUBE ~ ..---=====
~ ECUBE

~ - ---- - ----- -- - - - NCUB;--

8 16 32 48
I

64

Number of Processors

Figure A-23

80

Avg. Packet Delay vs. Network Size (Unif. Traf)

96

1000

900

,.....
ti)

"O BOO i::
0
()
II)

"' 0

"" ()
.5 700
.....
II)
()

i::

"' 600 "'
"O

t>O
i::

......
II)

> 500 "' ""

"' II)
t>O

"' "' 400 "' II)
::;:

'H
0

~ 300 II)
c
II)
t>O

"' "" II)

~ 200

100

0

-204-

Traffic Uniform

~

~
'

/

ECUBE

8 16 32 48 64 80

Number of Processors

Figure A-24

Local Msg. Delay vs. Network Size (Unif. Traf)

I
96

-205-

1.0

Traffic = Uniform
.9

• 8

- .------
.7

--- ---- - NCUBE

.6

c: .5
0
<ti

"' EC UBE
...... -----..... 4 :::i ...
"" 0
c..

.3
SCUBE

.2

.1

0

8 16 32 48 64 BO 96

Nwnber of Processors

Figure A-25

Comm. Link Util. vs. Network Size (Unif. Traf)

-1000

900

800

,......
700 !1l

"O
i::
0
CJ
QI
!1l
0

'"" CJ 600

-=-
>.

"' .-l
QI

r:::i

QI 500
OD

"' Ol
Ol
QI

l::

QI 400 OD

"' I-<
QI

~

300

200

100

0

-206-

/
I

I
/

/

/

Number of Processors = 64
Traffic = 8

/
/

/

/'
/ SCl1BE

/
/

'ECUBE

-~
~ NCUBE

~~__,-~~..,..-~-,~~-.~~.-~--.~~.-~~.-----,

1 2 3 4 5 6 7 8 9 10

Average Message Length (256 bit packets)

Figure A-26

Avg. Msg. Delay vs. Message Length (64 Proc .. a=B)

1.0

.9

.8

.7

i:: .6
0,
"' N ,..,

...... • 5
:::>
,_,
0

"' "' C1l
CJ
0 .4 ,_,

p..

~3

.2

.1

0
1

-207-

2 3 4 5

Number of Processors = 64
Traffic = 8

6 7 8 9

Average Message Length (256 bit packets)

Figure A-zl

Proc. Util. vs. Message Length (64 Proc.,a=B)

10

-208-

AppendixB

Example Network Simulator Output

-209-

Boolean N-cube Connection Run on: 1981-06-05 at 08:00:52
NUTber of Processors: 64 (Dir:rBnsion=6)
Ccrm:unication Link Data Rate: 20 11Bgabits/sec
Packet Size: 256
NUTber of Packets of Storage in Port Queue: 4

CLcx::K TI1'.iE = 1.000E-02
**

"'
*
"'

REPORT
* •
•

"'***

DISTRIBUTIONS

TITLE I
MsgLength
MsgFrequency
Proc Source

(RE) SET/
2.000E-03
2.000E-03
2.000E-03

OBS/TYPE
14373 NORMAL
14378 NORMAL
14380 UNIFORM

I Al
768.000

3.000E-05
0.000

Bl
256.000

1.500E-05
0.125

SEED
33427485
22276755
46847980

ACCUMULATES

TITLE I (RE)SET/ OBS/ AVERAGE/EST.ST.DY/ MINIMUM/
65.625
23.698
0.443

177.000
70.000

MAXIMUM
98.438
40.885

0.784
314.000
118. 000

Proc Active % 2.000E-03
Port Active % 2.000E-03
Port Q Length 2.000E-03
Transit Packs 2.000E-03
Trp.nsit Msgs 2.000E-03

TITLE
Proc Select

I (RE)SET/
2.000E-03

28751
156937
156931
100635

28753

84.428 4.548
32.696 2.623

0.604 4.728E-02
244. 971 19. 032
92.215 6.596

HISTOGRAMS

SUMMARY

OBS/ AVERAGE/EST. ST. DY I MINIMUM/ MAXIMUM
14373 8.600 8.074 0.500 61.967

CELL/LOWER LIM/ NI f.REQ/ CUM:
0 -INFINITY b 0.00 0.00 I
1 0.500 1025 0.07 7.13 I***************
2 1.120 1008 0.07 14.14 I**************
3 1.740 912 0.06 20.49 I*************
4 2.360 854 0.06 26.43 I************
5 2.980 814 0.06 32.09 I************
6 3.600 690 0.05 36.90 I**********
7 4.220 662 0.05 41. 50 I*********

-210-

8 4.840 628 0.04 45.87 I********•
9 5.460 578 0.04 49.89 I********

10 6.080 513 0.04 53.46 I*******
11 6.700 502 0.03 56.95 l ** *****
12 7.320 461 0.03 60.16 I******•
13 7.940 450 0.03 63.29 J•**•••
14 8.560 370 0.03 65.87 J •*••*
i5 9.180 343 0.02 68.25 I•*•••
16 9.800 351 0.02 70.70 l·····
17 10.420 286 0.02 72.68 l**••
18 11. 040 274 0.02 74.59 I•*•*
19 11. 660 289 0.02 '76.60 I****
20 12.280 256 0.02 78.38 I•***

. 21 12.900 232 0.02 BO.OD l ***
22 13.520 231 0.02 81.60 j•••
23 14.140 191 0.01 82.93 I•••
24 14. 760 175 0.01 84.15 l ••
25 15.380 167 0.01 85.31 I••
26 16.000 2111 0.15 100.00 !****•**•****•*****************

SUMMARY

TITI..E I (RE)SETI OBS/ AVERAGE/EST.ST.DY/ MINIM"uW MAXLMUM
Msg Distance 2.000E-03 14380 1.560 0.654 1.000 5.000

CEI.JJLOWER LIM/ NI
0 - INFINITY 0
1 0.000 0
2 1.000 7509
3 2.000 5793
4 3.000 979
5 4.000 90
6 5.000 9
7 6.000 0

FREQ/
0.00
0.00
0.52
0.40
0.07
0.01
0.00
0.00

CUM:
0.00
0.00

52.22
92.50
99.31
99.94

100.00
100.00

I
l
!***••••••**********•***•****•*
l*•**•****************•*
I****
I.
I.
I

SUMMARY

TITI..E I (RE)SETI OBS/ AVERAGE/EST.ST.DY/ MINIMlJMJ MAXIMUM
Msg Length 2.000E-03 14373 766.830 255.279 -194.000 1698.000

CE.I..LILOWER LIM/ NI FREQ/ CUM:
0 -iNFINI'iY 17 0.00 0.12 I.
1 0.000 22 0.00 0.27 I.
2 61. 440 44 0.00 0.58 I*
3 i22.880 86 0.01 1.18 I**
4 184.320 128 0.01 2.07 I*••
5 245.760 234 0.02 3.69 1•••••
6 307.200 338 0.02 6.05 I*******
7 368.640 513 0.04 9.62 !*•*********
8 430.080 619 0.04 13.92 !***•******•**
9 491.520 857 0.06 19.88 !*******************

10 552.960
11 614.400
12 675.840
13 737.280
14 798.720
15 860. 160
16 921.600
17 983.040
18 1044. 480
19 1105.920
20 1167.360
21 1228.800
22 1290.240
23 1351.680
24 1413.120
25 1474.560
26 1536.000

1077
1243
1339
1325
1387
1251
1069

829
646
516
347
209
119
82
36
26
14

-211-

0.07
0.09
0.09
0.09
0.10
0.09
0.07
0.06
0.04
0.04
0.02
0.01
0.01
0.01
0.00
0.00
0.00

27.38
36.03
45.34
54.56
64.21
72.91
80.35
86.12
90.61
94.20
96.62
98.07
98.90
99.47
99.72
99.90

100. 00

!*****************~*****

!***************************
!*****************************
}*****************************
!******************************
!***************************
!***********************
!******************
I**************
I***********
I********
I*****
i ***
i**
I*
I*
I.

SUMMARY

TITLE I (RE)SETI OBS/ AVERA.GE/EST. ST. DV I MINIMUM/ MAXIMUM
Msg Frequency 2.000E-03

CELL/LOWER LIM/
0 -INFINITY
1 0.000
2 3.000E-06
3 6.000E-06
4 9.000E-06
5 1. 200E-05
6 1.500E-05
7 1.800E-05
B 2. iooE-o5
9 2.400E-05

10 2.700E-05
11 3 . OOOE- 05
12 3.300E-05
13 3.600E-05
14 3.900E-05
15 4.200E-05
16 4.500E-05
17 4.800E-05
iB 5.100E-b5
19 5.400E-05
20 5.700E-05
21 6.000E-05
22 6.300E-05
23 6.600E-05
24 6.900E-05
25 7.200E-05
26 7.500E-05

NI
0

426
222
304
453
524
648
809
851
957

1014
1052

921
882
793
737
639
527
430
337
270
212
231
166
135
120
713

14373 3.561E-05 2.069E-05 0.000 1.640E-04

FREQ/
0.00
0.03
0.02
0.02
0.03
0.04
0.05
0.06
0.06
0.07
0.07
0.07
0.06
0.06
0.06
0.05
0.04
0.04
0.03
0.02
0.02
0.01
0.02
0.01
0.01
0.01
0.05

CUM :
0.00
2.96
4.51
6.62
9.78

13.42
17.93
23.56
29.48
36.14
43.19
50.51
56.92
63.06
68.57
73.70
78.15
81. 81
84.80
87.15
89.03
90.50
92.11
93.27 -
94.20
95.04

100.00

I
I************
l****** -
I*********
!*************
!***************
!******************
!***********************
!************************
]***************************
}*****************************
!******************************
!**************************
}*************************
!***********************
}*********************
}******************
I***************
I************
l**********
I********
!******
!*******
i *****
I****
I***
!********************

-212-

SUMMARY

TITLE I (RE)SETI OBS/ AVER4.GE/EST.ST.DV/ :V.JNI:MUM/ 1rIAXIMUM
Message Delay 2.000E-03 14380 5.134E-05 1.949E-05 1.280E-05 2.564E-04

CELL/LOWER LIM/
O -INFINITY
1 0.000
2 1.000E-05
3 2.000E-05
4 3.000E-05
5 4.000E-05
6 5.000E-05
7 B.OOOE-05
8 7.000E-05
9 8.000E-05

10 9.000E-05
11 1 . OOOE-04
12 1. lOOE-04
13 1.200E-04
14 1. 300E-04
15 1 . 400E- 04
1B 1 . 500E- 04
1? l. 600E- 04
18 1.?00E-04
19 1.BOOE-04
20 1.900E-04
21 2.000E-04
22 2 . 100E-04
23 2.200E-04
24 2.SOOE-04
25 2.400E-04
26 2.500E-04

NI
0
0

141
1321
4022
1062
4060
1815

895
468
209
179
91
42
35
18
9
4
3
2
1
1
0
1
0
0
1

FREQ/
0.00
0.00
0.01
0.09
0.28
0.07
0.28
0.13
0.06
0.03
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

CUM:
0.00
0.00
0.98

10.1?
38.14
45.52
73.76
86.38
92.60
95.86
97.31
98.55
99.19
99.48
99.72
99.85
99.91
99.94
99.96
99.97
99.98
99.99
99.99
99.99
99.99
99.99

100.00

I
I
I*
I*"********
!******************************
I********
!******************************
I*************
I*******
I***
I*"'
I"'
I*
I.
I.
I.
I.
I.
I .
I .
I.
I.
I
I.
I
I
I.

SUMMARY

TITLE I (RE) SET I OBS/ AVERAGE/EST. ST. DV I MINIMUM/ MAXIMUM
Packet Delay 2.000E-03 50327 3.896E-05 l.889E-05 1.280E-05 2.564E-04

CELL/LOWER LIM/ NI
0 -INFINITY 0
1 0.000 0
2 l.OOOE-05 6186
3 2.000E-05 13168
4 3.oooE-05 12984
5 4.000E-05 3932
6 5.000E-05 7936
7 6.oooE-05 3271
8 7.000E-05 1327
9 8.000E-05 699

10 9.000E-05 296
11 1.000E-04 229

FREQ/
0.00
0.00
0.12
0.26
0.26
0.08
0.16
0.06
0.03
0.01
0.01
0.00

CUM:
0.00
0.00

12.29
38.46
64.26
72.07
87.84
94.34
96.97
98.36
98.95
99.41

I
l
!"'"'************
!******************************
!******************************
I*********
I******************
I*******
I***
I**
I*
I*

-213-

12 l. lOOE-04 123 0.00 99.65 I.
13 1. 200E-04 81 0.00 99.81 I.
14 1. 300E-04 41 0.00 99.89 I.
15 1. 400E-04 23 0.00 99.94 I.
16 1. 500E-04 13 0.00 99.96 I.
17 1.600E-04 4 0.00 99.97 I.
18 1.700E-04 7 0.00 99.99 I.
19 l.800E-04 3 0.00 99.99 I.
20 1.900E-04 0 0.00 99.99 I
21 2.000E-04 1 0.00 99.99 I.
22 2. lOOE-04 0 0.00 99.99 I
23 2.200E-04 1 0.00 100.00 I.
24 2.300E-04 0 0.00 100.00 I
25 2.400E-04 1 0.00 100.00 I.
26 2.500E-04 1 0.00 100.00 I.

SUMMARY

TITLE I (RE)SET/ OBS/ AVERAGE/EST. ST.UV/ MINIMUM/ :M.AXIMUM
Msg Delay D=l 2.000E-03 7509 4.979E-05 l.824E-05 1.2BOE-05 1.939E-04

CELL/LOWER LIM/
0 -INTINITY
1 0.000
2 1.000E-05
3 2.000E-05
4 3.000E-05
5 4.000E-05
6 5.000E-05
7 6.000E-05
8 7.000E-05
9 8.000E-05

10 9.000E-05
11 1.000E-04
12 1.lOOE-04
13 l. 200E-04
14 1.300E-04
15 1. 400E-04
16 l. 500E-04
17 1.600E-04
18 1. 700E-04
19 1.800E-04
20 l. 900E-04

NI
0
0

141
815

1998
367

2358
1023

393
191
87
66
32
13
11

8
3
2
0
0
1

FREQ/
0.00
0.00
0.02
0.11
0.27
0.05
0.31
0.14
0.05
0.03
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
b.00

CUM :
0.00
0.00
1. 88

12.73
39.34
44.23
75.63
89.25
94.49
97.03
98.19
99.07
99.49
99.67
99.81
99.92
99.96
99.99
99.99
99.99

100.00

I
I
I**
!**********
I************************* '
I*****
!******************************
I*********'"***
I*****
I**
I*
I*
I .
I.
I.
I.
I.
i.
I
I
I.

SUMMARY

TITLE I (RE)SET/ OBS/ AVERAGE/EST. ST.UV/ MINIMUW MAXIMUM
Msg Delay D=2 2.000E-03 5793 5.160E-05 2.049E-05 2.560E-05 2.564E-04

CELL/LOWER LIM/
0 -INFINITY

NI FREQ! CUM :
0 0.00 0.00 I

-214-

1 0.000 0 0.00 0.00 I
2 1. OOOE-05 0 0.00 0.00 I
3 2.000E-05 506 0.09 8.73 I********
4 3.000E-05 1871 0.32 41.03 !******************************
5 4.000E-05 633 0. 11 51.96 I**********
6 5.000E-05 1301 0.22 74.42 }*********************'
7 6.000E-05 584 0.10 84.50 I*********
8 7.000E-05 382 0.07 91.09 I******
9 8:000E-05 220 0.04 94.89 I****

10 9.000E-05 96 0.02 96.55 I**
11 1.000E-04 91 0.02 98.12 I*
12 l. lOOE-04 46 0.01 98.91 I*
13 1.2DOE-04 24 0.00 99.33 I.
14 1.SOOE-04 18 0.00 99.64 I.
15 1.400E-04 10 0.00 99.81 I.
16 1.500E-04 5 0.00 99.90 I.
17 1. BOOE- 04 1 0.00 99.91 I.
18 l.700E-04 2 0.00 99.95 I.
19 1. BOOE-04 1 0.00 99.97 I.
20 1.900E-04 0 0.00 99.97 I
21 2.000E-04 0 0.00 99.97 I
22 2. lOOE-04 0 0.00 99.97 I
23 2.200E-04 1 0.00 99.98 I.
24 2.300E-04 0 0.00 99.98 I
25 2.400E-04 0 0.00 99.98 I
26 2.500E-04 1 0.00 100.00 I.

SUMMARY

TI'ILE I (RE) SET/ OBS/ AVERAGE/EST.ST.DY/ MINIMUM/ MAXIMUM
Msg Delay D=3 2.000E-03 979 5.973E-05 1.913E-05 3.840E-05 1.892E-04

CELL/LOWER LIM/ NI FREQ/ CUM:
0 -INFINITY 0 0.00 0.00 I
1 0.000 0 0.00 0.00 I
2 l.OOOE-05 0 0.00 0.00 I
3 2.000E-05 0 0.00 0.00 I
4 3.000E-05 153 0.16 15.63 I************
5 4.000E-05 62 0.06 21.96 I*****
6 5.000E-05 374 0.38 60.16 !******************************
7 6.000E-05 170 0.17 77.53 }**************
8 7.000E-05 101 0.10 87.84 I********
9 8.000E-05 52 0.05 93.16 I****

10 9.000E-05 24 0.02 95.61 I**
11 1. OOOE-b4 19 0.02 97.55 I**
12 1 . 100E-04 11 0.01 98.67 I*
13 l.200E-04 4 0.00 99.08 I.
i4 1.300E-04 6 0.01 99.69 I.
15 1.400E-04 0 0.00 99.69 I
16 1.500E-04 1 0.00 99.80 I.
17 1. 600E-04 0 0.00 99.80 I
18 1.700E-04 1 0.00 99.90 I.

-215-

19 1. 800E-04 1 0.00 100.00 I.

SUMMARY

TITLE I (RE) SET/ OBS/ AVERAGE/EST.Sf.DY/ MINIJv'lJM/ MA ... '.(IM:UM
JV~g Delay D=4 2.000E-03 90 6.821E-05 2.093E-05 5.120E-05 2.099E-04

CELL/LOWER LIM/ NI FREQ/ COM:
0 -INFINITI 0 0.00 0.00 I
1 0.000 0 0.00 0.00 I
2 l.OOOE-05 0 0.00 0.00 I
3 2.000E-05 0 0.00 0.00 I
4 3.000E-05 0 0.00 0.00 I
5 4.000E-05 0 0.00 0.00 I
6 5.000E-05 27 0.30 30.00 !•*************•********
7 6.000E-05 36 0.40 70.00 !*****************•************
8 7.000E-05 16 0.18 87.78 I************"'
9 8.000E-05 4 0.04 92.22 I*"'"'

10 9. OOOE-05 2 0.02 94.44 I"'*
11 1. OOOE-04 1 0.01 95.56 I•
12 l. lOOE-04 2 0.02 97.78 I*"'
13 1.200E-04 1 0.01 98.89 I*
14 1.300E-04 0 0.00 98.89 I
15 1.400E-04 0 0.00 98.89 I
16 1.5DDE-04 0 0.00 98.89 I
17 l. 600E-04 0 0.00 98.89 I
18 1. 700E-04 0 0.00 98.89 I
19 1. 800E-04 · - 0 0.00 98.89 I
20 1.900E-04 0 0.00 98.89 I
21 2.000E-04 1 0.01 100.00 I"'

SUMMARY

TITLE I (RE) SET/ OBS/ AVERAGE/EST.Sf.DY/ MINIMUM/ MAXIMUM
!iisg Delay D=5 2.000E-03 9 9.055E-05 3.161E-05 6.400E-05 1.650E-04

CELL/LOWER LIM/ NI FREQ/ COM:
0 -INFINITI 0 0.00 0. 00" I
1 0.000 0 0.00 0.00 I
2 1.000E-05 0 0.00 0.00 I
3 2.000E-05 0 0.00 0.00 I
4- s.ooo:E-05 0 0.00 0.00 I
5 4.000E-05 0 0.00 0.00 l
6 5.000E-05 0 0.00 0.00 I
7 6.000E-05 2 0.22 22.22 !********************
8 7.000E-05 3 0.33 55.56 !******************************
9 8.000E-05 1 0. 11 66.67 i**********

10 9.000E-05 0 0.00 66.67 I
11 1. OOOE-04 2 0.22 88.89 !*******************"'
12 1.lOOE-04 0 0.00 88.89 I
13 l. 200E-04 0 0.00 88.89 I

-216-

14 1. 300E-04 0 0.00 88.89 I
15 1. 400E-04 0 0.00 68.89 I
16 1. 500E-04 0 0.00 88.89 I
17 1. 600E-04 1 0.11 100.00 I**********

