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ABSTRACT

The radiation pattern of an interfacial radiating source is
obtained for the case where the source is an infinitely long Tine
source lying along the plane interface of two dielectric half-spaces;
for the case where the source is an infinitesimal electric dipole
vertically located on the interface; and for the case where the dipole
is lying horizontally along the interface. For all the three cases,
it is found that the radiation pattern at the interface has a null
(interface extinction). For the infinitely long line source, it is
obtained that the pattern in the upper half-space, whose index of
refraction is taken to be less than that of the lower half-space, has
a single lobe with a maximum normal to the interface, and that the
pattern in the lower half-space (subsurface region) has two maxima
straddling symmetrically a minimum. Interpretation of these results
in terms of ray optics, Oseen's extinction theorem, and the Cerenkov
effect are given. For the vertical dipole, it is found that the
radiation pattern along the dipole axis has a null. For the horizontal
dipole, it is obtained that the pattern in the upper half-space has
a single lobe whose maximum is normal to the interface; that in the
lower half-space, in the plane normal to the interface and containing
the dipole, the pattern has three lobes; whereas in the plane normal
to the interface and normally bisecting the dipole, the pattern has
two maxima located symmetrically about a minimum. Interpretation

of these results in terms of the Cerenkov effect is also given.
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I. INTRODUCTION.

Many of the problems of remote sensing are problems of electro-
magnetic wave propagation in inhomogeneous media [1]. Among these
problems, the interface problems are the ones which mostly attract
the attention of the engineers and physicists who work in electro-
dynamics [2]. By the interface problems, we mean the problems of
reflection and refraction of the electromagnetic wave illuminating
the interface of two homogeneous media. This interface can be
geometrically smooth or rough. In the case of the smooth interface,
the problem amounts to the Fresnel problem [3] of reflection and
refraction at a plane interface and was solved by Fresnel and
presented by him in a celebrated memoir to the French Academy in 1823
[4]. The Fresnel problem is the most basic interface problem. In the
case of the rough interface, there are some studies on the modelling
of the rough surfaces [5-6]. Therefore, there are different theoretical
models which can simplify the geometry of the problem and thus can
lead to finding the reflection and refraction of the wave. One of
the techniques that can be useful for solving the problems of the
scattering from the rough surfaces is the equivalent current source
technique which was used by Marcuse [7] and. also by Elachi and Yeh [8].
In using this technique, the slightly rough surface is replaced by a
smooth surface and the equivalent sources located on interface of the

smooth surface. We call these sources the interfacial sources.
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Therefore, the original problem reduces to the problem of finding

the radiation of the sources which lie on the interface of two
homogeneous media. This is exactly the purpose of the present work.
The problem of finding the radiation of a source close to the

interface of two media is not a new problem [9-12]. But in the
previbus studies on this problem a relatively high conductivity in at
least one of the two media is taken into consideration. Consequently,
this consideration 1eéds to the surface wave along the interface and
the no-loss case cannot be obtained from it by letting the conductivity
approach zero. In our present work, we consider two Tossless dielectric
media and we have zero conductivity in the two media. Therefore the
results are different from those obtained by considering a high
conductivity. We consider three cases of the interfacial radiation
source (see Fig. 1).

In Chapter II, we consider the infinitely long line source lying
along the plane interface of two dielectric half-spaces. It is clear
that this problem is two dimensional and amounts to one of solving a
scalar Helmholtz equation. The radiation pattern and emitted power
of such an interfacial line source are obtained in the two media.

A posteriori, we shall construct a suitable ray optical description
of the phenomenon.

In Chapter III, we have an infinitesimal electric dipole
vertically located on the plane interfacekof the two media. This

problem is three-dimensional. We shall use ‘the electric Hertz vector
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Fig. 1.  Three interfacial radiating sources: (a) infinitely long
Tine source, (b) infinitesimal vertical dipole, and
(c) infinitesimal horizontal dipole.



and its integral representation.

In Chapter IV, we consider the interfacial horizontal dipole
directed parallel to the x-axis (see Fig. 13).  The radiation
pattern and emitted power for both cases, interfacial vertical and
horizontal dipoles, are obtained in the two ha]f—sbaces. Finally, in

Chapter V, general conclusions for these problems are given.
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IT. INTERFACIAL LINE SOURCE

IIA. Formulation of the Problem

In this chapter, we intend to calculate the radiation pattern and
emitted power of a Tine source lying along the plane interface of two
homogeneous half spaces. To formulate the problem mathematically, we
introduce a Cartesian coordinate system x,y,z wherein the z axis lies
along the axis of the Tine source and the plane of the interface is
given by the coordinate surface y = 0. Since the problem is a two-
dimensional one, the far-zone field is in the form of a cylindrical
wave. Therefore, to handle the far-zone field we find it convenient to
also introduce a cylindrical coordinate system p,$,z where
pcos¢=x,psin¢g=y,and -1 <¢<m. (See Fig.2).

We use MKS system of units and assume that the current density

of the line source is given by
d (x,y3t) = Re[sz I 8(x)8(y)e '“"t] ’ (2A.1)

where "Re" is the shorthand for the "real part of", e, is the unit
vector along the z-axis, 8(x) and &(y) are Dirac delta functions, w is
the angular frequency of the oscillation, and I is the total current.
We take the index of refraction, n, to be 1 in the upper half-space

(y > 0) and greater than 1 in the lower half-space (y < 0). Although
this means that the upper half-space is a vacuum and the lower half-
space or subsurface region is a dielectric, our analysis will hold true
for any two dielectric half-spaces whose indices of refraction are in

the ratio of n to 1.



Line source lies along z axis.

Fig. 2.

In the upper half-space

(y > 0) the index of refraction n is equal to 1, and in

the Tower half-space (y < 0) n is greater than 1.
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Since the problem is linear and the line source is a
monochromatic source with the angular frequency w, all the field
guantities have the same angular frequency and they can be written as

follows:

[m

(x,yst) = Re [g (x,y)e 'i‘“t] > (2A.2)

Re [g (x,y)e'_mt] , (2A.3)

H (x,y5t)

where E (x,y) and H (x,y) are the phasors of electric and magnetic
fields respectively. The field quantities obey Maxwell's

equations [13]:

VxE= o, (2A.4)
VxH=J- iuwek, (2A.5)
vV (eE)=p , (2A.6)
v - (uH) =0, (2R.7)

where J 1s the total macroscopic current density as a source, € and
u are the dielectric constant and permeability of the medium
respectively, and p is the total macroscopic charge density.

From the symmetry of the configuration, it is clear that the

electromagnetic field of the line source is independent of z.

Therefore, from the continuity equation

Ved+ iwp = 0 (2A.8)
we can write

0 =0 . (2A.9)

Since J has only z-component and all the quantities are independent of
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z, we can conclude that the vector potential A has only one component
which 1is Az'

From

H==VxA, (2A.10)

= |-

we can conclude that the magnetic field has only the components
Hp(p,¢) and H¢(p,¢). Consequently, from equation (2A.5) we can see
that the electric field has only the component Ez(p,¢)5therefore, in
this configuration the electromagnetic field of the line source has
only the components Ez(p,¢), Hp(p,¢), and H¢(p,¢). For such an

electromagnetic field the equation (2A.4) yields the relations

- 11 38
o= Tar v 56 Fzo (2A.11)

H = k’%fz (2A.12)
which express the magnetic field in terms of Ez. Hence, since EZ is
the only component of the electric field and since the magnetic field
components can be derived from E, using (2A.11) and (2A.12), we see
that our problem can be formulated in terms of EZ alone.

From the Maxwell equations V x E = jwpH and ¥V x H=1J -jwe E,

it follows that
VXxXVX E —kZE = iwug, (2A.13)

where k? = w?ye. Moreover, from the Maxwell equation V-(cE) = 0 it
follows that Vs-E + eV-E = 0. Because here Ve is perpendicular to E,

the term ve-E disappears and we have

V-E =0. (2A.14)
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It is clear from (2A.1), (2A.13), and (2A.14) that E, must satisfy

VZEZ + szZ = ~jwp I 8(x) &(y), (2A.15)

2

where p = u  everywhere, k2 = k.2 = wzuoeo for y > o, and k? = n2kO

0
for y < 0. Here Uys €q denote the permeability and the dielectric
constant of free-space. We shall denote Ez in the upper half-space

by E_, and Ez in the subsurfacerregion by EzZ'

zl
Thus our problem amounts to one of finding the solution of

(2A.15), but in solving this equation, we have to consider the
Sommerfeld radiation condition [14] which is
oE :
L z _
limitqfo (55— - Tk )~ 0, (2A.16)
p *+ ® )

for the cylindrical wave. The following boundary conditions should

also be satisfied [15]

E.=E (2A.17)

z1 z2

9

=9
EE'EZI T 30 Eso (2A.18)

along the interface y = 0.

1IB. Method of Integral Transform

To solve the Helmholtz equation (2A.15), we express EZ as a

Fourier integral [16], that is, we write

E, =f v(y,h)eihx dh (2B.1)

By substituting this expression into (2A.15) and by recalling that

§(x) = ;—wf eiPX gn (28.2)

-0
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we find that

2 .
f (o Viyah) - b2 Vlysh) + K2 V(y,h))e™ dn =

co

[>¢}

- o .
0 ihx
5 J S(y)e dh . (2B.3)

-00

From the orthogonality and completeness of the functions e1hx [17], we

can write
42 ) , - iwpo I
o7 V(y,h) - h* V(y,h) + k* V(y,h) = ——3(y) , (2B.4)

where for the upper half-space (y > 0) we have k* = ko2 and denote

V by Vq, and where for the lower half-space (y < 0) we have

k% = n2k02 and denote V by VZ' Since E, must satisfy the radiation
condition the solutions of (2B.4) must likewise satisfy the radiation
condition of y = » and y = -=. Accordingly, the appropriate solutions

of (2B.4) must have the form

- 2 - 2
Ae "Vh - kY (y > 0), (2B.5a)

vy

2 2 2
Be V I -1k y (y < 0)- (2B.5b)

V2
In these two formulas (2B.5a),.(2B.5b.), when we have.the nedative sign
under the\/~__: we bring -i out to satisfy the radiation condition.
These two solutions should satisfy the boundary conditions. Across
the interface EZ, and hence V, must be continuous, i.e. at y = 0 we

must have V1 = VZ’ Therefore,

A=B. (2B.6)
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To find the value of A or B we integrate (2B.4) with respect
to y, from -Ay to +Ay. Since Ay is a vanishingly small quantity and
since V is a continuous function of y throughout the range of
integration, the second term on the left hand side of (2B.4) integrates
to zero and we are left with
iwuol
2n

d
- ay.v

l ‘ (2B.7)
y = +y y = -ty

By substituting (2B.5a) and (2B.5b) into this relation and by taking

the Timit Ay » 0, we find that

w1 1 2.5
A=B= . 2B.8
o) 2 2 2 2 2
2 .\/h -ko * ~\/h -nk,
Thus
i I exp[- \/hz-ko2 y]
V_I = (y > O) 5 (28.93)
2 -\/hz—koz + -\/hz-nzkoz
; fop I exp[ -\/hz-nzko2 y] : 0) (28.9b)
5 = v y < . .
2 on Vhek 2 + y[n2n7k *

Finally, by substituting V] and V2 back into (2B.1) we obtain

oo

iwuoI exp[- -\/hz-ko2 y + ihx]
z1 2 2 2 21 2
2 5 -\/h -k, +4/h%-n ke
jup I exp[ 4/ h®-n?k % y + ihx]
0 0 dh

E [
z2 2 2 2 21 2
o ) Vh ~k 2+ fh?-nZk,

dh (y > 0), (2B.10a)

m
1

(y < 0). (2B.10b)

These are the required solutions of (2A.15).
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The integrals are difficult to evaluate exactly for all values of
x and y. However, as shown in the Appendix A, an exact evaluation

is possible for points along the interface (y = 0) and yields

wy I 1 n
E, =E,=E,=—>2 m, ) (k - — 1, )k
A TTEI [lxl 1 (kg [x]) S (nko[x])
(2B.11)

From equation (2A.4), we obtain

il n2 | 1
- _ - (1) (1) ]
H =H.,=H,= Hot o/ (nk_|x]) - Hot 7/ (k_1x])
(0] ol 0Y4 Z(nz_]) [IX[ Z n le !Xl Z 0 X J

(2B.12)
for y = 0 and all x.
To gain a description of EZ off the interface we resort to an

asymptotic evaluation of the integrals.
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IIC. Radiation Pattern

To determine the nature of the far-zone radiation field of the
line source it is most convenient to use the cyTindrica] coordinates
(p»¢). In view of this, in the integrands of (2B.10a) and (2B.10b)
we replace x by p cos ¢, and y by p sin ¢, and thus obtain the desired

integral representations of E.1 (p,9) and E,o (ps9) in cvlindrical

coordinates:
. AT [ exp[- \,/ h#-k * p sin ¢ + ihp cos ¢]dh .
z1 _ 2 1, 2 2 2. 2 (<¢<Tr)’
om hZ-k 2 + \/h -n2k,
(2C.1)
. 2_n2) 2 ; 3
£, - Tupy 1 expl “2 n :O P 5:” ‘j :‘hp cos 9] dh(-m < ¢ < 0).
2n 2 -\/h -k, \/h -’k
(2C.2)

In the integral representation of E_, (p,9) we divide the range

of integration into three subranges so that

_ko ko o)

E,q (ps9) =[ f(h) dh +[ f(h) dh +[ f(h) dh, (2C.3)
oo -k k
0 0

where f(h) is a shorthand for the integrand. For kop + o, all three
integrals on the right hand side can be evaluated, as shown in the
Appendix B. However, it can be seen beforehand that the integrals for
the subranges (-« < h < -ko) and (kO < h < «) are negligibly small

compared to the integral for the middle subrange (—k0 <h f-ko)'
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Thus, by retaining only the middle subrange integral, which we denote

by
k

0
- . 2 2 : .
F]mid _ -prI expli \/ k0 -h? p sin ¢ + ihp cos ¢] N
. 2 12 2 i
2m \/ko -h? + -\/nzko -h?

_ko

(0<¢<m) (2C.4)

and introducing the variable a, which is defined by sin a = h/ko,

we get
i
quI 2 - - ]
Ez] ~ m[ (cos a - \/n -sin? a) cos a * exp[1k0ps1n(a+¢);l‘doc
-
2

(2C.5)
for kop »~oand 0 < ¢ <. Applying the method of stationary phase,
we find that (2C.5) yields the following expression for E_, in the

far-zone of the upper half-space:
1kop - in/4

w1 1 | e
Eq ~ 0 (sin%¢ - sin ¢ - '\/ n?-cos?¢)
\/ 2T (n2-1) '\/ kop

(2C.6)

for kop +wand 0 < ¢ <7. (See the Appendix B).
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In the integral representation of Ezz(p,¢) we similarly divide

the range of integration into subranges. That is, we write

-nk, -k, Ko nk,
E,»(0:9) =] g(h) dh +f g(h) dh +[ g(h) dh +f g(h) dh
—eo -nk "ok, Ky
+J/f g(h) dh, (2€.7)
nk0

where g(h) is a shorthand for the integrand. For nk o ~ « all five
integrals can be handled, as shown in the Appendix C. It turns out
that the first and fifth integrals are negligibly small for all values
of ¢ in the lower half-space, i.e. for -m < ¢ < 0. The second
integral is the only one that contributes to the far-zone field in the
sector -m < ¢ < -m + ¢c’ and the fourth integral is the only one that
contributes to the far-zone field in the sector -¢c < ¢ < 0. Here

¢C is the critical angle given by cos ¢C = 1/n. The third integral is
the only one that contributes to the far-zone field in the dihedral
sector -m + ¢ < ¢ < -¢.- (See the Appendix C for details of the
calculations).

Thus, in the third integral, which we denote by
k

0

mid ] exp[-i '\/nzkoz-—h2 p sin ¢ + ihp cos ¢]
- 2 2 2———2 2
2n Vi 2-h? + fn?k 2-h

_ko

dh

Fo

(2C.8)

for the dihedral region (nkop -+ o and -1 + ¢c <¢ §'—¢C), we introduce
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the variable o by sin a = ﬁ%"' Therefore, we get
0

-1

sin ~ 1
. +wp nl n
F2m1d =—20 ( \/ 1-n2%sin%a - ncosa) cos a -
2m(n2-1) _
Zsin ' 1
n
expLink o sin{a-9)]do . (2€.9)

Applying the method of stationary phase, we find that (2C.9) yields
the following expression for E22 in the far-zone of the dihedral

region of lower half-space:

e1nkop - in/4

-wp I n

. 0 . .
E., ~ (n sin%¢ + sin ¢ \/1—n2 cos? ¢)
22 v/ 2n  (n?-1) nkop

(2C.10)
Using the similar procedure, we get the following expression for E22

for the other two sectors of Tower half-space (nkop > @y -9, < ¢ <0,
T <<+ g

e1nk0p - in/d

-wu I n
E ., = 0 (n sin%¢ + i sin ¢ '\/ n? cos?¢ - 1)

z2 2
\/Zw (n%-1) nkop

(2C.11)

By use of equation (2A.4) we can find H¢ from a knowledge of E,.

In the far-zone, we get
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cwmel . :eikop - in/4
H¢1 = 00 - (sinZ¢ - sin ¢ - n? =cos?¢) .
1/2n (n%-1) koP

(2€.12)

in the upper half-space, and

e'inkop - in/4

wafpel  n?
00 (n sin%¢ + sin ¢ - \/1 - n? cos?¢)

27 \far () Afrkge
(2C.13)

for the dihedral region of lower half-space (nkop + o and -7 + ¢C < ¢ < -¢C),

and
) u_€ 1 nz .J e'inkop - 1'”/4
H., = 00 (n sin%¢ + i sin ¢y n? cos?¢ - 1)
o2 2_
W/Zﬂ (n%-1) nk,o

(2€.14)

for the other two sectors of lower half-space (nkop v o, - b < ¢ < 0,

-m < ¢ < -m+ ¢ ). We notice that in the far-zone, we have

o
H¢1 = - ﬁ;' EZl (2C.15)
in the upper half-space, and
€o
H¢2 = =-0n a;‘ E22 (2C]6)

in the lower half-space. From these relations we see that in the

far-zone the Poynting vector is real and has only a p component, Sp.
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Since Sp is given by [18]

_ 1 80 2
Sp] =77 /ﬁ; iEz]l (2€.17)

in the upper half-space, and by

s <l pa/ Ep2 (2C.18)
p2 2 o l 221 ’

in the lower half-space, we find by substituting (2C.6) into (2C.17)

that

wp I2 1
S, = —2 - [sin?¢ - sin ¢ - Yy n®-cos?¢]” (2€.19)

Pl 4o (n?-1)

for the upper half-space (kop + o, 0<¢ <m). By substituting
(2€.10) into (2C.18) we find that

wp I2 n :
5. - 0 ~[n sif¢ + sin ¢ - V1-n® cos?]®  (20.20)

4rp  (n2%-1)

for the dihedral region (nkop > o, =T+ ¢ < ¢ < -¢C); and by
substituting (2C.T]) into (2C.18) we find that
wu012 n?

S.p = [n? sin“¢ + sin%¢ - (n? cos?p - 1)1  (2C. 21)
P 4rp  (n%-1)2

for the both sectors (nkop o, mp, <9< 0and -m < ¢ < -1 + ¢c).
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From (2C.19), (2C.20), and (2C.21) we can sketch the radiation
pattern (Sp versus ¢) of the line source (see Fig.3 ). We see that
at the interface (¢ = 0, ¢ = m) the radiation pattern disappears,
i.e. Sp = 0, and that in the upper half-space the radiation pattern
consists of a single lobe, the maximum (A) of which lies along the
line ¢ = w/2 and has the value

wuolz 1
(S 4) = . . (2€.22)
] [

In the lower half-space, at the angles ¢ = -9. and ¢ = -m + ¢,
sz has peaks (C and D) whose values are given by

2
wuoI

- . (2€.23)
4mp :

(5,2)

peak

Between the critical angles along the line ¢ = -w/2, sz has a
mimimum (B) whose value is given by

2 2
quI n

= . (2C.24)
Adrp  (n+1)?

02) ]
min
As n increases, the radiation pattern in the upper half-space shrinks,
i.e., the lobe gets smaller and point A moves downward. In the lower
half-space the behaviour of the radiation pattern is not so simple: as
n increases, the dihedral angle between ¢ = -m + ¢C and ¢ = -¢c

decreases, point B moves downward, and points C and D move closer

together.
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ek

Fig. 3.

Radiation patterns for n = 2 (continuous line) and n = 4
(broken line). As the index of refraction n of subsurface
region increases, the Tobe in the upper half-space shrinks,
the dihedral angle between the two (Cerenkov) peaks D and C
decreases, and the point B moves downward. For all values of
n > 1, there is a broad null along the interface. Here

cos ¢c = 1/2 (continuous line) and cos ¢C = 1/4 (broken line).
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II1 D. Limiting Cases

We have found the expressions for the electromagnetic field
and the Poynting vector of the line source lying along the interface
of two homogeneous half-spaces. If the index refraction of the
lower medium approaches one, we must get the expressions of the
electromagnetic field and the Poynting vector of the line source in
free-space.

To show that, we intend to find the Timit of Ez] when n -~ 1.

Using L'Hospital rule [19], we get

, . d(numerator)
prI e! k0p in/4 ‘ on ' ( )
limit . E_, = . 2D.1
z1 - .
\/ZW W/k o 5(denominator)
n-~-1 © an n=1

Therefore, we obtain
. LT
w1 elkoP = 17

217, NC R

The above expression is the far-zone electric field that would be

(2D.2)

limit E

n -1

radiated by the line source if it were in a homogeneous dielectric
[see the Appendix DJ.

By using the similar approach, we can see that

. i
wuoI e.'kop -7
Timit E., = - s (2D.3)

which matches with the far-zone electric field that would be radiated

by the 1ine source if it were in a homogeneous dielectric.



- 22 -

We find the limit of the Poynting vectors when n

approaches one. Thus, we obtain

wp I?
limit S , = o (2D.4)
e 16mp
n -1
wy I2
linit s , = 0 (2D.5)
P 16mp
n->1

we know that the Poynting vector (Spo) associated with a line source

in free-space is (see the Appendix D)

wuolz

S (k_p + =) (2D.6)
o 16mp + 0

By comparing (2D.4), (2D.5), and (2D.6), we can see that

Timit Sb] = 1imit sz = Sbo (2D.7)

n->1 n->1
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II E. Radiated Power

The time-average power radiated into the upper half-space is

given by [20]

m
P-I i]f Sp] pdd (kop + o) (2E.1)
0

and that radiated into the lower half-space is given by

P, = sz pdo (nkop > o) (2E.2)
=T

Since the lower half-space is divided into three parts it is of

interest to see how much each part contributes to P2. Accordingly, we

write P2 as the sum of three integrals:

=T+ ¢ =9

0
o c
P2 j/f sz pdo :/r sz pdo :/’ sz pdo
- - + ¢C -¢C

The second integral, which we denote by P2d’ gives the power radiated

(2E.3)

into the dihedral region (-7 + 9 < ¢ < -¢C); and the first and third
integrals, which we denote by P2a and PZb respectively, give the power
radiated into the regions between the dihedral region and the
interface. That is,

(2E.4)

=P +.P

2a ¥ Pog * Pop
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‘Substituting (2C.19) into (2E.1) we find that

2
wp I '
Py = 2 LR nz s Tt 2n2¢ - l-n4¢ - n2 sin (2¢ )
1 mn? - 1)2 [4 2 4 c o, ¢
4
+ — sin (4¢C) )
(2E.5)

where cos ¢c = 1/n. From this relation we see that

Py >0 for n > (2E.6)
and

wpolz 1
Py - = —-P0 for n » 1 (2E.7)

16 2
where P0 (= wpI?/8) denotes the time-average power that would be
radiated by the Tine source if it were in én homogeneous dielectric.
[See the Appendix DJ.

By substituting (2C.20) into the second integral on the right-
hand side of (2E.3) we find that

wuolz n?

_ 2
Pog ST T2y g l-(n2+1) sin(2¢c)- ﬂ—-¢c-¢c
) 4 (n%-1)2 1 2 4 4n* 2 : 2

gﬁ sin(4¢c)} . (2E.8)

and by substituting (2C.21) into the first and third integrals on
the right-hand side of (2E.3) we find that



2 2 2
= = Wil n " 1 1 2y s
=Py = 72 |3 9 - E-¢c - (1 - n%) sin(20.).

(2E.9)
From (2E.4), (2E.8), and (2E.9) it follows that

wp 12 n? 2 2
p. = 0 [_ T+ T2 Ty ﬂ-¢c—2¢c+sin(2¢c)- 9—-sin(4¢c)].
2 2 8

2 g (n2-1)2 4 4n?
(2E.10)
Consequently,
P2 > P0 for n » o (2E.11)
P, - %—Po for n > 1. (2£.12)
We notice that
wpolz
P] + P2 = P0 = . (2E.13)

As shown in Fig. 4, P, smoothly decreases from (1/2)P0 to
zero and P, smoothly increases from (1/2)P0 to Py, as n increases.
For any value of n, P] + P2 = Po; and P2 > P] for n > 1. This means
that more power is radiated into the lower half-space where n > 1
than into the upper half-space where n = 1, and that for the large n
most of the power'is radiated into the subsurface region [21].

As shown in Figs. 5 and 6, as n increases from 1 to «, P2d
decreases smoothly from (1/2)P0 to zero and P2a(=P2b) increases from

zero to (]/2)Po. We note that for n > 1, P2d > P], and P] vanishes
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faster than PZd’ as n increases.

IIF. Ray Optical Description

We can describe the foregoing results in terms of optical rays
and the Fresnel coefficients of reflection and transmission.

To do so, we must take the source to be a little below the
interface, where n > 1. Thus, the far-zone field in the subsurface
region is the sum of two rays: the direct ray from the source and
the ray reflected by the interface; and the far-zone field in the
upper half-space is the ray transmitted from the lower half-space
to the upper half-space. (See Fig.7).

Accordingly, the far-zone field in the subsurface region is

given by
P 4 [u ink p
- 0 0 0
2 ——\/— [1ene] e,

where P0 denotes power radiated by the line source in an

(2F.1)
homogeneous dielectric, © is the angle of incidence, and R(8) is the

Fresnel reflection coefficient. Moreover, the far-zone field in the

upper half-space is given by
T ) o AL kop
nﬂp &Y AL 7

where y is the angle of refraction, and T(y) is the Fresnel

(2F.2)

transmission coefficient. The meaning of the small quantities A0,
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Fig. 7. Ray diagram for case of source a little below interface.
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Ay, AL' and AL is illustrated in Fig. 7 . [Appendix E for the details].

From Fig. 7 and from Snell's law, which expresses the relation

between the angles 86 and y, we see that

AL _ cOsy _ ncosy

3
2F.
AL cos6 . Vn? - sin’y (2F.3)

) COSy _ cOSy

Ay ncos8 Vn2 - Sinzy (2F.4)

We invoke Snell's law to write R(6) as a function of 6 only and

T(y) as a function of y only, [22], viz.

-\/2 . 2
T(Y) = 2Vn~ - sin%Y
1/ 2 . 2
n - siny + cosy

(2F.5)

_ ncos® - V1-n%sine (2F.6)

ncos® + \1-n2sin?6

for the dihedral region (-6 < 6 < 8. where sinf_ = %J, and

R(e) = Dcos® - i ¥ n®sin?6-1 :
ncosé + i W/nzsinze—l ‘ (2F.7)

for the other two sectors of lower half-space (eC <8 5_%—,

kil
"?iei'ec)'
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We find by substituting (2F.3), (2F.4), and (2F.5) into

(2F.2) that

\ /P 4/u 2 ik p
EZ] =.\/0 _0___.2____. [c‘oszy -COS Y Vn2 - sinzy]e 0
o €, (n® - 1)

(2F.8)

for the upper half-space. By substituting (2F.6) into (2F.1) we get

P 4fu 2n 7 ink p
0 -\//—9- —— [ncosze - coseV1 - nzsin B.Je °
€ (n® - 1)

nmp

E22 -
(2F.9)

for the dihedral region; and by substituting (2F.7) dinto (2F.1) we

find that

P 4fu 2n ink o
E22 =\V/—9— -\/--—‘1 —5 [ncosze - icosé Vnzsinze - 1} e ©
nmp € (n® - 1)

(2F.10)

for the other two sectors of the lower half-space.

wOIZ m ™
Since P0 =—gF Y =5 ¢, and 6 = §-+ ¢, where ¢ is the angle

shown in Fig. 2 , (2F.8), (2F.9), and (2F.10) become

Wy 4w 1 2 JZ 2| Ke?
- 0 /0 . : - Y
Ez] = —Lv/é;; — > [s1n ¢ - sindyn cos ¢ |e

£ (n"~ - 1)

(2F.11)
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for the upper half-space (0 < ¢ < m);

Wy U n ink o
E22 = [ f—2 4/ o —— [nsinch +5ing V1 - nzcoszcb]e °
V 2nm V e (n°-1)
P ()

(2F.12)

for the dihedral region (-m + ¢C <9 f—'¢c where cos<1>C = %J; and

wu u n i

) [ ;' 4 ) ink

Ezz = I\ 0 ——— [nsmzq; + isinqb'Vnzcoszq) - 1]e o
2nTp \/ £ (n"-1)

(2F.13)

for the sectors (- 9. 29 <0 and - 71 < ¢ < -7 + ¢c).
Except for the ignorable constant phase difference, we see
that (2F.11), (2F.12), and (2F.13) are identical to (2C.6), (2C.10),
and (2C.11) respectively. This means that ray optics can be made to
yield the radiation patterns we get from a field theoretic approach.
If the source is taken to be a little above the interface, the
correct result is obtained for the upper half-space and for the
dihedral region of the lower half-space. Howeyer, there is no field
radiated in the regions between the critical angles and the interface.
This is a result of the fact that if the source is in the upper half-
space no wave can be excited in the regions above the critical angle.
Therefore, this configuration will only partially duplicate the

results derived in the previous sections.
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I1IG. Physical Remarks

By looking at the radiation pattern, we see that the radiation
pattern disappears at the interface (¢ = 0, ¢ = ), i.e. Sp = 0.

This is reasonable, because in the far-zone we have a TEM wave since
in the far-zone Hp is negligibly small compared to EZ and H¢. We know
that a TEM wave propagates with the yelocity of light in the medium.
Accordingly, the TEM wave in the upper half-space propagates with the
yelocity of light in the upper half-space, i.e. vph] = ¢, whereas

the TEM waye in the lower half-space propagates with the velocity of
light in that medium; i.e. VphZ =€y = C/n. To satisfy the boundary
conditions along the interface EZ and H¢ must be continuous along the
interface. But the TEM wavye in the upper -half-space propagates faster
than that in the lower half-space. Therefore the two TEM waves will
not be continuous along thelinterface unless their intensities are
zero (see Fig. 8.). Consequently we have zero intensity for the TEM
waves along the interface and the radiation pattern disappears at

the interface.

The radiation pattern in the upper half-space resembles the
broadside radiation pattern of a tapered distribution of sources lying
along the plane of the interface. However, the radiation pattern in
the lower half-space is not so simple, for it appears to be a
combination of two patterns, one being the pattern of a tapered

distribution of sources lying in the plane of the interface, and the
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TEM wave in Medium 1

(er?;/‘ll'o) EI Vph=C
H,
% 7777
Ha
(€,pp) TEM wave in Medium 2
n ;ul V$h=-%%

Fig. 8. Impossibility of matching two TEM waves with nonzero
amplitudes and different phase velocities.
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other being the pattern of sources moving radially outward along the
interface. The peaks of fhe subsurface radiation pattern seem to be
generated by these moving sources. To physiéa]]y justify the general
features of these radiation patterns, we invoke the extinction theorem

[23] and the Cerenkov effect [24].
We assume the incident field to be the field that the 1line

source would emit in vacuum. That is, the incident wave is assumed to
be a cylindrical wave emanating from the line source in vacuum. This
wave's phase velocity in the near-zone of the line source is a
complicated function 6f p, but in the far-zone of the Tine source its
phase velocity is constant and equal to c. As this incident wave sweeps
through the dielectric of the Tower half-space, two waves, o and B, are
~generated by the induced dipoles. For points in the dielectric, but
not near the interface, the o wave, which has the phase velocity c,
completely cancels the incident wave, whereas the B wave, which has the
phase velocity ¢/n, gives rise to the resultant subsurface radiation
pattern. For points in upper half-space, but not near the interface,
the B wave is vanishingly small, and the a waﬁe combines destructively
with the incident wave to yield the resultant radiation pattern in the
upper half-space.

For points close to the interface, both o and B8 waves exist. They
combine with the incident wave to yield a composite field which on
the interface is given by (2B.11). Along the interface, the incident

and o waves combine to give (J/p)H](J)(kop),and the 8 wave contributes
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(n/p)H](])(nkop). Thus we see that the far-zone field along the
interface is zero because the combination of the incident and o waves
disappears and the B wave disappears.by itself.

Mathematically, the patterns in the upper and lower half-spaces
can be considered as patterns produced by stationary sources distributed
along the interface and by sources moving along the interface.
According to (2B.11) these moving sources have two different velocities,
vy and Vo given by the far-zone phase velocities of H](])(kop) and
H1(]1(nk0p). That is, vy = w/k0 and v, = w/nko. Clearly, neifher vy
nor v, is greater than the velocity ¢ of Tight in the upper half-space.
However, v] is greater than the velocity c/h of light in the lower
half-space. Consequently, these moving sources produce Cerenkov-like
radiation in the lower half-space (in the directions ¢ = ¢ and
o = -m + ¢C) but not in the upper half-space. This is the reason
we have peaks in the subsurface radiation pattern and no peaks in the

radiation pattern in the upper half-space.
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IIH. Conclusions to Chapter II

Starting from the Maxwell equations we have calculated the
radiation pattern and emitted power of a line source lying along the
plane interface of two dielectric half-spaces. Also, we have shown
that is is possible to describe these results in terms of ray optics,
provided we take thé position of the source to be a little below the
interface but not exactly on it. From our calculations one can draw
the following conclusions:

In the upper half-space where n = 1 the radiation pattern is a
single lobe which resembles the radiation pattern of a tapered
broadside array. Accordingly, from above one would "see" not a line
source but a tapered broadside array. In the lower half-space where
n > 1 the radiation pattern is not so simple; it consists of two equal
maxima (peaks) symmetrically located about a minimum. At the interface
itself the radiation pattern is zero.

Clearly, when n = 1 the power P] radiated into the upper half-space
is equal to the power P2 radiated into the Tower half-space. However,
as n increases, P] decreases, P2 increases, and P] + P, remains
constant. For n > 1 the line source radiates more power into the lower

half-space than into the upper half-space.
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ITI. INTERFACIAL VERTICAL DIPOLE

ITIA. Formulation of the Problem

In this chapter, we have an infinitesimal electric dipole
located on the plane interface of two dielectric half-spaces and
directed normal to the interface. We calculate the radiation pattern
of this dipole.antenna. To formulate the“prbb]ém mathematically, as
we did in chapter two, we introduce a Cartesian coordinate system,
X,Y,Z wherein the xy plane is the plane of the interface of two
homogeneous half-spaces and the vertical infinitesimal electric
dipole is located at the origin and directed parallel to the z axis.
Moreover, to handle the far-zone field, which shall have the form of
a spherical wave, we find it convenient to introduce also a spherical
coordinate system r,6,¢ where x = rsineco§¢, y = rsinésind, z = rcoso,
and 0 < 8 <7, 0 < ¢ <2r. In addition to these two coordinate
systems, since we shall use Sommerfeld's method [25], we introduce
a cylindrical coordinate system p,¢,z where x = pcos¢, y = psing.
(See Fig. 9).

In using the MKS system of units, the current density of the

electric dipole is given by

J (x,y,z;t) = Re [gzloé(x)é(y)é(Z)e'iwt] ’ (3A.1)

where "Re" is the shorthand for "the real part of", e, is the unit
vector along the z axis, &8(x), s(y), &(z) are Dirac delta functions,

w is the angular frequency of the oscillation, and I0 denotes 7 AL where
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va
: |
(€0rHo) — /
n=| A‘I!I" £ :
X
7% 0
(€1 #p)
n>|

Fig. 9. The infinitesimal electric dipole is located on the
interface and is normal to it. The dielectric constant
of the upper half-space (z » 0) is € and that of the
subsurface region (z < 0) is € which is greater than €o°
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7is the total current and AL is the length of the dipole. As we

did in chapter two, we take the index of refraction, n, to be 1 in

the upper half-space (z > 0) and greater than 1 in the lower half-

space (z < 0). Accordingly, the dielectric constant of the upper

half-space is e, = €, and that of the lower half-space is e, = n’e

0

where €0 is the permittivity of free-space. Although this means that

the upper half-space is a vacuum and the lower half-space is a

dielectric, our analysis will hold true for any two dielectric half-

spaces whose indices of refraction are in the ratio of n to 1.

From the Maxwell equations

VxH=J-iwek, (3A.2)

VxE=iwH , (3A.3)
it follows that

VxVxE -kzg = fwud ' (3A.4)

~

VxVxH-k*

where k? = w?pe and p is

(3A.5)

n
<
>
[
-

the permeability of the medium. It is

clear from (3A.1) and (3A.4) that E should satisfy

VxVxE -kzg

where u = Ho everywhere,

= 1(»1110<S(x)(S(y)d(z)g_Z s (3A.6)

k2 = ko2 = wzuoeo for the upper half-space

(z > 0) and k? = n2k02 for the subsurface region (z < 0). We shall

denote E in the upper half-space by E] and E in the lower half-space

by EZ'

To solve equation (3A.6) we must consider the Sommerfeld
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radiation condition [25] for the spherical wave in the spherical
coordinate system. That is
oE .
limit r(—- - ikE;) > 0 (3A.7)
r - oo ar
where Ei is any component of the electric field. In addition to
the radiation condition, the solution to the equation (3A.6) must
satisfy the boundary conditions. Accordingly, we consider the
continuity of the tangential electric and magnetic fields at the
plane interface of the two media.
To solve the problem, we cannot use the method of separation
of variables, because of the unusual boundary requirements on the
fields along the surface. Instead we intend to use the electric
Hertz vector and its integral representation [27]. Accordingly,
we introduce the electric Hertz vector II. This vector is connected

to the electric and magnetic fields by the following relations [28] .

- 2%m
E = ¥(VI) - ye — , (3A.8)
- ot?
3l
H=¢eVx— . (3A.9)
- ot

In the time harmonic case with the angular frequency w, we get

~

E = v(vI) + k%I (3A.10)
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k2
H= VxI (3A.11)
~ “Iw}lo ~

Using Sommerfeld's method, we can see that the z component
of the vector I is the only component that is necessary. (See

Appendix F). Therefore, we take
I=el . (3A.12)

It can be easily shown that the boundary conditions for the HZ along

Z =90 are
0, = nzﬂzz s (3A.13a)
oll oIl
1z "2z (3A.13b)
3z az

(Appendix F) where I, and IL,, are the z component of the Hertz
vectors in the upper and lower media respectively. From (3A.6),

(3A.10), and (3A.12), it follows that

2 2. _ -iwy
v, + kI = ———k 5 1 8(x) &(y) &(z)
’ (3A.14)
where HZ is the z component of I in the cylindrical coordinate
system. Thus, our problem amounts to one of finding the solution of

(3A.14) that gives outgoing spherical waves in the far-zone and
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satisfies the boundary conditions (3A.13a) and (3A.13b) along
z = 0.

We can find by the Sommerfeld method that the solutions for H]z

and sz are

i1 [2n2h exp[-Vh? - k22

) (1)

1z T 7 o 2 H ‘" “(hp)dh , (3A.15)
1z ; .

87T(A)Eo nZVhZ - k02 ++/hé - n2k0

W

i1, [ 2nh explVh? - ik ? 2] (1)
T2z = 2.2 . ¢ 2 02 = H, (ho)dh, (3A.16)

Smue n2y/h? - Ky +y/hZ - n kg

W

where HO(J) is the zerdth order Hankel function of the first kind, h
is a complex variable and W is the path of integration in the complex
h-plane. For Re(h) < 0, W goes parallel and slightly above the real
axis and for Re(h) > 0 it goes parallel and slightly below the real
axis. The two pieces of the path are connected smoothly at h = 0.
The integrals are difficult to evaluate exactly for all values

of p and z. To have a description of I, we resort to an asymptotic

evaluation of the integrals.
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ITIB. 1, in the Upper Half-Space

To find an asymptotic eyaluation of integral (3A.15), we use
the spherical coordinate system and we replace p by rsin®, and

z by rcos6. Accordingly, we obtain

i I0 2n%h exp[-Vh 2_ k 2 rcoso] . (1)
B 2Vh2_k2+ﬁ2-n2k2

(hrsing)dh

(3B.1)

As can be shown, this integral along the path W will reduce to

the following integral over the interval 0 < h < =

il nzh exp[-th -k 2 rcoso ]
M, = —2 > > ; — 3, (hrsing)dn
n2y/hZ - k 2 +y/h? - nZk_

1z Z'rrweo

0
(3B.2)

where JO is the zeroth order Bessel function. Here the path of
integration is the real axis of h from 0 to « and is indented from
below the branch points at h = k0 and h = nkO. We express the Bessel
function by its integral representation [29], i.e.

i
Jo(hrsine) = %ﬁ]i exp[ihrsingsingldRp . (3B.3)

-T

By substituting (3B.3) into (3B.2) we find
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dgdh.

n n h exp['V - k rcos® + ihrsinfsing]
anue nz\/'hz-k2+f2-n2k2

(3B.4)

This integral can be divided into two integrals, viz.

co

k0 Ll m
H]z =f f f(h,8)dhdB +[ f f(h,B)dhdB - (3B.5)

0 “-m k0 -1

In the first integral, which we denote by F]

nZhexp[1i 2_h rcose+1hrs1nes1nB]
dhdg . (3B.6)
41rw€ 2-\fk2h2+\ﬁ1k2h2

We introduce the variable o by sina = E—- and thus from (3B.6)

o

obtain

™
2
dOl,dB ’

kil
.}( nzkosinaCOSaexp[ikor(s1nasinesinB+cosacose)

n2coso + \/nz-sinzu

A2 e
)

(3B.7)
As we notice, in (3B.6) the factor \/hz-koz;has been replaced by
- 2 2 ]
(-1) \/ko -h? for the subrange 0 < h < k_, because the solutions (3A.15)
and (3A.16) must satisfy the radiation condition. We invoke the theory
of asymptotic expansions of double integrals by N. Chako [30]. In

this theory, we have an integral with the form
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I =‘[];(u,v)eikrf(u’V)dudv (3B.8)

and we like to have an asymptotic evaluation of this {ntegra] for
kr - ., To do so, we must find the so-called critical points.
Chako showed that if we find a critical point of the first kind

(uO,vo),wh1ch satisfies

gLi 4= 1 = 0 » (38.9)
) _ .0
v = VO

L R (38.10)
_ .0
v = Vo

in the interval of integration, then we will have the following leading

term for the asymptotic evaluation of the integral when kr - «=. That

is
2rnio eikrf(uo’vo)
Inv ————g(u_,v_) ’ (3B.11)
V loB-v?| o0 kr
2
where o = 2L , (38.12)
ou? fu=u
V=,
2
g = 9—{— (38.13)
oV u = u0 )
vV =1y
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2
y = o°f (3B.14)

QU

c
Q2

<

< <
" [}
< <

and
+1 for aB > ¥%, a > 0
o =¢-1 for o > y%, a < 0 ] (3B.15)
-i for aB < y?
Applying this theory to integral (3B.7), we find that the critical

point of the first kind

o= 3

a =6 (3B.16)
lies in the interval of integration. Therefore, we obtain the
following expression for integral F1 in the far-zone of the upper

half-space,

iIo n2coso e
F, ~ . (38.17)

2mwe n®cos® +VrF—sin26 r

Using the similar procedure and applying the theory of asymptotic

expansion to the second integral of (3B.5), which we denote by

©
i il nZhexp[- \,hz-kozrcose+1hrsinesinBJ
F2 2 ' 2 > v 2 I dgdh ,
47 we, n ‘V{h -k0 + \/>h -n k0
k0 -7

(3B.18)



- 49 -

we find that the critical point of the first kind does not lie in
the region of integration. Therefore the leading term of the

integral F2 does not have the order ElF" and it decays more

)
rapidly than ElF" Consequently, the following expression is the
()

asymptotic expression for H] in the far-zone of the upper half-space,

z
iIo n?cos6 eikor
I,. ~ ’ (3B.19)

1z Zﬂweo n2cosb +'\/n2-sinze r

By substituting (38.19) into (3A.10) and (3A.11) we obtain the electric

and magnetic fields in the far-zone of the upper half-space, i.e.

-il H n%k_sinbcoso e1kor
E,,v—2af2 0 ’ (38.20)
16 2 2 3 )

2 E_ n°cosdH + \/n -sin“6 r

o

-110 nzkosin6cose e1kor
Hy, v . (3B.21)

1¢ 21 n%cos® +1/n?-sin?%s r

As we see from (3B.20) and (3B.21), the far-zone electric and magnetic
fields in the upper half-space are related by the following

relation

(3B.22)
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ITIC. I, in the Lower Half-Space

By using a similar procedure, I,, can be written as follows:

dgdh

4ﬂ2w€

j [ h exp[\/h2 - n?koé rcos® + ihrsinfsing]

n2\/h2 - koz +~\/h2 - n2k02

(3C.1)
for %-5.6 < m. We divide the range of integration over h into three

subranges, that is, we write

nk i

o, ff g(h,B)dhds +/[ g(h,8)dhds +fjg(h .8)dhdg

(3C.2)
where g(h,B8) is a shorthand for the integrand. To have an
asymptotic evaluation for HZz’ as we did in IIIB, we invoke the Chako
theory of asymptotic expansion. Applying this theory to the third
integral of (3C.2), we find that the critical point of the first kind

does not lie in the interval of integration. Therefore the integral

for the subrange nko_f_h < « does decay more rapidly than nl'r for all
0

values of & in the lower half-space (%-5.8 < m). By defining the

variable o by sina = ﬁ%‘ » the first and second integrals of (3C.2) can

be written as follows:
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8 A
-1, ¢ nkosinacosaexp[inkor(sinasinesinB-cosacose)]
I-= dodB
4w2weo n wfl-nzsinza + coso

o -7

dadB ,
4W We

r1\/n sin%a-1 -icosa

'n' .

5 T
Ji;J/r nk s1nacosaexp[1nk r(sinasingsinB-cosacosd)]
6

(3C.3)

where sineC %—and %ﬁi 8 < m. To have a leading term of order

KT for nkor -+ o, the critical points of the first kind must be in
o .
the interval of integration [26]. The critical point of the first

kind of integrals (3C.3) has the form

.7
6’2,

a=m-86 (3C.4)
Thus if 6 lies in the interval m - 6_.< 6 < m, the leading term will
result from the first integral of (3C.3). However, if © lies in the
interval %-i_e < m -6, the leading term will come from the second
integral of (3C.3). Therefore, we have

- 110 coso einkor
.~ (3C.5)

2z waso n'\/14n251n26-cose r
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for nkr ~~and m - 6. < 6 < m; and

-1 c0s0 e1nkorv

HZZN 0
2nweo n\/nzsinze - 1 + icosh r

(3C.6)

i
for nkyr > =and 5 < 6 < m =68,

We get by substituting (3C.5) and (3C.6) into (3A.10) and

(3A.11) the electric and magnetic fields in the far-zone of the

subsurface region (z < 0). That is
Iy g nzkocosesine einkyr
Exp~1 —\/— . , (3.7)
2n €5 n\/] - n2sinle - cosh r
I n3kocosesine einkor
H2¢-vi —_
21 n \/] - n2sin29 - cose  r
(3C.8)
for nk r - and m - 6. < &< 73 and
I My n2k cos6sinb e1nkor
. -0 s (3€.9)

26" on Eo- n/nlsine - 1 + icosé r
emkor

3 .
I0 n kocos@s1ne

H,, ~—
29 2m n\/nzsinze -1 + icoshH r
(3€.10)

m
for nkr >~ and 5< 6 <m -6, .
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As we see from (3C.7), (3€.8), (3C.9), and (3C.10), the far-zone
electric and magnetic fields in the lower half-space obey the

following relation

(3€.11)

ITID. Radiation .Pattern

Having the electric and magnetic fields in the far-zone of both
half-spaces we can see that the Poynting vector has only an r
component, Sr'

Since Sr is given by

-1 *
Sr =3 Re(EeH¢), (3D.1)
we find by substituting (3B.20) and (3B.21) into (3D.1) that
o . 102. Ho n4k0251n26cosze 1

rl 8n2 €0 (nZcos6 + \/nz - sin2g8)2 ;E’ (3D.2)

for the upper half-space (kor »w, 0< 0 i_%). By substituting
(3€C.7) and (3C.8) into (3D.1),we obtain

2 5 2 .2 2
s - Io H, n kO sin~6cos”6 1

r2 gn2 €, (ny1 - nsing - cose)2 r2

for nkor >eand T - 6,< 6 < W and by substituting (3C.9) and (3C.10)

(3D.3)

into (3D.1),we get
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2 5, 2 .2
i EQ__ EQ n ko sin

8n?2 € n2(n2sin29 - 1) + cos2 2 (3D.4)

6cose 1

Sr2

for nkr > = and < 8. < ™ - 6.

From (3D.2), (3D.3) and (3D.4) we sketch the radiation pattern
of the vertical infinitesimal electric dipole (Sr versus 6 only,
because from the symmetry of configuration all the quantities are
independent of ¢) (see Fig. 10a and 10b). At the interface (6 = %J
and along the dipole axis (6 = 0, 6 = m), the radiation pattern 1is
zero. The dotted curve (L) is the Tocus of the maxima of the
radiation pattern in the upper half-space, as n increases from one to
infinity. In the lower half-space, the maximum of Sr2 1ies along the
conical angle 6 = m - 6, and as n increases the angle 6. decreases.

ITTIE. Limiting Cases

We have obtained the expressions for the electromagnetic field
and the Poynting vector of the infinitesimal electric dipole which
is vertically located on the plane interface of two dielectric half-
spaces. If the index of refraction of the Tower medium approaches
one, we will get the electromagnetic field and the Poynting vector
of the infinitesimal electric dipole in free-space.

To show that, we find the limit of E]e when n - 1. Therefore,

from (3B.20) we get

Srk [E e ko”
limit Egy = — — sind . (3E.1)
4 €0 r
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Fig.

10.

0.34
6- T
“nz=|
M H I I I

(a)

Radiation pattern of the vertical dipole of Fig. 9 (a) in the
upper half-space, (b) in the lower half-space for n=4
(continuous line) and n=2 (broken line). The dotted curve (L)
is the locus of the maxima of the pattern in the upper half-
space, as n increases from one to infinity. Note that the
scale in Fig.10(a) is different from that of Fig. 10(b).
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The above expression is the far-zone electric field that would be
radiated by the infinitesimal electric dipole if it were in free-
space. [See Appendix DJ.

By using the similar approach, from (3C.7) we can see that

—iIok0 M, eikor
limit E92 = —— — sind ’ {3E.2)
4t € r

n->1

which agrees with the far-zone electric field that would be radiated
by the infinitesimal electric dipole if it were in free-space.
We obtain the 1imit of the Poynting vectors when n approaches

1. Thus we get

limit s ; = 22— -2 sin2%p (3E.3)
n -+ 1
I %k 2 U
Timit s, = 22 _ [-25in2 . (3E.4)
r 327%r? €
n -1

We know that the Poynting vector (Sro) associated with an infinitesimal

electric dipole in free-space is [Appendix D]

I %k 2 M
Spo = L o -2 sin% . (3E.5)
32722 €

By comparing (3E.3), (3E.4), and (3E.5), we can see that
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Timit Sr] = limit Sr2 = Sro (3E.6)
n -1 n->1

IIIF. Radiated Power

The time-average power radiated into the upper half-space is

12T- 2
P j f sM r?sin6dede (kor > ), (3F.1)
(¢] (s}

and that radiated into the lower half-space is given by

given by

AL

szjr‘}f Spp r?sineded¢ (nkor + ), (3F.2)
it
‘ 5 20

2
We find by substituting (3D. 2) into (3F.1) that

2
n k s1n eco
\/— S 6d9 (3F.3)
(nzcose + \/h2—31n56)

For P2, we divide the range of 1ntegration over 6 into two subranges,

-6, 2 T
=_j/- J/’ Sr2 r2sineded¢ ﬁ/r Sr2 r2sinededo . (3F.4)
b

i.e.

N
=

-0 0
c
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From (3D.3), (3D.4) and (3F.4), we obtain

n k 2s1n3ecoszede
=92 +
V J 'l n251n 0 -~ cose)

i
2
™ -
102 u n5k 251n36coséede
+ ——— _g. o 1]
4t £ -]r nz(n251n26-1) + cosze
ﬁ-ec

It is useful to have the plots of P] and P2 versus n. Figs.11 and

(3F.5)

12 show the sketch of P] and P, versus n. As n approaches 1, both

P, and P, approach %-Po where Po(= gzﬁ Eg) denotes the time-average
power that would be radiated by an electric dipole if it were in
free-space. [See Appendix D]. As n increases from 1 to «, Py first
decreases rapidly and then increases, and for n -+ o, P] approaches

ZPO. As n increases, P2 smoothly increases.
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Fig. 11. P4 the pbWer df the yerticaI dipole radiated into the upper

half-space. P_ denotes power radiated by the electric dipole
in free-space.
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I1IG. Conclusions to Chapter III.

We have found the radiation pattern and emitted power of an
infinitesimal electric dipole for the case where the dipole is
vertically located on the plane interface of two dielectric half-
spaces.

For this case, the radiation pattern has nulls along the interface
and along the dipole axis; the pattern in the upper half-space has a
maximum which in amplitude and direction depends on n; and the pattern
in the lower half-space has a maximum which also depends on n.

For this yvertical dipole, as n increases from 1 to «, P2, the power
radiated into the lower half-space, increases monotonically whereas
P], the power radiated into the upper ha]f—spéce, first decreases and
then increases and approaches ZPO where Po is the time-average power

that would be radiated by the dipole if it were in free space.
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IV.  INTERFACIAL HORIZONTAL DIPOLE

IVA. Formulation of the Problem

In this chapter, we have an infinitesimal electric dipole lying
along the plane interface of the two dielectric half-spaces. We
intend to calculate the radiation pattern of this dipole antenna
and sketch its emitted power into two half-spaces in terms of the
index of refraction of the lower medium. As before, we use Cartesian,
spherical, and cylindrical coordinate systems. The dipole is located
at the origin but now is directed parallel to the x axis (see Fig.13 ).
Accordingly, in using MKS system of units, the current density of the
electric dipole is given by

J (x,y,z3t) = Re [Ex I, 8(x) s(y) &(z) e'iwt] (4A.1)
where &, is the unit vector along the x axis, and other symbols
have already been defined in Chapter III. 1In this case, we also
take the index of refraction, n, to be 1 in the upper half-space
(z > 0) and greater than 1 in the lower half-space (z <0).

By following the procedure we used in dealing with the vertical
dipole in Chapter III we see that the problem amounts to one of finding
the solution to the following equation

VXV xI- KT - v(vT) = l—-‘:;— I, 8(x) 6(y) 8(2) &,
(4A.2)



Fig.

13.
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(GO’/J'Q)

n=| 4"!I" p

27772

(€:1H0)
n>|

The infinitesimal electric dipole is located on the interface
and is directed parallel to x axis. In the upper half-space
(z > 0) the dielectric constant is €, and in the lower
half-space (z < 0) the dielectric constant is € which is

greater than €y
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where k? = ko2 = wzuoeo for the upper half-space (z > 0) and
k? = nzko2 for the subsurface region (z <0). We again denote I in
the upper half-space by I, and II in the lower half-space by I,.

To satisfy the boundary conditions along the interface, both
the x and z components of II are necessary (see Appendix F).

Accordingly, we take

T=ne +I e . (4A.3)

It can be shown that the boundary conditions for the Hx along the

z2 =0 are

- 2
M, =n® I, (4A.4a)
oIl oll

LE. S > S | (4A.4b)
0z 9z
and the boundary conditions for the HZ along z = 0 are

- 2
My, = n* I, (4A.5a)
3l ) 31, _ 3L, ] A (38.50)
9z 32z 9 X X

(See Appendix F). We get from (4A.2) the equations for I, and T, :
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-'wulo
VI + k%O = s(x) &(y) &(z) » (4A.6)
X X k2
2 2 -
VIIZ+kHZ—O: (4A.7)

where 1 = everywhere, k? = ko2 = wzuoso for the upper half-space
(z > 0) and k? = n2k02 for the subsurface region (z < 0). Following
the procedure we used in dealing with the vertical dipole in Chapter
III and considering the boundary conditions (4A.4a) through (4A.5b)

we obtain that the solutions of I, , Ty s I, » and I,, are [31],

il h exp[- th-k 2 z]
M, = — — 02 — Hé]) (ho) dh ,
4m»eo \/h -k0 + \/h -n k0 (4A.8)
W
il h2( Vh-k 2 - Vhé-nZk 2) exp[- Vhi-k %2]
0 coss 0 0 0

n2 '\/;_Zkoz + \/hz-né-k_o_z_

. H]m(hp) dh,

il h exp[ th-nzkozz]

I, = —~—2

(M
2x 2 72 > = H0 (hp) dh,
4mwn g, Vh -koz + ﬁ -n2k02

(4A.9)

(4A.10)
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n2 q/hz-k02-+ w/hz-nzigi-

. H](])(hp) dh (4A.11)

Sl th( \/?--koz - \/hz-nzkoz) expl VhZ-n’k “2]
= ————— 0S¢ .
2k 2
0

W

where H](]) is the first order Hankel function of the first kind, h is
a complex variable and W is the path of integration which we used in
dealing with the vertical dipole.

An exact evaluation of n is possible for points along the

interface (z = 0) and yields

1
- - _ 0 (M 2. (1)
n,=Tq =T, = R )weop [hy (koo) n“h, (nkop)J,

(4A.12)

)

where hq(J is the first order spherical Hankel function of the first
kind. (See Appendix G). To have a description'of Hx and HZ, we
must eyvaluate the integrals asymptotically.

1VB. I and HZ in the Upper Half-Space

To evaluate integrals (4A.8), (4A.9) asymptotically, we use the

spherical coordinate. system where p =.rsing and z = rcos6. Accordingly,

we get
il h exp[- th-k 2 rcosé]
T, = 0 — °2 — Ho(” (hrsing) dh,
4nweo \/h -kO + \/h -n ko

" (4B.1)
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-il th( "\/r?—koz - ‘\ﬂ\z-nzkoz) expl- th-kozrcose]
€oSop .

0
I =
1z 2 2_p2y 2
4mwe kg n? *\/;iz-ko + 'ﬁ nk,
W i D (hrsine)dn  (48.2)
for 0 <6 _<—g- . The integrals along the path W can be reduced to

the following integrals over the interval 0 <h <« ; that is

. .‘/ 2 2
il h exp[- Vh°-k_© rcos6]
0 Pl 0 Jq (hrsine) dh

H =
1x 1/z_ 2 1/:z_ 2, 2 ’
aneo h k0 + h nko (48.3)
1]

- i I0 h2( '\/hz-koz - h2-n2k02) expl- th—ko2 rcosd]
I,, = ——% C0S% —
12 omue ko2 J n2 1/h2—k02 + WZ-nZKOZ

0

0 .J](hrsine)dh (4B.4)
for 0 <0 f.% » where Jo and J.I are the zeroth and first order Bessel
functions respectively. Here the path of integration-is the real
axis of h from 0 to = and is indented from below the branch points
at h = k0 and h = nko. We invoke the integral representation of J]

[32], i.e.
'rr
J](hrsine) = —]ﬁ[exp[ihrsinesins - ig] dB « (4B.5)
-

By substituting (3B.3) and (4B.5) into (4B.3) and (4B.4) we find
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+ i I ff h exp[- '\/hz-ko2 rcost + ihrsinesins_]dhd

B,
M, = Wi
X 2 Yhe-k 2 + /h2-n2k 2
(4B.6)
2 2 2
S ][h('\/h -k 2 -VhPen )
n,_. = cos¢>
1z 2 -n2 2
4n we, k Z.W] -k02 +/h%-nek 5.7)

. P-Xp[",/hz--ka2 rcosf+ihrsinfsing-ig] dhdg

for 0 < 0 _<_-TZr . Each of the above integrals can be divided into two

integrals, viz.

k0 il «© W
i, =f f u(h,B) dhds +[f u(h,g) dhdg, (4B.8)
0 -m kg =T
ko T © T
=j f w(h,8) dhdg +f f w(h,8) dhdB. (4B.9)
0 -T ko -

In the first integrals, which we denote by F]x and F]z

T

k
/’ h exp[i ‘\/ koz-h2 rcos® + ihrsingsing]
2 2 2 2 2
41r we j Vko -h? + '\[n ko -h

dhdg »

(4B.10)
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2 2 2 2 2 2

- [h('\/k -h -\/n Ko -h?) .
12 2y 2 2 2 2y 2.2
4mPwe ko '\/ko -h +\/n k,?-h

exp[iw/ koz—h2 rcosé + ihrsindsing -ig] dhdg (4B.11)

, and thus from (4B.10) and

7¢|:‘

we introduce the variable a by sina =
0

(4B.11) obtain

il
=5 i

-Iok0 ‘}f sinacosaexp[ikor(sinasinesins + cosacos) ]
F, = —— dadBg »
1x 2 FAPEPY
47 We cosa +-\/n -sin“a
0 -7
(4B.12)
il kg sin?acosa cosa—1/n2-sin2a)
F,_= cos¢
12 g2 we [/ n2cosa +-\/n2—s1'n2cx
exp[ikor(sinasinesins + cosacosf)-1B]ldadB .
' (4B.13)

We notice that in (4B.10) and (4B.11) the factOr'\/TF:];;r has been

: 2 2
replaced by (-1)\’ ko -h? for the subrange 0 < h f-ko’ because the
solutions (4A.8) and (4A.9) must satisfy the radiation condition.
Applying the theory of asymptotic expansions of the double integrals,

we find that the critical point of the first kind
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_T
B=73

a =0 (4B.14)
lies in the interval of integration. Hence, the integrals F]x and

F]z in the far-zone of the upper half-space are

iIO cos6 e o
F'l n, . (48.15)

e 2mwe  cOSO + \/nz-sinze r
iIO coso - \/nz—sinze e1kor

cos¢sinbcoso

2mwe nZcosB + \/nz-sinze r

Following the similar procedure and applying the same theory of

Flz v

(4B.16)

asymptotic expansions to the second integrals of (4B.8) and (4B.9)

which we deonte by

dhdg

Vh2-k,> + \[hZ-n%k ?

- T
. : - 2 _ 2 . . .
. 110 h exp[ V h k,® rcosé + ihrsinésing]
2x 4#&80
ko‘-ﬂ

(4B.17)
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. -iIo h?( \/hz k 2 \/

cos¢ .
2z 2 2 2 2 2
4w weoko n? \/h —k0 + -n k
k0 -7
expl - M h2-k02 rcos® + ihrsinésing - i8] dhdg .

(4B.18)
We see that the critical point of the first kind does not lie in the
region of integration. Therefore the leading terms of the integrals

1
F aya h ar . ] ; )
Fox and F22 do not have the order kor and they decay more
1

rapidly than r As a result, the following expressions are the
)
asymptotic expressions for H]x and H]z in the far-zone of the upper

half-space,

. ikar
i I0 cosh e 0

I, ~ ’ (4B.19)
1x 2 D .
2nweo cos6 + \/n -s1nve r
j IO coso - 'Vnz-sinze eikor

cos¢sinécosd . (4B.20)

2 2_c3
2nweo nccosd + \/h -sin2s r

I

~

1z

By substituting (4B.19) and (4B.20) into (3A.10) and (3A.11) we
obtain the electric and magnetic fields in the far-zone of the upper

half-space;
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i Ioko_\//ﬂ;' cosze 2 cosH- Vnz-sinze
€

E ~ - -
18 - sin Bcos6 ’
2m o coso+ \/ﬁz-sinze n2cose+\/52-sin26
ikor
. cosd e ’ (4B.21)
r
-ilk 3 cos8sing e tkor
£~ _.___o__q\/z _ ,
2_cinl
2n € cosd + \/n -sin%e r (4B.22)
i Ioko cososing e1k°r
H. i~ 4 (4B.23)

o1 2 cos6 + \/gz-sinze r

i Ioko c0526 o coso -'\/nz-sinzﬁ
H - 5in“0c058 — ===
017 2n cos6 + \/ﬁz-sinze nzcose+\/n2—sin26

oikor (4B.24)

< COSo
r

It can be seen that the far-zone electric and magnetic fields in the

upper half-space satisfy the following relations

u

_ e
B = ; Hig (4B.25)
U 0
Exs = = \[ = M (4B.26)
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IVC. I and I, in the Subsurface Region

In using a similar procedure and using asymptotic evaluation of
double integrals, 1P and I, in the far zone of the subsurface region
can be written as follows:

-il cos® e1ko"

g™~ 5 . ’ (4c.1)
2x . D .
2mwne | q/?-n sin“6 - ncos6 r

- i1 V1-n251n26 + ncosb einkor

(a) .
1, ~ ———— sindcosbcosd AC.2
2z waneo ra\/]-nzsinze - cos® r (4c.2)

for nk r +«, and -6, < 6 < m where sing_ = %—; and

I, ~ ,
2x 2TwNE \/hzsinze-] + incos6é r (4C.3)
0
-1 Io Vn251n26-1 - 1incos® e1nkor
I, ~———— sinbcosOcosod
2z 2nwnso nj/ﬁzsinée-] + icos9 r (4C.4)

T
for nk r > =, and 5 <6 <7 - 0.

We obtain by substituting (4C.1), (4C.2), (4C.3), (4C.4) into
(3A.10) and (3A.i1), the electric and magnetic fields in the far-zone
of the lower half-space,
inIoko_\//EETz  ocess w/]-nzsinze + ncos®
_— sin

€ n\/l-nzsinze-cose

cosze e‘"kor

En. .~

(4C.5)

- coso
\/i-nzsinze - ncoso r
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inI k. [u cosfsing e 1nkor
E2~—_M 0 - s
® on €5 ~\/1-n251n26 - ncos® r
(4C.6)
inkgr

. 2 R
- Iokon - cosbsing e

26~ '_2.2_ >
2m \/1 nésinég - ncosH r (4C.7)
il kn 2 'V]-nzsinze + ncos®

H

00 .
H, ~ sin 6cos6
2¢ 2n n\/l-nzsinze-cose
(4C.8)
cos2e eiﬁkor
- cos¢
\/]-nzsinze - ncost r
for nk r-oeo, and 7 - ec O <73 and
1nI k o n251n26 1 - incosé
EZeﬁv — {sin ecose
e n n251n28 1 + 1cosH
. (4C.9)
_ cosZ6 e 1nkor
+1 > cos¢ ,
\/h sin26-1 + incos6 r
. nIk,  [u,  cosdsing einkor
267 "_ : ’
o on €, \/n251n26-] + incos r (4€.10)
-1k nzcosesin¢ e1nk0r

00

Hn .~
20 o \/nzsinze-] + incos® r (4C.11)
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i Iokonz 2 1]n251n26-1 - incosé

H sin 6coso
267 2T n\/h251n26-1 + icos®
inkar 4Cc.1
coso e'"*o ( 2)
+i cos¢ ’
1/5251n29-1 + incosH r

m
for nkgr >, and 7 < 6 <w - 6c-

We can see that the far-zone electric and magnetic fields in the lower

half-space are related by the simple relations, i.e.

.1 fF
E26 = : H2¢ (4C.13)
- 1 Ho .

1VD. Radiation Pattern

Since in the far-zone, we have two components for the electric
field and two components for the magnetic field, we can write the

Poynting vector as follows:

v

_1 * *7
Sr =5 Re [E6H¢ , E¢He ] (4D.1)

We find by substituting (4B.21), (4B.22), (4B.23) and (4B.24) into

(4D.1) the Poynting vector in the upper half-space, i.e.

. 2, 2 2
I0 k0 M, { c0s 6

S
rl 8nlrl £ lgose +\/hz-sin26 (4D.2)

0

2
5 cosh -'Vnz-sinze J ) coszesin2¢

- sin 6cos® cos“¢ + . >
nlcos® +\/h2-sin26 (cos® +1/;2-s1n28)
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for 0<9 <%, 0<¢<2randkyr~>=. Bysubstituting (4C.5),

(4C.6), (4C.7) and (4C.8) into (4D.1) we get the Poynting vector S,

I 2k 2n3 U 2 V]-nzsinze + ncosod
sin 6cos6

g =-_00_ [ O
r2 grlrl € n\/]-nzsinze - c0sb
(4D.3)
2 2 2 .2
cos 6 2 cos 0sin ¢
- cos ¢ + 5
\/T;nzsinze - ncose] (v/1-n2sin%e - ncossé)

for nkor o, 0<¢<2mand m - GC < 6 <m; and by substituting

(4C.9), (4C.10), (4C.11) and (4C.12) into (4D.1) we obtain

S Iozkozn3 Ho (n2-1)sin4ecoszecosz¢ - 2cosz¢sin26cos4e
V €

re gnlr2 o nz(nzsin29-1) + cose
(4D.4)
cos4ec052¢ + sin2¢cosz
' (n2-1)
T

for nk r >=, 0 <9< 2mand <O <m-8. .

Since the Poynting vector is a function of 6 and ¢, we sketch,
from (4D.2), (4D.3) and (4D.4), the radiation pattern of the horizontal
infinitesimal electric dipole for three different values of ¢ (Sr versus
6, for the ¢ = 0, %—, and %) (Figs. 14a,b, 15a,b, 16a,b). At the interface
(6 = %&, the radiation pattern is zero for all values of ¢. In the
upper half-space, the radiation pattern consists of a single lobe, the

maximum of which 1ies along the line & = 0 and has the value
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—

/,’En/pvlone $=0,m
£
(€g 1 120) :i / Y
X
27077
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Fig. 14a. The mathematical plane normal to the interface and containing
the dipole (plane ¢ = 0,m).
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Plane ¢=0,7

Fig. 14b. Radiation pattern of the horizontal dipole in the
mathematical plane shown in Fig. 14a. For any value of n,
there are nulls along the interface and along the angle
=7 - ec in the plane ¢ = 0, m. Here sinec = %
(continuous 1ine) and sineC = %—(broken Tine).
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\

\\ plane ¢ = l4r- ;57-”

/
f

I
o - — —— - - — o —

(€5 o) !
n=| Ny & AN
I,
(e,p0)

Fig. 15a. The mathematical plane normal to the interface and bisecting
the dipole with angle ¢ = % .
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Fig. 15b. Radiation pattern of the horizontal dipole in the mathematical
plane shown in Fig. 15a for n=4 (continuous line) and n=2
(broken 1ine).
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72222222277

( 6!/—‘-0)
n>|

Fig. 16a. The mathematical plane normal to the interface and normally
bisecting the dipole.
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Plane ¢ = 5,

n=4

Fig. 16b. Radiation pattern of the horizontal dipole in the mathematical
plane shown in Fig. 16a for n=4 (continuous line) and n=2
(broken 1line).
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2, 2
(S ]) k = Io koﬁ ]
rlpea 8ner2 € (14n)2 ~ (4D.5)

In the lower half-space, along the line 6 = 7, Spo has the value

122 n3
(Sep)gan ™ 5\ — ——
re‘e=m 8ﬂ2T2 > (1+n)2

0 (4D.6)

At the angle 6 = 7 - ec, the radiation pattern has a strange
characteristic. At 6 = 7 - ec and ¢ = 0 and 7 the radiation pattern
has a null. As ¢ increases from 0 to %-, Sr2 increases and at ¢ = g—,
it has a maximum whose value is given by

2, 2
(5 = o kO.\/E__cT ]
6=T-0, , ¢ = 8yl & (4D.7)

As n increases, the radiation pattern in the upper half-space shrinks.

In the lower half-space, as n increases, the cone whose vertex angle
is 26C becomes more narrow.

IVE. Limiting Cases

Knowing the expressions for the electromagnetic field and the
Poynting vector of the infinitesimal electric dipole which is lying
horizontally a]ong the interface of the two dielectric half-space, we
Tike to show that if the index of refraction of the lower medium

approaches 1, we will obtain the electromagnetic field and the Poynting



-84 -

vector of the infinitesimal electric dipole in free-space.
To do so, we find the Timit of E]e and E]¢, when n =+ 1. Therefore,

from (4B.21) and (4B.22) we obtain

ik, [ LN
Timit Eig = — €0S6Ccosd ) (4E.7)
47 €5 r

n->1
-1 IOkO M, ' eikor
limit E]¢ = - \ — sing . (4E.2)
a7 € r
n-1 ' o
and from (4C.5), (4C.6) we get
iIoko U, eikor
Timit E26 = — c0sBcos¢ (4E.3)
47 € r
n -1
. “iloks  fHg e'o"
limit E2¢ = —= sing (4E.4)
47 €, r
n -1

which agree with the electromagnetic field that would be radiated by
the infinitesimal electric dipole if it were in free-space.
We calculate the Timit of the Poynting vector when. n approaches

1. Therefore, from (4D.2) and (4D.3) we get
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'Iozkoz [Ho
limit Spp = ——\[— [cos2Bcos?¢ + sin?¢] , (4E.5)
32n°r €
n->1 °
2 2
limit S =.E9—EQ— Eg-[coszecsozq; + sin?g] - (4E.6)
P2 3op2p2 £ o
n -1 | 0

We know that the Poynting vector (Sro) associated with an infinitesimal
electric dipole directed along the x axis of a Cartesian coordinate

system in free space is (see Appendix D)

H
—9-[coszecosz¢ + sin2¢] . (4E.7)

o

By comparing (4E.5), (4E.6), and (4E.7), we can see that

limit Srl = limit S‘,,2 = Sro (4E.8)

n -1 n -1

IVF. Radiated Power

Substituting (4D.2) into (3F.1), and (4D.3) and (4D.4) into
(3F.4) we can find the time-average power radiated into the upper and

lower half-spaces.
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- sin®Bcos 6 -]

cos8+ {n2-sin 6 nzcose+‘/n2—sin26

’I’ cos?6 cosé-/n?-sins ,

co0s 26
+ - sin6dg
(pose+\/n2-sin26)2
(4F.1)
— ¢ : 2 -
Iozk02n3 Ho (n2-1)sin*Bcos?0-2sin26cos*
p,= 20 [0 ,
2 8m \/Eo n?(n2sin26-1) + cos?6
i
cos*9 + cos?6
+ sinedo
(n2-1)
v
102k02n3 ~ \/1 n?sin?e+ncoso
+ [sin2%6cos 6
8m v -n?sin?8-cosH
w—ec
cos?@ 2 cos?e
- — 1+ sinodo «
\/1-n?sin®6-ncos6 ( 1-n s1n26 ncoss)?
(4F.2)

Here we have the plots of P] and P2 versus n. Fig. 17a and b illustrate

the sketch of P] and P2 versus n. As n increases from 1 to «, P]
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Fig. 17. Power of the horizontal dipole (a) Pq radiated into the upper

half-space, (b) P, radiated into the Tower half-space.
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smoothly decreases and P2 increases. For any value of n, P2 is
always greater than P]. This means that more power is radiated into

the lower half-space (n > 1) than into the upper half-space (n = 1).

As n approaches 1, both P] and P2 approach %-Po where

p = igﬂﬁii‘ /EQ
o .
127 €,

IVG. Physical remarks

The radiation pattern for the horizontal case in the upper half-
space resembies the broadside radiation pattern of a tapered distribu-
tion of horizontal dipoles along the plane of the interface. However,
the radiation pattern in the Tower ha]f—spacé appears to be a combina-
tion of two patterns, one being the pattern of a tapered distribution
of dipoles lying in the plane of the interface and the other being the -
pattern of sources moying radially outward é]ong the interface. It
appears that the peaks and nulls of the subsurface region are generated
by these moving sources. To explain the features of the radiation
patterns we jnvoke;the Cerenkov effe;t [33]. . According to.(4A.12) the
moving sources have two different velocities given by the far-zone
phase yelocities of h](J)(kbp) and h](])(nkAp), that is, by V] = %—
and V2 = E%L" Neither V] nor V2 is greater than the velocity of ?ight
in the uppeg half-space. However, V] is greater than the velocity c/n
of light in the lower half-space. Therefore, these moving sources
produce Cerenkov-like radiation in the Tower half-space (in the

conical direction 8 = 7 - ec). For ¢ = g—, gﬂ-and ¢ = 0, 7 this
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radiation respectively adds to and subtracts from the radiation

due to the apparent tapered distribution of dipoles. Thus, there are
peaks in the plane ¢ = %—, %E-and nulls in the plane ¢ = 0, m in the
conical direction 6 = 7 - et.

IVH. Conclusions to Chapter IV

We have gotten the radiation pattern and emitted power of an
infinitesimal electric dipole for the case where the dipole is lying
horizontally along the interface.

For this horizontal dipole, in the upper half-space, the
radiation pattern is a single lobe which resembles the radiation pattern
of a tapered broadside array of horizontal dipoles; and the pattern in
the subsurface region (n > 1) has three lobes in the plane normal to
the interface and containing the dipole, whereas in the plane normal
to the interface and normally bisecting the dipole the pattern has two
maxima symmetrically located about a minimum.

As n incregses, P], the power radiated into the upper half-space,
decreases and.Pz, the power radiated into the lower half-space,

increases. For n > 1 P, is greater than Py
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V. GENERAL CONCLUSIONS

Starting from the Maxwell equations we have obtained the
radiation pattern and emitted poWer of an interfacial radiating source
for the case where the source is an infinitely long line source lying
along the plane interface of two dielectric half-spacess; for the case
where the source is aﬁ infinitesimal electric dipole vertically
1qcated on the interface; and for the case where the dipole is lying
horizontally along the interface.

For the infinitely long line source, from our calculation one
can draw the following conclusions:

In the upper half-space where n = 1 the radiation pattern is a
single lobe which resembles the radiation pattern of a tapered
broadside array. Accordingly, from above one would "see" not a line
source but a tapered broadside array. In the lower half-space where
n > 1 the radiation pattern consists of two equal maxima symmetrically
located about a minimum. At the interface itself the radiation pattern
is zero. We have also shown that it is possible to describe these
results in terms of ray optics, provided we take the position df the
source to be a 1ittle below the interface but not exactly on it.
Clearly, when n = 1 the power P] radiated into the upper half-space
is equal to the power P2 radiated into the lower half-space. However,
as n increases, P] decreases, P2 increases, and P1 + P2 remains

constant. For n > 1 the line source radiates more power into the
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Tower half-space than into the upper half-space.

For the case of the vertical dipole, the radiation pattern
disappears along the interface and along the dipole axis; the pattern
in the upper half-space has a maximum which in amplitude and direction
depends on n; and the pattern in the Tower half-space has a maximum
which also depends on n. As n increases from 1 to o, P2 increases
monotonically, whereas P] first decreases and then increases and
approaches 2P0 where P0 is the time-average power that would be
radiated by the dipole if it were {n free-space. For n > 1, P2 is
greater than P].

For the case of the horizontal dipole, in the upper half-space,
the radiation paftern is a single lobe which resembles the radiation
pattern of a tapered broadside array of horizontal dipoles; and the
pattern in the subsurface regioh*(n > 1) haS three lobes in the plane
normal to the interface and containing the dipole, whereas in the plane
normal to the interface and normally bisecting the dipole the pattern
has two maxima symmetrically located about a minimum. As n increases,

P] decreases and P2 increases. "Forn > 1, P2 is greater than P].
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APPENDIX A

The Exact Evaluation of the Electric Field
Along the Interface Due to the Interfacial Line Source

In this appendix, we exactly evaluate the electric field along
the interface due to the line source lying along the interface of two
dielectric half-spaces.

By substituting y = 0 into (2B.10a) or (2B.10b) we obtain

e

' fwy I exp(ihx)
Ez - Ez] - EzZ - = dh. (1)

\/hz k 2 \/hz

Formula (1) can be written as follows:

1wu I

E, = E, = E,y =0 J[. -\/h2 k 2 - \/ nzkoz) exp(ihx) dh.

2m(n*-1)

-0

(2)
This integral can be divided into two integrals, viz.

o]

iwuoI
EZ = — ( hz—koz) exp(ihx) dh
2ﬂ(n2-])ko2

00

1wu I
———————————:}r \/ -n2k 2) exp(ihx) dh. (3)

2m(n?-1

In (3) we denote the first and second integrals by I] and 12,

respectively. In I] we divide the range of integration into three
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subranges that is, we write

-k k co
(¢] 0]
L =f u(h)dh +f u(h)dh +f u(h)dh, (4
- ko Ko

where u(h) is a shorthand for the integrand. We denote the integral

for the middle subrange (—kO <hx< ko) by I]m1d and the first and
third integrals by I]a and IZB, respectfve]y.
In the integral

k

g mid o ol i (v k 2-h?) exp(ihx) dh

1 2n(n?-1)k 2 0 ’ (5)
_ko

by introducing the variable £, which is defined by £ = h/ko, we get

+]
. wu I
-1

. 2 2 . 2
As we notice, the factor \/h -k0 has been replaced by (-i) \/ko ~h?
for the subrange -k, < h < k , because the solutions (2B.5a) and

(2B.5b) must satisfy the radiation condition. Using the table of

integrals [34], we find that
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By introducing the variable £ = E—-in the integral
]

I
1P - 1o ,/’ ( \/h2 Z) exp(ihx) dh, (8)

2m(n? —1)k

ko

and £ = --E— in the integral
0
-k

. 0
T
I]a = ——————EL————J/f ( \/hz—koz) exp(ihx) dh, (9)

2_ 2
2m(n 'l)k0

-C0

we get

[ee)

: fop I
1,* —~——9———-J/P V 221 exp(-ik_xt)de (10)

2m(n%-1)
1

1wu I
1P = _/r V-1 exp(ik x£)d (11)

2n(n%-1)

Using the tables of integrals and functions [34] and [35], we obtain

I .
1]“ Yo H](Z) (k. x), (12)
4(n2-])kox 0
I
1 8. Moo H](l) (k %) » (13)

1 2
4(n -1)k0x

where H](l) (kox) and Hl(z) (kox) are the Hankel functions of the
first and second kind, respectively.

We find by substituting (7), (12), and (13) into (4) that
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I 1
I = o .H](l) (kox) (for x > 0) . (14)
2(n2-1) kX

From symmetry we can conclude that

w I 1
I 0

1o 2(n%-1) kolxl

H](l) (koIx|) (for y =0, a1l x).  (15)

By following a similar procedure, we get

wpoI n (l\
I, = - H) / (nkolxl) (for y = 0, all x). (16)
2(n?-1) kolxl

Hence, the electric field along the interface (y = 0) becomes

wp I 1 n
g H, (1) (k - — 1, ) (nk 17
z 2(n2_])k0 [le 1 (O,Xi) IX 1 (n olxl) ( )

(for y = 0, all x).
By use of equation (2A.4) we can find Ho from a knowledge of Ez'

Accordingly, we obtain

i e | ) ) - — @ | s
= x|) - — X
2(n%-1) Ix] 2 ° || 2 0

(for y = 0, all x).
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Appendix B

Asymptotic Evaluation of the Electric
Field in the Upper Half-Space in the Problem
~0of Interfacial Line Source

To find Ez] in the far-zone, we must use an asymptotic evaluation
of integral (2B.10a). To do so, we divide the integral in (2B.10a)

into three subranges. That is, we write

-kO k0 oo
E, =f f(h)dh j f(h)dh +f f(h)dh (n
JLG) kg Ko
where f(h) is a shorthand for the integrand. We denote the integral
for the middle subrange (-kO <h f-ko) by F1mid and the first and

8

third integrals by F]a and F,®, respectively.

In the integral

K
0
- . . 2-2 .
F]mid i wuoI exp[12\/to h y2+ :hxz ah, (y > 0) (2)
2m 3 VK, -h +\[nko-h
0

we introduce the variable o, which is defined by sina = E— , and use
)

x = pcos¢ and y = psing. Therefore we obtain

ki)

| 2 |
mid _ umol TS . .
F = — (cosa - \/n ~-sin®a)cosa exp[1kops1n(a+¢)]da
2m(n%-1)
I
2

(3)

for (0 < ¢ < m).
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Applying the method of stationary phase [ 36], we find that the

stationary point is given by o = %-— ¢ and lies in the interval

T« a < Hence, for kop -+ o, the leading term of F]m1d is

7 =

~oj =)

wu I 1k oP- 1

F,md ——— (sin%¢p- s1n¢\/n -c052¢) ———-
1 \/z; (n? - 1) \/-—‘ (4)
(for kop +> )
In the integral

w0

; 7 2 .
8 1wu01 exp[- ‘/h kO y + ihx]

F." = dhs (.V > 0) (5)

1 2m / Rk T + \[hEnk
0

by introducing the variable s, which is defined by cosh s= E—-,
0
we obtain
8 iwpoI
R (sinhs - y/cosh?s-n?) sinhs exp[ik pcosh(s+i¢)]ds
T 2n(n2-1) 0

0
(6)

The saddle points of the integrand are s = -i¢ + prm (p is an integer).
In using the steepest descent method [36], we deform the integration
path, which runs from 0 to « along the real axis of s, to one which
does not cross any branch cut and consists of two parts: one is along
the imaginary axis of s; and the other one passes through one of the
saddle points and approximates the constant-phase contour near that

saddle point. From the study of the steepest descent method, for
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kop + «, we find that the leading term does not have the order
1

Ofm.

. . 1
h - C 3
It will decay more rapidly t anvizg onsequently, for
kop + « the integral F]B is negligibly small compared to the integral

F m1d. Using a similar method for F]u, we find that for kop - o the

1
integral F]u is also negligible compared to F]m1d. Therefore, we

obtain
wy, 1 1 , - =) eikop'i%' (
E_; n (sin®¢-sing y/ n?-cos?¢p) ———— 7)
AR v Vo

for kop +oand 0 < ¢ <.
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Appendix C
Asymptotic Evaluation of the
Electric Field in the Lower Half-Space
in the Problem of Interfacial Line Source

To find the electric field in the lower half-space (-m < ¢ < 0),
we use an approach similar to one we uséd in the Appendix B.
In the integral representation of E_, (2B - 10b) we divide the

range of integration into fiye subranges:

-nk_ -kO k0 nk0 ©
F2, f g(h)dh +f g(h)dh Jf g(h)dh +/ g(h)dh t/ g(h)dh.
- -nk0 -k0 kO nkO (1)

Here g(h) is a shorthand for the integrand. Using a similar procedure,
we see that for nkop + = the first and fifth integrals are negligibly
small compared to the other three integrals for all values of ¢ in the
lower half-space (-w < ¢ < 0). By introducing the variable o, defined
by sina = h/nko and by using x = pcos¢ and y = psin¢3 we can invoke

the method of stationary phase to evaluate the second, third, and
fourth integrals for nkop -, To have a leading term of ordervﬁ%zg
for nkop ~ «, the stationary point must lie in the interval of

integration [38]. Therefore, if ¢ lies in the interval -m <d<-mH ¢

1
n

C

or -¢C < ¢ < 0 where cos ¢C = , the leading term will come from the
second or fourth integral, respectively. However, if ¢ lies in the

interval - + ¢C <¢ < -¢C the leading term will come from the third
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integral. Therefore, we get

quI 1nk oP- im/u

E,, ~ ‘/—- - 1) (n sin® ¢ + sin ¢/1-n2cos2¢) \/____ ' (2)

for the dihedral region (nk p > and -m + ¢ < ¢ < ~9.); and

inkop-iﬂ/q
T e Ly (nsinfe singy/n?cos?¢-1) Eme—n (3)
o (n? - 1) nkop

for the other two sectors of the lower half-space (nkop -+ oo,

9 X920, -m< < -mt g
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Appendix D

Far-Zone Electric Fields and Poynting Vectors of a
Radiating Line Source and Infinitesimal Electric Dipo]e
in Free-Space

1. Radiating Line Source in Free-Space

We consider an infinitely long straight wire in free-space which
lies along the z axis of a Cartesian coordinate system. We also
introduce a cylindrical coordinate system p, ¢, z where x = pcos¢p, and
y = psing. (Fig. 18a).

We intend to solve the Helmholtz wave equation in free-space with

the source J which can be expressed by

J = e, Is(x)s(y)e vt | m

Accordingly, we can write from (2A.13) that

VxVxE- kozg = 1wp016(x)6(y)- (2)

Since p = 0, we can write

V- (eE)=0 . (3)

€ is a constant. Thus, it follows that

V.E=O' (4)

From (2), (4) it follows that
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Z
i/
(a)
X
Z
Y
(b)
X Z

—>Y

(c)

Fig. 18. (a) infinitely long line source in free-space, (b) and (c)
infinitesimal electric dipole in free-space directed parallel
to the z and x axes respectively.



- 103 -

2 2c o _s .
VZE + k,“E 1prI<S(x)5(y)g_Z (5)
From the symmetry of the configuration, we can see that Ez(p) and
Ho(p) are the only components of the electromagnetic field of a

line source in free-space. Thus

2 2 - _s
Y EZ + k0 EZ 1wp016(x)6(y) (6)
we know that the Green's function for the two-dimensional wave

equation, which is

(V2 + k%) Glp-p') = ~8(p-p') , (7)

can be expressed by
6o-0') = o # (ke lo-p ) (8)
By comparing (6) and (8), we obtain

=W I -])
- ko) (9)

E (o) =

For the far-zone, we use the far-zone asymptotic expression of the
zeroth order Hankel function of the first kind, which can be

written as

1 (Do) v (2 ol lkgomm/)

wkop

kop >> 1] (10)
Therefore, from (9) and (10) it follows that
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~-wp 1 .
o Gilkgp-m/4) (11)
2\[2nk p

which is the far-zone electric field that would be radiated by a

E (o) =

Tine source if it were in free-space.
To find the Poynting vector, we substitute (11) into (2C.17). Thus
we obtain
2
prI

Sp_ = . (12)
16mp

The time-average power radiated into free-space by a line source can

be found as follows

21 Wy I 2
P= J[ Spoedd = 0 (13)
0 8

2. Radiating Infinitesimal Electric Dipole in Free-Space
2a. Dipole is Parallel to the z Axis

We consider an infinitesimal electric dipole located at the
origin of a Cartesian coordinate system and directed parallel to the z
axis. This dipole is in free-space (see Fig. 18b). The exact
expression of the electric field of this dipole with the electric
dipole moment PZ is calculated by Papas [38]. By introducing a
spherical coordinate system r, 6, ¢, we can write the 0-component of

the electric field of this dipole, i.e.
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1 Gk LG
E, = - —P_sing(— - — + k_2)

0 e £ r r? 0 4y

(14)

For the far-zone (kor >> 1), the above expression approximates to

2 ik r
E m_-kO Pz & ° sing - (15)

6 47e r

We know the relation among the electric dipole moment Pz, the total

current £, the length of the dipole AL. i.e.

S N
P=g, ~iM (16)

2AL is already denoted by IO. Therefore, by substituting Zaf by Io

in (16), we obtain

o=l . (17)

From (15) and (17), we find

. ik r
ik I .o e o

Eq v - —00 [0 sing (18)
4t € r

kor >> 1
The above expression is the far-zone electric field of an infinitesimal
electric dipole parallel to the z axis in free-space.
To find the Poynting vector, we substitute (18) into (2€.17), thus

we obtain
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I 2k 2 U
S =9 0 o sin6 . (]9)
ro 32m2p2 €

The time-average power radiated into free-space by an infinitesimal

electric dipole can be obtained as follows

2m w L IOZkOZ 'po
P0 =f f Sro r<sineded¢ = ——— — (20)
o “o 127 €5

2b. Dipole is Parallel to the x Axis

In this case, we have the infinitesimal electric dipole lying
parallel to the x axis of the Cartesian coordinate system (see Fig. 18c).
Following the similar procedure, we can write the electric field

expression of this dipole with electric dipole moment PX[38], i.e.

1 ik 1 ik r

E, = —P_ cosbcosp (—2 - — + k. 2) &0, (21)
® £ X r r? 0 4qpr
1 ik, ] elkor
E. = -—P sing (— - — + k_2) . (22)
¢ e X r r? 0 4qr

From (21) and (22), we can find the far-zone electric field (kor >> 1),
i.e.
1 eikOr

. 2
Ee N kao €cosocoso
£ 4yy

5 ' (23)
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1 . veikor
E¢ vo- ;'kao sing (24)
4rr
The relation similar to (16) can be expressed by
e ‘iz 1
P=g gttt & w lo (25)
Therefore,
=1
Py = o Lo (26)

By substituting (26) into (23) and (24), we obtain

ik (3 eikol
Ee n 00 —g-cosecos¢ ) (27)
4t € r
. ik r
-iI k u e %o
E, m-—-—i’-—o‘/—‘l sing : (28)
A7 €0 r

kor 5> 1

The above expressions are the far-zone electric field of an
infinitesimal electric dipole parallel to the x axis in free-space.

The Poynting vector can be found by substituting (27) and (28)
into (4D.1), i.e.

—
N
o
N
™

S, = ——— o (cos?6cos?¢ + sin?g) . (29)

2.2
327cr €,
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The total time-average power radiated into free-space by this dipole

is also

p =2 0 [0, (30)
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Appendix E
Finding the Intensity of the Electric
Field of a Line Source in Free-Space from
its Power

We consider the line source in Fig. 18a. We know that the
time-ayerage power radiated into free-space by this line source can

be expressed by
2m

P=Jf Spo odd - (
O .

But Spo is independent of ¢. Therefore, we get

v
S

P = 2mp spo . (2)

For this line source, Spo can be simply found from (2C.17), 1i.e.

_1 € )
Spo - E' V/;ETIEZOI (3)

where EZo is the electric field of the 1ine source in free-space.

By substituting (3) into (2), we obtain

P=1Tp\/;:—EIEZO'2, (4)
Ho
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Therefore

As can be seen, the intensity of the electric field of the line
source in free-space can be expressed in terms of the time-average

power. We can not obtain the phase of the electric field only from

a knowledge of the power.
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Appendix F

Boundary Conditions for the
Electric Hertz Vector

In this appendix, we study the boundary conditions for the
electric Hertz vector. In Chapters III and IV we used the electric
Hertz vector. Consequently,we must know the boundary conditions which
the Hertz vector ought to satisfy.

According to Maxwell, the tangential components of the electric
and magnetic fields must be continuous along the interface of two
media in Chapter III. From the symmetry of the configuration in the
problem of Chapter III, it is clear that the tangential components of
the electric and magnetic fields along the interface are only Ep(p,z)
and H¢(p,2) in the cylindrical coordinate system. Therefore, on the

interface (z = 0) we must haye the following relations

(1a)

H (1b)

i = Hog
at z = 0. We know that the electric and magnetic fields can be

derived from the electric Hertz vector. We can write

E=km + v(v-m) , (2)
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k2

H = VxI . (3)
~ uoiw .

Now, we assume
1=1e (4)

From (2), (3), and (4), we can express the electric and magnetic

fields in terms of HZ. That is

5 ol
E :-.-—-..Z.., (5)
P dp 8z

k? am

H¢=— - -z, (6)
po1w 3p

, aznz
E, = kI, + — . (7)

By using (5), (6) and the boundary conditions (la) and (1b) we obtain

o0 ol o ol

Yz _ "2z (8a)
dp 8z 9p 9z
L 2 N2 2

k0 BH]Z i n ko BHZZ (8b)
uoiw 3p poiw 3p

for the points on the interface (z = 0). After simplification, we get
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E_.BH]Z 0 BHZZ

- (9a)
3p 9z dp 9z
oIl oIl ’
1z = nz 22 (gb)
op op

We integrate both (9a) and (9b) with respect to p. The constants of
the integration are zero, because all the expressions approach zero for

p >~ « . Hence, we obtain

- n2
le n HZz (10a)
il ol
iz 22 (10b)

pZ 3z
The above expressfons are the boundary conditions for the electric
Hertz vector. As can be noticed, only z component of vector II in the
problem of Chapter III is necessary and sufficient to produce all the
nonvanishing components of the electromagnetic field 1in that problem
and to satisfy all the boundary conditions.

In Chapter IV, interfacial horizontal dipole, the problem is
slightly different. Following a similar procedure, we assume that the
Hertz vector has only x component which is parallel to the axis of the
dipole. Accordingly, we can write the components of the electric

field in terms of Hx in the Cartesian coordinate system, i.e.
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321
E = k2m +—2 , (11)
X X
ax?
321
E = —%, (12)
Y 2y oX
9211
E, = L (13)
973X

To satisfy boundary conditions for z = 0, the x and y components of
E must be continuous on the interface of the two media in the problem

of Chapter IV. Thus, we obtain

821 921
kOZH]X + -———2-12£ = nZkOZHZX + 22X ) (]46)
X 0X
o%I 3%
1x _ 2X . (14b)
oy ox ayox

From (14b), we deduce the continuity of HX on the interface. But
using this continuity in (14a) implies that n = 1 which is
contradictory with the original assumption in the problem. (We have
n > 1 for the lower medium). Therefore, taking only the x component
of II is not enough and we must also take its z component. Thus, we

assume

W& I8 (15)

]
i

=
™
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By substituting (15) into (2) we obtain

D
E. = k%M + — (v-I) (16)
X X ax -
)
E = — (v.I) . (17)
Yy 3)’ ~

On the interface (z = 0) we have the continuity of Ey and Ex' Hence,

we get
2 9 ( ) 2 2 o
k “I, +— (V-II,) = n*k %I, + — (V-1L,) (18)
0 Ix x ~ 0 "2x 5% ~2
) ]
— (v.g]) = — (v.]'[z) (19)
3y sy 7
From (19), we get
vy =V (20)
Using (20) and (18), we deduce that
- 2
I, =n 1P (21)

We find, by substituting (15) into (3), that

k2 oIl
H = -z (22)

1uow oy
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y i 3z aX

k2 am BIL,
H, = (=L - —) (24)
ipow X oy

Along the interface, we have Hx1 = sz. Thus, from (22), we get

= n2 \
The y component of the magnetic field must be continuous on the
boundary (z = 0). Therefore, from (23), we find
oll oll
X g2 2 (26)
9z 9z

Finally, from (20), (21), (25) and (26), we can write the boundary

conditions for the vector II in Chapter IV, . i.e.

~

— 2
H]x = n H2x , (27)
oll oll
]X - n2 2X ’ (28)
3z 9z
I, = nZH22 ’ {29)
BH]Z . aH]X i BHZZ N BHZX (30)

0z oX oz oX
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Appendix G

The Exact Evaluation of Hx

Along the Interface Due to the Interfacial
Horizontal Dipole

We intend to exactly evaluate the x component of the electric
Hertz vector along the interface of the two media in Chapter IV.

To do so, we substitute 8 =-%~into (4B.3). Thus, we get

il hJO(hk)
HX=HX]=.n2Hx2= — ——— dh . (1)
' 2mue Vh2-k * + \/h*-n’k
0

o

The above formulas can be written as follows:

il
=0 f h( \f/h2=k ? - V/hZ-nZk ?) J (hr)dh. (2)

X 2 2_
Zmuko so(n 1)

0

This integral can be divided into two integrals, i.e.

il
0
I = . h V h2-k 2 J (hr)dh
X 2mwe k 2(nz--l)f 0 0
00
0

2 2
2'rrw€ok0 (n‘ -1)

il
- 0 2_.2, 2 7 - .
fh "h n ko Jo(hr')dh (3)
0
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In (3) we denote the first integral by I] and the second integral

by I In I], we divide the range of integration into two subranges.

9°
That is, we write

k o
o
I] =d/, u(h)dh +;/' u(h)dh , (4)
0 kO

where u(h) is a shorthand for the integrand. We denote the integral
for the subrange (0 < h f.ko) by I]a and the other one by I]b.

In the integral

1,8 = \/k 2-h? g (hr) 5)
1 2ﬂw€ k 2(n -1) J/ﬁ r) (

we introduce the variable £ by £ = E—-. Therefore, we obtain
1
1]a = V1-22 9 otk re)de . (6)
2mwe (n -1)
0

Using the table of integrals, we find that

4 _ V" 1 (
2mve (n V2 (k, r)3/2 U372
3

where J3/2(kor) is the Bessel funct1on of the order 5

r) (7)

I
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By introducing the variable £ = %—-in the integral
0

il

b o] 2 2
1.b - h\/hZ-k 2 J_(hr)dh, (8)
1 Zﬂwkozeo(nz-ﬂf °o o

k
]

we get

b _ iIOko 2
I = ———— | ¢ \/z -1 9, (kre)de . , (9)

2ﬂweo(n2-1)
1

Using the tables of integrals and functions, we obtain

il k 5l 1
Ib OOV_ (-IO)

= N,, (k r)
1 ZTm)eo(nz-]) \f_Z— (kor‘)3/2 3/2% 70

where N3/2(k0r) is the Neumann function of the order 3/2.

We find, by substituting (7) and (10) into (4), that

Loko VT L (1)
) o Hz /o (K 1
21Tweo(n2-]) \/_2- (kor)3/2 3/2 ( Or) (11)

(1)
where H3/2 (kor) is the Hankel  function of the first kind. We know

hm (k ) ‘/ " H(]) (k_r) (12)
1 | L Y RN O |
0 Zkor / o

where h] (kor) is the first order spherical Hankel function of the

that
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first kind. From (11) and (12), we get

I (1)
I, = ° hy  (kyr) (13)

2 1
Zﬂweo(n -T)r

By following a similar procedure, we obtain

I n? (1)
I, = - 0 hy  (nk,r) . (14)
2ww€o(n2-1)r

By substituting (13) and (14) into (3), we can find IL, along the
interface, i.e.
I (1) (1)

i hy (kor) = n®hy (nk 15
X 2Ww€o(n2-1)r [ 1 ('or) n-n, (n Orﬂ (15)




- 121 -
REFERENCES

Dag T. Gjessing, Remote Surveillance by Electromagnetic Waves,

Ann Arbor Science Publisher Inc. Ann Arbor (1978).

V. A. Fock, "The current distribution induced by a plane wave
on the surface of a conductor," Zhurn. Eksp. Teor. Fiz 15,
693-702 (1945).

E. C. Jordan and K. G. Balmain, Electromagnetic Waves and

Radiating Systems, Prentice-Hall, Inc. Englewood Cliffs, New

Jersey (1968).
E. T. Whittaker, From Euclid to Eddington, Cambridge University

Press, London (1949).

P. Beckmann, The Depolarization of Electromagnetic Waves, The

Golem Press, Boulder, Colorado (1968).

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic

Waves from Rough Surfaces, The Macmillan Company, New York (1963).

D. Marcuse, Light Transmission Optics, New York (1972).

See also D. Marcuse, Theory of Dielectric Optical Waveguides,

New York (1974).

C. Elachi and C. Yeh, "Mode conversion in periodically disturbed
thin-film waveguides," Journal of Applied Physics, 45 (8),
3494-3499, August 1974. |

A. Sommerfeld, Partial Differential Equations in Physics,

Academic Press, New York (1949).



10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

- 122 -

A. Bafios, Dipole Radiation in the Presence of a Conducting

Half-Space, Pergamon Press, New York (1966).

J. Wait, Electromagnetic Waves in Stratified Media, Macmillan

Co., New York (1962).

L. M. Brekhoyskikh, Waves in Layered Media, Academic Press,

New York (1960).

C. H. Papas, Theory of Electromagnetic Wave Propagation,

McGraw-Hi11, New York (1965).
A. Sommerfeld, op. cit., p. 193.

J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company,

New York (1941).
R. M. Whitmer, "Fields in nonmetallic waveguides," Proc. IRE. 36,
1105-1109 (1948).

F. B. Hildebrand, Adyanced Calculus for Applications, Prentice-Hall,

Inc. Englewood Cliffs, New Jersey (second edition 1976).

J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc.

New York (second edition 1975).

F. B. Hildebrand, op. cit. p. 604.

J. D. Jackson, op. cit. p. 237.

R. W. P. King and G. S. Smith, Antennas in Matter, MIT Press,

Cambridge (1981).

M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York

(sixth edition 1980).
M. Born and E. Wolf, op. cit. p. 100.



24.
25.
26.
27.
28.
29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

- 123 -
C. H. Papas, op. cit. p. 47.
A. Sommerfeld, op. cit. p. 246.

=

. Sommerfeld, op. cit. p. 193.
A. Sommerfeld, op. cit. p. 247.
J. A. Stratton, op. cit. p. 29.

G. N. Watson, Theory of Bessel Functions, Cambridge University

Press (second edition 1966).

N. Chako, C. R. Acad. Sci., Paris, 247 (1958), 436, 580, 637.
See also M. Born and E. Wolf, op. cit. p. 753.

A. Sommerfeld, op. cit. p. 257.

G. N. Watson, op. cit.

C. H. Papas, op. cit. p. 47.

I. 5. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,

and Products, Academic Press, New York (1965).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,

Dover Publications, Inc., New York (1972).

C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for

scientists and Engineers, McGraw-Hi1l Book Company, New York (1978).

C. M. Bender and S. A. Orszag, op. cit. p. 276.
C. H. Papas, op. cit. p. 92.



