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Abstract

In multi-armed bandit problems, agents must repeatedly choose among uncertain al-
ternatives whose true values they can learn about only through experimentation. In-
formation acquired from experimentation is valuable because it tells the agent whether
to select a particular option again in the future. Economically significant applications
include brand choice, natural resource exploration, research and development and, as
special cases, job and price search.

Despite the importance of these applications, little is known about whether firms
and individuals appreciate the value of information in bandit problems. That which
is known is based on laboratory and field studies of search problems. These studies
suggest that people do not search enough, perhaps because of search cost or risk
aversion. This thesis attempts to ascertain whether this undervaluation of information
extends to the more general bandit environment, and, if so, whether the suboptimality
is attributable to search cost, risk aversion, or some other cause.

The results of three laboratory experiments, each addressing a separate family
of putative explanations for undervaluation of information in bandits, are presented.
The first asks subjects to choose among a set of uncertain alternatives, controlling
for mean-conditional risk and search cost. Although subjects appreciate that there
1s value to information, they experiment less than the optimal amount. Since there
1s no experimentation cost and mean-conditional risk is constant, these explanations
cannot be the primary cause of underexperimentation.

The second experiment uses a more powerful design, asking subjects to report
their Gittins indexes, rather than just make a choice. This additional information is
used to test that agents are hyperbolic discounters who do not experiment enough
because they are disproportionately tempted to maximize their current payoff at the
expense of future payoffs. This, too, does not appear to be a primary explanation

for underexperimentation because the agent’s level of present bias changes over time,



1ii
contrary to an assumption of the model.

The third experiment tests whether ambiguity aversion, or distaste for variance
in the distribution from which the means of the payoff distributions are drawn, con-
tributes to undervaluation of information. Consistent with a prediction of ambiguity
aversion, subjects have both lower-than-optimal Gittins indexes and higher-than-
optimal willingness to pay for information about the true values of ambiguous alter-
natives. These results are not consistent with hyperbolic discounting, risk aversion or
quantal response behavior. However, the errors vary only with changes in the bandit’s
horizon, not with small changes in mean and variance as ambiguity aversion predicts.

Taken together, these experiments suggest ambiguity aversion is a likely cause of
suboptimal play in bandits, as is cognitive shortcuts used in formulating and solving
the dynamic programming problem. If these errors can be demonstrated across a
wide enough set of bandits, in the field as well as in the laboratory, then policies
can be developed based on this behavioral understanding of choice. These policies
can improve the welfare of the workers, shoppers and firms who have to solve bandit

problems.
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Chapter 1 Introduction

In many economically significant environments, agents must repeatedly choose among
uncertain alternatives about which they can learn only through experimentation.
Examples include the situations of a shopper deciding whether to purchase his favorite
brand of orange juice or experiment with a new one he has never tried and an oil
company deciding whether to continue testing a tract of land or to move its equipment
to another tract. If these agents do not experiment enough, they can lose considerable
welfare: the shopper could miss out on a delicious new brand of juice he would
purchase and enjoy in the future, and the oil company may engage in an expensive
recovery operation based on too few good test results. On the other hand, if these
agents experiment too much, they may lose welfare as they pursue inferior choices.

Despite the economic importance of this sort of experimentation, little is known
about how agents approach such problems. The existing knowledge is based on studies
of search problems, which are a special case of experimentation problems. Agents
in search problems do not search enough, suggesting that they do not appreciate
the value of the information they gain from experimentation. However, the extant
research leaves us without an understanding of how or whether this undervaluation
operates in the much broader domain of experimentation problems.

This thesis presents a series of laboratory experiments to determine if the un-
dervaluation of information in search problems generalizes to the more sophisticated
environment. If so, the experimental data can be used to test the predictions of three
putative explanations for suboptimality: horizon truncation, hyperbolic discounting
and ambiguity aversion. Horizon truncation holds that agents think only a few peri-
ods ahead when making decisions, so undervaluation occurs because the full future is
not considered when calculating the future benefit of present experimentation. Hy-
perbolic discounting attributes undervaluation to present bias—agents are tempted to

maximize their current payoff at the expense of future payoffs because their discount
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sequence puts more weight on the current period than on future periods. Ambiguity
aversion attributes undervalution to a distaste for the variance in the distribution of
the unknown mean of the payoff distribution. Which of these models explains present
bias has important practical implications for corporate strategy (e.g., natural resource
exploration and new product marketing) and government policy (e.g., unemployment

insurance and incentives).

1.1 Applications of the Experimentation Environ-
ment

Conceptually, experimentation problems focus on the value the agent assigns to the
information obtained from experimentation. This information value arises from the
expected increase in future payoffs based on the information. A surprising array of
practical and economically significant decisions can be explained in terms of experi-
mentation and information value:

Brand Choice: As mentioned above, a consumer shopping for a product he fre-
quently buys, like orange juice or window cleaner, faces an experimentation problem:
he must decide whether to purchase the best brand he’s tried so far, or to experiment
with new brands. He knows how good his favorite brand is on average, and how much
it varies in quality, but he can learn about the new brand only by trying it. Therefore,
he must consider whether the value of the information obtained about the quality of
the new brand is worth foregoing his favorite brand. If he learns the new brand is
better, he can use this information to improve his future utility by buying the new
brand again. On the other hand, if it is worse, he has missed out on his favorite brand
once, but he can return to it on the next purchase. If he underestimates the impact
better orange juice will have on his future utility, he may never try the new brand
and deprive himself of a possible gain.

Exploration: The oil company also faces an experimentation problem. Any

agent exploring for natural resources tests land parcels to decide whether to mine
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or drill them. In this case, both additional testing and moving to a new tract are
experimentation. The company can improve its estimate of how much oil is in the
current tract with additional testing, or it can conclude that additional testing is so
unlikely to influence its recovery decision that its equipment would be better used
exploring another tract. If the company undervalues the information it would gain
from additional testing on the current tract, it might decide to drill based on too few
good test results, embarking on an expensive recovery operation in an area with few
~ resources, or it might decide to abandon the parcel based on too few bad test results,
leaving valuable resources in the ground.

Research and Development: Researchers want to allocate their time among a
number of projects in a way that will maximize their chance of making an important
discovery. For instance, a pharmaceutical company might experiment with several
different approaches to treating a disease. The information acquired from experimen-
tation can be used to focus subsequent research on the most promising alternatives,
reducing the costs that they would incur by pursuing unpromising ones. However,
if the company undervalues the information additional research on a specific treat-
ment would provide, they may abandon an effective and profitable treatment whose
promise was not immediately apparent.

Job and Price Search: Search problems are a special case of experimentation
problems. Searcher’s choices are somewhat different than those just described. Rather
than repeatedly choosing from among multiple alternatives, at least one of which gives
an uncertain payoff, searchers must decide whether to exit the problem with a known
payoff stream (i.e., accept an offer) or to experiment by waiting for another offer. The
information value here represents not the value of information per se, but rather the
expected increase in future payoffs arising from the chance that future offers will be
better.

For example, a worker looking for a job must decide to accept a wage offer, and
receive that wage forever, or to experiment by continuing to look for a better offer.
For low offers, she can expect to receive a better offer in the future, and this possibility

constitutes the information value. If she does not experiment, with enough different
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prospective employers, she could end up underemployed.

Similarly, a consumer looking for the best price on a product must decide whether
to buy from the closest store at that store’s price, or to experiment by searching
other stores for a better price. The information value in this problem arises from the
possibility that other stores have lower prices, and so the consumer may gain from
searching. If the consumers do not experiment with different stores, stores can charge

high prices, knowing consumers will not seek lower prices elsewhere.

1.2 Evidence for Suboptimal Information Acquisi-
tion in Experimentation Problems

Previous work on experimentation problems has established that agents do recognize
that there is value to collecting information, but has not addressed the question of
whether or not they place enough value on collecting information. Evidence from
field and laboratory studies of search problems suggests that agents do not search
enough, and therefore may not collect information in the more general experimenta-

tion environment.

1.2.1 Study of Experimentation Problems

The only study to address whether agents appreciate the value of information in
bandits is Banks, Olson and Porter (1997). They formulated a laboratory study to
determine whether or not people behave optimally. They ran two treatments, one
where myopic behavior, selecting the alternative with the highest expected value, was
always optimal and another where it was sometimes optimal to choose the alternative
with lower expected payoff. They observed a higher level of myopic behavior in the
treatment where myopic behavior was optimal. This means that agents do recognize
the value in the information they obtain through experimentation. However, Banks,
Olson and Porter do not consider whether or not the magnitude of the intertreatment

shift they observed was consistent with optimal behavior.
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1.2.2 Evidence from Search Problems

Although Banks, Olson and Porter’s experiment does not address whether people
appreciate the magnitude of the value of the information they gather through ex-
perimentation, studies of search problems suggest that agents may be losing welfare
because they do not acquire enough information.

The possibility that agents underexperiment should be of concern to economists
because it implies considerable welfare is being lost because agents do not optimize.
Suboptimal experimentation has already been observed in search problems. Cox and
Oaxaca (1996, 1992, 1990, 1989) were concerned that job seekers may not engage in
enough search and therefore end up underemployed.

Cox and Oaxaca’s baseline design asked subjects to engage in a 20-period job
search from a known distribution of offers, uniform on integers 1 to 10. A search
period consisted of a random draw to determine if the subject would get a wage
offer, and if so, the draw of the offer itself. Once a subject accepted an offer, she
was paid that wage in every remaining period. In different treatments, Cox and
Oaxaca manipulated the length of the horizon, the probability of receiving an offer
(1989), the size of the payment the subject received if no offer was recieved or an
offer was rejected (1989,1990), and the variance of the offer distribution (1989). In
other papers, they elicited a binding reservation wage (1992), and allowed subjects
to recall previous offers, reducing the risk involved in continued search (1996).

Across these treatments, they found that subjects terminated their search sooner
and with lower offers than the optimal model predicts, and that their reservation
wages were lower than optimal.

This result replicated earlier studies by Schotter and Braunstein (1981) and Braun-
stein and Schotter (1982) which found that experimental subjects did not search
enough. Schotter and Braunstein asked subjects to name a (nonbinding) reserva-
tion wage, and although their reservation wages were close to optimal, they spent
significantly fewer than the optimal number of periods searching.

In known offer distribution experiments, an analog to the information value arises
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because future offers may be higher than the mean of the offer distribution. In another
experiment, Cox and Oaxaca (2000) examine the effect of unknown offer distributions
by drawing offers from one of two bingo cages, each with a known distribution. One
cage has offers uniformly distributed on integers 1 to 10, and another on integers a
to a+ 9 with a < 10. Subjects are not told which cage is being used, but must learn
which by searching. This design leads to the unusual property that a subject may stop
with a lower offer than she would continue searching with, if the higher offer provides
the information that offers are being drawn from a higher-valued distribution.

Results with this design were remarkably similar to those with known offer distri-
butions. Although subjects did slightly less well relative to optimal than with known
distributions, searches were consistently terminated slightly earlier than the optimal
model predicts.

There is also some support for present bias in field studies of search. Although
he did not consider a search-based model, the very high discount rates in appliance
purchases observed by Hausman (1981) are consistent with undersearch for quality.
Similarly, Pratt, Wise and Zeckhauser (1979) observed that if consumers do not
engage in enough price search, prices could vary widely from one retailer to the next.
They measured the price variance of 39 goods selected at random from the Boston
yellow pages by calling merchants selling each good. They found that price variance
for moderate and high priced goods was in fact higher than could be sustained by
optimal search, meaning people were paying supracompetitive prices for many goods.

Each of these results indicates that agents do not search enough, and that their
search pattern is consistent with undervaluing the informati’on gained from further
search. Unfortunately, they also leave us with little information about whether un-
dervaluation might operate in the broader domain of experimentation problems, in-

cluding those in which there is more than one uncertain alternative.

Explanations for Suboptimal Search

The search experiments gave rise to two sensible explanations for suboptimal search:

risk aversion and unobservable search cost.
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In Cox and Oaxaca’s experiments, agents had to choose between getting an addi-
tional draw from the wage distribution and a fixed payment for the rest of the session.
Because continuing to search for a better wage is riskier than stopping, risk averse
agents have lower reservation wages than risk-neutral agents. Therefore, risk averse
agents will appear to stop searching too soon. Cox and Oaxaca argue this is what
causes suboptimal search.

Although risk aversion could contribute to undersearch, there is evidence against
its being the only explanation. First, Schotter and Braunstein used a lottery pro-
cedure to induce a high level of risk aversion and still observed too little search.
Second, in a less risky treatment where searchers were permitted to recall past offers,
Cox and Oaxaca observed even less search, suggesting increased risk aversion. This
replicated Hey’s (1987) finding that reservation prices in an experimental price search
were actually lower than without recall. This feature of the data is inconsistent with
risk aversion since it implies the level of risk aversion varies within subjects across
treatments. This, in turn, suggests some form of present bias may be contributing to

reservation wage and price formulation in laboratory studies.

Pratt, Wise and Zeckhauser propose that suboptimal search could be attributable
to an unobservable search cost. Although it probably does not explain suboptimal
search in laboratory studies (where there is no search cost), it could complement risk
aversion in the field, where agents must incur a cost of calling or visiting different
merchants to determine their price for the commodity they are seeking. Since this
(unknown) cost was not accounted for in their analysis, it could explain the supraop-
timal price variance Pratt, Wise and Zeckhauser observed.

However, Pratt, Wise and Zeckhauser’s data also provide an indication that sub-
optimal search may be the result of some search and experimentation heuristic which
does not perform well in the particular problems studied. They found people searched
nearly as much for inexpensive goods like dry cleaning as for expensive goods such
as boats, appearing to be more sensitive to the percentage that could be saved with

search, rather than the monetary value of the savings. This suggests that the apparent
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undervaluation is not undervaluation per se, but rather an unintended consequence

of a simple choice rule which is poorly calibrated to these problems.‘

The search results can be easily extended to the more general experimentation
framework. An experimenting ageﬁt must choose among several alternatives, at least
one of which has uncertain outcomes. A searching agent must decide between accept-
ing a fixed stream of payments (e.g., a price or wage offer) and experimenting with
the distribution of offers. An agent who is not induced to continue searching by the
possibility of better offers in the future may not be induced to experiment because
most of the benefit from present experimentatAion accrues in the future. Similarly,
the possibility that uncertain alternatives may pay better in the future is not enough
to induce her to experiment with them; instead, she will opt for the alternative with
the current highest expected payoff. In the earlier examples, this means the shopper
will not try new brands of orange juice, the oil company will drill based on only a
few good test results, and the pharmaceutical company will pursue only treatments
which demonstrate early promise. In each case, these agents fail to maximize their
future payoffs because they may miss delicious new brands of orange juice, signs that
a tract will not be profitable or the true promise of a new treatment.

The similarity between search and experimentation problems arises because both
require agents to solve a dynamic programming problem to determine their best next
action. If some feature of the utility function, bias or difficulty solving the dynamic
programming problem leads to undersearch, it is reasonable to expect it could be
manifested in experimentation problems. This link is further strengthened by the
robustness of search results to unknown offer distributions. One aim of this study
Is to test this intuition that the cause of undersearch also leads to welfare loss in
experimentation problems.

Risk aversion and unobservable search cost are both appealing because intuition
suggests they are factors in experimentation problems. Although behavior in search
problems is broadly consistent with the predictions of these models, they were not

carefully controlled for, and there are some minor phenomena in the data which are
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inconsistent with their predictions. Since they can be easily controlled in the lab, risk
aversion and experimentation cost are excellent alternative hypotheses for a simple
experiment which tests whether or not suboptimal information valuation extends to

the experimentation environment.

1.3 Formalizing the Experimentation Environment

To conduct a careful study of behavior in experimentation problems, the experimen-
tation environment must be formalized. This section builds the theoretical founda-
tions necessary to understand the extensions of experimentation problems discussed
here. First, it introduces the multi-armed bandit, a formal framework for studying
experimentation. It then proceeds to explain how uncertain alternatives can be val-
ued using a certain alternative: the expected payoff from a certain alternative which
makes an agent indifferent between the certain and uncertain alternatives captures

the discounted present value of present experimentation.

1.3.1 Multi-armed Bandits

The experimentation problems described earlier can all be formally modeled as multi-
armed bandits. The term bandit is used because each alternative can be thought of as
a different slot machine. Each alternative, or arm, has two levels of randomness. First,
an arm’s payoffs are are randomly distributed. Second, one or more of the parameters
of the arm’s payoff distribution are unknown, but are drawn from known distributions
themselves. In the case of the shopper looking for orange juice, his favorite brand
which he has tried many times is a “known” average payoff arm, because he knows
how much quality Variés, and has a very clear idea of how good it is on average. The
new brand, on the other hand, has unknown average payoff. The shopper has beliefs
about how good it is on average, and about how much it varies, but he does not know
for sure; he can update his beliefs by experimenting with the new brand.

In addition to a collection of arms, a multi-armed bandit must also have a discount

sequence which indicates the present value of payoffs received in each future period.
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This is usually idiosyncratic to the agent. The agent combines her beliefs about the
likelihood of different average payoffs with her beliefs about the variance of payoffs
around the average to formulate a strategy which maximizes the present discounted

value of payoffs received.

Information Value

The key concept in bandit problems, and the one which will eventually be used to
identify the causes of undervaluation, is information value. The information value is
the present discounted value of the expected increase in future payoffs arising from
information gained by present experimentation. The consumer seeking orange juice
can select the new brand, assuming its uncertainty, but also expect to gain from it.
If the new juice is bad, he can switch back to his favorite brand next time. But if the
new juice is good, he will have found a better juice, which he will buy and enjoy every
period in the future and which he would not have found if he had not experimented.
The information value captures the expected contribution to future payoffs arising
from the possibility the new juice is better; it reflects the possibility the new juice is
bad only in the present period because the shopper can switch back to his favorite
brand.

If agents underestimate the information value, they will not experiment enough
and may lock onto an alternative which gave good payoffs early, but which is not
necessarily the one with the best average payoff. On the other hand, if agents over-
estimate the information value, they will experiment too much and waste choices on
alternatives with low average payoffs. This intuition provides the basis for the exper-
iments described in Chapters 3 and 4. They ask subjects for the information value
they perceive from a single unknown arm. Their reported information value can be
used to test for present bias by comparing it to the optimal information value for an

exponential discounter.
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1.3.2 Bandit Notation

For simplicity, attention is restricted to two-armed bandits. Otherwise, the notation

I use largely follows that of Berry and Fristedt (1985).

Arms

An arm consists of a distribution from which payoffs are drawn, a set of distribu-
tions from which the distribution of payoffs is selected and a prior over the set of
distributions. Let @ € D denote the distribution from which a payoff is drawn when
the arm is chosen, where D is the set of possible payoff distributions. The agent’s
prior over the elements in D is denoted (G. Although, except where specified, the
theory given here works for general @, D and G, those who prefer concreteness may
consider @ to be a normal distribution with known variance ¢? and unknown mean
i, D the set of normal distributions with variance ¢ and u € ®, and G a normal
distribution from which yu is drawn with known mean v and known variance 72. I
will also consider the case where Q is binomial payoff distribution with an unknown
mean 60, D is the set of possible binomial distributions, and G is a beta distribution
with unknown parameters « and 5.

When an arm is selected, a payoff X is drawn from (). The agent uses Bayes’ rule
to update her beliefs that () is a particular element in D. Let F' on D denote the
updated set of beliefs. Further, let (X)F on D denote that the beliefs /' have been
updated to reflect the payoff X.

The two-armed bandits I consider will have one arm F', and a second arm with a
known ). Since @ will have only one parameter, the mean of the normal distribution,

this known arm will be denoted A, where X is the value of the mean of the known Q.

Discount Sequences-

A bandit consists of two elements: a collection of arms following the description
above, and a discount sequence giving the discounted present value of payoffs in

future periods. A general discount sequence will be denoted A = (ay, g, a3, .. .),
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where o, denotes the relative value of payoffs received in period ¢. In this notation,
an exponential discount sequence is A = (1,§,6%,...). When it is convenient, AW
will be used to denote the one-period-ahead continuation of A, (ag, as,...).
Given these elements, the two-armed bandits on which this paper focuses can
be written (F,\;A), where F is the unknown ) bandit, A is the known @ bandit,
and A is the discount sequence. Of particular interest will be the case where A is

exponential, which will be denoted (F) A;9).

Berry and Fristedt (1985) characterize the set of discount sequences for which a

bandit reduces to an optimal stopping problem.

Definition 1 For any discount sequence A = (a1, g, 0, .. .), let v = 322, ;. Then

A is regular of, fort =1,2,...
Tev2 o 1 (1.1)
Ye+1 Ve

provided that i1 > 0.

Knowing this is important because optimal stopping problems are much better un-

derstood, and much easier to compute solutions for, than the general bandit problem.

Strategies, Worths and Values

A strategy in a bandit is a series of history-dependent arm selections o, designating
an arm choice in each period for each possible F' in that period. The worth of a

strategy (what it is expected to pay) is given by
W(F,X A;0) = B[ e X,] (1.2)
T=1

where X, is the payoff received at time 7 from whichever arm is prescribed by o given
the F' at time 7.
The value of the bandit is the expected payoff given that the agent plays the

optimal strategy (assuming it exists),

V(F, X\ A) =sup W(EF, \; A;0). (1.3)
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Two other expressions of value are of interest. Let V¥(F, \; A) be the value of
selecting F in the current period and then continuing optimally and VA(F, X; A) be

the value of selecting A initially and then continuing optimally.

VE(F, X\ A) = oy E[X|F] + E[V((X)F, \; AD)] (1.4)
VMF, X A) = aq A+ V(F, X AD) (1.5)

These expressions will be useful in understanding the value function.

Gittins indexes and Information Values

Two more quantities are useful for comparing the value of information among arms.
The Gittins index, denoted A(F, A), is the value of a known mean arm for which the
agent is indifferent between selecting the unknown arm and the known mean arm in
the current period. The information value, the present discounted expected value of
additional payoffs attributable to the information gathered from experimentation, is

the Gittins index minus the expected value of the arm.

1.4 A Simple Example

To develop an intuition for the competing forces of maximization of current payoffs
and gathering information which may improve future payoffs, consider the following
two-armed bandit. The mean of the first arm is $0.00 with p=1/2 and $1.00 with
p=1/2, and there is no noise, so the distribution of payoffs is the mean with probability
one. The second arm has a mean of $0.50 with p=1, and it too has no noise, so the
distribution of payoffs is the mean with probability one. Therefore, arm 1 pays $1.00
each time it is chosen half the time, and $0.00 each time it is chosen half the time;
arm 2 always pays $0.50 every time it is chosen.

Suppose that there are 7' > 1 periods, and discounting is negligible. Although
both arms have the same expected value, arm 1 is strictly preferred to arm 2. This is

because a choice of arm 1 will reveal the value of arm 1, and if arm 1 gives a payoft
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of $1.00, it can be chosen in the future, yielding a payoff of $1.00 each time.

Formally, the present value of a choice of arm 1 is given by

37 -1

; (1.6)

T 1 T
> 1.00+ 5(0.00+ >°0.50) =
t=1

t=2

B

This reflects the payoff from a strategy where arm 1 is chosen in the first period. If
it pays $1.00 in the first period, it will pay $1.00 in every period, so it is optimal to
play it in every period, yielding a total payoff of $7. On the other hand, if it pays
$0.00 in the first period, it will pay $0.00 in every period and it is optimal to switch
to arm 2. Then the payoff of $0.50 is realized in each of the remaining T — 1 periods.

Compare this to the value of choosing arm 2.

1 1 T 3T —2
0.50 + = 1.00+ =(0+ ) 0.50) =
2 t=2 2 t=3 4

(1.7)

This reflects the initial choice of arm 2, yielding $0.50, and then proceeding with the
(optimal) choice of arm 1, advanced one period toward the horizon.

The best an initial choice of arm 2 can do is 1/4 less than an initial choice of
arm 1. Therefore, although they have the same expected value, arm 1 is a strictly
preferred initial choice because it can provide information about what is optimal in

future moves.

1.4.1 The Value of Information

This example can also be used to emphasize two additional concepts in bandit analy-
sis. The first is the idea of a known-payoff equivalent to an uncertain arm: how much
would arm 2 have to pay each time it was chosen for the the agent to be indifferent

between it and arm 17

TN =

8| =

T 1 T
> 1.00 + 5(0.00 + S°A)
t=1

t=2

~
+
—
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This number is called a Gittins index, and it represents the value of a certain payoff at
which the agent is indifferent between playing the bandit and getting a certain payoff .
in each period. Note that the agent should always demand more than the expected
value of the bandit for a certain alternative, because if she selects the bandit in the
next period and receives a low payoff, she can always switch to the certain arm; it
is only if the uncertain arm pays more than the certain arm that she will continue
selecting it.

The Gittins index and the information value, the difference between an arm’s
Gittins index and its expected value, are the focus of the analysis in Chapters 3 and

4.

The second idea this example illustrates is that of a stopping problem. A bandit
has the stopping property when, if it ever becomes optimal to play a known mean
arm, it is optimal to select the known mean arm in every remaining period. This is
intuitive in the example above: the agent learns nothing by choosing arm 2 at time ¢,
and so has no information in time ¢ + 1 which would warrant a different choice than
in time t. Furthermore, the horizon is one period closer, so the agent would have
preferred to choose arm 1 in the previous period because then he would have had an
additional period in which to use the information.

The stopping property is particularly important because it makes bandits tractable.
In any period, the stopping property allows easy assessment of the value of switching
to a known mean arm: the discounted sum of the known payoffs. Since this is a
fixed number, rather than a dynamic programming problem, valuation of switching
to a known arm is much easier. Without it, in fact, valuing bandits and computing
optimal strategies is exceptionally computationally burdensome. For this reason, the
experiments presented here have been designed to have the stopping property. The

stopping property underlies all of the bandit theory presented.
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1.5 Models of Suboptimal Bandit Behavior

The results from search problems suggest that risk aversion and experimentation cost
may contribute significantly to apparently suboptimal behavior in bandit problems.
In addition to these models, which are eventually rejected as the primary cause of
undervaluation of information, three other behavioral models of choice are considered.

The first model, hyperbolic discounting, is the focus of Chapter 3. Hyperbolic
discounting attributes suboptimal information values to the discount sequence. The
model considered deviates from a standard exponential discount sequence in two
ways. First, the sequence of discount factors themselves reflects an extreme, relative
to exponential, preference for maximizing the present payoff, at the expense of future
payoffs. In the particular form considered, exponentially discounted payoffs after the
current period are further discounted by a constant factor (less than one). This means
that agents undervalue information because they heavily discount the future payoffs
which benefit from present experimentation.

The second way in which hyperbolic discounting differs from exponential discount-
ing is that agents are not time consistent. With a hyperbolic discount sequence, an
agent will often choose a known mean arm in the present period, but make an implicit
plan to become exponential, and thus to experiment, in the next period. However,
time inconsistency implies that the agent will be hyperbolic again in the future period,
and will not honor this implicit commitment.

The second model which may explain apparently suboptimal behavior is ambigu-
ity aversion. In bandits, the mean of the payoff distribution is itself drawn from a
distribution. Ambiguity refers to the variance of this second-order probability, the
distribution of the mean of the payoff distributions. If agents do not reduce compound
lotteries, increases in the variance of the second order distribution can affect agents;
valuation of a choice independent of risk attitude.

Chapter 4 examinés whether a preference for relatively certain alternatives rooted
in ambiguity aversion leads agents to undervalue information. It tests the prediction

that subjects will have lower Gittins indexes than an ambiguity neutral agent, but
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also that they will pay more than an ambiguity neutral agent for information about
the true mean of an ambiguous arm.

The third model formalizes the intuition that agents’ limited computational ability
restricts the complexity of the decision tree they consider. Horizon truncation assumes
that, instead of computing the value of information by considering the entire decision
tree to the end of the horizon, agents consider the decision tree a small number of
periods into the future, and then simply add a factor to compensate for the periods
they did not consider. This model is not considered fully because it does not generate
sharp predictions, but it does generate sensible, testable restrictions on behavior in
each experiment.

The hyperbolic discounting and ambiguity aversion models are developed in a
way which warrants special attention. They are both based on assumptions about
behavior derived from stylized facts from psychology. These stylized facts are not
designed to apply only to particular problems, but rather to be building blocks of
theories which describe behavior in sophisticated environments such as bandits.

The model of rational optimal behavior assumes agents to be exponential dis-
counters, and to use Bayes rule to reduce compound lotteries in calculating expected
payoffs. By replacing each of these assumptions with assumptions which are based
on stylized facts from psychology, I hope to build a theoretically rigorous model of
bandit behavior which accurately describes observed regularities.

The predictions of the models can be formally tested with data, and accepted
or rejected based on the empirical performance of the predictions. Further, if the
behavioral model performs better than the optimal model, because I know which
assumptions of the optimal model T replaced, I have learned the psychological cause
of agents’ deviation from optimality. Knowing why agents do not make optimal
decisions can inform the policy discussions and corporate strategy sessions targeted

at helping agents improve their welfare.
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1.6 Summary and Hypotheses

Despite being an economically significant decision framework, computational com-
plexity and lack of experimental control has discouraged researchers from considering
whether or not behavior in bandit problems is optimal. Evidence from a single study
of bandits indicates that agents do appreciate that there is some value to exper-
imentation, but it does not provide information about whether agents experiment
optimally. Several studies of search problems, a special case of bandits, demonstrate
that agents do not search enough; this suggests that agents may not experiment
enough in bandits.

The literature presents two plausible explanations for suboptimal experimenta-
tion, risk aversion and experimentation cost. Additionally, hyperbolic discounting,
ambiguity aversion and horizon truncation predict that agents will not experiment
enough. The next three chapters each present a laboratory experiment designed to
test the predictions of one or more of these theories. The final chapter interprets
the results, and offers some thoughts about the implications of the evidence for and

against each of these theories for agent welfare and public policy.
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Chapter 2 A Bandit Experiment

The literature reviewed in Chapter 1 suggests that agents recognize that there is
value to experimentation in bandit problems, but that they may still not experiment
optimally because they are risk averse or there is some unobservable cost to experi-
mentation. This chapter has two objectives. First, to determine whether the tendency
to undervalue information observed in search problems extends to the broader domain
of bandit problems. Second, in the event that agents do not experiment optimally, to
test experimentation cost and aversion to the variance of the mean-conditional payoft
distribution, one component of risk, as explanations for underexperimentation.

This chapter presents the results of some simple choice experiments. Although
they were not originally designed to test for Gittins optimal play, and therefore do
not provide the best test of optimality, they do provide significant insight into how
agents decide among bandit arms. The next section provides a precise definition of
risk, and distinguishes it from ambiguity. Section 2.2 presents some of the challenges
posed by theory, and gives some insight as to why bandits have not been heavily
researched to this point. Section 2.3 discusses the experimental design. Section 2.5
demonstrates some of the difficulties in analyzing bandit data using discrete choice
models. Results based on a variety of other statistical techniques are presented in

Section 2.6.

2.1 Risk

Although risk is an intuitive concept, formally testing risk aversion in an environment
with such a sophisticated belief structure as bandits requires a precise definition.

In bandits, payoffs are drawn from a distribution ¢, which is itself uncertain. @
is drawn from a set of possible payoff distributions D, with a probability given by the

measure G(Q). Therefore, there are two sources of variance in the payoff: variance



24
of Q and variance of G. The variance of an agents’ payoffs arises from the combined
effect of these distributions, and is represented by the subjective payoff distribution,

F.

Definition 2 An arm F is riskier than an arm F' if the variance of F' is greater

than the variance of F'.

F is determined by combining G and @ using Bayes rule. If G is atomic, so there
is only one possible mean, F’ will coincide with @ with the mean prescribed by G. If
@ is atomic, so the payoff from an arm is equal to its mean every time, F' coincides
with G until a payoff is received, when F' is updated to reflect the perfect information

contained in the payoff.

2.2 Multi-armed Bandit Theory

This chapter considers the case where agents must choose among several uncertain
alternatives. From a theoretical perspective, this is challenging because the dynamic
programming problem that determines the optimal strategy must consider what would
happen if each alternative were chosen at each state. Furthermore, because the valu-
ation of each alternative is itself recursive, this does not reduce to a stopping problem
at any state. Therefore, the optimal strategy can be extremely difficult to compute.

For one common discount sequence, however, Gittins and Jones (1974) have shown
that a k-armed bandit problem can be reduced to k two-armed bandit problems, each
consisting of one arm from the k-armed bandit and a known value arm. The index
of the 7™ arm, A(F;,6), is a function which gives the value of the known arm at
which the agent is indifferent between selecting known and unknown arms in the i**
two-armed bandit. The theorem says that the optimal strategy is to select the arm

with the highest index at each stage.

Theorem 1 (Gittins and Jones, 1974) Suppose the discount sequence is the infinite

horizon geometric with 0 < § < 1. Then the optimal selection in the (Fy,.. ., F;0)
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bandit is given by an arm with
A(F;, 6) = max A(Fy, 0). (2.1)
j

This is a considerable computational simplification because the two-armed bandit is
a stopping problem: once it is optimal to choose the known value arm, it remains
optimal to select it in every subsequent period. The stopping property is easy to
understand in the infinite horizon geometric case because selecting the A arm provides
no new information, so the agent has the same information and same continuation
discount sequence in the next period; since nothing is different, the same selection
must be optimal. Therefore, the value of switching to the A arm in each period has
a simple, closed-form expression, A/(1 — §).

Unfortunately, Gittins and Jones’ result does not generalize to nongeometric dis-

count sequences.

Theorem 2 (Berry and Fristedt, 1985) Suppose A is reqular with c; > 0. If, for all
(Fy,..., Fy), the optimal initial selection in the (Fy, ..., Fy; A) bandit are those 1 for
which

A(F; 6) = max A(F;, ) (2.2)

then Aox (1,a,02,...) for some oy > 0, i.e., A is geometric.

Berry and Fristedt conjecture that this generalizes to discount sequences with «; = 0
and nonregular discount sequences.

This result implies, among other things, that the n-horizon uniform does not
have the index property. Therefore, the most experimentally convenient design is
not available in multi-érmed bandits. The designs in later chapters, which have two
armed bandits with one arm known, can utilize the n-horizon uniform because one of
the arms is known, and therefore the bandit is a stopping problem. However, testing
the predictions of Gittins optimal theory in a multiple-alternative choice environment

requires inducing a geometric discount sequence.
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2.3 Laboratory Bandits

In the laboratory, it is possible to test for the effects of risk aversion and experimen-
tation cost by controlling for them. Experimentation cost is easily controlled for in
the laboratory: do not charge agents to switch arms in subsequent periods. This may
not capture all forms of “experimentation cost,” such as cognitive cost associated
with changing or keeping track of the payoffs associated with different alternatives.
However, it does capture the costs associated with switching that Pratt, Wise and
Zeckhauser argue lead to undersearch.

One dimension of risk, variance in the mean-conditional payoff distribution @), can
be controlled for by making the variance of () the same for all arms. For instance, D
can be the set of normal distributions with unknown means z and known variance o°.
Therefore, subjects cannot reduce their mean-conditional payoff variance by switching
from one arm to the next.

It is impossible to control for both aspects of payoff variance in the bandit envi-
ronment because risk cannot be help constant from one period to the next. Whenever
a payoff is received from an arm, the agent must update her prior over the possible
means of the arm, decreasing the variance of F.

In this environment, where all alternatives are equally risky and there is no exper-
imentation cost, subjects should behave optimally if mean-conditional risk aversion
and experimentation cost are the major factors contributing to undersearch and un-

derexperimentation.

2.3.1 Gittins Indexes in the Laboratory

As suggested in Section 2.2, the primary challenge when working with bandits is
actually computing the indexes. This section discusses some of the tradeoffs which
must be made to test for mean-conditional risk aversion.

The first restriction imposed on the experimental design by Gittins theory is that
the discount sequence must be geometric. This can be induced with some random

chance that the bandit will end after each period.
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The second restriction is imposed by the desire to control for mean-conditional
risk aversion. Perfect control is attainable if all arms are equally risky, then risk
averse agents will not have a risk-based motive for preferring one arm over another.
This rules out payoff distributions like the Bernoulli, because the variance depends
on the same parameters as the mean. Control is easiest to achieve with a normal
distribution because the mean and variance can be chosen independently. Therefore,
the mean of each arm will be unknown, and drawn from a known distribution G.
When a subject selects an arm, the payoff is determined by adding random noise

from a known distribution with mean zero and variance o2.

Computing Gittins Indexes for Normal Arms

Al’chough geometric discounting ensures that the two-armed bandit used to determine
the index of each unknown arm is a stopping problem, the infinite horizon requires
that the stopping problem be computed for a very large state space. In practice,
infinite horizon dynamic programming problems are approximated by solving very
long finite horizon problem using backward induction. The error in the value func-
tion associated with the approximation is decreasing in the length of the horizon
and increasing in the discount rate. Therefore, given a fixed computational horizon,
decreasing the discount rate will result in a better approximation. (See Berry and
Fristedt, 1985, Section 2.6 and Sutton and Barto, 1999 for more detail.)

In some cases, there is a sufficient statistic which can reduce the problem to a
tractable one; other times, the index must be computed for each sequence of histories.
Gittins (1989, chapter 6) demonstrates that sufficient statistics do exist for the normal
distribution, but only if G is an improper prior. If this is the case, the index of an
arm which has been chosen n times with an observed mean of Z and a known payoff

standard deviation of o is given by
A((Z,0,n),6) =T+ cA((0,1,n),0). (2.3)

The index is a simple function of the index of a standard normal arm which has been
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chosen n times. Values of A((0,1,7),6) for several n and és are published in Gittins’
book.

Unfortunately, it is probably not possible to induce a truly improper prior in the
laboratory; subjects would not believe that a billion dollar arm were possible because
we could not afford to pay it. However, it is possible to induce a proper prior in the
laboratory. For a conjugate normal prior, Bayesian updating is relatively simple.

With an improper prior, the agent becomes a frequentist who updates the mean
of the payoff distribution according to my,.; = (n*m, + z,)/(n+1). This updating
rule is invariant to the specific value of m. However, if the prior is informative, the

Bayesian updates
2 a?/n
= Tn -
2+ 02/n T2 +0?/n

Mnt1 K (2.4)

where Z, is the average of observed payoffs through n trials (with zo = 0), o is
the known variance of the payoff distribution and p and 72 are the known mean and
variance of the prior distribution.

Because this expression depends on u, 7 and o, it is not possible to compute a
single index value which can be used to compute the index at a variety of priors and
observed payoff sequences. Instead, the index must be recomputed for each combina-
tion of prior and average after n observations. This is prohibitively computationally
intensive.

There are five ways to proceed. First, another distribution, which does allow use of
sufficient statistics could be used. Second, the induced discount rate could be very low,
so there were few expected periods, and therefore a good approximation is obtained
by computing the Gittins index using a relatively shorter finite horizon. However,
then so few selections of the arms are observed that it is difficult to distinguish if
agents eventually converge to the correct arm.

Third, the experiment could be designed such that the sequence of payments from
each alternative were the same for each subject, then the mean after n selections of
each arm is known; those are the only values for which it is necessary to compute

Gittins indexes; this is still computationally intensive, but less so. However, this
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reduces the ability to use statistical information on the optimal amount of being
wrong to assess whether agents converge to the optimal arm at the optimal rate.

The two other alternatives both leverage the publiéhed tables of improper prior
Gittins indexes in Gittins (1989). Third, agents could be provided with a prior and
the Gittins index could be computed based on the number of periods of experience
that best approximates the prior. However, the prior may not be well represented by
any number of periods, and the speed of adjustment to the mean, and therefore the
Gittins index, is different than that of a Bayesian. Fourth, subjects could be given
little distributional information about the prior, and therefore an induced improper
prior. That the arms could have any mean may not be credible, however, so the model
would be wrong in the case where agents came up with their own (uncontrolled) prior.
Worse yet, the model would predict higher information values and Gittins indexes
for agents who had more information, complicating documentation that undersearch

extends to the more general bandit environment.

2.4 Experimental Design

The experiment discussed here was not originally designed to test for Gittins optimal
play. Therefore, there are some features of the design which could be improved for
this purpose. Nonetheless, several interesting features of the data suggest regularities
which do or do not correspond to optimal play.

There are two treatments in this experiment, one with an induced proper prior
and one with no induced prior (an improper prior). In each treatment, subjects were
asked to play a four-armed bandit. The payoff mean of each arm is unknown and
drawn from some distribution G. Ex ante, the arms are identical; the subject must,
through sampling, determine which arm has the highest realized mean and draw from
it in each period in order to maximize her earnings. When a subject selects an arm,
the payoff is determined by adding random noise from a distribution with mean zero
and variance o2

In the improper prior treatment, subjects were told very little about the distribu-
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Table 2.1: Distribution GG from which arm means were drawn

tion from which payoffs are drawn, in an attempt to induce an improper prior. They
were told only that the variance of the payoff distribution is the same for each arm,
and that it is symmetric and unimodal. Since they are told the payoff variance is
the same on all arms, risk is controlled. They are told nothing about G. Subjects
were slightly deceived in this treatment, as payoff distribution means were not in fact
drawn from a uniform distribution over the real line. If subjects knew this distri-
bution, they should have been able to use this information to perform better than
(improper prior) optimal.

In the informative prior treatment, subjects were given a prior which approximated
a discretized normal (with very large bins). The priors were represented in tables,
one showing how G is determined, and one showing the distribution of noise that
generates the payoff distribution. Because this distribution is the same for each arm,
there is no risk advantage to switching arms. Data from this treatment will not be
compared with optimality, since it is very difficult to determine what optimality is,
given the experimental design.

In both treatments, Table 2.1 was the basis for the prior distribution. To prevent
subjects in the improper prior treatment from learning about the true prior, simple
transformations of this distribution were used in some bandits.

The infinite horizon is induced with a 4% chance that the series will end after
each period. Each period was concluded with one subject drawing a marble, with
replacement, from a bag of one clear marble and 24 blue marbles; when the clear
marble was drawn, the bandit was ended.

Subjects played several bandits during each experiment. After the clear marble

was drawn, new payoff means for each arm were determined, the change was an-
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nounced to subjects, and the new bandit was played. Subjects played a total of 250

to 300 periods.

2.4.1 Subjects and Procedures

This experiment was run on Caltech undergraduates who, although they did not nec-
essarily have any economics training, had participated in previous unrelated economic
experiments. The improper prior treatment used nine subjects, and the proper prior
treatment used eight subjects. Upon arrival, they were asked to sit at a private com-
puter terminal. Once all subjects arrived, the monitors were turned on and they read
a set of on-line instructions while the experimenter read them aloud. Subjects were
then given a brief quiz over the instructions; responses to the quiz indicated they un-
derstood the instructions, their environment and how their payoffs were determined.
The instructions for both treatment are given in Appendix 2.A.

After the quiz answers were reviewed, one subject publicly counted the 24 blue
marbles and one clear marble and placed them in a bag. Then the first series, or set
of periods leading to a draw of the clear marble, was begun. Each series started with
the experimenter rolling a 20-sided die four times. For instance, in the first series,
arm mean distribution Table 2.1 was used, and the die rolls were 2, 18, 7 and 2, so for
the arms labeled Blue, Green, Red and Pink respectively, the means were 6, 14, 9 and
6, and the standard deviation for all four arms was 20. The experimenter entered the
arm means and the arm distribution variance into a private monitor, instructed the
subjects to reload the JavaScript program used to run the experiment and asked the
subjects to make their first period’s choice. After the first choice, the experimenter
asked one subject to draw a marble from the bag. If the marble was blue, the marble
was replaced and subjects were asked to make another choice and another subject
drew another marble, and so on, until the clear marble was drawn.

Throughout the experiment, subjects had constant access, through panels on their
screens, to the instructions and to their complete playing history for that run of

periods. Upon the start of new run of periods, the experimenter rolled the die again
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to select new arm means, chose a new arm variance and informed subjects that they
were chosen with a different distribution and the chances of particular deviations had
changed.
The analysis presented here will rely only upon the data collected in the fourth
and fifth series in the improper prior treatment and the seventh and eighth series
in the informative prior treatment. The others did not contain enough periods to

effectively assess bandit behavior.

2.5 Analysis of Bandit Choice Data

The case of a normal payoff distribution with an improper prior is a particularly
appealing one to study because Gittins (1989) has calculated values which allow
simple calculation of Gittins indexes for any combination of observed payoff mean,
known or unknown payoff variance and the number of observations. Specifically,
Gittins showed that the index A((Z,c? n),d) is a simple function of A((0,1,n),d)
given by

A((Z,0%n),8) =+ oA((0,1,n),6). (2.5)

For the case where the variance of the payoff distribution is not known, o is replaced by
s, the variance of received payoffs, and different values of A((0,1,n),0) are calculated.

Gittins provides values of A((0,1,7n),d) in his appendix, for a variety of values of
¢ and n, and for known and unknown payoff distribution variance.

This formulation of the Gittins index is also analytically convenient, because it
gives a very simple interpretation of the concept of information value. One natural
hypothesis is that agents behave myopically, and pick the arm with the current highest
expected value. In this case, they would be using a choice index which is just Z. The
value of information the subject was using could be captured with weight put on the
A((0,1,n),d) term. Therefore, one could test whether an agent was using the optimal

information value in making choices in the bandit with the model

Pr(Y, =1) = 2(v&; + ¢A((0, 1, m3), 0)) (2.6)
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where ®() is the extreme value distribution specified by McFadden (1978). An
optimal player would have estimated parameters v = 1 and ¢ = ¢. A myopic player
would have v = 1 and ¢ = 0. Therefore, ¢ can be used to measure the degree to

which agents appreciate the value of information.

2.5.1 Simulation Study

Although this model is statistically and conceptually simple, two recent studies (Salmon,
1999; Blume et al., 1999) have cast doubt on the ability of structural models like the
one in Equation 2.5 to recover the choice parameters actually used by subjects. Both
studies were concerned about the ability of structural models of learning in games
to distinguish among putative models which could have generated the choice data.
The heart of their criticism was that, in many circumstances, all of the learning
models predicted the same choice. When this is the case, identifying the structural
parameters which distinguish the models proved statistically impossible.

These studies make two different points about the estimation problem. Salmon
tests several common learning models, and tests Camerer and Ho’s claim that experience-
weighted attraction (1999) can disentangle belief-based behavior from reinforcement
behavior. His results are largely negative, however, a close reading of his paper reveals
a serious problem: the games he uses have mixed strategy equilibria, which makes it
hard to compare learning models against even random behavior. This paper leaves
open the question of how well adaptive learning models perform in environments with
more power to discriminate among them. This demonstrates the first important fea-
ture of an experiment for econometric power: the environment must be such that
models make distinct predictions. -

Blume et al. use a different set of games to perform a similar Monte Carlo study
of how well learning models can identify the parameters used to simulate the data.
Their results are quite encouraging, suggesting that modest sample sizes, say 26
choices, from a modest number of subjects, say 6 or 10, is enough to get an accurate

picture of the parameters used to generate the data. However, they also found that
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increasing the number of subjects does not help identify a misspecified model. This
is an important point, as it means that small numbers of subjects are sufficient to
obtain nearly asymptotic results with these learning models.

These results may bear on bandit problems because, in many choices, the myopic
and optimal models will make the same prediction (i.e., the alternative with the
highest predicted probability of being chosen). This will occur when one arm has a
substantially higher mean than the others, when one arm has yielded a high outlier
payoff than the others, or after each arm has been selected several times and even the
optimal information value is small relative to the mean payoff. In these circumstances,
it may be very difficult to distinguish an estimated ¢ from its optimal value, or from

Zero.

2.5.2 Monte Carlo Study Design

One way to understand whether or not the discrete choice model is useful in under-
standing bandit behavior is to run Monte Carlo tests of the model in Equation 2.5
on simulated bandit data.

The Salmon and Blume et al. studies are primarily concerned with whether or
not small numbers of subjects can be used to identify the learning rules used in a
population. Salmon is primarily concerned with the learning rule itself, and varies
the learning rule on datasets of 40 subjects over 40 periods, and conducts his study
on four different games. Blume et al. seek to identify a lower bound on the number
of subjects necessary to correctly identify the learning rule used by subjects. They
use groups of 6, 24, 96 and 384 to see if they can correctly identify the parameters in
a fixed learning rule (exploring two interesting special cases).

In this study, I am interested in whether or not McFadden’s conditional logit
model can be used to distinguish optimal strategies from myopic strategies in simple
bandit problems with small numbers of subjects. I examine the effect of three features
of the choice environment on the statistical power of McFadden’s model. It looks at

different numbers of arms, different discount factors and different subject pool sizes.
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The simulated data is designed to reflect as closely as possible the data generated
by the experiment described in Section 2.4. Subjects played a sequence of bandits
with improper priors, but with the actual prior given in Table 2.1. The discount
rate was induced with probabilistic continuation rule with no new bandits starting
after the 100" choice and a maximum of 150 choices (although simulated subjects
considered the problem to be infinite horizon). All subjects in a simulated experiment
played the same arms with the same true means and number of periods, but they
observed different draws from the payoft distributions.

Each subject began each bandit with two choices of each arm in order to identify
the mean and standard deviation. The optimal choice model does not allow for any
error in these first two periods; the Gittins index is infinity, and making a third
selection of any arm before making the second selection of all the arms is infinitely
unlikely. Therefore, these first choices were not included in the data used in the logit
analysis.

After each arm has been chosen twice,‘ the subjects selected the arm with the
highest Gittins index, plus an error. As specified by McFadden’s choice model, the

1 This is a critical as-

errors were distributed extreme value, with unit parameters.
sumption of McFadden’s model; making choices without errors, or with a different

error distribution, leads to much different results.

2.5.3 Results of Simulation Study

Each treatment consisted of 250 simulated bandits. In each bandit, three hypotheses
are tested. First, a likelihood ratio test compares the model with unrestricted v and
¢ to the optimal special case, where ¢ is restricted to one. Second, a similar test
compares unrestricted v and ¢ to the myopic special case, where ¢ is restricted to
zero. Finally, a likelihood ratio test compares the unrestricted model to the model

which generated the data, v and ¢ both equal to one.

1The mean of the error distribution is -y, the Euler-Mascheroni constant, and the variance is 72.
(Wolfram, 9/6/2000)
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Number Arms 2 4 8
Reject Not Reject Reject Not Reject Reject  Not Reject
Myopic Myopic Myopic  Myopic Myopic ~ Myopic

Reject Opt 6.0 0.0 4.0 0.0 0.8 0.0
Not Reject Opt  93.6 0.0 90.4 0.0 57.2 0.0
Reject Truth 4.8 3.4 2.8

Table 2.2: Percentage of simulated datasets on which optimal and myopic indexes
were rejected, across different numbers of arms

Number of Arms

Table 2.2 shows the results of the three hypotlhesis tests for bandits with different
numbers of arms, 12 subjects and a discount rate of 0.90. The first and second rows
of the table form an outcome matrix for each treatment. The upper left cell shows
the percentage of times both the myopic and the optimal (true) models are rejected;
the upper right cell, the percentage of times the optimal model is rejected but the
myopic model is not; the lower left cell, the percentage of times the myopic model is
rejected but the optimal model is not; and the lower right, the percentage of times
neither model is rejected. If McFadden’s choice model is statistically powerful in a
given treatment, most of the outcome mass should be in the lower left cell.

The numbers in these cells need not sum to one hundred because there is a third
outcome which is difficult to assess statistically, but which is important to consider
when designing environments to test models of bandit choice. The third outcome
corresponds to a computational problem which precluded performing some or all
of the statistical tests of interest. In these cases, more than 1000 iterations of the
Newton-Raphson search algorithm would have been required to locate the maximum
of the likelihood function. With these data, the search algorithm either converges in
less than ten iterations, or is very likely never to converge at all. Nonconvergence
seems to be caused by data which does not provide sufficient information to identify
the model, so the likelihood surface is very flat.

The third row of the table presents the percentage of simulated bandits in which

the true model, with both parameters restricted to one, was rejected in favor of the
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Discount Rate 0.80 0.90 0.96
Reject Not Reject Reject Not Reject Reject Not Reject

Myopic Myopic Myopic Myopic Myopic Myopic

Reject Opt 4.0 0.0 4.0 0.0 1.2 0.0
Not Reject Opt  90.4 0.0 90.4 0.0 33.6 0.0
Reject Truth 3.8 3.4 4.6

Table 2.3: Percentage of simulated datasets on which optimal and myopic indexes
were rejected, across different discount rates

model with two free parameters.

In this study design, McFadden’s model performs well with small numbers of arms.
However, with eight arms, it actually arrives at barameter estimates less than 60%
of the time. This is because the initial sampling takes 16 periods, and only after 16
periods is usable data produced. Bandits with significantly more than 16 periods are
fairly unlikely with a discount rate of 0.90, so it is fairly common that there is little

data on which to base estimates.?

Discount Rate

Table 2.3 shows how McFadden’s model performs with different discount factors when
there are four arms and 12 subjects. With lower discount factors, it performs very
well as nearly all simulations converge, and nearly all that converge are able to detect
the true parameters.

With the highest discount factor, however, relatively few of the simulated bandits
converge. Unlike the convergence problems with large numbers of arms, the problem
here is that the bandits have too many periods. After many selections of an arm, the
change in mean and in information value after an additional selection is very small.
Therefore, there is little switching, and little information which the model can use to
identify the parameters. This suggests, that from a statistical standpoint, there is an

optimal expected bandit length.
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No. Subjects 8 12 25
Reject Not Reject Reject Not Reject Reject Not Reject
Myopic Myopic ~ Myopic  Myopic Myopic ~ Myopic

Reject Opt 44 0.0 4.0 0.0 4.0 0.0
Not Reject Opt  88.4 0.0 90.6 0.0 92.4 0.0
Reject Truth 3.0 34 4.6

Table 2.4: Percentage of simulated datasets on which optimal and myopic indexes
were rejected, across different numbers of subjects

Number of Subjects

Table 2.4 presents the results of McFadden’s model for different numbers of subjects,
with four arms and a discount factor of 0.90. This study suggests that the model is
very powerful with a small number of subjects. The percentage of rejections of ¢ =1
is constant across the treatments. There is a very slight increase in the proportion of
simulations which actually converge, but in each treatment, a considerable percentage
do. Therefore, the conclusions of McFadden’s model should be considered reliable,

even with very small samples.

2.5.4 Implications of Simulation Study

Variation in each of the factors considered here leads to a risk that the data generated
will not be useful in identifying the parameters of the logit choice model. This risk
stems from two sources. First, there may not be a sufficient number of periods in each
bandit, so very little usable data is generated. This occurs when the discount factor
is so small, or the number of arms is so large, that there are rarely enough periods
for the subjects to select each arm twice and then make subsequent selections.
Second, the Gittins indexes of the arms may be so disparate that it is difficult
to identify just how much weight the subjects are placing on the information values.
This occurs when there are few arms and the distribution from which the means
are drawn has high variance. Then it is relatively likely that one arm will have a

much larger mean than others, and the fewer arms there are, the more likely this

2The simulation did not count simulated experiments without any bandits of at least 17 periods.
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difference is to be large. Similarly, if the discount rate is too low, then the bandits
will be so long that little information is gained; after several periods of experience,
the marginal information and marginal changes in information values have so little
effect on Gittins indexes that there are few switches, and very little information to
identify the information values subjects are using.

These trends are visible in the simulated data. When there are a large number of
arms, bandits which last longer than 8 x 2 periods are sufficiently rare that there is
not always enough data to identify the model. Similarly, when the discount rate is
very high, there are not enough switches to identify the model. Therefore, in order to
use the logit model, it is important to ensure that there is ample data and that there
is a sufficient amount of switching within the sample to make it possible to identify
the model; this study suggests that will not always be true.

The strong conclusion arising from this study is that it is very unlikely that a
subject who is using an optimal strategy will be mistaken for a myopic subject. In
fact, it never happened in any treatment in the study.

Also, conditioned on there being sufficient data for the model to be identified,
the chance of being able to recover the true parameters is high. In no treatment did
the frequency of rejecting the true parameters by a likelihood ratio test exceed the
standard five percent threshold. Only when there were two arms did the frequency
of rejecting true information value parameter restriction exceed five percent.

Based on this information, the primary concern for using McFadden’s logit model
on the data generated in this experiment should be that the discount rate is high, so
there may not be enough switching in the available sample to identify the model pa-
rameters. In the actual experimental data, however, there are data from two bandits.
At the beginning of each bandit, information values are high and estimated means
can change considerably with one additional observation; therefore, there is a lot of

switching, and a lot of information which can be used to identify the model.
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Treatment | Series Prior Transform | STD | B | G | R | P | Periods

Improper 4 Table 2.1 | +3 15 |15 15| 1117 69

Improper 5 Table 2.1 | None 20 8 16 |5 |14 85

Proper 7 Table 2.1 | None 20 1121121 8 | 9 44

Proper 8 Table 2.1 | None 20 8§ [ 111213 69
Table 2.5: Parameters of each of the four bandits analyzed

2.6 Results

Since the experiments analyzed here were not specifically designed to test for optimal
strategies, the focus in this section will be on identifying choice patterns which are and
are not consistent with optimal and myopic strategies. Only the limited information
treatment, where subjects did not know the prior distribution of the mean or the
variance of the payoff distribution, will be compared to optimality, since there is no
simple way to compute an optimal strategy in the informative prior case.

The distributions of arm means, realizations of arm means, arm standard devia-
tions and number of periods in each bandit is presented in Table 2.5.

The data for each of the bandits are presented in Figures 2.1 and 2.2, along with
the paths generated by simulating play of a large number of myopic agents. The data
are grouped into four period blocks. Each series represents the proportion of choices
in each block which were of the arm with each true mean. In each bandit, the arm
with the highest true mean is a heavy black line; the arm with the second highest
true mean is a light black line; the arm with the third highest true mean is a line
with large dashes; and the arm with the lowest true mean is a line with small dashes.
When two arms have the same true mean, their choice frequencies are averaged.

The choice paths of the simulated agents are represented by similarly-styled grey
lines.

The first thing to notice is that arms with higher true means are played with
greater frequency. Only in proper prior 8 is the highest mean arm not the most
frequently chosen, and even then the arm which is most frequently chosen pays only

one franc less per period.
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This means that subjects are sensitive to payoffs, and do enough experimenting
to detect which arms pay more. Furthermore, the frequency of playing the arm with
the highest mean is increasing as time goes on, so subjects do not become insensitive
to payoffs after several periods of experience.

The second thing to notice is that subjects choose the arm with the highest mean
more frequently than the simulated myopic subjects. This suggests that subjects
understand there is some value to experimentation, and thus do some experimenting
to identify the best arm. Myopic subjects, on the other hand, lock in on the arm which
yields the highest payoff the first time it is tried. ‘The fact that they do not recognize
the value of information acquired from experimentation means they choose arms with
lower mean payoffs until their estimate of the mean drops below the observed mean
of another arm.

Figure 2.3 shows the data from the improper prior treatment, along with paths
generated from simulated optimal play. Although the subjects played the arm with
the highest true mean more frequently than the myopic subjects, optimal subjects
play the best arm yet more frequently. This suggests that subjects may not appreciate
the full value of the information they gain by experimenting, and therefore may not
experiment enough.

The remainder of this section identifies and statistically analyzes these patterns.

Result 1 Arms with higher true means are played with greater frequency than arms

with lower true means.

Table 2.6 shows the proportion of periods (after the 30th) in which the arm with
each true mean is the 7** most frequently chosen. When only three arms are reported,
one is the average choice frequency of two arms with the same true mean. If two arms
are chosen with equal frequency, each was assigned in the direction of its true rank
(e.g., if the 17 and the 15 were both chosen 30% of the time, the 17 arm was ranked
second and the 15 arm was ranked third).

The first thing to note in this table is that most of the mass is on the diagonal,

so the arm with the highest true mean is chosen most frequently, the arm with the
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Improp 4 Improp 5
Freq\Rank 17 15 11 Freq\Rank 14 8 6 5
1 0.85 0.10 0.05 1 0.74 0.21 0.05 0.00
2 0.13 0.51 0.36 2 0.23 0.56 0.12 0.09
3 0.02 0.39 0.59 3 0.03 0.13 0.64 0.21
4 0.00 0.10 0.19 0.70
Prop 7 Prop 8
Freq\Rank 12 9 8 Freq\Rank 13 12 11 8
1 0.55 0.25 0.20 1 0.14 0.66 0.14 0.06
2 043 0.48 0.10 2 0.34 0.22 031 0.14
3 0.03 0.28 0.70 3 0.40 0.06 0.29 0.25
4 0.12 0.06 0.26 0.55

Table 2.6: Proportion of periods (after the 30th) in which each arm is the first, second,
... most frequently chosen arm

second highest true mean is chosen next most frequently, etc.

The second thing to notice about this table is that when there are deviations from
the diagonal, they tend to be larger when the difference in means between two arms
is smaller. In proper prior 8, for instance, the 12 arm is chosen more 6ften than the
13 arm in several periods. Although this appears to be a significant error in terms of
choice proportions, it is a small error in terms of payoff.

This implies that agents are sensitive to the true means of the arms and to the
differences in the true means of the arms; subjects are eschewing random play for
strategies which yield higher payoffs. This is consistent with both myopic Bayesianism

and Gittins optimal play.

Result 2 Awerage payoffs are consistent with both myopic and Gittins optimal strate-

gies.

Table 2.7 tests the hypotheses that, in each bandit, subjects’ payoffs differed from
the expected payoffs of playing either myopic or Gittins optimal strategies. Two
values of subject payoff are considered: the actual average payoff received, and the
expected value of the strategies the subject played. Using the expected value controls

for the possibility a few large perturbations cause payoffs to differ significantly from
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Improper prior 4 Proper prior 7
Optimal Myopic Myopic
Expected 1058 1057 467
Actual 952 318
p-value 0.10 0.11 0.00
Strategy Expected 1031 467
p-value 0.44 0.46 0.96
Improper prior 5 Proper prior 8
Optimal Myopic Myopic
Expected 919 874 792
Actual 876 818
p-value 0.55 0.98 0.44
Strategy Expected 844 766
p-value 0.23 0.62 0.17

Table 2.7: Actual and expected payoffs of observed strategies compared to expected
payoffs of myopic and Gittins optimal strategies

the subjects’ expectations.

The only significant difference in the table is in proper prior 7, where the actual
payoffs are significantly less than would be expected if an agent were playing a my-
opic strategy. However, this is attributable to some bad realization from the payoff
distribution, for the expected payoff from exactly the same sequence of arm choices
is almost fifty percent higher, and just less than the myopic expect payoff. That such
different results arise from actual and expected payoffs is further testimony to the
difficulty of achieving statistical power in this environment.

In all four cases, the strategy expected payoffs are lower than those a myopic
agent would receive. A Gittins optimal agent will do better than a myopic agent in
expectation, so on average subjects are losing money relative to the optimal strategy.
However, none of these differences is significant at conventional levels, even in the
limited information treatment, when expected payoffs can be directly compared to
those from an optimal strategy.

Therefore, looking at payoffs alone, it is not possible to determine whether sub-
jects’ behavior corresponds to myopic or optimal strategies. However, the structural

model discussed in Section 2.5 may provide some insight.



47

Coefficient Estimate Std. Err. z 95% CI
Mean (7) 0217 0010 2146 0.197 0237
Information Value (¢) 0.006 0.001 3.97 0.002 0.008

Table 2.8: Results of estimation of McFadden’s choice model on improper prior 4 and
improper prior 5

Result 3 McFadden’s choice model rejects both the optimal and myopic special cases.

Table 2.8 gives the estimated parameters of the McFadden’s choice model for the
two improper prior bandits. Unfortunately, not all subjects began each bandit by
selecting each é,rm twice, as the model requires to generate a prediction. Therefore,
the data taken from each subject in each bandit begins after each arm has been
selected two times. This may occur substantially later than the ninth period, and in
one case, never occurred at all. These estimates are based on 958 choices.

The parameter of greatest interest is ¢, for it indicates the extent to which sub-
jects are considering the information values in their decisions. The estimates ¢ is
significantly less than one, demonstrating that agents do not appreciate the value of
information gained from present experimentation; they do not experiment enough.
However, ¢ is also significantly higher than one, suggesting that subjects do appreciate
that there is some value to the information gained from present experimentation.

The coeflicient of the mean, v, is also significantly different from both zero and
one. However, it is much larger than ¢, so the information value is not even in correct
proportion to the mean.

Comparing the estimated model to the theoretical special cases with likelihood
ratio tests also rejects both myopic and optimal strategies. The log-likelihood of the
estimated model is -782.90. The optimal model has log-likelihood of -1328.07, leading
to a test statistic of 1090.35 which is distributed x2(2), or a p-value very close to zero.
The myopic model has a log-likelihood of -789.21, leading to a test statistic of 12.63
which is distributed x?(1), or a p-value of 0.0004.

Therefore, experimental subjects do recognize that there is value to information

gained through experimentation, but consistently underestimate its magnitude.
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Result 4 When the myopic and optimal models make different predictions, subjects

make the myopic choice more often than the optimal choice.

Of the 958 observations in the improper prior treatment in which the models make
predictions, the myopic and optimal models predict different choices in 669 cases. Of
those cases, the optimal model is right 40 times, the myopic model is right 449 times,
and one of the other two arms are chosen 180 times.

This pattern is consistent with subjects who do not appreciate the full value of
information gained from experimentation. Most of the different predictions arise from
cases where the information value on one arm is (juite high, but its mean is lower than
the mean of another arm. Subjects who do not appreciate the full information value
will be drawn toward the choice predicted by the myopic model.

Once he has chosen the myopic choice, the information value of that arm continues
to fall, while the index of the unchosen, optimal arm remains the same. The unchosen
optimal arm will remain optimal with high probability, at least until it is chosen again.
However, since the subject does not value information optimally, he may never choose
it. Therefore, there are runs of many periods when the myopic and optimal models
make different predictions, but the subjects repeatedly select only the arm predicted

by the myopic model.

2.6.1 Sampling Patterns

Since subjects do not appear to be playing an optimal index strategy, the next natural
question is: what are they doing? There are several regularities in the way subjects
sample among their alternatives which express an understanding that information
gained from experimentation has value, but which also are inconsistent with an index
strategy. This section looks at the lengths of observed, optimal and myopic runs, as

well as the number of distinct arms selected in the last five periods.
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Runs

Figures 2.1 and 2.2 suggest that subjects do well initially, selecting each arm with
equal probability, and then moving toward those which yield higher payoff. However,
in each experiment, one high paying arm seems to be selected less often in favor of
a low paying arm. One possibility is that one subject got a good observation on the
lower-valued arm and is sticking with it as an index strategy would suggest. On the
other hand, it could be that many subjects are continuing to select this arm after it
should have been extinguished.

A run is when a subject selects the same arm several times in a row. Index
strategies imply that as subjects get more information, they will converge on one
arm, resulting in a long run. Figures 2.4 and 2.5 graph the average run length
of experimental subjects, simulated myopic subjects and simulated Gittins optimal

subjects against the period number for each bandit.
Result 5 Subject run lengths are significantly shorter than those of a myopic agent.

The simulated myopic agents, represented by a thick, dashed gray line, have fairly
long runs. This is because switching requires the mean of one arm to drop below the
mean of another. As more information is obtained, overcoming any given difference
in means requires a progressively smaller (and lower probability) observation because
of the diminishing impact of marginal information. They are not, as the Gittins
optimal agents are, considering an information value which decreases as additional
information is obtained.

Looking at Figures 2.4 and 2.5, the upper bound of the 95% confidence interval for
the empirical average run length eventually falls below the average run length of the
simulated myopic agents in every bandit. In the limited information bandits, average
run lengths are never as long as those of a myopic agent; in the full information
bandits, this happens relatively later, in period 20 in proper prior 7 and period 32 in
proper prior 8.

This difference suggests subjects correctly perceive the need for greater informa-

tion gathering in the limited information environment. The shorter run lengths mean
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they are switching among arms more frequently, gathering information rather than
seeking to maximize current expected payoff. There is less switching in the full in-
formation bandits, as the prior provides information; however, subjects eventually do

switch arms and experiment, resulting in shorter runs than myopic agents.

Result 6 Run lengths are initially not significantly different from optimal run lengths,

but are eventually shorter.

The simulated Gittins optimal subjects are represented by a thick, grey line. In
improper prior 4, the average run length tracks the optimal well until about the 45th
period, when subjects begin switching more frequently than optimal. After period
60, the observed run lengths are only barely not significantly different than optimal.

The results in improper prior 5 are stronger, where the observed run lengths are
significantly shorter than optimal in almost every period after the 30th.

That the observed run lengths are shorter than optimal means that subjects are
switching arms more frequently than an optimal player would, especially in later
periods. This may reflect that subjects are in fact experimenting, only that they are

doing so after most optimal players will have converged on a single arm.

Intertemporal Mixing

Another dimension of switching behavior can be examined by looking at the number
of distinct arms chosen in the last five periods. Figures 2.6 and 2.7 plot the moving
average of the number of arms selected in the last five periods, along with 95%

confidence intervals.

Result 7 Subjects initially switch arms as frequently as simulated myopic agents, but

continue switching arms after myopic agents stop switching.

The path of simulated myopic agents is represented by a thick, dashed grey line.
Myopic agents sample all the arms, but then quickly stop sampling because they play
the arm which has yielded the highest average payoffs in each period. In each bandit,
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on average, myopic agents had selected fewer than two arms in the last five periods
as early as the eighth or ninth period.

In each bandit, the data initially follow the path of the myopic agents. The
simulated myopic agents initialize themselves by selecting each arm once, so, after
the fifth period, the myopic agents have selected all four arms in the last five periods.
The subjects also appear to sample all the arms in the first several periods. However,
between the fifth and tenth period, the rate of sampling drops off dramatically for the
myopic agents. The data tracks this well for three or four periods as subjects avoid
the arms which yielded poor first payofls.

After this period of initial coincidence, the myopic agents continue to select few
arms, but the experimental subjects do continue to experiment. This difference is
statistically significant by the tenth period in every bandit. This statistical significant
difference is maintained for fifteen or more periods; in improper prior 4 and proper
prior 7, subjects are eventually selecting few enough arms that the myopic values
again fall within the confidence bands; in improper prior 5 and proper prior 8, the

myopic values never fall within confidence bands for a considerable number of periods.

Result 8 Subjects do not initially sample as much as simulated optimal subjects, but

they eventually sample at an indistinguishable or greater rate.

The paths of simulated optimal agents are represented by a thick, grey line on the
graphs for improper prior 4 and improper prior 5. Since these agents do not have
priors, they must sample each arm twice to identify both the mean and variance of
each arm.

In improper prior 4, the optimal agents sample a significantly greater number of
arms than the experirﬁental subjects. This difference remains significant for more
than 35 periods, when the optimal agents converge enough to again drop within the
confidence bands.

In improper prior 5, the optimal agents sample significantly more arms in peri-
ods five through sixteen. However, subjects’ sampling levels off as optimal agents

continue to reduce their level of sampling until the subjects’ rate of sampling is not
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distinguishable from optimality, and eventually is borderline significantly higher than

optimal.

Considering the last four results together suggests a couple patterns in subjects’
behavior. First, subjects do not appear to be using strategies entirely consistent with
either optimal or myopic play. Rather, they appear to be engaging in some initial
sampling, but then quickly dismissing those arms which do not pay satisfactorily. In
improper prior 5, for instance, the 11 arm is dismissed after being chosen relatively few
times. In these bandits, it happens that the arms they dismissed actually provided low
payoffs, and thus their payoffs compared favorably with those of simulated optimal
agents. However, this did not need to be the case. They often dismissed arms which
gave initial bad outcomes when such outcomes could have been attributed to a bad
draw from the payoff distribution, not a bad mean.

Once they have dismissed arms which have paid poorly initially, subjects experi-
ment too much with the remaining arms; they continue to switch among arms, instead
of trying to identify the one which yields the highest payoff. In improper prior 5, for
instance, they switched freely and frequently among the 17 and two 15 arms. Because
all paid well, they were able to do so with fairly little payoff penalty, but they were
not maximizing their payoffs. In improper prior 4, where one arm is clearly more

valuable than the others, there is much less such switching.

2.6.2 Initial Sampling

In the improper prior treatment, the Gittins model requires that each arm be selected
twice, in order to identify the mean and standard deviation of each arm. In the
informative prior treatment, however, such initial sampling is not necessary. However,

many subjects select each arm several times, with relatively little sensitivity to payoffs.

Result 9 subjects initially sample each arm a fized number of times, with relatively

little sensitivity to received payoffs.

In the full information session, there is noticeable rule of thumb sampling from

six of the ten subjects. The nature of the sampling is illustrated in Table 2.9. The
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Proper Prior 7 Proper Prior 8
Samp Samp No. Consist Samp Samp No. Consist
Sub  Per Algorithm w. Sampling Per Algorithm w. Sampling

1 4 Cycle 4 4 Cycle 4
2 12 Cycle 12 69 Cycle 69
3 12 3 Cycle 12

4 8 2 Cycle 8

5 12 3 Cycle 10 7 Cycle 4
6 20 3 Cycle 12 12 4 Cycle 12

Table 2.9: Initial sampling patterns used by some subjects in the proper prior treat-
ment

table shows the sampling outcomes for six subjects in two bandits, excluding the four
subjects who did not exhibit sampling behavior in these two bandits (though they
may have in other bandits). For each subject in each game, the table describes the
length of the apparent sampling period where the rule of thumb describes behavior,
as well as the number of those periods correctly predicted by the sampling algorithm.

The most common form of sampling is cycling, where subjects repeat the four arms
in sequence several times; some subjects will choose each arm once before continuing
play (ignoring their prior) and some will choose each arm four or five times before
continuing play. For instance, eight periods of cycling might look like {1,2,3,4,1,2,3,4}.

Another common form of sampling is repeated arm sampling, where a subject will
sample each arm a particular number of times before trying another arm. These are
denoted in the table as N-cycles. A 2 cycle spanning eight periods might look like
{1,1,2,2,3,3,4,4}.

As simple algorithms, these ways of sampling are not at all sensitive to the real-
ized payoffs. In practice, subjects do respond to very good and very bad outcomes.
Repeated arm samplers, in particular, will often sample an arm that has given a cou-
ple good outcomes one more time than the rule of thumb would predict, and an arm
that has given a couple of very bad outcomes one fewer time than the rule of thumb
would predict.

Unfortunately, these results do not have much predictive value; they are only useful

for characterizing the nature of the suboptimality in subjects’ strategies. Subjects
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will often switch among the possible rules of thumb, and sometimes will be responsive
to payoffs (especially when the payoffs are very good or very bad); I have been unable
to recover any relationship between the rule used and payoffs received, even with
respect to how long the sampling period extends. Thus, given that I have observed a
subject using a rule of thumb on one bandit, I cannot predict her sampling behavior
in another bandit.

That such sampling algorithms are used at all, however, indicates that subjects
understand the need for sampling, though they do not use Gittins or index-based
sampling strategies. Rather, there is a tendency for subjects to dispense with some

sampling at the beginning of each period without significant sensitivity to payoffs.

2.6.3 Similarity-based Choice

Cycling is one strategy which does not rely on an index. Another is similarity-based
choice, outlined by Rubinstein (1988, 2000). He claims that agents use judgments of
similarity to eliminate dimensions of comparison on multidimensional choices. If two
alternatives each have two dimensions and they are judged to be similar on exactly one
dimension, then the alternative which is better on the dissimilar dimension is chosen.
If one alternative is better on both dimensions, it is chosen; if the alternatives are
similar on both dimensions, the model does not make a prediction.

This model could explain the pattern observed in the choice data in the following
way. When information values are similar, that dimension is not considered, so the
model would predict agents would select the arm with the higher expected value.
This generates a different prediction than optimal theory if the arm with the lower
expected value has a higher (but similar) information value.

However, after the arm with the higher expected value has been chosen several
times, its information value falls and becomes dissimilar. The agent may then switch
to the arm with the higher information value, leading to later overexperimentation.

This explanation is particularly appealing given that the indexes are probably

not being explicitly computed; it makes sense for “close enough” judgments to be
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important.

Result 10 Rubinstein’s similarity model predicts about as well as the optimal model

on the subset (25-50%) of the sample on which it makes a prediction.

Table 2.10 presents the difference in prediction rate of Gittins optimal theory and
Rubinstein’s model for pairwise arm comparisons for different notions of “small” mean
differences and information value differences.

Since Rubinstein’s model predicts only pairwise choices, the four-alternative choice
is broken down into three pairwise choices, where it is assumed the chosen alternative
was chosen over each unchosen alternative in a pairwise comparison; certainly it
should never be the case that one alternative is preferred to the chosen alternative in
pairwise comparisons.

There are a total of 2874 pairwise comparisons, of which 371 are excluded from
analysis because one arm dominates the other (larger mean and larger information
value). Of the remaining choices, the optimal model makes a prediction on all of
them; the number of choices which similarity predicts varies with the value of “small”.
However, for the values considered here, most cells in the table represent predictions
on 20-30% of the sample, with a maximum of 56% in the cell where the mean difference
is 0.2 and the information value difference is 10. The optimal model correctly predicts
57% of total choices, more than the similarity model predicts at all.

Notice that the difference for every cell on the diagonal is zero. The reason for this
is that, on the diagonal, both optimality and similarity make the same predictions.
For a given value of the mean difference for which means are similar, s,,, and a given
value of the information value difference for which information values are similar, s;,
the similarity model makes a prediction in two cases. First, it selects observations
when the mean difference is less than s, and the information value difference is greater
than s;, and predicts the arm with this higher information value will be chosen. The
optimal model makes the same prediction when s; = s,,, since the mean difference
must be less than s,,, but the information value difference is greater than s;.

Second, the similarity model selects observations when the mean difference is
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Mean Information Value Difference
Difference 0.2 0.4 0.6 1 1.5 2 2.5
0.2 0.000 -0.014 -0.011 -0.005 -0.012 -0.028 -0.029
0.4 0.000 0.000 -0.008 -0.009 -0.014 -0.026 -0.029
0.6 0.051 0.003 0.000 -0.003 -0.008 -0.010 -0.007
1 0.121 0.045 0.000 0.000 0.000 0.001 0.004
1.5 0.223 0.112 0.007 0.000 0.000 0.000 0.003
2 0.264 0.146 0.026 0.006 -0.002 0.000 0.001
1.5 0.280 0.171 0.061 0.024 0.010 0.002 0.000
3 0.316 0.229 0.131 0.071 0.048 0.026 0.010
4 0.377 0.310 0.209 0.139 0.089 0.043 0.017
5 0.412 0.361 0.274 0.209 0.144 0.074 0.024
6 0.412 0.365 0.284 0.226 0.150 0.077 0.025
8 0.434 0.396 0.323 0.265 0.164 0.085 0.032
10 0.431 0397 0331 0.272 0171 0.099 0.048

Mean Information Value Difference

Difference 3 4 5 6 8 10

0.2 -0.030 -0.028 -0.025 -0.031 -0.032 -0.038

0.4 -0.030 -0.027 -0.025 -0.032 -0.032 -0.039

0.6 -0.009 -0.008 -0.008 -0.016 -0.018 -0.026

1 0.000 0.000 -0.001 -0.010 -0.012 -0.021

1.5 -0.001 -0.001 -0.001 -0.010 -0.013 -0.021

2 0.000 0.000 0.000 -0.009 -0.014 -0.023

1.5 -0.001  0.000 0.000 -0.007 -0.009 -0.018

3 0.000 0.000 0.000 -0.009 -0.010 -0.017

4 0.000 0.000 0.000 -0.003 -0.003 -0.008

5 0.004 0.000 0.000 0.000 0.000 -0.001

6 0.004 0.000 0.000 0.000 0.000 0.000

8 0.010 0.006 0.003 0.000 0.000 0.000

10 0.024 0.014 0.012 0.006 0.002 0.000

Table 2.10: Difference between percentage correctly predicted by the optimal model
and by Rubinstein’s similarity model, for different values of “similar”
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greater than s,, and the information value difference is less than s;, and it predicts
the arm with the greater mean will be chosen. The optimal model makes the same
prediction when s, = s; because the mean difference is greater than s, and the
information value difference must be less than s;. Therefore, Rubinstein’s model will
not predict differently than the optimal model when s, = s;.

However, when s,, # s;, an interesting pattern emerges from the data which,
consistent with previous observations, suggests agents are undervaluing information.
Consider the region where s, > s;. Two types of pairwise choices are selected into
cells in this region. First, those where the difference in means is larger than s,, and
the difference in information values is smaller than s;. The similarity model predicts
the arm with the larger mean will be chosen. The optimal model makes the same
prediction, since the difference in means swamps the difference in information values.

The other observations in cells in this region are those where the difference in
means is smaller than s, and the information value difference is greater than s;.
For observations where the information value difference is larger than s,,, both the
optimal model and the similarity model predict the arm with the larger information
value will be chosen. However, for observations where the information value difference
is between s; and s,,,, the two models make different predictions: the similarity model
predicts the arm with the larger information value, and the optimal model predicts
the arm with the larger mean.

The cells the region where s, > s; in Table 2.10 are mostly positive, often consid-
erably so. This means that in this region, the optimal model is predicting observed
choices better than the similarity model; the arm with the larger mean is being chosen
more often than the arm with the larger information value when the two are different.
This is consistent with subjects undervaluing information.

This argument follows symmetrically for the region where s; > s,,. Here, the
optimal model predicts slightly worse than the similarity model. This is because
different predictions are generated only on observations where the information value
difference is less than s; and the mean difference is greater than s,,,. When the mean

difference is less than s;, similarity predicts the arm with the greater mean will be



62
chosen, but the optimal model predicts the arm with the greater information value will
be chosen. Similarity performing better implies that the arm with the greater mean
is chosen more often, which is consistent with subjects undervaluing information.
Analyzing data with respect to similarity confirms the earlier observation that
subjects undervalue information. However, because it makes a prediction on only a
small fraction of the data, it proves not to be a useful tool for analyzing behavior in

bandit problems.

2.7 Discussion

Although the sample discussed here is small, and the data was originally collected for
another purpose and not ideally suited for testing the predictions of Gittins theory,
it provides some valuable insight into patterns of behavior which may appear in
naturally occurring bandits.

These experiments indicate that undersearch does generalize to the more general
bandit environment. Time series indicate that top-valued arms are discovered at a
less than optimal rate because subjects do not experiment enough. This can be seen
in the number of distinct arms chosen in the past five periods, where, early in the
series, subjects choose among fewer arms than optimal samplers.

It is also apparent in analyzing the choice data with McFadden’s choice model.
Section 2.5 showed that this model is conclusive, even in fairly small samples. Esti-
mating its parameters on the improper prior treatment data shows that subjects put
less weight on the information value than do optimal samplers.

Significantly, this underexperimentation occurs even in this carefully controlled
choice environment, where there is no explicit cost to experimentation, and where all
alternatives are equally risky (conditional on the mean). That underexperimentation
is still observed demonstrates that neither of these factors suggested in the search
is the primary cause of suboptimality in bandits. Given this, one may also question
their role in search problems as well.

Although subjects do not experiment optimally, they do not experiment myopi-
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cally, either. The time series suggesrt much higher rates of play for higher mean arms
than would be expected of myopic subjects. Further, the rate of switching to higher
mean arms is greater than among myopic subjects. Even McFadden’s model rejects
the myopic special case.

These results suggest that subjects do understand that there is value to the in-
formation obtained from experimentation, but also that they do not appreciate its
exact form. As demonstrated by the initial sampling patterns, subjects do initially
sample from all the arms, but they curtail this sampling relatively sooner than a
Gittins player. This means they focus on a single arm sooner than optimal, so they
lose money in expectation because they are less than optimally confident that that
arm provides the best combination of payoffs and information.

As they gain experience, however, subjects do not curtail their experimentation.
Gittins optimal players switch arms fairly infrequently after many periods of expe-
rience, but subjects keep up a fairly constant rate of experimentation. Therefore,
subjects are able to converge to the optimal rate of play of each arm.

The overall impression given by this data is that subjects are aware of the value of
experimentation, but perhaps do not recognize that the value arises from the ability
to use it in the future. Therefore, they do experiment, but not enough initially and
too much after a number of periods. They could do better by doing most of their
experimenting early; then they would have more time to exploit the information they
gather.

Ideally, these results could easily be verified in an environment better designed
to test for optimal strategies. However, there are several significant obstacles to
doing so. Controlling even just for mean-conditional risk requires that all arms have
a fixed, known standard deviation. This is most easily done with normal payoff
distributions. However, computing Gittins indexes for a normal payoff distribution
with an informative prior is very time consuming, and improper priors are not credible.
Controlling for variance of the subjective payoff distribution is more difficult still.

Although these results need to be more carefully documented, in an environment

with a better notion of optimality, many of the patterns observed here should be
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robust to a cleaner experimental design. Surely agents will still engage in initial sam-
pling, and this sampling will reflect an understanding of the value of experimentation.

The next natural questi@n is, if underexperimentation is not attributable to risk
aversion and unobserved experimentation cost, what causes the suboptimalities we
observe? An ideal model would provide some insight into why subjects do not exper-
iment optimally, and allow us to predict when underexperimentation was likely to be
a problem. With this understanding, policies targeted at helping agents gather infor-
mation could be developed. The next two chapters develop behavioral models which

may provide insight into the psychological features leading to underexperimentation.

2.A Instructions

2.A.1 Improper Prior Treatment

You are about to participate in an experiment designed to provide insight into certain
features of decision processes. If you follow the instructions carefully and make good
decisions, you might earn a considerable amount of money. You will be paid in cash.

The type of currency used in this experiment is francs. All transactions will be
in terms of francs. Each franc is worth 0.008 dollars to you. At the end of the
experiment, your francs will be converted to dollars at this rate, and you will be paid
in dollars.

All communication during the experiment will be done through your computer
terminal. The experiment will proceed as a series of periods during which you will

make decisions and obtain earnings.

Urns

In each period you will be selecting an urn from which to receive a payoff. The payoff
given by each urn in each period consists of two elements, a fixed value and a random
value. Each urn is assigned a fixed value at the beginning of the experiment, and this

fixed value does not change during the experiment. In this experiment, there will be
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four urns.

Fixed Values

The fixed value of each urn will be randomly determined by a roll of a 20-sided die
which will be done by the experimenter. The value on the die will be converted, using
a table, to a fixed value for an urn. For this treatment, you can know only that the

experimenter will use the same die and the same table for each urn.

Random Values

Although the fixed values of the urns never change, you will receive different payoffs
each time you select an urn because the random value, which is added to the fixed
value to determine your payoff, changes each period.

The random value is determined each period in a particular way. In this treatment,

you can only be told on the following about the random values:

1. The average of the random values is zero, and the chance of getting a random
value which improves your payoff is the same as the chance of getting one which

lowers it.

2. The chance of getting a random value that adds X to the fixed value of the urn
is the same as the chance of getting a random value which subtracts X from the

fixed value of the urn.

3. The chance of getting a random value with a large absolute value is never larger

than the chance of getting a random value with a small absolute value.
4. The chance of getting any particular random value is the same in every period.
5. The chance of getting any particular random value is the same for each urn.

There is some (very small) chance that very large and very small payoffs will be
realized. For this experiment, single-period gains and losses will be capped at 1000

francs.



66
Using the Computer to Choose an Urn

There are four panels on the computer screen. You may click in these panels with
your mouse, but please do not attempt to use any other applications, look at the
source code for this experiment or visit any other web sites during the experiment.

The History Panel
The long vertical panel on the left will contain your playing history. For each period,
it will show your choice and the payoff you received; recent periods will be added to
the top of the list, though later periods will still be accessible by scrolling down.

The Information Panel A

The top of the three panels on the right side provides you with information on the
current period and your total payoff, in francs. It also shows your previous period’s
choice and the payoff you received (information also available at the top of the history
panel). There is nothing in this panel for you to modify.

The Urn Choice Panel
The middle of the three right-hand panels is where you indicate your choice of urn in
each period. To indicate your choice of an urn, click once with the mouse in the circle
in front of the name of the urn you wish to choose; a black dot will appear within the
white circle. Then click the Submit button at the bottom of the panel one time with
the mouse. Clicking the Submit button causes the computer to generate a random
value and calculate your payoff for the period.

The Instructions Panel

The bottom of the three right panels will contain these instructions. You may scroll

through them and examine them at any point during the experiment.

Stopping Rule

You will choose an urn and receive a payoff in each period. At the end of the period,
the experimenter will determine if an additional period will be played. This will be
done by asking a subject to select a marble from a bag of 24 blue marbles and one

clear marble. If the marble is blue, there will be another period. Thus, the chance of
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there being another period is 96%.

Summary

1.

The experimenter will announce the beginning of the period.
You will make a choice of urn and indicate it on the computer.

The computer will generate a random value. The random values are chosen
such that the chance of a particular random value is the same for every period

and for every urn.

The random value will be added to the fixed value of the urn you chose to

determine your payoff.

. The computer will notify you of your payoff and update your history.

Record your choice and payoff on your Record of Earnings Sheet and raise your

hand.
The experimenter will announce the end of the period.

The experimenter will ask a subject to draw a marble from a bag. There will

be another period approximately 96% of the time.

Feel free to earn as much money as you can. Are there any questions?

2.A.2 Proper Prior Treatment

The following sections replaced the same sections above.

Fixed Values

The fixed values assigned to each urn will be determined in a particular way. For each

urn, the experimenter will select a number between 0 and 99 from a random number

table (you will have the opportunity to verify the values after the experiment). The
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random number will determine the fixed value of the urn according to the Fixed Value

Table you have been given:
If the Die Roll is... The Fixed Value will be:

1 5
2 6
3 7
56 8
78 9
910 10
11 12 11
13 14 15 12
16 17 13
18 19 14
20 15

Random Values

Although the fixed values of the urns never change once they are determined, you
will receive different payoffs each time you select an urn because the random value,
which is added to the fixed value to determine your payoff, changes each period.

The random value is determined each period in a particular way. The Random
Value Table you have been given shows the chance that the random value will be
greater than a particular value. The difference in the chances between two rows is
the chance that the random value will be between those values. For instance, the
difference between 0 and 10 is 19%, so there is a 19% chance that the random value
will be between 0 and 10. ‘

This same information is contained in the graph on the back of the table you have
been given. This is what a histogram of thousands of random values would look like,
with the values on the x-axis and relative frequency on the y-axis.

Notice that random values selected in this way have the following important prop-

erties.
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. The average of the random values is zero, and the chance of getting a random
value which improves your payoff is the same as the chance of getting one which

lowers it.

. The chance of getting a random value that adds X to the fixed value of the urn
is the same as the chance of getting a random value which subtracts X from the

fixed value of the urn.

. The chance of getting a random value with a large absolute value is never larger

than the chance of getting a random value with a small absolute value.
. The chance of getting any particular random value is the same in every period.

. The chance of getting any particular random value is the same for each urn.
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Chapter 3 Hyperbolic Discounting in Bandits

The simple choice experiment in Chapter 2 establishes that agents do not experiment
enough in bandit environments, consistent with intuition based on behavior in search
problems. Further, by observing underexperimention in the absence of experimenta-
tion cost and differential mean-conditional risk, it demonstrated that these putative
causes of undersearch do not explain underexperimentation.

This chapter explores whether the observed underexperimentation is attributable
to hyperbolic discounting, a formal model of intertemporal choice. Hyperbolic dis-
counters discount future payoffs more than exponential discounters. Since the ex-
pected payoff increase from experimentation occurs primarily in the future, hyper-
bolic discounters are less inclined to experiment because the future payoffs which
benefit from present experimentation are not as heavily weighted in their intertem-
poral utility function; they opt instead to maximize their present period payoff by
selecting the arm with the highest expected value.

In addition to a careful exposition of how hyperbolic discounting affects play in
bandits, this chapter also introduces horizon truncation, a simple model which is
intuitively appealing and serves as a challenging baseline for the more sophisticated
behavioral model. A horizon truncater looks only a few periods down the tree of
possible outcomes, rather than to the end of the horizon. Therefore, the potential
benefits to present experimentation which accrue past the truncated horizon are not
explicitly incorporated into the decision. The version of horizbn truncation discussed
here allows agents to add a “fudge factor” for the value of the periods omitted, but
does not impose any restrictions on this factor.

Understanding how present bias contributes to behavior in these environments is
critical to helping agents maximize their welfare. The remainder of this chapter is

dedicated to establishing the role of present bias in experimentation problems.
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3.1 Models of Present Bias

A second aim of this study is to identify a model which explains any present bias
observed. I consider two models which have proven useful in different domains, hy-
perbolic discounting and horizon truncation. In hyperbolic discounting, present bias
arises from a discount sequence which places relatively more weight on the present
period than in standard exponential discounting. In horizon truncation, on the other
hand, present bias arises from a cognitive shortcut in setting up and solving the dy-
namic programming problem whose solution yields the optimal strategy. It has been

used to explain behavior in bargaining and dominance solvable games.

3.1.1 Hyperbolic Discounting

Hyperbolic discounting attributes present bias to the discount function. Rather than
behaving as exponential discounters, hyperbolic discounters have the time-separable

utility function

T
U(zyy ... ozr) =24+ B Z 8y, Vit (3.1)

r=t+1
A discount sequence of this form is also known as 3 — § preferences.! Note that this
discount sequence applies at every ¢, meaning there is an inconsistency between how
the agent believes he will act in the future and how he actually does. Hyperbolic
discounters believe they will be exponential beginning next period, but if § < 1,
they place less weight on the value of future payoffs than would an exponential dis-
counter. Given this discount sequence, it is assumed that they correctly set up and
solve dynamic programming problems. This means that hyperbolic discounters will
underestimate the value of experimentation because they heavily discount the future
payoffs which benefit from present experimentation.
Hyperbolic discounting has been shown to explain a number of anomalous eco-

nomic phenomena. Laibson (1997) shows that consumption and income fluctuate

IThis “quasi-hyperbolic” simplification of the hyperbolic discount sequence was introduced by
Phelps and Pollak (1968). Lowenstein and Prelec (1993) discuss a more general hyperbolic discount
function. See O’Donoghue and Rabin (1999) for a discussion of the differences between hyperbolic
and quasi-hyperbolic preferences.
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together because of hyperbolic discounting: people do not save enough to smooth
their income because they are biased toward current consumption. He also shows
that easier access to credit, and the concomitant possibility of increasing current con-
sumption, led to declining savings rates during the 1980s. Additionally, O’'Donoghue
and Rabin (1999) show that Christmas clubs serve as “commitment devices” which
help people resist the bias toward current consumption caused by the hyperbolic dis-
count function; an exponential discounter, of course, would have no reason to pay a
bank to prevent him from accessing his money until December.

Della Vigna and Paserman (1999) have taken a step toward extending these results
to search and bandit problems. They used hyperbolic discounting to explain some
aspects of field data on job search. They find that hyperbolic discounters do not want
to incur a search cost, and so procrastinate their search efforts. Also, they reinforce
the idea that Cox and Oaxaca’s results could be due to hyperbolic discounting because
once people do begin their search, hyperbolic discounters tend to take lower wage
offers; they are more likely to end up underemployed because they stop their job
search process too soon.

In each of these applications, there is a significant element of temptation: people
are tempted to spend money they are holding rather than save it, and to take a job
which begins paying now rather than continue searching. This temptation is often
a significant factor motivating the application of the hyperbolic discounting model.
In experimentation environments, there is no such salient temptation. Therefore,
discovering that hyperbolic discounting extends to experimentation problems would
extend its domain considerably, and provide some evidence against the argument that
such behavioral models are too problem specific.

A significant issue in hyperbolic discounting is how to handle the inconsistency
between how an agent believes he will behave and how he actually does. For purposes
of this study, I focus on the hyperbolic discounters whom O’Donoghue and Rabin
call naifs. Naifs are “naive” about their own hyperbolic discounting tendencies and

honestly believe that they will become exponential in the next period, although they



73
do not; they are hyperbolic again.? Many argue that naifs should not remainvnaifs,
that they should learn that they will be hyperbolic in the future. This objection
has less bite in experimentation problems, where the cost of present bias may never
be realized, especially if the agent never articulates to himself a commitment to
be exponential in the future. For example, the hyperbolic shopper who bypasses
the truly best orange juice every week in favor of the best brand he’s had so far
might never learn there is a better brand, and thus he would never regret his past
purchases. Further, if he never promises himself he will try the new brand “next
time,” he may not realize that his eventual actions conflict with those he implicitly
- plans in computing an optimal strategy. Thus, experimentation problems are an
important test for hyperbolic discounting because, unlike in the consumption and
savings environment, even a potentially sophisticated hyperbolic discounter may never

learn about his present bias.

3.1.2 Horizon Truncation

While hyperbolic discounting posits that present bias arises from the discount se-
quence, horizon truncation holds that present bias is a possibly unintentional side
effect of a cognitive shortcut used to solve the dynamic programming problem. It
says that, due to limited computational ability, laziness, or even a sophisticated cost-
benefit analysis, agents do not consider the entire future when doing backward in-
duction; rather, they perform a backward induction based on a short horizon, then
add an adjustment factor to represent the value of omitted periods. If the adjust-
ment factor is too small, horizon truncation leads to present-biased behavior because
the agent considers only the value of experimentation represented in the abbreviated
problem.

Horizon truncation appears in a number of domains. It is often employed de-

liberately in computer science to arrive at solutions to infinite horizon problems; if

20’Donoghue and Rabin discuss various levels of hyperbolic discounters’ self-awareness. The
choice of naifs for this project is based on Laibson’s results, but reinforced by the idea that bandits
for self-aware hyperbolic discounters are intractable.
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the future is discounted, computing several hundred periods into the future captures
most of the value of a truly infinite horizon. In economic decision making, it has ap-
peared in Rubinstein bargaining problems. Camerer et al. (1994) studied Rubinstein
bargainers in an environment where the experimenters could observe which payoffs
subjects considered when formulating their offers. Subgame perfection requires that
subjects backward induct from the last stage payoff. Camerer et al. found, however,
that subjects tend to look ahead only one stage, neglecting last stage payoffs entirely.
These subjects were using a cognitive shortcut that required only the next stage’s
payoffs to formulate an offer.

Neelin et al. (1988) observed a similar phenomenon in alternating-offer bargaining.
They looked at two, three and five period games. In the longer games, they observed
the median first period offer was exactly the subgame perfect equilibrium of the two
period game. In this case, subjects are using a two period truncated horizon, and not
applying any adjustment for additional periods.

Behavior in dominance solvable games is also consistent with horizon truncation.
In beauty contests (Nagel, 1995; Ho, Camerer and Weigelt, 1998), centipede games
(McKelvey and Palfrey, 1992) and the dirty faces game (Weber, 1999), subjects obey
only one to three levels of iterated dominance, which corresponds to solving a trun-
cated version of the game. |

Applying the same cognitive shortcut to bandit problems could lead to present
bias because the full future value of information acquired through experimentation is
not represented. What is not clear, however, is how the adjustment factor responds
to new information, the approach of the horizon, or the payoff scale. Improper sen-
sitivity of this adjustment factor could explain bandit data which is not consistent
with hyperbolic discounting. In addition, improper sensitivity to payoff scale could
explain Pratt, Wise and Zeckhauser’s observation that price search is insensitive to
the amount to be saved.

One advantage of this paper’s experimental approach is that it can distinguish
hyperbolic discounting from horizon truncation, theories which are often confounded

in field problems. If the environment is stationary, meaning the agent does not learn
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anything about the payoff distribution from receiving a draw from the distribution
and the horizon does not approach, hyperbolic discounting and horizon truncation
are not distinguishable. To a first approximation, job search and price search are
both stationary, so these field studies could not distinguish the two models. The
experiment presented here is designed to make a powerful distinction where these

field studies cannot.

3.2 Formalizing the Experimentation Environment

To conduct a careful study of behavior in experimentation problems, the experimenta-
tion environment must be formalized. This section builds the theoretical foundations

necessary to understand the role of hyperbolic discounting in bandits.

3.2.1 Bandit Theory with Hyperbolic Discounting

The (F, \; A) bandit studied here was chosen because the A arm can be used to value
the F arm. The value of A for which the agent is indifferent between selecting the
two arms is what is known as a dynamic allocation index, or a Gittins index (Gittins,
1989), of arm F. The Gittins index is the sum of the expected payoff from F', E[X|F],
and an information value which reflects the expected gain to future payoffs arising
from the information acquired through experimenting with F in the current period.®

For the consumer seeking orange juice, his longtime favorite brand would be
“known” arm with “known” expected payoff A. The new brand gives an uncertain

payoff, so it is the F' arm.

Notation for Bandits with Hyperbolic Discounting

A hyperbolic discounter’s discount sequence is A = (1, 84, 362,...). When it is conve-

nient, A% will be used to denote the one-period-ahead continuation of A, (s, a3, .. .).

3The Gittins index is of particular interest in the case of exponential discounting and multiple
uncertain arms. Gittins and Jones (1974) showed that if a Gittins index is calculated for each arm
separately, the optimal strategy is to select the arm with this highest Gittins index in each period.
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Given these elements, the two-armed bandits on which this paper focuses can be
written (F, \; A), where F is the unknown () bandit, A is the known @ bandit, and A is
the discount sequence. Of particular interest will be the cases where A is exponential
and hyperbolic, which will be denoted (F, A;8) and (F, A; 8, 8) respectively.

As mentioned above, this paper considers only naifs, hyperbolic discounters who
honestly believe that they will be exponential next period, but then are not. The
A notation for discount sequences does not adequately capture this, for it typically
assumed that AV = (g, as,...,07_ 1, ar), but this is not the case for the naif. In
fact, A is A again, or if the horizon is finite, A®) = (o, @, ..., ar_1,0). This is
not a problem for the analysis here because the naif acts on his (erroneous) belief in

the present period; I only need to consider the problem he is solving.

Hyperbolic Discounting and Optimal Stopping Problems

Actually solving bandits with a hyperbolic discount function is considerably more
difficult than in the exponential case. The exponential problem can be (relatively)
easily solved because it is an optimal stopping problem: once the agent chooses the
A arm, he will choose the A arm in every remaining period (because nothing new is
learned about F'). This is not true for the hyperbolic discounter, however. She can
choose the A arm in the current period, believing she will experiment with the ' arm
in the next period. Without the optimal stopping property, solving the bandit is a
far more (computationally) intensive process.*

Berry and Fristedt characterize the set of regular discount sequences, or those
discount sequences for which a bandit is an optimal stopping problem. The follow-
ing proposition confirms the intuition of the paragraph above that the hyperbolic

discounter does not have an optimal siopping problem.
Proposition 1 The hyperbolic discount sequence is not regular.

Proof: Please see Appendix 3.A.1.

4Briefly, optimal stopping problems are simple because the continuation value of choosing the A

armis y., 40"\, or ﬁ for infinite horizons. If the optimal stopping property does not hold, the

value of choosing A is a recursive calculation.
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Because regularity makes bandits tractable, most work has focused on regular dis-
count sequences. Understanding how hyperbolic discounters should behave in bandits

requires additional theoretical foundations.

Existence of an Optimal Strategy

First, it is important to know whether an optimal strategy exists. Berry and Fristedt
use a standard argument to show that an optimal strategy exists for all possible

discount sequences if there are a finite number of arms.

Theorem 3 (Berry and Fristedt, 1985) There exists an optimal strategy o* for all

possible priors G on D and all possible discount sequences A.°

Their proof proceeds by demonstrating that there exists an optimal strategy for
any finite horizon and then sending the horizon to infinity. For any finite horizon,
there is a finite number of possible strategies (number of arms x length of horizon).
Since any function has a maximum over a finite number of points, there is an optimal
strategy for any finite horizon. Sending the length of the horizon to infinity gives

general existence.

Existence of a Dynamic Allocation Index

The experiment described in Section 5 uses the dynamic allocation index, A, as a
measure of value for the F' arm. In order for these inferences to be meaningful, it is
necessary to establish that the dynamic allocation index represents the value of F' for

the hyperbolic discounter.

Theorem 4 For each nonincreasing discount sequence A with A # 0 and a1 > oo
and each distribution F' on D, there exists a unique function A(F, A) such that the F’
arm is optimal initially in the (F, \; A) bandit if and only if A < A(F, A) and the A
arm is optimal initially if and only if A > A(F, A).

5This is a reader-friendly, if less precise, restatement of their Theorem 2.5.2.
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Proof: Please see Appendix 3.A.2.

This is the primary new theoretical result in this paper. The result based on the
fact that V(F, \; A) is continuous and increasing in A. This implies that V¥ — V* is
strictly decreasing in A\. Roughly, this is true because A is chosen earlier in the strategy
sequence giving value V*. Because nothing is learned by choosing A, the optimal
sequence of A choices giving V((X)F, X\; A1) is similar to that giving V(F, \; A1),
This proof is difficult because it is necessary to show that the value of information
acquired from initial choice of F in V¥ does not disrupt this relationship.

Given this result, the following proposition is easy to prove.

Proposition 2 For a hyperbolic discounter with 8 < 1 and for each distribution F
on D, there exists a unique function A(F, A) such that the F' arm is optimal initially
in the (F, A\; A) bandit if and only if X < A(F, A) and the \ arm is optimal initially if
and only if A > A(F, A).

Proof: Please see Appendix 3.A.2.
For 8 < 1, Theorem 4 establishes existence. For § = 1, the discount sequence is

regular, so the existence result for regular discount sequences applies.

3.2.2 Properties of the Dynamic Allocation Index

The main result of this section, which confirms the intuition that hyperbolic discoun-
ters will not value information much as exponential discounters is given by the next

theorem.
Theorem 5 A(F,0) > A(F, (8,9)) for 8 <1, and with equality only if 8 = 1.

Proof: The proof of this theorem leverages the fact that the geometric discount
sequence is regular while the hyperbolic discount sequence is not, along with the
equivalence between regular discount sequences and stopping problems.

From the definition of A(F, (5, 6)), A(F, (8,6)) is optimal in the (F, A(F, (5,8));5,6)

bandit. Using the fact the naive hyperbolic discounter believes she will be exponential
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in the future, the value of this bandit is
V(F,A(F, (8,6)); 8,8) = A(F, (8,6)) + BV (F, A(F, (8,6)); 6V). (3.2)

Because the hyperbolic discount sequence is not regular, the agent must expect
to switch back to the F arm at some point. Since the continuation is regular,
the only point at which the agent could choose F' is at the second stage, in the
(F,A(F,(8,6)); 6) bandit. Therefore, A(F, (8, d)) is not optimal in the (F, A(F, (8,6)); §V)
bandit.

The value of the (F, A(F,0); §) bandit is

V(F,A(F,8);6) = A(F,8) + V(F, A(F, §); 6%)) (3.3)

since A(F,¢) is an optimal choice.

Since the exponential discount sequence is regular, A(F,4) is again optimal for
the continuation.

Since the continuation in Equation 3.2 is the same as that in Equation 3.3, except
for A(F,-), it must be that A(F,8) > A(F,(5,9)). Note that if 5 = 1, then the
discount sequence in Equation 3.2 becomes geometric and the two bandits are the
same. Since A(F,-) is unique, the theorem holds with equality.

Since hyperbolic discounters value the future payoffs which benefit from present
experimentation less than geometric discounters, they have lower than optimal Gittins
indexes. Therefore, even if they are using an index strategy, they will not experiment
enough. Measuring B can help determine whether or not Gittins indexes reflect

hyperbolic discounting.

Measuring 3

Given that there exists a value of A such that hyperbolic discounters are indifferent
between F and A, this value can be used to determine £ in two ways. First, revealing

that A = ¢ makes them indifferent implies V¥ (F,¢; 8,6) = V*(F, ¢; 3,6), where £ is
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the subject’s reported dynamic allocation index. We can use Equations 1.4 and 1.5

o solve
t B ¢~ E[X|F]
b= S EVIOEE6) - VE )

(34)

Because the values in the denominator are just stopping problems, their solution is
not recursive. The expectation E[X |F] is known, and £ is the value the agent reports
as the dynamic allocation index.

Unfortunately, the quality of the approximation of the terms in the denominator
is important, and accurate approximations are difficult if £ is substantially larger than
A*, the optimal value of A for the exponential discounter.® An alternative measure of
3 is the information value ratio. The information value ratio is

¢ - E[X|F]

Y CEXE (3.5)

I(F, X)) =
This ratio does not give 3, but it is always on the same side of one, so it is sufficient .
for present purposes. Information value ratios less than one suggest present bias, and

information value ratios greater than one suggest a future bias.

3.3 Experimental Design

This experiment has two objectives. The first is to determine whether or not there
is present bias in multi-armed bandits, and the second is to distinguish two possible
causes of present bias. The existence of present bias can be established by comparing
subjects’ information values with the optimal information values of exponential dis-
counters. This can be done by looking at the information value ratio, or by looking
at 8. Hyperbolic discounting requires that s be constant as information is acquired
and the horizon approaches, but horizon truncation, through its adjustment factor,

allows for variations in f.

8The reason is that if £ is large enough, then it is optimal to choose the A arm initially in both
the denominator terms unless the X in E[V((X)F,¢;0)] is very large; this low probability event
determines the difference between the two terms in the denominator. Because the most common
method of approximation is to truncate the distribution of payoffs near the tails, the error will be
large relative to the values, meaning estimates of § will vary widely.
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3.3.1 Incentive Compatible Dynamic Allocation Index Elici-
tation

Proposition 2 proves that there is a unique value of the known mean arm for which
a subject is indifferent between the two arms. Equation 3.4 shows how a subject’s
¢ can be used to determine 3, which in turn can be used to test the predictions of
hyperbolic discounting and horizon truncation. Thus the first design challenge of this
experiment is to incentivize subjects to reveal truthfully the value of ¢ which makes
them indifferent.

Proposition 2 claims that if A(F, A) makes subjects indifferent, then they should
pick the A arm if its value is greater than A(F, A), and F if A is less than A(F, A). One
way to incentivize subjects’ reported dynamic allocation indexes is to make choices
for them based on their reported fs. For instance, if a subject reports £ < A(F, A)
and the arm choice is based on £, then there are values of the A arm for which the A
arm would be chosen when the subject would prefer the F' arm; if £ = A(F, A), there

is no chance of this happening. This intuition suggests the following mechanism:

1. Endow each subject with an arm F' with an unknown payoff distribution drawn

from a set of distributions D.

2. Explain to them that there is a second arm, A, with a known average payoff of

value A which will be randomly drawn from some distribution with support R.

3. Before announcing the value of A, ask each subject for a value ¢;, the minimum
value of A for which he or she would be willing to choose the A arm in the

current period.

4. Announce the value of A. Fix the A arm at that value for the remainder of the

horizon.

5. For subjects with £; < ), force them to select the A arm in the first period, but
then allow them to proceed optimally, choosing the F' and A arms as they wish

for all remaining periods. For subjects with ¢; > A, force them to select the F
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arm in the first period, but then allow them to proceed optimally, choosing the

F and X arms as they wish for all remaining periods.

Proposition 3 Suppose A(F, A), the dynamic allocation indez for the arm F given
A, ezists and is unique. Then ¢ = A(F,A) is the unique optimal value of £ for a

subject to report in the mechanism in this section.

Proof: The proof follows the intuition given above and is presented in Appendix
3.A.3.

Since Proposition 2 proves A(F, A) exists for hyperbolic discounters, this mech-
anism can be used to elicit the dynamic allocation index in the first period of any
bandit problem. However, once the value of the A arm is known, the subjects need
not report their true £ to receive the choice they want; this data would be much less
reliable. A slight modification of the above mechanism can be used to get reliable
{s in more than one period. Rather than revealing the value of X in the first period,
randomize the period in which the value of A is revealed; subjects can be forced to
pick F'in the periods until X is revealed. As long as the choice of £ affects the payoff
with positive probability, subjects should still report ¢ truthfully. Because they do
not have a choice if A is not revealed, they cannot behave strategically. If A is not
revealed, subjects can use the payoff from F' to update their beliefs about F' and re-
port a next period £ based on their updated beliefs. This allows collection of reliable

data on a variety of beliefs, and with different horizons.

3.3.2 Bandits

This mechanism for truthfully eliciting dynamic allocation indexes requires a known
mean arm A and an unknown mean arm F. In this experiment, the F arm gives
payoffs drawn from a normal distribution with ¢? = 100 and a mean, p, distributed
N(v,7?) where v = 1 and 72 = 25. The known mean arm also has variance of 100,

to control for risk aversion.” Its mean is randomly selected from the same N(1,25)

"These two levels of randomness in bandit arms have precise meanings in the terminology of
risk and uncertainty. Risk is variance of the payoff distribution, and uncertainty is the variance
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distribution as the mean of the unknown arm. The value is announced in the randomly
determined period in which it is chosen.

Each bandit lasted for 10 periods, and each experimental session consisted of
ten rounds. At the beginning of each round, new means for F' and A were chosen.
Subjects were told the shape and variance of the distribution from which their payofts
were drawn, as well as the shape, mean and variance of the distribution from which
the mean of the payoff distribution was drawn. To emphasize the two-level nature
of the randomness (i.e., that the mean of the distribution of payoffs itself has a
distribution), the problem was posed as one of balls and urns, a familiar device for
explaining randomness in experiments. Subjects were told there were two identical
sets of urns with numbers on them; they could see the numbers on one set (the As),
but could not see the numbers on the other (the F's). The payoff distribution was
explained by saying there was an identical set of balls in each urn, and each ball had
a number on it. The payoff was the sum of the number on the urn and the number on
the ball. The probability distributions were conveyed using frequency tables, and by

explicitly mentioning the parameters of the normal distribution in the instructions.

3.3.3 Other Design Features

Because I am primarily interested in how the information value behaves once subjects
understand there is a value to experimentation, the instructions included a brief
section about strategy.® Subjects were told that the information value arises from
possible benefits in expected future payoffs, but were left to determine the magnitude
on their own. To reinforce the instructions, the information value was featured on
a quiz over the instructions, whose answers were explained before the experiment
began, and during a guided practice period where the potential cost of an £ which is

too low was emphasized.

in the distribution of the mean of the payoff distribution. These two arms are equally risky, so
risk aversion cannot be a factor in behavior. What differs across arms is the level of uncertainty;
uncertainty aversion may be a factor in this environment.

8A pilot run without this instruction suggested that it took a long time for subjects to realize
there was an information value; including the instruction significantly reduced noise in the data.
Whether or not people recognize that this value exists in general problems is a separate question.
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To simplify the subject’s task, and to make sure the difference between the re-
‘ported £ and the expected value of F' could be interpreted as an information value,
subjects were provided with E[X|F]. The evidence that experimental subjects can
effectively apply Bayes’ rule is at best mixed (Kahneman and Tversky, 1972; see
Camerer, 1995 for a review), so to avoid confounding my results with incorrect up-
dating, I computed the Bayesian estimate of E[X|F]| and labeled it the “best guess”
at the number on the unknown mean urn. Subjects were instructed that this “best
guess” was arrived at using a law of probability called Bayes’ rule.’

To encourage subjects to think carefully about the values of £ they reported, I used
a bracketing mechanism to ask a sequence of questions to isolate the value of A which
made subjects indifferent between the two arms. I allowed values in [-15,30]. A test
value, 4, was randomly chosen between these two endpoints. The subject was then
asked, “Would you choose the [known mean arm] this period if its [known mean| were
i Subjects could click “Yes” or “No” buttons; “Yes” focused subsequent questions
on lower values of é, and “No” focused the search on higher values of /. The questions
continued with different values of 7, until the ¢ that made subjects indifferent was
identified to the nearest 0.05 francs (0.4 cents).

To simplify analysis of the data, the random numbers used for payoffs were taken
from a published random number table. This guaranteed randomness, but also en-
sured that each subject saw the same sequence of payoffs and arm values. This is
important because, although computing the optimal index is a stopping problem, it
is still computationally intensive. Having every subject make decisions based on the
same set, of beliefs greatly reduced the set of beliefs for which an optimal solution had

to be computed.

YA few subjects explicitly rejected the best guess. Most claimed looking only at past payoff
realizations provided a better estimate, suggesting that the neglect of base rates may be more than
a cognitive shortcut.



85
3.3.4 Subjects

The subjects for this experiment were 23 Caltech undergraduates. Caltech under-
graduates are a particularly good sample for this task because it is complex, and
they have been selected for admission to Caltech because they are analytically gifted.
They also represent a “best chance” for optimal strategies because they are more
likely than other populations to be able to formulate and solve the dynamic pro-
gramming problem which yields the optimal solution; if anyone does not need to use
cognitive shortcuts, it is these subjects.

Payments to subjects averaged $20, with a maximum of $21 and a minimum of
$10 for about 1 hour and 45 minutes of work. To verify that subjects understood the
task, a debriefing questionnaire asked them to describe the task and their approach
to it. Subjects’ comprehension was good, except for two subjects who seemed to have
difficulty with English and had to be excluded; these were also the two lowest-earning
subjects. A third subject was excluded for answering “3” for almost every £. Parts of
the data from three other subjects were excluded. One subject said he was confused in
the first four rounds and suggested his data be excluded. A second subject answered
£ = 0.05 for every query after the sixth round. A third subject expressed lexigraphical
preferences, selecting £ ~ 30 (the maximum allowed), and indicating on his debriefing
questionnaire he would have selected higher had it been possible.!® In each case, the

data retained from these subjects are not idiosyncratic.

3.4 Results

Figure 3.1 shows the information values from a typical subject. Since the A arm was
introduced at random, éach round provides a different amount of data: one period
in rounds 1, 3, and 9, two periods in rounds 2 and 7, four periods in round 5, six
periods in round 4, and seven periods in rounds 6, 8 and 10. Since each subject saw

the same random number realizations, the #s elicited in each round are based on the

0Tnterestingly, the minimum number of times he felt he needed to select F before considering A
decreased across rounds.
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Figure 3.1: Information values reported by a typical subject

same payoff histories and thus can be aggregated or compared directly.

In optimal play, information values would begin at about 8.48 and then decrease,
roughly exponentially, in later periods. The data do not follow this pattern. This
subject’s first period information values are low, around 1, a typical value for many
subjects. This means the subject clearly understood that there was an information
value, but did not have a good sense of its magnitude.

After the first period, this subject’s information values fluctuate some, but gen-
erally decrease. This pattern was common. Subjects understood that the value of
additional information fell as they learned more and the horizon approached, but
they also tried to understand the effect of different information values. Testing dif-
ferent values was difficult because the F and X arms were rarely close enough for a
reasonable ¢ to indicate the wrong arm; this is not a flaw of the experimental design
so much as a property of the bandit environment.

In this subject’s data, rounds 4 and 6 are notable exceptions to the general pattern

of decreasing information values. In these rounds, the true mean of the F' arm was
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significantly negative, and this subject and many others were more hesitant than
optimal to lower their £s in response to the expected payoff from the F' arm.

Figure 3.2 presents a box-and-whiskers plot of the information value ratio defined
in Equation 3.5, pooled by period across subjects and rounds. The box-and-whiskers
plot indicates the distribution of the data at five points. The wide horizontal line
indicates the median response in that period. The gray box covers the middle 50%
of the data, and the “whiskers” cover the middle 90% of the data. The black dot in
each period represents the mean response.

The overwhelming pattern in the data is that the information value ratios start
below one, suggesting present bias, and increase as more information is acquired
and the horizon approaches. At first glance, this is not consistent with hyperbolic
discounting, which predicts that ratios should always be below one, and is consistent
with horizon truncation with an adjustment factor which begins too small, and then
does not adjust quickly enough.

This section’s objective is to test which of the patterns in these pictures are
statistically significant. If there is significant present bias, the data can be compared
with the predictions of hyperbblic discounting and horizon truncation, giving insight

into behavior in bandit problems.

Result 11 First period fs are significantly below optimal, consistent with present

bias.

Support: Figure 3.3 shows the £s observed in the first period of each round.'! This
box-and-whiskers plot is interpreted the same as Figure 3.2, except that the whiskers
cover only 80% of the data. The exponential-optimal value of 9.48 is indicated by the
horizontal line spanning the graph. Only 25 of 182 total observations are at or above
the exponential optimum, and three subjects account for 20 of them. Based on this
graph, it appears that ﬁrst period fs are considerably below optimal.

That average choices are below optimal can also be tested on a subject-by-subject

basis. Table 3.1 presents the means, standard errors and the p-values for the one-

"' The subject with lexigraphical preferences is omitted from this graph. He chose a value at or
near 30 every period and indicated that he would have chosen higher had it been possible to do so.
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Figure 3.2: Box-and-whiskers plot of information value ratios across periods
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Figure 3.3: First period ¢s across rounds.

Subject Mean Std. Err. p-value

1 3.44 0.50 3.4E-07
2 1.13 0.02 3.4E-13
3 2.63 0.97 3.0E-05
4 9.00 0.37 0.11
5 8.30 3.22 0.36
6 1.93 0.17 4.8E-12
7 4.03 0.37 6.5E-08
8 5.00 0.03 5.5E-17
9 1.02 0.01 1.0E-24
10 -0.24 1.41 3.6E-05
11 2.56 0.20 4.2E-11
12 1.40 0.12 8.6E-14
13 0.33 0.21 6.1E-08
14 0.40 0.11 1.7E-14
15 11.59 2.85 0.76
16 -1.04 2.02 2.8E-04
17 3.04 1.01 6.4E-05
18 25.60 0.40 1.00
19 1.76 0.16 1.9E-12
Total 4.46 0.53 5.0E-18

Table 3.1: Subject-by-subject mean first period ¢s, with one-tailed t-test that p; >
9.48
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Coefficient Value Std. Err. t P>|t]  95% CI
Yo 481 228 2110 0.049 .002 .960
YViag .848 .081 10.446 0.000 .678 1.019

Table 3.2: Results of lag regression; the summary statistics are F(1,18)=109.11 and
R? =728

tailed t-test that mean information values are greater than or equal to the optimal
value of 9.48. Even with this fairly small sample from each subject, the hypothesis
that the mean is greater than or equal to the optimal value is rejected for 15 of the
19 subjects. This provides clear evidence for first period present bias.

To get some idea of what this level of present bias implies within the context of
hyperbolic discounting, consider that the  that corresponds to an average response
of 4.46 is 0.594. This is a little smaller than the 8 = .70 reported by Laibson (1997)
in his field studies. However, it is not correct to interpret this as an average 8 because
the transformation from £ to § is not affine; 8s grow very quickly as the information
value ratio exceeds one. The value of 8 at the mean £ is reported because it is very
difficult to compute accurately the denominator of Equation 3.4 when the information
value ratio is significantly above one; a couple outliers dramatically affect the mean.

Since this is an unfamiliar and somewhat abstract environment for subjects, it
is possible that present-bias is an artifact of their unfamiliarity. If this is true, then
they should learn to behave optimally, and thus appear less present biased, as they

gain experience in the environment.
Result 12 The first period information values do not increase in later rounds.

Support: To test whether first period information values approach optimality, I use

a simple lag regression:
Zi = Yo + Viaglt-1 for t > 2. (3.6)

Table 3.2 presents the results of this regression, with White-adjusted standard errors.

If subjects were learning to increase their information values in the first period, 74,
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Period Obs Mean 95% CI  Median  95% CI
1 182 0.41 0.29 0.53 0.11 0.08 0.17
131 1.50 1.20 1.81 0.92 0.75 1.22
95 231 1.66 2.96 1.56 0.80 2.16
97 221 164 2.78 1.37 0.77 2.28
78 277 194 3.60 1.45 0.71 2.26
78 3.74 196 5.51 1.58 0.85 2.05
58 4.25 1.90 6.61 1.36 0.27 2.03

~N OO R W N

Table 3.3: Mean and median information value ratios for each period

would be greater than one. The estimated 7,44 is not statistically greater than one;
it is almost statistically less than one. The limit of this lag process is given by
IZ%OI;; = 3.16, so only subjects with £ < 3.16 were increasing their information values
in later rounds; subjects with higher information values were decreasing them, on
average. The one-tailed p-value for 1—_—”%; being below the optimal value of 9.48 is
3.63 x 1075, Therefore, I conclude that subjects were not learning to increase their
information values in later rounds, so first period present bias is robust to experience.

These results replicate the present bias observed in search problems, suggesting
present bias affects bandit behavior. However, this experiment establishes some spe-
cial circumstances which provide the opportunity to observe information values where
they could not be observed in the field. Because subjects are forced to choose F when

they would not have had there been another choice, we can learn about how infor-

mation values change with beliefs and the horizon.

Result 13 Second and later period mean information value ratios are higher than
exponential optimal, suggesting a future bias, but median values are close to optimal.

The shift from present bias to future bias cannot be explained by hyperbolic discounting.

Support: Looking at the later periods in Figure 3.2, there seems to be a clear
trend toward higher mean information value ratios as time passes. This intuition
can be tested by looking at the mean responses in each period. Table 3.3 shows the
mean information value ratios for each period. Every period after the first has a

mean information value ratio significantly above one. Further, there is a clear trend
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toward higher ratios in higher periods; only between periods 3 and 4 is there a small
(insignificant) decrease.

However, Figure 3.2 suggests the mean may not be the best description of the
data. Although there is a clear upward trend in the mean, Table 3.3 indicates the
medians are not statistically distinguishable from optimality (Mosteller and Rourke,
1973). This suggests some of the subjects have increasing information value ratios,
but that most do not. |

To test this two-segment population hypothesis, I use a multicycle expectation-
conditional maximization (ECM) algorithm (Meng and Rubin, 1993) to estimate
a two-segment weighted least squares model on the second through seventh period
information value ratios. The model regresses the information value ratio against the
period number, controlling for E[X|F]. Heteroskedasticity is modeled by o? = o*t®,
where ¢ is a parameter to be estimated.

The objective is to find the two sets of model parameters and the assignment of
subjects to parameter sets which is most likely given the data. My approach treats the
parameter set which generates each subject’s data as “missing data;” if I knew which
subjects were in which segment, I could simply estimate the model separately on each
segment. Instead, for any pair of parameter sets, the EM algorithm uses Bayes’ rule
to update an (estimated) prior to compute the relative likelihood that each parameter
set generated each subject’s choices. These probabilities are then used as weights to
reestimate the two parameter sets. McLaughlan and Krishnan (1997) summarize the
theoretical conditions under which iteratively updating probabilities and reestimating
parameters converges to the maximum of the (complete data) log likelihood function.

Table 3.4 presents the parameter estimates for the two segments, as well as the
size of each segment. As Figure 3.2 suggested, about a quarter of the population
has significantly increasing information value ratios, while we cannot reject that in-
formation value ratios are constant for the other three quarters. For the first group,
we can reject that hyperbolic discounting is the dominant factor in experimentation
behavior. Because their information value ratios increase from below one to above

one, we must conclude their 8s do also, but this is inconsistent with hyperbolic dis-
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Estimate Std. Err 95% CI

Segment 1~y 0.57 0.86 -1.11 225
5%  Voeties -0.10 0.05 -0.20 0.00
Yperiod 0.32 0.28 -0.22 0.86

oY% -0.39 0.83 -2.02 1.24
Segment 2 vy -0.35 1.66 -3.61 291
25%  Voetics -0.22 0.06 -0.34 -0.10
Vperiod 0.93 0.35 0.25 1.61

o 0.66 0.42 -0.17 1.49

Table 3.4: Multicycle ECM estimates of two-segment regression model

Period x?(1) p-value

2 35.55  0.000
3 20.41  0.000
4 20.05  0.000
5 17.51  0.000
6 6.94  0.008
7 1.78  0.182

Table 3.5: Test statistics comparing segment 1’s median first period information value
ratio to their medians in each other period

counting. This test is not strong enough to reject hyperbolic discounting for the rest
of the population.

Table 3.5 presents a stronger test of whether or not the segment one subjects have
increasing information value ratios. It compares the median information value ratio
from the first period to the median information value ratios from other periods. This
test counts the number of observations in each sample above and below the combined
median and then computes a chi-squared statistic to determine the signiﬁcancé of the
deviation (Seigel and Castellan, 1989).

The table shows that the median information value ratios in the second through
sixth are significantly different (they are higher) than that of the first period; the
insignificant result in the seventh period is most likely due to the small sample size.
Therefore, even in segment one where information value ratios are not increasing after
the first period, information value ratios are increasing across all periods in a way

which cannot be explained by hyperbolic discounting.
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Period Obs Mean Std. Err.  95% CI
1 110  3.53 0.72 2.11 4.96
93 4.00 0.55 2.91 5.09
76 3.30 0.52 2.27 4.33
77 2.50 0.42 1.67 3.34
58 2.14 0.43 1.27 3.00
58 2.71 0.78 1.15 4.27
58 2.01 0.55 0.90 3.12

~N OO s W N

Table 3.6: Mean information values for each period for Rounds 5-10

Horizon truncation, on the other hand, may not appreciate the extent to which
the horizon approaches and may not fully appreciate the degree to which information
acquired in the first period benefits later payoffs. The data are consistent with a
model of horizon truncation with an adjustment factor which does not adjust enough
as information is acquired and the horizon approaches. Hyperbolic discounting may
still contribute to present bias, but only as the discount sequence of the truncated
horizon problem.

One problem with the horizon truncation model as it is specified here is that it is
not falsifiable. The model says very little about the “adjustment factor,” and without
restrictions on its possible values, any pattern of information value ratios is consistent
with the model. One desirable feature in the adjustment factors is that they do not
increase over time. A rough test of this, abstracting from the value computed for the

shortened horizon, is that the information values decrease over time.

Result 14 The information values decrease from period to period, consistent with an

ntuitive restriction on horizon truncation.

Support: Table 3.6 presents the mean information values for Rounds 5 through
10. In these rounds, there is no significant increase in the mean information value
from one period to the next. Including the first four rounds introduces a statistically
significant increase from the first period to the second. Experience taught subjects
with very low first period information values that they should be higher, and subjects

who did not decrease their £s in response to negative E[X|Fs that they should be
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Coefficient Value Std. Err. ¢ P > |t 95% CI

Yo 4.048 792 5.111  0.000 2.496 5.601
Vbetie f -.152 .020 -7.525 0.000 -.192 -.113
Yperiod -.314 .091 -3.474 0.001 -492 -137

Table 3.7: Results of random effects regression of the information value on period for
Rounds 5-10; the summary statistics are x3 = 66.0 and R? = .083

more responsive, so the difference is erased in later rounds.

Table 3.7 presents the results of the random effects regression on the last six
rounds; these results are robust to the inclusion of the first four rounds. The signif-
icantly negative coefficient on period indicates that information values are declining
across periods. Although this does not explicitly control for the information value
computed from the truncated horizon, it does place an upper bound on the adjust-
ment factor in each period. This is consistent with the restriction that the adjustment

factor be decreasing from period to period.

3.5 Discussion

This paper was designed to fill two gaps in our understanding of behavior in exper-
imentation problems. First, it hoped to establish whether or not the present bias
which has been observed in search problems is also represented in the more general
environment. Second, given that present bias generalized, it hoped to distinguish
between two competing explanations for present bias.

Looking at first period choices, the evidence from the experiment presented here
supports present bias in the bandit environment. Later period evidence, however,
suggests that agents do not remain present-biased as they acquire information; rather,
most subjects behave nearly optimally, and a substantial portion of the population
appears to become future biased. These results are consistent with observing only
present bias in studies of search. The environments studied are stationary, so there is
no opportunity to observe choices which, like later period choices in this experiment,

reflect updated beliefs and an approaching horizon.
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That agents rarely encounter such circumstances outside the lab may be a partial
explanation for the later period overexperimentation observed in this experiment.
Had the A arm been available after the first period in every round, few subjects
would have experimented in the second period. Few naturally occurring bandits force
subjects to experiment. These results suggest that once he buys the new brand of
orange juice, the shopper is more likely than optimal to buy it again. However, he
is never forced to buy the new brand in the first place, and so never encounters his

tendency to overexperiment.

3.A Proofs of Propositions

3.A.1 Non-Regularity of the Quasi-hyperbolic Discount Func-
tion

Unfortunately, intuition tells us the quasi-hyperbolic discount sequence may not be
regular. The hyperbolic discounter is tempted to put off experimentation to next
period, taking the known-mean arm now; while he selects the known-mean arm in
the current period, he expects he will return to experimenting in the next period.

The next proposition confirms this intuition.
Proposition 1 The quasi-hyperbolic discount sequence is not reqular.

Proof: First I compute v, 72 and <3, then I use these to check the definition of
regularity. Note that the choice of ¢ = 1 is important here, for choosing ¢ # 1 does
not contradict regularity; proving the definition is not satisfied only requires locating
one t for which the condition is not satisfied.

From the definition of quasi-hyperbolic discounting, we have

71:1+65+562+...:1+56257:1+1—’86—6
: =0 -
e 0
72=66+,662+...=ﬁ5257=1’6—5

T7=0 -
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Bé*
1-4

V3 =86+ P+ =83 6 =
=0

Now plugging these into the definition of regular, we have

g ps
<
s tis
Bs
<
S TTE A
1< B
= 1-6+45
1-6<p(1-9)
1<p (3.7)

Hence, the quasi-hyperbolic discount function is only regular if 8 > 1, which corre-
sponds to the special case of exponential discounting; a quasi-hyperbolic discounter

with 8 < 1 does not have a regular discount function. O

3.A.2 Existence of a Dynamic Allocation Index

This section proves Proposition 2. This is needed to show that there is a value
of A for which VF(F, \; A) = V*(F, \; A) for the hyperbolic discounter. There are
several steps to this proof. First, I explain a result from Berry and Fristedt that
V(F,A; A) is continuous and nondecreasing in A. Then I prove an original result
that V¥ (F, \; A) — VX(F, \; A) is nonincreasing in A. This does most of the work in
proving the proposition. I then show that if a1 > ay then V¥(F, X; A) — VXF, \; A)
is strictly decreasing in A. Using this I show that there exists a value of A for which
VE(F, A\ A) = VXF, \; A) for any a; > ay. The proposition is a direct consequence
of this result.

The first step is to show that V(F, A; A) is monotonic in A.

Theorem 6 (Berry and Fristedt, 1985) For all F' and A, V(F, \; A) is continuous

and a nondecreasing funclion of A.

Berry and Fristedt provide an adequate proof of this theorem, so I shall only offer
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some intuition for its truth. An increase in A can affect the value function in two
ways: it increases the value of arm A whenever it is chosen, and it expands the set
of F' over which the optimal strategy prescribes the A arm to include those of higher
expected value. Given this, an increase in A could not result in a reduction of the
value function because an increase in the value function never makes it more likely F'
will be chosen, and it strictly increases the value of any choice of the )\ arm.

In order to show a dynamic allocation index exists, I also need a result about how
the size of the error made by choosing the the wrong arm varies with A. Define the
function A(F, \; A) as the difference in the value functions from choosing the F arm
first and then continuing optimally and choosing the A arm first and then continuing
optimally;

A(F, X A) = VI(F, X A) — VAME, N A). (3.8)

The absolute value of this quantity can be thought of as the cost of making an error
by selecting the wrong arm initially. This quantity turns out to be very important,

as the following lemma does most of the work in proving Proposition 2.
Lemma 1 A(F, \; A) is nonincreasing in X when A is nonincreasing with A # 0.

Proof: This proof is based on Berry and Fristedt’s proof for Bernoulli F.

Fix A* > A

This proof proceeds in three parts. Part (i) derives an expression for A(F, A\*; A) —
A(F,X;A). Part (ii) performs a finite induction on the horizon to establish that
A(F, A" A) — A(F, \; A) is nonpositive. Part (iii) extends the result of Part (ii) to
infinite horizons.

(i) The value of choosing the F' arm first and then proceeding optimally is given by
VE(F, X A) = o EX|F] + E[V((X)F,\; AD)Y]. (3.9)
Similarly, the value of selecting the A and then continuing optimally is given by

VME N A) = oA+ V(F, A AD). (3.10)
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Now define two more functions, which will prove to be of considerable algebraic
convenience. A (F, \; A) = max[0, A(F, \; A)] and A~ (F, \; A) = max[0, —A(F, \; A)]
so that

VE(F, N\ A) = V(F N A) — A™(F, )\ A) (3.11)
VME X A) =V(F, )\ A) — AT(F, )\ A). (3.12)

Mnemonically, A~ is nonzero when A(F, A; A) is negative, or when X is the optimal

arm.
Using these definitions, substitute for V/((X)F, \; A) and V(F, \; A) in Equations
3.9 and 3.10 above. This gives

VE(F, X A) = g B[X|F]+ E[VN(X)F, A AD) + AT((X)F, X ADY] (3.13)
VME, N A) = oA+ VI(F X AD) + A=(F, 0, AD). (3.14)

These expressions can then be used to compute A(F, \; A). The first two terms in
Equation 3.13 represent the value of selecting arm F' in the first period, arm \ in the
second and then continuing optimally. Similarly, the first two terms in Equation 3.14
represent the value of selecting arm A in the first period, arm F in the second and
then continuing optimally. Given this interpretation, subtracting the first two terms

in Equation 3.14 from those in Equation 3.13 gives (a; — ag)[FE[X|F] — A]. This gives
A(F, N A) = (g — ) [E[X[F] = Al + E[AT((X)F, \; A — A= (F, X; AD). (3.15)
Using this expression to compute A(F, \*; A) — A(F, \; A) gives

A(F, A*,A) — A(F, /\,A) = (C¥1 e (1’2)[)\ - )\*] +
EIAT((X)F, A% AD) — AT((X)F, A A +
AT (F N ADY — A (F, A% AD). (3.16)

(ii) Proving the lemma requires that the difference in Equation 3.16 be nonpositive.
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This section performs induction on a finite horizon to demonstrate that this is true.
Let A, be a nonincreasing discount sequence with finite horizon n, so elements
after the n'* are zero.
First, suppose n = 1. Then, for all A;, A(F,\*; A;) — A(F, A; A1) is nonpositive

implies

E[X|F]— A* < E[X|F] - A
AT > A (3.17)

which is true by assumption.

Now suppose that the horizon n > 1 and A(F, \*; A,,) < A(F, \; A,,) for any non-
increasing A,. Now I will use this induction hypothesis to show that A(F, \*; A,11) <
A(F, A; Anya)-

Equation 3.16 can be rewritten with the truncated discount sequence

A(F, )\*, An+l) - A(F, /\, An+1) = (Oél - CL’Q)[)\ - /\*] +
E[AT((X)F, x5 AN ) — AT ((X)F, A AN )] +
AT(F X AN — A (P A5 A0, (3.18)

The first term on the right-hand side of Equation 3.18 is nonpositive because
A* > X by assumption and a; > «y by hypothesis.
The remaining two terms are nonpositive for similar reasons. Consider the second
term. Since Agll is nonincreasing and has horizon n, we have
E[AM((X)F, A5 AL = A (O F, X AL
= Elmax[0, A(X)F, \*; 4,)] — max[0, A((X)F, X; A,)]]. (3.19)

The induction hypothesis gives that A(F, \*; 4,,) < A(F, \; A,) for all F, in particular
(X)F. Therefore, the second term in Equation 3.19 is always weakly larger than the

first, implying that the second term in Equation 3.18 is nonpositive.
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Consider the third term. Since Aﬁl}rl is nonincreasing and has horizon n, we have

AT(F X ALL) = AT (F X5 AG)
= max[0, —A(F, \; An)] — max[0, —A(F, \*; A,)]. (3.20)

The induction hypothesis gives that A(F, A*; A,) < A(F, A; A,). Therefore, the sec-
ond term in Equation 3.20 is always weakly larger than the first, implying that the
third term in Equation 3.18 is nonpositive.

Since each of the three terms in Equation 3.18 is nonpositive, we conclude that
the difference Equation 3.16 is nonpositive for every finite horizon. Now we let the
horizon go to infinity to show it is nonpositive for infinite horizons.

(iii) Suppose n = co. Let Ar denote the truncation of A, at finite 7', so Ay coincides
with A, up to time 7" and has zeros afterwards. Letting T — oo in the result from
Part (ii) gives

A(F, N As) < A(F X5 Ay). (3.21)

Since A = Ay, we have A(F, \*; A) < A(F, A; A) for all horizons. This is sufficient
to prove the lemma. O

Proving Proposition 2 requires a stronger version of Lemma 1.

Lemma 2 If A is nonincreasing with oy > o, then A(F, \; A) is strictly decreasing

m A

Proof: Parts (ii) and (iii) of the proof of Lemma 1 showed that each part of Equation
3.16 is nonpositive. If a; > o, then the first term on the right-hand side of Equation
3.16 is strictly negative because A\* > A by assumption. Therefore, Equation 3.16 is
strictly negative and A(F, A; A) is strictly decreasing in A. O

Given this result, the existence of a dynamic allocation index is easy to prove.

Proposition 2 follows immediately from the following theorem.

Theorem 4 For each nonincreasing discount sequence A with A # 0 and oy > oo

and each distribution F' on D, there ezists a unique function A(F, A) such that the F'
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arm 1s optimal initially in the (F,\; A) bandit if and only if X < A(F, A) and the A
arm is optimal initially if and only if A > A(F, A).

Proof: This proof begins by defining A(F, A) = inf{\ € D : the X arm is optimal for
the (F,\; A) bandit }. Then I show that this definition implies that F' is uniquely
optimal if A < A(F, A). Then I use Lemma 2 to show that A is uniquely optimal if
A > A(F, A). Indifference at A = A(F, A) then follows from the continuity of V.

For A < A(F, A), we have

VE(F, X A) > VMNF, X A) (3.22)

from the definition of A(F, A). Because A(F, A) is the infimum value of A for which
A is optimal, it must be that F' is uniquely optimal.

The case where A > A(F, A) is a little harder because there may be values of
A above A(F, A) where F' is optimal. However, the fact that A(F, \; A) is strictly

decreasing in A, as shown in Lemma 2, proves that this cannot be. Therefore,
VE(F, X A) < VMEF, X; A) (3.23)

for all A > A(F, A) and A is uniquely optimal.

Finally, if A = A(F, A), we have that neither F nor ) is uniquely optimal. Extend-
ing the continuity of V(F,\; A) to VA(F, \; A) and VT (F, \; A), the previous cases
sandwich possible values of VA(F, \; A) and VF(F, \; A) to give

VF(F,A(F, A); 4) = VA(F, A(F, A); 4), (3.24)
which is equivalent to both arms being optimal initially for the (F, A(F, A); A) bandit.O

Proposition 2 For a hyperbolic discounter with 8 < 1 and for A with A # 0 and
each distribution F' on D, there exists a unique function A(F, A) such that the F' arm
is optimal initially in the (F, \; A) bandit if and only if A < A(F, A) and the A arm
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is optimal initially +f and only if A > A(F, A).

Proof: If § < 1, we have § > 6 for every 6. Therefore a; > ax», so all the conditions
of Theorem 4 are met.

If 8 =1, Berry and Fristedt’s Theorem 5.5.3 applies directly, providing an exact
analog of Theorem 4 for regular discount sequences. Since then the discount sequence
A is regular in this case, the conditions of their theorem are satisfied.O

The existence of a dynamic allocation index should not be confused with the
existence of an index result like that of Gittins and Jones (1974) which demonstrates
that the optimal strategy is to select the arm with the highest index value. Indeed, it
has been shown that this is not in general true for non-exponential regular discount
sequences. I am not aware of any results, either positive or negative, for non-regular

discount sequences.

3.A.3 Incentive Compatible Dynamic Allocation Index Elic-
itation

Proposition 3 Suppose A(F, A), the dynamic allocation index for the arm F given
A, erists and is unique. Then ¢ = A(F, A) is the unique optimal value of £ for a

subject to report in the mechanism in Section 3.5.1.

Proof: This proof proceeds by showing that the mechanism of Section 3.3.1 induces
an (F,X; A) bandit. Then I show that reporting an ¢ # A(F, A) lowers expected
payoffs.

First, note that the mechanism of Section 3.3.1 provides for A to remain the same
for the rest of the horizon once it has been chosen. Therefore, an agent must maximize
the payoffs from choices of either F' or X in each future period. Given that F and
A have the information structures of arms, and the agent has a discount sequence
A, these elements form an (F, A; A) bandit. Therefore, we can use bandit theory,

including that in Section 4, to assess the mechanism.

By definition of A(F, A), we have VF(F, \; A) = VA(F, \; A) when A = A(F, A).
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Suppose the subject picks £ = A(F, A) + € for some ¢ > 0. Then suppose the
random realization of A € (A(F, A), A(F, A)+¢€) with positive probability, and suppose
A = A(F, A) + ¢/2 for specificity. Then, because £ > A, the subject must select arm
F in period t. However, because A > A(F, A), A is the unique optimal arm to play.
This means A(F, \; A) is negative, so £ = A(F, A) + € is not optimal. Uniqueness
of A(F, A) implies A(F, \; A) is strictly decreasing in A, so F' is not optimal for any
positive e. Therefore, any value of £ > A(F, A) is not optimal.

The argument for ¢ < A(F, A) follows immediately, so the unique optimal value
of £is A(F, A). Therefore, the mechanism induces subjects to truthfully reveal their

dynamic allocation index.O

3.B Instructions

You are about to participate in an experiment designed to provide insight into decision
processes. The amount of money you make will depend partly on decisions you make
and partly on chance. If you follow the instructions carefully and make good decisions,

you might earn a considerable amount of money. You will be paid in cash.

How You Make Money

You make money by choosing an urn from which to receive a payoff. There are one
billion hidden urns and one billion visible urns. Each urn has a number on its side.
Each urn contains an identical set of one billion balls. Each of these balls has a
number on it.

When you choose an urn, one ball will be randomly drawn from it. You will be
told the fotal of the number on the ball and the number on the urn, but not the

separate numbers. This total is your payoff, in francs.

Order of the Experiment

This experiment will proceed as a number of rounds. Each round will have exactly

ten periods. At the beginning of each round, the computer will randomly select one
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hidden urn from which you can receive payoffs. You will not know the number on the
hidden urn, but can learn about it by choosing the hidden urn. During a randomly
determined period, one of the visible urns will be selected from which you can also
receive payoffs. Unlike the hidden urn, you can see the number on the visible urn.

Even before a particular visible urn is selected, you must consider which of the
values that could be on the visible urn would lead you to choose it. Each period, you
will be asked for a cutoff value of the number on the visible urn, above which you
would choose the visible urn and below which you would choose the hidden urn. This
cutoff will be used to determine your choice in the randomly determined period in
which one of the visible urns is selected: if the number on the selected visible urn is
higher than your cutoff, the visible urn will automatically be chosen for you; if not,
the hidden urn will automatically be chosen for you.

In each period, you must trade off choosing the visible urn, whose number you

know, with learning more about the number on the hidden urn.

Urns

Other than being hidden, the set of one billion hidden urns is identical to the set of one
billion visible urns. The Urn Number Table you have been given shows the number of
urns with each possible number on it. The right-hand column shows the percentage of
each of the one billion urns with each possible number on it. For example, 10,203,858
urns, or 1.023% of all the urns, have numbers between 17 and 18 on them.

Numbers are distributed among urns according to a bell curve, or in statistics, a
normal distribution. The average of all the numbers is 1. The standard deviation is
10, meaning about 66% of the urns have numbers between 11 (1+10) and -9 (1-10),

and about 95% of the urns have numbers between 21 and -19.

Balls

Each urn contains an identical set of one billion balls. The Ball Number Table you
have been given shows the number of balls with each possible number on it. The

right-hand column shows the percentage of each of the one billion balls with each
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possible number on it. For example, 53,200,074 balls, or 5.32% of the balls in each
urn, have numbers between 4 and 5 on them.
Numbers are distributed among balls according to a bell curve, or in statistics,
a normal distribution. The average of all the numbers is 0. The standard deviation
is 5, meaning about 66% of the balls have values between 5 (0+5) and -5 (0-5), and
about 95% of the balls have values between 10 and -10.

Note that the balls in each urn have several important properties:

1. Because the average number on the balls is 0, the average payoff you get from

an urn is the number on the urn.

2. The distribution of balls is symmetric, which means the chance of getting one
which increases your payoff by a certain amount is the same as getting one
which lowers it a certain amount. For instance, the chance of an increase of 5

francs is the same as the chance of a decrease of 5 francs.
3. The chance of getting any particular ball is the same every period.

4. The chance of getting any particular ball is the same for each urn.

Visible Urn Cutoff

At the beginning of each period until one of the visible urns is selected, the computer
will ask you ”Would you choose the visible urn in this period if the number on it were
[Number|?” If you would, click the ”Yes” button, if not, click the ”No” button. You
will be asked a series of these questions, with a different [Number| each time, until
the cutoff point at which you would just prefer the visible urn has been narrowed
down to the nearest 0.05.

You should answer these questions carefully because, in the period in which a
visible urn is selected, your urn choice will be made for you based on your answers.
The computer assumes you will choose the visible urn for all numbers larger than

the cutoff, and the hidden urn otherwise. Therefore, it will automatically choose the
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visible urn if the number on it is larger than the cutoff, and the hidden urn if the

number on the visible urn is smaller than the cutoff.

Using the Computer

There are four panels on the computer screen. You may click in these panels with
your mouse, but please do not attempt to use any other applications, look at the
source code for this experiment or visit any other web sites during the experiment.

textbfThe History Panel
The long vertical panel on the left will contain your playing history. Please look at
that panel now. For each period, it will show your choice of urn, your payoff and the
visible urn cutoff; recent periods will be added to the top of the list, though earlier
periods will still be accessible by scrolling down.

The Information Panel
Please look at the top of the three panels on the right side. It provides you with
information on the current period, your total payoff and the number on the visible
urn, if it has been selected. It also shows a best guess at the number on the hidden
urn. The computer uses a law of probability, Bayes’ Rule, to integrate the information
in the urn number table and the ball number table with the payoffs you have received
from the hidden urn to formulate a best guess at the number on the hidden urn. This
number will change as you select the hidden urn and get more information about it.

The Urn Choice Panel
Please look at the middle of the three right-hand panels (which now has a “Begin”
button). This is where you indicate your choice of urn each period. To indicate your
choice of an urn, click once with the mouse in the circle in front of the name of the
urn you wish to choose; a black dot will appear within the white circle. Then click
the Submit button at the bottom of the panel one time with the mouse. Clicking the
Submit button causes the computer to select a ball and calculate your payoff for the
period.

The Instructions Panel

The bottom of the three right panels will contain these instructions. You may scroll
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through them and examine them at any point during the experiment.
Summary
1. The experimenter will announce the beginning of the period.

2. If one of the visible urns has not yet been selected:

(a) You will be asked a series of questions to determine the visible urn cutoff,
the smallest number on the visible urn for which you would choose it that

period.

(b) There is a 3/10 chance the visible urn will be selected that period. If it is,
the computer will automatically choose the visible urn for you if the actual
number on the selected visible urn is larger than the cutoff, and the hidden

urn if the actual number on the visible urn is smaller than the cutoff.

If no visible urn is selected, you must choose the hidden urn.

If a visible urn has been selected, you can choose either the visible urn or the

hidden urn.
3. A ball will be drawn from your chosen urn.

4. The number on the ball will be added to the number on the urn you chose to

determine your payoff.
5. The computer will notify you of your payoff and update your history.
6. Record your choice and payoff on your Record of Earnings Sheet.

7. Wait for the experimenter to announce the beginning of the next period.

Francs will be worth $0.08 (8 cents) each. Feel free to earn as much money as you

can. Are there questions?
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Strategy

You want to allocate your ten selections among the two urns to maximize your total
payofl. Since each urn has the same set of balls in it, if you knew the number on both
urns, you would select the one with the higher number in each period.

Since you do not know the number on the hidden urn, it is helpful to learn about
it from experience. If you choose the hidden urn several times, you get a pretty good
estimate of its number. Choosing the visible urn, on the other hand, only gets you a
payoff. You do not learn anything about the number on the hidden urn.

Given this, you should never select the visible urn if you think its number is lower
than that of the hidden urn. However, you may want to choose the hidden urn even if
the visible urn’s number is higher than your best guess at the number on the hidden
urn, especially if your beliefs about the hidden urn are based on only a couple of tries.
Your belief that the hidden urn does not pay well may be the result of a couple bad
balls, and more attempts may reveal it in fact pays better on average.

If you select the hidden urn a couple more times and it does not pay well, then
you can switch to the visible urn. But if it turns out to pay well, then you will have
found a way to get high payoffs which you would not have known about had you not
chosen the hidden urn those few periods. Of course, it is possible that the visible urn
will be enough better that the potential cost of trying the hidden urn is unlikely to
be repaid with higher payoffs in the future. Exactly how good the visible urn has to
be is your cutoff value, with the difference between the cutoff and your best guess
representing the value of the information you get from choosing the hidden urn. How
much you value the information depends on your beliefs about the number on the
hidden urn, how much your beliefs are likely to change with one more attempt and
the number of periods left to exploit what you have learned.

Thus, each period, you must trade off maximizing that period’s payoff (by choosing
the urn you currently believe to have the higher number) with refining your beliefs

about the number on the hidden urn, impacting your future decisions and payoffs.
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Chapter 4 Ambiguity Aversion in Bandits

Although agents’ Gittins indexes are too low, the previous chapter demonstrated that
they do not react to new information in the way predicted by hyperbolic discounting.
Even the majority of subjects whose information value ratios converged to one as
they acquired more information appeared to significantly increase their 3s after their
first observation.

A second behavioral model which may apply to bandits is ambiguity aversion.
Ambiguity aversion holds that uncertainty about the mean of the payoff distribution
leads to lower than optimal Gittins indexes and underexperimentation. Furthermore,
as information about the mean of the payoff distribution is acquired, ambiguity is
reduced and the observed Gittins index converges to optimality. Therefore, the ap-
parently changing Bs in Chapter 3 could in fact have been subjects reacting to the
changing level of ambiguity as they learned more about the uncertain arm.

This chapter considers whether ambiguity aversion plays a role in bandits. It de-
velops Kahn and Sarin’s (1988) model of ambiguity aversion into a model of behavior
in bandits with Bernoulli payoffs and beta priors. The formal model generates a
seemingly paradoxical prediction: agents’ Gittins indexes will be lower than optimal,
so it appears they do not value information enough, but they will pay more than
optimal for information about the value of an uncertain arm, so it appears they value

information too much. This prediction is tested directly in a laboratory experiment.

4.1 Ambiguity Aversion

The concept of ambiguity aversion was most directly expressed by Ellsberg (1961).
He posed a thought experiment where agents had to choose between an urn which
contains 30 red balls and 60 balls in some unknown combination of black and yellow.

Agents were asked to rank two pairs of bets: X gave a prize if a ball drawn from the
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urn was red, and Y if the ball drawn was black; X’ gave a prize if the ball is either
red or yellow, and Y’ gives a prize if the ball is either black or yellow.

Most people prefer X to Y and Y’ to X’. This is paradoxical because this pair
of preferences is inconsistent with any fixed belief about the mixture of black and
yellow balls in their urn: choosing X over Y implies a belief that there are fewer than
30 black balls, and therefore more than 30 yellow balls which implies X’ should be
preferred to Y.

The Ellsberg paradox demonstrates that people prefer known probability bets to
unknown probability bets, and provides an operationalization of ambiguity. However,
no consensus has emerged of a precise definition of ambiguity. Partly, this stems from
the variety of circumstances in which different notions of ambiguity seem suitable.
For instance, the credibility of a source of information, or the degree of disagreement
between multiple sources, such as expert witnesses, captures one notion of ambigu-
ity (Einhorn and Hogarth, 1985). Ambiguity may also represent uncertainty about
probability stemming from information which could be known, but is not (Frisch and
Baron, 1988). True subjectivists may reject the notion of ambiguity altogether, since
all subjective probability distributions are equally well known to ourselves (deFinetti,
1977).

The notion of ambiguity considered here is based on second order probabilities. A
second order probability is the distribution of possible distributions. In the Ellsberg
problem, the second order probability is the probability distribution over the number
of black balls in the urn. Second order probability is also commonly encountered as
statistical confidence. Consider, for instance, two coins, one which has been flipped
twice yielding one head and one tail and another which has been flipped 1000 times,
yielding 500 heads and 500 tails. Both coins have P(heads)=0.5, but the coin with
more flips has a lower-variance second order probability.

This approach is not without its drawbacks. There is some evidence that agents
prefer known second order probabilities to unknown second order probabilities (Yates
and Zukowski, 1976), suggesting third order probabilities may also affect ambiguity.
Also, if people have difficulty understanding second order probabilities, then higher
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order probabilities are probably more difficult to consider.

In bandits, however, the second order probability is a natural interpretation of
ambiguity because there is a unique, known second order probability, G. In some
applications, it may be difficult to argue that this probability is in fact known, but
for the abstract version of the problem that can be tested in the laboratory, a sensible

definition of ambiguity can be based on the variance of G.

Definition 3 An arm F is more ambiguous than an arm F' if the variance of G

is greater than the variance of G'.

Therefore, agents who are ambiguity averse do not like the variance in the distribution
from which the means of the payoff distributions are drawn. Although this may not
be intuitively distinct from variance in the subjective payoff distribution (especially
if, as a good economist, you reduce compound lotteries), ambiguity aversion and risk

aversion are only weakly correlated within individuals (Hogarth and Einhorn, 1990).

4.1.1 Models of Ambiguity Aversion

Models of ambiguity aversion fall into three categories, those which leverage unique
second order probabilities (and relax reduction of compound lotteries), those which
allow multiple probabilities, and those which rely on nonadditive probabilities. Non-
additive probability models (e.g., Schmeidler, 1989) do not require that the subjective
probabilities of an event in a set which will occur with objective probability one sum
to one. Therefore, if an outcome will be either A or B, then P(A) + P(B) does
not have to equal one. Therefore, ambiguity aversion is represented because, when
computing expected payoffs using the subjective probabilities, not all the probability
weight will be represented. The remaining probability, 1 — P(A) — P(B), is a measure
of faith in the evidence on which agents’ beliefs are based.

Another way to think about ambiguity is to consider independently the set of
possible payoff distributions without reference to a second order probability which
generates them. There are a variety of ways that agents may use these multiple

probabilities to decide among actions. Many of these models suggest agents use a
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minimax decision rule (e.g., Gilboa and Schmeidler, 1989). Ambiguity aversion arises
in these models as agents may have multiple probabilities and pessimistically evaluate
each lottery using the probability which generates the lowest expected utility.

Given that bandits provide a known, unique second order probability, and the
definition of ambiguity is based on a second order probability, the most natural set
of models to apply are those using second order probabilities. These models relax
the assumption of reduction of compound lotteries implied by subjective expected
utility theories by applying a nonlinear weighting function to transform the second
order probability distribution before computing an expectation. When the nonlinear
weighting rule moves decision weight from high values to low values, agents will be
ambiguity averse.

To formalize the notion of second order probabilities, let ) be a distribution with
a parameter 8, where Q(f) is the probability the agent will receive some prize X. Let
0 have a second order distribution G, and let § be the expected value of 6.

Ambiguity attitudes are represented by a decision weighting function w(X), which
gives the expected utility from winning the prize X, adjusting for the ambiguity
associated with selecting an ambiguous lottery. Using this, ambiguity aversion can

be formally defined.

Definition 4 An agent is ambiguity averse if her decision weighting function w(X)

has the property that E[w(X)|F] < E[X|F].

Formally, ambiguity aversion occurs when the value of a choice given its ambiguity is

less than its expected value. Typically, w(X) is decreasing in the variance of G.
Several forms for the function w(X) have been proposed. Segal (1987) proposes

some restrictions on the form of w(X) which lead to ambiguity aversion. This chapter

focuses on a specific function used by Kahn and Sarin (1988).

w(X) = u(z)f +uls) | " (0 — §)e-E0-DVe 4G (9)do (4.1)

=0

where 0 = \/ Jo—o(0 — 0)2dG(9)d0 is that standard deviation of the second order
probability distribution, and @ is the expected value of 6.
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If £ # 0, then (6—0) is the scale of the impact of the ambiguity. If £ > 0, the second
order probabilities are adjusted by underweighting the chance of higher than average
fs and overweighting the probabilities of lower than average 0s, leading to ambiguity
aversion. A negative £ does the opposite, representing ambiguity preference. Since
it captures attitudes toward ambiguity, £ is a characteristic of the individual, and
therefore a primitive of the model.

The decision weighting function can be interpreted as an expectation, where fu(z)
is the expected utility of the choice and the u(z) times the integral is the psychological
cost (or reward) associated with making an ambiguous choice. This interpretation
requires that the cost be incurred when the choice is made, so it is subtracted from

any outcome realized.

4.2 The Gittins Index of Ambiguity Averse Agents

Ambiguity aversion may play an intuitive role in bandit problems. Agents may dislike
trying alternatives about which they have less information because they do not know
the mean of the payoff distribution; the larger the variance of possible means, the more
they dislike unknown alternatives. This attitude could lead to underexperimentation,
as agents avoid ambiguous alternatives, and lower than optimal Gittins indexes.
This section formalizes this intuition and develops some theory on how ambiguity
aversion affects behavior in bandits. It proves that a Gittins index exists, and that a
two-armed bandit with one arm known is a stopping problem for the ambiguity averse
agent. These results form the foundation for extending Kahn and Sarin’s model of

ambiguity aversion to Bernoulli arms with beta priors.

4.2.1 Bayes Rule and Reduction of Compound Lotteries

Extending ambiguity aversion to bandit problems requires some interpretation be-
cause these models have, in the past, applied only to choices among compound lot-

teries. Models which leverage second order probabilities assume that, in computing



115
their expected payofls, agents do not use Bayes rule to reduce compound lotteries;
they use some other function which expresses their ambiguity aversion.

In bandits, however, ambiguity neutral agents apply Bayes rule not only to reduce
compound lotteries to compute their expected payoff, but also to update their priors
over the parameters of the payoff distribution and to compute the probabilities of
continuations. How to best extend models of choice among compound lotteries to
bandits depends on whether ambiguity aversion is the product of a fundamental
problem in applying Bayes rule, or whether it is some other phenomenon which is
well modeled by using some substitute for Bayes rule.

I am not aware of any evidence on either side of this question. However, for
purposes of this paper, I will assume that agents understand and use Bayes rule to
update their prior beliefs and to compute continuation probabilities. Therefore, it is
only the act of computing an expected value, considering payoffs themselves, in the
context of ambiguity which leads to non-Bayesian behavior.

To emphasize this distinction, I will use Efw(X)|F] to indicate an expected payoff
adjusted for ambiguity. Probabilities will be denoted P(X = 1|F), and are not
affected by the agents’ ambiguity attitudes. To indicate that a given arm is being
evaluated by an ambiguity averse agent, its payoff distribution will be written F,.
However, because probabilities are unaffected by ambiguity attitudes this does not
correspond to a different distribution. Further, because Bayes rule is applied properly
in updating prior beliefs, (X)F, reflects that F' has been updated to reflect X prior

to being evaluated under the ambiguity attitude represented in w(-).

4.2.2 Existence of a Dynamic Allocation Index

Before developing a specific model of ambiguity aversion in bandits, I prove that a

Gittins index exists for ambiguity averse agents.

Theorem 7 For each nonincreasing discount sequence A with A # 0 and each dis-
tribution F' on D, there exists o unique function A(F,, A) such that the F arm is

optimal initially in the (F,,, \; A) bandit if and only if A < A(F,, A) and the X arm is
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optimal nitially if and only if A > A(F,, A).

This proof follows the proof of existence of a Gittins index for hyperbolic discoun-
ters. First, it is necessary to prove some preliminary results about V(F,, A; A) and

A(F,, A A).

Lemma 3 For all F' and for all A, V(F,, \; A) is continuous and nondecreasing in

A

An increase in A can affect the value function in two ways: it increases the value
of arm A whenever it is chosen, and it expands the set of F' over which the optimal
strategy prescribes the A arm to include those of higher expected value. Given this,
an increase in A could not result in a reduction of the value function because an
increase in the value function never makes it more likely F' will be chosen, and it
strictly increases the value of any choice of the A arm.

Proof: Suppose A* > A and ¢ is optimal in the (F,, \; A) bandit. Suppose o is
followed in the (F,,, A*; A) bandit. The only change compared with (F,, A; A) is when
arm 2 is selected and A\* is received instead of .

Therefore,

V(F,, M A) = W(F, X A;0) (4.2)
< W(F, X5 4;0) =V(F,, X5 A) (4.3)

Therefore, V(F,, A; A) is nondecreasing in .
For continuity, let o* be optimal for the (F,, A\*; A). Then the only difference
between W (F,, A; A;0*) and W (F,,, \*; A; 0*) is the result of arm 2 when it is chosen.

V(F,A5A) = W(F, A\ A) (4.4)
W (X 4;07) + (A" = A (4.5)

IA

< V(F,, M A) + (A = XNy (4.6)
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Since Equation 4.3 proved V (F,, A\; A) < V(F,, A*; A), this implies that this rela-
tionship must approach equality as A\* — A. Therefore, V' (-, A\; A) is continuous in A.
O

In order to show a dynamic allocation index exists, I also need a result showing
how the size of the error made by choosing the the wrong arm varies with A. Define
the function A(F,, A; A) as the difference in the value functions from choosing the
F arm first and then continuing optimally and choosing the A arm first and then

continuing optimally;
A(F,, M A) = VE(F,, X A) — VA(E,, \; A). (4.7)

The absolute value of this quantity can be thought of as the cost of making an error
by selecting the wrong arm initially. This quantity turns out to be very important,

as the following lemma does most of the work in proving Theorem 7.

Lemma 4 For any F on D, A(F,, \; A) is decreasing in A when A is nonincreasing

with A # 0.

Proof: Fix \* > ).

This proof proceeds in three parts. Part (i) derives an expression for A(F,,, \*; A)—
A(F,,\; A). Part (ii) performs a finite induction on the horizon to establish that
A(F,, X A) — A(F,, \; A) is negative. Part (iii) extends the result of Part (ii) to
infinite horizons.

(i) The value of choosing the F' arm first and then proceeding optimally is given by
VF (B2 A) = on Blw(X) [ F] + BIV ((X)F,, % AD)]. (4.8)
Similarly, the value of selecting the A and then continuing optimally is given by

VME,, A A) = ond+ V(F,, A AD). (4.9)
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Now define two more functions, which will prove to be of considerable algebraic
convenience. AT(F,, A\ A) = max[0, A(F,, A; A)] and A~ (F,,, A\; A) = max[0, —A(F,, \; A)]

so that

VE(F, A A) =V (F, N A) — A (F,, A A) (4.10)
VA(F, A A) = V(Fy, X A) = AY(F,, M A). (4.11)

Mnemonically, A~ is nonzero when A(F,, A; A) is negative, or when A is the optimal
arm.

Using these definitions, substitute for V((X)F,, A; A) and V(F,, \; A) in Equa-
tions 4.8 and 4.9 above. This gives

VI(Fy, M A) = o Blw(X)|F]+ E[VN(X)F,, X AD) + AT((X)F,, X; A%312)
VMELAA) = asd+VT(F, A AD) + A7 (F,, A AD). (4.13)

These expressions can then be used to compute A(F,,, \; A). The first two terms in
Equation 4.12 represent the value of selecting arm F' in the first period, arm X in the
second and then continuing optimally. Similarly, the first two terms in Equation 3.14
represent the value of selecting arm A in the first period, arm F' in the second and
then continuing optimally. Given this interpretation, subtracting the first two terms
in Equation 4.13 from those in Equation 4.12 gives (o — ao)[E[w(X)|F] — A]. This

gives

A(F,, 3 A) = (01 — a)[Blw(X)|F] = A + E[AT((X)F,, A AV)] — A7 (F,, A AD).
(4.14)
Using this expression to compute A(F,, \*; A) — A(F,, \; A) gives

A(Fy, X5 A) — A(F,, 0 A) = (0 — ag)[A — M) +
BIAT((X)Fu, X5 AY) = AT((X)F,, X AW)] +
A (Fy, M ADY — A™(F,, A% AD), (4.15)
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(ii) Proving the lemma requires that the difference in Equation 4.15 be negative. This
section performs induction on a finite horizon to demonstrate that this is true.
Let A, be a nonincreasing discount sequence with finite horizon n, so elements
after the n'* are zero.
First, suppose n = 1. Then, for all Ay, A(F,,A\*; A1) — A(F,, \; A1) is negative

implies

Elw(X)|F] = X* < Blw(X)|F] - A
A > A (4.16)

which is true by assumption.

Now suppose that the horizon n > 1 and A(F,,\*;4,) < A(F,, \; A,) for any
nonincreasing A,,. Now I will use this induction hypothesis to show that A(F,,, \*; A,41) <
A(F,, A Apy).

Equation 4.15 can be rewritten with the truncated discount sequence

A(Fwa )‘*; An+1) - A(Fwa )‘; An+l) - (al - a?)[)‘ - /\*] +
BIAY(X)Fu, A5 AR — AT ((X) Py X AR D] +
A7 (Fy, X AL — A7(F,, A5 ALL). (4.17)

The first term on the right-hand side of Equation 4.17 is nonpositive because
A* > X by assumption and «; > ws by hypothesis.
The remaining terms are negative for similar reasons. Consider the second term.

- 1 - . . -
Since A; 3_1 is nonincreasing and has horizon n, we have

BIAT((X)Fo, X5 AYL) — AT ((X) Foy N ADL)]
= E[max[0, A((X)E,, \*; 4,)] — max[0, A((X)E,, A; 4,)]]- (4.18)

The induction hypothesis gives that A(F,, \*; A,) < A(F,, \; A,) for all F, in par-

ticular ¢ F'. Therefore, the second term in Equation 4.18 is always larger than the
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first, implying that the second term in Equation 4.17 is negative.

. . . 1 . . . .
Consider the third term. Since Agll is nonincreasing and has horizon n, we have

AT (Fay s A) = A7 (B, X5 ARL)
= max|[0, —A(F,, A\; A,)] — max[0, —A(F,, \"; A,)]. (4.19)

The induction hypothesis gives that A(F,, A*; A,) < A(F,, \; A,). Therefore, the
second term in Equation 4.19 is always larger than the first, implying that the third
term in Equation 4.17 is negative.

Since the first term in Equation 4.17 is nonpositive and the other two are strictly
negative, the difference Equation 4.15 is negative for every finite horizon. Now we let
the horizon go to infinity to show it is negative for infinite horizons.

(iii) Suppose n = oo. Let Ar denote the truncation of Ay, at finite T, so Ar coincides
with A up to time 7 and has zeros afterwards. Letting 7" — oo in the result from
Part (ii) gives

A(F,, N5 Ax) < A(F,, A As)- (4.20)

Since A = Ay, we have A(F,,, \*; A) < A(F,, A; A) for all horizons. This is sufficient
to prove the lemma. O

Given this result, the existence of a dynamic allocation index is easy to prove.
Proof of Theorem 7 This proof begins by defining A(F,, A) = inf{\ € D : the A
arm is optimal for the (F,, A\; A) bandit }. Then I show that this definition implies
that F' is uniquely optimal if A < A(F,,, A). Then I use Lemma 4 to show that A is
uniquely optimal if A > A(F,,, A). Indifference at A = A(F,,, A) then follows from the
continuity of V.

For A < A(F,, A), we have

VE(E,, A A) > VA, A A) (4.21)

from the definition of A(F,,, A). Because A(F,, A) is the infimum value of A for which

A is optimal, it must be that F is uniquely optimal.
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The case where A > A(F,, A) is a little harder because there may be values of
X above A(F,, A) where F is optimal. However, the fact that A(F,, A; A) is strictly

decreasing in A, as shown in Lemma 4, proves that this cannot be. Therefore,
VE(F,, X A) < VMF,, A A) (4.22)

for all A > A(F,,, A)and X is uniquely optimal.

Finally, if A = A(F,, A), we have that neither F nor XA is uniquely optimal. Ex-
tending the continuity of V(F,, \; A) to VM(F,, A\; A) and VI (F,, \; A), the previous
cases sandwich possible values of VA(F,, X\; A) and V¥ (F,, X; A) to give

VE(E, A(F,, A); A) = VM(F,, A(F,, A); A), (4.23)

which is equivalent to both arms being optimal initially for the (F,, A(F,, A); A)

bandit.O

4.2.3 The Stopping Property

The index will be much easier to compute and discuss theoretically if ambiguity averse

agents’ strategies satisfy the stopping property.

Theorem 8 If A is nonincreasing, then for every (F,, \; A) bandit, there is an opti-

mal strategy for which every selection of A is followed by another selection of A.
First, I need a result which indicates when A will never be optimal.
Lemma 5 If Elw(X)|F]| > A, then the F' arm is optimal for any A.

Proof: Suppose that o is an optimal strategy for the (F,, A; AM) bandit. Let o* be
a strategy which indicates the F' arm initially and then follows o, ignoring the initial

realization from F. Then

W(E, X\ A;0%) = aqBlw(X)|F]+V(F,,\AD) (4.24)
> A+ V(F, N\ AD) = W(F,, \; A; 09) (4.25)
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where oy is a strategy which chooses A initially and then proceeds optimally. Since
there is a strategy which starts with the F' arm and is least as good as the optimal
strategy which starts with the A arm, the F' arm is optimal. O
Proof of Theorem & Let A, denote a nonincreasing discount sequence with horizon
n. The proof is by induction on the horizon.

If n =1, then the proposition is trivially true since there is no further selection of
either arm.

Suppose n > 2 and for every (F,, A\; A,—1) bandit, there is an optimal strategy for
which every selection of A is followed by another selection of A\. Then Aﬁll) € A,_1.

Assume it is optimal to select F' initially. Then the inductive hypothesis shows
that there exists a continuation which never switches back to F' after its first selection
of A.

On the other hand, if it is optimal to select A initially, the inductive hypothesis
applies trivially unless there is an optimal strategy ¢* which indicates a selection of
A, then selects F' at stages 2... N, and then A thereafter. This might be the case if
the agent were indifferent at time 1 and returned to indifference after several selection
of F. I will now show such a strategy cannot be better than a strategy which never
switches back to F.

Since the value of X is known, we can assume that o* does not depend on the
initial observation from A. So for each m, {N > m} is measurable with respect to
the o-field generated on the outcomes (Xo, ..., X,,).

Lemma 5 implies that if the sequence of outcomes through time m contains s

successes and f = m — s — 1 failures while following ¢*, then
N =m= E[X|oc°¢'F,] < ) (4.26)

This condition says that if A is going to be selected in the current period, then the
sequence of successes and failures must be such that it is no longer optimal to select

F. This bound comes from Lemma 5.
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Now I will show that there is a strategy o which starts with F' and is at least
as good as o*. Let o select F initially and then imitate o* by selecting the arm

prescribed by ¢* one period earlier.

N [ore]
W(F,, A\ A;0%) = Epe |on A+ ) w(Xp)oam + A Y anlF (4.27)
m=2 m=N-+1
which must be at least y; A since o* is optimal. Therefore,
o0 N
Z Eg [(w(Xm) = NI{N > m}Flay, = E, [Z (W(Xm) — ANam|F| >0 (4.28)
m=2 m=2
The value under o is given by
N ¢S]
W(F,, \;A;0) = E, Z WXm)tm1 + A DY | F (4.29)
m=2 m=N+1

The stopping strategy o is better if the difference in these worths is positive.

W(E,, \;A;0) = W(F,, A\ A;0%) = io: Ep [(w(Xm) — NI{N > m}|F] (am-1 — Om)

" (4.30)

The term (ou,—1 — o) is weakly positive because A,, is nonincreasing. The ex-
pectation weakly is positive because E[w(X,,)|F] < A by Lemma 5.

Therefore, there is a strategy which satisfies the stopping property and which is

at least as good as the optimal strategy.O

4.3 Bandits with Kahn-Sarin Ambiguity Averse
Agents

This section establishes properties of the behavior of ambiguity averse agents in ban-
dit problems. The analysis here is restricted to the case of a Bernoulli arm whose

parameter has a known beta(a, £) distribution.
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The primary concern of this section is that adding the dynamic element of prob-
ability updating to the ambiguous choice problem does not affect the way the model
represents ambiguity aversion. It is not obvious from Kahn and Sarin’s paper that,
when an agent acquires more information about an ambiguous alternative, £ > 0 will
still lead to an w(-) which is ambiguity averse. As it turns out, we do not need to be
concerned that we will observe some sequence of successes and failures for which the

Kahn-Sarin transformation will result in behavior other than ambiguity aversion.

Theorem 9 Let F be the distribution of the parameter of a Bernoulli arm with a
beta(a, B) prior. If & is positive, then the Kahn-Sarin agent will be ambiguity averse

for all informative priors (o > 0 and 8 > 0).

The proof of this theorem reduces the problem to a difference between two Kum-
mer’s functions, or confluent hypergeometric functions of the first kind. (Spanier and

Oldham, 1987; Abramowitz and Stegun, 1972) This function is

1Fi(a, b, 2) = f@f—(j))f—(;) /01 e’ %711 — £)P L, (4.31)

Kummer’s function has many uses in theoretical physics, and it provides one class of
solutions to Kummer’s confluent hypergeometric differential equation, zy"+(b—z)y' —
ay = 0 with initial conditions 1 F(a,b,0) = 1 and £ 1Fi(a,d,z)|,—0 = a/b. There is
no obvious relationship between its physical interpretation and its appearance in a
model of ambiguity aversion; it is used here because existing results about Kummer’s
function simplify proof of Theorem 9.

Before proving Theorem 9, it is necessary to prove a property of Kummer’s func-

tion.

Lemma 6 Kummer’s confluent hypergeometric function has the property that | Fy (a+

1,b+1,2) — 1Fi(a,b,2) is strictly negative for allb > a > 0 and z < 0.

Proof: Kummer’s first theorem allows z < 0 to be transformed into z > 0. Then
Kummer’s function can be related to an Euler beta function, which provides a closed-

form solution to the definite integral in ;Fi(-,-,z). The closed-form solution can
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be manipulated to demonstrate that each term in the summation in the Euler beta
function is strictly negative.
To keep track of the sign of z, let z_ denote z < 0, and 2z, = —z_ denote z > 0.
Kummer’s first theorem (Slater, 1960, p. 6) holds that {Fi(a,b,2) = e* 1Fi(b —
a,b, —z) for all z. Therefore,

1Fi(a,b,z2) = € 1Fi(b—a,b,z;) (4.32)

1F1(a+1,b+1,z_) = e 1F1(b——a,b+1,z+). (433)

The difference then reduces to

T'(b)e*- [ b

1 1
tzygb—a—171 _ N g1 tzy tb—a—1 1— a—1 . 4.34
S —aT /e #=01(1 — f)odt /Oe f#amL(1 — $)o1gy (4.34)

aJo

The exponential term in the integral can be broken into its representation as an

infinite sum (Slater, 1960, p. 34), yielding

(b—aI‘(a { / Z+tb a=l4n(] _ p)agy

/ z+tb a— 1+n(1 _ t)a—ldt:l _ (4.35)

The terms which depend on 2, can be moved out of the integral, and the difference
can be written

I‘(bFEa / ( (1-1%) )t”‘“‘”"(l—t)““ldt. (4.36)

The integral is a (difference of) Euler beta functions, and its solution can therefore
be represented in terms of gamma functions. The integral equals
b—a)Lb+1+n)(b—a+n)—bI(b+n)l'(b—a+1+n)
= I'(a)
al'(b+n)I'(b+1+n)

L(a)T(b—a-+n)
a(b+n)C(b+n) [(b—a)(b+n) —b(b—a+n) (4.38)

(4.37)
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I'(a)T'(b—a+n)

= — . 4.39
b+ )T+ n) (4.39)

The entire difference can be represented as
L) X 22 nl(a)l'(b—a+n) (4.40)

" T(b—a)l(a) 2.

n=0

n! (b+n)L(b+n)

Since b > 0, a > 0, b—a > 0 and n > 0, every gamma function in this expression
is strictly positive. Similarly, z, > 0, so every power of z, is strictly positive also.
Therefore, every term in the infinite sum is strictly positive. Additionally, e*~ > 0 is
strictly positive. Therefore, the entire difference is negative for any b > a > 0. O

The proof that z > 0 leads to a positive difference (and ultimately ambiguity-
seeking behavior) follows along similar lines. However, the application of Kummer’s
First Theorem is not necessary because all powers of z are positive, without needing
to change its sign.

I can now prove the main result.
Proof of Theorem 9: This proof manipulates the Kahn-Sarin model of ambiguity
aversion with a beta distribution (the conjugate prior for the Bernoulli distribution).
The ambiguity term in the decision weight expression is shown to be proportional
to the difference between two confluent hypergeometric functions of the first kind.
Lemma 6 proves this difference is strictly negative, implying ambiguity aversion.

The Kahn-Sarin model holds that agents make choices based on a decision weight

equal to
7. (o ay—co-ac L@+ B) o -
Blo(@)lo, 8] = 0+ [ (6~ 0)e 000 2T 20 gemt(1 — g)p-tap 4.41
(w(a)l,gl =0+ [ (6-0) o =0 (4.41)
where § = ﬁb_’ is the expected value of z and o = (—cﬁ%—m is the standard

deviation of z.

Ambiguity aversion holds when Elw(z)|a, 8] < Elz|a, 8]. This is equivalent to
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showing that the integral is strictly negative. Evaluating it gives

1 9 a
NG [D(a+ 0B 1 Fi(a+ 1,a+ B+1,-¢/0)

— D(@)T(8)0e”" \Fi(a, 0 + B, —€/0)]
e/7 [ T(a+1)
B

Fla+l,a+8+1,-¢/0)

" I(a) [T+ B8+1)
6T () s
- m 1F1(05aa+ B, ¢/ )] . (4-42)

Applying the fact that I'(k + 1) = £['(k) on the numerator and denominator of the

left-hand term gives

Ple+1) _ ol(e) _, T(a)
Math+D) @ifTe+h  Tlatd (4.43)
The integral therefore evaluates to
fetl/o
T+t ) [1Fi(a+1l,a+8+1,-¢/o)— 1Fi(a,a+ 8,-£/0)]. (4.44)

Since the coeflicient is positive under the assumptions of the theorem, the sign of the
integral is determined by the sign of the difference between the Kummer’s functions.
Lemma 6 proves that this difference is strictly negative. Therefore, the value of the

integral is strictly negative, and Ew(z)|a, 8] < E[z|«, 8], which proves the claim. O

Corrolary 1 Kahn-Sarin ambiguity aversion is preserved under all possible sequences

of successes and failures.

Bayes rule prescribes that the posterior of a beta distribution with Bernoulli obser-
vations is given by beta(a+ s, 5+ f) after observing s successes and f failures. Since
s>0and f>0,d =a+s>0and 8 =8+ f > 0. Therefore, Theorem 9 applies
with beta(a/, 5). O
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4.3.1 The Gittins Index of an Ambiguity Averse Agent

For ambiguity aversion to be a descriptive model of behavior, it should predict the

lower-than-optimal Gittins indexes observed.

Theorem 10 Suppose A is regular with oy > 0 and F,, is the ambiguity-aversion

adjusted version of F'. Then A(F, A) > A(F,, A).

Before proving this directly, we need a result about the impact of ambiguity

aversion on the value function.

Lemma 7 Suppose F' is a Bernoulli arm and the agent is ambiguity averse. Then
V(F, N A) > V(F, A A) (4.45)

for all A.

Proof: This proof proceeds by induction on the horizon.

Suppose the horizon of A is zero. Then
V(F, A Ag) = V(F,, A 4p) =0 (4.46)

because neither arm is ever selected and no reward is received.

For any n > 1, assume that V(F,\; A,) > V(F,, A\; A,) for any F satisfying the
conditions of the proposition and for any A with horizon less than n.

Suppose the horizon of A is n, and 7 is an optimal strategy in the (F,,, \; A,)
bandit. Let 7/ have the same first selection as 7 and then proceed optimally in the
(F, \; Ap,) bandit.

It is sufficient to show that

W(F, A Aps ') > V(E,, A Ay). (4.47)
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Without loss of generality, assume that the first move under both 7 and 7’ is arm 1.

Then

W(F, A7) = o E[X|F]+ P(X =1|F)V(oF, \; AD)
+ P(X = 0|F)V(gF, \; AD)
V(F, N Ay) = anEw(X)|F]+ P(X = 1|F)V(cF,, »; AD)
+ P(X = 0|F)V(¢F,, \; AD). (4.48)

Note that the probabilities E[X|F] in the second equation are not transformed by
the ambiguity function; the agent understands the probabilities, but does not like the

uncertainty they imply for her payoffs.

W(F, X Ap; ') — V(F, N Ay)
= q; [E[X|F] - Ew(X)|F,]
+P(X = 1F) [V(oF, % AD) = V(o F, A AD)]
+ P(X = 0[F) [V($F, X AD) = V(6 FL, X AD)]

The first term is nonnegative because w() represents ambiguity aversion.

The second term is nonnegative because the induction hypothesis applies to any
F', in particular o F. The third term is nonnegative because the induction hypothesis
applies to any F', in particular ¢F'.

Therefore, the difference is nonnegative, so the claim is proven. O
Proof of Theorem 10: This proof is by contradiction.

Suppose A(F, A) < A(F,, A). Then arm 1 is optimal initially in the (F, A(F, A); A)
and (F,, A(F, A); A) bandits. Then

V(F,A(F, A); A) — V(F,, A(F, A); A)
= o [E[X|F] - Elw(X)[F]]
+ P(X = 1|F) [V(oF, A(F, A); AD) = V(g F,, A(F, A); AD)]
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+ P(X = 0[F) [V($F, A(F, A); AD) = V(¢F.,,, A(F, A); AD)] . (4.49)

The first term is nonnegative by the definition of ambiguity aversion. The second and
third terms are each positive by the proposition above.
However, we also know that the strategy using arm 2 at every stage is optimal for

the (F,A(F,A); A) bandit. Therefore,

V(F,A(F, A); A) — V(Fy, AM(F, A); A) = mA(F, A) — V(F,, A(F, A); A)(4.50)

< 0.

The inequality follows because A(F,A) < A(F,, A) implies that arm 2 cannot be
the optimal choice in the first period of the (F,, A(F, A); A) bandit. Therefore, the
value of the (F,, A(F, A); A) bandit must be strictly greater than vy, A(F, A) (arrived
at through some strategy which selects arm 1 initially). However, Equation 4.50
being negative contradicts Equation 4.49 being positive. Therefore, it cannot be that

A(F, A) < A(F,, A). O

4.3.2 Willingness to Pay for Information About the True Av-

erage Payoff of an Ambiguous Arm

Theorem 11 If A is regular, an ambiguity averse agent will pay more to learn the

value of the parameter 6 than an optimal agent.

Proof: This proof calculates the value of learning the value of § and demonstrates
that it is increasing in A. The result follows from Theorem 10 which demonstrates
that A(F, A) > A(F,, A).
Because A is regular, the value of playing an uncertain bandit is given by v, A(F, A).
If agents knew the value of §, they would select the arm yielding A(F, A) if 0 <
A(F, A), and the arm yielding # otherwise. This yields a payoff of

" [ /O YD S (P AVaF(0)a0 + /A I(FA) HdF(H)dH} . (4.51)
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The value of knowing 8, or the amount the agent would be willing to pay to learn 6,

is given by

A<F’A)AF 0o+ [ 0dF(6)de AF A
| [ e yar o ) oaroas) - nacra)
A(F,A) 1
= F A)dF(0)do 0dF (9)dd
[ maroyw [ sare)a)
A(F’A)AFAdFade L A(F A)F(6)d0
o [ M aare)s [ A Aar o))

- /A tF’A)(e — A(F, A))dF(6)do.

This expression is positive since (§ — A(F,A)) > 0 at every point in the range of
integration. It is zero only if A(F, A) = 1.
It remains to show that this value is decreasing in A. Now suppose A* > A. This
will show that changing from A* to A results in an increase in the value of learning 6.
At X\*, the value of learning 6 is
1
" / (0 — X*)dF(6)do. (4.52)
A*
A smaller index has two effects on this quantity. First, it extends the range of the

integral to the range of A < 8 < A*. Second, it increases the integrand by increasing

the difference. The value of learning # under XA can be written
A 1
T [/}\ (60— N)dF(6)do + [\ [(8— X))+ (A= N)]dF(0)df| . (4.53)

Both of the new terms are positive, indicating that the value is decreasing in .
Since A(F, A) > A(F,, A), the ambiguity averse agent will be willing to pay more
for information about the value of . O
The result of this theorem provides a surprising contrast to Theorem 10. Because
agents are willing to pay more than optimal to learn about the value of 6, it appears
that they overvalue information. On the other hand, because their Gittins index is

lower than optimal, ambiguity averse agents appear to undervalue information.
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This paradox does not arise in the other models studied. Ambiguity averse agents
value the counterfactual universe where they know 6 without ambiguity aversion;
agents who are hyperbolic discounters, or who cannot properly solve the dynamic
programming problem, will bring these suboptimalities to the counterfactual calcula-
tion. Therefore, this surprising prediction of ambiguity aversion is excellent grounds
for testing the model.

A slightly different result is needed to test this prediction in an experiment. Be-
cause I do not know the agents Gittins indexes, I cannot set the value of the second
arm at the value that makes the agent indifferent. However, Theorem 11 can be

generalized.

Theorem 12 An ambiguity averse agent will pay more than an ambiguity neutral
agent for information about the true value of 0 in the (F,A; A) for any A. If A <

A(F, A), the ambiguity averse agent will pay strictly more.

Proof: If the agent knows 6, then her expected payoff will be ; max[#, A] because the
agent will simply select whichever arm gives the higher payoff.

If the agent does not know 6, she computes a Gittins index A(F, A) (where F is
either F' or F,,). Then she expects to receive V(F,\; A) if A < A(F, A) and v\ if
A>A(F,A).

Given that max[f, A\] can be written as in Equation 4.51, the agents should be
willing to pay

" [ /0 * AP (0)d0 + /A ' 9dF(6)do — /\} (4.54)

if A > A(-, A), and
" [ /0 " AP (8)d0 + /A 1 GdF(B)dH} CV(F N A) (4.55)

if A < A(, A).
There are three cases to consider.
(i) If A < A(F,,A) < A(F, A), then both an ambiguity averse and an ambiguity

neutral agent will select F' in the first period, and Equation 4.55 applies. Lemma
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7 shows V(F,, \; A) < V(F, \; A), so Equation 4.55 will be larger for the ambiguity
averse agent.

(ii) If A(F,,A) < A(F, A) < ), then it is optimal for both agents to select A in
the first period (and indefinitely), so they will both determine the value of learning
@ using Equation 4.54. This value does not depend on attitude toward ambiguity, so
both agents will pay the same amount.

(iii) If A(F,,A) < X < A(F, A), then the ambiguity averse agent will select A in
the first period and determine the value of learning 6 using Equation 4.54, but the
ambiguity neutral agent will select F' in the first period and determine the value of
learning ¢ using Equation 4.55.

For any F' and any value of A, Equation 4.54 is larger than Equation 4.55. Sub-
tracting Equation 4.55 from Equation 4.54 yields

V(V, X\ A) =y A > 0. (4.56)

Positivity follows because the fact that an agent is using Equation 4.55 implies F is
the optimal first period choice, and for this to be the case, it must allow the agent to
do better than 1, A. Therefore, Equation 4.54 is larger than Equation 4.55, and the
ambiguity averse agent will pay more to learn . O

Note that the ambiguity averse agent will pay strictly more in cases (i) and (iii),

and exactly the same in case (ii).

4.4 Alternative Explanations

In addition to generating surprising and testable prediction for ambiguity aversion,
the idea of willingness to pay provides a useful testbed for other theories which may
explain initial underexperimentation. The hyperbolic discounting model considered in
Chapter 3 makes a testable prediction about willingness to pay presented in Section
4.5.6. This section develops the framework within which two other models, risk

aversion and quantal response strategies, also make predictions in the willingness to
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pay treatment.

4.4.1 Risk Aversion

Previous sections have controlled for the effect of payoff variance by holding constant
the mean-conditional distribution of payoffs, (), across arms. It is likely, however, that
risk averse agents are responsive to their subjective payoff distributions, which are
affected by both the prior and payoff distributions. The willingness to pay treatment
allows a direct test of aversion to the variance of F'.

A risk averse agent who does not discount and who is ambiguity neutral will treat
the finite horizon bandit as a T-stage compound lottery. Using Bayes rule, this lottery
can be reduced to a single stage lottery over the possible states of final wealth. For
sufficiently unfavorable priors over the mean of the unknown arm, the known arm is

prescribed in each period. The expected utility of this strategy is given by

ST vy v+ s) (4.57)

§=0 S

where wy is the initial wealth level.
However, an agent who knows the value of both arms will select the arm with the

higher mean in each period.

G(/\)i T (= AU (o + 5) + /:i T 001 = )™ + 5)dG(0)d0
(4.58)

Equation 4.58 is larger than Equation 4.57 because it is a convex combination of
Equation 4.57 and something larger. Therefore, the risk averse agent should be
willing to pay some amount to learn the true mean of the unknown arm. The agent’s

maximum willingness to pay is wg — w, where w satisfies the following condition:

3 T A (1= AU (wo + 5)

$=0 S
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> T [G(A)Asa AT 4 /A (1 — H)T‘SdG(Q)dH} Ulw + 5).(4.59)

If the utility function is linear wy — w is exactly the optimal, risk neutral value.

It is not obvious how the willingness to pay of the risk averse agent will differ from
that of the risk neutral agent. In fact, this questions is easiest to address numerically.
Section 4.5.6 demonstrates that, under certain circumstances, risk aversion predicts

lower than optimal willingness to pay.

4.4.2 Quantal Response

Another model which is intuitively consistent with previous data is McKelvey and
Palfrey’s (1995, 1998) idea of quantal response. They suggest that players in games
may make errors in strategy selection whose likelihoods are proportional to the differ-
ences in payoffs arising from each strategy. Furthermore, if a player anticipates these
errors on the part of other players in the game, optimal strategies may change. This
model seems to explain deviations from extreme point-predictions in the laboratory,
like passing in the centipede game and making a large offer in the ultimatum game.

Quantal response may explain the lower than optimal initial Gittins indexes, as
well as the small amount of overexperimentation observed in later periods. Initially,
Gittins indexes might be smaller than optimal because probabilistic errors will prevent
agents from taking full advantage of the information they acquire: they will be able to
act optimally most of the time, but sometimes they will select the wrong arm, even if
they have acquired the correct information to that point. Conversely, Gittins indexes

”

may be small because agents will sometimes experiment, “by mistake,” reducing the
need to do so purposefully. In later periods, agents will select arms optimal agents
would not because of a probabilistic error. Therefore, quantal response agents will
appear to experiment too much.

Adapting quantal response to bandit problems requires a natural extension of

the agent form of the extensive form game model outlined in McKelvey and Palfrey

(1998). In that model, the agent at each node assumes that agents at all other nodes
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are going to make errors according to a particular error function. For bandit problems,
these agents are the agent herself at every possible future state. Following McKelvey
and Palfrey, this analysis focuses on a logistic error function, which means that the

probability of selecting the known arm with value A in a state defined by beliefs F' is

— A = exp[nA]
Pr(choice = A\ F;A) = oI T exp[ig (F, A) (4.60)

where A, (F, A) is the optimal index function for a quantal response agent. The
parameter 7 is the precision, or error rate, of the agents. An 7 of zero corresponds to
random choices, and an 7 of infinity corresponds to error-free choices.

Introducing these errors affects strategy through the values. Since arm choice is
determined probabilistically based on the index of each arm, a strategy is an index
for each state, rather than an arm selection. For a fixed 7, these can be computed
numerically through backward induction, first computing the index for each state in
the T period, then for each state in the (T — 1)** period, etc. Because agents can
switch from the unknown arm to the known arm and back again, there are three
state variables: the number of successes observed on the unknown arm, the number
of failures observed on the unknown arm, and the number of times the known arm has
been selected. The index for an unknown arm is the expected value of a known arm
which makes an agent indifferent between choosing the known and unknown arms in
the current state.

The predictions arising from a numerical analysis of quantal response strategies

are discussed in Section 4.5.6.

4.5 Experimental Design

Testing the prediction that agents with suboptimal indexes will pay more than optimal
for initial information about an ambiguous arm requires two treatments: one to
determine a Gittins index, and the second to determine the subject’s willingness to

pay for information about the value of an ambiguous arm.
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Prior Prior Prior Gittins Optimal

(a, 3) Mean Std Periods Index  WTP
A (1,1 0.50  0.29 4 0.62 0.25
B (2.5,2.5) 050 0.20 4 0.56 0.21
C (1.1,3.9) 022 017 8 0.31 0.06
D (3.9,1.1) 0.78 0.17 5 0.83 0.04
E  (23) 040 020 5 047 021
F (3,2) 0.60 0.20 8 0.69 0.24

Table 4.1: Properties of the six unknown arms used in the experiment

In each treatment, subjects will play six bandits in a random order. Each bandit
will have a known, fixed horizon and no induced discounting. Each bandit will have
two arms, one with an unknown (ambiguous) average payoff, and one with a known

(unambiguous) average payoff.

4.5.1 Ambiguous Arms

In each treatment, subjects may choose to receive payoffs from a Bernoulli arm with
an unknown (ambiguous) probability of paying off. The probability of payoff (the
parameter of the Bernoulli distribution) is distributed beta(c, £), where @ and 3 are
known parameters. This probability is represented to subjects in terms of balls and
urns. They are told that they are choosing between urns (arms) which contain 100
balls in some combination of red and white. When they choose an urn, one ball is
drawn at random from the urn, and they earn $1 if the ball is red and nothing if
it is white. The different priors are related using tables which give the chance that
there are exactly (PDF) and less than (CDF) each possible number of red balls in
the unknown urn.

In separate treatments, subjects play each of six bandits with the characteristics
represented in Table 4.1. These bandits were chosen to allow direct testing for three
possible effects: a mean effect, a variance effect and a length effect. Bandits A and
B have the same mean and same length but different variances, so their data can be

compared to discover the impact of a change in variance. Bandits C and D (and E
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and F) have the same variance, but different means and different numbers of periods.
A mean effect can be tested by comparing data from bandits C and E (which have
means below 0.5) with that from bandits D and F (which have means above 0.5).
On average, these pooled data will have the same number of periods, and the same
variance. A length effect can be tested by comparing the data from bandits C and
F (which have length 8) and D and E (which have length 5). On average, these
pooled data will have the same means and the same variance. If more than one
of these effects is present, standard statistical techniques can be used to control for
confounding effects.

The instructions used in each treatment are in Appendix 4.A.

4.5.2 Gittins Index Treatment

The Gittins index is elicited using the same procedure as in Chapter 3. The subject
is given the table which describes the prior over the arm mean and told the number
of periods in the bandit. She is then asked the minimum true mean of the known
mean arm for which she would choose the known mean arm in the first period. The
mean of the known mean arm is then announced, and the subject’s first period arm
choice is made for the subject based on her reported index: the known mean arm is
chosen for her if her reported index is lower than the known mean, and the unknown
mean arm is chosen otherwise. In subsequent periods, the subject can choose either
the known or unknown mean arm.

The minimum mean of a known mean arm for which she would choose a known
mean arm in the first period is elicited using a simple titration mechanism where
the subject can respond Yes or No to a question like, “Would you choose the known
mean arm this period if it paid X% of the time?” This question was repeated, with
successive values of X given by a bisection algorithm, until the subject’s indifference
point was narrowed to the nearest percent. This value is the subject’s Gittins index.

Proposition 3 applies here to prove that this mechanism is incentive compatible

for the subject’s true Gittins index.
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4.5.3 Willingness to Pay Treatment

In the willingness to pay treatment, the subject must choose between the unknown
mean arm and an arm which pays with probability one-half. Before the first period,
each subject is given the opportunity to pay the experimenter to tell her the actual
mean of the ambiguous arm. If she buys this information, she knows the true means
of both arms, and will choose the one with the higher mean in each period. If she does
not, she must choose between a known and an unknown mean arm in each period.

The amount the subject is willing to pay is elicited using a simple titration mech-
anism like that used to elicit the Gittins index. The subject can respond Yes or No
to a question like, “Would you be willing to pay $X.XX to learn the average of the
unknown mean arm?” This question was repeated, with successive values of $X. XX
(between $0.00 and $1.00) given by a bisection algorithm, until the subject’s indiffer-
ence point was narrowed to the nearest penny. This value is the subject’s willingness
to pay.

Once the subject’s willingness to pay is established, it is compared to a randomly
determined selling price. If the subject’s willingness to pay is higher than the random
price, then the subject is told the true mean of the unknown mean arm and the
selling price is deducted from her total payoff; if her willingness to pay is lower than
the price, she is not charged, and is not told the true mean of the unknown mean
arm.

Subjects’ willingness to pay was assessed at the same six priors as Gittins indexes
are elicited. The value of learning #, however, also depends on A. Theorem 12
indicates that for any fixed A < A(F, A), the ambiguity averse agent will pay strictly
more than an ambiguity neutral agent to learn the value of 8; if A > A(F, A), then
both agents would pay the same. This prediction of ambiguity aversion can be tested
by holding A fixed and changing the prior from which the value of 0 is drawn. If
ambiguity aversion contributes to suboptimal experimentation, agents should pay
much more than optimal when high values of 8 are likely, but exactly optimal when

low values of ¢ are likely. By using A = 0.5, the different priors will progress through
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the range where ambiguity averse agents will pay more for information into that where

they will pay just as much as ambiguity neutral agents.

4.5.4 Subjects

Subjects consisted of 33 Caltech undergraduates who did not necessarily have any
training in economics, though many had participated in unrelated economics experi-
ments. Experimental sessions lasted about an hour and a half, and payments averaged

$18, ranging from $3 to $24.

4.5.5 Comments on Experimental Design

One possible problem with this design is that it compares the value of informa-
tion based on an elicited Gittins indexes with the value of information based on a
willingness-to-pay procedure. One might argue that any possible difference observed
is attributable to a framing effect due to the differing procedures. There is no natural
control for eliciting willingness-to-pay in the Gittins context, or vice-versa, so these
effects are difficult to control for. It should be noted, however, that the phenomenon
of underexperimentation is robust to procedural variances, as it appears in both the
direct choice environment and the Gittins elicitation procedures. Therefore, it might

be expected to be invariant to a willingness-to-pay procedure as well.

4.5.6 Predictions of Alternative Theories

In addition to ambiguity aversion, risk aversion, hyperbolic discounting and quantal
response strategies make predictions about the willingness to pay treatment. However,
the predictions are difficult to demonstrate analytically, so they are presented here

numerically.

Risk Aversion

For two of the bandits in this experiment, risk aversion, or a distaste for the variance

in the subjective payoff distribution, F', makes a different prediction than ambiguity
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r (2,3)  (1.1,3.9)
1.00 021872 0.06405
0.95 0.21843 0.06392
0.90 0.21815 0.06379
0.85 0.21786 0.06367
0.80 0.21758 0.06354
0.75 0.21729 0.06341
0.70 0.21700 0.06328
0.65 0.21672 0.06316
0.60 0.21643 0.06303
0.55 0.21614  0.06290
0.50 0.21585 0.06277
0.45 0.21556 0.06265
0.40 0.21527 0.06252
0.35 0.21498 0.06239
0.30 0.21469 0.06227
0.25 0.21440 0.06214
0.20 0.21411 0.06201
0.15 0.21381 0.06189
0.10 0.21352 0.06176
0.05 0.21323 0.06163

Table 4.2: Willingness to pay values for different values of 7 in the utility function
u(x) = z" for two bandits

aversion. While ambiguity aversion predicts agents should always be willing to pay
more than optimal to learn the true mean of the unknown arm, if the optimal strategy
prescribes the known mean arm in the unknown arm bandit, risk aversion predicts
that agents will have lower willingness to pay than risk neutral agents.

Table 4.2 computes the willingness to pay for agents with utility functions of the
form U(z) = 2", which demonstrates constant relative risk aversion. The computa-
tions presented in the table use an initial wealth level of 10, but the results are robust
to all wealth levels. For the two bandits presented here,! more risk averse agents

(with lower 7) have lower willingess to pay than risk neutral agents.?

1Only two bandits are presented because those whose optimal strategies have the unknown arm
as the initial selection are less tractable.

2Slight differences in willingness to pay with » = 1 and those in Table 4.1 arise from different
precisions of algorithms in C and Excel (Table 4.1) and Mathematica (Table 4.2). These third digit
differences do not affect the statistical conclusions.
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The intuition for this result is that the known arm has a mean of 0.5, which
maximizes the variance of the Bernoulli distribution. Therefore, the variance of the
distribution over final wealth states of a strategy which selects the known arm many
times is very high. For sufficiently unfavorable priors over the unknown arm, it is
optimal to select the known arm in each period, and the high variance over outcomes
reduces risk averse agents’ utility.

The final wealth variance may be reduced by learning the value of the unknown
arm. Although a risk averse agent will never select an arm with a lower mean just
to reduce risk, the possibility that the true mean of the unknown mean arm is higher
than 0.5, and therefore has a higher mean and lower variance than the known mean
arm, induces the risk averse agent to pay to learn the mean of the unknown arm. The
willingness to pay is decreasing in the level of risk aversion because more risk averse
agents realize less gain from small improvements over 0.5, the most likely values of

the unknown arm under the priors used here.?

Hyperbolic Discounting

Although hyperbolic discounting was rejected based on the data in Chapter 3, this
experiment provides a second, within-experiment test. In particular, while ambiguity
aversion predicts higher than optimal willingness to pay to learn the true mean of an
unknown mean arm, hyperbolic discounting affects the value of both the known and
unknown bandits, and the net effect is a lower than optimal willingness to pay. Table
4.3 presents the willingness to pay for each bandit for hyperbolic discounters with s
between one-half and one.

When 8 = 1, the willingness to pay corresponds to the optimal willingness to pay,

and it decreases monotonically as 3 gets closer to zero.

Quantal Response Strategies

McKelvey and Palfrey’s (1998) quantal response model produces a more subtle set of

predictions than other models because whether the willingness to pay is predicted to

3This result depends on the known arm having a high-variance mean, like 0.5.
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Prior
B (1,1) (2525) (23 (32) (1.1,3.9) (3.9,1.1)
1.00 0.247 0.208 0.219 0.241 0.064 0.039
0.98 0.244 0.206 0.215 0.237  0.063 0.039
0.96 0.242 0.203 0.212 0.233 0.062 0.038
0.94 0.239 0.201 0.208 0.229 0.061 0.037
092 0.237 0.198 0.205 0.225  0.060 0.037
0.90 0.235 0.196 0.201 0.221  0.058 0.036
0.88 0.232 0.193 0.198 0.217  0.057 0.036
0.86 0.230 0.191 0.194 0.213  0.056 0.035
0.84 0.227 0.188 0.191 0.209  0.055 0.034
0.82 0.225 0.186  0.187 0.205  0.054 0.034
0.80 0.223 0.183 0.184 0.201  0.053 0.033
0.78 0.220 0.181  0.180 0.197  0.052 0.032
0.76 0.218 0.178 0.177 0.194  0.051 0.032
0.74 0.215 0176 0.173 0.190 0.049 0.031
0.72 0.213 0.174 0.170 0.186  0.048 0.031
0.70 0.211 0.171 0.166 0.182  0.047 0.030
0.68 0.208 0.169 0.163 0.178  0.046 0.029
0.66 0.206 0.166 0.159 0.174  0.045 0.029
0.64 0.203 0.164 0.156 0.170  0.044 0.028
0.62 0.201 0.161 0.152 0.166 0.043 0.027
0.60 0.198 0.159  0.149 0.162  0.042 0.027
0.58 0.196 0.156 0.145 0.158 0.041 0.026
0.56 0.194 0.154 0.142 0.154 0.039 0.026
0.54 0.191 0.151  0.138 0.150 0.038 0.025
0.52 0.189 0.149 0.135 0.146 0.037 0.024
0.50 0.186 0.146  0.131 0.142  0.036 0.024

Table 4.3: Willingness to pay of a hyperbolic discounter with different fs in each
bandit
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Figure 4.1: Box-and-whiskers plot of the difference between subjects’ responses and
the optimal Gittins index (on the left) and the optimal willingness to pay (on the
right)

be higher or lower than optimal depends on the bandit and on the value of 1. Table
4.4 gives the indexes for each bandit at a variety of different ns. For each bandit, low
values of 77 lead to lower than optimal willingness to pay, but larger values lead to
higher than optimal willingness to pay, until willingness to pay returns to the optimal
level at and 7 of infinity. The numbers in the lower section of the table represent
the ns at which the willingness to pay is maximized, and present the corresponding

willingness to pay and indexes.

4.6 Results

Figure 4.1 is a box-and-whiskers plot of the data for each bandit. Gittins indexes
and willingness to pay are represented as differences from optimal, with a positive
difference corresponding to a higher than optimal Gittins index or willingness to pay.
Each bar indicates the distribution of the data. The thin black horizontal line is at
the median response, the grey box covers the middle 50%, and the long vertical lines
cover 90% of the data. Note that this is the distribution of the data, and does not

naturally correspond to confidence intervals of the central tendency of the data.
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Prior
(1,1) (2.5,2.5) (1.1,3.9)
n WTP Index WTP Index WTP Index

0.000  0.000 0.500 0.000 0.500 0.000 0.220
0.25 0.017 0.504 0.009 0501 0.011 0.221
0.6 0.040 0.510 0.022 0.503 0.027 0.223
1 0.066 0.516 0.037 0.505 0.045 0.226
1.25 0.082 0.520 0.046 0.506 0.057 0.227
1.75 0.112 0.528 0.063 0.508 0.078 0.230

2 0.126 0.532 0.071 0.509 0.088 0.231
3 0.176 0.547 0.103 0.513 0.122 0.237
9 0.241 0.575 0.153 0.522 0.154 0.248
7 0.270 0.597 0.187 0.530 0.151 0.258
10 0.278 0.617 0.215 0.540 0.123 0.271
15 0.270 0.630 0.229 0.553 0.083 0.289
25 0.256 0.631 0.226 0.566 0.060 0.310
50 0.246 0.623 0.215 0.568 0.061 0.322

100 0.246 0.618 0.208 0.563 0.063 0.315
500 0.246 0.616 0.208 0.560 0.064 0.308

00 0.246 0.616 0.208 0.560 0.064 0.308

9.801 0.278 0.616

17.282 0.230 0.558

5.709 0.155 0.252
(3.9,1.1) (2,3) (3,2)

n WTP Index WTP Index WTP Index

0 0.000 0.780 0.000 0.400 0.000 0.600

0.25 0.008 0.781 0.011 0.401 0.015 0.602
0.6 0.018 0.782 0.026 0.403 0.037 0.605
1 0.029 0.784 0.043 0.405 0.060 0.608
1.25 0.035 0.785 0.053 0.407 0.074 0.610
1.75 0.046 0.787 0.074 0.409 0.101 0.614

2 0.050 0.788 0.084 0411 0.113 0.616
3 0.062 0.791 0.121 0.416 0.157 0.623
) 0.065 0.798 0.179 0.426 0.214 0.637
7 0.0564 0.804 0.217 0.436 0.239 0.649
10 0.040 0.811 0.247 0.448 0.249 0.664
15 0.032 0.820 0.264 0.464 0.245 0.683
25 0.034 0.829 0.265 0.479 0.242 0.703
50 0.038 0.831 0.247 0.482 0.244 0.706

100 0.039 0.83 0.224 0.476 0.244 0.697
500 0.039 0.826 0.219 0.472 0.241 0.691
00 0.039 0.826 0.219 0.472 0.241 0.691
4.14 0.067 0.795

19.367 0.266 0.473

10.406 0.249 0.666

Table 4.4: Predicted indexes and willingness to pay of quantal response agents with
different ns, for each bandit
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# Index < | # WTP > optimal

optimal {0 1 2 3 4 5 6
0 1 2
1 1 1
2 3
3 3 2
4 3
5 1 1 4
6 2 2 4 3

Table 4.5: Number of subjects who reported a higher than optimal willingness to pay
in X bandits and lower than optimal Gittins indexes in Y bandits

Based on this graph, it appears the data are consistent with ambiguity aversion.
In every bandit, the median Gittins index is too low and the median willingness to
pay is too high. In five of the six bandits, about 90% of the willingness to pay errors
are higher than the median Gittins index error.

It is also noteworthy that the level of distribution of each error remains fairly
constant from one bandit to the next. There is no dramatic effect of changes in prior
standard deviation (ranging from 0.169 in (1.1,3.9) and (3.9,1.1) to 0.289 in (1,1)),
prior mean (ranging from (1.1,3.9) to (3.9,1.1)) or horizon length.

The rest of this section develops formal statistical tests for the patterns which

appear in this graph.

Result 15 Most subjects had higher than optimal willingness to pay and lower than

optimal Gittins indezxes.

Ambiguity aversion predicts that subjects will have a willingness to pay which
is too high and Gittins indexes which are too low. The frequency with which each
subject made these errors is reported in Table 4.5. The columns represent the number
of the six bandits in which the subject reported a higher than optimal willingness to
pay, and the rows represent the number of the six bandits in which the subject
reported a lower than optimal Gittins index. The number in each cell is the number

of subjects who made that combination of errors. For instance, three subjects made
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Prior (1,1)  (25,2.5) (1.1,3.9) (3.9,1.1) (2,3) (3,2) Pooled
Willingness to Pay

N 33 33 33 32 33 33 197
Med overpay 0.05 0.15 0.29 0.19 0.08 0.29 0.17
# overpay 24.00 29.00 30.00 29.00 23.00 31.00 166.00
p-value 0.0045  7E-06 1E-06 2E-06 0.012 2E-07 0
Gittins Index

N 33 33 33 33 33 33 198
Med undervalue  0.10 0.04 0.07 0.01 0.03 0.04 0.04
# too low 27.00 19.00 24.00 19.00 20.00 22.00 131.00
p-value 0.0001 0.192 0.0045 0.192 0.112 0.0278 3E-06

Table 4.6: One-tailed p-values that WTPs and Gittins indexes are optimal for each
arm and for the pooled data, based on the median response

had higher than optimal willingness to pay and lower than optimal Gittins indexes
in each of the six bandits in which each measurement was elicited.

An overwhelming majority of subjects fall in the lower right-hand corner of this
table, where they frequently have higher than optimal willingness to pay and lower
than optimal Gittins indexes. Of the 33 subjects, 25 of them have higher than op-
timal willingness to pay in at least five of the six bandits; 17 of the 33 have lower
than optimal Gittins indexes. This pattern of response is consistent with ambiguity
aversion.

Although still a majority, this rate of lower than optimal Gittins indexes is strik-
ingly different than in Chapter 3, where nearly every subject reported a lower than
optimal Gittins index in almost every first period. This could be because the scale
of the indexes is much different in this experiment because the arms are Bernoulli
rather than normal. The role scale effects in bandit problems may be an interesting

avenue for further research.

Result 16 The median willingness to pay is significantly higher than optimal in each
bandit, and the median Gittins index is significantly lower than optimal in three of the
siz bandits. In the pooled data, the median willingness to pay is significantly higher

than optimal and the median Gittins index is significantly lower than optimal.

Table 4.6 presents the median overpayment and median undervaluation for each



148
arm, as well as for the pooled data. Because I am particularly interested in over-
payment and undervaluation, these errors will both be defined as positive; a negative
overpayment corresponds to underpayment, and a negative undervaluation corre-
sponds to a higher than optimal Gittins index.

For every arm, the median overpayment is positive, meaning the median willing-
ness to pay is higher than optimal. The third row indicates the number of overpay-
ments which are positive. This number can be used to calculate a p-value for the
hypothesis that the true median overpayment is equal to zero using Mosteller and
Rourke’s (1973) technique for calculating a nonparametric confidence interval for the
median. Mosteller and Rourke establish a confidence interval by computing the prob-
ability that the true median is between the i and (N — 4+ 1)*" largest observations
by computing the chance that between i and (N —i+1) observations fall to the left of
the median.* This idea can be extended to this circumstance by using the cumulative
binomial to calculate the probability that, if the true median is zero, only n < N
observations are negative.

The last row presents this p-value, which is significant at all conventional levels
for each arm, and extremely significant for the pooled data. Therefore, the median
willingness to pay is significantly higher than optimal, consistent with the prediction
of ambiguity aversion.

The second section of the table presents the same information for undervaluation.
The median undervaluation is significantly positive at conventional levels for three
of the six bandits. However, the median of the pooled data is highly significantly

positive, consistent with the prediction of ambiguity aversion.

4This probability is represented by the binomial distribution and is given by

2;( ]JV ) (%)N (4.61)
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0.204 0.289
Prior Standard Deviation

Figure 4.2: Box-and-whiskers plot of the spread for two bandits which differed only
in prior variance

(1,1) (2.5,2.5) p-value
Spread 0.17 0.26 1.000
Overpayment 0.05 0.15 0.317
Undervaluation 0.10 0.04 0.140

Table 4.7: Median spread, overpayment and undervaluation for the (1,1) bandit (with
prior standard deviation 0.289) and the (2.5,2.5) bandit (with prior standard deviation
0.204), and p-values for the hypothesis that the two medians are the same

4.6.1 Tests of Simple Effects

The data in Table 4.6 suggest that ambiguity aversion is a significant factor in bandit
problems, leading subjects to paradoxically undervalue information by having lower
than optimal Gittins indexes and overvalue information by having higher than opti-
mal willingness to pay. However, ambiguity aversion also predicts that as ambiguity
increases, the undervaluation and overpayment should be more severe. However, a

direct test of this prediction does not support ambiguity aversion.

Result 17 When the mean and bandit horizon are constant, an increase in variance

does not result in a significant change in subjects’ Gittins indexes or willingness to

pay.
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Prior Mean < .5 Prior Mean > .5 p-value

Spread 0.20 0.26 0.336
Overpayment, 0.18 0.26 0.336
Undervaluation 0.06 0.02 0.056

Table 4.8: Median spread, overpayment and underpayment for the bandits with a
prior mean below one-half and those with a prior mean above one-half, and p-values
for the hypothesis that the two medians are the same.

Whether variance affects the overpayment and undervaluation in the way pre-
dicted by ambiguity aversion can be tested directly by comparing the overpayment
and undervaluation of the (1,1) and (2.5,2.5) bandits. Both have four periods and a
prior mean of 0.5, and therefore differ only in variance. The prior standard deviation
of the (1,1) bandit is 0.289 and of the (2.5,2.5) bandit is 0.204, so ambiguity aversion
predicts the overpayments and undervaluations to be larger for the (1,1) bandit.

This can be tested directly by looking at the spread, the sum of the undervaluation
and overpayment. Figure 4.2 is a box-and-whiskers plot of the spread for the (1,1)
and (2.5,2.5) bandits. The (1,1) bandit has a slightly smaller median spread than the
(2.5,2.5) bandit, the opposite of what ambiguity aversion would predict.

Table 4.7 shows the median spread for each bandit, and the p-value for the test
that the medians of the two samples are the same. The continuity-corrected test
statistic for the two-sample median test (Siegel and Castellan, 1988, Section 6.3) is
exactly zero, leading to a p-value of one. Therefore, although the median of the higher
variance bandit is lower, the difference is not significant.

The other two rows of the table, which show how overpayment and undervalua-
tion change with ambiguity, illustrates that, although undervaluation increases with

variance, overpayment seems to decrease (though not significantly).

Result 18 When the variance and bandit horizon are constant, an increase in mean
results in no change in overpayment and a borderline significant decrease in under-

valuation.

Ambiguity aversion makes a subtle prediction about how the mean will affect the

spread. Although undervaluation should not be affected, the subjects’ willingness to
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<05 >0.5
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Figure 4.3: Box-and-whiskers plot of the spread for bandits which with Gittins indexes
above and below the known mean arm

pay should be exactly the same as that of an ambiguity neutral agents when the mean
is below 0.5. The reason for this is that, when the Gittins index is below 0.5, both
the ambiguity averse and ambiguity neutral subject expects to pick the 50/50 arm
in the first period (and in every period thereafter) if he does not learn the mean of
the unknown arm. Therefore, there is no ambiguity in the bandit, even when there
is no information. Since the two bandits with means less than 0.5 also have optimal
Gittins indexes below 0.5, the ambiguity averse agents must have subjective Gittins
indexes below 0.5. Therefore, when they are calculating their willingness to pay, the
ambiguity averse subjects consider the two-armed bandit with the ambiguous arm
to be an unambiguous problem, because they will never encounter the ambiguity in
optimal play.

This suggests that the level of overpayment should increase when the mean in-
creases from below 0.5 to above 0.5. Figure 4.3 is a box-and-whiskers plot of the
spread of bandits (1.1,3.9) and (2,3) on the left and (3,2) and (3.9,1.1) on the right.
There is a slight increase in the median, and in the middle two quartiles, when the
mean increases.

Table 4.8 presents the median spread, overpayment and undervaluation for the

bandits with a prior mean below one-half and those with a prior mean above one-half.
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Figure 4.4: Box-and-whiskers plot of the spread for bandits with different horizons

Although the median spread for the means above 0.5 is higher than that for the means
below 0.5, the difference is not significant; nor is the difference in median overpayment.
Interestingly, undervaluation is slightly lower than for priors with higher means, and
this difference is borderline significant.

It is possible that this lack of increase in the spread is attributable to ambiguity
aversion, if subjects’ Gittins indexes for the arms with means above 0.5 are, due
to ambiguity aversion, also below 0.5. The reported Gittins indexes, though not
infrequently below the prior mean of the ambiguous arm, are rarely that much lower.
Therefore, the lack of difference is probably not attributable to ambiguity aversion.

The key to the lack of increase may lie in the the fact that the premise of the
prediction does not hold: agents do not have optimal willingness to pay in the arms
with means below 0.5. Table 4.6 shows that bandits (1.1,3.9) and (2,3) (and (1,1)
and (2.5,2.5)) have significantly higher than optimal willingness to pay. Considering

why this is so may provide insight into why there is no mean effect.

Result 19 When the variance and mean are constant, an increase in horizon results

in an increase in both overpayment and undervaluation.

Ambiguity aversion does not hold any role for the horizon, so any change in spread

is not attributable to ambiguity aversion but may provide some insight into subjects’
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5 Periods 8 Periods p-value

Spread 0.18 0.30 0.011
Overpayment 0.14 0.25 0.067
Undervaluation 0.02 0.07 0.056

Table 4.9: Median spread, overpayment and underpayment for the bandits with a five
period horizon and those with an eight period horizon, and p-values for the hypothesis
that the two medians are the same

decision process.

Figure 4.4 is a box-and-whiskers plot of the spread of the (3.9,1.1) and (2,3)
bandits on the left and the (1.1,3.9) and (3,2) bandits on the right. There is a slight
increase in the median, and in the middle two quartiles, with the longer horizon.

Table 4.9 presents the median spread, overpayment and undervaluation for the
bandits with a five period horizon and those with an eight period horizon. There
is a statistically significant increase in spread from the five period to the eight pe-
riod horizon, generated by borderline significant increases in both overpayment and
undervaluation.

Both the optimal Gittins index and the optimal willingness to pay are increasing
in the horizon. These results suggest the subjects are too sensitive to the increase in
willingness to pay, but not sensitive enough to the increase in the Gittins index.

This sort of relationship might arise from a simplification of Equation 4.55.5 In
this experiment ~; is simply the number of periods in the bandit. Subjects may try to
approximate V() by some linear function of the number of periods, rather than solve
the dynamic programming problem. If this approximation yielded an average per-
period value which was lower than the true per-period average value (which would be
consistent with observing lower than optimal Gittins indexes), subjects would have an
average per-period willingness to pay which was higher than optimal. Furthermore,
their simple model would be linearly increasing in the horizon, so the amount of the

overpayment would be increasing in the horizon.

5 After one session, a subject described to me exactly Equation 4.55 (these are Caltech students)
and then asked, “but how do you compute the value of not having the information?”
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Constant Prior Mean Prior Std Log(Horizon)

Spread -0.03 0.12 -0.28 0.19
(-0.14) (0.75) (-0.54) (2.59)
Overpayment, 0.07 0.07 -0.52 0.16
(0.31) (0.64) (-1.31) (2.08)
Undervaluation 0.12 0.09 0.28 0.03
(-0.85) (0.57) (0.84) (1.25)

Table 4.10: Results of regressions of spread, overpayment and undervaluation on prior
mean and variance and the log of horizon (t-statistics are in parentheses)

0.169 0.200 0.204 0.289
Prior Standard Deviation

Figure 4.5: Box-and-whiskers plot of the spread for all bandits ordered by prior
standard deviation

4.6.2 Testing for Multiple Effects

The previous section used the design of the experiment to test simple hypotheses
about the impact of changes in prior mean and variance and the horizon. However,
this approach throws out some of the data, as not all six bandits are used in any of
these tests. This section uses a simple linear model to test for these effects in the

whole sample.
Result 20 When tested on the entire sample, only the horizon effect is significant.

The simple test for a change in the spread related to a change in the variance

only used one-third of the sample, and only two variances. Figure 4.5 shows the
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distribution of the data in the bandits with every variance used. As with the simple
test, there is no dramatic trend toward larger spreads with higher standard deviations.
However, this larger sample does not carefully control for mean and horizon effects.

The regressions in Table 4.10 use the whole sample and control for linear mean
and horizon effects, and come to the same conclusion: the spread does not vary sig-
nificantly with changes in the variance. This is an important prediction of ambiguity
aversion, and without support for it, it is difficult to say conclusively that the data in
Table 4.6 are actually attributable to it. However, it may be that the small range of
standard deviations used here is not large enough to generate a detectable difference.

The mean effect is also still not significant, but the horizon effect remains signifi-
cant. Given that the horizon effect is consistent with a particular type of systematic
error in the computation of the value function and the Gittins index, it seems possible
that overpayment is attributable to the same cause as undervaluation. If subjects do
not sufficiently compensate for solving a shortened version of the problem, underval-
uation, and thus overpayment, are explained by horizon truncation, the model which

was consistent with the data presented in Chapter 3.

4.6.3 Results of Alternative Theories

Risk Aversion

Risk aversion and ambiguity aversion predict opposite deviations from optimality in

the willingness to pay treatment for priors (2,3) and (1.1,3.9).

Result 21 With priors (2,3) and (1.1,3.9), subjects’ willingness to pay is significantly

higher than optimal, inconsistent with risk aversion.

Table 4.6 tests whether the median willingness to pay for each bandit is different from
the optimal value. For both bandits in which ambiguity aversion and risk aversion
make different predictions, subjects’ willingness to pay is significantly higher than
optimal. Since risk aversion predicts willingness to pay will be lower than optimal,
the data are not consistent with risk aversion being the primary factor leading to

higher than optimal willingess to pay.
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Hyperbolic Discounting

Table 4.3 shows that hyperbolic discounting predicts that agents’ willingness to pay

will be lower than optimal.

Result 22 Subjects’ willingness to pay is significantly higher than optimal, inconsis-

tent with hyperbolic discounting.

Table 4.6 tests whether the median willingness to pay for each bandit is different from
the optimal value. For each bandit, willingness to pay is significantly higher than
optimal. This is not consistent with hyperbolic discounting. Therefore, hyperbolic

discounting is not the primary cause of higher than optimal willingness to pay.

Quantal Response

Quantal response makes different predictions about whether indexes and willingness
to pay will be higher or lower than optimal depending on the prior and on the value
of 7. Rather than compute a particular value of 7 for all bandits, quantal response
is tested here by comparing observed willingness to pay and Gittins indexes to those
predicted at the n which predicts the maximum possible willingness to pay for each

bandit.

Result 23 Subjects’ willingness to pay is significantly higher than the highest possible

willingness to pay predicted by quantal response.

Table 4.11 tests whether the median observed willingness to pay is significantly
larger than the maximum possible willingness to pay under quantal response.

The upper section of the table presents the median amount more than the max-
imum willingness to pay possible under quantal response in the data, the number
of agents who were willing to pay more than this maximum, and the p-value of the
one-tailed test that the median of the sample is greater than the maximum quantal
response willingness to pay. In four of the six bandits, as well as in the pooled data,

this difference is highly statistically significant.
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Prior (1,1) (2.5,2.5) (1.1,3.9) (3.9,1.1) (2,3) (3,2) Pooled
Willingness to Pay

N 33 33 33 32 33 33 197
Med overpay 0.02 0.13 0.20 0.16 0.03 0.28 0.14
F# overpay 20.00 29.00 26.00 28.00 17.00 31.00 151.00
p-value 0.112  6E-06 4E-04 1E-05 0431 2E-07 4E-14
Gittins Index

N 33 33 33 33 33 33 198
Med undervalue  0.10 0.04 0.01 -0.02 0.03 0.02 0.02
# too low 27.00 19.00 20.00 10.00  20.00 19.00 115.00
p-value 1E-04  0.192 0.112 0.988  0.112 0.192 0.011

Table 4.11: One-tailed p-values that median willingness to pay and Gittins indexes
are generated by quantal response agents with willingness to pay-maximizing ns, for
each arm and for the pooled data

The lower section of the table reports the median amount less than the Gittins
index with the n generating the maximum willingness to pay the data were, as well
as the number which were too low, and the p-value of a one-tailed test that the
population median index was equal to that predicted by quantal response. This
hypothesis is rejected in two of the six bandits at conventional levels of significance.

The willingness to pay is too high to be explained by any value of 1 in four of
the six bandits, and in a fifth, the index corresponding to a willingness to pay which
cannot be rejected is strongly rejected. Therefore, behavior in five of the six bandits
is inconsistent with quantal response. Furthermore, this test places no restrictions on
the model, allowing a different 7 for each bandit. These values vary significantly, and
any single 1 will predict higher than optimal willingness to pay in some bandits, but
lower than optimal willingness to pay in others. Therefore, patterns of willingness to

pay choice in the data cannot be explained by quantal response.

4.7 Discussion

This chapter showed how a distaste for ambiguity, the variance of the prior distri-

bution of the mean, might lead to the lower than optimal Gittins indexes implied
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by results in search problems, as well as in the Chapters 2 and 3. Ambiguity averse
agents dislike receiving payoffs from ambiguous process, and therefore are willing to
accept less valuable unambiguous alternatives than would be an ambiguity neutral
agent. This means their Gittins indexes are lower than optimal.

Lower than optimal Gittins indexes make it seem as though ambiguity averse
agents do not place enough value on the information they gain from experimentation.
It is paradoxical, then, that if the problem is reframed to explore how much they would
be willing to pay for information about an ambiguous alternative, agents are willing
to pay more than an ambiguity neutral agent, appearing to overvalue information.

This surprising prediction of ambiguity aversion is unique among theories which
assume that agents correctly formulate and solve the dynamic programming prob-
lem. Other theories of systematic deviations, such as hyperbolic discounting and risk
aversion, affect the calculation of the value function in both the ambiguous and unam-
biguous cases, so the difference in willingness to pay will not be generated. Of course,
if agents do not correctly formulate and solve dynamic programming problems, almost
any effect can be predicted.

The experiment presented here tested this surprising prediction, using one treat-
ment which elicited subjects’ Gittins index on six bandits, and another treatment
which elicited subjects’ willingness to pay on the same six bandits. The basic results
are exactly as ambiguity aversion predicts: subjects have significantly lower than op-
timal Gittins indexes, and are willing to pay significantly more than optimal to learn
the true mean of the ambiguous arm.

Importantly, other theories which might explain the initial underexperimentation
and lower-than-optimal Gittins indexes make different predictions than ambiguity
aversion in the willingness to pay treatment for some or all of the bandits. That
behavior in each bandit is consistent with ambiguity aversion suggests it is also in-
consistent with other candidate explanations. Hyperbolic discounting is also rejected
here as its prediction that willingness to pay will be smaller than optimal is not re-
alized. Evidence also contradicts risk aversion’s prediction of smaller than optimal

willingness to pay on bandits with optimal strategies of selecting the known arm ini-
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tially. Finally, the deviations from optimality are larger than could be predicted by
quantal response, even allowing a different 7 for each bandit.

However, not every prediction of ambiguity aversion receives strong support. It
also predicts that undervaluation and overpayment should increase with the ambiguity
of the alternative. Similarly, there should be an increase in overpayment as the Gittins
index moves from below 0.5 to above 0.5. However, neither of these predicted effects
is significant. Instead, the only significant change in overpayment and undervaluation
arises from increases in the number of periods in the bandit.

The increase in the spread as the horizon increases is mostly attributable to an
increase in overpayment. Why would agents be willing to pay more to remove ambi-
guity from a longer bandit? They may be willing to pay more to avoid having to solve
the longer problem explicitly, giving up some money to save mental computation cost.
However, this does not explain why Gittins indexes are lower than optimal.

Rather, because willingness to pay is higher than optimal when means are below
0.5, it appears likely that at least some of the suboptimality observed is attributable
to a difficulty in solving the dynamic programming problem. If horizon truncation
results in a low value for the ambiguous bandit, an intuitive simplification of Equation
4.55 will result in overpayment increasing with the horizon, without there necessarily
being an impact on undervaluation.

That difficulty solving the dynamic programming problems is causing underval-
uation and overpayment can be tested in a couple ways. A simple to solve bandit,
such as one in which the unknown arm either always paid or never paid (with known
probabilities) could test subject’s intuitive dynamic programming ability. In retro-
spect, it would have been nice to include such a bandit among those used in this
experiment. Alternately, subjects could be brought in for a thorough training session
on dynamic programming which could elaborate on the direction and magnitude of
the effects discussed in the strategy section of the instructions.

Finally, this chapter accomplished a broader goal of demonstrating how simple
behavioral models can be integrated into larger bodies of theory to produce testable

predictions based on sound psychology. Although there are a number of different
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models of ambiguity aversion, the Kahn and Sarin model leverages the second order
probability available to bandit agents. With some interpretation, the behavioral
model was integrated into the sophisticated mathematics of bandits to derive the
surprising and testable prediction that agents will have lower than optimal Gittins
indexes, but be willing to pay more than optimal to eliminate ambiguity. Hopefully
the exercise of developing the theory and testing it will inspire others to integrate

formal behavioral models into their theories.

4.A Instructions

4.A.1 Gittins Index Treatment

You are about to participate in an experiment designed to provide insight into decision
processes. The amount of money you make will depend partly on decisions you make
and partly on chance. If you follow the instructions carefully and make good decisions,

you might earn a considerable amount of money.

How You Make Money

You will earn one dollar each time a red ball is drawn from an urn you choose. In
each period, you may choose one of two urns: one with 100 balls in some known
mixture of red and white, and one with 100 balls in some unknown mixture of red
and white. When you choose an urn, one ball will be randomly drawn from that urn
and it determines your payoff: one dollar if it is red, nothing if it is white.

You will be paid in cash for all of your earnings in excess of $28.

Order of the Experiment

This experiment will proceed as a number of rounds. Each round will have several
periods. The number of periods in each round will be announced at the beginning of

that round.
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At the beginning of each round, the computer will randomly determine the number
of red balls in the known mixture urn and in the unknown mixture urn. Before you
learn the number of red balls in the known mixture urn, you will be asked the smallest
number of red balls which would lead you to choose the known mixture urn in the
first period. Your first period choice will be made for you by the computer based on
your response. The computer will choose the known mixture urn for you if it contains
more red balls than your smallest number, and the unknown mixture urn for you if
the known mixture urn contains fewer red balls than your smallest number.

After the first period, you may select either urn. In each period, you will have to
trade off selecting the known mixture urn with learning more about the number of

red balls in the unknown mixture urn.

Urns

At the beginning of each round, you will be told the number of red balls in the known
mixture urn. It may contain any number between zero and 100 red balls.

You will not know the mixture of red and white balls in the unknown urn. It may
contain any number between zero and 100 red balls. However, not all mixtures are
equally likely. The likelihood of different proportions of red balls is represented on
the urn tables.

The number of red balls in both urns will remain constant from one period to the

next, but will change at the beginning of each round.

Urn Tables

The chance that the unknown mixture urn contains a given number of red balls is
represented in tables like the Practice Urn Table you have been given. A new table
will be distributed at the beginning of each round.

The first column of the table shows a possible number of red balls. The second
column indicates the chance that there are exactly X number of red balls in the

unknown mixture urn. This is also illustrated in the graph below the table with a
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solid black line (read on the left axis). For instance, there is a 1% chance there are
exactly 25 red balls (and 75 white balls) in the unknown mixture urn.
The third column of the table shows the chance that there are at least X red balls
in the unknown mixture urn. This is illustrated in the graph below the table with a
dashed lack line (read on the right axis). For instance, there is a 49.08% chance that

there are fewer than 50 red balls in the unknown mixture urn.

Known Mixture Urn Cutoff

In the first period, the computer will ask you ”Would you choose the known mixture
urn in this period if it contained [Number] red balls?” If you would, click the ”Yes”
button; if not, click the ”No” button. You will be asked a series of these questions,
with a different [Number] each time, until the cutoff point at which you would just
prefer the known mixture urn has been narrowed down to the nearest ball.

You should answer these questions carefully because your first period urn choice
will be made for you based on your answers. The computer assumes you will choose
the known mixture urn for all numbers of red balls larger than the cutoff, and the
unknown mixture urn otherwise. Therefore, it will automatically choose the known
mixture urn if it has more red balls than your cutoff, and the unknown mixture urn

if the known mixture urn has fewer red balls than your cutoff.

Using the Computer

There are four panels on the computer screen. You may click in these panels with
your mouse, but please do not attempt to use any other applications, look at the
source code for this experiment or visit any other web sites during the experiment.
The History Panel

The long vertical panel on the left will contain your playing history. Please look at
that panel now. For each period, it will show your choice of urn, your payoff and the
minimum value for which you would choose the known mixture urn; recent periods
will be added to the top of the list, though earlier periods will still be accessible by

scrolling down.
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The Information Panel
The top of the three panels on the right side provides you with information on the
current period, the total number of periods and your total payoff. It also provides a
"Best Guess” at the number of red balls in the unknown mixture urn. In the first
period, it shows the average number of red balls that would be an urn based on the
urn table. Once the unknown mixture urn is chosen, the ”Best Guess” uses a law of
probability called Bayes’ rule. Bayes’ rule uses the chance the observed combination
of red and white balls arose from each possible mixture, and the chance of each
mixture from the urn table, to determine the most likely average number of red balls
in the unknown mixture urn, given the available information.

The Urn Choice Panel
Please look at the middle of the three right-hand panels (which now has a “Begin”
button). This is where you indicate your choice of urn each period. To indicate your
choice of an urn, click once with the mouse in the circle in front of the name of the
urn you wish to choose; a black dot will appear within the white circle. Then click
the Submit button at the bottom of the panel one time with the mouse. Clicking the
Submit button causes the computer to select a ball and calculate your payoff for the
period.

The Instructions Panel
The bottom of the three right panels will contain these instructions. You may scroll

through them and examine them at any point during the experiment.

Summary

1. At the beginning of the round, the Experimenter will distribute an urn table

and announce the number of periods in the round.

2. The computer will randomly select the number of red balls in the known mixture

urn, and in the unknown mixture urn.

3. You will be asked a series of questions to determine your known mixture urn

cutoff, the minimum number of red balls in the known mixture urn for which
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you would choose it that period.

4. The computer will automatically choose the known mixture urn for you if its
actual number of red balls is higher than your cutoff, and the unknown mixture

urn otherwise.

5. The computer will randomly draw a ball from your chosen urn and announce

your payoff: one dollar if the ball is red and nothing if it is white.
6. Fill in the record section of the urn table.
7. Wait for the experimenter to announce the beginning of the next period.

8. Choose between the known and unknown mixture urns, and return to Step 5.

Strategy

You have a chance to receive a payoff when you select either urn, but when you select
the unknown mixture urn, you also gain some information about the number of red
balls it contains, which may help you in future periods. At any point, your best guess
may be higher or lower than the actual number of red balls in the urn. By trying the
unknown mixture urn, you may learn it has more red balls than the known mixture
urn, information you can use to improve your chance of getting a red ball in future
periods; if the unknown mixture urn does not have more red balls, you can choose
the known mixture urn in future periods.

This possibility of learning the unknown mixture urn is better than your initial
best guess means it is sometimes advantageous to select the unknown mixture urn
even when the known mixture urn contains more red balls than your best guess at
the number in the unknown mixture urn. Whether it is worth experimenting with
the unknown mixture urn depends on the difference between your best guess and the
number of red balls in the known mixture urn, the number and color of the balls you
have observed from the unknown mixture urn, the chance that the actual number

of red balls in the unknown mixture urn is each value higher than your best guess
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(based on the urn table) and number of periods you have left to benefit from learning

the unknown mixture urn has more red balls than your initial best guess.

4.A.2 Willingness to Pay Treatment

You are about to participate in an experiment designed to provide insight into certain
features of decision processes. The amount of money you make will depend partly on
decisions you make and partly on chance. If you follow the instructions carefully and

make good decisions, you might earn a considerable amount of money.

How You Make Money

You will earn one dollar each time a red ball is drawn from an urn you choose. In
each period, you may choose one of two urns: one with 50 red balls and 50 white
balls, and one with 100 balls in some unknown mixture of red and white. When you
choose an urn, one ball will be randomly drawn from that urn and it determines your
payoff: one dollar if it is red, nothing if it is white.

You will be paid in cash for all of your earnings in excess of $28.

Order of the Experiment

This experiment will proceed as a number of rounds. Each round will have several
periods. The number of periods in each round will be announced at the beginning of
that round.

At the beginning of each round, the computer will randomly determine the number
of red balls in the unknown mixture urn. You will then be asked how much you would
be willing to pay to learn the number of red balls in the unknown mixture urn. If
you are willing to pay more than the computer’s randomly determined selling price,
the computer will tell you then number of red balls in the unknown mixture urn and
deduct the selling price from your total payoff.

If you are not willing to pay more than the computer’s randomly determined

selling price, you will not be charged, but you will only be able to learn about the
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number of red balls in the unknown mixture urn by choosing it. In each period, you
will have to trade off choosing the 50-50 urn with learning more about the number of

red balls in the unknown mixture urn.

Urns

In each period you will be choosing between two urns. One urn will always be a 50-50
urn, containing 50 red balls and 50 white balls. On average, this urn will pay one
dollar half the time.

You will not know the mixture of red and white balls in the unknown urn. It may
contain any number between zero and 100 red balls. However, not all mixtures are
equally likely. The likelihood of different proportions of red balls is represented on
the urn tables.

The number of red balls in the unknown mixture urn will remain constant from

one period to the next, but will change at the beginning of each round.

Urn Tables

The chance that the unknown mixture urn contains a given number of red balls is
represented in tables like the Practice Urn Table you have been given. A new table
will be distributed at the beginning of each round.

The first column of the table shows a possible number of red balls. The second
column indicates the chance that there are exactly X number of red balls in the
unknown mixture urn. This is also illustrated in the graph below the table with a
solid black line (read on the left axis). For instance, there is a 1% chance there are
exactly 25 red balls (and 75 white balls) in the unknown mixture urn.

The third column of the table shows the chance that there are at least X red balls
in the unknown mixture urn. This is illustrated in the graph below the table with a
dashed lack line (read on the right axis). For instance, there is a 49.08% chance that

there are fewer than 50 red balls in the unknown mixture urn.
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Willingness to Pay (WTP) for Information

At the beginning of each round, you will have the opportunity to buy from the
experimenter the number of red balls in the unknown mixture urn. You may want
to pay for this information because it tells you which urn has more red balls, and
therefore is more likely to pay one dollar. If you do not have this information, you can
learn whether there are many red balls in the unknown mixture urn only by choosing
it and observing your payoffs. On the other hand, you do not want to pay more for

this information than you can gain by having it.

Using the Computer to Purchase Information

After you have been shown the urn table and learned the number of periods in the
round, you will be asked * Would you be willing to pay $X.XX to learn the number of
red balls in the unknown mixture urn?” If you would be willing to pay that amount,
click "Yes,” if not, click ”No.” The computer will ask a series of these questions, with
different values, until it has narrowed the amount you are willing to pay to the nearest
cent.

Once it has determined how much you are willing to pay, the computer will com-
pare your value to the randomly determined price at which it will sell the information.
If your WTP is higher than the computer’s price, the computer will tell you the num-
ber of red balls in the unknown mixture urn and deduct its price (not your WTP)
from your total payoff. If your WTP is lower than the computer’s price, you will not
be charged, but you will not be told the number of red balls in the unknown mixture
urn.

Be careful in selecting your WTP. If you enter a value which is higher than you
are really willing to pay, you may have to pay more for the information than you
want; if you enter a value which is lower than you are really willing to pay, you may
not receive the information when the computer would be willing to tell you for a price

you would be willing to pay.
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Using the Computer to Choose an Urn

There are four panels on the computer screen. You may click in these panels with
your mouse, but please do not attempt to use any other applications, look at the
source code for this experiment or visit any other web sites during the experiment.
The History Panel
The long vertical panel on the left will contain your playing history. For each period,
it will show your choice and the payoff you received; recent periods will be added to
the top of the list, though later periods will still be accessible by scrolling down.
The Information Panel
The top of the three panels on the right side provides you with information on the
current period, the total number of periods and your total payoff. It also provides a
»Best Guess” at the number of red balls in the unknown mixture urn. In the first
period, it shows the average number of red balls that would be in an urn based on the
urn table. Once the unknown mixture urn is chosen, the ”Best Guess” uses a law of
probability called Bayes’ rule. Bayes’ rule uses the chance the observed combination
of red and white balls arose from each possible mixture, and the chance of each
mixture from the urn table, to determine the most likely average number of red balls
in the unknown mixture urn, given the available information.
The Urn Choice Panel
The middle of the the three right-hand panels is where you indicate your choice of
urn in each period. To indicate your choice of an urn, click once with the mouse in
the circle in front of the name of the urn you wish to choose; a black dot will appear
within the white circle. Then click the Submit button at the bottom of the panel one
time with the mouse. Clicking the Submit button causes the computer to generate a
Random Value and calculate your payoff for the period.
The Instructions Panel
The bottom of the three right panels will contain these instructions. You may scroll

through them and examine them at any point during the experiment.
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Summary

1.

At the beginning of the round, the Experimenter will distribute an urn table

and announce the number of periods in the round.

The computer will randomly select the number of red balls in the unknown

mixture urn using the urn table.

The computer will ask you a series of questions to determine the maximum
price you are willing to pay to learn the number of red balls in the unknown

mixture urn.
The computer will compare your WTP to a random selling price.

(a) If your WTP is higher than the selling price, the computer will tell you
the number of red balls in the unknown mixture urn and deduct the selling

price (not your WTP) from your total payoff.

(b) If your WTP is lower than the selling price, the computer will not tell you

the number of red balls in the unknown mixture urn.

. The experimenter will instruct you to choose an urn.

The computer will randomly draw a ball from your chosen urn and announce

your payoff: one dollar if the ball is red and nothing if it is white.

Fill in the record section of the urn table.

. Wait for the experimenter to announce the beginning of the next period.

. Choose between the known and unknown mixture urns, and return to Step 6.

Strategy

You have a chance to receive a payoff when you select either urn, but when you select

the unknown mixture urn, you also gain some information about the number of red

balls it contains, which may help you in future periods. At any point, your best guess
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may be higher or lower than the actual number of red balls in the urn. By trying
the unknown mixture urn, you may learn it has more than 50 red balls, information
you can use to improve your chance of getting a red ball in future periods; if the
unknown mixture urn has fewer than 50 red balls, you can choose the 50-50 urn in
future periods.

This possibility of learning the unknown mixture urn is better than your initial
best guess means it is sometimes advantageous to select the unknown mixture urn
even when your best guess at the number in the unknown mixture urn is less than
50. Whether it is worth experimenting with the unknown mixture urn depends on
the difference between your best guess and 50, the number and color of the balls you
have observed from the unknown mixture urn, the chance that the actual number
of red balls in the unknown mixture urn is each value higher than your best guess
(based on the urn table) and number of periods you have left to benefit from learning
the unknown mixture urn has more red balls than your initial best guess.

Feel free to earn as much money as you can. Are there any questions?
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Chapter 5 Implications and Conclusions

The first objective of this thesis was to determine if the suboptimality which has been

observed in search problems extends to the more general set of bandit problems.

5.1 Undervaluation of Information

Undersearch manifests itself both as failure to search when an optimally searching
agent would and as lower than optimal reservation wages. Analogously, in bandit
problems, undervaluation of information manifests itself both as a failure to experi-
ment when an optimally experimenting agent would and as lower than optimal Gittins
indexes. Both of these phenomena occur in laboratory bandits.

The choice data presented in Chapter 2 show that experimental subjects quickly
extinguish arms which do not perform well initially, while an optimally experimenting
agent would continue experimentation to ensure that the bad initial observations
were not simply bad draws from a good payoff distribution. The consequence of this
underexperimentation is that agents often play the highest average payoff arm with
lower frequency than optimally experimenting agents; they lose money in expectation.

"The loss arises from the cases where high average payoff arms yield bad initial pay-
offs and actual subjects abandon them when optimally experimenting agents would
continue to try them and might, through additional experimentation, learn that they
are better and worth choosing in the future. It is the nature of bandit problems,
however, that this loss is only in expectation; agents will not not always be worse off,
and sometimes even better off, for underexperimentation.

The Gittins index data presented in Chapters 3 and 4 corroborates the choice
data in the claim that subjects do not value information optimally. As a generalized
reservation wage, a subject’s Gittins index represents a combination of the expected

payoff from an arm and the present discounted value of the increase in expected
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future payoffs arising from information gained by experimenting with that arm in the
current period. In both experiments which directly elicited subjects’ Gittins indexes,
first period Gittins indexes were significantly below optimal.

When arms have normal payoff distributions and normal priors, as in Chapter 3,
nearly all choices of first period Gittins index are below the optimal value. Fewer first
period Gittins indexes are below optimal when the arms give Bernoulli payoffs and
have beta priors, as in Chapter 4. However, in every bandit, the median index was
below optimal, in most cases highly significantly.

Therefore, looking at choice data and at Gittins indexes directly, these three
distinct experiments suggest that experimental subjects value the information they
obtain from experimentation less than the theory suggests they should. This extends

the undersearch result to the more general bandit environment.

5.2 Regularities Emerging from Experimental Data

Having established that experimental subjects do not behave optimally in bandits, the
next natural question is how are they behaving? A careful understanding of system-
atic deviations from optimality can help economists, companies and the government
fashion strategies and policies to best respond to people’s actual experimentation
strategies.

Section 5.1 presented data supporting the claim that agents undervalue the infor-
mation they gain from experimentation in the first period of a bandit. However, the
complete characterization of the data is more subtle. Rather than just undervaluing
information, subjects consistently overvalue additional information once they have
done some initial experimentation.

In the choice data in Chapter 2, although subjects too quickly dismiss arms yield-
ing one or two bad initial payofls, they continue to switch among the remaining arms
at a rate which decreases only slowly. The optimal rate of switching decreases quickly,
eventually coninciding with the subjects’ rate of experiementation. However, the op-

timal rate continues to decrease faster than the subjects’; the subjects experiment
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too much in later periods. This can be seen in Figure 2.6, where agents are mixing
among more arms than would an optimal agent.

This later overexperimentation may be an attempt to balance the competing in-
terests of gathering information and exploiting the arm with the highest expected
value. Rather than following an index strategy, subject may devote some periods to
experimentation, and some to exploitation. However, they would be better off if they
experimented early, because then they would be able to act on the information they
acquired in more periods.

However, this overvaluation of additional information is more fundamental than a
simple rule of thumb for experimenting in the choice problem. It also appears in Git-
tins index data. In Chapter 3, Gittins indexes are elicited for several periods in each
bandit. Although information value ratios are initially significantly below one, they
increase significantly in later periods. This suggests that increasing experimentation,
relative to optimal, is a systematic feature of how people approach bandit problems
in the laboratory.

Exactly how this combination of too-low initial indexes and too-high later indexes
plays out in naturally occurring bandits is unclear. If choices are determined only
by indexes, as they were in Chapter 3, then suboptimal initial indexes may prevent
agents from ever making the initial choice of an arm. Without this initial choice, they
may never reach the point where their indexes are higher than optimal.

One outcome is suggested by the choice data: subjects may simply not experiment
enough initially, but then experiment too much later. This is not payoff maximizing,
but may be better than playing an index strategy with suboptimal index values; at the
very least, it improves the chance of converging to the arm with the highest average
payoff.

However, overexperimentation in the choice data may be caused by effects not
necessarily present in naturally occurring bandits. A “white coat” effect, or even just
boredom, could lead subjects to overexperiment in the choice environment. However,
these effects probably do not act in a Gittins elicitation environment, and are unlikely

to affect choices outside the laboratory. Whether or not agents in naturally occurring
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bandits conduct the initial experiments is an empirical question, and an important

avenue for future research.

5.3 Explanations for Suboptimal Bandit Behavior

Two explanations given in the search literature to explain undersearch may also lead
to underexperimentation in the bandit environment. Risk aversion and unobserv-
able experimentation cost would lead subjects to experiment less than risk-neutral
optimality and to have lower than risk-neutral optimal Gittins indexes.

The experiment in Chapter 2 controlled for risk aversion by having equally risky
arms and for experimentation cost by not imposing any. These explanations are
clearly rejected by this data, as subjects do not initially experiment enough despite
the absence of experimentation cost and risk-based differences in the arms.

This result is robust to the Gittins elicitation environment. The experiment in
Chapter 3 also had constant risk arms and imposed no experimentation cost. Even

with these factors controlled, initial Gittins indexes are lower than optimal.

5.3.1 Psychologically-based Models of Suboptimal Bandit Be-
havior

In addition to risk aversion and unobservable experimentation cost, three models
based on stylized facts about human behavior were considered. The motivation for
these models is that some aspect of human psychology may introduce a systematic
bias into the way agents solve bandit problems. Identifying a systematic bias, and
understanding that it is attributable to a particular psychological cause, can serve
as the basis for policies, strategies and institutions which help agents improve their

welfare.
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Hyperbolic Discounting

Hyperbolic discounting attributes suboptimal Gittins indexes to the discount se-
quence. Because hyperbolic discounters place relatively more weight on the current
period than geometric discounters, the relative value of the future payoffs which ben-
efit from present experimentation is smaller. Therefore, hyperbolic discounters have
smaller than optimal Gittins indexes, and will tend to select the arm with the highest
expected value rather than experiment with arms with lower expected values, but
about which less is known. However, because the hyperbolic discounters are not time
consistent, they will regret not experimenting, and thus be worse off.

The data from Chapter 3 demonstrate that information value ratios are increasing
from below one to above one as information is gained. Since the information value
ratio is always on the same side of one as the hyperbolic discount factor 3, this implies
that a characteristic of the agent is changing as the game is played. Hyperbolic
discounting does not allow for this. Therefore, hyperbolic discounting is rejected
in laboratory bandits. However, since there is no meaningful‘ time structure in this
experiment, it does not rule out the possibility that hyperbolic discounting plays a
role in economically important naturally occurring bandits, or even other laboratory

experiments, with significant amounts of time between choices.

Ambiguity Aversion

Ambiguity aversion holds that variance in the second order probability distribution,
the prior over the means of the payoff distribution, leads to suboptimal Gittins in-
dexes. Because agents dislike second order variance, they are willing to accept a
lower-valued “unambiguous equivalent” arm than would be an ambiguity neutral
agent.

Chapter 4 proves that ambiguity averse agents will have lower than optimal Gittins
indexes, but will also be willing to pay more than optimal to be told the true mean of
an ambiguous arm. This asymmetry arises because ambiguity averse agents value the

unambiguous bandit as an ambiguity neutral agent would, so the difference between
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the value functions for the unambiguous bandit and the ambiguous bandit is larger
when the value of the ambiguous bandit is affected by ambiguity aversion.

The data in Chapter 4 are consistent with this model. Agents have lower than
optimal Gittins indexes, and are willing to pay more than an ambiguity neutral agent.
However, small variations in the mean and in the variance of the second order prob-
ability distribution do not result in predicted significant changes in the level of the
Gittins index or the amount of willingness to pay.

Features of the data from other experiments are also consistent with ambiguity
aversion. Subjects’ initial hesitancy to experiment in the choice data can be explained
by ambiguity aversion, as can the lower than optimal initial Gittins indexes in Chapter
3. Furthermore, as information is gained about uncertain alternatives, the variance
of the Bayesian posterior of the second order distribution decreases, so the Gittins
index of an ambiguity averse agent should converge to that of an ambiguity neutral
agent. Therefore, ambiguity aversion predicts the observed increase in the elicited

information value ratios.

Horizon Truncation

Horizon truncation is a third behavioral explanation which appeals to an intuitive
notion of how agents might solve dynamic programming problems (rather than to a
well-documented psychological phenomenon like hyperbolic discounting or ambiguity
aversion). It holds that agents approximate the solution to a dynamic programming
problem by solving a short horizon version of the problem explicitly, and then adding
an “adjustment factor” to compensate for the periods they omitted in the truncated
horizon version of the problem.

That there is not enough initial experimentation in the choice data, and that
initial Gittins indexes are suboptimal, is consistent with horizon truncation if the
adjustment factor is too small; that there is too much later experimentation, and
that later Gittins indexes are supraoptimal, is consistent with horizon truncation if
the adjustment factor is larger than optimal. Therefore, the overall paths of the

data can be explained by a version of horizon truncation which has an adjustment
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factor which is initially too small, but does not decrease quickly enough in the face
of additional information. Furthermore, the information values are decreasing, which

suggests they satisfy an intuitive restriction on the adjustment factors.

5.3.2 Sampling Patterns

Although the aggregate data are consistent with both ambiguity aversion and horizon
truncation, it is important to remember that individual period-by-period choices are
not consistent with either of these theories, or any of the others considered here. In
the choice environment, subjects experiment with simple cycling algorithms which are
sensitive to only extreme payoffs. These algorithms do not produce choice patterns
which look like those from an index strategy. In aggregating the data, individual
cycling patterns can be averaged out to gain a sense of how much value the population
attributes to the information gained from experimenting with each arm.

Therefore, these models can be thought of as modeling either the “average” strate-
gies of a heterogeneous population, or as models which represent the amount of infor-
mation an agent believes can be gained from selecting each arm. Even though they
do not successfully predict period-by-period strategies, these models may still provide

insight into how and why agents make the choices they do in bandits.

5.3.3 Model Conclusions

Of the five models considered, only ambiguity aversion and horizon truncation are
consistent with the data. It is not surprising that horizon truncation is consistent
because it is not restrictive, and generates no surprising predictions. Ambiguity
aversion is appealing because it makes the surprising prediction that ambiguity averse
agents will pay more than ambiguity neutral agents to learn the true mean of an
ambiguous alternative.

In all likelihood, there is some merit to both of these models. It is unlikely
that, without ambiguity aversion, such strong willingness to pay results could have

been generated based on a “adjustment factor” alone. On the other hand, ambiguity
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aversion cannot explain why information value ratios ever exceed one; constant, small
errors in the adjustment factor could lead to increasing information value ratios as

the optimal information value decreases.

5.3.4 Good News for Optimality

Although I have argued that the data strongly reject the optimal model, there are
many important features of the data which could be interpreted as supporting opti-
mality. In both the choice and Gittins index environments, subjects do experiment,
and do acquire information about uncertain alternatives. In the choice framework,
this leads to higher-valued arms being selected more frequently than lower-valued
arms. In Chapter 4, Gittins indexes are higher for arms with higher expected values.

As information is acquired, the frequency of experimentation in the choice en-
vironment and the Gittins indexes decrease. The same holds true as the horizon
varies. Indeed, in later periods in the choice experiment, the rate of experimentation
in the data is not significantly different from that predicted by the optimal model. In
Chapter 3, the Gittins indexes are very close to optimal after the first period.

Taken together, these results suggest subjects get right all the important compar-
ative statics of the Gittins model, and are even pretty close to optimal in magnitude
after the first period. However, there is still a significant problem with concluding
that people behave optimally, and are maximizing their welfare. Even if they do well
once they select an alternative one time, the evidence presented here suggests people
behave far from optimally in determining whether or not to make the first choice of
each alternative.

As was argued in Chapter 3, if agents do not appreciate the information value of
the first selection of each alternative, they may not make the initial selection and will
therefore never reach the domain on which they behave (near) optimally. If the untried
alternatives do have high value, considerable welfare is lost. This problem looms
particularly large in brand choice problems, where consumers who underestimate the

information value of an initial trial may not try new products, depriving themselves
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of potential welfare gains, and hampering the ability of the market to select new,
improved products.

The models tested all preserve the comparative statics of the optimal model which
are supported by the data, but also predict lower than optimal first period information
values. In light of the results supporting optimality, the alternative models considered
here could be considered an effort to understand the first period decision, for later-

period optimality is little consolation if later periods are never reached.

5.4 Policy Implications

One important outcome of any economic research is policies which can help agents
improve their welfare. This section considers cases where the models considered here
can help shape policies designed to assist agents facing bandit problems, and some
cases where policy is not necessary.

Before considering specific cases, however, it is worth asking whether helping peo-
ple experiment more in bandit problems will do more harm than good. Encouraging
experimentation might be harmful because, once they have some initial information,
agents subsequently experiment too much. If the loss entailed in this overexperimen-
tation is greater than that from underexperimentation, then the policy is harmful.

I argue that, in almost every case, overexperimentation is the more desirable out-
come. This is true not only because experimentation is a public good, but also for
another, more subtle reason. When overexperimenting, the agent has both the incen-
tive and the information to correct his behavior once he has experimented too much.
Once he has bought the new orange juice a second time, he has the opportunity to re-
gret his purchase and modify his behavior; he has both the incentive and information
necessary to learn to experiment less. It is difficult to learn to experiment more, how-
ever, because the underexperimenting agent does not have the information necessary

to determine that he is not optimizing; he does not know what he is missing.
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5.4.1 When Public Policy Can Help

In the naturally occurring environments in which ambiguity has been discussed, ambi-
guity aversion typically induces a pure taste for information. For instance, ambiguity
aversion leads patients to request, and doctors to run, medical tests which will not
affect their choice of treatment. In the multi-armed bandit environment, however,
the ambiguity averse agent has another alternative: rather than incurring the cost of
acquiring information to reduce the ambiguity of an ambiguous arm, she can simply
select a less ambiguous arm. In most naturally occurring bandits, such an arm exists:
the arm which has been tried before. This means that, without the opportunity to
acquire information about ambiguous alternatives except by experimentation, ambi-
guity averse agents will simply avoid more ambiguous alternatives, and lock onto less
ambiguous ones sooner than optimal.

This demand for information suggests policies which look a lot like those for risk
aversion. Like risk averse agents, ambiguity averse agents will buy insurance. They
would be willing to just ensure against bad probability outcomes, but since probability
outcomes are unobservable, it is only possible to ensure against bad payoff outcomes,
just as with risk aversion.

However, unlike risk averse agents, ambiguity averse agents are always willing to
buy information about uncertain alternatives. In addition, their ambiguity aversion
means the gain to be had from providing additional information is greater than that
for ambiguity neutral agents. Therefore, there can be an additional social welfare
gain by having government supply or subsidize the acquisition of information about

ambiguous alternatives.

5.4.2 When Public Policy is Unnecessary

In many applications, public policy is unnecessary because other agents in the econ-
omy may have an interest in helping agents overcome their tendency to underexperi-
ment. Because they are willing to pay more for information than ambiguity neutral

agents, ambiguity averse agents provide an incentive for other agents to gather and
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sell information about ambiguous alternatives.

There are many agents in the economy who fulfill this function. Consumer’s Union
tests all kinds of products, from orange juice to cars, and publishes Consumer Reports
to provide information to agents facing brand choice problems. Although Consumer’s
Union is non-profit, for-profit niche magazines of all kinds conduct objective tests of
products to provide information about the usefulness and value of competing prod-
ucts.

In addition to product testing organizations, surveying organizations, such as J.D.
Power and Associates, reduce ambiguity by reporting the experiences of large samples
of users of different products to those considering a purchase. Their statistics on
automobile quality are widely published. This sort of information reduces ambiguity,
rather than risk, because it uses a large sample to provide a good estimate of how
likely a particular car is to be troublesome, but does not affect the probability of
getting a defective car.

Often agents who stand to gain from additional experimentation can encourage
information gathering. For instance, companies introducing new brands and stores
with low prices would both like consumers to experiment with them. If these agents
know consumers do not experiment enough, they can take steps to encourage experi-
mentation. A company with a new brand might offer free samples at the supermarket
or through the mail, or generous coupons. Stores with low prices may aggressively
advertise, or even, as some new dot-coms are doing, offer first purchases for free.
These measures all encourage experimentation which will benefit the consumer in the
long run.

If agents are aware of their tendency to underexperiment, they may also be willing
to pay experts to help them avoid underexperimentation. While bandit problems
are difficult to solve, an expert with a computer program can come much closer to
optimality than this experiment has demonstrated even the most analytically capable
non-experts can. Hiring an expert to make an oil company’s exploration decisions
may significantly improve profitability by preventing costly overexperimentation or

hasty recovery decisions.
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In certain circumstances, individuals can also rely on expert advice. There is
no shortage of expert advice on some intertemporal decisions, such as saving for
retirement. Experts, both personal and in the media, constantly remind people to
take advantage of tax incentives and employer matching plans. In this case, expert
advice supplied by the private market and public policy are effectively combined so
that people do not need to solve a dynamic programming problem. They can follow
the experts’ advice and will end up with an acceptable level of savings, if not one

carefully tailored to their preferences.

5.4.3 When Public Policy is Needed Because of Underexper-

imentation

Unfortunately, while some agents have incentives to assist firms and consumers who
undersearch and underexperiment, there are also incentives to exploit them. Agents
who underexperiment may be especially susceptible to bait-and-switch scams, or to
misleading advertising. A consumer drawn to a store based on a low advertised price
can easily be manipulated into buying a substitute product at a higher price because
she is disinclined to conduct a price search on the new product. In these cases,
public policy is needed to help agents. Laws like the recent regulations requiring
car dealers to clearly disclose down payment and financing information on leases can
help consumers avoid situations where their tendency to underexperiment would lead

them to compromise their future welfare.

5.5 Designing Replications and Extensions

Whenever experiments demand that subjects understand complex probabilistic struc-
tures, special care must be taken to ensure that they in fact understand how their
payoffs are determined. I was fortunate in this research to have Caltech undergradu-
ates as my subject pool. They are mathematically sophisticated enough to understand

basic principles of probability and random sampling.
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Past experiments on the Ellsberg paradox have asked subjects to understand com-
pound lottery structures, but they have not included a time dimension, or asked
subjects to do abstract evaluation like reporting a Gittins index or computing a will-
ingness to pay for information. Even the analytically sophisticated Caltech subjects
indicated that this problem was hard for them.

There are two factors which contribute to the complexity of these experiments,
and they suggest ways in which other researchers working with different subject pools
might try to reduce noise in their results. First, subjects may simply have difficulty
understanding the problem itself. The combination of time structure and the com-
pound lottery may not be clear to the subjects.

One way to help subjects understand the structure is to use actual probability
generating devices. Rather than selecting payoff urns from a collection of actual urns
containing actual balls, I used the balls and urns analogy to relate the probability
structure. This allowed me to simulate an extremely large number of urns with an
extremely large number of balls, which allowed me to use continuous approximations
in my index and willingness to pay calculations. However, one could use a small
number of urns and a small number of balls, which are actually available for subjects
to examine and to help them understand the probability structure. Cox and Oaxaca
(2000) use such a mechanism to convey a two-level probability structure to University
of Arizona undergraduates with good results.

Another approach may be to add context to the experimental instructions. Al-
though experimentalists are generally wary of using context for fear of uncontrolled
effects, adding context to these experiments may use subjects’ understanding of cer-
tain naturally occurring circumstances to help them understand the information and
incentive structure of the problem. I actually developed a set of instructions for the
experiment in Chapter 3 built around choosing to commute by car or train.

Experience also enhances understanding of the environment. Subjects were given
two guided practice bandits in each experiment. Although several people still had
questions after the instructions were read aloud, being walked through two sample

bandits alleviated most of their confusion. Although other less analytically sophisti-



184
cated subject pools might require more experience, using the mechanism undoubtedly
helps them understand it.

The second factor which makes these experiments difficult for subjects is, once
they understand how their payoffs are determined, actually determining the best
strategy. Pilot experiments suggested, especially in when eliciting the Gittins index,
that it was not obvious to subjects that the Gittins index should be higher than the
expected value of an arm. Since my objective was to understand whether or not
information values were close to optimal given a subject understood they exist, I
edited the instructions to include some strategic advice explaining why information
values will be positive, and selected the guided practice periods to demonstrate that
the information value should be positive.! My impression was that the additional
instructions helped subjects a little, but the guided practice periods really helped
subjects understand how the information value arises.

Given that subjects understand that there is an information value, another dif-
ficult aspect of determining the right strategy is computing the magnitude of the
information value. Even Caltech subjects did not manage to accurately compute Git-
tins indexes, though they managed to do so with systematic biases; whether or not
subjects computed optimal indexes is what the experiment was designed to test. It
is probably reasonable to expect that less analytically sophisticated subjects will not
be better at solving the dynamic programming problem necessary to compute the
Gittins index.

Nevertheless, other subject pools may benefit from some training to help them
understand comparative statics which were intuitive to Caltech subjects. Dedicated
training sessions have been used to teach, through simple examples, the basic solution
techniques to problems posed in subsequent experiments. However, it should be noted
that while Caltech subjects understood some simple statics, like the information value
gets smaller as additional information is obtained, they did not understand other

features, like the effect of the horizon or prior mean in Chapter 4.

My impression is that figuring out the information value should be positive was more a sudden
epiphany than a slow learning process. For this reason, I did not consider it to be interesting in
itself.
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5.6 Avenues for Future Research

This set of experiments has expanded economists’ understanding of the factors which
influence behavior in economically significant multi-armed bandit problems. How-
ever, it has also raised a number of important questions which may lead to further
improvements of our understanding of bandits, and suggest additional ways in which

agents in bandit problems might be helped to improve their welfare.

5.6.1 Choice

As discussed in Chapter 2, actually computing the indexes for an interesting bandit
with equally risky arms is computationally challenging. With technological improve-
ments, it may be possible to perform these computations for certain clever experi-
mental designs. For instance, if the sequence of payoffs from each arm were known
to the experimenter beforehand, the number of indexes which would need to be com-
puted would be dramatically reduced. Although each would be time consuming, the
difference may be enough to develop a satisfactory notion of optimality for a normal
arm with an informative prior. This would allow analysis of choice data from an
experimental bandit with a well-controlled prior.

In addition to computing a better approximation to the optimal strategy, choice
data may be improved by expanding the set of choices. In the bandits presented in
Chapter 2, there were enough periods and few enough bandits that sampling could be
conducted through cyclical algorithms. If there were more choices than the expected
number of periods, however, subjects would be forced to pay attention to initial

payoffs, and more carefully consider when sampling was appropriate.

5.6.2 Solving Bandits

Horizon truncation models how agents reduce a complex dynamic programming prob-
lem to a simple one. One way to test this model against ambiguity aversion would

be to have subjects play a very simple bandit which could be easily solved explicitly.
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For instance, the example given in Chapter 1 can be solved with a few quick algebraic
steps. An agent would not need to truncate the horizon to solve that problem. How-
ever, if she were ambiguity averse, she would still have lower than optimal Gittins
indexes.

Similarly, subjects might be given a training session which taught them about
dynamic programming. Although the strategy section of the instructions in Chapters
3 and 4 discussed the factors which lead to variation in information values, a more
thorough explanation might alter how agents approached these problems. If this
resolved the suboptimalities, it would suggest education as an important aspect of

any policy directed at people facing bandit problems.

5.6.3 Bandits in the Market

One particularly economically significant form of experimentation cost is that imposed
by markets: prices. Grether et al. (1988) found support for three models of price
search in their laboratory experiments. In a brand choice environment, arms are
goods which yield different payoffs. The distribution of payoffs arises from variation
in product quality, and from individual variations in tastes. However, if one good is
consistently better, its price will rise, and send a signal to others who have not tried
it.

Since so much commerce takes place in such markets, it is worthwhile to study
how the addition of a market structure affects behavior in bandits. If all agents have
the same preferences, prices may send a signal. In this case, experimentation may
be a public good, which helps even those who did not initially experiment with the
best alternative. If agents have different preferences, so market prices contain little
information, the market may reduce to the individual choice case.

Since preferences are often only correlated, and differences in prices will affect net
surpluses, most naturally occurring markets may fall between these two extremes.
Understanding how a market structure affects bandit strategies may help develop a

crucial link between individual behavior, and individual deviation from optimality,
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and aggregate behavior and disequilibrium.

5.7 Concluding Remarks

Although in detail this study examined behavior in multi-armed bandit problems, the
broader goals accomplished by the method deserve some attention. Chapters 3 and
4 develop formal models of how decision makers who do not satisfy all the typical
assumptions of rationality might behave in bandit problems. The primary point of
Chapter 3 is that hyperbolic discounters’ Gittins indexes will be lower than optimal,
by a constant factor, in all periods, but experimental subjects’ indexes are increasing;
the primary point of Chapter 4 is that ambiguity averse agents’ Gittins indexes will
be lower than optimal but their willingness to pay will be higher than optimal, and
that this is true for experimental subjects. However, the theoretical exposition in each
chapter is built on the subtext that it is possible to use simple behavioral models to
make predictions about complex economic problems.

The extension of the basic set of bandit results to hyperbolic discounting is
straightforward because, for the naive hyperbolic discounters considered here, time
inconsistency is not a factor in the computation of the index. The extension to ambi-
guity aversion is much less straightforward, but nonetheless possible. The theoretical
exercise is worthwhile because these extensions generate predictions which can be

used to test for the presence of these phenomena in simple experiments.

Given the complexity of computing Gittins indexes, and the restrictions and sim-
plifications necessary to even be able to numerically determine them, one might argue
it is not surprising that experimental subjects are unable to calculate optimal Gittins
indexes. Nevertheless it is valuable to understand exactly how agents deviate from
optimality, and why.

Although subjects clearly do not use Bayes rule to determine their beliefs in every
possible future state, use backward induction to determine the expected value of a

given strategy and policy improvement algorithms to determine the best strategy,
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they nevertheless have a sense of how much they might learn from experimenting
with each arm. Computing the exact numerical solution is very complex, but getting
close, and having the right comparative statics, could be quite intuitive. The utility of
the optimal model, and the alternatives considered here, is to provide economists with
a formal representation of how people behave; the models considered here are useful
as long as agents behave as if they are using the models. In addition, the optimal
model provides a normative benchmark against which behavior can be measured to
determine if policies can help agents improve their welfare.

What sort of mechanisms might lead agents to behave as if they are using an
optimal model? They may solve a smaller version of the problem, as suggested by
horizon truncation, which would generate comparative statics which are similar to
those in generated by the optimal model. Similarly, a hyperbolic, risk averse, ambi-
guity averse or quantal response agent might solve a smaller version of the problem
and generate comparative statics which resemble those of the model which generated
them.

Agents may also have simple rules which the use to understand the value of infor-
mation. For instance, they may begin with a baseline information value, and decrease
it linearly or exponentially as additional information is obtained. Since a linear de-
crease is not a bad approximation after the first period, the quality of this rule depends
on how the initial value is determined. One possibility is that agents use the same
initial information value for every bandit. For individuals who encounter a broad
range of bandits, with different payoff scales and variances, this will not in general
lead to optimal or close to optimal strategies. However, agents repeatedly encounter
bandits with similar scales and variances, as might oil exploration firms or pharma-
ceutical researchers, may have an initial information value which is well-calibrated
from experience, and which could provide very close to optimal behavior.

However, the evidence here suggests that agents are sensitive to changes in the
scale and variance of their payoffs, as information values change in response to prior
beliefs. This suggests that if agents are using a linear decrease rule, they are de-

termining their initial information values individually for each bandit. The models
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considered are designed to help us understand that process, and ultimately guide us
in how that process might be improved.

In choice environments, it is not necessary for agents to formulate an initial infor-
mation value, or to quantify an intuitive sense of the need to further experimentation.
Instead, agents could use cycling rules like those discussed in Section 2.6.2. If agents
do not cycle enough, they will appear to underexperiment. If they have a sense that
this leads to underexperimentation, they may compensate by experimenting more
later.

The fact that different mechanisms may operate in choice and Gittins index frame-
works suggests that there may be a crucial disconnect, not considered here, between
the way agents solve bandit (choice) problems and the way they compute Gittins in-
dexes. Although the choice data are broadly consistent with the results about Gittins
indexes presented here, it is important to understand they may arise from fundamen-
tally different processes which may or may not produce similar results in any given
problem. Further research is necessary to understand the fungibility of choice and

Gittins index results.

One of economists’ most important roles is to contribute to the public policies
which help people improve their welfare and to corporate strategies which help com-
panies maximize profits in the face of individual suboptimalities. Understanding why
people do not behave optimally provides important insights into which policies and
strategies will be effective and which will not. This understanding is a product of

developing and testing models based on behavioral assumptions.
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