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ABSTRACT

The + Wisgur corrections to semileptonic decay form factors for the Q, — Qe
system are enumerated, and a general theorem on the vanishing of all —7%%— corrections
at threshold is derived. The contribution of charged higgs scalars to the neutron
electric dipole moment in multi-higgs models is also examined, and found to be near

present experimental limits.
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1. ASPECTS OF HEAVY QUARK PHYSICS

In the Standard Model and its generalizations, charge conjugation and parity vio-
lating (CP violating) processes arise because of complex couplings involving the higgs,
fermion, and other fields. In the Minimal Standard Model, the complex couplings in
the quark mass matrices are shifted into the Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix by field redefinitions. Extensions of the Standard Model typically
have new CP violating complex couplings (e.g., higgs mass matrices in multi-higgs
models, or squark mass and kinetic energy terms in supersymmetric models), which
cannot be incorporated into the CKM matrix.

Processes involving CP violation therefore offer the possibility of distinguishing
between Standard and non-Standard Model physics once the CKM mixing angles are
sufficiently well determined. Theoretical methods allowing more precise experimental
extraction of particularly important CKM angles (such as V, and V,,; ) set the stage for
sensitive tests of physics beyond the Standard Model; the heavy quark symmetry of
Isgur and Wisel'?], to be explored in Chapters 1I-1V, is such a method. Hypothetical
heavy quark processes leading to CP violation too large to be explained by the CKM
matrix also provide mechanisms for probing physics beyond the Standard Model;
the contribution to the neutron electric dipole moment of Weinberg’sll three-gluon
operator, examined in Chapters V and VI, is one such process.

Although both topics above feature heavy quarks, they cast the quarks in very
different roles. The heavy quark symmetry arises as a simplification of Quantum
Chromodynamics (QCD) in the large-mass limit, while the importance of the top

and bottom quarks to electric dipole moments is due to the large coupling of massive



quarks to higgs particles.

Because the top quark is expected to decay via W bosons before it has time
to hadronize, the heavy quark symmetry will not be useful in predicting quantities
pertaining to top physics. The bottom quark, on the other hand, appears ideally
suited for the application of the large mass limit to QCD, as done in Chapters II

through IV.
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II. INTRODUCTION TO HEAVY QUARK SYMMETRY

1. Ideas behind the Heavy Quark Expansion

The basic idea behind the heavy quark formalism is that QCD displays new
symmetries in the limit of infinitely heavy quark masses. We can make this more
precise by considering a meson, say a B meson, and letting the mass of the bottom
quark m, go to infinity with the meson four-velocity v* fixed. In this limit, the heavy
quark carries nearly all of the meson’s momentum, and we can write the heavy quark
momentum as p* = mgv* + k*. The residual momentum k* measures how far the
heavy quark is off-shell, and should be of order the QCD scale Agyrp. One pictures
the meson as consisting of a bowling ball (the heavy quark) and many ping pong balls
(the light quarks and gluons).

Eventually we will make an effective Lagrangian to describe the dynamics of this
system, but already we can see some of the salient features such a description will
have. Since the light degrees of freedom can transfer only order Agpp of momentum
to the heavy quark, the four-velocity of the heavy quark will be conserved. The
effective Lagrangian will therefore have a velocity superselection rule specifying that
heavy quarks of different velocities do not interact with each other via nonperturbative
strong physics. It is important to note that % << 1 always holds, since the transfer
of large momentum by an infinite number of soft gluons results in the disintegration
of the meson and is therefore irrelevant to our problem.

Another feature of the m, — oo limit appears when we go to the meson rest frame,

where the heavy quark acts as a static color source. Here, the heavy quark flavor is
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irrelevant to dynamics. Furt:her, in the presence of the color magnetic field that is due
to the light degrees of freedom, a gluon with momentum Agp cannot flip the spin
of the infinitely heavy quark. In the infinite mass limit, then, the spin of the heavy
qua;rk is conserved. The resulting SU(2/N) spin-flavor symmetry (dubbed the Wisgur
symmetry after M. Wise and N. Isgur) will be manifested in the effective Lagrangian
we derive in the next section, but first we look at some immediate experimental
implications.‘

To the extent that the b and ¢ quarks are very heavy, nonperturbative QCD
treats them the same. The light degrees of freedom in a B or corresponding D meson
will thus be in the same state. This implies, for flavor-changing current J* acting on

states normalized to twice their mass, that

(Ol7#|B(v)) _ {O1J*|D(v))

= 2.1.1
1/ sz 2/ 2mD ( )

Defining the decay constants fy by
(OlJ#*|X) = fxpk, (2.1.2)

where py is the momentum of meson X, we see that the decay constants scale as

fB =4/ %fp- ' (2.1.3)

A Preliminary lattice calculations make (2.1.3) suspect!®). Whether the B and D mesons
are heavy enough for the above relation to apply with any accuracy must wait for
more lattice calculations or experiments, although we will see how to estimate errors
in the next section.

Another implication comes from the spin symmetry, which relates matrix ele-

ments involving vector and pseudoscalar mesons. The spin operator for charm quarks
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S, = % fd3zclo,c, whose commutation relations with flavor-changing currents are
known, is a symmetry operator of the effective Hamiltonian. Writing the spin part
of the D meson wave function as |D) = | T|) — | |1) and of the vector meson as
|D*y = | T1) + | 11), we see that the spin operator changes the pseudoscaler into a

vector meson: S,|D) = 1|D*). Then, for example,
(DV3]B) = D[Sy, V3] | B) = —(D"| 4| B), (2.1.4)

where V,, A, are the 4 components of the vector and the axial flavor-changing cur-
rents, respectively. Similarly to the pseudoscalar case above, this relation holds be-
cause the state of the light degrees of freedom for the D and D* are identical for
infinite ¢ quark mass.

A variety of relations can be derived by using commutation relations such as
those above, but a simpler method exists. By examining the QCD Lagrangian in the
large-mass limit, an effective field theory that duplicates the QCD results, order by

. A .
order in =222 can be constructed(!.

2. Derivation of the Effective Lagrangian

The spin-flavor symmetry arises because nonperturbative gluons transfer mo-
mentum that is small compared to the mass of the heavy quark. In principle, one
arrives at the effective Lagrangian L ; for nonperturbative, strong interactions by
integrating hard gluons out of the QCD Lagrangian. In practice, one matches matrix
elements in the two theories to determine the coupling constants in £ 4. For example,
the QCD propagator for a heavy quark with momentum p* = mgv* + k* is

i(ﬁ+m)_i(m¢+%+nz)w(1+ﬁ) i
pP—m?  2muv-k+kr T 2 vk

A .
+O( ifD ). (2.2.1)
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Because pair creation of heavy quarks is suppressed, we need use only the positive-
frequency component of the heavy quark field. Then ¥Q = Q-i»@(ﬁ%fﬁ). Since heavy
quarks are always nearly on-shell, the projection operator —%’é in the propagator may
be set to one. Thus, the leading-order, heavy quark propagator is ‘l—!i—k' Similarly, since

i’

Q00 = A D)0 + o(2eR), (2:2.2)

the gluon vertex to order one is

iglv,, (2.2.3)

where g is the strong coupling constant and 7 is a SU(3) generator.
These Feynman rules are reproduced to lowest order by £, = th,v- Dh,, if we take
h, to be a rescaled heavy quark field with residual momentum k. The Lagrangian

can be made Lorentz-invariant by integrating over all velocities

L= / L (2.2.4)

This evasion of the No-Go Theorem, which forbids mixing of internal and spacetime
symmetries, is accomplished by using an infinite number of fields, one for each four-
velocity. For additional flavors, one simply sums over the flavor index, making explicit
the spin and flavor symmetry.

A simple method for deriving from QCD the @(é%n@-) symmetry-breaking cor-
rections to L g is to define the rescaled quark field in terms of the on-shell QCD heavy
quark field c(x) by shifting away its large momentum dependence and projecting out

the component that behaves like a particle of momentum mv :

P () = (S pe(apeimers, (2.25)



.
Sirice we ate not interested in antiquarks, we will drop the negative frequency com-
ponent of c(x) by hand. Inverting the definition gives a 1 expansion for the QCD

field

le) 1h - e--zm LU 1+ ;E (ZLD )2 hv‘ (226)

C(.’l?) — e—imcv-x(l
Making this substitution in the QCD Lagrangian gives
7(c) [+ 1 R C
Log = h;(,,)zv' . th,,) - %hfﬂ) [D? + 1g,0,,G*] h( ) (b,v e c,v), (2.2.7)

in which G* denotes the gluon field-strength tensor, and we have treated the ¢ and
b quarks as heavy. The form of the b quark correction is the same as that of the
c quarks, but the coefficients will be different at the charm-mass scale because of
renormalization from the b to ¢ scale. Since @(1_\_@5_9_) corrections are dominated by
the charm quark, we will not need the (’)(9—%%2) corrections. To examine weak meson
decays at first order will, however, require the (’)(é-gi—p) corrections to flavor-changing

currents. Substituting Equation (2.2.6) into vector and axial currents gives(®!

A (@) = [ m] ® 1 ['r -

The above results are valid to (’)(A;L—'ﬂ), at the charm mass scale. Since relations

(2.2.8)

m 5] hgb) (m)e—i(mbv—mcv')-w

between physical quanﬁties are renormalization pbint-independent, our computations
at this scale will be relevant for predictions at any scale. The factor involving strong
coupling constants comes from strong renormalization of fhe Lagrangian between the

b and ¢ mass scales, and is numerically equal to about 1.1 .
An immediate check on the validity of the —7}; expansion for b and ¢ quarks can

now be made by examining the B* to B versus D* to D mass differences. At leading-
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order we expect degenerate masses for the pseudoscalar and vector mesons, with
corrections of order Agep. Since the B mass splitting is about 45 MeV and the D
mass splitting i1s 145 MeV, this agrees with leading order predictions and a value of
Agep = 200 —300MeV. At first order, the mass splitting scales as L times a strong

renormalization factor of 1.15, so we expect the mass splitting ratio to be

= . 2.2.
mp. —mp  1.1dmg (229)

In this case, the leading j—x%‘fﬁ correction is less than 10%.
This prediction is a simple one which is duplicated by the nonrelativistic quark
model. Less obvious, more useful predictions arise when we apply the heavy quark

formalism to semileptonic decays.

3. B — D Semileptonic Decay in the Wisgur Limit

Possibly the most important semileptonic decay to consider is B — D. The rate
for this decay is proportional to the Kobayashi-Maskawa-Cabbibo mixing angle V,,,
but because the hadronic part of the matrix element is unknown, it is difficult to
extract the mixing angle from experimental data. Current models of the hadronic
matrix element leave a theoretical uncertainty in V,, of around 30%, although even
the error is difficult to estimate. The systematic, QCD-based, é%%p‘ expansion can do
better than this, and is expected eventually to allow the extraction of V,, with errors
of @(%ﬂ-), a few percent. Although the calculation has been done to 0(%2)[7],

we will reproduce here only the leading-order analysis!®l.

The B — D decay factorizes (up to electromagnetic corrections) into hadronic
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and leptonic matrix elements. A typical hadronic matrix element such as

HY = (D(0")|Vear(0)| B(v)) (2.3.1)

is constrained by the Wisgur symmetry to transform under spin-flavor rotations in a
manner dictated by the Wigner-Eckart Theorem and the transformation properties
of the heavy quarks in B, D and V*. Further, this matrix element will be related to

transition elements involving B* or D*, as well as A”__, . because the light degrees of

weak?
freedom for the B, B*, D, and D* mesons are identical.

Lorentz invariance allows the experimentally relevant matrix elements to be pa-

rameterized by six form factors, which may be defined by

(DE)VH|B(v)) = filo+v) + f_(v =), (23.2)
(D*(v"), €| A¥|B(v)) = ag€™ + a € - v(v+ ') +a_e-v(v— '), (2.3.3)
(D*(v'), elV¥|B(v)) = ge*? s gu;, (2.3.4)

where € is the polarization vector for the D* meson, and V* and A* are weak vector
and axial currents.

In contrast, Wisgur symmetry will permit all six of these form factors to be
written in terms of one unknown function {(v - v'). A useful mnemonic for doing the

group theory that leads to this result is to construct interpolating fields

B =" (2.3.5)

@ Yot

and

.l))é§ == FLS}C) awfg7§5f§, (236)
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where the Dirac indices a, 3,6 are implicitly summed, and [,¢ represent the light
degrees of freedom.
Using these fields and extracting the Dirac structures that are relevant to heavy

quark spin transformations, we may write schematically

(D*("|RITRD|B(v)) = (0}t7° R R THO ROT)0)
(2.3.7)
= (0t J510)[7° ¢ HET L), 5.
Here we have contracted the heavy quark fields and have retained all momentum

integrations and unknown strong interaction physics in a nonperturbative matrix

element, which can be parameterized by

Pop = (0]t 15]0) = Ab.5 + B+ C i, (2.3.8)

in which A B, and C are arbitrary functions of v-v’. However, since the three functions

simply add together after the contraction in Equation (2.3.7), P, 4 reduces to

Paﬁ = f(?) . Ul)éaﬁ. (2.3.9)

Since the light degrees of freedom are the same for all of the matrix elements under
consideration, similar treatments will give other matrix elements in terms of the same

unknown function £, dubbed the Isgur-Wise function. The results arel®!

(D()[V#]B(v)) = /mmg(v - v')(v +v')*

(D™ (v'), el 4| B(v)) = imgmé(v - o) (L +v - o) o0 ] (23.10)

(D*(v"), V¥ B(v)) = —i/m mt(v - 0')e" P et ov;
The reduction of six form factors to one unknown function is an impressive feat
of heavy quark symmetry, but it is not the best. Since &y°c is the generator of charm-

quark number, it acts trivially on states. However, Wisgur symmetry also tells us its
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matrix element in terms of the Isgur-Wise function. Since

(D(v)]|&y°c| D(v)) = 2m 2°

=m(v- v)Tr[l—;iAfOlﬁf] (2.3.11)

2
= 2mv°¢(1),
the Isgur-Wise function is normalized to one at threshold (v = v'). The significance
is that B — D decay rates at threshold are now completely predicted in terms of
one unknown quantity, the mixing angle V. This allows extraction of V,, from
experimental data.

Previously, theoretical errors were comparable to or larger than current exper-
imental data. Currently, using the heavy quark formalism, theoretical errors are
expected to be a few percent, much better than existing experimental errors. Much
higher production of B mesons is expected in the next few years (e.g., at Cleo, B
factories, etc.), so it seems likely that we will know V, quite well, quite soon.

The reason we expect only a few percent theoretical error is that somewhat
surprisingly, the O(Q%%Q—) corrections to the normalization of ¢ at threshold also

vanish! Indeed, it turns out[®'?

that similar statements can be made about heavy
Lambda and Omega systems. We demonstrate the techniques of O( _1}%%2) calculations

and the vanishing of threshold corrections for the Omega system in the next Chapter.
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ITI. Semileptonic Decay of 0, *

1. Introduction

Recent advances in heavy quark physics!!-3!

increase the predictive power of QCD
and allow the determination of previously unknown, strong matrix elements. This is
accomplished by treating the heavy quark as infinitely massive compared to the QCD
scale. In this limit, QCD contains an additional SU(2N) spin-flavor symmetry!!],
where N is the number of heavy quarks. This symmetry has been exploited to derive

relations among form factors! in numerous systemsl!2-147]

, including B — D, A, —
A,, and Q, — Q.. The calculations can be understood in terms of an effective
field theory!d, which incorporates SU(2N) breaking terms as perturbations in a 1/m
expansion.

Because we expect the expansion parameter Agop/m, & 1/5, it is desirable
to include the 1/m, corrections. This is particularly important for extraction of
the Kobayashi-Maskawa mixing angle V,, from baryon systems, where the relevant
corrections may be significantly larger (typically a factor of two compared to mesons
with similar light-quark content). It is a testament to the power of the above method
that predictive power remains even at (9(%;) Indeed, for the B — D and A, — A,
systems, all @(;;i-) corrections vanish at threshold™, allowing the possibility of

determining V,, to this order.

*from G. Boyd and D. Brahm, Phys. Lett. B254:468 (1991).
TThe heavy quark symmetry was present in earlier phenomenological models, such as that of Ref.

[11).



13

In this letter, we calculate the C’)(;%—Z) corrections to the Q, — Q. weak form
factors. As in the two cases mentioned above, relations between form factors can
be derived at this order, and all O( ;f;) corrections vanish at threshold. The nor-
malization and much of the notation we use will follow that of Reference [14]. After
recapitulating the leading order results and displaying the (9(;7-11-:) effective Lagrangian
and flavor changing current, we consider the various unknown matrix elements both
at and away from threshold. The results are tabulated in Tables 1 and 2.

We will denote the § states by QM| with M = 1 corresponding to Q and M = 2

to 2*. The tensors Bﬁ”f that describe the QM states are

Bl(v,s) = 7 v )vsulvs),  Bi(v,s) = u,(v, ). (3.1.1)
Here, u, is the Rarita-Schwinger spinor for the Q*, and flavor indices have been

suppressed. The tensors obey

¥BY (v,s) = BM(v,s), v*BM(v,s)=0, B2 =0 (3.1.2)
The vector V”’land axial A* current form factors are defined by
{2, NV (0, 8)) = a(v', ') [F7* + Fyo* + Fgo™]u(v, 5)
(Q. (0, Ay (v, 8)) = u(v', &) [G7"75 + Gyv'y; + Gyv™yu(v, s)

(0 (", ) V¥, 8)) = up (', ') [Nyo g ys + Nyo oy + Nyoto™yg + Nyg™ o] u(, s)

Qx(v', )| A*|Q (v, 8)) = (v, s") [K oty + Ktk + Kgo™o™ 4+ K™ u(v, s
c b \ 1 2 4

The leading-order results can be parameterized by two unknown functions' (see the

first two columns of Table 1):

(@ (o, s[RI TR |0 (v, 5)) = C BY (o', s)TBY [—g"€,(w) + v"v"&y(w)] (3.1.4)



14

—6/25
C= (W> =1.1. (3.1.5)

a,(m,)

The coefficient C is the strong renormalization correction evaluated at the scale u =
m,. We are free to evaluate all matrix elements at g = m_ because relations between
physical quantities are independent of the subtraction scale. To leading order, the
form factors are uniquely determined at threshold by & (1) = 1.

To find the leading 1/m, corrections, we start with the effective Lagrangian!®!5]

o N S ; .
L = hPiv. DhY +h:,(‘:)zv'°Dhi,) + éﬁg{-hfﬂ) [(v'- D)* — D* - 19,0,,G*"] hi,) (3.1.6)

<

in which G*¥ denotes the gluon field-strength tensor, and the flavor-changing currents

2m

IR
¢ (3.1.7)

o g
AF = Chi"‘) [’7’#75 - = D 7“7’5] hf}b)
2m,

at the scale g = m_. The (v'- D)* term appearing in the interaction Lagrangian £’
(the third term of Equation (3.1.6) ) can be ignored because the equations of motion

S) in a physical amplitude suppresses the amplitude

imply that an insertion of (v'- D)h
by O(L).

Insertions of the interaction Lagrangian with the dimension-three part of the

currents give rise to the unknown, time-ordered matrix elements

MN/ Ty _ —1s ;oM o 4. (702 v (2) vy (101 (h) : N

1% (uit) = T2 0 e { [ ate (19,609 @) (O ) ©} 190,

IMN(:T) = ' oM o', 8T d*z (R 2R (z) (R9TR" (0) 3 19V (v, s

3 ‘ 2m ¢ v v v v b )
(3.1.8)

[

].M N

Since D? transforms trivially under the spin symmetries, I}V contributes as does the

right hand side of Equation (3.1.4), but with new functions £, (w) and &,(w).
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The dimension-four part of the currents introduces

(Y (IS D T D10 (0, ). (3.1.9)

[

IéwN(w;’YAF)A =

2. The G* Contribution

The Isgur-Wise symmetry constrains the form of IMV to be

1+ 4
2

4

MY (w;T) = BY (v, ¢') o™ ——TB) (v, s) M}, (3.2.1)

where ]Wf;’ is the most general tensor (antisymmetric in A, p), which can be con-
structed from v,, v, and g,5. MY, may not contain v}, or v, because of Eq. (3.1.2).
Further, since [v,, ¥](1+ #) = 2(1 — #)(7, + v,), v\ and v/, are also disallowed. We

may therefore write

ML, = 7% [n(w)gi g, + ny(w)ghv™ vy + ns(w)giv*v,] (3.2.2)

without loss of generality. Of these three new functions, only 5, contributes at w = 1.

Some algebra gives
LY w;T) = (v, s )ys{—m [1,07" + TF + ¢T + wl'] + 9, [(# + w)T(# + w)]

— 315 [(0?* = )7, I9" = (4 + w)l' = (1 + wh)T#] }rsu(v, s)
I (wiT) = a, (', ) { =Ll (" + o) + Lo T(§ + w)

+ Lok [(w0 = )7 Ty, =T — U] Jrsulv, s)
(3.2.3)

The functions 7, and 75, contribute as do £ and &,, respectively, but with a propor-
tionality constant dependent on the final spin state. They can therefore be eliminated
from the form factors for either decay by redefinitions of £, and £,, although we will

not do so at this time.
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3. The ) Contribution

To examine IMN (w; 4*T), (see Eq. (3.1.9)), we first look at

, . -1 7 {c) - /
BN (w; D)y = 5= (@ (0, )R D, LI (v, )

m

(3.3.1)
= BY(v',s")I BY (v,s) P*
where the most general form for P{" is
PL = =5 [r0 040, + K00, + g0, + g+ gl 4 rgle]. (33.2)

In the w — 1 limit, the part of P{" that gives a nonvanishing contribution to

IN(1;T) depends only on (k, + £,). However, since v IMN (w;T), = 0,
wky + Ky + kg = 0, wkg + Ky = 0, (3.3.3)

so I}N gives no contribution to the current matrix elements at threshold. Our six

unknown functions reduce to two after application of the usuall™ trick

-1 o ()T Q
5 (', 910, (R TRY) | (v, 5)) = 5

L ¢ - <

(v' =), (', ") RITRD |0, (v, s))
= L' (w;T), + I;'(w;T),
(3.3.4)

where TMN (w; I), is defined identically to I}V (w; I'),., except that the D, acts on the
bottom quark field, and to the order we are working, ) = mo—m, = mq—m, ~ 1GeV.

Dotting Equation (3.3.4) with v#, using Equation (3.1.4), and noting v* MV (w; T), =

0, we get
a e,
s = 3m (1 +w)>? 4= 3m (14 w)!
Q1 —w , :
kg = m(—-——~—~2§2 — (Ky + wky) kg = —(WK; + Ky). (3.3.5)

3m,
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A similar argument shows that I}V (w;T), like its companion, gives no contribution
at w=1.
Thus, the dimension-four part of the current gives vanishing contribution to

QY — OM matrix elements at threshold.

4. Normalization at Threshold

By comparing the vector current to the QCD charm-quark symmetry generator,

we get two normalization conditions at threshold (there is no implied sum over M):

(0 (v,9)[er° el (v, 5)) = 1 = (¥ (v, 9)|T{(1 +L)AP°RIHQY (v, ))
, oy e —_ .
= o (v, )R (1) ° — iv° P )R | (v, 5))

— 51(1) + 21{\4&1(1;70) + 21%3/1@?’(‘1;,};0) + ]ﬁi;w(l;’}"x“/o))\ . jé\/[}\fi(l;,y(),y)\)/\
(3.4.1)

Substituting I31(1;4%) = —3n,(1), I#(1;7°) = 3n,(1), IMM(1;4°) = IMM(1;4°) =

0, and TMM(1;4°) = £,(1), these conditions reduce to

51(1) =1, 51(1) - 37]1(1) =0, 51(1) + %771(1) = 0. (3.4.2)

Thus #7,(1) = £,(1) = 0, and all C)(;;E:) corrections vanish at threshold. In another
paper[’® we explore the generality of this result. The distinct measurable quantities

at threshold to O(=5) are [C is defined in (3.1.5)]

1
me

F()+F(1)+F(1)=C, G(1) =" K(1)=%C. (3.4.3)
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5. Conclusions

Since £, (1) = 0, we may absorb the contribution of IV (w;T) into the definitions
of £, (w) and &,(w) without affecting their normalization at v = v’. Then away from
w = 1, we have seven unknown functions and one dimensional constant describing
fourteen weak decay form factors. The results for the vector and axial currents are
listed in Table 1. Recall that 7; and «; are O(Agop/m,), while & are O(1). The

relevant form factor is C' = 1.1 times the sum of the nine entries; e.g.,
Fy = L1 x [0 4 5206 (w) + 257241+ Z1)6(w) + wiy (w) + (1 = w?)ig,(w)

+ (w4 1)ry (w) + w(w + 1)k, (w)]
(3.5.1)

We can simplify these results by defining ¢! = ¢; — 3n; and &’ = ¢, + 35, for i = 1,2.
The new relations, correct to (’)(;é—c-), are listed in Table 2.

Predictions for form-factor relations are easier to construct in the Q* system
since fewer nonperturbative functions contribute. For example, measurements of
N, over a range of recoil momenta and a measurement of K, at a single kinematic
point determine £/(w) and €. Values of K, at subsequent kinematic points are then
predicted by the results in Table 2.

At threshold, the O(&L) form-factor predictions coincide with the O(1) predic-
tions. Perturbative corrections have been calculated! and are easily incorporated
into the results of this paper. Thus, if the §, is seen in the near future, threshold
measurements of the decays discussed here should yield a value for the Kobayashi-
Maskawa angle V, with theoretical uncertainties of order ;11—2- While these uncer-

tainties are likely to be larger in the present system than in, say, the B-D system,

alternate systems capable of extracting V,, have additional importance in understand-
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ing higher-order corrections. The existence of three separate systems in which rates
are predicted to O(?—nl——) provides a useful laboratory for both theoretical and experi-

mental physics.
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7. Tables of Form Factors

& & ‘g%c'fl 5%52 T M2 3 Rq Ko
o e e 2 wr-1 w  1-w? 0 w+l w(w+l)
G, | % %‘—'—1- Y72 (w—-1) w  1—w? 0 w-1 ww-1)
2H1—w) - ¢ ¢
F, % 2;“) 3%31) 0 -2 2w-2 1- w 1
G, : 3 ETOS)) 0 -2 2w+2 w4+l —w -1
Fy z e 2 22w -2 2w-2 l-w -2-w —1-2w
Gy | "2 et 2l 99 2 2w-2 —w-1 2—w 2w—I
-1 w1 ~1 -3 V3(w-1) -3 —/Bw
Ny 73 73 V3 0 %‘: \/_2 0 )é: }Lz‘
— 18 —1g) - 3{w+1 — — 2w
Ko & % i 0 g HGH 0 3 e
2
N, 0 0 0 0 0 V3 -3 V3
- 2
K, | 0 0 7t 0 0 0 —-v3 VB V3
N, 0 = 0 0 0 V3 V3 V3 =3
K, 0 =% 0 0 0 -3 V3 V3 V3
- ~2
N, % 0 7 0 —V3 0 0 0 0
K, | % 0 2w 0 V3 0 0 0 0

Table 1: Form Factors from Original Functions

The form factors are given by C' = 1.1 times the sum of the entries; see Eq. (3.5.1).
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& R BTN, s ™ "2
F, 2 —”i:é:l ¥ w? —1 0 w41 w(w+1)
G| e B s e 0 wel (-
2(1=w D
=21 p

G, 31,2‘ , = 3 8(w2+1) 0 w+l —w -1
F, 2 ?ﬂ;w 2 2—2w l—w —=2—w —1-2w
Gy -2 2Awtl) “’3“'1 - Eaan 2w~2 —w-—1 2—w 2w—1
1 & 5,%" 1 3:% 2 M3 K Ky
& ] —1 -3 A Jw
i’ 7%;’ g’y{k 1 17§ ’ ° 23 é:

K, Vel v i 0 0 2 2
5 -
N, 0 0 W OwEY 0 V3 —/3 V3

. 2
K, 0 0 7t 0 -3 V3 V3
N, 0 < 0 0 V3 V3 -V3
K, 0 % 0 0 V3 V3 V3
N, % 0 5% 0 0 0 0
K, 23 0 “g %ﬁf 0 0 0

Table 2: Form Factors from Shifted Functions
For each decay separately, the functions 7; and 7, can be absorbed into &; and &,, respectively,

without changing the normalization condition &;(1) = 1. We define £! = §; — 31, and £/ = ¢; + 3.
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IV. VANISHING OF L CORRECTIONS AT THRESHOLD*

1. Introduction

Recent advances in heavy quark physics**" increase the predictive power of
QCD and allow the determination of previously unknown hadronic transition ampli-
tudes. To lowest order, this is accomplished by exploiting the SU(2N) spin-flavor
symmetry!! present in a system with N heavy quarks to derive relations among
form factors in numerous systems!'***® ‘including B— D, A, — A,, and €, — 0.
Higher-order corrections can be calculated and understood in terms of an effective
field theory™'3l which incorporates SU(2N) breaking terms as perturbations in a
A = Aqep/m expansion. In all three systems, it is found 219 that all O(}) correc-
tions vanish at threshold.

We show that this is a general result that applies to any hadronic transition
amplitude in which the initial and final particles are composed of a heavy quark
or scalar plus light degrees-of-freedom in an arbitrary spin state. This result holds
because the leading order corrections to the effective current make no contribution-at
threshold. This allows use of the Ademollo-Gatto TheoremU?] which says that the
leading corrections to the effective Lagrangian also make no contribution.

The outline of this chapter is as follows: We first write down the eflective La-
grangian and current, and make explicit the SU(4) symmetry present to leading order.

We examine the consequences of normalization conditions at threshold and compare

*From C. Boyd and D. Brahm, Phys. Lett; B257:393(1991).
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them to similar conditions in chiral SU(3)g,...- In Section 3 we remove obstacles
to forming an SU(4) current algebra valid to O(A), namely, the current corrections.
We then apply the methods of Ademollo and Gatto in Sections 4 and 5, concluding
that all O(A) corrections vanish at threshold. We call this result Luke’s Theorem.
The theorem is generalized to heavy scalars in Section 6. Finally, we summarize our

findings in Section 7.

2. Luke’s Theorem: A First View

The effective theory is written in the fields hf; ), satisfyin ﬁh( 9 = b, given by
ying ) 8

R = (L;:é) ¢ et = (1= L )eimer (4.2.1)
so that
c = e—imcv'x(’l - _z_fn%)—lhic) — gmimevw Z(i%)nhgc) (422)
n=0

and similarly for r. By inserting the L expansion into the QCD Lagrangian, we

derive the effective Lagrangian to O(A)*,

Fic) - [+ }“ Fie <
£ =h%%' . DR — mhi) [D? + 19,0,,G"] b + (b,v e c,0') (4.2.3)

in which G* denotes the gluon field-strength tensor, and the flavor-changing currents

become, to O(}),

=6
weak( ) {"_Eﬁl'%j} ” h(e) [ 2; E”/“‘} hié)(zf)e"i(mbv—nmcv')-x

(4.2.4)

o= [S4] 4

*Qur definition (4.2.1) differs slightly from that of References [2,15,9], but this alters the Lagrangian

} }lglb)(;r)e—i(mbv;mcv')-x

only by terms which vanish by the equations of motion.



24
at the scalep =m, .
Conservation of charm states that the matrix element of &% is unity order by

order in . Schematically,
(ey°c) = 1 = (h7°h) + 5= (iL'hy°h + Rilp7°h) (4.2.5)

between identical states. This was first used by Lukel™ to show the vanishing of O())
corrections to the B-D threshold amplitudes. In general, a vanishing I) contribution
implies a vanishing £’ contribution to the vector transition element between states
of identical spin, but does not obviously rule out nonzero contributions to transitions
involving spin flip. Rather than try to rule out such contributions with the usual
tensor methods, we will approach the problem using current algebra.

We may rewrite the effective Lagrangian as
L=Viv- DV - VMPPY, (4.2.6)
which has the SU(4) Noether currents
JE =Wyt U — UMDy W, (4.2.7)

. - “(e) 7(e) 7(b) 7(b )
where M = %dzag[;l;-, g—é:, ;1;, —n%;], U = (hff)?hg_c),hgf),h{_)), kff()_) is the rescaled ¢

field with spin up (down), and the ?, are the SU(4) generators.

To leading order, the Noether currents form a SU(4) algebra

(@), 35 (D)]ea. = ifured (@) (F ~ 7). (4.2.8)

It is convenient to work in the meson rest frame, where the relation between effective
currents and QCD currents J (assembled from QCD fields ¢ and b) which change heavy
flavor from ¢; to ¢; is J(z) = e~ (Ma e )t j(x). There is a strong renormalization

factor [see Eq. (4.2.4)], which will remain implicit.
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The heavy quark symmetry is strongly reminiscent of the approximate chiral
(u,d,s) light quark symmetry. In chiral SU(3), the current algebra was used by
Ademollo and Gattol™® to show that the vector current transition amplitudes are
uncorrected to C’}(%) at ¢ = 0. No analogous statement can be made for axial
chiral currents because the SU(3),. Is spontaneously broken, a hindrance that is
absent in the heavy quark case. On the other hand, the heavy quark symmetry-
breaking term involves derivatives of the fields, which alters the Noether current at

O(A). We address this issue first.

3. The ) Lemma

In order to apply the method of Ademollo and Gatto to O()A) corrections in
the Lagrangian, we must first show that the I} corrections to the current give no
contribution to threshold transition elements. We will do this for baryons and mesons
separately.

A useful mnemonic for doing the SU(4) group theory is to construct interpolating
fields for the external states, contract the heavy fields with the current, and shift all
information about the light degrees of freedom into a nonperturbative matrix element.

The interpolating field for a spin n — é— baryon may be written

B(v) = M2t 220 (1)) (4.3.1)

Hybg bty ?

where [ represents the light degrees of freedom, ug{r)(v)eg)ﬁg,,,un describes the polar-
ization of the baryon, r is summed over heavy quark spins, the p, are Lorentz indices,
and a,f are Dirac indices. The light polarization tensor satisfies v €y ooy, = 0

The spin n+ —;- baryon with heavy quark spin parallel to the same light degrees of



freedom has an interpolating field

B (v) = Pt tans gl o)) (4.3.2)

Hikgbhplipgy?

where Dirac indices are now suppressed.
A flavor-changing transition amplitude between spin n — 2 baryons B, and B,

thus contains

I, = (B,(v")|h{y, D\Thiy | By(v)) = P e

¢
Myt THp41tHon

N R s I

it (v )v——zf—l “Luy(v),
(4.3.3)

where I' is a collection of gamuna matrices, and the nonperturbative matrix element

may be schematically denoted by
vpfi‘l“'“‘zn = (Q]{#ain [)Alﬂn-{»l“'l"zulD)’ (4.3.4)

This is the ) contribution. At threshold (v = v'), the index A can be carried only by
v, or gi', but in the latter case at least one of the remaining upper indices must be
carried by v*, and from v*s¢, = 0 this vanishes. Thus Py = v, X#nzn,

The equations of motion imply that an on-shell transition amplitude with an
insertion of v- Dh is suppressed by O(A). Then v}l = 0, forcing X*1"#20 = (). Since
the nonperturbative matrix elements for transitions involving B* are the same, the
Ip contribution to any transition element in the B — B~ system vanishes at threshold.

If one sums over initial and final spins, the above argument extends trivially to
meson systems. Amplitudes between states of definite polarization require a bit more
work.

The light degrees of freedom, with half-integral spin, can be written using only

Dirac indices. For example, the interpolating field for a spin-n meson in which the
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light degrees of freedom carry spin n + % 1s written

A o JOryrog a3 by LM v 49r
M= l " 6“,‘..-/1,_” Ty ey }Cx;n_wl(xzn L¥D (43‘))
The corresponding spin n + 1 meson is
A fx o fory gy ot R Hpal DY g sy o
"‘1 o l ! " (ﬂ’i"'l"n#‘n-fl ;a.:‘:x'l' A’“;n—l“?u (’) mt f h‘ )ﬁ' (4'3'())

At v = v/, an amplitude between spin n mesons looks like

o= (M()|RY D\ Th M (v))

(4.3.7)
o Py B8y x ) By Mg iy Lo
- I)A t;tlm,un ;‘Ln*‘luvﬂznﬁt}ﬁluz icx,,:‘l(:v‘%,,( 2 1 2 )[7'1;’32

If one of the particles is spin n + I, the I' is replaced by I'v*+®, and one of the
polarization tensors acquires an extra index &. This will make no difference to the
argument presented below,

vy o583y

The nonperturbative matrix element PV now carries Dirac indices, which

or contracted velocities i It will turn

*

must be paired in Kronecker deltas Ouic g
out that a ¢ is always equivalent to some combination of Kronecker deltas. The free
index A can be carried only by v, or 7,, so the amplitude will be a sum of terms, each
of which contains either vy or 4. As in the baryon case, v’ § = 0 implies 7 { o= 0if
I} is proportional to v,. We proceed to show that this is the case.

A given term in the amplitude containing v, will be a product of traces of gamma
matrices 4%, v, contracted velocities ¢, and PTTPY where PE = 3——:2*—:1{ are velocity
projection operators. The ganuna matrices may be transposed, but this does not
obstruct our proof. This can be seen by choosing the Majorana basis in which 4% =

(v%)7, for spatial index k. and then going to the rest frame of the decaying meson.

In this frame the naught components of the polarization tensors are zero, so the #:
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have only spatial indices. The argument below then gives 15 = 0 in the rest frame,
and therefore in all frames.

A term containing 7, will be either of the form

G Tely ] o Ty [ Trfy ey PATPY) (4.3.8)
or of the formn
€y Trly o] oo Ty ey Tefy - oy ooy PTOPTYL (4.3.9)

All gamma matrices written without Lorentz indices are contracted with polar-
ization temsors. There are no insertions of ¢ because any trace with a contracted
velocity ¢ vanishes unless the trace contains either 7, 1 which case the ¢ converts
the v, into vy, or P*I'P*, in which case the ¢ anticommutes through until it is
absorbed by a projection operator.

Since the trace in line (4.3.8) containing v, contains an odd number of contracted
gamma matrices, the trace with projection operators also contains an odd number of
contracted gamma matrices. However, 4# P+ = P~~* 4 v#, so this trace vanishes.

The last trace in line (4.3.9) contains an even number of contracted gamma
matrices. By anticommuting l»}’f around the trace, we convert -, into v, showing
that [, is proportional to vy. Then v*/{ = 0 forces I{ = 0, completing our proof.

The above argument also implies the vanishing of some types of ©( A%) threshold
corrections, such as insertions of £ with the O(\) part of the current (L'IPT), although

this appears academic at present.

4. The Ademollo-Gatto Theorem

The heavy quark symmetry induces an SU(1)! among hadron quadruplets, such
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as {B, D, B*, D*}, We study, as an example, the vector-current matrix element for

B—D,

(D) Ve B(w)) = FL(v-o') o+ o) + F_(v-o) (v — v )#, (4.4.1)

wealk

We want to find F (1) to O()). We use the SU(2),,.,, subalgebra consisting of
QF = /dSm\—/%fsz’)(ar)y“hf,")(;r), Q7 / ,7—«-“/) V(27 R (),
K= [ @) — O a1 o), (1.42)

Comparing to (4.2.4) and using the [f lemma, we see that between states of the same
multiplet, Q7 is the charge corresponding to V/, to O(X), up to a phase. To the
same order, = L(bth — cle).

We sandwich the vector commutation relation

[Qgr” } = l\’véuu’ (44.3)

between (B(v')| and {B(v)), and on the left side insert a complete set of states. It is
convenient to work in the meson rest-frame (where v° = 1), and in a volume V ; then
states are normalized (B|B) = 2V, and we get

57 S BONIQB () (@ IQ7 B ~ (QF = Q") = (BOK,IB(r). (£.4.4)

To O(X), the right side equals V.

The matrix elements on the left side can be written

(al0% ) = Sl Q¥1E) M allllly, Q*]|B)

_ 4 S (115
fd'ﬂ“( ¥ ) L‘(,ff(B) ‘l:"eﬂ'(a — l_ri._ﬂ‘(B) . )

where g is the symmetry-breaking part of the effective Hamiltonian H,,, and Eq

is the eigenvalue of Hg; e.g., Lg(B) = my—m,. When |a) is not in the quadruplet,
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the matrix elernent is O(A), and since these matrix elements appear in pairs - one
insertion of £’ to leave the quadruplet and another to return - the contribution is
O(A?). Therefore, we keep only intermediate states within the quadruplet, of which

only | D) contributes. The left side of Lq. (4.4.4) thus becomes

1

5o (P@IRT B (4.4.6)
Eq. (4.4.4) then becomes
Egﬁwmm:m (1.4.7)
from which we conclude that
F(1) =1+ O(N\). (4.4.8)

Alternately, we could study the B D* transition, using

Qﬁmﬂm$WMWWWWL Qﬁmﬁm%WWWWW%LGMm
which satisfy the axial commutation relation

(@0, Q7] = Ky (4.4.10)

pf

Now the form factor of the weak axial current A? is shown to he normalized to unity

at threshold and uncorrected to O(\).

5. The Wigner-Eckart Theorem

ok

We generalize to an arbitrary mesonic or baryonic quadruplet {B,C, B*,C*},

with highest spin s+1. For given current and external states, the transition element
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is parameterized by velocity-dependent form factors which reduce at threshold to a

single, reduced matrix element

(C“;?eale> = FBC’ (ny“i?tak”}> = 0’ <(’1*H/v?eakIB*> == [;’B*C‘?
(4.5.1)
((;’{‘AweaktB> = GTBC" ((,;W]f{“_“ak!]?) = C:B(Z'*ﬂ ((7*’4 weakug*> = (“;B‘C?*

A transition amplitude is the product of a reduced matrix element times a Clebsch-

Gordan coeflicient, e.g.,

(C’*(s«{—l){;‘13113“(s+,l)) = Ggeew (s+1,54+1]1,0; s+1,5+1) (4.5.2)
in the standard notation!?, The Clebsch-Gordan coeflicients are trivial in the vector

e s 170
case, since V.

is spin-0.

We can sandwich the vector commutation relation between |3) states to show
that Fgo = 1, and between |B*) states to show that Fg.ee = 1. The sandwiched
axial commutation relation between [I37(s+1)) states gives, from Eq. (4.5.2), Ggupr =

(s+1,8+1]1,0; s+1,s41)"", while between [B*(s)) states and between |B(s)) states

we get, respectively,

1(3"1‘1:5“,0; b+]~§>(;3¢(~‘z “+ ’{b"*‘lb“,@ 3,-‘3)(?50*}2 =1
, (4.5.3)

s+1,81,0; 5,8 Ghea P 4+ |(s,8]1,0; s, s Geel =1
BC B

A BT (m)y = (C*(m)] AP B(m")) in the second term of

where we have used (C'(m')

the first equation. Thus, all the reduced matrix elements are determined to O(A).

6. Luke’s Theorem for Scalars

The above analysis is not limited to heavy fermions. For a heavy particle of

arbitrary spin, one expects the leading term in the effective Lagrangian to contain
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v - D, and higher-order terms to be quadratic in derivatives. These are precisely the
conditions employed is the ) lemma to demonstrate the nonrenormalization of the
effective current at threshold. The Ademollo-Gatto theorem can then be applied to
the relevant spin-flavor symmetry.

The case of a heavy color triplet scalar has been done to leading order by Georgi

and Wisel'l, They use effective scalar fields y, = ¢y in terms of which the
effective Lagrangian is
L,=W¥ Mi-D¥, -9 NY, . (4.6.1)

The heavy quark fields A, have been assembled with the scalars in ¥ = (h,, "),
the kinetic-energy term involves M = diag[l,2m |, and the breaking term is N =

diag[,%% iD?).

At leading order, the above Lagrangian is invariant under SU(3) ® U(1) trans-

formations

e S K. /2m_
ov,=il N, (4.6.2)

WS, ts

where 5* are the SU(2),,;, generators on the quark and E is an infinitesimal spinor

obeying ¢E = E. The Noether current is
Jt= W Mot Y 4 i Nt (1.6.3)

' - or . ot - ; .
where the t, are the SU(3) generators and N = (lmg[%:—, iD*]. Since the equations
&
of motion imply that v - Dy = 0 when inserted in a physical matrix element, the

current is uncorrected at threshold by the I) lemma. The Ademollo-Gatto theorem

then asserts vanishing £’ corrections at threshold.
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7. Conclusions

To lowest order, threshold transitions between heavy quark systems can be de-
scribed by reduced matrix elements with known normalization. In the B-D system,
for example, the only such element is the Isgur-Wise function™, and this normaliza-
tion allows extraction of the Kobayashi-Maskawa mixing angle V,, with corrections of
O(A). Lukel has shown that this normalization is unchanged even at O(A), allowing
correspondingly reliable extraction of V,,. We have shown that these matrix elements
are uncorrected at O(A) in general, for heavy quark systems of arbitrary spin.

This result includes both the correction to the currents, by our I lemma, and
corrections arising from insertions of the Lagrangian (£'), by the Ademollo-Gatto
Theorem. We have generalized it to heavy scalar particles, and we expect it to apply
for heavy particles with general spin. The statement that O(A) corrections vanish for
arbitrary spin systems is Luke’s Theorem.

Luke’s Theorem unifies existing O(A) calculations. However, while it applies in
principle to any heavy quark system, in practice the experimentally accessible systems
are those already examined. Its present value is thus largely pedagogical, unless
new particles (squarks, technibosons, heavy four-quark bags, etc.) are discovered, a

prospect with perhaps a glimmer of hope.
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V. THE NEUTRON ELECTRIC DIPOLE MOMENT

1. Standard Model Predictions

The Wisgur symmetry is unnecessary for analysis of some heavy quark processes.
Contributions of top quark loops to the neutron electric dipole moment (nedm) can
be studied perturbatively. Such studies are sensitive to new physics at the weak scale.

In the Standard Model with 050, = 0, the only CP-violating parameter is a
complex phase in the CKM matrix. Since electric dipole moments are CP-violating

quantities, Standard Model generation of a nedm involves W bosons. Unitarity of

the CKM matrix requires at least two W loops, so that a nedm is order o2 . It
turns out?? that the nedm is suppressed by an additional factor of Qgirong(Myy). The

end result is that nedm generation via edm’s of fundamental quarks in the Standard
Model is predicted to be less than about 107**¢ - cm. A larger contribution comes
from baryon-meson loops?®, but these are also small: |d| < 10-*e - cm.

The current experimental limit on the nedm d is?% |d| < 10~%%¢ - em. A mea-
surement in the near future of a nonzero nedm would therefore signal the existence

of physics beyond that of the Standard Model.

2. Multi-Higgs Physics

Until recently, most extensions of the Standard Model were believed to predict
nedm’s much smaller than the experimental limit (although one exception was the

Minimal Supersymmetric Model, which was actually constrained by experiment!??).
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The reason is that most CP-violating operators one can write down for an effective
theory below the W and Higgs masses are suppressed by either small CKM angles or
powers of light quark to Iliggs mass ratios.

The exception is the three-gluon operator GGG, where (¢ is the gluon field-
strength tensor and (' is its dual. This operator, as noted by Weinberg!¥, is unsup-
pressed by powers of light quark masses and will typically dominate contributions
to the nedm. It can appear in the low-energy effective Lagrangian of theories with
several Higgs particles. Multi-Higgs theories generally contain additional complex
couplings in the Higgs mass matrix if there are three or more Higgs doublets in the
theory, or if there are two Higgs doublets and additional Higgs singlets.

When the heavy particles (top quarks, W and 7 bosons, and Higgs) are integrated
out of the theory, the operators with complex couplings induce nonrenormalizable CP-
violating operators such as GGG, In two-liggs models with additional singlets, only
neutral Higgs contribute to GGG, which in turn contributes to the wavefunction of
the neutron nonperturbatively. Using naive dimensional analysis®® to estimate the
effect of the three-gluon operator on the neutron, one arrives at a predicted nedm
very near current experimental thresholds.

In theories with more than two Higgs doublets, charged Higgs can also induce the
three-gluon operator. Indeed, over much of parameter space, charged Higgs processes

dominatel?™. This is the topic of the next chapter.
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VI. Effective Hamiltonian for the

Electric Dipole Moment of the Neutron*

The standard model with three generations of quarks and leptons and a single
Higgs doublet has only two sources of CP violation: the vacuum angle for the strong

(28] and the phase 6 in the Kobayashi-Maskawa matrix??. The strin-

interactions fqcp
gent experimental limit on the electric dipole moment of the neutron, d, < 10=% e—
eml*], gives rise to the bound ¢, < 107 on the strong interaction vacuum angle®,
The phase é, however, is not restricted by the present limit on the electric dipole mo-
ment of the neutron, and in the minimal standard model it must be the source of the
CP violation observed in kaon decayst.

Understanding the conservation of CP by the strong interactions is an important
problem in particle physics. Speculative explanations for the smallness of O4cp, do
exist. For example, there could be a U(1) Peccei-Quinn symmetry®®? that is sponta-
neously broken at a large energy scale. This converts Oy¢p, to a dynamical variable,
which is determined to be near zero by minimizing the vacuum energy. Alternatively,
if quantum ﬁuctuai;ians in the topology of spacetime occur, the wave function of the
universe may be infinitely strongly peaked on the subspace of universes where 0y,
is near zero®?,

In the standard model only one Higgs doublet is required spontaneously to break
SU(3)xSU(2)xU(1) to the low-energy gauge group SU(3)xU(1) and to give mass to

the quarks and leptons. However, there is no compelling physical reason for such a

minimal Higgs sector. Extensions of the standard model motivated by the hierarchy

*C.G. Boyd, A. Gupta, S. Trivedi and M. Wise, Phys. Lett. B241:584 (1990).



38
puzzle typically have a much more complicated Higgs sector. One of the simplest
extensions of the Higgs sector is the addition of more doublets. With one doublet
the Higgs sector contributes a single real scalar to the spectrum of the theory. It
automatically has no flavor-changing couplings to quarks; its coupling to quarks is
proportional to their mass matrices so the same transformation that diagonalizes
the quark mass matrices diagonalizes its couplings. With n doublets the physical
degrees of freedom arising from the Higgs sector are (2n — 1) neutral scalars and
(n — 1) charged scalars. It is no longer automatic that the tree level couplings of the
neutral scalars are flavor diagonal. However, flavor-changing tree level couplings of
the neutral scalars are absent if the up-type quark Yukawa couplings involve only one
of the doublets and the down-type quark Yukawa couplings also involve only one of
the doublets®. We consider a model of this type with n doublets H I =1,...n
where H, gives mass to the up-type quarks, H, gives mass to the down-type quarks,
and the remaining n — 2 doublets do not Yukawa couple to the quarks. For three
or more doublfats, there are new phases in the Higgs sector that contribute to CP

#]1 In this Chapter we consider the influence of these new phases on the

violationt
electric dipole moment of the neutron.

In this model the coupling of the charged Higgs H;i) to the quarks is given by
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the Lagrangian density

()

£=_i?mﬂﬁ@ﬂﬂgvm—%)s
1
Y,
, 6.0.1
/d\ (6.0.1)
Qi* HP(a,e,)) V Mp(1+7) | s | + he
2
\ 4/
where
Y
H; = ( z )) , BN = g (6.0.2)

and <H J(»O)) =v;. In Eq. (6.0.1), V is the Kobayashi-Maskawa matrix and

m, 0 0 m,; 0 0
A{{U = 0 m, 0 5 ﬁ‘fD = 0 m, 0 . (6.03)
0 0 m, 0 0 m,

The quark’ fields in Eq. (6.0.1) are mass eigenstate fields, but that is not true of
the Higgs fields. The mass eigenstate charged scalars gﬁ;” are related to the H JH) by

a n X n unitary transformation

n

oV =" v P =3 vy . (6.0.4)
k=1 k=1
One of the fields <;5§-+} is the Goldstone boson associated with the spontaneous break-

down of SU(2)xU(1) to U(1),,,. Without loss of generality, we take it to be ¢§+), $0

that

Y7 =g, 0, /V2 My . (6.0.5)
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Combining Egs. (6.0.1), (6.0.4) and (6.0.5) givesl®®

d
n {+) -
92 Pk yw) e o T : ~
£ =S 2% ) (L) @anm, vi-
2 3y (5t) e ity v =50 | <

J (6.0.6)

+ (-};—?ﬁ) (@,6,8) V Mp(1+75) | s + h.c.

21

b

In unitary gauge the field égﬂ becomes the longitudinal component of the W-boson
field and so it is omitted from Eq. ( 6.0.6); (Its couplings are independent of Y.) For
n > 3 the matrix Y contains phases that cannot be removed by redefining the phases
of the fields ¢§~+) and hence are a source of CP violation.

Integrating out the scalar degrees of freedom (we assume that none of the scalars
is significantly lighter than the W-boson), the top-quark and the W- and Z-gauge
bosons, generates an effective Hamiltonian for CP violating quantities. In the case of
the electric dipole moment of the neutron, one is interested in flavor-singlet operators
that violate parity P and time-reversal 7". In addition to renormalizing the value of the
vacuum angle 8cp and the Kobayashi-Maskawa phase 6, this procedure will generate
nonrenormalizable operators whose matrix elements contribute to the electric dipole
moment of the neutron. The nonrenormalizable operators of dimension six that can
contribute to the electric dipole moment of the neutron (and are not suppressed by

light up, down and strange quark masses) are
0, =ig° Tr[G,, G} G,,] e (6.0.7a)
Oy=gmy bT" 5, bGY, ¢ (6.0.7b)

Oy=emybo,, bF,, ¢ (6.0.7¢)
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, where F is the electromagnetic field-strength tensor. In Eq. (6.0.7) we have included
a factor of m, with O, and O, since a factor of m, must accompany a (single)
right-handed bottom quark. This factor increases the dimension of O, and O, by
one unit. We have neglected other dimension-six operators (e.g., the color-electric
dipole moment of the charm quark and four-quark operators) whose coefficients are
suppressed (in the multi-Higgs models considered here) by factors of (m,/My,)? or

(m,/My)?. The effective Hamiltonian density is

3
Heg = Z Ci(n) Oyp) (6.0.8)

i=1

The coefficients C;( My, ) have a perturbative expansion in a,(Myy,).

In Ref. [4] it was noted that the operator O, gives a contribution to the electric
dipole moment of the neutron that is not suppressed by light (compared with the
QCD scale) quark masses. Its coefficient C|(My, ) has been computed and arises from

437, Charged scalar exchange does

two-loop graphs involving neutral scalar exchangel
not contribute (again neglecting terms suppressed by (m,/My,)? and (m./My)?) to
Cy(My).

The coeflicient C,(My,) can be computed from the one-loop graph in Fig. 1.
In this case, the contribution from charged scalar exchange dominates over neutral
scalar exchange. To compute C,{ My ) we work off-shell, matching the amputated one-
particle-irreducible b — b+ gluon Green function in the complete theory with that in
the effective theory. Since we are working off-shell, the graph in Fig. 1 can contribute
not only to the coefficient of O, but also to the coefficient of the operator O, =
bPP~ysb, which becomes a mass term when the equations of motion are applied. As

noted in Ref. [38], the contribution of O, can be isolated by focussing on the Lorentz

structure v, § 75, where g is the gluon vector index and & is its four-momentum.
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Using this procedure (and the approximation |V, |* ~ 1), we find that

Gr 1 & Y\ 7Y\
C,(Myy) = = > Jm{(éi) (-}7”“-) }
s 21 11

1 1
""“"’“ {<wk-1>3 o+ S T ”’*"3)}

Sl

, (6.0.9)

where

xp = mi/mi . (6.0.10)

With a subtraction point equal to My, (the W-boson mass), there are large log-
arithms of My divided by the QCD scale in the perturbative expansion of the matrix
elements of the operators O,,0, and O,. These can be transferred from the matrix
elements of the operators to their coefficients C; by using the renormalization group
equations to move p down to the scale of the strong interactions. The anomalous
dimension for O; was calculated in Ref. [39] and the anomalous dimension for O, was

calculated in ref. [40]. Using these results, it follows that for My, > u > m,,

(M) ;

Cl(ﬁ‘)z [g‘i‘("(‘i;‘l] Cl(ﬁflﬁz) s (6011&)
/ Moo

Cy(n) = [.‘%f(ﬁl] C,(Myy) . (6.0.11b)

Since Cy( My, ) arises at two loops while C,( My ) arises at one loop, we have neglected
in Eq. (6.0.11a) possible mixing under renormalization of O, with O, (operator O,
cannot mix with O, because with the factor of m, removed, it is only dimension five).

At the scale u = m,, it is appropriate to go over to an effective four-quark theory.
In the effective four-quark theory, only the operator O, survives. However, because
the coefficient C, (My;) arises at two-loops, it is important to include the contribution

to the coefficient of O, (in the effective four-quark theory) that comes from matching
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the one-loop Feynman diagrams in Figs. 2 and 3 with the tree level amputated three-
gluon Greens function of O,. In Figs. 2 and 3 the shaded square denotes an insertion
of O,. Explicit calculation of Fig. 2 gives
g9’ d A A
~6nz Tr(T [Tf}Te]) [26;3” a ATy + o py T, Ty
2 v v 2
+e€, \Q PaTy, Pg — €, ’\G PAT,Tg T €, \;3 Ty P, Pa ) (6-0-1~)
+26, 5 mapy 10 = 26, 0 (0220 ) 4 (0P 4200 ) )]

while explicit calculation of Fig. 3 gives

2
"_ﬁ%ﬁ Tr(;Td[Tf, Te]) €4y A (TA(p2 +2 1)+ (r +2p- r)) . (6.0.13)

Comparing the sum of (12) and (13) with the amputated three gluon tree level Greens

function of O, gives that in the effective four-quark theory,

_ CES(ZE(H/) 54/23 Af 1 as(ﬁ(jl&') —40/23 /
Cy(m,) = [Mas(Mg,) Ci(Myw )+ 15— o (0] Co(My) . (6.0.14)

Note that the operator O does not match onto O, at one-loop, so its effects can be
neglected (they will be suppressed by powers of the QCD scale divided by the bottom
quark mass). Finally, moving the subtraction point x below the charm-quark mass,

we go over to an effective three-quark theory where
, a,(My) 54/23 o, (m,) 54/25 a,(m,) 54/27
CI(U) =TT ——2s ~ el
a,(my) a(m,) a, (1)

{ 1 {{;‘gs(ﬁfw’)} -40/23 (6.0.15)

Cy (M) 'y (My,
Egs. (6.0.15) and (6.0.9) are the main results of this letter.
The strong interaction corrections suppress the effects of C)(My,) relative to

those of Cy(My,) by the factor [a,(My)/a,(m,)]*%* ~ 0.3. Also, there are special

cases, for example, when [Yy, | << 1, where a further enhancement of C,(My,) occurs.
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Towards the completion of this work we received a copy of Ref. [41], where
Ci(My) is computed in minimal low-energy supergravity models. There it is also
noted that at the weak scale, the color-electric dipole moment of heavy quarks (com-
pared with the QCD scale) should, in principle, be included in the effective Hamilto-
nian. Similar work to that presented here has been done independently by M. Dine
and W. Fishler (CCNY-HEP-89/21 and UTTG-03-90) and E. Braaten, C.S. Li and
T.C. YuanP®l, We thank them for discussing their work with us prior to its publica-

tion.
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Fig. 1. Feynman diagram that determines the value of C,(My,).

FIGURE 1
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Fig. 2. Some of the Feynman diagrams that determine the matching between Cy(m,) in

the effective five-quark theory and C;(m,) in the effective four-quark theory.

+ permutations

FIGURE 2
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Fig. 3. Remainder of the Feynman diagrams that determine the matching between Co(my)

in the effective five-quark theory and C;(m,) in the effective four-quark theory.

+ permutations

FIGURE 3
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VII. Outlook

What have we learned from the preceding chapters? For the neutron electric

¢ cm is incompatible with the Minimal

dipole moment, we know that a value of 10~
Standard Model, but is compatible with multi-Higgs models with or without charged
Iliggs exchange. The eflect of charged iggs on the neutron electric dipole moment
is determined by integrating the heavy Higgs out of the theory, thus generating a
color magnetic moment for the b quark. After renormalizing down to the b mass
scale and integrating out the b quark, Weinberg’s three gluon operator is induced.
This operator then feeds into the neutron wavefunction to produce an electric dipole
moment,

In addition to simple multi-Higgs extensions of the Standard Model, left-right
symmetric and supersymmetric models can induce similarly large dipole moments, so
the measurement of a nedm does little more than rule out the Standard Model. It
is difficult to differentiate between competing models using only the neutron electric
dipole moment.

One reason for this difficulty is the need for some estimation scheme, such as
naive dimensional analysis, to determine the eflect of the Weinberg operator on the
neutron wavefunction. This problem is not present for the electron electric dipole
moment, to which operators similar to Weinberg’s can induce a moment near current
experimental limitsi*, This allows quantitative information about new physics to be
extracted from the electron electric dipole moment, although it will still be difficult
to rule out competing models because of the presence of free parameters in most

theories.
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More precise statements about physics beyond the Standard Model can be made
from CP-violating processes once the CKM angles are determined accurately. A use-
ful tool for theoretical extraction of the angle V, from semileptonic flavor-changing
decays is the Isgur-Wise heavy quark expansion (which has many other useful appli-
cations, of course).

This method uses an expansion in é—o;f?- to make statements about nonperturba-
tive, hadronic matrix elements. As seen previously, % corrections can be enumerated,
and form factors parameterized in terms of unknown Isgur-Wise functions. In the case
of 1y — Q, the fourteen form factors can be described by seven unknown functions
and one unknown constant with errors of order ;ﬂ%g

For the semileptonic decays of Omegas, Lambdas, and B mesons, all }%«I correc-
tions vanish at maximum momentum transfer. This allows extraction of V, to a few
percent, because the remaining Isgur-Wise functions are normalized to unity. This
is, in fact, a general property, as embodied in Luke’s Theorem.

The existe’nce of techniques such as those above improves the likelihood that data
from the next generation of experiments will be instrumental in confirming, or more

hopefully, initiating the downfall of the Standard Model.
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