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ABSTRACT

I. LAMINAR BOUNDARY LAYER STABILITY IN FREE CONVECTION

The stability with respect to transition to turbulent flow of laminar
free convection flow along a semi-infinite flat plate was studied analyti-
cally by the method of small oscillations. Six procedures of varying
degrees of mathematical complexity for solving approximately the
stability problem were developed according to different assumptions
regarding the presence or absence of heat conduction and viscous and
body forces. The procedure which considers that only inertial, pres-
sure, and viscous forces control the stability was applied to the case of
free convection of air along a vertical plate. It was found that the analyt-
ic predictions agreed qualitatively but not quantitatively with experi-
mental observations made by other investigators of the appearance of

instability in such a flow.

II. LAMINAR FREE CONVECTION WITH VARIABLE FLUID

PROPERTIES

Heat transfer by laminar free convection along a semi-infinite
flat plate was analyzed with the assumption that the density, specific
heat, viscosity, and thermal conductivity of the fluid are functions of
the temperature., An approximate method for obtaining heat-transfer
rates was developed and was applied to cases of heating and cooling oils
with large changes in their Prandtl numbers. By comparison, it was
found that earlier and more general analyses based on essentially
constant-property assumptions give good results in the variable-
property case when they are based on the properties of the fluid at

the plate surface.



TABLE OF CONTENTS

PART TITLE PAGE

I LAMINAR BOUNDARY LAYER STABILITY IN FREE

- CONVECTION 1
A  SUMMARY 1
B INTROCDUCTION 6

Bl The General Problem of Laminar Flow
Instability 6

B2 Historical Survey of Analytic Laminar Flow
Stability Investigations 7

B3 Laminar Free Convection Along an Inclined
or Vertical Semi-Infinite Flat Flate 12

B4 Instability and Transition of Laminar Free
Convection Along a Semi-Infinite Flat Plate 14

B5 The Following Sections 16
C APPLICATION OF THE METHOD OF SMALL

OSCILLATIONS TC THE STUDY OF THE STABIL-
ITY OF LAMINAR FREE CONVECTION ALONG

A FLAT PLATE 17
Cl . The Disturbance Differential Equations 18
C2 Boundary Conditions 21
C3 The Boundary-Value Problem 22

C4 Simplified Methods for Solving the Free
Convection Stability Problem 25

D INVESTIGATION WITH NEGLECT CF TEMPERA-
TURE DISTURBANCE EFFECTS OF THE
STABILITY OF LAMINAR FREE CONVECTION
IN A VISCOUS FLUID WITH A PRANDTL

NUMBER OF 0. 72 31
D1 The General Method 31
D2 The Velocity Profiles Treated 33

D3 Solution of the Boundary-Condition Equation 35
Elyc) = 1 (S.)



PART

II

TABLE OF CONTENTS (Cont'd.)

TITLE

D4 Values of Re, ¢, and o at the Fifst

D5

D6

Experimentally Determined Appearance
of Instability

Discussion of Results
Suggestions for Further Analytic Work on

the Problem of Laminar Boundary Layer
Stability in the Free Convection of Air

Appendix 1 Notation

Appendix 2 Derivation of Disturbance Equations

Under General Assumptions

Appendix 3 Derivations of Expressions for f()

and {(a:)

Appendix 4 Development of Simplified Methods for

Solving Approximately the Free Convec-
tion Stability Problem ‘

Appendix 5 Estimate of the Effect of the Coupling

Term in the Combined Momentum
Equation with the Assumption that
is Small
AVRe

Appendix 6 References

Figures

LAMINAR FREE CONVECTION WITH VARIABLE

FLUID PROPERTIES

A

B

SUMMARY

INTRODUCTION

Bl

B2

B3

Heat Transfer by Laminar Free Convection

Historical Survey of the Principal Previous
Analytic Treatments of Laminar Free
Convection

Free Convection About an Isothermal Flat
Plate with Large Variations in Properties
of the Convecting Fluid

PAGE

44
47

59

62

66

79

81

141
146
149

156
157
160

160

161

164



PART

TABLE OF CONTENTS (Cont'd.)

TITLE

C THE EQUATIONS DESCRIBING LAMINAR FREE
CONVECTION ABOUT AN ISOTHERMAL INCLIN-
ED PLATE AND THEIR SOLUTION

Cl

C2

C3

The Physical Configuration Treated

Boundary Layer Equations Describing
Laminar Free Convection with Variable
Fluid Properties Along an Inclined
Isothermal Flat Plate

Solution of the Boundary Layer Equations

D LAMINAR FREE CONVECTION WITH LARGE
TEMPERATURE DIFFERENCES IN CILS

D1

D2

D3

Comparison of Constant and Variable-
Property Analyses for the Case of Laminar
Free Convection in an Oil with a Prandtl
Number Varying by a Factor of Ten

Comparison of Results of Integral Method of
Analysis with Experimental Findings

Conclusions and Discussion of Conclusions

Appendix 1 Notation

Appendix 2 Simplification of Flow Equations- Accord-

ing to Boundary Layer Theory

Appendix 3 Similarity Method for Solving Boundary

Layer Equations

Appendix 4 Details Concerning the Application of the

Integral Method to the Liaminar Free
Convection of Oils

Appendix 5 References

Tables

Figures

PAGE

167

167

169

172

180

180

183
186

189
192
196
201
205

207

210



LAMINAR BOUNDARY LAYER

STABILITY IN FREE CONVECTION



-1 -
A

SUMMARY

It has been observed in some free convection flows that the flow is
laminar near its origin and that it becomes turbulent after proceeding
some distance in its course. This work is an investigation by analytic
means of the initial stage of transition from the laminar to the turbulent
situation for such a free convection flow. More specifically, itis a
study of the instability of a given laminar free convection flow with re-
spect to small disturbances, which, according to the presenf theories of
the origin of tu’rbﬁlence, are amplified until the flow becomes turbulent.
The free convection situation chosen for study is the two-dimensional
flow existing in the neighborhood of a semi-infinite flat plate either in-
clined or parallel to the body for ée field which produces the flow. The
plate is kept isothermal and at a temperature either greater or less, de-
pending on the orientation of the body force field and the plate, than that
of the unaffected, stationary fluid far from the plate so that the flow pro-
ceeds along the plate away from its leading edge. |

With very general assumptions regarding the fluid properties,
disturbance equations for the analysis of the laminar flow stability were
derived by the method of two-dimensional small oscillations. This often-
used method of stability analysis consists essentially of assuming that
small wave-like disturbances of velocity and fluid properties occur in
the flow and then of attempting to find whether these disturbances are
amplified or damped. Throughout the derivations it was assumed that
the Reynolds number of thé: basic laminar ﬂow is large and that the pro-
duct of the fluid coefficient of thermal expansion and the temperature

difference between the plate and the fluid far from it is small. The



further assumptions that the mean flow is parallel and that temperature
differences are so small that the only effect of variable fluid properties
is the appearance of a body force term in the momentum equation were
used to simplify the disturbance equations to forms for which it was
feasibie to attempt to construct approximate ‘solutions.

Six methods for approximately solving the stability problem using
these stability equations were developed for the cases of both an inclined
and a vertical plate. These methods are differentiated by the simplifying
assumptions regarding the fluid and flow properties made in developing
them. The most complex of these methods takes into account inertial,
pressure, viscous, and body forces as well as the effect of a finite fluid
therrhal conductivity., The least complex method considers that only
inertial and pressure forces determine the stability or instability of the
flow. All of the remaining possible simplifications were included in the
other four methods. Unfortunately, employing any of these methods ex-
ce‘pt the two simplesf ones would necessitate a very great amount of
computation. The amount of calculation anticipated is so great that the
use of automatic, high-speed computing devices would be a necessity.

The two simplest methods were developed with the assumptions
that only inertial and pressure forces in one case and only inertial,
pressure, and viscous forces in the other case determine the stability
of the flow. Both these methods are sufficiently simple to admit their
~ application with the use of no more than a desk calculator as a computa-
tional aid, but the amount of calculation that they require is nevertheless
apt to be guite tedious. These cases reduce simply to the problems of
solving the stability pro’blern for a nonviécgus, incompressible ﬂ‘ow in

the one case and for a viscous, incompressible flow in the other case.



Both these problems have been studied extensively in the past in treating
the stability of other velocity profiles, and existing techﬁiques were
appropriately applied to the present situation with the free convection
velocity profile.

The stability of laminar free convection flow along a vertical,

B3

3

semi-infinite flat plate as a function of the disturbance wave number
and the mean-flow Reynolds number Re** was investigated by using
the method in which only inertial, pressure, and viscous forces are
considered. This was done for two velocity profiles corresponding to
free convection in a fluid with a Prandtl number of 0. 72 so that a com-
parison with experimental observations of instability in air, which has
a Prandtl number of this value, could be made. (The Prandtl number
is the principal parameter that determines the shapes of the velocity
and temperature profiles in free convection.) One of the velocity pro-
files was a cubic polynomial approximation, and the other was the
"exact' profile obtained by another investigator in solving numerically
the flow equations which describe the laminar free convection situation.

An "indifference' curve or curve dividing the - Re plane into stable

and unstable regions was obtained for the cubic polynomial profile, and

%k

The wave number o« of the disturbance is equal to 27§ , in which &
: ol N
is the boundary layer thickness defined to be _[‘T jUdzj and A is the
m o

wave length of the disturbance. U  is the mean-flow velocity com-~
ponent parallel to the plate, Um is the maximum value of U 1in the
boundary layer at given distance from the edge of the plate, and

is distance measured normal to the plate surface from that surface.

%% The mean-flow Reynolds number Re is defined to be Umd , in
which 3, 1is the kinematic viscosity of the fluid far from t_ﬂz‘;;ﬂate.

Re is a monotonically increasing function of the distance from the
edge of the plate because Um and & both depend in this way on the
distance from the edge of the plate.
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a significant portion of such a curve was secured for the exact profile. An
examination of the mathematical procedures necessary to obtain these
curves led the author to believe that the curve for the cubic polynomial
profile represents a valid solution of the assumed problem but that the
portioﬁ obtained of the curve for the exact profile may be considerably
displaced from its frue position. Both these curves agree qualitatively
with observations of the appearance of instability in free convection in
that they predict that a minimum Reynolds number exists below which

the flow is stable for oscillations of all wave numbers. However, the
curve for the cubic polynomial profile indicates that the instability

waves which initially* appear in the flow do so for values of the Reynolds
number, the wave number, and the phase velocity or velocity of propaga-
tion of the disturbance approximately 29, 1.9, and 0. 49, respectively,
times the Values‘ of these parameters which were observed. The extreme
discrepancy between the predicted and observed values of the minimum
Reynolds numbers for instability is believed to be largely the result of
poor approximation by the cubic polynomial to the true profile. The in-
difference curve for the exact profile gives values of the Reynolds and
wave numbers and the disturbance phase velocity at the first appearance
of instability which are 1.19, 7.0, and 0. 96 times the observed values.
In this case the agreement for the Reynolds numbers and the phase veloc-
ities was considered to be satisfactory, but the discrepancy between the
values of the wave numbers is far larger than what it should be if the
analysis were valid and the observations were accurate. It was suspect-

ed that a more extensive mathematical treatment would reduce this dis~

sle

3

That is, at the lowest value of the Reynolds number.
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crepancy, although it might increase the discrepancy between the values

of the Reynolds number.
The indifference curves for the two velocity profiles along with
points representing the observed first appearance of instability are

plotted in Figures 7 and 8.
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B

INTRODUCTION

Bl The General Problem of Laminar Flow Instability

In the science of fluid mechanics the problems of turbulent flow
and of the transition of laminar flow to turbulent flow are among those
which are most difficult and yet which present themselves in many situa-
tions of importance to the worker in this field. Probably the most famil=
iar example of a situation in which one desires information regarding the
second of these two problems, transition from laminar to turbulent flow,
is the case of boundary layer flow on an airplane wing. In this instance
the higher rate of momentum transport in turbulent flow increases the
profile drag over the laminar case and can in specific situations prevent
flow separation, This thesis is concerned with the stability, or ability
to remain laminar rather than become turbulent, of a class of laminar
flows. The class of laminar flows considered is the class associated
with the two-dimensional free convection of air near an inclined* or
vertical* semi-infinite flat plate, which process will be described in
detail later in this introductory section. Instability of this class of flows
has not been studied analytically previously, and only a relatively small
amount of experimental investigation has been done in the field. An
analytic investigation for the purpose of adding to the present body of
knowledge concerning laminar flow stability was considered to be de-

sirable. Such an investigation may also be considered to be one of the

o

The plate is said to be inclined if the vector which represents the
body force producing the flow makes a finite angle with the plate sur-
face. It is described as being vertical when the body force vector is
parallel to the plate surface.



first steps in learning how to control whether any particular free con-
vection flow of practical importance will be laminar or turbulent. Since
heat-transfer coefficients differ greatly between the laminar and turbul-
ent regimes, the ability to govern which of these types of flow is present
would be important in applications such as nuclear reactors in which
heat transfer by free convection is significant.

The classical experiments of Osborne Reynolds regarding transi-
tion from laminar to turbulent flow in a conduit of circular cross-section
indicated that the formation of turbulence is the result of an instability
in the laminar flow. This instability causes any flow disturbances such
as are caused by roughness of a bounding surface to be amplified until
the random, unsteady fluctuations of turbulence become established. By
the same reasoning a flow which is laminar must damp out any disturb-
ances which appear in it., The task of the worker treating the problem
analytically is to predict mathematically whether a flow is stable or un-

stable.

B2 Historical Survey of Analytic Laminar Flow Stability Investigations

Here only a brief synopsis of those analytic studies of laminar flow
stability which are most pertinent to the present work will be given. The
general field of laminar flow stability prdlems is a rather broad one,
and the material presented here comprises a relatively small fraction
of the total amount of work which has been done, although the basic
analyses are reported.

in 1895 Reynolds( 1 examined the problem of the stability of a
simple type of laminar flow through a consideration of the rate of change

of the mean kinetic energy of small superposed disturbances such as



appear in turbulent flow. The essential idea was to find conditions under
which this kinetic energy would either be dissipated by viscosity or be
increased by the transier of energy from the mean motion to the disturb-
ance motion. When this method was adapted to the case of cylindrical
Poiseuille flow the result was the determination of a minimum Reynolds
number below which turbulent motion could not be sustained. This value
of this Reynolds number was much lower than experimental values for
transition from laminar to turbulent flow, and the theory thus was con-
firmed to the extent that its predictions were not found to be in conflict
with observed phenomena. Unfortunately, this approach of treating the
kinetic energy of disturbance motions has apparently been too complicat-
ed in application to have yielded much more in the way of interesting re-
sults.,

Before Reynolds had published his energy method for treating the
problem, Rayleigh(z) had in 1880 introduced a technique which is funda-
mental in almost every present-day study and which was used in all the
following contributions discussed here. This is the method of small
oscillations in which sinusoidal disturbance waves are assumed that
proceed in the direction of the mean laminar flow and are either ampli-
fied or damped exponentially with time. Actually, this method is not as
restricted as it might first appear because the sinusoidal disturbance
waves can be considered to be Fourier components of disturbance waves
of arbitrary form. That laminar flows on the verge of transition first
indicate their instability by developing disturbance waves progressing
in the direction of the mean flow was observed by Reynolds in his experi-

ments on transition in a circular tube, Ordinarily this method is applied
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to plane, parallel flows, i.e., two-dimensional flows with parallel stream-
lines; and it results in reducing the number of independent variables in
the problem to one, the space variable measured perpendicular to the
directiqn of the mean flow, Also, the problem is linearized by assum-
ing that the disturbances are sufficiently small to justify the neglect of
terms of order higher than the first in the disturbance quantities. Even
in the case that the disturbances are amplified, this assumption that they
are very small is valid if one considers that they have just appeared and
have not had suffircient time to become of appreciable size compared with
corresponding mean-flow quantities. This method of small oscillations
was applied by Rayleigh and others to flow stability problems in which
viscosity was neglected, but little success was had by them. An import-
ant contribution by Rayleigh , however, was the deduction of two import-
ant theorems concerned with the relation of the phase velocity of the
disturbance wave to the mean-flow velocity profile when viscosity is
neglected.

An equation for the study of the stability of a laminar, viscous, in-
compressible, parallel flow with respect to three-dimensional disturb-
ances was dérived by Kelvin( 3) in 1887, It is essentially what is now
called the Orr-Sommerfeld equation, except for the fact that Kelvin's
equation was formulated for three-dimensional disturbances with the
dependent variable related to a disturbance velocity component, while
the Orr-Sommerfeld equation is restricted to two-dimensional disturb-
ances with the dependent variable related to a disturbance stream func-

tion. Kelvin's equation was studied by Orr(4)
43

, who apparently has been
given credit for deriving it. Sommerfel in 1908 set the equation in

its present form for two-dimensional disturbances in terms of a dependent
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variable related to a disturbance stream function.

Asymptotic methods for solving the Orr-Sommerfeld equation when
the Reynolds nurhber of the mean flow is large were developed by
Heisenberg(é) in 1924. He applied these methods in a study of plane
Poiseuille flow in an attempt to classify combinations of disturbance
wave length and mean-flow Reynolds number as stable or unstable, but
limitations in the methods prevented him from completing this classifi-
cation. Nevertheless, his method of cbtaining solutions with the Reynolds
number in the equation infinite, his noting of the great importance of the
curvature of the mean-flow velocity profile, and his determination of the
region of validity of the asymptotic solutions in the complex plane of the
independent variable have been particularly useful to later investigators.

(7

Tollmien' ' in 1929 applied the Orr-Sommerfeld equation to the
Blasius boundary layer and was able to find the relation between disturb-
ance wave length and mean-flow Reynolds number for the case of neutral,
i. e., neither amplified nor damped, oscillations. The results of his
analysis were confirmed beautifully by the experimental investigations

of Schubauer and Skramstad(g) in 1943,

An investigation of the effect of stratification of density upon the
stability of the Blasius boundary layer was made by Schlichting(g) in
1935. The fluid density was assumed to vary across the boundary layer,
and a body force field such as a gravitational field acting on each fluid
particle in proportion to its mass was assumed to be present and to be
directed perpendicular to the plate. Although Schlichting's stability
equation was not derived in the most general way possible, it bears a

strong resemblance to corresponding ones developed in the present work,

as noted in Appendix 4. His stability eguation was the Orr-Sommerfeld
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equation with small additional terms, and his method of finding solu-
tions was essentially that of Tollmien with a perturbatio;tl process added.

In 1945 Lin( 10) published an important, comprehensive paper con-
taining the results of an examination of the incompressible, two-
dimensional, parallel-flow, stability problem. He utilized the best
methods of both Heisenberg and Tollmien for obtaining approximate
solutions of the Orr-Sommerfeld equation. His procedure and modifi-
cations of it form the basis of the methods used for approximating solu-
tions for the stability egquations of the present work.

The problem of the stability of a compressible, viscous, bound-
ary layer flow was investigated by Lees and Lin(l 2 in 1947. Disturbance
equations for two-dimensional, parallel flow were derived with the inclu-
sion of the energy equation, which was not considered in the previously
mentioned work of Schlichting. In the present problem dealing with free
convection, the methods of derivation and solution of the equations that
were applied by Lees and Lin are quite useful, although they were prin-
cipally interested in cases for which the Mach number is finite and the
Froude numberg< is infinite. For at least the case of air, free convec-
tion flow along a flat plate undergoes transition at negligible Mach
numbers. When the Froude number is finite there is added to the free
convection disturbance equation corresponding to the Orr-Sommerfeld
equation a term which provides coupling with a disturbance energy equa-

tion. The importance of this term will be apparent when the reader

The Froude number appears in nondimensionalized boundary layer
equations when there are present both a variation in the fluid density
and a body force such as gravity. ‘
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arrives at Appendix 4, in which methods of solving the equations are

developed.

B3 Laminar Free Convection Along an Inclined or Vertical Semi-Infinite

Flat Plate

Free convection is the process of energy transport by a fluid in
motion when the motion is the result of the interaction of a variable
fluid density distribution with a body force field such as gravity. Every-
day examples of the process are observed in the rising of smoke from a
burning cigarette or the upward flow of heated air near a steam radiator.
In these situations the fluid in motion has a density lower than that of the
surrounding fluid, and the result is an upward flow due essentially to the
fact that the downward gravitational force acting on an element of heated
fluid is less than the upward buoyant force of the static pressure field,
which is determined by the hydrostatic relation in the unheated surround-
ing fluid. Similarly, the flow of air down a mountain side on a clear night
is a process of free convection. In this case the mountain radiates heat
into spé,ce until its surface temperature drops below that of the ambient
atmosphere. The air immediate‘ly adjacent to the surface of the mountain
is cooled and flows downward because of its increased density compared
with that of the surrounding atmosphere in which the hydrostatic relation
determines the variation of pressure with height.

In order to investigate free convection analytically it is necessary
to solve éimultaneously the continuity, momentum, and energy equations
of fluid mechanigs bas well as the equation of state of the fluid being con-
vected. Thisis much more difficult in general than dealing with forced
convection problems, in the usual cases of which the fluid properties are

taken to be constant and the velocity field is taken to be predetermined.
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In forced convection the problem of solving a heat-transfer problem be-
comes simply that of solving the energy equation with appropriate bound-
ary conditions, Since in free convection the velocity field .{s dependent
upon the fluid density field and this latter field is dependent principally
upon the temperature field, all the equations have to be solved simultane-
ously. Because of this complication, free convection problems involv-
ing only the simplest types of configurations have been examined analyti~
cally., The first configuration to be so examined in detail was a semi-
infinite flat plate parallel to the body force field, the flow being consider-
ed to be two-dimensional. The plate is kept isothermally at a tempera-
ture different from that of the fluid far away. This plate temperature is
chosen to be higher or lower than that of the surrounding or ambient fluid,
depending on the sense of the body force field, in order that flow will start
at the leading edge of the plate and proceed away from the leading edge
along the pia‘ce. The general shapes of the velocity and temperature
profiles at a given distance from the plate edge are indicated in Fig-

(

ure 3. Polhausen 12) found similarity relations for the velocity and
temperature profiles for this configuration and solved the problem for a
fluid Prandtl number of 0. 733 to correspond to that of air. Schmidt and
Beckmann( 12) ;rneasured temperature and velocity profiles for this case
of a serii~infinite vertical flat plate in air and found very good agreement
with the results of Polhausen's analysis, 'Schuh(13) in addition solved
Polhausen's equations with Prandtl numbers of 10, 100, and 1000; and
Ostra.ch(l4) obtained accurate solutions of the same equations with the

use of an electronic digital computer for these values of the Prandtl

number as well as for the values 0.01, 0,72, 0,733, 1, and 2.
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Heat-transfer coefficients agreeing quite well over a wide range
of Prandtl numbers with those predicted by solving the Polhausen equa-

(15)

tions were obtained by Squire » who applied integral relations to
assumed simple polynomial velocity and temperature profiles,

These analyses of laminar flow along a vertical, semi-infinite flat
plate can be extended to the case of an inclined plate if the body force pro-
ducing the flow is taken to be that component of the total body force vector
that is parallel to the plate. Although the component of the body force
field normal to the plate may have a tendency to separate the flow on
one side of the plate, it can be shown by a consideration of the momentum

equation that it should have no effect while the flow remains attached and

laminar.

B4  Instability and Transition of Laminar Free Convection Along a Semi-

Infinite Flat Plate

It has been established by observation that free convection flow
along a semi-infinite flat plate is initially laminar near the leading edge
but becomes turbulent after it has progressed some distance along the
plate. For a fluid with a given Prandtl number, the Grashof number Gr:kc
based on distance from the leading edge of the plate is the main para-
meter describing the stability of the flow according to observation and

according to analysis as well., (The Grashof number is related to the

Gry is defined to be L@LZ‘IT‘E&"—B > being the magnitude of the body
force vector, @ being the cosine of the angle between the body force
vector and the plate surface, £  being the product @AT in which @,
is the coefficient of thermal expansion of the fluid far from the plate
and AT is the absolute value of the temperature difference between
the plate and the fluid far from it, % being the distance from the lead-
ing edge of the plate, and %, being the kinematic viscosity of the fluid
far from the plate.
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Reynolds number used in the analysis in that Grx is proportional to (Re*)
For heat-transfer purposes, transition from laminar to turbulent flow is
considered to occur at a value of Gry of about 109 (16). According to the
laminar flow instability theory of the origin of turbulence, instability
should appear first at somewhat lower values of Gy, in order that dis-
turbances carried along with the flow be amplified in the process of trans-
ition until the turbulent regime is established. To the knowledge of the
author, the observations reported by Eckert and Soehnghen(l7) are the
only experimental investigations of laminar flow instability in free con-
vection along a flat plate. They found that with air as the convecting
fluid, instability waves traveling with the mean flow first appeared at a

Gry of 4 x 108. These initial waves were of a length equal to 3.1 times
the distance measured normal to the plate from the plate surface to the
outer point in the flow at which the velocity was 0,01 of its maximum.
Motion pictures studies indicated that the phase velocity of these waves
was 0. 73 times the maximum velocity of the flow at the particular values
of Gry and distance from the plate leading edge at which they were first
observed. It is important to note that these initia.l waves were considered
to be two-dimensional or, equivalently, that they propagated essentially
parallel to the plate surface in the direction of the mean flow. This is in
accord with the fact that for incompressible flow it has been shown analy-
tically by Squire( 18) that such two-dimensional waves, rather than 'three-
dimensional'* ones which propagate parallel to the plate but at an angle
with the mean flow velocity, are the first to be unstable,

In Figures 7 and 8, points which represent Eckert and Soehnghen's

observed incipient instability waves are plotted in terms of the nondimen-

sional disturbance wave number & and the mean-flow Reynolds number
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Re . The values of o and Re for the experimental observations in
the two figures are slightly different because the nondimensionalizing
process depends on the shapes of the velocity profiles, which are differ-

ent for the two cases.

B5 The Following Sections

Section C contains a general description of the application of the
method of small oscillations to the study of the stability of laminar free
convection flow along an inclined or vertical flat plate. A discussion and
conclusions concerning six approximate procedures developed for the
application of this method with various simplifying assumptions are also
contained in this section. The development of these six procedures is
presented in Appendix 4. With the exception of the simplest, they were
developed for the purpose of classifying combinations of the Reynolds
number Re and the wave number & as being stable or unstable.

Section D describes the application of one of the methods devel-
oped in Appendix 4 to the case of air convecting about a vertical plate.
Gravitational forces were neglected for simplification. This implies, as
is indicated in the appendix, that the thermal conductivity of the fluid is
irrelevant to the problem. An indifference curve or plot in the «-Re
plane representing neutrally stable oscillations was obtained for the

(15)

cubic polynomial velocity profile used by Squire in his free convec-

tion analysis, and a significant portion of such a curve was secured for

the profile obtained by OStrach( 14)

in his solution of Polhausen's equa-
tions with a Prandtl number corresponding to that of air. The indifference
curves are compared with each other and with the observations of insta-

bility in laminar free convection in air reported in Reference 17, and

discrepancies are discussed thoroughly.
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C

APPLICATION OF THE METHOD OF SMALL OSCILLATIONS TO THE

STUDY GF THE STABILITY OF LAMINAR FREE CONVECTION ALONG

A FLAT PLATE

P late

Laminar
Boundary
Layer

The physical configuration considered for two-dimensional free con-
vection along a semi-infinite flat plate is that shown above. If the plate
is heated above the temperature of the surrounding fluid, the body force
,% will cause a flow of the boundary layer type as indicated by the
dotted lines to develop on both sides of the plate, (If the plate were
cooied below the temperature of the surrounding fluid, the component of
#: parallel to the plate would have to be directed away from the lead-
ing edge in order for the flow to proceed away from the leading edge along
the plate as it is considered to do,) The notational convention employed
is such that for the case of the figure shown the angle ® measured as
indicated between 2 and the plate is positive when the component of 2
perpendicular to the plate is directed away from the surface on the side
along which the flow is being studied. For the study of flow along the
bottom surface of the plate in the diagram, @ is positive; if flow along
the top surface were to be treated, the angle would be taken to be negative.
As mentioned’in Section B2, the method of small oscillations for the
investigation of laminar flow stability consists essentially of perturb-

ing the flow and finding whether the perturbations amplify or die away in
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time, If they amplify, the conclusion is that the flow is unstable and that
turbulence could be expected to develop; if they die away, the flow should
be stable. In the process of applying this method of small oscillations
one assumes that small disturbances of velocity, pressure, temperature,
and density and other fluid properties occur in the form of waves travel-
ing parallel to the plate in the direction of the flow., The Fourier com-
ponents of these wave-type disturbances are placed in the equations which
describe the free convection flow. That is, a disturbance is assumed in
the form of a sinusoidal wave having an arbitrary wave length and phase
velocity which are to be determined by the flow. The processes of plac-
ing these sinusoidal disturbances into the flow equations and appropriately
simplifying them are described in detail in Appendix 2. As is indicated in
the following divisions of the present Section C, when the Prandtl number
of the mean flow has been chosen, the problem becomes resolved to the
task of determining the relations among the wave number  of the dis-
turbance, the phase velocity ¢ of the disturbance, and the Reynolds

number Re of the mean flow at a given rate of disturbance amplifica-

tion or damping.

Cl The Disturbance Differential Equations

For the case of laminar free convection along an inclined or verti-
cal flat plate the simplified disturbance equations according to the method

of small oscillations are

([G-c)(P'- 229) -U"Q +_f,_:_{ (@5~ adz$] +ZLF'??{¢E-Z°‘W”+°(W} =0 (1)
and (I-c)s-8@ +_i_{s"-a?*s} = O. (2)

ds oL Fe
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The derivation of these equations is presented in detail in Appendix 2.

U is the nondimensional mean-flow velocity component parallel to the
wall equal to the local dimensional mean velocity component divided by
the maximum dimensional velocity Um in the boundary layer, and % is
the nondimensional mean fluid temperature equal to the difference between
the local mean temperature of the fluid and the temperature of the fluid
far from the plate, divided by the absolute value of the difference between
the temperatures of thé plate and the fluid far from it. Both a
and © are taken to be functions of only a co-ordinate N measured
normal to the plate. ¢q and S are functions similarly nondimenional-
ized associated with a disturbance stream function ¥ and a temperature
perturbation ©  such that 2]’(5})7,1'): Q(}z)ei"‘(s'cn and ®(3%,70)= 57 el(3-cv

§ is the value of a co-ordinate measured along the plate from its leading
edge and nondimensionalized by dividing by the boundary layer thickness

S n is a similarly nondimensionalized co-ordinate measured norm-
al to the plate from its surface, 7T is time made nondimensional by divid-
ing by _I§J—;m , C is the nondimensional phase velocity or velocity of prop-
‘agation of the disturbance oscillation, and  1is the wave number of the
oscillation equal to 2mMé , /\ being the wave length. & is the bound-
ary layer thickness deﬁ‘ined previously. g in equation lis equal to

@G0T , in which Qo is the coefficient of thermal expansion of the
fluid far from the plate and AT is the absolute value of the difference
between the plate temperature and temperature of the fluid far from the
plate. F is a Froude number defined to be -U—%— ' ¢ being the magni-
tude of the body force vector, (. 1is the cosine of the angle ® between

the body force vector and the plate surface, and @z is the sine of that
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angle. Re 1is a Reynolds number defined to be 11;.}_5 , with 1,
the kinematic viscosity of the fluid far from the plat;; and ¢ is the
Prandtl number of the fluid far from the plate. A prime (') denotes
differentiation with respect to .

Equation 1 was obtained through eliminating the pressure terms be-
tween the two components of the momentum equation by cross-differentia-
tion and subtraction, and in this and various other forms it will be called
the '"combined momentum equation'. Egquation 2 is simply the flow energy
equation. In both of the equations the disturbance terms have been linear-
ized as previously mentioned, and steady-state terms have been cancelled.
As shown in Appendix 2, these simplified forms of the equations hold
strictly only for the case of parallel flow with all fluid properties other
than the density taken to be constant. The effect of density variation
appears only in the presence of the term ;ﬁ?{[a,s'-dazS} which éouples
the two equations together. That the simplifications made in deriving
these forms are reasonable is demonstrated in Appendix 2.

An important fact for the free convection flow considered is that the
Froude number F and the Reynolds number Re are related, along with
the parameter:- £ . In Appendix 3 it is shown that one can write

Py
in which. for a given value of @ . ,g is a dimensionless function of the
velocity profile shape. When the difference between the temperature of
the plate and of the fluid far from it is small, this profile shape depends
only on the Prandtl number ¢, of the convecting fluid so that ,g is
ultimately a function of the Prandtl number if @ 1is fixed. Figure 2
is a plot of |a. A& as a function of ¢ , values of Id:lxg being obtained

according to Appendix 3 from information contained in Reference 14.
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Eqguation 1 with replaced b is
; § oreplacedhy g

(T-c)(@"-o*9) -1’ +a!ﬁ [ias-aa25] +-L{@F -2a'q"+ a9} = 0. (1a)

One can see that when the value of «Re is specified the size of the
term which couples this equation with the energy equation 2 is propor-
tional to /g . The significance of this appears in the development in

Appendix 4 of approximate methods for solving the stability problem.

Cc2 Boundary Conditions

In general, six homogeneous boundary conditions must be speci-
fied in order to make the problem determinate. These boundary condi-
’tions are derived from a consideration of restrictions on the velocity and
temperature disturbances which are imposed far from the plate and at the
plate surface. The requirement far from the plate is that the disturbances
die away; that is, one specifies that the disturbances associated with
incipient turbulence originate in the layer in which there is flow. At the
platé surface the requirements on the disturbance velocity are that its
component U normal to the surface must vanish and, if the fluid vis-
cosity is considered, i.e., if the term o—LLF-?e{ Qz—zoﬁq"_,. 0(4(9} in equation
la is retained, that the component u parallel to the wall must vanish
as well. Since the disturbance stream function V(5 7, T) has been
assumed to be of the form @) e <D | the requirement that u or

g_;]_” vanish at the plate is ¢@(0)=0 ; and the requirement that v or
-a_%l' disappear there is @(0)=0 . The requirements which should be
specified on the temperature disturbance at the wall are more difficult
to forrﬁulate from physical reasoning because of the interaction between
the temperature disturbances in the fluid and heat transfer in the plate.

An analysis taking into account the heat transfer process in the plate
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would really be necessary for determining the exact boundary condition
to impose on the temperature disturbance at the plate surface. The re-
sults of this analysis as well as the analysis itself would probably be
quite complex; and only the two conditions that the plate is isothermal
or that it is adiabatic with respect to the teﬁperature disturbances are
considered in Appendix 4, where methods of approximately solving the
stability problem with various simplifications are developed. An isother-
mal plate surface requires that s(0)=o0 ; if the plate surface is adiabatic
with respect to the temperature disturbances, s'@©=0 .
In Appendix 4 various simplifications are made in equations la and
2 to correspond to different simplifications regarding the fluid proper-
ties and flow characteristics. When S and its derivatives are eliminated
between equations la and 2 and certain simplifications are made, the order
of the resulting equation in @ and its derivatives is reduced compared
with the order it would have without the simplifications, The resultis
that the number of boundary conditions which can be satisfied is decreas-
ed. This reduction in the number of boundary conditions is done in
accordance with the simplifying assumptions made concerning the flow.
For instance, taking the flow to be nonviscous implies that the bouhdary
condition requiring the disappearance of the velocity component parallel

to the plate at its surface should be dropped.

C3 The Boundary-Value Problem

The general procedure for obtaining information about the stability
of the flow by using equations la and 2 in conjunction with the boundary
conditions discussed is described in this section.

If one eliminates S and its derivatives between equations la and
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2, a sixth-order equation in @ will result. (A procedure for doing this
is described in Appendix 4.) Because this equation is linear and homo-
geneous, its general solution @ will be capable of expression as a line-

ar combination of six linearly independent solutions <) i as

Q= ;GCJ @} (a5,¢, o, o Re). (3)

As indicated, each of the solutions Q) will depend on the parameters
0o 5 € » o > and dARe which appear in the original pair of equations.
One inethod of obtaining an expression for s analogous to that for @
in equation 3 begins by securing an expression for S which is homo-
geneous and linear in ¢ and its derivatives. This expression can "Ee
gotten by proceeding as indicated in Part 4. 3. 3 of Appendix 4. One then
substitutes for @ according to equation 3 to obtain
G
S:}Z;' C} 5;(s, ¢, o, o Re), (4)
the 5}15 being defined to be the coefficients of the C}’s.
Six homogeneous linear boundary conditions of the types previously
discussed can be stated in the form of six linear equations in ¢ , 5

2

and their derivatives. These six eguations are written symbolically as

}4 (9,5) =0. ()
4 =12,..6
If one substitutes the expressions for @ and S defined by equations 3

and 4 into the set of equations 5, the result is a set of six simultaneous

linear equations in the Cf"s. For non-trivial solutions Cj' of this
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set of equations to exist, the determinant D(0os, ¢, o, a Re) of the co-

efficients of the C}’s must disappear, or
D(e, ¢, o, aRe) = O. (6)

It is of importance that the expression D(os C,d,dRe)  is the sum of
a real and an imaginary part, each of which must separately be equal to
zero according to the preceding equation. For a given fluid, s is
specified. Also, the imaginary‘part of C is determined when a rate of
amplification or damping of the disturbances is chosen, since the disturb-

els-M  Ty. only free parameters, then,

ances are proportional to
which appear in equation 6 are M{C), d s and oRe . The final step
in solving the boundary-value problem can be taken to be that of choosing

values of [1f(c) and finding corresponding pairs of values of o and oRe

simultaneously satisfying the equations

FUZ{D(G;, c, oc,otRe)} =o (6a)
and

Im{D(cs, ¢, %, Re)} =0. (6b)

Enough pairs of values of « and oRe are to be found to determine a
curve in the o-Re plane for the particular value of S (¢) chosen.
Usually one investigates the case of neutral stability in which the disturb-
ances are neither amplified nor damped and therefore takes P (¢c) =o0.
In this case the curve in the ol -Re plane divides pairs of values of
and [e into those associated with stable dr damped oscillations and
those associated with unstable or amplified oscillations. Such a curve is
called an "indifference! or ''‘meutral stability' curve.

Although this procedure is perhaps one of the neater ways in which

the general process of solving the boundary-value problem can be described

there are modifications of it which should be more useful in practice. In
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the methods of approximate solution of the boundary-value problems
developed in Appendix 4, the formidable task of dealing with a sixth-
order determinant is avoided; three is the highest order of the determin-

ants considered which correspond to D(o, ¢,d, aRe).

C4  Simplified Methods for Solving the Free Convection Stability Problem

The general method outlined in Sections C1 through C3 for study-
ing analytically the stability of free convection flow is in reality extremely
difficult to apply. Although the overall procedure is quite straightforward,
obtaining exact expressions for ¢ and S and solving the corresponding
boundary-condition equation 6 would be impossible in practice. According-
ly, approximate methods for solving the stability problem based on the
assumption that the Reynolds number is large were developed as shown
in Appendix 4.

Six of these methods, which are of varying degrees of mathematical
cdmple:city, were derived. These methods differ basically from one
another according ‘i:o the consideration or neglect of heat conduction and
inertial, pressure, viscous, and body forces. In each of the six methods
inertial and pressure forces are considered, while heat conduction and
viscous and body forces are included or not included in the various cases
in order to yield a group of methods covering all po\ssible significant
combinations of these factors. Only inertial and pressure forces are
considered in the simplest of these methods, while the most complicated
involves the consideration of inertial, pressure, viscous, and body forces
as well as hea’c conduction. Each of the six methods was derived for the
case of an inclined plate, and the modifications necessary when the plate

is vertical were determined.
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C4.1 Conclusions Regarding the Methods Developed for Solving

Approximately the Free Convection Stability Problem

After deriving and examining these methods, the author has arrived
at the following conclusions concerning treating the free convection
stability problem analytically:

I. The method of two-dimensional small oscillations can be used to
develop techniques for analyzing the stability with respect to turbulent
transition of high-Reynolds-number, laminar, free convection flows

about a vertical or inclined semi-infinite flat plate.

IL. In general, both the disturbance energy equation and the disturb-
ance combined momentum equation, which is obtained by eliminating the
pressure terms between the two components of the momentum equation,

must be considered.

III. When the plate is inclined only slightly from the vertical, the
effects upon stability of inclination are opposite in character when the
component of the body force is directed away from the plate surface com-
pared with the effects when the component is directed toward the plate

surface,

IV. For a vertical plate, the stability of the flow is independent of
whether the plate is heated or cooled with respect to the surrounding
fluid if the velocity and temperature profiles have the same shapes in
the two cases. If the plate is inclined, the stability could be different
for heating and cooling even if the body force vector makes the same

angle with a perpendicular to the plate surface in the two cases.
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V. Important reductions in the mathematical complexity of the problem
can be made by treating only the combined momentum equation as well as
by taking the Prandtl number to be either very large or very small when

both the combined momentum and the energy equations are considered.

VI. With the possible exception of the cases in which only the combined
momentum equation is considered, the mathematical complexity of the
methods of éolution which have been developed is so great that the use of
electronic computing facilities is anticipated to be necessary for their

successful application.

C4. 2 Discussion of Conclusions

Conclusion I follows simply from the facts that six different schemes
for investigating analytically the stability of a laminar free convection flow
have been developed and that these six schemes are based on differential
equations derived by the method of small oscillations. OCbtaining indiffer-
ence curves by these six methods and by experiment for comparison would
have to be done in order to determine fully the validity of the methods.

The validity of one of these methods was partially checked as indicated

in Section D by comparing indifference curves obtained with its use with
the first instability observed interferometrically in the free convection of
air along a flat plate. The general results were that the qualitative agree-
ment between fhe analysis and the experiments was satisfactory but that
the quantitative agreement was poor. Computational limitations affect-
ing the analysis prevent these results from applying directly to the method
as developed in Appendix 4, however.

The second conclusion is merely a statement of the fact that both

the combined momentum equation 1 or la and the energy equation 2
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appear when the method of small oscillations is applied to the general
two-dimensional flow equations with simplifications as indicated in
Appendix 2. The various simplifying assumptions made in arriving at
these disturbance equations are described and justified in the same appen-
dix.

The third conclusion is a consequence of the fact that linear terms
in dz , which is the sine of the angle of inclination ® of the plate with
the vertical, appear in the terms of the boundary-condition equations
when the effect of the body force on stability is taken into account. Be-
cause linear rather than higher-order terms in Q. are most important
when @2 is small, the effects of a finite value of d. on any parameter
which depends on it through a boundary-condition equation will reverse
when dz changes sign.

When d. is positive, the component of the body force normal to
the plate is directed away from the plate surface; and when ¢, is nega-
tive, this component is directed toward the plate surface. Thus the con-
clusion follows.

An important parameter which inclination of the plate may affect
is the lowest value of the Reynolds number for which instability appears.
Schlichting(g) found analytically for the Blasius boundary layer that the
minimum Reynolds number for instability was increased when the bound-
ary layer was '"'stably' stratified with respect to a body force field normal
to the bounding surface and a fluid density that varied in the direction
normal to the sﬁrfa.ce. That is, if the body force field and fluid density
variation acted to restore a disturbed fluid particle to its original posi-
tion, the minimum Reynolds number for instability was increased. When

‘the flow was taken to be '""unstably' stratified, i.e., when the body force
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field and the fluid density variation were taken to a.cf so that a disturbed
particle would be moved farther from its original position, the minimum
Reynolds number for instability decreased. One might expect to find simi-
lar results in the free convectioﬁ case when the plate is inclined, since
incliniﬁg the plate by introducing a component of the Body force field
normal to the plate has the effect of causing the flow to be either stably

or unstably stratified, depending on which side of the plate is considered.
However, the great dissimilarity between the Blasius velocity profile and
the typical free convection velocity profile prevents one from being at all
sure that the stability would be affected similarly for the two cases.

Conclusion V follows primarily from a comparison of the coupled,
viscous, heat-conducting case of Part 4. 2.4 of Appendix 4 with the un-
coupled cases and with the coupled cases for which the Prandtl number
was taken to be either very large or very small. The coupled, viscous,
heat-conducting case is the only one in which three rather than one or
two boundary conditions are applied at the wall. This additional bound-
ary condition necessitates the use of two solutions valid near the inner
cri’tical point e, in addition to a combination of two nonviscous solu-
tions, while the other, simplified cases require at most only one solu-
tion in additioﬁ to the nonviscous ones, The boundary-condition equation
is correspondingly increased in complexity.

The truth of the sixth conclusion should be apparent after the six
approximate methods of solution of the stability problem which are de-
'veloped in Parts 4.1 and 4. 2 of Appendix 4 have been examined. Experi-
ence in using a desk calculator to compute indifference curves for the
uncoupled, viscous case as described in Section D is another reason for

the author's arriving at this conclusion that the use of elaborate comput-
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ing facilities would be necessary in applying the more complex methods.
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D

INVESTIGATION WITH NEGLECT OF TEMPERATURE DISTURBANCE

EFFECTS OF THE STABILITY OF LAMINAR FREE CONVECTION IN A

VISCOUS FLUID WITH A PRANDTL NUMBER OF 0. 72

Dl The General Method

In Appendix 4, approximate methods for solving the neutral stabil-
ity problem are presented for six cases with different assumptions re-
garding the effects of viscosity, heat conduction, and the body force. Of
these six methods, only the two for which the effects of the body force on
stability are neglected are sufficiently simple to be treated without the
use of extensive, high-speed computing facilities. These two are the
uncoupled*, nonviscous case and the uncoupled, viscous case. The un-
coupled, viscous case was investigated for the situation in which the fluid
has a Prandtl number of 0,72, This value of the Prandtl number was cho-
sen principally because it is that of air, for which some informa’cion“?)
concerning the appearance of instability is available. Also, using this
value of the Prandtl number is advantageous when making an analysis in
which the effect of coupling between the combined momentum and energy
equations is neglected. This is because the term /g » which depends on
the Prandtl number and is a factor of the expreséion Jﬁ

Al Re

in the combined momentum equation which provides coupling with the

{La.s'—dazs}

energy equation, has its minimum near this value of the Prandtl number.

= :
A case is said to be '"uncoupled' if only the combined momentum

equation la rather than both it and the energy equation 2 are considered
in the analysis., When the body force is neglected the term in the com-
bined momentum equation which couples it to the energy equation dis-
appears.
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Thus, one should expect that if coupling can be neglected in any range of
values of the Prandtl number, it can be neglected for a value of 0,72, pro-
vided that the product o e is sufficiently large.

Part 4. 1. 2 of Appendix 4 is the development of an approximate me-
thod fof solving the uncoupled, viscous case. This method involves solv-

ing the Orr-Sommerfeld equation,
(@-C)@"-or@) TP +_i_ {§F-2a'@"+et®} = O (4-3)
o FRe

U being specified by the free convection velocity profile and @ being

required to meet the boundary conditions

¢l =0, } (4-11a)
@'0) = O, ‘

and @(e0) =0, } (4-11b)
@'(0) = 0.

These boundary conditions are implied by the requirements that the com-
ponents of the disturbance velocity both normal and parallel to the plate
disappear at the plate surface and far away from it. The resulting

boundary-condition equation is

-{@ -ac@u(0)) = _Bs(5.) (4-32)

e {@0)-ac* G2 (0) ] 505 (3.)

which defines a relation for neutral disturbance oscillations among the

Reynolds number Re of the mean’flow, the phase velocity €, and the
wave number of . In this equation ¢, and @, are the solutions of the
nonviscous Orr-Sommerfeld equation which are given by equations 4-6 and
4-7 of Part 4.1.1.3 of Appendix 4, and ®; is one of the viscous solu-

tions defined by equations 4-18 of Part 4. 1. 2. 3 of the same appendix,
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7e: is the inner critical point or value of 7 for which U is equal to c .

S is —77c.(EL"c.oLRe)% , Ue being the value of {' at 7 .‘ For convenience
the left-hand side of the equation will be designated by 8(at,c), and the
right-hand side by i(Sb) so that the relation becomes

E(at,C) = Z(30). (7)
The first step in solving this boundary-condition equation is to plot

ZL(3) as a function of 3 in the complex plane. Then a value of ¢ is
chosen, and 8(0‘., c) is plotted as a function of o for this value of ¢
Intersections, if any, of the curves representing I (%) and E(«c) de-
termine combinations of values of o s C, and S5, for which neutral
oscillations can exist. BSince S.= Ve (‘u‘.':, o(f?e)% and U, and Ve, are
fixed when ¢ is chosen, these sets of values of o0 , ¢, and 3, can be
used to find pairs of values of &« and olRe which specify points on an indif-

ference curve in the o-Re plane.

D2 The Velocity Profiles Treated

D2.1 The Cubic Polynomial Profile

The first of the two velocity profiles examined for stability was the
cubic polynomial approximation to the free convelction velocity profile
which was employed by Squire(15) in his integral method of treating lami-
nar free convection along a vertical, semi-infinite flat plate. In terms of

the present dimensionless distance 7 from the surface this profile is re-

presented analytically by

g_éf_\_’:‘_;?(l—-j%v)l) 0.4_775. 16 =4

|
1

(8)
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in which A is the value of n at the edge of the boundary layer. The pro-
file is plotted in Figure 9 in terms of the free convection dimensionless
similarity velocity _Ux _ and similarity distance (er ¥ from the
2V (Gn)Z T) 3

plate surface. One can ascertain from either this plot or the analytic
representation that the profile satisfies the requirements that [ be zero
at both the plate surface and the edge of the boundary layer; also, [J' dis-
appears at the edge of the boundary layer as it should.

With the use of the results of Squire's laminar analysis and the
formulae of Appendix 3 one can establish the following formulas which

hold for free convection in a fluid which has a Prandtl number ¢; and in

which the velocity profile is that given by equation 8:

F=e2( 42

21 (g + 20 )
5o ° (o + 22)
O-Et (CBI"‘;(,)i

Re - 1-69 (er)k
out (Gb + ___ZO)I":
A

Here % is a factor of the term which couples the combined momentum

and energy equations, and $§ is the ratio of the boundary layer thick-
®

ness to the distance from the edge of the plate. Setting ¢, =072 reduces

these relations to

~ 296 (10)

4
and Re= 175 (Gr«)".

D2.2 The Exact Profile

The velocity profile termed the '"exact! profile is that obtained by
the numerical solution of Polhausen's equations describing laminar free

convection along a vertical, semi-infinite flat plate of a fluid with a
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Prandtl number of 0. 72. These equations were derived on the assump-
tions that the fluid density varies linearly with the temperature and that
the other fluid properties are constant. The particular solutions of the
equations that were employed are those tabulated in Reference 14, For
compa.rison with the cubic polynomial profile, the velocity profile ob-
tained from these solutions is plotted in Figure 9 in terms of the previous-
ly mentioned free convection similarity variables.

By using information contained in Reference 14 and the formulas of

Appendix 3 one can determine that for the exact profile

f { egz
: lail
o~ 3.055
(Gm»* (11)
and Re= 1.686 (er‘f;‘—.

D3 Solution of the Boundary-Condition Equation Ela,c) = A (3.)

As indicated in Section D1, this equation is solved by plotting curves
representing its two sides in the complex plane and noting the values of
a , ¢, and S. at points of intersection of the curves. The processes

of obtaining values of i(?’)‘,) and (S(o(, C) are described in Sections D3.1

and D3. 2.

D3.1 Determination of X(3)

In Reference 18 the real and imaginary parts of jd__Q[d_Qz %H { (LQ,_)%E
or §3 o) and fdsz_Q%Hé{ (i )5} or @;(50) are tabulated for
values of 35, differing by 0.5 over the range -8% 5,28, Additional values
of ®3(5.) and &;(5.) were calculated in order to reduce to 0. 1 the
size of the interval between points at which the functions were known.

This was done by performing single and double numerical integrations of

0 : . .
5 H_us_{_g_(rs)i} » values of this function being found by the use of Refer-
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ence 19. The ‘process of interpolation was completed by drawing curves
of the real and imaginary parts of &(3) and & (%) . With the aid of

these, A (%) , which is B5(5s.) by definition, was determined and

S0 B, (35

plotted in the complex plane for use in solving the boundary-condition equa-

tion

Elet,c) = Z(s). (7)

Since the viscous solution &,(3) is developed on the assumption
that (O-¢)= Ué.(;/—yc,) , there is some question concerning the validity of
using &$;(3) as a solution when C is quite large. This is because the
velocity profile between Ve, and the plate, where the boundary conditions
are applied, is not actually linear but curved. In order to ascertain how
serious this shortcoming of the solution ®53(3) actually is, a calculation
of the expression corresponding to A (%) was made with the use of a
viscous solution in which the effect of curvature of the velocity profile
was considered. This viscous solution was one of those developed by
Tollmien in Reference 20. Unfortunately, it requires extensive numeri-
cal integration for its application. In the case of the cubic polynomial
profile and for a value of ¢ of 0.40 and a value of 35, of - 2,66, the
values of I(S.-,)‘ and the corresponding expression for Tollmien's improved
viscous solution were practically identical. With larger values of ¢ such
as appear in the solution of the boundary-condition equation for the exact
profile, the discrepancy between the expressions for the two solutions can
be expected to be larger; but the poor accuracy with which €(d«,c) can be
calculated for this case is more serious in its effect on the determination
of the indifference curve. The problems attendant to calculating € («,c)

for the exact profile are discussed in the following Section D3. 2,
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D3, 2 Determination of &(&,¢C)

D3.2.1 BSimplifications

e(o(, ¢) is defined to be ’{d).(o)-o(c’-d?z(o)} . Equations 4-6

7e{ @ 0)- s C* @z (0) }
of Appendix 4 defining &, and @2 state that

¢= (U-c) ;:oc‘"“im(ﬁ)

and o (4-6)
&= (U-c) %; " Dm(7)

so that one can write

(-4 [
m _ 2 am+i
8(0(,(:) — 779 : mzoa Qm -C ;20( Gm , (12)
(4] ) oo ) o \
’u’}[;oot‘m Qm - sz _:00(2'"'” Gm} -C [;.g(.zma;n - cz;g(zmﬂ Gm]

in which Tp= g._g

) Qm=2m(0), Gm:ﬁm(O), Q;'n = iﬂ,m(zz)' , and
=0 7=0

Gm :dﬂm(zz)J . According to equations 4-7 of Appendix 4,77the following
d 1=0

relations hold:
o=
7 _
bo :‘l_dﬂ(a“C)z

i [1X}
%7"; = Ldﬂ,(u-cjz/bdﬂz(a‘dz;{m—t
7 - 4 N
é];_\ﬂf[(rdﬂ, (fi-c) idﬂz{ﬂ-c) L=

One can see that the calculation of the coefficients of o*™ and ™"
in equation 12 becomes excessively complicated very rapidly with in-
creasing values of m so that a stringent limit is placed on the number 6f
terms which can be utilized in any determination of ‘values of 8(.;(,(,) .
In the present work only the terms Qo, Qi > Go » Qs > Q ., G»,

t
and O are retained, These are, according to the definitions 4-7,
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Qo= 1, .
Q= fdsz. ('a—did;'lz( u-c)s W
G,= Ed:z (a-c)'f
Q=1 > (13)

Q=1 “ds(a-ch
C ok

Go= L
ct’ 2, /
and G =1 052, g-cfl d 2. (a- 3 = NOEEN o
Lfds C)id @-d' = 6.G-LQ

Neglecting other terms in equation 12 gives

e(d)C} ‘:_: _C; ! + O(z Ql "oLC" Go 7 . (14)
T Tol1+ o2Q=a C2G] = e[t @! (1= c2Go) + o * Q]
Here the symbol = indicates approximate equality. The validity of

this equation depends upon the relative sizes of the terms which are re-
tained and those which have been neglected; it will be best then when
is small, since the higher-order terms in o have been neglected. Only
the integrals for G, @, ; and Q! must be determined; but finding them
is quite a task, as is explained in the next two parts.

One might ask why in approximately calculating the nonviscous
solutions and their derivatives appearing in £ (d,¢) that certain trans-
formations of the series in «% used by Lin were not employed. Lin's
transformations result in more rapidly converging series when the veloc-
ity profile is that of forced convection, but it was found by the author that
they are iné,pplicable to the case of a profile with two critical points such

as the general free convection profile.
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D3,2.2 Calculation of Go, Q , and Qi for the Cubic Polynomial Pro-

file and Validity of the Approximation to E(a,¢) for this Profile

Calculating Go is simply an exercise in the integration of the
reciprocal of a sixth-order polynomial. It is convenient to write (Ti-C)
as@ﬁ%‘i} (’)7——E.)(17—E2)(17-Ez) , in which E, and E, are e, and %,

d is the third of th 1 ial - *—c . ith
and [, is the third zero o e polynomia %4%;7(1 Tsé-r,) c With

-2
this convention ({i-¢) can be written as the sum of three terms of the

A;’._‘Z_*‘ﬁ_%L. -
(7-E4)°

The signs of the imaginary parts of the logarithmic terms in the integrals

form

of these expressions are determined by the requirements

L ard (e (I (4-26)
and
~IL ¢ arg(n-ne) 21 (4-29)

Determining Q! involves the simple operation of integrating a
sixth-order polynomial. Finding Q. requires the integration of pro-
ducts of terms of the form 15 with powers of % running from 0 to 7.
In Q, the sigﬁs of imaginary parts of logarithmic terms are also de-
termined by the requirements 4-26 and 4-29. Although the operations of
finding the integrals are straightforward, the algebraic complication is
extreme, particularly for Q, . Seventy-one successive computations
are necessary to find Go after ¢ has been chosenand E,, E. , and Es
‘ha.ve been secured by solving a cubic equation. Approximately 300 addi-
tional operations are necessary to secure Q.

The question may arise of why G, was not chosen as one of the
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coefficients of o*" to be retained in the expression‘for €(a,c) along with

Go , Qo, Q, G, Gi, @, and Qi, since G and G, are both coeffi-
cients of . That is, all coefficients of «°, o', and d® have been retained;
but of the coefficients of o°, G, and G ., only G, has been kept. This
inconsiétency is the consequence of an excessive algebraic complexity
which was found to be a result of performing the integrations necessary
to determine G . This complexity was so great that the author decided
that the slight additional accuracy in determining € (o,c) that would be
gof:ten from including G, would not justify the inordinate amount of cal-
culation that would have to be done. To secure a value of (G, several
times the amount of computation necessary to obtain A Q ., Go, and Qi
would have had to be performed.

Although the approximate expression 14 for E(«,c) utilizes only

the first few terms of infinite series, it is believed that with its use fairly
accurate values for 5(0(,C) were obtained in this case of the cubic polynomi-
al profile. From an examination of equation 14 one finds that when o
approaches o0 , the approximate expression for € (a,c) should vanish,
since d appears to the third power in the denominator of the fraction and
to only the second power in the numerator. Therefore, one should sus-
pect that the accuracy with which 8(0(,(',) is represented is poor when «
is so large that &(d,¢) approaches 0 unless €(«,c) lies close to 0 for
even moderate values of & . The converse, i.e., that when g(d,c) is
not close to 0 the accuracy is good, is not necessarily true; but when 8(o{,c)
is plotted in the complex plane, its tendency to turn into the origin as «
increases from 0 to co can be used to estimate the accuracy with which
the function is represented. The representation is absolutely correct

when ol=0p; as o increases the representation decreases in validity. It
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was found that the plots shown in Figure 5 of £(xc)for this cubic poly-
nomial profile with different values of ¢ did not turn in toward the
origin until o«  was made many times the size of the values for which
the curves of 8{0(,6) intersected those of Z(Sa) . It is therefore believed
that the representation of E(OC,C) within the important range of values of
X is fairly good, although there is no way of knowing so positively
unless one could somehow determine the function exactly for comparison

by obtaining all of the terms of the series.

D3.2.3 Calculation of Go, Q. , and @ for the Exact Profile and

Validity of the Approximation to . 6(0() ¢) for this Profile

Although the integration for this case was actually performed in
terms of a tabulated function F', which is proportional to the mean veloc-
ity I , of Reference 14 rather than in terms of U » the process will be
described here using U for clarity.

Because (a—c)2 has no singularities for 0‘_')7 é.,(r, the trapezoidal
rule of numerical integration was used over this entire range to compute

Q! . On the other hand, the singularities of (CL-C).2 at the critical
points 17c, and 7ez make imperative the employmeﬁt of analytic integra-
tion for determining G, and ) in the neighborhoods of these points. If

(a—c)-2 is expanded in a Laurent series, the following relation, which is

useful in the neighborhood of a critical point }751 » can be written:

(a-¢) ‘= (- 770}

IETERUNY Py -7¢;)
(ac)z _Uej (-7 +{4-_J— 3%}+O{(7 7} (16)

(o~ 3 (agy

— ()
The various derivatives Ugj can be obtained by using the tabulated

(—-l

functions of Reference 14 and the laminar flow equations contained there-

in, One must require, of course, that (77—77ch be less than the distance
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from Mej  to the nearest cther singularity of the function so that the

series will converge. Integrating, one gets the relation
745
de(u-¢)” = _I {_'_.(.—‘-}——Ec_; log [—;
77CJ'+J'2: (u‘})z }27' J'Q' (aéj)a g J’ﬁl

(17)

In this equation }l« and }ﬁz are two small positive quantities
the sizes of which are chosen to obtain a favorable éompromise between
the inaccuracy of numerical integration near Wej and the poor repre-
sentation of the integrand by the first few terms of the series far from ey -
The sign of the imaginary part of }og (#] is decided by the appropri-

)
ate one of the stipulations 4-26 and 4-29}of Appendix 4. With the use of

this analytic means of integrating around the singular points, the follow-

ing approximations are taken to be valid:

Heetzdi \ Wez2tz Neih Ly Ye-14z ~ o
Go = dgz(a-c) + dﬂ(u’—c)'z+ d.Q(U-c)—z*' de(-c) + dsz(a-c)z (18)
Tertels Ter-oLz Hertid Vei=1d2
770: +24 24 76;'211 7(;1 Pert Le S
Q= dﬂ.(u J G[Qz(LI"C) +J) [da(g-c)* dﬂ (@-c) / 4. (@-o atszz (d-c)*
7:‘2'*'211 7c -24,
770. L2 er 2,
ds (a- 5 dﬂ(trc)z} + fdsz,(u c)[dszz(a -c) (19)
Vet 4 4 Yo~ -4z Peatak
ce 24z
Of the 1ntegrals appearing in these equations, /Ziszﬁu o’ and
'7(‘. A2 72+z |

da(a- C) are obtained analytically as indicated by equation 17, all
77c.-h£1
definite and indefinite integrals having (@1- c) as integrands are secured -
by the trapezoidal rule of numerical integration, and the remaining inte-

grals are found numerically according to Simpson's rule where it is

applicable.
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In summing the terms on the right-hand sides of equations 18 and 19,
it was found that the real part of each final expression is'a small differ-
ence of large numbers. On account of this, small errors in integration
can cause large percentage differences between the computed and true
values of Go. and @, ; and considerably more scatter of points in
the A-FRe plane should be expected for this case of the exact profile
than for that of the cubic polynomial profile. The scatter of these points
in Figure 8 is aPparently the result of this sensitivity of G, and @, to
these errors in integration. For each of the critical velocities 0. 40, 0. 50
and 0. 65, the original points of which seemed to have a particularly bad
scatter, a second point was computed with different choices of the values
Of, the }ﬂ,z 's . The fairly large differences in position between the
members of pairs of points for € = 0,50 and € = 0.65 is indicative that
the cause of the scatter is inaccuracy of integration. Taking smaller
intervals for the numerical integration and more terms in the series for
the analytic integration should increase the accuracy of the determination
of 8(0(,(.‘) . However, the work re;;[uired to incfease the accuracy of the
numerical integration was not considered to be justified because E(o(,c)
for the exact profile appears to be rather poorly approximated by the
right-hand side of equation 14.

The indifference curve was drawn as in the figure for two reasons:
each of the pairs of points for ¢ = 0. 50 ahd c=0.65was far from coin-
cident, and no other indifference curve known to the author has a peculi-
ar bend in its corresponding region.

As was done for the case of the cubic pelynomial profile, the valid-
ity with which &(d,C) was represented within a given range

of values of oK was estimated by noting the tendency of the curves of
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€ (e,c) in the complex plane to turn toward the origin. As can be seen
in Figure 6, the curves of g(ot, C) wusedin solving graphically the equa-
tion Efa,c)= Z (S.) turn toward the origin very a.pprecia‘l(oly with increas-
ing values of o after they intersect the curve of Z(s) once. Because
the curves of € (¢,C) turn toward the origin so rapidly, only the indiffer-
ence point corresponding to what should have been the smaller value of
could be plotted. Points defining the upper branch of the indifference
curve were thus not found, and it was sketched to conform roughly to
the upper branch of the indifference curve for the cubic polynomial pro-
file,

In addition, it is quite possible that the representation of £(a,c)

for values of « corresponding to the intersections of the curves of
E(d,c) with the curve of Z(3.) which were plotted may not be very
good., This is because the values of o at these intersections are al-
ready quite large, and dropping the terms which have been neglected and
which have higher powers of « as factors may have introduced serious
errors. There is in all probability serious error in the representation
of Ela,c) for ¢ = 0. 70 at the intersection with the curve for Z(3.) ,
since o« has a value between 5 and 6 there, which is very large for

terms having higher powers of « as factors to be neglected.

D4 Values of Re, ¢ , and d at the First Experimentally Determined

Appearance of Instability

Through the utilization of interferometric techniques, Eckert and

(17)

Soehnghen observed that instabiliﬁy waves in the laminar free con-
vection of air along a heated, vertical, semi-infinite flat plate first
appeared at a value of Gry , the Grashof number based on distance

from the leading edge of the plate, of 4 x 108. These investigators also
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reported that these waves progressed in the direction of the flow with a
phase velocity 0. 73 times the maximum velocity in the boundary layer
where they were observed and that the length of the waves was 3.1 times
the distance from the ﬁlate surface to the outer point in the flow at which
the velocity was 0. 01 of its maximum. Because no measurements of
velocity were mentioned in Eckert and Soehnghen's paper, it was assum-
ed that the maximum mean-flow velocity and the characteristic distance
from th¢ plate to the outer point at which the flow was 0,01 of its maxi-
mum were computed from exact solutions of the Polhausen equations for
laminar free convection, . which have been found to correspond closely
with experimental observations by other investigat ors( 12).

Eckert and Soehnghen's observations of Grashof number, phase
velocity, and wave length for the initial instability were reduced to the
present parameters of Reynolds number, dimensionless phase velocity,
and wave number for the. purpose of allowing some comparison to be
made between theory and experiment regarding stable and unstable
regions of the «-Re plane and the phase velocity of the waves of
incipient instability. To reduce the value of the Grashof number to a

Reynolds number, the relation
: L
Re = 1.75 (Grx)* (20)
of equations 10 for the cubic polynomial profile and the relation
i
Re =1.686 (Grz) (21)

of equations 11 for the exact profile were employed. The values of
this Reynolds number were found to be 248 referred to the cubic pely-
nomial profile and 238 referred to the exact profile. These values as

well as the values of the phase velocity and wave number are indicated
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in Figures 7 and 8.

The definition of the Reynolds number, equation 20.and the rela-

ti’on
2.96 ,
(Gr)* (22)

of equ.ations 10 for the cubic polynomial profile, and equation 21 and

e
x

the relation

S = 3.065
» = Gt (23

of equations 11 for the exact profile are sufficient to enable one to ascer-
tain that the maximum velocity for the cubic polynomial profile is 1.07
times the maximum velocity for the exact profile. Using this fact, one
can determine that the dimensionless phase velocities ¢ referred to the
cubic polynomial and exact profiles are respectively 0.68 and 0. 73. As
mentioned previously, it is assumed that Eckert and Soehnghen's value
of the ratio of the disturbance phase velocity to the maximum mean-flow
velocity in the boundary layer is based on the maximum mean-flow
velocity o‘f the exact profile.

In order to find the values of o« , the wave number, corresponding
to the initial experimental appearance of instability, one first defines §.o
to be the distance from the plate surface to the outer point in the flow
at which the mean velocity is 0.01 of its maximum value. Through the

employment of a tabulation for the exact profile of the dimensionless

similarity velocity Ux N given in Reference 14 as a function of
2V (Gra)? L .
the dimensionless similarity distance (Q_cg)"_y_: from the plate surface,
2

one can find that

' 4
$.00 = 5.56 % _4_)4. (24)

Grx
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The wave number o is defined by the equation
«= 218, (25)

A Dbeing the wave length of the disturbance. According to the observa-

tions of Eckert and Soehnghen,
A= 310 So (26)

initially. Utilizing equations 24, 25, and 26 along with equation 22 for
the cubic polynomial profile or equation 23 for the exact profile enables
one to determine that the values of & for the first appearance of insta-
bility are 0. 76 referred to the cubic polynomial profile and 0. 79 re-

ferred to the exact profile.

D5 Discussion of Results

The general result of this analytic investigation of stability in free
convection along a semi-infinite flat plate is that the predictions of the
analysis agree qualitatively, but not quantitativély, with the experiment-
al observations of earlier investigators. Both the analysis and the exper-
ments indicate that the flow is stable near the leading edge of the plate
and that it becomes unstable after it proceeds some distance along the
plate, but there is particularly poor agreement between prediction and
obéerva’cion concerning the wave number of the unstable oscillations
that are first to appear.

The specific results of the analysis are difficult to analyze because
it is impossible to differentiate satisfactorily among the effects of mathe-
matical inadequacies, velocity profile shape, and neglect of coupling be-
tween the combined momentum and energy equations. Few definite

statements regarding the findings can be made on account of this diffi-
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culty of separating these effects. However, a thorough analysis of the
findings is desirable as a guide to future investigators who may attempt
to use.the results or to pursue the problem further, although this analy-

sis must of necessity be of a speculative rather than conclusive nature.

D5.1 Mathematical Validity of the Indifference Curves

The process of constructing an indifference curve for this case in
which inertial, pressure, and viscous forces are considered and coupling
between the combined momentum and energy equations is neglected is
described in Part 4. 1. 2 of Appendix 4. The procedure requires that
approximate solutions of the Orr-Sommerfeld equation be developed.

Two general assumptions must be satisfied for these approximate solu-
tions to represent the corresponding exact solutions well for the purposes
of the stability analysis,

The first of these assumptions is that the product X Re of the

wave and Reynolds numbers is large. One of the reasons that this is

assumed is that terms of order IF? are considered to be neglect-
A Re

able when the '"nonviscous' approximate solutions of the equation are
developed. A severer restriction is placed on the size of «Re by
dropping terms of order ! n in the construction of the group of
(o Re)®
'viscous' solutions of which  $;(35) is a member. To determine the
actual magnitude of the error introduced by neglecting terms having
I and I as factors, one would have to construct for

ARe (A Re)?
comparison the more accurate solutions obtained by including these

higher-order terms as well as the terms of order zero in ) and
v o Re
|, that were employed. Doing so would involve dealing with
(ol Re)?

what was considered to be an inordinate amount of mathematical com-

plexity for the information that would be gained, and it was thus not

attempted.



- 49 -

Nevertheless, some estimate of an upper bound for the magni-
tude of the negected terms can be secured by computing the sizes of

1 and ! . at the points on the indifference curves for the
oA Re (d Re)3 ’

_ two velocity profiles which correspond to the smallestvalues of o« Re

on these two curves. Neglecting terms of order ! in develop-
A Re

ing the nonviscous solutions was in all probability done with impunity

because the maximum value of le for the case of the cubic poly-
e

nomial is about 0.0001 and it is roughly 0,001 for the exact profile. For

the cubic polynomial profile the maximum value of (o(IR’e)'% is approxi-
mately 0.05, and it is about 0. 1 for the exact prpfile. Although these
estimates o the magnitude of the maximum corrections to the viscous
solution are considerably larger than the corresponding corrections to

the nonviscous solutions, it appears improbable that serious errors have

been introduced by considering only the terms of zeroth order in

{
o Fe)3
during the development of the viscous solution.

The second general assumption that was made in constructing the
approximate solutions of the Orr-Sommerfeld equation is that the veloc~
ity proﬁle is essentially linear between the plate surface and the inner
critical point e, at which the disturbance phase velocity is equal to
the velocity of the laminar flow. This assumption is made in the develop-
ment of the viscous solution  ®(3) . Although neither the cubic poly-
nomial profile nor the exact profile is strictly linear in this range, it is
believed that orily minor errors result froﬁ this assumption. The basis
of thi‘s belief is the close check mentioned in Section D3, 1 between the

values of the function ZL(50) of the boundary-condition equation

E(el,c) = X (30) (7)



- 50 -

as computed both by using ®;(35) and by employing a much more com-
plicated viscous soluﬁon for which the nonlinearity of the velocity pro-
file was taken into account, While this check was made for only one
value of 3o and one value of the disturbance phase velocity ¢ ,
it was sufficiently representative to suggest strongly that the assump-
tion of linearity has only minor adverse effects on the validity of the
final indifference curves.

Restrictions on the size of the wave number are not explicitly
requireci in the development of approximate solutions of the Orr-Sommerfeld
equation in Appendix 4, but they are necessary on account of computation-

al limitations if one is to obtain valid indifference curves. The nonviscous

solutions ¢ and @, that satisfy the equation

(T-c)(@"-o29) -U'9 =0, (4-4)
which is obtained by setting ”"Lﬁ =0 in the Orr-Sommerfeld equation
AL Re

4-3, are developed as infinite series in «% in the forms

@ = (U-0) é:oc‘”‘lm (7

and

- Jia-6)
Pz = (O‘C);oo(mﬁrn(ﬂ);

the functions m(#) and &m (7) being defined by equations 4-7. As
Lin(m)noted, these solutions are entire functions of o* except when 77
has values which are singular points of equation 4-4. That is, the solu-
tions are regular in the éntire finite o® plane; and this implies that the
series in o* for & , &z , and their first derivatives converge at
the plate surface where the boundary conditions are applied. Thus one
could ideally represent & , @2 , and their derivatives in the

boundary-condition equation to any degree of accuracy desired by taking
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a sufficient number of terms in the series. Practically, however, the

complexity of calculating the coefficients of &

increases so rapid-
lyas m increases that taking more than the first term or two in the
series would have required an amount of computation that would have
been prohibitive with the available facilities. The retention and neglect
of the terms in  o*” for the present case is described in Section
D3.2. 1.

An actual determination of the effect on the positions of the indif-
ference curves which result from neglecting the higher-order terms in
o for a @2 , and their derivatives cannot be made because
exact solutions for which all the terms in o*™ are included are not
available for comparison. However, some very inexact inferences re-
garding the validity of these curves can be made by roughly estimating
the accuracy with which the nonviscous term 8 (e,,¢) of the boundary-
condition equation 7 is known for various values of . This was
done by examining the behavior for increasing values of of the
curves which represent the function at various constant values of ¢
in the complex plane., These curves for the two velocity profiles are
plotted in Figures 5 and 6, and Sections D3. 2.2 and D3. 2, 3 contain dis-
cussions of the examinations. The results of the inspections were that
the representation of €(a,c) was considered to be fairly good in the range
of values of o relevant to the determination of the indifference curve for
the cubic polynomial profile but that it was not thought to be very good for
the exact profile, In fact, this poor representation of E(d,c) for
the exact profile is responsible for the failure to determine the upper
branch of the indifference curve in this case, and the points correspond-

ing to the higher values of ¢ for the lower branch that was determined
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are of doubtful validity. The validity of the point for a value of C of
0.70 is particularly suspect.

Because so few terms of the series for @, , @, » and their
derivatives were retained, estimating the magnitude of the neglected
terms bjr examining the sizes of the last few retained terms was not
considered to be satisfactory, although doing so was attempted.

As implied previously, predicting the appearance of the indiffer-
ence curves if higher-order terms in  «? were to be used in the non-
viscous solutions can be done only speculatively. It is not expected that
the curve for the cubic polynomial profile would be moved much since
it is believed that the nonviscous solutions are already fairly well rep-
resented for this case., For the case of the exact profile it is thought
that considerable change in the position of the curve could easily follow
from the use of higher-order approximations because it is suspected
that the nonviscous solutions are quite poorly represented at present.
Just how the curve would change its position cannot be predicted
exactly, but it could very easily drop to lower values of o« . The
reason for supposing that this would happen is that it is suspected that
neglecting the higher-order terms in o has caused points represent-~
ing values of E(d, ¢) in the complex plane to be displaced toward the
right of their correct positions.v A comparison between the curves of
this function as represented in Figures 5 and 6 for the cubic polynomial
and exact profiles is the basis of this suspicion. Since at a given value
of ¢ , A increases as one proceeds toward the left along one of
these cﬁrves, a displacement of points toward the right would result in
values of o larger than the correct ones at the intersections of the

curves of E(d,c) and Z(So) in the solution of the boundary-condition
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equation. Thus if the points representing &E(,c) were returned ’ch
their correct positions, the values of « at the intersections would be
lower than those at present. Also, if the intersections fé)r given values
of ¢ were to remain at approximately the same values of 35, on the
curve of X (%.) , the indifference curve would be shifted to larger
values of e . This is true because the equation defining S, S,
:—76,(&2,&1?5)_.,5 requires that Re increases if o decreases when all
other terms remain unchanged.

The scatter of points defining the indifference curve for the exact
profile is apparently due to inaccuracies in the numerical and analytic
integration which was performed to determine the coefficients of powers
of * 1in the nonviscous solutions and their derivatives, as explained in
the discussion of Section D3, 2, 3. Although this scatter is objectionable,
it should be of secondary importance in affecting the indifference curves
compared with neglecting the higher powers of «* in these nonviscous
solutions and their derivatives.

In summary, it can be stated concerning the mathematical valid-
ity of the process of solving this uncoupled, viscous case that the indif-
ference curve for the cubic polynomial profile is considered to be quite
sound but that the branch obtained of the curve for the exact profile is

of doubtful reliability.

D5, 2 Comparison of the Indifference Curves for the Cubic Polynomial

and Exact Velocity Profiles

The indifference curves of Figures 7 and 8 for the cubic polynomial
and exact velocity profiles lie in considerably different positions in the
ol-Re plane. The lower branch of the curve for the exact profile lies

at higher values of the wave number than almost the entire curve for
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the cubic polynomial profile, and instability for the exact profile is
indicated to appear first at a Reynolds number only one twenty-fifth

of the value of this parameter at its first appearance for the cubic pro-
file. Determining in just what proportions mathematical limitations on
the validity of the analyses and inherent differences in the stability
characteristics of the two profiles are responsible for the discrepancy
between thése two curves of neutral stability is impossible without repre-
sentations of the function 8(06,C) for the exact profile which are much
better than those that were used. It is not difficult, how ever, to under-
stand why both of these factors should be responsible for the differences
between the curves.,

The preceding Section D5. 1 contains a discussion of the possibility
that because the function 8 (e¢,c) was inaccurately determined, the
lower branch of the indifference curve for the exact profile should actu-
ally lie at a position in the o-Re plane considerably different from
its present position; and reasons are presented there for suspecting that
its true position is below and to the right of this present position. Chang-
ing the position of the curve in this manner would diminish the discrep-

- ancy between it and the curve for the cubic polynomial profile, but it is
doubted that more than a fraction of the difference between the Reynolds
numbers at which the two curves indicate that instability should first
appear could be resolved in this way.

The other factor, inherently different stability characteristics of
the two velocity profiles, is probably primarily responsible for the dis-
crepancy between the two indifference curves. This statement is made
because of the great effects on indifference curves thatb slight changes

in profile shapes were found to produce by investigators studying the
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stability of the forced convection boundary layer profile in the presence
of pressure gradients.‘ Reynolds numbers for the first appearance of
instability diffevring by a factor of 20 and corresponding wave numbers
differing by a factor of 2.5 were computed for velocity profiles of only
mildly different shapes according to information given in Reference 21.
That differences of similar magnitudes between the values of these para-
meters should be present for the cubic polynomial and exact free con-
vection profiles due to inherent differences in the stability characteris-

tics of the two profiles is therefore quite reasonable.

D5.3 Comparison of the Indifference Curves with the Observed First

Appearance of Instability Waves

The positions of the points in Figures 7 and 8 which represent the
experimentally observed first appearance of instability waves were de-
termined from information given in Reference 17 that was secured b;
studying the flow with the use of a Zehnder-Mach interferometer. A
consideration of the interferometric process of observing the waves
indicated that they must have been definitely two-dimensional; that is,
they must have proceeded with no more than very little deviation from
the direction of the mean flow rather than at an appreciable angle with
respect to it. As explained in Section D4, the experimental values of the
Reynolds number, the wave number, and the phase velocity given on
the figures for the two profiles are slightly different; and these differ-
ences are the results of using somewhat different values of the character-
istic . velocities and lengths in the t§vo cases.

Comparing the experimental point with the indifference curve for
the cubic polynomial profile in Figure 7 indicates that instability is

predicted to appear at values of Re , o , and C approximately
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29, 1.9, and 0. 49, respectively, times the observed values of these
parameters., For the case of the exact profile, the predictions of the
indifference curve of Figure 8 are that instability appears at values of
Re, & , and ¢ approximately 1.19, 7.0, and 0.96 times the ob-
served values. The reasons for these discrepancies can be grouped
into two classes: those that cause the cobserved physical situation and
that assumed in the analysis to differ, and those that result from inade-
quacies in the mathematical treatment of the assumed situation.

The first reason considered in the class that keeps the observed
and assumed situations from being equivalent is poor approximation to
the actual velocity profile by the assumed profiles. As mentioned in
Section D5, 2, the stability characteristics of forced convection bound-
ary layers are very sensitive to the profile shape, and the very poor
correlation in free convection between the lowest Reynolds numbers for
instability from experiment and from the indifference curve for the cubic
polynomial profile could easily be largely the result of inherently differ-
ent stability characteristics of the experimental and assumed profiles.
The good agreement between the experimental values of the minimum
Reynolds number for instability and the disturbance phase velocity on
the one hand and the valves of the parameters predicted by the analysis
of the exact profile on the other hand helps to substantiate this view,
but there is poor agreement between the observed and predicted values
of the wave number in this case. Also, this indifference curve for the
exact profile is subject to some change in its position that could result
from an improved mathematical treatment. Nevertheless, it is be-
lieved that this curve as it stands is a considerably better description

of the stability of the actual flow than is the curve for the cubic polynomial
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profile.

The second factor that adds to the difference between the observed
and assumed situations is the neglect of coupling between the combined
momentum and energy equations. From the complete combined mom-
entum equation,

({T-C)@"™- o£29) -U'Q %ﬁ-

e

&‘La.s‘—aazs} +al‘__?_e{(pﬂ_zoczq)";l-o(447'} =0, (1a)

the coupling term o%ﬁe{ia'g"dazs} has been dropped to produce the
Orr-Sommerfeld equation, upon which the stability analysis of the un-
coupled, viscous case is based. For a value of /% corresponding to
a Prandtl number of the convecting fluid of 0. 72 and values of o and
Re equal to those at the observed first appearance of instability, the
combination ‘g_ﬁ_ has a magnitude of about 0.09. The maximum sizes
of this combinj’ciojl for values of o and Re specified by the indiff-
erence curves for each of the two profiles are smaller. As shown in
Appendix 5, the effect of an appreciable coupling term should be felt
wholly in the nonviscous sclutions for very small values of the com-
bination 0(47_:? . The nonviscous solutions with coupling included
e
differ from tileir "uncoupled' counterparts in the presence of factors
of order 6’35#5 and terms of order j%:% . It is thus esti-
mated that an indifference curve obtained with the coupled nonviscous
solutions would not differ greatly from one obtained with the uncoupled
nonviscous solutions as long as a’d%F\_”e were equal to or smaller than
its value at the first observed appearance of instability. Possibly one
might find at the same value of ¢ differences in the values of & and
Re for the two curves on the order of one-quarter or one-third of

their values on the curve for the uncoupled case.
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Third in this group of factors is the neglect of the effect of the
variable mean temperature in the inertial terms of the combined mo-
mentum equation. The authors of Reference 17 reported that mean temper-
ature  variations across the boundary layer up to about 8 per cent of
the ambient air temperature were present during their observations of
the appearance of instability waves in laminar free convection along a
heated plate. It was brought to the attention of the author by Professor
Liester Lees that heating the surface of a flat plate in laminar forced
convection at an appreciable Mach number has a destabilizing effect on
the boundary layer through the variation in mean fluid density in the
inertial terms of the disturbance equation, and it is possible that such |
an effect was present during the experimental observations of instabil-
ity in free convection which are reported in Reference 17. The magni-
tude of this effect is impossible to estimate with accuracy, but it is
very doubtful that it alone could be responsible for the great discrep-
ancy between the minimum Reynolds number for instability predicted
for the cubic polynomial profile and that observed.

A final item in the lack of correspondence between the observed
and assumed flows is the presence of effects due to the lateral edges of
the plate in the experimental flows. These effects are quite possibly
. of minor importance, but they could alter the stability characteristics
of the flow from what they would be if it were strictly two-dimensional.
Without further information it is impossible to say just how the stabil-
ity would be changed by the presence of these lateral edges, although
an introduction by them of disturbances of finite amplitude into the
flow might initiate transition at a value of the Reynolds number lower

than that at which it could be expected to start in the undisturbed flow.
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There might also be some effect due to differences between the velocity
profile near the edges of the plate and what it would be in strictly two-
dimensional ﬂow.

The only inadequacy in the analytic treatment of the assumed situa-
tion which is apt to be of importance in affecting the agreement between
experiment and analysis is the poor degree of accuracy with which the
function € (o,c) is represented for the exact profile. As mentioned
in Section D5. 1, it is suspected that a more accurate determination of
the function would result in shifting the lower branch of the indifference
curve to smaller values of o and that it might also be shifted to high-
er values of Re . If the curve were to move to lower values of o ,
the agreement for this parameter with observation for the first appear-
ance of instability would be improved; but moving it to higher values of

Re would make the agreement for this other parameter poorer.

D6 Suggestions for Further Analytic Work on the Problem of Laminar

Boundary Layer Stability in the Free Convection of Air

Two additional studies in connection with the general analytic prob-
lem of stability in the laminar free convection of air are suggested for
an investigator who has the necessary compu;ting facilities at his dis-
posal. Both these would require extensive numerical computation.

The first of these is to obtain the entire indifference curve for
the exact free convection velocity profile with the assumption that the
combined momentum and energy equations are uncoupled, which is the
same as sum?tion employed in obtaining the lower half of the indifference
curve of Figure 8. The use of an electronic digital computer should

allow one to obtain an indifference curve of much greater mathematical
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validity than the one of Figure 8. This is because the computational
limitations on the accuracy of the nonviscous solutions of the disturb-
ance equation should be eased considerably with the availability of a
device for very rapidly integrating numerically. Although with the

use of a computer it is anticipated that algebraic complexity would still
be a serious problem, it should be feasible to work with several more

of the terms in powers of o in the representations of the nonviscous
solutions and thus increase very appreciably the validity of these repre-
sentations, particularly for larger values of o . Smoothing the velocity
profile and using small intervals in numerical integration should hold to
an acceptable amount any scatter of points defining the indifference curve
in the o~Re plane such as is present in Figure 8.

The second suggested investigation is the determination of an in-
difference curve with the effect of coupling between the combined momen-
tum  and energy equations taken into account. In this case the exact
velocity and temperature profiles should be used so that comparisons
with both experimental results and the indifference curve obtained with
neglect of the coupling could be made., Also, a sufficient number of
terms in powers of o? should be taken in the nonviscous solutions for
them to be valid over the range of values of & which is of interest. The
procedure for the coupled, viscous, non-heat-conducting case outlined
in Part 4. 2.2 of Appendix 4 should be followed for this investigation,
since it is the simplest of those methods of treatment which have been
developed for taking the coupling into account. It differs in application
from the uncoupled, viscous case already considered only in that the
nonviscous solutions of the disturbance equation are modified to take

the coupling into account. As explained in Part 4. 2.2 of Appendix 4,
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one can expect that solving the boundary-condition equation in this
coupled case would be much more laborious than in the uncoupled
case. The situation in which the plate is vertical should be attacked
before any attempts are made to investigate the effects of inclination

of the plate.
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APPENDIX 1

NOTATION

Latin Letters

cos @.

sin @.

Value of » at edge of boundary layer chosen so that
u,8=0 for % z f.

Dimensionless complex disturbance propagation or phase

velocity equal to _[ZJ?L , in which 74 is the complex

disturbance propaga?:‘ion velocity parallel to the plate.

Specific heat of fluid at constant pressure, assumed to be a
function of temperature only.

Froude number equal to _LLg’i,

Dimensionless function of ¢ determined from mean-flow
boundary layer relations as indicated in Appendix 3 so
that f = ;i_ Re.

Dimensionless function of ¢ determined from mean-flow
boundary layer relations as indicated in Appendix 3 so
that f: T-E' Re.

Magnitude of body force per unit mass.

Grashof number based on ambient fluid properties and
distance from leading edge of plate. It is equal to

3
lad %875 .

Y

Enthalpy of fluid per unit mass, assumed to be a function
of temperature only. Zero enthalpy is taken at T=To

so that ), :[Ef(_g)dg_,
T

% A fluid property with the subscript p represents the property at the
plate surface. Similarly, the subscript , refers to the ambient condi-
tion in which the fluid is unaffected by the presence of the plate. Also,
a symbol over which a bar is placed denotes a mean or laminar flow
variable, while a star * signifies that the symbol represents a small
fluctuating quantity associated with incipient turbulence.



(%)
H;

% ¢
n,+h

Re

- 63 -

Hankel function of the £™ kind of order i

Thermal conductivity of fluid, assumed to be a function of

. temperature only.

Characteristic length equal to distance from leading edge of
plate to point of application of equations (a constant).

Pressure or negative of average of -« and (j—components
of normal stress in fluid.

Dimensionless specific heats at constant pressure equal,

—

respectively, to QE, Ce.
Cpe Cpo

Dimensionless mass densities of fluid equal, respectively,
to %‘, _g_

Reynolds number equal to Umb .
Vo

Dimensionless function of i defined by the equation
°(%,7,7) = 5(7) gl (5-¢7)

Temperature of fluid,

Temperature of ambient fluid (fluid unaffected by plate).
Temperature of plate.

Temperature difference defined to be [Tp-Tol.

Time.

« -component of fluid velocity.,

Maximum value of ¥ in the boundary layer at a given
distance from the leading edge of the plate.

Dimensionless velocity components equal, respectively, to

E‘).u-
Un Um

Value of I corresponding to the value of  at which #"=o.
Value of the M derivative of {I at the critical point Yey-
7, - component of fluid velocity.

Dimensionless velocity components equal, respectively, to

5 LY,
Unm § Um



Ly

1.2

Az

- 64 -

Cartesian co-ordinate representing distance from leading
edge of plate measured along an axis parallel to the plate.

Dimensionless Cartesian co-ordinate equal to :)Lg.
Cartesian co-ordinate representing distance from plate

surface measured along an axis perpendicular to the plate
surface.

Greek Letters

Dimensionless disturbance wave number equal to ZI_TET_S_ .

Coefficient of thermal expansion of fluid equal to —..'é(%.%)’;

Dimensionless parameter equal to (AT) ( ) l :
Z2E*Q-\3T%/pp g=0°

Boundary layer thickness defined to be _..f Udljf

Dimensionless parameter equal to @GAT or "AI(SQ_%) l
e=e:

eo

Independent variable defined to be (Ge, o Re) (17 e} in "
Parts 4. 1.2, 4.2.2, and 4. 2.4 of Appendix 4; or (Uud A Re)(7~7c.)
in Part 4. 2. 3 of Appendix 4.

Value of 5 for 7 =0

‘Dimensionless Cartesian co-ordinate equal to .éf&é

Inner critical point or smaller value of 7 for which a=c.
Outer critical point or larger value of 7 for which Z=¢.
Angle between body force vector and plate surface.
Dimensionless temperatures equal, respectively, to

xIr, T*'l? :
AT

D1mens10n1ess thermal conductivities equal, respectlvely, to

ﬁ.m

Dl sturbance wave length.

Parameter equal to

Parameter equal to AT(%%%‘T‘)P"" "
) P: (4
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/LL Dynamic viscosity of fluid, assumed to be a function of
temperature only.

1% Kinematic viscosity of fluid, assumed to be a function of
temperature only.

5 Dimensionless Cartesian co-ordinate egual to '_zcs_

ﬂ',_ﬁ Dimensionless pressures equal, respectively, to _p* |
L. @o Um
o U

Q Mass density of fluid.

g Prandtl number of fluid equal to QJEM )

T Dimensionless time variable equal to [m t.

$
@ Dimensionless function of i defined by the equation

Lot (5-cT)

Yi57,1) =€
14 Dimensionless disturbance stream function.
2,%; i=12.. Dummy variables of integration.

w, 1+ Dimensionless dynamic viscosities equal, respectively, to
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APPENDIX 2

DERIVATION OF DISTURBANCE EQUATIONS

UNDER GENERAL ASSUMPTIONS

2.1 Fluid Properties

For generality, the assumption is made that ¢p , the specific heat
at constant pressure, /u, , the dynamic viscosity, and k , the thermal
conductivity, are functions of temperature only, in both steady and non-
- steady flow. On the other hand, under nonsteady-flow conditions the
mass density @ is taken to be a function of both disturbance pressure
and disturbance temperature, although it is considered to depend on.

temperature alone in the steady-flow situation.

2.2 Diagram of Physical Configuration and Co-ordinate System

Plate

Laminar
Boundary N
Layer 7/

\

# 2
t

2.3 Derivation of Disturbance Equations

The basic equations describing two-dimensional nonsteady flow are

as follows:
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Coni:inuity equation: _
@+ ?L(-LU.) + 3-(-&-2 (2-1)

% -momentum equation:

{383 vig) - g -en s (H 3] -

Lj, -momentum equation:
g{,}%[_,Ug%:rVA%%Z = —a; +paz g - Z %{/u(%%+%§)}

esg i) B ) =

Energy equation:

e{ﬁﬂﬁﬁ%} 4{riT] +2.[ 3T} 3+ U3p +V3R

(2-4)

State equation:
¢=o(p.7) s

In these equations U is the component of velocity in the =x-direc-
tion, V is the component in the ?L—direction, p is the pressure con-
sidered to be the negative of the average of the = and &j/ normal stress
components, and h is the enthalpy per unit mass. 4, is equal to
cos @ and d: is equalto sin ®, @ being the angle as indicated be-
tween the body force vector, which has a magnitude of ?, , and the plate.
e /_L , and £ are the mass density, dynamic viscosity, and thermal
conductivity, respectively.

No 2z -momentum equation is shown because the assumption is

made that the disturbances along with the basic or steady-state flow are
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two-dimensional. ‘Squire(zz) showed that the minimum Reynolds number
for instability of a parallel, viscous, constant-density flow is smaller
for two-dimensional disturbances than for three-dimensional ones. Al-
though in compressible flow at a Mach number greater than unity the
opposite can be true, the present study is restricted to a consideration
of two-dimensional disturbances for simplicity.

Each flow variable in the preceding equations will now be written
as the sum of a steady-state part depending upon % and 7« only and
a fluctuating part depending upon time t as well as % and % . The
steady-state part is determined by the basic laminar flow, and the fluctu-
ating part is considered to be due to some small disturbance which will
be either amplified or damped. For example, U(x 7,t)=ﬁ(x)y)+U*(79%)t)
will be assumed. The fluctuating part can be taken to be arbitrarily
small compared with the steady-state part, since the study is restricted
to a consideration of the stability of the flow with respect to infinitesimal
disturbances. If it is noted that the steady-state quantities by them-

selves satisfy the flow equations and if the equations are linearized in

terms of the disturbance quantities, the results are
* 4+ 28 U* BJU* + 30 e* +Udp* + 38 V ¥+ 5 2Vv*
%% gﬁ © X  ox e %% 2 ealf

— — (2-1a)
¥ =0
+g_}[€ +V%§



}) | (2-2a)

Vax 162 AR C A CARE R AR

and (2-5a)

In order to determine which of their terms are largest, these

equations are rewritten in dimensionless form:

{%Z}E-r uéaé; +(‘+)()(.3J§-L+ 3}7[) +%47:;Z ?/‘} +—F1%;{%% u+1’7§%+ g%+%—7i)}l} =0 (2-1b)

(473030438 0+ 3 )2 v L2 (@) g (W 435)
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In these equations u and U are nondimensional forms of U* and

U, v and T are nondimensional forms of V* and V, § and » corres-
pond to % and Y, T to t, m and T to p* and $, s and i+A to p*
and §, w andi+® to/i*and/il, ¢ and |+Z to cpand Cp, g and B to
T*and T, and k and |+R to k*and k. % is a second nondimensional
form of « in additionto § . f is a dimensionless function of ¢ re-
lated to the rate of growth of the mean-flow boundary layer. Re is the
Reynolds number based on the maximum velocity [, in the boundary
layer and the boundary layer thickness & at the particular value of %
at which the stability is to be studied. AT is the absolute value of the
difference between the temperatures of the plate and the ambient fluid

or fluid which is unaffected by the plate. O, is the Prandtl number of |
the ambient fluid, The exact definitions of these terms are given in
Appendix 1.

One can see by reference to the notation table of Appendix 1 that
the boundary layer character of the mean flow has been utilized in de-
fining the dimensionless variables and that @, ¥, ®, andtheir
derivatives are of the same order of magnitude. A, @, &K, Ef s
and their derivatives are much smaller unless the temperature differ-
ence between the plate and the ambient fluid is extremely large.

o, (?,%)P ,(’:? , and (?%)T 0P are each expanded in Taylor series

of two terms as functions of the temperature to obtain

A= -£8 +1e?B"° (2-6)
and

A= (~E+28E2B)0 +Un(n+2B) . (2-7)
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€. is equal to the product of the ambient fluid coefficient of thermal
expansion and the absolute value of the temperature difference between
the plate and the ambient fluid. ; € and the symbols |}, Ars
and ), are defined in Appendix 1.

With the use of these relations and a utilization of the fact that

w =§l_gg B because viscosity is considered to be a function of tempera-
ture only, the momentum equations 1-2b and 1-3b can be cross-
differentiated with respect to Vi and § and combined to eliminate
the terms in the dimensionless pressure 1T . The resulting '""combined
momentum equation''is

(A{L

i-eoste BUtap)- 25t (e ")
1B ) s R e

+%i§:, +f[ -afﬂ_u+ﬁ=(317%~éa_%n +w‘[-a3u + U —giu,uig]

S

Q.
R
)
~

+§!_Z§[_(g:7)137 05 'Y 3}72 9772 on o ]
RO Y] - Ol e £ 4]

(2-8)

Here it is assumed that £€4{ | and Re>»Ii. The latter inequality should

be true at least when air is the convecting fluid, since Reference 17
indicates that instability waves first appear at an Re of approximately
2.4 x 10% for free convection along a vertical flat plate in air. Unless
the Prandtl number is very small, f is on the order of unity, as Figure
1 shows. The values of f indicated there were computed as described

in Appendix 3 from information given in Reference 14. Also, it is assumed
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that the terms of order M are very small. This is equivalent to
considering that‘; mean veloZties in the flow are sufficiently low so that
dynamic pressure changes have little effect on the fluid density. Thus,
the terms inside the order-of-magnitude brackets are small.

By employment of the relations 2-6 and 2-7, the energy equation

2-4b can be simplified to become

{(1+6})(§,§+aa_&+g_év)} +._F|\>_e{:l_[(l+k‘)(ig_t+a_zﬁ) +%(2§_gm+ - 9‘)]

5575 AN T 375
0+ (32 u+ T3g) + dg(n22 + 732) 7]}
{ %’ Cpe AT EE!-:\’: Umfy‘:'; } (2-4c)

In the simplification process use has been made of the relations 4= %% >
and K= ﬁl_g %, which hold by virtue of the dependence upon tempera-
ture alone of the specific heat and the thermal conductivity. ﬁi_% and
c_i[;i are taken to be constant.

Of interest is the similarity between equations 2-8 and 2-4c and
the corresponding ones that would have appeared if Schlichting's method
of treating the stability of a boundary layer with stratified density had
been used. Schlichting neglected the energy equation, considered all
fluid properties except the density ¢ to be constant, and took the flow
to be parallel., His assumptions regarding parallelism of the flow and
constancy of viscosity would, of course, have given a much simpler
combined momentum equation than equation 2-8. Instead of using the
energy equation, he took %g — O , which states that a fluid particle
retains its steady-state density during the disturbance motion. In terms

of the present non-dimensional variables this relation is, with the
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assumption of linear dependence of density upon temperature,

3 g + U 3_&+ 3 g v =0.
This equation holds only for parallel flow and is linearized in the dis-
turbance guantities. One can easily see that the energy equation 2-4c
reduces to this relation for parallel flow if only the convective terms
are retained. If the Prandtl number is large, then, Schlichting's assump-
tion concerning fluid density is approximately equivalent to the energy
equation with pressure work and dissipation terms neglected.

A stream function for the disturbance motion will now be defined,
and the magnitude of the error introduced by using it in the present case
of variable fluid density will be estimated. The continuity equation 2-1b
and the state equation 2-7 can be combined to give

- o g tef | Ur -9)
_3_%+§_7’?z_ 8{%;34'&3—?*%,?2”}*'0{81 %;,Um ?u,z} . (2-9)

Similarly, the energy equation l-4c can be written as

38+ BB+ EV = o{a £,

38+ B ,f, _Un_ } (2:10)

Re OZRe o RE Cp,AT

From a combination of equation 2-9 and 2-10,

PYVRRPY) g ELUmAyz, €, £ Ut -
5573 o7 O{ " Jo Re F?e Cpo AT (2-11)

In order for the use of a disturbance stream function to be feasible,
the terms within the bra.ckets on the right-hand side of this last eciua-
tion must be small compared with unity. Empirical studies (16) of
heat-transfer rates for the free convection about a vertical flat plate
of fluids with different Prandtl numbers may indicate that the Reynolds

number for transition is inversely proportional to the fourth root of the
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Prandtl number. Since transition when air is the fluid occurs at a
Reynolds number of approximately 2.4 x 102', the terms on the right-
hand side of this equation which have the Reynolds number in their
denominators should be small, except possibly when the Prandtl number
is very low. The expressions UnAyz and Eﬂ% represent, res-
pectively, the orders of magnitude of the chang: in density because of
pressure fluctuations and the pressure work term in the energy equa-
tion. The order of magnitude of the viscous dissipation term of the
energy equation is equal to £ Um . A numerical check indicated
Cpo ATRe

that these terms are completely negligible with air as the fluid for
velocities on the order of those at transition.

The disturbance is next taken to be in the form of a wave travel-
ing parallel to the plate surface. It can be considered to be resolved
into Fourier components which are examined individually for stability.

The customary complex notation is employed, and the disturbance

stream function for a given component is taken to be of the form
Y(5,7,7) = @ln) € 45D (2-12)

o 1is the wave number of this component of the disturbance wave and
is equalto 2m & , A being the wave length. ¢ is the phase velocity
of this componj;nt. The disturbance velocities U and U parallel

and perpendicular to the plate can be written in terms of the stream

function and correction terms, the orders of magnitude of which are

found from equation 2-11:

u, = M) eid(g_cr) +O{62) Ul’;hhzy .._5__, _Ei.‘, _g.g.é—- } (2—13)
dn 0o Re Re  CpoAT

V= —idd(n) eiocls-c'f)+ 0{8’; Unm A2 ’?JT&F-?_’ _&F.?f_ , —CEJ%I;’F‘} (2-14)
o e e Peo
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As is usual in this type of stability analysis, the sign of the imaginary
part of the compiex constant ¢ determines whether the disturbance

will be amplified or damped. When b@m(c) >0 ; the disturbance is ampli-
fied and when ¢hn(c) <O , itis da‘mped. A real value of ¢ corresponds
to a neutral disturbance, i.e., a disturbance that is neither amplified

nor damped. The temperature disturbance B is also expressed as a

wave-type variable by the equation
(A(5-CT
257,70 = 5(17)6“’“.5 et) (2-15)

After substitution of the relations for u, v, and B given by
equations 2-13, 2-14, and 2-15 into equations 2-8 and 2-4c, the com-

bined momentum and energy equations are obtained as

D . i 20Y-77"0] - §, o i ia,s'-
{[1 £ B][(T-0)(@"-«29)-U"9] - ET'[(T-c)@ u.q)]} +a_(&r__{ua 5 .xazs}
+o.{1;§e{(:+m)(<y“~z#q>”+#¢)+f FLu@-T (9" 29")] + %%‘[z B'(9"-229")

iy it

B (@A) + TS +2T" ST (S -2 S)] + A2 [ (B)(@"+ @)+ (28T B'T) S
( ] 4 [(8( (

+28'0's|+d°T (@')za's] = Ofe*UnAnz, 2f , &, £2, £Un (2-16)
—3 7 2
g d?B Re 0oRe & CpoAT
an

{(+§)l@-c)s-54]} +ﬁ{%[(x+ﬂ)(s"~#s)+§% (B's+28's)]

+-F[—(l+%)(’§¢,47'+17'5‘} “ﬁ%(ﬂ §¢:""U"§')5] }

:o{&% Unm Az, Un _af__,_a_,,_-ﬁ__z} (2-17)
Cpo AT Re Re 0 Re .

Primes on the fluctuation quantities @ and S in the preceding
equations denote total differentiation with respect to % ; on the steady-
state dimensionless velocity U and temperature B they signify partial

differentiation with respect to 7 . Also, the subscript 2, appended to
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a steady-state term indicates partial differentiation with respect to ~x, .
For fluids having dynamic viscosities which are sensitive func-
tions of temperature, @ and its derivatives with respect to & can
. be quite appreciable at even modex;ate values of AT , while q}, X,
and their derivatives will almost always be very small unless AT is
extremely large. With neglect of qf s _’% » and their derivatives, as
well as the terms within the order-of-magnitude brackets, equations

2-16 and 2-17 become

{[l- £8)[(T-c)(@"- «*9)-1"9] —8§'[(u—c)<v‘-a'47]} + _g_{ ias'-adz 5]
AF

L (@)@ 249" a9) +4[- T P T (9" 0] + A2 B(0" )

=

+BY(@ ra2g) + TS+ 20"+ W (5o 5)] + 1) [(’é‘)l(cv"uz&)
d®*

+(28'U"+B"U)5+2 eus'] + fgs[(é‘fa's]} =0 (2-16a)

and
fE-0)5-8'9}+ L fL(s"-?5) +F(-Buq'-Ts)} =0 (2-17a)

Further simplifications which should not seriously diminish the
validity of the two preceding equations can be made. Disregarding U
and derivatives of steady-state quantities with respect to %, should
not change the most essential characteristics of the equations, since
very successful stability analyses have been made of the Blasius bound-
ary layer with the assumption of parallel flow. In addition, if the vis-
cosity is a reasonably insensitive function of temperature, as is the

case for gases, @ and its derivatives will be sufficiently small to be
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dropped from the combined momentum equation 2-16a unless AT is

extremely large. A final simpiification is concerned with the first

bracketed expression of the combined momentum equation, which can

be written as |
{[1-£8][(T-)@'-TP]} - £3(1- £B)(T-) 9.

It can be seen that neglecting €  in the above expression will cause

only minor changes if £¢({) . ¢ apparently cannot be set equal to

zero with such impunity in the second bracketed expression for all

values of the Prandtl number ¢, . This is because £ = %_ng)as men-

F Re
tioned in Section C1 and explained in Appendix 3, and f is very large

if ¢ is either very small or very large.

Simplifying equations 2-16a and 2-17a as discussed gives

{(H-c)(c?”-dch)—a"&} + 7%{La.sko{azs} +0TL§E{43E-24147"+¢+4>} =0 (z-léb)'
and
{(a—c)5-§'¢}+zi;ﬁ{s"—oﬁs} =o. (2-17b)

which are the equations upon which the material in Section C and

Appendix 4 is based.
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APPENDIX 3

DERIVATIONS OF EXPRESSIONS FOR f(5) AND }(m)
L4

In Appendix 1, the notation table, the following definitions are

stated:

Um 4

Re= Un$
Vi

F=Ua

?8
f= 3§ Re

x
f: £ Re

F

= | #: 3
er ‘ l%za’x.

Through appropriate combinations of the first five of these relations one

can show that

'F = Um 81
VX
and
= gt s’
Vo Um
Reference 14 contains the nondimensional velocity __ Ux |
2 Vo (er
expressed as a function of the similarity variable (_%a) % for seven

values of the Prandtl number ranging from 0.01 to 1000, Also presented

x

there is the integral f{ Ox é}d{(%&)k%} Because the maximum value

_ [ {2 Vs(Grx)
of __Ux 3 at a given value of the Prandtl number is Un X g
21 (er) 2 Ve (GY‘%)

" one can write

5 = /{zwen) d{( r }
{" { er)*}

<
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With the use of the preceding equations for Um, §, and Org, one can

obtain the two final relations

- 4[]
_Um2
2 Vs (Gre)t

and

|

ot

'a"{ 2 ?/T ?/G rz)_f}
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APPENDIX 4

DEVELOPMENT OF SIMPLIFIED METHODS

FOR SOLVING APPROXIMATELY

THE FREE CONVECTION STABILITY PROBLEM

In Section C a general procedure was outlined for classifying com-
binations of the wave number o« of a disturbance and the Reynolds
number Re of the mean flow as stable or unstable. Six variations of
this general method will be developed in this appendix. All of these
methods will be derived for the case of neutral oscillations only, that is,
in each case except the simplest one the object will be to find the rela-
tion between o and Re which defines in the d-Re plane a neutral
stability or indifference curve that divides this plane into stable and un-
stable pairs of values of « and Re . These variations of the general
method differ from each other according to the simplifying assumptions
made regarding the effects of different flow and fluid properties on the
problem. In all of these six methods it is assumed that the Reynolds
number is large, and in all of the approximate solutions which are de-
veloped for the differential equations this assumption is basic,

Because of their extreme complexity, no application of four of
these six methods to any given flow was attempted. They are, however,
available for the use of a future investigator having extensive high-speed
computing facilities at hand. The remaining two methods differ from
each other in that for one,viscous forces are taken into account, while for
the other they are neglected, The method considering viscosity was

applied to the case of the free convection of air, and this application is
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described in Section D. In a sense this method includes the nonviscous
one also because the two become equivalent when the Reynolds number
becomes infinite.

Before the individual methods of solution are presented, the temp-
erature variable S and its derivatives will be eliminated between the

combined momentum equation
T-c)(@"-d2@)-U"Q + (d:S'-od25) + L [@® 2@ "+ d*@) =
(T-c)(@"-d24) - TP ﬁ%e{ 5] + i (@ 249" ot =0 (1a)

and the energy equation

(a—c)s—f?'f? +m{s"-aﬁs}:o. (2)

This is done by appropriate differentiation and substitution as described

in Part 4. 3. 1 of this appendix to give

[d"i(_ﬁﬁ:m-q +(5’:§%?;)2} {(a-c)w”—dzd)) -u'g "‘I""—:e—eit?n-Zo(zC;’W 9(44?}]

(B oot g ool o [0

- {aa,aza'ﬂ#(waﬂ(a—c)} -t )ZHM-c)mw—oa&)-a"cP

Jool Re Tod Fe
+2JF6 icp:z_z‘,(zc?uu@}%[fﬁ?}”{-m?a'—mz[a?(a—c) —%}}ig'@}
+ i {a.l(a-c) —J:L,ZQ%;} {gqu,, g‘qn}} =0, (4-1)

If the plate is vertical, that is, if &.=% and d.=0 in equation la,
the elimination of $ and its derivatives between equations la and 2

gives the simpler relation

+[ﬂﬁe ][(U'C)({?"—a{'ﬂ?) -d'e +ZLR_; {qn—zoﬁdp" + 444)}]'

Jod
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+[(a-c) }Ld__%” (T-c)(@"- @) TP o {@= 209" + 9]

+[;%§e][-ta'§‘4> + §i(a-) +J_£(__.}e}{§"q)+§'47'}] = 0. (4-2)

The derivation of this equation as well is outlined in Part 4. 3. 1.
Eliminating s and its derivatives rather than @ and its deriva-
tives between equations la and 2 was done for two reasons. The first
is that the viewpoint was taken that instability in free convection is
basically a dynamic process modified by thermal effects. Because of
this it was thought best to leave the combined momentum equation
affected as little as possible by the elimim tion of one of the two vari-
ables. Eliminating ¢ rather than s would have made the combined
momentum equation completely unrecognizable in the resulting equations
corresponding to 4-1 and 4-2; but by eliminating 5 , the inertial and
viscous terms of the combined momentum equation can be clearly identi-
fied. The second reason is that methods of solution previously developed
for the Orr-Sommerfeld stability equation, which involves only ¢ and
describes the stability of a viscous, incompressible flow, can be adapted

to the present case when ¢ instead of $ is the dependent variable.

4.1 Methods of Approximate Solution of the Free Convection Stability

Problem with Consideration of Galy the Combined Momentum Equation
One can see in Figure 2 that %(a;) has its minimum value wilen
0o lies between 0.5 and 1.0, Also la.l%(a;) is less than 20 for 0,2<%<2.0,
ad, being the cosine of the angle between the body force veétor and the
plate surface. One might consider simplifying the boundary-value prob-

lem involving equations la and 2 by neglecting the term ia,5'-dld25
g eq y neg g ﬂ%e{ 25}
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in equation la'if «Re is much larger than % . This simplification is
equivalent to assuming that only inertial,pressure, and viscous forces
are important in the combined momentum equation because neglecting
ﬁ{m's'ﬁdzs] means that the forces resulting from interaction of the
body-force field with the density perturbations are ignored. The com-
bined momentum equation is reduced to the Orr-Sommerfeld equation,
and the energy equation is not considered. One may well ask why the
term :LF_?,e{cp‘E.zolch"-f- ,z+47} of the combined momentum equation is retained
when ﬁ{éa.s’-&azs} is neglected, especially in view of the fact that
o(%ﬁ\’_e > I%e . The reason for doing so is that retaining the highest
derivative of ¢, namely @%, is taken to be more important than
retaining the terms representing forces due to temperature perturba-
tions. With the coupling term neglected, solution of the stability prob-

lem requires solving the Orr-Sommerfeld equation,
(U-c)(@"-o*9) -T'Y + S {@F-29" 4 £44] = O, (4-3)
(-4
with appropriate boundary conditions.

4,1,1 The Uncoupled, Nonviscous Case

4.1.1,1 The Differential Equation

If the Reynolds number in the Orr-Sommerfeld equation 4-3 is

very large, the equation obtained by letting o(Re = 0,
(u‘C)(LP"-oCZ(P) - uucp :O, (4_4)

should approximately describe the flow stability. This equation speci-
fically describes the stability of a two-dimensional, nonviscous, incom-
pressible, parallel flow. The only forces considered are inertial and

pressure forces; viscous and body forces have been neglected.
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4.1,1.2 Boundary Conditions
Because thé order of equation 4-4 is two, only two boundary con-
ditions on its solutions can be specified. The appropriate boundary con-
dition at the plate surface for a nonviscous flow is that there can be no
flow across the surface; in terms of ¢ this is
q(0) =0, (4-5a)

since the component of the disturbance velocity normal to the wall, v,

is equal to -id4(7) ei«(;—ct) . Far from the plate the disturbance must

disappear; this requirement is expressed by

Qo) =0. (4-5b)

4,1.1.3 Solutions of the Differential Equation

Two linearly independent solutions of equation 4-4 can be written

as @ = (@-¢) 2, 4" n(7)
(4-6)
and @, = (U“C)go Pl ﬁm(’]) )
in which
Ao =1,
& = [ (a-f"
(d /a ) (4_ 7)

V -2 s 2
%gl'idﬂ.(a%) Ldﬂl (H‘C) 2"‘“7
; y ol i
and &rzn': ,{rdﬂl (!1-5) Ldflz(il-c) &m—l-

(6)

according to Heisenberg' '. The correct path of integration in the
neighborhood of a critical point %} , which is a value of Ui where

lL=¢ , as indicated in Figure 3, is determined by the requirements
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4-26 and 4-29 of Part 4. 1. 2.3, These requirements 4-26 and 4-29 are
developed in thé treatment of the uncoupled, viscous case. The defini-
tions 4-7 of the 2m's and dn's are obtained by substituting the solutions 4-6
into the original equation 4-4 and equating the coefficients of successive
powers of A*> separately to 0. The lower limit of integration is chosen
as Ar, the edge of the boundary layer beyond which U and & are O,
for the purpose of simplifying the application of the infinite boundary con-
ditions.,

4.1.1.4 The Boundary-Condition Equation

In order to apply the boundary condition at 7= , the form of
equa.tion 4-4 outside the boundary layer, or for ” >Ar , will be examin-
ed., Because 0=0 outside the boundary layer, the equation becomes

@'-L*P =0, >4 (4-8)
Of the linearly independent solutions E%7 %  anga €77 gt tnis
equation, only the second can be retained because of the boundary con-
dition at 7 = 0 . Therefore, a solution @=C @+ Cz@, valid
both inside and outside the boundary layer must reduce to a constant

e-oc(y-/lr)

times when 7 > 4 . By reference to equations 4-6

and 4-7 one can determine that

@ = —c2 Lk pzy

m=0 (Zm)]
and
Pz = —_L_Z_ < ( Jf)w;H 772,0—,
C m™Cizm+1)l
so that {c?.—dcz@z}l - 'CZ(‘)MA"' AL
724 " mli
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One must thus choose C:= -xc? if C, is taken to be unity for simplic-

ity. The problem now reduces to the task of solving the equation
@.(0) - xc*;(0) =0, (4-9)

which represents the application of the boundary condition at the wall,

Rayleigh(zg) deduced a classical theorem relating to neutral oscil-
lations for an inviscid, constant-density flow. It states that the disturb-
ance phase velocity ¢ cannot be greater than the maximum value of §
or less than‘its minimum value. In addition, it is possible to show that
for a free convection profile, o0<c<U¢, Us Dbeing the value of U for
which 0O"=0 , if c%x0 ' The derivation of this fact is given in
Part 4. 3. 2 of this appendix.

In order to find what, if any, combinations of values of ¢ and «
correspond to neutral oscillations for this case in which aRe=co ,
one should in general attempt to solve equation 4-9 by first choosing a
value of ¢ and then computing enough of the Zm’s and Jm's evaluated
at =0 to insure that @) and d¢.(0) will be approximated well. Then
values of « should be chosen to determine &i(o) and §.(0) in
attempting to solve the equation. One can see almost by inspection that

equation 4-9 is solved when both ¢ and o« disappear. When both these

parameters are 0, the original disturbance equation 4-4 simplifies to

-aq)ll_a(lq):o, (4_10)

* Subsequent to deducing this, the author found that 'Stuart(24) had re-
cently derived a very similar requirement on the value of ¢ for a class
of velocity profiles of which the typical free convection profile is a
member.
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In this case

and

so that equation 4-9 becomes
tlo) =o,
a requirement satisfied by the velocity profile.

Of interest is the fact that solving equation 4-9 is a means of in-
vestigating Stability in cases of a finite Reynolds number Re when Re—*>oo.
Since the reciprocal of the Reynolds number is a factor in the combined
momentum eguation la of both the viscous term and the term which coup-
les the equation to the energy equation, any of the cases described later
must reduce essentially to equation 4-4 for Re— ¢ , That is, no matter
what initial assumptions are made regarding the sizes of the Reynolds
and Prandtl numbers and whether or not the combined momentum and
energy equations are coupled, equation 4-4 must describe the stability

when Re — oo.

4.1,2 The Uncoupled, Viscous Case

4,1.2.1 The Differential Equation

The equation which describes the stability of a viscous, incompres-

sible flow is the complete Orr-Sommerfeld equation

(U—C)(d?”-a(zq?) _ au(? +0—L_L_R~e{q)z '20(2@" + o(Aq)} = 0. (4_ 3)

In this equation. viscous, pressure, and inertial forces are considered,
while not taking into account the coupling with the energy equation is the

same as neglecting the effects of body forces.
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4,1.2,2 Boundary Conditions

The boundary conditions at the wall for this viscous case are that
there can be flow neither across nor parallel to the surface; in terms of

4@ and @' these are

(0)=0
and ¢ % (4-11a)
@'(o0)=0.
If both the % and <« -components of the velocity disturbance disappear

far from the plate, the other two boundary conditions must be

- Q0)=0 E
and (4-111b)
@'(c0) = 0.

The no-slip condition of viscous flow is the reason for the presence of
the boundary condition  @'(0)=0 : which is not present in the non-
viscous problem. That the additional boundary condition @'(w}=0 is
really superfluous in this viscous case will be apparent when it is shown
how the solutions of equation 4-3 behave as Vindl i That is, it will
be shown that the condition @(e0)=0 and the boundary conditions 4-1la
are sufficient to determine the problem. One might suspect that since
the nonviscous problem does not have the boundary condition @Y{)=0
the component of velocity parallel to the wall does not die away as =0
in the nonviscous case. Such is not the situation; the behavior of the
solutions for both the viscous and nonviscous equations is such that the

ol

condition @'eo)=0 is implied by the condition @e)=0 .

" Such an implication is not necessarily true for all functions of
An example of a function () satisfying the requirement #w)=0
but not Flo)=0 is Z(7) = 7?L sin(7?.
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4.1.2.3 Solutions of the Differential Equation

In accofdance with the customary method of treating the Orr-
Sommérfeld equation, two solutions of the equation are taken to be the
nonviscous solutions ¢ and ch defined by equations 4-6 and 4-7.
These are useful only when the Reynolds number is sufficiently large so
that the nonviscous equation is a good approximation to the complete
equation. In a(idition, they fail to be good approximations when » is
close to the critical points ey at which @=c¢ . Near the critical
points the viscous part of equation 4-3, ILF?E{¢E~Z¢(1¢"+ ,,(4-4;} , 1is of the
same order as the nonviscous part, {U-c)(@"-«2¢) -U"¢ ; and the viscous
part cannot be neglected with impunity.

In order that four homogeneous boundary conditions imposed on the
solution of a fourth-order linear differential equation be satisfied, it is
in general necessary that the complete solution be written as a linear,
homogeneous combination of four linearly independent solutions. With
two linearly independent approximate solutions & and ¢ available,
it is necessary to find two additional solutions. The procedure will be
to determine approximations to these additional solutions by two differ-
ent methods. One of these methods gives the solutions in a form in
which their behavior as 77~r00 can be studied, but the solutions fail
to be valid in the neighborhoods of the critical points. The other method
is useful near the critical points but is of no use far from the critical
points. In actual calculations the second method is used, but the first
must be employed in determining how to satisfy the boundary conditions
at 7= @0 ., How the solutions obtained by the two methods are re-
lated will be shown after both pairs of solutions are developed.

The method which gives approximate solutions valid far from the
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critical points is due to Heisenberg(6). One assumes an asymptotic

form for @ good when «Re>| as

7 _l
Q= exp[ /alSZ{ (o(Re)%/LUZ(.Q) + U7 () +(ARE) W3 () +O[(o(f?e)"”} (4-12)

and substitutes this into the original equation 4-3. The procedure then
L
is to equate coefficients of successive powers of (ARe)* to zero.

L
Doing this for oRe and (aFe)” gives

oARe & (T-c) Wi + LW =0 (4-13a)

and

@Re)®:  (T-C)(W?+2Wodll7) + L(4LU5°007 + Gaa2ls') = 0. (4-13b)

The solutions of equation 4-13a other than .w, =0 are

wlo, = F {L(U—C)ﬁ (4-14a)

¢]
Substituting either of these expressions for ; into equation 4-13b
gives

i = g_&—, (4-14b)

4
4-15
and ( )

One will immediately notice that ¢3; and ¢, have singularities at
the critical points where [T =¢ . Also, the critical points are a\lge-

braic branch points of the function {I‘.a(F\"'e(EL—C)}%.

After the solutions valid near the critical points are developed,
they will be used to determine the sectors with centers at the critical

points in which the asymptotic approximations @3 and ¢4 are valid.
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Practically, this determination of the sectors of validity specifies the
sign of the arguinent of (g-¢) when (I-c)<oO . Since @ and

@+ are functions of (-c) rai(sed to fractional powers, whether
arg(u-c) 1is taken to be +1 or =T when (O-¢)<o will affect the values
of the two solutions. Because ([I-C) can be expanded in a Taylor series
as Tl'cj (17-7]c0;)+A_?’: E'{:J (17~775J)1+... in the neighborhood of a critical
point '}7,:& » one can investigate the allowable limits on arg (')7—77%')

in order to determine the sign of arg(fi-¢) when (Z-c)¢(o . One
essentiaily confines his attention concerning the change of sign of (@-¢)
to a neighborhood of 77c; sufficiently small for (-¢) to be approxi-
mated well by a‘cj (77-7?,:}) . For the nonviscous solution ¢, also, the
sign of arg(%-1¢) when (d-¢)40 is of importance. This is because log-
arithmic terms such as _u_,;‘f_ log (7- 77cd) {(which occurs in ,&(77) )
appear when the 1ntegrat(10ns for the &Im (77) 's are performed around

the singular points.

For the purpose of developing the viscous solutions valid in the
neighborllxoods of the critical points, one transforms the independent
variable » in a manner designed to simplify the original equation by
retaining the term having the highest derivative, —Lé— @F , as well as
at least one term which is of order zero in «Re ) i The equation

defining the transformation to the new independent variable, 5, is
(9-7e3) = VU3,  (4-16)

2/  being considered to be proportional to a negative power of dRe and
hence to be small. (-c¢) and [" are expanded in power series in

(77—77%') or US , and @(n) is replaced by ®(3) to produce

%R-»#ész.’_u-:a.‘y 5_@::_ {;J(.Zg,l}_ (4-17a)
“Lle e
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In this equation, as in similar equations developed elsewhere, it
has been effectively assumed that the velocity profile is a straight line
passing through the point gi=c¢ , y = 775/- » and having the slope

H‘c} . Its solutions therefore best approximate solutions of the origi-
nal Orr-Sommerfeld equation 4-3 in an interval near 7ej  in which this

linear approximation to the velocity profile is least in error.

In equation 4-17a, @M): A"® and L’L'c’}: dt’l} . Now
d 5" = 776.}'
it is specified that b=l so that U,‘CJ- =Ue YO . U 1is chosen
. L . . :
equal to (o «Re)? , and the equation is multiplied by —;az‘i
Ct
to obtain
= . "n__ "Jj
$¥-i3% = O{(o(F'?e) } . (4-17b)

If one assumes that «Re is so large that terms of order (o(Re)_-'%

can be neglected, the equation becomes

§¥-isg"=0, (4-17c)
which has the solutions
é( = , ?
$ =53
T (4-18)

3

jd,qfd:zzsziH yiz(ey,
and @4:-£;Q:l;|ﬂz H E%—( ) }

These solutions are really valid only in the immediate neighborhood of
the critical point, and one must investigate their asymptotic equivalence
with other solutions valid for N . This must be done in order

that the proper solution or solutions of the group &, &., %;, and &,

)
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be retained along with 4 and ¢, in consideration of the infinite
boundary conditions.

One can show after Lin( 10) that &, is asymptotic to ¢; and P4
to @¢s for ARe large and (g-c) approximated by 712,(17-770).
This is done by utilizing the asymptotic expansions given in Reference

25 for the Hankel functions:

(izz)™

HY@) ~ (2, ){exp[( -%-g)]]{ug:cmm} (4-19)

with “darg z<2m
(2) 3 . . oo
H (2)~ ('Zz) {exﬂ—%pg-;;)]“l + mzl,#zn;l);} (4-20)
with -2mdarg 24m

In these expressions

Gm) = =1t Napp-z?). . N4 p-lzm-])
4 sz m}

3
If the substitution 2z = ;(L3)2 is made in equations 4-19 and 4-20 and
3 I
the results are multiplied by 32, s and ;@: can be expressed
in asymptotic forms as
2 ~F (50 _3 _3
B, = L{Z(Lsz}wconsf.XS {exp[%e‘z“sz]”lm(sf)} (4-21)
with ~71L ¢ arg 2 < 51
greag zi g
and
N i@ ] 32 -3
&=ty {2 (1)) ~ const xS {exp[ e¥ st JHI +0(3 )} (4-22)
with - 5 {
] { arg IL

After integrating the asymptotic series for $;' and @' appropriately

by parts one can write
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. -5 i 3 -3

by~ constxS¥exp| g € %“53}}{»+o(3 9] (4-23a)
with _ZGJI {arg s { %[[
and

-% (r_3 -3
By~ const.x S {exp{'%e +3 ]H} +0(3 2)} (4-24a)
ith -~

wi ’Ug';ﬂ L arg 5S¢ 'E;L .

With the substitution 3= (77—776,)(17,'09(;'?5)%, these relations become
. o 4 4
&5~ const. x (-7 {exp[—%(mc.df‘r‘e) (77—77c.) J }+O[(o<F€e) ]} (4-23b)
with -_g. carg (%) < %71

and

B~ cons’r.x(V-ﬂclgg{exp[%(ia'c.o(F?e)Ji(ﬁ—Vcﬁ%}H | + O[(o(ReSJf]} (4-24b)

with —uéu Larg (p-7e) L I

If in the definitions 4-15 of the exponential asymptotic viscous solutions
the substitution (fl-c)= Ue,(%-%.) is made and the indicated integra-
tions are performed, the results are

5

@3 = const.x (77—7705*{ ex p[—_g.(mz.dﬁe)"l(oy-ycﬁ +Of(« Re')%}] } (4-25a)
and
@y = const. x(v—yc,j%{exp{%(iaé,dRe)"f(n_%)% + O{(dﬁeﬁ”] . (4-25b)

Comparing equations 4-23b and 4-24b with equations 4-25a, b shows

that &; is asymptotic to const. x 93 and o to const. X s,
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within the interval about 7 in which (g-¢) 1is approximated well
by T (-7
It is assumed that the same limits on arg (77—77c,) must hold in the
neighborhood of 172 for the asymptotic solutions ¢, , ¢, &5 > and
@, as for the asymptotic representations 4-23b and 4-—241:) of &3 and
$, . These limits are

2L ¢ arg (-ne) 1L, (4-26)

which are obtained by applying simultaneously the limits which must be
observed for arg(m-"e.) in the asymptotic expansions 4-23b and 4-24b
for #3 and 3P, . This method of obtaining the limits on arg (%-7)

(6). (26)

for the asymptotic solutions was first used by Heisenberg Wasow
much later obtained the same result by means of a considerably more
abstract approach.

The situation in the vicinity of the outer critical point 7ec.
where [c. ¢O 1is slightly more complicated. If one simply uses the
definition 4-16 to derive equation 4-17c with solutions 4-18, the sector
of the complex 7 -plane in which the asymptotic solutions are invalid
rotates through an angle of _g_ to include a part of the real axis. This
occurs because = e“gwl when [Je {0 . Consequently, a new

independent variable 34 is prescribed to replace 5 . The defin-

ing equation for it is

wl~

(9-77ce) = = ([Beal ot Re) * Sy -  (4-27)
In this case the equation corresponding to equation 4-17c is
E¥-i3548"=0, (4-28)

in which 8" = 4”&(54 . The solutions of this equation are equivalent

d 5%
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to the solutions 4-18 of equation 4-17c with 3 replaced by 3S. . The
limits on arg 3x  for the asymptotic forms of the solutions correspond-
ingto @3 and & are the same as those on arg s for the earlier

case. DBecause (Y=7ez) and 3, are of opposite sign while (77-77&)

and 5 Thave the same sign, the restriction on arg (n-7ez) must be
=1L { arg (n-7c) { 7. . -
L (arg(q-n=<{ o (4-29)

The sectors in the neighborhoods of e and 7, in which the
asymptotic solutions are invalid are shown in Figure 4.

If the convention is made that arg (a—¢)=0 when i >c , the
stipulation 4-29 requires that arg (0-c)=-im when ULC and N>Weca -
This is found by letting ({I-¢)= a&z(q?—ﬁcz) + O{(ﬁ-rgc?_)z} and consider -
ing how arg(U-c) changes when 7 moves in the complex 7 -plane from
a point on the real axis on the left of 7%, to a point on the real axis on -
the right of /0 indentation being performed in the upper half of the
plane around Wea according to the requirement 4-29, With the require-
ment met that arg(@-c) = -iTm when N > Yea, it follows from the defini-
tions of @3 and s in equation 4-15 that l;iqwlcpg]) (93] =0

and f‘;}ﬂwlc&l} |@4] = oo.

4.1.2.4 The Boundary-Condition Equation

One might suppose that the boundary conditions at the plate could
be applied to the sum Ci(@-oc%q) + C3@3 in order to determine an
indifference curve in the «-Re plane, since ¢z and the combination
(@-dc*@z)  satisfy the boundary conditions at % =o0 . However, the
singularity of &3 at 7%, prevents such a process from giving valid
results, so @3 is used in place of s , to which 93 is asymptoti-

cally equivalent. The form of ¢ is now chosen to be
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@ = Ci(@h- «0*9z) +C3Ps. (4-30)

Applying the boundary conditions {§(0)=¢0 and Q'0)=0 gives

Ci{@0) -t C2P2(0)] + C3 §3(50) =0
and B (4-31)
Ci{@i0) - C*P2(0)} + Cs3 (UaatRe) &5(5) =0 .
. L
Here 3= “Vc.(Ué.dRc)a . The condition for the existence of values

of C, and C3 not both zero is that the determinant of the coefficients
of (C, and (Cj be zero. One way in which this requirement can be
written is

~{9)-oCP2(0)} =  By(s)
7(‘,{&; to)- dcz(?z'(O)z S @_—;(50)

(4-32)

This is the form normally employed in analyzing the stability of boundary
layer profiles by means of the Orr-Sommerfeld equation. With the use
of this form of the boundary-condition equation, first the right-hand side
is calculated as a function of 5, and is plotted in the complex plane.
Then a value of ¢ is chosen, and the left-hand side is plotted as a func-
tion of « with this value of ¢ . The process is repeated with diff-
erent values chosen for ¢ . Intersections of the curves for the left-
hand and right-hand sides specify combinations of 35,, o , and ¢
from which pairs of values of £ and Re determining an indifference
curve can be found,

The application of this method of attack upon the free convection
stability problem to the case in which air is the convecting fluid is des-

cribed in Section D.

4.2 Methods of Approximate Solution of the Free Convection Stability

Problem with Consideration of Both the Combined Momentum Equation

and the Energy Equation
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4.2.1 The Coupled, Nonviscous, Non-Heat-Conducting Case

4.2.1.1 The Differential Equations

The problem of the stability of laminar free convection at high
Reynolds numbers of a fluid having a very high Prandtl number is some-
what simpler than the cases involving smaller values of these parameters.
If the Reynolds and Prandtl numbers are set equal to o0 in all terms of
the combined momentum and energy equations la and 2 in which they

appear, the results are simply

(G-c)(@"- @) -U'Y (4-4)
and

(I-C)S - B@®=0. (4-33)

The uncoupled, nonviscous combined momentum equation 4-4 has been
discussed in Part 4. 1.1, According to the energy equation 4-33, the
temperature disturbance function s is specified if ¢ is known. ¢
may be considered to be determined by equation 4-4 only; thus § has
no effect of its own on the stability. That is, the problem is really the
same as the case in which the energy equation is completely neglected
and only the nonviscous combined momentum equation is considered to
determine the stability of the flow.

In order to include the effect of the body force term in coupling
the combined momentum and energy equations, A Re in the qoupl—
ing term o—(‘%?_e{ L'a,S‘—o(azS} of the combined momentum equation must
be considered to remain finite. Equation 4-1 is the result of eliminating
S and its derivatives between the combined momentum equation la and
the energy equation 2. If, then, @HaRe and o Re are set equal to o0

1

in equation 4-1, except where &Re appears in the term o‘(%;? , the
e
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resulting equation should describe the stability of a nonviscous, non-
heat-conducting fluid in free convection about an inclined plate. This

resulting equation when divided by at , which is never zero, is

(a—c)‘{(a—c)(@“—oclc?)-E'L"q’} + __ﬁ—_? {[—La,a'—aaz(a—c)][é'qj

4-34
+la.(o- (§q7+94?)} ( )
This equation could have been derived by eliminating 5 and g
between the coupled, nonviscous combined momentum equation
I-c)(@"-o29)~T"Q + a.s'- = 4-35
(I-c)(@"-*®@)-T'Q Z%%{La 5'-ad25} =0 (4-35)
and the non-heat-conducting energy equation
(T-c)s -89 =0. (4-33)

If equation 4-34 is divided by (U-¢)* andis rearranged, it can be

written as

{(@-c)¢g'- 09} +Ldu_%_{(3 C)] = dQz oLF?e{ Ean) + o(O-0) . (4-34a)

4.2.1.2 Boundary Conditions

The boundary conditions that must be applied on ¢@ to corres-
pond to no disturbance far from the plate and no flow across the éurface
of the plate are ‘

9(e0) =0 } (4-36)

and d(o) =

Because equation 4-34a is of second order, no boundary conditions on s
can be specified in addition to these on ® . However, by reference
to the non-heat-conducting energy equation 4-33, one can note that if

CX¥ 0O the boundary conditions 4-36 on §  imply that
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5(c0)=0

and

} (4-37)
s(0)=o0,

which is to say that the temperature disturbances die away far from

the plate and the plate remains absolutely isothermal.

4.2.1.3 Solutions of the Differential Equation in @

Two linearly independent solutions of equation 4-34a can be de-
veloped in a manner similar to that used for finding the solutions of

the nonviscous Orr-Sommerfeld equation. One sets
(==}
Q= (U-C)Z o™ 7m(77)
m=|

and substitutes into equation 4-34a. Equating coefficients of equal powers

of & to 0 gives

{(H—c)z%'+ la:jf’_ 5' 7'0}':'-0 (4-38a)

e
and

{(H-c)z?!',,.-rlaw‘;iﬁe?'?m}‘: azﬁeg‘% o+ (U0 A -2, MZI, 2i=0. (4-38b)

Equation 4-38a has two linearly independent solutions which will be

designated by 9’0(17) and '}1/0(77) , and which are defined by
%(77) = exp -La,.,{;_ ﬂin 'é'(a-c)"") - (4-39a)
A'Re 4
and
Waly) = i 4as(u-c s Fexplia o [do 's"(a—ciz] |
3 7 -{exp['lan;%ﬁ;jb pliu ] jﬂ:(U— ) XP{L j:ﬁ—ejr 2 . (4_39}3)

If the symbols _@/m(’)?) and 77%(?7) are substituted separately for 7’,,,(77)

in equation 4-38b, solving the resulting equations yields
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Fnln)= {exp[ ia J%Jdﬂ (u—63z } f lez. (afiz{exp[m, o‘({%e Etz;lz B ‘fmﬁ}

{fdﬂz dz_%_ B' -1 ($22) +(- C)Jm-z(ﬂZ)]} m2l|, J.=0

(4-40a)

and

Hialp) = {éxp La JZma (a- c)]}Jdn.(a o) {exp Laoff_ fdgzg(a c) ]}
{fdﬂz '%é Wort (522) +(T-C)* Win-2( ﬂz)” m2 1, Wa=o. (4-40b)

The restrictions 4-26 on arg (7-7) and 4-29 on arg (y-%:) are to be
observed in i)erforming the integrations to determine the Im (7)'s
and the Wm(%)'S . These restrictions are taken to apply in the non-
viscous, non-heat-conducting case because, as indicated in the follow-
ing Parts 4.2.2, 4.2.3, and 4. 2. 4, they must be observed when
solutions of this form are used in the cases in which viscosity and heat
' conduction are considered.

One can now express the two linearly independent solutions of the
disturbance equation 4-34a as

@ = (H—C)%,:a(m/m(ﬂ) (4-41)

and

= (U‘C);:deWn(v). (4-42)

For }7 >,L~ , B and I =0; and, according to the definitions 4-39a, b

and 4-40a, b of the Ins and Wn's, @, and ¢, become

= > _oﬁ'f(ﬂ -4)"
m=o (m)!

G,z L =0 a2 (-4

' m=o (2m+1))

and

As in the case of the solutions of the nonviscous Orr-Sommerfeld

equation of Part 4. 1.1, one can combine @ and ¢, to write
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g, -2z -c €Y 7 >4;

e being one of the two solutions ) of equation 4-34a
holding when 7>,& . Thus, if ¢ 1is set equal to the combination

@ —oct@P, , the boundary condition o) =0 is satisfied.

4,2.1.4 The Boundary-Condition Equation

The relation defining an indifference curve is
Rlo) ~acr g (0) = o, (4-43)

which expresses the boundary condition at the wall. For the case of a
given Pranatl number, which specifies % » both  §(o) and ¢ (0)
depend on C, o, and «Re in quite complicated ways. A possible
method of solving equation 4-43 would be to choose values of ¢ and
«Re , compute the corresponding values at 7=0 of an appropriate
number of the m’s and Wm's , and then attempt to find a value of
oA for which the equation is satisfied. At the same value of C one
would repeat this process with different choices of values of «Re ,
since one would expect to find at most only isolated pairs of values of «
and oRe for which equation 4-43 is satisfied at a given value of ¢ .
There is no reason to expect that a finite value of « can be found for
which equation 4-43 is satisfied at a given value of ¢ for an arbitrary
choice of «Re . Therefore, in order to define an indifference curve,
an excessive amount of calculation that would be prohibitive without the
use of an electronic computer is anticipated. There seems to be no
method of separating the terms of equation 4-43 into one part dependent
on « and ¢ and another part dependent on a single variable such as can
be done when the disturbance equation is the complete Orr-Sommerfeld

equation.
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74. 2. la The Case of the Vertical Plate

Equation 4-43, the boundary-condition equation for this coupled,
nonviscous, non-heat-conducting case, was derived on the assumption
that the plate is inclined. If it is desired to treat the situation in which
the plate is vertical, the simplifications appropriate to considering the
fluid to be nonviscous and non-heat-conducting should be applied to
equation 4-2 rather than to equation 4-1. Since equation 4-2 is equiva-
lent to equation 4-1 with 4., set equal to*l and a,set equal to 0, the
final boundary-value problem for the vertical plate will be the same as
equation 4-43 if one sets 4@.=*| and d.=0 in the dm(0)'s and

Wm(0)'S upon which (0) and (0) in equation 4-43 depend.
P b Gtz

4.,2.2 The Coupled, Viscous, Non-Heat-Conducting Case

4,2.2.1 The Differential Equations

If the Prandtl number of a fluid in free convection about an in-
clined plate is very large and the Reynolds number of the flow is not so
large as to make viscous terms negligible, the following forms of the
combined momentum and energy equations should be descriptive of the

flow stability:
(D-C)(@-2@)-T'D +ﬁ{ta.s'—¢azs} + oTLF'\’E{CPE” 2@+ 29} = O (1a)

(G-c)s-B@=o0 (4-33)

The only difference between this pair of equations and the originél
pair la and 2 is that in equation 2 ¢ Re has been set equal to «

to produce equation 4-33. If Oo ot Re is set equal to o0 in equa-
tion 4-1, which was obtained by eliminating 5 and its derivatives be-

tween equations la and 2, the result can be written after division by
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ar(b-c)  as _ o
(@-Ol@*-a -W'e+ L fia] PO -as BY. |

+._L_ X 2,01 s _ . -
R R -1

Another way of deriving this equation would have been to solve equation
4-33 for' s and differentiate in order to obtain expressions far 5 and &
in terms of known functions, ¢ and @' . Substitution would then

have been made for 5 and &' in equation la.

4,2.,2.2 Boundary Conditions

With viscosity considered, the appropriate boundary conditions

to be met by ¢ and @' are

Qo) =0,
®@'(0) =0, (4-45)
®leo) =0,

and @'(c0) = 0.

As discussed in Part 4. 1. 2. 2, these boundary conditions state that at
the plate surface there is flow neither across nor parallel to the surface
and that the components of disturbance velocity both normal and parallel
to the plate vanish far from the plate.

Because equation 4-44 is of fourth order, no boundary conditions
on § or S' can be specified if those of equations 4-45 are applied
on ¢ and @' . What is implied regarding 5 and ' by the conditions
4-45 on @ and @' can be found by solving equation 4-33 for o to

cbtain

5= _B¢
(u-c) (4-46)

and differentiating to secure

s'= -U'BQ® + B'O+59 . (4-47)
(a-c)* (T-c)
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Applying the boundary conditions 4-45 on @ and @' in equations 4-46

and 4-47 gives

5{0) = 0,
S{o) =G, {(4-48)
S(e0) =0,
and
S'oo) = 0.

if ¢*% 0 . Physically, these equations mean that the temperature dis-
turbances die away far from the plate, that the isothermal condition of
the plate is not changed by the presence of temperature disturbances in
the flow, and that the temperature disturbances do not cause periodic

changes in the rate of energy transport from the plate surface.

4.2.2.3 Solutions of the Differential Equation in @

Two approximate solutions of equation 4-44 are ¢ and ¢ which
are defined by equations 4-3%9a through 4-42 of Part 4.2. 1. 3, @ and
@, are the exact solutions of the equation obtained from equation 4-44
by neglecting the term o-ilf??—; {(?E—Zo(zéP"'*'o("‘C?} , and they best represent
solutions of the complete equation when o ReS>| and U ¥C.
Two exponential asymptotic solutions of the form indicated by

equation 4-12,
77 | ,.?I: -l
Q= eprdsz{(acRe)’z 2(2) + W (L) + (L Re) JJ}E(Q)-FO[(o(F?e) ] } } ) (4-12)

can be developed for the present equation 4-44. As in the uncoupled,
viscous case, these asymptotic solutions are developed for use in con-
sidering how the boundary conditions far from the plate are to be satis-

fied. If one substitutes the solution indicated by equation 4-12 into equa-

Ni=

tion 4-44 an d equates the coefficients of oRe and (Re)” separately

to 0 with the assumption that % is of order lower than & Re , the
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resulting expressions for s and w7 will be those given by equa-
tions 4-14a and 4- l4bf Although /0,— is very large when @& >>1 , for
simplicity it will be assumed that «Re is so large that {l can be
considered to be of order lower than unity in «{Re . With this simpli-
fication, the exponential asymptotic solutions of equation 4-44 are
identical with the exponential asymptotic solutions 4-15 of the simpler
Orr-Sommerfeld equation 4-3 when only the terms (« Re)%,wE and Wi
are retained. As in the previous case, these solutions are unsatisfact-
ory hear the critical points, and another method must be used in order
to have 'wviscous'' solutions for use in the boundary-condition equation. .
Solutions developed by changing the independent variable accord-
ing to the relation (47- 7;,)2 (Ué,o(R;)éS and expanding known functions in
Taylor series about 77:7& are affected somewhat more seriously than
are the asymptotic solutions when /f >>1 . When one sets P)=%(3) , ‘
(77—77c,)=(ac‘,o(Rej§S , and expands (Z-c), @', ®, and B" in Taylor series

about %=7% . in equation 4-44, the resulting relation is

%-133" = -a. 'é'c.(aé,ig(dfees%{_é;}' + o{(ocfeeﬁ _{/, } . (4-49)
5 oLUFe

If the first term on the right-hand side of the equation is not neglected,
the order of the equation must be taken to be four rather than effectiveiy
two, as in the corresponding equation 4-17b of the uncoupled, viscous
case. The appearance of the regular singular point in equation 4-49 at
5=(0 1is a result of taking (G ARe =00 . This can be verified by com-
paring equation 4-44 with equation 4-1; if g Re were taken to be
finite, the denominators (-¢c) of the fractions multipliéd by Elﬁ?e

in equation 4-44 would be replaced by functions which do not disappear
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when T =c on account of the presence of additional terms of orders
I - and _{ .
Jodd Re (OBO(F?e)z

Although a power-series type of solution could be developed for

equation 4-49 with the terms of order (« l—'\’e)”:Ls and _%__ neglected

AN Re
but with the first term on the right-hand side retained, it appears to be
more practical to consider the solution of the equation with the entire
right-hand side neglected because the solutions of this simpler equation
are already known. Neglecting the entire right-hand side of equation
4-49 is allowable if A Re is taken to be so large that dRe%(( .
If the results of calculating an indifference curve were to show that such
an assumption were very poor, the next logical step would be to initiate
a perturbation procedure in which § were assumed to be of the form
§<o)+(o‘({;‘?;)%§(,) | » &0 being a solution of the homogeneous equation
resulting from setting the entire right-hand side of equation 4-49 equal
to 0, and & being the solution of the inhomogeneous equation ob-
tained by substituting into the first term of the right-hand side
of equation 4-49 and neglecting the other terms on that side of the equa-
tion.

With neglect of its entire right-hand side, equation 4-49 reduces to
equation 4-17c, which has solutions 4-18. As shown in Part 4. 1. 2. 3, the
exponential asymptotic solution ¢§s; as well as its first derivative @3
dies away exponentially as % -=o  on account of the limits 4-29 on

arg (n-7ee) . Also shown in Part 4. 1.2.3 is that the solution s

of equation 4-17c is asymptotically equivalent to @, .

4,2.2.4 The Boundary-Condition Equation

Because ®; is asymptotically equivalent to a solution satisfying
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the infinite boundary conditions and the sum (¢, - «c*d}) dies away

exponentially as = the combination
¢= CP-xcd,) + Cs 03 (4-50)

is considered to approximate near 7 =0 a solution of equation 4-44
which satisfies the boundary conditions at W= . In this form of an
approximate solution of equation 4-44, the effect of coupling has been
included only in the nonviscous solutions ¢ and ¢ because Z%F_?e

has effectively been set equal to 0 in arriving at the viscous solution &;.
The boundary-condition equation resulting from applying the boundary
conditions @) =0 and ¢@'(o) =0 at the plate is, in the form corres-

ponding to equation 4-32,

{ Qo) -acr (0} = _8s3(3d) |
7 @ 0-acr (o))  S-Bs(3e) (4-51)

Here 5,‘—‘--7;,(&&.0( F?e)é as in equation 4-32. The right-hand side of the
present equation is the same function of 35, as is the right-hand side
of equation 4.-32. Unfortunately, the left-hand side of the present equa-
tion is a function of &, ¢, and «Re rather than of only & and ¢,
as is the left-hand side of equation 4-32. In order to solve the present
equation, its right-hand side would first be plotted as a function of S

in the complex plane. Then a value of ¢ would be chosen and the inte-
grals upon which  @(o)» @, (0) » .@,' (0) » and g?;_ (0) depend would be
calculated for aﬁ assumed value of &« Re . The left-hand side would be
plotted in the complex plane as a function of o , and the intersections,
if any, of the curves for the right and left-hand sides would specify
values of o« and Se . The value of olRe corresponding to the

value of 3. at an intersection would be determined for the chosen value
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of ¢, and a comparison would be made between it and the value of oRe
assumed in calculating the left-hand side of the equation. In the probable
case of serious disagreement between the values of 4fRe for the two
sides of the equation, another value of «Re would be chosen for comput-
ing the left-hand side of the equation, and the process would be iterated
until the values of o Re for both sides of the equation agreed sufficient-
1y well., Thus points defining an indifference curve in the a-Re plane
would be determined. Such a process would, however, be extremely
laborious and would probably necessitate the use of electronic comput-

ing equipment.

4.2.2a The Case of the Vertical Plate

If the plate is vertical rather than inclined, @, becomes equal to
*] and d: goes to 0. The only effect of this is on the solutions ¢ and
9, ; that is, @ would be set equal to?l and @, to 0 in performing the
integrations for the functions Jm(}f) and %(7) and their derivatives

which determine ¢ and ¢, according to equations 4-41 and 4-42.

4.2.3 The Coupled, Nonviscous, Heat-Conducting Case

4,2.3.1 The Differential Equations

In the section immediately preceding,a method was outlined for the
study of a free convection flow in which the effect of viscosity is appreci-
able but for which the thermal conductivity is negligible. It is of some
interest to consider the contrasting case for which the viscosity is neglig-
ible but the thermal conductivity is appreciable. An example of such a
flow would be the case of a liquid metal in laminar free convection at a

very high Reynolds number. The basic equations la and 2 in this case
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are simplified by neglecting the viscous term &J@{&E diq;“-l—a("’q?}

of the combined momentum equation la. The coupling term .%_{ia.S’—dazsz
in this equation is retained, as is the conduction term ELO_(___e{s” ZS} in
the energy equation 2. One essentially considers the Reynolds number to
be large enough to cause the viscous term of the combined momentum
equation to be hegligible but not so large that the equations are uncoupled.
One takes the Prandtl number to be so small that the product g, Re ,
although large, is much smaller than ARe . Even if the minimum
Reynolds number for instability is very high for the free convection of a
fluid with a very low Prandtl number, as is assumed, the coupling between
the two equations is apt to have an appreciable effect because the para-
meter /f » which is a factor of the coupling term, is very large when
the Prandtl number is very small, as shown in Figure 2,

With the viscous term of the combined momentum equation neglect-

ed, the pair of equations to be solved simultaneously becomes

T - T AN 1 L5~ - 4-35
(@-cHQ"-x24) -U"® + %}{La oéaz.S} =0 ( )
and

(T-¢)s'-FQ+_L_ {s"- #5}:0-

gl Re (2)

The equation resulting from eliminating s and its derivatives between

these two equations is the same as that obtained by setting :LJF?‘ =0 in
e

the complete equation 4-1, while retaining ! and %
Jod fRe

finite. This equation is

{dggﬁ'e(u -c) +(}fé(—; }{(ﬁ—c)(q)”_o(zq)) —a"@}"

+{ %%%Hw —c)(qD"—o(w)—U"c?} {a—'(u c) }’ [o(a,azu +ia(1+al)(i- C)]
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e }{(a—@( r'-ocw)-aw} A

(oot Re)* ollFe
;S(;e”[ﬁ'@]ﬂa.[a.z(a-c) —Oig:;e][é"@+§‘q2']} = O. (4-52)

4,2.3.2 Boundary Conditions

The boundary conditions which are to be applied to the solutions of
this equation should be derived from stipulations on both the disturbance
motion and the temperature disturbance. Since the flow is considered to
be nonviscous, two of the appropriate boundary conditions are that there
is no flow across the surface of the plate and that the disturbance motion
dies away far from the plate. In terms of @ these are

Qo) =0 (4-5a)

and

@(e0)= 0. (4-5b)

That the temperature disturban ce should vanish far from the plate is one

of the boundary conditions to be imposed upon S . Formally, itis
S(e0) =0. (4-53)

At the surface of the plate a boundary condition on the temperature dis-
turbance is more difficult to formulate. An exact boundary condition
involving g and its derivatives could supposedly be derived by taking
into account the heat flow process within the plate, but the analysis as
well as the results would probably be quite complex. In order to avoid
this complication, two alternative boundary conditions are proposed.

The first of these is that the plate remains absolutely isothermal;
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mathematically this is

S(o)'—‘o.‘ (4-54)
The other proposed boundary condition is that the plate is adiabatic With
respect to the temperature disturbances., Since the process of heat
transfer at the plate surface is by conduction alone, this boundary con-
dition implies that the temperature gradient in the fluid is not changed
by a disturbance in the flow. Because the dimensionless temperature

. —er _
it (5~cT) , in which '9'(77) is the steady-

gradient is equal to ‘9'(77) +5(7) €
state part, this boundary condition is expressed as

s()=o. (4-55)

In Part 4. 3. 3 expressions for S and s“ in terms of q)i , its
derivatives, and known functions of 77 are developed. Inasmuch as equa-
tion 4-52 is a differential equation in @ rather thanin S , it is
necessary to have the boundary conditions 4-53 and 4-54 or 4-55 ex-
pressed in terms of @ and its derivatives. If in equation 4-97 of
Part 4. 3. 3 one lets p=00 , sets L. =0 while keeping Z(%F? and

e

o Re

! finite, and applies the boundary condition 4-5b, the boundary
To ol e .

condition 4-53 on S becomes, for C =0,

‘a'{(pnl—'dzq)'}]’]:oo-i. LO(az,{Q)”}]’?___w - o (4-53a)

—

Here use has been made of the fact that I , its derivatives, and &'

all disappear outside the boundary layer. The boundary conditions 4-54

and 4-550on § and S at »=0 are also expressible in terms of the
(Pm's and known functions of ¥ according to equations 4-97 and

4-98 of Part 4. 3. 3. The isothermal boundary condition 4-54 becomes

a.{i'e" —c(47"'-oc24?')~ﬁ"4"}| - i““‘f"cq’"}]fo: O’ (4-54a)

1=0
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and the adiabatic boundary condition 4-55 becomes

S

=0

+{-a7‘c naf,izRe}{m a}% 54"+ a2 (9"~ £@") (4-55a)
= 0.

‘C(QE-o(zd?”) _,za"‘qt] - Ldaz[a'Q" -'C((,?"'— dzat)—'u,'"q)']}
. 7=0

4.2.3.3 Solutions of the Differential Equation in @

Approximate solutions of equation 4-52 are developed by methods
similar to those used in previous cases. Two approximate solutions can

be obtained by setting l_ =0 . One might suppose that the terms
Oo ol Re

multiplied by %: should be retained, but Figure 2 indicates that
A'Re

\a.},g and _| are of the same order of magnitude for ¢, (| .
o

Therefore, terms having % as a factor should be dropped also
AVRe

if terms of order I are to be neglected. Equation 4-52 divided
Oo A Re
by a,z,([j-c)z and with both and | set equal to 0 is
PUSG O dRe
(T-0)(@" - o*@) - U"Q =0, (4-4)

which has the solutions ¢, and . defined by equations 4-6 and 4-7
of Part 4. 1. 1.3. As shown in Part 4. 1. 1. 4, the combination (@-dc*®z)
is proportional to 8—4(7-4—) when 7 >t .

Obtaining two additional solutions is done in essentially the same
manner as in the coupled and uncoupled viscous cases previously dis-
cussed. One again investigates two pairs of sclutions, one pair of which
are good approximations far from the critical points but which have singu-
larities at the critical points, while the other pair are valid only close to

the inner critical point.
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In the present problem, the appropriate large parameter to be
used in the expansion for the exponential asymptotic solutions is (dbo(Rc)—‘i
rather than (« Re)% » which was used in the previous cases., Assuming
an exponential asymptotic solution of the form 4-12 with «Re replaced
by ¢ A Re , substituting into the original equation 4-52, and equating
the coefficients of oA Re and (aéo(F?e)% to 0, considering 0_(_%!?,

to be of order | , give
Jok Re

oy = F{L(a—c)}% (4-56a)

34

and

AUT = -7 O . -
4 7 G- (4-56b)

The exponential asymptotic solutions are thus defined by

g, = (I-c) exp[/d!z macF?e(U—c)}%+Oz(06 5%”

and (4-57)

= (u— [ d,Q L GaRe(li-c I-I—O{(aaa(r?e) ”
Solutions valid near the inner critical point are developed as
previously by using the transformations (77-77<-,)= U3 and Q(7)= &(3),
-4
UV . being small. For the present case IV is taken to be (U.E;.aaa(Re) 3
-4
rather than ([l;,dRe)? as before. Using these substitutions and

expanding the known functions of 77 in Taylof series about 7, give

FUSSEMEPTN

Since ,51: O{é’}) %)% :O{m).j} and ;é%_’?e: O{cfa‘o(ﬁ’e} ,» so that

the equation may be rewritten as

SPT+53"- (1405 @" = o{ 77 i Jpﬁﬁ } ~ (4-58a)
[

N

S+ -(1+157)8" = O{(aaoc e)’a'}' (4-58b)
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Neglecting the right-hand side gives
3237 +358" - (1+(3%)3" = 0. (4-58¢)

Four linearly independent solutions of this equation are
\él = I?

$,=5,
- -
@ :&{;ﬂidﬂz H;{%ugz)%} , (4-59)

,@,,iﬁsz,ﬁiftzl-if{%(iﬁz)%} .

and

3

Asymptotic forms of $; and @4 are used as in previous cases
for determining which of these solutions approximates in the neighbor-
hood of the critical point }7,:‘ a solution satisfying the boundary condi-

0] 3 @ 2
tions at 77 =00 ., If the Hankel functions Hz {Z_(i_’j) } and H_z,{_z,(i,s) }
313 313
are expressed as asymptotic series according to equations 4-19 and 4-20
and if these series are each integrated appropriately twice, term-by-term,

L
the results after substituting 5= (7—7:.)('!1::.JoocRe)3 are

P53~ const.x (ﬂ—vc.ii{exp['%(ioa “Reaé')%(V"V")%]}{l +O[(030(Re-)li}} (4-60)

with -71 N 51
s < ardg (7-7e) <_6_

and
7

8, const.x (V-Vc,;x{exp[%(imocﬁ’eHc.)I(W-Vc,)%}} {1 + O{(a;o(R;)i]} (4-61)
with -'L‘Gﬂ { arg (77—77c,) { _TGI’_ .

If in the exponential asymptotic solutions (fI-c¢) is approximated by

Ue (77-770) , the relations 4-57 become
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-7 : 12
P5= const. x (9-7e) 4exp[ug-(iavotReaE:)i(’?"?f')%*O{(‘T"“R‘*)lz} | (4-62a)
| - a

and
@,= const. x (- 770-)% exp[%, (Los A Re aé.)%(y‘;yc,)%-r O{loset Re_)%} ] . (4-62b)

Thus, one concludes that & ~constx @ and &, vconstx@ . Assuming
that all asymptotic solutions must be valid in the same sector in the
neighborhood of We, 2 one finds upon the simultaneous application of
the limits on arg (%-¥ei) of the relations 4-60 and 4-61 that

I L arg (-7 L I (4-63)
must be true for the asymptotic solutions @ , ., ¢, , and '4)4 .

To find the sector about the outer critical point 775,_ in which the

asymptotic solutions are valid, one proceeds in a manner very similar
to that of the uncoupled, viscous case of Part 4. 1. 2. In the present case

the appropriate transformation of the independent variable is
-1
(n-Nez) = —(|Uez| 0o ARe) ® 5. (4-64)

Applying this transformation, using & = $(34) . and expanding the
known functions of n in Taylor series about 77¢z in equation 4-52
give an equation equivalent to equation 4-58c if one replaces 35 with 3,.
The solutions of this equation are the same as those of equation 4-58c,
which are denoted by equations 4-59, if 5 is replaced by 3Sx . The
limits on arg Sx in the asymptotic series for $; and 8, arethe
same as those that apply on arg 5 ; but since 34 and (7-7cz) are of
opposite sign while 5 and (%-7.) have the same sign, the limits on

arg (n-pe) differ from those on arg(y-7e) by W . A comparison with
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the limits 4-63 on arg (7-We) indicates that
“IL( arg (n-1ez) { 16_IL (4-65)

must hold for the asymptotic solutions & , @, @ , and ¢, . Itis
worth noting that these limits 4-63 and 4-65 on arg (y-7c) and arg (y-7)
for the present coupled, nonviscous, heat-conducting case are the same
as the limits 4; 26 and 4-29 to be met in the previous cases involving
different assumptions regarding the characteristics of the flow and the
convecting fluid. That these limits should be the same is not necessarily
to be expected because they are determined in the present case by con-
sidering the effect of heat conduction and in the previous cases by taking
viscosity into account,

As in Part 4. 1, 2. 3, the convention that &rg ({I-¢)=0 when U >C
and the restriction 4-65 on &rg (%)-%cz) requires that arg (o-c¢)= -iT
when 04C and 7 >z . This implies that |,f3] —~0 exponentially
and | @4)—=00 exponentially as ¥~ ©9-

4.2.3.4 The Boundary-Condition Equations

Because the solution ‘(pa and the sum (4),-0(0"4)2) both die away
exponentially as n-—=o , any linear combination of these two func-
tions satisfies the boundary conditions 4-5b and 4-53a at ;? —c0 .« On
account of the singularities of ‘4')3 at the critical points, it is better to
use @, , whichis asymptoticto ¢, , in place of ¢, ~when the
boundary conditions 4-5a and 4-54a or 4-55a are applied. One ta1\<es

@ = Ci(P-acr@z) + C3 @, (4-66)

and first applies the boundary condition 4-5a to obtain

@0) = Ci{qulo)-«c*@2(0)} + C3 ,B3(30) = O, (4-67)
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in which 3, = "77c‘(a‘c'0;a(F?e)Jzi . For convenience, the boundary condi-
tions 4-54a and 4-55a will be expressed in operational notation as D, (¢) =o
and Du,(@) =0 , respectively, the operators D, and Dg, repre-
senting the linear operations of differentiation with respect to /A
multiplication by various terms, and evaluation at n=0 according to
equations 4-54a and 4-55a., With this notation the isothermal disturbance

condition 4-54a becomes

Ci{Dro(@) —etc*Dr( @)} + C5 Dro(85) =0 (4-68)

so that the boundary-condition equation for the existence of non-trivial

values of C. and C; satisfying equations 4-67 and 4-68 can be written

as
Dro (@) - ¢ C*Dro(@2) — Dzog;é_a) ] (4-69)
CPA{O) - dCZQZ(o) |§3 ( 50)

In operational notation the adiabatic disturbance condition 4-55a is

Ci{Dao (@)~ ot c*Do(@2)} + C3 Do (8;) = O. (4-70)

If Ci and C;: are to be determined by this equation and equation 4-67,
the equation which states that the determinant of the coefficients of C,
and C; vanishes is

Dro (@) ~ 2¢*Dno(@2) — Do (,§3) . (4-171)
o)~ ac* @, (0) P3(3.)

The solution of either equation 4-69 or equation 4-71 for the pur-
pose of determining an indifference curve would require a very great
amount of work, Besides the work of calculating the integrals upon
which &, @,, and their derivatives depend, there is the necessity
for computing the function @, and its derivatives, which to the knowledge

of the author have not been tabulated.
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4, 2. 3a The Case of the Vertical Plate

As in previous cases, the analysis for the inclined plate applies to

the vertical plate if one sets a,= *!{ and d.,=0.

4.2.4 The Coupled, Viscous, Heat-Conducting Case

4.2.4.1 The Differential Equations

In this case one considers that in the disturbance equations la and 2,
axRe and ¢: «Re are not of extremely different size, that neither is so
large that terms multiplied by its reciprocal are always negligible, and
that the effect of coupling between the combined momentum and energy
equations must be taken into account. With these assumptions none of
the terms in equations la and 2 may be neglected until one begins to simpli-
fy in order to construct approximate solutions, These basic equations are

rewritten below for convenience:

(T-0(@-a29) -9 + f{lais-aazs] +_L[@=-24'¢"+xtg) =0  (la)
(U-0)s -89 *..L___{s" —o?5 } -0 ( 2)
JoolRe

As described in Part 4, 3,1 of this appendix, g and its derivatives
can be eliminated between the above equations in order to obtain an equa-
tion involving only ¢ and its derivatives as unknowns. This equation
is

[é"%(__;(a - +(—d_——)][ [O-e(@'-ot@)-T'9 L | E—Z¢‘4’"+oc4q}}“

[ ;;“(;(R H(u @'~ a*P) - u<?+;<i§?{c9’“—Zofcv"+oe*<p}J‘+[a.‘('u‘—c)z

—J:J—-O(Re {danazu +L0(z(l +ai )(u c } -‘(_O_;go_(__)z][(u_c)( " K2 @) -0
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. {&E_ z;,(zqm ourqa}J 4{ z{%e] {—ch?a‘ -ataz[at(a-c) e } {?‘CP}

\u]

o+ 'Ld,f{a.z(u—c) —0_‘_;%%2}{

"c?+§'69'” = 0.

4,2.4.2 Boundary Conditions

Equation 4-1 being a sixth-order differential equation, six bound-
ary conditions must be specified on q), and its derivatives in order to
derive a boundary-condition equation for the determination of an indiffer-
ence curve in the o«-Re plane. Four of these boundary conditions are
the same as those specified for the uncoupled, viscous case of Part 4. 1. 2.
In order that the disturbance Velc;city components parallel and perpendicu-
lar to the plate disappear both far from the plate and at its surface, the

requirements are

Qo) =0, ] ‘

(4-11a)
@'(o) = O,

and Qleo) = 0, z (4-11b)
@'(e0) = 0.

The remaining two boundary conditions are based on requirements
that the temperature disturbances must meet. For the temperature dis-
turbances to die away far from the plate, one specifies as in Part 4.2. 3.2
that

S(e0) = 0. (4-53)

If 5 1is expressed in terms of @ , its derivatives, and known func-

tions according to Part 4. 3. 3, this stipulation on 5(c0) can be written

as a'{-cqy” +o_(Lﬁ_el'd)z_2dzq,m]N7:w
—Locaz{—cq)"+a_¢;R_;[q>"’z—zo&‘<y"]H = o. (4-72)

17:00
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At the surface of the plate either an isothermal or an adiabatic boundary
condition regarding the temperature disturbances will be assumed. The
isothermal boundary condition, which says that the flow temperature dis~-

turbances do not affect the plate temperature, is

S(o) = (4-54)

which, in terms of @ and its derivatives according to Part 4. 3. 3, is

a, { ae"- ccp'“+z%?_e [7-240"] }

—ilaa{-cq"+_i_[@%-z0%9"]]| = 0. (4-73)
7:0 { dRe[ ]}\7=o

On the other hand, if the plate is assumed to be adiabatic with
respect to the temperature disturbances, that is, if the temperature
disturbances are not considered to affect the rate of heat transfer from
the plate, the appropriate boundary condition is

So) = O. (4-55)
According to Part 4. 3. 3, this condition in terms of @ and its deriva-

tives is

[attfafie-ca i (@%2aa") ) - inasfcq's i (920 9")}]]

77:0
{ arc ,_Leé_._}{ [2u'® @" - c(@=L2") +_‘;(_LF_?_e{q,n_2szn+da,quﬂ
- 2 T'on_ 1t | _ t - , (4—74)
lod [U.d? cq +ZL_Re{q71 2d*® }”7:0 O.

The six boundary conditions, then, to be met by ¢ and its derivatives
are those indicated by equations 4-1la, 4-11b, 4-72, and either 4-73 or
4-174.
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4.2.4.3 Solutions of the Differential Equation in @

Approximate solutions of equation 4-~1 that should b;a useful when
A Re and doolRe are large are obtained by methods very similar to
tho‘se employed in the preceding cases, Two of these solutions can be se-
cured by letting _1 __  and ! go to zero with retention of

o A FRe ARe dVRe
as remaining finite, since »& is quite large even when 6 is on the

order of unity. Doing this in equation 4-1 and dividing by ai gives
a-c) {(a-c)(@"-a2@) - T'P} + —iaO'-aa(T-o)][ B
(@-cf {(@-c)@"-a¢)- TP} + 4 f[-lam-aar(@-][ 4]

+ia(T-c)(B"p+ ié‘cp')} =¥o} (4-34)

This equation is treated in Part 4. 2. 1. 3 in the study of the coupled, non-
viscous, non-heat-conducting case. In that part two solutions @ and

&,  defined by equations 4-39a through 4-42 were developed, and it
was shown that the combination ({, -« C* %) behaves as constx ehd(v-é)
when )?-fboo. Thus the two approximate solutions ¢ and @, of equa-
tion 4-34 are already available; and, in addition, the combination (({~dC*®)
satisfies the infinite boundary conditions 4-11b and 4-72.

Four additional approximate solutions of equation 4-1 are secured

by basically the same method as that ﬁsed in the other cases in which
either the fluid thermal conductivity or viscosity was taken to be finite.
That is, four solutions are developed which are valid approximations far
from the critical points but not at them, and four solutions valid near the
inner critical point but not far from it are also constructed. Then a
comparison is made between the two groups of four solutions in order to
find which of the solutions valid near the inner critical point approximate

solutions which satisfy the boundary conditions far from the plate. Also,
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as previously, the solutions valid near the critical point are used to
determine the sector with center at the inner critical point in which
asymptotic solutions suchas ¢J and ¢  are valid, This determina-
tion of f,he sector of validity is extended to the region near the outer
critical point,

The solutions valid far from the critical points but not at them

are developed in the familiar exponential asymptotic form,

q)=exp[ j Z:z{(me)%uro(:z) FAT(S2) + (LR s (@) + O[ R ] }] . (4-12)

When ;% | , substituting this expression for ¢ into equation 4-1 and
equating the coefficients of the two highest powers of (o(}?e)_é , namely

L
ARe and (LRe)* , to zero give

(4-75)
and - ?

L
Here is has been assumed that ,{L is of lower order than (o(f?e)l.
When ¢ =|, one must consider the coefficient of (XRe)’ in order to

' 1
determine /U‘J?T4 and LU576 because the coefficient of ( Re)®  is
Pl )

identically zero. One finds that the values of 11)354 s ,Llé_?)é , and
3

/w;xq_ indicated in equations 4-75 apply in this case but that
)

wi o= =5 _10 4| do =1, (4-75a)
56 4 (W-c)  7M+K ’ ‘

K  being an arbitrary constant.
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Using these values for the A 'S , one may write

-5 7 .
&= (EZ—C)“GXP(’;!SZ{iaRe(U~c)}i+ O{(o(Re)%}] .
. _I : 17 -
&= (a9 exp[jd:z Lot Re (0~ C)}Z+O[(0LR e) }]
K
&L.=(u-c exp[ desz Lo;o(Re u-c)j +O{(dRT }], L (4-76)
vi i }02 =
= (b-c) expudfz (G50l Re (0~ c)}’+o{(o<F<‘e }
A= (+K)(u % [L Q LoLF?e(U*C)}%-l- O{(OCRESJ?:}],

and ) ’ A . o=
che;: (77+K)(L7—C)4€XP[]&Q{ Lo(F\’e(U—C)}Z+ O {(a( Re) 2}] .

These solutions, like all others of the exponential asymptotic form, have
the disadvantage of being invalid near the critical points, Solutions valid
near the critical points are constructed in the same manner as that used
in other cases. If one desires to construct solutions valid near the inner
critical point 776, , the proper transformation of the independent
variable is

-4

s,

(n- 17c.) = (04 o Re (4-16a)

Letting t?(17) = §(3) and expanding known functions of 7 in Taylor

series about 77c, as before allow one to write equation 4-1 as
& -1Ld -i&s Hd@ ~i5 d2d O{% (R } 4-77)
gdsz s ds ds* ds} R e)s’( (

'Here it has been assumed that «Re and & Re do not differ greatly

in size., If (e is considered to be sufficiently large for the right-
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hand side of equation 4-77 to be neglected, the equation becomes

{%1""5' ffg ““S}{f—lﬁs%—i“sit__zsg} = 0. (4-77a)

Obviously, four of the solutions of this sixth-order equation are solutions

of the fourth-order equation

d*® -isd*?® - o 4-17
< s g ( c)

which first appeared in Part 4. 1. 2. 3. As indicated by equations 4-18 of
that section, four linearly independent solutions of this equation are
£ =1

— (4-78a)
2579?_ - S) }

5 52
L .3
:/dﬂ,jdﬂz Qf L{E_(lﬂz)i},
3

z)

X fdszfdszz S Hyfz(ie )i}.

and

} (4-78b)

The remaining two solutions of equation 4-77a can be secured by setting

d#d -15d*@ =Y (4-79)
ds* ds

so that equation 4-77a becomes
Y -1 dY -iasY =0. (4-80)
ds> 5d3

Two linearly independent solutions of this equation are
Q) . 2
Y, = s H: {Z,(LaDS)Z} (4-81a)
3
and

2) R
Ye= S H%{%(Laos)%}, (4-81Db)
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. ,
with do = T3 . The inhomogeneous equation 4-79 can now be solved

by the method of variation of parameters in order to obtain

= Ln/Asz/dﬂz{ “fdﬂaYs 7.@" @" IOLQBY; = “}

+00
and (4-78c)
. n '
; G-—-%Ifdsz.fdszz{ dsstG F fd:stel }-
1| .
In the integral /d523Y5 2@4 of the expression for z@g one must take
+00,0
+ 00 to be the lower limit of integration when @ »| , —o0 when
Oo {| , and a finite value such as 0 when ¢s=1| . Similarly, the

. 2
"
lower limit of the integral fdﬂsYg ?_@3 of the expression for .QG is
30,0
to be taken as —00 when s »| , +00 when @ (|, and 0 as a definite
finite value when Oo=1 .

In part 4. 3. 4 it is shown that the asymptotic relations below hold

between the exponential asymptotic solutions and the solutions valid near

77c:

.83 ~ const.x 4,

'L§4 ~ const. X 2(_?4

(4-82)
85~ constx g, + const. x Ps
Do~ const.x P+ const. x §,

Also in that part it is shown that in the neighborhoods of the critical

points Ye, and We, one must observe the requirements

—lgj { arg (m-7ea) ( I (4-26)
and
~_g_ { ard (M-7e) L %‘L. (4-29)

for the asymptotic solutions., Finally, it follows from these limits and



- 128 -

the definitions 4-76 that if one takes arg(l-¢)=o0 when O »¢ , then
l]‘_"jw () =0
Lf"_"fw le@sl = 00,

lim |[.®@sl=0, (4-83)
and 7+ 0

izf_ngwlzd?shoo.

4.2.4.4 The Boundary-Condition Equations

From the forms of &, and #s indicated by equations 4-76,
one can see that these functions die away exponentially as %->=% under
the requirement 4-29 so that their derivatives to any order also disap -
pear at 77:—_ o . The same is true for the combination (-~ oC? lCPZ)

ot(n-4)

because it behaves as const.x € outside the boundary layer.
Therefore, any linear combination of (@i -oc*@) % , and 4
satisfies the boundary conditions 4-11b and 4-72 at ®=c . In apply-
ing the boundary conditions at the plate surface it should be better to re-

place 2, and 26?5 with 2@_., and 1@5 , respectively, because of

the singularities of ¢ and ¢ at 7, . One takes

Q= C.(C,P.‘alczig%)+ C32§3 + Cszés (4-84)

and applies the boundary conditions 4-1la on the disturbance motion at

the plate surface with the results that

Cif oo @] + C3 B5(s.) + Cs.8: (%) =0 (4-85)
and
C.{Q'v(o)-d cz'zg‘(o)} +Cs3 (aé,dge)%zés' (30) +Cs (a'c.otF?e)%é,;(So) =0. (4-86)

L
Here So= —Vc.(ué,o(Re){ The boundary conditions 4-73 and 4-74 result-

ing from taking the plate to be isothermal and adiabatic, respectively,
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concerning the temperature disturbances are linear in ¢ and its
derivatives. For simplification, the boundary condition 4-73 will now

be denoted by Dmo{(®) =0 , and the boundary condition 4-74 will be indi-
cated by Dwmo(f) =0 . Applying these boundary conditions to ¢ ex-

pressed as indicated by equation 4-84 gives

Ci{Dmo(®)~ 4c*Dmo(§,)] + C3 Dmo($;) + CsDmo(Bs) =0 (4-87a)

and
C.{ Dzo(@) - %c* Do ()] + C5 Dro (:85) + Cs Dxo (&) = 0. (4-87b)

If one considers that the plate remains isothermal, equations 4-85,
4-86, and 4-87a must be satisfied. Setting the determinant of the coeffici-

ents of C;,~ C3, and Cs in these three equations equal to zero gives

{@0-ac2d, ][ (Tt ReV* 8. (s2)][ D ,3,)] - [(Te, me)%;ﬁ; (5)] (Do (2,)]}
{8 (5[ (Wt Re) 8 (5] [ Diano (@) - 4C*Dimo (6,1 [0~ 404 (0] [ Dio (8]}

1
+H&. (sIH{[ @0} c* 0N [Dae (,)1-[ (@ tReF 23 (5] [Dro () - C*Dmo ()]}
- O. (4—883')
For the case in which the plate remains adiabatic with respect to
temperature disturbances in the flow, the appropriate boundary-condition

relations are equations 4-85, 4-86, and 4-87b. In this case, setting the

determinant of the coefficients of the Cl 's equal to zero gives

{@(0)-wc* @, (o)} [(Te 4 Re)® B4 (5] [ Do ()] 1[0t RV .85 (5] Do (#:)]}
.3, (50)} {[(aé,ocRe)J’Z@;(so)] [Dxo (@)-atc? Do(@)]-] 9i(0)- ac9;(0)) [ Dxo(2.)] ]

+{ 8,50} {[ 0y (03] [ Do Ba)] (et R & (50)] [ Domo( B)-tc*Dio ()]}
= o. (4-88b)
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Solving either equation 4-88a or equation 4-88b in order to obtain
an indifference curve in the o-Re plane would be an extremely compli-
cated process. To find values of ¢, o , and o Re satisfying one
of the equations, one would have to construct the four solutions ¢, ,

&, ,' Pz ., and D5 along with their derivatives through the fifth
order for equation 4-88a and through the sixth order for equation 4-88b.
Such an amount of calculation would probably be prohibitive without the

use of electronic computing equipment,

4,2, 4a The Case of the Vertical Plate

As in each of the preceding cases, treating the case of a vertical
rather than inclined plate involves only setting @, = %] and dz2=0 in

the analysisr‘leading to equations 4-88a and 4-88b.

4.3 Mathematical Details Concerning Methods Developed for Approxim-

ately Solving the Free Convection Stability Problem

4,3,1 Elimination of $ and its Derivatives Between the Combined

Momentum and Energy Equations

4,3.1.1 The Case of the Inclined Plate

For this case the combined momentum and energy equations are,

respectively,

(@-c)(P"- ?9) - TP + igﬁ'e { La.s‘—aazs}% i@“—za@&"m‘fc}} =0 (la)
and

(T-¢)s —947+m{5"~a25} = 0. (2)

One method of eliminating § and its derivatives between this pair of
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equations requires that first s be eliminated between the pair in order
. Sk
to obtain an equation involving &' and s" as well as 47"”'5 and known
functions of no-. Secondly, equation la is differentiated to produce an
eqhation involving % s' ., ‘g st o, c?""l s , and known functions.
dURe olVRe
Then $" is eliminated between these two equations involving §' and
s , and the resulting equation is solved for _O%F_es' in terms of @™'s
e
and known functions. This relation is differentiated to obtain an expres-
sionin @™'s and known functions for % s' . Substitution is next
ol Ve
made for _% ' and _%,_5" in the equation obtained by differentiating
o VRe AdURe
equation la to secure a sixth-order differential equation in ¢ , one form
of which is denoted as equation 4-1 in the introduction to this appendix.
In the ‘algebraic manipulation necessary to derive this equation 4-1,
division by the terms o, da,, dz, and {a}(a—c) - Lot? ] is in-~
Ood e

volved. Therefore, equation 4-1 is invalid when any one of these four

terms is zero,

4,3,1.2 The Case of the Vertical Plate

One might suppose that setting @. , the cosine of the angle of
inclination of the plate with the vertical, equal to*l and a. , the sine
of that angle, equal to 0 in equation 4-1 would be a valid way to get the
corresponding equation for a vertical plate, Although the correct equa-
tion for a vertical plate would be obtained, such a procedure is not
strictiy legitimate because in deriving equation 4-1 division by a.,

was performed. No method of obtaining equation 4-1 was found that

T @™ symbolizes a derivative of ¢ of the n*h order, N having
integral values from 0 to whatever is the order of the highest derivative
of ¢ that appears in the equation.
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did not either involve division by d: or require that d. be left as

a factor in each term of the final equation. Therefore, in order to pre-
serve mathematical validity for the final equation, one must eliminate s
and its derivatives between the original combined momentum and energy
equations which describe the case of the vertical plate. These equations

for a vertical plate are

(B-c)@"- o) ~B'P + L ftiS]+ L [@=-2o2@"+ett9} =0 (4-89)
and
(T-c)s -89 +J.:L_-;(Re{s”- a?s} = 0. (2)

s and its derivatives can be eliminated between equations 4-89 and 2
by first solving equation 2 for S , multiplying by + ; and differentia-
oVRe
ting to obtain an expression for [ #5‘ which involves s* , s™, g,
olVRe ?
and known functions. Then equation 4-89 is rearranged to express _L%_ s
oA Ve

in terms of Q‘”)’s and known functions. This relation is differentiated

once and twice in order to obtain L% 5" and ng:g'" in terms of

L Re A Re
®“”'s  and known functions. Lastly, substitution for | s,
AVRe
L %s" » and _(',_%_5'” in the equation derived from equation 2 is
oA "Re ol’Re

made, One of the forms in which this final equation can be written is
given as equation 4-2 of the introduction to the appendix, In securing

this relation, division by the term {(a—c) - Lo } was performed, so

Jo d.Re
the equation ceases to be valid when (U~-¢) = _(d? .
Ts e
4.3.2 Determination of Bounds on the Phase Velocity ¢ for a

Neutral Oscillation in the Uncoupled, Nonviscous Case

3

This analysis is an adaptation of the method used by Foote and
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Lin(27) in studying the stability of the free jet profile.

In Part 4. 1. 1. 3 solutions denoted as ¢ and @ of the non-
viscous Orr-Sommerfeld equation

(B-C)(@"-o2q) - U'P =0 (4-4)

are presented; and it is shown that a linear combination of these two
solutions, (@~ «C*®;), satisfies the boundary condition §(0) =0 .
The first step here will be to write other pairs of linearly independent
solutions of equation 4-4 which are more useful in the neighborhoods of
the critical points 77[, and 7¢, atwhich U=c¢ . These solutions
are obtained by development in power series about the critical points,
(7)

which is the method used by Tollmien' ' in his stability study of the

Blasius boundary layer. They can be written as
Gz = (7-7ej) +Of(-1e} = R{(7-71]
and } (4-90)
9jz = Pelognep} +[Ritg-tpl] X B log (-7,
Uej
¢
with Pz{{qum)}: ’+Oi(’7'77‘7)} and F=h2 . These two pairs of repre-
sentations of the solutions are valid only when 0 27 <4 and 7z

lies within the appropriate circle of convergence of the power series.

In the neighborhood of each critical point one can write

Kiz @ix + Kiz @iz , [7-Ned £ Ry

Q: (4)1‘0(C247z) = { } o 577 <'é-l (4_91)
Kex @2z + Kem @em, 17]'77&’ {R:

since any solution of equation 4-4 can be written as a linear combination
of any two linearly independent solutions. Here R: and R are the
radii of convergence of the power series, Of importance is the fact that

K}nxo s }=t,z , if ULEJ , o ,and c¢cx%0 . This follows
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from the necessity for having the logarithmic singularity present both
when @ is written in terms of @ and ¢, and when ii: is expressed
as a combination of &jr and d?}n .

Because the coefficients of @" and @ in equation 4-4 are real, @x
and @i , the real and imaginary parts of @ , must separately satisfy

the equation; and one can use equation 4-4 to write

Qi = W'Pdr + L Qi
(T@-¢)
and O @'= TPrPe + A2 Pndi (4-92)
(W-c¢)
Subtracting the second of these equations from the first and integrating

over an interval not including a critical point yields

G @i~ Dn@! = const. | (4-93)
The value of{.this constant can be different in the three intervals 047 L 7ei
770,07 (77cl ) and }751(77 . Boundary conditions at n=o0 and 7:00 re-

quire that it disappear for 04N &hes and for Hea 477 . Consequently,

7c.+1 . >7cL+,Q~
{@qu&q?f}%_l T (O -Pre:} et 0, (4-94)
in which e th
{@f‘t@i“?ﬂ@'}l? . iCpf;Cpi‘C?)z@'}] = (O }l
¢ el Lfes oLn L
and Yol .
(@a- o) = l%erag] - (ge-ow) .
et Per i) pedn ez

By the use of equations 4-90 and 4-91 with fulfillment of the require-
ments 4-26 and 4-29 which arg (y-7.) and arg (-7 must meet, one can

show that
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‘7c.+.2 2 ,
{CP;':CPC*@MPZ} = ]K:nl T Do
7{.‘."’2 a(C|
and . Yez+L ’ .
fo@i-@n@}| = ~|Kal' T La
Jer~2 Uez
so that eguation 4-6 becomes
MKl 24 "Km'zg—g—‘} =0 (4-95)
Ue Uee

Because Uc, >0 and Ue <O, Ug and [O¢, must be of different signs.
Hence, 04C{ Uy if &,¢x0, Ujs being the value of U for which i'=o,

as indicated:

a
g
c
O<> 7?
4.3.3 Expressionof $§ and S' in Terms of Known Functions,

@ , and Derivatives of ¢

With the abbreviation

W = (B-0(@"-a2g) ~ U9 +L_ {@=-2:°¢"+ a4} =0, (4-9¢)

the combined momentum equation la and the energy equation 2 can be

written as

W+ LA S'—ddz25f =O 1b
A lio-s: &
and

(B-0)5 -B'P+_L__ {s"-a*5} = 0. (2)

Tocd Re
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One method for obtaining 5 in terms of known functions, ¢ , and
derivatives of @ begins with differentiating equation 1b to secure an egua-
tion in 38", &' , various cp"” 's , and known functions of 7 . Then ¢
is ‘eliminated between this equation and equation lb in order to obtain an
equation involving 5" , s , @"s , and known functions, Finally, s"
is eliminated between this equation and equation 2 so that S can be ex-
pressed in terms of @®"? ’S and known functions. This final relation can

be written as
{%_ [at(a-c) ._L_gc_z_]} {Jga_ (a?B) +MRe(a.vv‘— LdazW)} ,

Differentiating this equation gives

st = -o_f{%a {a?t’l’]{ﬁ(a?( i-c) —é_g(t%] _ﬂ%.(a, B@)+

+{0_Z{%[ H(O-c)—_iol® }}{o(%ﬁe (a,z(ﬁ'b?+§h7')]+m(a,wu,‘LMZW,)} . (4-98)

(4-97)

(a,vv‘—L‘ozaz\N)
aso(F?e

Jool Re

The corresponding expressions for § and S' in the case of the
vertical plate are identical with equations 4-97 and 4-98 except that

is replaced by#l and daz by 0.

4.3. 4 Determination of Regions of Validity of Asymptotic Solutions

in Neighborhoods of Critical Points and Equivalence 6f Exponential

Asymptotic Solutions with Solutions Valid in Neighborhood of Inner

Critical Point

4.3.4.1 Determinations of Regions of Validity of Asymptotic Solutions

in Neighborhoods of Critical Points

In Part 4. 2. 4. 3, six approximate solutions of the disturbance equa-
tion are developed which are valid in the neighborhood of the inner critical

p’ointﬂ?c‘ . Four of these six solutions, 2§3 s zé,; s zés , and zée s
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which are exact solutions of the approximate disturbance equation 4-77a,
are expanded in asymptotic series, These asymptotic series are obtained
by utilizing the asymptotic expansions 4-19 and 4-20 for the Hankel func-
tions of the first and second kinds in conjunction with the definitions 4-78b

and 4-78c of z§3 , ‘z§4 s 7_§5 , and 33 . The results are

_5 : E) 2
st oy P10 o
With vlﬂ< drgS(%)
,8,~ const x S:‘S_{exp 2 0%t J} 1+0(3 % } (4-100)

with -l ¢ args { I,

cons+.x'§i{exp[%65%@£5%}}{{+0( %)} x|

g§54,.{ \ } (4-101)
- - -1 . 3 _

T fonst3 . constr3 %'*constxsl}{exp[%e 5% } 1*+0[5%)})05=

With _lg/\args<%)

A . 3
and consT.xS"{exp(_zg et%"?’%S%}}{H—O(S z)}) s |

(4-102)
z§c"’ }

{cons‘r XB* constx> +consfxg%}{exp[ ze 2'5 ]H]-!—O(g%)})a;:l
with Zn (¢ ard 5 IT.
@ 6

1
In these expressions 3§ = (U,'c, A F\’e)3(77—)/c,) .

Applying the limits on drg S simultaneously gives the familiar
requirement.
L { arg (77-7e1) < Z, (4-26)
which must be met in the neighborhood of 775, for the asymptotic solu-

tions. In the neighborhood of the outer critical point Ver s the limits
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on arg(w-7.) are

L arg (-7 LI (4-29)
These latter limits are established as in other cases by making the trans-
formations (17-77“):—-(]&&2de;)%3* and Pn) =®(%54) in the original disturbance
equation 4-1. The procedure is essentially the same as that first used
in Part 4. 1. 2. 3. That is, one finds approximate solutions ,, (5 » 8,(5),
.85 (5y) and zés( Sx) by solving an équation identical to equation 4-77a,
except that 3§ is replé,ced with S, . Then limits on arg 54 in asymptotic
forms of these solutions are established, from which the limits 4-29 on

arg (77—7&) follow.

4.3.4.2 Equivalence of Exponential Asymptotic Solutions with Solutions

Valid in Neighborhood of Inner Critical Point

: L
Substituting $= (ﬁé,dﬁe)’{7—77c,) in equations 4-99 through 4-102 gives

5

(85~ constx () fexp]- (1arat0p-77c)7] Jivol (Re) *] ] (4-992)
with
_16_11  arg (77—70)%1[ )
-5 _Jd
8~ const.x (17—7c,)zgexp[_§. (LUé,o(Re)Ji( 77-‘7&%” i | + O{(o(F?e) 2} } (4-100a)

with —‘”@ﬂ arg(-ne)d I,

const.x (7-7745‘1* {exp[—%(l’aé,aao(Re)Ji(rz-ym)%] }{I +O Rei"i]} 6%

. | 5 (4-101a)
“t consT.X(rz-I?c.)4}

[\ ]

P~
{con st.x (n-7c,)

X {exp(—%(Laé.xﬁe)iz(oy-ym)%] Ml + O{(o(f?ej-'i] } , % =

with —7_671 L arg (n-7ed € L,



_139_

and . : 1 3 -
const x(q-yc.)f{exp[%(m‘c.a,me)z(y-yc,)")} { |+ o[(me)%]} , %%

| Arv{
{const X (77-7CS¢+ const.x (17- 77c.f% } (4-1022)

x exp[%([ﬁ'c,o(ﬁe)%(’yﬂﬂl)%] }{\ + o[(ocRe)'J"]} , T
with —_ZGIL { arg (-7e) £ % .
If one sets (U-¢)= U'c,(y-y,,) in equations 4-76 of Part 4.2.4. 3, one will

obtain the relations

&, = const.x (n- ﬁc)iSXp[’Z(Lac,dRe)z(Y{ 7?c.3 +0 (otﬁ’e)I ];

3
Fa= const.x (?7 77::,) [%(Luc.dﬁe) (n- 7e.) +O (L Re -)%}]
-Z i
cons‘r.x(qq;c.)‘exp[—%(Luc,adae) (9- 776,) + Of (o e z}],aoﬂw
L= -
. {00”5*'x(“7'77”'5ﬁ+ 60”57"‘(’7"770)4}. $ (4-76a)
X exp[-_%(wc,o(Re) (n- 7e) % {(o(Re)i}] g=1,
and 7 n 3 <L
const.x(n-7.)*e VFe {%(Lalc,dste)z(‘i? }7c:)z {(a(Re) H, 7%\
é?e*{ {consv‘-x(q—ryc.sint const.x (77—7703% } /

xexp[2 (LB Re (- 70)" +O{(o<r—2e) H,aam,

which hold in a neighborhood about #e¢; in which (T-¢) is approxim-

ated well by U.'c.(v-%,)-

Comparing eguations 4-76a with eguations 4-99a through 4-102a

shows that the following asymptotic relations are true:
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,83~ const. x @
2'3
2,~ const.x @
X B,
s~ const. x @, + const.x B

B~ const. x @, +const. X G,

(4-82)
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APPENDIX 5

ESTIMATE OF THE EFFECT OF THE COUPLING TERM IN THE

COMBINED MOMENTUM EQUATION WITH THE ASSUMPTION THAT

)2 IS SMALL
ET
5,1 The Equations Considered

The object of this investigatioh is to estimate quantitatively the
effect of coupling between the combined momentum and energy equa-
tions in the case of free convection of air. The complete combined
momentum equation is

0o T (0 o) 0

while the uncoupled form of it, the Crr-Sommerfeld equation, is
(T-c) Q- o) ~U"P + o'ZLﬁ' (= -2a7¢"+ a*q) = O. (4-3)
(3

This simpler form was employed in the study of the stability of the
laminar free convection of air which is described in Section D. The

energy equation is rewritten for reference:

(U-C)S-B® + _L
Os ol e

{S“—OLZS} =0 (2)

5.2 Modification of Nonviscous Solutions of the Orr-Sommerfeld

Equation by Coupling

Nonviscous solutions of the Crr-Sommerfeld equation 4-3 are
developed in Part 4. 1.1 of Appendix 4. Solutions corresponding to
these but with coupling taken into account are obtained by considering
the combined momentum equation la with the viscous term

o(—-L——‘Re{q)E'Zo(z@"-"oL“q?} neglected and the energy equation 2 with the



- 142 -

conduction term L {s“—a’-s} dropped. Neglecting this conduction
gool Re t
term in the energy equation is consistent with dropping the viscous term
of the combined momentum equation since o¢: should be on the order of
unity when ,g is of moderate size, which is implied by the assumption
that _%_ is small. Solutions in terms of P of the nonviscous
dVRe
combined momentum equation and the nonconducting energy equation are
developed in Part 4, 2.1 of Appendix 4. An examination of them shows
that they reduce to the nonviscous solutions of the Orr-Sommerfeld equa-
tion as e —»0 . Just how much one of the coupled nonviscous
C4
solutions differs from its corresponding uncoupled nonviscous solution

cannot be determined without computi ng both solutions for comparison.

However, one might estimate that the relative difference would be small

when _%_ is, for instance, less than 0. 1.

AVRe
5.3 Effect of Coupling on Viscous Solutions of the Orr-Sommerfeld
Equation

For simplicity, the situation in the neighborhood of the inner
critical point e will be considered. Viscous solutions of the Orr-
Sommerfeld equation valid close to Ve are developed in Part 4. 1. 2
of Appendix 4 through the application of the transformations  (%-7e)

::(HE.OLR;)%S and q7(17) = P(s) . These are the solutions utilized
in the investigation of free convection in air which is described in
Section D. A similar procedure can be used for obtaining an approxima-
tion to the temperature disturbance function S . It is assumed in the
energy equation 2 that a viscous .solution Q) or ®.(3) has
been obtained from the Orr-Sommerfeld equation. One sets  S(7)

= 5(3) , in which S+ = £'(y-%), & Dbeing proportional
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to a negative power of (.l Re , and expands known functions in
- Taylor series about }7'—' Wei . The result is

L {18"(5- (50 + 83, S(s)- B B A5 2SI OW =0- (5.1

To formalize the retention of S'"(3.) and the largest other term
-4
when GolRe >>t , one can take 2= (@é.a;o(F?e) % ., Then

with the neglect of higher-order terms in 2 the equation becomes

S"(54) + 18s(5) = O, (5-2)

from which one can determine that

i

2 S
St) = -1 B o (06) (R [d2 () (5-3)

and

2 i s ﬂl
SOp) = -1 Be () (A Ref [d,fd 2, o) - (5-4)

Substituting these expressions for s and S into equation la and

applying the transformations -7 = (UL‘O(F?GSES and Q(7) = 3.(s)

give the equation

~ . 0 “Jz' "%
®7-158!= O Rl f-@Rd . (5-5)
. L
Unless ,g is much larger than (oL Re)? , the coupling terms can

be neglected within the same degree of approximation as that used in

obtaining the uncoupled, viscous solutions which satisfy the equation

3¥-i35%" =o. (4-17c)

5.4 Effect of Coupling at the Plate Surface

Because boundary conditions are applied at the plate surface, it

is desirable to investigate the effect of coupling there. Very close to the
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plate surface the known functions of % that appear in the combined
momentum and energy equations can be considered to be constant and

to have their values at the plate surface, which are denoted by the sub-
script p . The combined momentum and energy equations la and

2 become

~c(@"- @) -Upd +o_(‘g%_e{1a. s-aaz5} +ai?e_e{qn-2dzq}"+o(44?} =0 (5-6)
and
-cS - B L n_25]) = O. -
c PCP-Fa;oéRe{s o 5} o (5~7)

This pair of differential equations with constant coefficients has in
general six linearly independent solutions of the form eAr” , in

which A is a constant determined by the algebraic equation

(W) e 48) o T g [ ) o )]

—{A(ta.o_(g:.ﬁe) +(—o(az;(_%$e)}§-§;p} = 0. (5-8)

With coupling neglected, the combined momentum equation in the

region very close to the wall simplifies to

~C(@"-o2@) ~TUp@+_L_ §g=-202@"+o*@} = O -
(@"-L*) ~Up@+_L jg™-2*¢"+a* 9} = O, (5-9)
which has four linearly independent solutions 657 s in which four

values of B are determined by the algebraic equation

(5-10)

B* i + 2(—(:—120(‘)4—(0(%—11" + Lot - 0.
(o(Re) B A Re F ___) =0
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This equation becomes the same as one of the two factors of the first
line of equation 5-8 if B is replaced with A . . Since the first
line of equation 5-8 is of order 1 and the second line is of order ﬁe,
one can expect when of%f?_ is small that four of the solutions A
e
of equafion 5-8 will closely correspond to the four solutions B of
equation 5-10. Thus, if ‘ofg:R—e ’is small the solutions of the un-
coupled combined momentum equation are good approximations at the
plate surface to four of the solutions of the coupled combined momen-
tum and energy equations.

By considering only the combined momentum equation and bound-
ary conditions on the velocity disturbance, one cannot in general expect
to satisfy boundary conditions on the temperature disturbance exactly.
However, a consideration of the general energy equation 2 indicates
that the isothermal and adiabatic boundary conditions on the tempera-
ture disturbance are satisfied within an order of magnitude of _I

o Re
if ¢ %0 and the usual viscous boundary conditions on the velocity

disturbance are applied.
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II

LAMINAR FREE CONVECTION

WITH VARIABLE FLUID PROPERTIES
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A

SUMMARY

This work is an analytic study of laminar free convection about
an inclined* or vertical¥*, isothermal, semi-infinite, flat plate in a
fluid which far from the plate is at rest and at a temperature different
from that of the plate. In contrast to previous analyses of essentially
the same configuration in which the only consideration given to varia-
tions in fluid properties was to take the density to be linearly dependent
on the temperature, all fluid properties in the present treatment were
considered to vary with temperature.

On the basis of experimental observations that the velocity and
temperature fields in the fluid surrounding such a plate are of the
boundary layer type, the general equations of fluid mechanics with the
assumption of variable fluid properties were simplified to the forms
describing free convection flow. It was found that the process of
laminar free convection about an inclined plate is fundamentally the
same as that about a vertical plate if the driving body force is taken to
be the component of the total body force that is parallel to the plate.

Through the introduction of similarity variables into these
boundary layer equations in the same manner as had been done earlier
by others in studying the essentially constant-property case, a reduction
of the relations to two simultaneous nonlinear differential equations in

one independent variable and two dependent variables was accomplished.

* "inclined" or "vertical indicates that the body force, such as that
of gravity, which produces the flow is either inclined or parallel to the
surface of the plate.
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An examination of these equations and the definitions of the similarity
variables used to derive them indicated that the fluid property variations
with temperature in addition to the Prandtl number of the fluid far from
the plate and an appropriately defined Grashof number determine the
local Nuéselt number at a given distance from the edge of the plate.
These equations with suitable boundary conditions were not solved for
two reasons, the first being that any solution of the variable-property
problem applies only to the case of a particular fluid with the plate and
the fluid far from it at specific temperatures, and the second being that
very extensive numerical computation would be necessary to effect
such a solution.

In place of this similarity method of securing an exact numerical
solution, an integral method was developed for obtaining approximately
the dependence of the Nusselt number on the Grashof number for a given
fluid with stated temperatures of the plate and of the fluid far from it.
This method is an adaption of a process developed by another investigator |
for the constant-property problem, and its application requires the
assumption of approximate velocity and temperature profiles for the
boundary layer. With its use heat transfer between a plate and an
oil with a Prandtl number varying from 10 to 100 was investigated
for the cases of both heating and cooling the fluid. Also, an experimental
study of heat transfer from a vertical heated plate to a transformer oil
which was made by an earlier researcher was treated by this integral
method in order to compare the findings of analysis with those of
observation. The analytic treatment gave a heat-transfer rate 13 per

cent higher than the experimentally-determined value, a discrepancy
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that was explained by the presence of errors inherent in the approximate
method and the lack of exact correspondence between the ‘assumed and
experimental situations.

By comparing the heat-transfer rates determined by the variable-
property method with those found by another investigator on constant-
property assumptions it was concluded that even when the variations
in fluid properties are extreme the constant-property analyses give good
results if they are based on the properties of the fluid at the plate, In
addition, it was suggested that applying the results of constant-property
analyses or of experiments with small properil:y variations to cases of
free convection about isothermal surfaces other than flat plates in an
infinite fluid should give accurate values of heat-transfer rates when the
property variation is large if the constant-property results are based

on the fluid properties at the surface.
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B

INTRODUCTION

Bl Heat Transfer by Laminar Free Convection

As stated in the preceding Part I of this thesis, 'free'" or '"natural
convection is herein taken to be the process of energy transfer between
a convecting fluid and a bounding surface in the case that the motion of
the fluid is caused by the interaction of a body force field, usually that
of gravity, with a variable density field in the fluid. The process is
inherently difficult to describe mathematically because to do so requires
the /simultaneous solution of the energy, continuity, and momentum
equations describing the flow as well as the equation of state of the
convecting fluid.

In general, when free convection occurs in the transfer of energy
between a solid object of finite size and a surrounding fluid of infinite
extent, the flow and the temperature changes in the fluid can be con-
sidered to be confined to a boundary layer adjacent to the surface of the
object insofar as the process of heat transfer from or to the object is
concerned. The flow is laminar near the stagnation point (or points) at
which it originates, and unless the object is of an extremely irregular
shape the flow will remain laminar for some distance as it proceeds along
the surface of the object, If the Grashof number* based on, for instance,
the maximum linear dimension of the object and the maximum temperature

difference between its surface and the fluid far away is sufficiently

* The Grashof number is a free convection parameter analogous to
the Reynolds number of forced convection. For the case discussed
here the Grashof number would be taken to be g B (BN fna
, ' Ve
¥ being the magnitude of the driving body force, @ being the
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large, the flow will become turbulent while yet remaining as a boundary
layer adjacent to the surface., If the object is of a regular shape and
has a smooth surface one can expect that there will be a minimum
Grashof number below which the boundary la'yer will be laminar over

the entire surface.

B2 Historical Survey of the Principal Previous Analytic Treatments

of Laminar Free Convection

(1)

In a paper by Schmidt and Beckmann'™’, Polhausen's solution
of the problem of laminar, two-dimensional free convection about an
isothermal, semi-infinite, vertical flat plate was presented. The
Prandtl number of the fluid was taken to be 0. 733, which corresponds
to that of air. A linear variation of fluid density with temperature was
adopted for treating the convective driving force term of the momentum
equation; otherwise, constant fluid properties were assumed. It was
assumed that the temperature and velocity fields were of the boundary
layer type, and similarity relations were found which reduced the problem
to that of solving numerically two simultaneous nonlinear ordinary
differential equations in one independent variable and two dependent
variables. Good agreement with Schmidt and Beckmann's measure-
ments of temperature and velocity profiles in air was obtained.

(2)

Hermann' ' applied boundary layer theory to the problem of
laminar, two~-dimensional free convection about a horizontal circular

cylinder and obtained fairly good agreement with experimental observa-

coefficient of thermal expansion of the fluid far from the plate, (AT)y
being the greatest temperature difference between the surface of the
object and the fluid far from it, fwm being the greatest linear dimension
of the object, and V. being the kinematic viscosity of the fluid far from
the object.
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tions, His assumptions regarding fluid properties were the same as
those of Polhausen.

(3)

Squire solved the laminar problem for an isothermal vertical
plate approximately by integrating the momentum and energy equations
with resbect to distance normal to the plate with the use of simple
polynomial representations of the velocity and temperature profiles in
the boundary layer. He also treated the fluid properties as did Polhausen.
For the velocity and temperature profiles, similarity relations were
found which gave the correct dependence of the maximum velocity in
the boundary layer and the boundary layer thickness on the distance
from the leading edge of the plate, In addition, the ratio at a given
Grashof number of Squire's local or average Nusselt number to the
corresponding one obtained by solving Polhausen's equations numerically
does not vary by more than some 10 per cent from unity over the range
of Prandtl number variation 0.01 to 1000, according to Ostrach(4).
This good agreement is somewhat surprising because of the wide
discrepancy for Prandtl numbers greater than 5 or 10 between Squire's
assumed velocity and temperature profiles and those obtained by the
numerical solution of Polhausen's equations.

Saunders(E) secured approximate solutions of Polhausen's
differential equations by a different method. He first reduced them to
a single equation in terms of a temperature variable* and derivatives

of that temperature variable with respect to the similarity independent

variable. He then assumed that the first derivative of the temperature

E3

This temperature variable was the temperature ot the fluid
suitably nondimensionalized.
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variable could be written as a simple polynomial in the temperature
variable which satisfied the boundary conditions both at the plate surface
and far from it. Substituting at appropriate values of the independent
variable into the differential equation was employed to determine
unknown‘ constants appearing in the assumed pélynOmial. - With these con=
stants determined, Saunders was able to obtain the Nusselt number as

a function of the product of the Grashof and Prandtl numbers for fluids

of different Prandtl numbers.,

Compared with the results of Ostrach's solutions‘ﬁr) of Polhausen's
equations, the heat-transfer coefficients found by the most accurate
treatment of Saunders range from approximately 4 per cent high at a
Prandtl number of 0.0l to 16 per cent high at a Prandtl number of 40,
(Forty is the maximum value of the Prandtl number for which Saunders
presented the results of his calculations.)

The solution of Polhausen's equations for Prandtl numbers of
0.73, 10, 100, and 1000 was accomplished by S,chuh(é), who used a
numerical method analogous to the Stodola~Vianello method of obtaining
characteristic values and characteristic solutions in linear eigenvalue
problems. Included in his work was a brief discussion of the effect of
inclination of the plate. In addition, he derived similarity equations
describing the situation in the neighborhood of the stagnation point on
a body in free convection as well as for the cases of free convection
resulting from a heat source distribution in a vertical plane and on a
vertical axis of symmetry. These latter three cases were solved for a
Prandtl number of 0.7 with Polhausen's assumptions concerning fluid
properties.,

Ostrach and Albers(4) solved Polhausen's equations with
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Prandtl numbers of 0.01, 0,72, 0.733, 1, 2, 10, 100, and 1000. These
solutions were obtained with the use of an electronic digital computer
and should be quite accurate.

Very recently Sparrow and Gregg(7)

solved the problem of
laminar free convection from a semi-infinite vertical flat plate with a
uniform heat flux rather than with a constant surface temperature. They
made the same assumptions regarding the fluid properties as did the
other investigators mentioned here. It is of interest that they utilized
similarity relations different from those of Polhausen in order to apply
their boundary condition of constant heat flux at the plate surface. By
means of these similarity relations they arrived at a pair of nonlinear
ordinary differential equations somewhat similar to, but not identical
with, those of Polhausen. For values of the Prandtl number of 0.1,

1, 10, and 100 these equations were solved by utilizing an electronic

computer as did Ostrach and Albers.

B3 Free Convection About an Isothermal Flat Plate with Large

Variations in Properties of the Convecting Fluid

To the knowledge of the author, assuming that the fluid density
varies linearly with temperature in the body force term of the momentum
equation is tﬁe only consideration given to variation of fluid properties
in previous analytic treatments of free convection. The density in this
body force term of the momentum equation must be considered to vary
in order to take into account the hydrostatic driving force which is
characteristic of free convection. In all other terms of the equations
of fluid motion the density is considered to remain constant, as are
the viscosity, the specific heat, and the thermal conductivity.

These assumptions regarding fluid properties best describe an
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actual situation when the relative variation in each of the fluid proper=-
ties between the fluid at the solid boundary and far from it is small., In
the case of laminar free convection between an isothermal solid
boundary and a fluid which is isothermal far from the boundary®*, one
can assﬁme that the fluid properties are functions of temperature only
rather than of both temperature and pressure, since experiments have
indicated that transition to turbulent flow occurs at velocities sufficiently
low so that attendant pressure variations in the flow field have only
negligible effects on fluid properties. Thus, these assumptions con-
cerning constancy of fluid properties are restricted to cases in which
the difference in temperature between the bounding surface and the
surrounding fluid is small. How large this temperature difference can
be is dependent on the rate of variation of the fluid properties with
temperature, the allowable temperature difference being large when
the rate of property variation is small.

With the mentioned simple assumptions respecting fluid proper-
ties, analysis such as that done by Polhausen(l) indicates that for given
boundary conditions and a given configuration the rate of heat transfer
expressed as a Nusselt number is a function of only the Prandtl number
of the fluid and a Grashof number related to the situation under consider-
ation. (The values of fluid properties which enter into these parameters
can be considered taken at the temperature of the fluid far from the
surface.) In a sense the only variation in fluid properties which is

considered, the change of density, is contained in the Grashof number

in that the coefficient of thermal expansion is one of the terms which

[y

* The tluid at this isothermal condition far from the boundary will be
designated as "ambient!" fluid, or it will be said to be at "ambient
conditions'',
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appear in this dimensionless group.

In attempting to correlate the results of analysis and experiment
or to apply analytic results to actual situations in free convection, one
is led to ask what effects large variations in fluid properties have on
the proéess. For the free convection of an oil the question is particularly
significant because of the rapid change of the viscosity and hence the
Prandtl number of the fluid with temperature. This part of the thesis

is an attempt to answer to some extent this question,
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C

THE EQUATIONS DESCRIBING LAMINAR FREE CONVECTION

ABOUT AN ISOTHERMAL INCLINED PLATE AND THEIR SOLUTION

Cl The Physical Configuration Treated

Above is sketched the two-dimensional configuration to be
treated analytically., This configuration was chosen for the relative
simplicity of itg analysis and the availability of both experimental
observations and earlier analyses made with the assumption of constant
fluid properties for comparison with the present work. The semi-
infinite plate, shown in cross section, is oriented with respect to the
body force field represented by the vector g so that flow proceeds
away from the leading edge in the region indicated by the dotted lines.
In the sketch the orientation of the body force is such that the plate
temperature would have to be higher than the ambient fluid temperature
in order that the flow proceed away from the leading edge. If the tem-
perature of the plate were below that of the ambient fluid, the component
of 2 parallel to the plate would have to be reversed in order that flow
proceed away from the leading edge.

"I‘he co-ordinate system shown on the sketch is established for
a consideration of the situation on the lower surface of the plate.

% is measured from the leading edge, and Yy is measured from the
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surface normal to the surface.

Some factors of static instability enter into a treatment of this
type of flow. Consider that for the situation shown in the sketch the
plate temperature is above the ambient fluid temperature and that the
angle ® between the body force vector and the =x- axis has a value
between 0 and 90 degrees. Then the density of the fluid above the upper
surface of the plate will increase with distance away from the plate. In
the limiting case of @ = 90 degrees an adequately large value of the
difference between the plate and ambient fluid temperatures might
produce an irregular free convection flow of somewhat the same nature
as the cellular pattern which appears in a horizontal layer of fluid
heated sufficiently strongly from below. One is led to suspect that
the statically unstable condition in which the density increases in a
direction opposite to the direction of the body force field could be
responsible for eventual separation of the flow on one side of an inclined,
rather than horizontal, plate, although extrapolating from the static to
the dynamic case must be done cautiously.

Only two reports of experimental studies for inclined plates
in which this factor of hydrostatic instability enters were found by the
author, Schlieren photographs by Schrrﬁdt(g) show possibly only
incipient separation on the upper surface of a heated plate in air with a
value of ® of 79 degrees at Grashof numbers based on length from the
plate leading edge and the component of % parallel to the plate of roughly
4 to 5 x 106. Interferometric studies by Rich(}'o) on an inclined plate
in air were apparently done with the boundary layer still attached.

There are reasons to suspect that transition to turbulent flow

will occur on the upper and lower surfaces of an inclined plate at values
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of the Grashof number Gry,* different from the value for which it
occurs on a vertical plate, These reasons are the results of Prandtl's
simplified energy considera‘tions(“) based on Richardson's work(lz)’ (13)
concerning turbulence in a flow having stratification of density with a
body force field present and Schlichting's findings(lé) regarding the
stability with respect to small oscillations of similarly stratified
forced convection flows. One should expect that compared with the case
of a vertical plate, for which transition is considered to occur at a
value of Grx, of about 109, the process will occur at lower values of the
parameter on the side of an inclined plate for which hydrostatic forces
act to push the fluid away from the plate and at higher values on the
other side.

The present analysis is restricted to the case of an attached,

laminar flow.

C2 Boundary Layer Equations Describing Laminar Free Convection

with Variable Fluid Properties Along an Inclined Isothermal Flat Plate

The continuity equation, components of the vector momentum
equation parallel to and normal to the plate, and energy equation for

steady flow with variable fluid properties are, respectively,

* Grye1s the Grashof number based on the ambient iluid properties,
the distance from the leading edge of the plate, and the component of
the body force vector along the plate. It is equal to letd & &, 2?

2

>

o, being the cosine of ® , being the magnitude of the 1é’ody force
vector, €&, being the product @&AT in which @. is the coefficient of
thermal expansion of the ambient fluid and AT is the absolute value of
the difference between the plate and ambient temperatures, % being the
distance from the leading edge of the plate, and ¥, being the kinematic
viscosity of the ambient fluid.
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3_(.@_1)4 BI_Q,V) = O,

2% oy | (1)
PV Vi) = 3 rerf s iR

t
} (2)

} , (3)

and

Q{Ug_%.pv,g_?} = fi{}tg_'x[}-;-)a?_{hg_é[} + negligible pressure

work and viscous dissipation terms. * (4)

In these equations x and 7, are Cartesian co~ordinates measured
from the leading edge of the plate and the plate surface, respectively.
U and V are the respective components of fluid velocity in the x and
(j, - directions, p is‘the pressure, and T is the temperature. e is the
mass density of the fluid, y is its dynamic {riscosity, h isits
enthalpy, and I is its thermal conductivity. e, /u s h , and k are
taken to be functions of only the temperature. ?« is the magnitude
of the body force vector, o, is its direction cosine relative to the
x - axis, and o, is its direction cosine relative to the 7, - axis,
These and other symbols are defined in Appendix 1.

The assumption is now made that the pressure gradient along

* Unless laminar ilow is maintained for Grashof numbers much higher
than those experimentally observed for transition, velocities and

velocity gradients in the flow will be too small for consideration of
these terms to be necessary.
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the plate is determined by the hydrostatic relation far from it;

mathematically this is expressed by

= o, g ¥ 5
2 = g p (5)

The hydrostatic principle is also used to obtain the equation
§g= =70 (6)

for the pressure gradient normal to the plate. It should be noted that
in the hydrostatic relation 5 for the pressure gradient along the plate
the density of the fluid far from the plate is employed, while in the
relation 6 for the pressure gradient normal to the plate the local fluid
density is used. The former relation was assumed by Polhausen(l) in
his analysis of free convection in air along a vertical plate, the results
of which were confirmed well by the experiments of Schmidt and
Beckmann(l). The assumption of the latter relation is consistent with
the fact that the velocity component hormal to the plate should be very -
small in comparison with the velocity component along the plate.

In Appendix 2 it is shown that appropriately simplifying equations
1, 2, and 4 in accordance with assuming that the velocity and temperature

fields are of the boundary layer type gives

2(o0) + aa(%ggv) - 0, (7)

2,
°JEZ.‘
ki
+
<
&
S~
1

A +ﬁ9{#%¥} (8)

and

(9)

-0
—~——
mci

I;-

|:r
N

il

5

“0- is the density of the fluid far from the plate. The subscript ,
refers to the ambient condition, while the subscript p refers to the con-
dition at the plate surface.

-
-
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Here the term M is equal to ge—’_& . Also in Appendix 2 it is shown that
the relation 6 between the pressure gradient normal to the plate and
the component of the body force term normal to the plate in addition
to the boundary layer assumptions allow equation 3 to be neglected in
compa,rison with equations 1, 2, and 4.

The boundary conditions which solutions of equations 7, 8, and
9 have to meet are

and Uzo, T=T at y=o. }(10)

These boundary conditions are obtained from the requirements that the
velocity components both normal and parallel to the plate must disappear
at the plate surface, the fluid temperature at the plate surface must be
equal to the plate temperature, the velocity component parallel to the plate
must disappear far from the plate, and the fluid temperature far from

the plate must be that of the ambient fluid.

C3 Solution of the Boundary Layer Equations

Equations 7, 8, and 9 differ from those which Polhausen(l),
Squire(3), Schuh(é), and Ostrach%) solved in that the present relations
are valid when the plate is inclined as well as vertical and when all the
fluid properties are functions of the temperature, while the equations
of the earlier investigators were derived for a vertical plate and with
only the nondimensional density change 1 considered to vary with the
temperature. |
In Appendix 3 a method is presented for the solution of these

equations which is based on similarity transformations. The method

is essentially an adaption to the case involving variable fluid properties
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of the method developed by Polhausen, and it would require an extreme
amount of numerical computation for its application,

An alternative means of treating the equation is an integral
procedure which is an extension of Squire's method(3) for solving the
constani—property case. An approximate expression for the Nusselt
number, which is the parameter of most engineering interest, is
obtained, although the velocity and temperature profiles in the boundary
layer cannot be determined but have to be assumed.

Before this method is presented, the local and average Nusselt
numbers based on the distance from the leading edge of the plate and
the fluid properties at both ambient and plate temperatures will be

defined. These definitions are

Nuwo = Hu2, (11)
eo

NU.AD = H]%;L) (12)

Nup = HZ, (13)

and Nuar = HaX. (14)
e

Nuro is the local Nusselt number based on the ambient fluid thermal
conductivity, Nuao is the average Nusselt number based on the thermal
conductivity of the ambient fluid, Nu.p is the local parameter based on
the thermal conductivity of the fluid at the plate, and Nuap is the
average parameter based on the conductivity of the fluid at the plate.

H. is the local heat~transfer coefficient, which is equal to
e {_a_I) , and H, is the average heat-transfer coefficient defined
(Tp-To) 3y y=0

to be _I_/HLJ,’L' . I and It are the values of the thermal conductivity
x
(-]
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of the fluid at the ambient and plate temperatures, To and Tp, respectively.
The first step in applying the integral method is to rewrite the
boundary layer momentum and energy equations 8 and 9 with the use
of the continuity equation 7 as
2(pUY) + 2(eUV) = G QN + A,Vull) (15)
dXL QY VoY

and .é(g?cbﬂl +i(_l%hy—)- %(h y) (16)

Integrating these equations with respect to 4 between the limits 0 and
o0 gives

= o0

- $==
gy« = agefip(p@l, o
and %L;ﬂh Udnf +(€hV)y:o = (h%}) ;::. (18)

If the boundary conditions 10 are applied and the enthalpy h is taken
to be zero at T=To , the ambient fluid temperature, the equations

simplify to

%f}w? - “'?9"]0;‘*% ‘(/” %—W‘;:a (19)

and %LPhUd%_ —( 3%)

Use is now made of the similarity property of the velocity and

8

(20)

0

temperature profiles, which is demonstrated in Appendix 3, to write

U(xy) = {Um (0}-{um}
T = To * {To-To }-{B(7)]

and (21)
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with

7? =
and '% } (22)
8= §(x).
In these relations Um is the maximum value of U in the boundary layer
at a given value of %, and & is a boundary layer thickness defined
0o

to be _L_ j .

. oUd'f

Substituting for U and T as indicated by the relations 21 into

equations 19 and 20 yields

eo G ij; 8) — Qoot.ngG?_—/lp_Ugg F (23)
and
ecroad(Umﬁ) = ke Fe, (24)

in which /up and kp are the values of M and f at the plate. The
abbreviations F, Fz, G, G., and G, are defined by

F=dul
dn szo }(25)

Fz = —%;79_'7=0,
G = f ?|+n) Uds,
Gz':-foo;'l d7?,

co 122
Ga=£(l+n)u§£qfd'c}d77,

-
the enthalpy h being taken equal to I Cpdt , in which Cp is the
)

(26)

and

specific heat at constant pressure. The dimensionless term % is

defined to be Cp .
Cpo
The solutions
Um = %é
and § = Cz’X—i }(27)

satisfy equations 23 and 24 similarly to the case of constant fluid
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properties. Substituting these expressions for Um and § into equations
23 and 24 yields two simultaneous equations for Ci and (., the solutions

of which are

‘—

™

C| :{ 4K-PF2 GZOLI?‘ } (28)
305mPFlGa +5K.PFZGI

and

!
CZ:{4Voz/{sz(302m?F.Gg+‘5KPFZG|) }’Q (29)
90:*G= G5 ot ¢

In these relations Hpis equal to ke, mp is equal to //%z , Vo is the
’ 0
kinematic viscosity, /%z . of the ambient fluid, and ¢, is the Prandtl
d
number cg’, go of the ambient fluid.
According to the definitions 11 through 14 of the different

Nusselt numbers and the relations 21, 22, 25, 27, 28, and 29,

NU.LO = KE FZ %% (303.)
C: '
or Nuto = Awe (Gmo)z (30D)
2 |Ge) G5 x
with Ao = KPFZ{ 90 [2s D3 (30c¢)
4E, KpFe(30:mpFi Gs +5 KpFaGi)
n
and Nuao = Aaso (Gr¢a)4 (31a)
Wlth AAO = % ALO (31b)

for this ﬂrariable-property analysis. An alternative way of expressing
the heat-transfer rate for a given fluid with given ambient and plate
temperatures is to write the Nusselt number based on the fluid properties
at the plate in terms of the Grashof number also based on the fluid

properties at the plate. The relations are
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Nucp = Avp (Grzp)* (32a)
1
: Ap = L {é&s 1% A
with - ;f,,{ e,,(“n%‘%:) } ke (32b)
: T
and Nuap = Aap(Grre) (33a)
with Aap = ,43'_ Ap (33b)
[
-
or Aap :_L.{.é_e (_vm_) }‘AAO. (33¢)
Kel Ep\ 1+

The terms €. and £p are equal to G ATand @pAT, @ and @, being the
coefficients of thermal expansion of the fluid at its ambient and plate

temperatures, and AT being |Tp-Tol . The Grashof number Grro is

3 . 3

equal to [l %?x , and Grzp is equal to |al gﬁ;}gg .

Equations 32b and 33c expressing Aip and A in terms of

A, and Aa., respectively, result simply from the definitions of the

Nusselt and Grashof numbers based on the fluid properties at the
ambient and plate temperatures, That is, these two equations are not
the results of a heat-transfer analysis: they follow from definitions of
dimensionless parameters. They may therefore be used in relating the
Nusselt and Grashof numbers based on ambient and plate fluid properties
when the heat-transfer rate is determined by any analytic or experimental

method.

A final definition is

8

NU-AP = Bap (Up Gf"xp) (34a)

with Bap = Aae (34b)
O#

which is made for use in comparing the results of the present analysis
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with the experimental studies of free convection about a vertical plate
in an oil made by Lorenz(s), who presented his findings in the form of
equation 34a.

The termms F,, Fz, G, Gz ,and G, upon which A, ,

Aso , A.p , and Aap depend are functions of the nondimensional
velocity and temperature profiles, which must be assumed. Since in
general the assumed profiles will not be the exact profiles which would
be obtained by an accurate numerical solution of the boundary layer
equations such as that outlined in Appendix 3, one should expect some
error to be present in the dependence of the Nusselt numbers on the
Grashof numbers as determined by this integral method. However, this
error should not be very large, even when the assumed velocity and
temperature profiles are only moderately good approximations to the
exact profiles. This can be expected because heat-transfer rates
resulting from Squire's application of the integral method with rather
crude velocity and temperature profiles to the constant-property problem
are quite close to those found from the exact solutions over a very wide
range of Prandtl numbers., (Squire's impressive success with the
integral method is discussed at greater length in Section B2.)

'While the value of the ratio of the Nusselt number to the one-
quarter power of the Grashof number according to the approximate
analysis should not differ greatly percentagewise from the determination
by the exact method, the error can be quite serious in making a com-=-
parison between the variable and constant-property cases. This is

because the effects of variable fluid properties can be expected to be

small unless the fluid property variation between the plate and ambient
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temperatures is very large. Thus, errors due to assuming other than
exact profiles could easily obscure the effects of variable properties

unless the property changes are extreme,.
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D

LAMINAR FREE CONVECTION WITH LARGE TEMPERATURE

DIFFERENCES IN OILS

Dl Comparison of Constant and Variable- Property Analyses for the

Case of Laminar Free Convection in an Oil with a Prandtl Number

Varying by a Factor of Ten

The most interesting application of variable-~property analyses
of free convection was considered to be in comparing the results of
variai)le and constant-property analyses in situations for which the
fluid properties are widely variable. This comparison must be made
by considering cases of specific fluids with specific plate and ambient
temperatures, since the variation in fluid properties can usually be
prescribed only by fixing the fluid and the two temperatures.

Ideally, the dependence of the Nusselt number on the Grashof
number for the variable-property case should be determined by an
exact numerical solution of the boundary layer equations as discussed
in Appendix 3. This was not done because the author lacked the
necessary computing facilities. Instead, the integral method described
in Section C was applied to examples of heating and cooling an oil with
a large temperature difference between the plate and the ambient fluid.
The fluid and the size of the temperature difference were chosen sb
that the property variation would be sufficiently large to be detectable
among the errors caused by assuming inexact velocity and temperature
profiles,

The fluid selected for study was a crude oil fraction having

moderate linear changes with temperature of density, specific heat,
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and thermal conductivity and a relatively large nonliﬁear variation of
dynamic viscosity with temperature over the range considered. Ata
temperature of 102 degrees Fahrenheit this oil has a Prandtl number of
100, while the value of the parameter drops to 10 at a temperature of 408
degrees; principally on account of the reduction of viscosity with tem-
perature. Appendix 4 contains more information concerning the oil
properties.,

‘The results of the present variable~property analyses for heating
and cooling this oil are presented in Table 1, which follows Appendix 4,
along with corresponding results based on constant-property analyses.
"The terms Aao, Aap, and Bap, values of which are given in this

table, are defined by the equations

Nuso = Aso(Grao) (31a)-
i
Nuap = Asp(Grap), (33a)
i
and Nuap = Bar(0p Grep) (34a)

of Section C2.

The variable-property analyses were performed for three
different assumed pairs of velocity and temperature profiles in the
cases of both heating and cooling the oil. Three pairs of profiles
rather than one were used in order to obtain some estimate of the
magnitude of the effect of the profile shapes on the dependence of the
Nusselt number on the Grashof number. In the column of the table
entitled‘ "Deviation from Mean of Variable-Property Analyses' the
deviations of the values of Aps, Aap, and for the variable-property

analyses using each of the three pairs of profiles and for the constant=-
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property analyses are presented as percentages of the means of the
values for the variable-property analyses. These percentage deviations
are the same for all three terms Aao, Aap , and Bap for a given
analysis. In the cases of both heating and cooling, the three pairs of
velocity and temperature profiles for the variable-property analyses
were the exact profiles found for the constant-property case for a fluid
with a Prandtl number equal to that of fche ambient oil, the exact
constant-property ones for a Prandtl number equal to that of the oil

at the plate, and the simple polynomial profiles used by Squire(s) in his
integral treatment of the constant-property problem. The exact constant-
property profiles were obtained from Reference 4, All three pairs of
profiles are plotted for comparison in Figures 3, 4, and 5; and their
use in the analyses is described in Appendix 4.

Aro, Aap , and Bap were determined according to constant-
property treatments for two values of the Prandtl number. One of
these values of the Prandtl number was that of the ambient fluid,
while the other corresponded to the fluid at the plate surface. For the
cases based on the ambient Prandtl number, Aax was determined
according to the constant-property relations between the Nusselt,
Prandtl, and Grashof numbers given in Reference 4. Then equation
33c relating Aao and Aasp in terms of the ambient and plate fluid proper-
ties was used to secure Aap ; and this number was divided by 0}75: to
get Bap as indicated by equation 34b. Similarly, for the cases based on
the Prandtl number of the fluid at the plate, the value of Aap was found
from information in Reference 4, Bap was obtained by dividing Aasp by

L
gt , and Aapo was gotten from Aasp through the use of equation 33c.
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As can be seen by reference té Table 1, the values of Aao,

Ase , and Bap as determined by the variable-property analyses are
within ¥ 8 per cent of their means for the case of heating the oil and are
within b 3 per cent for cooling. The corresponding constant~property
terms afe approximately 41 per cent of the variable-propeity means
lower than those means for heating and 69 per cent higher for cooling
when based on the Prandtl number of the ambient fluid, but they are
only 4.50 per cent higher for heating and 4. 61 per cent higher for

cooling when based on the Prandtl number of the fluid at the plate,

D2 Comparison of Results of Integral Method of Analysis with

Experimental Findings

Lorenz(g) obtained the empirical relation

L
Nuap = 0555 (gp Grap)* (35)

describing heat transfer by laminar free convection from a heated
vertical plate to a transformer oil by plotting experimental points over
a range of Prandtl numbers of the oil at the plate ranging from 75.5 to
442, The constant 0. 555 corresponds to the terms labeled Bup in
Tables 1 and 2. It is interesting to note that although the properties
of Lorenz's oil were considerably different from those assumed in the
variable-property analyses of Table 1, the resulting values of Bap do
not differ greatly from Lorenz's value. This fact is not presented as
an argument for the validity of the analysis; it is rather an indication

that the term Bap in the relation

L
Nuap = Bap(op Gr¢p)+ (34a)
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may be fairly constant for different oils even when there are large
differences between the properties of the oils at the plate and ambient
temperatures. Bap is, as a matter of fact, often taken in empirical
formulas for heat transfer by laminar free convection to be a constant
for a wide variety of fluids of vastly different properties.

So that Lorenz's experimental results could be compared with
analytic work an attempt was made to duplicate analytically the test
run of those he reported that had the largest difference between the plate
and the ambient fluid temperatures. For this case ¢, , the Prandtl
number of the ambient oil, was 309; and 0p, the Prandtl number of the
oil at the plate surface, was 75.5. The experimental and analytic
results can be checked against one another by comparing the corresponding
values of Bap presented in Table 2.

Making this comparison indicates that the analysis with variable
fluid properties gives a value of Bap that is 13 per cent higher than the
experimental value and that the constant-property analysis gives a value
21 per cent lower when based on the ambient fluid properties and 15
per cent higher when based on the properties of the fluid at the plate.

It is doubtful that all of the discrepancy between the variable-~property
analysis and the experimental observation should be ascribed to the
inexactness of the assumed velocity and temperature profiles, which
were those obtained by Ostrach(é) in his constant-property analysis for
a Prandtl number of 100,

At least part of the discrepancy should be due to the difference
between Lorenz's experimental situation and that assumed in the analysis.

Lorenz's flat plate was only 12 centimeters high by 25 centimeters wide,
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and a Schlieren photograph included with his paper shows that the
temperature boundary layer at the lower or leading edge of the plate has
a thickness roughly half of that of the boundary layer at the top of the
plate. In the analysis, which is based on boundary layer theory, the
assumpfion is made that the boundary layer begins with zero thickness
at the leading edge; and the local heat-transfer coefficient is therefore
infinite there. For the actual physical situation the local heat-transfer
coefficient must be infinite nowhere, and one should expect that even

if the theory describes the situation well far from the leading edge, the
calculated average heat-transfer coefficient will be larger than one which
is measured. This leading edge effect should be particularly noticeable
with short plates such as Lorenz used for which the ratio of the plate
length to the boundary layer thickness is not very large. Lateral edge
effects in the experiment could also be partly responsible for the
discrepancy; but it is difficult to say just what these effects should be,
although one might expect that one of them would be an increase rather
than a decrease in the rate of heat transfer for the experimental case
compared with the strictly two-dimensional case,

The values of the term Bap obtained according to the constant-
property analyses are related to the values found by the variable-
property method similarly to the previous case of heating the California
crude fraction. That is, the value obtained according to the constant-
property analysis based on ambient fluid properties is consideragly
less than the variable-property value; and the value found according
to the constant-property analysis based on the fluid at the plate is

approximately equal to the variable~property value.
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Details of treating this comparison between analysis and experi-

ment are given in Part 4. 2 of Appendix 4.

D3 Conclusions and Discussion of Conclusions

D3.1 Conclusions

L. Heat-transfer rates for laminar free convection about an
inclined or vertical flat plate in cases for which the difference between
the Prandtl number of the fluid at the plate surface and far from the
plate is large can be expected to be predicted accurately by using the
results of analytic studies based on the assumption that the fluid proper-
ties are essentially constant. In the application of the results of a
‘constant-property analysis to a variable-property situation, the
properties of the fluid of the analysis should be taken equal to those
of the variable-property fluid at the temperature of the plate.

IL It should be expected that the results of both analytic and
experimental studies of heat transfer in laminar free convection with
small temperature differences between isothermal bounding surfaces
in general and a surrounding fluid of infinite extent can be successfully
applied to identical configurations when the variations in the Prandtl
number of the fluid are large., When the results of a study made with a
small temperature difference and an essentially constant Prandtl
number are applied to a situation in which the temperature difference
is large, the Prandtl number of the fluid of the study should be equal
to that of the fluid at the bounding surface of the situation in question.
Also, the flow must be of the boundary layer type in both the study and

the situation in question.
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D3, 2 Discussion of Conclusions

The first conclusion was made after a comparison of the
determinations of the dependence of the Nusselt numbers on the Grashof
and Prandtl numbers by the variable and constant-property methods for
the cases of heating and cooling the California crude fraction and
heating Lorenz's transformer oil. By reference to Tables 1 and 2 one
can see that the ratios of the Nusselt numbers to the one-quarter
power of the Grashof numbers or to the one~-quarter power of the products
of the Grashof and Prandtl numbers when determined by the constant-
property analyses based on the fluid properties at the plate are within
a few per cent of the values determined by the variable-property analyses.
One might be able to suggest using some temperature other than
simply the plate temperature for specifying the fluid properties in
order to obtain a more accurate determination of the relations between
the dimensionless heat-transfer parameters if a considerably more
precise means of performing the variable-property analysis were used
for comparison instead of the approximate integral method.

One could suppose that for liquid metals, which have very low
Prandtl numbers, the present conclusions regarding constant and
variable-property analyses might not be true, since they are based
on cases for which the Prandtl numbers are comparatively much
greater. However, in a sense they should remain valid because the
effects of variable fluid properties in free convection situations involving
liquid metals should not be important unless temperature differences
are extremely large. A check made on the properties of mercury is

the basis of this statement.
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The second conclusion is an extrapolation of the results obtained
for laminar free convection about a flat plate to the general case of
laminar free convection about any finite isothermal body surrounded
by a fluid of infinite extent. This extrapolation is reasonable because
the free ’convection velocity and temperature fields should be of the
boundary layer type for a finite body which is not too small, and one
should expect that the process would behave similarly to that of the
flat plate case in regard to the relation between heat transfer with
small and large fluid property variations. Also, Lor enz(s) obtained
a good correlation of his experimental data for heating an oil over a
wide range of temperatures by basing his Nusselt, Prandtl, and Grashof

numbers on the properties of the fluid at the bounding surface.
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APPENDIX 1

NOTATION*

1.1 Latin Letters

Anop

BAP

Cp

Fi

F2
G,
G.
Cs
Cra

Dimensionless terms def::med by the equations
Nuaop = Aage (Grrse)*

Dimensionless term defined by the equation
Nuap = Bap (0p Grzp)

Specific heat of fluid at constant pressure, assumed
to be a function of temperature only

-

Dimensionless term equal to du

dnln=o

Dimensionless term equal to —dBL? .
Dimensionless term equal to f(1+;z)uld;7
Dimensionless term equal to Jlldﬂ
Dimensionless term equal to f(:m)u”qfdr}d;?

Grashof number based on component of body force
parallel to plate and distance from leading edge of plate,
It is equal to |g|g £ x?

Gz er

Grashof ber equal to (ol ¢ £’
rashof number equ { L

Vector representing body force per unit mass

Magnitude of #

Local heat-transfer coefficient equal to -hp (a'r)}
Average heat-transfer coefficient equal to L IH dt

Enthalpy of fluid, assumed to be a function of temperature
only and to be equal to f Cedt
-
Thermal conductivity of fluid, assumed to be a function
of temperature only

* The subscript , appended to symbols for fluid properties or
parameters defined in terms of fluid properties indicates that the
properties are those of "ambient' fluid or fluid far from the plate.
Similarly, the subscript p refers to properties of fluid at the plate

surface,
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NuA

Re

I +tn

To
AT
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Characteristic fixed length equal to distance from leading
edge of plate to point of application of flow equations

Dimensionless dynamic viscosity equal to Clul'
0

Nusselt number based on local heat-transfer coefficient.
It is defined to be Hh;,% .

Nusselt number based on average heat-transfer coefficient.
It is defined to be Ha%.
e

Pressure in fluid

Dimensionless specific heat at constant pressure equal

to Cp
Cpo

Reynolds number equal to Um$®
a9

Dimensionless density equal to _%o

Fluid temperature

Plate temperature

Temperature of ambient fluid (fluid far from plate)
Temperature difference defined to be |Tp-Tol

% - component of fluid velocity

Maximum value of U in the boundary layer at a given
distance from the edge of the plate

Dimensionless velocity component equal to 1]
Um
7 - component of fluid velocity

Dimensionless velocity component equal to L V.
& Um
Cartesian co-ordinate representing distance from leading
edge of plate measured along an axis parallel to the plate

Cartesian co-ordinate representing distance from plate
surface measured along an axis perpendicular to the plate
surface
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1.2 Greek Letters

Xy

Az

¢

5+

}?1’

A

[g°)

Direction cosine of body force vector relative to «- axis
Direction cosine of body force vector relative to ¢- axis

Coefficient of thermal expansion of fluid equal to

“(38),

Boundary layer thickness defined to be fud_?,
. Um ‘0

Value of § at =1L

Dimensionless parameter equal to AT

Similarity independent variable defined by equations
3-5 and 3-6 of Appendix 3

Dimensionless Cartesian co-ordinate equal to _%
Dimensionless Cartesian co-ordinate equal to 7%._*
Angle between body force vector and « =~ axis
Dimensioﬁless temperature equal to T-To

T To

Dimensionless thermal conductivity equal to lt

-]

Dynamic viscosity of fluid, assumed to be a function of
temperature only

Kinematic viscosity of fluid, a function of temperature only
Dimensionless Cartesian co-~ordinate equal to %2

Mass density of fluid, assumed to be a function of
temperature only

Prandtl number of fluid equal to C?{A
Dummy variable of integration

Similarity dependent variable defined by equation
3-7 of Appendix 3

Mass flow function defined by equations 3-1 and 3-2 of
Appendix 3

Similarity dependent variable defined by equation 3-8 of
Appendix 3
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APPENDIX 2

SIMPLIFICATION OF FLOW EQUATIONS ACCORDING

TO BOUNDARY LAYER THEORY

In Section C2 the flow equations for free convection with variable

fluid properties along an inclined semi-infinite flat plate are given as

aeu) + 20eV) _ o (1)

% atf

(2)

]

Q{U%})Z;+V%l;} = -%,; rohgp -2 %g{/i(aa]%““%xé)} )
+2%.(;{/u%¥} “'-3—,:{/“’(%%* z)} )

= o0V} = ML (" ) @

+negligible terms.

For use in the determination of appropriate simplifications of
these equations to conform with the assumptions of boundary layer flow,

the following nondimensional variables are defined:

5=% (2-1)

7= (2-2)

u=1 -
o (2-3)
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- LV -
V= 55 Ton (2-4)
I*n = % (2-5)
" A (2-6)

%__rlrl
= Cp - &1 -
Y —C-l;:_ ng:s\ (2-7)
AdTle
= T-To (2-8)
Tp"—l;
K:%o (2-9)

In these definitions | is a fixed characteristic length equal to
« , the distance from the leading edge of the plate to the point in the
flow at which the equations are applied; and &' is a fixed characteristic
©o
length defined to be L fUd% , Um being the maximum value of U
Q0 Um ()
at x=L,k and JUd'j’ being evaluated at x =L . Cp is the specific
o
heat of the fluid at constant pressure.
Writing equations 1, 2, 3, and 4 in terms of these dimensionless

variables and using the relations 5 and 6 for the pressure gradients in

the » and %-— directions give

g.g{(l-r)z)u} +§7+{(1+n)v'} = 0, (2-10)

(u+du)]+ 22 mi&)+b__(mag>}, (2-11)

e g
T
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and {af(|+)z)}{u§+v‘%%+ = OBIRe i‘s‘*%ﬁ“%ﬂ
. E{@_(/{Aﬁ)}, | (2-13)
0o e L 13% IS

in which Re, the Reynolds number based on the maximum velocity in

thek boundary layer and the boundary layer fhickness, is equal to Um$* ,

and 0o , the Prandtl number of the ambient fluid, is equal to gﬁ& °
These equations are now simplified by considering that ’

__SL: | , Red> |, and 0s is sufficiently large so that GaRe >71| .
The assumption that ,%* &« | is equivalent to considering that the flow is
of the boundary layer type, while taking Re to be very large means that

GrLo *, the Grashof number based on L , must be very large.

Grio must be large when Re is large because for a given fluid, with
given temperatures of the plate and of the ambient fluid, Gryis
proportional to (F?e)4, when _E* | and Re>>|, as indicated in
Appendix 3,

The dimensionless continuity equation 2-10 is independent of the

sizes of §" and _| . However, the dimensionless component of the
L Re
momentum equation in the x- direction, equation 2-11l, has terms of
orders unity, 1 L , and I §t , as well as the driving force term
Re §t Re L
ohgln . Of these, the terms of order %_&f are dropped for simplicity,
Ii?z y e L
m

while the others are retained,

In the derivation of equations 2-11 and 2«12, the dimensionless
components of the vector momentum equation, both equations were
multiplied by the same factor after the dimensionless variables were

introduced. By comparing the two equations one can see that dropping

% GyrLo is equal to |alg &3 .
rLe q _]Zfz_
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equation 2-12 in comparison with equation 2-11 is equivalent to neglecting
vectors with lengths of orders _f_)l; and T‘?’e compared with the left-hand
side of equation 2-11, which is of order unity., Therefore, the Y-
component of the momentum equation is neglected because doing so is
consistént with retaining only the most important terms of the -
component of the equation.

The term representing the conduction of heat pérallel to the

plate surface in the dimensionless energy equation 2~13 is to be

neglected, since it is of order _| 8", while the other terms are of
G L

order unity and _{ _ L .
O.Re §t

With the indicated simplifications the dimensional equations

reduce to

200) 4 2(pV) = o, (2-14)
A% agf
U = o GFs g . -
o{ gg+v%l‘jl/} oc?eﬁugg{/u%g},  (2-15)
and
e{vat +V—‘3—%}‘—"— 3}—{“%} (2-16)

with neglect of the Q,J,-momentum equation. These equations fail to be
a good description of the free convection process in the region close
to the leading edge of the plate where the boundary layer assumptions

are invalid.
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APPENDIX 3

SIMILARITY METHOD FOR SOLVING

BOUNDARY LAYER EQUATIONS

Section C2 contains the continuity, momentum, and energy

equations for the free convection boundary layer in the forms

2(eU) + 2(6V) = o, (7)
% 3y |
Q{Ugl% +V%l[}.} = gt +%l;{/u%u}) (8)
o(vis Vi) = 1o{n37)

with the boundary conditions

UvV=0 T=Tp at y=o

and
U:"O) T=To af %200.

J 0o

As suggested by W. D, Rannie, the continuity equation 7 is

used to define a mass flow function ? such that

Y _ oU -

Sy " e (3-1)
and

¥V - — V.

._..a = f’ - (3-2)

Substituting into the momentum equation 8 for U and V in terms of
this function and for ¢ and /LL in terms of the dimensionless density

I+71 and viscosity m gives

AE.L{(H/zi'b_’i’ Yy g_{(:m)”a_’li}
dy ¥ ay I Y 2
= agoint + fho %L}{m 'g—‘[(""”).'%l]}. (3-3)

Substituting for U and V similarly as well as for T, It , and Cpin
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terms of their dimensionless forms ¥©, K , and % into the energy

equation 9, after using the relation h= prd‘T_’ yields

¥ 20 _ 2% e\ = ke 2 { : -
qf{alf or oL ay Cre OF %} (3-4)
With a given fluid and with fixed values of the plate temperature Tp and
the ambient temperature To , the nondimensional fluid properties 2 ,
m., 4, and K can be considered to be functions of © only.
Polhausen's similarity independent variable 5 is defined by

3= C%'X,_ (3-5)

with '

ol Idll 80 I
C (—3/——4%2 ) : (3-6)
His transformations of the dependent variables,
3
P(ry) = 4pCr*@(s) (3-7)
and ’9(7‘)7) = w(S), (3-8)

are also used in order to write equations 3-3 and 3-4 in terms of a
single independent variable.
Making these substitutions and noting that 71 , m , Cb,, and K

are functions of § only, by virtue of equation 3-8 and their dependence

on U alone, give
(m+79]'} + 3{enfee} -5{0+n) (@) FL=o (3-9)

and {nw'}' +3%{gow'} =0. (3-10)

In these equations primes indicate differentiation with respect to 35 .

Also, in the term IJX the minus sign is to be used when the plate is
, €,
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heated compared with the ambient fluid and the plus sign when the plate
is cooled.
The appropriate boundary conditions to be met by the solutions
of equations 3-9 and 3-10 are
| &) =0, )
@'(0) =0,
w(o) =1, S (3-11)

®'(c0)=0,

and w(co) = o.

These are simply restatements of the boundary conditions 10.

It should be noted that the definition 3-5 of the similarity
variable 5 implies that the boundary conditions @'w)=0 and w(e)=0,
which result from requirements at (j.:oo, are also to be satisfied at
x=p. These requirements are consistent with the physical situation
everywhere except at the leading edge of the plate, where the boundary
layer approximations themselves are inherently invalid.

Through a consideration of the definitions 3-5, 3-6, and 3-8 of

5, C, and w(3) along with the fact that B(xy)= T-T

Tp=To
determine that the local Nusselt number Nu., based on the thermal con-

, one can

ductivity of the ambient fluid and the distance from the leading edge

of the plate is given by

Nuro = _~lpx (%%f-)

Feo(Tp= To) V3% /ly=e (3-12a)
Nuwe = = ' 3-12b
or “ %{ w (5) ls:o} (6"'1")#; ( )

Kp being the dimensionless thermal conductivity of the fluid at the
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plate surface, Grx, being the Grashof number based’ on the ambient
fluid properties and the distance from the leading edge, and w(3) being
defined by the differential equations 3-9 and 3-10 with the boundary
conditions 3-11. By reference to these equations 3-9 and 3-10 one can
see that the variations of the dimensionless fluid properties with tem-
perature as well as the value of the Prandtl number ¢, of the ambient
fluid determine w(s) and hence w's)l,_ . Hence, it is not surprising that
the Nusselt number depends on the variation of fluid properties with
temperature in the variable-property case in addition to being a function
of the ambient fluid Prandtl number and being proportional to the one-
quarter power of the Grashof number as in the constant-proper‘ty case,
Of importance also is the relation between the Reynolds number
Re and the Grashof number Grio that appear in Appendix 2. Noting that
Re is defined to be Umé' and using equations 3-1, 3-5, 3-6, 3-7, and

Vo
3-8 along with the definitions of the nondimensional temperature, one

can apply the definition &%= _LfUd% to obtain
Um x=L
Re — 2{2-{] Q'(3)ds (Gna)* (3-13a)
o [1+n{wl]
or Grio = const X (Re)* (3-13b)

the value of the constant being dependent on the fluid and on the plate
and ambient temperatures.,

Equations 3-9 and 3-10 are generalizations to the variable-
property case of simpler equations derived by Polhausen(l) on the
- assumption that the only effect of variable fluid properties is to produce
a driving term for the convection process. The simpler equations have

in the past been solved principally by finite difference techniques(l)’ (4)
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and by an iteration method developed by Schuh(é), which is somewhat
similar to the Stodola-Vianello method for solving linear boundary-
value problems.

An attempt was made to solve the present equations by Schuh's
method for the case of heating the California crude oil fraction described
in Section D and Appendix 4, but the process was found to be divergent.
It is possible, however, that the method could be used for cases in
which the viscosity of the fluid does not change greatly across the
boundary layer, since for the unsuccessful attempt the viscosity changed
by a factor of almost 15 between the plate and ambient conditions,
and the method has been used successfully for the constant-property
problem in the same range of Prandtl numbers. In view of this failure
of Schuh's method, it is suggested that any future investigator attempting
to solve the present equations should try an adaption of the finite-
difference method outlined by Alber s(4) for solving the simpler Polhausen

equations with the use of electronic computing facilities.
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APPENDIX 4

DETAILS CONCERNING THE APPLICATION OF THE INTEGRAL

METHOD TO THE LAMINAR FREE CONVECTION OF OILS

4.1 Heating and Cooling the California Crude Oil Fraction with a

Prandtl Number Varying Between 10 and 100

4.1.1 Properties of the Qil Treated

An oil having the desired variation of its Prandtl number over a
realistic temperature range is the California crude fraction the viscosity
of which is plotted as a function of temperature on Page 165 of Reference
15 and which is denoted there as "Number 4''. This oil has an API
gravity of 25.0 and a boiling point of 392-437 degrees Fahrenheit in a
Hempel vacuum column. Its Prandtl number is 100 at 102 degrees and
drops to 10 with an increase of temperature to 408 degrees.

For the case of heating ’the oil with the ambient temperature 102
degrees and the plate temperature 408 degrees, the dependencies of the
dimensionless density | +7n , specific heat Cb >, and thermal conductivity

A on the dimensionless temperature © are expressible as

[+n = 1—(0.1357) 8, (4-1)
G =\ +(03169)9, (4-2)
and K=1—-(01006)%. (4-3)

The dimensionless dynamic viscosity ym is a more complicated function
of B and is plotted in Figure 1.
For cooling the oil with 408 degrees as the ambient temperature

and 102 degrees as the plate temperature, the dimensionless properties

are expressible as
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l+5 = 1+ (01570) B, (4-4)
g = 1 - (0.2406)®, (4-5)
and K = | + (0n19)®, (4-6)

the dimensionless dynamic viscosity ym being plotted in Figure 2.
Information for determining cb, , A , and m was obtained from

Reference 15, while I1+) was found from formulas in Reference 16.

4,1.2 Determination of the Dependence of the Nusselt Numbers on the

Grashof and Prandtl Numbers

Equations 30b, 30c, 3la, and 31b of Section C2 indicate that

one can write
|

Nuso = Aaoc (Greo)* (31a)
a

with

2
AAo = %—KF FZ 90’:"6:' GS } . (4_7)

48¢,/{PF—2(303 mpﬁ Gs + SKPFZGA

F., B2, G, Gz, and (s, which are defined by equations 25 and
26, depend on the nondimensional velocity and temperature profiles
as well as on the nondimensional density and specific heat. Figures 3,
4, and 5 are plots of the three pairs of profiles of the nondimensional
velocity U and temperature © which were assumed. The profiles
shown in Figures 3 and 4 were taken from the exact solutions of the
constant-property problem for Prandtl numbers of 10 and 100 as
obtained from inforlma.tion in Reference 4, and the polynomial profiles

(3)

of Figure 5 are those used by Squire in his integral treatment of
the constant-property problem. The integrations performed to obtain

G, G, and Gs were done numerically by the use of Simpson's Rule
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in the cases of the exact solutions of the constant-property problem;
and they were done analytically for the polynomial profiles.

Once App was found, Aap and Bap were secured by using the

relations
. .
z
— )& me Y¥la
App = KP{&(‘_*”P)} A0 (33c)
and
Bap = AAf . (34b)
Op*

4.2 Lorenz's Experiment on Heating a Transformer Oil with a Prandtl

Number Varying Between 75.5 and 309

4.2.1 Properties of the Oil Treated

In his paper describing an experimental study of free convection
in a transformer oil, Lorenz(s) tabulated a number of the properties
of the oil at different temperatures. For the experimental run which he
designated as "H! the average plate and oil temperatures were 70, 2
and 25. 7 degrees centigrad’ﬂe, respectively. Knowing these temperatures
and the variation of the oil properties with temperature, one can deter-
mine that for the analytic treatment of the experimental run H, the
variations of the dimensionless density |1+# and specific heat Cb are

described by the equations
|+ = |- (0.0278) B (4-8)

and 4 = [+, (4-9)

while the values of the dimensionless dynamic viscosity wm and thermal

conductivity A at the plate surface are given by
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Mp= 0.217 (4-10)

and Kp= 0.974. (4-11)

The Prandtl numbers of the oil at the ambient and plate

temperatures were 309 and 75.5, respectively.

4, 2.2 Determination of the Dependence of the Nusselt Number on the

Product of the Prandtl and Grashof Numbers

The term Bap in the equation

Pl

Nuap = Bap (op Grup) (34a)

was found for the variable-property treatment of Lorenz's oil by
essentially the same method as that used for the previous cases of
heating and cooling the California crude oil fraction. In the present
case the fluid properties are those given in the preceding Part 4.2.1 of
this appendix, and the only velocity and temperature profiles used were
those corresponding to the solution of the constant-property problem

for a Prandtl number of 100. These profiles are plotted in Figure 4.
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TABLE 1

HEATING AND COOLING AN OIL WITH A PRANDTL NUMBER

VARYING BETWEEN 10 AND 100 IN LAMINAR

| FREE CONVECTION ABOUT A FLAT PLATE

I. Heating ( 0o = 100, Op = 10) A AX B Deviation
from Mean
of Variable~

Property
A. Variable-Property Analyses Analyses
(In Per Cent
1. Velocity and Temperature of Mean)
Profiles Taken from Con-
stant-Property Solutions
for Ambient Fluid
(o = 100) 3.246 0.9760 0.5488 -7.49
2. Velocity and Temperature
Profiles Taken from Con-
stant- Property Solutions
for Fluid at Plate
(g = 10) 3.507 1.054 0.5930 --0.05
3. Velocity and Temperature
Profiles Taken To Be
Squire's Polynomial
Approximations 3.773 1.134 0.6380 +7.53
4, Means for the Three Sets \
of Profiles 3.508 1.055 0.5933 -
B. Constant-Property Analyses
1. Based on Ambient Fluid ,
(g = 100) 2.066 0,6212 10,3493 -41.12
2. Based on Fluid at Plate
(o= 10) 3.666 1,102 0.6200 +4.50
* Apo s Aasp, and Bap are defined by the equations
' 1
Nuao = AAO(GF104, (31a)
¥
Nuap = Aap (Grap), (33a)
L
and Nusp = Bap (gp Crze)” (34a)

Nuao is the Nusselt number based on the distance from the
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II. Cooling ( gz = 10, g = 100)

A. Variable-Property Analyses

1.

4.

‘Velocity and Temperature
Profiles Taken from Con-
stant- Property Solutions
for Ambient Fluid

(o = 10)

Velocity and Temperature
Profiles Taken from Con-
stant- Property Solutions
for Fluid at Plate

(o = 100)

Velocity and Temperature
Profiles Taken To Be
Squire's Polynomial
Approximations

Means for the Three Sets
of Profiles

B. Constant-Property Analyses

1.

2.

Based on Ambient Fluid
(o = 10)

Based on Fluid at Plate
(o = 100)

Ano

0.6394

0. 6470

0.6672

0.6512

1.102

0. 6212

Aap

2.126

2.151

2.218

2,165

3. 666

2.066

Bap Deviation

‘ from Mean
of Variable=~
Property
Analyses
(In Per Cent
of Mean)

0.6724 -1,80

0.6803 -0,65

0.7016 +2.45

0. 6848 -

1.159 +69.31

0.6532 +4.61

Teading edge of the plate, the average heat-transier coeificient over
that distance, and the thermal conductivity of the ambient fluid; and
Nuap is the same except that it is defined in terms of the thermal
conductivity of the fluid at the plate surface. Grxo and Grxp are the
Grashof numbers based on distance from the edge of the plate and the
component of the body force parallel to the plate, Grx, being defined
in terms of the ambient fluid properties and Grp in terms of the
properties of the fluid at the plate.
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TABLE 2

COMPARISON OF ANALYTIC AND EXPERIMENTAL

STUDIES OF HEATING A TRANSFORMER OIL WITH

A PRANDTL NUMBER VARYING FROM 75.5 TO 309

A. Variable-Property Analysis
with Velocity and Temper-
ature Profiles Taken from
Constant-Property Solu-
tions with g = 100

B. Constant-Property Analyses

1. Based on Ambient
Fluid ( o = 309)

2. Based on Fluid at Plate
( o = 75.5)

C. Experimental (Run "H" of
Reference 8)

sk
Bap

0. 641

0.45
0. 65

0. 567

Deviation from
Experimental
Value (In Per
Cent of Experi-
mental Value)

+13

-21

+15

* Bap 1S defined as in the footnote to Table 1.
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u and B from Solution of Constant-Property
Problem for g =100



-212 -

0.0 . N~

0.0 2 4 6 8 10 L2 14 1.6 1.8

Figure 5

u and B as Assumed by Squire (Reference 3)

_ 5%‘-? (-27), 0e7+ %

u =
O,%é’]
(l-i )20‘ 18
B VA )
0,

2.0



