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ABSTRACT

This thesis describes an attempt to apply signal processing and sys-
tems theory to the task of analyzing and interpreting evoked potential data
and locating evoked potential sources by physical principles. Random impulse
trains were used as inputs to characterize the human visual system. The
method is analogous to the Wiener method for a continuous Gaussian white noise
input. The restricted-diagonal Volterra series for discrete inputs is used by
making certain restrictions on the integrals in a Volterra series. A modifi-

cation of Lee and Schefzen's method was used in the estimation of the kernels,

Forty-channel first-order kernels were computed for briefly appearing
checkerboard patterns placed in left or right visual fields. The measured
potential distribution showed a radical dependence on stimulus locus.
Equivalent dipoles generally give excellent fits to the measured data, and the
mapping between the visual field and these equivalent sources is similar to
the commonly accepted mapping between the visual field and the visual cortex.

Also, the results resemble those using conventional signal averaging.

First order kernels show better signal-to-noise ratio when compared to
conventional signal averaging for the same experiment duration. Multichannel
first-order kernels show that sources from early components are deep in the

head as expected and in a believable region.

Results for the second-order kernels reveal occlusive interactions in

the visual system and are interpreted relative to the first-order kernel.
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These inhibitions display different lengths of memories which suggest that

they might arise from different neural origins.
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CHAPTER 1

SYSTEMS, VISUAL SYSTEM, AND BRATN WAVES

1.1 SYSTEMS -

The problem of finding the functional relationship that determines the
output 6f a éystem in response to any relevant input is known as the problem
of system identification, characterization or estimation. This estimation pro-
cess is a major step in system modeling. System modeling helps the exper-
imenter to extract from the model insight into the functioning of the system

and makes prediction of system behaviour possible.

The techniques of linear systems theory have been used extensively in
the study of nonlinear systems because of the completeness and simplicity of
the linear approaéh and the difficulty in linking nonlinear analysis with
functional entities such as individual building-blocks defined by transfer-
functions. For those nonlinear systems which utilize linear approaches, small
signal approximations or certain linearizing assumptions are usually made.
Because of their limitations and applicability to a narrow class of systems,

they cannot be applied generally to nonlinear systems.

There are essentially two approaches to the characterization of a non-
linear system. In the differential equation (parameter and state estimation)
nethod, the topology of a system is assumed to be known, so that a set of
differential equations can be used to represent the system. Identification
reduces to the determination of various parameters in the equations. 1In the

integral equation ( nonparametric weighting-function, filter, kernel, or func-



tional ) method, little or no a priori assumptions are made about the topology

of the system. The identification reduces to the determination of the various

kernels,

I shall confine myself to the syétem defined by the stimulus-response
relationship of the evoked potentials. This system is assumed to be station-
ary, finite-memory, and analytic.r A system is stationary if its charac-
teristics do not change rapidly with time and the system response to identical
stimuli remains similar. Finite-memory means that a stimulus with finite
energy will generate a response that decays to an arbitrarily small degree in
finite time. Analyticity means that the differential behavior of all orders
is continuous within the domain of stimulus values., In general, the func-
tional relation between the stimulus x(t) and the response y(t) can be

described by the mathematical notion of a functional:
y(t) = T[x(t)]

For a physical system like the evoked potential, the causality princi-
ple is the first instrument of the analysis process,., Under this principle, a

system only reacts to the past and present values of the stimulus. Therefore,

y(t) can be expressed as
y(t) = TIx(t'); t'gt]

Further, any explicit mathematical expression of the functional T has

a certain structural form involving a set of parameters and a set of con-

stants. The set of parameters Q is the object of the identification process.



Therefore, we can denote y(t) as
y(t) = T[ Q ;x(t"),t'<Lt]

to demonstrate the existence of the parameter set within the functional

expression.
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Volterra series can be considered as a generalization of the power
series representation. Wiener (1949) applied this analysis technique to find
the response of a nonlinear device to noise. Bose(1956) has carried the theory
further. Following a series of lectures by Wiener, the theoretical framework,
higher dimensional transforms, and optimization with Gaussian iﬁputs were stu-
died by Brilliant(1958), George(1959), and Chesler(1960), respectively. Bar-
rett (1963) has treated statistical inputs, while the synthesis problem has
been examined by Van Trees(1962). The technique has been extended to discrete
systems, and a class of time~variant systems. The theory of convergence has

also been treated by Ku and Wolf(1966).

BIOLOGICAL SYSTEMS

Nonlinearities are often necessary for the optimal functioning of bio-
logical systems from the behavioral point of view. One typical example is
that the transformation of sensory inputs from the physical parameters of the
real world to the neural response is usually in a logarithmic fashion to

accomriodate large ranges of the physical parameters.



Biological systems are often nonlinear even under ﬁsmall signal" con-
ditions. Moreover, since the signal-to-noise ratio in biological systems is
often low, the degree of nonlinearity is also low, i.e. only the first few
terms of the Volterra(VWiener) series are required in order to describe the
system accurately. This is due to the fact that noise‘has a linearizing
effect. Consider the response of a nonlinear system such as a rectifier or

;4§éturation-cﬁtoff to a sinewave input (Fig. 1.1.1). Assume also that the size
of the hérmonic distortion is directly proportional to the size of the non-
linear kernels. It can be noted by inspection that the effect of contaminat=
ing noise is to round off the sharp corners of the response which are caused
by the nonlinearity. The higher the noise level, the more linear the response
'appears', i.e. the size of the harmonic distortion decreases. In other
words, a system with high noise content limits its analysis to the first few
kernels. For a noisy system such as the evoked potential, it might be possi-

ble to characterize it by a few kernels.
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Fig. 1.1.1 Linearizing effect of noise to nonlinear systems.
( From The Noise about White-Noise: Pros and Cons

. P. Z. Marmarelis, 1975 )



1.2 HUMAN VISUAL SYSTEMS

The eye acts as a self-contained outpost of the brain. It collects
information, analyzes it, and hands it on for further processing by the brain
through the optic nerve. The optic nerve fibers arise from ganglion cells in
the retina and end on cells in the lateral geniculate nucleus( LGN ) whose
axons in turn project through the optic radiation to the cerebral cortex. From

here on the progression becomes even more complex.

The anatomy and projections of the human LGN do not appear to differ
signifiéanﬁly from thosé of other primates. When the retinal fiberswreach the
LGN, they terminate in a number of laminae, each of which receives a topo-
graphic projection from a hemiretina and projects to the cerebral cortex. The
laminae are stacked in visuotopic register so that there is direct continuity
of visual field between adjacent laminae. -The thalamus lies near the center
of the brain, while the primary visual cortex lies in and around the medial

surface of the occipital lobe. Some 70% to 80% of all retinal fibers subserve

this pathway.

Figure 1.2.1 shows how the output from each retina divides in two at
tﬁe optic chiasm to supply the lateral geniculate nucleus and cortex in each
henisphere. As a result, the right side of each retina projects to the right
cerebral hemisphere. The right side of each retina receives the image of the
visual field on the left side of the animal. Each cerebral hemisphere, there-

fore, sees the contralateral visual field.

The part of the visual cortex where the optic radiations end consists
of a folded plate of cells about 1 or 2 mm thick. This region of cortex, area

17 (also called the striate cortex or visual area I) lies posteriorly in the
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occipital lobe. Around area 17 lie the secondary visual cortices, area 18 and
19, which get their input from area 17. Connections are known from area 17 in

one hemisphere through the cofpus collosum to area 18 in the other hemisphere.

There are other retinal projections that branch off to the midbrain.
In higher vertebrates they are primarily concerned with regulating eye move-
ments and pupillary responses and are not directly relevant for pattern recog-
nition (Sprague et al, 1973). It is also known that there are rich intercon-
nections between midbrain areas and thalamic and cortical areas. The impor-
tant point here is that the anatomy does support the existence of at least two
separate retino-cortical pathways. The retino-geniculo-striate-circumstriate
pathway is believed to be concerned with the detailed analysis of visual pat-
tern, while the retino-tectal neocortex pathway is concerned with spatial

orientation functions and has only crude discrimination capabilities( Doty,

1973).

In these visual pathways, the neurons converge and diverge extensively
at any stage; that is, each cell makes and receives connections with a number
of other cells. One purpose of this study is to develop a noninvasive tech-
nique to investigate this highly interactive and complicated system through

evoked potentials in conjunction with systems analysis.



1.3 ELECTROENCEPHALOGRAM (EEG)

Electrical recordings from the scalp demonstrate continuous electrical
activity which is assumed to have its origin in the brain. The undulations in
the recorded electrical potentials are called brain waves, and the entire
record is called an electroencephalogram. It has been speculated that both
the intensity and patterns of this electrical activity are determined to a
great extent by the overall level of excitation of the brain resulting from

functions mainly in the reticular activating system.

The amplitudes of the potentials on the surface of the head range from
zero to 200 microvolts, and the usual range of recorded frequencies is from
0.1 to 100 Hz to cover the major portion of the spectrum. The character of
the waves is dependent upon the degree of activity of the cerebral cortex and

subcortical structures, and the waves change markedly between the states of

wakefulness and sleep.

Much of the time the EEG are irregular, and no general pattern can be
discerned in the EEG. However, at other times, distinct patterns do appear.
Some of these are characteristic of specific abnormalities of the brain, such
as epilepsy. Others occur even in normal persons and can be classified into
alpha, beta, theta, and delta waves. This classification is based mainly on
the frequency distribution: alpha{8-13 Hz), beta(14-50 Hz), theta(y-7 Hz), and

delta(0.1-3.5 Hz)(Guyton, 1975).

Summaries of current methods in EEG analysis have been published

(Gevins et al., 1975, Barlow, 1979).
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The following is a brief discussion concerning the statistical aspects
of the EEG. Some properties such as the degree of whiteness and stationarity
of EEG have direct relevance to white-noise nonlinear analysis of evoked
potentials. Ve are trying to extract characteristics (kernels) of a system by
using a white-noise stimulus and measuring responses which are also predonm-
inated by white-gaussian noise while its amplitude can be a hundred times
larger than the responses. Luckily the EEG possesses certain simple statisti-
cal properties. Signal averaging and cross-correlation methods can be per-

formed for signal enhancement but these techniques are only valid for additive

white-noise,

At present, almost all methods of time-domain and frequency-domain EEG
analysis are based on implieit assumptions regarding the statistical charac-
teristics of the underlying random process, particularly with respect to the

extent of stationarity and the degree that the process approximates a Gaussian

distribution.

It is generally accepted that the EEG may be regarded as a statistical
phenomenon with two components: (1) a stochastic and, in short sections ,
almost stationary process; and (2) transient components (wave trains, spikes,
and sharp waves) that arise sporadically. Some investigators have done EEG

modelling based on testing of its statistical properties(Wennberg and Zetter-

berg, 1971; Johnson et al, 1979).

There is evidence to support modelling of the clinically-recorded EEG

as a zero-nean gaussian process. El1ul(1969) found that the EEG was Gaussian
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distributed two-thirds of the time for a patient in the resting state, while
Glass(1969) showed that the amplitude probability density function for the
alpha rhythm is approximately zero-mean and Gaussian, The center frequencies,
bandwidths and RMS amplitudes of the basic rhythms are estimated from data
provided by Kaiser et al.(19614), Obriest and Henry(1958), and Matousek et
al(1967). VWennberg and Zetterberg (1971) studied the stochastic component of
EEG based on the observation that the auto-correlation function of the EEG has
a strikingly simple structure. They showed that the method of parameter
analysis of the EEG permits an exact description of the stationary part of
the EEG with a few parameters. Johnson et al.(1979) proposed that the EEG can
be represented as the superimposed outputs of four slightly damped oscillators

(alpha, beta, theta, and delta bands) driven by independent white Gaussian

noise processes.

It should be noted that the statistical model only serves as a working
hypothesis to efficiently parameterize certain a priori knowledge about

sources of variability in the recorded EEG rather than a representation of

underlying physiology.
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1.4 TVOKED POTENTIALS (EPR)

From the results of intracranial recordings on animals, it has been
known for some time that sensory stimulation produces distinct, identifiable,
electric signals. These signals have been variously referred to as evoked
responses (ER), evoked potentials (EP), cortical evoked potentials, ete. If
the evcked sigﬁals are due to visual stimulation and the measurenents are made

on the scalp, the potentials can then be referred to as visually evoked scalp

potentials (VESP). Until recently, attempts to measure through the intact

scalp the details of the changes in brain activity accompanying sensory stimu-
lation have been swamped in a flood of ever-present spontanecus neuro-electric
activity. Because of the small amplitudes of the EP signals in comparison

with the ongoing EEG and the technical difficulties in extracting them, until

the early 1960's, the electroencephalogram ( EEG ) was one of the few tech-

niques available to the brain physiologist and neuroscientist for the study of

electrical activity of the human brain.,

Measurement of evoked potentials, on the one hand, constitutes a probe
into the cerebral black box of sensory processing., On the other hand, it is a

noninvasive and practical means of access to the electrical activities within

the sensory pathways of the intact human brain.

DETECTION OF EP SIGHALS:

The main problem in recording evoked potentials is detecting them at
all. The signal recorded at the scalp commonly reaches an amplitude of

between 50 and 100 microvolts, but evoked potentials are often no more than 5
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nicrovolts and may be as small as 0.5 to 1.0 microvolt. To the evcked poten-

tial investigator the EEG signal is unwanted and overwhelming background
noise. Some form of signal processing must be applied to improve the signal-

to-noise ratio before any interpretation can be done.

The entire history of development in EEG and EP technology reflects
the gradual advance in electronics and progressive application of analog and
digital signal processing techniques and adoption of new concepts in systems

and communications theory. The following is a short summary of this process.

Cruikshank (1937) demonstrated that it was possible to detect a VESP
in the ongoing EEG by blocking the spontaneous alpha rhythms due to visual

stimulation. Adrian (1941) demonstrated a pertubation detectable in the on-

going EEG activity which was evokable by stimulation of the receptors of any

of the various sensory modalities.

Galambos and Davis (1943) superimposed successive amplified responses

to auditory stimulation on an oscilloscope face. The lower amplitude and

shorter latency components of the cortical response were nade evident. Dawson

(1954) was able to average a small number of oscillograms. He constructed the

first automatic averaging device for recording transient evoked potentials.
The device was partly mechanical but nonetheless sufficiently efficient to

provide research findings that are still valid today. In 1957, magnetic

recordings of brain potentials were used by Barlow. In 1960, Rosner et al.

used a tape recorder as a menmory device and repetitive triggering in conjunc-

tion with an analog amplifier for summation. An all electronic averaging com-
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puter was subsequently developed by Clynes and Kohn(1964). Commercial produc-

tion of this machine enabled hundreds of hospitals and laboratories to embark

on research on transient evoked potential in the mid-1960's,

Mainly because of developments in computer technology, we are now able
to record stimulus-related evoked potentials in man. The method most often

used today incorporates computers and signal averaging and display software.

SIGHAL-TO-NOISE RATIOQ ENHANCEMENT

The following is a summary of various methods employed for enhancing

the signal-to-noise ratio of evoked potentials. Although these methods seem

to be different, the first and second methods in theory are special cases of
the third. The fourth method encompasses the third since one dimensional
cross—-correlation can be considered as a special case of the more general nmul-

tidimensional cross-correlations in kernel estimations.
(1) Conventional Transient Signal Averaging - Time Domain Analysis

When a repetitive sensory stimulus (flash, sound click, or tap) is

presented to a subject, a repetitive electrical response is evoked. The

-

stimuli are sufficiently spaced in time such that the system is returned to a

resting state between successive stimuli. The evoked waveform is assumed to

be time-locked to the occurrence of the stimulus presentation and to be

affected by stimulus-parameter variations. A randonized presentation of

stimuli helps to minimize locking of the EEG and may improve S/N ratio (Rush-~

kin, 1965). For most applications, it is not feasible to measure the evoked
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potential directly on the cortex of the brain and measurements are made by

electrodes attached to the scalp. Transient EP waveforms are commonly divided

into different latencies ranges in the hope of associating different com-
ponents with different functions of the central nervous system and/or with

different locations in the brain (Kooi and Bagchi, 1964; Ciganek, 1961).
(2) Steady State Evoked Potentials~ Fregquency Domain Analysis

As the stimulus repetition frequency is progressively increased, tran-
sient EPs overlap to an increasing extent. Under this condition, the brain
does not have time to regain its undisturbed state between successive stimuli.

At sufficiently high repetition frequency, no individual response cycle can be

associated with a particular stimulus cycle (liilner et al., 1972). When this

steady state is established, it is more appropriate to describe the response

in terms of different stimulus repetition frequencies and to analyze the EPs

by their harmonic components. A convenient way to present steady state EP

data is to plot the amplitude and phase of the various harmonic components of

the EP versus stimulus repetition freguency. In some circumstances frequency

analysis is more convenient and more effective in extracting responses of

small amplitudes than in temporal (transient) analysis. Milner et al.(1972)

claimed this method is less influenced, as transient EP's are, by the psycho-
logical state of the subject. In other words, a higher S/N ratio enhancement
may be attained by using this method., Fourier analyzers are normally used for
this method. One purpose of:classifying steady-state EPs intc different fre-

quency regions is the hope of associating different frequency regions with

different brain functions and/or locations within the CHS (central nervous
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systemn) .

(3) Cross-correlation liethod

This method may be viewed as a generalization of conventional waveform

averaging, Fourier analysis and synchronous detection (Ciganek, 1961; Fricker

and Sanders, 1974).
(4) White-Noise Systems Analysis

This is the method that this thesis adopts. The information processing

system in the brain is treated as a black box. The Input-output transforma-

tion can be expanded as a Volterra/iliener-type functional series. Kernels are
computed using one-dimensional or multidimensional cross-correlation methods.
4 white-noise input is used as a testing function. This method can be con-
sidered as the most complete, canonical and exhaustive approach in EP research

so far. In essence, this approach encompasses all the concepts and methods

previously discussed.

HUIMAN VESP'S RELATION TO SPATIALLY UNSTRUCTURED AND STRUCTURED STIMULUS FIELDS

It is generally known that patterned stimulus fields can evoke EPs
whose amplitudes are as large as, or larger than those evoked by spatially-

unstructured stimuli, even though the light energy involved may be ten thou-

sand times less(Clynes and Kohn, 1967, 1968). In other words, pattern stimuli

are nmuch more potent stimuli to the EP part of the visual system. This has
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peen supported by evidence from many single cell studies also(Hubel and
Viesel, 1962, 1965, 1968). There are a number of investigations of pattern

EPs in which various types of patterns have been flashed (Rietveld et al.,

1967; Spehlmann, 1965).

Using the EP, the mapping between the visual field and visual cortex

in the human has been studied by several investigators (liichael and Halliday,

1971; Jeffreys and Axford, 1972; Darcey, 1979; Darcey et al., 1980). Local

stimuli are required for selective stimulation of specific areas of the visual

field.

For pattern stimulation, the issue of the contribution of the fovea,

parafovea and periphery to the VESP is clearer than for a blank flash
stimulus. Pattern VESPs are believed to have major contributions from the
central 6 degrees or so of the visual field (liichael and Halliday, 1971; Jef-

freys and Axford, 1972; Jeffreys, 1971; Nakamura and Biersdorf, 1971).

Darcey, Ary, and Fender(1980) explored the problem of VESP dependence

on retinal location in great detail. Previous studies often disagreed both in

results and interpretation. Typically, the methods used differed in stimulus

regime, referencing scheme, electrode layout, and data analysis. Darcey et al.

showed that the detailed spatiotemporal measurements can reconcile some of the

differences and elucidate the character of the generators.

ABOUT THE STIMULUS USED IN THIS THESIS

One reason why I used (randomly) flashed pattern in this study is that
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it is easier to present a brief, impulse-like patterned stimulus by transil-
luminating flash through a checkerboard pattern than by other methods,
Presenting pattern-appearance or pattern-reversals in an impulse fashion is
more difficult on our system because of the longer switching time involved.

Pattern instead of blank field was used because pattern is a stronger stimulus

in evoking responses of reasonable size as explained before. Another reason

is that the typical response paranmeters such as latencies, magnitudes, and
potential distributions to checkerboard pattern by using conventional signal

averaging on several subjects in this laboratory are known from results of

previous experiments. They can be used as a comparison to responses obtained

from white-noise analysis.

1.6 HOULINEAR BEHAVIQURS OF VESP SYSTEM

Recall that in systems analysis using a sinusoidal input, a system is
linear when the response only contains a sinewave of the same frequency as the
input signal. When the response also contains other freguencies, the system is
nonlinear. For example, a zero-memory nonlinear system, such as a rectifier,
introduces higher harmonics. VWhen this nonlinearity can be expanded in a Tay-
lor series, the nonlinearity is said to behave in a quasi-linear manner. At
decreasing modulation depths(small signal analysis), the response of the sys-~
tem could become more linear, if the amplitudes of the higher harmoniecs
decrease faster than the amplitude of the fundamental frequency. A zero nemory

nonlinearity is called an "essential nonlinearity" when the response contains

higher harmonics even at the lowest modulation depths.
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SVIDENCE OF NORLINEARITY FRO!I STEADY STATE EVOKED POTEHTIALS

De Lange(1957) introduced the use of sinusoidally modulated light(SML)
in vision research. This stimulus is given by: L(t) = I( 1 + m sinwt ), where

the modulation depth m is A/I, A is the amplitude of the sinewave, I is the

average light intensity of the light source, and w = 27 £, f is the frequency

of the sinewave.

Zanp et al.(1968) found that the occipital EP behaves nonlinearly

to sinusoidally modulated light. Even at the lowest modulation depths,

the response in a certain frequency region contains second harmonics, so the

EP system may contain an essential nonlinear element.

Clynes et al. (1964) studied the brain wave response to step, ramp,
and sinewave light stimuli. The step response allowed them to obtain the tran-
sient response of the system, and the sinewave stimuli allowed them to obtain
the steady state response. They reported a nonlinearity in the VESP for dark

and light flashes on a background. Both dark and light flash responses show

the same polarity. They also mentioned an essential nonlinearity in the EP

systen.

Vhen the luminance of a diffuse field is sinusoidally modulated it is
found that only very small EPs result for modulation fregquencies below 3 Hz
(Fig.1.5.1). However, a stimulus frequency which lies within a range centered
near 10 Hz evokes a responsé of large amplitude compared with that at neigh-

boring fregquencies. A number of characteristies of this 10Hz response are

closely related to corresponding characteristics of the spontaneous EEG. The
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21

large 10 Hz EP component can be evoked by a stimulus modulation frequency of 5

Hz as well as one of 10 Hz.

A plot of the lag of the phase of the EP versus stimulus modulation

frequency is fairly close to a straight line except at frequencies near the

center frequency of the amplitude peak where there is a well-defined step.

The findings described above led to the suggestion of a simple serial

processing model of the form illustrated in Fig.1.5.2. It must be emphasized

that the model is not unique. This model is a sequential processing model and
does not involve any feedback or feedforward element, nor does it involve any
more parallel pathways. It can be considered as one of the early attempts in

combining engineering and system concepts with physiological structures. In

this figure, we do observe there are nonlinear elements such as rectification

and saturation combined with frequency tuning devices. Evidence of correspon-

dencies between peripheral stages of the model and neuroznatomy has been
reported by Spekreijse(1966). The frequency selective peak near 10Hz has been
modelled by a centrally-located linear filter. The physiological correlate of
such a filter is not clear yet. For example, it might arise from the rever-
beration between cortex and thalamus according to Anderson and Anderson(1958).
Spekreijse and Oosting(1970) introduced a technique to separate a nonlinear
system into linear and nonlinear parts, knowing only the input and output sig-
nals of the whole system. The nonlinearity is linearized by means of an auxil-
liary signal added to the ihput signal. Using this method with sinusoidally
modulated light, Spekreijse proposed the above model for the evoked response

system. He could distinguish two parallel channels, a long-latency system with
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the largest response in the region of the alpha-frequency(10Hz) and a short-

latency system with the largest response in the 45-60 Hz region.

In mény, but not all subjects, the harmonic components of steady-state
EPs which fall in the range 45 to 60 Hz (high-frequency components) have
several features in common with the 10Hz (low-freguency components) described
above. A frequency selective process gives an amnplitude peak in this frequency
region, which can be evoked as a fundamental component or as a second harmonic

component. This behaviour is similar to that of the 10Hz class of evoked

potentials.

Their results, as well as the work of other investigators (Donker,
©1975; Montagu, 1967; Van der Tweel and Verduyn-Lunel, 1965) have demonstrated

the nonlinear nature of steady state evoked potentials.

One of the most striking effects observed for subjects with pronounced
alpha-activity is the appearance of a second harnonic component for a stimulus
frequency of about half of the alpha-frequency. In these same subjects the

fundamental component dominates in the response when stimulating with a fre-

quency near the alpha rhythm. It has been shown that the amplitude of the

fundamental component in the response is proportional to the modulation depth
of the sinusoidal input, up to a certain value that depends on the size of the

visual field, average luminance etc. Such a linear relationship holds also

for the second harmonic in the response except for a small deviation at modu-

lation depths approaching zero. This deviation can be explained by the influ-

ence of quantal noise ( Van der Tweel and Spekreijse, 1969). These findings



indicate that the distortions in the human evoked responses can be described,

to a first approximation, as linear rectification.

The above evidences from steady-state evoked potentials support the

nonlinear nature of visually evoked potentials. Sinusoidally modulated light

was generally used as the stimulus. The nonlinearity was interpreted with

respect to the luminance effect of the visual stimulus. One purpose of this

thesis is to probe into nonlinear effect due to pattern stimulation. In other
words, the rapid adaptation effect of one pattern stimulus to a subsequent

pattern stimulus separated by a small time interval will be discussed.



1.6 APPLICATIONS OF WHITE-HOISE HOHLINEAR SYSTEMS ANALYSIS

As with most scientific endeavors, the application of white-noise non-
linear systems identification theory lags far behind the theoretical develop-
ment. In the last ten years there has been an outburst of applications in bio-

logical, physical and engineering systems. Most biological applications are in

neurophysiology.

In general, applications in biology have been reported in such diverse
systems as neurons( Marmarelis and Naka, 19T74; McCann, 1974; Marmarelis and
MeCann, 1973}, pupillary systems( Sandberg and Stark, 1968; Watanabe and
Stark, 1975; Hung et al, 1977; Hung and Stark, 1977(a)), eye-movement systems(
Hung and Stark, 1977(b)), synapses( Krausz, 1975), central nervous system
(CNS)( Reits, 1975; Ho, 1973), electroretinogram (ERG)( Koblaz and Fender,

1975; Larkin, 1979; Larkin, Klein, Ogden and Fender, 1979) and manual control

in biology ( French and Butz, 1973).

e, SASSISR TS Sldemlo s o lfildeb i AL S X Mool

Beatty(1971) used the Lee-Schetzen cross-correlation method to obtain
the 1st-degree transfer functioﬁ associated with a Poisson-distributed tem-

poral light stimulus and the EEG recorded over the midline occipital cortex.

Ho (1973) calculated the kernels associated with the human visual
evoked response(VER) by recording with electrodes placed 3 cm forward from the
inion on the midline. One—hﬁndred epochs were averaged, resulting in 5 sec of
data sampled at S5msec. For flashing-diffuse-light stimulus input, the shapes

of the envelopes of the resulting first- and second-degree kernels of the
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second-degree VESP kernel model are highly convoluted. The model responses

appear to simulate the experimental responses fairly well.

Reits({1975) used a correlation technique for the noise-modulated input

analysis of visual evoked potentials recorded at 9 electrodes which are dis-

tributed in a cross, 5 verticaily from the inion to the vertex and 4 hori-

zontally, intersecting at the inion. He analyzed the cross mono- and bi-

correlation functions of the EP and deduced that the human visual system can

be separated into a number of linear and nonlinear parts. From this and other
experimental results he concluded that ¥ all components share the first linear
part, which consists of a band filter with maximal transmission in the fre-
quency range of 8-11 Hz which produces the alpha component. The output of the
half-wave rectifier branches again to two filters, one of which has a maximal
transmission near U40-50 Hz and the other has a passband from 14-25 Hz. The
output of the high frequency filter produces the early component and that of
the intermediate filter produces the late component. " His result was inconm-

plete because he did not calculate the entire time domain second order kernel.

This is necessary to fully understand the system's quadratic nonlinearity.

Sclabassi et al.(1977) used electric stimulation in a Poisson impulse

train to investigate the somatosensory evoked responses in normal subjects and

in multiple sclerosis patients. The use of functional power series to charac-

terize the somatosensory modality shows that the responses to temporally
interactive stimuli are nonlinear, decrease with increasing stimulus rate, and

degenerate in the advanced state of the disease. The kernels that they

obtained revealed a generally occlusive interaction.
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Trimble and Phillips (1978), using bandlimited Gaussian noise and

time-domain correlation technigues, obtained the first- and second-order ker-

nels for the human VESP system. They found that the first-order kernels have

a nmemory of approximately 250 msec, The second-order kernels indicated a qua-
dratic nonlinear element with a memory less than 20 msec. They found that the

nonlinear kernel played a major part in the VESP but that there were no signi-

ficant coniributions from kernels higher than second-order. Further tests of

reproducibility suggested that the kernels are reliable describing functions.
They also examined the predictive power of the kernel set for transient and
steady state responses, as well as how they were altered by changes in

stimulus parameters such as luminance and chromaticity.

Coppola (1979) used band-limited Gaussian noise to study the human

visual system. He claimed that the prediction of the VESP from the identified

kernels was quite good. Prediction of the response to sine wave modulated

light was in close agreement with the actual responses. He did not use any

mathematical method to justify the closeness of match. Neither did he present

enough kernels to verify the repeatability of his estimates.

I handled the nonlinear analysis of VESP in a different manner. First

of all, a stronger pattern stimulus was used instead of noise-modulated light.
Secondly, since Gaussian stimulus is a weak stimulus both statistically and
psychophysically, Poisson white noise was used to avoid this disadvantage.
Through a combined effect of the above two factors, kernel estimates turned

out to be more stable. HMost importantly, a large number of channels were used

to investigate the spatial distribution of these kernels. Comparisons wvere



28

then made between white-noise results with those obtained by conventional
methods due to partial-field effect. The problem of equivalent sources was
also considered. Theseare some aspects that previous investigators never

addressed.
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CHAPTER 2

THEORY OF WHITE-NOISE ANALYSIS

The theory of white-noise system analysis is in general complicated
and requires some background in statisﬁical communications and signal theory.
This chapter serves as an overview of the theory without rigorous mathematical
proofs. It starts from the concept of auto- and cross-correlation, their past
utilization in evoked-potential research, to Volterra and Wiener kernels
and functional series, Lee-Schetzen's cross-correlation method for kernel
estimation, different kinds of white noise, and finally the Poisson impulse
train, RDV( restricted diagonal Volterra ) series, and a kernel-estimation

method similar to the approach of Lee and Schetzen,

2.1 AUTO-CORRELATION AND CROSS-CORRELATION FUNCTIQON ANALYSTS

Since multidimensional cross-correlation plays an important role in
kernel estimation for identification of nonlinear systems, it is necessary to
discuss briefly the correlation methods used in systems and signal theory.
Alfhough white-noise nonlinear analysis is still a new approach in EP
research, correlation analysis has already been applied to the EEG for sone
time. Also, techniques used in conventional signal averaging can be considered

as special cases of cross-~correlation, although such terminoclogy is not used.

Auto-correlation and cross-correlation are methods of analysis which
have been developed in statistical communication theory for the study of ran-
domly varying processes, and have found wide applications in radar and commun-

ications data processing and in infrared and nuclear magnetic resonance
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spectroscopy (Whalen 1971; Becker and Farrer, 1972). Basically, the voltage-
time graph of the signal is considered as a time series, and some aspects of
its statistical behavior are examined. With appropriate limitations, the EEG
can similarly be considered as a time series, and its statistical behavior

studied by means of these techniques. -

AUTO-CORRELATION AND CROSS-CORRELATION

The cross—correlation functién is defined as

Rey(T) = E{x(t)y(t-1)}
where E{ } denotes the expected value or statistical average. This function is
dependent upon the time shift between the two signals. If ergoticity holds,
then time and ensemble averages are interchangeable. In experimental
situations, one does not usually have the statistical data necessary for

computation of ensemble averages. Thus correlation functions are computed by

time averaging. Therefore,
P

1
R.(T) = x(£)y(t=-T) = lim —— [ x(t)y(t-T)dt (2-1-1)

Xy PP p

0

where P (the period of observation) is large but not necessarily infinite.
Similarly the auto-correlation function is defined as

RXX(T) = E{x(t)x(t-T)} (2-1-2)
This function reflects the degree of time-connectedness of the same sample
function. It should be carefully noted that RXX(T) is a deterministic function
even though x(t) is random.:

Implemented on a discrete system such as a digital computer, the above

formula can be expressed as



N-m~1
1

R (m) = --=) x(n)x(n+m) (2-1-3)
XX N

n=

There are two reasons to consider the auto-correlation function of a
random signal. First, the auto-correlation function RXX(T) in its own right
provides useful information about x(t). It is a measure of both time variation
and statistical dependence. Second, by the VWiener-Kinchine theorem, the

frequency-domain description of a random signal is its power spectral density

Gxx(f) = F[RXX(T)], where F[«] indicates Fourier transform.

We can similarly define the n-th order auto-correlation function of a

signal as
Rn(Tl’ se e ,Tn) = E{X(t-Tl) X -X( t-Tn)}

In white-noise system analysis, the "whiteness" of a signal is deter-
mined by the degree to which its auto-correlation properties approximate the
ones of ideal white-noise. In the case of ideal white-noise, the auto-
correlationsof odd orders are uniformly zero, while the even-order ones are
zero everywhere but on the full~-diagonal points; where the arguments Tl""’Tn

form exhaustive pairs of identical values(Lee and Schetzen, 1965). For Gaus-

sian white-noise,

n 2 n
E{x(t-Tl)...x(t-Tn)} =< );)_ {Eé(Ti—Tj) if n is even
2 1’3'—1

0 if n is odd

where p is the power density of the Gaussian white noise.

An application of cross-correlation is the detection of the presence
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of a periodic signal buried in noise. A disadvantage of this technique is that
the signal must be known ahead of time. Stated another way, the signal cannot
be recovered; only its presence (if periodic) can be detected. For this
reason, investigators studying the VESP or any other evoked response have very
seldom used correlation function analysis in detecting periodic signals. In
the following sections, the cross-correlation method will be used to extract
signals from random stimuli and their responses buried in noise. System
kernels can be characterized by this method. This method is found to be
powerful and intuitively understandable. I foresee in the near future that

this technique will be received by more and more researchers in evoked poten-

tials.

RELATIONSHIP BETWEEN CORRELATION ANALYSIS AND FREQUENCY ANALYSIS

The results of auto-correlation and cross-correlation analysis, with
their corresponding displays in the time domain, contain information that is
theoretically equivalent to that obtained by frequency analysis as represented

in the power density spectrum for a single signal, and the cross-power density

spectrum for a pair of signals.

The choice of frequency analysis versus correlation analysis is
largely predicated on the appropriateness of the output display of the
analysis relative to the immediate physiological problem. For example, if the
specific question being asked is one of time relationships (latencies), then
correlation analysis is especially appropriate. On the other hand, if the

question is related to the presence of a specific frequency component, then
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the power density spectrum of frequency analysis is the method that gives this
type of answer explicitly. For the present study, latencies and amplitude
distributions are more important than frequency components; therefore we shall

only consider the time-domain behavior of the system.

CROSS~CORRELATION AND SIGNAL AVERAGING

The evoked potential obtained from conventional waveform averaging is
a special form of the more geﬁéral procedure of cross-correlation (Lee 1960;
Perry and Childers 1969; Whalen 1971 ; Regan 1972). It is equivalent to the

eross~correlation between a pulse train with a constant interstimulus period

and the measured EEG waveform.

Fourier analysis techniques (Milner et al. 1972) were used in conjunc=-
tion with higher frequency constant stimulation rates. The method of synchro-
nous detection has also been used (Fricker 1974; Padmos and Norren 1972). The
above method involves several periods of stimulation at various specified fre-
quencies, usually in the 10-50 Hz range. This type of signal processing is
analogous to very narrow band filtering and integration, with outputs of
amplitude and phase at each separate frequency. The phase-frequency data can
be used to determine a time delay for the frequency range tested. This is
another specialized example of cross-correlation where one waveform is the
noisy signal waveform at any stimulus frequency, and the other waveform may be
either a sinewave or a square wave at the same frequency, depending on the

particular technique used.

A1l the methods described above, conventional signal averaging,
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Fourier analysis and synchronous detection, may be regarded as extreme aspects

of cross-correlation techniques. We can now clearly see the generality of the

cross-correlation technique.
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2.2 VOLTERRA FUNCTIOWAIL SERTES

FRECHET-VOLTERRA SERIES

Frechet (1910) showed that every continuous functional F on a set of
functions x which are continuous on a finite interval (a,b) can be represented

by a power-series type functional -

b b b
F(x) = L) -l-f kl(T)X(T)dT +/[ kZ(Tl 1D )x(T )x(Ty )dT  dD
a
a a

bbb
+[j[k3(Tl,T2,T3)x(Tl)x(Tz)x(TB)dTldedT3
a a a

+ eee (2-2-1)
A functional is a function whose argument is a function and whose value is a
number. The convolution integral for linear systems,
y(t):[ h(t-T)x(T)dT
-00
is an example of a functional,

Volterra is credited with applying the concept of a functional to
expanding the input-output relationship of a nonlinear system in a power
series with functionals as terms.

For the class of systems described before, F can be expanded in a

functional power series, known as the Volterra series.

o o o™
y(t) =Z [fkn(Tl""’Tn)x(t"Tl)"'X(t'Tn)dTl"d'lh

n=0 o >

or expressed in another way,

[0} oo (0] n
y(t) =Z[.:[kn(Tl,...,Tn)Ex(t-Ti)dTi (2-2-2)
n=0 %o <

The Volterra series can be thought of as the limiting case of Taylor



series expansion of a function with multiple arguments. The Volterra func-
tionals are a generalization of convolution techniques for linear systems to

nonlinear systems which have finite memory and are time-invariant.

Bedrosian and Rice (1971,1975) showed that the Volterra series can be

expanded in a slightly different way in a suitable region of convergence.

o 1 oo o n

y(t) =Z--— i (e T T xCe-T, ATy (2-2-3)
n! i=1

n=1 0 oo
The function k (T ,...,T ) is known as the "nth-order Volterra kernel" and is
assumed to be a symmetrice function of its arguments. If it is not given in
such a form, it can be symmetrized by taking 1/n! times the sum of the kernels
obtained by permuting the arguments. The constant term (n = 0) is omitted
because we are only interested in the passive systems, while the factorial is

introduced to simplify some of the results.

Writing out the first two terms in (2-2-3) yields

y(t) =E<1(T)x(t-r)d'r

1 00 _00 »
—— - - T
.-oo-oo .
+ LA ]
from which it is seen that the leading term is the familiar response of a
linear filter and kl(T) is simply the impulse response. The resemblance of the
second term to the first suggests that the '"nth-order Volterra kernel!

kn(Tl""’Tn)’ can be viewed as a sort of 'nth-order impulse response'. This

concept is important for later discussion of the significance of the kernel



37

method in system identification.

VOLTERRA TRANSFER FUNCTION

The n-dimensional Fourier transform of the Volterra kernel leads to

similar observations., Letting

=

(£5-0008,)

n
/ k (Tl""'T Yexp[-j(w 'I‘1 oo+ W T )]d'I‘ ...dT (2-2-4)
-0

-0
and

k (Tl,...,Tn)

noo (o0}
:-f Kn(fl,...,f‘ Yexp[ j{w T1 o+ W T )]dw ...dw (2-2-5)
~00 J-C0

denote the n~dimensional Fourier transform pair, where w, = 2@« f,, and sub-
i i
stituting in (2-2-3) yields

n
y(t) = —--[[df‘ eoe dfn Kn(fl,...,fn)exp[J(kv +ouotW )t]ngX(f )
(2-2-6)

where X(f) is the Fourier transform of x(t), assuming for the moment that

X(f) exists. The Fourier transform of the output then becomes

1 1 ©
Y(f) = --= Kl(f)X(f) + —— gz(f f—f )X(f )X(f—f )df
11 21

+ _-_I K3(f f‘-f f‘ )X(f‘ YX(£, )X(f‘—f1 ~-f )df'ldf‘2

+ eee (2-2-7)
from which it is again seen that the first term is the familiar response of a

linear filter and that Kl (f) is simply the conventional linear transfer
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function, By analogy, Kl(fl""fn) can be regarded as an 'nth-order Volterra
transfer function'. The symmetry of k, assures the symmetry of Kn.

Although the results are in the form of infinite series whose terms
rapidly increase in complexity, useful approximations can be obtained by using
only the leading terms in these expansions when dealing with systems that have

only nonlinearities of low orders.

The point of the above derivatiéh is that there is a correspondence
between the Volterra kernels in the time domain and the Volterra transfer
functions in the frequency domain for nonlinear systems. This kind of sym-
metry is evident in linear systems and again revealed in nonlinear systems.

Also, it is important to understand how the multidimensional Fourier transform

plays a role in this relationship.
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2.3 HWIENER THEORY OF HNONLINEAR SYSTEM IDENTIFICATION

Norbert Wiener is considered as the single individual who above anyone
else is responsible for the conception of system theory. For it was Wiener
who, starting in the twenties and thirties, introduced a number of ideas,
concepts, and theories which collectively constitute the core of present-day
systen theory. Among his contributions, to name just a few, are his theory
of prediction and filtering, his representation of nonlinear systems in terms
of a series of Laguerre polynomials and Hermite functions, his generalized
harmonic analysis, the Paley-Wiener criterion, and the Wiener process.

It was Wiener who laid the foundation for cybernetics - the science of

comnunication and control in the animal and the machine.

Wiener developed a canonical representation of a large class of non-
linear systems and proposed its experimental determination in terms of the

systen response to Brownian motion inputs,

In much the same way that Legendre polynomials are formed to make an
orthogonal function set useful for curve fitting, so can a set of orthogonal
functionals for nonlinear system characterization be formed. This was first

done by Wiener and his work further simplified by Lee and his co-workers.

CHARACTERIZATION OF NONLTNEAR SYSTEM

Cameron and Martin (1947) and Wiener (1958) have shown that a broad

class of nonlinear systems can be characterized by input-output relationships

of the form
[o0)

y(t) = Z A X (t) | (2-3-1)

n=0
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where the Xn(t) represents products of Hermite functions of various order in
the variablés Zyy Zyseees which in turn are linearly related to u(the input)
through Laguerre functions. Note that the operations involved in this repre-
sentation are (1) linear with memory, viz., the relations between the z's and
u; (2) memory-less nonlinear, viz., the relations between the Xn and Zl’ z2,.;
and (3) linear with no memory, viz., the summations. In this connection, it
should be pointed out that the basic idea of representing a nonlinear input-
output relationship as a composition of an infinite number of (1) memory-less
nonlinear operations and (2) linear operations with memory, is by no means a
new one. It had been employed quite extensively by Volterra and Frechet near

the turn of the century.

UIENER FUNCTIONAL SERTIES AND KERHELS

As discussed before, a nonlinear analytic system can be described
through a Volterra functional expansion by introducing a set of orthogonal
functions which completely characterize the system. Wiener's functionals and
their associated kernels are constructed with respect to a Gaussian white-
noise( GWN ) input. He used a method very similar to the Gram-Schmidt orthog-
onalization procedure to make the functionals orthogonal to each other. At

each step he normalized the resulting functional.

Wiener showed that the output y(t), of an unknown nonlinear system can
be approximated by a series of functionals, Gi[hi,x(t)], of the input x(t),

where P is the constant power spectral density of the random input.

y(t) = Go[ho,x(t)] + Gl[hl’X(t)] + qz[hz,x(t)]+....
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[0 o]
- z G [h ,x(t)] (2-3-2)
n n
where
GO[hO,x(t)] = h0
o

G [h ,x(t)] =[h (T)x(t-T)dT
11 1 .

00
o« <o
G [h ,x(t)] =L,Lh (T ,T )x(t=T )x(t-T )AT 4T - fx (T,T)dT
22 2 1772 1 2771 2 2
G [h ,x(t)] fﬁh (T T,T )x(t-T )x(t—T )x(t—T )dT 4T dT
2! 1 2 3

<00 «C0 OO0 00

- 3?/— h (T T T Ix(t-T )dTidTé (2-3-3)

8 w

w

in which {hn} is the set of Wiener kernels for the nonlinear system, and {G }
n

is a complete set of orthogonal functionals.
He showed that when x(t) is Gaussian white-noise, the functionals G_,
i

are mutually orthogonal in the sense of time averages. Namely

G [h ,x(t)]JG [h ,x(£)] =0 for ixj (2-3-14)

1 1 J J

Because of orthogonality, the Wiener series can be truncated after n
functionals, giving the best nth order polynomial nonlinear approximation to
the system output in the sense of least mean square error. The Wiener kernels

h (T ,T ,...,T ) characterize a given system and allow prediction of its out-
n

put to any input x(t).

The class of nonlinear operators amenable to the Wiener technique is
the class of functionals that are Lebesque square integrable over the sample

space of realizations of Gaussian white noise signals. In other words, the
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output at time t when the input varies over all possible samples of Gaussian
white noise has a finite variance., In practice, any continuous time-invariant
nonlinear system with a finite memory and limited bandwidth can be identified

using Gaussian white noise as the-input. The kernels will be finite and con-

tinuous.
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2.4 CORRELATIQN AND TRANSFORHM METHOD FOR WIENER-KERHEL ESTIMATION

TIME DOMAIN: CORRELATION

Lee and Schetzen (1965) showed that because of orthogonality, the
various Wiener kernels could be measured by cross-correlating the system's

response with moments of the Gaussian noise input because of orthogonality,

specifically,

B (TysTypeeeeeTy) = —me—— y(£)x(t=-T)x(t=-Tp) e o0 ox(t=T))

n! P (2~4-1)

where P is the power density spectrum of the white noise x(t). It can be
obtained by

E{x(t-T)x(t=-Ty)} = P§ (T -Tp) (2-14-2)

In practice, when computing kernels, it is desirable to subtract fron
the response the contribution from lower-order kernels before cross-correla-
tion is applied. This is due to the fact that we deal with signals of finite
length for which the averages may deviate somewhat from the ones obtained in
theory (p.16Y4, Marmarelis and Marmarelis, 1978)

hn(T T ,...,Ih)

1°72
1 n-1
- BUY(8)- ) G (8)Tx(t=T Dx(T-T))..ox(t-T )}
n .
nip k=0 (2-4-3)

Therefore, the first three kernels can be obtained using

By = ELy(t)]

1
hl(T) = _;- E{[y(t)-hO]x(t—T)}
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1
T,T = wme—— B t)- h - h (T)x(t-T)dT]Ix(t=-T (t-T
h (T T ) - BIyh- /m1< x(£-T)aTTx( 6T Jx(t-T )}
2P

[0}
Integrations are replaced by summations in discrete digital computa-
tions. The actual formulas implementéd on the digital computer for zero,

first- and second-order Kernel estimation in the GAS( General Analysis System-

a software package for signal processings )are as follows:

1 A+4N--1
b= Y y(n)
U Y
(1) = et 8% - v
h T m——— x(n - y{n
1 PN p=A
1T AHN-1
h(T,T,) = ==-====- ). x(n=T )x(p-T )[y(n)-£(n)]
2 n=A
2! I
where
M
f(n) = hO +ATm§0 hl(m)x(n-m)

P = the power level of the stimulus

1A+N—1 H
=AT —— 2: }:x(n)x(n-m)
N n=A m=-H

H = the time it takes for the auto-correlation of the stimulus to go
to zero, M = the maximum time shift of interest,[&T = the sampling interval,
and N = total number of samples used in averaging.

The cross-correlation method is much simpler éomputationally because
it does not involve the cumpersome Laguerre and Hermite transformations., How-
ever, because the kernels are nmultidimensional and therefore require multi-

dimensional cross-correlations for their elucidation, the amount of necessary

data processing is still formidable. The main difficulty in the computational
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process is the calculation of the higher order correlation functions. The
amount of computation increases with the order of the length of the record,

the length to which each kernel is computed, and the order of the computed

correlation.
FREQUENCY DOMHAIN: FFT METHOD

The fast Fourier transform (FFT) algorithm has found wide application
since its rediscovery by Cooley and Tukey in 1965,

Since £he Wiener kernel theory involves multidimensional convolutions,
French and Butz (1973) thought it was possible to apply the FFT to the measure-
ment of the kernels. They showed that it is possible by substituting complex
exponéntial filters in place of Wiener's Laguerre filters. The resulting net-
work evaluates the Fourier transforms of the kernels instead of the coeffi-
cients in a Laguerre series expansion.

Such a procedure is an expression of the "duality"™ which exists in the
Fourier transform theory,
Assume that the cross-correlation is obtained by

¢YX(T) = E[y(£)x(t-T)] (2-U=h)

Since the Fourier transform of a function x(t) is

© -iwt
X(w) = Flx(£)] = J[ x(t)e dt

<0
and the inverse transform is

-1 1 ® iwt
x(t) = F [X(w)] = ——-—‘/’X(w)e dw

then the FT of the cross-correlation
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@, (W) = L (D] = PEIY(R(s-D]) = Ywi(w) (2-1-5)

Thus, to compute the cross-correlation, or the kernel hl(T)’ the steps
can be described as follows:

(1) Compute Y{(w) and X?w) via FFT.

(2) Multiply Y(w) and X’Ew) to obtain ﬁby}gw).

(3) Compute (1/P)¢§§T) = h (T) through FFT of Q&évﬂ.

Similarly, with the aid of two-dimensional Fourier transform, the
second~order kernel can be estimated as follows:

(1) Compute Yb(w) and X(w) via FFT (Yb(w) = F[y(t)-qo]).

(2) Form the product YO(wl +H, )X?w1 )X?wz).

(3) Obtain the time domain inverse of this product by FFT.

The frequency domain method is mentioned here for completeness. For

the data computed in chapter 4, only the time-~domain cross-correlation method

was used.
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2.5 QUASI-VHITE AHND NON-GAUSSIAN STIMULUS SIGNAL

One practical problem in white-noise system analysis arises from the
unrealizability of truly white signals. Real white-noise, by definition, has
infinite spectral range, infinite energy, and infinite levels of magnitude
in the time domain. Several investigators introduced and studied quasi-white
signals that approximate ideal white-noise to a determinable degree. Two such
signals are band-limited gaussian white-noise and pseudorandom signals based
on m-seguence,

The Wiener-Lee-Schetzen scheme of using Gaussian white-noise to test a
nonlinear dynamical system can be extended in two ways (Klein and Yasui, 1979;
Harmarelis V. Z., 1977a,1978 ): (1) An arbitrary non-raussian white-noise sta-
tionary signal can be used as the test stimulus. (2) An arbitrary function of
this stimulus can then be used as the analyzing function for cross—correlating

with the response to obtain the kernels characterizing the systen.

Klein and Yasui (1979) also developed a formalism to handle the most
general white-noise test stimulus. They theoretically clarified how the ker-
nels obtained with non-Gaussian stimuli are related to the basic Volterra and
Wiener kernels. They also considered the case in which the output is cross-
correlated not with the stimulus, but with a nonlinear function of the
stimulus. They developed a new set of dual-space kernels and dual-space func-
tionals which preserve orthogonality. The dual-space kernels were expanded in
terms of Volterra kernels and then related to Wiener kernels. The mathematics

involved in their derivation was complicated and will not be reproduced here.

There are many types of white-noise which are different in their
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Fig. 2.5.1 Gaussian, binary, ternary, ternary ( CSRS ) and Poisson
white-noise.
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amplitude probability distributions and their generation statisties. Binary,
ternary, and Poisson are some examples. Another example is the constant-
switching-pace symmetric random signals (CSRS - introduced and studied by
Marmarelis, V. Z.(1977a). One example of this kind of signal is a lY-level
equi-random CSRS. Figure 2.5.1. shows several types of white-noise. Each of
them has different auto-correlation functions of all orders. These lead to
different powers and different functional forms.: Among them the binary

stimulus has the maximum power, while the gaussian stimulus has the nmininum

power.
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2.6 POISSON IMPULSE TRAIN

The probability distribution of m occurrences and n-m non-occurrences
in n trials of an experiment, if the probability of a success is p and the
probability of failure is (1-p), is known as the binomial distribution.

m n-m
P(m) = C(n,n)p (1-p)

The 1limit of the binomial distribution which is of interest to us

results when n —»eo and p —>»0 in such a way that the product np = a remains

finite.
Under this condition, with m << n,

n! n n-m a/p -a
—>n and (1 -p) —> (1 -p) =-—>c¢€
(n - m)!

n a =-a
P(m) z =—(—)e

m! n
Therefore,
m -a
ae
P(m) = (2-6-1)
m!
(0]
This is known as the Poisson distribution. Note that 2: P(m) = 1 as it should.
m=0

The Poisson distribution applies when a very large number of experi-
ments is carried out, but the probability of success in each is very small, so
that "a", the expected number of success, is a finite number.

Let us assume that on the stimulus channel during an experiment, n
samples are produced. Among these n samples, the probability of occurrence of
a stimulus-event ( a flash impulse ) is p. If the probability of the stimulus

is made smaller and smaller, but the record is long enough to keep the total
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number of stimuli finite (np = a), one approaches a Poisson stimulus.

Several investigators, including MeShane (1962), Hida and Ikeda(1965),
Ogura(1972), Krausz(1975) and Kroeker(1977) have dealt with the construction
of orthogonal functionals of the Poisson process. Krausz presented a method
which is very intuitive and mathematically simple. He described a new series,
analogous to the Wiener series, referred to as the "restricted diagonal
Volterra (RDV) series". For Poisson impulse trains (where the times of
randomly occurring impulses are given by a Poisson process), the functionals
of the RDV series are orthogonal.

In order to derive an orthogonal series exbansion for the input of a
system when the system input is a Poisson train of impulses, it is first
necessary to determine the input moments of all orders. The moments of a
train of impulses take a simpler form when the train is adjusted to have zero
mean amplitude. Let x(t) denote the binary process. Krausz showed that when
x(t) is the zero mean Poisson impulse train previously defined, the
functionals, Gi[hl,x(t)], are mutually orthogonal.

MOMENTS OF THE POISSON IMPULSE TRAIN

The moments of the input to a polynomial nonlinear system determine

the form of the orthogonal expansion for its output. The Poisson impulse train

input is defined by

x(t) = lim x(rAT)
AT20
Y 2o
1
—— with probability LAT
x(rAf) = AT ’

(2-6-2)
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Continuous Binary Input
Probability = LAT

-

Dirac

L ‘} delta function

AT 0

Time

z(t) = x(t) +L

Random impulse train input.
limiting case asAT—0. (c) the input actually

delivered to a real system.

Time

(a) continuous binary
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L
1 - LAT

with probability ( 1 - LAT )

where x(t) is a zero-mean input, AT is the sampling interval and L is the

mean rate of impulses( Fig.2.6.1 ).

As AT -> 0, rAT -> t, the binary signal x(rAT) approaches a train of
impulses superimposed on a baseline of -L. The impulses in x(t) are Dirac

delta functions since they have unit area.

The mean, or first nmoment is

1 L
x(t) = 1im x(rAT) = (LAT) = ~—~———(1 = LAT) = 0 (2-6-3)
AT->0 AT (1-LAT)

The second moment, the auto-correlation of x(t) is x(t)x(t-T).
From (2-6-2), it can be proved that

J/é;(t)x(t-T)dT =L

=00
Therefore,

(x(t=T) = 0 T=o0
© T=0
Therefore, since the auto-correlation vanishes for all values of T
except at one point where it becomes infinite, and since its integral is =

finite constant, L, the auto-correlation is proportional to the Dirac delta

function § (t). Namely

x(t)x(t-T) = L&(T) | (2-6-14)
By definition, x(t) has a zero mean and values of x(tl) and x(tz) are

independent for tI# t2. Therefore for Tlﬁ Té% - #Th, the nth moment of x(t)

is
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B[x(t=T;).e.x(t=T)] = E[x(t-T;)]...E[x(t-T )] = 0

since E[x(t)] =0

The third moment x(t-T;)x(t-Tp)x(t-T3) equals zero by the independence
and zero mean properties of x(t) unless T1=Ty=Ty

It is easy to prove that

xtt) = linm x(rAT)E =

AT+ 0
And it follows by the same reasoning as above that

So we find that the integrand is a two-dimensional Dirac delta func-

tion, and the third moment is

x(t—Tl)x(t—Tz)x(t-T3) z Lé(Tl-TZ)B(Tz-T3) (2-6-5)

Finally consider the fourth moment

x(t—Tl)X(t-TZ)x(t-TB)x(t-T4)

There are three cases to consider. First, if any one of the T.'s
differs from all the others, then the average is zero by independence. The
second case is where there are two pairs of equal Ti's but not all four are

equal. There are three such sub-cases, one of which is T1=T2, T3=T4, T2¥ T3

giving

x(t=T)x(t=T,)x(t=Tg)x(t=T,) = x(£-T)x(t-T,) x(t-T3)x(t-T,)

2
L 8(T)-T,)6(T3-T,)

The other two sub-cases give permutations of the above. If all Ti's
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are equal, we get, analogous to the third moment case,

-T - x{(t- - = - - - -5~
x(t 1)x(t Tz) (t TB)X(t T4) L,B(T1 Tz)é(T2 T3)5(T3 T4) (2-6-6)

The moments of the zero-mean input x(t) are mentioned here because
they were useful in the orthogonization process of the Volterra series listed

in the following section,

ORTHOGONALIZATION OF THE VOLTERRA SERIES FOR POISSON IHMPULSE TRAIN INPUT

According to Krausz (1975), using functionals from the Volterra
series, and using the moments of x(t), the orthogonal series for the output

of the system can be expressed as follows.

y(t) = GO[hO,X(t)] + Gl[hl’X(t)] + Gz[hz,x(t)J F oeees

where
GO = hO
(0]
G, =Lh1(T)x(t-T)dT
6 =[ fh (T ,T )x(t=T )x(t=T )dT dT 6
) -l;-L;Z 0 x(t- 1)x t- 2) 197, (2-6-7)

[o+] oo
--fwhz(T{T)x(t-T)dT - LLhZ(T,T)dT

MeShane (1962) derived a similar series but in a different notation.
If z(t)-L is substituted for x(t) into the above equations, then the

functionals agree with those derived by Ogura(1972) using Charlier polynomials.

RESTRICTED DIAGONAL VOLTERRA SERIES

Lee and Schetzen demonstrated that the restriction against equal T ‘s
' 1

in the cross-correlation relation can be removed by a sequential calculation

of the kernels. But this is not possible for the above functionals because
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the even moments of zero-mean Poisson impulse train x(t) do not decompose into
sums of pairwise products of second moments as for Gaussian white noise.

Krausz proved that these difficulties can be avoided by restricting
the Ti's to be unequal in the integrations of the functionals of (2-6-7),
resulting in the series:(2-6-8) below which he showed to be ‘'eguivalent' to
the series formed by the functionals in (2-6~7). The resulting series was

Restricted Diagonal Volterra (RDV) series.

[eo]
y(t) = E:Gn[hn,x(t)] (2-6-8)
where n=0
GO = hO

o0
61 =Lh1(T)X(t-T)dT
G2 :Loo L:I?lz(Tl,Tz)x(t—Tl)X(t-TZ)dTlde

L# T2

In general,

o]
G, =f . .jmhn(Tl,...,Tn)x(t-Tl)...x(t—Tn)dTl...dTn (2-6-9)
oo 80
TieAT
CROSS-CORRELATION TO RECOVER KERNELS FOR POISSON IMPULSE TRAIN INPUTS

The RDV kernels can be found by cross-correlation in an analogous
manner to that used by Lee and Schetzen, except for the case when two or more

of the T;'s are equal. The kernels are given by

ho =Y(t)

1
B (T) = — Y(D)x(E-T)
L
1
2

21L
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In general,

B (T, Ty eee, ) = YOX(E-T))eux(t=T))  T)% T,...x T

n
n!L (2-6-10)

It is obvious that the above formula is in the same format as in (2-
4-1) except that P is now replaced by L. Equations (2-6-4) and (2-4-2) show
that the auto-correlations of the stimuli are both expressed by delta func-
tions. Thus Lee-Schetzen's formula would still be valid for a zero-mean Pois-
son impulse train input except for the restriction on equal Ti's. The VESP

kernels presented in chapter 4 were computed based on (2-6-10).
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2.7 DISCUSSIONS: ABOUT POISSON IMPULSE TRATNS AS A SYSTEM PROBING SIGHAL

For nonlinear systems, the use of a Poisson impulse train input is
analogous to the use of Gaussian white-noise for continuous input systems.
The system characterization is in terms of orthogonal series, whose kernels
are determined by the input-output cross~correlations with the random input.
Systems known to be second-order can be identified with paired impulses nore
easily than with a Poisson train. But for higher order systems, a second-order

kernel calculated from a Poisson train experiment gives the best second~-order

approximation to the system output.

For systems whose input could be either continuous or discrete, use of
the Poisson impulse train can still have some advantages over the Gaussian

white-noise method. Listed below are a few examples.

(1) The most significant advantage is increased speed in the computa-
tion of kernels., Since only the input values at discrete points where impulses
occur contribute to the cross-correlations, kernels are calculated faster than
for the continuous input case. (2) Kernels can be reasoned with intuition and
interpreted more easily when thinking of the input as a train of impulses
rather than a continuous white-noise. (3) The random impulse train input imi-
tates every possible impulse train input( pairs, triplets,...) given an infin-

ite amount of time.

The major disadvantage of Poisson impulse inputs concerns the identi-
fication times required to obtain kernel estimates whose variances are compar-

able to those obtained with GWN inputs. The estimate of the second-~ order
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kernel, hz(T1’T2)» for example, is an average over all pairs of input impulses
occurring Tl-T2 seconds apart in the Poisson train. The number of sweeps con-
tributing to the average is proportional to the number of impulses in the
input train. If the sweeps are independent, then the variance of an average
of n sweeps is proportional to 1/n. Therefore, the variance of kernel esti-

nates depends roughly inversely on the number of input impulses.

INTERPRETATTON OF KERNELS

If a system S is characterized by a second order RDV series, then the
second kernel of S describes the nonlinear effect on the response to the
second(test) impulse of a pair of impulses from the occurrence of the first

(test)impulse. This effect, known to biologistsvas facilitation or inhibition

( depending on sign ), is expressed as
£f(t) = Yé(t) - [yi(t) + yé(t)] (2-7-1)

where yl(t) is the response of S to a single impulse at time tl’ yz(t) is the
response of S to an impulse at t2, and yé(t) is the response to the pair of
impulses. When the RDV series expansion for yi(t), yz(t), and yé(t) are sub-

stituted into above formula, the facilitation is found to be
£(t) = 2hy (-t ,t-t,) (2-7-2)

Thus the second-order kernel, rb(t—tl’t-t2) gives one-half the facili-
tation at time t measured in a two impulse experiment with input impulses
occurring at times tl and t2. By performing two pulse experiments with a vari-

ety of temporal separations between the pulses, it is possible to estimate the
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second-order kernel of an unknown system, but only when the system is second-

order.

If the system has higher-order kernels than the second-order then the
facilitation is only partially described by the second kernel and (2-7-2) does
not hold. Although third-order systéms can be experimentally characterized byv
their responses to all possible triplets of imput iﬁpulses, and so on, this
method soon becomes ihefficient. So the advantages of the use of Poisson
impulse train rather than pairs, triplets or other impulse inputs are: (1) The
random input imitates every possible impulse train input given an infinite
amount of time. In finite time it statistically samples the various possibili-
ties. (2) Since the RDV series is orthogonal for Poisson train inputs, a
second-kernel gives the best second-order fit to the system output, in the
Sense of minimum mean square error. Unless the system has no higher kernels, a
second~-order model constructed from paired impulse experiments will therefore
be less accurate. (3) If a sufficiently long random impulse train experiment
is performed, it is possible to calculate higher kernels as they become needed
without changing the estimates of lower-order kernels already obtained. No new

experiments need be performed.

For experiments with the Poisson train input, a close examination of
the second-order kernel reveals that it is equal to half of the average facil-
itation T seconds after th? second impulse and averaging over all pairs (Ti—;g

seconds apart in the input train, regardless of intervening impulses. In
general then, it is necessary to consider the facilitation at all times during

a response in order to evaluate the second-order kernel for all positive Tland
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RELATIONSHIPS BETWEEN POISSON IMPULSE TRAIN AND GAUSSIAN WHITE HNOISE

A Poisson impulse train relates to Gaussian white-noise in the follow-
ing way. If a Poisson impulse train is generated at a very high mean rate and
then smoothed slightly, it will resemble a physical approximation to GUN.

That is because the amplitude distribution of this new process approaches a
Gaussian distribution when the smoothed versions of a large number of impulses

are added (by the central limit theorenm).

So it would seem that the kernel variance in a GWN experiment should
be the same as the kernel variance in a Poisson train experiment when the mean
impulse rate is so high that the Poisson impulse imitates GVWN. At such high
rates, even the longest intervals between impulses are shorter than the
response time of the system. But in order to explore the interesting range of
a system's behavior, the Poisson impulse train will normally have a much
slowver mean rate than the rates that imitate GWN. Since the kernel variances
depend on the total number of impulses, it follows that identification may
take longer with Poisson impulse train input then with GWN. This nevertheless

is offset by the fact that the Poisson impulse train has a stronger power than

GUWN.

Like the Wiener theory, the theory of nonlinear systems identification

using Poisson impulse frains can readily be extended to multi-input systems.

VOLTERRA, UWIEHER AHD RDV SERTIES REPRESENTATION
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The Volterra series is equivalent to the Wiener series, in the sense
that they both span the same function space. However, the Wiener kernels
depend on the power level of the G.W.N. with which they have been estimated.
The specific value of the power level determines the region of orthogonality
of the Wiener G-functionals. Therefore, a system is completely described
either by the set of Volterra kernels, or by the set of the Wiener kernels
plus the corresponding power level P. Clearly, the overall model given by the
Wiener series is independent of Py however, both the individual Wiener kernels
and the G-functionals depend on P. The Volterra kernels, on the other hand,

must be thought of as a set of invariant characteristics of the system.

It must be emphasized that, in practice, we usually have to truncate
the Wiener series and, consequently, the obtained model depends on P. This
dependence on P is explicable in the sense that it determines the range of the

stimulus values within which the corresponding Wiener series is orthogonal.

Now suppose an unknown system S can be stimulated with either GWN or a
train of impulses. What will be the relation between Wiener series and the two
RDV series and their respective sets of kernels? The Wiener series differs
from (2-6-8) in both its functionals and its kernels. If S is approximated by
both an nth order VWiener series and a series (2~-6-8) then the output of Wiener
series expansion to a Poisson impulse train input will be unequal to the out-
put of (2-6-8) for the same input. The reason is that the Wiener series is
the best nth order fit to tﬁe response of S to GWN, while (2-6-8) is the best
fit to the Poisson impulse train response. But in the unlikely event that S

is actually an nth order polynomial nonlinear system, the output of both
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Wiener functional series and (2-6-8) to a Poisson impulse train nust agree.
It is then possible to write down the relation between the Wiener kernels and

the kernels in (2-6-8).
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CHAPTER 3

DATA ACQUISITION AND IHSTRUMENTATION

3.1 EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig. 3.1.1. 4 double
Faraday cage was used to reduce electromagnetic interference and for sound
isclation. A xenon flash unit was placed outside the screened room. The
flash stirmulus passed through a small hole in the wall of the screened room.

The flash unit was triggered at random intervals determined by a random inter-

val generator.

The data collection system consisted of a 128 channel, 100 kHz nulti-~
plexer, an A/D converter and a dual buffered digital tape recording system.
Data were stored on standard 9-channel 800 b.p.i. digital tapes which are
readable by any of the digital computers on campus for further data analysis.
The data were sampled at 4 msec intervals, yielding a sampling frequency of
250 Bz, Continuous digital recordings were used for each channel. Acquired

data included ground, average-reference, standard-waveform synchronization and

calibration signal, a record of the random impulse train stimulus and active

brain-wave channels,

A custom-designed multichannel CRT monitor was used to display all

electrode channels during experimental sessions. Detached, noisy, and

unstable electrodes could be easily detected during the session by the exper-

imenter. Abnormal potential drifts due to body movements, eye blinks and

movements could also be noticed and corrective measures taken. A four-channel

real-tine signal averager (Nuclear Data lModel ND-801 Enhancetron) was used to
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Fig. 3.1.1 General experimental setup.
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display averaged evoked potentials from selected channels on a storage oscil-

loscope. This enabled the experimenters to assess the repeatability of evoked

potentials from different runs and to estimate or ascertain the length of time

required to extract reliable responses for a fixed probability of stimulus

presentation.

An experimental session consisted of three 3.5 minute runs using a

given stimulus. The repetitions allowed estimation of the reproducibility of

the evoked potentials. Any variation in stimulus parameters was considered to

generate a unique stimulus. These stimulus parameters were left or right

field checkerboard patterns with or without psychophysically matched right or

left background illumination for controlling stray light.
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3.2 SIGHAL AMPLIFTICATION SYSTEM

Physiological signals acquired by either electrodes or transducers are
typically below 10mv in amplitude and nust therefore be amplified to be compa-
tible with display devices and common data acquisition systems. This necessi-

tates the usage of physiological amplifiers. A physiological amplifier usu-

ally has a high input impedance and a low output impedance and provides either

a fixed or a variable voltage gain. Among different kinds of physiclogical

amplifiers, the design criteria of a multichannel EEG amplifier system are

most eritical.

In almost all physiological measurement situations, the physiological

signal of interest is accompanied by an interference signal. The interference

is typically 60 Hz due to electrically coupled or magnetically induced

interference from the line supply. Measures such as using a screened room are

very helpful in reducing electromagnetic interference. Differential anplifi-

cation provides another level of noise rejection. In EEG or EP research it is

a common practice to use a differential amplifier to reject the interference

signal and to magnify the desired physiological signal. The desired signal of

interest that appears between the two input terminals of the differential

anplifier is referred to as the 'differential signal'. The interference sig-

nal that appears between both inputs of the differential amplifier and ground

is referred to as the 'common mode signal'. Common mode rejection ratio

(CHRR) is defined as the ratio between the amplitude of the common mode signal
and the amplitude of an equivalent differential signal that would produce the

same output from the amplifier. This common mode rejection ratio of an



amplifier is a quantitative measure of the ability of an amplifier to reject

comnon mode signals. Usually, a high CHRR is desired,

- MULTICHANNEL AMPLIFIER SYSTEM

A custom-designed multichannel amplifier system was constructed to

provide appropriate amplification and referencing for the EEG signals on each

of the (40) electrodes. The inherent interaction in a multichannel EEG system

operating at high gains and using the same reference in all channels is a

major design and implementation problem, Stability is the first requirement

for the system. Amplifier cross-talk must be very low, less than 40db at 100

Hz The amplifiers must have high gain (10,000 to 100,000), high common mode

rejection ratio , high input impedance (greater than 10 at 100 Hz), and a

roughly uniform bandpass that covers the desired signal frequency range. In

the system used, dual-FET input instrumentation amplifiers constitute the
front-end preamplifier stage. They provide high input impedance, have a CHRR

with a 20k source imbalance of greater than 60 dB in the frequency range of

interest, have an adequate linear frequency response. These amplifiers pro-

vide the first stage of amplification. The system provides a switch between

monopolar and average reference., High and low-pass filters are also included

for signal filtering and amplification. A variable gain stage enables chang-

ing the gain of this stage, and therefore, of the whole system. Opto-isolation
is also included for subjects' protection from electric shock. The entire
low-pass filtering system is switchable to one of three upper 3dB points: 30,
60, or 90 Hz. The overall gain of each amplifier was set at 45000. The data

acguisition system provides us with another stage of amplification. Therefore
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in conversion of units for evoked potential signals, both were taken into

account,
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3.3 ELECTRODE REFEREHNCTHG

In recording the VESP, one determines the algebraic difference in
potential between two electrodes, an active electrode and an inactive or

reference electrode. Ideally, the active electrode picks up neural signals

plus other potentials ( muscle, interference and artifact) while the inactive
electrode is picking up all potentials except neural signals, The differential
result of this ideal situation is a VESP that reflects solely the neural

activity of a specfied region of the brain since all other potentials would be
In

comion to both electrodes and therefore not present in the final waveform.

practice, it is difficult to prove that a truly inactive reference exists.

Therefore in EEG, we desire to find a reference which is relatively

indifferent to neural activities resulting from stimulus occurrence. The com-

mon mode rejection property of the amplifiers rejects undesired physiological
signals from remote sources such as electrocardiograms and 60 cycle power-line
noise, but one must optimize the tradeoff between proximity of active and
reference electrodes ( to minimize common mode noise ) and distance ( to

ensure indifference of reference to active signal ).

Honopolar, bipolar, and average referencing are the three usually used

reference schemes in EEG or EP research. Monopolar referencing refers to any

condition in which one electrode is located over an active region and the
second (reference) electrode is located in an inactive region such as the ear-
lobe or the mastoid. Bipolér referencing refers to the condition in whieh two
electrodes are placed over active areas, and the resulting waveform reflects

the difference between these two regions., Average-referencing refers to the
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condition in which the average of the active electrodes is used as the refer-

ence. The relative merits and disadvantages of these three reference schemes

have been discussed by several researchers (Csselton, 1965; Goldman, 1950;

Offner, 1950; Darcey, 1979). Average referencing was used as the electrode

reference scheme for forty-channel recording in this thesis because the schene
is a conmpronise between the competing problem of noise rejection and reference

indifference (Darcey's thesis). Also, negative feedback used in average

reference helps to stabilize nultichannel amplifier systems (Ary, 1977).
Without this feedback, high-gain amplifier systems will have a greater ten-

dency to oscillate or otherwise become unstable.

This average referencing method can only be used when a large number
of electrodes is applied, since it is based on the assumption that the

activity which gives rise to the scalp potentials involves electronic charges

which sum to a constant. Recall the Gauss law, which states that the sum of

potentials over a closed surface bounding a fixed number of charges is some

constant. This method can thus only be exploited when the recording method

uses enough electrodes so that the integral of the potential over a closed
surface can be approximated. This is another reason that this method was used

for the series of forty-channel experiments performed(section 4.2). The sin-

gle (monopolar) reference scheme was used for the series of five-channel

experiments (section 4.1) because of the small number of electrodes used.
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3.4 ELECTRODE, ELECTRODE HELMET AND ELECTRODE LAYOUT

Custom~fitted plexiglass helmets were constructed for each subject and
were used to support the electirodes and to facilitate their rapid and repeat-
able placement in spherical coordi- nates. The electrodes were laid out at 15
degree spacing over the surface of the sphere which best approximated the back
of the subject's head, The center and radius of the sphere were determined by

using a center-finding device, similar to that used by a machinist in conjunc-

tion with the plexiglass mold of the subject's head. Electrode positions

ranged from 15 degrees below the inion to 135 degrees above the inion and from
75 degrees left of the vertical plane through the center of the sphere to 75

degrees right of the plane. Angles measured ear~to-ear were designated nega-

tive towards the left ear and positive towards the right ear. Angles measured

along the midline were designated zero at the inion level and positive above.
Inion, nasion, and vertex were used as landmarks of the helmets for accurate

and repeatable placement. The helmet was drilled with a 17mm diameter hole at

each electrode location. The helmet was applied and strapped under the

subject's chin, then the hair was parted through each hole in the helmet and

the scalp prepared following conventional techniques. HP Redux Paste was used

as an abrasive to reduce skin resistance. A rubber grommet with a 4.5 mm cen-

tral hole was then plugged into each hole in the helmet. The electrodes are

brass cylinders 5 mm in diameter and 15 mm long with one cupped-end. The

cylinders are silver plated and chlorided. An electrode was pressed through
the hole in each grommet until it seated against the head in a bead of elec-
trode paste. To increase conductivity between electrode and scalp, Type EC-2

electrode paste was usually used. A Grass lMHodel EZM1D Electrode Impedance
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Fig.3.4.1- Equiangular electrode layout (15° spacing)
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lHeter was used to measure inmpedance of each electrode after it was applied. A

reading below 20 k was considered as acceptable.
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3.5 STIMULUS PRESENTATIOH

XENON FLASH
A xenon fash unit (Strobex model #136 with a model #70 head, Chadwick-
Helmuth Co., Inc.) was used for presenting a rapid random flash stinulus

through a checkerboard pattern in a Maxwellian view. In general, xenon flash

tubes can be used for continuous operation (arcs) or for periodic/aperiodic

flashing. Randomized trigger pulses, from a random interval generator, were

fed to the trigger circuitry in the flash unit., It was verified that the

light flux did not vary from flash to flash, and that the mean light flux did

not vary with frequency. Thus identical luminance effects in each stimulus

presentation were guaranteed. ‘It is known that very short xenon flashes

presented on a background of low adaptation level are likely to excite scoto-
pic as well as photopic mechanisms. Using a small, bright field, the area of

the retina that is directly illuminated responds photopically, but the rest

of the retina will adapt and respond to the scattered light scotopically. The

scotopic response from the scatter could be added to the photopic part of the

evoked potentials.

The evoked response to the clicks which accompany xenon flashes was

suppressed by playing a radio during experimental sessions to mask the sound

of the strobes. The screened room also provided partial effect of sound

proofing.

HAXWELLTIAN VIEUING SYSTEM

The viewing system had two optically superimposed channels which could
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be used singly or be exchanged with a switching time of 3 ms. The switching

could be accomplished by two linear motion transducers (C1,C2) driven in

anti-phase. The transducers moved knife-edges over 1mm pinholes (PH). Using

collomating lenses (L), each channel could produce a beam of parallel light
incident on separate slides (S1,S2) which were mounted in x-y movements for
alignment purposes. The two images could be superimposed by a pellicle beam-

splitter (BS2) and presented in Maxwellian view at optical infinity to the

right eye of the subject by use of an intervening lens (LM). The intensities

of the two beams could be adjusted using iris diaphragms (ID1,ID2) and neutral

density filters (F1,F2). 1In the experiments carried out for this research,

one channel was used for flashing half-field pattern. Another channel pro-
vided the opposite half-field with psychophysically matched luminance as

stray-light control for some experiments. A Gamma Scientific (model 2000)

telephotometer was used to measure the luminance of the matching field. The

entire pattern was viewed through a red Wratten filter #25(F3). The channel

in use carried a fixation target and a checkerboard pattern ( 10 min arc

checksize ). The other channel carried a similar fixation target. The two

channels were optically aligned. Luminance balance was also periodically

checked psychophysically by adjusting the background light beam for a bright-

ness that matched with the average flash intensity. The stimulus was masked

so that it occupied the left or right half of a 20 degree circular area. The

fixation mark was at the center of the circle.



CHAPTER 4

A

EXPERIMENTAL DATA ANALYSIS AND IITERPRETATION

4.1 FEIRST ORDER KERNELS

A series of preliminary experiments was performed to evaluate and

ascertain various optimal experimental parameters before the final experiments

nentioned in this thesis. These parameters included the optimal time-length

per run, probability of stimulus, flash intensity, suitable background lumi-

nance, ete., The experiences gained from those early experimental sessions

brought about the eventual fruition of this research.

There are two major groups of experiments performed and results

presented in this thesis, The first group was done by using five electrodes

in a row on four subjects (Fig.4.1.0). The purpose was to compare kernels

computed from random impulse train inputs with results obtained from conven-

tional signal averaging under half-field pattern stimulation(Darcey, 1979).

Another purpose was to compare intra-subject variability. For the first set

of experiments, a left-half field stimulus ( 10 minute checks, 10 degree field

) was viewed by all the subjects through a Maxwellian view with matching

right-half field of subjectively equal luminance to reduce stray-light effect.

The probability was fixed at 12.5%. Three runs were usually done for each

experiment for studying reproducibility of the signals. The second group of

experiments consisted of a series of forty-channel ones done on one subject,
particularly, subject 1. The first-order kernels obtained from the first set
of experiments will be introduced and discussed in this section. The results

from the second set of experiments will be displayed in equipotential-map



Fig. 4.1.0.
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format, to be introduced and discussed in the second section of this chapter.

SIGHAL PROCESSING METHODS FOR KERNEL COMPUTATION

Following an experimental session, the recorded data on magnetic tapes
were taken to the IBM 370, VAX 11-780 or PDP 11/45 computer for analysis
depending on the set-up conditions of the programs, the number of channels

used and availability of the systems. Data-processing software was written

for various purposes on these systems. For these experiments with small

nunber of electrodes, the GAS (General Analysis System) signal processin
package on PDP 11/45 was usually used. Correlation, FFT, convolution, kernel
computation, and other signal processing operations can be performed on this

systen. The data on magnetic tape were routinely first transcribed to 2L-

negabyte Diva disks which served as the primary data storage device. The

CHARH program is the first analysis step. It demultiplexed the channels and

converted the data from eight-bit binary format into floating-point numbers
for further processing. One channel in one run of experiment usually took up
650 kilobytes of storage space. Therefore, large-capacity storage devices
were necessary in this kind of analysis. Fig. 4.1.1. shows three channels of
EEG response and their stimuls channel. The evoked potentials are in general

so small and overwhelmed by EEG that they can not be discerned by human eyes

at all if signal-extraction operation is not performed.

Fig. 4.1.2. shows tﬁe general flow-chart of signal-processings for the

computation of first- and second-order kernels. CHARM, XYLIN, ... are names of

programs for the series of operations done on the data. Following CHARM, the
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Fig. 4.1.2. The flow-chart of signal processings for first- and

second-order kernels,
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second step was to condition the stimulus and response (EEG) channels. The

stimulus channel had to be rescaled, mean removed, and base-line nocise

cleared(Fig., 4.1.4 shows the unprocessed and processed stimulus channel).

High-pass filtering at 2 Hz was done on all of the EEG channels. Also, means

of the response channels wvere removed. These signal-conditioning steps were

performed before correlation was done, Cross-correlation between processed

EEG channels with the processed stimulus was done in the KERH program. This
correlation procedure generated nultiple traces of first order kernels ( as
well as second-order kernels ) as a function of time from multiple scalp loca-~

tions. In essence, correlation is a signal-to-noise enhancenent by summing up

weak but correlated signals from uncorrelated background (ongoing EEG,

interference ete.).

To ensure that the stimulus was white, auto-correlation was often done

on the processed stimulus channel., Fig. 4.1.3 shows this function in one

experiment. An impulse of predicted height and tolerable base-line fluctua-

tions assured that the stimulus was close to white-noise in behaviour.

TEST OF STATIONARITY OF EEG

I have tested the stationarity of the EEG by using a program on the
GAS system which tests the stationarity of signals. This program performs the
following operations: (1) The record was divided into a specified number of
segnents of equal length. (?) Mean and variance were computed on each segnment.
(3) The median of each statistic was found. (4) For each statistic, the number

of runs above and below the mean for that statistic was found. (5) The number

of runs was compared with an internal table to determine whether the signal
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cross-correlation after base-line noise removal, mean removal,

and rescaling.



85

Fig. 4.1.5 Probability distribution function of EEG amplitude for

one experimental run from subject 2.
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vas acceptably stationary. The acceptance criterion was such that 95% of all

perfectly stationary signals would be judged stationary. This test was

applied to three experimental runs. For a typical three-and-a-half minute

run, over 5000 samples were tested in each segment. Usually one experimental

run was divided into 10 segments. The results indicated that they were all

stationary within the 95% acceptance criterion.

Fig. 4.1.5 shows the histogram done on one experimental run on subject
3. This amplitude distribution function of the EEG shows that the EEG is

basically Gaussian in amplitude distribution which confirms the discussions in

section 3.2.

Fig. 4.1.0. shows the electrode~map for the series of five~electrode

experiments done on the subjects. All the electrodes were placed on the scalp

with the support of the helmets strapped on the subjects' heads. The

electrode~helnets facilitated repeatable placements of these electrodes on

predeternined coordinate locations. The electrodes were placed in a row 15

degrees above the inion plane. The reference and ground locations were on the

midline as indicated in the figure.

The magnitudes of the first-order kernels can be obtained by estimat-

ing the amplitudes of the peaks and valleys of the waveforms. Take Fig.

4,1.6. for example. Four traces of first-order kernels are shown for elec-

trodes 1, 2, 4 and 5. The horizontal axis indicates time in second. The

numbers in front and after TIME(SEC) indicate the starting and ending time ( O

and 0.4 sec ). For the first trace(electrode 1) of waveform, there are 15 (-
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12 to 3) units from bottom to top. The same applies to the second trace

(electrode 2, ~9 to 6), the third and the fourth trace. Since electrode 1

spans about 3 units and one unit is 0.320 uv, it is easy to estimate that the

first-order kernel is about 1 uv in magnitude.

Starting fron Fig. 4.1.6, a series of the first-order kernels from

electrodes 1, 2, 4, and 5 for all four subjects will be shown. Electrodes 1

and 2 were placed on the subjects' left hemisphere. Electrodes 4 and 5 were

on the right as shown in Fig. 4.1.0. Using a left-half patterned field,

polarity reversal( or less distinet phase shift in some subjects) was reported
for the two major peaks(lakanmura and Biersdorf, 1971; Darcey, 1979) by using
conventional averaging. Darcey et al(1980) showed this property nost clearly
in their spatiotemporal equipotential maps. They established that the mapping
between the visual field and the visual cortex could be reflected in the

potential distribution and the results also interpretable in terms of

equivalent dipole sources. The well-known intersubject variability in the

calcarine cortex(Brindley, 1972) may account for the lack of total polarity

reversal in sone subjects. Although white-noise was used, this property was

confirmed in all four subjects. This observation revealed the fact that

first-order kernels possess some of the important features which are obtain-

able from conventional signal averaging.

For subject 1 ( Fig. 4.1.6 ), phase shift can be seen starting at the
first major negative peak(72 nmsec) for electrodes 1, 2, 4 and the first major

positive peak for channel 5. This shift extends to around 300 mseec. At around

200 msec, polarity reversal can be seen. Fig. 4.1.7 shows the results from
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three runs for electrode 3. The high degree of reproducibility of the first-

order kernels is clearly seen here., Subject 2 shows phase-shift and reversal

from around T0 msec to 200 mseé(Fig. 4.1.8). A distinect pattern of left-right

reversal in polarity is observed for subject 3( Figs.4.1.9 and 4.1.10). Fig.
4.1.10 is the overplotted version of Fig.4.1.9. with a 2.5 times magnifica-

tion. The polarity-reversal is also noticeable in subject 4 (Fig.4.1.11).

The stationarity of the VESP system under study can be assessed by
comparing the first-order kernels from several runs of the same or different
Habituation, drowsiness, and boredom are several causes of non-

experiments.

stationarity. Since all of the runs in the present study were done in 3.5
ninutes, the stationarity of the subjects could in general be better main-
tained in comparison with the same experimental situations performed under

conventional averaging. The first-order kernels are generally highly reprodu-

cible and stationary for all subjects.

Since the first-order kernels can be considered as a special form of
averaged evoked potentials, the interpretations of these kernels can follow
conventional methods used in evoked potentials. First order kernels are func-
tions of time, therefore implicit-times(latencies) and amplitude measurements

of prominent peaks and valleys are valid criteria for determining the timing

and fluctuations of underlying intracranial activities.

It is now generally:known that the waveform, the timing of each peak
and trough, and the duration of evoked potentials are all uniquely related to

a large number of conditions. Any change in stimulus parameter, in form,
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color, luminance etc. may influence the waveform to a significant extent., In

controlled situations, EP can be reproducible to a certain extent. The

intrasubject variability can also be reduced in a well-planned and controlled
situation. It is this reproducibility that enables us to compare data from

‘different experimental runs among different subjects and to infer their phy-

siological significance,

The first-order kernels shown in the above figures indicate that they

possess most of the basic features as seen in conventionally averaged evoked

potentials. The latencies of the major peaks are about the same. The distri-

bution of the potentials reflects effects due to half field stimulation. They

in general display a high degree of stability in waveforms from different

runs. DBecause of seemingly improved signal-to-noise ratio, early peaks are
clearly recognizable and repeatable. This feature may be utilized to investi-
gate in-depth sources such as lateral geniculate nucleus( Chen and Ary, 1979).
Because of the high degree of randomness of the stimulus, alpha activities

were also rarely observed in the first-order kernels. It seems that the

stimulus has better effect in removing alpha activities.

A final reminder is given here for the stimulus used in this study.
The somewhat unfamiliar feature of the random flashed checkerboard procedure
described here is that the stimuli have interflash intervals which are vari-

able in a pseudorandom manner; they may vary in specified increments from a

particular minimum time to a relatively long time. As a typical example, the

pinimum interflash intervals may be 4 msec, while other intervals may be 8,

12, 1€,...msec. The cross-correlation output wzveforms ( first order kernels)



96

nay be viewed as equivalent VESP waveforms in which the peak and valley values

provide measures of the amplitudes of the VESP.

Using a sampling interval of U4 msec and a probability of stimulus
occurrence at say, 12.5%, over 6000 repetitions of stimuli can be presented to
the subjects in a typical three-and-a-half ninute run. If conventional signal
averaging is used, assuming an average interstimulus interval of 500 nsec, it
would take at least 50 minuteS to attain the same number of repetitions of
the stimuli. Note that in general, the potentials evoked by such rapid

stimuli are smaller in amplitude compared with those obtained from the conven-

tional methods which allow the system to return to its resting state.

If a random impulse train is used as the reference waveform { whose
spectrunm covers a very broad range ) then the cross-correlation process will
not attenuate the high frequency contents of the evoked evoked responses.
This is particularly important if we are interested in early peaks of short

durations that are from LGN and other midbrain structures.

The major advantage in using a white noise stimulus over conventional

averaging is the greatly reduced experimental time. A nmuch higher informa-

tional rate( higher stimulus presentation rate ) can be attained by using

white noise. This greatly reduces the burden on the subject. Also in gen-

eral, the shorter the experimental time, the more likely the system would

behave as a time-invariant one. Using this method experimental time usually

can be reduced ten times. Another advantage lies in the intrinsic nature of

the stimulus. This method produces the response to rapidly presented stimuli,
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and thus provides an additional parameter for estimation of visual function.
In particular, the effect of adaptation due to previous stinulus of very short

interval will be discusséd in greater detail in the section of second-~-order

kernels.



4.2 ROUIPOTEMTIAL APS

s M

FEG and EP investigators have been interested in the surface distri-

bution of the electrical potentials of the brain even before digital computers

were in general use(reviewed by Petsche, 1973). In order to visualize the

salient features from nultichannel EEG or EP measurenents, number-level plots,
contour maps of isopotential lines for single time-frame, spatio-tenmporal maps
for consecutive sampiing times ( Kavanagh et al, 1978; Darcey, 1979; Darcey et
al, 1980 a,b,c), BEAM ( Brain Electrical Activity liaps - Duffy et al., 1979 ),

and dot-density topograms(Dubinsky and Barlow, 1980) have been used ang

reported by other researchers. From such maps, the features of the putative

intracranial sources are better revealed. Effects of changes in experimental

variables can be detected more easily.

Spatiotemporal equipotential maps will be used as the method for

displaying a large number of channels of first-order kernels in this thesis.

Fig. #4.2.A shows how these spatiotemporal maps are made. Usually, the average

of results from several runs of an experiment under the same experimental con-
dition is plotted. For each time frame, equipotential contour lines computed
by an interpolating routine are plotted. This mapping mechanism is a

transformation of the 40 traces of averaged first-order kernels into a
sequence of eguipotential maps at 4 msec intervals. The crosses show the sites
of the electrodes. Dotted regions are negative. Fig. 4.2.B shows the top and
back view of electrode layoﬁt for subject 1. Fig. 4.2.1 shows the back-views
of these maps. Not all 40 electrodes are shown since those over the frontal

regions of the scalp are out of sight in the back view. For completeness, the
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Fig. 4.2.B. Electrode Layout. Top and back view.
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Channel 27

Channel 28

Four traces 6f first order kernels from four selected

scalp locations. The high degree of reproducibility of three
experimental runs is clearly seen. The early peaks overlap with
each other and are highly repeatable. They show most clearly in the

parietal, close to the midline region.

Fig. 4.2.¢C
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top views of these maps are shown in Fig. 4.2.2. These maps enphasize the

spatial distribution of the first-order kernels. Information in the time-

domain can be obtained by inspecting a consecutive sequence of these plots.
The stability and reliability of the spatial distribution of the first-order

kernels from each individual subject were in general assessed by computer

graphics on a Tektronix CRT graphies terninal. Prestinulus values in egui-

potential maps were good estimations of inherent noise level in responses and

the causality of the system.

The data shown in this section were from subject 1, under left-half and

right-half field flashed checkerboard stimulation. These time series of equi-

potential maps were used to capture snapshots of the spatial potential distri-

bution at each time sample. They provided a better way of conprehending spa-
tial relationship among electrodes than by direct inspection of first-order-
kernel waveforms separately. They made interpretations of underlying brain

sources easier. A series of these maps in effect, is a concise display of the
complete spatio-temporal course of scalp EP activities. Fig. 4.2.1. shows the

equipotential map series of 40 channels of first-order kernels for right-half

field stimulation (subject 1). Fig.lt.2.2. shows the top view of the same

series. Fig. 4.2.3. shows the equipotential map series for left-half field

stimulation for the same subject. Fig.4.2.4. shows the same results from top
view. When inspecting these maps, it is important to focus attention on iden-

tifiable features from one time frame to another. The responses are plotted

here starting from 15 samples(60 msec) before the stimulus to 45 samples (180

msec) after. A glimpse of the responses reveals that there is no major



activity before the occurrence of stimulus. The first sign of coherent

activity occurs at 48 msec in Fig.4.2.1. Potential distribution begins to show
dipole activity starting at around 64 msec. At 92 msec, the distribution is
clealy a polarized one with the positive region shown in left hemisphere.

Then a different phenomenon appears; at 100 msec the contours of the
peak(positive region) starts to nmigrate across the back of the head from left
to right. The potential distribution that was seen at 92 msec is completely
reversed by 124 msec. Starting from 128 msec the valley nigrates from the
left to the right across the head. There is a high degree of similarity
between this series of equipotential maps with the results obtained conven-

tionally in terms of the latencies of the major peaks, their polarized distri-

bution, and the migrational phenomenon observed.

Fig.4.2.3 shows the result to left-half field stimulation. There are
no major activities before 60 msec. At 96 msec, a distinct left-right polarity
is observed with the positive region on the right hemisphere. Starting from

108 msec the valley starts to migrate from left to right across the back of

the head. Throughout the whole course, major activities are observed in the

right hemisphere.

An optional step in data analysis for first-order kernels was to make
reasonable guesses for the source parameters and to peform the source locali-
zation routine to éhoose source parameters whose potential distribution resem-
bles the experimental maps ﬁost in a least-square sense. This has been done
for selected times after stimulus for some experiments. The results basically

agreed with those from other investigators using conventional signal



104

averaging( Kavanagh,1978; Darcey, 1979).

Darcey et al(1980) suggested that the VESP distributions are inter-

pretable as a combined effect of two schools of thoughts. One school( Lehmann

et al, 1969) concentrates on the stability of the potential distributions; it

views the head as a volume conductor with spatially stable current sources and

assumes that the distribution of the scalp potentials is a function of the

strength, location and orientation of the sources. The other school(Childers

et al, 1973) concentrates on the change in the potential distributions; it

views the movement of potential hills and valleys as a smooth process which

reflects the neural propagation of activity in the underlying superficial cor-

tex., Darcey et al speculated that neural propagation as postulated by the

latter theory triggers activity in localized populations of neurons, which

become the stable sources of the former theory.

When the first-order kernels are studied as time-series of eguipoten-

tail nmaps, it is obvious that the hills and valleys move over the head

(Fig.4.2.1. to Fig.4.2.4). Recalling the connectivity of the geniculo-striate

pathway, this movement might be equated with active propagation along this

pathway. The hills and valleys of the equipotential maps of the first-order

kernels follow approximately the same paths over the head as the results

obtained by using conventional averaging. The first-order kernels on nany

electrodes are highly correlated in space. This is further evidence for the

notion that these evoked poﬁentials are volune-conducted electromagnetic field
effects arising from a small number of electric sources at some depth in the

head. The amplitude rises and falls in intervals then changes to a new
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configuration in a relatively short interval. The figures show that this is a
general principle for the major peaks of the first-order kernels. This
behaviour was noted in the study by Daﬁcey et al(1980a,b) and the study by
Lehmann and Skrandies(1979) using conventional averaging. The nost plausible
explanation for stably shaped potential distributions varying in magnitude is
a group of generators of fixed position and orientation that vary in nmagnitude
with time. Long term stability interrupted by sudden changes may be indica-
tive of relatively slow synaptodendritic proceséing in one area of the brain

followed by rapid axonal transmission to another area.

The equipotential maps for first-order kernels under left- and right-
half field pattern stimulation are in many aspects directly comparable with
results obtained by conventional signal averaging. This is further evidence
that the first-order kernels can be used as an alternative way for displaying
prominent features due to partial-field stimulation. The main difference
between this approach and the conventional approach is the greatly reduced

experimental time to obtain the equipotential maps of reasonable signal~to-

noise ratio. Because of improved signal-to-noise ratio, equipotential maps

display the potential distribution of early peaks with greater clarity. Some

of the early peaks display polarized potential distributions which make
dipole-fitting easier(one example, 48 msec in Fig. 4.,2.1). This makes it pos-

sible for people to investigate in-depth sources such as LGN and other mid-

brain structures (Chen and Ary, 1979).
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Fig. 4.2.1. Equipotential map series of 40 channels of first order
kernels for right half field stimulation.
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Fig. 4.2.1. (cqntinued)
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Fig. 4.2.1. (continued)
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Fig. 4.2.2. Equipotential map series for 40 channels of first order
kernels ( top view, right half field stimulation ).
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Fig. 4.2.2. (continued)
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Fig. 4.2.2. (continued)
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Fig. 4.2.3. Equipotential map series for 40 channels of first order
kernels (back view, left half field stimulation).
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Fig. 4.2.3. (continued)



Fig. 4.2.3. (continued)
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Fig. 4.2.4. Equipotential maps series for 40 channels of first

order kernels (top view), left half field stimulation.
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Fig. 4.2.4. (continued)
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4.3 LOCALIZATION OF DEEP SOQURCES

It is often assunmed that scalp-recorded EEG or evoked potential sig-
nalsvrepresent bioelectric activity which is generated by sources lying
imnediately below or in very close proximity to the recording site. However, a
body of experimental and clinical evidence does support the contention that

deep subcortical sources can contribute to scalp potential recordings.

From an interpretation standpoint, it is of some importance to under-
stand the extent to which the activity of such distant sources is reflected at
the scalp. If significant contribution is possible, distant sources must be

viewed as latent noise generators vhich might serve to contaminate signals

arising from local cortical structures, especially when we are investigating

cerebral activities, or localizing cortical sources. Equally important is the

proposition that if distant sources can be recorded at the scalp, it should be
feasible to develop recording techniques which yield information about
thalamic, brainstem, or other in-depth structures. Such information will
enable us to trace the route of signal processing in our visual, auditory,

somatosensory, olfactory and any other neural modalities which would generate

brain activities.

Theoretically, superficial as well as in-depth sources can generate
electric field distributions on the scalp according to volume-conduction
theory. In a recent study by Hosek(1979), scalp and cortical potential due to
implanted, dipole current sources were measured in monkey. A four region
spherical model of the head was developed, and scalp potentials due to

theoretical radial dipoles were computed and compared with experimental
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results, Dipole source locations were chosen to correspond to points along

the somatosensory projection pathways to permit comparison of findings with
clinical cortical and scalp evoked potential records., Data yielded by the
theoretical head model compare well with those obtained experimentally. The

results suggest that depth cerebral bioelectric sources do contribute to scalp

recorded activity when averaging techniques are used. In their study, the

extent to which certain distant sources might contribute to scalp activity was
exanined experimentally through the analysis of recordings made using
externally=driven artificial dipele sources which were chronically implanted
in monkey brains. This preparation circumvents many of the restrictions of
the straight mathematical model since it leaves the volume conduction medium

relatively intact while providing a method of injecting simulated source

current of known magnitude,direction and origin.

The feasibility in identifying the peaks and valleys in VESP to their
anatomical counterparts is best demonstrated in the results in auditory evoked

potentials. Auditory brain-stem responses were recorded by Jewett et
al(1970). The result was confirmed by Starr and Achor(1975). Seven short-
latency small-amplitude(1/3 to 1/8 uv) discrete waves were detected within the

first 10 msec after the stimulus click, representing the successive activation

of auditory nuclei in the brainstem. Data from human patients with brain

lesions of known location have been compared with data obtained by placing
recording electrodes within the brain of experimental animals. A widely

accepted current interpretation is that as neural sighals leave the cochlea,

vave 1 is generated by the synchronous firing of nerve impulse in the auditory
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nerve, wave 2 coincides with activity in the cochlear nucleus, wave 3 ori-
ginates in the superior olive, gpd waves 4 and 5 coincide with the activity in
the inferior colliculus, The origin of waves 6 and 7 is not yet known. This
correspondence between peaks and valleys in evoked potentials with discrete

neural structures in the auditory pathway should apply to the VESP as well,

Cbrletto et al(1968) studied an epileptic patient who had undergone
surgical ablation of the occipital lobe. A comparison was made (1) between the
éverage VER recorded from the scalp and the response from the visual cortex,
and (2) between scaip responses recorded before and after surgical removal of
the occipital lobe. The result showed that the ablation of the occipital lobe
did not affect the initial coﬁponents(before 60 msec) of the response or the
late components ( greater than 120 msec), but greatly reduced the amplitude of
the waves with peak latencies in the intermediate range. This suggests that
the precortical acfivities which include those from LGN lie in this range.
Simultaneous recordings taken from thalamus and scalp in humans by Larson and
Sances(1979) suggest that-evoked somatosensory signals generated at the
thalamic level may be volume conducted to the scalp. This follows from the

observation that small inflections seen on the scalp are observed at the same

latency in depth (thalamic) recordings.

There is now strong evidence that using Poisson impulse train as a
kind of white noise to probe Eh;‘human visual system makes detecting deep
sources easier because of the improved signal-to noise ratio. Early peaks
before 70 msec after the stimulus were repeatedly revealed in the first-order

kernels across different experimental runs and across different subjects.
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Fig. 4.3.1. shows the result of localization on 48 msec time frame for the

sane experiment as displayed in Fig. 4.2.1. The localization was done by

using the same method as described by Kavanagh et al(1978). Equivalent
sources for the experimental data are found by taking least-squares estimates

of model parameters, minimizing the sum of the squared deviations between the

actual scalp potential and scalp potential computed by the model. A homogene-

ous model was used in this case. The upper back-view of potential distribu-

tion shows the experimentally obtained result, whereas the lower figure shows

the distribution predicted by the model. Please notice that the source is

located centrally in the left hemisphere and the stimulus was a right-half
field. If the dipole location indicates the approximate locality of active

neural aggregation, then this might indicate that the location is in the mid-

dle part of the brain, probably from midbrain or thalamus. There is a possi-

bility that this is actually from the response of the left lateral geniculate
nucleus., lore investigation along this line is necessary before any con-
clusive remarks can be made at this point. I am convinced that there are
responses originating from deep subcortical sources because of the high degree
of reproducibility of these early peaks although their anatonmical identifica-

tion is not established yet. Fig.4.3.2 and Fig.4.3.3 show the results of
localization done on 84 and 120 msec time frame from the same experiment. The
dipole locations were found to be in the left hemisphere(due to a right-half

field stirmulation) probably fron a cortical origin. The feasibility and the

povwer of this approach is clearly demonstrated here.
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Fig. 4.3.1 Equivalent dipole Tocalization using homogeneous
The experiment

model for the 48 msec peak( refer to Fig.4.2.1).
was done with right-half field flashed checkerboard pattern on

subject 1.
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Fig. 4.3.2. Equivalent dipole localization using homogeneous
model for the 84 msec time frame as shown in Fig.4.2.1. The
experiment was performed with right-half field flashed checker-

board pattern on subject 1.
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Equivalent dipole localization using homogeneous

model for the 120 msec time-frame as shown in Fig.4.2.1. The
experiment was done with right-half field flashed checkerboard

pattern on subject 1.

Fig. 4.3.3.



INTERPRETATIONS OF SECOND ORDER KERIELS

L.b
Fig. 4.4.1 shows the nonlinear interaction between the responses of

two impulses in a nonlinear dynamic system. In the upper diagram the impulse

response for the first impulse is shown by the solid line. If the system were

linear the second impulse would generate an identical impulse response, also
shoun by a solid line, with a time delay egual to the interpulse interval,

Again, if the system were linear, the total response to the two impulses would

be the linear sum of the two impulse responses., This is indicated by the

dashed line. However, suppose that an actual double~impulse experiment gives

results as shown by the dotted line. If this is different from the dashed

line in any way, the system is nonlinear. One way of measuring the nonlinear-

ity is to calculate the difference between predicted and the actual responses,

as shown by the hatched area and by the lower diagram. DNote that the non-

linear effects do not appear until after the second impulse. A nonlinear

interaction which reduces the actual output of the system might be known as

inhibition, saturation, response compression or adaptation.

Fig. 4.4.2 shows the method of displaying the second-order kernels in

this thesis. The first-order kernels are always displayed together with the

second-order kernels., This makes interpretations of second-order kernels

easier. The horizontal axis of both first- and second-order kernels indicates

time(msec) after the test-impulse. The vertical axis of the second-order ker-

nel indicates the time between stimuli( the conditioning stimulus and the test

stimulus). Therefore, a horizontal cut across the kernel at a specific

"time-between stimuli " would give a profile corresponding to the curve in the
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%ﬂ Linear prediction of
é§§§§§§§jﬁ‘ double impulse response

Experimental double-impulse
response

Second impulse
response
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] 1 First impulse response
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Time
®

| Non-linear
Interaction
y (inhibition)

Fig. 4.4.1. 1In the upper diagram the impulse response for the first
jmpulse is shown by the solid line. If the system were linear, the
second impulse would generate an identical impulse response. The
dotted line indicates the actual response of a nonlinear system. One
way of measuring nonlinearity is to calculate the difference between
the predicted and the actual responses.
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lover diagram of Fig. 4.4.1. In the display of the second-order kernels, the

dotted area indicates negativity in sign.

A closer inspection will tell us that for each peak and trough in the

first-order kernel, there is a corresponding region with the approximate

time-delay in the second order kernel. By inspection of Fig. 4.4.2, it is

easy to find that there is a prominent peak at about 70 msec which corresponds

to the valley at the approximate latency in the first-order kernel. Another

important thing that can be easily observed is the trend of reversal in sign
in the first-order and second-order kernels. This tells us that in general,

the nonlinear interaction effect for two impulses separated by different
intervals is inhibitory. For a positive peak in the first-order lkernel, a

negative valley in the second-order kernel is considered as inhibitory. Simi-

larly, for a negative valley in the first-corder kernel, a positive peak in the

second-order kernel is considered as inhibitory since its effect is still to

offset or decrease the magnitude of the first-order kernel. The inhibitory

effect at around 70 msec seems to have a short memory. The term memory is
used here to describe in the second-order kernels the "length of time-

between-stimuli" that shows a reproducible pattern of facilitation or inhibi-
tién with respect to the first-order kernel. The time-between-stimuli is

displayed in the figures only to 60 msec since beyond this range no distinct

reproducible patterns have been observed. It is also noticeable from Fig.

4.4.2 that this inhibitory effect has different memory-lengths for different

corresponding peaks and troughs in the first-order kernel. The most distinct

region of this inhibition occurs after 100 msec on the time(horizontal) axis.
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For the positive peak at 140 mnsec in the first-order kernel, there is an
elongated valley which extends downward to around 60 msec in the second-order

kernel. A sinilar observation applies to the valley at around 180 msec in the

first-order kernel.

Starting from Fig. 4.4.3, the first- and second-order kernels for all

five electrodes for subject 1 will be displayed. They show basically the same

inhibitory effect. Take Fig. 4.4.4. as an example. The peak at around 70 msec

still shows a short memory. For the elongated peak that corresponds to the

valley at 120 msec latency in the first-order kernel, it still shows an inhi-

bitory effect and a longer nemory. The left-right polarity-reversal due to

the half-field effect as explained in section 4.1 for electrodes 1, 2 and 4, 5

is also observable in the second-order kernels, particularly in the regions

from 175 msec to 200 msec. Refer to Fig.4.4.3 and Fig.4.4.7. This left-right

polarity reversal due to half-field effect is again observed in the second-

order kernels. For the negative region from 175 to 200 msec in Fig. 4.4.3,

there is a positive region shown in Fig.4.4.7 in the same time range.

By careful inspection of the figures, we can observe other reproduci-

ble subtleties. One example is shown in a comparison between Fig.4.4.2 and

Fig. 4.4.3 to Fig.4.4.8. The elongated valley(100-150 msec in tine,
Fig.4.4.2) and peaks ( same range for other figures) show about the same

nemory-lengths and interestingly peak at approximate time-between-stinuli,

about 18 msec. Other reprodﬁcible fine points can be observed between subject

1 and subject 2.
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The use of functional power series to the characterize human visually
evoked response is investigated and is very powerful. This type of analysis
provides a measure of the nonlinear interaction in the brain caused by prior
inputs. By utilizing this property, in addition to gaining insights into the

facilitatory and inhibitory effects, we night be able to draw a dividing line

between the cortical and subcortical sources through a better understanding of

the second-order kernels.

The amount of facilitation/inhibition in a two-pulse experiment can be
predicted to a certain degree if the kernels of the system are known. Experi-
ments using double pulse as visual stimuli have been performed by a number of
investigators. Because of the differences in the stimulus modality (flash
versus pattern ete), direct comparison of the two approaches should be dealt
with carefully. These experiments serve as an indirect comparison to par-
tially explain the secon-order kernels, Bartley(1936) has shown in animals
that the VESP to the second of a pair of photic stimuli was smaller in
amplitude(inhibitory) than the response to the first stimulus unless a certain
interstinmulus interval(ISI) was used. The duration of the ISI necessary to
produce equal and maximal responses to both stimuli was found to be equal to

one cycle of the EEG's spontaneous alpha rhythm. Vaughan (1966) recorded

human VESP!'s for various ISI values and studied the relationship between per-

ceptual discrimination performance and the magnitude of the response to the

second pulse. He found that the recovery of the response to the second pulse

exceeded discrimination performance over the ISI range of 60-100 msec. In a

similar way, Inoue(1968) found facilitatory and inhibitory effects in double
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pulse and triple flash VESP's according to the ISI. Bartlett and White(1965)

used paired flashes as stimulil, varied the interval within each pair while
maintaining a constant interval between the sets. Using variations of 9, 16,
and 25 msec between the pairs caused the subjects to report that the 9 msec
sets appeared brightest most often as opposed to those for the 25 msec inter-
val which were generally reported as being least bright. In addition, a

greater amplitude for both positive and negative waves was obtained for the 9

nsec interval stimuli.

The following is a summary of the information disclosed by second

order kernels using white noise stimulus in EP experiments. (1) It enables us

to find out the facilitory and/or inhibitory effect from the conditioning

stimulus upon the test stimulus. This can be applied to different stinmulus

modalities: visual, auditory, somatosensory ete. (2) It tells us about the

nemory lengths for this nonlinear dynamic interaction. In other words, it

tells us what range of the ISI has the most significant or noticeable effect

and the limit of the ISI over which this kind of interaction exists. (3) It

reveals the "maximum-interaction ISI'. White-noise analysis provides us with

this information very handily. If conventional signal averaging is used, a

set of evoked potentials must be measured as a function of different ISIs.
(4) If plotted in graphical contour-map form as done in this thesis, the

second-order kernels provide us with a possible new tool in disentangling
brain sources. Since the EP reflects a substantial amount of hard-wired

neural activity, there are reasons to believe that different anatomical

structures(such as the LGN, primary visual cortex, secondary visual cortex)
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would have different lump together potentially independent processes. By

inspection of the second-order kernel for subject 2 in Fig. 4.4.3, it is

easily seen that the memory lengths for 72 msec and 92 nsec and subsequent

peaks and valleys are different. It is logical to think that they might indi-

cate neural activities from different brain structures.
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Fig. 4.4.2 One method of displaying the second-order
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CHAPTER 5
Discussion and Conclusion
Changes in surrounding lights will evoke scalp potentials (VESP) and
these events constitute an input-output, stimulus-response relationship that
makes a systems-analysis approach appropriate. Wiener's nonlinear system
identification method provides the theoretical background for this approach.
In this thesis, a checkerboard-pattern transilluminated by a randomized flash
sequence was chosen as the system probing signal. A single impulse is suffi-
cient to evoke a response which will characterize a linear system. For non-
linear, time-invariant, finite-memory systems, white-noise is a theoretically

valid probing signal(Chapter 2) to characterize the system.

Among different kinds of white-noise signals, the Poisson-impulse-
train possesses the advantage of high power. This kind of white-noise
stimulus has not been extensively used in the past partly because its kernel-
estimation algorithm was developed only recently (Krausz, 1975; Kroeker, 1977)
in comparison with the derivations of cross-correlation methods for Gaussian
white-noise inputs following the approach of Lee and Schetzen(1965). Kernels
have been difficult for conventional biologists, clinicians, and some evoked-

potential researchers to understand because of their mathematical complexity

and vagueness in physical meanings. As a matter of fact, it was not until the

last few years that the physical meaning of kernels became generally under-

stood. Some VESP researchers who were interested in white-noise, started by

using (band-limited)Gaussian white-noise because that is the most commonly

known probing signal.
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In general, there have been very few attempts to use Volterra- VWiener
kernels to characterize the VESP system in comparison with conventional signal
averaging and steady-state evoked potentials which use sinusoids as the prob-
ing signals. This study is one of the few efforts in experimenting with this
new method. The following are the original contributions of this work. (1)
This is the first spatiotemporal approach in white-noise VESP studies., A
large number of channels of first-order kernels were displayed in
equipotential-mnap format. By doing so, the spatial potential distribution is
clearly revealed. In the past, Beatty (1971), Reits (1975), Trimble and Phil-
1ips(1978), and Coppola (1979) have tried white-noise methods. They all used
a small number of electrodes. No detailed spatial potential maps were gen-
erated., (2) This is the first trial to correlate first- and second-order
kernels with underlying neural sources. Because of greatly improved S/N ratio
and by combination of source-~localization method and usage of large array of
electrodes, this method has been proposed (Chen and Ary,1979) and data shown
as a powerful probe to thalamic, subcortical and other indepth sources. (3)
This is the first attempt to use light-modulated patterns (in particular,
flashed checkerboard) instead of noise-modulated light as the stimulus. In
comparison with noise-modulated light, pattern is a much stronger stimulus in
producing more repeatable and definitive responses( chapter 1). Trimble and
Phillips(1978) reported a memory length of 20 msec for the VESP. My data
indicate that memory-lengths vary with the latencies of the peaks and val-
leys. The memory-lengths shown in chapter Y4 indicate that they may extend to
60 msec (or slightly beyond). I speculate that these discrepancies may be

explained by the fact that I used a stronger stimulus( Poisson as opposed to
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GWN, pattern as opposed to luminance ). Also my data(particularly, second-
order kernels) show a better signal-to-noise ratio than previous results.
lone of the previous results showed detailed contour maps. Trimble and Phil-
lips displayed their results in dot-density maps which are difficult to see
distinct features. This, I believe, was caused by their noisier data and
weaker responses. (4) This is the first attempt in using a Poisson-impulse-
train as the stimulus in VESP studies. Sclabassi et al. (1977) used this
stimulus to obtain somatosensory responses in the study of multiple sclerosis.

Krausz (1975) mentioned using this stimulus to analyze auditory evoked poten-

tials.

- In general, Poisson-~impulse-~train proves to be a powerful stimulus to
evoke a brain response. By a suitable selection of stimulus probability (a
high probability makes the process approach Gaussian which is a psychophysi-
cally weaker stimulus; a probability too low makes event-pairs and event-
triplets too rare to generate reliable kernel estimates), this stimulus was
proved to be an effective system~probing signal. First- and second- order
kernels reveal the system's response to single impulse and temporally-
separate double impulses. They together constitute the major portion of the
system's nonlinear response. First-order kernels are interpretable with
respect to their underlying sources. Second-order kernels provide us with an
additional tool to differentiate the underlying dynamic neural mechanisms. A
suggestion for future study is an extensive study on many subjects by combin-
ing the source localization technique with multichannel first-order kernels to

investigate the early peaks which are from LGN and other indepth sources. This
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would open a new dimension in VESP studies. In addition to the basically
inhibitory effect, the other subtleties revealed in the second-order kernels

will be a challenge to future investigators.
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