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ABSTRACT 

This thesis describes an attempt to apply signal processing and sys­

tems theory to the task of analyzing and interpreting evoked potential data 

and locating evoked potential sources by physical principles. Random impulse 

trains were used as inputs to characterize the human visual system. The 

method is analogous to the Wiener method for a continuous Gaussian white noise 

input. The restricted-diagonal Volterra series for discrete inputs is used by 

making certain restrictions on the integrals in a Volterra series. A modifi­

cation of Lee and Schetzen's method was used in the estimation of the kernels. 

Forty-channel first-order kernels were computed for briefly appearing 

checkerboard patterns placed in left or right visual fields. The measured 

potential distribution showed a radical dependence on stimulus locus. 

Equivalent dipoles generally give excellent fits to the measured data, and the 

mapping between the visual field and these equivalent sources is similar to 

the commonly accepted mapping between the visual field and the visual cortex. 

Also, the results resemble those using conventional signal averaging. 

First order kernels show better signal-to-noise ratio when compared to 

conventional signal averaging for the same experiment duration. Ifol tichannel 

first-order kernels show that sources from early components are deep in the 

head as expected and in a believable region. 

Results for the second-order kernels reveal occlusive interactions in 

the visual system and are interpreted relative to the first-order kernel. 
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These inhibitions display different lengths of nemories which suggest that 

they night arise from different neural origins. 



v 

CONTENTS 

. page 
Chapter 1 

SYSTEHS, VISUAL SYSTEMS, ·AND BRAIN l'lAVES 1 

Chapter 2 

THEORY OF UHITE-iJOISE ANALYSIS 

Chapter 3 

DATA ACQUISITION AND INSTRUf-1ENTATIOH 

Chapter 4 

29 

64 

EXPERIHEIJTAL DATA ANALYSIS AND INTERPRETATION 78 

Chapter 5 

DISCUSSION AND CONCLUSION 139 

REFERENCES 143 



CHAPTER 1 

SYSTEMS, VISUAL SYSTEM, AND BRAIN WAVES 

.1 • .1 SYSTEM'S. 

The problem of finding the functional relationship that determines the 

output of a system in response to any relevant input is known as the problem 

of system identification, characterization or estimation. This estimation pro­

cess is a major step in system modeling. System modeling helps the exper­

imenter to extract from the model insight into the functioning of the system 

and makes prediction of system behaviour possible. 

The techniques of linear systems theory have been used extensively in 

the study of nonlinear systems because of the completeness and simplicity of 

the linear approach and the difficulty in linking nonlinear analysis with 

functional entities such as individual building-blocks defined by transfer­

functions. For those nonlinear systems which utilize linear approaches, small 

signal approximations or certain linearizing assumptions are usually made. 

Because of their limitations and applicability to a narrow class of systems, 

they cannot be applied generally to nonlinear systems. 

There are essentially two approaches to the characterization of a non­

linear system. In the differential equation (parameter and state estimation) 

method, the topology of a system is assumed to be known, so that a set of 

differential equations can be used to represent the system. Identification 

reduces to the determination of various parameters in the equations. In the 

integral equation ( nonparametric weighting-function, filter, kernel, or func-
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tional ) method, little or no a priori assumptions are made about the topology 

of the system. The identification reduces to the determination of the various 

kernels. 

I shall confine myself to the system defined by the stimulus-response 

relationship of the evoked potentials. This system is assumed to be station-

ary, finite-memory, and analytic. A system is stationary if its charac-

teristics do not change rapidly with time and the system response to identical 

stimuli remains similar. Finite-memory means that a stimulus with finite 

energy will generate a response that decays to an arbitrarily small degree in 

finite time. Analyticity means that the differential behavior of all orders 

is continuous within the domain of stimulus values. In general, the func­

tional relation between the stimulus x(t) and the response y(t) can be 

described by the mathematical notion of a functional: 

y(t) = T[x(t)] 

For a physical system like the evoked potential, the causality princi­

ple is the first instrument of the analysis process. Under this principle, a 

system only reacts to the past and present values of the stimulus. Therefore, 

y(t) can be expressed as 

y(t) = T[x(t'); t'~t] 

Further, any explicit mathematical expression of the functional T has 

a certain structural form involving a set of parameters and a set of con­

stants. The set of parameters Q is the object of the identification process. 
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Therefore, we can denote y(t) as 

y(t) = T[ Q ;x(t'),t'~t] 

to demonstrate the existence of the parameter set within the functional 

expression. 

DEVELOPMENT OF WHITE-NOISE NONLTNEAR ANALYSIS 

Volterra series can be considered as a generalization of the power 

series representation. Wiener {1949) applied this analysis technique to find 

the response of a nonlinear device to noise. Bose(1956) has carried the theory 

further. Following a series of lectures by Wiener, the theoretical framework, 

higher dimensional transforms, and optimization with Gaussian inputs were stu­

died by Brilliant(1958), George(1959), and Chesler(1960), respectively. Bar­

rett (1963) has treated statistical inputs, while the synthesis problem has 

been examined by Van Trees(1962). The technique has been extended to discrete 

systems, and a class of time-variant systems. The theory of convergence has 

also been treated by Ku and Wolf(1966). 

BIOLOGICAL SYSTEMS 

Nonlinearities are often necessary for the optimal functioning of bio­

logical systems from the behavioral point of view. One typical example is 

that the transformation of sensory inputs from the physical parameters of the 

real world to the neural response is usually in a logarithmic fashion to 

accommodate large ranges of the physical parameters. 
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Biological systems are often nonlinear even under "small signal" con­

ditions. Moreover, since the signal-to-noise ratio in biological systems is 

often low, the degree of nonlinearity is also low, i.e. only the first few 

terms of the Volterra(Wiener) series are required in order to describe the 

system accurately. This is due to the fact that noise has a linearizing 

effect. Consider the response of a nonlinear system such as a rectifier or 

saturation-cutoff to a sinewave input (Fig. 1.1.1). Assume also that the size 

of the harmonic distortion is directly proportional to the size of the non-

linear kernels. It can be noted by inspection that the effect of contaminat~ 

ing noise is to round off the sharp corners of the response which an? caused 

by the nonlinearity. The higher the noise level, the more linear the response 

'appears', i.e. the size of the harmonic distortion decreases. In other 

words, a system with high noise content limits its analysis to the first few 

kernels. For a noisy system such as the evoked potential, it might be possi­

ble to characterize it by a few kernels. 
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Solurotion R eclifiar 

Fig. 1.1.1 Linearizing ~ffect of noise to nonlinear systems. 
( From The Noise about White-Noise: Pros and Cons 

. P. Z. Marmarelis, 1975 ) 
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j_ • .2_ HUBAN VISUAL SYSTEUS 

The eye acts as a self-contained outpost of the brain. It collects 

information, analyzes it, and hands it on for further processing by the brain 

through the optic nerve. The optic nerve fibers arise from ganglion cells in 

the retina and end on cells in the lateral geniculate nucleus( LGN ) whose 

axons in turn project through the optic radiation to the cerebral cortex. From 

here on the progression becomes even more complex. 

The anatomy and projections of the human LGN do not appear to differ 

significantly from those of other primates. When the retinal fibers reach the 

LGN, they terminate in a number of laminae, each of which receives a topo­

graphic projection from a hemiretina and projects to the cerebral cortex. The 

laminae are stacked in visuotopic register so that there is direct continuity 

of visual field between adjacent laminae. The thalamus lies near the center 

of the brain, while the primary visual cortex lies in and around the medial 

surface of the occipital lobe. Some 70% to 80% of all retinal fibers subserve 

this pathway. 

Figure 1.2.1 shows how the output from each retina divides in two at 

the optic chiasm to supply the lateral geniculate nucleus and cortex in each 

hemisphere. As a result, the right side of each retina projects to the right 

cerebral hemisphere. The right side of each retina receives the image of the 

visual field on the left side of the animal. Each cerebral hemisphere, there­

fore, sees the contralateral visual field. 

The part of the visual cortex where the optic radiations end consists 

of a folded plate of cells about 1 or 2 mm thick. This region of cortex, area 

17 (also called the striate cortex or visual area I) lies posteriorly in the 
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f\ELD OF VISION 
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field field 

Fig. 1.2.1 The geniculo-cortical th pa way of the 

human visual system 
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occipital lobe. Around area 17 lie the secondary visual cortices, area 18 and 

19, which get their input from area 17. Connections are known from area 17 in 

one hemisphere through the corpus collosum to area 18 in the other hemisphere. 

There are other retinal projections that branch off to the midbrain. 

In higher vertebrates they are prinarily concerned with regulating eye move­

ments and pupillary responses and are not directly relevant for pattern recog­

nition (Sprague et al, 1973). It is also known that there are rich intercon­

nections between midbrain areas and thalamic and cortical areas. The impor­

tant point here is that the anatomy does support the existence of at least two 

separate retino-cortical pathways. The retino-geniculo-striate-circumstriate 

pathway is believed to be concerned with the detailed analysis of visual pat­

tern, while the retino-tectal neocortex pathway is concerned with spatial 

orientation functions and has only crude discrimination capabilities(Doty, 

1973). 

In these visual pathways, the neurons converge and diverge extensively 

at any stage; that is, each cell makes and receives connections with a number 

of other cells. One purpose of this study is to develop a noninvasive tech­

nique to investigate this highly interactive and complicated system through 

evoked potentials in conjunction with systems analysis. 
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J.. • .1 ELECTROE!JCEPHALOGRAM (EEG) 

Electrical recordings from the scalp demonstrate continuous electrical 

activity which is assumed to have its origin in the brain. The undulations in 

the recorded electrical potentials are called brain waves, and the entire 

record is called an electroencephalogram. It has been speculated that both 

the intensity and patterns of this electrical activity are determined to a 

great extent by the overall level of excitation of the brain resulting from 

functions mainly in the reticular activating system. 

The amplitudes of the potentials on the surface of the head range from 

zero to 200 microvolts, and the usual range of recorded frequencies is from 

0.1 to 100 Hz to cover the major portion of the spectrum. The character of 

the waves is dependent upon the degree of activity of the cerebral cortex and 

subcortical structures, and the waves change markedly between the states of 

wakefulness and sleep. 

Huch of the time the EEG are irregular, and no general pattern can be 

discerned in the EEG. However, at other times, distinct patterns do appear. 

Some of these are characteristic of specific abnormalities of the brain, such 

as epilepsy. Others occur even in normal persons and can be classified into 

alpha, beta, theta, and delta waves. This classification is based mainly on 

the frequency distribution: alpha(8-13 Hz), beta(14-50 Hz), theta(4-7 Hz), and 

delta(0.1-3.5 Hz)(Guyton, 1975). 

Summaries of current methods in EEG analysis have been published 

(Gevinsetal., 1975, Barlow, 1979). 
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The following is a brief discussion concerning the statistical aspects 

of the EEG. Some properties such as the degree of whiteness and stationarity 

of EEG have direct relevance to white-noise nonlinear analysis of evoked 

potentials. Ue are trying to extract characteristics (kernels) of a system by 

using a white-noise stimulus and measuring responses which are also predom­

inated by white-gaussian noise while its amplitude can be a hundred times 

larger than the responses. Luckily the EEG possesses certain simple statisti­

cal properties. Signal averaging and cross-correlation methods can be per-

formed for signal enhancement but these techniques are only valid for additive 

white-noise. 

At present, almost all methods of time-domain and frequency-domain EEG 

analysis are based on implicit assumptions regarding the statistical charac­

teristics of the underlying random process, particularly with respect to the 

extent of stationarity and the degree that the process approximates a Gaussian 

distribution. 

It is generally accepted that the EEG may be regarded as a statistical 

phenomenon with two components: (1) a stochastic and, in short sections , 

almost stationary process; and (2) transient components (wave trains, spikes, 

and sharp waves) that arise sporadically. Some investigators have done EEG 

modelling based on testing of its statistical properties(Wennberg and Zetter­

berg, 1971; Johnson et al, 1979). 

There is evidence to support modelling of the clinically-recorded EEG 

as a zero-mean gaussian process. Elul(1969) found that the EEG was Gaussian 
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distributed two-thirds of the time for a patient in the resting state, while 

Glass(1969) showed that the amplitude probability density function for the 

alpha rhythm is approximately zero-mean and Gaussian. The center frequencies, 

bandwidths and RMS aiilplitudes of the basic rhythns are estimated from data 

provided by Kaiser et al.(1964), Obriest and Henry(1958), and Matousek et 

al(1967). Hennberg and Zetterberg (1971) studied the stochastic component of 

EEG based on the observation that the auto-correlation function of the EEG has 

a strikingly simple structure. They showed that the method of parameter 

analysis of the EEG permits an exact description of the stationary part of 

the EEG with a few parameters. Johnson et al.(1979) proposed that the EEG can 

be represented as the superimposed outputs of four slightly damped oscillators 

(alpha, beta, theta, and delta bands) driven by independent white Gaussian 

noise processes. 

It should be noted that the statistical model only serves as a working 

hypothesis to efficiently parameterize certain a priori knowledge about 

sources of variability in the recorded EEG rather than a representation of 

underlying physiology. 
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_l.li_ :SVOKED POTENTIALS (EP) 

From the results of intracranial recordings on animals, it has been 

known for some time that sensory stimulation produces distinct, identifiable, 

electric signals. These signals have been variously referred to as evoked 

responses (ER), evoked potentials (EP), cortical evoked potentials, etc. If 

the evoked signals are due to visual stimulation and the measurements are made 

on the scalp, the potentials can then be refe«ed to as visually evoked scalp 

potentials (VESP). Until recently, attempts to measure through the intact 

scalp the details of the changes in brain activity accompanying sensory stimu­

lation have been swamped in a flood of ever-present spontaneous neuro-electric 

activity. Because of the small amplitudes of the EP signals in comparison 

with the ongoing EEG and the technical difficulties in extracting them, until 

the early 1960's, the electroencephalogram ( EEG ) was one of the few tech­

niques available to the brain physiologist and neuroscientist for the study of 

electrical activity of the human brain. 

Measurement of evoked potentials, on the one hand, constitutes a probe 

into the cerebral black box of sensory processing. On the other hand, it is a 

noninvasive and practical means of access to the electrical activities within 

the sensory pathways of the intact hllL'.lan brain. 

DETECTION OF EP SIGIJALS: 

The main problem in recording evoked potentials is detecting them at 

all. The signal recorded at the scalp commonly reaches an amplitude of 

between 50 and 100 microvolts, but evoked potentials are often no more than 5 
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wicrovolts and may be as small as 0.5 to 1.0 microvolt. To the evoked poten­

tial investigator the EEG signal is unwanted and overwhelwing background 

noise. Some form of signal processing must be applied to improve the signal­

to-noise ratio before any interpretation can be done. 

The entire history of development in EEG and EP technology reflects 

the gradual advance in electronics and progressive application of analog and 

digital signal processing techniques and adoption of new concepts in systems 

and cownunications theory. The following is a short sumnary of this process. 

Cruikshank (1937) demonstrated that it was possible to detect a VESP 

in the ongoing EEG by blocking the spontaneous alpha rhythms due to visual 

stimulation. Adrian (1941) demonstrated a pertubation detectable in the on­

going EEG activity which was evokable by stimulation of the receptors of any 

of the various sensory modalities. 

Galambos and Davis (1943) superimposed successive amplified responses 

to auditory stimulation on an oscilloscope face. The lower amplitude and 

shorter latency components of' the cortical response were made evident. Dawson 

(1954) was able to average a small number of oscillograms. He constructed the 

first automatic averaging device for recording transient evoked potentials. 

The device was partly mechanical but nonetheless suff'iciently efficient to 

provide research findings that are still valid today. In 1957, magnetic 

recordings of brain potentials were used by Barlow. In 1960, Rosner et al. 

used a tape recorder as a memory device and repetitive triggering in conjunc­

tion with an analog amplifier for su~Juation. An all electronic averaging com-
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puter was subsequently developed by Clynes and Kohn(1964). Comnercial produc­

tion of this Dachine enabled hundreds of hospitals and laboratories to embark 

on research on transient evoked potential in the mid-1960's. 

Mainly because of developEJents in conputer technology, we are now able 

to record stiraulus-related evoked potentials in nan. The method most often 

used today incorporates cor;iputers and signal averaging and display software. 

SIGNAL-TO-NOISE RATIO ENHANCEMENT 

The following is a SU!l1lilary of various methods employed for enhancing 

the signal-to-noise ratio of evoked potentials. Although these methods seem 

to be different, the first and second methods in theory are special cases of 

the third. The fourth method encompasses the third since one dimensional 

cross-correlation can be considered as a special case of the more general mul­

tidimensional cross-correlations in kernel estimations. 

(1) Conventional Transient Signal Averaging - Time Domain Analysis 

When a repetitive sensory stimulus (flash, sound click, or tap) is 

presented to a subject, a repetitive electrical response is evoked. The 

stinuli are sufficiently spaced in time such that the systera is returned to a 

resting state between successive stimuli. The evoked waveform is assumed to 

be time-locked to the occurrence of the stimulus presentation and to be 

affected by stinulus-parameter variations. A randoDized presentation of 

stimuli helps to minimize locking of the EEG and way improve SIN ratio (Rush­

kin, 1965). For most applications, it is not feasible to measure the evoked 
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potential directly on the cortex of the brain and measurements are made by 

electrodes attached to the scalp. Transient EP waveforms are cori1nonly divided 

into different latencies ranges in the hope of associating different com­

ponents with different functions of the central nervous system and/or with 

different locations in the brain (Kooi and Bagchi, 1964; Ciganek, 1961). 

(2) Steady State Evoked Potentials- Frequency Dooain Analysis 

As the stimulus repetition frequency is progressively increased, tran­

sient EPs overlap to an increasing extent. Under this condition, the brain 

does not have time to regain its undisturbed state between successive stimuli. 

At sufficiently high repetition frequency, no individual response cycle can be 

associated with a particular stimulus cycle (llilner et al., 1972). When this 

steady state is established, it is more appropriate to describe the response 

in terms of different stimulus repetition frequencies and to analyze the EPs 

by their harnonic components. A convenient way to present steady state EP 

data is to plot the amplitude and phase of the various harmonic components of 

the EP versus stimulus repetition frequency. In some circumstances frequency 

analysis is more convenient and more effective in extracting responses of 

small amplitudes than in temporal (transient) analysis. Milner et al. ( 1972) 

claimed this method is less influenced, as transient EP's are, by the psycho­

logical state of the subject. In other words, a higher S/N ratio enhancement 

may be attained by using this method. Fourier analyzers are normally used for 

this nethod. One purpose of classifying steady-state EPs in-~c C.:.ifferent fre­

quency regions is the hope of associating different frequency regions with 

different brain functions and/or locations within the CNS (central nervous 
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syster.:i) • 

(3) Cross-correlation rlethod 

This oethod may be viewed as a e;eneralization of conventional waveform 

averaging, Fourier analysis and synchronous detection (Ciganek, 1961; Fricker 

and Sanders, 1974). 

(4) White-Noise Systems Analysis 

This is the method that this thesis adopts. The information processing 

system in the brain is treated as a black box. The Input-output transforma­

tion can be expanded as a Volterra/Hiener-type functional series. Kernels are 

computed using one-dimensional or multidimensional cross-correlation methods. 

A white-noise input is used as a testing function. This method can be con­

sidered as the most complete, canonical and exhaustive approach in EP research 

so far. In essence, this approach encompasses all the concepts and methods 

previously discussed. 

j_ • .5_ VISUALLY EVOKED SCALP POTENTIALS {VESP) 

HUliAN VESP '~ RELATION TO SPATIALLY UNSTRUCTURED AHD STRUCTURED STIMULUS FIELDS 

It is generally known that patterned stimulus fields can evoke EPs 

whose amplitudes are as large as, or larger than those evoked by spatially­

unstructured stimuli, even though the light energy involved may be ten thou­

sand times less(Clynes and Kohn, 1967, 1968). In other words, pattern stimuli 

are much more potent stimuli to the EP part of the visual system. This has 
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been supported by evidence from Dany sin1;le cell studies also(Hubel and 

Wiesel, 1962, 1965, 1968). There are a number of investiGations of pattern 

EPs in which various types of patterns have been flashed (Rietveld et al., 

1967; Spehlmann, 1965). 

Using the EP, the mapping between the visual field and visual cortex 

in the human has been studied by several investigators (!Iichael and Halliday, 

1971; Jeffreys and Axford, 1972; Darcey, 1979; Darcey et al., 1980). Local 

stimuli are required for selective stimulation of specific areas of the visual 

field. 

For pattern stimulation, the issue of the contribution of the fovea, 

parafovea and periphery to the VESP is clearer than for a blank flash 

stimulus. Pattern VESPs are believed to have major contributions from the 

central 6 degrees or so of the visual field (Michael and Halliday, 1971; Jef­

freys and Axford, 1972; Jeffreys, 1971; Nakamura and Biersdorf, 1971). 

Darcey, Ary, and Fender(1980) explored the problem of VESP dependence 

on retinal location in great detail. Previous studies often disagreed both in 

results and interpretation. Typically, the methods used differed in stimulus 

regime, referencing scheme, electrode layout, and data analysis. Darcey et al. 

showed that the detailed spatiotemporal measurements can reconcile sooe of the 

differences and elucidate the character of the generators. 

ABOUT THE STIMULUS USED IN THIS THESIS 

One reason why I used (randomly) flashed pattern in this study is that 



18 

it is easier to present a brief, inpulse-like patterned stimulus by transil­

luminating flash through a checkerboard pattern than by other methods. 

Presenting pattern-appearance or pattern-reversals in an impulse fashion is 

more difficult on our system because of the longer switching time involved. 

Pattern instead of blank field was used because pattern is a stronger stimulus 

in evoking responses of reasonable size as explained before. Another reason 

is that the typical response parameters such as latencies, magnitudes, and 

potential distributions to checkerboard pattern by using conventional signal 

averaging on several subjects in this laboratory are known from results of 

previous experiments. They can be used as a comparison to responses obtained 

from white-noise analysis. 

j_ • .6._ IJO!JLINEAR BEHAVIOURS OF VESP SYSTEl1 

Recall that in systems analysis using a sinusoidal input, a system is 

linear when the response only contains a sinewave of the same frequency as the 

input signal. When the response also contains other frequencies, the system is 

nonlinear. For example, a zero-memory nonlinear system, such as a rectifier, 

introduces higher harmonics. When this nonlinearity can be expanded in a Tay­

lor series, the nonlinearity is said to behave in a quasi-linear manner. At 

decreasing modulation depths(small signal analysis), the response of the sys­

tem could become more linear, if the amplitudes of the higher harmonics 

decrease faster than the amplitude of the fundamental frequency. A zero memory 

nonlinearity is called an "essential nonlinearity" when the response contains 

higher harmonics even at the lowest modulation depths. 
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EVIDE!JCE OF IlO!JLH:EJl.IlITY FROII STE/I.DY STATE EVOKED POTE!JTIALS 

De Lange(1957) introduced the use of sinusoidally modulated light(SML) 

in vision research. This stimulus is given by: L(t) =I( 1 + m sinwt ), where 

the modulation depth m is A/I, A is the amplitude of the sinewave, I is the 

average light intensity of the light source, and w = 27T f, f is the frequency 

of the sinewave. 

Kamp et al. ( 1968) found that the occipital EP behaves nonlinearly 

to sinusoidally modulated light. Even at the lowest modulation depths, 

the response in a certain frequency region contains second harmonics, so the 

EP system may contain an essential nonlinear element. 

Clynes et al. ( 196!1) studied the brain wave response to step, ramp, 

and sinewave light stimuli. The step response allowed them to obtain the tran­

sient response of the system, and the sinewave stimuli allowed them to obtain 

the steady state response. They reported a nonlinearity in the VESP for dark 

and light flashes on a background. Both dark and light flash responses show 

the same polarity. They also mentioned an essential nonlinearity in the EP 

system. 

Hhen the luminance of a diffuse field is sinusoidally Iilodulated it is 

found that only very s:r!lall EPs result for modulation frequencies below 3 Hz 

(Fig.1.5.1). However, a stimulus frequency which lies within a range centered 

near 10 Hz evokes a response of large amplitude compared with that at neigh­

boring frequencies. A number of characteristics of this 10Hz response are 

closely related to corresponding characteristics of the spontaneous EEG. The 
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(b) The amplitude spectrum of subject B showstwo preference 

regions. Neither amplitude nor phase characteristics shows 

resonance properties. The phase characteristic shows that the 

latencies in the low frequency range are longer than in the 

high frequency range. 

From H. Spekreijse(l966), Analysis of EEG Responses in ~an. Junk 

Publishers, The Hague. 
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large 10 Hz EP component can be evo!(ed by a stimulus oodulation frequency of 5 

Hz as well as one of 10 Hz. 

A plot of the lag of the phase of the EP versus stimulus modulation 

frequency is fairly close to a straight line except at frequencies near the 

center frequency of the amplitude peak where there is a well-defined step. 

The findings described above led to the suggestion of a simple serial 

processing model of the form illustrated in Fig.1.5.2. It must be emphasized 

that the model is not unique. This model is a sequential processing model and 

does not involve any feedback or feedforward element, nor does it involve any 

more parallel pathways. It can be considered as one of the early attempts in 

combining engineering and system concepts with physiological structures. In 

this figure, we do observe there are nonlinear elements such as rectification 

and saturation combined with frequency tuning devices. Evidence of correspon­

dencies between peripheral stages of the model and neuroanatomy has been 

reported by Spekreijse(1966). The frequency selective peak near 10Hz has been 

modelled by a centrally-located linear filter. The physiological correlate of 

such a filter is not clear yet. For example, it might arise from the rever­

beration between cortex and thalamus according to Anderson and Anderson(1958). 

Spekreijse and Oosting(1970) introduced a technique to separate a nonlinear 

system into linear and nonlinear parts, knowing only the input and output sig­

nals of the whole system. The nonlinearity is linearized by means of an auxil­

liary signal added to the input signal. Using this method with sinusoidally 

modulated light, Spekreijse proposed the above model for the evoked response 

system. He could distinguish two parallel channels, a long-latency system with 



22 

/\ 
Rectification Cortical 

f\r.10. selective 
activity 

~ 
Vertex 

I 

V1 

i 1 ~· 
20 els - . 

Saturation 

~ 
Diffusin9 CAT 
screen 

I 

Rectification 10c/s 

/\ f\r.10. 

~ 
Noise of Inion 

cerebral v, oriqin 
20 els - . 

Rectificotion Saturation 

• IV\_ Cortical 

~ ~ 
selective 

1 activity 
Vertex 

30c/s 
v, I - . 

1 Noise of 
I 

Maxwellian cerebral 1\ CAT 
view oriqin 

Rectification Saturation 50c/s 

I /V\_ Inion 

~ Jl ~ 30c/s v. I - . 

Fig .. 1.52. Upper half: a simplified model of the retina-cortex 

system of long latency (i.e. low frequency region). 

Lower half: a simplified model of the retina-cortex subsystem 

of short latency (i.e. high-frequency region). 

From H. Spekreijse (1966). Analysis of EEG Responses in Man. Junk 

Publishers, The Hague. 



23 

the largest response in the region of the alpha-frequency(10Hz) and a short­

latency system uith the largest response in the 45-60 Hz region. 

In nany, but not all subjects, the harmonic cowponents of steady-state 

EPs which fall in the range 45 to 60 Hz (high-frequency components) have 

several features in coomon with the 10Hz (low-frequency coraponents) described 

above. A frequency selective process gives an anplitude peak in this frequency 

region, which can be evoked as a fundamental cooponent or as a second harmonic 

component. This behaviour is similar to that of the 10Hz class of evoked 

potentials. 

Their results, as well as the worl~ of other investigators (Denker, 

1975; Montagu, 1967; Van der Tweel and Verduyn-Lunel, 1965) have deraonstrated 

the nonlinear nature of steady state evoked potentials. 

One of the most striking effects observed for subjects with pronounced 

alpha-activity is the appearance of a second harmonic component for a stimulus 

frequency of about half of the alpha-frequency. In these same subjects the 

fundamental component dominates in the response when stimulating with a fre­

quency near the alpha rhythm. It has been shown that the amplitude of the 

fundamental component in the response is proportional to the modulation depth 

of the sinusoidal input, up to a certain value that depends on the size of the 

visual field, average luminance etc. Such a linear relationship holds also 

for the second harmonic in the response except for a small deviation at modu­

lation depths approaching zero. This deviation can be explained by the influ­

ence of quantal noise ( Van der Tweel and Spekreijse, 1969). These findings 
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indicate that the distortions in the hunan evoked responses can be described, 

to a first approximation, as linear rectification. 

The above evidences from steady-state evoked potentials support the 

nonlinear nature of visually evoked potentials. Sinusoidally modulated light 

was generally used as the stimulus. The nonlinearity was interpreted with 

respect to the luminance effect of the visual stimulus. One purpose of this 

thesis is to probe into nonlinear effect due to pattern stimulation. In other 

words, the rapid adaptation effect of one pattern stimulus to a subsequent 

pattern stimulus separated by a SL1all time interval will be discussed. 
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j_ • .6_ APPLICATIOllS OF \IHITE-rJOTSE IJOlJLHlEAR SYSTEMS AiJALYSIS 

As with most scientific endeavors, the application of white-noise non­

linear systems identification theory lags far behind the theoretical develop­

ment. In the last ten years there has been an outburst of applications in bio­

logical, physical and engineering systems. Host biological applications are in 

neurophysiology. 

In general, applications in biology have been reported in such diverse 

systems as neurons( Harmarelis and Naka, 1974; McCann, 1974; Harmarelis and 

McCann, 1973), pupillary systems( Sandberg and Stark, 1968; Watanabe and 

Sta~k, 1975; Hung et al, 1977; Hung and Stark, 1977(a)), eye-movement systems( 

Hung and Stark, 1977(b)), synapses( Krausz, 1975), central nervous system 

(CNS)( Reits, 1975; Ho, 1973), electroretinogram (ERG)( Koblaz and Fender, 

1975; Larkin, 1979; Larkin, Klein, Ogden and Fender, 1979) and manual control 

in biology ( French and Butz, 1973). 

PREVIOUS ATTEMPTS OF WHITE-UOISE ANALYSIS OF EVOKED POTENTIALS 

Beatty(1971) used the Lee-Schetzen cross-correlation method to obtain 

the 1st-degree transfer function associated with a Poisson-distributed tem­

poral light stimulus and the EEG recorded over the midline occipital cortex. 

Ho (1973) calculated the kernels associated with the human visual 

evoked response(VER) by recording with electrodes placed 3 cm forward from the 

inion on the midline. One-hundred epochs were averaged, resulting in 5 sec of 

data sar:ipled at 5msec. For flashing-diffuse-light stimulus input, the shapes 

of the envelopes of the resulting first- and second-degree kernels of the 
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second-degree VESP kernel nodel are highly convoluted. The Bodel responses 

appear to simulate the experimental responses fairly well. 

Reits(1975) used a correlation technique for the noise-modulated input 

analysis of visual evoked potentials recorded at 9 electrodes which are dis­

tributed in a cross, 5 vertically from the inion to the vertex and 4 hori­

zontally, intersecting at the inion. He analyzed the cross mono- and bi­

correlation functions of the EP and deduced that the human visual system can 

be separated into a number of linear and nonlinear parts. From this and other 

experinental results he concluded that n all components share the first linear 

part, which consists of a band filter with maximal transmission in the fre­

quency range of 8-11 Hz which produces the alpha component. The output of the 

half-wave rectifier branches again to two filters, one of which has a maximal 

transmission near 40-50 Hz and the other has a passband from 14-25 Hz. The 

output of the high frequency filter produces the early component and that of 

the intermediate filter produces the late component. " His result was incom­

plete because he did not calculate the entire time domain second order kernel. 

This is necessary to fully understand the system's quadratic nonlinearity. 

Sclabassi et al.(1977) used electric stimulation in a Poisson impulse 

train to investigate the somatosensory evoked responses in normal subjects and 

in multiple sclerosis patients. The use of functional power series to charac­

terize the somatosensory modality shows that the responses to temporally 

interactive stimuli are nonlinear, decrease with increasing stimulus rate, and 

degenerate in the advanced state of the disease. The kernels that they 

obtained revealed a generally occlusive interaction. 



27 

Trimble and Phillips (1978), using bandlirnited Gaussian noise and 

time-domain correlation techniques, obtained the first- and second-order ker­

nels for the human VESP system. They found that the first-order kernels have 

a memory of approximately 250 rnsec. The second-order kernels indicated a qua­

dratic nonlinear element with a memory less than 20 msec. They found that the 

nonlinear kernel played a major part in the VESP but that there were no signi­

ficant contributions from kernels higher than second-order. Further tests of 

reproducibility suggested that the kernels are reliable describing functions. 

They also examined the predictive power of the kernel set for transient and 

steady state responses, as well as how they were altered by changes in 

stimulus parameters such as luminance and chrooaticity. 

Coppola (1979) used band-limited Gaussian noise to study the human 

visual system. He claimed that the prediction of the VESP from the identified 

kernels was quite good. Prediction of the response to sine wave modulated 

light was in close agreement with the actual responses. He did not use any 

mathematical method to justify the closeness of match. Neither did he present 

enough kernels to verify the repeatability of his estimates. 

I handled the nonlinear analysis of VESP in a different manner. First 

of all, a stronger pattern stimulus was used instead of noise-modulated light. 

Secondly, since Gaussian stimulus is a weak stimulus both statistically and 

psychophysically, Poisson white noise was used to avoid this disadvantage. 

Through a combined effect of the above two factors, kernel estimates turned 

out to be more stable. .Most importantly, a large number of channels were used 

to investigate the spatial distribution of these kernels. Comparisons were 
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then ~ade between white-noise results with those obtained by conventional 

methods due to partial-field effect. The problem of equivalent sources was 

also considered. Th~seare some aspects that previous investigators never 

addressed. 
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CHAPTER 2 

THEORY OF WHITE-NOISE ANALYSIS 

The theory of white-noise system analysis is in general complicated 

and requires some background in statistical comIJunications and signal theory. 

This chapter serves as an overview of the theory without rigorous mathematical 

proofs. It starts from the concept of auto- and cross-correlation, their past 

utilization in evoked-potential research, to Volterra and Wiener kernels 

and functional series, Lee-Schetzen's cross-correlation method for kernel 

estimation, different kinds of white noise, and finally the Poisson impulse 

train, RDV( restricted diagonal Volterra ) series, and a kernel-estimation 

method similar to the approach of Lee and Schetzen • 

.2_ • .1 AUTO-CORRELATION AND CROSS-CORRELATION FUNCTION ANALYSIS 

Since multidimensional cross-correlation plays an important role in 

kernel estimation for identification of nonlinear systems, it is necessary to 

discuss briefly the correlation methods used in systems and signal theory. 

Although white-noise nonlinear analysis is still a new approach in EP 

research, correlation analysis has already been applied to the EEG for some 

time. Also, techniques used in conventional signal averaging can be considered 

as special cases of cross-correlation, although such terminology is not used. 

Auto-correlation and cross-correlation are methods of analysis which 

have been developed in statistical coramunication theory for the study of ran­

domly varying processes, and have found wide applications in radar and commun­

ications data processing and in infrared and nuclear magnetic resonance 
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spectroscopy (Whalen 1971; Becker and Farrer, 1972). Basically, the voltage-

time graph of the signal is considered as a time series, and some aspects of 

its statistical behavior are examined. With appropriate limitations, the EEG 

can similarly be considered as a time series, and its statistical behavior 

studied by means of these techniques. 

AUTO-CORRELATION AND CROSS-CORRELATION 

The cross-correlation function is defined as 

Rxy(T) = E{x(t)y(t-T)} 

where E{ } denotes the expected value or statistical average. This function is 

dependent upon the time shift between the two signals. If ergoticity holds, 

then time and ensemble averages are interchangeable. In experimental 

situations, one does not usually have the statistical data necessary for 

computation of ensemble averages. Thus correlation functions are computed by 

time averaging. Therefore, 

1 p 

R (T) = x(t)y(t-T) = lim -[x(t)y(t-T)dt 
xy P.+ oo p 

0 

( 2-1-1) 

where P (the period of observation) is large but not necessarily infinite. 

Similarly the auto-correlation function is defined as 

R (T) = E{x(t)x(t-T)} 
xx (2-1-2) 

This function reflects the degree of time-connectedness of the same sample 

function. It should be carefully noted that ~x(T) is a deterministic function 

even though x( t) is random.· 

Implemented on a discrete system such as a digital computer, the above 

formula can be expressed as 
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(2-1-3) 

There are two reasons to consider the auto-correlation function of a 

random signal. First, the auto-correlation function Rxx(T) in its own right 

provides useful infornation about x(t). It is a measure of both time variation 

and statistical dependence. Second, by the Wiener-Kinchine theorem, the 

frequency-domain description of a random signal is its power spectral density 

G (f) = F[R (T)], where F[•] indicates Fourier transform. xx xx 

We can similarly define the n-th order auto-correlation function of a 

signal as 

R (T
1
, ••• ,T) = E{x(t-T 1) ••• x(t-T)} 

n n n 

In white-noise system analysis, the "whiteness" of a signal is deter-

mined by the degree to which its auto-correlation properties approximate the 

ones of ideal white-noise. In the case of ideal white-noise, the auto-

correlationsof odd orders are uniformly zero, while the even-order ones are 

zero everywhere but on the full-diagonal points; where the arguments T1, ••• ,Tn 

form exhaustive pairs of identical values(Lee and Schetzen, 1965). For Gaus-

sian white-noise, 

E { x ( t-T 1) ••• x ( t-T n) } = ( n ) / ITC ( T. -T. ) 
2 i,J'=i ]_ J 

if n is even 

0 if n is odd 

where p is the power density of the Gaussian white noise. 

An application of cross-correlation is the detection of the presence 
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of a periodic signal buried in noise. A disadvantage of this technique is that 

the signal must be known ahead of time. Stated another way, the signal cannot 

be recovered; only its presence (if periodic) can be detected. For this 

reason, investigators studying the VESP or any other evoked response have very 

seldom used correlation function analysis in detecting periodic signals. In 

the following sections, the cross-correlation method will be used to extract 

signals from random stimuli and their responses buried in noise. System 

kernels can be characterized by this method. This method is found to be 

powerful and intuitively understandable. I foresee in the near future that 

this technique will be received by more and more researchers in evoked poten­

tials. 

RELATIONSHIP BETWEEN CORRELATION ANALYSIS AND FREQUENCY ANALYSIS 

The results of auto-correlation and cross-correlation analysis, with 

their corresponding displays in the time domain, contain information that is 

theoretically equivalent to that obtained by frequency analysis as represented 

in the power density spectrum for a single signal, and the cross-power density 

spectrum for a pair of signals. 

The choice of frequency analysis versus correlation analysis is 

largely predicated on the appropriateness of the output display of the 

analysis relative to the immediate physiological problem. For example, if the 

specific question being asked is one of time relationships (latencies), then 

correlation analysis is especially appropriate. On the other hand, if the 

question is related to the presence of a specific frequency component, then 
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the power density spectrum of frequency analysis is the method that gives this 

type of answer explicitly. For the present study, latencies and amplitude 

distributions are more important than frequency components; therefore we shall 

only consider the time-domain behavior of the system. 

CROSS-CORRELATION AUD SIGNAL AVERAGING 

The evoked potential obtained from conventional waveform averaging is 

a special form of the more general procedure of cross-correlation (Lee 1960; 

Perry and Childers 1969; Whalen 1971 ; Regan 1972). It is equivalent to the 

cross-correlation between a pulse train with a constant interstimulus period 

and the measured EEG waveform. 

Fourier analysis techniques (Milner et al. 1972) were used in conjunc­

tion with higher frequency constant stimulation rates. The method of synchro­

nous detection has also been used (Fricker 1974; Padmos and Norren 1972). The 

above method involves several periods of stimulation at various specified fre­

quencies, usually in the 10-50 Hz range. This type of signal processing is 

analogous to very narrow band filtering and integration, with outputs of 

amplitude and phase at each separate frequency. The phase-frequency data can 

be used to determine a time delay for the frequency range tested. This is 

another specialized example of cross-correlation where one waveform is the 

noisy signal waveform at any stimulus frequency, and the other waveform may be 

either a sinewave or a square wave at the same frequency, depending on the 

particular technique used. 

All the methods described above, conventional signal averaging, 
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Fourier analysis and synchronous detection, may be regarded as extreme aspects 

of cross-correlation techniques. We can now clearly see the generality of the 

cross-correlation technique. 
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.2_ • .2_ VOLTERRA FUIJCTIOHAL SERIES 

FRECHET-VOLTERRA SERIES 

Frechet (1910) showed that every continuous functional Fon a set of 

functions x which are continuous on a finite interval (a,b) can be represented 

by a power-series type functional 

b b b 

F(x) = l<() +fa k1 ( T)x( T)dT + J J kz CT1 ,T2 )x(T1 )x(Tz )ctT1 dTz 
a a 

b b b 

+f J Jk3(TuTz,T3)x(T1)x(Tz)x(T3)dT1dTzdT3 

a a a 

+ ••• ( 2-2-1) 

A functional is a function whose argument is a function and whose value is a 

number. The convolution integral for linear systems, 
t 

y(t): f h(t-T)x(T)dT 
.CtJ 

is an example of a functional. 

Volterra is credited with applying the concept of a functional to 

expanding the input-output relationship of a nonlinear system in a power 

series with functionals as terms. 

For the class of systems described before, F can be expanded in a 

functional power series, known as the Volterra series. 

00 00 00 

y( t) = L J J kn ( T1 , ••• , Tn )x( t-T1 ) ••• x( t-Tn )dT1 •• d'Jb 

n=O .CtJ -00 

or expressed in another way, 

00 00 00 

y(t) =\f·fk (T1 , ••• ,T flTxCt-T.)ctT. L n n i=I i i 

n=O -00 --0:> 

( 2-2-2) 

The Volterra series can be thought of as the limiting case of Taylor 
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series expansion of a function with multiple arguments. The Volterra func-

tionals are a generalization of convolution techniques for linear systems to 

nonlinear systems which have finite memory and are time-invariant. 

Bedrosian and Rice (1971,1975) showed that the Volterra series can be 

expanded in a slightly different way in a suitable region of convergence. 

y(t) 

co 1 coco n 

=\---ffk (T1 , ••• ,T >ITx<t-T.)dT. L n! n n i=l i i 
n= 1 -cxi <XJ 

( 2-2-3) 

The function k (T , ••• ,T ) is known as the "nth-order Volterra kernel" and is 

assumed to be a symmetric function of its arguments. If it is not given in 

such a form, it can be symmetrized by taking 1/n! times the sum of the kernels 

obtained by permuting the arguments. The constant term (n = 0) is omitted 

because we are only interested in the passive systems, while the factorial is 

introduced to simplify some of the results. 

Writing out the first two terms in (2-2-3) yields 

+ 

from which it is seen that the leading term is the familiar response of a 

linear filter and k 1(T) is simply the impulse response. The resemblance of the 

second term to the first suggests that the 'nth-order Volterra kernel' 

k (T
1

, ••• ,T ), can be viewed as a sort of 'nth-order impulse response'. This 
n n 

concept is important for later discussion of the significance of the kernel 
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method in system identification. 

VOLTERRA TRANSFER FUNCTION 

The n-dimensional Fourier transform of the Volterra kernel leads to 

similar observations. Letting 

+ ••• + w T )]dT ••• dT 
n n I n 

(2-2-4) 

and 

+ ••• + w T )]dw ••• dw 
n n I n 

(2-2-5) 

denote the n-dimensional Fourier transform pair, where w. = 2n f., and sub-
1 l 

stituting in (2-2-3) yields 

(2-2-6) 

where X(f) is the Fourier transform of x(t), assuming for the moment that 

X(f) exists. The Fourier transform of the output then becomes 

Y(f) = 
1 1 00 

--- K, (f)X(f) + --- ( K (f ,f-f )X(f )X(f-f )df 
1 ! i 2 ! )~2 I I I I I 

1 [ CX) 

+ --- .LIC (fl ,f2 ,f-f1 -f2 )X(f )X(f )X(f-f -f )df df 
31 :.003. I 2 I 2 I 2 

+ (2-2-7) 

from which it is again seen that the first term is the familiar response of a 

linear filter and that K (f) is simply the conventional linear transfer 
I 
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function. By analogy, f\i (f1 ••• ,fn) can be regarded as an 'nth-order Volterra 

transfer function'. The symnetry of kn assures the syrm:Jetry of K. 
n 

Although the results are in the form of infinite series whose terms 

rapidly increase in complexity, useful approximations can be obtained by using 

only the leading terms in these expansions when dealing with systems that have 

only nonlinearities of low orders. 

The point of the above derivation is that there is a correspondence 

between the Volterra kernels in the time domain and the Volterra transfer 

functions in the frequency domain for nonlinear systems. This kind of sym-

metry is evident in linear systems and again revealed in nonlinear systems. 

Also, it is important to understand how the multidimensional Fourier transform 

plays a role in this relationship. 
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2_.,3. WIE!JER THEORY OF NONLINEAR SYSTEH IDENTIFICATION 

Norbert lliener is considered as the single individual who above anyone 

else is responsible for the conception of system theory. For it was Wiener 

who, starting in the twenties and thirties, introduced a number of ideas, 

concepts, and theories which collectively constitute the core of present-day 

system theory. Among his contributions, to name just a few, are his theory 

of prediction and filtering, his representation of nonlinear systems in terms 

of a series of Laguerre polynomials and Hermite functions, his generalized 

harmonic analysis, the Paley-Wiener criterion, and the Wiener process. 

It was Wiener who laid the foundation for cybernetics - the science of 

comnunication and control in the animal and the machine. 

Wiener developed a canonical representation of a large class of non-

linear systems and proposed its experimental determination in terms of the 

system response to Brownian motion inputs. 

In much the same way that Legendre polynomials are formed to make an 

orthogonal function set useful for curve fitting, so can a set of orthogonal 

functionals for nonlinear system characterization be formed. This was first 

done by Wiener and his work further simplified by Lee and his co-workers. 

CHARACTERIZATION OF NONLINEAR SYSTEH 

Cameron and Martin (1947) and Wiener (1958) have shown that a broad 

class of nonlinear systems can be characterized by input-output relationships 

of the form 

y(t) 
co 

= \ A X ( t) L nn 
n=O 

(2-3-1) 
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where the X (t) represents products of Hermite functions of various order in 
n 

the variables z 1 , z2 , ••• , which in turn are linearly related to u(the input) 

through Laguerre functions. Note that the operations involved in this repre-

sentation are (1) linear with memory, viz., the relations between the z's and 

u; (2) meoory-less nonlinear, viz., the relations between the Xn and z
1

, z
2
,.; 

and (3) linear with no memory, viz., the surm.ations. In this connection, it 

should be pointed out that the basic idea of representing a nonlinear input-

output relationship as a composition of an infinite number of (1) memory-less 

nonlinear operations and (2) linear operations with memory, is by no means a 

new one. It had been employed quite extensively by Volterra and Frechet near 

the turn of the century. 

WIENER FUNCTIONAL SERIES AND KERNELS 

As discussed before, a nonlinear analytic system can be described 

through a Volterra functional expansion by introducing a set of orthogonal 

functions which completely characterize the system. Wiener's functionals and 

their associated kernels are constructed with respect to a Gaussian white-

noise( GWN ) input. He used a method very similar to the Gram-Schmidt orthog-

onalization procedure to make the functionals orthogonal to each other. At 

each step he normalized the resulting functional. 

Wiener showed that the output y(t), of an unknown nonlinear system can 

be approximated by a series of functionals, G. [ h. , x( t)], of the input x( t), 
1 1 

where P is the constant power spectral density of the random input. 
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(X) 

= \ G [h ,x( t)] L n n 
n=O 

G [h ,x(t)] = h 
0 0 0 
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co 

G 1 [ \ , x ( t) ] = L \ ( T) x ( t-T) d T 

( 2-3-2) 

co co f 
G [ h. 'x ( t) ] =L 1 h ( T ' T ) x ( t-T ) x ( t-T ) d T d T - p h2 ( T, T) d T 
22 212 1 2 12 

G [h ,x(t)] -1(X)~r~ (T ,T ,T )x(t-T )x(t-T )x(t-T )dT dT dT 
3 3 JJ 3 1 2 3 1 2 3 1 2 3 

-00 -0:> -O:J (X) (X) -311· h (T ,T ,T )x(t-T )dT dT (2-3-3) 
. 3 1 2 2 1 1 2 

-OJ -00 

in which {h } is the set of Wiener kernels for the nonlinear system, and {G } 
n n 

is a complete set of orthogonal functionals. 

He showed that when x(t) is Gaussian white-noise, the functionals G , 
i 

are mutually orthogonal in the sense of time averages. Namely 

G. [h. ,x(t)]G. [h. ,x(t)] = 0 
l l J J 

for i~j (2-3-4) 

Because of orthogonality, the Wiener series can be truncated after n 

functionals, giving the best nth order polynomial nonlinear approximation to 

the system output in the sense of least mean square error. The Wiener kernels 

h (T ,T , ••• ,T ) characterize a given system and allow prediction of its out-
n 1 2 n 

put to any input x(t). 

The class of nonlinear operators amenable to the Wiener technique is 

the class of functionals that are Lebesque square integrable over the sample 

space of realizations of Gaussian white noise signals. In other words, the 
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output at time t when the input varies over all possible samples of Gaussian 

white noise has a finite variance. In practice, any continuous time-invariant 

nonlinear system with a finite memory and limited bandwidth can be identified 

using Gaussian white noise as the·input. The kernels will be finite and con­

tinuous. 
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2_.l±_ CORRELATION AND TRANSFORH METHOD FOR lJIEHER-KERNEL ESTIMATION 

TH1E DOMAIN: CORRELATION 

Lee and Schetzen (1965) showed that because of orthogonality, the 

various Wiener kernels could be measured by cross-correlating the system's 

response with moments of the Gaussian noise input because of orthogonality, 

specifically, 

1 

n 
n! P 

y( t)x( t-T1 )x( t-T2 ) •••• x( t-Tn) 

(2-4-1) 

where Pis the power density spectrum of the white noise x(t). It can be 

obtained by 

(2-4-2) 

In practice, when computing kernels, it is desirable to subtract from 

the response the contribution from lower-order kernels before cross-correla-

tion is applied. This is due to the fact that we deal with signals of finite 

length for which the averages may deviate somewhat from the ones obtained in 

theory (p.164, Marmarelis and Marmarelis, 1978) 

= 
1 n-1 

__ E{[y( t)- L ~ ( t) ]x( t-T1 )x( T-T2 ) ••• x( t-Tn)} 
n 

n!P k=O 

Therefore, the first three kernels can be obtained using 

ho = E[y(t)] 

1 

p 
E{[y<t>-ruJx<t-T)J 

(2-4-3) 
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2 1 2 
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E{[y(t)- h - ~h (T)x(t-T)dT]x(t-T )x(t-T )} 
0 J . 1 1 2 

0 

Integrations are replaced by suI:lIIlations in discrete digital computa-

tions. The actual formulas implemented on the digital computer for zero, 

first- and second-order kernel estimation in the GAS( General Analysis System-

a software package for signal processings )are as follows: 

where 

1 A+N-1 

h = --- [ y(n) 
0 N n=A 

1 A+N-1 
h (T) = ----- L: x(n - T)y(n) 

1 PN n=A 
1 A+N-1 

h
2

CT
1
,T

2
) = -------- L x(n-T

1
)x(n-T

2
)[y(n)-f(n)] 

2 n=A 
2!P N 

M 
f(n) = h +AT L h (m)x(n-m) 

0 m=O 1 

P = the power level of the stimulus 

1 A+N-1 H 

=~T --- [ [x(n)x(n-m) 
N n=A m=-H 

H = the time it takes for the auto-correlation of the stimulus to go 

to zero, M = the maximum time shift of interest,~T = the sampling interval, 

and N = total number of samples used in averaging. 

The cross-correlation method is much simpler computationally because 

it does not involve the cumbersome Laguerre and Hermite transformations. How-

ever, because the kernels are multidimensional and therefore require multi-

dimensional cross-correlations for their elucidation, the amount of necessary 

data processing is still formidable. The main difficulty in the computational 
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process is the calculation of the higher order correlation functions. The 

amount of computation increases with the order of the length of the record, 

the length to which each kernel is computed, and the order of the computed 

correlation. 

FREQUENCY D011AIN: FFT METHOD 

The fast Fourier transform (FFT) algorithm has found wide application 

since its rediscovery by Cooley and Tukey in 1965. 

Since the Wiener kernel theory involves multidimensional convolutions, 

French and Butz (1973) thought it was possible to apply the FFT to the measure-

ment of the kernels. They showed that it is possible by substituting complex 

exponential filters in place of Wiener's Laguerre filters. The resulting net-

work evaluates the Fourier transforms of the kernels instead of the coeffi-

cients in a Laguerre series expansion. 

Such a procedure is an expression of the "duality" which exists in the 

Fourier transform theory. 

Assume that the cross-correlation is obtained by 

¢ (T) = E[y(t)x(t-T)] 
yx 

Since the Fourier transform of a function x(t) is 

1
00 -iwt 

X(w) = F[x(t}] = x(t)e dt 
"{X) 

and the inverse transform is 

-1 1 Joo iwt 
x(t) = F [X(w)] = ---- X(w)e dw 

21T -o::> 

then the FT of the cross-correlation 

(2-4-4) 
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* ¢ (w) = F[A- (T)] = F{E[y(t)x(t-T)]} = Y(w)X(w) . yx 't'yx ( 2-4-5) 

Thus, to conpute the cross-correlation, or the kernel h
1 

(T), the steps 

can be described as follows: 

* (1) Conpute Y{w) and X{w) via FFT. 

* (2) Multiply Y(w) and X(w) to obtain i;p (w). 
yx 

(3) Compute (1/P)¢yJT) = h (T) through FFT of <I>y~w). 

Similarly, with the aid of two-dimensional Fourier transform, the 

second-order kernel can be estimated as follows: 

(1) Compute Y
0 (w) and X(w) via FFT (Y0 (w) = F[y(t)-~]). 

* * (2) Form the product Y0 (w1 +"2 )X(w1 )X("2). 

(3) Obtain the time domain inverse of this product by FFT. 

The frequency domain method is mentioned here for completeness. For 

the data computed in chapter 4, only the time-domain cross-correlation method 

was used. 
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.2_.5_ OUASI-HHITE AND NO!l-GAUSSIAH STIMULUS SIGNAL 

One practical problem in white-noise system analysis arises from the 

unrealizability of truly white signals. Real white-noise, by definition, has 

infinite spectral range, infinite energy, and infinite levels of magnitude 

in the time domain. Several investigators introduced and studied quasi-white 

signals that approximate ideal white-noise to a determinable degree. Two such 

signals are band-limited gaussian white-noise and pseudorandom signals based 

on m-sequence. 

The Wiener-Lee-Schetzen scheme of using Gaussian white-noise to test a 

nonlinear dynamical system can be extended in two ways (Klein and Yasui, 1979; 

Harmarelis V. z., 1977a,1978 ): (1) An arbitrary non-G=aussian white-noise sta­

tionary signal can be used as the test stimulus. (2) An arbitrary function of 

this stimulus can then be used as the analyzing function for cross-correlating 

with the response to obtain the kernels characterizing the system. 

Klein and Yasui (1979) also developed a formalism to handle the most 

general white-noise test stimulus. They theoretically clarified how the ker­

nels obtained with non-Gaussian stimuli are related to the basic Volterra and 

Wiener kernels. They also considered the case in which the output is cross­

correlated not with the stimulus, but with a nonlinear function of the 

stimulus. They developed a new set of dual-space kernels and dual-space func­

tionals which preserve orthogonality. The dual-space kernels were expanded in 

terms of Volterra kernels and then related to Wiener kernels. The mathematics 

involved in their derivation was complicated and will not be reproduced here. 

There are many types of white-noise which are different in their 
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Poisson(l/16) 

0 2(second) 

Fig. 2.5.1 Gaussian, binary, ternary, ternary ( CSRS) and Poisson 
white-noise. 
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amplitude probability distributions and their generation statistics. Binary, 

ternary, and Poisson are some examples. Another example is the constant­

switching-pace symmetric random signals (CSRS - introduced and studied by 

Harmarelis, V. Z.(1977a). One example of this kind of signal is a 4-level 

equi-random CSRS. Figure 2.5.1. shows several types of white-noise. Each of 

them has different auto-correlation functions of all orders. These lead to 

different powers and different functional forms. Among them the binary 

stimulus has the maximum power, while the gaussian stimulus has the minimum 

power. 
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£ . .Q_ POISSON IMPULSE TRAIN 

The probability distribution of m occurrences and n-m non-occurrences 

in n trials of an experiment, if the probability of a success is p and the 

probability of failure is (1-p), is known as the binomial distribution. 

m n-m 
P(m) = C(n,n)p (1-p) 

The limit of the binomial distribution which is of interest to us 

results when n --} oo and p --}Q in such a way that the product np = a remains 

finite. 

Under this condition, with m << n, 

n! m n-m a/p -a 
--} n and ( 1 - p) ~ ( 1 - p) ~ e 

( n - m) ! 

m m 
n a -a 

P(m) = -(-)e 
m! n 

Therefore, 

P{m) = 

m -a 
a e 

m! 
( 2-6-1) 

This is known as the Poisson distribution. Note that ~ P{m) = 1 as it should. 
m=O 

The Poisson distribution applies when a very large number of experi-

ments is carried out, but the probability of success in each is very small, so 

that "a", the expected number of success, is a finite number. 

Let us assume that on the stimulus channel during an experiment, n 

samples are produced. Among these n samples, the probability of occurrence of 

a stimulus-event ( a flash impulse ) is p. If the probability of the stimulus 

is made smaller and smaller, but the record is long enough to keep the total 
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number of stimuli finite (np =a), one approaches a Poisson stimulus. 

Several investigators, including HcShane (1962), Hida and Ikeda(1965), 

Ogura(1972), Krausz(1975) and Kroeker(1977) have dealt with the construction 

of orthogonal functionals of the Poisson process. Krausz presented a method 

which is very intuitive and mathematically simple. He described a new series, 

analogous to the Wiener series, referred to as the "restricted diagonal 

Volterra (RDV) series". For Poisson impulse trains (where the times of 

randomly occurring impulses are given by a Poisson process), the functionals 

of the RDV series are orthogonal. 

In order to derive an orthogonal series expansion for the input of a 

system when the system input is a Poisson train of impulses, it is first 

necessary to determine the input moments of all orders. The moments of a 

train of impulses take a simpler form when the train is adjusted to have zero 

mean amplitude. Let x(t) denote the binary process. Krausz showed that when 

x(t) is the zero mean Poisson impulse train previously defined, the 

functionals, Gi[h1 ,x(t)], are mutually orthogonal. 

MOMENTS OF THE POISSON IMPULSE TRAIN 

The moments of the input to a polynomial nonlinear system determine 

the form of the orthogonal expansion for its output. The Poisson impulse train 

input is defined by 

x( t) = lim x( nL\T) 
L\ T-+O 
r ~cxi 

1 
with probability L6T 

x(r.llT) = 6T 
(2-6-2) 



Fig. 2.6.l 
input. (b) 

x(rAT 

1 

.lir 

r= 

x(t) 

0 

-L 

I 

I 

52 

Continuous Binar.Y Input. 
P.roba.bility = LAT 
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Time 
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z(t) z(t) = x(t) + l 

t Time 

Random impulse train input. (a) continuous binary 
limiting case asAT-0. (c) the input actually 

delivered to a real system. 



53 

L with probability { 1 - LL\T ) 
1 - ~T 

where x(t) is a zero-mean input, L\T is the sampling interval and L is the 

mean rate of impulses( Fig.2.6.1 ). 

As L\ T -> O, rL\T -> t, the binary signal x( r~T) approaches a train of 

impulses superinposed on a baseline of -L. The impulses in x(t) are Dirac 

delta functions since they have unit area. 

The mean, or first moment is 

i L 
x(t) = lim x(rL\T) = --(LL\T) - ( 1 - L.6T) = 0 (2-6-3) 

L\T->O L\ T ( 1-LL\T) 

The second moment, the auto-correlation of x(t) is x(t)x(t-T). 

From (2-6-2), it can be proved that 

~(t}x(t-T)dT = L 
:..00 

Therefore, 

x( t)x( t-T) = 0 T:.;. 0 

oo T:O 

Therefore, since the auto-correlation vanishes for all values of T 

except at one point where it becomes infinite, and since its integral is a 

finite constant, L, the auto-correlation is proportional to the Dirac delta 

ft.mction o ( t). Namely 

x(t)x(t-T) = Lo(T) (2-6-4) 

By definition, x( t) has a zero mean and values of x( t
1

) and x( t2 ) are 

independent for t
1 

:\ t
2

• Therefore for T
1 
~ T2~ ••• ~ Tn, the nth moment of x( t) 

is 



54 

E[x(t-T1 ) ••• x(t-Tn)] = E[x(t-T1 )J ••• E[x(t-Tn)] = 0 

since E[x(t)] = 0 

The third moment x(t-T1 )x(t-T2 )x(t-T3 ) equals zero by the independence 

and zero mean properties of x(t) unless T1=T2=T3 

It is easy to prove that 

xtt) = lim x(r.6.T) 3 

~T-t 0 
= co 

And it follows by the same reasoning as above that 

Leo r I... T , _ I .L "' ' - ( .L '" \ d'" d'" T .kc X\~- IJX\~-L2JX ~-L3J LI L2 = L 

So we find that the integrand is a two-dimensional Dirac delta func-

tion, and the third moment is 

(2-6-5) 

Finally consider the fourth moment 

There are three cases to consider. First, if any one of the Ti's 

differs from all the others, then the average is zero by independence. The 

second case is where there are two pairs of equal Ti's but not all four are 

giving 

x ( t-Tl ) x ( t-T 2 ) x ( t-T 3) x ( t-T 4 ) = x ( t-T l ) x ( t-T 2 ) x ( t-T 3 ) x ( t-T 4 ) 

2 
= L 5(T1-T2)o(T3-T4) 

The other two sub-cases give permutations of the above. If all Ti's 
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are equal, we get, analogous to the third moment case, 

x(t-Tl)x(t-T2)x(t-T3)x(t-T4) = Lo(Tl-T2)o(T2-T3)o(T3-T4) (2-6-6) 

The moments of the zero-mean input x(t) are mentioned here because 

they were useful in the orthogonization process of the Volterra series listed 

in the following section. 

ORTHOGONALIZATION OF THE VOLTERRA SERIES FOR POISSON IMPULSE TRAIN IUPUT 

According to Krausz (1975), using functionals from the Volterra 

series, and using the moments of x(t), the orthogonal series for the output 

of the system can be expressed as follows. 

where 

G = h 0 0 

G = (h (T)x(t-T)dT 
1 loo 1 

G2 =100 rh' ( T 'T )x( t-T )x( t-T )dT dT 
:.cc.L;,2 1 2 1 2 1 2 

00 00 -lh (T,T)x(t-T)dT - L(h (T,T)dT 
'4> 2 ' '.lo 2 

.... 

(2-6-7) 

Mcshane (1962) derived a similar series but in a different notation. 

If z(t)-L is substituted for x(t) into the above equations, then the 

functionals agree with those derived by Ogura(1972) using Charlier polynomials. 

RESTRICTED DIAGONAL VOLTERRA SERIES 

Lee and Schetzen demonstrated that the restriction against equal T. 's 
. l 

in the cross-correlation relation can be removed by a sequential calculation 

of the kernels. But this is not possible for the above functionals because 
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the even moments of zero-mean Poisson impulse train x{t) do not decompose into 

sums of pairwise products of second moments as for Gaussian white noise. 

Krausz proved that these difficulties can be avoided by restricting 

the T.'s to be unequal in the integrations of the functionals of (2-6-7), 
1-

resulting in the series•(2-6-8) below which he showed to be 'equivalent' to 

the series forned by the functionals in (2-6-7). The resulting series was 

Restricted Diagonal Volterra (RDV) series. 
CX) 

Y ( t) = L Gn [ hn , x ( t) ] (2-6-8) 

where n=O 

Go = ho 

G1 =~h1(T)x{t-T)dT 
CX) a::i 

Gz =..L ..Lhz(T1,Tz)x{t-T1)x(t-Tz)dT1dT2 

1).=: T2 

In general, 

Gu =Loo_ ·[hu<T1, ••• ,Tn)x(t-T1) ••• x(t-Tn)dT1···dTn (2-6-9) 

T=F•4T 
I n 

CROSS-CORRELATION TO RECOVER KERNELS FOR POISSON IMPULSE TRAIN INPUTS 

The RDV kernels can be found by cross-correlation in an analogous 

manner to that used by Lee and Schetzen, except for the case when two or more 

of the Ti's are equal. The kernels are given by 

ho = y{ t) 

1 
y( t)x( t-T) 

L 
1 

y( t)x( t-T1 )x( t-T2 ) T1 '\= T2 
2 

2!L 
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In general, 

1 
1\i(T1 ,T2 , ••• ,Tn) = y(t)x(t-T1 ) ••• x(t-Tn) 

n 
n!L 

T1~ T2 ••• !.it Tn 

(2-6-10) 

It is obvious that the above formula is in the sarae format as in (2-

4-1) except that Pis now replaced by L. Equations (2-6-4) and (2-4-2) show 

that the auto-correlations of the stimuli are both expressed by delta func-

tions. Thus Lee-Schetzen's formula would still be valid for a zero-mean Pois-

son impulse train input except for the restriction on equal Ti's. The VESP 

kernels presented in chapter 4 were computed based on (2-6-10). 
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Z...J.. DISCUSSIONS: ABOUT POISSON IMPULSE TRAINS AS A SYSTEM PROBING SIGNAL 

For nonlinear systems, the use of a Poisson impulse train input is 

analogous to the use of Gaussian white-noise for continuous input systems. 

The system characterization is in terms of orthogonal series, whose kernels 

are determined by the input-output cross-correlations with the random input. 

Systems known to be second-order can be identified with paired impulses more 

easily than with a Poisson trai.n. But for higher order systems, a second-order 

kernel calculated from a Poisson train experiment gives the best second-order 

approximation to the system output. 

For systems whose input could be either continuous or discrete, use of 

the Poisson impulse train can still have some advantages over the Gaussian 

white-noise method. Listed below are a few examples. 

(1) The most significant advantage is increased speed in the computa­

tion of kernels. Since only the input values at discrete points where impulses 

occur contribute to the cross-correlations, kernels are calculated faster than 

for the continuous input case. (2) Kernels can be reasoned with intuition and 

interpreted more easily when thinking of the input as a train of impulses 

rather than a continuous white-noise. (3) The random impulse train input imi­

tates every possible impulse train input( pairs, triplets, ••• ) given an infin­

ite amount of time. 

The major disadvantage of Poisson impulse inputs concerns the identi­

fication times required to obtain kernel estimates whose variances are compar­

able to those obtained with GWN inputs. The estimate of the second- order 
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kernel, ~(T1 ,T2 ), for example, is an average over all pairs of input impulses 

occurring T1 -T2 seconds apart in the Poisson train. The number of sweeps con­

tributing to the average is proportional to the number of impulses in the 

input train. If the sweeps are independent, then the variance of an average 

of n sweeps is proportional to 1/n. Therefore, the variance of kernel esti­

mates depends roughly inversely on the number of input impulses. 

INTERPRETATION OF KERNELS 

If a system S is characterized by a second order RDV series, then the 

second kernel of S describes the nonlinear effect on the response to the 

second(test) impulse of a pair of impulses from the occurrence of the first 

(test)impulse. This effect, known to biologists as facilitation or inhibition 

( depending on sign), is expressed as 

( 2-7-1) 

where y
1 
(t) is the response of Stoa single impulse at time t1 , y2 (t) is the 

response of S to an impulse at t2 , and y
8 

( t) is the response to the pair of 

impulses. When the RDV series expansion for y1 (t), y2 (t), and y
8

(t) are sub­

stituted into above formula, the facilitation is found to be 

(2-7-2) 

Thus the second-order kernel, ~ (t-t1 ,t-S) gives one-half the facili­

tation at time t measured in a two impulse experiment with input impulses 

occurring at times t
1 

and t2 • By performing two pulse experiments with a vari­

ety of temporal separations between the pulses, it is possible to estimate the 
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second-order kernel of an unknown system, but only when the system is second-

order. 

If the system has higher-order kernels than the second-order then the 

facilitation is only partially described by the second kernel and (2-7-2) does 

not hold. Although third-order systems can be experimentally characterized by 

their responses to all possible triplets of imput impulses, and so on, this 

method soon becomes inefficient. So the advantages of the use of Poisson 

impulse train rather than pairs, triplets or other impulse inputs are: (1) The 

random input imitates every possible impulse train input given an infinite 

amount of time. In finite time it statistically samples the various possibili-

ties. (2) Since the RDV series is orthogonal for Poisson train inputs, a 

second-kernel gives the best second-order fit to the system output, in the 

sense of minimum mean square error. Unless the system has no higher kernels, a 

second-order model constructed from paired impulse experiments will therefore 

be less accurate. (3) If a sufficiently long random impulse train experiment 

is performed, it is possible to calculate higher kernels as they become needed 

without changing the estimates of lower-order kernels already obtained. No new 

experiments need be performed. 

For experiments with the Poisson train input, a close examination of 

the second-order kernel reveals that it is equal to half of the average facil-

itation T seconds after the second impulse and averaging over all pairs (T -T) 2 1 2 
seconds apart in the input train, regardless of intervening impulses. In 

general then, it is necessary to consider the facilitation at all times during 

a response in order to evaluate the second-order kernel for all positive T and 
1 



61 

T 2· 

RELATIONSHIPS BETWEEN POISSON IMPULSE TRAIN AND GAUSSIAN WHITE NOISE 

A Poisson impulse train relates to Gaussian white-noise in the follow­

ing way. If a Poisson impulse train is generated at a very high mean rate and 

then smoothed slightly, it will resemble a physical approximation to GWN. 

That is because the amplitude distribution of this new process approaches a 

Gaussian distribution when the smoothed versions of a large number of impulses 

are added (by the central limit theorem). 

So it would seem that the kernel variance in a GWN experiment should 

be the same as the kernel variance in a Poisson train experioent when the mean 

impulse rate is so high that the Poisson impulse imitates GVJN. At such high 

rates, even the longest intervals between impulses are shorter than the 

response time of the system. But in order to explore the interesting range of 

a system's behavior, the Poisson impulse train will normally have a much 

slower li.lean rate than the rates that imitate GUN. Since the kernel variances 

depend on the total number of impulses, it follows that identification may 

take longer with Poisson impulse train input then with GWN. This nevertheless 

is offset by the fact that the Poisson impulse train has a stronger power than 

GUN. 

Like the Wiener theory, the theory of nonlinear systems identification 

using Poisson impulse trains can readily be extended to multi-input systems. 

VOLTERRA, UIENER AND RDV SERIES REPRESEHTATION 
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The Volterra series is equivalent to the Wiener series, in the sense 

that they both span the same function space. However, the Wiener kernels 

depend on the power level of the G.W.N. with which they have been estimated. 

The specific value of the power level .determines the region of orthogonality 

of the Wiener G-functionals. Therefore, a system is completely described 

either by the set of Volterra kernels, or by the set of the Wiener kernels 

plus the corresponding power level P. Clearly, the overall model given by the 

Wiener series is independent of P; however, both the individual Wiener kernels 

and the G-functionals depend on P. The Volterra kernels, on the other hand, 

must be thought of as a set of invariant characteristics of the system. 

It must be emphasized that, in practice, we usually have to truncate 

the Wiener series and, consequently, the obtained model depends on P. This 

dependence on P is explicable in the sense that it determines the range of the 

stiaulus values within which the corresponding Wiener series is orthogonal. 

Now suppose an unknown system S can be stimulated with either GWN or a 

train of impulses. What will be the relation between Wiener series and the two 

RDV series and their respective sets of kernels? The Wiener series differs 

from (2-6-8) in both its functionals and its kernels. If S is approximated by 

both an nth order Wiener series and a series (2-6-8) then the output of Wiener 

series expansion to a Poisson impulse train input will be unequal to the out­

put of (2-6-8) for the same input. The reason is that the Wiener series is 

the best nth order fit to the response of S to mm, while (2-6-8) is the best 

fit to the Poisson impulse train response. But in the unlikely event that S 

is actually an nth order polynomial nonlinear system, the output of both 
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Wiener functional series and (2-6-8) to a Poisson impulse train must agree. 

It is then possible to write down the relation between the Wiener kernels and 

the kernels in (2-6-8). 
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CHAPTER 3 

DATA ACQUISITION AfJD DJSTRffi.!ENTATION 

.1 • .1.. EXPERTHEIJTAL SETUP 

A schematic of the experimental setup is shown in Fig. 3.1.1. A double 

Faraday cage was used to reduce electromagnetic interference and for sound 

isolation. A xenon flash unit was placed outside the screened room. The 

flash stimulus passed through a small hole in the wall of the screened room. 

The flash unit was triggered at random intervals determined by a random inter­

val generator. 

The data collection system consisted of a 128 channel, 100 kHz multi­

plexer, an A/D converter and a dual buffered digital tape recording system. 

Data were stored on standard 9-channel 800 b.p.i. digital tapes which are 

readable by any of the digital computers on campus for further data analysis. 

The data were sampled at 4 msec intervals, yielding a sampling frequency of 

250 Hz. Continuous digital recordings were used for each channel. Acquired 

data included ground, average-reference, standard-waveform synchronization and 

calibration signal, a record of the random impulse train stimulus and active 

brain-wave channels. 

A custom-designed multichannel CRT monitor was used to display all 

electrode channels during experimental sessions. Detached, noisy, and 

unstable electrodes could be easily detected during the session by the exper­

imenter. Abnormal potential drifts due to body movements, eye blinks and 

movements could also be noticed and corrective measures taken. A four-channel 

real-tine signal averager (Nuclear Data Hodel ND-801 Enhancetron) was used to 
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display averaged evoked potentials from selected channels on a storage oscil­

loscope. This enabled the experimenters to assess the repeatability of evoked 

potentials from different runs and to estimate or ascertain the length of time 

required to extract reliable responses for a fixed probability of stimulus 

presentation. 

An experimental session consisted of three 3.5 minute runs using a 

given stimulus. The repetitions allowed estimation of the reproducibility of 

the evoked potentials. Any variation in stimulus parameters was considered to 

generate a unique stimulus. These stimulus parameters were left or right 

field checkerboard patterns with or without psychophysically matched right or 

left background illumination for controlling stray light. 
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3. • .2.. SIGNAL .MiPLIFICATION SYSTE!i 

Physiological signals acquired by either electrodes or transducers are 

typically below 10mv in amplitude and must therefore be amplified to be compa­

tible with display devices and corJIJon data acquisition systems. This necessi­

tates the usage of physiological amplifiers. A physiological amplifier usu­

ally has a high input impedance and a low output impedance and provides either 

a fixed or a variable voltage gain. Among different kinds of physiological 

amplifiers, the design criteria of a multichannel EEG amplifier system are 

most critical. 

In almost all physiological measurement situations, the physiological 

signal of interest is accompanied by an interference signal. The interference 

is typically 60 Hz due to electrically coupled or magnetically induced 

interference from the line supply. Measures such as using a screened room are 

very helpful in reducing electromagnetic interference. Differential amplifi­

cation provides another level of noise rejection. In EEG or EP research it is 

a common practice to use a differential amplifier to reject the interference 

signal and to magnify the desired physiological signal. The desired signal of 

interest that appears between the two input terminals of the differential 

amplifier is referred to as the 'differential signal'. The interference sig­

nal that appears between both inputs of the differential amplifier and ground 

is referred to as the 'coIDfilon mode signal'. Common mode rejection ratio 

(CURR) is defined as the ratio between the amplitude of the common mode signal 

and the amplitude of an equivalent differential signal that would produce the 

same output from the amplifier. This comnon mode rejection ratio of an 
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amplifier is a quantitative neasure of the ability of an amplifier to reject 

common mode signals. Usually, a high Ci·1RR is desired. 

MULTICHANNEL AMPLIFIER SYSTEM 

A custom-designed multichannel amplifier system was constructed to 

provide appropriate amplification and referencing for the EEG signals on each 

of the (40) electrodes. The inherent interaction in a multichannel EEG system 

operating at high gains and using the same reference in all channels is a 

major design and implementation problem. Stability is the first requirement 

for the system. Amplifier cross-talk must be very low, less than 40db at 100 

Hz The anplifiers must have high t;ain (10,000 to 100,000), high common mode 

rejection ratio , high input impedance (greater than 10 at 100 Hz), and a 

roughly uniform bandpass that covers the desired signal frequency range. In 

the system used, dual-FET input instrumentation amplifiers constitute the 

front-end preamplifier stage. They provide high input impedance, have a CHRR 

with a 20k source imbalance of greater than 60 dB in the frequency range of 

interest, have an adequate linear frequency response. These amplifiers pro­

vide the first stage of amplification. The system provides a switch between 

monopolar and average reference. High and low-pass filters are also included 

for signal filtering and amplification. A variable gain stage enables chang­

ing the gain of this stage, and therefore, of the whole system. Opto-isolation 

is also included for subjects' protection from electric shock. The entire 

low-pass filtering system is switchable to one of three upper 3dB points: 30, 

60, or 90 Hz. The overall gain of each amplifier was set at 45000. The data 

acquisition system provides us with another stage of amplification. Therefore 
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in conversion of units for evoked potential signals, both were taken into 

account. 
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~-~ ELECTRODE REFERENCING 

In recording the VESP, one deternines the algebraic difference in 

potential between two electrodes, an active electrode and an inactive or 

reference electrode. Ideally, the active electrode picks up neural signals 

plus other potentials ( muscle, interference and artifact) while the inactive 

electrode is picking up all potentials except neural signals. The differential 

result of this ideal situation is a VESP that reflects solely the neural 

activity of a specfied region of the brain since all other potentials Hould be 

comr:1on to both electrodes and therefore not present in the final waveform. In 

practice, it is difficult to prove that a truly inactive reference exists. 

Therefore in EEG, we desire to find a reference which is relatively 

indifferent to neural activities resulting from stimulus occurrence. The com­

mon mode rejection property of the amplifiers rejects undesired physiological 

signals from remote sources such as electrocardiograms and 60 cycle power-line 

noise, but one must optimize the tradeoff between proximity of active and 

reference electrodes ( to minimize comnon mode noise ) and distance ( to 

ensure indifference of reference to active signal). 

Monopolar, bipolar, and average referencing are the three usually used 

reference schemes in EEG or EP research. Honopolar referencing refers to any 

condition in which one electrode is located over an active region and the 

second (referenc_e) electrode is located in an inactive region such as the ear­

lobe or the mastoid. Bipolar referencing refers to the condition in which two 

electrodes are placed over active areas, and the resulting waveform reflects 

the difference between these tuo regions. Average-referencing refers to the 



71 

condition in which the avera&e of the active electrodes is used as the refer­

ence. The relative merits and disadvantages of these three reference schemes 

have been discussed by several researchers (Osselton, 1965; Goldman, 1950; 

Offner, 1950; Darcey, 1979). Average referencing wa3 t.:sed as the electrode 

reference scheme for fort:-,~-channel recording in this thesis because the schene 

is a conpromise between the conpeting problem of noise rejection and reference 

indifference (Darcey's thesis). Also, negative feedback used in average 

reference helps to stabilize nultichannel amplifier systems (Ary, 1977). 

Without this feedback, high-gain aoplifier systems will have a greater ten­

dency to oscillate or otherwise become unstable. 

This average referencing method can only be used when a large number 

of electrodes is applied, since it is based on the assumption that the 

activity which gives rise to the scalp potentials involves electronic charges 

which sum to a constant. Recall the Gauss law, which states that the sum of 

potentials over a closed surface bounding a fixed number of charges is some 

constant. This method can thus only be exploited when the recording method 

uses enough electrodes so that the integral of the potential over a closed 

surface can be approximated. This is another reason that this method was used 

for the series of forty-channel experiments performed(section 4.2). The sin­

gle (monopolar) reference scheme was used for the series of five-channel 

experiments (section 4.1) because of the small number of electrodes used. 
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3_.A ELECTRODE, ELECTRODE HEL!-lET A!JD ELECTRODE LAYOUT 

Custo~"-fitted plexiglass helmets were constructed for each subject and 

were used to support the electrodes and to facilitate their rapid and repeat­

able placement in spherical coordi- nates. The electrodes were laid out at 15 

degree spacing over the surface of the sphere which best approxioated the back 

of the subject's head. The center and radius of the sphere were determined by 

using a center-finding device, similar to that used by a machinist in conjunc­

tion with the plexiglass mold of the subject's head. Electrode positions 

ranged from 15 degrees below the inion to 135 degrees above the inion and from 

75 degrees left of the vertical plane through the center of the sphere to 75 

degrees right of the plane. Angles measured ear-to-ear were designated nega­

tive towards the left ear and positive towards the right ear. Angles mee1sured 

along the midline were designated zero at the inion level and positive above. 

Inion, nasion, and vertex were used as landmarks of the helmets for accurate 

and repeatable placement. The helmet was drilled with a 17nm dia:raeter hole at 

each electrode location. The helmet was applied and strapped under the 

subject's chin, then the hair was parted through each hole in the helmet and 

the scalp prepared following conventional techniques. HP Redux Paste was used 

as an abrasive to reduce skin resistance. A rubber grOL'IDlet with a 4.5 mm cen­

tral hole was then plugged into each hole in the helmet. The electrodes are 

brass cylinders 5 mm in diameter and 15 run long with one cupped-end. The 

cylinders are silver plated and chlorided. An electrode was pressed through 

the hole in each gro:DL1et until it seated against the head in a bead of elec­

trode paste. To increase conductivity between electrode and scalp, Type EC-2 

electrode paste was usually used. A Grass Hodel EZM1D Electrode Impedance 
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Fig.3.4.1- Equian~ular electrode layout (15° spacing) 
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l1eter was used to measure impedance of each electrode after it was applied. A 

reading below 20 k was considered as acceptable. 



3..5. STIMULUS PRESEJJTATIOH 

XENON FLASH 
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A xenon fash unit (Strobex model 11136 with a model 1}70 head, Chadwiclc-

Helmuth Co., Inc.) was used for presenting a rapid random flash stioulus 

through a checkerboard pattern in a Haxwellian view. In general, xenon flash 

tubes can be used for continuous operation (arcs) or for periodic/aperiodic 

flashing. Randomized trigger pulses, from a random interval generator, were 

fed to the trigger circuitry in the flash unit. It uas verified that the 

light flux did not vary from flash to flash, and that the mean light flux did 

not vary with frequency. Thus identical luminance effects in each stimulus 

presentation were guaranteed. It is known that very short xenon flashes 

presented on a background of low adaptation level are likely to excite scoto­

pic as well as photopic mechanisms. Using a small, bright field, the area of 

the retina that is directly illuminated responds photopically, but the rest 

of the retina will adapt and respond to the scattered light scotopically. The 

scotopic response from the scatter could be added to the photopic part of the 

evoked potentials. 

The evoked response to the clicks which accompany xenon flashes was 

suppressed by playing a radio during experimental sessions to mask the sound 

of the strobes. The screened room also provided partial effect of sound 

proofing. 

HAXHELL TAN VTEHIIJG SYSTEM 

The viewing system had two optically superimposed channels which could 
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be used singly or be exchanc;ed with a switchinr; time of 3 ms. The switching 

could be accomplished by two linear motion transducers (C1,C2) driven in 

anti-phase. The transducers moved knife-edges over 1mm pinholes (PH). Using 

collouating lenses (L), each channel could produce a beam of parallel light 

incident on separate slides (S1,S2) which were mounted in x-y movements for 

alignnent purposes. The two images could be superimposed by a pellicle beam­

splitter (BS2) and presented in Haxwellian view at optical infinity to the 

right eye of the subject by use of an intervening lens (L!1). The intensities 

of the two beams could be adjusted using iris diaphragms (ID1,ID2) and neutral 

density filters (F1,F2). In the experiments carried out for this research, 

one channel was used for flashing half-field pattern. Another channel pro­

vided the opposite half-field with psychophysically matched luminance as 

stray-light control for some experiments. A Garn...na Scientific (model 2000) 

telephotometer was used to measure the luminance of the matching field. The 

entire pattern was viewed through a red Wratten filter #25(F3). The channel 

in use carried a fixation target and a checkerboard pattern ( 10 min arc 

checksize ). The other channel carried a similar fixation target. The two 

channels were optically aligned. Luminance balance was also periodically 

checked psychophysically by adjusting the background light beam for a bright­

ness that matched with the average flash intensity. The stimulus was masked 

so that it occupied the left or right half of a 20 degree circular area. The 

fixation mark was at the center of the circle. 
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CHAPTER 4 

EXPERiliEJJ'l'AL DATA ANALYSIS AIID IIITERPRETATION 

.!l_ • .1 FIRST ORDER KERIJELS 

A series of preliminary experioents was perforoed to evaluate and 

ascertain various optical experioental parameters before the final experioents 

mentioned in this thesis. These parameters included the optimal time-length 

per run, probability of stimulus, flash intensity, suitable background lumi­

nance, etc. The experiences gained from those early experimental sessions 

brought about the eventual fruition of this research. 

There are two najor groups of experiraents performed and results 

presented in this thesis. The first group was done by using five electrodes 

in a row on four subjects (Fig.4.1.0). The purpose was to coopare kernels 

computed from random impulse train inputs with results obtained from conven­

tional signal averaging under half-field pattern stimulation(Darcey, 1979). 

Another purpose was to compare intra-subject variability. For the first set 

of experiments, a left-half field stimulus 10 minute checks, 10 degree field 

) was viewed by all the subjects through a Maxwellian vieu with matching 

right-half field of subjectively equal luninance to reduce stray-light effect. 

The probability was fixed at 12.5%. Three runs were usually done for each 

experiment for studying reproducibility of the signals. The second group of 

experinents consisted of a series of forty-channel ones done on one subject, 

particularly, subject 1. The first-order kernels obtained from the first set 

of experiments will be introduced and discussed in this section. The results 

from the second set of experiments will be displayed in equipotential-nap 
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fornat, to be introduced and discussed in the second section of this chapter. 

SIGNAL PROCESSTIJG liETHODS FOR KERIJEL COMPUTATION 

Following an experirJental session, the recorded data on nagnetic tapes 

were taken to the IBM 370, VAX 11-780 or PDP 11/45 computer for analysis 

depending on the set-up conditions of the programs, the number of channels 

used and availability of the systems. Data-processing software was written 

for various purposes on these systems. For these experiments with small 

nuober of electrodes, the GAS (General Analysis System) signal processing 

package on PDP 11/45 vas usually used. Correlation, FFT, convolution, kernel 

computation, and other signal processing operations can be performed on this 

systen. The data on magnetic tape were routinely first transcribed to 24-

megabyte Diva disks which served as the primary data storage device. The 

CHARM progran is the first analysis step. It demultiplexed the channels and 

converted the data from eight-bit binary format into floating-point numbers 

for further processing. One channel in one run of experioent usually took up 

650 kilobytes of storage space. Therefore, large-capacity storage devices 

were necessary in this kind of analysis. Fig. 4.1.1. shows three channels of 

EEG response and their stimuls channel. The evoked potentials are in general 

so sr.:iall and overwhelmed by EEG that they can not be discerned by human eyes 

at all if signal-extraction operation is not performed. 

Fig. 4.1.2. shows the general flow-chart of signal-processings for the 

computation of first- and second-order kernels. CHARH, XYLIN, ••• are names of 

programs for the series of operations done on the data. Following CHARH, the 
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START 

DEMULTIPLEX 
CHANNELS 

CHARM 

ADD DC OFFSET XYLIN TO STI~ULUS 

CO!'IVERT TO SIG!'l 
STIMULUS 

BINARY +/- 1 

CONDITIONING AMPLITUDE ' ADJUSTtlENT XYLIN 

MEAN WNSTMP 
RE!lOVAL 

P.ESPOtlS E ~ 
t~EAN REll".lVAL WNRSPP 

CON!)ITI!JNING 
FILTERING 

\ 

KERNEL KERN COMPUTATION 

INVERSION XYLIN OF KF 

DISPLAY KF LOOK 

INVERSION XYLIN OF KS 

DISPLAY KS 

YES 

YES 

Fig. 4.1.2. The flow-chartof signal processings for first- and 
second-order kernels. 
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second step was to condition the stimulus and response (EEG) channels. The 

stinulus channel had to be rescaled, nean renoved, and base-line noise 

cleared(Fig. 4.1.4 shows the unprocessed and processed stimulus channel). 

High-pass filtering at 2 Hz was done on all of the EEG channels. Also, means 

of the response channels were reDoved. These signal-conditioning steps were 

perforwed before correlation was done. Cross-correlation between processed 

EEG channels with the processed stimulus was done in the KERH program. This 

correlation procedure generated multiple traces of first order kernels as 

well as second-order kernels ) as a function of time from multiple scalp loca­

tions. In essence, correlation is a signal-to-noise enhancer:ient by summing up 

weak but correlated signals from uncorrelated background (ongoing EEG, 

interference etc.). 

To ensure that the stimulus was white, auto-correlation was often done 

on the processed stimulus channel. Fig. 4.1.3 shows this function in one 

experiment. An impulse of predicted height and tolerable base-line fluctua­

tions assured that the stimulus was close to white-noise in behaviour. 

TEST OF STATIONARITY OF EEG 

I have tested the stationarity of the EEG by using a program on the 

GAS system which tests the stationarity of signals. This program performs the 

following operations: (1) The record was divided into a specified number of 

segments of equal length. (2) Mean and variance were computed on each segment. 

(3) The median of each statistic was found. (4) For each statistic, the number 

of runs above and below the nean for that statistic was found. (5) The number 

of runs was compared with an internal table to determine whether the signal 
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Fig. 4.1.3 ., Auto-correlation function of the random Poisson 

impulse train input. 

1 

- - ....____ ..___ 

2 
-

I.- '--- ..____ - -

Fig. 4.1.4 The first trace shows the recorded, unprocessed impulse 

train. The second trace shows the impulse train used for 

cross-correlation after base-line noise removal, mean removal, 

and rescaling. 
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-40uv 0 

Fig. 4.1. 5 
Proba~ility distribution function of EEG amplitude for 

one experimental run from subject 2. 
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was acceptably stationary. The acceptance criterion was such that 95% of all 

perfectly stationary signals would be judged stationary. This test was 

applied to three experimental runs. For a typical three-and-a-half minute 

run, over 5000 sanples were tested in each segment. Usually one experimental 

run was divided into 10 sei;oents. The results indicated that they were all 

stationary within the 95% acceptance criterion. 

Fig. 4.1.5 shows the histogram done on one experimental run on subject 

3. This amplitude distribution function of the EEG shows that the EEG is 

basically Gaussian in amplitude distribution which confirr.:is the discussions in 

section 3.2. 

Fig. 4.1.0. shows the electrode-map for the series of five-electrode 

experiments done on the subjects. All the electrodes were placed on the scalp 

with the support of the helmets strapped on the subjects' heads. The 

electrode-helmets facilitated repeatable placements of these electrodes on 

predetermined coordinate locations. The electrodes were placed in a row 15 

degrees above the inion plane. The reference and ground locations were on the 

midline as indicated in the figure. 

The magnitudes of the first-order kernels can be obtained by estimat­

ing the anplitudes of the peaks and valleys of the waveforms. Take Fig. 

4.1.6. for example. Four traces of first-order kernels are shown for elec­

trodes 1, 2, 4 and 5. The horizontal axis indicates time in second. The 

numbers in front and after THfE( SEC) indicate the starting and ending time ( 0 

and 0.4 sec). For the first trace(electrode 1) of waveform, there are 15 (-
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12 to 3) units from bottom to top. The same applies to the second trace 

(electrode 2, -9 to 6), the third and the fourth trace. Since electrode 1 

spans about 3 units and one unit is 0.320 uv, it is easy to estimate that the 

first-order kernel is about 1 uv in magnitude. 

Starting froo Fig. 4.1.6, a series of the first-order kernels from 

electrodes 1, 2, 4, and 5 for all four subjects will be shown. Electrodes 

and 2 were placed on the subjects' left hemisphere. Electrodes 4 and 5 were 

on the right as shown in Fig. 1./.1.0. Using a left-half patterned field, 

polarity reversal( or less distinct phase shift in soue subjects) was reported 

for the two major peaks(Hakar.mra and Biersdorf, 1971; Darcey, 1979) by using 

conventional averaging. Darcey et al( 1980) showed this property ruost clearly 

in their spatiotemporal equipotential naps. They established that the mapping 

between the visual field and the visual cortex could be reflected in the 

potential distribution and the results also interpretable in terms of 

equivalent dipole sources. The well-known intersubject variability in the 

calcarine cortex(Brindley, 1972) may account for the lack of total polarity 

reversal in some subjects. Although white-noise was used, this property was 

confirmed in all four subjects. This observation revealed the fact that 

first-order kernels possess some of the important features which are obtain­

able from conventional signal averaging. 

For subject 1 (Fig~ 4.1.6 ), phase shift can be seen startine at the 

first major negative peak(72 msec) for electrodes 1, 2, 4 and the first major 

positive peak for channel 5. This shift extends to around 300 msec. At around 

200 msec, polarity reversal can be seen. Fig. 4.1.7 shows the results from 
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three runs for electrode 3. The hiGh degree of reproducibility of the first­

order kernels is clearly seen here. Subject 2 shows phase-shift and reversal 

from around 70 msec to 200 msec(Fig. 4.1 .8). A distinct pattern of left-right 

reversal in polarity is observed for subject 3( Figs.4.1.9 and 4.1.10). Fig. 

4.1.10 is the overplotted version of Fig.4.1 .9. with a 2.5 times magnifica­

tion. The polarity-reversal is also noticeable in subject 4 (Fig.4.1.11). 

The stationarity of the VESP system under study can be assessed by 

comparing the first-order kernels from several runs of the same or different 

experiments. Habituation, drowsiness, and boredom are several causes of non­

stationarity. Since all of the runs in the present study were done in 3.5 

minutes, the stationarity of the subjects could in general be better main­

tained in comparison with the same experimental situations performed under 

conventional averaging. The first-order kernels are generally highly reprodu­

cible and stationary for all subjects. 

Since the first-order kernels can be considered as a special form of 

averaged evoked potentials, the interpretations of these lrnrnels can follow 

conventional methods used in evoked potentials. First order kernels are func­

tions of time, therefore implicit-times(latencies) and amplitude measurements 

of prooinent peaks and valleys are valid criteria for determining the timing 

and fluctuations of underlying intracranial activities. 

It is now generally known that the waveform, the tiraing of each peak 

and trough, and the duration of evoked potentials are all uniquely related to 

a large number of conditions. Any change in stimulus parameter, in form, 
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color, luminance etc. may influence the waveform to a significant extent. In 

controlled situations, EP can be reproducible to a certain extent. The 

intrasubject variability can also be reduced in a well-planned and controlled 

situation. It is this reproducibility that enables us to compare data from 

different experimental runs anong different subjects and to infer their phy­

siological significance. 

The first-order kernels shown in the above figures indicate that they 

possess most of the basic features as seen in conventionally averaged evoked 

potentials. The latencies of the major peaks are about the sarJe. The distri­

bution of the potentials reflects effects due to half field stimulation. They 

in general display a high degree of stability in waveforms from different 

runs. Because of seemingly improved signal-to-noise ratio, early peaks are 

clearly recognizable and repeatable. This feature may be utilized to investi­

gate in-depth sources such as lateral geniculate nucleus( Chen and Ary, 1979). 

Because of the high degree of randomness of the stimulus, alpha activities 

were also rarely observed in the first-order kernels. It seems that the 

stimulus has better effect in removing alpha activities. 

A final reminder is given here for the stimulus used in this study. 

The somewhat unfamiliar feature of the random flashed checkerboard procedure 

described here is that the stimuli have interflash intervals which are vari­

able in a pseudorandom manner; they may vary in specified increments from a 

particular minimum time to a relatively long time. As a typical example, the 

minimum interflash intervals may be 4 msec, Hhile other intervals may be 8, 

12, 1E, ••• msec. The cross-correlation output :7~~cforms ( first order kernels) 
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nay be viewed as equivalent VESP waveforms in which the peak and valley values 

provide measures of the amplitudes of the VESP. 

Using a sanpling interval of 4 nsec and a probability of stinulus 

occurrence at say, 12.5%, over 6000 repetitions of stimuli can be presented to 

the subjects in a typical three-and-a-h2lf cinute run. If conventional signal 

averaging is used, assuming an average interstimulus interval of 500 msec, it 

would talce at least 50 minutes to attain the same nunber of repetitions of 

the stimuli. Note that in general, the potentials evoked by such rapid 

stiouli are smaller in anplitude conpared with those obtained from the conven­

tional methods which allow the system to return to its resting state. 

If a random impulse train is used as the reference waveform ( whose 

spectrum covers a very broad range ) then the cross-correlation process will 

not attenuate the high frequency contents of the evoked evoked responses. 

This is particularly important if we are interested in early peaks of short 

durations that are from LGN and other midbrain structures. 

The major advantage in using a white noise stimulus over conventional 

averaging is the greatly reduced experimental time. A much higher informa­

tional rate( higher stimulus presentation rate ) can be attained by using 

white noise. This greatly reduces the burden on the subject. Also in gen­

eral, the shorter the experimental time, the more likely the system would 

behave as a time-invariant one. Using this method experimental time usually 

can be reduced ten times. Another advantage lies in the intrinsic nature of 

the stimulus. This method produces the response to rapidly presented stimuli, 
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and thus provides an additional parameter for estimation of visual function. 

In particular, the effect of adaptation due to previous stimulus of very short 

interval will be discussed in greater detail in the section of second-order 

kernels. 
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.!l • .2. W'::.:TPOTEHTIAL l 1APS 

EEG and EP investigators have been interested in the surface distri­

bution of the electrical potentials of the brain even before digital computers 

were in general use(reviewed by Petsche, 1973). In order to visualize the 

salient features fron rml tichannel EEG or EP ueasureraents, nmiber-level plots, 

contour maps of isopotential lines for single tiwe-fraue, spatio-tenporal maps 

for consecutive sampling times ( Kavanagh et al, 1978; Darcey, 1979; Darcey et 

al, 1980 a,b,c), BEAU ( Brain Electrical Activity riaps - Duffy et al., 1979 ) , 

and dot-density topograms(Dubinsky and Barlow, 1980) have been used and 

reported by other researchers. From such maps, the features of the putative 

intracranial sources are better revealed. Effects of changes in experimental 

variables can be detected more easily. 

Spatiotemporal equipotential maps will be used as the method for 

displaying a large number of channels of first-order kernels in this thesis. 

Fig. 4 .2 .A shmm how these spatiotemporal maps are made. Usually, the average 

of results from several runs of an experiment under the same experimental con­

dition is plotted. For each time frame, equipotential contour lines computed 

by an interpolating routine are plotted. This mapping nechanisra is a 

transformation of the 40 traces of averaged first-order kernels into a 

sequence of equipotential maps at 4 nsec intervals. The crosses show the sites 

of the electrodes. Dotted regions are negative. Fig. 4.2.B shows the top and 

back view of electrode layout for subject 1. Fig. 4.2.1 shows the back-views 

of these maps. Not all 40 electrodes are shown since those over the frontal 

regions of the scalp are out of sight in the back view. For completeness, the 



:z 

I I 
I 

I I 

99 

112-

JAS-

~ig. _4.2.A 
Equipotential maps of averaged evoked potentials of first-order kernels are made by plotti_ng equipotential contour line for each time frame. The X's indicate electrode locations. Dotted· regions are negative. 



100 

36 37 38 

J( 34 x 35 
JC JC 

32 
x 11 18 x 29 

)( 3S 
2 

2g 

x 
22 

23 x24 

x JC 17 x1a 
15 16 

9 10 

~ x JC ~ 
3 '4 
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Fig. 4. 2. c Four traces of first order kernels from four se7ected 

scalp locations. The high degree of reproducibility of three 

experimental runs is clearly seen. The early peaks overlap with 

each other and are h~ghly repeatable. They show most c1early in the 

parietal, close to the midline region. 
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top views of these maps are shown in Fig. 4.2.2. These naps er:iphasize the 

spatial distribution of the first-order kernels. Information in the time­

dooain can be obtained by inspecting a consecutive sequence of these plots. 

The stability and reliability of the spatial distribution of the first-order 

kernels from each individual subject were in general assessed by computer 

graphics on a Tektronix CRT graphics terninal. Prestir:mlus values in equi­

potential maps were good estimations of inherent noise level in responses and 

the causality of the system. 

The data shown in this section were from subject 1; under left-half and 

right-half field flashed checkerboard stimulation. These time series of equi­

potential naps were used to capture snapshots of the spatial potential distri­

bution at each time sample. They provided a better way of comprehending spa­

tial relationship among electrodes than by direct inspection of first-order­

kernel waveforms separately. They made interpretations of underlying brain 

sources easier. A series of these maps in effect, is a concise display of the 

complete spatio-teoporal course of scalp EP activities. Fig. 4.2.1. shows the 

equipotential map series of 40 channels of first-order kernels for right-half 

field stimulation (subject 1). Fig.4.2.2. shows the top view of the same 

series. Fig. 4.2.3. shows the equipotential map series for left-half field 

stimulation for the same subject. Fig.4.2.4. shows the same results from top 

view. When inspecting these maps, it is important to focus attention on iden­

tifiable features from one time frame to another. The responses are plotted 

here starting from 15 samples(60 msec) before the stimulus to 45 samples (180 

msec) after. A glimpse of the responses reveals that there is no major 
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activity before the occurrence of stinulus. The first sign of coherent 

activity occurs at 48 msec in Fig.4.2.1. Potential distribution begins to show 

dipole activity starting at around 64 msec. At 92 msec, the distribution is 

clealy a polarized one with the positive region shown in left hemisphere. 

Then a different phenomenon appears; at 100 msec the contours of the 

peak(positive region) starts to migrate across the back of the head from left 

to right. The potential distribution that was seen at 92 msec is completely 

reversed by 124 msec. Starting from 128 msec the valley migrates from the 

left to the right across the head. There is a high degree of similarity 

betueen this series of equipotential maps with the results obtained conven­

tionally in terms of the latencies of the major peaks, their polarized distri­

bution, and the oigrational phenomenon observed. 

Fig.4.2.3 shows the result to left-half field stimulation. There are 

no najor activities before 60 msec. At 96 msec, a distinct left-right polarity 

is observed with the positive region on the right hemisphere. Starting from 

108 msec the valley starts to migrate from left to right across the back of 

the head. Throughout the whole course, major activities are observed in the 

right hemisphere. 

An optional step in data analysis for first-order kernels was to make 

reasonable guesses for the source parameters and to peform the source locali­

zation routine to choose source parameters whose potential distribution resem­

bles the experimental maps most in a least-square sense. This has been done 

for selected times after stimulus for some experiments. The results basically 

agreed with those from other investigators using conventional signal 
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averaging( Kavanagh,1978; Darcey, 1979). 

Darcey et al(1980) suggested that the VESP distributions are inter­

pretable as a combined effect of two schools of thoughts. One school( Lehmann 

et al, 1969) concentrates on the stability of the potential distributions; it 

views the head as a volume conductor with spatially stable current sources and 

assumes that the distribution of the scalp potentials is a function of the 

strength, location and orientation of the sources. The other school(Childers 

et al, 1973) concentrates on the change in the potential distributions; it 

views the movement of potential hills and valleys as a smooth process which 

reflects the neural propagation of activity in the underlying superficial cor­

tex. Darcey et al speculated that neural propagation as postulated by the 

latter theory triggers activity in localized populations of neurons, which 

become the stable sources of the former theory. 

When the first-order kernels are studied as time-series of equipoten­

tail naps, it is obvious that the hills and valleys move over the head 

(Fig.4.2.1. to Fig.4.2.4). Recalling the connectivity of the geniculo-striate 

pathway, this movement might be equated with active propagation along this 

pathway. The hills and valleys of the equipotential maps of the first-order 

kernels follow approximately the same paths over the head as the results 

obtained by using conventional averaging. The first-order kernels on many 

electrodes are highly correlated in space. This is further evidence for the 

notion that these evoked potentials are volune-conducted electromagnetic field 

effects arising from a small number of electric sources at some depth in the 

head. The amplitude rises and falls in intervals then changes to a new 



105 

configuration in a relatively short interval. The figures show that this is a 

general principle for the major peaks of the first-order kernels. This 

behaviour was noted in the study by Darcey et al(1980a,b) and the study by 

Lehmann and Skrandies(1979) using conventional averaging. The nost plausible 

explanation for stably shaped potential distributions varying in nagnitude is 

a broup of generators of fixed position and orientation that vary in Dagnitude 

with time. Long term stability interrupted by sudden changes may be indica­

tive of relatively slow synaptodendritic processing in one area of the brain 

followed by rapid axonal transmission to another area. 

The equipotential maps for first-order kernels under left- and right­

half field pattern stimulation are in many aspects directly comparable with 

results obtained by conventional signal averaging. This is further evidence 

that the first-order kernels can be used as an alternative way for displaying 

prominent features due to partial-field stimulation. The main difference 

between this approach and the conventional approach is the greatly reduced 

experimental time to obtain the equipotential maps of reasonable signal-to­

noise ratio. Because of improved signal-to-noise ratio, equipotential maps 

display the potential distribution of early peaks with greater clarity. Some 

of the early peaks display polarized potential distributions which malce 

dipole-fitting easier(one example, 48 msec in Fig. 4.2.1). This makes it pos­

sible for people to investigate in-depth sources such as LGN and other mid­

brain structures (Chen and Ary, 1979). 



-60 

-lJIJ 

-28 

-12 

Fig. 4. 2 .1. 

106 

-56 -52 -IJB 

-tJO -36 -32 

-20 -16 

-8 0 

8 12 16 

Equipotential map series of 40 channels of first order 

kernels for right half field stimulation. 



107 

20 28 32 

36 l,jQ YB 

52 56 60 6Y 

66 72 76 BO 

6Y BB 92 96 

Fig. 4.2.1. (continued) 



108 

100 JOY JOB 112 

116 120 12Y 126 

13;? 136 I "O 

I "B 152 15f; 160 

16Y 166 172 176 

Fig. 4.2.1. (continuep) 



-60 

-26 

-12 

Fig. 4.2.2. Equipotential 

kernels ( top 

-56 -52 -1,18 

-36 -32 

-21J -20 -16 

-8 -1,1 0 

6 12 16 

map series for 40 channels of first order 

view, right half field stimulation ). 



110 

20 2Y 28 32 

!!6 1,10 IJB 

52 56 60 6Y 

68 72 76 80 

ea 92 96 

Fig. 4. 2. 2. (continued} 



lB 

100 1011 JOB 112 

116 120 1211 128 

132 136 llJO 

lYB 152 156 160 

1611 166 172 176 

Fig. 4.2.2. (continued) 



Fig. 

-60 

-28 

-12 

"' 
4.2.3. Equipotential 

kernels (back 

112 

-56 -52 

-llO -36 -32 

-211 -20 -16 

-8 -1,l 0 

B 12 16 

map series for 40 channels of first order 

view, left half field stimulation). 



113 

20 ZB 32 

36 

52 56 60 6" 

6B 12 76 BO 

BB 92 96 

Fig. 4.2.3. (continued) 



114 

JOO JOll 112 

116 120 128 

132 136 IYO 

11,18 152 156 160 

1611 168 172 176 

Fig. 4.2.3. (continued) 



Fig. 

-60 

-2B 

-12 

"' 
4.2.4. Equ'i potential 

or·der kernels 

115 

-56 

-2Q 

-B 

·B 

maps series 

(top view), 

-52 

-36 -32 

-20 -16 

-Q 0 

12 16 

for 40 channels of first 

left half field stimulation. 



20 2Y 28 32 

118 .36 

52 56 60 61,1 

68 72 76. 60 

BS 92 96 

Fig. 4.2.4. (continued) 



117 

JOO 101,1 JOB 112 

116 120 1211 128 

132 136 1110 1111,1 

J 1,18 152 156 160 

1611 168 172 176 

Fig. 4.2.4. (continued} 



118 

!L-3. LOCALIZATION OF DEEP SOURCES 

It is often assuned that scalp-recorded EEG or evoked potential sig­

nals represent bioelectric activity which is generated by sources lying 

imoediately below or in very close proxinity to the recording site. However, a 

body of experimental and clinical evidence does support the contention that 

deep subcortical sources can contribute to scalp potential recordincs. 

From an interpretation standpoint, it is of some importance to under­

stand the extent to which the activity of such distant sources is reflected at 

the scalp. If significant contribution is possible, distant sources must be 

viewed as latent noise generators uhich might serve to contaninate signals 

arising from local cortical structures, especially when we are investigating 

cerebral activities, or localizing cortical sources. Equally important is the 

proposition that if distant sources can be recorded at the scalp, it should be 

feasible to develop recording techniques which yield information about 

thalamic, brainstem, or other in-depth structures. Such information will 

enable us to trace the route of signal processing in our visual, auditory, 

somatosensory, olfactory and any other neural modalities which would generate 

brain activities. 

Theoretically, superficial as well as in-depth sources can generate 

electric field distributions on the scalp according to volume-conduction 

theory. In a recent study by Hosek(1979), scalp and cortical potential due to 

implanted, dipole current sources were measured in monkey. A four region 

spherical model of the head was developed, and scalp potentials due to 

theoretical radial dipoles were conputed and coLlpared with experimental 
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results. Dipole source locations were chosen to correspond to points along 

the somatosensory projection pathways to permit coL1parison of findings with 

clinical cortical and scalp evoked potential records. Data yielded by the 

theoretical head model compare well with those obtained experimentally. The 

results suggest that depth cerebral bioelectric sources do contribute to scalp 

recorded activity when averaging techniques are used. In their study, the 

extent to which certain distant sources might contribute to scalp activity was 

exanined experimentally through the analysis of recordings made using 

externally-driven artificial dipole sources which were chronically implanted 

in monkey brains. This preparation circumvents many of the restrictions of 

the straight mathematical model since it leaves the volume conduction medium 

relatively intact while providing a method of injecting simulated source 

current of known magnitude,direction and origin. 

The feasibility in identifying the peaks and valleys in VESP to their 

anatomical counterparts is best demonstrated in the results in auditory evoked 

potentials. Auditory brain-stem responses were recorded by Jewett et 

al(1970). The result was confirmed by Starr and Achor(1975). Seven short­

latency small-arnplitude(1/3 to 1/4 uv) discrete waves were detected within the 

first 10 msec after the stimulus click, representing the successive activation 

of auditory nuclei in the brainstem. Data from human patients with brain 

lesions of known location have been corapared with data obtained by placing 

recording electrodes within the brain of expeririental animals. A widely 

accepted current interpretation is that as neural signals leave the cochlea, 

wave 1 is generated by the synchronous firing of nerve impulse in the auditory 
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nerve, wave 2 coincides with activity in the cochlear nucleus, wave 3 ori­

ginates in the superior olive, a~d waves ~ and 5 coincide with the activity in 

the inferior colliculus. The origin of waves 6 and 7 is not yet known. This 

correspondence between peaks and valleys in evoked potentials with discrete 

neural structures in the auditory pathway should apply to the VESP as well. 

Corletto et al(1968) studied an epileptic patient who had undergone 

surgical ablation of the occipital lobe. A comparison was made (1) between the 

average VER recorded from the scalp and the response from the visual cortex, 

and (2) between scalp responses recorded before and after surgical removal of 

the occipital lobe. The result showed that the ablation of the occipital lobe 

did not affect the initial components(before 60 msec) of the response or the 

late components ( greater than 120 msec), but greatly reduced the amplitude of 

the waves with peak latencies in the intermediate range. This suggests that 

the precortical activities which include those from LGIJ lie in this range. 

Simultaneous recordings taken from thalamus and scalp in humans by Larson and 

Sances(1979) suggest that-evoked somatosensory signals generated at the 

thalamic level may be volume conducted to the scalp. This follows from the 

observation that small inflections seen on the scalp are observed at the same 

latency in depth (thalamic) recordings. 

There is now strong evidence that using Poisson impulse train as a 

kind of white noise to probe th~'hwnan visual system makes detecting deep 

sources easier because of the improved signal-to nOise ratio. Early peaks 

before 70 msec after the stimulus were repeatedly revealed in the first-order 

kernels across different experimental runs and across different subjects. 
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Fig. 4 .3 .1. shows the result of localization on 48 msec tirJe frarJe for the 

sar.ie experioent as displayed in Fig. 4.2.1. The localization was done by 

using the same wethod as described by Kavanagh et al(1978). Equivalent 

sources for the experioental data are found by tal<ing least-squares estimates 

of model parameters, .oinimizing the sun of the squared deviations between the 

actual scalp potential and scalp potential cosputed by the model. A hooocene­

ous oodel was used in this case. The upper back-view of potential distribu­

tion shows the experimentally obtained result, whereas the lower figure shows 

the distribution predicted by the model. Please notice that the source is 

located centrally in the left hemisphere and the stimulus was a right-half 

field. If the dipole location indicates the approximate locality of active 

neural aggregation, then this might indicate that the location is in the mid­

dle part of the brain, probably from midbrain or thalamus. There is a possi­

bility that this is actually from the response of the left lateral geniculate 

nucleus. Hore investigation along this line is necessary before any con­

clusive remarlcs can be made at this point. I am convinced that there are 

responses originating from deep subcortical sources because of the high degree 

of reproducibility of these early peaks although their anatomical identifica­

tion is not established yet. Fig.4.3.2 and Fig.4.3.3 show the results of 

localization done on 84 and 120 msec time frame from the same experiment. The 

dipole locations were found to be in the left hemisphere(due to a right-half 

field stimulation) probably fron a cortical origin. The feasibility and the 

power of this approach is clearly demonstrated here. 
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Fig. 4.3.1 Equivalent dipole localization using homogeneous 

model for the 48 msec peak( refer to Fig.4.2.1). The experiment 

was done with right-half field flashed checkerboard-pattern on 
subject 1. 
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Fig. 4.3.2. Equi~alent dipole localization using homogeneous 
model for the 84 msec time frame as shown in Fig.4.2.1. The 
experiment was performed with right-half field flashed checker­
board pattern on subjec~ 1. 



124 

Fig. 4.3.3~ Equivalent dipole localization using homogeneous 
model for.the 120 msec ti~e-frame as shown in Fig.4.2.1. The 
experiment was done with right-half field flashed checkerboard 
pattern on subject 1. 
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E_.E_ Il!TERPRETATIOIIS OF SECO!JD OTIDER KERHELS 

Fig. 4.4.1 shows the nonlinear interaction between the responses of 

two impulses in a nonlinear dynamic system. In the upper diagram the impulse 

response for the first impulse is shown by the solid line. If the system were 

linear the second ifilpulse would Generate an identical impulse response, also 

shown by a solid line, with a time delay equal to the interpulse interval. 

Again, if the system were linear, the total response to the two impulses would 

be the linear sum of the two impulse responses. This is indicated by the 

dashed line. However, suppose that an actual double-impulse experiment gives 

results as shown by the dotted line. If this is different from the dashed 

line in any way, the system is nonlinear. One way of measuring the nonlinear­

ity is to calculate the difference between predicted and the actual responses, 

as shown by the hatched area and by the lower diagrara. Note that the non­

linear effects do not appear until after the second iopulse. A nonlinear 

interaction which reduces the actual output of the system might be known as 

inhibition, saturation, response compression or adaptation. 

Fig. 4.4.2 shows the method of displaying the second-order kernels in 

this thesis. The first-order kernels are always displayed together with the 

second-order kernels. This makes interpretations of second-order kernels 

easier. The horizontal axis of both first- and second-order kernels indicates 

time(msec) after the test-impulse. The vertical axis of the second-order ker­

nel indicates the time between stimuli( the conditioning stimulus and the test 

stimulus). Therefore, a horizontal cut across the kernel at a specific 

'
1 time-between stimuli " would give a profile corresponding to the curve in the 
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Fig. 4.4.1. In the upper diagram the impulse response for the first 
impulse is shown by the solid line. If the system were linear, the 
second impulse would generate an identical impulse response. The 
dotted line indicates the actual response of a nonlinear system. One 
way of measuring nonlinearity is to calculate the difference between 
the predicted and the actual responses. 
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lower diagram of Fig. 4.4.1. In the display of the second-order kernels, the 

dotted area indicates negativity in sign. 

A closer inspection will tell us that for each peak and trough in the 

first-order kernel, there is a corresponding region with the approximate 

time-delay in the second order kernel. By inspection of Fig. 4 .4 .2, it is 

easy to find that there is a pror;iinent peak at about 70 msec which corresponds 

to the valley at the approximate latency in the first-order kernel. Another 

important thing that can be easily observed is the trend of reversal in sign 

in the first-order and second-order kernels. This tells us that in general, 

the nonlinear interaction effect for two impulses separated by different 

intervals is inhibitory. For a positive peak in the first-order kernel, a 

negative valley in the second-order kernel is considered as inhibitory. Simi­

larly, for a negative valley in the first-order kernel, a positive peak in the 

second-order kernel is considered as inhibitory since its effect is still to 

offset or decrease the magnitude of the first-order kernel. The inhibitory 

effect at around 70 msec seems to have a short memory. The term memory is 

used here to describe in the second-order kernels the "length of time­

between-stimuli" that shows a reproducible pattern of facilitation or inhibi­

tion with respect to the first-order kernel. The tir:ie-between-stimuli is 

displayed in the figures only to 60 msec since beyond this range no distinct 

reproducible patterns have been observed. It is also noticeable from Fig. 

4.4.2 that this inhibitory effect has different memory-lengths for different 

correspondins peaks and troughs in the first-order kernel. The nost distinct 

region of this inhibition occurs after 100 msec on the time(horizontal) axis. 
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For the positive peak at 140 osec in the first-order kernel, there is an 

elongated valley which extends downward to around 60 osec in the second-order 

kernel. A sioilar observation applies to the valley at around 180 msec in the 

first-order kernel. 

Starting from Fig. 4.4.3, the first- and second-order kernels for all 

five electrodes for subject 1 will be displayed. They show basically the same 

inhibitory effect. Take Fig. 4.4.4. as an example. The peak at around 70 msec 

still shows a short memory. For the elongated peak that corresponds to the 

valley at 120 r.:isec latency in the first-order kernel, it still shows an inhi-

bitory effect and a longer memory. The left-right polarity-reversal due to 

the half-field effect as explained in section 4.1 for electrodes 1, 2 and 4, 5 

is also observable in the second-order kernels, particularly in the regions 

from 175 msec to 200 msec. Refer to Fig.4.4.3 and Fig.4.4.7. This left-right 

polarity reversal due to half-field effect is again observed in the second­

order kernels. For the negative region from 175 to 200 msec in Fig. 4.4.3, 

there is a positive region shown in Fig.4.4.7 in the same time range. 

By careful inspection of the figures, we can observe other reproduci­

ble subtleties. One example is shown in a comparison between Fig.4.4.2 and 

Fig. 4.4.3 to Fig.4.4.8. The elongated valley(100-150 nsec in time, 

Fig.4.4.2) and peaks ( same range for other figures) show about the same 

memory-lengths and interestingly peak at approximate time-between-stimuli, 

about 18 msec. Other reproducible fine points can be observed between subject 

1 and subject 2. 



129 

The use of functional power series to the characterize human visually 

evoked response is investigated and is very powerful. This type of analysis 

provides a measure of the nonlinear interaction in the brain caused by prior 

inputs. By utilizing this property, in addition to gaining insights into the 

facilitatory and inhibitory effects, we oight be able to draw a dividing line 

betueen the cortical and subcortical sources through a better understanding of 

the second-order kernels. 

The amount of facilitation/inhibition in a two-pulse experiment can be 

predicted to a certain degree if the kernels of the system are known. Experi­

ments using double pulse as visual stiouli have been perforoed by a number of 

investigators. Because of the differences in the stimulus modality (flash 

versus pattern etc), direct comparison of the two approaches should be dealt 

uith carefully. These experiments serve as an indirect comparison to par­

tially explain the secon-order kernels. Bartley(1936) has shown in animals 

that the VESP to the second of a pair of photic stimuli was smaller in 

aoplitude(inhibitory) than the response to the first stimulus unless a certain 

interstirnulus interval(ISI) was used. The duration of the ISI necessary to 

produce equal and maximal responses to both stimuli was found to be equal to 

one cycle of the EEG's spontaneous alpha rhythm. Vaughan (1966) recorded 

human VESP's for various ISI values and studied the relationship between per­

ceptual discrimination performance and the magnitude of the response to the 

second pulse. He found that the recovery of the response to the second pulse 

exceeded discriraination performance over the ISI range of 60-100 msec. In a 

similar way, Inoue(1968) found facilitatory and inhibitory effects in double 
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pulse and triple flash VESP's according to the ISI. Bartlett and tlliite(1965) 

used paired flashes as stimuli, varied the interval within each pair while 

naintaining a constant interval between the sets. Using variations of 9, 16, 

and 25 msec between the pairs caused the subjects to report that the 9 msec 

sets appeared brightest nost often as opposed to those for the 25 msec inter­

val which were generally reported as being least bright. In addition, a 

greater amplitude for both positive and negative waves was obtained for the 9 

msec interval stimuli. 

The following is a sumIJary of the information disclosed by second 

order kernels using white noise stimulus in EP experiments. (1) It enables us 

to find out the facilitory and/or inhibitory effect from the conditioning 

stimulus upon the test stimulus. This can be applied to different stinulus 

modalities: visual, auditory, sogatosensory etc. (2) It tells us about the 

memory lengths for this nonlinear dynamic interaction. In other words, it 

tells us what range of the ISI has the most significant or noticeable effect 

and the limit of the ISI over which this kind of interaction exists. (3) It 

reveals the 'maximum-interaction ISI'. White-noise analysis provides us with 

this information very handily. If conventional signal averaging is used, a 

set of evoked potentials must be measured as a function of different ISis. 

(4) If plotted in graphical contour-map form as done in this thesis, the 

second-order kernels provide us with a possible new tool in disentangling 

brain sources. Since the EP reflects a substantial amount of hard-wired 

neural activity, there are reasons to believe that different anatomical 

structures(such as the LGH, primary visual cortex, secondary visual cortex) 
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would have different lump together potentially independent processes. By 

inspection of the second-order kernel for subject 2 in Fig. 4.4.3, it is 

easily seen that the cemory lengths for 72 msec and 92 osec and subsequent 

peaks and valleys are different. It is losical to think that they might indi­

cate neural activities from different brain structures. 
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electrode 1, second run. The inhibitory effect of the second-order 
kernel is seen most clearly in the region of 90 - 200 msec. 
(One unit for KF = 0.377 uv, one contour for KS = 0.029 uv ) 
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CHAPTER 5 

Discussion and Conclusion 

Changes in surrounding lights will evoke scalp potentials (VESP) and 

these events constitute an input-output, stimulus-response relationship that 

makes a systems-analysis approach appropriate. Wiener's nonlinear system 

identification method provides the theoretical background for this approach. 

In this thesis, a checkerboard-pattern transilluminated by a randomized flash 

sequence was chosen as the system probing signal. A single impulse is suffi­

cient to evoke a response which will characterize a linear system. For non­

linear, time-invariant, finite-memory systems, white-noise is a theoretically 

valid probing signal(Chapter 2) to characterize the system. 

Among different kinds of white-noise signals, the Poisson-impulse­

train possesses the advantage of high power. This kind of white-noise 

stimulus has not been extensively used in the past partly because its kernel­

estimation algorithm was developed only recently (Krausz, 1975; Kroeker, 1977) 

in comparison with the derivations of cross-correlation methods for &aussian 

white-noise inputs following the approach of Lee and Schetzen(1965). Kernels 

have been difficult for conventional biologists, clinicians, and some evoked­

potential researchers to understand because of their mathematical complexity 

and vagueness in physical meanings. As a matter of fact, it was not until the 

last few years that the physical meaning of kernels became generally under­

stood. Some VESP researchers who were interested in white-noise, started by 

using (band-limited)Gaussian white-noise because that is the most commonly 

known probing signal. 
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In general, there have been very few attempts to use Volterra- Wiener 

kernels to characterize the VESP system in comparison with conventional signal 

averaging and steady-state evoked potentials which use sinusoids as the prob­

ing signals. This study is one of the few efforts in experimenting with this 

new method. The following are the original contributions of this work. (1) 

This is the first spatiotemporal approach in white-noise VESP studies. A 

large number of channels of first-order kernels were displayed in 

equipotential-map format. By doing so, the spatial potential distribution is 

clearly revealed. In the past, Beatty (1971), Reits (1975), Trimble and Phil­

lips(1978), and Coppola (1979) have tried white-noise methods. They all used 

a small number of electrodes. No detailed spatial potential maps were gen­

erated. (2) This is the first trial to correlate first- and second-order 

kernels with underlying neural sources. Because of greatly improved S/N ratio 

and by combination of source-localization method and usage of large array of 

electrodes, this method has been proposed (Chen and Ary,1979) and data shown 

as a powerful probe to thalamic, subcortical and other indepth sources. (3) 

This is the first attempt to use light-modulated patterns (in particular, 

flashed checkerboard) instead of noise-modulated light as the stimulus. In 

comparison with noise-modulated light, pattern is a much stronger stimulus in 

producing more repeatable and definitive responses( chapter 1). Trimble and 

Phillips{1978) reported a memory length of 20 msec for the VESP. My data 

indicate that memory-lengths vary with the latencies of the peaks and val­

leys. The memory-lengths shown in chapter 4 indicate that they may extend to 

60 msec (or slightly beyond). I speculate that these discrepancies may be 

explained by the fact that I used a stronger stimulus( Poisson as opposed to 
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GWN, pattern as opposed to luminance). Also my data(particularly, second­

order kernels) show a better signal-to-noise ratio than previous results. 

None of the previous results showed detailed contour maps. Trimble and Phil­

lips displayed their results in dot-density maps which are difficult to see 

distinct features. This, I believe, was caused by their noisier data and 

weaker responses. (4) This is the first attempt in using a Poisson-impulse­

train as the stimulus in VESP studies. Sclabassi et al. (1977) used this 

stimulus to obtain somatosensory responses in the study of multiple sclerosis. 

Krausz (1975) mentioned using this stimulus to analyze auditory evoked poten­

tials. 

In general, Poisson-impulse-train proves to be a powerful stimulus to 

evoke a brain response. By a suitable selection of stimulus probability (a 

high probability makes the process approach Gaussian which is a psychophysi­

cally weaker stimulus; a probability too low makes event-pairs and event­

triplets too rare to generate reliable kernel estimates), this stimulus was 

proved to be an effective system-probing signal. First- and second- order 

kernels reveal the system's response to single impulse and temporally­

separate double impulses. They together constitute the major portion of the 

system's nonlinear response. First-order kernels are interpretable with 

respect to their underlying sources. Second-order kernels provide us with an 

additional tool to differentiate the underlying dynamic neural mechanisms. A 

suggestion for future study' is an extensive study on many subjects by combin­

ing the source localization technique with multi channel first-order l~ernels to 

investigate the early peaks which are from LGN and other indepth sources. This 
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would open a new dimension in VESP studies. In addition to the basically 

inhibitory effect, the other subtleties revealed in the second-order kernels 

will be a challenge to future investigators. 
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