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Abstract

This treatise deals with the isoperimetric problem in finite projective planes.
We prove that certain sets, called (0,n,n + 1)-sets, are solutions to this problem.
This class of sets includes all the previously known solutions to the isoperimetric
problem, as well as two new types of solutions which exist in every finite projective
plane. We prove a characterization theorem for (0, n,n+1)-sets with many points.
We solve the isoperimetric problem for large set size,and for ¢ + 3 points if ¢ is
even. We find all the (0,n,n + 1)-sets in planes of order at most 8 and develop
techniques for proving that some (0, n, n+1)-sets in larger order planes do not exist.
We solve the isoperimetric problem in the planes of order at most 7 (the solution
was known only for planes of order at most 4), proving that nested solutions exist
in these planes. We prove that no nested solutions exist in PG(2,8). We give
examples of (0,2,3)-sets in planes of order 7, 8 and 16 which are new solutions
to the isoperimetric problem not included in the infinite classes mentioned above,
and we investigate Latin squares and Steiner triple systems associated with these

examples.
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Chapter 1. Introduction and Definitions

This chapter is intended as a review of the combinatorial structures which are
used in the following chapters. We begin with a brief review of some definitions
and ideas in finite projective planes (§1.1). The next section (§1.2) is devoted
to the known results on arcs and (m,k)-arcs because they are such important
constructions for our work. Section 1.3 is a review of the few ideas in lattice
theory which are relevant to the discussion in §3.1. In §1.4 we discuss blocking
sets and multiple blocking sets, which are used in sections 3.5 and 3.7.1. In §1.5
we define the isoperimetric problem and give the results which were known prior

to the work contained herein.

1.1  Finite Projective Planes

Let ¢ be a prime power. We use the notation

F, : = the finite field with ¢ elements
F} = F;\ {0}

F, : : = the 3-dimensional vector space over Fj

={(z,y,2): z,y,z € Fy}.

We presume the reader is familiar with: the definition of a finite projective
plane of order g, some examples of such planes, the definition of a desarguesian
plane and the fact that all such planes are isomorphic to PG(2, ¢) for some prime
power ¢, the fact that all planes of order at most 8 are desarguesian, and the

definition of an affine (sub)plane.

For a review of projective planes, see [Bat], §3.2; [vLW], chapters 23 and 26;
or [Dem], chapter 3.



We will denote a general projective plane by 7 or 7.

We mention here that we take our affine points to have 1 in their third coor-
dinate. For example, the points and lines of PG(2, q) are
P={(z,y,1):z,y € F,} U{(1,m,0) : m € F,} U{(0,1,0)}
L={y=mz+k:mkecF}U{z=c:ice F}U{l.}.
Incidence obeys the obvious rule, namely, an affine point z = (z,y, 1) is on an affine

line ¢ whenever the equation defining £ is true at z, while £, consists exactly of

the slope points (those points with third coordinate zero).

Recall that three projective points (z1,y1, 21), (22, Y2, z2), and (z3,y3, 2z3) are

collinear if and only if the matrix of their coordinates has determinant zero:

y Y1 za
T2 y2 22 |=0.
I3 Yz 23

For example, two points on the line y = mz + b will be incident with the point
(1,m,0). It is for this reason that the points (1,m,0) are called slope points
with slope m. The point (0,1,0) is incident with the lines z = ¢, corresponding

to the slope oo.

Recall also that the dual of a plane 7, denoted 7*, is the projective plane
with points equal to the lines £ of 7, lines equal to the points P of 7, and having
the point £* in 7* incident with the line z* in #* if and only if the point z is

incident with the line £ in .

We will show (Theorem 3.5) that most solutions to the isoperimetric problem
obey a sort of duality. For that reason, and following [Ha], we define the dual

complement of a set to be the 0-lines of that set, as points in the dual plane:



Definition: For a set A of points in a projective plane 7, the dual complement

of A is the set

A% = {£* : £ is a 0-line of A}
of points in 7*.

For example, the dual complement of a singleton set {z} is the affine subspace
of m* which has z* as the line at infinity. The dual complement of affine space is

the singleton set {£%_ } in 7*.

1.2 Arcs

Perfect arcs and k-arcs are solutions to the isoperimetric problem ([Ha]), and
in this sense (0,n,n + 1)-sets are generalizations of them. We therefore include a
brief review of the relevant facts about arcs; for a more detailed account see, e.g.

[Th1]; [Hi], chapter 8; or [Mar].

For the rest of this section assume 7 is a finite projective plane of order g.
Recall that an (m, k)-arc in 7 is m points, some k but no k + 1 collinear. An arc
or m-arc is an (m,i)-arc with : < 2, i.e., m points with no more than 2 collinear.

Thus, for our purposes, 0-arcs (the empty set) and 1-arcs (singleton sets) are arcs.

The largest value of m for which an (m, k)-arc exists in PG(2,q) is usually
denoted my(2, ¢) and the known values for various k and small g are given in [HV]

and [B1].

For a subset A of points of a plane, a line with no points of A is called an
external line, a line with exactly one point is a tangent, a line with exactly two

points is called a secant, and a line with ¢ points is called an :-line.
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In chapter 12 of [Hi], (m, k)-arcs in PG(2, q) are discussed at length. Many of
the results obtained therein are true in arbitrary projective planes. See also [vLW],

chapter 26 for results about perfect arcs in arbitrary planes. We summarize the

results which are well-known and relevant to our problem.

If there is an (m, k)-arc K then m < (¢+1)(k — 1)+ 1. K is called perfect
or maximal when equality holds. In this case every line intersects K in exactly k
points. If there is a perfect (m, k)-arc then k divides ¢ or £ = ¢+ 1 (in which case
K = m). In an abuse of notation, we call a perfect (m,k)-arc a perfect k-arc

when we do not wish to specify m.

There are perfect (m, k)-arcs in PG(2,2%) for every t > 1 whenever k divides
2 (see [Denl] or [vLW], p. 314) but it is proved in [Th2] that there are no (m, 3)-
arcs in PG(2,3") other than affine space in PG(2,3). If K is a perfect (m, k)-arc
then K9 is a perfect (gggj-kl;k)’ %)—arc. Consequently, there are no (ﬂ%z_)’ %)-arcs

in PG(2,3") for t > 2.

If m=(g+ 1)(k—1) (the size of a perfect k-arc minus a point) and K is an
(m, k)-arc for some k > 2 then there is a point which lies only on (k — 1)-lines
of K, i.e., there is a unique point z such that K U {z} is a perfect k-arc ([Bar]).
Notice that this theorem is not true when k = 2, since that would imply that an

oval is always contained in a hyperoval; see below.

An arc is called complete if it is not properly contained in any other arc.
For an arc K, a point z ¢ K is a completion point of K if K U {z} is also an
arc. Thus an arc is complete if and only if it has no completion points, if and only

if every = € P lies on at least one secant of K.

A k-arc K satisfies k < ¢+2 and if k = ¢+ 2 then K is a perfect (¢+2, 2)-arc,
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which is called a hyperoval. Thus hyperovals exist only in even-order planes. An
oval in a plane of any order ¢ is a (¢ + 1)-arc. In planes of even order, an oval K

always has a completion point z, called the nucleus (see [Hi], Lemma 8.1.4; the

desarguesian hypothesis is not necessary).

Examples of ovals in PG(2, q) arise as the solutions of nondegenerate quadrics.
(See [vLW], p. 317 for a discussion of quadrics.) That is, for most choices of a; € F,

the set of all projective points (z,y, z) satisfying
ajz? + aszxy + azrz + a4y2 +asyz +agz’ =0

is an oval. An oval that arises as the solution of a quadric is sometimes called a

conic.

It is an important theorem of Segre that in PG(2, q) when ¢ is odd the ovals
are exactly the conics. In PG(2,2!), however, not all hyperovals arise this way.
If a hyperoval can be written as a conic plus its nucleus, it is called a regular
hyperoval. It is known that if t > 4, then PG(2,2") contains irregular hyperovals.

See [G] or [C] for examples of infinite classes of irregular hyperovals.

We use the term (hyper)oval as shorthand for “an oval when ¢ is odd, a
hyperoval when ¢ is even”. Specifically, we exclude the possibility of a (¢ + 1)-arc

when g is even.

In PG(2,q) for any g, a g-arc can always be completed to an oval. (See [Dem],
result 3.2.28 for a reference.) The hypothesis that the plane be desarguesian is

necessary (see, e.g., [Den2]).

If K is an oval in PG(2,q) where ¢ is odd, the points off K are partitioned
into (?7') external points which are on two tangents and (%) secants, and (1)

internal points which are on no tangents and (4;1) secants.



In PG(2,q) where ¢ > 2 is even, the hyperovals are exactly the sets

D(f) = {(z, f(x).1) : = € Fy} U{(0,1,0),(1,0,0)}

where f is an o-polynomial. A polynomial f of degree at most ¢ — 1 is an o-
polynomial if it is a permutation polynomial, f(0) = 0, f(1) = 1, and for each
s € F, F, is also a permutation polynomial, where F(0) := 0 and when z # 0 we

have
et s

x

Fy(z):

(See [Hi], p. 174, or [O'KP] for further characterizations of o-polynomials.)

1.3 Lattices

Except as noted, the material in this section can be found in [DP], sections
2.1 through 2.21. It is intended to be only a review of the few facts from lattice

theory which we will need.

A lattice is a partially ordered set in which meets and joins always exist. Let
X be a set. A map cl from the power set of X to the power set of X is a closure

operator on X if for all A, B C X we have
(i) ACcl(A)
(i1) if A C B then cl(A) C cl(B)
(iii) cl(el(A)) = cl(A)
A subset A of X is called closed if A = cl(A).

A closure operator on a set X gives a lattice whose elements are the closed
sets, order is containment, the meet (A) is defined as the intersection, and the join

(V) is defined as the closure of the union.
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An element a of a lattice covers an element b if a > b and there is no ¢ with

a > c > b. A lattice is called semimodular ([vLW], p. 271) if whenever distinct

elements a and b both cover some element ¢, then a V b covers both a and b.

1.4  Blocking Sets

A blocking set in a finite projective plane is a set T' of points such that every
line contains at least one point in 7' and one point not in 7. It is immediately
obvious that the complement T := P\ T is also a blocking set. It is also immediate
that the secants of a complete arc form a blocking set in the dual (see, e.g., [Br]).
It is an area of active research to find the size of a smallest blocking set in a given
plane. The answer is known in some cases, for example, in [Br] it is shown that
if S is a blocking set in a plane 7 of order ¢ then |S| > ¢ + /g + 1 with equality
if and only if ¢ is a square and S is a Baer subplane, that is, a plane of order /g
with incidence inherited from 7. In [BS] it is shown that if ¢ is not a square and S
is a blocking set in PG(2,q), then |S| > ¢+ 2¢+1— 2‘15' It is an open question

what the best possible lower bound is in the case of non-square g.

For a fountain of examples of blocking sets, as well as a discussion in the affine

setting, see [Tal.

An r-fold blocking set is a set T of points such that every line intersects
T in at least r points, where r > 1. (An r-fold blocking set may contain a
line.) A multiple blocking set is an r-fold blocking set for some r. Multiple
blocking sets have been recently studied by Ball and Blokhuis using Rédei’s theory
of lacunary polynomials ([B1], [BB], [B2]). Their most general result generalizes

Bruen’s result, as follows. If B is an r-blocking set in PG(2, q) for some r > 1 and

if B contains no line then it has at least r¢ + ,/rq + 1 points.



1.5 The Isoperimetric Problem

The material in this section is taken from [Ha].

Given a bipartite graph with disjoint vertex sets A and B, the general isoperi-
metric problem is as follows. Fix 0 < m < |A|, consider all of the m-sets of A,
and find one which has the least possible number of edges incident with it. The
neighborhood of an m-set T in a graph is defined as the edges incident with some
point of T', and is denoted by N(T"). With this notation, the isoperimetric problem
is to find

' N(T)|.
Tgﬁlzr}i:ml (T

For our purposes the bipartite graph is the one whose disjoint vertex sets are
P and L, the sets of points and lines of a projective plane. The neighborhood of a
set T of projective points is then all of the lines incident with (at least one point

of) T.

Definition: Given a set T of points in a projective plane, the neighborhood of

T is defined to be

N(T) : = the set of lines incident with T
={lel:{NT#0}.

We wish to find, for each m, the sets which have the least number of lines

incident with them, and what that least number is. For this purpose we define

Om:= _min |[N(T)|.
TCP:|T|=m

Definition: The isoperimetric problem refers to either of the following: (1)

Given a projective plane and an integer 0 < m < ¢? + ¢ + 1, find 9p; (2) Given
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a projective plane, find 9,, for each 0 < m < ¢% + ¢ + 1. It should be clear from

context which definition is being used.

Definition: Given a projective plane and an integer 0 < m < ¢*> + ¢ + 1, the
solution to the isoperimetric problem is 9, or any set T achieving this

minimum. Again, no confusion should arise in practice from this double definition.

Suppose we wish to build a solution T to the isoperimetric problem. We
would start with a point z;, add another point z3, and then as our third point z3
we would take a point on few 0-lines to the 2-set {z;,z,} (because all the 0-lines

on z3 become new lines in N(T') when we add z3 to the 2-set), and so on.

So if we want to build a solution to the isoperimetric problem from a given
set T we should add points, one at a time, which lie on few 0-lines to the points
already chosen, i.e. points which lie on many of the lines incident with the points
already chosen. One way of doing this is to make sure T does not have lines
containing “too many” points of T. For example, if T is a set which has all 1- and
2-lines except for one 5-line, we could replace a point z of that 5-line with a point
y off the 5-line. The point y will probably be on three fewer 0-lines of T\ {z} than
z is on (because there are probably about three more lines to T'\ {z} from y than

from ), and hence we should expect |[N({y} UT \ {z})| < |N(T)|.

What we are suggesting is that a set 7 where the lines intersecting T all
have approximately the same number of points of T, should be a solution to the
isoperimetric problem. Theorem 2.1 further supports this idea. In all the solutions
to the isoperimetric problem known before this investigation, this is true. The
known classes of solutions were: For 0 < m < g+ 1 (or ¢+ 2 if ¢ is even), the

solutions to the isoperimetric problems are exactly the m-arcs. Perfect k-arcs are
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Chapter 2.  (0,n,n+1)-Sets

In this chapter we define (0, n, n+1)-sets, and prove (Theorem 2.1) that given
m, (0,n,n + 1)-sets with m points are solutions to the isoperimetric problem for
m points. Furthermore, when such sets exist they are the only solutions. We then
develop necessary conditions for the existence of a (0,n,n + 1)-set of size m in a
plane of order ¢ (§2.2), give some general examples of (0,n,n + 1)-sets (§2.3), and

list all the (0,n,n + 1)-sets in planes of order at most 5 (Table 2.1).

2.1  Proof That (0,n,n+1)-Sets Are Solutions

The following observation was suggested by R. Wilson. Given a projective

plane 7, a set of points T, and a line £, let
pe =T NE|.
Then because ji¢ is an integer, for any integer n we have

0< > (ue—n)(ue—(n+1)). (2.1)

LEN(T)

Let m := |T|. In the proof of Theorem 2.1 we will obtain a lower bound on
|N(T)| where equality holds if and only if u¢ =n or n + 1 for each £ € N(T). We

are thus motivated to make the following definition before stating Theorem 2.1:

Definition: A set T of points in a projective plane 7 is called a (0,n,n + 1)-set

if pe =0, n, or n+ 1 for every line £ of =.

These sets are often called sets of type [0,n,n + 1] (see, e.g., [Ta]).
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Theorem 2.1. If there exist (0,n,n + 1)-sets of size m in a projective plane
7, then the solutions to the isoperimetric problem for m points are exactly the
(0,n,n + 1)-sets. In any case,

m

m .

with equality if and only if there exist (0,n,n + 1)-sets of size m.

Proof: Let T be a set of m points in 7. Counting in two ways the pairs (¢, z)

where £ is a line and z € £N T, and the triples (z,y,£) with z,y € £N T, proves

that
> we=m(g+1)
LEN(T)
Y we(pe—1)=m(m—1). (2:2)

LEN(T)

Substituting this into equation (2.1), we get

0< > (me—n)(pe—(n+1))

LeN(T)
=m(m—1-2n(qg+1)) +n(n+1)|N(T)| (2.3)
= [N(T)| > ag%(zn(q +1)+1-m)

with equality if and only if uy = n or n +1 for every line £ € N(T).

For the rest of the proof, suppose there is a (0,n,n+ 1)-set S of size m. Then
IN(S)| = ;-(-rn’-’—’_;l—-)—(Zn(q +1)+1—m) < |N(T)| for all other sets T of m points
in 7, so S is a solution to the isoperimetric problem: 8,, = |N(S)|. If T is also
a solution to the isoperimetric problem for m points in =, then |N(T)| = Om =
D (2n(g+1) +1—m), that is, equality holds in equation (2.3) and so T must

be a (0,n,n + 1)-set. a
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A quick glance at the Appendix shows that, for small ¢ anyway, Theorem 2.1

is a pretty good bound.

We observe that given m, mg, and n := {%’%ﬁj, equation (2.3) proves that
solving the isoperimetric problem for m points in 74, i.e. minimizing |N(T)|, or
equivalently, minimizing the sum in (2.3), is accomplished by taking a set with as

many g as close to n as possible. This is the point we made in §1.5.

2.2 Combinatorial Properties of (0,n,n+1)-Sets

For this section, let S denote a (0,n,n + 1)-set of size m.

Fix a point z € §. The other points in S are each on a line with z and so

the ¢ + 1 lines through z partition the other points into sets of size n — 1 and n.
1= |m=1 = | gtm
Thusn—-1= {T;H} and n = {q-\hlj’
Define t by n = 3—%—??, so that 0 < ¢t < ¢. Actually t has a geometric

interpretation, which can be seen as follows. Fixing z € S, let u and v denote the

number of n and (n + 1)-lines, respectively, on z. Then
ut+v=q+1
(n—lu+nv=m-—1.
Adding 1 — n times the first equation to the second shows that
v=g+m-—n(g+1)=t,
that is, t represents the number of (n + 1)-lines on a point z € S.

Equations (2.2) become
ntn+(n+ 1)7ay1 =m(g+1)

n(n —1)r, + n(n+ 1)1p41 = m(m — 1).
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Solving these equations for 7, and 7,41 and recalling that 7o +7, +7Tnt1 = ¢*>+q+1,

we know how many lines of each size there are:

Tn+1:n+1(9+m—n(Q+1))
T = —73-(1 —m+n(g+1)) (2.4)
= 2-{-— ~_LTL__ —
To=¢ +q+1 n(n+1)(2n(q+1)+1 m).

In particular, 7, and 7,47 must be integers. We address the question: if the
quantities on the right hand side of equations (2.4) are integers for some ¢, m and
n = H‘—fﬁj , is there a (0,n,n + 1)-set of size m in some plane of order q? The
answer seems to be a difficult one, and in the general case the answer is “no”. For
example, m = q + 2 always results in integers on the right hand side, but then S

would have 73 = 0, that is, S would be a hyperoval which we know does not exist

if ¢ is odd.

The following definition is equivalent to the condition that 7, and 7,4; are

integers.

Definition: We shall say m, n, and ¢ are feasible parameters, or that {m,n, ¢}
is a feasible parameter set, when the following conditions all hold:
]
n= |-
g+1
n divides m(m — 1)
(n +1) divides tm
where t := ¢+ m — n(q + 1) = the number of (n + 1)-lines incident with a point
of a (0,n,n + 1)-set, if one exists. Table 2.1 lists all the feasible parameters for

g < 5. In the last column we show an example of a (0,n,n + 1)-set of size m if

one exists, or give a proof that one does not exist.



Table 2.1 The feasible parameters for ¢ = 2,3, 4, 5.
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Example

point

2-arc

3-arc, or AG(2,2) minus a point
4-arc, or AG(2,2)

PG(2,2) minus a point
PG(2,2)

point

2-arc

3-arc

oval

does not exist (would be a perfect 2-arc)
dual complement of an oval

AG(2,3) minus a point

AG(2,3)

PG(2,3) minus a point

PG(2,3)

point

2-arc

3-arc

4-arc

5-arc

hyperoval, or the dual complement of a hyperoval
dual complement of a 3-arc
dual complement of a 2-arc
AG(2,4) minus a point
AG(2,4)

PG(2,4) minus a point
PG(2,4)

point

2-arc

3-arc

4-arc

5-arc

oval

does not exist (would be a perfect 2-arc)
does not exist (see the example, §2.3)
dual complement of an oval

does not exist (Theorem 3.10)

does not exist (Theorem 3.10)

dual complement of a 3-arc

dual complement of a 2-arc

AG(2,5) minus a point
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1.

(1]

16

25 30 0 1 AG(2,5)
30 6 25 0 PG(2,5) minus a point
31 31 0 0 PG25)

QO Ot Ot
o Ot Wt

Examples of (0,n,n+1)-Sets

Perfect (m, n)-arcs are technically (0,n — 1,n)-sets as well as (0, n,n +1)-sets,
but we will adopt the convention that we refer to them only as (0,n,n+1)-sets.
That way we preserve the property that n = [%}?J . We calla (0,n,n+1)-set

strict when it is not a perfect arc.

We now list the commonly known perfect arcs, as examples of (0, n,n+1)-sets.
The empty set is a (0,0,1)-set. A point is a (0,1,2)-set. An affine subplane
is a (0,q,q + 1)-set of size ¢*. The projective plane is a (0,9 + 1,q + 2)-set.
When q is even, PG(2,q) contains perfect k-arcs for any k which divides ¢
and these are (0, k, k + 1)-sets.

A k-arc with k < ¢+ 1isa (0,1,2)-set of size k.
Deleting a:ny point or line from a perfect n-arc results in a (0,n — 1, n)-set.
The complement of a point is a (0, q,q + 1)-set of size ¢ + q.

Two lines intersect every other line in one or two points, so the complement

of two lines is a (0,¢ — 1, q)-set of size ¢*> — q.

The complement of three nonconcurrent lines is a (0,q — 2,¢q — 1)-set of size
(¢—-1)%

Since a (0,n,n + 1)-set is a solution to the isoperimetric problem, all of the

examples given above are solutions. With the exception of Example 3, they were

all previously known solutions (many are dual complements of arcs; see §1.4).
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Taking an affine subplane as the perfect arc in Example 3 gives two new classes of

solutions to the isoperimetric problem which exist in every finite projective plane.
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Chapter 3. Existence of (0,n,n+1)-Sets

Section 3.2 contains theorems which are useful in solving the isoperimetric
problem, and which will be used in sections 3.4, 3.5 and 4.3. For these theorems
it is important to know whether a set is as large as it can be and have the same
neighborhood, so we define a set to be closed when this situation holds. The
term “closed” has several mathematical connotations and we justify its use in this
case, in the context of lattices. Our only lattice theory result (in §3.1) is that this

lattice-theoretic approach is not worth pursuing.

3.1 The Closure and Lattice Theory

Definition: For a set of points T C P, the closure cl(T) of T is defined as

T U {z € P: z lies on no 0-lines of T'}.
Then a set is closed when every point off it lies on at least one external line.

Notice that ¢l is a closure operator in the lattice-theoretic sense (see §1.3). The
closed sets therefore form a lattice with inclusion as the partial order. This lattice
is not “nice”, it is not even semimodular. For example take two points z,y € 7 and
let £ be the line they determine. Define a := £\ {z}, b:=¢\ {y}, c:=2\{z,y}.
Then a, b, c are distinct elements of the lattice of closed sets, a and b each cover
¢, but aV b= cl(¢) = m. To be semimodular it is required that = cover a and b,

but we can find a closed set that lies properly between a and 7, for example, as

follows. Take z € £, and let ¢’ be the line on z and z. Then
aCcl{z}ua)Cr\{¢Cn

and so 7 does not cover a.
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Note that all solutions T to the isoperimetric problem of size m are closed if
Om < Omay. This is independent of T and, unlike our definition of closed, applies
only to sets which are solutions to the isoperimetric problem. The term “closed”
was originally introduced in this context ([Ha]). We introduced the definition of

the closure operator as given above and followed through the lattice investigations.

3.2 Theorems Involving the Closure

Lemma 3.1. A (0,n,n + 1)-set of size m is either a perfect (n + 1)-arc minus a

point, or it is closed.

Proof: Let S be a (0,n,n + 1)-set of size m and suppose S is not closed. Then
there exists a point z such that T := S U {z} has Om+1 < |[N(T)| = [N(S)| = Om

(the last equality is because (0,n,n + 1)-sets are solutions to the isoperimetric

problem), and since O, is increasing with m, this says Om = Om+1. Then by
Theorem 2.1:
m y m+1
e (2 1)+1- = o > 0— (97 1) —

where n = | 2| and n' = | L@+l
g+1 g+1

If n = n' this implies

ﬁ_>n:n'={MﬁJ~1+lﬁ_~J
g+1 "~ g+1 g+1

a contradiction. So we must have n’ =n+1. Nown' = gj—'ﬁ'—%—:i and n = ﬂiq'—:llj
for some 0 < t',t < ¢, so we have t' =t — g where 0 < t,t' < ¢. It must be that
t'=0andt=gandsom =n(g+1)—g+t=n(g+1). By the results mentioned
in §1.2, if n > 1 then S is a perfect (n + 1)-arc minus a point, and if n = 1 then

S is a hyperoval minus a point, still a perfect arc minus a point. O
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Corollary 3.2. If K is a k-arc in a plane of order q, and k < g, then K is closed.

A (g + 1)-arc is closed iff ¢ is odd. A hyperoval is closed.

Proof: The first statement follows because a k-arc with k¥ < ¢ is a (0,1,2)-set not
of the form “perfect arc minus a point”. The second and third statements are true
by well-known results on ovals and hyperovals; see e.g. [Hi], Lemmas 8.2.1 and

8.1.4 whose proofs work as well in non-desarguesian planes. o

Recall from §1.1 that the dual complement of a set T is the dual of its set of

0-lines, so T9¢ is a set of ¢*> + ¢ + 1 — |N(T)| points in the dual plane.

Lemma 3.3. For any subset T of points in a projective plane, cl(T) = (T%)%.

Furthermore, T C (T9°)%° with equality if and only if T is closed.

Proof:
z € (T%)% o z* is a 0-line of T9°

& o*NTe =9,
Equivalently,
z ¢ (T%*)% & 3¢* € T with ¢* incident with z*

& 34 a 0-line of T through z.

So z € (T%)% iff £ lies on no O-lines of T, proving ¢l(T) = (T9°)%¢. Certainly
points of T lie on no 0-lines of T, so T C (T%)%. Equality holds if and only if
(z ¢ T = z ¢ (T%)% = cl(T)) if and only if T is closed. g

The next lemma seems quite technical but is often useful for increasing the
lower bound on O, as given in Theorem 2.1 (see §4.3), and (with Corollary 3.6)

it is very important to our characterization theorem (Theorem 3.10).
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Lemma 3.4. Let a projective plane 7 of order ¢ be given and suppose that T is
a solution to the isoperimetric problem for m in n. Then
Oprrqs1-0, <@ +g+1-m.

Equality holds if and only if T = (T%°)% and T is a solution to its isoperimetric

problem.

Proof: By Lemma 3.3,
m = |T| < [(T%)*| = ¢* + ¢ + 1 - [N(T*)|

<@ +q+1- e

= q2 +q+1- aq2+q+1~3m'
a

In [Ha] it is shown that if S is a closed solution to the isoperimetric problem
in a bipartite graph, then S$%° is also a closed solution. The following theorem is

our proof of this fact, in the context of projective planes and using our definition

of “closed”.

Theorem 3.5. Let a projective plane 7 of order ¢q be given. If T is a closed set of
points in 7 then T% is a closed set. If T is a closed solution to the isoperimetric

problem then T is a closed solution.

Proof: T closed = T = (T9°)% = T = ((Td4)d°)de = ¢l(T4°) = T is closed;
Now suppose T is a closed solution. By Lemma 3.4,
Og2+g41-6 70 S 4° + 0+ 1~ [T = |N(T)| = gy
because T is a solution. But O,, is an increasing function of m and so

¢ +q+1=07a) <|T|=¢* +q+1— |[N(TY)
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because T = (T%°)%°. Thus |N(T%)| < 0)72| so equality must hold and T is a
solution. O

Corollary 3.6. Equality holds in Lemma 3.4 if and only if T is a closed solution.

Proof: Suppose equality holds. Then by Lemma 3.4, T is closed and T% is a
solution. By Theorem 3.5, T%° is a closed solution and so T = (T%¢)?° is a (closed)

solution.

Now suppose T is a closed solution. Then T = (T%°)%¢ and (by Theorem 3.5)

T is a solution, so equality holds in Lemma 3.4. a

Corollary 3.7. Fix a finite projective plane m, and m. The solutions to the

isoperimetric problem for m points in 74 are either all closed or all not closed.

Proof: Corollary 3.6 depends only upon the size of a solution and that it is a

solution, not on the set itself.

More rigorously, suppose S and T are solutions to the isoperimetric problem

for m points and that T is closed. Then Corollary 3.6 for T says
Ogrqtr1-0, =¢ +q+1-m

and so Corollary 3.6 for S says S is a closed solution. O

3.3 The Method of Typing Points

This method is described in [Hi], §12.1 for sets of points in a projective plane.
It is most useful when it is applied to sets T with few possibilities for [N T|, and

for |z*NT%| in 7*. Fortunately, this situation pertains in many cases of our study,
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Pick (u,v,w) a solution of (3.2) with w minimum, i.e. so that all the solutions

are of the form (u;,v;,w;) := (v —i(n +1),v + in,w + 1) for some z > 0.

Let A; := {z ¢ S : z has u; n-lines and v; (n + 1)-lines}. The A; partition
m\ S. We say a point is of type A; when it is in 4;. Let a; := |A;|. If there are
t + 1 solutions to (3.2), we get the following:

t

Y a=¢d+q+1-m
=0
t

Zaiwi =T19(¢+1) (3.3)

> ()= (3)

Substituting w; = w + 1, this translates into the system of equations

11 1 o PFtg+l-m

w w+l ... w4+t = To(q + 1) .
1 ;

GNCORSRCIVAN )

Left multiplying both sides of the equation by the matrix

1 0 0
—w 1 0
(*39) ~w 1

we arrive at the conclusion that if there is a (0,n,n + 1)-set of size m then there

is a solution to the matrix equation

Qg
111 1o 1\ (e
01 2 T ...t . =

i ¢
0 0 1 @) - G

ay
@ +qgt+l-m

(¢g+ VD7 —w(¢g®? +q¢+1—m) (3.4)

()@ + g+ 1= m) = wrog+ 1)+ (3)
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where the a; are all nonnegative integers.

Example: In the case ¢ = 5, n = 2, m = 9 which is feasible, we have 7y = 7, and

we consider solutions to

u+v+w==6
2u+3v=09.
Thus if S is a (0,2,3)-set of size 9 in PG(2,5), then for each z ¢ S we have

(u,v,w) = (3,1,2) or (0,3,3). The smallest w is 2 and equation (3.4) becomes

() e-(3)

which must have solutions ag,a; > 0, a contradiction. There can be no such

(0,2,3)-set in the plane of order 5.

3.4 The Existence of (0,n,n+1)-Sets of Size m > (9).

We will eventually characterize all the “large” (0,n,n + 1)-sets (Theorem
3.10) by showing that most of them are dual complements of arcs. First we have

to characterize those arcs whose dual complements are (0,n,n + 1)-sets.

We will show in the proof of Corollary 3.9 that dual complements of ovals are
(0,n,n + 1)-sets, so for now we restrict our attention to smaller arcs. Suppose K
is a k-arc in a plane 7*, k < g and S := K% is a (0,n,n + 1)-set for some n. Then
m :=|S| = ¢* — gk + ¢+ 1 + k(k — 3)/2 which implies that for m, n and ¢ to be
feasible it must be that (k)

K is closed (Corollary 3.2) and a solution to the isoperimetric problem (by

Theorem 2.1), so (by Theorem 3.5) S is a closed solution and the points off K are
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the duals of the non-external lines of S. In 7, S is a (0.n,n + 1)-set for some n
if and only if in 7* every point off K lies on n or n + 1 external lines to K if and
only if in 7* every ¢* off K lies on s or s + 1 secants for some s. Thus K% is a
(0,n,n + 1)-set if and only if there is such an s. If so, fix an external line to K.
Each of the ( ;) secants of A meets it, so the secants are divided into ¢ + 1 sets of

k
size s and s + 1. Thus s = H—%J

Theorem 3.8. If K is a k-arc and K% is a (0,n,n + 1)-set in a plane of order g,
thenk <3 ork>q+1.

Proof: By contradiction. Assume there is a K satisfying (*) for some k and ¢ with
4 < k < q. Because k > 4, there are two secants intersecting off K, so s > 1, and

we may assume k < ¢ < (g) — 1. With notation as in §3.3, we have

ete-u-()('5)
> o5 =(5)a-

¢ K
by counting in two ways pairs of secants intersecting off K, and counting in two
ways (secant, point off K) incidence flags. So we have
0= > (0F —s)(of —s—1)
¢ K

- (’2“) ("’ ; 2) —sk(g—1)(k=1)+s(s+1)(¢+q¢+1—-k)  (3.5)

forsome4§k§q§(§)—1ands:= l%j

It seems difficult to show that equation (3.5) cannot be true. We prove some-

k
thing apparently more difficult, namely, we forget the information that s = L%‘)ﬂ

and, viewing the right hand side as a quadratic in s, we show that equation (3.5)
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has no real roots if ¥ < ¢ < (g) — 1. It suffices to show that the discriminant
A(q) is negative for these ¢q. That is, we fix k and consider the discriminant as a
function of q.

Alg) =g +2¢°(=k* + k + 1) + ¢*(4k® — 10k + 4k + 3)+
q(—3k* + 12> — 15k% + 4k +2) + k® — 6k* + 13k° — 11k> + 2k + 1.
We record also
A'(q) = 4¢3 +6¢*(—k* +k+1) +2q(4k® — 10k? + 4k +3) — 3k* +12k% — 15k* + 4k +2
A"(q) =12¢% + 12q(—k* + k + 1) + 2(4k® — 10k? + 4k + 3).
We claim that it suffices to show the following:
(i) A'(k) <0
(i) A"(k) <0

(iii) A(k) <0

(iv) A((5) -1) <o.
This is because (i) and (ii) imply that the point (k, A(k)), on the graph of A as

a function of ¢, is in the dashed region of the graph in Figure 3.1.

Conditions (iii) and (iv) then prove that for ¢ in the interval k < ¢ < (g) -1

we have A(g) < 0 and so equation (3.5) has no real (let alone integer) roots.

We now prove (i). A'(k) = —k* + 2k® — k? + 10k + 2 is a fourth degree
polynomial in &, call it f(k). Its derivative f'(k) is a cubic with leading coefficient
-4 and f'(0) = f'(1) > 0 and f'(4) < 0. The graph of f' as a function of k¥ must

be approximately as in Figure 3.2.

All the zeros of f' are less than 4, so f(k) has all its extrema less than 4.
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Figure 3.1 Conditions (i) and (ii) imply (k, A(k)) lies in the dashed region of the
graph of A(q).

—4k% +6k% -2k + 10

300-
200-
\ 0.
\\
4 3 2 -1 00 1 2>~3 4 &k
-100+ AN

Figure 3.2. The graph of -j’;(A'(q) evaluated at ¢ = k), as a function of k.

Since f(4) < 0, we have A'(k) < 0 for all k > 4, establishing (1).

Now to prove (ii) let f represent the cubic in k given by A”(q) evaluated at
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g = k. Thatis, f = —4k® +14k? + 20k + 6. The graph of f is shown in Figure 3.3,

from which it is easily seen that f(k) < 0 for all k£ > 4.

—4k3 + 4k% + 20k + 6

50-
/////—_\\
302 1 01 2 3
0 k
\\
-50+ \\\
\s
)\\1
-100-

Figure 3.3. The graph of A" evaluated at k, showing that condition (ii) holds
for k > 4.

Now let f represent the fourth-degree polynomial A(q) evaluated at ¢ = k,
f(k) = —k* +4k® — 4k* + 4k + 1. f'(k) has only one real root, so Figure 3.4 shows
the graph of f (including all finite extrema), showing that condition (iii) holds for

k>4

Now let f represent the eighth-degree polynomial A(gq) evaluated at ¢ =
(3) =1, f(k) = (=5 k* +THT) + (-5 R0+ 5°) + (- Tkt + 28°) + (- 5 A7 +E+1).
The summands are grouped into terms (within each pair of parentheses) so that
each term is negative when k£ > 10, and it is easy to check that f(k) < 0 when

1 < k <9, thus establishing (iv). a
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—kt - 4kd — 4k? L4k +1

10, e

-404 \

Figure 3.4. The graph of A evaluated at ¢ = k , as a function of k, showing that

condition (iii) holds.

Corollary 3.9. A k-arc K yields a (0,n,n + 1)-set in a projective plane of order

g iff k is one of the following: 0, 1, 2,3, ¢+ 1, or ¢+ 2 if ¢ is even.

Proof: That the dual complement of a (hyper)oval is a (0,n,n + 1)-set was known
(see, e.g., [Hi], pp. 166 and 325, which we have restated in terms of (0,n,n + 1)-
sets). We include new proofs which depend on lemmas from §3.2. If k¥ =0, 1, 2,
or 3 one easily checks that K4 is (0,n,n + 1)-set forn=¢q+1,¢,¢—1,0r ¢—2

respectively.

If Kk =q+1, or (in the case of ¢ even) ¢ + 2, then |[N(K)| = (";2). In any

case S := K% hasm = (‘-’;2).

If g is odd then n = 431, Using first Theorem 2.1 and then (because an oval
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is a closed solution for ¢ odd) Corollary 3.6 says

g(g—1) 2

2 2 2 _4 9
gl oo

S Om =0pigp1-0,, =0 +9+1-|K|=4"

1

Since equality holds in Theorem 2.1, § must be (0, 9—;—1, %)—set.

For ¢ even, a ¢ + 2-arc is a perfect 2-arc and so its dual complement is a
perfect F-arc. A ¢ + l-arc K “has the same 0-lines as the ¢ + 2-arc obtained by
adding its nucleus, and hence has the same dual complement, so K% is also a

(0,%,% 4 1)-set. |

We now prove our main result, the classification of large (0,n,n + 1)-sets.
The idea is to prove that a large (0,n,n + 1)-set must be the dual complement of
an arc, or be a perfect arc minus a point, or a perfect arc. We know which arcs’
dual complements are (0,n,n + 1)-sets in a plane m by Corollary 3.9, and we will
show that the only large perfect arcs are affine subspaces of 7, or 7 itself, thereby

establishing Theorem 3.10.

Theorem 3.10. A set S in a projective plane 7 of order ¢ with m > (I) points

is a (0,n,n + 1)-set if and only if one of the following cases holds:
(1) m = (2) and either
(a) S = 0% where O is an oval, or
(b) S = H* where H is a hyperoval and q is even
(2) m=(¢—1)? and S = K% where K is a 3-arc
(3) m=gq(q—1) and S = K% where K is a 2-arc

(4) m = ¢*> — 1 and S is affine space minus a point
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(5) m = ¢* and S is affine space, i.e. S = K% where K is a 1-arc

(6) m=gq(qg+1)and S is 7\ {z} for some point x

(7) m=¢*+q+1and S =7 = K% where K is a 0-arc.

For q even, cases (1a) and (1b) describe the same set S.

Proof: Corollary 3.9 shows that cases 1, 2, 3, 5 and 7 are all (0,n,n + 1)-sets. In
examples 3 and 4 of §2.3 it was shown that case 4 is a (0,¢ — 1, ¢)-set and case 6

is a (0,q,q + 1)-set.

Now suppose S is a (0,n,n+ 1)-set with m > (g) points. By Lemma 3.1, S is
either a perfect (n 4 1)-arc minus a point, or closed. If S is a perfect (n + 1)-arc
minus a point then n 4+ 1 divides ¢, or n + 1 = ¢ + 1. In the latter case we are in
case 6 above, so suppose n + 1 divides q. Now n := H{—?J > [q;_% } = L%J, and

so we must have n + 1 = ¢ and we are in case 4.

We may now suppose S is closed. By Theorem 3.5, S%° is a solution to the
isoperimetric problem for 75 points. Now because 9, is increasing with m,
To=q2+q+1-—3m
<S¢ +g+1-9y
2

= the number of 0-lines of (a (hyper)crval)dC

_Jg+1 ifgisodd
" l¢+2 ifgiseven

because (hyper)ovals are closed by Corollary 3.2.
Thus S% is a solution to the isoperimetric problem in 7* for k points, with
k < |(hyper)oval|, and the only such solutions are the k-arcs, so § = (§4¢)4¢ = K¢

for some k-arc K. By Corollary 3.9, k = ¢ + 1, or ¢ + 2 if ¢ is even (case 1), or
k < 3 (cases 2,3, 3, and 7). a
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3.5 Elimination Methods and The Existence Question

for (0,n,n+1)-Sets for Small ¢

Table 3.1 lists the feasible parameter sets for ¢ = 7,8,9,11,16 with ¢ + 2 <
m < (g) (No interesting information or techniques are yet known for the ¢ = 13
case. For ¢ < 5 see Table 2.1.) For m < g+1 (¢+2) when ¢ is odd (even), (0,1,2)-
sets are arcs, which are well-studied. In particular they always exist in PG(2, q).
There is never a (0,2,3)-set of size ¢ + 2 for ¢ odd because such a set would have
73 = 0, i.e. it would be a perfect 2-arc, which cannot exist as 2 does not divide ¢

in this case. For m > (%), Theorem 3.10 describes all the (0,n,n + 1)-sets.

We have answered the existence question for (0,n,n + 1)-sets in the planes
of order at most 8, and nearly answered the question for PG(2,9). For larger
g very little is known. Following the proof that Table 3.1 is accurate, we give
some theorems (Theorems 3.12-3.15) that can be used to eliminate some feasible

parameter sets for larger q.

The last sections in this chapter mention dual complement pairs (another
method for showing non-existence of certain (0,n,n + 1)-sets) and give examples

of sporadic (0,n,n + 1)-sets which are known to exist, as listed in Table 3.1.

Table 3.1. The feasible parameters with ¢ +2 < m < (g) and ¢ =7,8,9,11,16.

Example (O is an oval, H is a hyperoval)
m Tp Tny1 To  or proof of nonexistence (see Theorem 3.11)

12 30 12 15 Example, §3.7.2
15 15 30 12 Example, §3.7.2

12 42 8 23 1
13 39 13 21 2
15 30 25 18 Example, §3.7.3
16 24 32 17 3

Q0 00 00 OO0 =1 ~1 =
NN DN 3
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18
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33
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51
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27
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39
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60
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45
34
27
10
70
56
50
28

75
72
63
37
42
33
12
100
84
44
12
111
90
45
102

147
132
108
75
33
192
169
160
129
64
17
221
171
135
65
165

48

30
54

14
20
34
42
60

18
25
49

10
16
30
38
56
66
88

21
66
99

24
72
17

21
48
81
120
165

39
50
86
156
204
57
96
169
75

16
16
11
10

33
28
26
23
22
21
21
17
16
14

48
45
40
38
35
34
33
33
28
23
22
22
19
16
14

105
93
84
78

~

7
72
65
63
38
33
52
52
45
42
39
33

1

4
Perfect 4-arc minus a line
Perfect 4-arc minus a point

5
6
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# 00

= > 00

10

Example, §3.7.3

1
1

Perfect 4-arc minus a line
Perfect 4-arc minus a point
Perfect 4-arc

1

1

34



16 5 81 81 162 30 1

16 6 91 182 65 26 1

16 6 93 155 93 25 2

16 6 100 50 200 23 2

16 7 112 128 126 19 Perfect 8-arc minus a line
16 7 119 17 238 18 Perfect 8-arc minus a point

Theorem 3.11. The existence of (0,n,n + 1)-sets in the desarguesian planes of

order ¢ = 7,8,9,11,16 withg+2<m < (g) as given in Table 3.1 is correct.

Proof: Examples are given in Table 3.1 when they are known to exist. Proofs of

nonexistence are given in the table by reference to the numbers below, in the cases

where the proofs are known.

(&1

The method of typing the points off S, as in §3.3, results in a system of equa-
tions (equation (3.4)) that has no nonnegative integer solutions, contradicting

the existence of such a (0,n,n + 1)-set of size m in the plane of order q.

If there were a (0,n,n + 1)-set S of size m then typing the points off S shows
that every point is on w or w + 1 lines, i.e. $% is a (0,w,w + 1)-set of size

9. But 79 is not a feasible size for a (0, w,w + 1)-set (for any w).

In [B1] and [HV] is quoted an unpublished result of Bierbrauer that an (m, 3)-
arc in PG(2,8) has m < 15.

If there were a set S of n(g+ 1)+ 1 points with at most n + 1 points per line,
S would be a perfect (n + 1)-arc. If n+ 1 does not divide g orif n +1 =3,

there can be no such S.

Suppose there is a (0,2,3)-set S of size 12 in a plane of order 9. Then by
equations (3.1) every point of S is on a unique 3-line. Deleting one point

from each 3-line results in an 8-arc. So S is an 8-arc plus four points. Each
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of these four points must have been on six tangents to the 8-arc. In [Hi] (p.
412) it is proven that there are only two projectively distinct types of 8-arcs
in PG(2,9) and one easily checks by computer that every point off an 8-arc
lies on at most four tangets to the 8-arc, except the two completion points of

the 8-arc contained in an oval. Thus there can be no (0,2,3)-set of size 12 in

PG(2,9).

In [BSW], p. 44 it is reported that exhaustive search shows that there does
not exist a no-tangent set of size 14 in PG(2,9). To our knowledge, nothing

is known in the other planes of order 9.

In [Hi], p. 178 and [HV] it is stated that a 3-arc in PG(2,9) has at most 17
points. To our knowledge, nothing is known about 3-arcs in the other planes

of order 9.

If there were a set S of n(q + 1) points with at most n + 1 points per line
(n 2 2), S would be a perfect (n + 1)-arc less a point, hence completable to
a perfect (n + 1)-arc. If n 4+ 1 does not divide q or if n + 1 = 3, there can be

no such S.

If there were a (0,2,3)-set S of size 18 in a plane of order 16 then typing
points off S shows that every point off S is on four or five 0-lines, i.e. S% is a

(0,4,5)-set of size 40 which (although 40 is feasible) does not exist by reason
(1).

If there were a (0,2,3)-set of size 21 in a plane of order 16 then points off it
are of type (0¢,02,03) = (7,9,1), (8,6,3), (9,3,5), or (10,0,7) and there are
252 — a3, 3az — 21, 21 — 3as, and a3 of each type, respectively. Now a; and

ay are both nonnegative, implying a3 = 7, a1 = az = 0 and ap = 249.
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Fix a 0-line £. All 3-lines cross it. If there are by points of type 0 on ¢ and b3

of type 3, then
bg + bg =17

bo + Ty =13 =21

which has no integer solutions. O

The “first unknown case” is ¢ = 9, m = 15. Suppose T is a (0,2,3)-set of size
15 in a plane 7 of order 9. Typing points off T shows that every point of 7 has
zero, three or six 2-lines on it. There is a unique point on no 2-lines, call it P.
There are thirty points on three 2-lines, and there are sixty points (including the
fifteen points of T') on six 2-lines. If we take P* as the line at infinity in the dual
7*, the 2-lines form a 45-set of type (3,6). The 45-sets of type (3,6) have been
characterized in all the affine planes of order 9 ([PR]), and so we believe it will
soon be settled, by computer search if necessary, whether there is a (0,2,3)-set of

size 15 in any plane of order 9.

We now mention some theorems that apply to larger order planes to show that
there are no (0, n,n+1)-sets for certain parameters not previously eliminated. The

first two theorems are from the literature, but Theorem 3.14 is new.

Theorem 3.12. ([Hi], p. 355, Corollary to Theorem 12.4.6) A (k,n)-arc with
n >4 in PG(2,q), ¢ # 0 mod n, satisfles k < (n—1)g +n — 3. O

For example when ¢ = 59 and n = 5 Theorem 3.12 says a (0,4,5)-set has at
most 238 points, eliminating the feasible m = 240. When n = 6, a (0,5,6)-set in
PG(2,359) has at most 298 points, eliminating the feasible m = 300.

Theorem 3.13. ([BSW], p. 39) Let S be a set of points in the desarguesian

projective plane PG(2,q), q odd, such that no line intersects S in precisely one
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point. Then |S| > ¢+ {/2¢ + 2.

[l

Theorem 3.13 often applies to planes of order ¢ > 47 when n = 2. For example
when ¢ = 47, Theorem 3.13 says that a (0,2,3)-set must have at least 52 points,
eliminating the feasible m = 51. When ¢ = 125, a (0,2,3)-set must have at least

131 points, eliminating the feasible m = 130.

Theorem 3.14. Although m = q+4 is feasible if (and only if) ¢ = 2mod 3, there
are no (0,2, 3)-sets of size ¢ + 4 in any projective plane of even order ¢ > 2.
Proof: One easily checks the feasibility statement.

Suppose S is a (0,2,3)-set of size ¢+4. Type the points off S to get w = £ —1.

Equations (2.4) show that 7o = ﬂz——'giﬂ. Now equation (3.4) becomes

a
111 1 o 1\ (a 2 -3
01 2 ...t =1 (g+1)m0 —w(g® —3)
001 (&) . (&) ; flq)
t

where f(¢) = —(q +4)(¢ —2)/36, so f(g) < 0 for ¢ > 2, and this contradicts that

f(q) is a nonnegative sum of (;)’s. a

For ¢ > 47, Theorem 3.13 implies Theorem 3.14, but for smaller ¢ Theorem
3.14 gives the better bound.

The most useful method to show nonexistence of a (0,n,n + 1)-set of size m
with n, m and ¢ feasible seems to be showing that the system of equations obtained
by typing the points off such a set, as in equation (3.4), has no nonnegative

solutions. This works for most values of n between about ¢/4 and ¢/2, and rarely
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works for other values of n. Theorems 3.13 and 3.14 are only useful when n = 2.
There is another technique (Theorem 3.15) which occasionally applies to values of
n between 2 and ¢/4 to prove nonexistence of a particular (0, n,n + 1)-set in the

desarguesian plane, although this technique is more likely to work for larger n.

This theorem uses Ball’s lower bound on the size of a multiple blocking set, as
discussed in §1.4. There are two ways in which one might use this bound. The first,
more obvious way is that if T is a (0, n,n+1)-set of size m, then it is an (m,n+1)-
arc and so its complement T := P \ T must be a (¢ — n)-fold blocking set. Ball’s
results prove that in PG(2,q) it must be that [T| > (¢ — n)g + /(¢ — n)g + 1.
Writing n = 9—"5—_?—_{—'3- for some 0 < ¢t < ¢, this is equivalent to 2g —t — n >

—+/q(g — n) which holds if n < ¢ because t < ¢. So this application of Ball’s

bound can never prove nonexistence of a (0,n,n + 1)-set for the unknown cases,

g
n<2.

The second application of Ball’s bound is motivated by the following curious
fact. If K is a complete arc in a plane 7, then in 7* the 2-lines of K are a blocking
set (as discussed in §1.4), while K’s 0-lines are a solution to the isoperimetric
problem (by Theorem 3.5 and Corollary 3.2). We find this fact curious because a
solution to the isoperimetric problm is a set with the fewest possible lines meeting
it, while a blocking set is a set with the most possible lines (¢% + ¢+ 1) meeting it.
It is unexpected that the same set K spawns a solution to each of these opposite

extremal problems.

The proof of Theorem 3.15 is a generalization of the above discussion, obtained
by thinking of the arc K as a (0,1,2)-set and finding r and r' so that for every
z € P, the number of (n + 1)-lines on z is at least r, and the number of n-lines on

z is at least r'. Then the (n + 1)-lines (n-lines) are an r-fold (r'-fold) blocking set
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in the dual plane. For example, in the proof that the 2-lines of K are a blocking

set, one uses the completeness condition to prove that r = 1.

Before proving Theorem 3.15, we illustrate the method with an example. Let
g =37 and m = 196, so n = 6 and 7 = 140. If there is a (0,6,7)-set S of size
196 in PG(2,37), type the points off S as in §3.3. They are of type (0¢,07,00)
=(30,4,4), (23,10,5), (16,16,6), (9,22,7), or (2,28,8). That is, every point off S is
on at least four 7-lines of S. Points of S are on five 7-lines and thirty-three 6-lines.
Thus, every point of PG(2,37) is on at least four 7-lines. The set of 7-lines is a
4-blocking set in (PG(?, 37))*’ and it cannot contain a line, since this corresponds
to the 7-lines being concurrent but o7 < 38 in all cases. So the result of Ball leads
to the contradiction 140 > 148 + /148 + 1. Thus there can be no (0,6,7)-set of
size 196 in PG(2,37).

For integers a and b, we define @ (mod b) by @ =a (mod b) and 0 <a < b.

Theorem 3.15. Let S be a strict (0,n,n + 1)-set of size m in PG(2,q). Define t

by n = ﬁﬁ—lj.” Let

r:=min{m (mod n), t}
r' :==min{=m (mod n+1),¢g+1—t}

Then
Tne1 2T+ +/Tq+1 and

T > T'qg+ \/;G + 1L
Proof: The equations (3.1) show that for z € S, the number of (n + 1)-lines (n-
lines) on z is at least ¢t (¢ + 1 — ¢). The equations (3.2) show that every point
off S is of type (on,0n+1,00) = (ui,vi, w;) for some ¢, where v; = m mod n and
u; = —m mod n + 1. That is, the (n + 1)-lines form an r-blocking set and the

n-lines form an r'-blocking set.
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If r=0(r" =0) then because S is strict we have 7,, 7h+1 > 1 and the result
is true. If r,7" > 0 then the result follows immediately from Ball’s lower bound if
the set of (n + 1)-lines (n-lines) in the dual plane does not contain a line. This
is equivalent to the condition that no ¢ + 1(n + 1)-lines (n-lines) are concurrent.
But if there are ¢ + 1 concurrent (n + 1)-lines then m = (n + 1)(¢ + 1) which
implies n = l%ﬁij = [Mﬁ%ﬁlﬂiﬂj =n+ 1, a contradicition. If there are ¢ + 1
concurrent n-lines then m = n(q + 1), S is a perfect n + l-arc minus a point, so

Tn = q+1 and 7,41 > 1. But in this case t =0, sor = 0 and r' < 1 and the result

still holds. O

Corollary 3.16. The following do not exist: A (0,6,7)-set of size 142 in PG(2, 23),
a (0,6,7)-set of size 154 in PG(2,29), a (0,6,7)-set of size 196 in PG(2,37), and a
(0,6,7)-set of size 226 in PG(2,37) (although all parameter sets are feasible).

Proof: Parameters ¢ = 23, m = 142 would have r¢ = 71 ( by equation (2.4)) but
t = 21,7 = 3 so the 6-lines are a 3-blocking set and Theorem 3.15 gives the
contradiction 71 > 70 + V69.

For ¢ = 29, m = 154 we would have 77 = 66,t = 3, r = 3 and so the 7-lines

are a 3-blocking set in the dual, giving the contradiction 66 > 88 + /87.

Both of these parameter sets could also have been eliminated by showing
that the system in equation (3.4) has no nonnegative solutions. In the next two

examples it is not so obvious whether equation (3.4) has no nonnegative solutions.

The case ¢ = 37, m = 196 was done previous. The case ¢ = 37, m = 226

would have 1 = 113, ¢t = 35, r' = 3 and we have the contradiction 113 > 112 +

V1L
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3.6 Dual Complement Pairs

In examining a table of feasible parameter sets (like Table 3.1), there are some
cases in which for a fixed ¢ there is M an m-value with rp O-lines, and 75 is an
m-value with M 0-lines. For example, when ¢ = 7 a (0,2,3)-set of size 12 would
have fifteen 0-lines, and a (0,2,3)-set of size 15 would have twelve 0-lines. If there
is a (0,2,3)-set S with m = 12 then it is closed (Lemma 3.1) and a solution to the

isoperimetric problem (by Theorem 2.1), so by Corollary 3.6 and Theorem 2.1,
15 _
“6‘(33 —13) < 015 = O57-5,, = 57 — 12

i.e., equality holds in Theorem 2.1 and so S%° is a (0,2,3)-set with m = 15. A
similar argument proves that a (0,2,3)-set of size 15 has its dual complement a
(0,2,3)-set of size 12, so there exists a (0,2,3)-set of size 12 in PG(2,7)
if and only if there exists a (0,2,3)-set of size 15, and they are dual

complements of each other.

Likewise in m;; there is a (0,2,3)-set with m = 16 if and only if there is
a (0,4,5)-set with m = 43, and they are dual complements. A (0,3,4)-set with
m = 28 in 7m; would have to have another (0,3,4)-set with m = 28 as its dual
complement. Reason (8) in the proof of Theorem 3.11 demonstrates how in a dual
complement pair situation (as described at the beginning of this section) one can
sometimes eliminate a feasible parameter set by eliminating its dual complement

mate.
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3.7 Examples of Particular (0,n,n+1)-Sets, and

Designs Derived From Them

In this section we present the new solutions to the isoperimetric problem which
we have found. They are (0,2,3)-sets of size 12 and 15 in the plane of order 7, size 15
in the plane of order 8, and size 27 in the plane of order 16. The examples for ¢ = 8
and 16 are two of what should be a larger family of examples, and consideration of
this family raises some questions about hyperovals. We begin with a result about
sets of hyperovals with large pairwise intersection sizes (Theorem 3.18) to set the
stage for these examples, and we prove a related coding theory result (Theorem
3.19). We also discuss some interesting designs which can be derived from our

(0,2,3)-sets.

3.7.1 Hyperovals

Two hyperovals can intersect in at most half their points ([Hi], p. 165) and
their union T is a (0,2,3,4)-set. If they intersect in exactly half their points and if
there are no 4-lines, then T is a (0,2,3)-set of size ﬂ%ﬂ The fact that whenever
two hyperovals intersect in exactly half their points, then there are no 4-lines, is
proven in Lemma 3.17. So if we can find two hyperovals intersecting in half their

points, we have a (0,2,3)-set of size 3(¢q + 2)/2.

A 5-arc determines a conic ([Hi], p. 141) so in desarguesian planes of odd
order at least 9, where the answer to the existence question for (0,n,n + 1)-sets is
unknown, this technique will not provide (0,2,3)-sets. Furthermore in desarguesian
planes of even order larger than 8, a (0,2,3)-set of size 3(¢ + 2)/2 constructed as

the union of two hyperovals intersecting in half their points, will have to have at
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least one of the hyperovals be irregular. If ¢ = 8 all hyperovals are regular, but two
regular hyperovals may share five points if (at least) one of these five points is a
nucleus of one of the conics. We present an example of two hyperovals in PG(2, 16)
which meet in nine points, and an example of two hyperovals in PG(2,8) which

meet in five points (§3.7.3).

Lemma 3.17. If two hyperovals H, and H; in a projective plane of even order
q intersect in half their points, then their symmetric difference H{/A\H, is also a

hyperoval.

Proof: This theorem is known (a consequence of [AK], Corollary 6.3.1) but our

proof is original.

Let T := H; U H,. Since every line is secant to H; for + = 1 and 2, T has
2-lines, 3-lines and possibly 4-lines. The incidence possibilities are shown in Figure

3.5.

There are ((q+21)/ 2) 2-lines with both points contained in H; N"H,, and (9—%'-2-)2
3-lines becausew a 3-line contains exactly two points of H; and exactly two points
of H,, so one point is in H; N Hs, one is in H; \ Hz, and one is in H, \ H;. If we
count pairs of points contained in H; \ H2 plus pairs of points contained in H; NH,
plus pairs of points contained in H, \ H;, we get 3(9—%'2) On the other hand, we

have counted all the 4-lines twice, the 3-lines zero times, and all the other lines in

N(T) exactly once. Thus we have proven that
g2
3( ; ) — T4 = IN(T)I - T3.

Now use (Theorem 2.1) |[N(T)| > D (2n(g+1) + 1 —m), to get

a2 +2/(5 q+2 2
2 _ >q_____ - — | —— = 2 .
3(2) 2y (2“2) (4 )(”2) 3(2)
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Figure 3.5. The possible intersections for lines with H; U H,.
That is, 7y = 0.

Referring back to Figure 3.5, this shows that each line contains exactly zero
or two points of H;AH,. a
Theorem 3.18. Suppose there are k hyperovals in a plane of even order q with
the property that they all contain the same set Ky of 1"—;-2 points. Then:

(i) If ¢ = 2 then k < 2. Equality is possible.
(11) If ¢ = 4 then k < 3. Equality is possible.
(iii) If ¢ = 8 then k < 2. Equality is possible.

(iv) If ¢ = 16 then k < 3.

In any case k < 4.

Proof: Suppose H;, ..., Hy are k hyperovals with K3 C H; for each i. For i =
1,...,klet K;:=H;— Ky. The K; fori =0,1, ..., k are now k + 1 disjoint sets
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such that (by Lemma 3.17) any two together make a hyperoval. (The set Kj is
no longer distinguished from the others.) Fix zg € Ky and z; € K and let £ :=
the line determined by z¢ and z;. Then ¢ contains no other points of Ky or K,
since Ko U K 1s a hyperoval. Now for any ¢ > 1, K; makes a hyperoval with K
to which ¢ must be secant. Since ¢ cannot contain another point of Ky it must

contain exactly one point of K;.
That is, each K; contains exactly one point of the line £.

We have proven that Uf:o is a (0,2,k + 1)-set of size i%—1-(11 +2). In fact, we
have shown that k hyperovals intersecting in the same set of 21;—2 points yield k—1
mutually orthogonal Latin squares of size H_'Zt%’ as follows. Let K, label the rows,
K} the columns, and for ¢t =1, ..., k — 1 in the ¢th Latin square, into box (a, b),
put the element of K; which is on the k£ + 1-line containing the ath element of Ky
and the bth element of K. (See §3.7.3 for examples of this construction.) The

fact that two points uniquely determine a line shows that the squares are mutually

orthogonal.

We know how many lines of each size there are:

w=wen('E)

because specifying zo € K¢ and z; € K; determines a unique k + 1-line, and all
k + 1-lines contain such an zq and z;; whereas a 2-line is determined by selecting

one of the k + 1 K;’s and then picking any two of its 1—%'3 points.

Thus

, 2\ 2 q+2
¢ +g+12 (2——;;—) +(k+1)( ; )
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6
= k+1<—1 <6 (3.6)

q T+ 2

and since k 1s an integer, this proves k < 4.

If ¢ = 2, equation (3.6) proves k < 2; Figure 3.6 shows equality is possible.

Figure 3.6. Two hyperovals which intersect in half their points in the case ¢ = 2.

If ¢ = 4, equation (3.6) proves ¥ < 3. This was previously known ([Hi],
p. 396). Equality holds if we let the 3-sets K; be
{(0,0,1),(1,,1),(a,1,1)},{(0,,1),(1,1,1),(e,0,1)}

{(az? 023 1)7 (O’ 13 0)’ (1? 07 O)}? {(O? 17 1)1 (17 0’ 1)7 (a’ a’ 1)}

where «a is as root of z2 + r + 1 over Fj.

Now suppose ¢ = 8 and consider the quadrics zy = 2% and z? + zz + 2% = y?
together with their nuclei. These form two hyperovals intersecting in half their
points (five). Thus the upper bound on k is at least 2. Now suppose there are
three hyperovals H;, H, and H3 meeting the hypotheses of this theorem. With

labeling as in Theorem 3.15, Ko U K; U K> U K3 is a (0,2,4)-set and each z € K3
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lies on five 3-lines of T := H; UH;. Now T is a (0,2.3)-set. Typing the points off
T proves that there are only three which lie on five 3-lines, but there would have

to be five such points to add to Ky to complete Hs. So k < 2 when ¢ = 8.

Now suppose ¢ = 16 and there are four hyperovals containing the same 9-set,
and thus their union is a (0,2,5)-set T of size 45. Typing the points off T results

in a matrix equation with no nonnegative solutions. O

Suppose there are a number of hyperovals all of which contain the same set
of 9-"—%2 points. With notation as above, by Lemma 3.17, one can take the K;
two at a time and get a set of pairwise disjoint hyperovals. In our consideration
of Theorem 3.18, we wondered if an arbitrary set of disjoint hyperovals could be
split into %3~sets with the property that any two together make a hyperoval (in
which case a set of pairwise disjoint hyperovals has at most two hyperovals in it,
by Theorem 3.18), and quickly found a counterexample. We were interested then
in the question, how big can a set of pairwise disjoint hyperovals be? Corollary

3.20 gives an upper bound.

First we prove a coding theoretic result of use in finding weight enumerators
of projective codes. As this result has little bearing on (0,n,n + 1)-sets or the
isoperimetric problem, we forego a discussion of basic coding theory, and mention

the result for the reader familiar with the subject, for completeness’ sake.

It is known (see, e.g., [AK], p. 260) that the minimum weight codewords in
the dual of a projective code correspond to the hyperovals. This theorem addresses

the maximum weight codewords.

Theorem 3.19. Let C be the code of a finite projective plane m of order ¢ even.

The largest weight codewords of C+ have weight ¢®> and are the characteristic
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vectors of the affine planes. The next largest weight possible is ¢* — /¢ which is

possible if and only if there is a Baer subplane of 7 (and the (¢* — \/q)-weight

codewords are the complements of the Baer subplanes). If = is desarguesian and

1
2¢q°

q is not square, the second largest weight possible is at most ¢* — \/2q +
Proof: A word is in C* if and only if it corresponds to a set T with the property
that every line intersects T in an even number of places, if and only if every line
intersects its complement in an odd number of places. Such sets are called odd
sets. Every line intersects an odd set in at least one point, so an odd set contains
a line or is a blocking set. Thus the vectors of C*+ are the characteristic vectors

of complements of odd sets B that are blocking sets or contain a line.

If an odd set B contains a line £ and a point = off £, all ¢+ 1 of the lines from
¢ to £ must have another point of B on them, so |B| > 2¢+3> ¢++2¢+1— z_lq'
Now a blocking set has ¢ + /g + 1 points, with equality if and only if it is a Baer
subplane ([Br]). If 7 is desarguesian and ¢ is not square, then a blocking set has at
least ¢ +v/2¢ —{—71 - 3’% points ([BS]). So an odd set B that is blocking or contains a
line, has at least ¢+,/¢+ 1 points with equality if and only if it is a Baer subplane,
and if 7 is desarguesian and ¢ is not square then |B| > ¢+ /2¢ + 1 — El'g" Since a

word in Ct is the characteristic vector of 7 — B, the result follows. O

The research on minimum sized blocking sets in projective planes is by no
means complete. Further results in the area will improve the upper bounds on

maximum weight codewords, using the methods described above.

Corollary 3.20. Suppose A is a set of k pairwise disjoint hyperovals in a plane

of order ¢ even.



(1) If g =2 then k = 1.
(ii) If ¢ = 4 then k < 2. Equality is possible.
(ii1) If ¢ = 8 then k < 6.

(iv) If ¢ = 16 then k < 14 with equality if and only if the complement of a

Baer subplane can be partitioned into hyperovals.

(v) If the plane is desarguesian and ¢ > 16 then k < q — 3.

Proof: Suppose there are k pairwise disjoint hyperovals. The characteristic vector
x of their union is in the dual code C* of the code determined by PG(2,q), and

has weight k(g + 2). Since k(g + 2) does not divide ¢%, the previous theorem gives

kg+2)<¢* — /g (3.7)

which implies k < ¢ — 3, or ¢ < 16, or ¢ = 16 and yx is the characteristic vector of

the complement of a Baer subplane.

If ¢ = 2 then two disjoint hyperovals would constitute eight points, but there
are only seven in the plane of order 2. If ¢ = 4, equation (3.7) says 6k < 12 = k <
2 and the example of three hyperovals intersecting in half their points given in the
proof of Theorem 3.19 suffices to show equality; take two of the 3-sets mentioned
in that example as one hyperoval, and the other two as the other hyperoval. If

g = 8, Theorem 3.19 says 10k < 60 which implies £ < 6. o

3.72 The Casesq=T7,m =12 or 15

The case ¢ = 7, m = 12 is the smallest one for which the previous techniques

do not either provide an example of a (0, n,n + 1)-set or prove there does not exist
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one. The next case is ¢ = 7,m = 15. As discussed in §3.6, there is a (0,2,3)-set of
size 12 if and only if there is a (0,2,3)-set of size 15 and they are dual complements.
It suffices to find a (0,2,3)-set of size 13, or prove such a set does not exist. In fact
we have found such a set. We first present a description of it from [Hi] (p. 356-7)
although his only interest in it is as a (15,3)-arc. He knew it had no tangents,
but the other interesting combinatorial properties of it which we discuss below are

new.

“If D is a general Desargues’ configuration, then each of the ten lines meets
three others at no point of the configuration. The 15 points formed in this way

are the points of” a (0,2,3)-set of size 15. Call this set T (see Figure 3.7).

We discovered that the set (in homogeneous coordinates)

{(z,£2%,1): z € F7}

is a (0,2,3)-set of size 12. Addition of the points (0,0,1), (0,1,0), and (1,0,0) results
in a (0,2,3)-set of size 15. While this 15-set is not the dual complement of the

12-set, it is projectively equivalent to it and to the Hirschfeld example.

The curious thing about this (0,2,3)-set of size 15 is that all the 2-lines form
triangles. This allows to create a Steiner triple system on fifteen points as follows.
The points are those of T and the blocks consist of the 3-lines plus the sets of

three points of a triangle of 2-lines.

There are eighty nonisomorphic Steiner triple systems on fifteen points. They
have been catalogued in [Mat] and we have checked that this particular system is

number 7 in that catalogue.
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Figure 3.7. The description of T given by Hirschfeld. Points of the Desargues’s
configuration are marked by solid dots (e) and points of T are marked by open
dots (o). The shaded triangles are perspective with respect to the point P and
the line L.

3.7.3 The Cases ¢ = 8 or 16 and m = 3(¢q+2)/2

Suppose Fy is generated by a root of 3 + z + 1 over F,. Any two hyperovals
intersecting in half their points make a (0,2,3)-set of size 15. Take the examples
given in the proof of Theorem 3.16(iii), namely H; determined by z? +zz+2% = y?
and H, determined by zy = z? (plus their nuclei). Define K; := H; — Ha,

K, := Hy — H; and K3 := H; N 'H; and construct a Latin square of size 5 where



rows are labeled by K, columns by K5, and entries by K3.

There are two Latin squares of size 5, the circulant and one with a 2x2
subsquare ([vLW], p. 159). The Latin square obtained from our (0,2,3)-set of size
15 1s the noncirculant one. The circulant one cannot be embedded in the plane of

order 8, by computer search as described in [S].

In PG(2,16) we have found that the following o-polynomials (see §1.2) deter-
mine hyperovals which intersect in half their points:
Fri= 212 4210 £ allz® 428 4 a2t 4+ %22
fri= P2+ 2% 4 o22® + 28 + afet + adc?
where a is a primitive for F}¢ generated by a root of z* + x 4+ 1 over F,. The first
of these is given in [K] (beware of a typographical error therein) and the second

was found by a computer search.

The Latin square determined by these hyperovals is:

(132670948 5
32186579 4
2139865 47
6 753 2 48 19
798 2 4315 6
58 9 4326 7 1
9 465173 2 8
45719826 3
\8 6 47 519 3 2/

where the rows are indexed from top to bottom by the affine points (a,a?),
(af,a1t), (all,al?), (a®,a®), (a®,a7), (a'2,all), (at,a?), (a®,al?), (a’,al?),
the columns are indexed left to right by the points (a!l,a®), (af,a!?), (o, a'*),
(a3,a19), (a®,a?), (a!?,a!?), (a?,a), (at,a®), (a”,al!), and the entries 1, ..., 9
correspond respectively to the points (1,0,0), (0,1,0), (1,1,1), (a!3,a?,1), (¢®, a, 1),
(0,1,1), (a!% a%,1), (a2,a,1), (a’*,a,1).
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Chapter 4. Solutions to the Isoperimetric Problem

We know that the solutions to the isoperimetric problem for m < g+1 (¢+2)

if ¢ is odd (even) are the m-arcs. The next case to solve is m = ¢+ 2 (¢ + 3).

4.1 The Case q Even, m = q + 3

Theorem 4.1. Let a projective plane of even order q be given. Then a hyperoval
plus a point is a solution to the isoperimetric problem for m = ¢ + 3 points.

Furthermore, all solutions for ¢ + 3 points are of this form.

Proof: First we count |N(S)| where S = HU {z} where H is a hyperoval and z
is a point not on it. Since all lines are either 0-lines or 2-lines to H, z must have
%ﬁ of the latter and hence  of the former. So the lines meeting S either meet H,

and there are ((‘7;2) of these, or they meet S only at z, and there are  of these.

Now let T be any solution to the isoperimetric problem for m = ¢ + 3. Then

> +4q+2

ND) < INES) = T

(4.1)

We will show that equality holds and that T is of the form H U {z} for some z.

Call a line £ odd when |T N ¥| is odd, and (as in §3.3) o7 := the number of

t-linesonz ¢ T.

Since |T| is odd, any external line £ to T has the property that every point

on it has an odd number of odd lines, in particular at least one. We thus have



g + 1 < number of odd lines < Z(Z - 2)*r

i>1
= Zz(z-—})ﬂ——BZzﬂ—%—ﬁ&ZT;
i>1 i>1 21

=4|N(T)[ - (¢+3)(2¢ +1)
<gq¢+1,
The second equality follows from 3,5, i(i = 1)ri = (¢ +3)(¢ +2) and 3, ity =

(g +1)(g + 3), the last inequality follows from equation (4.1).

It must be that equality holds in each of the inequalities. We consider these
from right to left. Equality holding in the last inequality means that H U {z} is
a solution for any hyperoval H and any external point z. Equality holding in the
middle inequality means that 7; = 0 for z > 3. Finally, we claim that equality
holding in the first inequality means that all the odd-lines intersect within 7. Now
since there are ¢ + 1 odd lines, no line external to T can have a point with more
than one odd line through it. It suffices to show that every point off T lies on a
line external to T (for then no odd lines can intersect off T'). Solving the incidence
equations for 71, 73, 73 gives T = ¢q/2. So suppose there is a point y ¢ T which
has no external lines through it. Then

ol +od+o0)=q+1
ol +205 +30] =q+3 ,
which implies o} = ¢ — 1 or ¢, contradicting o¢ < 1. So every odd line intersects
in T, in particular all the 1-lines intersect in T, i.e., they are concurrent, say at z.
Then

4

2-{-J§+a§=q+1

os+20; =q+2
so 05 = 4 +1 =73, that is, all the three lines go through z, T — z is a hyperoval,

so T is of the form hyperoval plus a point. a



4.2 The Case ¢ Odd, m = ¢ + 2

The answer to the isoperimetric problem for ¢ + 2 points, odd ¢ is known
only for ¢ < 7 (see §4.3). In the general case the solution will not be as simple
as its even-g counterpart given in Theorem 4.1. One indication of this is that
in the Hughes plane of order 9, there is a set T of eleven points that is not of
the form K U {z} where K is a 10-arc and z is a point not in S. But T has

IN(T)| =59 = |[N(K U{z})|- In the standard (Denniston) notation, it is:

T:= {.F, ‘?V351V47 03v061 .47U5754yW7} U {V’{, ‘/4}

T was found as follows. Following the logic in the next section, we started with a
complete 9-arc from [Den2|, which is the first nine points listed. (Of course there
is no complete 9-arc in PG(2,9), so this construction will not transfer to that
plane.) We then sought two points off the arc, and on few (the minimum being
three) O-lines, and which shared a 0-line. As luck would have it, two such points

existed. We then checked that T'\ {z} is not an arc, for every z € T.

Suppose T is a solution to the isoperimetric problem for m = ¢+2 with ¢ odd.
We can say something about 7', namely, that no line contains too many points of

T (cf. §1.5). This is the substance of the following theorem.

Theorem 4.2. IfT is a solution to the isoperimetric problem for ¢+ 2 points in a
. X . . . 3 3
finite projective plane of odd order q, then each line contains less than 5 +4/q¢ — 5

points of T.
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Proof: Let w := maxsen(T) e By equations (2.3),

2_4__ 1
TEHEL S v
_ Teeni (e — (e —2) +¢* +3¢+2
- >
(D=2t 342

2
=w’ —3w+3-¢<0.

The roots of this quadratic in w are

3+ /-3+4q

T4 = 5

and w < ry. O

4.3 Nested Solutions

When solving a sequence of extremal problems, such as the isoperimetric
problem (given m,, what is 8, for m = 0,1, ..., ¢> + g + 1?), one hopes that
a greedy algorithm will work. That is, one hopes that a solution for m gives a
solution for m + 1. In the isoperimetric problem case, this means a solution Ty, 41
for m + 1 points can be obtained by adding a point to a solution T, for m points.
If = is a plane for which this is true for all values of m then 7 is said to admit a

nested solution to the isoperimetric problem, or a nested set of solutions.

Definition: Given a projective plane 7 of order ¢, = has a nested solution to
the isoperimetric problem if there is an ordering z;,z3, ..., T424441 of the points

of 7 so that when Ty, := {21,732, ..., Tm}, the T, satisfy |N(Tpn)| = Om.

We will show that the planes of order at most 7 have nested solutions and

that the plane of order 8 does not.
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The existence of nested solutions to the isoperimetric problem in the planes
of order 2,3,4 were known ([Ha]). We include nested solutions for these planes
because we could not find them in print. The isoperimetric problem was previously
unsolved in the planes of order ¢ = 5,7, and in particular it was not known
whether there existed nested solutions to the isoperimetric problem in planes of

order greater than 4.

4.31 The Caseq> "7

The appendix contains a number of tables. Those labeled A.ja give the adja-
cency matrix of the plane of order ¢ where ¢ is the jth prime power. The adjacency
matrices have their rows labeled by points and their columns labeled by lines. The
number 7 associated with a row indicates the order in which the points should be
added to get a nested solution. For example in the plane of order 2, each T},
consists of the first m points (rows), whereas in the plane of order 3 one should
construct the nested set by starting with the fifth point (the row where i = 1),
then adding thé sixth (i = 2), then the eighth (¢ = 3), the ninth (i = 4) and so on.

The tables A.ja thereby give the nested sets Tp,,, and the tables A.jb constitute
the bulk of the proofs that for each m, |N(7T,,)| = 0. We know from Theoreom
2.1 that O, 2> t—;-(—-f’;“_{—i—;(Qn(q +1)+g—m)] where n = Hﬁ’—f—‘!, and it is this lower
bound for O, which is reported in the tables A.jb. When |N(T}, )| equals this lower
bound we need look no further, we have a solution to the isoperimetric problem
for that m. For those values of m (marked by an %) for which |N(T),)| is greater
than the lower bound given by Theorem 2.1, the rest of this section is dedicated
to proving, on a case-by-case basis, that in fact On, = |N(Tp)|. First we prove two

theoreoms which we will need.
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The first theorem is important in its own right. It is in fact the solution to

the isoperimetric problem in any plane, for m > (2).

Theorem 4.3. Suppose 7 is a projective plane of order q. For 1 <1 < ¢ +1, if

q\ . [ q 1+ 1
<
(2>+<2)<m"(2>+< 2>
then O, = ¢* + 1.

Proof: First suppose m = () +Z;=1j =(9)+ (qu) for some 7 > 1. Let K be a k-
arc in 7*, where k = g+1—:. Then K% is ¢>4+q+1— (g) —k(g+2—k) = (g) + ("“gl)
points. By Lemma 3.1, K is a closed solution; so then is K d¢ by Theorem 3.5,

and by Lemma 3.6 then
Om = O 4| = Op2 4 g1~k
=¢?+q+1-k=¢"+:
and the theorem is true in this case.
Now supp;)se (2 + Z;;ll j<m< () + E;zl J for some i, necessarily ¢ > 1.

Then the solution for (3) + Z;;ﬁ jisq*+i—1andisclosed,so > +i—1< 9y, <

g% + 1. O

Theorem 4.4. The only solutions to the isoperimetric problem for ¢ =7, m = 9

are of the form O U {z} where O is an oval and z is an exterior point to it.

Proof: By Lemma 3.4, Theorem 2.1 with m = 20, and because 0y, is increasing

with m, we have
657..39 <48 < Fyg = 5T — 09 < 20

= 69 238\
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If 0y = 38 then let T be a solution and use equation (2.1) withn =1l and n = 2:

Y (ne—1)(pe—2)=4

LEN(T)

Y (pe—2)(pe—3)=12.

LeN(T)

By the first equation there are exactly two 3-lines and py > 4 cannot occur. By
the second equation, there are six 1-lines, hence thirty 2-lines to round out N(T').
The two 3-lines intersect in a point, say z. If z € T then T = O U {z} for some
oval O. Now z had either zero or two tangents to O, respectively four or three

secants and so four or three 3-lines, but there are only two 3-lines.

So it must be that z ¢ T. Then z has these two 3-lines, and either a tangent
and a secant, or three tangents to 7. But the six T-tangents lie one on each of
the six points comprising the 3-lines (each such point is on a unique 3-line, hence

six secants and so one tangent), giving the desired contradiction.
By our exé.mple with |N(T)| = 39, it must be that 9y > 39.

Now proceed by contradiction. Suppose Ty is a solution (that is, a 9-set with
IN(Ty)| = 39), and that Ty is not of the form O U {z}. If Ty contains a 7-arc T7,
then it is uniquely completable to an oval Ty so the points off T; are either interior
points of Ts (having exactly one T7-tangent and so four T7-externals), exterior
points (having exactly three tangents and so three externals), or completion points
of T7. There is only one of the latter, and we are assuming neither of the points
we add to T7 to get Ty is this point. But adding two of the other types of points
converts at least five O-lines of T7 to lines in N(7Ty). Because |[N(T7)| = 35, this

contradicts N(Ty) = 39. So we may assume Ty contains no 7-arc.
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By equation (2.1) with n = 1,2:

Y (pe—1)(ne—2)=6

LEN(TS)

> (me—2)(pe—3) =18,

LEN(Ts)

Consider the first equation. Every 3-line contributes 2, every 4-line contributes 6
and p¢ > 5 gives a contradiction. Similar analysis of the second equation results
in the fact that 75 must have either three 3-lines, twenty-seven 2-lines, and nine
1-lines; or a 4-line, thirty 2-lines and eight 1-lines. In the latter case, deleting two
points of the 4-line would result in a 7-arc contained in Ty so we may assume the
former case holds. It follows that every point of Ty lies on the same number of

1-lines as 3-lines.

If the 3-lines do not partition Ty, there will be two points on two 3-lines, or
a point on all three 3-lines. In any case there are two points which, when deleted

from Ty, leave a T-arc. It must be that the 3-lines partition Ty.

Case I: The three 3-lines are concurrent. Then we can assume they are concurrent
at the point oo, and label Ty with homogeneous affine coordinates as shown in

Figure 4.1:

Here a, b,c and the y; are elements of F7, not 0 or 1, to be determined. The
secants between affine points of Ty on z = 0,1 do not intersect the line z = ¢, so

we have that the y; are not in the following multiset:
M:={0,1,¢,1—¢, (b—1)c+1, be, (b—a)c +a, —ac+a, (1 —a)c+a},

Yet there are three y; which satisfy this criterion, so these nine elements must

represent only four distinct elements of F7.
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Figure 4.1. Homogeneous coordinates of Ty if the 3-lines are concurrent.

If c =4 we have M = {0,1,4,4(b+1),4(a+1),4b,4a,4(a+b)} in some order.
Since 4b # 0,4 or 4(b+ 1), and 4(b+ 1) # 1,4 or 4b, either 4b =1 (b = 2) or
4(b+1) =0 (b=06). Likewise a = 2 or 6, and a # b. In either case M contains
{0,1,3,4,5}, more than four elements, a contradiction. So we may assume c # 4,
and so the first four elements of M are distinct. Let M' := {0,1,¢,1 — ¢}, the

distinct elements of M. Since bc # 0 or ¢ we have one of two subcases:

If bc =1, then b = 1/c, and (b — 1)c + 1 must be in M’; all possibilities ¢ =
3,5,6 lead to contradictions, so it must be that b =4, ¢ =2 and M' = {0,1,2,6}.
Now (b—a)c+a=1—a € M' which implies that 1 —a = 2 or 6 with a = 6 or 2
respectively. Then —ac+ a = —a =1 or 5 respectively, but it must be in M', so it

must be 1, with a = 6. This gives a contradiction to (1 —a)c +a € M'.

Ifbc=1—¢c,then(l1+blc=1s0l1+b#0,c= T}F’é Analysis similar to
the above shows that b = 4, ¢ = 3, M' = {0,1,3,5}, and a = 2, contradicting

(1—a)c+a € M'. So we must be in Case IL
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Case II: The three 3-lines are not concurrent. Fixa point r € Ty. It has a tangent.
a 3-line and six secants - to the six points off its 3-line. Fix a 3-line off z. call it

(. The incidence and labeling is shown in Figure 4.2 (r is any of the z;).

T,

Figure 4.2. The incidences of Ty if the 3-lines are not concurrent.

The lines on r intersect £ at distinct points. The 3-line intersects at p;, the six
secants intersect at y; and z}, which are not p,, and so the tangent must intersect
at p;. All the z; have their tangents intersecting £ at p,. Each p; lies on two
3-lines, three 1-lines and so three 0-lines of Tg3. The three 0-lines on p; must then
go through the z!. This is true for each vertex p; of the triangle 7 = {p1,p2,p3}:
the 0O-lines on a vertex go through the three points on the opposite side of the
triangle. Thus we may assign homogeneous coordinates as shown in Figure 4.3

(no three of the points labeled (0,0,1), (0,1,0), (1,0,0) and (1,1,1) are collinear).

Here z; # 0,1; a,b # 0,1 or each other, and ¢,d # 0,1 or each other. As in
Case I, the nine secant lines between points on z = 0 and ¢ = 1 contain no points

on y = 0. That is, there are three z; € F7, not 0 or 1, so that (z;,0,1) is not on
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Figure 4.3. Homogeneous coordinates of Ty if the 3-lines are not concurrent.
any of the lines: y=1,y=(a—-1)z+1l,y=0b-1l)z+l,y=(1~-c)z+c,y =
(a—c)z+c,y=0b-cz+c,y=(1-diz+d,y=(a—d)z+d,y = (b—d)z +d.

The multiset

{01 1 1 c c c d d d }
""1—a’'l=-bc-1c—a'e=b'd-1'd—a’d—-1b

really contains only four distinct elements of F5.

< 4 _c _d
None of o1 o1 Toa Iog are 0 or 1, so these represent at most two elements

of F7. But ¢ # d means —%; d—ff—f so there are at least two elements represented.

Thus there are exactly two, represented by —%5 and ﬁ-l-. Since dfa # ﬁ—l- we

have dfa = £ and so d = ac. Likewise ¢ = ad which implies a*> = 1 and so

a = 6. But the same result applies to =5, ﬁ’f’ =5, 3% with the result that

b = 6, contradicting a # b. a

We now proceed with the case-by-case proofs of the discrepancies in the tables

A.jb.

For ¢ = 3 and m = 5: If 0,, equals the lower bound in Theorem 2.1 then
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the solutions are (0,1,2)-sets with 71 = 0, or perfect 2-arcs which do not exist in
odd order planes. So 9, is at least one greater than the lower bound; in this case

that equals |[N(T5)|.

For ¢ = 5 and m = T: There is no perfect 2-arc in PG(2,3) so 07 > 22.
Suppose 87 = 22 and let T be a solution. Then by equation (2.1):

Z (pe—=1)(pe—2)=44-7-6=2
LeN(T)

and, as in the proof of Theorem 4.3, it must be that T has exactly one 3-line, and
no lines have four or more points of T. Deleting one point z of the 3-line leaves
an oval O. Now z was on zero or two tangents to O, thus three or two secants,
and so O U {z} would have at least two 3-lines, a contradiction. So &7 > 23 and,

by our example, 8; = 23.

For ¢ = 5 and m = 8: 93 > 23 by Theorem 2.1. If J; = 23 then let T be

a solution and use equation (2.1) with n =1 and 2:

> (ue—1)(pe—2)=6

LeEN(T)

> (e —2)(pe—3)=2.

LEN(T)

By the second equation, either there is one 4-line and no 1-lines, or one 1-line and
no 4-lines. With the help of the first equation and |N(T')| = 23, we find that T
has either: one 4-line and twenty-two 2-lines, or one 1-line, nineteen 2-lines and
three 3-lines. But there cannot be a 4-line (each point on it would have to have a
tangent, but there are no tangents), so we may assume T has three 3-lines. They
cannot be concurrent (if they were, deleting the point of concurrency would result
in an arc of size 7), yet there is a point on two of them. It must have a tangent,
and since there is a unique tangent, there can be no other points on two 3-lines.

The third 3-line meets the other two off T' (see Figure 4.4).
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L
Figure 4.4. The incidence of points if d3 = 23 in 7s.

Say z ¢ T is on two 3-lines, ¢; and ¢;. Then it must have tangents to points

on {3, a contradiction. Js > 24 and by our example, 95 = 24.

For ¢ = 5 and m = 9: By Lemma 3.4 and because 0, is increasing we

have
831..,99 522<3—, = 31-——89 <7
= Jy > 25.

By our example, dy = 25.

For ¢ = 5 and m = 12,13,14: 0, is given by Theorem 4.2.

For ¢ = 7 and m = 9: See Theorem 4.4.

For ¢ = 7 and m = 10: If 0;9 = 39 then let T be a solution. Equation
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(2.1) with n = 1 and 2 gives

Y (pe—1)(pe—2)=8

LEN(T)

Y (me=2)(ne—3)=4

LEN(T)

so T has either one 4-line, one 3-line, thirty-six 2-lines and one 1-line; or four
3-lines, thirty-three 2-lines and two 1-lines. With notation as in §3.3, every z € T

satisfies . .
pi+pz+p3+p;=38

Pz +2p3 +3p; =9.
In particular for z not on a 4-line, p7 = p7 + 1 is at least one. The 3- and 4-lines
therefore cover the points, which cannot happen in the first case above, where
there is only one 4-line and one 3-line. So there must be four 3-lines. If they were
all concurrent in T then they would not cover the points, so the 3-line incidences

are either as in Figure 4.5 or as in Figure 4.6.

First suppose three 3-lines are concurrent in 7. Introduce homogeneous co-
ordinates onto these three 3-lines as shown in Figure 4.5. The fourth 3-line is
disjoint from the others (in order that the 3-lines cover the points of T') and so is
not of the form z = constant, nor y = constant, so it has the equation y = mz +k

for some m and k. Notice k # 0 because (0,0,1) is not on this line.

The 3-line z = 0 meets y = mz + k outside T, at (0,k,1). Likewise the
line z = 1 meets y = mz + k at (1,m + k, 1), outside T, and the line ¢, meets

y =mz + b at (1,m,0), outside T, as shown in Figure 4.5.

The line from (0, k,1) through (1,0,0) is a secant at (1,0,0) (because (1,0,0)
has no tangents) and hence intersects ¢ = 1 at (1,1,1) or (1,5,1); the line through
(0,k,1) and (1, a,0) then goes through either (1,5,1) or (1,1,1), respectively. So
either (1) k=1landb=1-aqa,or (2) k=band b=1+a.



0.k D

Figure 4.5. Homogeneous coordinates of a solution if 31 = 39 and three 3-lines

are concurrent.

Similarly, the two secants on (1, m + k, 1) go through either (1,q,0), (0,0,1)
and (1,0,0), (0,¢,1); or (1,a,0), (0,¢,1) and (0,0,1), (1,0,0). The first case leads
to the contradiction m +k = a = ¢ so it must be that the second case holds, which

implies m = —k and a = —c.

The secants on (1,m,0) go through either (1,1,1), (0,0,1) and (1,5,1), (0,¢,1)

or (1,b,1), (0,0,1) and (0,¢,1), (1,1,1). Thus either (3) m =1 and b =c+1 or (4)

m=b=1-c.

Since m = —k we cannot have both (1) and (3), but because a # ¢ we cannot

have both (1) and (4), a contradiction.

We can now assume the 3-lines are not concurrent, so they must be arrayed

as in Figure 4.6. Again there is a 3-line disjoint from the others, and with homoge-
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neous coordinates as shown in Figure 4.6. that disjoint 3-line is y = mz + & where
m.k # 0. Furthermore, the five points of this line which are not in T are (1,m,0).
(c.mc+k.1).(0.k, 1), (1,m+k,1), and (d.md + k, 1) for some d. The liney =0
goes through either (1,m + k. 1) or (d,md + k,1). If it goes through (1, m + k.1)
then the line determined by (1,m+k,1) and (1,a.0) is tangent at (1.a,0), which
has only one 3-line and hence no tangents, a contradiction. So y = 0 goes through

(d,md + k.1). Then at least two of the three pairs (d,md + k,1), (1,b,1) or
(d,md + k., 1), (1,1,1) or (d,md + k,1), (0,1,0) is tangent, again a contradiction.

T

(Ib,1) (1.LLD (0,10

(0,0.1)

(d.md+k,1) y=mx+k / 0.k 1)

Gk 7 (Lm0 /‘“*mc*“*‘\/ \

Figure 4.6. Homogeneous coordinates of a solution if 810 = 39 and the 3-lines

are not concurrent.

So 810 > 39.

Suppose T is a solution with |N(T')| = 40.

Yo (pe—1)(pe—2)=10= Y (pe—2)(ne~3)-

€eN(T) LeEN(T)
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There must be either one 4-line, two 3-lines, thirty-three 2-lines and four 1-lines;
or five 3-lines, thirty 2-lines and five 1-lines. In either case pick a point = € T
lying on a tangent. We are assuming 9y = 019 — 1, and since deleting = would
decrease the neighborhood by at least one, it must decrease it by exactly one, so
there is a unique T-tangent on z. Also, 7'\ {z} is a solution to the isoperimetric
problem for 9 points. By Theorem 4.4, T \ {z} is of the form O U {y} for some y.
But z and y have either three or four lines external to O, so adding them adds at
least five lines to [N(O)|=36, contradicting |N(T)| = 40. By our example, then,
010 = 41.

For ¢ = 7 and m = 11: If 3;; = 41 = 9;0 and T is a solution to the
isoperimetric problem for m = 11 then no point of T lies on a tangent, or else
we could delete that point and get a solution for ten points with neighborhood

strictly smaller than 8. Thus ¢ > 1 for all £. Equation (2.1) with n = 1,2 gives

Y (ue—1)(pe—2)=16

LEN(T)

D (ne—2)(ne—3)=4

LEN(T)

and so T has two 4-lines and hence two 3-lines. There must be a point on a 3-line
and a 4-line, call it z. If u,v,w are the numbers of 2-lines, 3-lines and 4-lines
respectively, on z, then the system

u+v+w=_,8

u+2v+3w=10
shows that v 4+ 2w = 2, contradicting v,w > 1. By our example then, 8;; = 42.

For ¢ = 7 and m = 16: By Lemma 3.4 and because 3,, is increasing, we

have
657—313 <41 < 611 = 57 — 315 <11



By our example, 05 = 47.

For ¢ = 7, m = 17: By Lemma 3.4 and because 9,, is increasing, we have
857-—817 <40 < aw = 57 — 817 < 10
3$ 817 Z 4:80

By our example, 0;7 = 48.

For ¢ = 7, m = 18: By Lemma 3.4 and because 9, is increasing, we have
Os7-8,s <39< 010 = 57— 015 <9
= 015 > 48,
By our example, 0,3 = 48.

For ¢ = 7 and m = 19: By Lemma 3.4 and because J0,, is increasing, we

have
657_.319 < 38 < 69 = 57 — 619 <9

= 019 > 49.

By our example, O;9 = 49.

For ¢ = 7, m = 23,24,25,26,28,32,33: J,, is given by Theorem 4.3.

4.3.2 The Caseq = 8

Theorem 4.5. There can be no nested solution to the isoperimetric problem in

PG(2,8).

Proof: If there is a set of nested solutions, T7; C T12. We know from Theorem 4.1
that T1; is a hyperoval plus a point, so T, = HU {z,y} where H is a hyperoval
and z,y ¢ H. z is on at least four 0-lines of H, and y is on at least three others,

so IN(HU{z,y})| > 010 +4+ 3 = 52.
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Asin §3.7.1 let a be a primitive element in Fy generated over F, by 23 +z +1.

The set of affine points
T :={(0,0,1),(0,1,1),(0,a* 1),(0,a°,1),(1,0,1),(1,1,1),
(1,0%,1),(1,a%,1),(a,0%,1), (@, 0%, 1), (e, 0, 1), (a, 0%, 1)}
makes a (0,2,4)-set in PG(2,8) which has |N(T')|=51, beating 52 for a hyperoval

plus two points.

We have just shown that no solution to the isoperimetric problem for 12 points
can contain a solution for 11 (since d12 < |N(T11 U {z})| for all solutions T}, for

11 points, and all z ¢ T'). So there can be no nested solutions to the isoperimetric

problem in PG(2,8). a

Notice that the set T given above is in fact a solution to the isoperimetric

problem, since Table 3.1 (Theorem 3.11) shows that 0y, > 51.



Appendix

Nested Solutions to the Isoperimetric
Problem for Planes of Order q < 7

See section 4.3 for an explanation of the tables.

Table A.la. An ordering of the points of PG(2,2) giving a nested set of solutions
to the isoperimetric problem.

o,

zi

1010100
0101100
1001010
0110010
1100001
0011001
0000111

~I O UL NI

Table A.1b. Solution to the isoperimetric problem for PG(2,2).

Lower Bound
Given By
IN(T)m| Theorem 2.1

=IO QW IN 3
NN~ Ot
~N -~ O Ut
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Table A.2a. An ordering of the points of PG(2, 3) giving a nested set of solutions
to the isoperimetric problem.

oL

Ty

1001001001000
0100100101000
0010010011000
1000010100100
0101000010100
0010101000100
1000100010010
0100011000010
0011000100010
1110000000001 10
0001110000001 11
0000001110001 12
0000000001111 13

> QO N - 00 Oy Ut ~]

Table A.2b. Solution to the isoperimetric problem for PG(2, 3).

Lower Bound

Given By

m |IN(Ty)] Theorem 2.1
1 4 4

2 7 7

3 9 9

4 10 10

) *11 10

6 11 11

7 12 12

8 12 12

9 12 12
10 13 13
11 13 13
12 13 13
13 13 13
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Table A.3a. An ordering of the points of PG(2,4) giving a nested set of solutions
to the isoperimetric problem.

x; 12
100010001000100010000 1
010001000100010010000 11
001000100010001010000 13
000100010001000110000 17
100001000010000101000 2
010010000001001001000 7
001000011000010001000 14
000100100100100001000 18
100000100001010000100 10
010000010010100000100 3
001010000100000100100 15
000101001000001000100 19
100000010100001000010 9
010000101000000100010 4
001001000001100000010 16
000110000010010000010 20
111100000000000000001 21
000011110000000000001 5
000000001111000000001 8
000000000000111100001 12

000000000000000011111 6



Table A.3b. Solution to the isoperimetric problem for PG(2,4).

Lower Bound

Given By
m IN(Tm)| Theorem 2.1
1 5 S
2 9 9
3 12 12
4 14 14
5 15 15
6 15 15
7 17 17
8 18 18
9 18 18
10 19 19
11 19 19
12 19 19
13 20 20
14 20 20
15 20 20
16 20 20
17 21 21
18 21 21
19 21 21
20 21 21

21 21 21
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Table A.4a. An ordering of the points of PG(2, 5) giving a nested set of solutions
to the isoperimetric problem.

Z; 1

1000010000100001000010000100000 11
0100001000010000100001000100000
0010000100001000010000100100000 12
0001000010000100001000010100000 26
0000100001000010000100001100000 17
1000000001000100010001000010000 14
0100010000000010001000100010000 21
0010001000100000000100010010000 27
0001000100010001000000001010000 8
0000100010001000100010000010000 1
1000000010010000000100100001000 9
0100000001001001000000010001000 28
0010010000000100100000001001000 2
0001001000000010010010000001000 18
0000100100100000001001000001000 22
1000000100000010100000010000100 29
0100000010100000010000001000100 13
0010000001010000001010000000100 23
0001010000001000000101000000100 3
0000101000000101000000100000100 10
1000001000001000001000001000010 24
0100000100000100000110000000010 4
0010000010000011000001000000010 19
0001000001100000100000100000010 15
0000110000010000010000010000010 30
1111100000000000000000000000001 )
0000011111000000000000000000001 16
0000000000111110000000000000001 20
0000000000000001111100000000001 25
0000000000000000000011111000001 31
0000000000000000000000000111111 6

-1



Table A.4b. Solution to the isoperimetric problem for PG(2,3).

Lower Bound

Given By
m N(Tm)| Theorem 2.1
1 6 6
2 11 11
3 15 15
4 18 18
5 20 20
6 21 21
7 *23 21
8 *24 23
9 *25 24
10 25 25
11 26 26
12 *27 26
13 *27 26
14 *28 27
15 28 28
16 28 28
17 29 29
18 29 29
19 29 29
20 29 29
21 30 30
22 30 30
23 30 30
24 30 30
25 30 30
26 31 31
27 31 31
28 31 31
29 31 31
30 31 31

31 31 31
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Table A.5a. An ordering of the points of PG(2, 7) giving a nested set of solutions
to the isoperimetric problem.

z; 1

100000010000001000000100000010000001000000100000010000000 22
010000001000000100000010000001000000100000010000010000000 25
001000000100000010000001000000100000010000001000010000000 13
000100000010000001000000100000010000001000000100010000000 9
000010000001000000100000010000001000000100000010010000000 10
000001000000100000010000001000000100000010000001010000000 43
000000100000010000001000000100000010000001000000110000000 28
100000000000010000010000010000010000010000010000001000000 32
010000010000000000001000001000001000001000001000001000000 24
001000001000001000000000000100000100000100000100001000000 16
000100000100000100000100000000000010000010000010001000000 44
000010000010000010000010000010000000000001000001001000000 26
000001000001000001000001000001000001000000000000101000000 19
000000100000100000100000100000100000100000100000001000000 18
100000000000100001000010000000000010000100001000000100000 29
010000000000010000100001000010000000000010000100000100000 45
001000010000000000010000100001000000000001000010000100000 33
000100001000000000001000010000100001000000000001000100000 1
000010000100001000000000001000010000100000000000100100000 2
000001000010000100000000000100001000010000100000000100000 17
000000100001000010000100000000000100001000010000000100000 14
100000000001000100000000001000100000000001000100000010000 11
010000000000100010000000000100010001000000000010000010000 23
001000000000010001000100000000001000100000000001000010000 3
000100010000000000100010000000000100010000000000100010000 27
000010001000000000010001000000000010001000100000000010000 34
000001000100000000001000100010000000000100010000000010000 4
000000100010001000000000010001000000000010001000000010000 46
100000000010000000001001000000000100100000000010000001000 12
010000000001001000000000100000000010010000000001000001000 30
001000000000100100000000010010000000001000000000100001000 )
000100000000010010000000001001000000000100100000000001000 20
000010010000000001000000000100100000000010010000000001000 47
000001001000000000100100000000010000000001001000000001000 6
000000100100000000010010000000001001000000000100000001000 35
100000000100000000100000000101000000001000000001000000100 21
010000000010000000010100000000100000000100000000100000100 36
001000000001000000001010000000010000000010100000000000100 48
000100000000101000000001000000001000000001010000000000100 7
000010000000010100000000100000000101000000001000000000100 8
000001010000000010000000010000000010100000000100000000100 31
000000101000000001000000001010000000010000000010000000100 15



100000001000000010000000100000001000000010000000100000010
010000000100000001000000010000000100000001100000000000010
001000000010000000100000001000000011000000010000000000010
000100000001000000010000000110000000100000001000000000010
000010000000100000001100000001000000010000000100000000010
000001000000011000000010000000100000001000000010000000010
000000110000000100000001000000010000000100000001000000010
111111100000000000000000000000000000000000000000000000001
000000011111110000000000000000000000000000000000000000001
000000000000001111111000000000000000000000000000000000001
000000000000000000000111111100000000000000000000000000001
000000000000000000000000000011111110000000000000000000001
000000000000000000000000000000000001111111000000000000001
000000000000000000000000000000000000000000111111100000001
000000000000000000000000000000000000000000000000011111111

Table A.5b. Solution to the isoperimetric problem for PG(2, 7).

Lower Bound

Given By
m IN(Tr,)| Theorem 2.1
1 8 8
2 15 15
3 21 21
4 26 26
5 30 30
6 33 33
7 35 35
8 36 36
9 *39 36
10 *41 39
11 *42 41
12 42 42
13 44 44
14 45 45
15 45 45
16 *47 46
17 *48 46
18 *48 47
19 *49 48
20 49 49
21 49 49
22 50 50

23 *51 50

80

49
37
38
39
40
41
42
50
51
52
53
54
35
56
57



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
a7

*31
*52
*52
52
*53
33
33
53
*54
*54
54
54
54
5%)
35
35
55
55
35
56
56
56
56
56
56
56
57
57
57
57
37
57
37
57

50
30
51
52
52
53
53
53
53
33
54
54
54
55
5]
35
55
55
55
56
56
56
56
56
56
56
37
57
57
57
o7
57
57
57

81
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