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Abstract 

This treatise deals with the isoperimetric problem in finite projective planes. 

NTe prove that certain sets, called (07 n, n + 1)-sets, are solutions to this problem. 

This class of sets includes all the previously known solutions to the isoperimetric 

problem, as well as two new types of solutions which exist in every finite projective 

plane. We prove a characterization theorem for (0, n, n + 1)-sets with many points. 

We solve the isoperimetric problem for large set size,and for q f 3 points if q is 

even. We find all the (0, n, n + 1)-sets in planes of order at most 8 and develop 

techniques for proving that some (0, n, n+l)-sets in larger order planes do not exist. 

We solve the isoperimetric problem in the planes of order at most 7 (the solution 

was known only for planes of order at most 4), proving that nested solutions exist 

in these planes. We prove that no nested solutions exist in PG(2,8). We give 

examples of (0,2,3)-sets in planes of order 7, 8 and 16 which are new solutions 

to the isoperimetric problem not included in the infinite classes mentioned above, 

and we investigate Latin squares and Steiner triple systems associated with these 

examples. 
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Chapter 1. Introduction and Definitions 

This chapter is intended as a review of the combinatorid structures which are 

used in the following chapters. We begin with a brief review of some definitions 

and ideas in finite projective planes (51.1). The next section (51.2) is devoted 

to the known results on arcs and (m,  k)-arcs because they are such important 

constructions for our work. Section 1.3 is a review of the few ideas in lattice 

theory which are relevant to the discussion in 53.1. In 51.4 we discuss blocking 

sets and multiple blocking sets? which are used in sections 3.5 and 3.7.1. In $1.5 

we define the isoperimetric problem and give the results which were known prior 

to the work contained herein. 

1 .I Finite Projective Planes 

Let q be a prime power. We use the notation 

Fq : = the finite field with g. elements 

- F,':= F, \ 101 

3': : = the 3-dimensional vector space over Fq 

We presume the reader is familiar with: the definition of a finite projective 

plane of order q,  some examples of such planes, the definition of a desarguesian 

plane and the fact that all such planes are isomorphic to PG(2, q) for some prime 

power q, the fact that all planes of order at most 8 are desarguesian, and the 

definition of an affine (sub)plane. 

For a review of projective planes, see [Bat , 33.2; [vLW], chapters 23 and 26; 

or [Dem], chapter 3. 



bVe will denote a general projective plane by n or T,. 

%'e mention here that we take our afine points to have 1 in their third coor- 

dinate. For example, the points and lines of PG(2, q )  are 

P := {(x, y 7  1) : 3, y E Fq} U {(I, m,O) : rn E Fq} il {(O, 1, 0)} 

L := {Y  = ma: + k : m, k E Fq} u {I = c : c E Fq} U {l,}, 

Incidence obeys the obvious rule, namely. an affine point g = (I, y, 1) is on an affine 

line l whenever the equation defining t is true at g, while t ,  consists exactly of 

the slope points (those points with third coordinate zero). 

Recall that three projective points (sl , yl , zl ), ($2, y2, z2), and ( ~ 3 ,  y,, 23) are 

collinear if and only if the matrix of their coordinates has determinant zero: 

For example, two points on the line y = m r  + b will be incident with the point 

(I, m 0 It isefor this reason that the points (1, rn, 0) are called slope points 

with slope m. The point (0,1,0) is incident with the lines r = c, corresponding 

to the slope m. 

Recall also that the dual of a plane n, denoted n*, is the projective plane 

with points equal to the lines L: of x ,  lines equal to the points P of ir, and having 

the point t* in n* incident with the line s* in T* if and only if the point I is 

incident with the line t in r. 

We will show (Theorem 3.5) that most solutions to the isoperimetric problem 

obey a sort of duality. For that reason, and following [Ha], we define the dual 

complement of a set to be the 0-lines of that set, as points in the dual plane: 



Definition: For a set .4 of points in a projective plane r;; the dual complement 

of -4 is the set 

:= {E* : t is a 0-line of A)  

of points in x*. 

For example, the dual complement of a singleton set {I) is the afine subspace 

of n* which has z* as the line at infinity. The dual complement of affine space is 

the singleton set { t k )  in x*. 

1.2 Ares 

Perfect arcs and k-arcs are solutions to the isoperimetric problem ([Ha]), and 

in this sense (0, n, n + 1)-sets are generalizations of them. We therefore include a 

brief review of the relevant facts about arcs; for a more detailed account see, e.g. 

[Thl]; [Hi], chapter 8; or [Mar]. 

For the rest of this section assume x is a finite projective plane of order q. 

Recall that an (m, kj-arc in x is m points, some k but no k + 1 collinear. An arc 

or rn-arc is an (m, 2)-arc with i 5 2, i.e., rn points with no more than 2 collinear. 

Thus, for our purposes, O-arcs (the empty set) and l-arcs (singleton sets) are arcs. 

The largest value of rn for which an (m; k)-arc exists in PG(2, q )  is usually 

denoted rnk(2, q )  and the known values for various k and small q are given in [HV] 

For a subset A of points of a plane, a line with no points of A is called an 

external line, a line with exactly one point is a tangent, a line with exactly two 

points is called a secant, and a line with i points is called an i-line. 



In chapter 12 of Hi], (rn: k)-arcs in P G  2. q )  are discussed at length. Many of 

the results obtained therein are true in arbitrary projective planes. See also [vL~V 

chapter 26 for results about perfect arcs in arbitrary planes. We summarize the 

results which are well-known and relevant to our problem. 

If there is an (m, k)-arc K then rn 5 ( q  + l ) ( k  - 1) + 1. K is called perfect 

or maximal when equality holds. In this case every line intersects K in exactly k 

points. If there is a perfect (m,  k)-arc then k divides q or k = g + 1 (in which case 

K = T ) .  In an abuse of notation, we call a perfect (m, kj-arc a perfect k-arc 

when we do not wish to specify m. 

There are perfect (m, k)-arcs in PG(2,2') for every t > 1 whenever k divides 

2' (see [Denl] or [vLW], p. 314) but it is proved in [Th2] that there are no (m, 3)- 

arcs in PG(2,3') other than affine space in PG(2,3). If K is a perfect (m, k)-arc 

then is a perfect (v , i )  -arc. Consequently, there are no ( , :)-arcs 

in PG(2,3') for t 2 2. 

If m = ( g  + l)(k - 1) (the size of a perfect k-arc minus a point) and K is an 

(m,  k)-arc for some k > 2 ther, there is a point which lies only on (k - 1)-lines 

of K ,  i.e., there is a unique point z such that K U {x} is a perfect k-arc ([Bar]). 

Xotice that this theorem is not true when k = 2, since that would imply that an 

oval is always contained in a hyperoval; see below. 

An arc is called complete if it is not properly contained in any other arc. 

For an arc K ,  a point x $ K is a completion point of K if K U {I} is also an 

arc. Thus an arc is complete if and only if it has no completion points, if and only 

if every z E P lies on at least one secant of K.  

A k-arc K satisfies k 5 q + 2 and if k = q + 2 then K is a perfect ( q  + 2,2)-arc, 



which is called a hyperoval. Thus hyperovals exist only in even-order planes. An 

oval in a plane of any order q  is a jq + 1)-arc. In planes of even order, an oval K 

always has a completion point r ,  called the nucleus (see Lemma 8.1.4; the 

desarguesian hypothesis is not necessary). 

Examples of ovals in PG(2, q )  arise as the solutions of nondegenerate quadrics. 

, p. 317 for a discussion of quadrics.) That is, for most choices of ai E Fq, 

the set of all projective points (x, y , z) satisfying 

a1x2 + azxy + a3xz +a4y2 f a s y z  +a6z2 = 0 

is an oval. An oval that arises as the solution of a quadric is sometimes called a 

conic. 

It is an important theorem of Segre that in PG(2, q) when q is odd the ovals 

are exactly the conics. In PG(2, 2'), however, not all hyperovals arise this way. 

If a hyperoval can be written as a conic plus its nucleus, it is called a regular 

hyperoval. It is known that if t 2 4, then PG(2,2') contains irregular hyperovals. 

See [GI or [C] for examples of infinite classes of irregular hyperovals. 

We use the term (hyper)oval as shorthand for "an oval when q is odd, a 

hyperoval when q is even". Specifically, we exclude the possibility of a (q + 1)-arc 

when q is even. 

In PG(2, q) for any q, a q-arc can always be completed to an oval. (See [Dem], 

result 3.2.28 for a reference.) The hypothesis that the plane be desarguesian is 

necessary (see, e.g., [Den2]). 

If K is an oval in PG(2,q where q is odd, the points off K are partitioned 

into external points which are on two tangents and (qil) secants, and (:) 

internal points which are on no tangents and (q:l) secants. 
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In PC('; q )  where q > 2 is even, the hyperovals are exactly the sets 

where f is an o-polynomial. polynomial f of degree at most q - 1 is an o- 

polynomial if it is a permutation polynomial, f(0) = 0, f(1) = 1, and for each 

s E F, F, is also a permutation polynomial, where F,(O) := 0 and when x # 0 we 

have 

F, (x) : = 
2 

(See [Hi], p. 174, or [O'KP] for further characterizations of o-polynomials.) 

1.3 Lattices 

Except as noted, the material in this section can be found in [DP], sections 

2.1 through 2.21. It is intended to be only a review of the few facts from lattice 

theory which we will need. 

A lattice is a partially ordered set in which meets and joins always exist. Let 

X be a set. A map cl from the power set of X to the power set of X is a closure 

operator on X if for all A, B X we have 

(ii) if A c B then cl(A) C cl(B) 

(iii) cl(cl(A)) = cl(A) 

A subset A of X is called closed if A = cl(A). 

A closure operator on a set X gives a lattice whose elements are the closed 

sets, order is containment, the meet (A)  is defined as the intersection, and the join 

(v) is defined as the closure of the union. 



An element a of a lattice covers an element b if a > b and there is no e with 

a > c > b. A lattice is called semimodular ([vLW], p. 271) if whenever distinct 

elements a and b both cover some element e7 then a V b covers both a and b. 

1.4 Blocking Sets 

A blocking set in a finite projective plane is a set T of points such that every 

line contains at least one point in T and one point not in T .  It is immediately 

obvious that the complement := F\ T is also a blocking set. It is also immediate 

that the secants of a complete arc form a blocking set in the dual (see, e.g., [Br]). 

It is an area of active research to find the size of a smallest blocking set in a given 

plane. The answer is known in some cases, for example, in [Br] it is shown that 

if S is a blocking set in a plane T of order q then IS1 2 q  + & + 1 with equality 

if and only if q is a square and S is a Baer subplane, that is, a plane of order f i  
with incidence inherited from r. In [BS] it is shown that if q is not a square and S 

is a blocking set in PG(2, q ) ,  then IS1 2 q  + + 1 - $. It is an open question 

what the best possible lower bound is in the case of non-square q. 

For a fountain of examples of blocking sets, as well as a discussion in the affine 

setting, see [Ta]. 

An r-fold blocking set is a set T of points such that every line intersects 

T in at least r points, where r 2 1. (An r-fold blocking set may contain a 

line.) A multiple blocking set is an r-fold blocking set for some r .  Multiple 

blocking sets have been recently studied by Ball and Blokhuis using Rkdei's theory 

of lacunary polynomials ( B I], [BB] , [B2]). Their most general result generalizes 

Bruen's result, as follows. If B is an r-blocking set in PG(2, q )  for some r 2 1 and 

if B contains no line then it has at least r q  + f i  + 1 points. 



1.5 The Isoperimetric Problem 

The material in this section is taken from 

Given a bipartite graph with disjoint vertex sets A and B, the general isoperi- 

metric problem is as follows. Fix 0 5 rn I: , consider all of the n-sets of A, 

and find one which has the least possible number of edges incident with it. The 

neighborhood of an rn-set T  in a graph is defined as the edges incident with some 

point of T ,  and is denoted by N ( T ) .  With this notation, the isoperimetric problem 

is to find 

min IN(T)I. 
I'CA:~TI=m 

For our purposes the bipartite graph is the one whose disjoint vertex sets are 

7 and L, the sets of points and lines of a projective plane. The neighborhood of a 

set T of projective points is then all of the lines incident with (at least one point 

of) T .  

Definition: Given a set T of points in a projective plane, the neighborhood of 

T is defined to be 

N ( T )  : = the set of lines incident with T 

We wish to find, for each rn, the sets which have the least number of lines 

incident with them, and what that least number is. For this purpose we define 

Definition: The isoperimetric problem refers to either of the following: (1) 

Given a projective plane and an integer 0 5 rn 5 qZ + q + 1, find a,; (2) Given 
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a projective plane, find 0, for each 0 5 rn < q Z  + q + 1. It should be clear from 

context which definition is being used. 

Definition: Given a projective plane and an integer 0 5 rn 5 q Z  + q + 1; the 

solution to the isoperimetric problem is a,, or any set T achieving this 

minimum. Again, no confusion should arise in practice from this double definition. 

Suppose we wish to build a solution T to the isoperimetric problem. We 

would start with a point sl , add another point $2 ,  and then as our third point $3 

we would take a point on few 0-lines to the 2-set {sl, 12) (because all the 0-lines 

on 13 become new lines in N ( T )  when we add 13 to the 2-set), and so on. 

So if we want to build a solution to the isoperimetric problem from a given 

set T we should add points, one at a time, which lie on few 0-lines to the points 

already chosen, i.e. points which lie on many of the lines incident with the points 

already chosen. One way of doing this is to make sure T does not have lines 

containing "too many" points of T. For example, if T is a set which has all 1- and 

2-lines except for one &line, we could replace a point s of that 5-line with a point 

y off the 5-line. The point y will probably be on three fewer 0-lines of T \ {r) than 

s is on (because there are probably about three more lines to T \ {z) from y than 

from I), and hence we should expect IN({y) U T \ {$))I < IN(T) 

What we are suggesting is that a set T where the lines intersecting T all 

have approximately the s e number of points of T ,  should be a solution to the 

isoperimetric problem. Theorem 2.1 further supports this idea. In all the solutions 

to the isoperimetric problem known before this investigation, this is true. The 

known classes of solutions were: For 0 5 rn 5 p + 1 (or q f 2 if q is even), the 

solutions to the isoperimetric problems are exactly the rn-arcs. Perfect k-arcs are 
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Chapter 2. (O,n,n+l)-Sets 

In this chapter we define ( 0 ,  n7 R + 1)-sets: and prove (Theorem 2.1) that given 

0. n, n -+ l )-sets with rn points are solutions to the isoperimetric problem for 

m points. Furthermore, when such sets exist they are the only solutions. We then 

develop necessary conditions for the existence of a (0, n, n + 1)-set of size m in a 

plane of order q (52.2), give some general examples of (0, n, n + 1)-sets (52.3): and 

list all the (0, n, n + 1 )-sets in planes of order at most 5 (Table 2.1). 

2.1 Proof That (O,n,n+l)-Sets Are Solutions 

The following observation was suggested by R. Wilson. Given a projective 

plane .rr, a set of points T, and a line e,  let 

Then because j . ~  is an integer, for any integer n we have 

TI. In the proof of Theorem 2.1 we will obtain a lower bound on 

where equality holds if and only if = n or n + 1 for each l E N(T). We 

are thus motivated to make the following definition before stating Theorem 2.1: 

Definition: A set T of points in a projective plane x is called a (0, n, n + +set 

if pc = 0, n, or n + 1 for every line A!? of T .  

These sets are often called sets of type [O, n, n + 11 (see, e.g., [Ta]). 



Theorem 2.1. If there exist (0. n7 n + 1)-sets of size rn in a projective plane 

?r, then the solutions to the isoperimetric problem for rn points are exactly the 

(0. n, n + 1)-sets. In any case, 

with equality if and only if there exist (0, n, n + 1)-sets of size rn. 

Proof: Let T be a set of rn points in n. Counting in two ways the pairs (1,s) 

where 1 is a line and s E l n T, and the triples (s, y, t )  with s, y E l n T, proves 

that 

Substituting this into equation ( 2 4 ,  we get 

with equality if and only if pc = n or n + 1 for every line t E N(T). 

For the rest of the proof, suppose there is a (0, n, n + 1)-set S of size rn. Then 

N(S)I = &(2niq+ 1) + 1 - rn) 5 for all other sets T of rn points 

in rr, so S is a solution to the isoperimetric problem: 8, = 

a solution to the isoperimetric problem for m points in n, then N(T)I = 8, = 

(2n(q + 1) + 1 - m) , that is, equality holds in equation (2.3) and so T must 
n(aS.1) 



A quick glance at the Appendix shows that. for small q myway, Theorem 2.1 

is a pretty good bound. 

We observe that given rn, xp, and n := . equation (2.3) proves that 

solving the isoperimetric problem for rn points in r,, i.e. minimizing IN(T) 

equivalently, minimizing the sum in (2.3), is accomplished by taking a set with as 

many pc as close to n as possible. This is the point we made in 51.5. 

2.2 Combinatorial Properties of (O,n,n+l)=Sets 

For this section, let S denote a (0, n, n + 1)-set of size m. 

Fix a point a: E S. The other points in S are each on a line with a: and so 

the q + 1 lines through a: partition the other points into sets of size n - 1 and n. 

Thus n - 1 = and n = 9+l 

Define t by n = 9, SO that 0 5 t 5 q. Actually t has a geometric 

interpretation, which can be seen as follows. Fixing r E S, let u and v denote the 

number of n and (n + 1)-lines, respectively, on a:. Then 

( n - l ) u + n v = m - 1 .  

Adding 1 - n times the first equation to the second shows that 

that is, t represents the number of (n + 1)-lines on a point a: E S. 

Equations (2.2) become 

nrn + (n + l)r,+l = m(q + 1) 

n(n - l)r, + n(n + l ) ~ , + ~  = m(m - 1). 



Solving these equations for r, and r,+i and recalling that ro +T, +r,+l = q Z  + q + l ,  

we know how many lines of each size there are: 

m  
rn = -(I  - rn + n(q + I)) 

n  
rn 

7 - o = q Q Z f  q + 1 -  
n(n + 1) 

(2n(q + 1) + 1 - rn). 

In particular, r, and r,+l must be integers. We address the question: if the 

quantities on the right hand side of equations (2.4) are integers for some q, m  and 

, is there a (0, n, n + 1)-set of size rn in some plane of order q? The 

answer seems to be a difficult one, and in the general case the answer is "no". For 

example, m  = q + 2 always results in integers on the right hand side, but then S 

would have r3 = 0, that is, S would be a hyperoval which we know does not exist 

if q is odd. 

The following definition is equivalent to the condition that rn and rn+l are 

integers. 

Definition: We shall say m, n,  and q are feasible parameters, or that {rn, n, q }  

is a feasible parameter set, when the following conditions all hold: 

n  = 151 
n  divides m(m - 1) 

(n + 1) divides tm 

where t := q + rn - n(q + 1) = the number of (n  + 1)-lines incident with a point 

of a (0, n, n + 1)-set, if one exists. Table 2.1 lists all the feasible parameters for 

q 5 5 .  In the last column we show an example of a (0, n, n  + 1)-set of size m  if 

one exists, or give a proof that one does not exist. 



Table 2.1 The feasible parameters for q = 2,3; 4; 5 .  

q n m T, Tn+l TO Example 
2 1 1 3 0 4 point 
2 1 2 4 1 2 2-arc 
2 1 3 3 3 1 3-arc, or AG(2,2) minus a point 
2 2 4 6 0 1 4-arc, or AG(2,2) 
2 2 6 3 4 0 PG(2,2)minusapoint 
2 3 7 7 0 0 ~ ~ ( 2 , 2 )  

3 1 1 4 0 9 point 
3 1 2 6 1 6 2-arc 
3 1 3 6 3 4 3-arc 
3 1  4 4 6 3 0 ~ 1  
3 2 5 10 0 3 does not exist (would be a perfect 2-arc) 
3 2 6 9 2 2 dual complement of an oval 
3 2 8 4 8 1 AG(2,3) minus a point 
3 3 9 12 0 1 AG(2,3) 
3 3 12 4 9 0 PG(2,3) minus a point 
3 4 13 13 0 0 PG(2,3) 

point 
2- arc 
3-arc 
4-arc 
5-arc 
hyperoval, or the dual complement of a hyperoval 
dual complement of a 3-arc 
dual complement of a 2-arc 
AG(2,4) minus a point 
AG(2,4) 
PG(2,4) minus a point 
PG(2,4) 
point 
2-arc 
3-arc 
$-arc 
5-arc 
o w  
does not exist (would be a perfect 2-arc) 
does not exist (see the example, 52.3) 
dual complement of an oval 
does not exist (Theorem 3.10) 
does not exist (Theorem 3.10) 
dual complement of a 3-arc 
dual complement of a 2-arc 
AG(2,5) minus a point 



5 5 25 30 0 1 AG(2,5) 
5 5 30 6 25 0 P G  2,s) minus a point 
5 6 31 31 0 0 PG(2,5) 

2.3 Examples of O,n,n+l)-Sets 

1. Perfect (m, n)-arcs are technically (0, n - 1, n)-sets as well as (0, n, n + 1)-sets, 

but we will adopt the convention that we refer to them only as (0, n, n+l)-sets. 

That way we preserve the property that n = %I. We call a (0, n?n+l)-set 

strict when it is not a perfect arc. 

We now list the commonly known perfect arcs, as examples of (0, n, n + 1) -sets. 

The empty set is a ( O , O , l  )-set. A point is a ( O , 1 ,  2)-set. An affine subplane 

is a (0, q, q + 1)-set of size q2. The projective plane is a (0, q + 1, q + 2)-set. 

When q is even, PG(2, q)  contains perfect k-arcs for any k which divides q 

and these are (0, k, k + 1)-sets. 

2. A k-arc with k 5 q + 1 is a (O,1,2)-set of size k. 

3. Deleting any point or line from a perfect n-arc results in a (0, n - 1, n)-set. 

4. The complement of a point is a (0, q,  q + 1)-set of size q2 + q. 

5 .  Two lines intersect every other line in one or two points, so the complement 

of two lines is a (0, q - 1, q)-set of size q2 - q. 

6. The complement of three nonconcurrent lines is a (0, q - 2, q - 1)-set of size 

k2 - 1j2* 

Since a (0, n, n + 1)-set is a solution to the isoperimetric problem, all of the 

examples given above are solutions. With the exception of Example 3, they were 

all previously known solutions (many are dual complements of arcs; see 51.4). 



Taking an aEne subplane as the perfect arc in Example 3 gives two new classes of 

solutions to the isoperimetric problem which exist in every finite projective plane. 



Chapter 3.  Existence of (O,n,n+l)-Sets 

Section 3.2 contains theorems which are useful in solving the isoperimetric 

problem, and which will be used in sections 3.1. 3.5 and 4.3. For these theorems 

it is important to know whether a set is as large as it can be and have the same 

neighborhood, so we define a set to be closed when this situation holds. The 

term "closed" has several mathematical connotations and we justify its use in this 

case, in the context of lattices. Our only lattice theory result (in 53.1) is that this 

lat tice-theoretic approach is not worth pursuing. 

3.1 The Closure and Lattice Theory 

Definition: For a set of points T 5 P, the closure c l ( T )  of T  is defined as 

T U {x E P : x lies on no 0-lines of T } .  

Then a set is closed when every point off it lies on at least one external line. 

Xotice that cl is a closure operator in the lattice-theoretic sense (see 5 1.3). The 

closed sets therefore form a lattice with inclusion as the partial order. This lattice 

is not "nice", it is not even semimodular. For example take two points z, y E x and 

let l be the line they determine. Define a := l\ { s } ,  b := t\  {y},  c := l\ {z,y}. 

Then a, b, c are distinct elements of the lattice of closed sets, a and b each cover 

c,  but a V b = c l ( l )  = T. To be semimodular it is required that n cover a and b, 

but we can find a closed set that lies properly between a and n, for example, as 

follows. Take z @ l ,  and let l' be the line on x and z.  Then 

and so rr does not cover a. 



Note that all solutions T to the isoperimetric problem of size rn are closed if 

8, < This is independent of T and, unlike our definition of closed, applies 

only to sets which are solutions to the isoperimetric problem. The term "closed" 

was originally introduced in this context ( ). PVe introduced the definition of 

the closure operator as given above and followed through the lattice investigations. 

3.2 Theorems Involving the Closure 

Lemma 3.1. A ( 0 ,  n, n + 1)-set of size rn is either a perfect (n + 1)-arc minus a 

point, or it is closed. 

Proof: Let S be a ( 0 ,  n , n  + 1)-set of size rn and suppose S is not closed. Then 

there exists a point + such that T := S U {x) has am+l < N ( T ) I  = IN(S)I = dm 

(the last equality is because ( 0 ,  n7 n + 1)-sets are solutions to the isoperirnetric 

problem), and since a, is increasing with rn, this says a, = a,+l. Then by 

Theorem 2.1: 

+m+l where n = 1- and n' = Ig q+l  
q + l  

If n = n' this implies 

m 

a contradiction. So we must have n' = n + 1. Now n' = d-m+l-f' and n. = * 
q + l  f?+1 

for some 0 5 t f , t  5 q ,  so we have t' = t - q where 0 < t , t '  < q. It must be that 

t' = 0 and t = q and so m = n ( q  + 1 )  - q + t = n(q  + 1).  By the results mentioned 

in 51.2, if n > 1 then S is a perfect (n + 1)-arc minus a point, and if n = 1 then 

S is a hyperoval minus a point, still a perfect arc minus a point. 
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Corollary 3.2. I f K  is a k-arc in a plane of order q. and k 5 q ,  then li is closed. 

A (Q +- 1)-arc is closed iff q is odd. A hyperoval is dosed. 

Proof: The first statement follows because a k-arc with ic 5 q is a (0,1,2)-set not 

of the form iperfect arc minus a point". The second and third statements are true 

by well-known results on ovals and hyperovais; see e.g. [Hi], Lemmas 8.2.1 and 

8.1.4 whose proofs work as well in non-desarguesian planes. El 

Recall from 51.1 that the dual complement of a set T is the dual of its set of 

0-lines, so TdC is a set of q2  + q f 1 - /N(T) 1 points in the dual plane. 

Lemma 3.3. For any subset T of points in a projective plane, cl(T) = ( T ~ ~ ) ~ ~ .  

Furthermore, T 5 ( T ~ ~ ) ~ ~  with equdity if and only if T is closed. 

Proof: 

Equivalently, 

z $ ( T ~ ~ ) ~ ~  H 3I* E Tdc with l* incident with x* 

++ 3 f! a 0-line of T through x. 

So x E ( T ~ ~ ) ~ ~  iff x lies on no 0-lines of T, proving cl(T) = ( T ~ ~ ) ~ ~ .  Certainly 

points of T lie on no 0-lines of T,  so T ( T ~ ~ ) ~ ~ .  Equality holds if and only if 

(x $ T =+ x $ ( T ~ ~ ) ~ ~  = cZ(T)) if and only if T is closed. 

The next lemma seems quite technical but is often useful for increasing the 

lower bound on dm as given in Theorem 2.1 (see 5 4 4 ,  and (with Corollary 3.6) 

it is very important to our characterization theorem (Theorem 3.10). 



Lemma 3.4. Let a projective plane 7r of order q be given and suppose that T is 

a solution to the isoperimetric problem for rn in T .  Then 

2 
an2+q+~-a, L Q f P t 1 - m. 

Equality holds if and only if T = ( T ~ ~ ) ~ ~  and is a solution to its isoperimetric 

problem. 

Proof: B y  Lemma 3.3, 

= q2 + q + 1 - I N ( T ~ ~ ) ~  

In [Ha] it is shown that if S is a closed solution to the isoperimetric problem 

in a bipartite graph, then sdC is also a closed solution. The following theorem is 

our proof of this fact, in the context of projective planes and using our definition 

of "closed". 

Theorem 3.5. Let a projective plane .rr of order q be given. If T is a closed set of 

points in x then TdC is a closed set. If T is a dosed solution to the isoperimetric 

problem then TdC is a dosed solution. 

Proof: T closed + T = ( T ~ ~ ) ~ ~  + T~~ = ( ( T ~ ~ ) ~ ~ ) ~ ~  = cl(Tdc) j is closed. 

Now suppose T is a closed solution. By Lemma 3.4, 

aq2+q+i-a,,d,, I q2 + P + 1 - ITdcl = IN(T)I = 

because T is a solution. But 8, is an increasing function of rn and so 



because T = ( ~ ~ ' 1 ~ ~ .  Thus T (  T ~ ' )  5 d!r.ic so equality must hold and T~~ is a 

solution. r: i;i 

Corollary 3.6. Equality holds in Lemma 3.4 if and only if T is a closed solution. 

Proof: Suppose equality holds. Then by Lemma 3.4, T  is closed and T~~ is a 

solution. By Theorem 3.5, T~~ is a closed solution and so T = ( T ~ ~ ) ~ "  is a (closed) 

solution. 

Kow suppose T is a closed solution. Then T  = ( T ~ ~ ) ~ ~  and (by Theorem 3.5) 

TdC is a solution, so equality holds in Lemma 3.4. 

Corollary 3.7. Fix a finite projective plane rq and rn. The solutions to the 

isoperimetric problem for rn points in nq are either all closed or all not closed. 

Proof: Corollary 3.6 depends only upon the size of a solution and that it is a 

solution, not on the set it self. 

More rigoiously, suppose S and T  are solutions to the isoperimetric problem 

for rn points and that T is closed. Then Corollary 3.6 for T says 

and so Corollary 3.6 for S says S is a closed solution. 

3.3 The Method of Typing Points 

This method is described in Hi], 512.1 for sets of points in a projective plane. 

It is most useful when it is applied to sets T with few possibilities for it i-~ TI, and 

for r *  Ti T~~ 1 in n*. Fortunately, this situation pertains in many cases of our study, 
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Pick ( u ,  v 7  w )  a solution of (3.2) with w minimum, i.e. so that all the solutions 

are of the form ( u i , v i 7 w i )  := n -+ 11, v + in, w + i) for some i 2 0. 

Let Ai := {x $ S : r has ui a-lines and vi ( n  + 1)-lines). The Ai partition 

x \ S. We say a point is of type Ai when it is in A*. Let a* := [Ail. If there are 

t f 1 solutions to (3.21, we get the following: 

Substituting zui = w + 2 ,  this translates into the system of equations 

Left multiplying both sides of the equation by the matrix 

we arrive at the conclusion that if there is a (0, n, n + 1)-set of size m then there 

is a solution to the matrix equation 



\\-here the a ,  are all nonnegative integers. 

Example: In the case q = 5 .  n = 2; rn = 9 which is feasible; we have TO = 7;  and 

we consider solutions to 
u + v $ - w = f i  

224 +3v = 9. 

Thus if S is a (0,2,3)-set of size 9 in PG(2: 51, then for each 2 $ S we have 

(21 V ,  w ) = (3,1.2) or (0,3,3). The smallest w is 2 and equation (3.4) becomes 

which must have solutions a*, ax > 0, a contradiction. There can be no such 

(0,2,3)-set in the plane of order 5. 

3.4 The Existence of (O,n,n+l)-Sets of Size m 2 (z). 
t i e  will eventually characterize all the "large" (0; n, n + 1)-sets (Theorem 

3.10) by showi~g that most of them are dual complements of arcs. First we have 

to characterize those arcs whose dual complements are (0, n: n + 1)-sets. 

IVe will show in the proof of Corollary 3.9 that dual complements of ovals are 

(0, n. n + 1)-sets, so for now we restrict our attention to smaller arcs. Suppose K 

is a k-arc in a plane T * ,  k 5 g and S := KdC is a (0, n7 n + 1)-set for some n. Then 

= q2 - qk + q + l f k ( k  - 3)/2 which implies that for m, n and q  to be 

feasible it must be that 

n = q + l - k +  

K is closed (Corollary 3.2) and a solution to the isoperimetric problem (by 

Theorem 2. I),  so (by Theorem 3.5) 5' is a closed solution and the points off K are 



the duals of the non-external lines of S .  In IT. S is a (0. n. n t 1)-set for some n 

if and only if in T *  every point off li lies on n or n + 1 external lines to if and 

only if in T *  every E* off K lies on s or s + 1 secants for some s. Thus .KdC is a 

(0, n. n + 1)-set if and only if there is such an s. If so7 fix an external line to K .  

Each of the (,k) secants of K meets it; so the secants are divided into q + 1 sets of 

size s and s + 1. Thus s = 

Theorem 3.8. If K is a k-arc and is a (0: n: n + 1)-set in a plane of order q ,  

then k 5 3 or k 2 q +  1. 

Proof: By contradiction. Assume there is a K  satisfying (*) for some k and q with 

4 5 k 5 q. Because k 2 4, there are two secants intersecting off K ,  so s 2 1, and 

we may assume k 5 q  5 (i) - 1. With notation as in $3.3, we have 

by counting in two ways pairs of secants intersecting off K ,  and counting in two 

ways (secant, point off K )  incidence flags. So we have 

for some 4 5 k 5 q 5 (:) - 1 and s = 

It seems difficult to show that equation (3.5) cannot be true. We prove some- 

[B thing apparently more difficult, namely, we forget the information that s = 
q+l 

and, viewing the right hand side as a quadratic in s, we show that equation (3.5) 



has no real roots if ic < q 5 - 1. T t  sufices to show that the discriminant 

A(Q) is negative for these q. That is, we fix k and consider the discriminant as a 

function of q. 

A(q) = q% + 2 3 j - k 2  + k + 1 )  f q 2 ( 4 k 3  - l 0 k 2  + 4 k  + 3)+ 

q(-3k% 12k3 - 15k2 + 4k + 2) + k5 - 6k4 + 13k3 - I l k 2  + 2k  + 1. 

bVe record also 

We claim that it suffices to show the following: 

(i) A1(k) < 0 

(ii) At'(k) < 0 

(iii) A ( k )  < 0 

(iv) a ((f)  - I )  < 0. 

This is because (i) and (ii) imply that the point ( k ,  ~ ( k ) )  , on the graph of A as 

a function of q ,  is in the dashed region of the graph in Figure 3.1. 

Conditions (iii) and (iv) then prove that for q in the interval k  5 q  5 (t) - 1  

we have A ( q )  < 0 and so equation (3.5) has no real (let alone integer) roots. 

We now prove (i). A t ( k )  = - k4 + 2k3  - k2  + 10k + 2 is a fourth degree 

polynomial in k ,  call it f ( k ) .  Its derivative f  ' ( k )  is a cubic with leading coefficient 

-4 and f t ( 0 )  = f t ( l )  > 0  and f'(4) < 0. The graph of f '  as a function of k must 

be approximately as in Figure 3.2. 

A11 the zeros of f' are less than 4, so f ( k )  has all its extrema less than 4. 



Figure 3.1 Conditions (i) and (ii) imply (k, A(k)) lies in the dashed region of the 

graph of A(q). 

Figure 3.2. The graph of -& evaluated at q = k), as a function of k. 

Since f (4) < 0, we have A1(k) < 0 for all ic > 4, establishing (i). 

Now to prove (ii) let f represent the cubic in k given by AM(q) evaluated at 
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q = k .  That is. f = - 4k3  -+ 4k2 + 20k i 6.  The graph of f is shown in Figure 3.3. 

from which it is easily seen that f( k ) < 0 for all k > 4. 

Figure 3.3. The graph of A" evaluated at k, showing that condition (ii) holds 

for k > 4. 

Yow let f represent the fourth-degree polynomial A(q) evaluated at q = k, 

f (k) = -k4 + 4k3 - 4k2 + 4k + 1. fl(k) has only one real root, so Figure 3.4 shows 

the graph of f (including all finite extrema), showing that condition (iii) holds for 

k 2 4. 

Now let f represent the eighth-degree polynomial A(q) evaluated at q = 

19 3 (3-l7 f(k) = ( - & k 8 + $ k 7 ) + ( - ~ k 6 + ~ k 5 ) + ( - ~ k 4 + T k  )+(-yk2+k+1).  

The summands are grouped into terms (within each pair of parentheses) so that 

each term is negative when k > 10, and it is easy to check that f(k) < 0 when 

1 5 Ic 5 9, thus establishing (iv). CI 



Figure 3.4. The graph of A evaluated at q = le , as a function of le, showing that 

condition (iii) holds. 

Corollary 3.9. A k-arc K yields a (0, n, n + 1)-set in a projective plane of order 

q iffk is one of the following: 0, 1, 2, 3, q + 1, or q + 2 if q is even. 

Proof: That the dual complement of a (hyper)oval is a (0, n, n + 1)-set was known 

see, e.g., [Hi], pp. 166 and 325, which we have restated in terms of (0, n, n + 1)- 

sets). We include new proofs which depend on 1 as from 53.2. If k =O, 1, 2, 

or 3 one easily checks that KdC is (0, n, n + 1)-set for n = p + 1, q, q - 1, or q - 2 

respectively. 

If k = q + 1, or (in the case of q even) q + 2, then IN(K)I = (':'). In any 

case S := Kdc has m = (9:'). 

If q is odd then ra = q. Using first Theorem 2.1 and then (because an oval 



is a closed solution for q odd) Corollary 3.6 says 

2 
sarn=aq2+ ,,,-a,,, = q  + q + 1 -  

Since equality holds in Theorem 2.1 S must be (O,F, ?)-set. 

For q even, a Q + 2-arc is a perfect 2-arc and so its dual complement is a 

perfect ;-arc. A q + 1-arc K has the same 0-lines as the q + 2-arc obtained by 

adding its nucleus, and hence has the same dual complement, so KdC is also a 

We now prove our main result, the classification of large (0, n, n + 1 )-sets. 

The idea is to prove that a large (0, n, n + 1 )-set must be the dual complement of 

an arc, or be a perfect arc minus a point, or a perfect arc. We know which arcs' 

dual complements are (0, n, n + 1 )-sets in a plane ?r by Corollary 3.9, and we will 

show that the only large perfect arcs are affine subspaces of .rr, or ?r itself, thereby 

establishing Theorem 3.10. 

Theorem 3.10. A set S in a projective plane ?r of order q with m 2 (i) points 

is a (0, n, n + 1)-set if and only if one of the following cases holds: 

(1) m = ( 2 9 )  md either 

(a) S = Odc where 0 is an oval, or 

(b) S = 7 l d c  &ere 'H is a hyperod and q is even 

(2) m = ( q  - 1)2 and S = where K is a 3-arc 

(3) m = q(q - 1) and S = where K is a Bare 

(4) m = q2 - 1 and S is d n e  space minus a point 



( 5 )  rn = q2 and S is afine space, i.e. S = iYdC %-here K is a I-arc 

rn = q ( q  + 1) and S is n- \ {I) for some point r 

( 7 )  rn = q2 + q +- 1 and S = T = where K is a 0-arc. 

For q even, cases ( la)  and ( lb)  describe the same set S.  

Proof: Corollary 3.9 shows that cases 1, 2, 3, 5 and 7 are a11 (0, n, n + 1)-sets. In 

examples 3 and 4 of 52.3 it was shown that case 4 is a (0, q - 1, q)-set and case 6 

is a (0, q, q + 1)-set. 

Now suppose S is a (0, n, n + 1)-set with m 2 ('1 points. By Lemma 3.1, S is 

either a perfect (n  + 1)-arc minus a point, or closed. If S is a perfect (n + 1)-arc 

minus a point then n + 1 divides q, or n + 1 = q + 1. In the latter case we are in 

p+m > q + ( : )  case 6 above, so suppose n + 1 divides q. Now n := 1 q+l  1 - 1 + 1 = 

so we must have n + 1 = q and we are in case 4. 

We may now suppose S is closed. By Theorem 3.5, SdC is a solution to the 

isoperimetric problem for 7-0 points. Now because a, is increasing with rn, 

. r 0 = q 2 + q + 1 - a m  

= the number of 0-lines of (a (hyper)oval)dC 

- - q + 1 if q is odd 

q + 2 if q is even 

because (hyper)ovals are closed by Corollary 3.2. 

Thus sdC is a solution to the isoperimetric problem in n* for k points, with 

k 5 I(hyper)oval/, and the only such solutions are the k-arcs, so S = ( s ~ ~ ) ~ ~  = Kdc 

for some k-arc K. By Corollary 3.9, k = q + 1, or q + 2 if q is even (case I),  or 

k 5 3 (cases 2, 3, 5 ,  and 7). 
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3.5 Elimination Met hods and The Existence Question 

O,n,n+l)-Sets for Small q 

Table 3.1 lists the feasible parameter sets for q = 7,8,9,11,16 with q + 2 < 

rn < (;). (No interesting information or techniques are yet known for the q = 13 

case. For q 5 5 see Table 2.1 .) For rn 5 q + 1 ( q  + 2) when q is odd (even), (0,1,2)- 

sets are arcs, which are well-studied. In particular they always exist in PG(2, q). 

There is never a (0,2,3)-set of size q + 2 for p odd because such a set would have 

7-3 = 0, i.e. it would be a perfect 2-arc, which cannot exist as 2 does not divide q 

in this case. For rn 2 (i) , Theorem 3.10 describes all the (0, n, n + 1)-sets. 

We have answered the existence question for (0, n, n + 1)-sets in the planes 

of order at most 8, and nearly answered the question for PG(2,9). For larger 

q very little is known. Following the proof that Table 3.1 is accurate, we give 

some theorems (Theorems 3.12-3.15) that can be used to eliminate some feasible 

parameter sets for larger q. 

The last sections in this chapter mention dual complement pairs (another 

method for showing non-existence of certain (0, n, n + 1)-sets) and give examples 

of sporadic (0, n, n + 1)-sets which are known to exist, as listed in Table 3.1. 

Table 3.1. The feasible parameters with q + 2 < rn < (;) and q = 7,8,9,11,16. 

ple (0 is an oval, X is a hyperoval) 
q n rn T, T,+I 7-0 or proof of nonexistence (see Theorem 3.11) 



8 2 18 9 48 16 1 
8 3 19 57 0 16 4 
8 3 24 32 30 11 Perfect 4-arc minus a line 
8 3 27 9 54 10 Perfect 4-arc minus a point 

Example, 53.7.3 

Perfect 4-arc minus a line 
Perfect 4-arc minus a point 
Perfect 4-arc 

1 
1 



16 5 81 81 162 30 1 
16 6 91 162 65 26 1 
16 6 93 1 93 25 2 
16 6 100 50 200 23 2 
16 i 112 128 126 19 Perfect8-arcminusaline 
16 7 119 17 238 18 Perfect 8-arc minus a point 

Theorem 3.11. The existence of (0; n, n + 1)-sets in the desarguesim planes of 

order q = 7,8,9,11,16 with q + 2 < rn < (z) as given in Table 3.1 is correct. 

Proof: Examples are given in Table 3.1 when they are known to exist. Proofs of 

nonexistence are given in the table by reference to the numbers below, in the cases 

where the proofs are known. 

1. The method of typing the points off S, as in 53.3, results in a system of equa- 

tions (equation (3.4)) that has no nonnegative integer solutions, contradicting 

the existence of such a (0, n, n + 1)-set of size m in the plane of order q. 

2. If there were a (0, n, n + 1)-set S of size m then typing the points off S shows 

that every- point is on w or w + 1 lines, i.e. SdC is a (0, w, w + 1)-set of size 

7-0. But TO is not a feasible size for a (0, w, w + 1)-set (for any zu). 

3. In [B 11 and HV] is quoted an unpublished result of Bierbrauer that an (m, 3)- 

arc in PG(2,8) has m 5 15. 

4. If there were a set S of n(q + 1) + 1 points with at most n + 1 points per line, 

S would be a perfect (n + 1)-arc. If n + 1 does not divide q or if n + 1 = 3; 

there can be no such S. 

5 .  Suppose there is a (0,2,3 -set S of size 12 in a plane of order 9. Then by 

equations (3.1) every point of S is on a unique 3-line. Deleting one point 

from each 3-line results in an 8-arc. So S is an 8-arc plus four points. Each 



of these four points must have been on six t,angents to the 8-arc. In 

41%) it is proven that there are only two projectively distinct types of 8-arcs 

in PG(2,9) and one easily checks by computer that every point off an 8-arc 

lies on at most four tangets to the 8-arc, except the two completion points of 

the 8-arc contained in an oval. Thus there can be no (0,2,3)-set of size 12 in 

PG(2: 9). 

6. In [BSW], p. 44 it is reported that exhaustive search shows that there does 

not exist a no-tangent set of size 14 in PG(2,9). To our knowledge, nothing 

is known in the other planes of order 9. 

7. In [Hi], p. 178 and [HV it is stated that a 3-arc in PG(2,9) has at most 17 

points. To our knowledge, nothing is known about 3-arcs in the other planes 

of order 9. 

8. If there were a set S of n(q + 1) points with at most n + 1 points per line 

( n  2 21, S would be a perfect (n + 1)-arc less a point, hence completable to 

a perfect (i-z + 1)-arc. If n + 1 does not divide q or if n + 1 = 3, there can be 

no such S. 

9. If there were a (0,2,3)-set S of size 18 in a plane of order 16 then typing 

points off S shows that every point off S is on four or five 0-lines, i.e. Sdc is a 

(0,4,5)-set of size 40 which (although 40 is feasible) does not exist by reason 

(1)- 

10. If there were a (0,2,3)-set of size 21 in a plane of order 16 then points off it 

are of type (ao, a 2  , a3) = (7,9, I), (8,6,3), (9,3,5), or (10,0,7) and there are 

252 - as, 3a3 - 21, 21 - 3a3, and a3 of each type, respectively. Now a1 and 

a2 are both nonnegative, implying a3 = 7; a1 = a2 = 0 and a0 = 249. 



Fix a 0-line 1. -411 3-lines cross i t .  If there are bo points of type 0 on C and b3 

of type 3, then 
bo -+ b3 == 17 

bo + 7b3 = TB =rr 21 

which has no integer solutions. 

The "first unknown case" is q = 9, rn = 15. Suppose T is a (0,2,3)-set of size 

15 in a plane n of order 9. Typing points off T shows that every point of n has 

zero, three or six 2-lines on it. There is a unique point on no 2-lines, call it P .  

There are thirty points on three 2-lines, and there are sixty points (including the 

fifteen points of T) on six 2-lines. If we take P* as the line at infinity in the dual 

n*, the 2-lines form a 45-set of type (3,6). The 45-sets of type (3,6) have been 

characterized in all the affine planes of order 9 ([PR]), and so we believe it will 

soon be settled, by computer search if necessary, whether there is a (0,2,3)-set of 

size 15 in any plane of order 9. 

We now mention some theorems that apply to larger order planes to show that 

there are no (O,*n, n + 1)-sets for certain parameters not previously eliminated. The 

first two theorems are from the literature, but Theorem 3.14 is new. 

Theorem 3.12. ( Hi], p. 355, Corollary to Theorem 12.4.6) A (k,n)-arc with 

n 2 4 in PG(2, q), q $ O mod n, satisfies k 5 (n - I ) q  + n - 3.  t] 

ple when q = 59 and n = 5 Theorem 3.12 says a (0?4,5)-set has at 

most 238 points, eliminating the feasible rn = 240. When n = 6, a (0,5,6)-set in 

PG(2,59) has at most 298 points, eliminating the feasible m = 300. 

Theorem 3.13. ([BSW], p. 39) Let S be a set of points in the desarguesian 

projective plane PG(2, q), q odd, such that no line intersects S in precisely one 



Theorem 3.13 often applies to planes of order q 2 47 when n = 2. For example 

when q = 17. Theorem 3.13 says that a (0,2,3)-set must have at least 52 points, 

eliminating the feasible rn = 51. When q = 125, a (0,2,3)-set must have at least 

131 points, eliminating the feasible rn = 130. 

Theorem 3.14. Although rn = q + f  is feasible if (and only if) q = 2mod3, there 

are no (0: 2,3)-sets of size q + 4 in any projective plane of even order q > 2. 

Proof: One easily checks the feasibility statement. 

Suppose S is a (0,2,3)-set of size q + 4. Type the points off S to get w = - 1. 

. I ow equation (3.4) becomes Equations (2.4) show that r o  = 3'2-7q'2 '4 

where f (q) = -(q + 4)(q - 21/36, so f (q) < 0 for q > 2, and this contradicts that 

f ( q )  is a nonnegative sum of (;) 's. CI 

For q > 47, Theorem 3.13 implies Theorem 3.14, but for smaller q Theorem 

3.14 gives the better bound. 

The most useful method to show nonexistence of a (0, n, n + 1)-set of size m 

with n, m and q feasible seems to be showing that the system of equations obtained 

by typing the points off such a set, as in equation (3.4)' has no nonnegative 

solutions. This works for most values of n between about q/4 and q/2, and rarely 



works for other values of n. Theorems 3.13 and 3.14 are only useful when n = 2. 

There is another technique (Theorem 3.13) which occasionally applies to values of 

n between 2 and q / 4  to prove nonexistence of a particular (0 ,  n, n f 1)-set in the 

desarguesian plane, although this technique is more likely to work for larger n. 

This theorem uses Ball's lower bound on the size of a multiple blocking set, as 

discussed in 51.4. There are two ways in which one might use this bound. The first, 

more obvious way is that if T is a (0, n, n + 1)-set of size m, then it is an (m, n + 1)- 

arc and so its complement T := P \ T must be a (q - n)-fold blocking set. Ball's 

results prove that in PG(2, q) it must be that IT/ 2 (q - n)q + + 1. 

Writing n = for some O 5 t 5 q, this is equivalent to 2q - t - n 2 

- Jm which holds if n < q because t 5 q. So this application of Ball's 

bound can never prove nonexistence of a (0, n, n + 1)-set for the unknown cases, 

n < :. 

The second application of Ball's bound is motivated by the following curious 

fact. If K is a complete arc in a plane a, then in a* the 2-lines of K are a blocking 

set (as discussed in §1.4), while K's 0-lines are a solution to the isoperimetric 

problem (by Theorem 3.5 and Corollary 3.2). We find this fact curious because a 

solution to the isoperimetric problm is a set with the fewest possible lines meeting 

it, while a blocking set is a set with the most possible lines ('' + q + 1) meeting it. 

It is unexpected that the same set K spawns a solution to each of these opposite 

ext remal problems. 

The proof of Theorem 3.15 is a generalization of the above discussion, obtained 

by thinking of the arc K as a (0,1,2)-set and finding r and rt  so that for every 

r E F, the number of (n + 1)-lines on s is at least r, and the number of n-lines on 

x is at least r'. Then the ( n  + 1)-lines (n-lines) are an r-fold (rl-fold) blocking set 



in the dual plane. For example. in the proof that the '-lines of li are a blocking 

set. one uses the completeness condition to prove that r = 1. 

Before proving Theorem 3.15, we illustrate the method with an example. Let 

q = 37 and rn = 196, so n = 6 and r;. = 140. If there is a (0,6:7)-set S of size 

196 in PG(2.37), type the points off S as in 53.3. They are of type ( g 6 ,  0 7 ~ 0 0 )  

=(30,4,4), (23,10,5), (16,16,6); (9,22:7), or (2;28,8). That is, every point off S is 

on at least four 7-lines of S. Points of S are on five 7-lines and t hirty-t hree 6-lines. 

Thus, every point of PG(2,37) is on at least four 7-lines. The set of 7-lines is a 

4-blocking set in (PG(2: 37)) *, and it cannot contain a line, since this corresponds 

to the 7-lines being concurrent but u7 < 38 in all cases. So the result of Ball leads 

to the contradiction 140 >_ 148 + J148 + 1. Thus there can be no (0.6,7)-set of 

size 196 in PG(2,37). 

For integers a and b, we define Ti (mod b) by Ti E a (mod b) and 0 5 7i < b. 

Theorem 3.15. Let S be a strict (0, n, n + 1)-set of size m in PG(2, q ) .  Define t  

+m-t  " = q+l .- Let 

r := m i n { ~  (mod n), t }  

r t  := mini-m (mod n + l ) ,  q + 1 - t}. 

and 

rn >_ r'q + d r f q  + 1. 

Proof: The equations (3.1) show that for z E S, the number of (n  + 1)-lines (n- 

lines) on s is at least t  ( q  + 1 - t ) .  The equations (3.2) show that every point 

off S is of type (a,, u,+l, ao)  = (ui, vi, wi) for some i, where vi ZE m mod n and 

ui -m mod n + 1. That is, the ( n  + 1)-lines form an r-blocking set and the 

n-lines form an rl-blocking set. 



If r = O(rt  = 0) then because S is strict we have r,. r,+l 2 1 and the result 

is true. If r ,  r' > O then tlhe result follows immediately from Ball's lower bound if 

the set of ( n  + 1)-lines (n-lines) in the dual plane does not contain a line. This 

is equivalent to the condition that no q + 1 (n + 1)-lines (n-lines) are concurrent. 

But if there are q $ 1 concurrent ( n  + 1)-lines then m = (n + 1 (q + 1) which 

= n + 1; a contradicition. If there are q + 1 

concurrent n-lines then rn = n(q + I), S is a perfect n + 1-arc minus a point, so 

T, = q +  1 and T,+I > 1. But in this case t = 0, so r = 0 and r' 5 1 and the result 

st ill holds. [II 

Corollary 3.16. The following do not exist: A (0,6,7)-set of size 142 in PG(2,23), 

a (0,6,7)-set of size 154 in PG(2,29), a (0,6,7)-set of size 196 in PG(2,37), and a 

(0,6,7)-set of size 226 in PG(2,37) (although all parameter sets are feasible). 

Proof: Parameters q = 23, m = 142 would have 76  = 71 ( by equation (2.4)) but 

t = 21, r' = 3 so the 6-lines are a 3-blocking set and Theorem 3.15 gives the 

contradiction 71 2 70 + m. 
For q = 29, m = 154 we would have 77 = 66, t = 3, r = 3 and so the 7-lines 

are a 3-blocking set in the dual, giving the contradiction 66 > 88 + m. 
Both of these parameter sets could also have been eliminated by showing 

that the system in equation (3.4) has no nonnegative solutions. In the next two 

examples it is not so obvious whether equation (3.4) has no nonnegative solutions. 

The case q = 37, m = 196 was done previous. The case q = 37, m = 226 

would have TG = 113, t = 35, r' = 3 and we have the contradiction 113 2 112+ 

JTrr. 



3.6 Dual Complement Pairs 

In examining a table of feasible parameter sets like Table 3. I), there are some 

cases in which for a fixed g there is 1V.I an rn-value with ro 0-lines, and TO is an 

rn-value with Atf 0-lines. For example, when q = 7 a (0,2,3)-set of size 12 would 

have fifteen 0-lines, and a (0,2,3)-set of size 15 would have twelve 0-lines. If there 

is a (O72?3)-set S with rn = 12 then it is closed (Lemma 3.1) and a solution to the 

isoperimetric problem (by Theorem 2.1), so by Corollary 3.6 and Theorem 2.1: 

i.e., equality holds in Theorem 2.1 and so sdC is a (0,2,3)-set with m = 15. A 

similar argument proves that a (0,2,3)-set of size 15 has its dual complement a 

(0,2,3)-set of size 12, so there exists a (0,2,3)-set of size 12 in PG(2,7) 

if and only if there exists a (0,2,3)-set of size 15, and they are dual 

complements of each other. 

Likewise in xll there is a (0,2,3)-set with m = 16 if and only if there is 

a (0,4,5)-set with rn = 45: and they are dual complements. A (0,3,4)-set with 

rn = 28 in n-11 would have to have another (0,3,4)-set with rn = 28 as its dual 

complement. Reason (8) in the proof of Theorem 3.11 demonstrates how in a dual 

complement pair situation (as described at the beginning of this section) one can 

sometimes eliminate a feasible parameter set by eliminating its dual complement 

mate. 



3.7 Examples of Particular O,n,n+l)-Sets, and 

Designs Derived From Them 

In this section we present the new solutions to the isoperimetric problem which 

we have found. They are (0,2,3)-sets of size 12 and 15 in the plane of order 7, size 15 

in the plane of order 8, and size 27 in the plane of order 16. The examples for q = 8 

and 16 are two of what should be a larger family of examples, and consideration of 

this family raises some questions about hyperovals. We begin with a result about 

sets of hyperovals with large pairwise intersection sizes (Theorem 3.18) to set the 

stage for these examples, and we prove a related coding theory result (Theorem 

3.19). We also discuss some interesting designs which can be derived from our 

(0,2,3)-sets. 

3.7.1 Hyperovals 

Two hyperovals can intersect in at most half their points ([Hi], p. 165) and 

their union T is a (0,2,3,4)-set. If they intersect in exactly half their points and if 

there are no 4-lines, then T is a (0,2,3)-set of size w. The fact that whenever 

two hyperovals intersect in exactly half their points, then there are no 4-lines, is 

proven in Lemma 3.17. So if we can find two hyperods intersecting in half their 

points, we have a (0,2,3)-set of size 3(q + 2)/2. 

A 5-arc determines a conic ([Hi , p. 141) so in desarguesian planes of odd 

order at least 9, where the answer to the existence question for (0, n, n + 1)-sets is 

unknown, this technique will not provide (0,2,3)-sets. Furthermore in desarguesian 

planes of even order larger than 8, a (0,2,3)-set of size 3(' + 2)/2 constructed as 

the union of two hyperovals intersecting in half their points, will have to have at 



least one of the hyperovals be irregular. If q = 8 all hyperovals are regular. but two 

regular hyperovals may share five points if (at least) one of these five points is a 

nucleus of one of the conics. We present an example of two hyperovals in PG(2,16) 

which meet in nine points, and an example of two hyperovals in PG(2,8) which 

meet in five points ($3.7.3). 

Lemma 3.17. If two hyperovals 7f1 and 312 in a projective plane of even order 

q intersect in half their points, then their symmetric difference Nl A'H2 is also a 

hyp eroval. 

Proof: This theorem is known (a consequence of [AK], Corollary 6.3.1) but our 

proof is original. 

Let T := 'HI U 'Hz Since every line is secant to Ni for i = 1 and 2, T has 

2-lines: 3-lines and possibly 4-lines. The incidence possibilities are shown in Figure 

3.5. 

4$.2 There are ((q+:)/2) 2-lines with both points contained in 3-11 f7'Hz, and ( ) 
3-lines because a 3-line contains exactly two points of 7-11 and exactly two points 

of 'Hz, so one point is in 'HI n 'Hz, one is in 'HI \ 3-12: and one is in 'Hz \ 7-11. If we 

count pairs of points contained in 'HI \'Hz plus pairs of points contained in 'HI R'H2 

plus pairs of points contained in 'H2 \ XI, we get 3 ( 9 ) .  On the other hand, we 

have counted all the 4-lines twice, the 3-lines zero times, and all the other lines in 

exactly once. Thus we have proven that 

Now use (Theorem 2.1) N(T)I 2 &(2n(q+ I ) +  1 - m ) ,  to get 



Figure 3.5. The possible intersections for lines with 3-11 U 7f2 .  

That is, r 4  = 0. 

Referring back to Figure 3.5, this shows that each line contains exactly zero 

or two points of ?IlAXZ. C3 

Theorem 3.18. Suppose there are k hyperovals in a plane of even order q with 

the property that they all contain the same set f i  of points. Then: 

(i) I f  q = 2 then k 5 2. Equality is possible. 

(ii) I f q  = 4 then k 5 3. Equality b possible. 

(iii) If q  = 8 then k 5 2. Equality is possible. 

(iv) I f q  = 16 then k 5 3. 

Proof: Suppose 311, . . . , 7fk are ic hyperovals with A> C 'Hi for each 2 .  For i = 

1, . . . , k let Ki := Xi - &. The Ki for i = 0,1, . . . , k are now k + 1 disjoint sets 



such that (by Lemma 3.17) any two together make a hyperoval. (The set KO is 

no longer distinguished from the others.) Fix 10 E KO and rl  E Kl and let t := 

the line determined by 10 and zl. Then t!? contains no other points of KO or K1; 

since KO U Kl is a hyperoval. Now for any i > 1, K, makes a hyperoval with & 

to which l must be secant. Since l cannot contain another point of KO it must 

contain exactly one point of Ki. 

That is, each Ki contains exactly one point of the line t. 

k We have proven that UZzo is a (0,2, k + 1)-set of size y(q + 2). In fact, we 

have shown that ic hyperovals intersecting in the same set of 9 points yield k - 1 

mutually orthogonal Latin squares of size q, as follows. Let KO label the rows, 

Kk the columns, and for i = 1, . . . , k - 1 in the ith Latin square, into box (a, b) ,  

put the element of K, which is on the k + 1-line containing the ath element of KO 

and the bth element of Kk. (See $3.7.3 for examples of this construction.) The 

fact that two points uniquely determine a line shows that the squares are mutually 

orthogonal. 

We know how many lines of each size there are: 

because specifying ro E KO and rl E K1 determines a unique ic + 1-line, and all 

k + 1-lines contain such an +o and zl;  whereas a 2-line is determined by selecting 

one of the k + 1 Ki7s and then picking any two of its points. 

Thus 



and since k is an integer. this proves k 5 1. 

If q = 2. equation (3.6) proves k 5 2: Figure 3.6 shows equality is possible. 

\ 
\ 

/ -. / - . - - - 

Figure 3.6. Two hyperovals which intersect in half their points in the case q = 2. 

If q = 4, equation (3.6) proves k 5 3. This was previously known ([Hi], 

p. 396). Equality holds if we let the 3-sets Ki be 

07 11, (1, a? 11, (a, l? l)),{(O? a? 11, (171, 1 1 7  (a7 071)) 

{(a2? a2? I), (0917 (I? 0, O)}? {(07 1 7  I )? (17 07 1 1 7  (a7 a, 1)) 

where cu is as root of sZ + I + 1 over Fz. 

Xow suppose g = 8 and consider the quadrics zy = z2 and sZ + sz + zZ = y2 

together with their nuclei. These form two hyperods intersecting in half their 

points (five). Thus the upper bound on k is at least 2. Now suppose there are 

three hyperovals XI ,  R2 and X3 meeting the hypotheses of this theorem. With 

labeling as in Theorem 3.15, U K1 U Kz U h; is a (0,2,4)-set and each z E K3 



lies on five 3-lines of T := El ij ' I f 2 .  XOW T is a (0.2.3)-set. Typing the points off 

T proves that there are only three which lie on five 3-lines. but there would have 

to be five such points to add to & to complete ?f3. SO k 5 2 when q = 8. 

Now suppose q = 16 and there are four hyperovals containing the same 9-set, 

and thus their union is a (0,2,5)-set T of size 45. Typing the points off T results 

in a matrix equation with no nonnegative solutions. Cf 

Suppose there are a number of hyperovals all of which contain the same set 

of 9 points. With notation as above, by Lemma 3.17, one can take the Ki 

two at a time and get a set of pairwise disjoint hyperovals. In our consideration 

of Theorem 3.18, we wondered if an arbitrary set of disjoint hyperovals could be 

split into ?-sets with the property that any two together make a hyperoval (in 

which case a set of painvise disjoint hyperovals has at most two hyperovals in it, 

by Theorem 3-18), and quickly found a counterexample. We were interested then 

in the question, how big can a set of pairwise disjoint hyperovals be? Corollary 

3.20 gives an upper bound. 

First we prove a coding theoretic result of use in finding weight enumerators 

of projective codes. As this result has little bearing on (0, n, n + 1)-sets or the 

isoperimetric problem, we forego a discussion of basic coding theory, and mention 

the result for the reader familiar with the subject, for completeness' sake. 

It is known (see, e.g., , p. 260) that the minimum weight codewords in 

the dual of a projective code correspond to the hyperovals. This theorem addresses 

the maximum weight codewords. 

Theorem 3.19. Let C be the code of a finite projective plane x of order q even. 

The largest weight codewords of CL have weight 92 and are the characteristic 



~~eciors  of the afine planes. The next largest %%-eight possible is q' - ~vhich is 

if and only if there is a Baer subplane of ;7 (and the jq2 - &)-weight 

codervords are the complements of the Baer subplanes). If ri is desarguesian and 

q is not square, the second largest weight possible is at most q 2  - JZ;i +- &. 

Proof: A word is in C' if and only if it corresponds to a set T with the property 

that every line intersects T in an even number of places, if and only if every line 

intersects its complement in an odd number of places. Such sets are called odd 

sets. Every line intersects an odd set in at least one point, so an odd set contains 

a line or is a blocking set. Thus the vectors of ci are the characteristic vectors 

of complements of odd sets B that are blocking sets or contain a line. 

If an odd set B contains a line l and a point s off i?, all q + 1 of the lines from 

z to l must have another point of B on them, so lBl 2 2q + 3 2 q + JZ;i+ 1 - &. 
?;ow a blocking set has q + ,/ij + 1 points, with equality if and only if it is a Baer 

subplane ([Br]). If T is desarguesian and q is not square, then a blocking set has at 

least q + & + 1 - & points ([BS]). So an odd set B that is blocking or contains a 

line, has at least q + ,,/ij + 1 points with equality if and only if it is a Baer subplane, 

and if ?r is desarguesian and q is not square then lBI 2 q + f i  + 1 - &. Since a 

word in CI is the characteristic vector of T - B, the result follows. fl 

The research on minimum sized blocking sets in projective planes is by no 

means complete. Further results in the area will improve the upper bounds on 

maximum weight codewords, using the methods described above. 

Corollary 3.20. Suppose A is a set of ic pairwise disjoint hyperovals in a plane 

of order q even. 



Ifq = 2 then k = 1. 

(ii) If q = 1 then k 5 2. Equality is possible. 

(iii) Ifq = 8 then k 5 6. 

If q = 16 then k 5 14 with equality if and only if the complement of a 

Baer subplane can be partitioned into hyperovds. 

(v) Lf the plane is desarguesian and q > 16 then k 5 q - 3. 

Proof: Suppose there are k pairwise disjoint hyperovals. The characteristic vector 

;y of their union is in the dual code CL of the code determined by PG(2, q), and 

has weight k(q + 2). Since k(q + 2) does not divide q2 ,  the previous theorem gives 

which implies k 5 q - 3, or q < 16, or q = 16 and x is the characteristic vector of 

the complement of a Baer subplane. 

If q = 2 then two disjoint hyperovds would constitute eight points, but there 

are only seven in the plane of order 2. If q = 4, equation (3.7) says 6k 5 12 + k 5 

2 and the example of three hyperovds intersecting in half their points given in the 

proof of Theorem 3.19 suffces to show equality; take two of the 3-sets mentioned 

in that example as one hyperoval, and the other two as the other hyperoval. If 

q = 8, Theorem 3.19 says 10k 5 60 which implies k 5 6. t3 

3.7.2 The Cases q = 7, m = 12 or 15 

The case q = 7, rn = 12 is the smallest one for which the previous techniques 

do not either provide an example of a (0, n, n + 1)-set or prove there does not exist 



one. The next case is q = 7. rn = 15. As discussed in $3.6; there is a (0,2,3)-set of 

size 12 if and only if there is a (0.2,3)-set of size 15 and they are dual complements. 

It suffices to find a (0.2,3)-set of size 15; or prove such a set does not exist. In fact 

we have found such a set. We first present a description of it from [Hi 

although his only interest in it is as a (15,3)-arc. He knew it had no tangents, 

but the other interesting combinatorial properties of it which we discuss below are 

new. 

"If D is a general Desargues' configuration, then each of the ten lines meets 

three others at no point of the configuration. The 15 points formed in this way 

are the points of" a (0,2,3)-set of size 15. Call this set T (see Figure 3.7). 

We discovered that the set (in homogeneous coordinates) 

is a (0,2,3)-set of size 12. Addition of the points (0,0,1), (0,1,0), and (1,0,0) results 

in a (0,2,3)-set of size 15. While this 15-set is not the dual complement of the 

12-set, it is projectively equivalent to it and to the Hirschfeld example. 

The curious thing about this (0,2,3)-set of size 15 is that all the 2-lines form 

triangles. This allows to create a Steiner triple system on fifteen points as follows. 

The points are those of T and the blocks consist of the 3-lines plus the sets of 

three points of a triangle of 2-lines. 

There are eighty nonisomorphic Steiner triple systems on fifteen points. They 

have been catalogued in [Mat] and we have checked that this particular system is 

number 7 in that catalogue. 



Figure 3.7. The description of T given by Hirschfeld. Points of the Desargues's 

configuration are marked by solid dots (a)  and points of T are marked by open 

dots ( 0 ) .  The shaded triangles are perspective with respect to the point P and 

the line L. 

3.7.3 T h e C a s e ~ q = 8 o r 1 6 a n d r n = 3 ( ~ + 2 ) / 2  

Suppose Fg is generated by a root of x3 + z + 1 over F2. Any two hyperovals 

intersecting in half their points make a (0,2,3)-set of size 15. Take the examples 

given in the proof of Theorem 3.16(iii), namely XI determined by x2 + z z  + z2 = y2 

and 7 i z  determined by zy = z2 (plus their nuclei). Define Kl := X1 - 1i2, 

I<? := liz - 7i1 and K3 := 311 n 'Hz and construct a Latin square of size 5 where 



rows are labeled by K1 + columns by K2 and entries by K3.  

There are two Latin squares of size 5 ,  the circulant and one with a 2x2 

p, 9 .  The Latin square obtained from our 0,2,3)-set of size 

15 is the noncirculant one. The circulant one cannot be embedded in the plane of 

order 8, by computer search as described in [S 

In PG(2,16) we have found that the following o-polynomials (see 51.2) deter- 

mine hyperovals which intersect in half their points: 

fl := x12 + x1° + a11x8 + x6 + a2x4 + a9x2 

where a is a primitive for F16 generated by a root of x4 + x + 1 over Fz . The first 

of these is given in [K] (beware of a typographical error therein) and the second 

was found by a computer search. 

The Latin square determined by these hyperovals is: 

where the rows are indexed from top to bottom by the affine points (a: as), 

(a6, a14), (a1', a12)? (a9? a6), (a3, a7), (a1', all), (a4, a2), (a8? do), (a7; a13), 

the columns are indexed left to right by the points (all, a8), (a6, al2), (a, a14), 

(a3, a"), (a9? a2), (cx12, a13), (a8, a7), (a4, a6), (a7, all)? and the entries 1, . . . , 9 

correspond respectively to the points (1,0,0), (0,1,0), (1,1,1), (a13, a3, I), (a5, a, I), 
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Chapter 4. Solutions to the Isoperimetric Problem 

bt-e know that the solutions to the isoperimetric problem for rn 5 q + 1 (g + 2) 

if q is odd (even) are the rn-arcs. The next case to solve is rn = q + 2 ( q  + 3). 

Theorem 4.1. Let a projective plane of even order g be given. Then a hyperoval 

plus a point is a solution to the isoperimetric problem for rn = p + 3 points. 

Furthermore, all solutions for q + 3 points are of this form. 

Proof: First we count IN(S)I where S = 7f U { r )  where 7f is a hyperoval and r 

is a point not on it. Since all lines are either 0-lines or 2-lines to 'H, r must have 

9 of the latter and hence of the former. So the lines meeting S either meet 7f, 

and there are ?l2) of these; or they meet S only at r ,  and there are of these. 

Now let T be any solution to the isoperimetric problem for rn = q + 3. Then 

We will show that equality holds and that T is of the form 7f U {I} for some r. 

Call a line l odd when IT n l /  is odd, and (as in 53.3) af := the number of 

i-lines on s $! T. 

TI is odd, any external line l to T has the property that every point 

on it has an odd number of odd lines, in particular at least one. We thus have 



q + 1 5 number of odd lines 5 C(i - 21'7, 

< q i - 1 1  

The second equality follows from i(i - l)ri  = ( q  + 3 ) ( q  + 2 )  and Ci>l ZT, = - - 

( q  + l ) ( q  + 3 ) ;  the last inequality follows from equation ( 4 . 1 ) .  

It must be that equality holds in each of the inequalities. We consider these 

from right to left. Equality holding in the last inequality means that 3-1 tJ {x} is 

a solution for any hyperoval 7-l and any external point I. Equality holding in the 

middle inequality means that Ti = 0 for i > 3. Finally, we claim that equality 

holding in the first inequality means that all the odd-lines intersect within T .  Xow 

since there are p + 1  odd lines, no line external to T can have a point with more 

than one odd line through it. It suffices to show that every point off T lies on a 

line external to- T (for then no odd lines can intersect off T). Solving the incidence 

equations for rl, r2, T~ gives rl = p/2. So suppose there is a point y $ T which 

has no external lines through it. Then 

a!+a,Y+al = q + I  

a; + 20; + 3 4  = q + 3 

which implies a! = q - 1  or q,  contradicting a: 5 rl. So every odd line intersects 

in T ,  in particular all the 1-lines intersect in T ,  i.e., they are concurrent, say at z. 

Then 

a; + 20; = q  + 2 

so 031 = + 1  = ~3~ that is, all the three lines go through z ,  T - z is a hyperoval, 

so T is of the form hyperoval plus a point. C1 



4.2 The Case (I Odd, m = q + 2 

The answer to the isoperimetric problem for q + 2 points, odd q is known 

only for q 5 7 (see $4.3). In the general case the solution will not be as simple 

as its even-q counterpart given in Theorem 4.1. One indication of this is that 

in the Hughes plane of order 9; there is a set T of eleven points that is not of 

the form K U {I) where K is a 10-arc and I is a point not in 5'. But T has 

IN(T)I = 59 = lN(K U {s})l. In the standard (Denniston) notation, it is: 

T was found as follows. Following the logic in the next section, we started with a 

complete 9-arc from [Den:! , which is the first nine points listed. (Of course there 

is no complete %arc in PG(2,9), so this construction will not transfer to that 

plane.) We then sought two points off the arc, and on few (the minimum being 

three) 0-lines, and which shared a 0-line. As luck would have it, two such points 

existed. We then checked that T \ {s} is not an arc, for every I E T. 

Suppose T is a solution to the isoperimetric problem for m = q+2 with q odd. 

We can say something about T ,  namely, that no line contains too many points of 

T (cf. $1 3). This is the substance of the following theorem. 

Theorem 4.2. IfT is a solution to the isoperimetric problem for q + 2 points in a 

3 finite projective plane of odd order q ,  then each line contains less than f \/q - 2 

points of T .  



Proof: Let u7 := rnaxl~-y{r)  pr .  By equations (2.3). 

The roots of this quadratic in w are 

and w < r+. 

4.3 Nested Solutions 

When solving a sequence of extremal problems, such as the isoperimetric 

problem (given r,, what is dm for m = 0,1, . . . , q2 + q + I?), one hopes that 

a greedy algorithm will work. That is, one hopes that a solution for m gives a 

solution for m + 1. In the isoperimetric problem case, this means a solution T,+l 

for rn + 1 points can be obtained by adding a point to a solution T, for m points. 

If n is a plane for which this is true for all values of rn then ir is said to admit a 

nested solution to the isoperimetric problem, or a nested set of solutions. 

Definition: Given a projective plane n of order q, has a nested solution to 

the isoperimetric problem if there is an ordering rl , z2 ; . . . , +,2+,+1 of the points 

of .rr so that when T, := ( ~ ~ ~ 1 ~ ~  ..., i,), the T, satisfy N(T, ) I  = a,. 

We will show that the planes of order at most 7 have nested solutions and 

that the plane of order 8 does not. 



The existence of nested solutions to the isoperimetric problem in the planes 

of order 2.3,4 were known ([Ha]). TVe include nested solutions for these planes 

because we could not find them in print. The isoperimetric problem was previously 

unsolved in the planes of order q = 5 ;  7: and in particular it was not known 

whether there existed nested solutions to the isoperimetric problem in planes of 

order greater than 4. 

4.3.1 The Case (I 2 7 

The appendix contains a number of tables. Those labeled A.ja give the adja- 

cency matrix of the plane of order q where q is the j th prime power. The adjacency 

matrices have their rows labeled by points and their columns labeled by lines. The 

number i associated with a row indicates the order in which the points should be 

added to get a nested solution. For example in the plane of order 2, each T, 

consists of the first m points (rows), whereas in the plane of order 3 one should 

construct the nested set by starting with the fifth point (the row where i = I), 

then adding the sixth (i = 2), then the eighth ( i  = 3), the ninth (i = 4) and so on. 

The tables A.ja thereby give the nested sets T,, and the tables A.jb constitute 

the bulk of the proofs that for each rn, IN(T,)I = 3,. We know from Theoreom 

2.1 that 3, 2 [A 2n(q + 1) + 4 - m)l where n = , and it is this lower 

bound for 3, which is reported in the tables A.jb. Whe equals this lower 

bound we need look no further, we have a solution to the isoperimetric problem 

for that m. For those values of rn marked by an *) for which IN(T,)i is greater 

than the lower bound given by Theorem 2.1, the rest of this section is dedicated 

to proving, on a case-by-case basis, that in fact 3, = JN(T,)I. First we prove two 

theoreoms which we will need. 



The first theorem is important in its own right. It is in fact the solution to 

the isoperimetric problem in any plane, for rn 2 (i 

Theorem 4.3. Suppose x is a projective plane of order q. For 1 5 i < q + 1, if 

then a, = iy2 + 2. 

Proof: First suppose m = ( l )  + c;=, j = (;) + (':') for some i 2 1. Let K be a k- 

arcinx*,  where k = q+l - i .  T h e n ~ ~ ~ i s q ~ + q + l - ( ~ ) - k ( ~ + 2 - k )  = (;)+(i:l) 

points. By Lemma 3.1, K is a closed solution; so then is KdC by Theorem 3.5, 

and by Lemma 3.6 then 

and the theorem is true in this case. 

Now suppose (i) + ~ f z :  j < rn < (i) + j for some i,  necessarily i > 1. 

Then the solution for ( l )  + j is q2 + i - 1 and is closed, so q2 + i - 1 < 8, 5 

q2 -p i. [Z1 

Theorem 4.4. The only solutions to the isoperimetric problem for q = 7, m = 9 

are of the form O U {s) where C3 is an oval and s is an exterior point to it. 

Proof: B y  Lemma 3.4, Theorem 2.1 with rn = 20, and because 3, is increasing 

with m, we have 
as7-a, 5 48 < dzo ==+ 57 - as < 20 



If d9 = 38 then let T be a solution and use equation (2.1) with n = 1 and n = 2: 

By the first equation there are exactly two 3-lines and pc 2 4 cannot occur. By 

the second equation, there are six l-lines, hence thirty 2-lines to round out N(T). 

The two 3-lines intersect in a point, say I .  If r  E T then T = 0 U { r )  for some 

oval 0. Xow x had either zero or two tangents to 0, respectively four or three 

secants and so four or three 3-lines, but there are only two %lines. 

So it must be that r  $ T. Then x has these two 3-lines, and either a tangent 

and a secant, or three tangents to T. But the six T-tangents lie one on each of 

the six points comprising the 3-lines (each such point is on a unique 3-line, hence 

six secants and so one tangent), giving the desired contradiction. 

By our example with N(T9)l = 39, it must be that ds 2 39. 

Now proceed by contradiction. Suppose Tg is a solution (that is, a 9-set with 

= 39), and that T g  is not of the form 0 U {x). If T' contains a 7-arc T7, 

then it is uniquely completable to an oval T8 so the points off T7 are either interior 

points of Ts (having exactly one T7-tangent and so four T7-externals), exterior 

points (having exactly three tangents and so three externals), or completion points 

of T7. There is only one of the latter, and we are assuming neither of the points 

we add to T7 to get T9 is this point. But adding two of the other types of points 

converts at least five O-lines of T' to lines in JV(T9). Because JN(T7)1 = 35, this 

contradicts N(T9) = 39. So we may assume T9 contains no 7-arc. 



By equation (2.1) with n = 1.2: 

Consider the first equation. Every 3-line contributes 2, every 4-line contributes 6 

and pe 2 5 gives a contradiction. Similar analysis of the second equation results 

in the fact that Tg must have either three 3-lines, twenty-seven 2-lines, and nine 

1-lines; or a 4-line, thirty 2-lines and eight 1-lines. In the latter case; deleting two 

points of the 4-line would result in a 7-arc contained in Tg so we may assume the 

former case holds. It follows that every point of Tg lies on the same number of 

1-lines as 3-lines. 

If the 3-lines do not partition Tg, there will be two points on two 3-lines, or 

a point on all three 3-lines. In any case there are two points which, when deleted 

from T9, leave a 7-arc. It must be that the 3-lines partition Tg. 

Case I: The three 3-lines are concurrent. Then we can assume they are concurrent 

at the point m, and label Tg with homogeneous affine coordinates as shown in 

Figure 4.1: 

Here a, b, c and the yi are elements of F7, not O or 1, to be determined. The 

secants between affine points of Tg on r = 0,1 do not intersect the line r = c, so 

we have that the yi are not in the following mdtiset: 

M := {O, 1, c, 1 - c, ( b  - l)c + 1, bc, ( b  - a)c + a, -ac + a: (1 - a)c + a). 

Yet there are three yi which satisfy this criterion, so these nine elements must 

represent only four distinct elements of F7. 



Figure 4.1. Homogeneous coordinates of T9 if the 3-lines are concurrent. 

If c = 4 we have = {O: 1: 4,4(b+ I), 4(a + I), 4b, 4a, 4(a + b)} in some order. 

Since 4b # 0,4 or 4(b + I) ,  and 4(b + 1) # 1,4 or 4b,  either 4b = 1 (b = 2) or 

4(b + 1) = 0 (b = 6). Likewise a = 2 or 6, and a # b. In either case Abf contains 

{O, 1,3,4,5}, more than four elements, a contradiction. So we may assume c + 4, 

and so the first four elements of M are distinct. Let M' := {0, 1, c, 1 - c}, the 

distinct elements of M. Since bc # 0 or c we have one of two subcases: 

If bc = 1, then b = l /c,  and ( b  - l )c  + 1 must be in M';  all possibilities c = 

3,ti76 lead to contradictions, so it must be that b = 4, c = 2 and M' = {O, 1,2,6}. 

Sow ( b  - a)c + a = 1 - a E ~$1' which implies that 1 - a = 2 or 6 with a = 6 or 2 

respectively. Then -ac + a = -a =1 or 5 respectively, but it must be in M' ,  so it 

must be 1, with a = 6. This gives a contradiction to (1 - a)c + a E M'. 

If bc = 1 - c, then (1 + b)c = 1 so 1 + b # O1 c = A. Analysis similar to 

the above shows that b = 4, c = 3, M' = {O, 1,3,5}, and a = 2, contradicting 

( 1 - a)c + a E .If'. So we must be in Case 11. 



C a s e  11: The :hree 3-lines are noi  concurrent. Fix a point s E T9. It has a tangent. 

a 3-line and six secants - to the six points off its 3-line. Fix a 3-line off s. call it  

i. The incidence and labeling is shown in Figure 4.2 ( r  is any of the I, 1. 

Figure 4.2. The incidences of Tg if the 3-lines are not concurrent. 

The lines on I intersect l at distinct points. The 3-line intersects at pl ,  the six 

secants intersect at yi and z:,  which are not pz, and so the tangent must intersect 

at pz. All the I* have their tangents intersecting .! at pz. Each pi lies on two 

3-lines, three 1-lines and so three 0-lines of Tg . The three 0-lines on p3 must then 

go through the 2:. This is true for each vertex pi of the triangle I = {ply pz , p, }: 

the 0-lines on a vertex go through the three points on the opposite side of the 

triangle. Thus we may assign homogeneous coordinates as shown in Figure 4.3 

(no three of the points labeled (0,0,1), (0,1,0), (1,O.O) and (1,1,1) are collinear). 

Here I, # 0 , l :  a, b f O , 1  or each other, and c ,d  f O , 1  or each other. 4 s  in 

Case I, the nine secant lines between points on s = 0 and I = 1 contain no points 

on y = 0. That is, there are three s, E F?, not 0 or 1, so that (s,, 0 , l )  is not on 



Figure 4.3. Homogeneous coordinates of Tg if the 3-lines are not concurrent. 

any of the lines: y = 1, y = ( a -  111 + 1, y = ( b -  1)x + 1, y = (1 - c ) ~  f c, y = 

The multiset 

really contains -only four distinct elements of F7. 

d c d  ?;one of 5: are 0 or 1, so these represent at most two elements 

of F7. But c f d means 5 f -& SO there are at least two elements represented. 

d d Thus there are exactly two: represented by 5 and z. Since f we 

d have ;i=;; = 5 and SO d = ac. Likewise c = ad which implies a2 = 1 and so 

a = 6. But the same result applies to 3, &, 5, with the result that 

b = 6, contradicting a # b. t] 

We now proceed with the case-by-case proofs of the discrepancies in the tables 

A.jb. 

For q = 3 and m = 5: If 8, equals the lower bound in Theorem 2.1 then 



the solutions are (0.1.2)-sets with TI = 0. or perfect ?-arcs which do not exist in 

odd order planes. So dm is at least one greater than the lower bound: in this case 

that equals IN(T5) 

For g = 5 and m = 7: There is no perfect 2-arc in PG(2,5 

Suppose d7 = 22 and let T be a solution. Then by equation (2.1): 

and, as in the proof of Theorem 4.3, it must be that T has exactly one 3-line, and 

no lines have four or more points of T .  Deleting one point x of the 3-line leaves 

an oval O. Xow x was on zero or two tangents to 0, thus three or two secants, 

and so O f.J { s }  would have at least two 3-lines, a contradiction. So & 2 23 and, 

by our example, & = 23. 

For g = 5 and m = 8: a8 2 23 by Theorem 2.1. If a8 = 23 then let T be 

a solution and use equation (2.1) with n = 1 and 2: 

By the second equation, either there is one 4-line and no 1-lines, or one 1-line and 

no Clines. With the help of the first equation and iN(T)I = 23, we find that T 

has either: one 4-line and twenty-two %lines, or one 1-line, nineteen 2-lines and 

three 3-lines. But there cannot be a 4-line each point on it would have to have a 

tangent, but there are no tangents), so we may assume T has three 3-lines. They 

cannot be concurrent (if they were, deleting the point of concurrency would result 

in an arc of size 7); yet there is a point on two of them. It must have a tangent, 

and since there is a unique tangent, there can be no other points on two 3-lines. 

The third 3-line meets the other two off T (see Figure 4.4). 



Figure 

Say 3. $ T is on two Mines, tl and lz. Then it must have tangents to points 

on 13, a contradiction. ?I8 2 24 and by our example, 3% = 24. 

For g = 5 and m = 9: By Lemma 3.4 and because 3, is increasing we 

have 

a,,-,, 5 22 < a  =+- 31 -a, < 7 

+ & 2 2 5 .  

For q = 5 and m = 12,13,14: 3, is given by Theorem 4.2. 

For g = 7 and m = 9: See Theorem 4.4. 

For g = 7 and rn = 10: If ale = 39 then let T be a solution. Equation 



(2.1) with n = 1 and 2 gives 

so T has either one 4-line, one 3-line, thirty-six 2-lines and one 1-line; or four 

3-lines, thirty-three 2-lines and two 1-lines. With notation as in 53.3, every I E T 

satisfies 
p; + p; + p; + P: = 8 

p; + 2 p ;  +3p; = 9. 
In particular for r not on a 4-line, pg = p; + 1 is at least one. The 3- and 4-lines 

therefore cover the points, which cannot happen in the first case above, where 

there is only one 4-line and one 3-line. So there must be four 3-lines. If they were 

all concurrent in T then they would not cover the points, so the 3-line incidences 

are either as in Figure 4.5 or as in Figure 4.6. 

First suppose three 3-lines are concurrent in T. Introduce homogeneous co- 

ordinates onto these three 3-lines as shown in Figure 4.5. The fourth 3-line is 

disjoint from the others (in order that the 3-lines cover the points of T) and so is 

not of the form x = constant, nor y = constant, so it has the equation y = m s  + k 

for some rn and k. Notice k f 0 because (0,0,1) is not on this line. 

The 3-line z = 0 meets y = mx + k outside T, at (0, k, 1). Likewise the 

line s = 1 meets y = m s  + k at (1,m + k, I), outside T, and the line t ,  meets 

y = mt + b at (1, m, 0), outside T, as shown in Figure 4.5. 

The line from (0, k, 1) through (1,0,0 is a secant at ( l , O , O )  (because (l,O,O) 

has no tangents) and hence intersects t = 1 at (1,1,1) or (1: b, 1); the line through 

(0, k, 1) and (1, a,  0) then goes through either (1, b, 1) or (1,1,1), respectively. So 

either (1) k = 1 and b = 1 - a, or (2) Ic = b and b = 1 + a. 



Figure 4.5. Homogeneous coordinates of a solution if aIa = 39 and three 3-lines 

are concurrent. 

Similarly, the two secants on (1, rn + k, 1) go through either (1, a, 0), (0,0,1) 

and (1,0,0), (0,-c, 1); or (1,a, 0), ( 0 , ~ ;  1) and (0,0,1), (l70,0). The first case leads 

to the contradiction m + k = a = c so it must be that the second case holds, which 

implies rn = -k and a = -c. 

The secants on (1, m, 0) go through either (1:1,1), (0,0,1) and (1, b, 1); (0, c,  1) 

or (1, b,1), (0,0,1) and (0,c,1), (1,1,1). Thus either (3) rn = 1 and b = c +  1 or (4) 

m = b = l - c .  

Since rn = -k we cannot have both (1) and (3), but because a # c we cannot 

have both (1) and (4), a contradiction. 

m'e can now assume the 3-lines are not concurrent, so they must be arrayed 

as in Figure 4.6. Again there is a 3-line disjoint from the others, and with homoge- 



neoui coordinates as shovxi in Figure 1.6. that disjoint 3-line is y = rns - k where 

n?. k f 0. Furthermore. the f ive points of this line which are not in T are (1. rn. 0) .  

i c . r n c - k . 1 ) .  iO.k.1). ( l . r n t k . 1 ) .  a n d ( d . m d l k , l j  forsomed. Theline y = O  

goes through either ( 1 .  rn + k. 1) or id. rnd + k. I). If it goes through (1. rn -+ k. 1) 
then the line determined by ( 1. m +- k. 1) and ( 1. a. 0) is tangent at ( 1. a. 0). which 

has only one 3-line and hence no tangents. a contradiction. So y = 0 goes through 

(d . rnd+ k . 1 ) .  Then at least two of the three pairs ( d . m d +  k . 1 ) .  (1.b.1) or 

(d .  rnd + k. 1). (1.1.1) or (d.  m d  + k, 1): /0,1,0) is tangent, again a contradiction. 

T 

Figure 4.6. Homogeneous coordinates of a solution if ale = 39 and the 3-lines 

are not concurrent. 

Suppose T is a solution with 



There must be either one &line. two 3-lines. thirty-three Mines and four 1-lines: 

or five 3-lines, thirty '-lines and five 1-lines. In either case pick a point z E T 

lying on a tangent. We are assuming ds = dlo - 1, and since deleting z: would 

decrease the neighborhood by at least one, it must decrease it by exactly one, so 

there is a unique T-tangent on I. Also, T \ {s} is a solution to the isoperimetric 

problem for 9 points. By Theorem 4.4, T \ { s }  is of the form (3 U {y}  for some y. 

But z: and y have either three or four lines external to 0, so adding them adds at 

least five lines to N((3 ) /=36 ,  contradicting IN(T) = 40. By our example, then, 

dlo = 41. 

For g = 7 and m = 11: If all = 41 = ale and T is a solution to the 

isoperimetric problem for rn = 11 then no point of T lies on a tangent, or else 

we could delete that point and get a solution for ten points with neighborhood 

strictly smaller than ale. Thus pt > 1 for all l. Equation (2.1) with n = 1,2 gives 

and so T has two 4-lines and hence two 3-lines. There must be a point on a 3-line 

and a Cline, call it z. If u,  v, w are the numbers of 2-lines, 3-lines and 4-lines 

respectively, on x, then the system 

u + 2 v + 3 w =  10 

shows that v + 2w = 2, contradicting v , w  2 1. By our example then, all = 42. 

For q = 7 and m = 16: By Lemma 3.4 and because dm is increasing, we 

have 
a57-a,, 5 41 < all =+ 57-d16 < 11 

=+ a,, 2 47. 



By our example. dls = 47. 

For q = 7, m = 17: By Lemma 3.4 and because dm is increasing, we have 

dj;-a,, I 40 < al0 + 57 - a,, < 10 

=% d17 2 48. 

By our example, dl? = 48. 

For q = 7, m = 18: By Lemma 3.4 and because 8, is increasing, we have 

a57-ale  5 39 < al0 =+ 57 - a18 5 9 

+- dI8 2 484 

By our example, a18 = 48. 

For q = 7 and m = 19: By Lemma 3.4 and because a, is increasing, we 

have 
au-alo 5 38 < 39 +- 57 - a19 < 9 

=+ a19 2 49. 
By our example, a19 = 49. 

For q = 7, m = 23,24,25,26,28,32,33: 8, is given by Theorem 4.3. 

4.3.2 The Case q = 8 

Theorem 4.5. There can be no nested solution to the isoperimetric problem in 

PG(2,8). 

Proof: If there is a set of nested solutions, Tl c Tlz. We know from Theorem 4.1 

that Tll is a hyperoval plus a point, so TIZ = 7-l U {I, IJ} where 'H is a hyperoval 

and 3,  y $ %. is on at least four 0-lines of 'H, and y is on at least three others, 

so IN(E U {I, y))j 2 dlO + 4 + 3 = 52. 



As in 53.7.1 let a be a primitive element in Fg generated over F2 by x3 f x+ 1. 

The set of a6ne  points 

T := {(0.0,1),(0,1:1),(0,~u~,1),  o9 a5> I]? (I> O, I), (1, l7  I), 

2 (1 ,a  , I), (1, a6, 11, (a,a2, I),  ( a ,  a6, I), (a9 a4, 1): (a, a57 1)) 

makes a (0,2,4)-set in PG(2,8) which has N(T)I=5l, beating 52 for a hyperoval 

plus two points. 

We have just shown that no solution to the isoperimetric problem for 12 points 

can contain a solution for 11 (since a12 < IN(Tl1 U {+))I for all solutions Tll for 

11 points, and all + $ 2'). So there can be no nested solutions to the isoperimetric 

problem in PG(2,8). 

Notice that the set T given above is in fact a solution to the isoperimetric 

problem, since Table 3.1 (Theorem 3.1 1) shows that alz 2 51. 



Appendix 

Nested Solutions to the Isoperimetric 
Problem for Planes of Order q 5 7 

See section 4.3 for an explanation of the tables. 

Table A.la. An ordering of the points of PG(2,2) giving a nested set of solutions 
to the isoperimetric problem. 

Table A. 1 b. Solution to the isoperimetric problem for PG(2,2). 

Lower Bound 
Given By 

IN(T),I Theorem2.1 



Table A.2a. .An ordering of the points of PG(2.3)  giving a nested set of solutions 
to the isoperimetric problem. 

Table A.2b. Solution to the isoperimetric problem for PG(2,3). 

Lower Bound 
Given By 

m N(T,)I Theorem2.1 



Table A.3a. An ordering of t3he points of PG(2.4) giving a nested set of solutions 
to the isoperimetric problem. 



Table A.3b. Solution to the isoperimetric problem for PG(2,4J. 

Lower Bound 
Given By 

IN(T,)I Theorem2.1 
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Table A.4b. Solution to the isoperimetric problem for PG(2,5).  

Lower Bound 
Given By 
Theorem, 2.1 



Table A.5a. .An ordering of the points of PG(2.7) giving a nested set of solutions 
to the isoperimetric problem. 



Table A.5b. Solution to the isoperimetric problem for PG(2,7). 

Lower Bound 
Given By 
Theorem 2.1 
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