
HYBRID PROCESSING

Thesis by

Christopher R. Carroll

In Partial fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1982

{Submitted March 8, 1982)

-ii­

ACKNOWLEDGMENTS

The research described here benef itted me not only by

the amount of knowledge I gained but also by the number of

top quality people with whom I have had a chance to work.

I want to thank each of them for sharing their thoughts

with me.

In particular, I thank Dr. Ivan Sutherland for his

valuable insights which got

project, and Dr. Carver

me off the ground on this

Mead for his technical guidance

I also want to thank the people which made it a success.

at Xerox PARC and at the Information Sciences Institute for

their technical help in fabricating my chips. I gratefully

acknowledge financial support from Caltech, the National

Science Foundation, and the Off ice of Naval Research, which

supported this work in part.

Finally, I want to thank my parents for encouraging me

toward this goal, and, most importantly, my wife Sylvia,

without whom I could never have finished.

-iii­

ABSTRACT

The past decade has witnessed a revolution in digital

electronics. As the cost per function has decreased,

digital techniques have pushed the older analog methods

into the background. This thesis explores a method of

merging digital and analog techniques into a hybrid

combination of the two. Representing the analog

information as

minimizes the

Ensuring that

continuously variable intervals of time

effects of· noise on the analog· data.

only digital data pass from one computation

to another prevents the accumulation of errors.

As an example of hybrid processing, this thesis

includes the design of a Large Scale Integrated (LSI}

circuit that implements the Lee-Moore maze solving

algorithm, extended to cover the two-layer path finding

case. The use of digital information to describe the path

geometry and analog information to describe the path costs

demonstrates the system's hybrid nature.

The design of this system provided several lessons

applicable to the design of other hybrid systems. It also

unexpectedly demonstrated the importance of the

communication structura in determining the costs involved

in all kinds of processing. These lessons are summarized

in the last chapter.

Acknowledgments

Abstract

-iv-

TABLE OF CONTENTS

Chapter 1 - What is Hybrid Processing?

Chapter 2 - Why Use Hybrid Processing?

ii

iii

1

6

Chapter 3 - When to Use Hybrid Processing 16

Chapter 4 - How to Use Hybrid Processing 25

Chapter 5 - An Example • • • Lee-Moore Path Finding 30

Chapter 6 The Lee-Moore Algorithm in Hardware 41

Chapter 7 - Two Layer Path Finding 57

Chapter 8 - Two Layer Hardware ••• The PATHFINDER Chip 66

Chapter 9 - Dealing With Non-Uniformity

Chapter 10 - Flaws in the PATHFINDER

Chapter 11 - Lessons Taught by the PATHFINDER

References

75

87

100

114

-1-

Chapter l.

~ .IS. HYBRID PROCESSING?

Before beginning

first know what the

to study hybrid processing, one must

term means. The purpose of this

·chapter, then, is to provide the required def ini ti on.

Taking the definition a piece at a time, I must first

convey my understanding of processing in general. In the

context of this paper, nprocessingn refers to any

operation performed on data that has some effect on those

data. Processing operations tend to fall into. one of two

catagories. These are computation and communication.

On the computation side of processing, the operation

performed on the data consists of transforming the values

of those data according to some specified function. This

is the part of ·processing that actually does the

-2-

ari thmetic and other calculations that are responsible for
0 f inding the answer" to a problem.

On the communication

operation performed on the

side

data

of pr.ocessing,

consists of moving

the

the

information from one place to another. In an electronic

processing element, this generally involves one or more

wires over which the electrical signals representing the

data travel. Without communication ,elements to deliver

data to the inputs of a computation element and to carry

away its results, processing machines could accomplish

next to nothing.

Today, the importance of the communication structure

within a processor is finally coming to light.

Computation is now cheap, and can occur simultaneously in

a very large number of elements within a system. The

issue of how to communicate the data from one computation

element to another at the right time and in the right

sequence do~inates many modern processor designs.

Communication and computation both play important roles in

the structure of any processing strategy today.

Beyond the computation \versus- communication

classification, processing elements can be classified

-3-

further by the type of data on which they operate. Again,

there are two recognizably separate catagories to

consider. These are known as analog processing and

digital processing.

Analog processing deals with data .that are

continuously variable. A slide rule is a familiar example

of an analog processor. The position of the slide forms

the input to the computation, and the reading on the scale

under · the cursor gives the output. The slide is

continuously adjustable. There are no notches, or steps

in its movement. Similarly, the scale on which the output

is obtained under the cursor is a continuous scale. The

precision available in the output, or •answer•, of such a

device is theoretically unlimited. Since there are no

indivisible units involved, variables can take on exact

values. In practice, the available precision is limited

by the accuracy with which the machine is built. In the

case of the slide rule, the accuracy with which the scales

are marked on the instrument is the limiting factor. To

summarize, then, analog processors work on continuous data

with unlimited precision, but with accuracy limited by the

accuracy of construction of the machine.

Digital processing

-4-

deals with data that are

quantized. In any such device, there is an indivisible

unit of information, the smallest value above zero that

the machine recognizes. An abacus is a familiar example

of a digital processor. Data are entered by discrete

movement of the beads. Each bead is against either one

stop or the other, never somewhere in between. When one

reads the answer from an abacus, each bead is counted if

it is on one side of the device, or not counted if it is

on· the other side. The accuracy of this kind of processor

is unquestioned. After all, there is no problem in

determining whether a bead should be counted in the output

or not. The precision available, however, is limited by,

the size of the machine, or, in the case of the abacus,

the number of. rows of. beads in the machine. To summarize,

digital processors work on discretized data with unlimited

accuracy, but with precision limited by the construction

of the machine.

With these definitions of digital and analog

processing in mind, one can go off happily classifying

almost any kind of processing equipment around. Networks

of resistors provide an example of analog arithmetic,

where the voltage on one node of the network is a linear

function of the other node voltages. A mechanical device

-5-

known as a planimeter performs analog integration in

finding the area enclosed by plane curves. Common
" digital processing devices include things as small as

digital watches and pocket calculators as well as the

largest mainframe electronic computers around today.

A hybrid processor is nothing more than a processor

that uses a mixture of both digital and analog

techniques. As usual, when there is a choice of methods

to use in attacking a problem, there are circumstances

under which each of the possible choices is the best.

Thus in building a processing machine, a designer, by

taking note of the circumstances surrounding his design,

can choose to employ either digital or analog techniques,

as appropriate. Under some special circumstances, a

combination, or hybrid, of the two is the proper choice to

take.

The fact that digital and analog processing work on

different kinds of data means that they have some

different characteristics that might lead the designer to

pref er one method over the other in his design.. The next

two chapters will investigate some of those differing

characteristics, and disclose those circumstances when

hybrid processing might be advantageous.

-6-

Chapter 2..

NliY .llS..E HYBRID PROCESSING?

Many of today's designers of processing equipment are

nervous about the. idea of using any analog techniques at

all in their machines. They argue that purely digital

techniques

eliminate

noise.

can

the

solve· any

main problem

processing task, and can

that plagues analog designs,

Noise is any unwanted signal from the environment of

a system that perturbs the data in that system in some

way. Digital and analog structures differ in their

response to noise, and this difference is a major

consideration when choosing a design strategy.

Analog processors,

immunity to noise at

like

all.

the slide rule, have no

On a slide rule, noise could

-7-

have the effect of causing the slide or the cursor to slip

slightly away from the position meant for it. This would

introduce an error in the computations that is

indistinguishable from real data. Thus, in analog

processors, noise gets carried along through the rest of

the computations and can adversely affect the result.

Digital processors, like the abacus, can tolerate

some noise. On the abacus, noise could cause the beads to

stray slightly away from their ideal positions at one end

or the other of the rows. However, as long as the beads

remain closer to the side where they belong than to the

other side,. their correct. values are still readable.

Unless the noise is so severe that it causes the beads to

travel more than halfway to the other side of the abacus,

it does- not affect succeeding calculations in any way.

Di-<Jital processors have some inherent immunity to noise

because after each computation, digital variables- are

restored to a clean representation of one of the discrete

values that the data can represent. Any errors generated

by noise are eliminated at each step of the processing,.

and thus cannot accumulate.

It is usually easy to distinguish analog and digital

problems from each other. Analog problems are those that

-8-

arise from the measurement of some quantity. In general,

the variables tell how much of something one has, in a

qualitative way. Digital problems, in contrast, arise

from counting situations. Digital variables tell how many

somethings one has. As examples of problems at the

opposite ends of the analog-digital spectrum, consider the

two ·mundane problems of balancing a checkbook and

controlling water temperature in a shower.

Think about the problem of balancing a checkbook.

Given the choice of the two processing machines shown in '

Figure 2-1, which is the most appropriate one· with which

to attack the problem? Each of the machines will compute

sums from zero to $1000.00. On the abacus, the additions

and subtractions involved are performed by discrete

movement of the beads in the rows. On the other

instrument, similar to a slide rule, the slide is

·positioned with the zero mark on the present balance in

the checking account, and the cursor is then moved to lie

over the amount of the deposit or withdrawal on the

slide's scale. The resulting new balance is read under

the cursor from the scale on the body of the instrument.

Now,, consider the problem of designing an automatic

water temperature control system for a shower. Which of

-9-

/ l
I

h W\!"~,,,l. ... a .. .,\ I d..: f'-os~I- s

:>i,
~ :z.ix. I'""' 0 ·r "2.00 .>oo

I I I I I I I
I I I I I I I i I I I
"" <l> 100 .$.:i.O<> S3oo ~'IOo .. '°" ':$"~ ~7""> "~00 ~q,,,., ~lOOo

I

'""
. '

I

Figure 2-1. Which machine is better for balancing
a checkbook?

;SO<>
I

/

-10-

the two approaches shown in Figure 2-2 is most appropriate

for attacking this problem? In one case, the mix of hot

and cold water is continuously adjustable by means of the

position of the diaphragm in the mixing valve. In the

other case, the mix is determined by the ratio of the

number of hot water valves that are on to the number of

cold water valves that are on. ·In this second case, the

adjustment in the mix is not continuous, but adding more

and more valves in the system can result in enough

.precision in temperature control to satisfy any set

requirements.

For the checkbook problem, the better choice of

instrument is clearly the abacus. The slide rule device

has two major deficiencies that would preclude its use.

The first concerns number representation. To represent a

number as large as $1000.00 accurately to the last cent

would require an accuracy of one part in 100,000 in the

marking of the scales on the instrument, which is

unrealistic. The second deficiency of the slide rule

instrument in this example comes from noise problems.

With each transaction computed on the checkbook balance,

some noise would unavoidably enter into the calculations.

After only a few transactions, the noise-introduced errors

would accumulate enough to swamp out the pennies and dimes

-11-
hot cold

Servo

warm

hot cold

~
on/off valve

t D
i
g
i
t
a L
l 0

g
t i
0 c •
A •
n • • • • • a • • 1
0

sens er

warm
Figure 2-2. Which system is better for controlling

water temperature?

-12-

in the calculations, and the resulting balance in the

checkbook would no longer agree with the amount recorded

in the bank. The abacus, on the other hand, can easily

represent the variables precisely and without danger of·

errors introduced by noise. Since the data ,are restored

to clean, noise-free values after each transaction, the

noise-generated errors have no chance to build up.

The choice . of approach to the water temperature

control system problem may not be as apparent. Although

the problem clearly involves continuous variables, and is

thus analog in nature, either approach can lead to a

.design with good performance~ The analog approach, with

the single mixing valve, can deliver a continuously

variable mix of hot and cold water, which is desirable.

The other, digital, approach can adjust the mix only in

discrete steps, but by using enough valves, the bather can

be completely unaware of the discrete changes in water

mix. What, then, is another basis for choosing between

the two schemes? One significant difference lies in the

complexity on the. communication side of the processing ..

The digital solution requires a separate water pipe and a

separate solenoid control signa·l for each of the many

valves in the system. The single valve in the analog

design requires a considerably simpler, and thus less

-13-

expensive, communication arrangement, both electrically

and mechanically. Overall, then, the analog solution to

this fundamentally analog problem is a better choice than

the digital solution, even though both, can adaquately

perform the job.
'

In today's world, I would be tempted to guess that,

although most readers- of this p~per correctly solved the

checkbook. problem above, some readers chose the digital

solution to the shower temperature control problem despite

its disadvantage in complexity. Designers today· have

_almost unlimited amounts of ha.rdware with which to build

structures, and digital solutions are easy to most

problems. As a result, digital techniques pervade the

thoughts of designers, and force analog techniques down

into the cellars of their minds. The shower temperature

control problem should have demonstrated that there still

is a need for analog treatment of some situations.

So today, digital processing is cheap, yet there is

still a need to input parameters or generate outputs that

are continuous variables, best -suited to analog

techniques. This is the setting where hybrid processing

shines. With hybrid processing, the best of both worlds

is available. Ideally, such a processor could handle

-14-

discrete data with digital circuitry and continuous data

with analog circuitry. The trick is to merge the two

types of processing so that the variables, discrete and

continuous, can interact to solve the problem.

A strong tendency amoung current designers when

trying to incorporate analog and digital variables in one

design is to use analog-to-digital and digital-to-analog

converters to isolate from each other the parts of the

machine dealing with different kinds of variables. This

results in a degenerate case of hybrid processing, where

the machine is merely an interconnection of separate

analog and , digital processor~. The strength of hybrid

processing becomes clear only when the digital and analog

parts of the system are merged so closely that they are

not separately identifiable.

The game of backgammon illustrates a situation in

which hybrid processing could find effective use. The

position of the playing pieces and their movement

according to the throw of the dice are purely digital

quantities. However, the choice of which moves to make

when the.re are several: possibilities is based on a number

of purely analog variables. One of these is the overall
,

player strategy, offensive, defensive, or somewhere in

-15-

between. Another analog variable is the playing ability

of the opponent, for some moves, though_ dangerous with a

skilled opponent, may go unnoticed by an amateur. The

computation involved in making the choice between moves

must produce a digital answer, i.e. the ·one move that the

process selects. The_ inputs to that computation are the

digital quantities of board position and dice throw and

the analog qualities which determine which decision is

best.

The title of this chapter is use hybrid

processing?" The answer is that hybrid processing is the

natural way ·to tackle many. of today's problems. Many

calculations that require lengthy or precise computation

and therefore need digital data representation depend upon

parameters that come from the real world, where quantities

tend to be continuous. In such cases, hybrid processing

can bring together · the two forms of data to produce the

desired result.

-16-

Chapter .3..

NllER ~ ilS...& HYBRID PROCESSING

When a designer has a processing problem to solve,

what tests can he/ apply to decide between an analog

implementation, a digital implementation, or some hybrid

combination of the twoZ This chapter will present some

criteria fOr making that judgment.

3.1 When to go Analog

-

Purely analog processing finds applications that

surround our daily life. The world we live in is built

around continuous variables and the differential equations

that govern them.

Analog problems typically arise from measurements of

quantities in the real world. The presence of variables

-17-

that describe how much of something, in a qualitative way,

indicates that analog techniques may be applicable.

Analog computing methods off er an excellent way to

make a qualitative analysis of a problem, but are limited

in other applications. The accuracy of analog methods, as

discussed before, is limited. Practical accuracies of one

part in a thousand or so are the ·best that one can

obtain. For higher accuracy, digital computation methods

must come into play.

As shown in the example of balancing a checkbook in

Chapter 2, the accuracy of a single computation is not the

only limit to the ··usefulness of analog computation.

Errors introduced by inaccuracy or noise tend to

accumulate in analog systems. When a task demands that

data pass through many stages of processing the use of

analog techniques , would eventually swamp out the data by

the accumulating errors. In this case, a digital strategy

is the only way to go.

Remembering the example of the shower temperature

control problem, analog methods offer a saving in hardware

c~mplexity. Thus, when the cost of. hardware is important,

one should consider analog approaches to the problem.

-18-

In summary, the above results suggest some· tests for

deciding when to use analog. processing. Analog processing

is indicated when

.the problem deals entirely with continuous variables

.variables record qualitatively how much of something

is present

.the qualitative behavior of the problem is more

important than the quantitative behavior,- or

.the hardware complexity must be minimized.

Analog processing is contraindicated when

- .any variable is discrete

·.high accuracy is important, or

.data must pass through a large

number of calculations or iterations.

By applying these tests to a particular de~ign problem, a

processor designer can determine if analog techniques hold

any promise in. that situation.

3.2 When to go Digital

In many cases, digital techniques . provide the only

acceptable solution to a design problem. The accuracy

with which digital processors can perform calculations and

' /

-19-

their inherent immunity to noise set them apart from the

analog types of processors.

Problems whose variables count something, or tell how

many somethings are present, are fundamentally digital

problems. Balancing the checkbook in the preceding

chapter was such a problem.

Some problems can be solved only by iterating through

a sequence of calculations. Such iterations can result in

millions or even billions of operations being performed on

a piece of information before the. answer materializes.

These problems cannot tolerate the errors induced by

inaccuracies and noise· in analog systems. Only digital

approaches are feasible.

In summary, digital processing is indicated when

• variables record a. count, or answer the question

"How many?"

.the problem demands high accuracy

~data must pass through a large number of operations

to generate an answer, as in iteration, or

.the cost of hardware is not an issue.

-20-

Digital processing is contraindicated when an analog

solution is possible and more cost effective. In such a

case, the extra complexity of a digital solution merely

adds extra baggage. If a problem passes the above tests,

then digital methods demand some attention.

3.3 When to go Hybrid

Some problems fail to pass the tests for either
-

purely analog or purely digital processing. These

problems need some of the characteristics of each of the

two approaches. It is for this class of cproblem that

hybrid processing exists.

Th~se problems tend to fall into two catagories. The

difference lies in the reason for needing some digital

processing.

The first subclass of hybrid problems consists of

those tasks that require digital techniques merely to

achieve adaquate accuracy. The variables involved in

these problems are fundamentally analog quantities. They

generally originate in some transducer or sensor.and,

possibly after a little analog processing, pass directly

to an analog-to-digital converter. From that point on,

-21-

processing is totally digital. The results of the digital

calculations sometimes are used as they are in digital

form, but often they pass through some digital-to-analog

converter back into analog form for display or for

controlling some other analog device. This class of

problems leads to the degenerate case of hybrid processing

described earlier.

One finds examples of this kind of hybrid processing

whenever data from the real world must be processed

digitally. Digital voltmeters, for example, input an

analog voltage, process it with an analog voltage divider

to set the scale, and then digitize it for accurate

measurement and display. A vector display system provides

an 'example of a reverse situation, where the analog

processing comes at the end of the process. Values

representing the endpoints of the vectors are calculated

digitally, but then converted to analog values. Analog

processing elements can then calculate the deflection

signals and intensity levels to send to the CRT for

display [SJ •

The other subclass of hybrid processing involves

problems- that tend to .be fundamentally·digital, but that

depend in some way on one or more qualitative, analog

-22-

inputs. The backgammon playing machine discussed earlier

provides an example of this class of problem. The

mechanics of play, like board position and the throw of

the dice, are digital variables. The tactics of play,

like strategy and skill of the opponent, are analog

variables. On each play, the choice of moves to make is

based on information from both kinds of sources.

It is this kind of hybrid processing that designers

most ignore when building processing equipment. Instead

of creating a structure that can effectively merge the

analog and digital parts of the calculation, they provide

some purely; arbitrary digitization of the qualitative

inputs and then build an entirely digital machine.

Current game playing machines, for example, compete at one

of several discrete levels of skill. The skill level,

which should be an analog input, enters the calculations

instead as an artificially digitized variable. The past

twenty-five years of steadily decreasing digital hardware

costs have trained designers to choose the digital route

when they ~an find any possible way to do so. The result

is that analog or hybrid solutions to problems are shelved

in favor of a less direct.digital solution. The general

belief. is that today's VLSI technology should continue

.that trend and push the digital revolution even farther

-23-

along, because of the enormous amount of hardware that can

be realized on one chip of silicon. That, however, is a

little misleading.

While the cost of computing hardware continues to

fall, the communication hardware required to interconnect

the computation elements has risen in relative cost. In

VLSI technology in particular, as the computation elements

continue to shrink, the proportion of chip area devoted to

interconnection wires is increasing. The total cost of

hardware, then, is not going to zero, but instead is

becoming dominated by the cost of communicating data from

one place to another.

As a result of this communication aspect of hardware

cost, hybrid processing may begin to see more

application. Transmitting only one bit per wire as is

done most often in digital designs is not a very effective

way to use the now costly communication path. Because of

the fact that a VLSI chip is a very controlled environment

in which noise levels are low and somewhat under the

designer's control, many bits may be sent along one wire

using analog techniques with a savings in cost right where

it helps the most, in communication hardwar.e.

-24-

Already some- are discussing the possibility of

multi-level signalling in digital circuits [9]. Mic~ocode

ROMs on some microprocessors store two bits per cell by

using a four level. encoding structure [10,11]. Although

these designs are still strictly digital, because. the

allowed states for the data are still discrete, they are a

step along the way toward full analog techniques. At

least one chip designed at Caltech has made use of a ROM

storing purely analog values in the design of a cursive

character display generator [2J.

Thus, there is motivation to encourage hybrid

pro.cessing. Digital problems with qualitative, analog

inputs exist, and the cost structure of current technology

favors the hardware economy that analog_techniques offer.

The second half of this thesis will present a complete

design that effectively makes use of hybrid processing.

First, however, the next chapter will provide some

guidelines on how analog and digital techniques might be

merged to form a true hybrid processor.

Now that

important, and

implement it

-25-

Chapter .4.

.fill4l 1U .II.SE HYBRID PROCESSING

we know what hybrid processing is,

when to use it, the question of

arises. It is not a trivial

effectively merge analog and digital variables

single hybrid processing structure.

why it is

how to

task to

into a

Remember that true hybrid processing arises from

problems that require primarily digital processing but

that also depend in some qualitative way on one or more

analog variables. The task, then, is to affect the

results of a digital computation through the influence of

analog variables.

What effect can an analog value have on digital

data? The only, way to modify digital values is in

-26-

discrete steps, changing bits from one state to another.

By definition, there is no way to modify the value of

digital data in a continuous way. Thus, on the surfa.ce,

it would seem that the only way to get analog data into an

otherwise digital comput~tion is to first digitize it

using some type of analog-to-digital conversion.

Information, however, need not always be represented

by the value of some piece of data in a machine. The

timing relationships between signals can also represent

information in a problem.

Time offers some· unique features as an analog

variable. Time is a monotonic, smoothly increasing

quantity. One can count on it to never reverse direction,

or stop, or do anything but steadily continue forever. If

one represents an analog value by the interval of time

between two digital signals in a system, then that analog

value will be immune to electrical noise to the same
•

extent that digital values in that system are immune.

Since time is measured in the same way in all parts of the

system, and since small differences in time are much

easier to detect than small differences in other analog

values, representing analog data using intervals of time

-27-

resul ts in bette.r accuracy than . would other choices of

representation.

The human nervous system uses time to represent its

data. Most people would agree that the body is a noisy­

environment in which to try to communicate information by

minute electrical signals. Such an environment demands

the use of a digital communication structure. However,

all the data with which the body is concerned are in

analog form. Light, sound, temperature, etc. all are

analog inputs, and muscle and gland control signals are

analog outputs of the nervous system. What a complicated

mess it would be if all that data had to be converted from

analog to digital form for communication on the nervous

system! Instead, the body uses a much simpler strategy.

The nerves carry impulses that are digital in nature, as

they must be in order to overcome the noise. The

frequency of the impulses, however, varies. The amount of

time between impulses is the information carrying quantity

[12]·. That amount of time represents the analog value,

and is continuously variable, · so no conversion of · the

analog inputs and outputs of the nervous system is

necessary. The analog signals are represented directly as

varying intervals of time.

-28-

The combination of digital data processing with an

analog dependence on a time variable offers an especially

attractive opportunity . for hybrid processing. If the

analog dependency,of a hybrid problem can be couched in

terms of the timing of some digital function, then that

timing can be the means for_providing the required analog

control over the calculations. Using this method requires

no explicit conversion of the analog data to digital

form. The interaction takes place as a result of varying

the timing of the digital calculations.

The algorithm selected as a basis for a hybrid

solution ta a problem must allow the digital calculations

to depend on some aspect of timing that can be modified by

the problem's analog inputs. One way to achieve this

dependence is to arrange for the digital logic to take one

of several actions depending on which of several events

happens first. The timing of the events can then be under

the control of a~alog computations. This scheme

successfully merges the analog variables into the ·digital

computations in a natural way.

The physical configuration that is

hybrid system also is constrained by the

time as an analog variable. In the

to implement a

scheme of using

first place, the

-29-

hardware cannot be fully synchronous. Synchronous systems

digitize their time variable, so that no analog modulation

of any timing function would be possible. Secondly, this

approach works best when the problem maps well onto a

processing structure that allows many operations to occur

in parallel. Only with parallel processing can one use

the technique mentioned above, using the difference in

timing of several events to influence the digital

calculations. In a structure with no parallelism, only

one event can happen at a time, and.no comparisons are

possible.

The next four chapters will detail the development of

a hybrid processor system that uses time to represent its

analog data. It is not intended as an example of hybrid

processing in general, but rather as a specific example of

what hybrid techniques can accomplish. Chapter 5 will

describe the problem to be solved by this system. Chapter

6 will develop some initial thrusts toward a solution,, and

finally, Chapters 7 and 8 will present the complete hybrid

processing system and describe its operation in detail.

-30-

Chapter 5.

Ali EXAMPLE - - - LEE-MOORE 2A.ni FINDING

This chapter begins the discussion of an application

of hybrid processing in a particular system. The task

that the r.:esulting machine solves is the problem of path

finding, which has application today in printed circuit

board wire routing and interconnect wire routing on

integrated circuits. This chapter will briefly outline

the traditional Lee-Moore algorithm that is the basis for

the path finding, and the following chapter will discuss

an LSI implementation of the algorithm that solves the

problem for paths on one layer. Succeeding chapters will

examine the additional problems of two layer path finding,

and will detail another LSI implementation that handles

the two layer situation.,

-31-

5.1 The Lee-Moore Algorithm

The Lee-Moore algorithm for path finding, proposed by

Moore in 1959 [7] and extended by C. Y. Lee in 1961 [5],

is a sc~eme for finding the shortest route between two

points in a plane, where the route is composed of some

number of vertical and horizontal , segments through a

rectangular grid superimposed on the plane. This has been

a popular algorithm for people doing problems.related to

maze solving because it is easy to implement and because

it guarantees that a path will. be found if one exists.

The drawbacks to the algorithm are that it is expensive

computationally in both time and space. However, the use

of the hardware to , be described circumvents these

difficulties.

Suppose that the size of the g·rid, i.e. the pitch of

the cells defined by the grid, is set to the minimum path

width that is allowed*. In the case of printed circuit

board design, this would. be the minimum center to center

spacing for adjacent wires.- Suppose also that the grid is

uniform and symmetric, forming an array of square cells,

* Since. ou.r geometry
distances mentioned
distance from ·. A to
covered in driving
Manhattan.

here is based on this grid, the
will be Manhattan distances, i.e. the
B would be the shortest distance

from A to B on the streets of

-32-

each a path width on a side. The path found by the

algorithm from point A to point B will consist of a route

beginning at the cell containing point A, continuing to

a neighbor of that cell, and then to a neighbor of that

second cell, and so on from a cell to one of its

neighbors, until eventually the path ends in the cell

containing point B. Some of the cells in the array may be

blocked, preventing the path from running through these

cells. These would be •barriersn, or •wallsn in

or cells occupied by previously routed wires

.printed. circuit board application.

a maze,

in the

The algorithm finds the shortest path from A to B in

two phases. One word of storage, which I will call the

n1abeln, is associated with each of the cells in the

array. The first phase, called the Propagation Phase,

stores information in the labels throughout the array.

The second phase, called the Retrace Phase, then uses that

information to find.the required path.

The Propagation Phase, which distributes the

information, executes. the following. program:

5-1.

-33-

put label -1 in all cells that are blocked
put label 0 in all cells that are not blocked
N:=l
put label N in the cell. containing point A
while cell containing point B is labelled 0

and more activity is possible do
begin

.for every neighbor 'of every cell labelled N do
if that neighbor is labelled 0 then

label it (N+l) else leave it alone.
N:=N+l

end

This part of. the algorithm is illustrated in Figure

The purpose of this phase is· to distribute

information to the cells that can then be used to find the

direction back to point A. The information is spread out

in a propagating wavefront centered on pc;>int A, much like

waves propagating away, from a stone dropped in a pond. It

is interesting to note that the only activity that takes

place occurs at the frontier of this expanding wavefront.

Cells ahead of the frontier merely wait for the wave to

arrive, keeping their label of O. Cells behind the

frontier have already received the information they need,

and simply keep it stored in their label.

The Retrace Phase, using the information stored in

the- labels, executes the fol·lowing program to find the

path:

-34-

Just Starting In Progress Finished
5 4 5 6 7 8

~ B 4 4 3 8
2~ ~ ~ ~ 3 3 2 7

2 Al 2 2 2 Al 2 3 4 5 6
2 3 2 4 3 2 3 4 5 6 7

Figure 5-1. The Lee-Moore Propagation Phase

Just Starting In Progress Finished
5 4 6 8 5 4 5
4 3 8 4 8 4 8
3 2 7 3 2 7 3 7
2 Al 2 3 4 5 6 2 Al 2 3 4 5 6 2 6
3 2 3 4 5 6 7 3 2 3 4 5 6 7 3 2 4 5 6 7

Figure 5-2. The Lee-Moore Retrace Phase

-35-

Start the path at the cell holding point B
N:= label of cell holding point B
if N=O then there is no path from point A to point B
else begin

end

while path has not reached cell holding point A do
begin

end

N:=N-1
Continue the path to a neighbor of the

current cell that contains the label N ·

This part of the algorithm is illustrated in Figure

5-2. Notice that there is nothing to specify which cell

to select when there are two or more possible choices:

This merely means that there are multiple paths between A

and B that have the same length. To first order, there is

thus no preference of one path over another, so no

selection mechanism need be UE?ed. In practice, some

scheme is of ten employed when there is a choice of paths

to take. A common selection scheme is to avoid changing

directions in the path during the Retrace Phase when it is

unnecessary., This tends to minimize the number of bends

in the resulting path. When this phase is complete, the

algorithm either has found the required path from A to B ·

or has proven that no such path exists.

Before beginning the discussion of the hardware

implementations of this algorit~m, one should note a

coup! e of things. First, examine the time ·complexity of

the programs above. The Retrace Phase merely traces the

path from B back

cells.

selected

The only

path and

is thus

-36-

to A usi.ng information stored in the

cells · accessed are those along the

their immediate neighbors. The time

linear with respect to the path complexity

length.

is worse.

However, in the Propagation Phase, the situation

Information is propagated in all directions

around point A. The number· of cells accessed is

approximately proportional to the square of the path

length. Thus, the time complexity here is quadratic with

respect to the path length, making the algorithm as a

whole quadratic. This is unfortunate, since for maze

solving to be interesting, a large maze must be involved.

In the ci~cuit board application, for example, a cell

array containing 1000 x 1000 cells would be common. The

quadratic time aspect of the algorithm thus is a real

handicap. Current software using this algorithm to route

typical printed circuit boards can consume several hours

of CPU time on a full~size computer. On top of that, the

space requirement is also large. Circuit board routing

with this algorithm requires 10-12 bits of storage for

each cell, and a million 12 bit words is a lot of memory.

So, both the space and time complexity of the algorithm

need. to be attacked in any successf.ul. hardware

implementation.

-37-

5 .2 Hardware for Finding One Layer Paths

Implementing the Lee-Moore algorithm in hardware is

conceptually a clean and natural thing to do. Because the

problem is cellular and because information flows only

between adjacent cells without using any long distance

communication paths, the task is a natural one for an

array processor structure with one processor per cell in

the array. However, if there is to be· any hope of

building a large machine this way, there are two problems

that must be overcome. First, the amount .Qf. storage pe..t.

~ must be limited. In the original algorithm, in an

array of-unbounded size each cell would be required to

contain an unbounded number of bits. Second, the global

state required in the original algorithm, which was

represented by "Nn in the programs above, must be

eliminated. Accomplishing these goals would result in a

machine that could be. extended to any size needed without

undue complications.

The first goal, that of limiting· the amount of

storage required in each cell, was attacked by s. Akers in

1967 [lJ. He showed that only two bits were required per

cell to implement the algorithm proposed by Lee and

Moore. Of the four states available from the two bits,

-38-

one indicated that a cell was blocked and unavailable for

new paths. Another was used to indicate a cell that was

so far untouched by the propagation process, like label 0

in the above programs. Then, instead of using the

ascending ordinal numbers _to label successive wavefronts

in the propagation, Akers used successive members from the

sequence

1,1,2,2,1,1,2,2,1,1,2,2, •••

These last two states stored the information necessary to

get back to the point where the propagation started. See
Figure 5-3. It was .only required that the program
remember whether it was on the first 1, second 1, first 2,

or second 2 in the sequence ,when it stored a number in the
goal cell containing point B. For example, if the program

knew it was on the second 1 of a pair when it reached the

goal, then in the Retrace Phase it looked for cells

containing the above sequence in reverse order, starting

with the first 1, then 2,2,1,1, etc., until it reached the

starting cell. This was a big step forward, for only two
bits of storage were needed for each-cell, no matter how

big the array of cells was made. Unfortunately this did

nothing to solve the problem of having to distribute the

next member of the sequence as a .global variable to all
the cells in the array.

-39-

1 2 1 1 2 2 1
2 ~ B 2 2 2 2 2

2 1 ~ ~ ~ ~ 2 1 2 2 2
1 Al 1 2 1 Al 1 2 2 1 1 1 1
2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 1 2

In Progress Propagation Complete Path Found

Figure 5-3. Akers' Modification

-b t 4 <f-- ~ ..:---

t ~ B ~ J ~ ~ jB t
+ J ~ ~ N N + t ~ ~ ~ N ,J..,

~
A <:-- <E'-- ~ A ~ .,,..-- ~ .,:-- ..:---

~ 1 4 +, r 4 ~ 4-
,..

,,.+ -;-

In Progress Propagation Complete Path Found

Figure 5-4. Modification for MAZER

-40-

The solution to the dilemma of global state is to use

a slightly different strategy in the algorithm. Rather

than numbering successive wavefronts with some sequence

and then. searching for the reverse of that sequence to

.find the path, simply store in each cell arrows that point

to the neighbor(s) _from which the wavefront approaches as

it passes over that cell, and then just let the arrows

show the path back to the starting cell. This approach is

shown in Figure 5-4. Since the wavefront may reach a cell

from more than one neighbor simultaneously, and since that

fact is important when trying to select one of several

equally good paths, an arrow for each neighbor is needed.

These arrows require one bit each, because the wavefront

either came from that neighbor or it didn't.

Additionally, one bit is required to identify a . cell as

being blocked. Five bits per cell is more than Akers'

two, but it is still a small number, and more importantly,

it is still a bounded number, that does not change as the

array of cells grows. With these modifications to the

algorithm~ the move to hardware is hardly more than just

"wiring it up".

-41-

Chapter .6.

~ LEE-MOORE ALGORITBM IN HARPWARE

As discussed in the preceding chapter, implementing­

the Lee-Moore path finding algorithm in hardware is a

clean and natural thing to do. A machine consisting of an

array of processors, with one processor per cell in the

algorithm, matches th.e problem perfectly. This chapter

will detail the design of such a hardware implementation,

culminating in an LSI chip that performs Lee-Moore path

finding.

6.1 A Demonstration Circuit

As a demonstration of the feasibility Of this

approach to path finding, I built. a small array of

' processors out of standard TTL parts. Figure 6-1 shows

the circuit I used. As can be seen from the figure, there

is not much to the •processor•. It consists of one and

+

:n
o

'" "
'""

"i_
:

Q

(l
ll

A

Q

C

Q
ll

l\

r
E

T

T
O

T

O
P

C
l.

K

TC

N
E
lG
ll
ll
~J
H

I ~

N

TO

H
fC

ll
T

1'1

~
]l

,
16

1

I
N

E
l<

:l
ll

lO
I\

+

TO

L

E
F

T

-r
;v

-J

~

--
--

N
I'

I (
;l

ll
H

ll
t

Fl
lO

M

T
O

P

I
It

N
E

J
G

lll
lO

H

I'
 A

"n

I'

 c
I'

 II

FH
O

M

uw

r
N

E
 I

C
ll

ll
O

H

F
IW

M

llO
T

T
O

M

N
E

I C
lll

lO
I{

F
l{(

)M

IU
C

ll
T

N

E
T

C
lll

lO
H

F
ig

u
re

6

-1
.

S
ch

em
a

ti
c

fo
r

D
em

o
n

st
ra

ti
o

n

C

ir
c
u

it

-43-

two halves standard TTL packages, a few resistors, and an

LED display. The circuit uses a 74161 as a four bit

latch. The 74161 features the TC output, which is the

logical AND of the four latch outputs and the ET input.

The four bits in the 74161 are the four arrow bits. The

fifth bit is formed by one NAND

indicate the blocked condition.

are circled. The two signals

and one NOR gate to

Global control signals

START and BLOCK are

independent for each cell and are activated by momentarily

grounding that node with a probe tip. Incoming

communication from neighbor processors enters this

processor. at the preset inputs of the 7 4161. Outgoing

communication to the neighbors exits from the NAND gate at

the right.

In operation, the circuit is quite simple.

Initially, the CLEAR signal is taken low to clear all the

block flip-flops. Then the maze walls are defined by

selectively blocking some processors by grounding their

BLOCK inputs. The LED decimal point lights in the blocked

cells. Nextl RESET is taken high for at least one clock

cycle. This forces all communication wires between

neighbor processors high and parallel loads all ones into

the 74161, turning off the LED segments. This is a stable

configuration, and will not change as the clock ticks.

-44-

All communication wires stay high, and the latches keep

parallel loading all ones because the TC outputs are

high. Now suppose that somehow the processor to the right

of this one changes out of its all ones state. Then its

TC output goes low, causing the latch to stop parallel

loading and causing the communication wires leaving the

processor to go low. One of those wires enters this

processor on the PD input. At the next clock cycle, that

low state is loaded into the D bit of the latch, turns on

the right LED segment indicating a right pointing arrow,

and prevents further parallel loading of the latch by

forcing the TC output low. The result, then, is an

indication on the LED for this processor that something

happened to the right of it. Incidentally, when the TC

output of this processor went low, so did the outgoing

communication wires, so on the next clock_cycle, the other

ne'ighbors of this processor will be activated just as

described above. Now, how did all that get started?

Well, the START input on one cell was momentarily

grounded, causing the latch outputs to go to all zero,

turning on all four LED segments indicating that

propagation started there, and causing that cell's

communication outputs to go low. It is actually a very

simple process that each processor in the array must

execute. There is no computation in the numerical- sense

-45-

involved. Each cell simply passes on the propagating

signal when it arrives, and records from which

direction(s) it came.

When the propagation reaches the edges of the array,

or: can go no farther because of blocked cells, the action

stops. What is recorded by the LEDs is actually the

direction to go from each cell in the array to get back to

the cell where it all started. The hardware has found the

shortest path from the starting point to any other point

in the array.

I designed this circuit purely for demonstration

purposes. As such, tracing the path back is a visual

process done by looking at the LED dispays. If automatic

trace back were desired, the five bits in each processor

would be accessed as five bit words by a general computer

that would then consider the processor array as a block of

smart memory. It is an easy task for an ordinary computer

to decipher the bits from each processor to find the path

desired.

Before proceeding, consider what has happened to the

computational effort required to reach this_ result. Time

complexity , . of the algorithm has been dramatically

-46-

improved. Now, rather than having a single processor

advance the wavefront by stepping around the starting cell

one cell at a time in an expanding spiral, the propagation

takes place by activation of successive rings .Q.f.

processors surrounding the starting cell. At any given

time, a number of processors directly proportional to the

length of the path is actively working, rather than just

one processor. The time required for the wavefront to·

expand out to the goal point is now directly proportional

to the length of the pa.th, not to the square of the

length. Thus, the time complexity of the algorithm is now

linear, not quadratic, ·with respect to the path length.

This result is expected a linear number of active

processors can do in linear time what· one active processor

can do in quadratic time.

The circuit described above is so simple that it

seems natural to lay out several copies of it on a silicon

chip. That is just what was done for the design of the

MAZER chip.

6.2 The MAZER Chip

The first step in. designing the MAZER chip was to

develop a NMOS circuit that performed the function of the

-47-

demonstration circuit above. The stumbling block was the

clocking scheme. Edge triggered latches are not as easy

to come by in MOS as they are in TTL. Usually a set of

multi-phase clocks is used to latch signals. This seemed

to unnecessarily complicate the circuit, and a way around

the problem was sought. The answer turned out to be

easy. Just don't use any clocks!

On careful scrutiny of . the.

demonstration circuit, one sees that

unnecessary. 'The. ·only operation

processor consists of waiting for

operation of the

clocking is really

performed by each

the propagating

wavefront to reach it, recording the direct~on(s) from

which it came, and passing it along to its neighbors. One

could imagine the array of processors as an array of

mousetraps, each cocked and ready to fire. Each mousetrap

is designed to fire as soon as any of its neighbors fire.

Each mousetrap wil.l store the direction from which its

firing signal comes. At the end of the outward

propagation process, which might always be allowed to

propagate to the extremities of the array, the contents of

each mousetrap cell~s storage would then be the required

arrows pointing in the direction of the shortest path from

that cell to the start of the wave propagation process.

-48...:

This is a good visualization of the way in which the MAZER

works.

is so fundamental in The clocking scheme that

synchronous digital design is thus seen in this case as

merely an artificial limitation on the circuit imposed by

restricted thinking. By allowing information to spread

through the array at the full speed available in the

hardware, unrestricted by clocking, the maximum power of

the hardware is put to use in solving the path finding

problem. The "path lenth" by which one path is judged

shorter than another, is represented as, the interval of

time required for the . wavef rant to propagate from the

initial cell to the goal cell, rather than as a precise

number of discrete units of distance.

Figure 6-2 is a conceptual

simplified MAZER cell. Not shown are

for accessing the cell, blocking

logic design of a

all the mechanisms

the cell so that it

becomes part of a "wall" in the maze, causing that cell to

be the starting point of wave propagation, etc., but the

mousetrap characteristic is illustrated... After the reset

line has gone high to make all the flip flop Q outputs

low, all, signals that cross the cell boundary are low, and

the system is stable in this state. Now, if for some

-49--

From
Right

... s

R

To I Righ~
From s
Top

,.. ,,

To R Top

s From
Left

...
R

Bottom

From s
Bottom

R

Figure 6-2. An electronic mousetrap.

-50-

reason one of the incoming signals goes high, the

corresponding flip flop will be set. This causes the

inputs to be disabled via the AND gates, and also causes

the cell to generate a high going signal to each of its

neighbors,. triggering them in the same way. The flip

flops remember from which direction the activation signal

entered the cell, and reading them out by an accessing

mechanism not shown gives the direction the maze solution

takes as it passes through this cell.

Figure 6-3 is an actual schematic of a MAZER cell.

Three of the AND gate/flip flop combinations of Figure 6-2

are seen here as transistor groups Ol-06, 07-012, and

013-018. The fourth,direction is identified by the state

where the cell has been triggered, and the other th~ee

flip flops are not set. The NOR gate and inverter are

formed by 019-025. Four bits of information are provided,

as open drain outputs wire OR-ed with other cells on the

chip. These bits are the three fl!P flop outputs plus a

signal that indicates if the cell mousetrap has been

•sprung•. Transistors 033-036 form a flip flop to store

the blocked condition. ROW and COLUMN are addressing

signals to select the cell for data readout, BLOCKing the

.cell to make it part of a maze wall, or STARTing the

propagation process with this cell. RESET re-cocks the

-51-

.. -i r r r &26 e 11 28

e 029

QJO 8
,..

Figure 6-3. MAZER cell schematic.

-52-

mousetraps, but does not destroy the blocked condition in

the maze wall cells. CLEAR unblocks all the cells in

preparation for a new maze. The other signals are

communication paths to adjacent cells.

The complete MAZER chip contains sixteen processors

arranged in a four by.four array. Larger arrays can be

' assembled by arranging MAZER_ chips themselves in an

array. Four wires come off each edge of the chip for the

purpose of communication to adjacent chips. There are 15

additional wires that come off chip for data and control.

Four are for data outputs, four are for address inputs,

two are for power, and five are for the control signals

BLOCK, RESET, CLEAR; START, and CHIP-ENABLE. A plot of

the MAZER .chip is shown in Figure 6-4. The four by four

array of processor cells can be seen, surrounded by the 31

pads. Designed with Caltech's conservative design rules,

the' chip measures 2241 microns square, or about 8100

square mils.

6.3 MAZ-ER Chip Test and .Characterization

Not until. the MAZER was fabricated did I realize that ,
there was an error in the design. When I tested the

returned chips, they seemed to perform strangely. Finally

Figure 6-4. Plot of the MAZER Chip

-54-

I diagnosed the symptoms and found a basic bug in the

MAZER processor circuitry. With the bug uncovered, I was

able to circumvent the problem and continue to test the

parts.

In order to understand the bug in the MAZER

circuitry, re-examine Figure 6-3. The four data outputs. of

each of the sixteen processors, which come from the drains

of transistors Q27 through Q30 in the figure, are bussed

together onto four global data wires on the chip, DATAl

through DATA4. These wires run to the chip output pad

circuitry,. where there is a single-pull up transistor on

each of them. The important point_ to examine is the node

in each processor that ·is common to the sources of the

four transistors, Q27 through Q30. This node, which I

will call the "enable node", is pulled low by the decoding

transistors, Q39 and Q40, which are controlled by the

addressing signals ROW and COLUMN. Since Q39 and Q40 are

both turned on in only one of the sixteen processors,

there should be a path from the enable node to ground only

in that addressed processor. This prevents data in the

non-addressed processors from pulling down on the data

lines. However, things are not so simple. Suppose one of

the .. data output transistors, say Q27, is on in the

addressed processor, thus pulling down the DATAl wire.

-55-

Now, suppose that in another processor, which is not being

addressed, both Q27 and Q28 are on. Since DATAl is being

held· low by data ·in the addressed processor, Q27 in the

second processor provides a path to ground for the enable
'

node in that second processor. As a result, Q28 in that

second processor can erroneously pull down the DATA2

wire. Since the addressed processor should not pull down

DATA2, the re.sult is that incorrect data appear at the

output of the chip.

Fortunately, it is possible to retrieve correct data

despite that problem. In the above example, notice that

DATAl is pulled down first by the addressed processor in

the normal way. The bad data do not start to pull down on

DATA2 until DATAl is down, and even then,. the string of

transistors doing the pulling on DATA2 is longer than

normal. The result is that good data show up on the chip

output pads about fifty nano-seconds before the bad data

from the sneak paths ruin it. Latching the good data in

an external latch at the right time retrieves the correct

state of the internal bi.ts.

The oper.ations of STARTing propagation and BLOCKing

the cell are also affected by the unwanted paths between

enable nodes and ground. Luckily, because of the high

-56-

pull-up to pull-down ratio in the Q24/Q25 inverter,

resulting in a very low switching threshold, STARTing can

be performed normally. Apparently the sneak currents are

low enough to prevent the. inverter from switching in the

non-addressed processors. However, I have been unable to

individually BLOCK cells. The effect of blocked cells can

nevertheless be tested by using the random distribution of
I blocked- cells present after power-on. The CLEAR signal,

which clears all blocked cells, operates normally.

In spite of the difficulties mentioned above, the

test results are encouraging. All the arrows point

correctly back to .the cell where propagation starts. Some

local asymmetries sometimes are present, indicating that

propagation proceeds a little more quickly in some areas

of the chip than in others, but this result is expected

with the asynchronous scheme used, and is negligible

anyway. Access time, from chip enable to data output, is

around 100 nano-seconds, about normal for a chip of this

small size. The MAZER chip is a successful solution to

the problem of singl.e layer path finding.

-57-

Chapter 2

.niQ LAYER ~ FINDING

The fact that the MAZER is limited to single layer

paths restr,icts its usefulness. The most immediate

application for path, finding hardware is in the area of

·printed circuit board design. However, single sided

circuit boards are not very exciting. The step to

two-sided boards dramatically improves wirability and

board density. Adding even more layers to the board

improves density still more, but the additional effort

does not buy nearly as much as the move from one to two

sides. Thus, there was great incentive to develop a two

layer path finder, with the· specific goal of producing a

routing machine for two-sided printed circuit boards.

This is the background for the, design of the other

integrated circuit to be discussed, the PATHFINDER.

-58-

At first glance, it would seem that one need only

construct a circuit that forms the topology of two MAZER

chips laid on top of one another, with an additional arrow

bit in each cell to indicate travel from one layer to the

other. This strategy would wor~, except that it lacks

some properties that have been found very desirable in the

two layer environment. In what follows, terminology of

the' printed circuit board .world. will be used, with the

understanding that other applications,

ibterconnect wiring on integrated circuits,

analogous features and terminology.

such as

would have

The fi~st feature that would be missing in such a

two-layer MAZER is the ability to block travel from one

side of the board to the other independently from blocking

travel through those cells without changing sides. Often

it is desirable to prevent these holes in the board, or

vias, from · occurring in certain areas of the circuit

board. Perhaps vias are to be allowed only on a tenth

inch grid, for example-: Furthermore, vias sometimes can

affect more than just the cell in which they occur. A via

in one cell may prohibit the placing of a via in an

adjacent cell. For all these reasons, an additional bit

is required for via blocking in any proposed two layer

path finding system to make it useful.

-59-

The second missing feature is much more disturbing.

Designers of two layer circuit boards have long realized

that it is best for mostly vertical wire runs to end up on

one side of the board, and mostly horizontal runs to end

up on the other side. This helps to avoid unnecessarily

blocking channels for future wires. The tendency of a

wire to choose one side of the. board or the other

depending on its orientation would be completely lacking

in a straightforward two-layer MAZER. Incorporating this

preference into the basic path finding algorithm was an

interesting problem, and the methods developed to solve it

in both the traditional software implementations and the

current hardware implementation will now be examined.

A way to achieve the wire location preference is to

use a system of costs associated with travel from cell to

cell through the array. Each cell still stores one

integer, but rather than storing ascending ordinal numbers

on successive wavefronts in the propagation phase, as in

the original algorithm, each cell stores the accumulated

cost for reaching that cell from the starting cell.

Suppose C(a,b) is the cost for expanding the wavefront

from cell a to its neighbor, cell b. Then as the

wavefront passes from cell a to cell b, the number stored

in cell bis the number stored in cell a plus C(a,b).

-60-

Since different costs might be encountered along different

routes from the starting point to a given goal point, a

number that has been previously stored in a cell might be

overwritten if the wavefront reaches that cell from

another direction with a lower cost than that achieved by

the first contact with the cell. This is shown in Figure

7-1. Notice that the wavefront expands in exactly the

same way as it did in the original algorithm, but now

cells on the frontier are not necessarily all equally

ndistantn in terms of costs, as they were in the schemes

described earlier. In the retrace phase of the algorithm,

the numbers stored in the 'cells are used in a way similar

to that described earlier. However, rather than searching

neighbor cells for the next member -in a reversed , sequence,

each step of the retrace involves searching for a neighbor

of the current cell with a stored cost less than that of

the current cell by the amount of the cost of propagating

from that neighbor to this cell during the propagation

phase. This does not necessarily result in the shortest

path from point A to point B. What comes out instead is

the least costly path between those two points, based on

the cost function C{a,b).

The simplest cost function normally used

only three distinct costs. One cost

consists of

is used for

-61-

32 31 32

21 N B 22 21 122
12 11 ~ ~ N ~ 12 11

2 2 Al 2 3

12 11 12

Just Starting A little more Still Farther

12 11

2 Al

12 11

Not

32 31 32 33 34 35 36
26

16 12 11

6 2 Al 2 3 4 5 6

14 15 16 12 11 12 13 14 15 16 12 11 12 13 14 15

Done Yet! Finished Path Found

Figure 7-1. Path found by using a cost of 1 for
travel in the horizontal direction and
10 for travel in the vertical direction.

16

-62-

travelling in the "easy" directions, north-south on one

side of the board and east-west on - the other side, a

second, slightly higher, cost is used for travelling in

the "hard" directions, east-west on the first side and

north-south on the second side, and a third, even higher,

cost is used for travel "through the board", from one side

to the other. Fancier schemes are possible. These

involve reduced costs. for travel near to and parallel to

the edges of the board to increase utilization of that

area, increased costs near component pins to prevent

blocking future access to those pins, etc. The task of

deve_loping a cost function tailor-made to a particular

circuit board can become quite an art.

Note,- however, that using this cost function as a

solution to the two layer situation brings back the same

problems the original algorithm had, namely an unbounded

number of bits of storage per cell, and global

distribution of a numer-ical cost function. If there was

to . be any hope of building a chip comparable to the MAZER

for two layer c~rcuit boards,

eliminated. To accomplish

re-examined.

these problems

this, the

had· to

MAZER

be

was

-63-

The scheme of using arrows instead of numbers seemed
to be the way to go to limit the number of bits per cell.
Using this method, however, required that during the
propagation phase the expanding frontier of the wavefront
must include only cells that were equally distant in terms
of cost from the starting point, unlike the above two
layer approach. This seemed to be at odds with the
uniform, diamond shaped wavefront propagation described
above.

The solution to the costs problem was to control the
speed of wavefront propagation from cell to cell, rather
than let it go at gate delay speeds. Consider the simple
three .cost system des,cribed earlier. If propagation could
be allowed to proceed quickly in the neasyn direction,
more slowly in the nhardn direction, and even more slowly
in the nthrough the boardn direction, the wavefront would
meet the requirement that all cells on the frontier would
be at an equal ndistance• in terms of cost from the
starting cell. Imagine a system where north-south
propagation is easy on the top of the board and hard on
the bottom. On such a board, a wavefront propagating from
point A to a point B directly north of point A will reach
point B on top of the board first, and will thus store
arrows indicating a path that travels on the . top side of

-64-

the board back to point A. Similarly, if point B were to

the east of point A, the wavefront, propagating more

quickly in the. east direction on the bottom of the board

than on the top, would cause point B to store arrows

indicating retrace along the bottom of the board back to

point A. No matter where point B was, the arrival of the

wavefront would store information describing the least

costly path back to point A.

During the time this solution evolved, some

redundancy in the .storage used in the MAZER made itself

known. If the propagation phase left an arrow in cell A

pointing tQ. a neighbor cell B, indicating that retrace

should proceed in that, direction, that implied that there

' would be no arrow in cell B that pointed to cell A. Since

that particular combination, adjacent cells pointing at

each other, would never occur, there must have been some

redundant information stored there, implying that a

reduction in storage was possible. This was accomplished

by moving the location of the arrow bits from inside each

cell to between cells •. Since .each arrow then served the

two cells between which it lay, the total storage required

for the arrows was· halved.

-65-

Wi th these new modifications to the basic Lee-Moore

algorithm, it was time to start designing the two layer

chip.

-66-

Cbapter .6..

.!HQ LAYER BABDWABE. - - .!J:R.E PATHFINDER ~

The obstacle in the design of the PATHFINDER chip was.

the method to use in controlling propagation speeds. What

was required was a way to vary the speed over at least a

ten to one range in each of three directions, the "easy"

direction, the "hard" direction, and the "through the

board" direction. Also, the circuitry could not be overly

complex, nor could it involve. many wires to the global

environment. However, the requ.ired speed settings were

related to the cost function described earlier. The cost

function was something that was set by little more than

educated guessing and experimentation. There was nothing

very critical about the exact values of the costs. Only

approximate settings were required. All of these

co.nsi,derations led the design. away from a digitally

controlled speed system, and toward a hybrid system.

-67-

The method employed relies heavily on the dynamic

charge storage abilities of MOS circuitry. Figure 8-1

shows the set up for a simplified, one layer cell with its

surrounding arrows, not showing the blocking or accessing

circuitry. Each cell contains a capacitor of about 5 pf.

Before the start of the propagation phase, the capacitors

are all precharged by means of the precharge transistor.
I

With all the capacitors charged, all the arrow flip flops

have both outputs held low. To start propagation at a

cell, that cell's capacitor is discharged. That action

releases one side of 'the arrow flip flops surrounding that

cell, causing those arrows to "point" to that cell with

the discharged capacitor. The high outputs of the arrow

flip-flops then enter the neighbor cells, and begin

discharging the capacitors there at rates determined by

the voltages on the gates of Qa, and Qb. When those

capacitors are completely drained, the arrows surrounding

those cells flip to point to the newly discharged

capacitors, and the arrow outputs begin discharging

capacitors in their neighbors. As the wavefront of

activity propagates out, cells behind the frontier have

completely discharged capacitors, cells ahead of ,the

frontier have fully charged capacitors, and cells on the

frontier have capacitors that are in the process of being

discharged.

~68-_

r - - - 1

Upper Arrow

L_ -------

r-Precharge
,--------.., r-- - - ..;_ - - --,

J-st.art

,_ ______ _;

~-------l Left Arrow -i -f ~ Right Arrow

r------
1

I
I

I
I
I

- 1

1
Bottom Arrow

L ________ J

Figure 8-1. Simplified PATHFINDER Cell

-69-

The time required, and thus the cost, for propagating

through a cell depends on the rate at which the capacitor

is discharged, which, in turn, depends on the voitages on

the gates of Qa and Qb. The direction from which the

wavefront approaches the cell determines which path to use

in discharging the capacitor.

A feature included on the chip allows a small amount ·

of local control over the cost function to modulate the

overall three costs described above. This consists of an

additional pF or so of capacitance that can be switched on

in parallel with the main capacitor in each cell. The

time for .propagating through a cell, and hence its

propagation •costs",. can be increased by connecting its

extra capacitor before precharge and leaving it connected

through propagation. The cost can be decreased by

connecting the extra capacitor after precharge is over and

disconnecting it again before propagation starts. These

capacitor connections are switched on a cell by cell

basis, controlled by a single bit in . each cell.. This

makes it possible to increase costs near component pins,

or to decrease costs near the board edges, etc., to reduce

or increase the tendency for wires to end up in those

areas. If circui.try had been included · to discharge the

extra capacitor when it was disconnected from the main

-70-

one, additional levels of cost could be obtained by

repeatedly connecting and disconnecting the extra

capacitor between precharge and the start of propagation

to remove more a111d more charge from the main capacitor,

and thus reduce its discharge time.

feature was not included.

However, that extra

Figure 8-2 is a schematic of a two layer. PATHFINDER

processor, containing circuitry for the cells on both

sides of the board as well as the arrows between them.

The upper arrow and right hand arrow for each cell are

arbitrarily assigned as belonging to that cell, while the

lower and left hand arrows are considered to belong to the

neighbor cells in those.directions. The control storage

bits are shown as boxes for simplicity. ·Actually the_ five

arrow bits and the four control bits make up a nine bit

word of what amounts to a standard static memory system,

using the usual six transistor cell. Not shown are the

two transistors that selectively link the flip flops to

the word lines that run through all the bits, nor the
\

select lines that control the gates of those transistors

to do the addressing. Instead, the storage bits are shown

located in reasonable places on the schematic to suggest

their function in the circuit.

·-

r
-

-,
 -

-
-
-
-
-
-,

r

-
-

-
-

-
-

-
-

-
1

l

I
I

I
I
~
~
~
-

..

I
~
x
t
r
a

I
C

o
st

I
I

D
it

I

-
I

L

1
-S

ta
rt

'---
-

t-i

r

Jo
-S

e
le

c
t
I

T

L
in

e

I I

'
1 "

I
I

I
I I

I

I
t

I
T

';

'

I
I

II

J'i
i L

jl
l~
~E
;_
 :~

~~
~:

T
o

p

L

a
y

e
r

c
ir

c
u

it
r
y

I

S
am

e
a
s

B
o

tt
o

m

L

a
y

e
r

I
I

E
x

c
e
p

t
"
e
a
s
y

"

a
n

d

I
"
h

a
rd

"

v
o
l
t
a
~
e
s

a
re

I
I

re
v

e
rs

e
d

~
I

•
.

I
Bo

tto
1

lc
u~
~

B
lo

c
k

I.

,,
 -

ii
B

it

!
h

 r
e
c

t.
o

n

D
i t

_ '
.h
ro
~~
~h

l1H
u<

;1<
 I 1

L

 _
_

 2
_
_

_
_

_

_
~
o
l
~
e
 ~

?
L

_

_
 -

-
-

-
-

_
_

J

B
o

tt
o

m

L
a
y

e
r

C
e
ll

T

o
p

L

a
y

e
r

C
e
ll

F
ig

u
re

~-
2.

S
ch

em
at

ic

o
f

PA
TH

FI
N

D
ER

p

ro
c
e
ss

o
r.

B

it

re
a
d

in
g

an

d

w

ri
ti

n
g

m

ec
h

an
is

m
s

a
re

n

o
t

sh
ow

n.

I
.

_
,

I

-72-

The circuit works just as described above for Figure

8-1, with the addition of the blocking controls and the

switch to two layer operation. Having two layers merely

means that three paths are present for dischargi,ng the

capacitor, each controlled by a transistor whose gate

voltage determines how quickly the capacitor is discharged

through that path. The blocking control flip flops merely

inhibit the appropriate discharge paths to prevent the

discharge of the capacitor under the conditions that are

to be blocked.

Figure 8-3 shows a plot of the metal layer of the

PATHFINDER chip.- The chip contains a four by eight array

of two layer processors. As with the MAZER, the large

processor arrays of several hundred processors on a side

that are needed for useful printed circuit boa.rd work are

built up by, assembling PATHFINDER chips themselves in an

array.- Forty-eight of· the · seventy pads are devoted to

chip to chip communication within the large array. The

remaining pads consist of nine address pads, two power

pads, two data I/O pads, and nine control pads. Chip size

is 3750 by 4875 microns-

One signal in the PATHFINDER cell's schematic remains

to be defined. This signal, labelled CLK in Figure 8-2,

-73-

Figure 8-3 • The .PATHFINDER'S Metal Layer.

-74-

appears on the gate of a transistor in series with each of
the discharge paths in every cell. Only when CLK is high
can the discharge action occur. When CLK is low~ all
activity is suspended. The need for this signal stems
from a fundamental difficulty that hybrid.system designers
must face. The next chapter defines that difficulty and
shows how the CLK signal and other facets of the

·PATHFINDER's design evolved to avoid it.

-75-

Chapter .i

DEALING NlXR NON-UNIFORMITY

Any processing system must eventually be implemented
with real hardware, and in any real implementation, there
will be parameters that will vary unintentionally. One
can never count on a perfectly uniform environment in
which to build and operate his system. Part Of any
processor design thus must include concern over the
sensitivity of the design to variations in various
parameters in the fabricating and operating environment.

Digital elements are very insensitive to non-uniform
conditions as a rule. Digital representations of data
provide a range over which the physical quantities may
vary without changing the value of the data represented,
just as the abacus, could. tolerate slight displacements of
its beads without losing its data.

-76-

Analog elements, however, generally require tight
I

restrictions on variations in their environment. Any
change, no matter how slight, which affects a

data-representing quantity will introduce an error in the

data ·that will be carried along into succeeding

calculations. Proper operation of- an analog system

generally requires careful control over the fabrication

parameters and operating conditions.

A hybrid system, such as the PATHFINDER, by

definition includes some analog processing, and thus

demands that one consider its s~nsitivity to environmental

variations. . In the PATHFINDER, there are two areas that

require careful control. These areas are the generation

of the cost-setting voltages that are applied to the gates
of the transistors at the bottom of the discharge paths,

and the uniformity Of the delays in . cell-to-cell

communication throughout the array Of cells. The

PA'l'BFINDER's design includes special features to handle

both of thes·e issues.

Controlling, the. cost-setting voltages is the first
sensitive area of the design.. We need to generate three
voltages to be applied to the gates of the transistors at
the bottom of the three discharge paths in each cell. The

-77-

object is to control the current in the discharge paths,

and thus to control the time required, or cost, for

propagating the wavefront through the cell. The cost

system demands that the three costs be uniform from cell

to cell throughout the array. Thus, one's first reaction

is to distribute the same three voltages to each cell,

thereby setting the gates of the three controlling

transistors at the same voltage in each cell, and thus

allowing the same currents in the three discharge paths in

'each cell.

Unfortunatly, the discharge currents, and thus the

costs, depend not only on. the gate-to-source voltage of

the controlling transistors, but also on the threshold

voltage of these transistors, which is set during

fabrication. Variations in the transistor's threshold

voltage would result in different discharge currents, even

with the same voltage applied to the gates. Variations in

threshold from one cell to the next on the same. PATHFINDER

chip are small enough to be ignored. However, the

PATHFINPER system must be assembled. from many individual

chips, which may have been fabricated at different times

or on different lines, and will very likely have different

threshold voltages. Thus, although the same three

controlling voltages may safely ·be distributed to all

-78-

cells on one chip, the voltages that result in equal costs

will not be quite the same from one chip to the next. It

would be very awkward to set three separate voltages

independently for each of the many PA'l'HFINDER chips in a

system, so some scheme is needed to reduce the sensitivity

of the cost control system to transistor threshold

variations.

The PATHFINDER'S solution to this problem is shown in

Figure 9-1. That figure diagrams two PA'l'HFINDER cells,

and shows the cost-setting interconnections. All of the

resistors that have the same label in the figure have the

same value.,· The scheme. used for setting the costs is to

set the discharge currents directly and not worry about

generating the control voltages themselves, using a

circuit known as a current mirror. The resistors in the

figure bias their corresponding transistors on the chips

to some quiescent operating point, where the currents that

pass through the transistors are determined by the values

of the resistors and the voltages across those resistors.

The voltages at the high end of all the R1-'s in the system

are the same. The voltages at the low end of the Rl's

woul.d all. be th·e same if· all· the transistors had identical

characteristics. In fact, the transistors differ

sl.ightly, so the voltages there will differ slightly. It

v,
E=
::
=~
==
¢=
==
==
=~
F·
~t
-=
-~
-

~
,

~
 ~

-:-

'
t

I
l

f
I

'
I

_j

~l~
 ~>II

II
~ l

~
•

•
•

II
.

r.

~

~

-=•

I
-:

":
"

"-
-.

./
I

CE
LL

S

-:-

-
-
-
~
;

f
4

T

1
I

T

co
st

se

tt
in

g
vo

lta
ge

s

~

!
PA

TH
FI

ND
ER

 C
HI

PS
 ~!~

 ~ • •
•

~

/f

CE

LL
S

~~ ;
~ ;~

Fi
gu

re
 9

-1
.

Th
e

cu
rr

en
t

m
ir

ro
r

co
st

-s
et

ti
ng

 a
rr

an
ge

m
en

t.
A

ss
um

in
g

th
at

 a
ll

tr

an
si

st
or

s
on

 t
ne

 s
am

e
ch

ip
 a

re
 i

de
nt

1c
al

,
th

en

id
en

ti
ca

l
1y

la

be
ll

ed
 v

al
ue

s
ab

ov
e

w
il

l
be

 e
qu

al
,

an
d

va
lu

es
 w

ho
se

 l
ab

el
s

d
if

fe
r

on
ly

 i
n

a
pr

im
e

w
il

l
be

 n
ea

rl
y

eq
ua

l,
de

sp
it

e
ch

1p
-t

o-
ch

ip

va
ri

at
io

ns
 i

n
tr

an
s1

st
or

 c
ha

ra
ct

er
is

ti
cs

.

I
...

l.
O

I

-ao-
is to that difference that we must reduce the circuit's
sensitivity. Note that as long as Vl is well above the
threshold voltage of the transistors, then . the voltages
across the Rl's will be dominated by Vl and only slightly
modulated by the varying voltages at the low ends of the
resistors. Thus, the currents through the Rl's will all
be nearly equal, varying only slightly with the variations
in transistor threshold. The voltage at the bottom of the
Rl connected to each chip becomes the control voltage for
one of the costs on that chip. Any transistor on that
chip whose gate is connected to that voltage will be
biased- to the same point as the current mirror transistor,
and will thus carry the same current as that flowing in
the corresponding Rl as long as the transistor operates in
its saturation region. Thus,. the discharge current for
the path controlled by that voltage will be equal to the
current flowing in Rl for that chip. Since all the
currents in the Rl's are nearly identical, the discharge
currents for that path in all the chips will be nearly
identical, practically independent of variations in the
transistor characteristics from chip to chip. This is the
desired result.

In practice, VI, V2, and V3 may all be the same
voltage, say five volts, and the three costs would be set

-81-

by choosing different values for the Rl's, R2 1 s, and R3's

to set the different current levels. This scheme would

work well for a system in which the costs were fixed. To

vary the cost structure, however, would require changing

the resistors connected to every chip in the system. To

avoid such an awkward situation, one could keep Vl, V2,

and V3 separate and vary those voltages to modulate the

global costs. As long as those voltages are well above

the threshold of the transistors on the chips, so that the

voltages across the resistors, and thus the currents

through them, are dominated by those voltages Vl, V2, and

V3, the discharge currents, and thus the costs,. will be

quite insensitive to.chip-to-chip varations in transistor

threshold.

The other critical aspect of the PATHFINDER's design

has to do with the uniformity of the interconnection of

the cells in the array. The analog cost scheme depends on

a uniform delay in propagating the expanding wavefront

from cell to cell in the array. The .current mirror

solution above ensures that the discharge of the

cap~citors occurs uniformly. However, there is an

additional delay experienced in propagating the

communication signals from one · cell to the next. This

extra delay contributes to the cost function and if it is

-82-

not uniform throughout the array of cells, it introduces a

non-uniformity in the costs.

The regularity of the cells on the PA'l'BFINDER chip

itself imposes a natural uniformity on the communication

structure. If all the cells in the system could be

fabricated on a single chip of silicon, there would be

little problem. However, the PATHFINDER system builds

large arrays of cells by interconnecting many PATHFINDER

chips, and the boundaries between chips lead to a distinct

non-uniformity in the communication time .• Signals will

propagate much more quickly between adjacent cells on the

same chip than they will -between adjacent cells that

happen to exist on differ~nt chips. This increases the

cost for the communication paths that cross chip

boundaries. The MAZER chip is plagued by this problem as

well, since it also finds paths based on the time needed

to propagate a signal from one point to another. The

effect of this problem is shown in Figure 9-2. The

minimal cost path between A and B in the Figure may well

be the solid line rather than the dotted line, because the
-

solid line crosses fewer chip _boundaries.

One way to minimize this problem would be to reduce

the discharge currents in the cells so that the capacitor

Chip Boundaries

-83-

\

' I .

I I

I

Preferred Path

Path found by MAZER

Figure 9-2 • The problem posed by chip boundaries
in large arrays.

-84-

discharge time is much longer than the chip-to-chip delay

time. With that approach, the percentage error in the

propagation delay from chip to chip would be lOO*D/T %,

where D is the additional delay encountered in crossing a

chip boundary, and T is the discharge time of a

capacitor. In the PATHFINDER chip, the shortest possible

capacitor discharge time, corresponding to the lowest

cost, is about 200 nano-seconds.- If the delay in changing

chips is 100 nano-seconds, a 50% error in cost results,

which is unacceptable. By using lower currents, the error

can be reduced, however. Only a 10% error .would result if

the shortest discharge time were limited to 1000

nano-seconds.

The method used in the PATHFINDER for controlling

this problem involves the CLK signal mentioned at the end

of the preceding chapter. When CLK is high, discharge

occurs normally. When CLK is low, all discharge paths are

interrupted and the action stops. The technique here is

to allow the capacitors to discharge only a little at a

time by letting CLK be high for only short periods,

followed by a •settling time"-equal to D above, when CLK

is off and any signals crossing between chips have time to

get there. Suppose that each discharge period is divided

into N active segments separated_by this settling time.

-85-

If those segments of the discharge period are shorter than

the settling time, which would generally be the case, then

a cell on one chip watching for a capacitor in an adjacent

chip to discharge would observe ·that event during the
I

settling time following the active period in which the

event actually happened. That observing cell then would

react to the event as if it happened at the end of the·
I

active segment of time even though it actually may have

happened at any time during ' the active ,segment of

discharge. The average error, then, in the time to

propagate the wavefront between these two cells on

different chips would be one half of one segment of the

discharge time, or T/2N, giving an average percentage

error of 50/N %. For a 10% error, we would need to break

up the discharge period into five segments, each followed

by a settling time period. The total time, then, for

propagating a lowest-cost signal. from cell to cell in the

PATHFINDER would be the shortest capacitor discharge time,

200 nano-seconds, plus five settling times of 100

nano-seconds each, or 700 nano-seconds ·total. Comparing

this with the 1000 nano-seconds required for the simpler

solution mentioned above, one sees that this second

solution allows faster operation in this case. For a

system in which the delay from chip to chip was a smaller

fraction of the capacitor discharge time, the situation

-86-

may reverse. Note that the PATHFINDER

either mode by either pulsing the CLK signal

above, or merely keeping CLK high always.

can operate in

as described

The PATHFINDER uses the solutions described above to

attack the problem of non-uniformities in the system.

They are only approximate solutions. One can never reduce

to zero the -effects of the chip boundaries, for example.

Furthermore, other effects such as variations in

capacitance and sheet resistance of the chip materials

introduce small variations of their own. Another item

neglected is- the small variation in transistor- threshold

voltage between the cost-setting transistors on the same

chip. No matter how hard one works, there will always be

some non-uniformity remaining in any real implementation

to upset the operation of any analog processing system,

including the analog portions of hybrid systems. -Taking_

steps like those-described in this chapter, however, can

reduce the effects of those variations to acceptable

levels.

-87-

Chapter l.Q.

FLAWS .Ili !rli.E PATHFINDER

The PATHFINDER chip was included on the MPC380 run
managed by Xerox PARC in the spring of 1980, and was. also
included on the M08B Mosis run managed by the Information
Sciences Institute. From the two runs, I have received
approximately twenty five copies of the chip. Four.of
these chips apparently contain no processing errors and
perform as expected. Faults in the bad chips range from
stuck bits to malfunctioning address decoders to complete
failure, perhaps in the output buffers. Some of the chips
have capacitors that fail to hold charge long enough to be
useful. The capacito~s in the good chips, though, hold
their charge long enough to keep the arrows "balanced" for
about twenty seconds when carefully shielded from light.
This is several orders of magnitude longer than required
for successful path finding.

-88-

The chips have passed through several quantitative

tests. Access time from chip enable to data out is around

a micro-second, which is acceptabl_e, though not

noteworthy. An important item of interest is the

operation of the cost-setting current mirrors. These
-

perform very well. The range of control is excellent,

with the normal external operating current between 100 and

1000 microamps.

I have assembled a small microcomputer system to test

the PATHFINDER chips and to operate them as a pathf inding

system. I have written a true path finding program for

the micropro~essor that uses one PATHFINDER chip to find
'

paths through a four by eight grid. The program allows

the user to set up any initial combination of blocked

cells and blocked vias, start propagation from any cell in

the array, and trace a path back to that starting cell

from any of the other cells. The program displays the

resulting pa th as well as the status of the control bi ts

in the PATHFINDER chip on a terminal screen. In this

implementation, three pote~tiometers, connected to the

three current ·mirror pads on the chip, are used to set the

three global costs. The ,Program can demonstrate the

effect of changing costs on the path found between two

points in the grid. For example, the user can cause the

-89-

path to either skirt around barriers between the two
'

endpoints, or to form vi as and go over or. under the

barriers, depending on the settings of the three

potentiometers.

Exper;imenting with a system even as small as this one

can provide some insight into the operating

characteristics of a hybrid system such as the

PATHFINDER. A digital-looking processor with three

potentiometers on the front is a strange . sight. The

system does a good job of demonstrating the path-finding

~bilities of the PATHFINDER. After experimenting with

this system,for some time, though, a few anomalies emerged

and pointed to some deficiencies in the PATBFINDER's

design that should be changed in a second generation

version of the chip. As it stands, the chip does not

always find the least costly path, but rather will

sometimes choose· a path with a cost slightly higher than

minimal. There are three faults, each of which

independently causes some of these incorrect results.

The first design flaw has to do with how the

capacitors are discharged. If the wavefront reaches a

cell from, say, both the north and east directions

simultaneously, the capacitor will be discharged at a rate

-90-

equal to the sum of the easy and hard direction rates.

This is because more than one of the three discharge paths

is allowed to drain charge from the capacitor. The result

of this flaw is shown in Figure 10-1. Instead of assuming

the shape of an expanding diamqnd as it propagates out

from the initial cell, the wavefront expands in a nearly

rectangular shape. One can understand this by recognizing

that the frontier cells on a part of the wavefront

propagating diagonally through-- the array will fire more

quickly than normal, resulting in the frontier at that

point bulging out slightly from where it should be. If

one started with a diamond shaped frontier, the sides of

the diamond would expand more quickly than the points of

the diamond, and the frontier would gradually evolve- into

the nearly rectangular form shown in the figure. Since

the algorithm says that all cells on the frontier at any

given time have the same accumulated cost back to the

original cell, this flaw reduces the effective cost of

paths to points near the corners of the rectangular

propagation pattern. In the printed circuit world, this

would have the effect shown in Figure 10-2 ._ Although Path

A and. Path B. in the figure should be equally costly, the

PATHFINDER may claim that A is less costly, and thus

cause a preference for Path A over Path B that should not

exist·. The effect is minimal, but annoying. As more

-91-

PATHFINDER'S frontier
Desired shape

Figure 10-1. The shape of the expandinq wavefront frontier
in the PATHFINDER compared with the desired diamond shape.

Path A

Path B

Figure lO-~. Due to the frontier shape displayed above,
the PATHFINDER would prefer path A over path B.

wires are

wavefront

chance of

placed,

propagates

forming

diamond or rectangle.

-92-

the effect diminishes, since the

down skinny alleys where there is no

any two-dimensional shape, either

A fix to this flaw is easy. All that is required is

a protection on the discharge paths, so that when one is

turned on, the others are blocked. The discharge path

carrying the greatest current, representing the lowest

cost, has the highest priority. Using such a scheme and

fixing the other flaws to be discussed will achieve the

normal, diamond shaped wavefront frontier, as desired •

. The second flaw .in the PATHFINDER design has to do

with timing and the incorporation of the.analog costs, and

provides an important lesson in the study of hybrid

systems in general. Figure 10-3 shows the conceptual cell

logic diagram of Figure 6-2, with the addition of the

delay controlled by the analog cost variables. The design

essentially consists of a five input . one output

asynchronous state machine with five state variables, the

flip flop outputs.. The PATHFINDER positions the delay ·

inside the feedback pathr as shown in part ·a of Figure

10-3 ·• When one input goes high,. the corresponding arrow

flip flop is set and· the delay starts. If, before the

-93-

delay times out, another input goes high, that arrow flip

flop is also set. Other inputs to the cell are , blocked

only after the delay is over. There is nothing to

distinguish which of several set arrow flip flops was set

first and which were set by inputs arriving later but

before the delay timed out. This effectively reduces the

cost of the paths generating the later inputs to equal the

cost of the path that generated the initial input to the

cell. The machine is tricked into thinking that all the­

set arrow flip flops resulted from inputs that arrived at

the same time, when really they did not. The only way to

avoid confusing the machine in this way is to keep the

delay induced by the analog inputs out of the feedback

path in the state machine.

Given that we have to move the delay in order to fix

this flaw, the question becomes where do we move it? The

obvious choice is shown in part b of Figure 10-3, at the

output of the cell. This position, however, also is not

ideal. The amount of delay he·re is determined by which

arrow flip flops are set and the corresponding costs

associated with them. The delay in passing an advancing

wavefront through the. cell from input to output is correct

and only the first input to arrive is able to set its

arrow flip flop so no confusion results. However, the

s
R

i----4S

-~L,._--"" R
From --.,;.;,__.-
West ---ts
---~--'

From
Throuqh

From
South

s
R.

reset

5

-94-

a. Delay positioned
inside feedback loop

North

10 South
East

o Through

Jo North

From
East

o South
..x:i-.::~~o East

From
West s

From
Through s

b. Delay positioned
outside feedback loop

,;/.

reset

Figure 10-3. Conceptual PATHFINDER cell logic with the
analog-controlled delay positioned differently.

Path B
Path A

Figure 10-4. If propagation starts at cell A and horizontal
travel is cheaper than vertical travel, the circuit of
Figure 9-3b will prefer path A over path B.

0 v!es t

To Through

-95-

arrows are set on the basis of the inputs without taking

the delay in this cell into account. The effect of this

is to make the cost of travelling in the cell where the

path ends equal to zero. This results in the situation

shown in Figure 10-4, ·Where path A is preferred over Path

B, even though both should be equally costly.

The effect of this flaw in wire routing is noticeable

only on very short paths, and thus is not especially
I

important in this application, but the theoretical

implications of this problem are more extensive. Careful

study of the path finding algorithm reveals that a path

accumulates.cost not by travelling through a cell, but

rather by travelling between cells, from one cell to

another. Thus, one cannot implement the algorithm

perfectly by positioning the costs, or delays, within the

cells at all. The only way to correctly match the

hardware to the problem is to place the delays between the

cells, on the communication paths, as shown in Figure

10-5. The delays pictured there are bi-directional

elements that delay signals passing through them in either

direction by the same amount of time. Only by associating

the costs with the communication in the processing can

this second flaw in the PATHFINDER be corrected.

-96-

Figure 10-5. Implementing costs with delays on the
communication paths linking each cell with its neighbors.
The circles indicate long (L), medium (M), and short (S)
delays.

-97-

The third flaw in the PATHFINDER design stems from

the attempt to reduce the amount of storage based on the

assumption that arrow bits within the cells are redundant,

as mentioned in Chapter 7. Given two adjacent cells A and

B, it is true that the wavefront will never propagate both

from A to B and from B to A, with arrows pointing at each

other. However, there are three situations that are

possible. Obviously, the wavefront can propagate from

cell A to cell B or from cell B to cell A. It is also

possible that the wavefront does not pass between the

cells in either direction, and it is important to note

that. Consider the case shown in Figure 10-6 with the

arrows implemented as in the PATHFINDER chip. Here a

plane wave is propagating along the x-axis of the array

towards our cell A. The horizontal arrows all will point

to the west, as required, but the vertical arrows will end

up pointing randomly either north or south. If the

vertical arrows end up all pointing· south, say and the

retrace from cell A happens to start by checking the

south-pointing arrow, the resulting path will head south,

and continue south, instead of heading west, in the

direction from which the wavefront actually came. A third

arrow state is required to indicate this case when the

wavefront does not pass between two adjacent cells.'

-98-

frontier propagating c;. to the right

A

found

Figure 10-a. Possible result when a plane-wave frontier passes
through the cells. Arrows parallel to the frontier erroneously
indicate potential vertical paths.

-99-

The fix here is to provide more storage to cover the

case that the PATHFINDER ignored. One way to do this is

to move the arrows back into the cells and accept the fact

that one of the four possible states of two arrows in

adjacent cells will neve'r happen. Another possibiliy is

to use a "tri-flop•, a circuit with three stable 'states,

as the llarrow" storage between cells. Either solution will

remedy this flaw in the PATHFINDER.

Despite these three flaws, the PATHFINDER chip will

successfully find two layer paths between two points. In

most cases the effects of these flaws are negligible, and

the system performs fully as expected. By making the

corrections · outlined ·,in this chapter, the PATHFINDER can

be improved to eliminate the occasional irregularities

that occur with the first design.

I have

system that

-100-

Chapter ll.

LESSONS TAUGHT 13.Y .lli.E. PATHFINDER

demonstrated one

effectively uses

example

a hybrid

of

of

a processing

digital and

analog information. While such an effort is a significant

achievement, one should not merely accept the result as a

job well done and move on to the next task. The design of

a novel system such as the PATHFINDER chip involves many

new ideas, and these new insights can .of ten lead to

important breakthroughs in other related areas. Thus, it

is important to take note of the.lessons learned from such

a design experience.

This chapter will

that the PATHFINDER'S

identify some important lessons

design taught me. With respect to

hybrid processing, in particular, the lessons concern how

to represent the data, how to achieve interaction between

-101-

the analog and digital data, how to deal with non-ideal

environments, and · how to interpret the results of the

processing. An unexpected result of this research was an

important .lesson concerning the communication side of

processing in general. An exploration of these topics

will complete this excursion into the digital/analog

hybrid world.

The problem of representing data in a processing

machine is an important one. In a hybrid processor, it is

a central issue, since the hybrid nature of the system

implies that digital variables will represent some data

while analogvariables will represent other data. One

guideline · is made clear by the discussions in the early

chapters of this thesis comparing analog and digital

processing. Any information that must pass through

several processing steps MUST use a digital representation

if it is to avoid accumulating errors. due to inaccuracies

and noise. Thus, in any sort of an iterative process,

whether the computation is iterated in time, as in a

programming loop, or iterated in space, as in an array

processor, the .data that pass from one computation to the

next must be in digital form. Using digita~

representations of

clean, noise free

these · variables

signals to be

restores the data to

used by the next

computation. Errors

individual computation

-102-

introduced

cannot

by noise in each

accumulate as they

inevitably would if analog representations were used.

Analog representations of variables are possible only in

computations that occur locally or where the accumulation

of noise-induced errors is acceptable.

In any non-trivial processing problem the data that

eventually generate the desired result are likely to pass

through many computations before producing the answer, and

thus these data must be represented digitally. In the

PATHFINDER system, the data representing the path

endpoints are specified, and the goal is to determine how

to step from cell to cell, incrementing or decrementing

the x, y,, or z position variables with each step to

one endpoint to another. If this proceed from

incrementing or decrementing were done on an analog

representation of the path data, errors could cause the

calculated position to stray away from the actual desired

position after proceeding only a- few steps from the

starting point and the •pa.th• found would lose its

meaning. Only a digital representation makes sense here,

so that each step from cell to cell is a known, fixed

increment in space with no chance Of noise accumulating as

the number of steps taken increases.

-103-

Since the eventual answer-producing data generally

must be in digital form, that leaves only the data that

control the processing, i.e. the parameters to the

process, as candidates for analog representation. This is

in keeping with the requirement that analog variables must

not take part in the iterative computation, but may

provide some parametric data for each individual

computation as it occurs. There are many choices

available for representing analog data, depending upon the

type of processing system under study. Voltage level,

chemical. concentration, position, and- even temperature

might be appropriate analog variables under the right

circumstances. The choice. really depends on two

questions~ First, how' precisely can one represent the

analog data using the given quantity, and second, how well

can one recover the data thus represented and use it in

calculations? Both of these questions relate to how

precisely one can measure the physical quantity being

considered to represent the data.

Of all the possible physical quantities . that are

candidates for representing. analog da.ta, time is the one

over which we have the most control'. Time is a

monotonically increasing function. -It never stops or

moves backwards. One can count on it to steadily progress

-104-

in one direction. Thus, when an event occurs, we can

record that fact and use it in our calculations without

fear that the event will "un-occur" due to some momentary

reversal of time. This feature makes time a useful

vehicle for transferring analog data from place to place.

In VLSI systems, voltage levels come to mind as

candidates for analog data representation, but again time

proves_ to be a better choice. Voltage levels are hard to

control on an integrated circuit, and can easily succomb ·

to noise from capacitive coupling with clock signals and

other transients, and thus would · be a poor choice for

analog data,representation. On the other hand, time is

relatively easy to '·control because of the ease and

precision with which capacitors can be designed and

matched. Representing analog data by a time interval

between two events leads to a very controllable variable

that is quite insensitive to the noise present in a VLSI

environment.

The PATHFINDER design uses intervals of time to

represent the analog cost of propagating the information

. wavefront th1:ough each cell in the array. The delay

between the initial arrival of the wavefront at the cell

and the transmission of the wavefront on to the next set
I

-105-

of neighbors is a continuous function of the cost for

travelling through that cell. The computation that uses

the analog input, determining how long to delay the

wavefront, takes place entirely within the cell, and the

output passed on to the next cells is a digital signal

representing the advancing wavefront. All the

requirements of variable representation mentioned in the

preceding paragraphs are met. Thus, the PATHFINDER is a

workable hybrid processing system.

In order for data processing to take place, the

variables, in all their different representations, must

interact with each other in some way. If we are to build

VLSI hybrid systems in which the analog parameters are

represented as intervals of time, we must design our

digital circuitry to be dependent on the relative timing

of events. Since the time intervals are continuously

variable, the digital machine must be asynchronous if it

is to make use of the full precision available in the

analog representation. Since the time an event happens

has no meaning except in relation to the time of some
\

other event, there must be more than a single- process in

progress so that there will be two events to compare.

Thus,'one can think of a general machine of this type as

consisting of· a number of asynchronous state machines.

-106-

The timing of each state machine depends on some analog

parameter to the problem, and the operation of each state

machine depends upon the relative timing of the inputs it

receives from other state machines.

The PATHFINDER consists of an array of identical

asynchronous finite state machines.

performed by each state machine is

The operation

determined by the

relative timing of the inputs, i.e. which input arrives

first. The output of each state machine is delayed by a

time that is a function of the timing of the inputs and

the analog cost parameters. The analog variables interact'

with the digital processing by varying the relative timing

of different - events.·.· Since the state machine operation

depends upon the relative timing, the analog data

successfully interact in the proper way.

Any real processing system will be built in some

physical medium, which is almost certain to have some

non-ideal characteristics. Digital processing techniques

are tolerant to some degraee of irregularities in their

environments, but analog techniques often depend on having

an ideal, uniform medium as a foundation, and thus a.

designer of hybrid processors must watch out for and

correct any non-idealities present in his design. The

-107-

PATHFINDER design includes corrections for two important

non-ideal characteristics that the physics of the

situation imposes. First, variations in transistor

characteristics from chip to chip mean that a different

voltage must be applied to the cost setting transistor

gates at the bottom of the discharge paths for each

different chip. I overcame this non-ideality by using the

current mirror arrangement discussed earlier, which allows

one to set the discharge currents without worrying about

what voltage ends tip on those transistor gates. The

second serious non-ideality faced in the PATHFINDER design

is the-discontinuity existing at chip boundaries in the

array of cells, discussed in Chapter 9. In this case, the

fix was the clock signal, which reduced the dependence of

the cell to cell delay on the actual delay occurring in·

the wires. This kind of problem demands individual

attention in every system. No real processing -system can

ever be completely ideal in every way.

Finally, one must be careful in interpreting the

results of a. hybrid proc~ssor. Since the output of such a

system is.generally digital, as is the path found by

PATHFINDER,. one tends to judge the output by digital

standards. This is an unfair comparison, since part of

the computation in a hybrid system is analog processing

-108-

and as such is subject to the limited accuracy that is

characteristic of analog techniques. Thus, one should

expect that hybrid systems will occasionally produce

results that are not strictly correct by digital

standards.

The PATHFINDER uses analog techniques to set the cost

for travelling through each cell. It achieves this goal

by varying the delay in advancing the wavefront during

propagation. ·since this delay is set by analog

techniques, it cannot be specified with absolute

accuracy. Variations in capacitance and transistor

thresholds from cell to cell will inevitably cause some

cells to pass the wavefront through a little more quickly

than intended, while others pass it on a little. more

slowly. The consequence is that during propagation, the

symmetrically expanding wavefront may develop some small

bends ~r perturbations in its shape. It is thus possible

that the PATHFINDER system will select a path that is

slightly more costly than minimal. However, if the

inaccuracies in delays are randomly distributed through

the array, the unwanted "errors• will be integrated out as

the wavefront sweeps through the cells. In any event, the

hybrid processing system is in no danger of losing its

signal "in the noise" as a purely analog system would.

-109-

The PATHFINDER provides an unexpected lesson about

the communication side of processing. In this system, the

communication scheme consists of passing signals from cell

to cell ·to indicate wavefront expansion .during the

'propagation process. The signals are delayed as they pass

through the cells to implement the required cost

functions. Recall that in Chapter 10, one of the flaws

mentioned

Positioning

PATHFINDER

intended.

output of

involved the placement of

them within the cell as

cannot correctly implement

Only by placing the delays

the cells, that is, on the

the delay elements.

is done in the

the cost system as

on the input or

communication paths

themselves, can the problem be correctly solved. This

result demonstrates the importance of the communication

side of processing.

Seen from the point of view of communication, the ,

PATHFINDER measures distance between cells by the time

needed to communicate data between them. With the

rectangular array of cells and with a uniform

communication cost imposed, this results in the typical

case where each cell has four nearest neighbors. By

increasing the horizontal communication cost relative to

the vertical communication cost, the PATHFINDER modifies

the effective topology so that now the neighbors in the

-110-

vertical direction are "nearer" than the neighbors in the

horizontal direction. This suggests that more complicated

control over communication costs might allow the

implementation of more complicated effective topologies in

the, plane of the silicon chip. One can demonstrate this

effect by observing how communication works for other more

familiar situations.

Consider the various communities in the Los Angeles

area, and the network of roads that interconnect them.

Each community has its own set of roads for local

communication •. Communication, or travel. between adjacent

communities is easy, using the roads that cross between

the two areas. Communication between non-adjacent

communities would be difficult in comparison, if it were

not for the freeway system. The freeway system provides a

low cost communication system linking the communities.

The existence of the freeways makes possible the

interaction of distant communities that would otherwise

have been too costly. The freeways change the effective

topology of the area from a two-dimensional plane in which

interaction can occur only between neighbors to a more
..

complex structure allowing cheap interaction with a more

varied population.

-111-

0ne can find a second example along the same line in

the human nervous system. The interconnections, and thus

the communication patterns, in the br.ain are only slightly

.understood. Nevertheless, one could think of measuring

the cost of neural processing in terms of the time it

takes to propagate the nerve impulses through the required

neurons. Interestingly, although most neurons transmit

impulses at about the same speed, there is a special class

of neurons that are sheathed with a material· that allows

much faster impulse propagation [12]. One can only guess

that these less costly communication paths exist to enrich

the topology of the interconnections in the brain, just as

the freeways do in Los Angeles, to allow more extensive

communication.

The two examples above suggest an exciting possible

extension to integrated circuit design. In each case, the

majQrity of the communication happens locally, using the

ordinary commun.ication paths, whether built from concrete

or protoplasm. However, a second level of

interconnections exists to provide low cost long distance

communication. These second-level paths are more·

expensive. or complex, just as freeways are more expensive

to build than ordinary roads, but only a relatively small

number of them are ne.eded to provide adaquate coupling

-112-

between distant areas. This suggests that integrated

circuit design could benefit from an, extra, .. high speed

communication layer, even if the complexity of that layer

were very limited by fabrication or design difficulties.

The ability of such a low-cost communication path to

de-planarize the surf ace of the silicon could lead to

easier implementation of some processing problems.

The conclusion of this thesis is that hybrid

processing can play an important role in the design of

today's computing machines. The success of the PATHFINDER

chip in solving the two-layer path finding problem is

evidence that designers should include analog techniques

in thei.r bag of. tricks in order to realize the full

potential of computing power available to them. By

applying the lessons. learned in the design of the

PATHFINDER, hybrid processing is a viable approach in any

situation when digital decisions are made based on analog

data.

In the early 1960's, this conclusion may have evolved

more easily. At that time, the digital revolution was

only just under way. Designers were not as brainwashed

into digital thinking as they are today. One author [3]

-113-

seems to have realized the potential of hybrid processing

when he wrote,

"Once austerely separate, analog and
digital techniques are beginning to
intermingle freely and complement each
other. Computers of the future
undoubtedly will borrow freely from
both digital and analog techniques and
may eventually become true 'hybrids,'
merging the characteristics of both
types so completely that they are no
longer separately identifiable."

With the design of the PATHFINDER, hybrid processing

has arrived. Designers of today's processing equipment

demand high performance from their circuits. Only by

using hybrid processing techniques 'can they have access to

the full power of the physical structure upon which they

base their circuits. It is time now to recognize hybrid

processing as an alternative to other types of design and

to begin applying it to important computing problems.

-114-

REFERENCES

1. Akers, S., nA Modification of Lee's Path Connection
Algorithm,n IEEE Trans. Electronic Computers (Short
Notes), Vol. EC-16, pp. 97-98, February, 1967.
I

2. Cheng, Edmund, nA Single-Chip Cursive Character
Generator,n Ph.D. Thesis, California Institute of
Technology, 1976.

3. Jocobowitz, Henry, Electronic Computers, Doubleday and
Company, Inc., Cedar City, New York, 1963.

4. Kohavi, Zvi, Switching and Finite Automata Theory,
McGraw Hill Book Company, New York, 1971.

5. Lee, C., nAn Algorithm for Path Connections and its
Applications,n IEEE Trans. Electronic Computers, Vol.
EC-10, pp. 346-365, September, 1961.

6. Mead, Carver and Lynn Conway., Introduction .t.Q rn
Systems, Addison-Wesley Publishing Company, Reading,
Mass. 1980. ·

7. Moore, E., nshortest Path Through a Maze,n Annals of
the Computation Laboratory of Harvard University, Vol.
30, Cambridge, Mass.: Harvard University Press, pp.
285-292, 1959.

8. Newman, William, and Robert Sproull, Principles .of.
Interactive Computer Graphics, McGraw Hill Book
Company, New York, 197_3.

9. Posna, John, nMulti-valued Logic Takes New Paths,"
Electronics, pp. 100-103, February 24, 1981.

10. Posna, John, nFour-State Cell Doubles ROM Bit
Capacity,n Electronics, p. 39, October 9, 1980.

11. Rattner, Justin, and William Lattin, nAda Determines
A~chitecture of 32-bit.Microprocessor,n Electronics,
pp. 119-126, February 24, 1981.

12. Stephens, Charles, "The Neuron,"·Scientific American,
pp. 55-65, September, 1979.

