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Abstract 

 The utility of non-canonical amino acids in protein engineering has grown 

substantially over the past decade.  Proteins containing these unnatural building blocks 

often have radically different biochemical or spectral characteristics than their wild-type 

counterparts.  Furthermore, proteins may be endowed with chemical reactivity not found 

in the natural proteome upon the introduction of non-canonical amino acids.  Successful 

incorporation of a non-canonical amino acid into recombinant proteins in E. coli is often 

dependent on engineering of the aminoacyl-tRNA synthetase (aaRS) activity of the cell.  

The bulk of the work described herein has focused on developing a system to rapidly 

screen libraries of mutant aaRS to identify clones capable of efficiently incorporating 

novel reactive non-canonical amino acids.  The system is based on the display of reactive 

amino acid side chains on the surface of E. coli cells upon metabolic incorporation of the 

amino acid into recombinant outer membrane protein C (OmpC) and the subsequent 

covalent biotinylation of the reactive side chains.  The cells are then stained with 

fluorescent avidin, thus rendering the cells incorporating the amino acid fluorescent and 

readily identifiable and sortable by flow cytometry.  

The feasibility of such a system was proven by incorporating the methionine 

surrogate azidohomoalanine (AHA) into OmpC and subsequently biotinylating the 

reactive azide groups via copper-catalyzed azide-alkyne ligation.  Using an improved 

copper catalyst, low levels of incorporation of translationally inefficient amino acids 

azidoalanine, azidonorvaline, and azidonorleucine into OmpC were also detected.  A 

saturation mutagenesis library of the methionyl-tRNA synthetase (MetRS) was designed, 

and cells transformed with this library were screened for the ability to incorporate the 
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long chain amino acid azidonorleucine into recombinant proteins efficiently.  Several 

MetRS mutants were identified with such activity using the cell surface display system.  

MetRS containing a single amino acid mutation, leucine 13 to glycine (L13G) that occurs 

in each of the three mutants discovered in the screen, is very efficient at incorporating 

azidonorleucine into proteins. 

In the last part of the work described in this thesis, azidohomoalanine was used to 

tag newly-synthesized proteins in mammalian cells, thus endowing the newly-synthesized 

proteins with unique bioorthogonal chemical reactivity.  Following covalent biotinylation 

via the azide-alkyne ligation, these proteins could be selectively enriched for by avidin 

chromatography and identified using shotgun proteomic approaches.  Nearly 200 newly-

synthesized proteins were identified unequivocally in just a two-hour window.  This 

technique promises to develop into a highly useful tool for the examination of proteome 

dynamics.   
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