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ABSTRACT

A mathematical theory of noise-like electromagnetic fields of
arbitrary spectral width is formulated. Attention is restricted to fields
whose random fluctuations result exclusively from the chaotic nature of
the source. The theory is expressed in terms of the second order moment
of the field vector; hence, it is a tensor theory. Moreover, to make it
applicable to fields of arbitrary spectral width, the theory is formulated
in terms of a spectral representation, rather than directly in terms of the
autocorrelation function of the vector field. The principal field quantity,
the dyadic field spectral density (DFS), is interpreted from both a
statistical and a physical standpoint. In particular, a statistical analysis
of partial polarization is presented with the aim of providing a physical
interpretation of the polarization of a quasi-monochromatic field. The
differential equations that govern the behavior of the DFS are derived in
the presence of a source, in a source free region, and in a generalized
dielectric medium. Boundary conditions are derived for the DFS at a
dielectric interface, at a perfectly conducting interface, and at infinity.
The differential equations are integrated for various cases with the aid of
the dyadic Green's function. The resulting integral representation for
the DF'S is employed to analyze an experiment that involves the measure~
ment of a partially polarized, incoherent, discrete radio star by means

of a two-element radio interferometer.
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INTRODUCTION

Ideally monochromatic electromagnetic fields do not exist in
nature. All real sources have non-zero spectral widths, In many
instances, the spectral spread occurs primarily because the source only
radiates for a finite time. In ”other instances, it results from the inher-
ent chaotic nature of the physical processes that give rise to the radia-
tion. The former category includes the coherent sources commonly used
in microwave technology such as the klystron oscillator or the travel-
ing wave tnbe. Systems that employ these sources are analyzed either by
means of the conventional monochromatic theory or else, if the transient
effects at the beginning or end of the radiation period are of interest, by
the combination of Fourier analysis and conventional monochromatic
theory. The second category, the so-called noise-like sources, presents
a considerably different problem. Examples of this type of source include
the '}line" sources of physical optics such as the sodium lamp, black body
radiators, and the recently discovered cosmic radio sources. These
sources are composed of a large number of independent radiators. Be-
cause the radiators emit independently, their fields fluctuate as a function
both of time and position. Since experiments associated with sources of
this type generally occupy time intervals that include many fluctuations of
the field quantities, then from an observational standpoint, the fluctuating
nature of these fields is one of their essential characteristics. Any analy-
sis of noi.se-.like fields must account for the effect which these fluctuations
have on the basic electromagnetic phenomena associated with a radiation
field. Broadly speaking, this is the particular problem posed by noise-

like fields.
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Interest in noise-like electromagnetic radiation fields has existed
for well over 100 years. In the past, it was stimulated mainly by
researches in the fields of optics and heat radiation. In these regions of
the electromagnetic spectrum, all of the known sources (other than the
very recently discovered laser) are noise-like sources. More recently,
the advent of radio astronomy has extended interest in fluctuating fields
down to the radio spectrum. Because of their wide range of occurrence,
this class of fields has presented and still presents an important area for
study.

Until very recently, the field theoretic considerations involved in
the analysis of noise-like radiation have been based exclusively on the
methods of geometrical optics. This Was the logical approach since the
problems originally arose in connection with optical and heat radiation
fields. However, an effort has been made in recent years to develop a
more complete theory on a more rigorous basis. To date, this research
has resulted in a set of differential equations that describe the behavior of
the primary field yuantity -- the coherency tensor. The coherency tensor
determines the intensity, the polarization, the degree of polarization, and

the degree of spatial coherence of a quasi-monochromatic field as a func-

tion of position in space. The theory as it stands is rigorous; since it is
derived in an orderly fashion starting from Maxwell's equations. How-
ever, it is both incomplete and of limited applicability. In the first place,
the diffe.rential equations have not been integrated. Secondly, no consid-
eration has been given to the solution of coherency tensor boundary value
problems. But, most importantly, the present theory is restricted to

quasi-monochromatic radiation fields. Thus, as it stands, it is not
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applicable to problems involving white light or to the very important prob-
lem of radiation from celestial radio sources. It is the object of this dis-
sertation to overcome some of these deficiencies by first extending the
existing theory to fields of arbitrary spectral width and then integrating
the resulting differential equations. Particular attention is given to the
develupment of an adequate conceptual basis for the extended theory. The
remaining paragraphs of this introduction survey the pertinent literature
and introduce the topics treated in this paper.

The systematic study of irregularly fluctuating electromagnetic
fields has been approached principally from the standpoint of optics. This
work which covers a span of over 100 years has culminated in the theory
of partially coherent fields developed by E. Wolf and his colleagues. The
early work in this area was performed by Stokes {1852) (1), who originated
the theory of partial polarization, by Verdet (1869) (2), Michelson (1892)
(3}, and von Lane (1907) (4), who performed early researches into the
spatial coherence of extended, quasi-monochromatic sources, by
van Cittert {1934) (5), who sludied the stalistics of light fluctualions at
two different points of space, and finally, by Zernike (1938) (6), who for-
mulated the first effective quantitative measure of the degree of spatial
coherence of a scalar, quasi-monochromatic field. As a result of these
researches, it was found that the effect of the irregular fluctuations of
the source is to degrade the polarization and the spatial coherence of the
field. 'fo account for these effects, quantitative measures of the deter-
ioration of the polarization and spatial coherence were formulated for the
case of quasi-monochromatic fields. However, it was only recently that

these effects were described by a systematic theory. Wolf (1955) (7) and,
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independently, Blanc-Lapierre and Dumontet (1955) (8) generalized
Zernike's theory and obtained the differential equations that govern the
propagation of the spatial coherence of a scalar quasi-monochromatic
field. At about the same time, Wolf {1955} (9), (10) introduced a new
theory of partial polarization which paved the way for generalizing the
thcory of spatial coherence to include partial polarization. Finally, Wolf
and Roman (11)-(14), in a series of four papers published in 1960 and 1961,
formulated a unified tensor treatment of quasi-monochromatic vector
noise-like fields'.* The theory developed by Wolf and Roman consists of
the differential equations that determine the behavior of the coherency
tensor. The theory is expressed in terms of a tensor quantity because,
as Wolf (9) points out, the observable quantities of a quasi-monochromatic
optical field are quadratic time averages of the components of the field of
which there are 9, in general. It is pointed out in Chapter I that a tensor
quantity is also required on the basis of statistical considerations, since
the critical quantity from a statistical standpoint is the auto-correlation
function (or, equivalently, the spectrum) of the vector field, which is a
tensor quantity.

The theory of Wolf and Roman applies only to quasi-monochromatic

fields. However, in 1930, Wiener (16) published his celebrated theory of
generalized harmonic analysis. Motivated by the earlier researches of

Rayleigh, Gouy, and Schuster (17) into the harmonic structure of white

* Beran and Parrent (15), working independently, also reported
results on a tensor theory of noise-like fields. However, their
work is far less comprehensive than that of Wolf and Roman.
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light, Wiener developed the spectral analysis of stationary noise-like
signals. As a part of this work, he presented a spectral theory of polar-
ization that is applicable to fields of arbitrary spectral width. This work
provides the point-of-departure for the generalized theory of noise-like
fields derived in this dissertation. It should be pointed out that Barakat
(17), independently of this author, also recognized the fundamental impor-
tance of Wiener's work. In a paper published earlier this year, he dis-
cussed the significance of Wiener's coherency matrix and then employed
it to analyze the interaction of a polarized light ray of arbitrary spectral
width with an optical system. However, his study was essentially based
on geometrical optics considerations. Hence, it is only remotely con-
nected with the field theoretic study under consideration here.

The dissertation is divided into five chapters. In the first chapter,
the problem is defined, statistical considerations are discussed, and the
dyadic field spectral density, the primary field quantity, is introduced.
The major portion of this chapter is devoted to an analysis of the proper-
ties of this quantity and to a discussion of its physical interpretation.
Chapter II consists of a statistical analysis of partial polarization. The
object of this chapter is to provide insight into the physical character of
partial polarization. In Chapter III, the differential equations and the
boundary conditions that the dyadic field spectral density must satisfy are
derived. These differential equations are integrated in Chapter IV for the
case of freé space and for the case of perfectly conducting boundaries.
The vector analog of the van Cittert- Zernike Theorem is obtained in this
chapter, and a general approach is suggested for the solution of the tensor

differential equations. The special case of a plane wave incident onperfect
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conductors is also considered in Chapter IV. In the last chapter, Chapter
V, the theory is applied to the measurement of the radiation field of an
extended, incoherent, partially polarized source of arbitrary spectral
width by means of an interferometer. This problem is approached from
the standpoint of the radio astronomer. Thus, its solution is couched in

the language of microwave technology.
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I. THE DYADIC FIELD SPECTRAL DENSITY

1. Scope of the Problem

The electromagnetic fields incident on earth from cosmic and
interplanetary sources induce voltages at the terminals of a receiving
antenna which have the same appearance as the noise-like voltages com-
monly encountered in communication systems. Presumably, the field
that induces such a voltage itself has noise-like properties, i.e., the
intensity and direction of the field, fluctuate in a seemingly random man-
ner with respect to both position and time. Fields such as these are re-
ferred to here as noise-like fields. They arise in a variety of circum-
stances other than the radio astronomical situation just mentioned. For
example, a plane wave that propagates through a turbulent refractive
medium acquires a noise-like character as it progresses through the
medium . The fields radiated by the so-called monochromatic sources
commonly used in physical optics (prior to the advent of the laser) are
also examples of noise-like fields. The field scattered from a moving
rough surface is still another example of a noise-like field. These fields
share a common property: they all undergo a large number of apparently
random fluctuations during the course of a typical measurement; they
may also undergo random fluctuations over lengths characteristic of the
experiment.

Noise-like fields occur whenever some element of the system po-
ssesses a random property. Rather than attempt to develop a general
theory that encompasses all possible situations, interest here is directed

to fields whose fluctuations are caused exclusively by the chaotic nature
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of the source of the radiation field. All other elements of the system are
assumed to be deterministic -- i.e., without any random characteristics.

Since the fields are the quantities of primary interest here, it is
not intended that a specific detailed model of a physical source be formu-
lated. The starting point of the analysis is the macroscopic current den-
sity i(.f.’t)‘ However, it ia desirable to give some consideration ta the
nature of the radiating system in order to fix ideas.

The source is assumed to consist of a large number of "individual"
radiators (e.g., the atoms of an ionized gas or the electrons of a plasma)
which radiate independently of each other. Furthermore, the source is
assumed to be in a steady state. That is, the gross conditions that influ-
ence the radiation processes of the source are assumed to be constant
with respect to time. A source such as this is commonly referred to as &
stationary, incoherent source. It is stationary because the radiators are
assumed to be in an environment whose properties are constant (at least
for periods long compared with the durations of an experiment). It is
incoherent because the individual radiators emit independently of one
another. Since the source is to be described by the macroscopic current
density J(r,t), the word "individual" requires some explanation. The
"individual radiator'' at point r described by the current density J(r,t) is,
in actuality, the collection of atoms or electrons contained within a volume
of macroscopic dimensions. Generally, this collection consists of a large
number of elements. This characterization is essential to make effective
use of Maxwell's equations in developing the theory of noise~like fields.
However, it leads to questions of fundamental importance relating to the

underlying physical processes responsible for the observed radiation
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field. For example, in the case of the noise-radiation arising from a
plasma in thermodynamic equilibrium, it is apparent that the number of
electrons per unit time crossing an area of macroscopic dimension in one
direction is equal to the number per unit time crossing in the opposite
direction. Thus, in a strict physical sense, the macroscopic current in
a plasma in equilibrium should be zero. The noise-fields must be attri-
buted to the microscopic processes involved in the haphazard motion of
the individual electrons. Similarly, many other radiation processes that
give rise to noise-like fields are,in fact, microscopic processes. How-
ever, since interest here is directed toward the macroscopic fields, it

is not desirable to treat the source on a microscopic basis. Consequently,
the analysis that follows is developed on a phenomenological basis. The

field is assumed to arise from a distribution of macroscopic current

elements whose intensity and polarization fluctuate with respect to posi-
tion and time. The theory is developed from Max“.rell's macroscopic
field equations.

Throughout this paper, no restrictions are placed on the spectral
character of the radiation other than that the width of the spectrum must
be non-zero.* Further, the polarization of the source is unrestricted.
Hence, the theory to be developed here applies equally well to '""white"
light, to the so-called quasi-monochromatic fields of optics, and to the
fields radiated by cosmic radio sources.' On the other hand, it does not

apply to incoherent sources that undergo significant changes in their gross

*

The spectral width must be non-zero because the fields
" fluctuate with respect to time during the course of an
observation.
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behavior during the course of an experiruent such as those radiated by

solar tlares or by lightning.

1.2 Statistical Considerations

Noise-like fields radiated by sources of the type just discussed arec
not adequately described by the spatial and temporal variation of the field
vector alone (just as a noise-like voltage is not completely described by
a single time record, v(t) ). Because of the irregular fluctuations of the
gource,parallel experiments to determine the spatial and temporal varia-
tion of a noise-like field give rise to an ¢nsemble of different resulta.
Therefore, to specify a noise-like field completely, it is necessary to
describe an entire ensemble of possible fields. This can be done most
conveniently by employing a statistical description of the field.

By setting the analysis in a statistical context, the problem posed
by a noise~like field is changed from the conventional one of determining
the field vector as a function of position and time to ope of determining
the statistics of the field., This constitutes a radical change of viewpoint,
To understand the distinction between the two types of analysis, consider
the problem of characterizing a scalar random phenomenon,such as a
noise-like voltage, by means of statistics. A single time record of the
voltage measured from t = -ootot = too is called a sample function
of the voltage. Successive or parallel measurements of the voltage are
capable of yielding any one of a variety of different voltage sample func-
tions. The collection of all possible such sample functions is called
a random {or stochastic) process, and is denoted simply as v{(t}. Since

the voltage measured at any instant t might be that associated with any
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one of the possible sample functions, then v(ti) is a random variable.
Therefore, to describe the entire ensemble of sample functions, it is
necessary to specify the probability functions associated with the contin-
uous sequence of random variables constituting v(t).

A single random variable x is specified by p(x), the probability
distribu’tion of x. Two random variables x,y are specified by their joint
probability distribution p{x,y). Similarly, the random process v(t) is
specified by the joint probability distribution of all the random variables
of which it is composed. Thus, if t1< ‘e .<tN are any N instants of time
and v(tl) s e ,v(tN) are the associated random variables, then
p[v(tl), ce ,v(tN)] specifies these N random variables. To specify the
random process, it is necessary to know all such joint probability dis-
tributions associated with the random process v(t).

The statistical characterization of an electromagnetic field is
carried out in the same manner as just described. However, instead of
gspecifying a single random process, it is necessary to jointly specify
three random processes, one for each component of the vector field.

A process of this sort is called a vector random process. The situation
is further complicated by the fact that in the case of an electromagnetic
field, there are four independent variables x,y,z,t, instead of the single
variable t that appeared in the voltage random process discussed above.
Consequently, the statistics of a random electromagnetic field are speci-
fied only if plE (r;,t)), E (z),t)), E (z).t))s oo E (m ) B (mpety),
Ez(-{N’tN)] is known for all possible sets of random variables

{_}E(ri,ti)}. Of coursc, thc samc rcmarks apply to the current density

vector i(ﬁ’t)‘
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The usual problem in electromagnetic theoryis to express the
field in terms of a prescribed source. In the case of a noise-like field,
the problem is to relate the noise-like field to its noise-like source.
Since the noise-like source is described by its statistics, then to solve
the problem, it is necessary to relate the probability distributions of the
field to those of the source. Since the field is related to the source by
means of a set of linear differential equations, it is possible to regard
the problem as the passing of a noise-like input "signal', the current
density vector, through a linear system, Maxwell's equations, to obtain
the noise-like output signal, the electromagnetic field, From this point
of view, the problem is similar to that of analyzing the interaction of a
noise-like signal with a linear lumped parameter system. Although the
mathematics are considerably differeﬁt in the two cases, the over-all
character of the problems is quite similar. Therefore, many of the ideas
already developed to deal with communications systems can be carried
over directly to the analysis of noise-like electromagnetic fields. For
instance, it is commonly known in communication theory that no general,
practicable method exists for relating the statistics of the signal obtained
at the output of a linear filter Lo those of the input signal. The same
statement applies to the electromagnetic field problem, it is not possible
to obtain a general relationship between the probability functions of the
field and those of the source. However, in the very important case of
Gaussian statistics, the network problem can be solved exactly. Corres-
pondingly, the noise-like electromagnetic field problem can also be solved
exactly in this case (at least in principle). For this reason, it is tacitly

assumed throughout the remainder of the dissertation that the field
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quantities obey Gaussian statistics. As pointed out below, if this assump-
tion is unfounded, then the results obtained here offer only a partial solu-
tion of the problem.

Since the theory that is developed here is based on the tacit assump-
tion of Gaussian statistics, it is useful to consider briefly the definition
and basic properties of a Gaussian random process. If for every finite
collection of '"points™ (51 ,tl) P (EN'tN) the vector random variables
E (—r-i’ti) {or i(ii’ ti)) are specified by multivariate Gaussian distributions,
then the vector field E (ﬁ,t) (or i(ﬁ't)) is said to be a Gaussian vector
field., A Gaussian field has several important properties. It is conveni-
ent to discuss these properties in terms of a scalar process such as the
noise voltage mentioned above. If v(t) is a zero mean, stationary Gaussian
process, then the complete description of the probability distributions
which specify v(t) is provided by the autocorrelation function Rv(t) =
v(t+T)v(t), where the bar over the product on the right indicates an
ensemble average .* Note that the autocorrelation function is assumed to
be independent of t. This follows from the fact that v(t) is a stationary
process. Thus, it is only necessary to know the autocorrelation function
of a Gaussian process to specify the process completely. A second
important property of the Gaussian process is that it gives rise to a
Gaussian output when it is passed through a linear system of any kind.

The extension of these properties to a vector stationary Gaussian

random process is clear. The statistics of a Gaussian electric field are

* The mathematical characterization of a Gaussian process
is given in Chapter 8 of Davenport and Root {19).
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determined by the set of second moments Ei(il ,t+T)Ej(£2,t), i,j =1,2,3.
In this expression, ES) and I, repre sent two different points in the field,
and Trepresents the time interval between the instants at which the field
at r and at I, is evaluated. Thus, the autocorrelation function of a

vector electromagnetic field consists of a matrix of 9 elements. It is

often convenient to write this matrix in vector notation, i.e., in the form

£ (x).x,00 = EE, BIE(E,,0 (1.2.1)
where the field vectors P:“(f_l ,t+T) and E(_{Z,t) are juxtaposed. In other
words, the autocorrelation function of a stochastic vector field is a dyadic

%
quantity. Expanded in a rectangular coordinate system, it has the form

3 3
€=(3-1’5-2'T) = ZZ Ei(zvl’t+T)Ej(—I'—2’t)EiE-j (1.2.2)

where £;185:85 represent the unit vectors in the direction of the coor-
dinates X11%X5: %y respectively. Observe that, because of the station-
arity, the dyadic autocorrelation function depends on =, but not on t.
Thus, the autocorrelation function is independent of the time origin.
The dyadic autocérrelation function of the source is written in the

same manner, viz.,

*

There is a formal identity between a dyadic and a second rank
tensor. Thus, the autocorrelation function is also a second rank
tensor . However, to maintain uniform terminology and to ack-
nowledge the fact that the autocorrelation function is formed
from the juxtaposition of vectors, the functioné(i1 ,_1:2,7') is

referred to as a dyadic throughout this dissertation.
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&(3'1 IE.ZST) = J_(El't+T)£(£2’B— (1.2.3)

It also can be expanded in the form given in 1.2.2.

Since the source and the field are related by linear differential
equations, then by virtue of the second property mentioned above, a
Gaussian source radiates a Gaussian field and, conversely, the source
of a Gaussian field is itself a Gaussian process. Consequently, if it is
known "a priori' that either the field or the source is Gaussian, then the
problem of determining the statistics of the source and the field reduces
to one of determining the dyadic autocorrelation functions é(_x:l ,5_2,'1')
and%{il ,_1;2,7'). It should be noted that if "a priori' knowledge of the
statistics of the source or of the field is unavailable or if it is known
"a priori" that the source or the field is not Gaussian, then determina-
tion Ofé(il ,_1_'_2,'1') and %(_1:1 ,EZ,T) provides only a partial solution of the
problem. The complete solution of this more general problem is found
only if all of the higher order moments of the field are known. Cléarly,
a problem of this magnitude is not tractable. Fortunately, however, it
is found that in many situations of great interest, there is strong evi-
dence to suggest that the fields are indeed described by Gaussian
statistics.* On the basis of these considerations, this study is restric-
ted to the analysis of the second moment of the field. Therefore, from
the standpoint of statistical analysis, the results obtained here provide

a compléte solution of the Gaussian field problem, but only a partial

* See the early study by van Cittert (20). See also the studies
by Janossy (21), (22) and by Hurwitz (23).
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solution of the general problem of statistical electromagnetic fields.

1.3 The Definition and Properties of the Dyadic Field Spectral Density

Throughout the foregoing paragraphs, the discussion has been
directed toward the statistical considerations that underlie the analysis of
noigse-like fields. It is now of interest to examine the problem from the
standpoint of the theory of electromagnetic fields. Although it was found
that the dyadic antocorrelation function is the quantity of primary interest
from a statistical point of view, it is not clear that it is from either a
mathematical or a physical standpoint. In fact, some thought on the
matter indicates that it is not. In the first place, problems of interest
often involve the interaction of noise-like fields with various types of
physical systems (e.g., measuring instruments, non-vacuous propagat-
ing media, e’tc .). Since systems that interact with electromagnetic
radiation are generally dispersive, i.e., they respond differently to
radiation of different frequencies, then it is desirable to have available
a spectral representation of the field. Recourse to a spectral field
quantity becomes even more desirable if one considers the problem from
a physical point of view. Physicists are not as interested in the statistics
of the field and the relationship of these statistics to those of the source
as they are in the physical nature of the source and the physical proces-
ses which give rise to the observed radiation field. Thus, they are
interested in the spectrum of the source, the size of the source, the
distribution of intensity over the source, the polarization of the source,
etc. With information such as this, they can deduce the properties of

the source as well as the characteristics of the sources' environment.
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Therefore, to provide a theory that satisfies the requirements irﬁposed
by the physics of the problem as well as by the mathematical intricacies
of electromagnetic theory without over-riding the statistical considerations
discussed above, it is desirable to introduce a spectral representation of
the field as the primary field quantity.

The spectral representation of an irregularly fluctuating optical
field was originally introduced by Wiener (16) as an application of his
theory of generalized harmonic analysis, Barakat (18) recently re-
examined Wiener's representation, updated it into the context of modern
statistical analysis, and offered this point of view as the natural extension
of Wolf's theory of the coherency matrix to fields of arbitrary spectral
width., Thus, the notion of a spectral representation of a fluctuating
electromagnetic field has been considered before, However, the defini-
tion given here is considerably more general than that of either Wiener
or of Barakaf since it describes the spatial coherence as well as the
polarization of the field, Because the spectral representation to be used
here differs from that of Wiener, it is introduced below from first prin=-
cipals,

Consider first the definition of the spectrum of a scalar noise-
like quantity such as the voltage signal mentioned earlier, The spectrum,
or more precisely, the power spectral density of a stationary noise-like
voltage is defined to be the Fourier transform of the autocorrelation

function of the voltage,

o

ﬁv(w) = -2% R,(7) ei‘”df , (1.3.1)
-0

where the caret indicates a spectral density function,
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Since ﬁv(w) and Rv('r) are a Fourier transform pair, then RV(T) can be

lal
expressed in terms of Rv(m) by means of the inversion theorem:

R () = fﬁv(w)e-iw’rdw. (1.3.2)

The physical interpretation of the power spectral density ﬁv(w) can be
easily demonstrated. Suppose the voltage v(t) is passed through a band-
pass filter of very narrow width 4w that is centered at frequency w, and
terminated in a one~-ohm resistor. Then it can be shown that the average
power delivered to the resistor is ﬁv(wo)lxm (provided Aw is sufficiently
small compared with the variation of ﬁv(w) ). But the filter only paisses
power in the frequency interval dw about the center frequency W, - There-
fore, ﬁv(wo) represents the average power of v(t) per unit frequency in
this interval, hence, the name power spectral density.

The spectral representations of a noise-like field and its source
follow immediately from the foregoing considerations. These spectral
densities are defined to be the Fourier transform of the respective

dyadic autocorrelation functions. In mathematical terms, these defini-

tions are

A o>
1 LT
Elryozp0e) = ‘waé(f-l’ﬁz'”)ew'm
- B0
(1.3.3)

A o0
= 1 g} Lot
%11122’“) - ?ﬂ j =('1:‘1 ,_I'_Z,T)e"w dr
- Ohn
A

The new field quantity@_(_t_'_l ,_r_z,w) is called the dyadic field spectral

density. Hereafter, it is denoted by the abbreviation DFS. The



- 19

A
quantity%(_r_1 ,_1‘_2,w) is referred to as the dyadic source spectral density
and is denoted by the letters DSS.

Inversion of these equations provides the dyadic autocorrelation

functions in terms of the respective spectra.

o
j Ete, e
oy (1.3.4)
81{1 ’EZ’T) = } Q(ﬁl a_{z»w)e-iw"rdw
—~oo

A
Thus, to obtain the statistics of the field fromE(_r_l )£,1w) (or the statis-

g—.(}:l s_!_'ZsT)

tics of the source from ____(_x_'_l ,_:t_'_z,w)) it is only necessary to substitute
g(_x:_l ,_z_'_z,m) {_31 ,_r_Z,w)] into 1.3.4, obtain the dyadic autocorrelation
function, and then make use of the standard formula for the multi-
variate Gaussian probability distribution. The remaining paragraphs of
this section are devoted to a presentation of the mathematical properties
of the DFS. |

The explicit relationship between the DFS and the field vectors

themselves is obtained by substituting 1.2.1 into 1.3.3. Thus,

o

o

=1 LeoT
ij(il’f-Z'w) = Ei(_r_l,t +T)Ej(£2,t) e dr (1.3.5)
o 2D

th

>

where 8ij(-£1 ,_1_'_2,w) is the ij component of the DFS. Consider first

the transpose property. From 1.3.5 it is seen that

A'( ) = - fm; TFTYE (7, 1) e
Cyi (2102 = gy | FELTFIETE, fe%ar

D
1 - e LT
T [%Ei(z_z,t -T)Ej(_z_'_l,t Y e dr



- 20-

where t has been replaced by t'-T. If T is replaced by -T'in the integrand,

it is found that

QD
A |
_ 1 T~ LT |,
€ij (_r_1 ,_{Z,w) = = Ei(_r_z,t +T )Ej(il,t'} e dr (1.3.6)
o0

By comparing the right side of 1.3.6 with that of 1.3.5, it is seen that

A A
E»ji(fl'—r-z”") =6 ij(ﬁz'.l.'.l"w) (1.3.7)

Since the field quantities are real functions of the real variables

t', and 7', then the right side of 1.3.6 is the complex conjugate of

xr,
A
Eij(_z_'_z,f_l,w), so that
A D
Eiilzyrrp0) =E5(zp1).0). (1.3.8)

Equations 1.3.7 and 1.3.8 can be written in vector form.

A

QT(_r_l :_r_zxm) =é_(£2s£1:‘(-0) (1.3.9)
or /\

_5__T(31 X ow) =§*(52,31,u) {(1.3.10)

where the superscript T indicates the transpose operation. That is,

FAY T AN
£ 613'(-51 Ipelee ]t = [3F Eji (x):zprelg el

A second important property of the DFS follow from 1.3.10. If

both sides of that equation are evaluated at r, = r, =T, it is seen that
A - A = = =
€ T 6 , ‘et ¥
{r,r,w) =€ (r,r,w). Therefore,(r,r,w)is hermitian. Observe that

A
this is not true of the general DFS,E,QI ,_{z,m). Since the diagonal terms

Although it is not the DFS, but its matrix, that is hermitian,
it is convenient to overlook this nicety and, depending on the
context, to discuss the DFS as thoughit were a dyadic or a
matrix or even a tensor,
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of an hermitian matrix are real, then Tr {é(_r_ ,i,w)}is real. Further-

more, it can be shown that
Tr{g(z,i,w)} 2 0. , (1.3.11)

To prove 1.3.11, it is only necessary to show that

a -
A . 1 T
éii(-l':’-l:’w) ='2,"‘Z[§i(_l_',t+7)Ei(£,t)]eLw dr 70.

But this follows from the well known fact that the power spectral density

of a scalar stationary stochastic process such as Ei (r.t) is a positive
function of frequency (24).

A final property of the DFS relates to the determinant of the
matrix formed from the coefficients of the dyadic é(f_’i'“’) . Itis always
true that ‘

detfé(i,g_,m)}?o. (1.3.12)
The proof of 1.3.12 is somewhat lengthy; and is relegated to Appendix A,

In summary, the basic mathematical properties of the DFS are:

* A
1) QT(II ’E_Z’w) '_"é (E-Z’E-].’w) ‘_';(_};235_19 "‘U))-
A
2) The coefficients of _f_:(f_,_r_,m) form a hermitian matrix so
that in particular Tr{_é(ﬁ'f_"*’)} is real.

3) Trbg(_{,f_,w)} 20,

4) Detfg(i,_l_'.,w)} 20.

1.4 The Physical Interpretation of the DFS

The subject of concern in this section is the physical interpretation
of the DFS. To begin with, recall that the physical properties of the
field that are of interest include the spectral density (hereafter simply

called the spectrum), the polarization, and the pattern or spatial structure
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of the field. It is the object of the following paragraphs to relate these

properties to the elements of the DFS.

A. The Spectrum of the Field

The spectrum of an electromagnetic field having finite total energy
(i.e., a field for which f@(_z_-,t) l 2dt<c>o)is defined in terms of the Fourier
transform of the field vec:r by means of Parseval's theorem. Consider
a TEM wave. The instantaneous Poyntings vector for this wave at the

point r is given by

€
S(r,t) = E(r,t) x E(ﬁ,t)= ;2 IE(.E’t) lz w«':l,'cts/n*;eter2 ) (1.4.1)
o

where € and b, are the permitivity and permeability of free space,
respectively. Thus, the total energy crossing a surface of unit area
oriented perpendicular to the direction of propagation is given by
(= =4 € =4
: o) 2
W(r) = [S(;r_,t)dt = -2 [ |E(z,t)|“dt. (1.4.2)

If f;‘(z,w) is the Fourier transform of EJ_(_r_,t) at the point r, then by

€ | o0
W(r) =/.; [lﬁ‘;(g,m)lzdw. (1.4.3)
0 %oo

|§(£,w)|2 represents the spectral distribution of the

Parseval's theorem

€ !
o
Mo

energy crossing a unit area at the point r. Its units are joules per

The quantity,

meter squared per unit frequency. If it is denoted byj (r.,w), then it

can be written in the form

A €
Iz, = /;ﬁ B (x, 0 B (0] i=1,2 , (1.4.4)
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where the summation convention is implied. "

The extension of this definition to a noise-like field is straight-
forward. [t is only necessary to observe that rather than having finite
total energy, a stationary noise-like fieldvhas finite average power and,
therefore, infinite total energy. Consequently, the energy spectrum is
not defined. Instead, itis nece‘ssary to define the spectrum of a noise-

like field in terms of the distribution of avefage power with respect to

frequency. The average power per unit area carried by a given sample

function of Lthe wave 1is

€ T
P(r) = [-2 lim %T E(r, ) Ef(r,t)dt (1.4.8)

- Po T oo T 1T

‘ -T

where the superscript & indicates a particular sample function. Since the
spectrum is defined to be a mean or average property of a noise-like
variable, then the quantity of interest is the ensemble average of j=a (r).
Thus, if P(r) represents the ensemble average of Po((r)9 then oun inter-

changing the order of integration and averaging, it is found that

€ T ; €
P@) = /2 lim f B0 G 0 de =22 Tz |

0 Tameco /T o

}
=0,

(1.4.6)

# To eliminate the superabundance of summation signs that would
ordinarily appear in a work of this sort, a somewhat liberzlized
version of the Einstein summation convention is employed through-
out the dissertation. The principal rule to remember is that
a subscript that appears once on each of two adjacent symbols
is to be summed over its entire range. If this range is not
obvious from the context, it will be stated explicitly. For exam-
ple, each of the follow1ng terms is to be summed over "'i' ’

Ei(£ t)F“l(.Elt) Eq (r T w)E (x',r' ,w), (r T w)é (r'sr YLw),

etc. Repeated subscnpts on the same symbol as in é& (r.r,w)
do not imply summation. i
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where EQ‘_,E,T) is the dyadic autocorrelation function. Substitution of

1.3.4 into 1.4.6 yields

e

3y bt
Plr) = .M_‘l f’I‘r (r.r.0) do. (1.4.7)

o-- o —

Therefore, the spectrum of a noise-like field expressed in terms of the

DFS is given by

A A
P(i.w) = /;9 Tr[é(_r_,_r_,u)]. (1.4.8)

o

The units of @(E'“’) are watts per unit area per unit frequency. In physical
terms E@(E_,w)&o] represents the average power, contained in the narrow
range of frequencies Aw, centered at frequency w, that crosses a surface
of unit area oriented perpendicular to the direction of propagation. There-
fore, @(3'“’) is the spectré,l density per unit area.

Consider for a moment the measurement of the spectrum. Because
the measurement of power involves the consideration of a single sample
function of the random process, repeated power measurements will, in
general, yield different results.. This is true even if one considers ideal
measurements that extend from t = -2 tot = +e , However, in the special
case of an ergodic process, or in the less restrictive case of a process
that satisfies the conditions of the ergodic theorem, the power contained in
all sample functions is the same. Thus, in this case, it is unnecessary to
distinguish between FP‘_(E_) é,nd P(z). These remarks pertain directly to the
measurement of the spectrum of a stationary fluctuating electromagnetic
field since such fields generally satisfy the conditions of the ergodic

theorem.

% As Yaglom (25) shows in his text on stationary processes, a
Gaussian process that has a continuous spectrum satisfies
the conditions of the ergodic theorem.
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Hence, the spectrum of the fields considered here can be determined by
a single experiment (i.e., without the necessity of statistical averaging).
Although no explicit reference was made to the fact that the wave
is TEM in the foregoing derivation, it was tacitly assumed in writing
1.4.6. Therefore, in a strict sense the definition 1.4.8 applies only to
TEM waves. However, for the sake of uniformity, this definition of the
spectrum of the field at a point is assumed to apply regardless of the

character of the wave.

B. Polarization of the Field

The definition of the polarization of a noise-~like field at the point
r is a problem of considerably greater complexity than that of the spec-
trum of the field. In fact, it is sufficiently complicated that no attempt
is made in this chapter to provide a physical interpretation. The physical
interpretation is deferred to the following chapter. All that is done here
is to obtain the mathematical expressions relating the polarization param-
eters to the elements of the DFS,

Briefly, the problem is to define the polarization of a polychro-
matic wave. It will be recalled that polarization is conventionally defined

for time-harmonic field vectors, i.e., for fields of the typeq‘
E(t) = Alcos(wothl)E1 +Azcos(w0t+q>2)32 i (1.4.9)
where A1 , AZ’ cpl , and sz, the amplitudes and phases of the two trans-

verse components of the electric vector, are independent of time. The

*
Throughout the introductory material on polarization, the

position variable r is omitted from the argument of the
field quantities for the sake of brevity.
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vectors e, and e, are orthogonal unit vectors that describe coordinates

1
in the transverse plane. The wave is assumed to propagate in the &3
direction. In this case, the polarization of the field is well defined. It

is the locus of the electric vector in the transverse plane. If the coord-
inates of this curve are denoted by E1 and EZ’ then the parametric repre-~

sentation of the polarization locus is, from 1.4.9

El(t) = Alcos(uot+:p1)
Ez(t) = Azcos(w0t+tp2),

Upon elimination of t from these two equations, it is found that the equa-

tion of the locus is

2 2 |

S S [°°S(°°1'°"2) ]EIEZ = sin’(9,- 0,) (1.4.11)
s z - A A !

AS Al 182

which is the well known polarization ellipse depicted in Figure 1.1. The
ellipse can be uniquely specified by three parameters: 1) Its intensity,

2) Its ellipticity and sense, 3) Its orientation with respect to the chosen
coordinate system. The first two of these parameters are defined in terms
of A, and a the semi-major and semi-minor axes, respectively, of

M
the ellipse:

I=A12v1+ar2n 0<I< 0 (1.4.12)
tanB = (-1)P *m -FBs T Lp=o,l (1.4.13)
AM

where B is called the ellipticity angle. The sign of B determines the sense
of the ellipse. If B is positive (p =0), then the wave is said to be polarized

in the positive or right-hand sense. If B is negative {p =1), the wave is
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BI100 -1

i

\

Figure 1.1, The geometry of the polarization ellipse,
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polarized in the negative or left-hand sense. In practical terms, right-
hand polarization means that the electric vector rotates in the clockwise
sense as viewed by an observer looking toward the source of the radiation
field. Correspondingly, left-hand polarization implies that the electric
vector is rotating in the counter-clockwise sense as viewed by the same
observer.

The intensity, ellipticity, sense, and orientation of the polariza-
tion ellipse can be expressed in lterms of the amplitude and phase of the

two orthogonal field components. A straightforward analysis yields the

results
2 2
I=A]+ A5 (1.4.14)
2A A _cos {£,-9)
tan 26 = 1 2 z 1 LY Pt (1.4.15)
2 z Z Z
A% - A
1 2
2A A sin(p,-0,)
sin2p = —5 2 £ | S (1.4.16)
Al + AS

From 1.4.16, it is seen that if 0< (ﬁpl-cpz)Sn, then the wave is polarized
in the positive or right-hand sense. If the v < (CPl-CPZ)S 2 7, then it is

polarized in the left-hand sense. Equations 1.4.14, 1.4.15, and 1.4.16
show that the polarization of the wave is completely specified in terms of

the four parameters

2 2
s, = A + A (1.4.17)
o2 .2
s, =A] - A5 (1.4.18)
8, = ZAIAzcos(tpz-Cpl) (1.4.19)

0]
f

3 ZAlAzsin(CpZ-cpl). (1.4.20)
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These are the well known Stokes' parameters originally introduced
in 1852 by G. G. Stokes (1) to characterize the polarization of a partially
polarized light ray. When applied to a completely polarized wave, the

Stokes' parameters satisfy the equation

2 2 2 2
s, = 8 +sz+s3 (1.4.21)

as is readily verified from 1.4.17 - 1.4.20, The paramelers of the

ellipse expressed in terms of the quantities S 183 take the simple

form
I = s, (1.4.22)
SZ ;
tan26 = — (1.4.23)
S
1
sin2 B = 3 i (1.4.24)
2 2 2
s1 +sz+s3

Thus, given the amplitudes and phases of the wave, it is possible to obtain
the Stokes' parameters from 1.4.17 - 1.4.20, and then the parameters
that define the polarization ellipse from 1.4.22 - 1.4.24. When used in
this manner, the Stokes' parameters act as the intermediary between the
field quantities and the polarization ellipse. Although they are of question-
able utility in conne.ction with the analysis of ideal monochromatic wave,
they are of significant value to thc study of thc polarization of noisec -like
fields as is shown below. Before continuing, it should be pointed out that
the foregoing discussion of the polarization of time harmonic fields is not

intended to exhaust the subject. The interested reader can find more
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detailed presentations of this topic elsewhere .* The material presented
above is included mainly to provide a point of departure for the discussion
of the polarization of a noise-like field.

As mentioned previously, the Stokes' parameters were invented
primarily to account for the polarization of waves that were not ideally
harmonic, but that had amplitudes and phases which varied during the
course of a measurement., The basic motivation for these studies was the
need to analyze the polarization of the quasi-monochromatic sources uscd
in physical optics experimentation. The electric field radiated by a source

of this type can be expressed in the form
E(t) = A, (t)coslw t+o(t)]e; + A (t)coslw t+p,(t) e, (1.4.25)

where a TEM wave has been assumed. Observe that this type of field

has the same functional form as the time harmonic field, but now the
amplitudes and phases vary with time. Because the spectral width of these
sources is narrow, the quantities Al(t}, Az(t},cpl (t), and cpz(t) vary slowly
compared with cos w  t Thus, for times long compared with the period of
cos wot, but short compared with the reciprocal of the spectral width

(i.e., for intervals T satisfying the inequality Z.)Zﬂ << T <<22r1;), the wave

o
has the appearance of an ideal harmonic wave. However, continued obser-

vation of the wave for times greater than %—E shows that the character of

One of the most complete textbook treatments of the polari-
zation of time-harmonic fields is given by Born and Wolf (26)
{(pp. 24-31). An excellent treatment is also given by
Chandrasekhar (27) as an introduction to his discussion of
partial polarization.
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the harmonic vibration changes at a rate fixed by Aw, the width of the
spectrum. Since a single measurement of a noise-like field spans an
interval TM>>EZ% , then the wave measured by the observer generally
has occupied a number of different states of polarization. Stokes devised
the quantitative means for determining the polarization observed by such

%
a measurement. He defined the four parameters 5,0 81 S3» and Sy in

terms of Al(t), coe ,sz(t) by means of the equations

s, = <Af(t)+A§(t)> (1.4.26)
5\ =<Af(t)-A§(t)> (1.4.27)
s, = 2<A, (DA (t)cos[w,(t) - o, (t) > (1.4.28)
8, = 2A, (1A, (t)sinlw,(t) -© (1) ] (1.4.29)

where the sharp brackets indicate the time average process defined as

follows:

<f(tp = %inoo'z'lr f(t)dt . (1.4.30)
-T

If Al(t), AN ,sz(t) are independent of time, then 1.4.26 - 1.4.29 reduce to

Detailed discussions of the Stokes' parameters are given by
Chandrasekhar (27) and by Ramachandran and Ramaseshan
(28). Shurcliff {29) has prepared an elaborate bibliography
on polarized light. Included in it are a number of interesting
papers on the theory of polarization. See, in particular,
Shurcliff's references B-29, B-43, C-18, F-3, F-5, J-14,
M-2, M-3, M-28, W-3, and W-23.
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1.4,17 - 1.4.20 in which case the polarization ellipse is defined by 1.4,
22 - 1.4.24. If the amplitudes and phases are not independent of time,
then the polarization ellipse is still defined by 1.4.22 - 1.4.24. However,

in this case, 1.4.2]1 no longer applies. The four Stokes' parameters of a

quasi-monochromatic wave are independent of one another. They are

subject only to the restriction that

2 2 2 2
>
so,sl-!-sz+rs3 (1.4.31)
This inequality is readily established by means of a straightforward appli-
cation of the Schwarz inequality. The proof proceeds by writing the

2 2 2

. 2 _ 2 .
quantity s~ = §,-8) ~8,-8; in the form

sf=alupaliep - <A (A, (Ncosly, (03 (11> +
<A (DA, (t)sinlp, (1) - @ (1) > (1.4.32)

To prove s2 20, it is convenient to introduce the notation
a,(t) = A (tye “¥i(0 i=1,2.

Then in terms of the complex functions ai(t), s2 becomes

8% =< |a1(t)\2> <| az(t)|2> - |<a1(t)a’; (ty> |2 (1.4.33)

The Schwarz inequality states that if f(x) and g(x) are properly defined
complex functions, then

b b
flf(x)l"‘dxf | glx) | Zdx >

a a

2

b i
f f{x)g (x)dx (1.4.34)

a

Thus, by comparing 1.4.34 and 1.4.33, it is seen that sz must be

positive.
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The equality sign in 1.4.31 applies if and only if
al(t) =Ka2(t) (1.4.35)
where K is a constant that may be complex. Equation 1.4.35 can be

expressed in the form

M0 e -, = p (1.4.36)

-

A,(8)

where X and P are real constants. Of course, it follows immediately that
the equality sign holds for ideal monochromatic signals, since in that case
Al s AZ’ @ and P, are individually constant with respect to time. How-
ever, it canalso hold for a quaéi-monochromatic field, in which case the
orientation, the ellipticity, and the sense of the polarization ellipse are
independent of time. This latter case is referred to as complete polar-
ization since the only parameter of the instantaneous ellipse that varies
with respect to time is the intensity.

If the equality sign in 1.4.31 does not apply, the wave is said to be

*
partially polarized. The degree of polarization is defined to be

p = 3 (1.4.37)

Thus, a partially polarized wave is characterized by the four parameters
I, 6, B, and p, which are related to the four Stokes' parameters and,

therefore, to the field quantities by 1.4.22 - 1.4.24 and 1.4.37.

The physical meaning of the degree of polarization is
discussed in Chapter II.



-34-

Using the notion of incoherent superposition, Stokes demonstrated
that a partially polarized beam of light can be uniquely represented as the
sum of an unpolarized and a completely polarized beam. The two beams
are assumed to be mixed incoherently in the proportion determined by p.

The polarized beam is characterized by the Stokes' parameters

A T T AT o (1.4.38)

while the unpolarized beam is characterized by the parameters

s(()u) = (l-p)so, S(lu) = s(zu) = sgu) =0. (1.4.39)

Thus, the Stokes' parameters of the polarized beam satisfy 1.4.21, and
by means of 1.4.22 - 1.4.24 determine the polarization ellipse that
characterizes the wave. The unpolarized beam is characterized by only

one non-zero parameter s' '. However, this does not imply that an

(u)
o
unpolarized ray of light can be treated as a scalar quantity. For a dis-
cussion of this point, see page 82. It is important to observe that the
decomposition of a partially polarized wave into a completely polarized
%

part and an unpolarized part is not realizable experimentally. It is
purely a conceptual representation. However, it is a very useful repre-

sentation from a theoretical standpoint, since in many situations it per-

mits the analysis of a partially polarized field to be carried out in terms

Although a partially polarized ray cannot be analyzed into its
polarized and its unpolarized parts, the inverse or synthesis
process can be achieved experimentally. It is done by com-
bining a completely polarized ray from one quasi-monochro-
matic source with an unpolarized ray from a second quasi-
monochromatic source. The resulting ray is partially polar-
ized since, as is well known in optics, rays from physically
independent quasi-monochromatic sources combine incoher-
ently (i.e., their Stokes' parameters add).
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of a completely polarized field and a completely unpolarized field, both
of which are simpler to study than the more complex partially polarized
field.

The Stokes' parameters are not the only means for analyzing the
polarization of a quasi-monochromatic wave. A second method has been
introduced by Wolf (26) which is more directly related to the field com-
ponents. Wolf's theory is developed in terms of a two-by-two matrix
obtained directly from the two transverse components of the electric
field:

<E, (1) E] (tP <E, (1) E, (t) >

J = _ (1.4.40)
E E
<E,(t)E| (tP <E,(t) E, (t} >

where the sharp brackets indicate the time averaging process defined in
1.4.30. The asterisks denote complex conjugate. Wolf named the matrix
J the coherency matrix of the field. It is essential to note that the coher-
ency matrix is formed from complex field quantities rather than from the
real fields introduced in 1.4.25. The generalization of the real field to
the complex domain is carried out by means of the analytic signal repre-
sentation originally introduced by Gabor (30), and later exploited by

Wolf and others in the development of the theory of partially coherent
fields. The analytic signal counterpart of the real field component

Ei(h) {t),i=1,2 is defined in terms of the Hilbert transform of the real

field component. That is,

oo('l) 1
ESEY ge (1.4.41)
t! -t

-— OO

B =EM 0 + ([ P
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where P indicates the Cauchy principal value of the integral. The quantity

W yy*,

in the braces is the Hilbert transform of E In the following para-

graphs, it is denoted by E(L)(t), so that the complex field can be written

e (1) = M+ e M. (1.4.42)
The function Ei(t) is called an analytic signal because if t is replaced by
the complex variable t+ Lt'"', then it can be shown that Ei(t+ Vt'') is an
aralytic function throughout the half-plane t''< 0 (provided, of course, that
Egh)(t) satisfies mild regularity conditions).

It is evident from 1.4 .40 that the coherency matrix analysis of
partial polarization depends explicitly on the Hilbert transform of the
real field components as well as on the real field itself. However, the
basis for this dependence is not immediately obvious. Wolf (10) offered
one explanation of this relationship in the process of resolving a question
regarding the uniqueness of the Stokes' parameters. He analyzed a typi-
cal polarization measurement directly in terms of the real field compon-
ents and deduced that the measured polarization must be expressed in
terms both of the field and its Hilbert transform. Thus, he established
the physical basis for the relationship between polarization and the analy-
tic signal representation of the field. However, by directly considering
the question of the uniqueness of the Stokes' parameters, one can obtain
an alternative explanation that provides additional insight into this

relationship.

4
i See Titchmarsh (31), Chapter 5, for a thorough discussion of the

mathematical theory of the Hilbert transform.
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The question of the uniqueness of the Stokes' parameters centers

around the solution of the equation
EM) = A, () cos b t+a(0)], i=1,2. (1.4.43)

Since the Stokes' parameters are expressed in terms of Ai(t) and (:Ql(t),
then 1.4.43 must be solved for Ai(t) and ';Di(t) in terms of the known quan-
tity, Eih)(t), in order to relatie the Sltokes' parameters to the [ield com-
ponents. It is obvious, however, that 1.4.43 is not sufficient to deter-
mine Ai(t) and cpi(t) uniquely (unless, of course, Ai and p, are independent
of time). Thue, 1.4.43 by itself does not determine the Stokes' param-
eters uniquely. Interestingly, as shown below, this problem can be re-
solved by simply requiring that the functions Ai(t)cos cpi(t) and Ai(t)sin(:pi (t)
vary slowly compared with cos coot. Observe that this is a desirable re-
striction, since Ai(t) and cpi(t) can be meaningfully identified as the ampli-
tude and phase of a {slowly changing) sinusoid only if they remain constant
for many periods of the carrier, cos w,t. In addition to resolving the
uniqueness question, this restriction leads to the important result that
Ai(t) and cpi(t), and, therefore, the Stokes' parameters are defined in
terms of the analytic signal representation of the field. Thus, in a sense
the dependence of polarization on the Hilbert transform of the field can be
traced to the fact that polarization depends directly on the amplitude and
phase of the field components, and that these quantities can only be mean-
ingfully defined in terms of the analytic signal representation of the field.
The assertions made above will now be established in more detail.

Assume that E( )(t) represents a real quasi-monochromatic function of

(1)
time. That is, assume that the spectrum of E () has significant
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amplitude only in the spectral range of width Aw about the '"center' fre-
quency wo'* Assume also that A w< <wo. Furthermore, assume that
Ai(t)co‘scpi(t) and Ai(t)sincpi(t), hereafter denoted by Xi(t) and 'Zi(t) respec-
tively, have spectra restricted to the range lm‘< w, Under these con-

ditions it will be proven that 1.4.43 has the unique solution

2 * (2 (0%, o
Ai {t) = Ei(t) Ei (t) = Ei {t) + Ei (t) {summation not implied) (1.4 .44)

A 5w
Cpi(t) = tan m - Q)Ot (]. 4 .45)
i

where Ef")(t) is the Hilbert transform of Ei(")(t). The proof follows. Let

the field component E;’L) (t) be represented in terms of its Fourier trans-

form**
ca
Egn)(t) =X (t) cosw t- Tt} sinw t = L’ai(w)cosmim)- ot Jdo  (1.4.46)

By adding and subtracting (wot) from the argument of the cosine function
under the integral, and performing a bit of manipulation, it is found that
1.4.46 can be written in the form

- 1 = Y
fi(t)coswot gi(t)smwot 0. (1.4.47)

* The frequency wg need not be precisely defined since, as proven
elsewhere (33), the amplitude is independent of wo and the phase
is a linear function of wy so that phase differences are also inde-
pendent of wg .

ot
As Wolf (10) points out, the following argument is not rigorous,

since stationary fields do not possess Fourier integral repre-
sentations. However, by employing a limiting process that in
no way effects the logic of the argument, the proof can be placed
on a sound mathematical basis.
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where

fi(t) =-X‘i(t) - fﬁi(w)cos @i(w) - (w+wo)t] dw

_ ° o (1.4.48)
gi(t) =Zi(t) - j;'a\.i(w)coswi(w) - {0+ wo)t]dw.

The general solution of 1.4.47 can be expressed in the form
£(t) = hi(t) sinw_t, gi(t) = h,(t) cos w t. (1.4.49)

where the function hi(t) is arbitrary (other than that it be sufficiently

regular to represent a physical quantity}). Thus, from 1.4.48 and 1.4.49

o0
X0 = hWsinet+ |8 0 coslio)- o+l
(2]
oe (1.4.50)
Y_i(t) =h(t)cosw t + fai(“’) sinf‘l‘\i(w) - (w+m0)t]dw.
[}

The spectra of Xi(t) and Zi(t) equal the sum of the spectra on the
right side of the two equations 1.4.50. Since Qi(w) has appreciable mag-
nitude only near W, . the spectra of the two integrals can be shown to be
restricted to the range lw| <c.oo . However, the spectra of hi(t)cos wot and
hi(t) sinw_t have significant components at frequencies in the range

‘wl>wo due to the effect of the ''shift" functions cos wot and sin wot unless,
of course, hi(t) # 0, Thus, for Xi(t) and Yi (t) to have spectra restricted

to the range ]w|< W, the function hi(t) must be identically zero. But in

that case,

Xty = [éi(w)cos m}i(w) - (w+ wo)t] dw
o

_‘ii(t) = fﬁi(w) sin[’q}i(w) - (w+ wo)t] dw
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Therefore, one can write

X0+ (0 = ]ﬁi(w)eiwi(“’) R L T (1.4.51)

]

This equation uniquely specifies X‘i(t) and zi(t) in terms of the quantity
on the right. The integral in the braces of 1.4.51 can be shown to be the
analytic signal representation of Eg‘)(t) (see page 493 of Born and Wolf
(26)). Thus, to obtain the results stated in 1.4.44 and 1.4.45, it is only
necessary to replaceXi(t) and ;Zi(t) in 1.4.51 with A (t) cos®, (t) and
Ai(t) sincpi(t), respectively, and then to solve for Ai(t) and Cpi(t) . This
completes the proof of the statements made above.

Equations 1.4.44 and 1.4.45 provide the basis for relating
the Stokes' parameters and the coherency matrix. For example, from

1.4.26 and 1.4.44, it is seen that
2 2 A *
=< > =
so Al(t)+A2(t) <E1(t)E1(t)+E2(t) Ez(t)>

Hence, by subtracting from 1.4.40, one finds that

s, =Jy; + 55 (1.4.52)
Similarly, it can be shown that
s, =3, - Ja (1.4.53)
s, =T, + T, =ZJ({‘% (1.4.54)
s, =103, -7,,] = 2J§L2’ (1.4.55)

where J({g and J(ll‘g are the real and imaginary parts of le, respectively.

*
Here, use has been made of the fact that JZl = JIZ . Fano (32) has pointed

out that the relationship between the Stokes' parameters and the coherency
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matrix can be expressed in a particularly elegant form by expanding it in

terms of the Pauli spin matrices used in quantum mechanics. He has

e
shown that

11 12 1 0 1 0 0 1
1
i= = 3|5, + s +s, +
0 1 0 -1 1 0
a.JZI JZZ
0 L
+8, (1.4.56)
=L 0

Equation 1.4.56 connects the two theories of the polarization of quasi-
monochromatic radiation. Thus, given the coherency matrix of the field,
it is possible to obtain the Stokes' parameters from 1.4.56 and then the
polarization from equations 1.4.14 - 1.4.,16 and 1.4.37. Of course, it
is not necessary to use the Stokes' parameters as an intermediary between
the coherency matrix and the polarization ellipse. Both Wolf and Wiener
describe the polarization of a wave directly in terms of the elements of
their respective coherency matrices. However, because the Stokes'
parameters are so simply related to the parameters of the polarization
ellipse, they are used here as the link between the field quantities and the
polarization ellipse.

The discussion of polarization presented so far has been limited to

quasi-monochromatic radiation. Consider now the extension of these

* The Pauli spin matrices were also used by Wiener (16) in his
analysis of partial polarization. However, because he was not
familiar with Stokes' work, Wiener did not identify the coeffi-
cients of the spin matrices as the Stokes' parameters.
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ideas to the case of polychromatic or broad-band radiation. The problem
that one immediately encounters is that it is no longer useful to express
the field in the form given in 1.4.25, since the amplitude and phase
functions of a broad-band field vary just as rapidly as cos wot. As a
result, the notions of amplitude ar;d phase are not meaningful in this case.
In other words, a broad-band field does not have the appearance of a time-~
harmonic wave over any time interval. Consequently, the locus of the
electric vector of such a field is not an ellipse nor is it simply related

to an ellipse. This reasoning leads one to conclude that it is not mean-
ingful to characterize such a wave by a single state of polarization. That
is, it is not satisfactory merely to extend the definition of polarization of
a narrow-band, noise-like field given in 1.4.26 - 1.4.29 to include radia-
tion of broad spectral width. A more suitable definition can be found by
reconsidering the basic nature of polarization.

When examined from a somewhat abstract point of view, the polar-
ization of a wave is seen to depend in a fundamental way on the phase dif-
ference between the two transverse components of the electric field.
Equations 1.4.15 and 1.4.16 show this dependence explicitly. It also
appears in connection with the polarization of quasi-monochromatic radia-
tion in equations 1.4.28 and 1.4.29. In fact, it is because the phase
difference between components of a quasi~-monochromatic field is not con-
stant with respect to time that the field suffers a loss of polarization (see
Chapter'II).. Therefore,; since the concept of polarization is intimately
connected with that of phase, then the extension of the definition of polar-
ization to a broad-band fields must be carfied out in terms of the fre-

quency domain representation of the field where phase is a well defined
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quantity. In other words, the polarization of a broad-band field must be
expressed in terms of the DFS. Since the elements of the DFS vary with
frequency, then it is evident that the phase difference of the field com-
ponents and, therefore, the polarization varies as a function of frequency.
Consequently, defining the polarization of the wave in terms of the DFS
leads to the fact that a broad-band field is characterized by an entire
spectrum of polarizations, rather than by a single polarization as in the
case of a quasi-monochromatic or an ideally monochromatic field. This
implies that it is not meaningful to speak simply of the polarization of the
broad-band field. It is necessary to qualify this remark and speak of the

polarization of the wave at r at the frequency w. Thus, a complete des-

cription of the polarization of a broad-~band field at some point r is not

determined unless the entire polarization spectrum is known at the point.
The foregoing remarks provide the background for the definition

of the polarization of a broad-band field.* The DFS at r, é(i'ﬁ"*’)’ can

be expanded in terms of the Pauli spin matrices.

N 1 0 1 0 0 1
Llror,o) =5 | B (x,0) + 3 (x,0) +3,(x,0) +
0 1 0 -1 1 0
0 i
+ Aqlx,w) (1.4.57)
-t 0

where 3’0(3"*’) s ,33(3,00) can be regarded as the spectral density of the

Stokes' parameters. It is not useful to define the polarization spectrum

* The polarization of a broad-band field was originally defined
by Wiener (16) and wasg later discussed by Barakat (18). How-
ever, these earlier presentations of the subject differ some-
what from the presentation given here.
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directly in terms ofé(f_,i,w). Since the experimental determination of the
polarization spectrum involves the use of equipment that has a finite band-
width Aw, it is desirable to define the polarization at w in terms of the
total power contained in the band of frequencies of width A w about w.

Thus, the polarization at frequency w is defined by the Stokes' param-

%
eters,
w+ Aw
Tz .
5; (riw,0w) = 2 ﬁi(_l_',w')dw' , i=0,1,2,3 (1.4.58)
w-8w ‘
-2

The Stokes' parameters at frequency w are related to the DFS by the

equation
otle 1 0
J (riw,b0) = 2 Elr,x 0 dw =7 | s (xiw, ) +
- w-bw a 0 1
2
1 0 0 1
+ 8, (riw,b0) + 55(riw, 4 w) +
0 -1 1 0
0 i
+ s3(_1'_;w,Aw) ) ]
Lo (1.4.59)

where the symbol J(r;w,Aw) is introduced to extend Wolf's notation to
fields of arbitrary spectral width. The factor 1/4(instead of 1/2) is

introduced so that the parameters SO{E’“’)' o ees s3(_r_,w) correspond

Observe that the image spectrum centered about frequency -w
is neglected in this definition. This is done in accord with the
convention that the physical spectrum is meaningfully defined
only for positive frequencies. The factor 2 is introduced to
account for the power contained in the image spectrum.
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exactly to the Stokes' parameters in the limit of a narrow band field (see
below).
The properties of the instantaneous ellipse can be expressed in

terms of so(_r_;w,Aw), ve s s3(_1_:;m,Am):

I{zsw,Aw) = 5 _{riw,bw) = ZEJ“(_r_;-m,Aw) + JZZ(_r_;m,Am)] (1.4.60)

s, {r;w,lw) J (E;co,Aw)+J E“"’A“’)
tan&e(};;m.Am)] 2= = L2 21

s3(£;w,Aw)

sin[2B(r;w,Aw)]

\/s?(_ll;w,Aw)+ sg(isw,Aw)+ sg‘(f_;m,Aw);

i VLT, (5w, 80) = T 5(r;w,b0)] (1.4.62)

/[Tri(_y_;w,m)]z- 4Det_{(_1_'_;w.Aw)] :

ﬁf(ﬁ;m,Aw)+s§(_§;w.Aw) + sg (i;w,Aw)‘

so(_r_'_;m,Am)

DetJ(r;w,dw) ' :
= 1-4 —= 5 (1.4.63)
[Tr J(riw,bw)]

P(riw,bw) =

where A
ot
A
T..(rw,Aw) =2 € (., de (1.4.64)
N= ho WTT
W=z

It is evident from the above equations that the polarization of a
broad-band wave at frequency w depends on the bandwidth Aw of the
receiver. In general, this bandwidth is determined by factors other

than those directly connected with the measurement of polarization.



-46-

Consequently, if the DFS varies appreciably over the range of frequen-
cies Aw, then the measurement will determine the average polarization
over this band of frequencies (see Appendix F). However, if Aw is suffi-
ciently small and if the DFS is continuous in the neighborhood of w, then

to a good approximation,

A

CO+—2— A ~

f Clr,r,o)de' o Efr,T)w) b (1.4.65)
Ao = = ===

©=-—>

in which case the Stokes' parameters on the right of 1.4.59 are also
linearly related to Aw. Since the polarization of the wave depends on the
ratio of the Stokes' parameters (see 1.4.15, 1.4.16, and 1.4.37) then,
in this case, the polarization is independent of the bandwidth of the
receiver and a precise determination of the polarization density can be
obtained.

Clearly, this is the optimum situation, since it provides a deter-
mination of polarization that is independent of the character of the
measuring instrument. However, as mentioned above, it is sometimes
impossible to achieve this precision, in which case one must be content
to determine the average polarization over the bandwidth accepted by the
receiver.

Besides smearing the polarization spectrum, wide receiver band-
widths also produce deleterious effects on the measured degree of polar-
ization. | Aé shown in Appendix F, the measured degree of polarization,
p (r;w,bw) is less than the mean value of the degree-of-polarization
spectral density, D (r,w) over the bandwidth Aw. Thus, p(r;w,Aw) can be

significantly less than the maximum value of /]_S(E,w) over this bandwidth.
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Moreover, this reduction of p (r;w,Aw) results not only because it is
bounded by the mean value of f)(f_,w) over the bandwidth Aw, but also
because it is affected by the variations of the polarization of the wave
over Aw. Although the inequality F.2 does not show this latter effect
explicitly, the proof that follows F.2 shows that the variation of polari-
zation over Aw determines the disparity between the two sides of the
inequality. For example, if two completely polarized beams of unlike
polarization are added incoherently, the resulting beam is partially
polarized. In fact, if the two completely polarized beams are orthog-
onally polarized, the resulting beam will be completely unpolarized.

In the event that the field of interest is narrow band, the integra-
ted spectral coherency matrix, J(r;w,lw) defined above reduces to Wolf's
coherency ma.trix;}= except for a factor of 2. To see this, assume that
in the case of a narrow-band field, the bandwidth of the receiver, Aw,

exceeds the spectral width of the radiation. Thus J iw,8 w) can be

In.B.E

written

s

(r,r,w)dw . (1.4.66)

In.B.(Ziw,be) =2J; z

But it is readily shown that if F{w) is the Fourier transform of the real

function f(t), then f;‘o(w) e_i‘mtdt is the analytic signal representation of
(8]

f(t). Therefore, the integral on the right in 1.4.66 is related to the

analytic signal representation of the dyadic autocorrelation function

g(n)(r,r,'r), where the superscript (i) indicates that the dyadic auto-

correlation function is defined in terms of the real fields. In fact,

Zjo_jé_(ﬁ,f_,w)dw =[ é_(n)(f_-_{,’r)+i (.C-:.'(”(E.'E’T)]L-— 0 (1.4.67)
| = & & =
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To complete the argument, one needs only to observe that

EMe ™0 = BV omEY = €M@ (468

EVE 40 a0 =- EME e ED iy = €0,2,m (1.4.69)

where as before _E_((')(E,t) represents the Hilbert transform of E(,L)(E,t).

Thus, substitution of 1.4.68 and 1.4.69 into the right side of 1.4.67

yields
0 m

2 g—_(_l_"ﬁsw)dw = }Z[E(};st+7)l_3_*(iat) :]l'T=O

Q

Finally, from this reesult and from Wolf's definition of the coherency

matrix{equation 1.4.40), it is found that

2 Iy.p.(mwsbe) = T . (1.4.70)

The factor 2 appears because ;‘I-N.B.(I-;M’Aw) is derived from the real
fields whereas i_ is derived from the analytic fields; the analytic fields
contain twice as much power as the real field.

Besides demonstrating the relationship between J(r;w,Aw) and
Wolf's coherency matrix for the case of 2 narrow-band field, equation
1.4.70 also provides the basis for a simple interpretation of the polari-
zation of a broad-band field. Although 1.4.70 shows that iN.B.(E;w’Aw)
equals 2 times Wolf's coherency matrix, it shows more generally that
l(ﬁ;w,ﬁw) equals 2 times the coherency matrix associated with the quasi-
monochromatic field obtained from the broad-band field by passing the
latter through an ideal high-pass filter of width Aw centered at frequency

w. Thus, J(r;w,lw) represents the polarization of a quasi-monochromatic
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field obtained by filtering a broad-band field. It seems natural to ask if
there is any intrinsic difference between the polarization of a quasi-
monochromatic field obtained by filtering and the polarization of one
obtained as a result of inherent narrow-band nature of the source itself.
The answer is that there is no difference. The only substantial difference
between these two types of narrow-band fields is in the details of the form
of the DFS over the bandwidth of interest. However, as indicated above,
and as discussed in Chapter II, the polarization is dependent only on the
integrated spectrum; it is insensitive to the variation of the spectrum
over the bandwidth of the receiver. Thus, two quasi-monochromatic
fields having the same integrated DFS, but different spectral variations,
will still register the same polarization.

The fact just mentioned has been given a formal statement by
Stokes in his famous principle of optical equivalence, which says in
effect that two quasi-monochromatic light rays that have equal Stokes'
parameters cannot be distinguished by means of any practicable experi-
ment. The basis for this principle lies in the fact that optical instru-
ments can only perform linear operations on the two rays. Consequently,
the only properties of the light rays upon which the output of the instru-
ment depends are the Stokes' parameters of the rays -- assuming that
the spectral width of the instrument exceeds that of the light ray.

The principle of optical equivalence is a practical principle since
it is based on the nature and limitations of available measuring equip-
ment. If, on the other hand, one considers the question of optical
equivalence from a theoretical standpoint -- in fact, from a theor-

etical statistics standpoint -- the situation is quite different.
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Statistically speaking, two rays are equivalent provided the probability
distributions that describe the fields are identical. If the fields are
Gaussian, this requires that their respective DFS be equal frequency-by-
frequency. But Stokes' principle of optical equivalence depends only on
the integrated spectrum of the field. Thus, there is a basic difference
between the two points of view. Of course, this dilemma is easily solved
if the measuring instrument is incapable of resolving the details of the
spectrum. In that case, one simply states the principle in terms of the
integrated spectrum as Stokes did. However, an equivalence principle
applicable to fields of arbitrary spectral width whose spectra are cen-
tered anywhere in the electromagnetic spectrum is more difficult to
formulate. Perhaps the most straightforward procedure is to assume
that Aw in equation 1.4.59 represents the narrowest bandwidth that can
be achieved for the measurement of the given radiation. Then, two
noise-like fields, that satisfy Gaussian statistics, are equivalent pro-
vided that i(ﬁ;w;Aw) of one is proportional to i(_l;',cu,Aw} of the other for
all frequencies of interest. The justification for this statement rests on
the fact that within the accuracy of measurement, the dyadic autocorrel-
ation functions of the two rays and, therefore, the statistics of the two
rays, cannot be distinguished from one another. Hence, there is no way
for the rays themselves to be distinguished,

Before leaving the subject of polarization, it is of interest to
point out several properties of the quantities defined in 1.4.59 - 1.4.64.
1) The parameter, I(_r_;w,Aw), called the intensity of the field, is
closely related to the spectrum defined in 1.4.8. In fact, it is propor-

tional to the integral of the spectrum over the bandwidth of the receiver.
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That is,

Aw
g ©tz A
Iriw,bw) = 2,/ Plr,w') do' (1.4.71)
© Aw
©

2) The polarization ellipse at r and « is determined by the three param-
eters sl(_l_';w,Aw), sz(z;w,Aw), and s3(£;w,Aw) as in the case of the quasi-
monochromatic field. Thus, the polarized part of the field at r is char-

acterized by the four Stokes' parameters

]
6 (riwhw) T [52(riw, de) + 82(riw, bw) + 85(riw, b))
o — 1'< A 3%=
sl(_r_;w,Aw), sz(i;w,[xw), SS(ﬁ;w’Aw)
3) It can be shown that the degree of polarization p(r;w,Aw) of the field
at (ﬁ"*’) lies between G and 1, i.e.,
0L plrjw, ) 1 . (1.4.72)

At the lower limit, the field is unpolarized; at the upper limit, the field

is completely polarized; and at intermediate values, the field is partially

polarized. The inequality 1.4.72 is proven in Appendix A.

C. The Spatial Coherence of the Field

To complete the discussion of the properties and interpretation of
the DF'S, it is necessary to consider the general form §(£1'£z"°) where
I, The physical significance of this quantity is connected with the
spatial s.tructure of the field. Althoughg_:_(z_l ’EZ"”) appears to contain
information concerning the polarization of the field (since it is a tensor
quantity), this information is not of direct physical interest.Thereascnis

A
that é(ll ’Ez"“) is formed from the field vector evaluated at two different
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points of space, and, therefore, it cannot provide polarization informa-
tion about either point. What it does describe is the spatial structure of
the individual components of the field. Consequently, the individual ele-
ments of é(-{l ’Ez’“’) are generally of independent interest. Consider,
then, the component é“(_r_1 ’32"") . This quantity provides a direct
measure of the degree of coherence at frequency w of the component of
the field in the direction 2 at point r with respect to the same field
component evaluated at point Iy Similarly, 6&,22(_1‘_1 ’.I.'.z""’) and

?,33(_1;1 ’Ez’“’) are the corresponding quantities associated with the com-

ponents in the directions e, and e_, respectively. Thc off-dragonal

3

terms provide equivalent information about mixed field components.

A
Thus, 5,23(31 ,E_Z,w) relates to the degree of coherence at the frequency w
of E2 evaluated at r with respect to E3 evaluated at .

The physical significance of the degree of coherence of the field

is intimately connected with the phenomenon of interference .* As is well
known, interference is a basic property of all wave phenomena. It is
clearly demonstrated by means of the simple two-slit experiment of optics.
Suppose, as in Figure l.2a, that an opaque screeng is interposed be-
tween a source 0 and an image plane,-J)_ . If two narrow slits are cut

iné)o a distance d apart, the radiation from the source passes through the
screen and illuminates the image screen<{. If the source is an ideal

monochromatic source, then the field oscillations in the slits are coher-

ent with respect to each other, and a perfect interference pattern is

The discussion of spatial coherence presented here is limited
to the essential ideas and the basic formulas. A more com-
plete discussion can be found in Born and Wolf (26), Chapter 10.
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Figure 1.2, The interference experiment,

(a) The general configuration

{(b) Interference pattern for ideal mono-
chromatic radiation. Intensity versus
position along the y axis.

{c) Interference pattern for quasi mono-
chromatic radiation.
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observed. As shown in Figure 1.2b, this pattern is characterized by an
alternating succession of intensity maxima and minima oriented trans-
verse to the axis of the system. If the pattern is perfect, then the inten-
sity maxima are twice as large as the sum of the intensities of the
individual aperture fields at the screen, and the minima are perfect
nulls. The position of the pattern relative to the axis of the spectrum is
determined by the phase difference between the two aperture fields.

If the ideal monochromatic source is replaced by a quasi-
monochromatic source, then the pattern that is projected through the
slits onto the image screen changes noticeably. Basically, what is

obs

oer.v.ed is tl"‘t P e e L e

nulls, and the maxima decrease in magnitude. If the slits are moved
farther apart, both effects become more pronounced until a critical
separation is reached, at which point the pattern vanishes altogether
leaving only a uniformly illuminated area on the image screen. The
intensity of this uniform illumination equals the sum of the intensities of
the individual aperture fields., Since at this critical separation the total
intensity equals the sum of the individual intensities, the field fluctuations
in the slits are said to be mutually incoherent. If the pattern is perfect
(at least in the vicinity of the axis of the system), then the field fluctu-
ations at the two apertures are said to be completely coherent. The
intermediale cases are referred to as states of partial coherence.
Observe that the notion of coherence (or more precisely spatial
coherence) refers to the relationship between the field fluctuations at

two points of space (the apertures of the slits). If the location of these

points is changed relative to the source without altering the slit
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separation, a change may be observed in the state of coherence of the
aperture fields. Thus, in general, the degree of spatial coherence is a
function of position as well as of the separation of the slits. The calcu-
lation of the distribution of spatial coherence for a given quasi-monochro-
matic source was originally done by Zernike (6), and was subsequently
elaborated by Wolf (7) and his co-workers. This work and its extension
to broad-band fields is discussed in a later chapter.

It is convenient at this point to discuss briefly the mathematical
analysis of partial coherence. In the literature, this analysis is carried
out in terms of an unpolarized, or scalar, quasi-monochromatic field.
This is a useful approach from the standpoint of exposition, since it
eliminates the complications associated with polarization, thereby
focusing attention directly on the interference phenomenon. Following
this precedent, let us assume thal the real scalar 'field" fluctuations in
the two slits are denoted by V(n)(z1 . t) and V(n)(f_z,t) respectively.
Furthermore, let us assume that V("‘)(_1:,t) is a quasi~-monochromatic
function of time. It can be shown that the intensity of the radiation

1.

impinging on the image screen from the two slits is given by~

(/"l) SZ— S1

2 2 -
I N b o L A o N . (1.4.73)

where I{y) represents the intensity as a function of position on the image
screen, Kl and KZ are system factors that relate the field in the slits to

the field on the image screen, 51 and s, are optical path lengths from
7} 8, -8
1 2

the slits to the point y on the image screen, and [ 12 (——T-—) is the

*

Born and Wolf (26), page 498.
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real part of the mutual coherence function of the field. The quantities

I1 and I2 are the average intensities of the fields in the slits at r, and
f1- %2
I, respectively. The mutual coherence function rl‘z(—-z————) is

defined in terms of the analytic signal representation of the field:
b
[0 = < V(z, t47) V(z,, tp (1.4.74)

where V(r,t) is the analytic signal corresponding to V(n)(f_,t). The time
delay T appears because the difference of optical paths causes a delay in
the signal arriving at the image screen from the more distant slit. The
complex degree of spatial coherence or, more briefly, the degree of

coherence is defined to be

[0 <vEoviE,u>

p,lz = n = 5 (1.4.75)
[1, 1, <z, 0]

2 =i
><IV(12,1:)| >]/z

It is shown by Born and Wolf (26) that |p,12| is equal to the visibility of
the interference fringes observed on the image screen, where the

quantitative definition of visgibility is given by

-1

I .
_ ‘max ‘min
V= DR (1.4.76)

max min

In this expression, I and I . are the maximum and minimum inten-
max min

sities, respectively, of the interference fringcs in the vicinity of the axis

of the system. Actually Born and Wolf present the more general rela-

tionship

[
VUlyy = .‘__I_Z_T_l’/‘_. (1.4.77)
fr, 1,]*
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which relates the visibility and mutual coherence at points off the optical
axis of the system. However, for the purposes of this analysis, the
specialized form given in 1.4.75 will suffice.

Equation 1.4.75 provides the mathematical relationship between
spatial coherence and interference. The quantity 2 is a direct measure
If the field

of the similarity of the field fluctuations at r, and at r

1 2°
fluctuations at the two points are independent of each other, then
||J,12| = 0. On the other hand, if they are completely dependent, i.e.,

if V(ﬁl’t) 0<V(£2,t), then ‘plz‘ = 1. Intermediate conditions of depen-
dence yield values of ‘“12‘ between zero and one (as can be shown by
means of the Schwarz inequality).

Equation 1.4.75 shows that the state of coherence of the two
fluctuating fields directly affects the quality (visibility) of the inter-
ference pattern. Thus, by observing the interference pattern, itis
possible to determine the distances over which the field fluctuations are
at least partially coherent. Since there are many instances when it is
of interest to know whether or not the field fluctuations at two points are
independent, then this distance is an important property of the field.
However, the phenomenon of partial coherence serves a more important
function; it provides a means for studying the properties of the source of
the radiation field. The physical basis for this relationship can be dem-
onstrated by means of the interference pattern. One need only determinc
the prop'erties of the source that cause the interference pattern to deter-
iorate to identify the cause of partial coherence. To this end, consider

an incoherent source of finite extent that radiates an unpolarized, quasi-

monochromatic field. The geometry of the source and the slitsis shown
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in Figure 1.3. Because the source is incoherent, the radiation fielci from
each element of the source of area dAs is independent of that arising from
any other element of the source. Consequently, the total intensity of the
field at some point is the sum of the intensities radiated from each
element to the point in question. As can be seen from Figure 1.3, the
interference pattern arising from a single element of the source will be
perfect since the field fluctuations in the slits arise from a common
elementary radiator and, therefore, must be completely dependent.
The position of this elementary pattern depends on the phase difference
of the radiation in the slits, which in turn depends on the position of the
element relative to the slits. Clearly, the elementary interference pat-
terns from different portions of the source lie in different positions on
the image screen, since the slit-element geometry of the various ele-
ments composing the source varies from element to element. Conse-
quently, the total interference pattern radiated by the entire extended
source, being the superposition of the mutually displaced elementary
patterns, is not a perfect interference pattern. Thus, partial coherence
of the field radiated by an extended incoherent source is caused by the
finite size of the source combined with the independence of the various
radiators composing the source .*

The mathematical relationship between the degree of coherence

and the source properties is embodied in the van Cittart-Zernike theorem.

Observe that an extended monochromatic source will be com-
pletely coherent throughout space. It is necessary for the
source to have a finite bandwidth to give any evidence of a
loss of coherence.
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Figure 1,3. Configuration of the interference experiment
with an extended source.
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As stated by Born and Wolf (26), this theorem has the form
Lko (R1 - RZ)

1
[
kip 5 —— I(s) K dAS (1.4.78)
/11 I2 o 172

where I{s) is the intensity per unit area of the source at point s,

koR1 and kOR2 are the optical path lengths from the point s in the source
to the observation points r and I, at the center frequency of the narrow-

band spectrum, and Il and I2 are the intensities of the field at slits 1 and
2, respectively. This formula describes the degree of coherence at any
two points r and xr, in terms of the intensity distribution over the source.
In theory, then, it is possible to solve this equation for I{s) if P is
known. It is in this sense that the degree of coherence provides a

means for studying the source. This idea forms the basis for the
Michelson stellar interferometer. By observing the firinge wvisibility of

a two element interferometer for a number of different element separa-
tions, Michelson (3) was able to estimate the diameter of stars. This
same idea is widely used in radio astronomy to study the intensity dis.-
tribution of radio stars, although in practice the technique of measure-
ment is not always the same as it is at optical frequencies.* The im-
portant point here is that the mutual coherence function provides a

direct means for determining the nature of the source. Itis this aspect
of partial coherence that is of greatest interest here.

The concept of partial coherence is meaningful only in connection

with narrow-band radiation. The reason for this is apparent. The

% See, for example, the paper by Hanbury- Brown and Twiss {33).
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concept was originally introduced to describe the effects of bandwidth
(field fluctuations) on the interference phenomenon. But this phenomenon
is inherently a narrow-band phenomenon, since no observable fringe
pattern can be found if the bandwidth of the fields in the slits is too wide.
Thus, any discussion of partial coherence tacitly assumes a narrow-band
source. Clearly then, to extend the concept to a broad-band partially
polarized source, it is necessary to account explicitly for the narrow-
band character of the concept. In this respect (as in many others), the
notion of spatial coherence is closely related to that of polarization.

The extended definition of partial coherence is expressed most naturally
in terms of the DFS. The degree of coherence at frequency w of the

field component in the direction e;atr, with respect to the component

in the direction Sj at r, is defined to be

Aw
w+-—2—

'“Lij(f-l’—r-Z’w) = (1.4.79)
w+—A2('3 w+é2-'°-) 1
A A 7
1
aﬁ(zl,rl,w) Ejj(gz.zz,w’)dw
A w Aw
i i

where A w<<w. The notation here differs from that in 1.4.78 in that the
subscripts denote the field components whose mutual coherence is being

determined. The position variables are now noted explicitly in the



wfh2-

argument of the degree of coherence. Recall that the repeated subscript
on the terms in the demoninator of 1.4.79 does not indicate summation.

It can be seen from 1.4.79 that in the general case, it is necessary
to identify the field components under consideration, the ffequency, and
the bandwidth when discussing spatial coherence. Thus, if a measure-
ment is to be made of the size of a polarized broad-band source, it is
possible to obtain different sizes depending on which field components
are measured and the frequency to which the receiver is tuned. (The
measurement of an extended, incoherent, polarized source with an inter-
ferometer is the subject of Chapter V.)

As in the case of quasi-monochromatic signals pij(zl ’32’“’)

~ ‘p..(r]I:rzsm) ‘\ ]' ( ° °80)

where the absolute value sign is required since pij(};l ,_1:2,0.)) is, in
general, a complex quantity. A brief heuristic proof of 1.4.80 can be -
developed from the fact that the terms on the right of 1.4.79 represent
the average intensity of the field after it has been passed through an ideal
high frequency filter of bandwidth Aw centered at frequency w. Thus, if
the analytic signal form of the filtered field is denoted by _I'_l‘._(f)(_zl,t), then
it follows that the power spectral density of the real part of _]_E_(f)(i,t) at

positive frequencies is given by
A .
&(”(31_1 1Iow') =£<.r_1 1Ipew') [U(w' o8 U (oo -»%)] (1.4.81)

where || denotes the unit step function:

Uix)

1 x>0
0 x<90

(1.4.82)
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*
But from 1.3.4, it is seen that

oo

* N
<P, 0 2,05 =4 Ei) x,000 aur,
(=]
or Aw
* w+TA
<€ 0E (x),0> =4 E4lry 150" do (1.4.83)
Aw
w- 7z

To establish the inequality on the right side of 1.4.80, it is sufficient to

show that
+—é-2?- w+-‘i2°3 w+%‘—n 1
A A A 2z
j Eijlryrzprendet < f Cypleprzprede! | Ejiley xp 0 do!
w-%—g w-%‘i w-%— -

(1.4.84)

This inequality can be expressed in terms of the field components of

ED(r,t) with the aid of 1.4.83

i E * ) £ ‘1 I
<Ef, 050 (000 < [<E§f’(3 OB 0> <0, 080, 02

(1.4.85)

But the validity of this inequality follows at once from the Schwarz in-
equality.

This completes the presentation of the DFS and the discussion of

« .
Dugundji (34) shows that the power spectral density of an

analytic signal equals 4 times the power spectral density
of the real part for w>o and zero for w<o.
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its definition, its mathematical properties, and its physical interpreta-
tion. In the following chapters, the mathematical theory of the DFS is
developed. The differential equations governing its spatial behavior are
derived and integrated, and these results are applied to the analysis of

an interferometer experiment. However, before this general theory is
developed, a statistical analysis of partial polarization is carried out with
the purpose of providing insight into the nature of partial polarization.

This analysis forms the subject matter of Chapter II.
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II. THE STATISTICS OF THE INSTANTANEOUS ELLIPSE

2.1 Introductory Remarks

The polarization of a monochromatic field is completely specified
by the three parameters that characterize the polarization ellipse.
However, to describe the polarization of a quasi-monochromatic field
it is necessary to introduce an additional parameter - the degree of
polarization. The need for this additional parameter arises from the
fact that quasi-monochromatic fields are not necessarily completely
polarized, but may to somc degrce be unpolarized. That is, the ficld at
a point may evidence the characteristics of both a polarized field and an
unpolarized field. But if this is the case the question may be asked:

In what way is the behavior of the field at the point modified when it
exhibits incomplete polarization? That is, in what sense does a partially
polarized field differ from a monochromatic field?

The conventional answer to this question is based on the mathe-
matical analysis of partial polarization, It can be proven that a partially
polarized field can be uniquely decomposed into the incoherent sum of a
completely polarized wave and a completely unpolarized wave (27), Thus
it is quite natural to think of a partially polarized wave as the incoherent
superposition of an unpolarized wave and a completely polarized wave,
However, this decomposition can not be achieved experimentally, There
is no way of dividing a partially polarized ray into two component rays,
one of which is completely polarized and the other of which is completely
unpolarized, Thus from a physical standpoint this is an inadequate model
of a partially polarized wave, since it is not posed in terms of observable

properties of the field.
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To obtain more insight into the physical character of partial
polarization, it is fruitful to consider the temporal behavior of the field
vector. In the case of a monochromatic field, the field vector traces out
a polarization ellipse once every period. Furthermore, it traces the
same ellipse from period to period since the ellipse is determined by the
amplitude and phase of the field components and these quantities are
independent of time for a monochromatic field. However, in the case of
a quasi-monochromatic field, the amplitude and phase are not constant
with respect to time. Thus, in this case the polarization ellipse traced
out by the field vector need not be invariant with respect to time. In
fact, as will he shown below, it is the tendency for the ellipse to assume
different shapes and orientations during the course of a measurement
that causes the observed deterioration of the polarization.

The notion of a time-varying polarization locus is not new. In
one of the earliest models of unpolarized or natural light, it was assumed
that the electric vector is plane (linearly) polarized over short intervals
of time, but that the plane of polarization varies rapidly over all possible
orientations as a function of time., This model, which was originally
proposed by Fresnel, is still widely accepted, However, it is limited in
the sense that it restricts the instantaneous polarization locus to the
degenerate case of linear polarization. A more general model can be
formulated by making use of the propertics of quasi- monochromatic time
signals,

Recall from Chapter I that by writing the quasi-monochromatic

(n)(t) at some point r of space in the form

field component E.1

E(“)(t) = Ai(t)cos[ w bt cpi(t) ]

i
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and by defining Ai(t) and cpi(t) in terms of the analytic signal representation
of the field, it is found that the amplitude Ai(t) and the phase cpi(t) are
slowly varying functions of time (compared with coswo.t). In fact, it can be
shown that if the bandwidth of EYL)(t) is Aw, then for periods small com-
pared with 1/Aw but large compared with llwo, Ai(t) and cpi(t) are essen-

tially constant, Thus for timesé Kt << _A'I'ZS"’ the field has the appearance

of an ideal monochromatic wave. oThe polarization of this field during this
interval is determined by A, (t), A,(t), and Lo (8 -sz(t)]. This polarization
may or may not be linear. In fact, Hurwitz (23) in 1945 calculated the
probability distribution of the instantaneous ellipse (as he called the tran-
sitory polarization figure) of an unpolarized wave. He found thal ihere was
a substantial probability that the instantaneous ellipse is elliptically rather
than linearly polarized, In fact, he found that the median ellipticity is
0.2687 Thus, cllipses with cllipticity greater than 0,268 (a /A >0.268)
occur about half the time. Although Hurwitz didn't bother to calculate the
probability distribution of 8, the orientation angle, it is shown below to be
a uniform distribution for the case of unpolarized light.

The transla;tion of Hurwitz's results into a description of the
temporal behavior of the polarization éllipse of unpolarized light is
straightforward. His results show that the semi-major axis of the
instantaneous ellipse lies in each possible orientation for an equal portion

of the duration of the experiment. Furthermore, as shown below, the

shape of the instantaneous ellipse varies over all possible values, also

% Ramachandrau and Ramaseshan (28) obtain the same value for
the median eccentricity angle on the basis of a simple geometrical
argument.
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with equal likelihood. Thus, an unpolarized field is one that is elliptically
polarized for intervals of time that are small compared with 1/Aw, but
whose polarization ellipse changes its shape and orientation so thoroughly
during the course of a typical measurement that the field evidences no
preferred polarization locus.

This point of view proves to be remarkably fruitful when it is
extended to a partially polarized field, By calculating the statistics of the
instantaneous ellipse for a partially polarized field, it is possible to relate
the idea of polarized part, unpolarized part, complete polarization,
partial polarization, loss of polarization, etc,, to the temporal behavior of
the field., In this way, insight is gained into the physical character of

partial polarization,

2.2 Statement of the Problem

Let _E_:(n')(_ll,t) represent the real, quasi-monochromatic TEM field
that is radiated by a noise-like source*. Suppose further that the
statistics of the field are Gaussian (at least to second order distributions).
Employing the quasi-monochromatic representation used above, and sup-

pressing the position variable as before, one can write _E_)_(r\)(t) in the form

* As pointed out in the px("cz.yious chapter, it is immaterial whether
the spectral width of EY /(r,t) is narrow because of the intrinsic
nature of the source or because it is obtained by filtering a field
of broad spectral width., The polarization will be the same in
both cases provided the integrated spectra are equal., There-
fore, the statistical analysis of polarization to be presented in
this chapter applies equally well to the spectrum of polarization
of a broad-band field and to the polarization of an intrinsically
quasi-monochromatic field,
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E(")(t) = Al(t)cos[m0t+cp1(t)]_§1 +A2(t)cos[ w b +ep2(t)]32 (2.2.1)

where e, and e, are orthogonal unit vectors in the plane perpendicular to
the direction of propagation. The amplitudes and phases Al(t), Az(t),
cpllt), and Cﬂz(t) are assumed to vary very slowly compared with cosw t.
The instantaneous locus of the field vector is obtained by eliminating

c.oot between the two field compon ents El(n)(t) and E(Zf()(t) . Proceeding in

this manner one obtains

2 2
e gl zE(l")E(Z“)cos[cpl(t) - 1,(t)] 5
+—2 - = sin"fp) (t) - ©,(t)]

AZ (1) A (t)AL(1)

)
AT (1)
(2.2.2)

Thus, the instantaneous ellipse, which is fixed for periods of time less
than 1/Aw, is defined in terms of the four quantities Al(t), Az(t), tpl(t),
and sz(t) .

The instantaneous ellipse is characterized by the three param-
eters: 1) The angle 6(t) between the major axes of the instantaneous
ellipse and the E, axis (see Figure 1.1). 2) The ellipticity angle B(t)
defined by tanf(t) = (- l)p%m(t)/AM(t)]o 3) The intensity or '"size' of the
ellipse I(t) = afn(t)+A§/I(t). These parameters are related to the instan-
taneous amplitude and phase of the field by equations of the same form

381.4.14-'1.4:.16. Thatis,

1(t) = Af() + AZ(t) 0<I(t)< oo (2.2.3)

2A1 (t) Az(t)cos[wl (t) - QPZ(t)]
Af(t) - Ag(t)

:21’. g@(t)g% (2.2.4)

tan 26(t) ] =




-70-

24, (D)A,(D)sinlp,(t) - cpl(t)'] - ISu(t)X 1
5 5 X . (2.2.5)
AT +AS (1) -ZSBST

u(t) =sinf 2p(t)] =

The parameter u(t) is introduced for reasons that become evident as the
analysis progresses.

The field quantities E(ln)(ﬁ,t) and E(Zh)(_z_'_,t) are statistical variables.
Therefore, Al(t), e ,cpz(t) are also statistical quantities, since they are
functionally related to EV)(r,t) and EY9(r,t) (see 1.4.44, 1.4.45). This
in turn implies that I(t), 8(t), and u{t) are statistical parameters. The
problem then is to calculate the statistics of I, 8, and ugiven the jaint
statistics of E‘;’i)(_r_,t) and E"Z’A‘}(_r_,t).

The statistics of the field are assumed to be Gaussian. Thus at
any instant t

5y Ry
exp{“1 2)[ 12 + 22 -

2 2(1-p °1 o,

(n) (n) _
PLE]Y (1), BV (1)] =

Zvﬁlc‘z 1-p

_é?-g-ZEl‘“)(t)Ef,_")(t)]}

(2.2.6)

where Cil is the variance of E(/L)(t), g, is the variance of E(Z”)(t), and p

1 2

is the covariance of E(ln)(t) and Egl)(t), Note that the mean values

m and I—E—g{m) are assumed to be zero, and that 61,02, and P are inde-
pendent of time since the process is assumed to be stationary. By start-
ing from 2.2.6 and employing the relationships 1.4.44, 1.4.45, and 2.2.3

-2.2.5, it is possible to calculate the joint statistics of I, 6, andu.
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2.3 The Statistics of the Amplitude and Phase Functions

Since Al(t), Az(t}, tﬂl(t), and sz(t) are defined in terms of the
analytic signal representation of the field, it is necessary to know the
joint statistics of the field components and their Hilbert transforms.
According to Arens {35), this probability function can be expressed in

the concise form

EELZSJ_eXP -12[ Z C.lkEi*(t)E‘.k(t)] (2.3.1)

P[El(t),EZ(t)]=
(2m) ik=1,2

where Ei(t) is the analytic signal associated with the real field compon-

ent Ef’l)(t). The matrix C is the inverse of the coherency matrix

Tp e = 3 B OE (0

Thus,
T222) T2t
C = (2.3.2)
%
"le(_l:_) Jl].(-z-) 9

and

DetC = 'DEF%T(‘T (2.3.3

The substitution of 2.3.2 and 2.3.3 into 2.3.1 yields

(n) (L) (M) ey wll a7 o 1 1 ¢ 2
PlETV (), E]7 (1), B3V (1),E;7 ()] = oy expl-y57 T [3,,1E, 1%+

2 %
+J11|EZ| -2Re(J12E1E2)]}

(2.3.4)
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Observe that for convenience variable t has been suppressed on the right
side of 2.3 .4.
The probability function for Al(t),AZ(t),cpl(t), and cpz(t) is obtained

from 2.3.4 by means of the transformation of variables

E{(t) = A, (thcoslw_t+@(t)]
_ (2.3.5)
Ei('“)(t) = Ai(t)sin[wot +cpi(t)]

Following the standard procedure for transforming the probability func-

tion to a new set of variables, one obtains

A A
1" 2 ¢
P[Al,Az,cpl,cpzj.-—z——-;—Eexp{ BT tJ [3,,A 1+J11A2 28, A |.T |
-cos(Cpl—cpz-arngz)j}
{2.3.6)

Note that P[Al ,AZ,Cpl ,cp2] depends only on the phase difference (cpl—ccz).
By introducing the transformation § = ®,-05, £ = 0, and then integrating

over £, 2.3.6 simplifies slightly.

* Briefly, the formula for transforrning probability functions is
given by
Plyyseeenyy) = {Plxy,..0ux) BIE l (2.3.8)

SR SERERRN Y

where & is the Jacobian of the one-to-one transformation
X, = fi(y1 RN ’Vn)“ A detailed discussion of this formula

is given in Chapter 3 of Davenport and Root{(19).
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24 A
I S 1 2 2
PlA) 4,00 = trgrr— P - porglizzA 1 H11 1A - 284, 1) leosti-arg 3, )T

(2.3.7)

Equation 2.3.7 describes the joint statistics of the amplitudes and phases

of a Gaussian quasi-monochromatic field at the point r in space.

2.4 Probability Distribution for the Instantaneous Ellipse

If 2.2,3 - 2,2.5 are regarded as a transformation of variables
from the coordinates Al ,Az,lb to new coordinates I,8 ,u, then
P(I, 8,u) can be derived from 2.3.7 by the transformation formula used
above. However, before considering this transformation, it is desirable

to rewrite 2.3.7 in terms of '"polar' coordinates. Thus, if AI and A2

are replaced by I, &, where

1=a%+A7 0 1 <o
(2.4.1)

AZ .

tan & 37;—-—“ 3 0$§ST

1

Then 2.13 can be written

Isin2d

I *
Z7 Detd exP{--Z-[(J11+J22)- (Jll—JZZ)cos 2§-Z|J12|s1n2§

P(I,8,0) =

. cos('JJ-arngz)]}

(2.4.2)



-74-

where once again 2,3.8 has been used. Now consider the transformation
of coordinates from (I,8,¥) to (I,8,u). Equation 2.4.1, combined with

2.2.3 - 2.2.5, leads to the result

I =1 0&@6%
tan26= tan2 dcosVy 05V < 2n (2.4.3)
u =s8in2dsiny 0gI g

To obtain P(I,0,u), it is necessary to determine the inverse of the trans-
formation 2.4.3. The inverse transformation must be defined carefully
to insure that it is single valued, i.e., to insure that a particular set of
amplitudes and phases correspond to a unique ellipse and vice versa.

The desired inverse transformation is

3 = %cosulf(cosze)vll—uz] -ISuSI,-%SGS-TZr-
,o~1 u T
sin : ( _ -1sus1,oses-z (2.4.4)
\/u&coszze+sin529'

z}!:

™ - sin 4 ~1€ugl,-Ts0g0

2 2 2 2
/u cos 28 +sin” 20

I =1 0 1 <

The ranges for 1,8, and u are chosen so that each possible ellipse is
described by only one set of parameters. (The complicated relationship
between §and ( u,0) results from the fact that if 8 is negative, then |

must be in either the second or the third quadrant.)
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The Jacobian of the transformation 2.4.4 is

T = 1 (2.4.5)
[uzcosZ 20 + ssin2 29]1/2

Repeating the transformation procedure, one obtains, after some manip-

ulation , the result

J(li'z)u— \/l-u .

P(L8 ) =orrgry—oxP - ppary- (19, +922)-2

(n)
2! 27
2 (’7.) e -1 12
. %J “J,5) 14 T7Y cos(28-tan N
11 22 12 Jll-JZ?.
(2.4.6)

This equation can be put in a more concise form by introducing the Stokes'

parameters. The final result, then, is obtained from 1.4.37, 1.4.52 -

1,2 2 2 2% 2
1.4.55, and the fact that Deti -z(so-sl-sz-sz’)—_‘}_ (1-p7)

p(I:eJu)_ 221 7 "xPL 7 212 [50—8311— \ISI-I- SZ l1-u
ms_(1-p7) s (1-p")

s.
.cos(2 S-tan'l-—-g'—)jﬁ}
%1

(2.4.7)

Equation 2.4.7 represents tﬁe joint probability distribution of the three
parameters (1,0, u) that characterize the instantaneous ellipse. Observe
that P(I,'e,u) is a positive function over the entire range of the random
variables I,0,u, as it must be if it is to represent a probability distri-

bution.



-76-

The result given in 2.4.7 is verified in Appendix B by integration over the
entire range of the variables I1,0,u . As expected, the integral has the
value unity. Appendix B also contains the calculation of the various
marginal distributions associated with P(I,8,u). Some of the more inter-

esting properties of 2.4.7 are discussed in the following section.

2.5 The Properties of P(I,08,u)

Equation 2.4.7 provides the statistics of the instantaneous ellipse
of a partially polarized field. Observe that the probability distribution is
complctely specified by the Stokes' paramecters 8,+811851 and B Thus,
an experiment designed to measure the instantaneous ellipses of two rays
having identical Stokes' parameters will be unable to distinguish between
the rays, since the instantaneous ellipse of each ray is completely char-
acterized by its probability distribution and, in this case, the probability
distributions of the two rays would be identical. This result is in agree-
ment with Stokes' principle of optical equivalence., But, more import-
antly, it shows that two quasi-monochromatic light rays, that have equal
Stokes' parameters, cannot even be distinguished from the details of
their temporal variations.

Consider next the two limiting cases of complete polarization and

complete absence of polarization. The latter case is characterized by

p =0, 8, =8, =83 = 0. Thus, for unpolarized radiation
o0Ig o
2 ~ N
P(I,8,u) =—2—I-2—— -eXpE--S—-I-] (2.5.1)
ms o - .
-z S84
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First observe that in this limit the variables 1,8, and W are statistically

independent. Furthermore, u and 6 are uniformly distributed. That is,

p(l,6,u) =p()p(B)p (u) (2.5.2)
where
p(D) =_4_12_exp[__?_ 0gIgw (2.5.3)
S o
(o]
1 ,
p(f) = — -3<8 3 (2.5.4)
plu) =—1;j -l€ugl (2.5.5)

These results are consistent with those found by Hurwitz (23). Their
implication is clear. The instantaneous ellipse of an unpolarized wave
assumes all possible elliptical configurations with equal likelihood. Thus,
an unpolarized wave is one whose instantaneous ellipse shéws absolutely
no preference for a specific geometry.

Although these results are intuitively satisfying, they require
some qualification. The difficulty relates to the ellipticity or shape of
the instantaneous ellipse. In 2.5.2 and 2.5.5, the shape is represented
by u, which is uniformly distributed in the case of unpolarized light.
However, the ellipticity am/AM also provides a measure of the shape of

the ellipse. These two parameters are related by the equation

a
2 (Tm]
M a'm
u o= Os-K—- <1 (2.5.6)
—_—
(am M -
14 |
AM
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Thus, from 2.5.5 and 2.5.6, it is seen that

2
1 - K—am
*m M ®m
(AM) am)Z M
1+
A
M

Equation 2.5.7 shows that, although u is uniformily distributed,
a
(a_/A_)is not. In fact, P(-Krf-]is a2 monotonically decreasing function
m m M
a

on the interval 0 < Tm— 1. The average value of (am/AM) is 0.307, its

M

most probable value is zero, and its median value is 0.268. The median

Toaga thnaw ~wa
1C 88 tnan onc-

is fourth AM about onc- half th

The two parameters u and am/AM both describe the shape of the
instantaneous ellipse, but they are not distributed in the same way in
probability. Consequently, it is desirable to select one or the other
as the shape parameter. Sinceu is so simply related to the Stokes'
parameters, and since it isuniformly distributed in the case of unpolar-
ized light, it appears to be the more desirable choice. Hence, hereafter
u, along with I, 8, and p, will be regarded as the principal polarization
parameters,

Before proceeding to the other limiting case, it is worthwhile to
consider p({), the probability distribution of the phase difference cpl(t) -
cpz(t), in the limit of unpolarized light. To this end, it is necessary to
express 2.4.2 in terms of the Stokes' parameters. Once again, using

1.4.37, 1.4.52 - 1.4.55, and DetJ = (s °-s/-s%57), one finds that
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P(I,%,}) = lesin22§ exp{- 721 2,_s -§,C08 2&5-? /s +s§|s1n 24
-rrso(l-p ) (1 o) )

s
.cos(l-tan 1--—3-) 1}
52

(2.5.8)

Thus in the limitp=1s, =5, = 5, 0,
P(I,8,1) = 2lsinz? exp['ZI ] (2.5.9)

LECIN o

In other words, {§ is statistically independent of I and ¢, and is uniformly
distributed between 0 and 2w. Thus, in unpolarized light, the phase
difference between the components of the field takes on every value be-
tween 0 and 27 with equal probability. In other words, an unpolarized
wave is one for which there is no preferred phase difference between
components .

Consider now the case of complete polarization. This limit is

characterized by p = 1. If 2.4.7 is written in the concise form

P(I,8,u) = const. ———Texp[ f_(I;%_l_l_)_] (2.5.10)
(1-p") (1-p™)

it is seen that

[
o

lim P(I,e ,U.) = f(I’e,u) * 0
e (2.5.11)

£(1,0 ,u) = 0.

L}
3

Since the integral of P(I,0,u) is unity, then in this limit the probability
function has the characteristics of a delta function. The singular '"point"

is defined by
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I 2. .2 P -1%2 .1 .
—s-z—[so—s3u- /sl+ s, jl-u cos (20-tan —s—l—)] =0 (2.5,12)
o

Neglecting the trivial case I = 0, this equation requires that

S -S u 1 Sz
= cos (20 -tan” * —=) (2.5.13)

1 S
ﬁ+sz/lu 1

It is readily found that over the range -1Sus 1 the left side of 2.5.13 has

an absolute minimum atu_ = s3/so. If p< 1, this minimum is greater

than 1. However, as p - 1, the minimumdoes also. Hence, in the limit
.5. i ion: = 6 = -

pe1, 2.5.12 has a single solution u, s3/so,tan2 5 SZ/Sl The

solution of 2,5.12 is independent of I. To determine the dependence of

P(I,8,u) on I in the limit p-=1, it is necessary to calculate the marginal

distribution PM(I) and then approach the limit. This distribution is cal-

culated in Appendix C. It is given by

2
P, {I) = smh[ s +s ot83 ] xpl - ]
M 32 sz(lpz)\/ P s(lp)

sL+ sz+ s3

(2.5.14)

»
Thus,

lim P (I) = -;-— exp[-—] (2.5.15)
pel 5o

¥ The value of P, {I) at the origin in the limit p = | depends
on which order}'%he limits are taken. lin'lli P, {I}) =0
p=lleld M

lim lim P, (I) = 2/s_. Since interest here is restricted to
J=0 pwl °

positive values of I, then the latter value is defined to be
the probability.density at I = 0 in the limit p-wl.
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The above results can be expressed mathematically in the form

S S
lim P(1,8,u) = - Sy - ——— ) 6(9-.12tan°182 Jexpk——1 (2.5.16)
pel o sz+s ts 1 o
1t82%8;

where sf+ s§+ s§ has been substituted for 5, in the denominator of the
singular point u - The significance of this result is clear. The ellipse
with parameters u_, 90 occurs with probability 1 while all other ellipses
occur with probability zero. Thus, the orientation and ellipticity of the
instantaneous ellipse of a completely polarized wave are independent of
time (with probability 1)--a result which is in complete agreement with
the conventional analysis of complete polarization. On the other hand,
the ''size' of the ellipse is variable, its distribution being exponential in
character. Observe that the most likely value of I (as determined from
the maximum of the distribution of I) is zero. This is consistent with the
fact that the vector field is assumed to have zero mean value. Interest-
ingly, the average value of I equals 5, Thus, the Stokes' parameter s
represents the average intensity of the instantaneous ellipse of the field.
It is interesting to note from 2.5.15 that the amplitude of the field
has the Rayleigh distribution, i.e., if p denotes the amplitude of the field,

then p = ﬁ-‘, and under this transformation PM(I) becomes

2
_ 2p P
P, (#) —Kexp[ ——S.OJ (2.5.17)

But the amplitude of scalar, narrow-band, Gaussian noise is Rayleigh
distributed.Thus; 2.5.17 suggests that from a statistical standpoint a

completely polarized noise-like field has the character of scalar narrow-
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band noise. This conclusion is consistent with the result stated in
1.4.35 --namely that the two orthogonal components of a completely
polarized field are proportional, so that such a field is represented by a
single random process. Thus, for instance, the statistics of a com-
pletely polarized ray can be treated separately from the vector consider-
ations in taking such a ray through a deterministic optical system. It

is this fact that forms the basis for the Jones calculus of optical systems
(36).

The foregoing considerations indicate that an unpolarized ray
cannot be treated as a scalar quantity when considering the interaction
of such a ray with an optical system. Equation 2.5.3 shows that the
amplitude, /? , of an unpolarized ray is not Rayleigh distributed. In
fact, it is distributed as the amplitude of the sum of two independent
Gaussian random processes that have equal statistics. These two
processes, of course, are the two instantaneous components of the field
vector. But an optical system can affect the two instantaneous compon-
ents of a field vector differently. Therefore, since the temporal varia-
tions of the two components are independent, the two components must
both be considered when carrying such a ray through an optical system.
In other words, the vector character of an unpolarized ray can only be
ignored if the ray propagates undisturbed through free space.

By considering thc two limiting cases p = 0 and p =1, it has been
shown that the degree of polarization determines the tendency for the
geometry of the instantaneous ellipse to vary with respect to time. In
the case of unpolarized radiation (p = 0), the statistics show that the

instantaneous ellipse varies uniformly over all possible configurations.
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On the other hand, in the case of complete polarization (p = 1}, the
geometry of the instantaneous ellipse is constant with respect to time,
so that in this case there is a unique polarization locus associated with
the field vector. Clearly then, partial polarization must be character-
ized by some intermediate behavior. More specifically, it will now be
shown that although the instantaneous ellipse of a partially polarized
field fluctuates with respect to time, it has a preferred geometry. It
will also be shown that this preferred geometry corresponds to the geom-
etry of the ellipse that characterizes the completely polarized part of the
field.

Consider 2.4.7, the probability distribution of the instantaneous
ellipse associated with a partially polarized wave. The maximum of this
function (which defines the most likely ellipse) is determined from the

simultaneous solution of

3P _, 3P _, 3P _,
T =Y =% Fpc :

These three conditions lead to the following equations:

: 1 8
sz(l-pz)-I[s -s;u- /I-u2 \/sz+sZI cos(26- tan 1-—-2-)] =0 (2.5.18)
o o 1 2 8

s
Vi-u s3-u\/sl+s§ cos(Ze-tan-ls—d) = 0 (2.5.19)

1

1-u® sin (26-tan”! =2y = 0 (2.5.20)
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Starting with 2.5.20, one can readily show that 2.5.18 - 2.5,20

have three solutions:

_ - 3 21 -1 s
11—50(1+P) 3 ul = > N el -Eta—n -__2-
+s,+s8 °1
81T 827 83
(2.5.21)
2 2
s_(1-p")
_ o _ _rm 1 -1 s
L =43 » ouy =l » By=gtptan” 2
o) 3 s1
2 2
s {l1-p")
_ o e r. 1 -1 s
13 5 T s s u3-1 , 93-4+7tan _2,
3 s,

By substituting 2.5.21 into 2.4.7, it is found that P(I1 ,el,ul) is greater
in magnitude than either P(IZ,uz,e 5) or P(I3 ,93,u3) . Thus, I ,8 0
characterizes the most probable ellipse. But observe that this is

exactly the polarization that is defined by the Stokes' parameters of the
completely polarized part of the wave (see 1.4.38). Therefore, it is seen
that the polarization defined by the Stokes' parameters corresponds to the
polarization locus most frequently traced out by the field vector in the
course of its time variation. This result clearly demonstrates that the
Stokes' parameters determine the preferred state of polarization of the
field rather than some average polarization. Furthermore, although
p(I,8,u) has a single well defined maximum if p <1, it is not zero for
points (I,0,u) that are different from (11 ,61 ,ul). Therefore, a partially
polarized wave is characterized not only by a preferred polarization, but
also by the fact that the instantaneous ellipse assumes other orientations
and shapes as well. It is due to the fact that the instantaneous ellipse

varies that an unpolarized component exists. That is, incomplete
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polarization is caused by the excursions of the instantaneous ellipse from
its preferred state. From a statistical standpoint, the extent to which

the instantaneous ellipse deviates from its preferred state is determined
by the width of the probability distribution. But, as seen from 2.4.7, the
width of P(I,6,u) is determined largely by the degree_of polarization (i.e.,
p behaves like the variance of ordinary statistical aﬁalysis) . Thus, the
degree of polarization can be interpreted as a measure of the extent to
which the instantaneous ellipse deviates from the preferred, or com-
pletely polarized, state.

To summarize the results obtained in this section, it was shown
that a quasi-monochromatic field vector traces out an instantancous ellipse
which, in general, changes its character over time intervals in excess of
2w/Aw. In the event that the instantaneous ellipse shows a preference for
one particular polarization, the wave is partially polarized. The polarized
part of the wave, as determined by the Stokes' parameters, is character-
ized by the preferred polarization state of the instantaneous ellipse. The
degree of polarization is determined by the extent to which the instantane-
ous ellipse seeks other states of polarization during the course of a
measurement. In the limiting case of complete polarization, the instan-
taneous ellipse remains fixed in geometry--only its intensity fluctuates.
The geometry of the preferred ellipse corresponds to that of the ellipse
determined from the Stokes' parameters. In the other limiting case, that
of completely unpolarized radiation, the instantaneous ellipse fluctuates
in a uniform fashion over all possible polarization states. Thus, on the
basis of this analysis, polarization is seen to be a measure of the tendency

for the field locus to prefer a particular configuration. The unpolarized
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part of the wave results from the tendency for the instantaneous ellipse

to deviate from this preferred geometry.

2.6 An Application

To complete this chapter it is useful to consider a simple appli-
cation of the results obtained above. An interesting problem, which
requires explicit use of the model and the statistics for an unpolarized
quasi-monochromatic plane wave, concerns the calculation of the differ-
ential scattering cross section of a free electron excited by an unpolar-
ized wave. This calculation has been carried out by Landau and Lifshits
(37). However, they use the Fresnel model of an unpolarized wave rather
than the more credible instantaneous ellipse model that was discussed
above., The statistics derived in this chapter provide a means for veri-
fying the applicability of the Fresnel model to the calculation of the
scattering cross section. The procedure followed here is to assume
that the instantaneous power scattered into some direction by the
electrons results from an elliptically polarized incident plane wave.

The average power scattered in this direction is then computed using
the statistics derived above.

Suppose an unpolarized quasi-monochromatic plane wave is
incident upon a free electron situated at the origin of coordinates. The
problem posed here is to calculate the effective differential scattering
cross section of the electron. By definition, the effective scattering

cross scction is (37)

_ <dI1>
do = zgs— (2.6.1)



-87-

i.e., do is the ratio of the time average of the power scattered into the
solid angle d{ to the average power density of the incident wave. For the

elliptically polarized monochromatic wave

E(t) = A cos(wt+x) + imsin(wt+(x) (2.6.2)

M

(where AM and a_ represent the vector semi-major and semi-minor

%
axes of the ellipse), the scattering cross section is

2 2
4 A, xe + (a_xe
_ e (—M —n) (—m —n)
o) = dQ (2.6.3)
mono 2 4 2 2
m c A b a
M m

where e, is a unit vector in the direction of observation. Thus the

scattering cross section of a quasi-monochromatic wave can be written

2 2
4 <[A (t)xe ]“+[a_ (t)xe ]°>
do =S L M- a0 (2.6.4)
m “c <AL () +al (1) >

where, as before, the sharp brackets indicate a time average. By appeal-
ing to the ergodicity hypothesis, it is possible to rewrite 2.6.4 as an

ensemble average.

4 Ayxe 1o+l _xe 1°
do = - L do (2.6.5)

m C inc

where Iinc » the intensity of the incident wave, is defined by 1.4.22 and
1.4.26. To introduce the parameters of the instantaneous ellipse, con-

sider the geometry depicted in Figure 2.1. Equation 2.6.5 can be

See Problem 1, page 234 of Landau and Lifshitz (37).



-88-

BIOO-(2
y
A
/’——~\
Q -~ By
9., .
P /
7 ] //
/,’ ~7
X
s
[/ e
\ -
N -

(a) Geometry of the instantaneous

ellipse.
8100+13
y

"""""""" 7,

271

¢ |

/e |

L0

|
DIRECTION l >
OF X

PROPAGATION

(b) Geometry of the scattering process,

Figure 2, 1. Scattering by a free
electron,



-89-

written in the form

e 72 72
do = o [AM sin (En,iM) + amsin (_e-n,i_ ) ] dQ
m c I,
inc
(2.6.6)
= e’ [1 - AZ cosz(e ALY+ a’ cosz(e a_)]do
m 2041 inc M —n’—M m —n’Zm
inc
But from Figure 2.1 it is seen that
cos (en,AM) = cos 8sin@cos®+ sinfsin® sin® = sin®cos(p -6)
- (2.6.7)

cos (En,im) = -sinfsin®cos®+cosfsin@sin®= sin® sin(®p - 0)

Therefore, 2.6.6 can be written

d0 =2 [ .sin® [(A% +2% )+ (A% - a%)cos2(8-0) ] Ydn
’mzc41 inc 2 M “m M “m s -
“inc

(2.6.8)
From the statistics derived on page 77, it is seen that the angle 9, the
orientation angle of the instantaneous ellipse, is uniformly distributed be-
tween 0 and 2r. Furthermore, the statistics of AM and a , are indepen-

dent of those of 6 in the case of unpolarized field. Hence, the second term

under the expectation bar is zero, and

e4 - s'nz@
do = —— (l- _iz_;] dn
m C
2
A
= % —e———z— [1+COSZ@]dQ
lmc

where ®is the angle hetween the direction of propagation and the direction

of observation. This is the same result obtained by Landau and Lifshitz.
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HI. THE EQUATION OF PROPAGATION AND THE BOUNDARY CON-
DITIONS FOR THE DFS

3.1 Introduction

One of the most noteworthy achievements in the development of
the theory of partial coherence was Zernike's calculation of the functional
relationship between the mutual coherence function and the intensity dis-
tribution of the source. By means of this calculation, he was able to
show that the spatial coherence of the field has the form of the diffrac-
tion pattern radiated by an aperture of the same size and shape as the
source that is illuminated by a spherical wave originating at a particular
point behind the aperture .* This observation is quite suggestive: since
a diffraction pattern satisfies the wave equation (or the reduced wave
equation in the case of sinusoidal time variations), perhaps the mutual
coherence function satisfies a similar type of equation. On the basis of
this sort of reasoning, Wolf (7) was led to derive the differential equa-
tions that the mutual coherence function must satisfy. As a result of
this analysis, he found that the mutual coherence function,

r-I(P1 ,Pz,t1 ,tz), must simultaneously satisfy

2
2 . 1 23
Vilte,.pm = 5 5 [e,.P,.7)

(3.1.1)
ViMP, . P T)'—l—-az Me..p..1)
2 1*'7 2 -CZ aTz 1'72°

where

¥
12, P,m) = <V(P,t)V(P,,t,)>,

* See Born and Wolf (26), page 507,
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V(P t) being the complex scalar disturbance at point P at time t. As
usual, the symbol vlz represents the Laplacean operator

2
H2 + B2 +

—_ —_— 2

2 2 z.
axi Byi i

, wWwhere (Xi’yi’zi) are the rectangular coordinates

of the point Pi(i =1,2). The symbol, ¢, represcnts the velocity of light.
Thus, it is seen that the spatial coherence of the field propagates like a
scalar wave. Of course, since r1 depends on two independent field
points, it is defined by two wave equations. Nevertheless, the analogy
with wave propagation is clear. As will be found below, this analogy is
very strongly reflected in the mathematics of the theory of partial coher-
ence.

Shortly after this work, Wolf and his colleagues generalized
3.1.1 to vector quasi-monochromatic fields (9). This analysis origin-
ated from Maxwell's equations. Hence, it was the first derivation of the
equations of propagation of the coherency matrix that started from first
principles. This work was restricted to quasi-monochromatic
fields, because the coherency matrix that Wolf introduced had meaning
only for narrow-band radiation. However, in Chapter I the concept of
coherence (and the coherency matrix) was extended to vector fields of
broad spectral width. Consequently, it is now possible to extend Wolf's
derivation of the wave equation for the coherency matrix to fields of
arbitrary spectral width. The procedure employed in the derivation of
the differential equation is basically that developed by Wolf. The form
of the results given here differs from Wolf's in that dyadic notation is
introduced for the purpose of simplifying the subsequent integration of

the differential equation.
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3.2 The Dyadic Wave Equation

The wave equation for the DFS is most readily derived by start-
ing with Maxwell's equations expressed in tensor notation. Itis assumed
that the domain of interest is free space, and that the field is radiated by
a distribution of real macroscopic sources. Since it is the object of this
analysis to derive the wave equation directly, without first obtaining the
tensor analog of Maxwell's equations, then only the current density
J(r,t) is required to specify the source. In fact, the only equations of

interest here are

()
() - ¢ H (r,t)
\.;./.,XE (_1;,1;) = -HO (-—t- — (3.2.1)
3,1
\“jxﬁ_‘“)(g,t) = 1(“)(3,t)+ € (3.2.2)
dt

In tensor notation 3.2.1 and 3.2.2 become
. () _ 2 )
Mg 5 B (0.8 = -py yy HyU(LE)
i,j.k, =1,2,3

d. Hli“)(ﬁ,t) = Jg“)(i,t) re 2 Egh‘)(i,t)

L o IT
(3.2.4)
where nijk is the Levi-Civita symbol
[. 1 for an even permutation of i, j, and k,
= {-1 for an odd permutation of i,j, and k. {3.2.5)

Mk 1
.7 0 if two or more indices are the same.
The symbol 31 represents the differentiation operation?—i , where X, is

one of the three rectangular coordinates. The quantities € and h, are

the permittivity and permeability of free space, respectively.
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The field quantity (_1;; t), appearing in 3.2.3 and 3. 2.4, repre-~

g
i
sents the component of the field in the direction of the coordinate X, It

should be observed that real field components are used here. This
represents a departure from Wolf's derivation which is based on the
analytic signal representation of the field. Because interest here is
concerned with the DFS8 rather than with the dyadic autocorrelation func-
tion, it is not necessary to employ complex field quantities,

The first step in the derivation of the dyadic wave equation is to

multiply 3. 2.3, evaluated at point r, and time t , by 3.2.3, evaluated

1
at 'E'Z’ tz. This procedure yiclds the cquation
(1) ,(2) _ .2 8 8
Mk Umn ) Om Flip t) Balepta) = v e Hilep ) gy Hylz,s tp)

(3.2.6)
where the superscripts (1) and (2) indicate the point with respect to which
the differentiation applies. If the ensemble average of 3,2.6 is formed
and if use is made of the fact that the field is stationary, then 3, 2,6

reduces to

(1) (2) 2T 3 E
M5k Umn’j  Om ErnlZyIp™) = By Bt , Hyr,,t)) Bt Hz‘iz'tz)]
(3.2.7)

where T = t, - t,. The right side of 3, 2.7 can be simplified by inter-

changing the orders of averaging and differentiation and then making use

Since only real functions of time appear in this analysis,
the superscript (4) on the field quantities is suppressed
throughout this chapter.
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of stationarity. Thatis,

2
PHY(ry a4y O (zo0 ) = srar Hilzyoty) Frlzy.tp)
at, 3t )
1 2
52
= 3o, ?( igZ1 X200 " ) (3.2.8)
1 %2
32
= oy o, T)
aTZ if=-1'=2

where?-(ij(f_l ’EZ’T) is an element of the magnetic field dyadic autocorrel-
ation function. It should be noted that H_(_r_l »I5,7) plays a secondary role
in this analysis and does not appear in ;.e final results. The interested
reader can find a detailed treatment of this quantity in the papers by
Wolf and Roman (11)-(14).

From 3.2.7 and 3.2.8, it is seen that

2
(1)5(2) 2 ®
nijk'ﬂ-ymnaj 3m gkn(f-l 2IonT) =-pg g-;z iy(f-l 1I5sT) (3.2.9)

The second dyadic differential equation is obtained by repeating
the above procedure, starting this time with 3.2.4. The equation anal-

ogous to 3.2.6 is

(1)a(2) (1)
MikMmnd om Tkl E1t) Bplfata)- e nnd 8 Hylr) ) K lzpatp) -
3t
2
3(2) 3 2 ¥

“SoMmnm &, Ejlr ) Hlr,.ty) +eg 3T,5%, Eilr) t))E(ry.t)) =

(3.2.100
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Taking the ensemble average of 3.2.10, one finds that

al1)3(2) (1) 2
Mk YpmnS O ?‘(k (T2 M+ €m0 Ekg IyaXpT) -

al2) 3
- nfmnmr,@m(rzsrl,-'r) = eO —Télf(rl’r :T) =91!(_I_'1)£2:T)

(3.2.11)

where bij(rl ,EZ,T) is an auxiliary dyadic defined by

bteyrpn = B EE, ) (3.2.12)

and where Qig(fl ,32,7') represents the dyadic autocorrelation function of
the source. To remove the term involving Hk (r,,r,,T) from 3.2.11,
> n-—1'=2
. ) ; ra 2 o
it is necessary to multiply it by - —- and then make use of 3.2.9.
BT

Proceeding in this manner, one obtains

(1)5(1)5(2)5(2) 2. 1)
nijknﬂmnnkabn cda_] aa 3 ac abd(rl’rZ’T) fott ﬂle j —-’bkﬁ(rl’rZ’T)

3 4
2, A(2)2 2 2 3 )
+ ‘o"‘onfmn m aT3/bn1( 22Xy MR e all(1~ T =

262 .
=pg —é—,,- .’(EI,EZ,T) (3.2.13)

The terms involving mij(ﬁl ’EZ’T)] can be eliminated by returning to

3.2.3. Expressed in terms of the coordinates _1:1,t1 ,

this equation can

be written

"lkab ( ) b(rlgtl) = - -aE—- k(rl, ) (302.14)
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If 3.2.14 is multiplied by Eﬂ (£Z’t2) and averaged, the result is

(1) _ d
"kaba Eabg‘f.yiz"r) ® ~ho BT ’gkt(-r-l'iz'ﬂ (3.2.15)

The term involving ’bni(f-l ,5_2,1’) is treated by writing 3.2.3 in the form

Tned c(; & PIEPTAPY “'Hog" H(r,,t,) (3.2.16)

multiplying through by Ei(_l_'1 ,tl), and averaging. As a result, itis

found that
(2) ¢ _ ) .
Tned aC é—id(—lll’EZ’T) - “o?’r_’gni(EZ’EI =T (3.2.17)

The ''wave equation'' is obtained by substituting 3.2.15 and 3.2.17 into

3.2.13:

S1)3(1)5(2)5(2)
MijkYgmnkabmed 2 om oo Eoaltyzprm) +

2
. A 1)(1) 3 §2) 42 ¥ Eid(;r;z ™

1 1
2 Mijkkab® a3 Z — Eqgley oz 2™ * —Z MgmnTncd’m

2
1 ) _ 23
YT a Eig‘il’.r_zﬂ)—-uo;793(_1;1,32,1) . (3.2.18)

The DFS satisfies the reduced ''wave equation'' which is obtained
from 3.2.18 by means of the Fourier transform. If 3.2.18 is multiplied

by e 19T

and integrated with respect to Tfrom T =-00 toT = +0¢ , then
by following the usual procedure of interchanging the order of differen-

tiation'and integration, it is found that



-97-

S(1)3(1)5(2);

(2) 8 2 (1) &
Mk MkabMmn Tmed a om Oc Cpaliy g -k Mk kab’)  oa C

2 Cpg (T2~

2 a(2) (2)8

- K M e d®m d(rl’rz"")*kea(rz'rz"*’) “o %q‘rl'rz“*’)

(3.2.19)

2
where k2 =--°—‘)2-—, and where the DFS and the DSS have been introduced by
c

means of the definitions given in 1.3.3.

Equation 3.2.19 represents the dyadic wave equation expressed in
tensor notation. Although this notation provides a convenient means for
deriving the dyadic wave equation, it is not particularly useful for the
solution of the equation. Vector notation provides a more effective form:.
To make the transition from one notation to the other, it is merely nec-

essary to observe that

Tk 2y Am (D) = (TU7xAR), (3.2.20)

where A(r) is a vector field, and the subscript i denotes the ith component
of the vector\/x\/xA(r}. The corresponding relationship for a dyadic

field is

M5k Mot 5 Opmn®) = fVXVXQE)}in (3.2.21}

where now the quantity on the left represents one term of the dyadic
\V23V/ xQ(_l_-) . In addition to terms like that given on the left of 3.2.21,

3.2.19 includes terms of the form

i Mctm ) 3 Qi )
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Since

ik Mpm J!O (r) = {VXVXO (1')}

then it follows that
- T T
ik ki m) of Qi @) VAT D7 (3.2.22)

Interestingly, the right side of 3.2.22 can be written more simply in the
form {Q(f.) xva }in . However, convention demands that differential
operators be written such that they operate from the left rather than from
the right. Therefore, the more complicated form given in 3.2.22 is
adopted here.

The vector form of the wave equation is obtained from 3.2.19 by
means of 3.2.21 and 3.2.22. Rewriting 3.2.19 directly in vector nota-

tion yields
AT A
YRRV RV v R S PRI B v S v TSR
2 AT T , .47 2 zg :
-k T xE (z)x .0 ] + K0, xy0) =p e (r) .1, 0). (3.2.23)

where Vi and Ve operate on the position variables r and r,» respec-
tively. The final result is obtained by factoring the left side of 3.2.23.

It is found to be

(lele-'kzl-){[vzx%x- i[__g l,rz,m)] } p, w %(rl,rz,m) (3.2.24)

The symbol L represents the unit dyadic.
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The symmetry of this equation is obscured by the cumbersome
notation introduced for the sake of convention. To illustrate this
symmetry (which shows itself quite clearly in the integrated form of the
differential equations), it is worthwhile to consider the unconventional

notation mentioned briefly above. In this notation 3.25 becomes
A A
2 2 _ 2 zg
(lele-k =I) [E_:(El ,E_z,w)](-__I';k -xvzxvz) =-pgw =(_1_‘1 ,_1:2,00) (3.2.25)

where the operator in the parenthesis on the right operates on

é(};l ’-32’“)) from the right. The minus sign on the right side of 3.2.25
appears because the right-hand operator on the left of 3.2.25 has been
multiplied by (-1} for notational convenience.

In this form, it is seen thaté(zl ,_1_'2,w) must simultanecusly
satisfy two reduced vector wave equation operators. For this reason,
2(31 ,_r_z,w) is said to propagate like a wave, and equation 3.2.24 is
referred to as a dyadic wave equation. The wave-like character of
§(_1_'1 ’Ez"") is more clearly emphasized by the integral representation
of §(£1 ’32'“’) which is derived in the next chapter. A second interesting
aspect of 3.2.25 is the symmetry it exhibits with respect to the two
vector operators. This symmetry is not unexpected considering that the
two observation points X and I, are in every respect equivalent. Never-

theless, it is satisfying to obtain such a simply stated result.

3.3 The Dyadic Wave Equation in a Source Free Region

Equation 3.2.24 represents the dyadic wave equation in a region
containing a source. Because of the presence of the source, the differ-

ential operators that relate to r, and I, are coupled into a single equation.
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If the region of interest is free of sources, this equation separates into
two parts as will now be shown.
Although the separated equations for a source free region can be

derived directly from
(Grw -k (e £ ) Th = 0 (3.3.1)

it is more instructive to begin directly from Maxwell's equations. Ina

source free domain, 3.2.3 and 3.2.4 reduce to

3
ﬂleaJEk(ﬁst) = 'HO 3t Hl(zst) (3.3.2)
©_ _H.{r,t) = e aE(rL) {3.3.3)
Mmi m s’ o9t = c

Multiply both 3.3.2 and 3.3.3, evaluated at (_1_"1 ,tl), by En(EZ’tZ)’

average both, and take the curl with respect to r, of the first of the two

1

equations. This results in the equations

(1) (1) ' _ 3 (1)
T'anlinijkaj o Ekn‘il 'E20T) = 1y F Nmniom bin(_r.l 2I07) (3.3.4)
l 3
"ﬁmia;)bin('r-l’ﬁl'ﬂ = ¢ I CqnlTy iz (3.3.5)

Substitute 3.3.5 into 3.3.4 to obtain

&
nﬂminijkagl)ag)akn(fl’EZ’TH"IZ'B_T'z Eﬂn(}ll'iz’ﬂ = 0. (3.3.6)
C

Take the Fourier transform of 3.3.6 and write the result in vector

notation:
A
ki E(r 12,0 = 0
(Vjx W x-k gl x2s0

This is the first of the two separate wave equations. If this procedure
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is repeated starting with 3.3.2 and 3.3.3 evaluated at (_1_'_2,t2), and by

multiplying through by En(il ,tl), the second wave equation is found

(U px-k 1) E T () vxp00) = 0 (3.3.8)

Since the divergence of the electric field is zero in a source free region,

then it can be shown that

A l\T
vl'é‘il 'Ez’“’) = VZE (51,_1_'_2,0)) =0

Consequently, 3.3.7 and 3.3.8 reduceto

(vlz'*'kz)é(_{l ,Ezow) =0 (3.3.9)
2 .2 é‘
V5+k9E (x),x5.0) =0 (3.3.10)

The significance of 3.3.9 and 3.3.10 is that the differential operator has
been reduced to a scalar operator. Observe also that these equations
are the vector analog of 3.1,1, which defines the propagation of the
mutual coherence function. The foregoing analysis shows that this
analogy holde only in the absence of sources. If sources are present,
the two differential equations couple together and must be dealt with as

a single dyadic differential equation.

3.4 The Dyadic Wave Equation in a General Transparent Medium

Up to this point, consideration has been given only to propaga-
tion in free space. To generalize this result, it is desirable to consider
the propagation law of the DFS in a material medium. Suppose the me-
dium is characterized by a dyadic electric susceptibility of the type that

is usually employed for a cold plasma biased by a constant magnetic
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field. In this case, the presence of the medium is introduced into

Maxwell's equations by means of the constitutive equation

N

A A
D(r , w) =eo7__:(w)'_§(3.w) (3.4.1)

~

where the Lﬁ_(_l;,w) represents the amplitude and phase of a time harmonic
field. The quantity‘?\ (w) represents the dyadic dielectric susceptibility

at frequency w. The more general form of this equation is written

Qo
3;)_(3,1:) = 50[ )_é(t')A.E(r_,ut') dt!' (3.4.2}
(G

where the field quantities _E_(_{,t) and I_)(_I:,t) are no longer restricted to be
harmonic functions of time. The quantity X (t) is the Fourier transform
of é\(_(w). It represents the response of the medium to an impulsive
electric field. The mathematical relationship between g(w) and __)(_ (t)

is given by

[e <]
% (t) = jfg(m)e' Lty . (3.4.3)
—00
Correspondingly,
oo .
% (w) =% f :&(t)etmtdt (3.4.4)
= /., =

Since 3.4.2 is valid for stationary noise-like fields as well as for
fields that have well defined Fourier transforms, it is the natural start-
ing point for the analysis of the propagation of the DFS in a dispersive
anisotropic medium,

The field equations in such a medium may be written in the form

3
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3D(r t)
3035 Hilz,8) - —g—— =0

Di(ﬁ’t) = ei/'Xij(t')Ej(}:,t—t')dt'
(o}

(3.4.6)

(3.4.7)

Employing the procedure used in Section 3.2, one obtains from

3.4.5 as before the equation

2
0
T]ijkﬂi (1) (2) 81( (1‘1,1‘2,’1') "‘"HZ —'Z—qu(il :12,7)

mn_]

(3.2.9)

However, when this procedure is applied to 3.4.6, a new equation results,

which involves Di(_r_,t) in place of €, Ei(i,t). Thus, by properly modify-

ing 3.2.11, it is found that

3(1)5(2) 50
ﬂleﬂqan Hk (rlarth)+n1JkJ 8t ékﬂ(rl’EZ'T) -

fmn m 5 ni(—l-'-Z’—lll y=T) - -gr—z— ‘gﬂ(};l ’EZ'T) =0

where

Fileyoreem = Bl i) D)

ﬁij(.{l’.l:.z’T) = Dylz; 1) Dz, L))

(3.4.8)

(3.4.9)

(3.4.10)

The dyadic S,Z and@ can be related tog and {, respectively, by means

of 3.4.7, Considergfirst.

)
3 (rl,rz,'r) = ¢ [Hi(il’tl) ijk(t')Ek(f-Z’tZ—t') dt'] (3.4.11)
o
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It is assumed that the properties of the medium are fixed with respect to
time. Therefore, the medium is deterministic, and the orders of averag-

ing and integration can be interchanged. This yields the result

o0

P

Cfij(il’f-Z'T) =€, [X jk(t')'z;’i.k(il’iz’t'*'ﬂdt' (3.4.12)
(o]

Correspondingly,

~ [~ o]

;fij(zz,_r_l,-'r) =€°_[ Xjk(t')/bik(EZ’f.l’t"T)dt‘ (3.4.13) .
o

The equivalent result for ..(r,,r,,T), found in the same manner, is
q ij=1’'=2

2 l 1y ot fon - me_dl  #1Y A4 4N
s [ vV y G

Bdr, x5, T)=c¢ {t

Mj\_l 1L ] OJOJ '\ik‘
e}

(3.4.14)

These results, when substituted into 3.4.4, yield the equation

o0
(1)3(2) mae /.
ikMmnd om MkalE10E2 0 €M LEWA % gl Wplzp 2 1) At -

o0
(1) _8 .

| R
- ei .a—a:ro»[ RIS X}q(t”)&pq(_zl,z_z,'r»t'+t")dt'dt” =0 (3.4.15)

The quantities Hkn(f-l‘EZ’T)’bkm(f-l ,_J_r_z,t'+'r), andbnk(ﬁz’ﬁrt"”
are eliminated by means of 3.2.9, 3.2.15, and 3.2.17. The resulting

expression is
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(1)5(1)5(2) 5(2)
"ijk“mn”kab"ncdaJ aaL 3 2 Epalry sz

2 80
1 A1) 32 f o |

! @ E [T -
+;-2_ gmnnnCdam aC ——2- A Xip(t )de(il 1_1:2:1-" t ) dt +

4
3 jf (t')X t”)e (rl’rz”r t' tll)dtldtn =0

(3.4.16)

The Fourier transform of this equation provides the wave equation for the

DFS in the medium
~ 3 (1)(1)51(2) 5 (2)
"‘1jk“’gmn“kab"'ncd i% e E pallyTzw) -

2 A% o A1)y (1)
-k X fp(w) nijknkabj €b (rl,rz,w) -

2 (2) (2)
-k X ) "‘amn“ncda ¢ palfsZz ¥
4 A A ¥ &
+E Rt R Qq(w)apq(_f_l I,0) = 0 (3.4.17)
S
This equation can be expressed in vector notation by making use of

3.2.21 and 3.2.22.

[va]x-kzi (w)-]{[%x%x-k i é l’rZ’w)} =0 (3.4.18)
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It is possible to show, starting from 3.4.5 and 3.4.6 that

N
leleé(ﬁl ’Eg’w) - k2>A=i () - é‘il ’32’“) =0 (3.4.19)
VZXVZX-_E-T(EI ,_1'_2 w) - ki*(w)-éT(il ’52’“’) =0 | (3.4.20)

Thus, as in free space, the dyadic wave equation in a material medium
factors into two conventional wave equations if there are no sources
present in the medium.

It can be shown by straightforward calculation that if in addition to
being anisotropic and dispersive the medium is also inhomogeneous, then

3.4.18 takes the form
* A
[lele'kzi(_r.l'“’)'] {[szvzx-kzi (gz,w)'léT(_r_l ,gz,w)}T =0 ,(3.4.21)

where )t (r,w) is the dyadic electric susceptibility at point r and frequency

w. As before, this equation factors into the two ordinary wave equations

A A

Vel o xpe0) - K5 (2 ,0) Elry g0 = 0 (3.4.22)
A A

VZXVZX__@T(& X p0w) - kzﬁ;*(iz’w) Gz ir,,w) =0 . (3.4.23)

This completes the derivation of the differential equations satis-
fied by the DFS. It should be noted that the above results by no means
exhaust the subject of the differential equations for noise-like fields.

Wolf and Roman (11) - (14) derive a number of other equations not discus-
sed here. However, the point of view adopted in this dissertation regards

N
the DFS _((;(31 ’32"”) as the primary field variable for a noise-like field.
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Consequently, the objective here is to determine the mathematical theory
of the DFS alone. As a result, the extension of the general set of differ-
ential equations that describe the second order moments of I_-_I(_J_r_,t) and th=
mixed moments of E(_r_,t) and H(r,t) to broad-band fields is not undertaken
here. The basis for this viewpoint lies in the fact that most measure-
ments of radiation fields take place in the far zone of the source where
power is expressible directly in terms of one of the field vectors alone.
Therefore, it is sufficient to develop a theory that determines the power

spectrum of one or the other of the field vectors in terms of the char-

acteristics of the source and the various parameters of the surrounding
system. However, the more elaborate theory--one that involves all of
the second moments--can be derived by a simple application of the meth-

ods and concepts introduced here.

3.5 The Boundary Conditions

The usual boundary conditions imposed on an electromagnetic

field at a dielectric interface are

it
o

m x[E” e, 0 -EP(, 0] |g

(3.5.1)

1
o

ﬂ_x[_IjOUt(_{.t)-Ein(_r_.t)] |s (3.5,2)

where the superscript ""out'" refers to one side of the boundary § and
"in" refers to the other side of the boundary. The vector M is the unit
vector ﬁormal to the surface S at the point r, pointing from the inside to
the outside of the surface S {see Figure 3.1). In tensor notation, 3.5.1

and 3.5.2 become
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BIOO-1|

Figure 3.1, Configuration at a dielectric
interface,
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in

g Ep @0 - By (rollg =0 (3.5.3)
e[ Hp 1) - B, 0]l =0 (3.5.4)

If the term that involves E;{n(z,t) in 3.5.3 is transposed to the right side,
and if the resulting equation, evaluated at (31 ,tl) is multiplied by itself,

evaluated at (Eé'tz)’ then it is found that

(1)  (2)rout out in in - _
Tlijkﬂmmmj M [Ek (-El’tl)En (_Ezitz)" Ek (E-l ’tl)En (Ez:tz)-] |S =0

(3.5.5)

where the superscripts (1) and (2) on the unit vector M refer to the points

Iy and r,on S,respectively. If the ensemble average of 3.5.5 is ex~

pressed in vector notation, the following boundary condition is obtained
n‘sl)X{m(z)x[E,out(r r ,T)_é:in(r ro,7) ]T}Tl =0 (3.5.6)
bl R = =122 = =l1'Z2 r, ,_r_zonS

The corresponding equation expressed in terms of the DFS is found by

taking the Fourier transform of 3.5.6

_ T
ﬂ(l)x{_’ﬂ(z)x[_éout(h *Ez"")‘ém(rl’ﬁz“")]T} |

El,ﬁzons =0

(3.5.7)
By repeating this procedure with 3.5.4 and making use of 3.2.9, it is

found that

A T
_/ﬂ(l)qu{ﬂ(z)xvzxf_ﬁ__out(il Vi) -ém(il ;32,w)]T} |£1 ,x,0n S -

(3.5.8)



-110-

The remaining two boundary conditions are obtained by multiply-
ing 3.5.3 and 3.5.4 together--first with 3.5.3 evaluated at (5_1 ,tl) and
3.5.4 at (EZ’tZ)’ then with 3.5.3 evaluated at (_1_'_2,1:2) and 3.5.4 at
(_r_1 ,tl). By using 3.2.15 and 3.2.17, these hybrid boundary conditions
are found to be
1) (2)_Rout £ in T

{3.5.9)

A AL T
f."mx {._’Q(Z)xvzx@out(h 1Tprw) = ém(il X 20) i L 0
= = 1

,Ezons =

(3.5.10)

Equations 3.5.7 - 3.5.10 constitute the complete set of boundary con-
A
ditions which §_(£1 ,Ez,w) must satisfy at a dielectric interface (it has
been assumed thatpu, =4 =u ). Observe that the set includes four
in out o]

independent conditions, rather than just the two equations 3.5.1 and
3.5.2 that apply to vector problems.

The boundary condition at a conducting interface is readily ob-

tained from the usual vector condition:

_@_xg(_r_,t)\ronsw (3.5.11)

Proceeding as above, one can show that at a conducting interface

(1), £ 2
[_/_Y)_ )Xi_(il,iz,w)‘xm_( )]_1_'_1,_1_‘_20nS =0 . (3.5.12)
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IV. INTEGRAL REPRESENTATION OF THE DFS

In the previous chapter, the differential equations and the bound-
ary conditions, which define the propagation of the DFS, were derived.
These equations constitute a dyadic boundary value problem. Unfortun-
ately, the author has found that because of the complexity of this set of
equations the widely used separation-of-variables technique for solving
electromagnetic boundary value problems is not practicable for this
problem. It leads to a prohibitive amount of work when applied to even
the simplest problem (e.g., the problem of a plane wave incident from an
arbitrary angle on a plane dielectric interface). However, this difficulty
can be circumvented if the dyadic problem can be reduced to an equiva-
lent vector problem. It is the object of this chapter to develop this
method of attack on the dyadic boundary value problem. The procedure
is based on the integral representation of the DFS which will now be

derived.

4.1 The Case of a Source Radiating in Free Space

In this section, the differential equation

A
(G- L) (G2 106 ey om0} T o w20t xpe)
(4.1.1)
which holds throughout space, will be integrated in order to obtain an
expression fori(zl ’32"") in terms ofg__'(il ’_r_z"'-’)' It is assumed that
the source is confined to a finite volume of space, Vs' Thereiore,
'q;(_z;l ._1_'2,w) is zero if either ryorr, lies outside this volume. Equation

4,1.1 is integrated by means of the vector analog of Green's second
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identity. If A(r) and B(r) and their first and second derivatives are con-

*
tinuous throughout V and on the bounding surface S, it can be shown that

[ sy v B - B vareaE avs
Vv

- §laE)A7xB) - BE AR - de
S
(4.1.2)
where ds' has the direction of the outward directed normal toS. To
apply 4.1.2 to the solution of 4.1.1, it is necessary to introduce the
free space dyadic Green's function E(ﬁ » I yw), defined by the differen-

tial equation (39)
2 N
7a7x-k“1 ) [0 =16 ("-x) | (4.1.3)

where &(r'-r) represents the Dirac delta function. In order to simplify
notation in the subsequent derivation, it is also useful to introduce an

auxiliary dyadic field function@_(zl ;I ,,w), defined by the relation
QT = W21 ET (4.1.4
== (El ’Ezsw) = (vzxvzx - = ) = (21 35_2)0)) R )

A
Therefore, it is seen from 4.1.1 that Q(£1 ’Ez"") satisfies the differential

equation:
2 A 2 2'\
(le'le'k i ‘) Q(EI ’Ez,w) = IJ-ow &(ﬁl ’32'“’) (4 ‘1°5)
Now let
N
Ay =Q) 5.0 - 2 (4.1.6)
Al
B(r) = (z}.x;,0) - b (4.1.7)

See Stratton (38), page 464.
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where a2 and b are arbitrary constant vector fields, and where the super-
script "o" on r, is introduced to indicate that r, is a fixed point for this
integration. If4.1.6 and 4.1.7 are substituted into 4.1.2, it is found

that

f{[a(rl,rz sm) a-] [v|"v1xF(r1»r1;w)] +b - [ﬁ l,rl,w) b]

x le(rl,rz.m)].a }dv' =

- N A
:}g [Q(E.ll'ig !w) .Ewlxgii :E.I,Q))] .R-EDE:I[ ’£1 ) .E]x

x[Vl'xQ(g'l,};Z WJ-al-de,

(4.1.8)
Since the differential equation holds throughout space, it is desirable to
extend S to infinity. Therefore, it is necessary to consider the behavior
of the surface integral in the limit as S approaches infinity. It is shown
in Appendix C that if the electromagnetic field E(r,t) , H(r,t) satisfies
the radiation condition, then this surface integral approaches zero as S
approaches infinity. Thus, 4.1.8 can be written

A A A
{[Q(fl’zcz) :0)) °3]'[v1£‘v1’l‘Df_|1’_x_'1' w)]'h' [DE-I].’EI’ w) '__b_:l °

a.s

[W(vxa-(rls rZ:w)] a} dv =

(4.1.9)
where a.8. means all space. This result can be reduced further by sub-

stituting 4.1.3 and 4.1.5 into the integrand. It is easily shown that

[ﬁ{ 1,rz.w)-a] ‘b=pg 2, f E9<r'1.rz,w> a] [l—'( ('), x.0) sbldv (4.1.10)
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AA
Since dyadics have the property that A -a_z Tnfs_, then
AT o 2 2 AT 0 A
a Qi rprp,0)bpw .[VE& (g Lo by (4.1.11)

8
Now it is possible to remove the constant vectors a and b from the equa-

tion. This leaves the result

QT(_E ’rz)w)_}l w f 9T(r1:r20‘-0) [—'(rl,rl’w) dVl (4.1.12)

Observe that the limits of integration have been reduced to the volume V ,
since g(rl,rz,w) is zero if r' is outside V

The final result is obtained by substituting 4.1.12 into 4.1.4., If
r is now regarded to be the fixed point and I the variable point, this
substitution yields the equation
(V7w IET @] 2y ) =l f AIENENET Hrl’rl)d"’

Vs (4.1.13)

This equation has the same form as 4.1.5. Therefore, it can be integrated
by the procedure described above. However, it is important to note that
there is one important difference between these two equations; 4.1.13in-
volves the transpose of the DFS,whereas 4.1.5involves the DFSitself. The

consequence of this distinction can be made more apparent by recalling

from 1.3.9 that
I\ A*
_8_ larz’w =é (3’23_1'_(;3‘»0) )

i.e., 4.1.13 involves the complex conjugate of the D¥S. Because of this,
it is necéssary to use the complex conjugate of the dyadic Green's function,
AL

E (z'z,iz,w), to insure that the surface integral approaches zero as S

approaches infinity (see Appendix C). In other words, it is necessary to
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% A
use I—' (ﬁl’_r."*’) for the integration of 4.1.13 to insure thatg_(}'_l ’32’“’)

represents the DFS of an electromagnetic field that behaves like an out-

going wave at infinity. With these considerations in mind, let
Ay =£T(:0, 1 ,0) -2 (4.1.14)
Alry =g (ry.xp.0) -2 1
B(r.) =[x, x,,w) ¢ b (4.1.15)
—"'2 — —2’—-2’ — . °

If these expressions are substituted into 4.1.2 and if V is extended to

include all space, then it is found that

AT (0] / A* A:k
j RERICIPE P -il'f%xvéx_ﬂ (3'2,12’“)]'-}3‘@ (t'pz00) Rl

a.S.

/ AT -
LN ST, (2] ) 12 ddviy= 0

(4.1.16)
where the surface integral has been neglected, since it approaches zero
as S approaches infinity. Substituting from 4.1.13 and from the complex

conjugate of 4.1.3, evaluated at (1'2,12) , one obtains the result

A A
AT, o - 2 2 T e 2
[é (E_l ,-r-z,w) .E_] oE = How '[V fvi (Ellsfzaw) ‘l=(_]:_'1 ’El)dvll Di .
S

8

.An*
[L (z' rz)]'_’tz dv!

—2' = 2
(4.1.17)
The final result is obtained by eliminating a and b as before:
A A : A A
2 2 T %
Llrpzpe) =pgo _[ f L prp '2‘31'52’ o) [y rpe) vy dv,
V.~V
-] -]
(4.1.18)

Equation 4.1.18 provides the formal representation for the DFS in terms

of the source distribution at the frequency w for a source radiating in
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free space. In the next section, this formula is developed further and a

far-zone expression is derived. Before proceeding, it is worthwhile to

note the symrﬁetry inherent in the representation 4.1.18. The two Green's
A

functions __r:(gl Iy ;w) and EEIZ'EZ’“’) enter the integrand in completely

equivalent manners. As mentioned above, this reflects the equivalence

of the field points r, an:d r,. However, 4.1.18 presents a more direct

illustration of this equivalence than was available from the differential

equation.

4.2 The Vector Analog of the van Citleri- Zernike Theorern

Equation 4.1.18 can be expanded by using the explicit formula for

the free space dyadic Green's function (39):

ﬁ_(z'»_r_,w)%; ‘i*k%VWf;kR , R=l'-x| . (4.2.1)

where, in this case, r represents the source point and r' the observation

point., By carrying out the differentiation, it can be shown that

A ’ 1 1 ; 3 30 (x‘i-xi)(x:j—xj) ei.kR
ez e =z;[[ ‘;z;:z*’fﬁr] 8- (! “WZmZ %) R

RZ
(4.2.2)
In vector notation, this has the form
A . . tkR
1 1.1 L o3 3L e

Ltz =g o ;z;z*m—]é b Z2tiR | ser| TR 2
where

r' -r

—_— (4.2.4)
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Thus formally
2

A M A
Lrprpo= [ 2 [ f {[(Ry)) - BR)Jep  ep ]'9,(3-1’52"")’
| o v v 11781
Ry Ry )
e

5 S
-[&k(R - ﬁ*(R e e !
22 22)—R22—R22 R K,

2

. ' 1
dv1 dv' >

(4.2.5)

where

= v .
Rii = |£i I (see Figure 4.1),

1 L
222 tg—) (4.2.6)

11
11

x(R..) =[1-
11 k

_ 3 3L . .
B(R;,) -[l-szZ + kR R (4.2.7)
ii

If the source is incoherent, the DSS can be written
@ A
dlr)xpee) =l 0 8 (2 2)) (4.2.8)

Thus, in this case

n) A
e j (R I- ﬂ(Rl)ERIERIJ""&(E"‘*’)'

A
é(il’EZ’w)= €y 4m
A"
s
ik(R-R )

R -87( 1 dv!
(R)L-B RI)ERZERZ XX, v

(4.2.9)

where
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B100-10

Figure 4. 1. Geometry for a source radiating in free space.
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Equation 4.2.9 represents the vector analog of the van Cittert-Zernike
theorem for a field of arbitrary spectral width. It determines the mutual
coherence between the various field components at point r and those at
r,at the frequency w in terms of the source of the radiation field.
Equation 4.2.9 is of significant academic interest since it repre-
sents the exact propagation law for the DFS of a stationary noise-like
field. However, in its present complicated form, it is of little practical
interest. Since the physically meaningful properties of the radiation
field are usually measured in the far zone of the source, it is desirable to

simplify 4.2.9 by calculating the far-zone representation of the DFS. In

performing this calculation, the assumption is made that

kRi >>1

Ri >> a i=1,2 .
R, >> |z - 1,|

where 'a' represents the maximum dimensions of the source. The
geometry is depicted in Figure 4.2. The origin of coordinates is assumed
to be centered in the volume Vs' The auxiliary vectors r and L %(52-51)
are used in order to introduce a local coordinate system in the neighbor-
hood of P, and P,. If terms of order l/kRi or higher are ignored com-

1 2
pared with 1, then

-+ X = i=1,2 (4.2.11)
i

where r represents the magnitude of r Furthermore,

<(R;} = 1 , B(R;) =~ 1. (4.2.12)
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8100-9

Figure 4.2, Geometry for the calculation of the far-zone
DFS.
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Furthermore, if terms of order El}- are neglected compared with 1,

r-r' r+f)Lex’ ;Lor
ERi- Ri = Ri Ngr+(-1) == ~ e 4.2.13)

H

The phase function k(Rl—RZ) must be approximated more carefully, since

it involves the difference of two large quantities.

L [} El
R, = /r.z+r'2- 2rlr. = r, \/1+(—r—)2 -2 e
i i — =i i T, r: -,

i 1 i
(4.2,14)
E.I._qr 1-5 E-I
”ri[l‘ — L T ZTF & e X(‘;ﬁ}
ri 1 1 1
But
A 1/2
pug 1 —_
ri - 1‘[14'(—1;——) + ¢1) Z(T).EI‘]
(4.2.15)
i b 1 L .
r[1+(-1)‘-—1'—_ LT T T -_e_rx_e:rx-i—.-} ’ i=1,2
and
-1 1 | 1,2 i, = K&
() " = T[“ ()62 5 e,
) L (4.2.16)
_r__[l-( 1)* el
and .
r+E)'L
-7, = r.
1
(4.2.17)
L . (L el) . L

~e.t (‘1)i 'E"' - ¢ =& (-l)lf-rx (Er x (—1'__) )
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, 1
Hence, to second order in = Ri becomes

r'-e L.e E EI 1£| E_'
Rimr [ Y SR e xe i T e Re X T
L L
--z—r_—- e.xe x—f—] (4.2.18)
Clearly, then
rl
R,-R,~ -2[L ‘e +L-e xe x—] (4.2.19)

The far-zone expression for g(zl ’32""’) is obtained by substituting4.2.11-

4.2.13, and 4.2.1% into 4.2.9. The resulting formula is

]x

[ -L(kL e )
-LZkL e Xe X—
x(I e.e ) [‘/’tﬁ_}_‘ w)e —ETE T gy :I c(I-e Er) (4.2.20)
V" pet

A
_6___ (5_1 9£ Z:w

I

This formnla has several interesting aspects. However, before discussing
them, note that e. is the unit vector at the origin in the direction of the
midpoint of the line connecting Pl and PZ’ and L is the directed line seg-
ment from this midpoint to PZ' Thus, as mentioned above, r,=zr- L

and r2 =r + L.

Since 4.2.20 represents the DFS of the far-zone field, it is not
surprising that when I =X, only those terms ofé;(_x_',z,w) that are trans-
verse to e are non-zero. However, because 4.2.20 was derived under the
assumption IRl-R2\< < r, the DFS is "transverse'' to the direciion g, even

if I #32. Thus, if 4.2.20 is expanded in a Cartesian coordinate system
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oriented so that the x, axis coincides with &, then only the terms é

3 1

EIZ’ éZl , and éZZ are non-zero.

A second property of 4.2.20 relates to the exponential factor in
the integrand. If the vector product L - e.xe x r'is expanded in the

coordinate system just described, it is found that

L-e xsrxi' = (Lig_.l)-[ xégr- xiEi] =-(L1x'1+ sz'z) .

T

Thus, in terms of these coordinates, the integral on the right side of
4.2.20 becomes

A 'L—ZE[L % + Lox.]
J(x’ X', X jwle T a 272 dx!, dx', dx'
= 1'7273’ 1772773
v
8

This indicates that the far-zone DFS is insensitive to changes of P1 and F‘2
along the direction Er——i*.e. » along the line of sight from the observation
points to the source. This result is closely connected with the well known
fact that an interferometer can only determine the intensity distribution of
a source in the plane perpendicular to its line of sight. In fact, the above

integral implies that an interferometer is only capable of determining the

quantity

f‘!_ﬁ.(x’]_’ X'Z s x|3) dx’3 ’

which represents the distribution of the source over the transverse plane
weighted with respect to the distribution in the direction along the line of
sight, This result is considered further in the next chapter in connection

with the analysis of an interferometric measurement,
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Next, observe that if the source is unpolarized, then so is the

field. That is, if

Jiew =LAz (4.2.21)

2
A v} A
é(ﬁ,_r_,w)w.‘_ir_r. /E_O_ [fJ(il,w)dv'J(i_ -e.e) (4.2.22)
° v
! ]

Hence, 4.2.22, expanded in the coordinate system described above, has

the form

X 2 100
Er,r, o)~ 411<Tr = [JQ(r' w)dv'} 01 0 (4.2.23)
e v, 0 00

which is the DFS of an unpolarized TEM wave. Furthermore, since only
one scalar function appears on the right side of 4.2.43, then it is possible
to represent the far-zone field of an unpolarized source that radiates in
free space, as a scalar field.

Another interesting property of the far-zone DFS can be seen from

4.2.20. If r, =r, =1, then

-1 =2
A n Z -3
g__(_z_'_.ﬁ,w)z k _‘f -4-1% (;_Ers-r)' [ g(}:v’w) dv'] o(-I:“Er?-l) (4.2.24)
A%
5

% It is not clear whether the near-zone field of an unpolarized
source is unpolarized. Examination of 4.2.9 for the case

ESRETY indicates that under the condition 4.2.21 the dyadic

€(r,r,w) is not necessarily diagonal.. However, whether or
Tiot this implies that the near-zone field is polarized cannot
be decided here, since the analysis of polarization considered
in this dissertation applies only to TEM fields.
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This expression can be expanded in spherical coordinates centered at the

origin 0 (see Figure 4.2), in which case

0 0 0
éij(ﬁ’}:’“’) - 0 Qet_r_,gnw) feplZ s Zsw) (4.2.25)
0 fme(.‘:'.?."") Qﬁ; (r,r,w)
where

2
A
v
8 .

Thus, the far-zone DFS of an incoherent source is isotropic even if the
source is partially polarized., The polarization of the field is independent.
of direction {i.e., of 6,9¥), and is equal to the sum of the polarizations of .
the various elements that constitute the source. This result is not true if
the source is partially coherent.

Finally,observe from4.2.% that even if the source is completely
polarized {(i.e., if Deé{_x_" yw) =0 for all r' in VS), its field is not neces-
sarily completely polarized. In fact, the field of a completely polarized
incoherent source is itself completely polarized only if the source is
uniformly polarized (see Appendix F). It may seem somewhat surprising
to the reader who is unfamiliar with coherence theory that a completely
polarized source can radiate a partially polarized field. However, if the
reader recalls thata(_{,r_,m) determines the power in the small band of
frequencies about w, then it becomes more reasonable; for, then, the field
can be considered as the sum of a number of harmonic waves that differ

in frequency as well as in polarization, Since the polarization locus of the
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field formed from the sum of two harmonic fields of different polarization
and frequency varies with respect to time, then such a field is partially
polarized. Clearly, then, the field formed from the sum of many such
harmonic waves will be partially polarized.

The foregoing remarks complete the discussion of the DFS in free
space. The remainder of this chapter is devoted to the analysis of the DF3
that is radiated in the presence of perfectly conducting bodies. These
results will then be applied to the analysis of an interferometer experiment

in the next chapter.

4.3 The DFS of a Source Radiating in the Presence of Perfect Conductors

In the previous sections, the radiation problem for the DFS was
solved formally. That is, the DFS of a source radiating in free space was
expressed in terms of an integral of the source distribution. Because it is
often necessary to account for the effect on the DFS of various bodies that
surround the source, it is desirable to extend this analysis to the case of a
source that radiates in the presence of perfectly conducting bodies. This
problem is a dyadic boundary value problem . If it is recalled that the com-
plexity of vector boundary value problems makes their solution considerably
more difficult than the corresponding scalar problem, then it becomes cleer
that the direct solution of the dyadic boundary value problem should be cir-
cumvented if possible. Fortunately, it is possible. By representing the
solution in terms of the dyadic Green's function for the given system, the
problem is reduced to one of determining this Green's function. This
remains a dyadic boundary value problem; however, it is a dyadic problem

of a very special sort. Its special property results from the fact that the
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source of the dyadic Green's function forms a diagonal matrix. As a
result, the three column vectors which form the dyadic Green's function
can be determined independently. Thus, the DFS can be expressed in
terms of the solution of three vector problems. The effectiveness of this
viewpoint is demonstrated in the next chapter where it is applied to the
solution of a particular problem.

Suppose a source, characterized by the DSS@#(El’_r;z’w)’ occupies
the finite volume Vs . Suppose also that this source radiates in the pres-
ence of a perfectly conducting body, which occupies a volume V.,* The
problem is to find the DFS in the region outside V.

Although this problem can be solved by application of 4.1.2, a
simpler approach is to assume, by analogy with 4.1.17, thaté(zl ,_r_z,w)

can be represented in the form

A n

2 2 T %

Lz zpre) mhoe [[é iz dlr) iy B Eprpddvy dvy  (@43.1)

VoV
S

S

A
where/éhas been substituted for F to distinguish the Green's function of this
problem from the free space Green's function. When formulated from this
point of view, the problem becomes one of defining é(ﬁ' ; ¥,w) such that

A
Q(El 'iz"*’) satisfies the dyadic wave equation

A
(lele-kzi.)[(vzx@x-kzi.)éT(_r_l,zz, w)}T=|_L§w2 &(31 2 5h0) (4.3.2)

The extension of this derivation to more than one conductor
is straightforward.



-128-
in the region outside V, and the boundary condition

AR 6(1'1’1‘2"")"/”( >| = 0 (4.3.3)
I;»ryon S

on the surface that bounds V.
A
The equations that define b(fl ,T,w) are readily found. Substitute
4.3.1 into 4.3.2 and interchange the orders of differentation and integra-

tion. If the operator (CAS A - kzl-) is abbreviated by the symbol _L_,, then
A N I~
L [L * T ¢ 1 Pgot 11
=1 =2 f f ,5 (rzarz:w 2 (El s_l_'z»w) ‘2(}:1 :_{liw)dvldvzj ‘é(ﬁl;zzaw)’

(4.3.4)

/ (rl’rl’“’)] ﬁ(rl,rz,w) [L ,5 (rz,ra,w)] dvdv' %( rz,m).,

V
(4.3.5)

If the right side of 4.3.5 is represented in the form

A ~
%__(51, T, ) = / J/ Q(E'pi'z ) 8(ry-11)8(x5-xo)dvy dvly
vV
s S

Then 4.3.5 can be written
/f [{[L ,8 (rl,rl,w)] %(rl’rZ’w) = é _ ’-1-:2’0))] -
8(x', - rl)g(rl,rz,w) 8(x',- r,)} dv dvi, =0

(4.3.6)
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This equation is satisfied if

(Vevx - k2L BN ry o) =180 - 1)) (4.3.7)
1 / 2 psl
(VxUpx - kL) B (rpr,,0) =1 6(x;- 1)) (4.3.8)

in the region outside V.,

A
To insure that g(il ,Ez,w) satisfies 4.3.3, it is necessary that

- A Agel
j [ [/_n(l)xéT(fl’El ,w)] ,9(_1._1- ’-1;-2 w) _[ﬁ(axé*(i.z'zz’ w)] dvr1 dv‘2 =0

v v
s s

(4.3.9)

where r and r, lie on the surface of the conductor. But 4.3.9 is satis-

1 3¢ I
fied if
/_n_(l)x@T(gl ’11"") =0 for r,on S (4.3.10)
A T
Mm9x BT (r,x,,0) =0 forr,onS . (4.3.11)

Levine and Schwinger (39) show that a dyadic function satisfying a differen-

tial equation of the form 4.3.7 and the boundary condition 4.3.10 has the
property

Tier,

» w) =Q(1;,£|,0)) . (4.3.12)

HEs>

I~

N
Thus, it is clear that if D(zr,r',w) satisfies the differential equation

(VxVx-kz_I_-)é(ﬁ,E',w) =18(r-1r') 4.3.13)
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in the region excluding the conductor, and the boundary condition
ﬂxé(r,_{',w) =0 (4.3.14)

for points I on the surface of the conductor, then it leads to a DFS that
satisfies 4.3.2 and 4.3.3. The quantity, é(ﬁ'ﬁ' ,w) represents the dyadic
Green's function of the electric type.

It is necessary to point out that in addition to satisfying 4.3.12 and
4.3.13, é(ﬁ’ﬁ' »w) must also satisfy a radiation condition at infinity. This
condition is easily derived from the radiation condition on the electro-

magnetic field. The result, stated here without proof, is

lim r[grxVxé(_l_'_,E',w) + iké(_r_,f_',w)k o . (4.3.15)
r-=00 - -

Equation 4.3.15 can be interpreted as requiring that the three electro-
magnetic fields, which compose é(_l_‘,_l;',w), behave like outgoing waves at
infinity.

Corresponding representations of the DFS can be derived for the
case of a dielectric scatterer. Although their derivation is somewhat
more complicated than that presented here, they do not present any
startling new information. Therefore, these additional results are neg-

lected here.

4.4 The Case of an Incident Plane Wave

The formal representation for the DFS developed in the previous
section is one step removed from an explicit formula. The remaining
step involves an integration over the source distribution which, in gen-

eral, can be just as difficult as the determination of the Green's function
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itself, However, if the incident field happens to be a plane wave, then
this formula reduces to a relatively simple explicit representation. Since
the incident plane wave problem is important, it is worthwhile to develop
this simplified representation here.

Equation 4.3.1 represents the response of a system of scatterers
to the field o_f a general dyadic sourceg(z1 ,_1:2,@); it is now desired to
obtain the corresponding formula for the speciél case of an incident noise-
like plane wave. Because this problem is mainly one of interpretation
(as will become evident below), it is necessary to lay some groundwork
before proceeding to the main problem. To this.end, consider the fami-
liar problem of an ordinary time-harmonic source radiating in the pres-
ence of a system of perfectly conducting scatterers. A general represen-

tation for the total electric field in this case is

a

E(r,w) = ik /—M-‘?-/ ,ﬁ(_r_,r‘,w) 3 r,w) dve | (4.4.1)
i Eo v i -— —t—
-]

where %(_1_‘_,(.0) represents the total electric field at the point r, é_(ﬁ’ﬁ' » W)
is the dyadic Green's function of the electric type that is appropriate to
‘the given problem, and i(f_‘l,w) is the source of the incident field. For
example, if i(ﬁl ,w) represents an elementary dipole of unit strength that

is located at r and oriented in‘the direction e, then the field becomes

o |
1(r,m) =ik / b(r r e e

The dyadic Green's function in this equation can be expressed in terms of
its column vectors:

A
Q(f-’-llo y W) =-§i(£’.£o’ w) & {summation implied) (4.4.2)
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Hence, the field of the dipole can be written

A i3 MO A
Eqfr,w) =tk /—E-; 51(3'39’“’) . (4.4.3)

But this equation suggests the interpretation that the column vector
gl(r r ,w) of the dyadic Green's function is the tf)ltal electric field at r
due to an elementary dipole of strength (lkf) that is oriented in the
e, direction at I, Corresponding interpretations can be given to
éz(_{,_{o,w) and§3(£,_1:o,w). Therefore, these results verify the statement
made above that the dyadic Green's function is formed from the solution
of three vector problems.

Equation 4 .4,1 represents the total clectric ficld associated with
the incident field radiated by the source i(_l;’,w), Hence, it should be pos-
sible to obtain the response to an incident plane wave simply by substitut-

. . . . . . A
ing the source distribution that gives rise to a plane wave for J(r',w)., It

is shown in Appendix D that the source

A €1 A LkzcJ
J(r,w) =lim[ 2 o Eo(w)e 6(z-zo)] (4.4.4)
2 o= -00 °

radiates the plane wave field
Blr o) = £ to)e* ~mg g goo (4.4.5)

in free space. The response of a system of scatterers to this plane wave

can be expressed in terms of the Green's function for the problem by sub-

stituting 4. 4, 4 into 4,4.1. This yields the result

E(r,0) =2ik hmitkg fﬁﬁ_g;g.n.go;w)dgdn cE (@) (4.4.6)
_”_w"'

[ o=
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where the dummy variables (§,1,0) are chosen such that { lies in the
direction of propagation of the incident wave and £,n are rectangular
coordinates in the plane perpendicular to this direction. It is assumed
above  that Eo(c.o) lies in the (£, n) plane.

The significance of 4.4.6 is that it represents the response of the
system of scatterers to an incident plane wave in terms of the dyadic
Green's function for the system. Thus, it provides the connection between
the two most fundamental scatiering problems--scattering due to a dipole
source and scattering due to an incident plane wave. Equation 4.4.6 also
displays an interesting subsidiary property of the dyadic Green's function.
It was mentioned above t'hat the constant vector _E/:o lies in the §,m plane.
Therefore, 4.6.5 is independent of the third column vector of é(z,_:_r_' y W),
i.e., the column vector associated with a dipole oriented along the
direction of propagation. However, it is certainly possible to equate
ﬁo to e the unit vector in the direction of propagation, formally in
4.4.4, and to substitute that result into 4.4.1. In this case, 4.4.6
reduces to

A ) ikC o
E(r,w) =2tk { lim |e © [@_(ﬁ;i,ﬂ,@oiw)dgdn °EC {4.4.7)

o OO
C (o]

But according to the interpretation given above, 4.4.7 represents the total

field associated with an incident plane wave polarized in the direction of

propagation. Since such an incident wave cannot exist in free space, then

there cannot be an associated scattered field. Hence, it must be that

[://m é(ﬁigsﬂ;co;w)dgdn J"_e.g = 0 (4.4.8)
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This argument by no means proves the validity of 4.48, but it does pro-
vide an intuitive basis upon which to construct a mathematical proof.

To apply the fqregoing ideas to the DFS, it is necessary to have an
expression for the source of a noise-like plane wave. Since the source of
a monochromatic plbane‘wave is written in the form 4.4 .4, then the source

of a noise-like plane wave can be expressed in the form

€
J(r,t) = lim [ZL‘/:E E_(t) 6(C- )] (4.4.9)
g..r-ao
(o]

A
where the constant vector Eo(m) that appears in 4.4.4 has been replaced
by the time varying, but spatiaily constant, vector I_E_o(t). The phase
Lkz
factore © appearing in 4.4 .4 is unnecessary here, since the phase of

the DFS is not referred to a fixed reference point. The DSS associated

with this current is

A e A .
%(5_'1 ,_1:_‘2,00) = lim {4(£)§o(w) 5(C'I-CO)6(CZ' - CO)} . (4.4.10)
= C s o =
(&)
where
A o .
éo(w) = _/ E_(t+T) E: () e dar (4.4.11)

-00

Since Eo(t) is parallel to the surface current J{(r,t), then the dyadic

>

éo(m) has only four independent elements. Thus, when expanded in the

preferred coordinate system, it takes the form
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il
o]

A A R A
(éo(w)) 512(w) Eo (@) O 4.4.12)

If 4.4.10 is substituted into 4.3.1, the following representation is
*
obtained;

é‘ ‘ ‘LkCo @ e A
(=/p¢.0(£1 ’_I.:Z’w) = llm ':ZLke _/:oo—-[og(zl;gsnsgo;w) dﬁ dT]] . (go(w) *

- OO
gO

-LkC )
‘_( Zbk)e Ff@# (12,§,n ¢ ,w)dgdn] (4.4.13)

If 4.4.13 is expressed in terms of the column vectors of the dyadic Green's

function, it can be written in the form
A A

A %
g w(ﬁriz"*’) = é\}_i(ﬁl,w)g. (32"‘)) Ei' (w) {(summation over i and j
=Ro. ] o implied)

(4.4.14)

*
It is worth noting that if 4.4.10 is substituted into 4.1.17 and

the resulting integration is carried out, the formula for the
plane wave DFS is obtained. This formula is

A ik(C,-C,)
Eeyrpa Eae 12
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where

A ikC_ [T (" A
G.(r,w) = lim [ZLke °”w Q(ﬁ;&,n,go;w)dgdnJ,Ei, i=€,m

¢ >~
° (4.4.15)
Clearly, _/C\i_i (r,w) represents the total field at r due to a plane wave travel-
ing in the +C direction and polarized in the direction &; impinging oﬁ the
scatterer. Thus, 4.4.14 provides an algebraic relationship between the
DFS and the solutions of the vector, monochromatic plane wave problem

Ay
associated with the given system of scatterers. The coefficient €ij (w)

o
determines the strength of the incoming plane wave. The usefulness of
4.4.15 is clear. By solving the vector problem of a monochromatic plane
wave incident on the given scatterers for both linear polarizations, it is

possible to write down the explicit solution of the corresponding dyadic

noise-field boundary value problem.

4.5 The Integral Representation of the DFS in a Source Free Region

To complete this chapter, the representation of the DFS in a source
free region will be represented in terms of the DFS and its derivatives
evaluated on the bounding surface of the region. This representation has
application in any situation where the source of the radiation field is not
specified, but instead the field is given over some surface that excludes
the source from the region of interest. An example of this sort of problem
is provided by a calculation and experiment carried out by N. George (40).
He considered the radiation field emitted from a slot in a ground plane
which is excited by a gaseous discharge located behind the ground plane.

A problem of this sort can be analyzed by means of the representation to
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be developed here once the DFS in the slot is determined.
The problem here is to integrate the dyadic wave equations in a

source free region. The differential equations were derived in section

3.3. They are:

(Vewpx- k219 Erryew = 0 (4.5.1)
(VZXVZX-kZ;-) EiT(gl,_zgz,w) =0 (4.5.2)

A A
Let .é_(_l:'l) = _g_(i'l ,E_g,w) -a and @(_1;'1) = E(Ell 22} »w) + b, and then substitute
A and B into 4.1.2. With the aid of the differential equations 3.3.7 and

4.1.3, it can be shown that

2 £fe 10 b (w0 adx xl lyry 0 20 -
4 =

- [E(E'l'.r.l"") - blx [W"Qﬁ'pig:w)]'i} '.ﬁ(l)ds.1
(4.5.3)

The vectors a and b can be eliminated from 4.5.3 by using the vector
identity A*BxC =B+'Cx A =C + Ax B and the associative property of

dyadics. The resulting equation, after a transpose operation, is

A Ay
Ezxpe = - f[{[@m"‘ﬂx Lepral T Ly rpe + 8 e 0 1T
S

(4.5.4)
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This equation provides a representation of the DFS in terms of an integra-

tion with respect to 5'1 alone over the bounding surface S. By integrating

4.5.2, it is possible to obtain a representation in terms of an integration
P A

over E,Z' He;e again, the Green's function E*(i'z ’3.2"“’) is used due to the

presence of the transpouse operation in 3.3.8. Thus,

4

A A e
Elryizyee) = 95{£(£1 1Zpow) - fﬂ@xvé"-_.—rj‘fzzz”*f-V7£X§T<31 FATILE
) S

@[ . |
(2 "EEZ’EZ’“’)]} ds3

(4.5.5)

M
Although 4.5.4 and 4.5.5 are two valid representations of§_(_r_1 'I,,w) they
are not particularly useful since they don't éxpress (_é_?z(_r_1 »I 5, w) in terms of
its value on the boundary. To obtain a more satisfactory representation,

it is necessary to substitute 4.5.5 into 4.5.4. This yields the result

A A N
Slrryw) = §§ é([ﬁa)"vﬁl"gfl'il"””rr'é‘i'ri'z’“’)'[ﬁm"wxﬁ*‘fziz)] *
A4 _ .

A
+[L"(1)XV1"‘-DE.'1'£1"*’)]T° [V T(E'l’fz' W17
I\* A T
.[QZXE (ﬁz,;z,w)]+[f_n_(1)x£(_1:‘1,£1,w)] -[‘71’}:&(_1'_'1,3'2,@] .
.[@_(Z)xV'Z ’J,:*(i'z’f.z"")] ,+[mmxﬁ(_r_'l,_1:1 )17
ATy 0 T Loz ) 0 s,

(4.5.6)
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Thus, giveng;(zl ,_1‘_2,w) on the surface S, it is possible to obtaini(il,f_z,w)
at all points within S by means oi 4.5.6. Observe that 4.5.6 involves the
free spac/e Green's function., If instead the Green's function for the par-
ticular surface S is used, this formula can be greatly simpiified. For

A
example, suppose p_(r »I',w) satisfies 4.1.3 and also the boundary condition
A
MXQ(r',_:E,w) =0 on S,

then 4.5.6 reduces to the relatively simple form

A T A
Eryorpie) = éf[_@a)xVixée(fril'“)] £l rpw)-
S S .

7yl x ) las) as,

(4.5.7)
where the subscript "e'" on the dyadic Green's function indicates it is of

the electric type. A similar expression can be obtained by requiring that

@xV‘xﬁ(_x;',_:;,w) =0on8S.

In that case

(xy:x5,0) = ff[i"_()l()gm(_{'l,il,w)]rr-[Vl’x(vz’x__éT(inl,Esz’w))T ].
S S

nonNs>

' [L"(Z)"é;(fz'iz'“) Jds') ds}
(4.5.8)

where the subscript "m'" indicates the magnetic type dyadic Green's func-
tion. Equations 4.5.7 and 8 demonstrate that only the DFS or its deriva-

tives are required on a surface to specify the DFS within the enclosed
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volume. Furthermore, these equations once again show that the dyadic
boundary value problem can be solved in terms of the corresponding
vector problem.

To close this chapter, observe that formulas 4.5.6, 4.5.7, and
4.5.8 apply regardless of whether the volume bounded by S lies within or
outside of S--provided, of course, that in the latter case the fields are
required to satisfy the radiation condition at infinity and all sources are
confined to the excluded portion of space. The proof of this statement can
be performed in a straightforward manner by writing S =5, + S, where
S, is the surface over whiché(or its curl) is specified, and SZ is a large

1

sphere that encloses S By letting the radius of SZ approach infinity,

e
and by appealing to the results proved in Appendix C, the integrals over

N
S2 approach zero, thereby leaving é_:(ﬁl ’Ez"“’) expressed in terms of an

integral over S1 alone.
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V. AN APPLICATION — ANALYSIS OF AN
INTERFEROMETER EXPERIMENT

5.1 Introduction

The object of the present chapter is to illustrate the considera-
tions involved in the épplication of the foregoing theory by applying it to
a particular problem, The problem chosen for this purpose is the
analysis‘of the measurement of the DFS by means of a two element inter-
ferometer, This particular experiment was chosen for two reasons:

1) It is the basic means for measuring the DFS, and therefore is funda-
mental to the theory of the DFS. 2) It provides a sensitive means for
studying the source of a partially polarized noise-like field, Further-
mére, the experiment is sufficiently simple that it clearly illustrates the
general considerations involved in the application of the theory.

Recently, Ko (41l) analyzed the measurement of narrow-band,
partially polarized, noise-like fields by means of a single receiving an-
tenna. With the concepts and theory developed here it is possible to ex-
tend this work to broad-band fields measured by an interferometer (two-
element receiving antenna), The value of an interferometric measurement
lies in the fact that it provides (in principle) detailed information concern-
ing the distribution of polarization over the plane of the source, Moreover,
by determining the polarization of small regions of the source it provides
a more sensitive means for identifying polarized sources, than a single
receiver does. This is because the measured degree of polarization de-
creases as the resolution of the receiver decreases unless the source is
uniformly polarized (see Appendix F). Before proceeding with the analysis,

it should be noted that a great deal of attention has been given to the theory
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of interferometers (see e.g., Born and Wolf (26)). However, this ma-
terial has been largely restricted to scalar, narrow-band fields or else
to ideal monochromatic vector fields. The analysis that follows extends
this work to partially polarized broad-band fields such as those studied in

radio astronomy,

5.2 Statement of the Problem

Suppose a partially polarized, incoherent, noise-like source of
arbitrary spectral width radiates in the presence of a two element interfer-
ometer as depicted in Figure 5.1. Suppose further that the two elements of
the interferometer are identical, and that the baseline of the interferometer
is oriented in an arbitrary direction with respect to the line-of-sight to the
source., For purposes of measurement it is desirable to introduce a vari-
able phase shift, ILTJ (w), into one of the elements of the interferometer,
Finally, assume that the interferometer lies in the far-zone of the source
and vice-versa. The problem then is to calculate the power carried to the
receiver via the interferometer at the frequency w. Since an experiment
of this type involves a non-zero band of frequencies, it is necessary in
general to calculate the integrated DFS, J (r; w, Aw) (see 1.4.59). However,
if the DFS is continuous at frequency w and if the bandwidth of the receiver
is sufficiently small, then the DFS and the interferometer pattern can be
regarded as constant over the bandwidth of interest., In that case one can

assume that
wtAw/2

A
—_ ! i~
Pic = 2 Wrec(w ) dw' = 2 Wrec\ (WAw , w>0

w=Aw/2

where V’\\lr (w) represents the power spectral density of the input signal to

ec
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8100-8

Figure 5,1, Configuration of the
problem,
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the receiver. The following calculation is restricted to this assumption.
Hence, the experiment is assumed to be an optimum spectral measurement
in the sense defined on page 46.

The problem just described is solved by means of the integral

representation derived in Chapter IV:

‘ A
A Ay
§ (31!_1:29 (.0) = P'(Z) wz j J éT (Ell’ zlﬁw) y %_ £ » T Z;w Q r rz, (J.)) dVidV’

2
(5.2.1)

A
where ,g (_r_,f_‘w) is the dyadic Green's function of the electric type. Since
the source is assumed to be incoherent, equation4.2.8 applies and 5.2. 1

can be written

A 'f‘ ”
_é: I srz:w)—l"' 2 J'ﬁ (1‘,1‘1,(.0) (3‘_',(.0) ‘éﬁ (3':52:(-‘)) dv' . (5.2.2)

S

A
The quantity _& r;.r ,w) represents the total DFS of the source-

interferometer system as a function of any two points r

;o

> in space.
However, since interest here is directed toward the power delivered to the
receiver, it is only necessary to find é(-r-l’f-.?}w) for points r, and r,
inside the wave guide that carries the power from the interferometer to the
receiver. Therefore, to solve this problem it is necessary to determine
the dyadic Green's function for vbservation points situated in the guide with
the source in the far zone of the interferometer. This result, when substi-

tuted into 5. 2,2 yields the DFS at points within the guide from which the

power spectrum delivered to the receiver can be obtained.
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5.3 The Dyadic Green's Function for the Interferometer

The dyadic Green's function is found by treating three separate
vector boundary value préblerns — each associated with the dipole source
oriented along one of the three coordinate directions, and located at some
point in the far-zone of the interferometer (see Figure 5.2). Therefore,
consider the following problem: an elementary dipole, with moment P
radiates in the far zone of an antenna system. What is the amplitude of
the. dominant mode excited in the wave-guide that connects the antenna to
the receiver? This problem is most readily solved by a method that is
analogous to the method used to derive the Lorentz reciprocity condition.
This technique was introduced by Brown(41) to obtain the response of an
antenna to an incident plane wave, Since the source is not a plane wave in
this case, the analysis is presented here in detail.

A
Let ﬁd (r,w), _}_{d (r,w) respresent the total electromagnetic field

that results from the dipole radiating in the presence of the antenna with the
antenna in its receiving state, Let EA (_;‘_, w), ﬁA (_r_,w) represent the field
radiated by the antenna in free space. Assume that the waveguide is per-
fectly matched to both the receiver and the antenna, and that the antenna,

when acting as a transmitter, is excited by a dominant mode carrying

1 watt of power. In the region enclosed by the surfaces SW’ SA’ and SOD,
A A
the field ]_E_d, _I_-I_d satisfies
A . A
Vx Ey(r,e) = les Hy(z0) (5.3.1)

po(x - x) -Lweo_ﬁ_d(z,w) , (5.3.2)

8]

Vx ﬁd(z,w)



-146-

—_——— 8100-7

Figure 5,2. Configuration of the Green's
Function Vector Boundary
Value Problem.
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the condition

A
m x _}_Zl_d(f_,m) = 0 onS (5.3.3)

A

and the radiation condition at infinity. Furthermore, if SW is suffici-
ently far from the junction of the waveguide and the antenna, then at this
cross section

-ip
B.ﬁ:D(xl'Xz“") e D3 (5.3.4)

i
=
3
t

-LBpx
BH (x %) e 0 ° , (5.3.5)

1l

A
Hy, (r,0)

A

A
_IED, _I—_I_D is the normalized dominant mode of the guide, ﬁD is the

propagation constant of this mode, and B represents the amplitude of the

where

mode.  The factor B is the quantity to be determined in this analysis.

The field radiated by the antenna in free space satisfies

A . A

vx :—E—A (E_sw) = LU)H’O _I_IA(.I_""\)) » (5. 3~6)
A . A 3

VXHA(_Z:‘*’) =”LWCOEA(_1'_:"°) 3 (5. -7)
£ =0 S 5.3.8

mxE,(re) = onsS, ., (5.3.8)

and the radiation condition , At the surface SW .this field is given by
VB x
A A D73
-E—A (E:w) = —E-:—D (XI‘XZ"'O) € (5.3.9)

The dominant mode is normalized such that it carries unit
power,
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A A “’@DX3
_I:I_A(_E""’) = ED (Xl,xz,w) e (5.3.10)

. | A A A
Multiply 5.3.1 by EA (r,w), 5.3.2 by EA (r,w), 5.3.4by H i(_J:_', w),
A
and 5.3.5 by E4 (r,w) and substract the fourth equation from the first and

the second from the third, This results in the two equations

A A o A A : A A 1
Vo |EgxHy| = Lop Hy  Hy+ toe Eg- E (5.3.11)
v A A . A A \ A . A A
|EpgxHy| = low Hg- Hy - 8(z-x')p » Egftloe By E,.

(5.3.12)

The difference of these two equations is

% {Ed(g,wxﬁA(;,w)-_éA(;_,mX_ﬁ_d(;,w)} - [g-ﬁ&g«»)} 8(x-x").
(5.3.13)

If this equation is integrated over the volume enclosed by Sw’ SA’ and

Soo’ and the divergence theorem is used, then

A A A A A
§ [Ed(_ll' Q)) x _I_lA(i’ 0.)‘) - EA(_I:.’ ‘-‘0) X Ed(_l_‘_a w)l - M da = P _E.;-A(E.’ w) .
S _+S _+S
W TA (5.3. 14)

In view of 5.3.3 and 5, 3, 8, fhe integral over S is zero, Moreover, the

A
radiation condition which is satisfied by both fields, implies that the inte-
gral over SOO is zero, This latter point can be established as follows:

The integral over S can be written
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0O

1= lim { |&,(r,w-.e xA (re - f z
o ZAND * ~r -—-d—’w ——d(f’ w) - EI‘ X_A(I_rw) r df?
5 (5.3, 15)

where the origin of coordinates is at the center of the sphere of radius r.

But the radiation condition requires that

P

- E [~
A 0 A

lim r{e_xH ,(r,w) - /—-— lim |r E (r,m)] (5.3.16)
roco L% —A= Mo rec L —A=

- q e B
. A o .. A
lim r e, % I_'I_d(i,w) — lim T Ed(r,w)] . (5.3.17)
r-co L ' - V Yo r>o0 | =d=

Therefore

il

i 322 [2 B ire - & 8,0
r_l:; ro|E (r,0) « e x Hylr,w) - Ey(r,0) . e xH,(r,w)

2 €o
= lim (r E—[EA(r,m)-Ed(r,w)- Ed(r,w) EA(r,w)} =0,

r-»Q0 (o]
(5.3.18)

which proves that Ico = 0. Thus,
£ xh fi, - p-E, (¢ 5.3.19
__dx ZA —-Ax ° = _E_' __A(I_aw) g ( «Je )
Sa

Substituting 5.3.4, 5.3.5, 5.3.9, and 5.3.10 into 5.3.19, one obtains

A A
- Zij ED (xl,xz,w) XED (xl,xz,w} - e3 dxl de = p- EA(E',w).

But for a propagating mode ey ED X H = -83" ED x_I'—lD Thus, since
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A
ED’ ED carries unit power, then

A
B = zp-E,(zhw) . (5. 3. 20)

If r' is in the far-zone of the antenna, then 5.3, 20 can be written

Lop

B = l1eomr {eLleﬁA(G‘,ﬂﬁLw)- R} (5.3.21)

A
where EA(S', $', w), the interferometer pattern at frequency w, is
given by

-iLkE e,
- dv

A A
_I:‘_A(els}él’w) = f_rle_rlxj _{A(E:W)e .
(5. 3.22)

In 5, 3, 22., e is the unit vector at 0 directed toward the field point
r'. Equation 5.3.21, combined with equation 5. 3.4 provides the solution
of the vector boundary value problem in terms of the transmitting pat-
tern of the interferometer, The complete formula is
Lw :
Fo kR [EA(B"“‘"“) : E]-E—D(XI’XZ’w)e
(5. 3.23)

where (R', 0',d) represents the source point and (XI’XZ'X3) the obser-
vation point in the waveguide, Since EA represents the transmitting
pattern of an interferometer, it can be expressed in terms of an element

pattern and an array factor. That is,
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. . . )
A Lwp : ' -LkL.e_, LkLi. e+ bdfw) || A
Eé(_{s r'il_)_sm)= Tﬁ%eLkR [e ] te r f (e':fé’:w)‘_ﬂ

]IZ\Z (x,,%x,,w) e_ LﬁDx3
~D'"1’ 72

(5. 3. 24)
where ﬁe(e'. g',w) is the element pattern of the interferometer. It
should be noted that _'fe(e', #',w) is not the usual normalized antenna pat-
tern., It is the angular pattern of each element of the interferometer
when the interferometer as a whole radiates one watt of power.

The dyadic Green's function consists of the juxtaposition of the
three fields associatedwith the source oriented in each of the three
coordinate directions e1s &5 and_e_ . In addition, there is a factor of
( pro)-l that relates the column vectors of -'é_- (r, r',w) and the field
_ﬁ_d(_}‘_,_l_‘_';l)_, w) since the source of the Green's function is dimensionless,
whereas that of the electric field is not. Thus, for points r on S

A

] (summation implied).

5.4. ' The Formula for the Received Power Density

The total power per unit frequency that crosses SA is given }33,'>'<

A 1 A '
w = o Tr| C (r,z.w)|da, (5.4.1)

SA‘

This formula assumes that the dominant mode is an H-mode.
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where r lies on SA and ZD is the impedance of the dominant mode

of the guide. But from 5.2.2 and 5. 3,25 it is seen that

N ol ’ -lkL.e , ikL-e_, .z
o e +e iad
8 (r, r, w) = ( 161r> Ze ‘i_{e(e|a ﬁiaw)_e_m}'

A )
A N
1 1 )
A (5 eavl Eqe),x,,0) Efx),x,, )
(5.4.3)
where the quantity in the braces is a scalar function that is independent

of r. If this scalar is denoted by A, then 5.,4.3 can be written

Tr (r,r,w)=A |_E_ID(xl,x2,o.>)| (5.4.4)
Therefore,
W = 2a ___lflﬁ( )lzdxd (5.4.5)
rec = ZZD = Xl,XZ,w 1 XZ . P

A
If -I—E—D is the electric field associated with the lowest order H-mode of
the guide, then

1 2 A

A A sk
2 ]ED(XI’X?.’“’)| = Ep(Gxpxpw) xHp(x),%,,0) « e
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A

A
But ED’ ED was defined such that it carries unit power, Thus, the

quantity in the braces in 5. 4.5 is unity

2 2 ~i{kL-e_,  ikL-e_+lup
A © Ky 'e — " te T 7F ' A
Woec™ > ' A £.(8% g',w) ‘e
128« R'
v
s
s A
Ak
{_fe(ﬁ',;zf',w) . —e—nl Jmn(_{'nw) dv' . (5.4.6)

This expression relates the power incident on a matched load at the
terminus of the’wavle guide to the distribution "/Q\mn(-lj'w) of the source at
frequency w, as well as to the element pattern of the interferometer at w.
If attention is restricted to sources that subtend small angles (com-
pared with the beam width of the element pattern) at the interferometer,
th‘en 5.4.6 can be expressed directly in terms of the free-space DFS of the
sourée. 'Sir-me the discrete celestial radio sources satisfy this restriction,
this case is not without interest. In the case of a small source, 5.4.6 can

be written

Z . L4
h _ 1k [Mo\[ax A L2kLee , +iy
Wrec = g(?};}‘\/:(;) [23 (GO:YSO: w)_fe (eo’ ;50,0.))] f 2+e +
\Y

=)

. . A
- LZk—Ii'Er'-L\L._g.(_r_',w)dv’

re = | (5. 4.7)

A
since by assumption ie (6, 8, w) does not vary appreciably over the disc of the

%
source. The position (90, ;zfo) defines the angular orientation of a

i It is also assumed that the source is not situated near a null
of the pattern.



reference point in the source with respect to the electrical axis of ele-
ment pattern of the interferometer (see the insert in Figure 5.3). To
introduce the DFS into 5.4.7 it is necessary to expand the integrand of
5.4,7 about 0', the reference point in the source. The coordinate
geometry is illustrated in Figure 5.3. Note that the coordinate system
in Figure 5.3 is aligned with respect to the line-of-sight to the source
rather than with respect to the base-line of the interferometer. This is
done because the interfcrometer is only sensitive to variations of the
source in the plane perpendicular to the line-of-sight, which implies
that the line-of-sight is a preferrea direction.

Clearly, if the diameter of the source is small compared with

i_{[, then
1 1
? ~ + ‘ (5.4.8)
Furthermore, it can be shown by the method used to derive 4.2.17, that
£
e, = e. - e xe x =2 . (5.4.9)

Consequently, 5.4.7 can be written

2 A :
A - 1 Ak . k (o} t 1
Wrec = ‘8“[56 (90, ﬁo’w)_%_e (603 550,@)1 . 2 (m’\/;;) -J' J’;(E_ ,w) dv
Vv

s
LL]J ';.Zkk-_e_r i 02' A —'LZkL—e‘x_c;rxg'/r
+ev]e T =2 (r', w)e - dv'

T € A
v
s

v 2 .
: - ke + L, v A \2kl.-e xe x£'/r
- L —r — k o) T ST ZrT2
o (g B [
V "o v

s {5.4.10)
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Figure' 5,3, Geometry of the interferometer problem.
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Since, to the accuracy of this calculation,

(0 Pprw) = 0, (5.4.11)

FAS
then the components of 4 (r',w) that involve the direction e, do not in-

A
fluence the wvalue of Wrec' In mathematical terms this means that in

A
5.4,10 4_(_1_“, w) can be replace by

||$Q>
=
3

- d-ee)

{ ee ).

= —r—r

A
without altering the value of Wrec‘ Therefore,

2 A
A - 1 A% A ) k I“l'o ~ 1 "’
Wiec ™ §[—£e(eo’¢o’w)—fe(eo"do’w)] b 'e—; (I-e.e.) f (&(_{,w)dv
Vs
y Wklee, (o ) N
. - —— — - . !
(_—_ Srgr) tee drr [ e (=I €:&r) f “.—g(r » W
o \.V
s
. A 2
- . ' : - .
l2kL-e xe xf /r | iy l2kL-e [, wd
xe dv'|-(I -e e ) + e e -— [ —
= —r—r 4qr €
A LZk&-g xe x£'/r
(I—ee)[r,@, rer= dv'|- (I - e _e_)
- = —r—T
v
(5.4.12)

If e. is replaced by - e, where e, is the unit vector directed from
o o
0' to 0, and the result is compared with 4, 2,20, it is seen that
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]. " A A .
Wrec 3 |:-’ije (eo”go’w)-?e(eo’ﬁgo’ m)] : 2 és (x, z,0) <=€s (5-1’3-2’“’)eLLIJ

Ak .
T -l
+E (), xy0) e MY , (5.4.13)

where r, and r, are defined in Figure 5.1. To complete this formula

it is desirable to express it in terms of the parameters conventionally
used to describe a receiving antenna, The directional gain of an an-
tenna system is defined to be the power per unit solid angle radiated
in the direction (6, 8) divided by the average power radiated per unit

solid angle, Since the field _IiE\J_ r,w) results from the radiation of 1 watt

Al

of power, then, neglecting losses in the antenna system,

2
Z'n'Zo

__):2_

2
A 27R A
G0, 0) = 2B |EJ_A(3,<»)

o

A 2
_fe(eo,géo,w) cos"kL-e_

(5.4.14)

where Zo = eo/p.o. Since the effective cross section of an antenna in
the direction (9, g) is related to the directional gain in that direction by
Ja
NG )A
the formula A(eo, yﬁo, w) _()\ /4 GA(BO, ;zfo, w), then

A

2
2U (8,6 ,w)

,ﬁo,w)| - A oo : (5. 4. 15)
Zo cos kI_..-er

L0,

A Ak o
If the dyad f_f /]_felz is denoted by [, then

A

a(8 . 6, w) g A A

A'"0’"o T
W = Tr P (0,¢,w).[2€(r.r’w) 416
rec 4Z cosz(kk.gr) =s"='= (5.4.16)
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In 5.4.16, @ (6 ,yﬁ , w) represents the polarization‘ of the elements

of the 1nterferometer in the direction (8_ 525 ) at the frequency w. The
transpose of d) appears because polarization is defined for a wave
traveling toward the observer (in this case the origin 0), whereas the
transmitted field of the interferometer travels away from the observer,
The factor cos-z(kk-g_r) serves to cancel the zeros of CAIA(eO, yfo,co
These zeros are already present in the field quantity within the brack-
et of 5.4,16,

Equation 5.4.16 can be written in component form.

A
a (e ,¢ ,w) A A A 3
W ” =2 ; 63_ (eo‘¢o’w) ZEi' (E’E’w)'}'éi‘ i_lll'aiz':W)etw
rec 47 cos (kL'er) Je Jg Jg
[e) —— —
A .
+Ejiq (Elsizaw)e-up (5.4.17)

where the summationconvention is implied. This formula can be ex-

pressed more concisely. In general, one can write the DFS evaluated

at a single pointinterms of the Stoke's parameters:

A

A A
_E_S(L I, w) = g(:)(g, I, w)+=€=(sc) (r, r,w) (5.4.18)

_—

where from 1,4.38, 1.4.39, and 1.4,57

o>

s

___(u)(r re) = 5 [1 - ’13(_{,@)]3_0 (z,w)((l) (1)) (5.4.19)

a 10y A A
—é(sC)(z’ _:Es 0)) = %—[,I\)(an)laos(i,w)<o I>+¢A’l (I‘ Q)) (]-—0>+ _A 2 (r w) <? é)
oL :
+035(_{,w)(u. 0)] (5. 4, 20)



N

1l/10 A 10\ A 01

_Lee(ao’éo’w) ) (0 1) * Al(eo’gso’w)<0-l)+*bze( o B @) (1 0>

0t

+ﬁ3 (60 éo w)(—i O)

e
(5.4, 21)
where
3¢ 132 182 - . (5.4.22)
e e e

(In the following material the argument of the Stokes' parameters will

be suppressed.) A straightforward calculation shows that

+8, B, -2, B4 ] (5.4.23)
s e s e
where the quantity on the left is proportional to the power received by
one antenna, By regarding Al’ A, and A3 as rectangular coordinates
one can identify each point of a '"polarization space' with the polariza-
tion of a completely polarized wave of a specific intensity. Since all
possible polarizations of a wave of a given intensity define the surface
of a sphei'e, it is convenient to express the polarization "point" in

terms of spherical coordinates. This leads directly to the "Poincaré"
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. . . 3 . .
sphere representation of polarization, Thus, if one writes (see

Figure 5, 4a)

&l = p Ao sin a cos B {5. 4. 24)
AZ = p /_’)o sin a sin B (5.4, 25)
D3 = Ph,cosa : (5. 4. 26)

Then, the coordinates (p ’o‘o’ a, B) uniquely specify the polarization of the

wave. In fact, the equations

I =pb, (5.4.27)
tan 26 = tan B (5.4.28)
gin 28 = cos a (5. 4.29)

provide the relationship between the parameters of the polarization
ellipse and what may be called the Poincaré coordinates of the polariza-

tion, If 5.4.24-5.4,26 are substituted into 5.4, 23, one finds

A, A A
T;L_QE(GO, 5?50. w) is (r, 1, w)}: %{Aos+ pﬁo{ sin ag sin(m - o,e)cosﬁecosﬁ

S

+ sina_sin(w - c1e)sin[?;esin[3S + cosa_cos(m- ae)]}
(5. 4. 30)

% Shurcliff (29) presents a detailed discussion of the Poincaré
representation of polarization.
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Denoting the polar angle between the two points (as, {SS) and (w—as, ﬁe)

on the Poincaré sphere (see Figure 5.4b) by 6, one can write

[l=»

N A
T [ g(ﬁo, Iéoaw) y és (f.'f.'w)J = [Tré

/\

This result indicates that Tr[ @ (8, ;6 w)e \, (L, w)] is a maxi-

mum when & =0, i,e., when the pol;.rization of the antenna is the
same as that of the polarized part of the incoming wave, except for
sense, As shown in Figure 5,5, the senses must be opposite for maxi-
mum received power since under this condition the polarization of the
antenna lies at the image point of the polarization of the incoming wave.

If 5.4.3] is substituted into 5.4,17, and if 1.4, 79 is introduced,

then
A n
A
. ORI IS Tr & (r,r,0) 1+ b (x,0)cos bz, )] +
Wiee® 2 6)(—6_3— B ,w) Fé (rrw)é\ (r rhm)l/z
4Z cos (kL-e ij'* 70?7 o’ G g MRy A 2 ’
o — - 8 8
A L P * -L
‘ﬁ""lJ (El'ﬁz’w)e LP }P‘_]l (_{'_1932;“)6 llJ]
- Vs s
(5.4.32)
where the last term is summed over the indices i and j. It is tempt-

ing to attempt to separate the polarization properties from the spatial
coherence properties in the last term on the right of 5.4,32. However,
this can not be done in general since the spatial coherence need not be

the same for the various components of the field as can be seen by
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4.3# 8100-3

’42

AN, SN .

3,

(a) Polarization coordinates on the Poincare
sphere,

3, 8100-4
A
Ps: (ag.Bs)
Pe: (ae,Be)
» 4,

%

Péi(ﬂ"ae, Be)

{b) The geometry of a polarization measurement.

Figure 5.4. The Poincare Sphere,
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carefully examining 4.2.32, Nevertheless, there is one special case
where the spatial coherence and the polarization may be factored —
the case of a uniformly, polarized source. If the source is uniformly

polarized, then

A A A
L (L) = P (0 Xz o) (5.4.33)

A

A
where _Gis(w) represents the polarization of the source, and I(r,w)

represents the distribution of intensity of the source., In this case

A -ZLk(E'f_r) A -LZkLangErxr'/r
_(C/_(gl.gz,wh e’ Lr')e - T dv!
A% ;
s
A
_6__(53.«»)
A
f I{r',w)dv'
Vs (5. 4. 34)

as can be seen by substituting 5.4.33 into 4.2.20. Combining 5. 4, 34

with 5.4.32, or more directly with 5, 4. 16, one finds that

A

ORG-S A
'\?V = A 020 Trés(z,z,w){l +§S(_1;,m) cos g(f_,w)]
TeC 47 cos”(kL-e ) =
o = =r
- 'L[kL-e -q,] A -i2kL-.e xg_rxr'/r
Re {e -t Ix', w)e -t T av
Vs
ey
/ ’I\(f.') dv'
‘VS
\

(5. 4. 35)

)
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If the second term in the braces is expanded in a rectangular coordinate
system oriented so that the X3 axis is parallel to e then this term
takes the form

- L(2KkLy-4) [ [y Uk 2y /o) 42, /) |
e Io(x'l, xL,w) e !

1
dxldx2

where

r A
IO (x‘l, x\,w) = f I (x'l, xé, Xé, w) dx'3
This expression is closely related to the far-zone representation of the
complex degree of coherence of a scalar partially coherent field derived
in Born and Wolf(26), page 508, If fact, apart from unimportant dif-
ferences in geometry, * the only difference between the two expressions
is that the formula of Born and Wolf represents degree of spatial co-
herence in a narrow range of frequencies about w of a field of arbitrary
spectral width. In terms of the notation of Born and Wolf, \?V for

rec

the case of a uniformly polarized source becomes

A
ONCIT IS A
H H ~ A
\?V oc” A 020 Tr_és(f_,}'_,w)[l +f)(£,<.o) cosﬁ(i,w)]
¥ 47 cos“(kL.e ) =
© - ( .
%1 + Re[ﬁ(;_l,_:gz,w) eLd'J]g (5. 4. 36)
% Born and Wolf locate their observation points P, and P}

such that PIPZ'E—R
B and W). As a result their phase factor u differs from
the phase factor ZkL3 obtained here,

=0 and 0'P, # 0'P, (see Figtre 10.3 of
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Thus in the case of a uniformly polarized source the polarization and

the spatial coherence properties of the field factor into two distinct terms.
If the source is completely, as well as uniformly polarized, and

if the field is spatially coherent, then

u

Bmw =1, b el =1. (5.4.37)
If, in addition, the polarization of the receiver is conjugate matched to

that of the field, then

>

(8518 gr ) A |
(@) ﬂf o g” \ 8 (r T, w) 3 1 + cos [arg |J.(1’l’ Iy 0.))+llJ'1
2Z cos (kL-e )

By choosing ¢ such that

{ A ik (L xj+L, x3)
G = - arg jjl (x'l,x'z,w) e iy dv!
° (5.4, 39)
onc obtains the formula
A A 1 A
Wiec™ a‘A(eo’gSo’w){—Z“ Tr_(is(z,_r_,w) . (5. 4, 40)
o =

That is, in the limit of complete coherence (spatial as well as polariza-
tion), the received power equals the incident power density times the
effective receiving cross section of the interferometer. I, on the other

hand, the completely incoherent limit is considered, then

A

IN
1 1
Wrec = _‘I QA(eo’ ¢Q""Q) [’Z‘: Tr és (E_:_E, w) (5.4.41)
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A

In the two intermediate cases: 1) (f =1, [i]=0). 2) (p =0, | p.] = 1),

A

N
W__ o~ 5> O,(6_,4_,0) [z_lo Tr € (E,E_,w)] . (5. 4, 42)
In other words, the interferometer receives four times the power in
the completely coherent case than it does in the completely incoherent
case, If there is either complete polarization or complete spatial co-
herence, but not both, then the interferometer receives twice the power
as in the completely incoherent case. Observe that these latter remarks
apply equally well to a non-uniformly, polarized source. However, in
that case it is not possible to obtain a simple relationship of the form
5.4, 36 between the received power, the receiving cross section, and

the various properties of the incident field.

5.5. A Means for Studying the Detailed Character of the Source

The foregoing discussion describes the measurement of the
DFS of a particular source. However, it is often of interest to obtain
direct information regarding the source of the field, This is particularly
true in the case of astronomy where it is desired to obtain information
regarding the distribution of polarization over the source. It is evident
from the preceding calculation that if a single antenna were used rather
than an interferometer, then the measured quantity would be _é__(;_, T, w)

so that in this case

A
W, . fi( Vo) do (5.5.1)
v
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l'hus, a single antenna determines the average polarization of the source.
In this manner information concerning the distribution of polarization is
lost. Furthermore, the measured degree of polarization is consider-
ably less than the maximum degree of polarization of the source (see
Appendix F). As a result the sensitivity of detection of polarized radi-
ation sources is reduced. As will now be shown interferometric meas-
urement overcomes this limitation — at least in principle — by pro-
viding in formation directly about the distribution of polarization of the
source, thereby improving the resolution of the experiment,

By proceeding in the manner outlined in Appendix E, the real and
imaginary part of éijs(_x_'_l,ﬁz,w) can be measured, But this quantity is
related to the source by means of 4,2, 32, Thus, in the preferred coordi-

nate system

(/Ci Kk Mo - kL. e, 2 J ~ -L2KL.- erxerxr'/r
.. [ Kk Mo Lt € . L-e xXe Xr
1_]5(_1‘_1,_}‘_2,w) T\ 4nr € © Jij(ﬁ s w)e dv!
Vv
s

(5.5.2)
If the integrand is expanded in this coordinate system, then
-lkL-e 2 L 2kr(L Xi+L x!4)
é (r,, r,,w)= _E i)- e -t LO (x',x!,w)e 1717722
ijl=1’ =2’ 4nr € JThy Tt
o o
s
dx!dxl , (5.5.3)

1772

where AS is the disc of the source seen along the line of sight, and
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A A
1 1 — ! 1
tJzijo(xl,xz,o.)) = C’Qij(-{ ,m)dx3 . (5.5.4)
A

That is, J‘ij (x'l,x'z,w) is the distribution over the source of the ij

o
component of the DSS weighted with respect to the direction along the
line of sight. The essential feature of the above formula is that the
integral in 5.5.3 is the Fourier transform of the source distribution
FAN
‘ﬁ‘ij (x'l,x'z,w). Thus by measuring this integral for a large number of

o
interferometer spacings (5_1,52), it is possible, in principle, to invert
~ Al
the transform to obtain iij (x’l,x"z,w). Note that becausegoij (xi,xé,w)
o o}
is limited to a finite region of space use can be made of the sampling
theorem of Fourier transform theory to reduce the labor involved in
A

inverting the transform. Assuming the DSS J (X'l, x'Z,co) is known,
then the distribution of polarization over the disc of the source can be

studied by means of the Stokes' parameters to complete the analysis of

the source.
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APPENDIX A: TWO THEOREMS RELATING TO PROPERTIES OF

THE DFS
Theorem 1l: The matrix formed from the DFS evaluated at I, I =r
has a non-negative determinant for all r, w. That is,
a3
det?Eij(_r_, ) w)iz o . (A. 1)

Proof: It is seenfrom 1.3.8 on setting r, =r, =r that the
pa A
matrix geij(f_, r, w) % is hermitian. Therefore zgij (r, r, w)i can
be diagonalized by a unitary transformation, More specifically, if

3 Gi' (z, w) g is the transformation that diagonalizes the DFS evaluated

J
at =1, =r, then
A-1 g A N . _
U, (8 o) E.mn (r, r, w) Unj (r, w) = Aij(_r_, w) i,j,mmn=1,2,3,
(A. 2)
where
A
Ai' (r, w) = At (r, w) i=]
) (A. 3)

- 0 -y

. N
The quantity A (5_, w) is the ith eigen value of 3 f‘ij (_1;, I, w) % . Since

the two matrices in ‘A, 2 are equal then so are their determinants, Thus,

detggij (r, r, w) i = -'}\i(_r_, w) (A, 4)
r=1
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Hence, to prove A.1l it is only necessary to show that the eigen values
A

of g’ij (r, r, w) are positive,

The eigen values /)\\i (1, w) are defined by the equation

£ om0 8 o) = A% o) 6 (@ o) (A. 5)

>

a

where :l}_ (r, w) is the eigen vector of g’ij E, r, w) that corresponds to
the eigen value A8 (r, w). Multiply A.5 hy '1\1(11(_1_', w) and sum over the
subscript i (summation over j on the left is implied by the summation

convention), Since the eigen vectors of an hermitian matrix form an

*
orthonormal set, then ﬁ(il(_g, w) ﬁ?’ (r, w) = 1. Therefore, A.,5 becomes
* A
& (r, w) f’ij (z, r, @) ﬁ? z, ) = 2, o) . (A. 6)

But from 1. 3.5 it is seen that A.6 can be written

* m
3 (r, w) LT AQ
i = E (r, t+ T)E (r, t) e dt|u; {r, w) =
—oo i j j
A (r,w)
(A.7)

Since the eigen vectors are deterministic quantities which are independent

of T, it is possible to take them inside both the integration and the averag-

ing process to obtain

O

%*

AQ AQ lwT _ 4a
ceo U (n @) B (r, tFT) O (r, W) B (r, t)e dr = A{r, o)
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This equation can be written in vector form:

(e o]

[g“* o0l Efr ot 1] 8% - E @, 0] e ar

~ Q0 .'ia (1’ w)

(4. 9)

¢
But [ﬁa * Efr, t+ T)] [ﬁo’ » E (z, t)} is the autocorrelation function

of the stationary scalar random process EQ(_IL, w)* E (z, t), where r is
a fixed point, Thus, e (r, w) is the power spectral density of the pro-
jection of E {r, t) on the eigen vector _fla (r, w), Since the power spectral
density is a positive function of frequency. then the eigen values at r are

Kk

positive functions of w ,

Theorem 2: The 'degree of polarization p (r; w, Aw) at any poirt r
satisfies the unequality
0=p(rw, Aw)=1 (A. 10)

for all w.

Proof: From 1.4.63 p (r; w, Aw) can be written in the form

I
\/Trg_(r;w, Aw) 2 . 4 DetJ (r; w, Aw)
I - = =
P w, Aw) Tr T (5 @, 20) (A.11)

E3
Davenport and Root {19) prove that the spectrum of a stationary

random process is a positive function of frequency.
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Clearly, p (35 w, Aw) is positive since Tr i (r; w, Aw) is the intcgral of

Tr _é (_1;, r, w) which is positive for all {see 1.3.11), and the numerator

is by definition the positive square root of the real, positive quantity

sf (r; w, Aw) + sg (r; w, Aw) + sg (r; w, Aw). Thus, p (r:w, Aw) = 0.
The right hand unequality, p (r; w, Aw) =< 1 can be proved by the

approach used in Theorem 1, If p (r; w, Aw) =< 1, then

Tri(ﬁ; w, Aw) = \/[Tr_{ (r; w, Aw)}z - 4D€'t_J_(_x_'.; W, Aw?

But this latter unequality is satisfied provided that

whbw
Det J (r; w, Aw) = Det f 2 Eij (r, r, @Y do'p» = 0 . (A.12)
l oL
2

Thus, it is sufficient to prove A,12 to complete the proof of theorem 2,
It is seen that since J (_1_,"_; w, Aw) is the integral of an hermitian matrix,

it also is hermitian. If the eigen values of J (r; w, Aw) are denoted by
Ya(r_; w, Aw), and the eigen vectors by Xq(ﬁ; w, Aw), then according to the
argument used in theorem 1 it is seen that

* wtdw o

th-l (r: w, Aw) ‘

MR
Ei(_xl,t+ T)Ej(_r_,t) T daT de'| v?(z; w, Aw)
w-t0J -
2

= y° (r; w, Aw)

(A, 13)
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Equation A,13 corresponds to A,7 of Theorem 1. They differ only
in that the quantity within the braces in A.7 has been replaced by its
integral with respect to w in A.13 . Of course, the eigen values and
eigen vectors are not the same in the two cases since the two matrices
are not necessarily equal. If the eigen vectors are taken within the
integrals and inside the averaging process, A.13, expressed in vector

notation, becomes

w+_A2_t_.o_ o
*L .
fm—Aw f-oo [Xa cE(x,t+ T)] [xa - E (_,t)] e T dr dw =
Z

v (250, Aw)

(A, 14)
Since Xo. (_I_'_;w,Aw) c E (_r_, t) is a scalar random process derived from the
projection of the electric vector at r onto the fixed vector _\_ro’ (r;w, Aw)

defined at r, then the quantity

a
f(z,w') = [y_a c E (&, t+ T)]* ‘:_\5‘1 . E (z, t)] ei'w'Td"r (A, 15)

~ Q0

is a power spectral density and therefore is a real, positive function of

w' (See Theorem 1), Consequently,

wt A4
a 3 A
Y {re, Aw) = F (r,w') do' (A. 16)

w=Aw
T

is positive
To complete the proof it is only necessary to recall that the deter-~
minant of an hermitian matrix equals the product of the matrix's eigen-

values. Thus,
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3
(r,r,w') do'} = l ] yl (riw,bw) 20

izl

(A, 17)

Q.E.D.
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APPENDIX B: FURTHER RESULTS CONCERNING THE STATISTICS
OF THE [NSTANTANEOUS ELLIPSE

In this Appendix it is shown that the integral of P(I,0,u) over
its domain of definition is unity. The various marginal distribution are
derived also. The results are summarized at the end of this appendix,

Denote the integral of P(I, 6,u) by a. Then from 2.4.7

1 /2 1%

2 21
A P f f f Texpq-—5—7>"
'n'so( -p7) 1 Zn/2 o So(l'P )

(B. 1)

2, Z‘W/} - u? 26 - tan"! s,/ dlded
P So - S3u - Sl SZ u cos - tan SZ S]. u

Integrating first with respect to I, one obtains

2 Z‘N/ 2,
[so—s3u -\/sl+s.2 l -u

-2
-1 %2
+cos (20 - tan - d8du
1

m

2 2

SO (I-p ) 2

e = =25 f‘“,
1 4 .X

2

(B.2)

To integrate with respect to 9, introduce the substitution ¢ =

(w + 20 -~ t:zuf1 SZ/SI) which reduces a to the form

21-9 -2

1
5 (1 = p ) ! )
a = f f [So - s3u +-\/s§ + sg ‘\/1 - uz cos q;] dyidu
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2 1 - .
scz, (1-p") o & o
bl R ———— + -
— [ WL ]
o -1 4 o 2
“[so - s3u +-\/s% g'-\/l - u cos 4:] dys du

(B. 3)

where 8 =ta.n61 SZ/SI' The integral from - § to 0 cancels the

integral from 2mw - 6 to 2w, Thus,

2w
1
f ay du
1 } 2
0 [so- s,u +-\/sf+s§ '\/l - u% cos Lp]

(B.4)

S(l-p)

‘IT

fel
..\\’_‘

From 444, 01 of Dwight (42}, it is found that

2, 2 1

i so(l -p) | (so - s3u) 5
¢ =72 \ ENEL u

-1 (s0 -=su) - (1-u’)(s 2)]
(B.5)

Equation B.5 can be expressed in a more convenient form,
1 1
(=~ u.u)
a = pz(l—pz) f : P 1 du

| " [‘u-—1>2 f i ena-a]

P p? 1 (B.6)

. 2 4
where p is the degree of polarization and u = s3/‘\/s? t s, + sg .

It is tedious but straightforward to show (see Dwight 200. 03 and 201.9)
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that B.6 reducesto a = 1.
The marginal distributions include: p(I,8), p{I,u), plu,9),
pid), p(8),plu). Of these, p(®,u) has been evaluated in B. 2, and pfu)

is given in B.6 . That is,

2 2
SO “"P ) 1
p(u,(—)) = >
m ! 1 S ., 2
2 2 2 ( -1 <
{So - s3u --\/sl + s, '\/l - U COoS \ZQ ~ tan Sl :|
(B,7)
(1 - pu, n)
4 2 1
plu) = p{l-p) (B. 8)

372
[(pu ~up)t e - pH - uf)]

The distribution p(I,u) is found by integrating 2.4, 7 with respectto 0.

This requires thal the inLegréxl

/2
B = j exDn -\/ s, \/1 - u cos (20 - tan_ ———) de
/2 1 - P )
(B.9)
-172
be evaluated, The substitution Y =w + 26 - ;5, where ,ﬁ’5 = tan -;,":,
leads to the integral !
21-p !
8 = % oZ Cosudw (B.10)
5
where
2 ' !
7% = 21 > -\/sl+s§ 1—112 R (B.11)
s_(1-p)
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As before the integral from - $ to 0 cancels with the integral from

(27 - ) to 2w. Thus

8 = % ezcosqj U , (B. 12)

O——

which can be written

m
B = fcosh(zcosxp)dnp
0

This integral represents the modified Bessel function of order zero,

. b
l.€,,
B = wl (2) (B. 13)
Thus,
_ 21 21
p(l,u) = ———3— exp - (so— s3u) .
so(l-p) So(l“P)
I 21 2 2 2!
A AR A
ols_(1 - p")
(B. 14)

Unfortunately the marginal distribution p(l, 8) cannot be obtained in

closed form. This distribution involves the integral

¥
See, e, g., Watson (43) page 79.
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1
Yy = f exp [au + b\/l - u‘2 ]du (B. 15)

-1
where
2153 Zijsi' + S; -1 52
d=—‘2’-—'———7, b:——z-————-z—cos(ZG-»tan —S—>
so(l-—p) 5, (1-p7) 1
(B. 16)

Since the integrand is well behaved on the interval (-1, 1), there is little
reason to consider this integral further. Although it can be expressed
in various forms, the most des.irable form decpends on the information
required from tﬁe integral, Therefore, p(l, 0) will simply be written

as

p(l, 0) = 5 21 ) Yy (I,0) exp{- ———ZL—Z— (B.17)
ms (1 -p7) s, (1-p7)

where y(I,8) is given by B.15,
The marginal distribution of | is most easily determined from

p(I,u). If B.14 is integrated with respect to u, it is found that

1

p(l) = ) 21 ) exp | - ""Z—I"z' j IO (w\/l - u2 cﬁu du
-1

ms_(1-p) s, (1-p7)

(B. 18)
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where
2 ? + sg 2 83
@ = —m—— I, B =———> 1 (B. 19)
s {1 -p) > s, (1-p7)
Let u = cos ©; then the integral in B, 18 becomes
m
n = j’ I_(asin0) %% sing a0 (B. 20)
o

This is a specific example of a class of integral evaluated in Watson (43)

(equation (1), page 379). For this case Watson's formula reduces to

-\’.J___ﬂ 1/2(‘_ 0,2’1"3 > (B.Zl)

which can be written more simply as

2 sinh Vaz + (32

n = (B, 22)
a + B

If B.19 is substituted into B. 22 , and that formula is substituted into

B.18 it is found that

p(l) = 1 sinh | —2Ip exp | - _ 2 (B. 23)
TS p 2 2
o So (1 - P ) so (1 - P )

which can be written in the alternative form

(I) = 1 ex - Z—I-——— - ex - 21
211'-\/51 + 5, + s3 .
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To obtain p(0) it is most convenient to begin with p(u, 9). It

is seen from B.7 that

2 2
o fl=p)
pO) = ———

du
s 2
-1 [s -s.,u —-\/sz+sz-\/1—u2 cos ZG-tan-l-—g
o 3 1 72 8,

(B. 25)
After the transformation of variables u = cosy it is found that
0
(1 - %) .
p(g) - f B1in l.p dl‘l —
- s

o l:s - 85 cosy - sin s§+ sgcos(ZQ—tan‘l ?%)]

(B. 26)

Rather than deal directly with this integral, it is easier to consider

hi}
. d=
5 = f [a+bcosx+csinx] (B. 27)
o
Then
2
(1-p)
0 = - 2 2%
p ™ ET (B. 28)
' a==s
o
b=—s3
]
Cc = 2+s2 cos 29-1:an-l ....2.‘.
1 2 5y
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The integral £ can be written

m+
£ = f—-——q}f——— | (B. 29)

atrsiny

where
r = b +c¢ ﬂ‘ = tan — (B.30)

Dwight (42) provides this integral. Since a.2 > r2

(-a ctn-é)+r ’(a'tané)"' r )
£ = 2 I tan” ! 2 - tan” ! 2
/ i N s A S
aZ_bZ_CZ aZ_bZ_CZ aZ_bZ_CZ
(B.31)

By considering the tangent of the quantity in the braces it is found that

B.31 reduces to

£ 2wt tan | =21 (B.32)

where r is defined in B, 30 . If B. 32 is substituted into B.28, the

following formula results:
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_du-9h ). 2
p(9) > . > - -
[q (L-p7) + sin2<29 - tan-l ?2_>]

1
s
cos (?.Q - tam'.l ._.2.>
1

' . 8 372
[qz_(l-pz) + sinz(ZQ - tan ? _{s_é)]
1

.... s l
'\/Clz(l-pz) + sin‘2 (29 - tza.n'1 —S-Z-)
-1 1

v 5
cos(ZG - tan” ! _.2.)
51

« tan

{B. 33)

where

This completes the analysis of the probahility distributions of

the instantaneous ellipse, The pertinent formulas are summarized

below,
21 2 2. 2! 2
p{l,9,u) = ) 5= €Xp 'T'LT [so-s3u-/s71+ 5, 1 -u""
ws (1 - p%) so(1-p°)

N

-1 8
.cos (29 - tan >
1

w
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2 2
so(1 -pP)

_ 1
p(gs u) = 2.“

| 1 s 2
[s -8 u-\/sz+ sz\/;- uzcos <29-tan-1 --2-
o) 3 1 2 s1

~ 21 21
Pllu) = ——=—7 (exp | - =7~ (s, - s3u)) .
' so(l-p) SO(I'P)

1
p(1, 9) ——ZL—T exp [- .__z.l__z_}j exp[au +by/f1 - u2 }du

2
vso(l -p)

where
25, 2 sf + sg -1 83
A = ———— ] , b = I cos 28 - tan —
2 2 2 2 s
s (1 -p7) s, (1-p7) 1

p(l) = : sinh[—ZIP——T] exp [- ——-—121-7-]
"%oP s, (1-p) 5, (1-p)
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2 2 2

ar s
[qz (1 - pz) + sin2 (29 - tan-1 g)]
1

s
cos(ZO - tan"? —Z)
51

s 3/2
[qz (1- pz) + sin2 (29 - t;a,n"1 ?2->]
1

1
8

‘ \\/‘;2 (1 - pz) + sin2 (29 - 'ca.n-l },—2>
-1 1

s
cos (29 - tan ! —-é)
1

tan

where
2
2 56
T N7
8 + s
1 2
(1 - pulu)

4
pla) = p (1-p° }3/2

[(pu - ul)z + (1 ~ pZ) (1 - uf)

where
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APPENDIX C: THE BEHAVIOR OF THE DFS AT INFINITY

To determine the DFS uniquely in the case of exterior boundary
value problems, it is necessary to specify the behavior of the DFS at in-
finity. In other words it is necessary to have a radiation condition for the
DFS in order to specify the DFS uniquely. This condition can be derived
directly from the radiation condition on the vector field, However, the
vector radiation condition is generally stated for monochromatic fields,
whereas in this problem the field quantities are stationary, irregularly
varying functions of time which do not possess Fourier transforms in the
ordinary sense., Therefore, it is necessary to start from a radiation con-
dition for fields having non-sinusoidal time variations. In the following
paragraphs this condition is obtained and from it the radiation condition for
the DFS is derived.

The radiation condition for electro magnetic fields is intimately

connected with the vanishing of the surface integral
A . ) A ]
IS (_r_,w):jg pro[ﬁxﬁ(r‘ w)]¢+[ﬂx§(r;w)]><v\y +

[g . B <r:w>]\7¢ ds', (C. 1)

in the limit as S approaches the sphere at infinity. In this expressicn
{ represents the free space scalar Green's function,

m  exp] (k |z - I.'I]

* |z -z

A
The integral IS (r, w) can be generalized to non-sinusoidal fields by taking
its Fourier transform. To do this it is convenient to rewrite C. 1 in the

form



\ eLkR A
(f_,w)] " -([ﬂx@_(r’,w}]x_e_R+

A o LKR
m-E (_E':w)] er =3 da' (C. 2)
R
where R = [r -r'{ and eRr is the unit vector directed from r' toward T,

The vector ﬂ is the outward normal to S, The Fourier transform of

C.2 is

L(zst>='§5
S .

[m-E (x',t"] _e_R} da' (C. 3)

-

where t' is the retarded time (t- % ). Let S be a sphere centered at r

of very large radius., Thus, M = - &R S©° that C.3 becomes
M 9 €
1g (z,t) = f {%W[Er- xH (r',t) + “CZ E (z',t')]-
S
l 1 1 12
— E (r',t")) r'" da (C. 4)
rl

where d is an element of solid angle on the sphere of radius R. This

integral vanishes if
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lim E(it') =0 (C. 5)
r' -

3
lim r'le_,x H(r',t") + /—2 E (r',t')]: 0" (C. 6)
rf=co |T% T 7 Po -

where t' and r' are related such that t =t'+ r'/C is constant, Thus,
C. 6 requires that the non-sinusoidal field behave like anoutgoingwave atin-
finity where the amplitude of the wave is evaluated at the retarded time t'.

Since C.6 must hold for - co £t Lo, then it can be replaced by the

simpler condition

€
lim r g_rx_I_-I_(E,t)i- /—-—?—_E_(_I;,t)]=0, -0t w.
r— Ho
(C.7)

Equation C.7 is the starting point for the derivation of the radiation

condition for the DFS. In view of C.7 it is certainly true that

€
. o _
lim rl[grl xH(r,,t))E(r, t))+ /;—0- E (31,t1)E(_r_2,t2)] =0
' (C. 8)
where I, is an arbitrary fixed point located a finite distance from the
origin. In the case of a noise-like field this result must hold for each
sample function; thus it must hold on the average. After interchanging the

order of averaging and limit taking, it is found that

lim rl[_e_erlxg (_lj_l.izrr)'l";\/;—f g(-{l’izﬂ')] =0, (C. 9)

. T,—> 00
1

The corresponding condition in the frequency domain is

lim rl[grl xé’(_r_l,_l_‘_z,wH/i—Eg(zl,ﬁz, w)] = 0. (C. 10)

r,—-
1
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This is the desired condition. A corresponding result can be obtained for
the limit as r,—00. It is

€
[e]

. T
llm 2 [e xb l’r :w) + F" g (5_115_2) w)] = O. (C. 11)
r2—>-oo fo) .

Since the DFS involves two points, a third radiation condition can be de-
rived. This condition involves the limit as both r; and r, approach
infinity., It is of direct use primarily in connection with the uniqueness
theorem for the DFS in an unbounded medium. However, since that the-
orem is not considered here the third radiation condition will not be
derived.

Equations C, 10 and C.1ll can be used to show that the surface
integrals that arise in connection with the integration of 4. 1,5 and 4. 1. 13
approach zero as the surface approaches infinity., The surface integral
associated with 4. 1.5 is

I(l) jg[ 1, rg, w) - :] [vl’x f(i?l’-l;l’ w)ji . _12 -[ﬁ —-l’w . .Ll] x

S

l:vllx Q(ﬁ;:ig:w)}' E} ¢ dj:l . (C- 12)

By using the vector identityA. Bx C =B CxA=C . Ax B and the

associative property of dyadics it is found that C, 12 can be written

£ T
1. f&{ OF @), x50 [ nMx v, x E(zll._r_l,w)] {v'lxgj_(ia,ig,w)].

S -

where _/}'1_(1) is the outward normal to S at _1;'1
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If a and b are removed from the integral, then the dyadic integral that

remains is

L= - flvsavex- 1 ey s o) [m 0w Ly o) +

S
. AT T ~ 1 1
[‘\71X[(V§ 7 * i = § l’rz’“}T} '{ﬁmx E(il’il’“):l de)
(C. 14)

where 4.1.4 has been used to eliminate Q(ﬁtl’f-cz)’ w) .

Since

- 5 Y ,
x[(v‘;xv‘éx-k"‘;->_£_7”<zi.z§,w>ﬂ (V3 5% KoL)

~
f—

then, after interchanging orders of integration and differentiation, it is

seen that

- (V3 x5 * - k‘z;')f £ g e '[ﬁ“_(l) x7) ﬁ(z’l:zl,w)} +

T
[ é(r ,m)] [&(l)x E(_l:_l,_r_'l,w):l ds'l

(C. 15)

Suppose now that S represents a large sphere centered at - In that

event
(1) ( ) 4 —T——eL i +0(._.._._)1 '
l , s = 1 + .
m r1 r1 w e lx(ee,ee‘ e .egy) 1 ruZ

L (C. 16)
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(1) f" . Lkl'l
i
m xle =(_1;1,£1,w)=- Lk(eetee:-l-e’é:eg‘z)—'l——— +0(——2— )
LS
(C.17)
where (r'1 s 0', ;6') are spherical coordinates centered at the point of ob-

servation __1;1 . df. C,16 and C,17 are substituted into C, lb , it is tound

that

(g_e!_?_el + 355'-2;5') e l‘lldd . (C. ]_8)

However, from 3, Z.15 it is seen that

A T N AN T
[V'lx g(_r_‘l,_r_g,w)] = -1k i /é (_r_'l,_gg,w)

Thus,
(1) ) Fo ‘8 1.0 T
Ig'= k(vz xvz X - k L) 1, r2, w) + Z—c; £ (_1'_1,32, w) .

\ i,kril
(Egl_?.el + Eél_e_ﬁl) r, € dQ' , (C.19)

In the limit r!‘l =@ the integrand approaches zero independently of _1_'_'2
by virtue of C.10 . Therefore Iél)—' 0 as S apﬁroaches infinity which
is the result to be proved.

It is worthwhile to consider the surface integral associated with
the integration with respect to I, since this integration involves the use

of the "advanced potential" 'A(<2, o w). The surface integral in this

case takes the form
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}éz) f E_‘rl"' sw) - l (2) sz Q*(.‘l‘z’izm)] +
S

' T ®
[Vé"g—_T ‘1?'52"”)] ‘{_"E(Z)Xf <32’12’w}€d82 -

(C. 20)

Chooéing S to be a sphere of large radius centered at r,, one obtains

for the conplex conjugate dyadic Green's function

(2) A, - kr, 1
m x["_: (x5, x50 ) ;Er;‘ (ee,.,g,-I-eé, ’5,)&-—-——- + 0 r—’?‘ (C.21)
2 2

- tkr
2) e 2 1 \
( xvz C ,rz,w) = lk(ee,e9,+ eqe 75‘ N + O(;-' 2) (C.22)

2 2

Thus, the far zone approximation of C.20 is

. A ' ! !
1@)s - f ik gs_‘i"iz-w“[véx & ‘33”32’“’)]

S t
—ikr2 , '
(EG'-SB‘ + —e-gS'ng') e r, dQ) . (C.23)
But from 3.2.17 it is seen that
T oA .
[v",‘x éT(ﬁ?,Eé,w)] :Lk\’-é-g Dl . (C. 24)
= o =
Thus
T
(2) » _; ' i’r‘ o ! E_(_)_ T, o
1 -ik @y le ()T +\/£ é (x Xy w)
S o
-ikr.

(egiegr * E‘glf_éa) € aq' . (C. 25)
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The radiation condition C. 1l implies that this integral approaches zero

as S approaches infinity. Note that if the ordinary dyadic Green's function
E(EZ’E'Z ,w) were used instead of its complex conjugate, the sign of C. 22
would have been different so that C. 11 would not have implied the vanish-

ing ol :I__éz) .
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APPENDIX D: THE SOURCE FOR A PLANE WAVE

In most problems that involve an incident plane wave, the analysis
is formulated directly in terms of the plane wave field with no attention
given to the source of the wave. However, because of the approach taken
in this dissertation it is desira%’. to characterize an incident plane wave
in terms of its source, Rather than attempt to deduce the nature of the
source of a plane wave from the character of the field, it is easier to
propose a source and then verify that this source does indeed lead to a
plane wave.

The proposed source is the surface current

Z Vo ~0

A o A Lkzo 1
T ix,0) = lim_ [z ° E e %gz-2z )j (D. 1)
A8 o - o o

where the limit operation is included to place the source of the plane wave

at infinity; the factor 2 accounts for the fact that the current gheet radi-

tkz
ates its power to both sides of the plane z = z, the factor e © is

introduced to refer the phase of the plane wave to the origin; and the

vector f‘io . a constant (possibly complexj vector, is assumed tc lie par-
allel to the plane z = z
Tc verify that the field associated with this scurce is a plane wave

observe that in general the radiation field associated with a prescribed

harmenic current is given by

~ . ,’% e A A ,
Ef(r,w) =tk /____o y* l‘ {(r ,r',w) + J{r!, u) dx'dy'das’ (D, 2)
v

8
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A
where E represents the free space dyadic Green's function. In this case
D.2 beccomes

after integration with rcspect to a!

A B . 1 Lkzo
E (r, )= 2%(_ lim <i+ —VV)e .
TZ -0 k

o
A
. —E—:o (D. 3)

e ()2 1 (y-y")2 | (z—zo)z
dx'dy'

o0 Q0
ffe
- o0 Vi-x)? 4 (y-y) 2 + (2 -2 )P

If (x-x') and (y-y') are replaced by u and v respectively, and if the
D. 3 becomes

p cos b, v = p sin $ is then made,

transformation u

1kz
A . ) 1 o
E(r,w) = Ltk lim I+ —Zvv e .
- Z —=> -0 . k
o)
o Vo2t (a-5 )2
e o] "
. , P dp ‘ EO . (D. 4)
2 2
o\/p +(z-zo)
The further substitution t° = p2+ (z-zo)2 yields
E
E (D. 5)

ikz .
(_l-p_lz_v%e of eth dat
k lz—z

o

A
E(r,w) = ik lim
Since in any real medium there is always some dissipation, the propaga-

zZ —-
o

tion constant k will have a small, but finite (and positive) imaginary part.
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Thus the integral is zero at the upper limit and
A 1 tkz ik |z-z B
E (r,w) = lim I+ e e Y. E (D. 6)
=\ = kZ —O0 :

z_ —™- 00
O

Only points z > z  are of interest in this formula; therefore,

1 \ tkz A
I+ —\ 7\:7 - E O,
= (z kZ / © —o

>
£
1]

- [I-ee] B etk® (D. 7)
= =—Z-—Z -0
A
Since Eo lies in the plane parallel to z = z then
A A L
Er o= E (D. 8)

which is a plane wave field that propagates in the + z direction, and is
polarized according to the complex vector ?;-o' Observe that the plane
wave propagates in the direction perpendicular to the plane of the source,
Thus, to obtain a wave that propagates in some direction other than the
+ 2 direction it is only necessary to orient the surface current perpen-

dicular to this direction,
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APPENDIX E: MEASUREMENT OF THE DFS

Equation 5.4,17 provides a relationship between the power re-
ceived by an interferometer and the DF'S. The problem is to develop a

procedure for solving this relationship for the individual terms of the DF'S,
2
Consider first the determination of the two diagonal terms Ell (rl, s, w)
g =1"=

)

A
and 622 (rl,_1_'_2,w).ﬂ‘ If the two elements of the interferometer are linearly
5

polarized along e then

A A A .
. u_lj
WrecMK Ells(-?-’f-’w)+ Re[alls(ﬁl’.{Z’w) e ] (E. 1)
A
as( 90’ ’60’ w)
where K = . By measuring the output from either of

ZZocosz(k_L_J_ . Er) A ,
the elements of the interferometer (c;”s(ﬁ,_z_'_, w) can be found. This value
substituted into (E. l) then provides Re[é”s (31,_1_‘2, Q) eiw] . If this
measurement is carried out for two values of §, say y=0, Y= - -Izr—, then
both the real and imaginary partAs of é\ 113(-51’-1;2" w) can be found. An
equivalent procedure provides EZZS (r, r,w) and the real and imaginary
parts of “6'225(51’52”@) .

The diagonal terms are more difficult to determine.If 5.4.17 is

expanded, it takes the form

# The formula 5,4, 17 holds only in the far zone of the source
in which case the third diagonal term, corresponding to the
field component along the line of sight, is negligible.
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A
A a (e :é :w) I3 s
W ~ Ao’ o P11 l:élls (r,r,w) + Re (8115(51’52’ w)ew")] +

rec 2 .
ZZocos (kL. - e

A A é A Pay

A . A s : .
Elzsf.r_viz’w) eV +€zg,‘£1'£z’w> e'w] : (E. 2)

Since the first two terms on the right of E.Z2 can be measured indepen-
dently for a given value of { these quantities can be placed on the left of

‘E. 2, thereby le'aving all of the unknown quantities on the right. Then
(r) (n) £n) {(r)
Krec P 8 I' _r..’ b)) + 8128(51’32' U.)) +£le(£1:£2, CL)) cos L‘J -
(1) (1) DR @
[E £y Ippw) + C 1’1'2"”)] sin § > - Pl(z) 12, (r,r,w) +

) A
[(c; 124 (rl,rz,w) & )(rl,rz,w)]cos ¢+[€12 (rl,rz,w) Eé’;)s(il’f-Z"w)}Sian .

(E. 3)
where .
ZZ cos (kL e )W A A
ect¥) = A [ (r,r,w) +
N u (b, e
<€ 11 (rl,rz,w) e ¢>] l: 22, (r.r,w)+ R <€22 (ry . r,. eup)]
(E. 4)

which is directly measurcable., Py determining Krec for %gl:z) = 0,

= 0, = w/2 and for f’(h) =0; ¢y =0, = /2, one obtains four equations
12
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in the four unknowns é (1n2) (r T w) E(") (r 'L w) g(") 1’32, ),

and é(b) 1’r2’w) The two terms é(lné) (r,r,w), g b)

12 (r,r,w) can again

be measured by observing the output of one of the elements of the inter-

ferometer,

o

This is not the only procedure for determining éij

One could have the two antennas of the interferometer polarized indepen-

(r 1,250

dently. This would somewhat simplify the procedure for determining
3
612(5'1’52’0)) and 621(_1:1,52,w). However, there is little point in de-
scribing this technique in detail, since in the final analysis the particular
method chosen will depend entirely on the instrumentation available and on
the nature of the measurement. The main thing is that the individual terms

can be obtained explicitly,
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APPENDIX F: A THEOREM CONCERNING THE DEGREE OF
POLARIZATION

In Chapter I it is pointed out that the measurement of polariza-
tion determines the integral of the DFS over a finite band of frequencies
of width Aw. Similarly, the expression obtained in Chapter IV for the
far zone DF'S that is radiated by an incoherent partially polarized source
of finite extent involves an integral of the polarization of the source with
respect to position., In both cases the quantity of interest is expres-
sed in terms of the incoherent superposition of partially polarized
elements, It will now be shown that the degree of polarization of the
sum of incoherent partially polarized elements is less than or equal to
the mean degree of polarization of the elements thcmsclves, The proof
presented here is based on an approach set forth by Ramachandran and

Ramaseshan (28).

Theorem: If
w+A2<.o A
J (riw, Aw) = é_(_z:,_g,w') dw' (F. 1)
- Ao
2

Then the degree of polarization, p(r;w, Aw), of J (r;w, Aw) and the degree

A
of polarization S(_I_'_, w) of é(ﬁ’is w) satisfy the following inequality:

p(r;w, Aw) = ,f\(_r_,c.o') P (r,w') do (F. 2)
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where
Tr £ x0) |
f(r,0') = Py -'A , (F. 3)
2 Tr §(£’£=“") dw'
w-Aw -
2

A

i.e. f(r,w') is the ratio of the intensity of the wave at frequency w'

to the total intensity of the wave over the bandwidth Aw. The equality
A

sign holds if the polarization of g_(_r_,_{, w) is constant over the fre-

quency interval Aw = i,e., if
A A
Ceorw) = T) & (@1, o (F. 4)

Proof: The polarization spectrum can be represented in terms
of the Stokes parameter spectrum introduced in 1,4.57, Thus the four
functions flogg,w'),,é\,l (E*“")’ﬁz(ﬁs“")’ ,23 (r,w') uniquely specify the
polarization of the field at frequency w'. The polarization of i (r;w, Aw)
can also be represented in terms of Stokes parameters. The relation-
ship between the two sets of Stokes parameters is given in 1, 4, 58,

If a polarization vector, p(r;w,Aw), is defined for J (_r_;w, Dw)

by the equation

51(_1'.;‘*” AUJ) El + sz(i;ws A‘*’) EZ + S3 (_I;;ws Aw) e

P (L;O), A(.O) = SO (35“’: A‘L)) (F- 5)
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then the magnitude of p (r;w, Aw) equals the degree of polarization

of J (r;w, Aw). But from 1.4,58, it is seen that

wt+ AW
z [ﬁl (£, 0') e, +f"»2 (z,0') e, +253 (_r_,w')g3J dew'
w= Aw
plriw, Aw) = 2z o
2
L (F, ') def
= (F.6)

Let _@_ {r,w') represeqt the poularization vector that is associated with

1o

(r, r,w). Then

B, wwe +4, mw)e, + 5, @ u)e
A (el

3

Plr,w) = (F.7)

and the magnitude of ﬁ (r,w') equals the degree of polarization of

é_(i’i' w). Equation F,7 can be substituted into F. 6 to obtain

4, (x,w') A
P (riw, &w) = f oTRS plr,w') du'
v f ° B, (rw')de!
W= W

(F. 8)
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Let
A ﬁo (r,w') Tr é(r,r,w )
f(r,w') = — A = =
¢ 50 (E-’w|) doo! ‘/’ 2 Tré(ﬁ:};:w') dw'!
W= Aw w- Aw -
2 2
(F.9)

Then 0 < f(r,w') < 1 and

SE B

FlryoNde' = 1 (F. 10)

€
i

If F.8 is expressed in terms of f(ﬁ,m'), then

wtdw
P (z;w0, Aw) = f T(r,0) P (rw') do’ (F.11)

w-Aw
-

A

Thus, the polarization of the integrated DFS equals the weighted sum of

the polarization of the DF'S over the interval of integration. The weight-

ing factor is the ratio of the intensity of the field per unit frequency at
frequency ' to the total intensity of the field over this frequency inter-
val. Since the direction of the polarization vector determines the polari-
zation of the completely polarized part of the wave (on the Poincare sphere),

then the polarization of the integrated DFS equals the average or mean

polarization of the DFS over Aw,
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The proof of the Theorem follows immediately from F. 11,
A
since the magnitude of the sum of the vectors f (r,w') '1;_ (r,w') is
less than or equal to the sum of the magnitudes of the vectors. That

is;

p (rwAw) = f(;,m') ﬁ(_r_,m') dw' . (F.12)

where by definition p (r;w, Aw) represents the degree of polariza-
tion of i (r,w, Aw) and 1'5 (r,w') represents the degree of polariza-
tion of é (r,r,w'). The equality holds only if the vectors are colinear —
i.e., only if the polarization of é (r,r,w') is independent of frequency
over the interval w - Aw/2 = w' =< w + Aw/2. The greater the diver-
sity of polarization, the greater the disparity will be between the two
sides of the inequality. Furthermore, the upper bound on the degree of
polarization of J {r,w, &w) is determined not by the maximum degree
of polarization of _é::_(_]f_, r,w) over the range of integration but by the
average polarization over this range,
Q. E.D,

Observe that the foregoing analysis applies equally well to inte-

gration with respect to r, Thus if one replaces g(i,i,w') with v_«_@(g,w'),

the DSS of an incoherent source, and recalls that

o>

A
(r,r,w) o f <_/£(5_,'w) dw'
Vs -
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he is lead to the conclusion that the upper bound of the degree of
polarization of the DFS at the point r in the far-zone of the source
equals the average degree of polarization over the source; and that if
the polarization of the source varies with respect to position, then
the degree of polarization of the field will not achieve this upper

bound.
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