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ABSTRACT

We are concerned with the electron spin resonance
spectra of nitroxide free radicals in various molecular
environments. These radicals may be described as a single
electron interacting anisotropically with an external
field and a nitrogen nucleus of spin one. We use both
exact and approximate solutions to the hamiltonian to
simulate spectra from oriented samples. We then perform
the orientation averages to obtain theoretical spectra
from polycrystalline samples. We consider the effects of
molecular motion on the system, and develop a Monte Carlo
scheme to evaluate the spectrum for a variety of molecular
tumbling rates. The theoretical spectra so computed are
compared with experimental spectra taken in solutions of
varying rotational correlation time; excellent agreement
is obtained. We use the Monte Carlo calculation to esti-
mate the rotational correlation time for the molecule in

solution.
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I. Introduction

In the recent ecxpcrimental work of McConnell and
co-workers (1-6) it has been found that the attachment of
paramagnetic species to large molecules may be used to
obtain information about the motion of these molecules.
The technique, called "spin-labeling," makes use of the
strong dependence of the electron paramagnetic resonance
(EPR) spectra of a class of organic free radicals on the
motion of these radicals in solution. It is our purpose
here to derive theoretical expressions for this dependence,
so that one will be able to say with some confidence just
how much motion is present in a given sample by looking at
its EPR spectrum.

Most of the experimental work done to date has
used various forms of nitroxide radicals, shown schemati-

cally as I, as the spin label. These radicals are quite
i
Q
|

stable in solution and exhibit sharp, well-resolved EFR
spectra which are qualitatively quite sensitive to molecu-

lar motion. These radicals may be synthesized by the



method of Rozantzev and Krinitzkaya (7). Some of these

radicals, in particular II and III, have been prepared as
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single crystals of their solid solution in tetramethyl-1,
3-cyclobutanedione (8), and their EPR spectra taken as a
function of the relative orientation of the crystallo-
graphic axes and the external magnetic field. For all
orientations, the spectra are well resolved and consist

of three lines whose separation is a function of orienta-
tion. From these spectra, one may conclude that the hyper-
fine interaction between the electron (S=1/2) and the
nitrogen nucleus (I=1), on which most of the electron spin
is presumed to be localized, is anisotropic. Measurement
of the position of the central line as a function of orien-
tation leads one to conclude that the g-factor of the
electron is dependent on orientation, and must be considered
to be a tensor. As far as one can tell from the observed

spectra, the g-tensor and the hyperfine tensor have



coincident principal axes. In addition, for the radical

IV, the measured hyperfine tensor is axially symmetric.

;

As is to be expected, the anisotropies in the two tensors
vary of the order of 20% from compound to compound.

If one prepares a solution of one of these radicals’
in a nonviscous solvent, the observed EPR spectrum becomes
a sharp three-line spectrum, which, of course, is indepen-
dent of the orientation of the sample in the magnetic
field. The observed splittings in such a solution are
approximately equal to the average of the three principal
axis splittings observed in single crystals, implying that
the three principal axis components all have the same sign.
If one now increases the viscosity of the solution,* the

three lines begin to broaden, with the high field line

broadening most rapidly. As one increases the viscosity

% . . . . . .
The viscosity under consideration is a rotational
viscosity of the solution.



of the solution still more, the lines begin to overlap,
the spectrum becomes unsymmetric, and the total width of
the spectrum approaches the maximum principal axis
splitting (3).

Although this viscosity dependence is interesting
per se, the main interest in these nitroxide radicals is
based on the fact that, if one chooses the R groups in
figure I judiciously, one may obtain free radicals that
bind to wvarious iarge molecules of biological interest.

If one takes a nitroxide with such a shrewd choice of side
group and adds it to a biopolymer which binds to that side
group, the spectrum of the product, in nonviscous solution,
appears to be the same as the spectrum of the original
nitroxide in exceedingly viscous solution. For example,

the spectrum of the nitroxide V, with a reactive maleimide

Vv (Maleimide Reagent)

group, mixed in solution with bovine serum albumin is
almost identical to the spectrum of the radical IV in

glycerol solution at 77°K (4). 1In some cases, spectra



corresponding to solutions of intermediate viscosity are

obtained. For example, if the nitroxide VI is mixed with

Vi (Hapten Nitroxide )

a protein antibody specific to the 2,4-dinitrophenyl
group, EPR spectra obtained are quite similar to those of
dansyl nitroxide, VII, in 907 glycerol-57% water-57 ethanol

solution at 35°C (3).

ZN - /N-0
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Vil  (Dansyl Nitroxida)

An experimental technique which has been used to
obtain estimates of the extent of molecular motion in a
nitroxide from its EPR spectrum is that of Stryer and
Griffith (3). 1In their experiments, the nitroxide VII
was prepared; this nitroxide contains both a paramagnetic

"spin label" and a "fluorescent label." EPR spectra are



obtained from solutions of the radical in solvents of
varying viscosity. For the same solutions the fluores-
cence depolarization of the dansyl group is measured.
From the fluorescence lifetime, 7 , the observed emission
anisotropy, A, and the emission anisotropy in the absence
- of all molecular motion, A , we may calculate the rota-

tional correlation time,/o :

‘Dss’cA/Ao’A (1.1)

For the most part, the theory relevant to the EPR
experiments is in rather sad shape. For small deviations
from exceedingly rapid tumbling, the theory of Kivelson
may be applied (9). The tumbling is assumed isotropic,
slow compared to the inverse of the EPR resonance frequency,
and fast compared to both the inverse of the mean hyperfine
frequency and the inverse of the hyperfine anisotropy. 1In
general, these restrictions are too stringent to allow the
theory to be used to fit all of the observed experimental
spectra.

Thé general theories of motional narrowing, in
particular those of Kubo (10) and Anderson (11,12) give
formal solutions for the EPR line-shapes, but may not be
applied to give numerical solutions for the nitroxide

problem.



We will here develop a semi-empirical theoretical
approach to the problem of the effects of molecular motion
on the EPR spectra of nitroxide radicals. We will first
discuss the spin hamiltonian that may be used to represent
these radicals in the absence of molecular motion. We
will show how solutions to this hamiltonian may be
obtained; both exact and approximate solutions will be
presented, and we will show that for our purposes the
approximate solution is sufficiently accurate to enable
us to simulate the EPR spectrum. We will show how powder
spectra may be obtained from these solutions. We will
then consider the most successful of the theoretical
approaches to date, that of Anderson, and we will show
that the approximations he is forced to make to obtain
solutions to his lineshape equations are not valid for the
nitroxides under consideration. We will use a crude physi-
cal approach to the problem, based on the fact that the
EPR experiment implies the existence of a pseudo-stationary
state with a lifetime greater than the inverse of the mean
hyperfine frequency. We will consider an ensemble of
molecules as an ensemble of classical oscillators whose
frequency is dependent on orientation; in the presence of
motion, the observed frequency will be considered to be
the average of all the frequencies sampled by the oscilla-

tor in its lifetime. We will use a Monte Carlo method to



perform the above averaging. We will discuss the computer
programs that were written to perform all of these calcula-
tions, and we will exhibit theoretical spectra and the
experimental spectra they are supposed to simulate. We
will show that the agreement obtained is quite good. We
will correlate our jumping rate to the rotational relaxa-
tion time.

In section II, we will discuss the spin hamilton-
ian, its solutions and the calculation of powder spectra.
In section III, we will discuss the formal theory of
Anderson, the Monte Carlo method, and our motional approxi-
mations. In section IV, we will discuss the computer
programs, and in section V, we will compare theory and

experiment.



ITL. The Static Problem

It is presumed that all of the properties of
nitroxide free radicals (or any other system for that
matter) are contained in the solution to the appropriate

exact Schrodinger equation:

He ‘/’e = "'()?'é& (2.1)

(We set %=1 in the following treatlment.)
Given the present state of the art, however, we have little
hope of being able to write down the true hamiltonian, much
less solve it. We therefore make use of an artifact, known
as the spin hamiltonian, H , which depends only on spin
operators,* explicit representations for which we can write
down, and whose spectrum in the region of interest (here,

the EPR region) is believed to be the same as the spectrum

of the true hamiltonian.

A. The Spin Hamiltonian and
Its Exact Solution

For a single nitroxide radical, in the absence of

molecular motion, such a spin hamiltonian may be written:

'J'('= {51_’!.:35 +€>n‘3n[:[:',_-£ + 51’1; (2.2)

“Strictly speaking, the spin operators in all of
the following must be considered to be pseudo-spin opera-
tors.
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where we have used the following notation:
= the external magnetic field
= the electronic g-tensor
= the Bohr magreton
nuclear g-factor for a nitrogen nucleus
= the nuclear magneton
= the electron spin operator (pseudo-spin)

= the nuclear spin operator (pseudo-spin)

G ;
=T E I 1Y » ém w b QL
i
rt
o3
©

= the hyperfine tensor
T here includes both the isotropic Fermi contact inter-
action and the traceless dipolar coupling term. - Since T
is a symmetric quadratic form, there exists a coordinate

system in which it may be written as a diagonal dyadic:

A

a
4 a n AA '&'(
= Al + 844 + C a3 (2.3)

-

Similarly, we may write for g

IS

tar

$ g 4 t G A (2.4)

A5
[}
!\

lh,.

where the primed and unprimed axes are not necessarily
equivalent. Experimentally, for all of the nitroxides
where these tensors have been measured directly, their

principal axes do coincide (6,8).

1

“A single underline of a symbol denotes a vector;
a double underline denotes a temsor, and a dagger the
Hermitian adjoint.
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Since S has magnitude 1/2 and I has magnitude 1,
we are dealing with a system of six basis states. We may
choose a representation of coordinates in which the I
tensor is diagonal, and quantize the z-components of S and
1 in this coordinate system. The representation so chosen

has 82, S, 12

, and I, as quantum numbers. In this repre-
sentation, it is straightforward, although tedious, to
write down the hamiltonian matrix exactly and explicitly:
(see following page) (2.5)

where we have defined:

H,= fgtl
—e P a ~o H [Eel

fani
n

By = henf, n = \Hpl
A, B, and C are the principal axis values of I as defined
in equation 2.3.

The exact diagonalization of this hamiltonian
requires the solution of a sixth order algebraic equation,
and hence may not be done in closed form. We observe that

if A is a hermitian matrix of order n which we write as:

>
flid

+ig (2.6)

where B is real and symmetric and C is real and anti-

symmetric, the eigenvalues of the supermatrix D:

[i[®]
1
e

D = (2.7)

o
(@]
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of order 2n are simply related to those of A; each eigen-
value of 4, ai,with corresponding eigenvector @; =u; t
i vy, appears twice as an eigenvalue of D, once with

u, -V

l) and once with eigenvector ( l) (13).

Vi ui

elgenvector (
The proof of this theorem follows immediately upon substi-

tution. ui and Vi are both real.

in those cases where the exact solution to the
hamiltonian is required, we form the 12x12 symmetric
matrix corresponding to the 6x6 hermitian matrix of the
hamiltonian, and diagonalize it numerically by Jacoby's
method (14).

After we have obtained the eigenvalues and eigen-
vectors of the hamiltonian, we may proceed to calculate a
theoretical EPR spectrum. 1In general, the energy level
diagram for arbitrary orientation of magnetic field may
be pictured as in figure 2.1. (The energy notation in
figure 2.1 is defined below.) The nine EPR transitions
that may occur are from the three levels of the lower
manifold to the three levels of the upper manifold. The
three strongest transitions are shown in the figure. 1In
general, we may simulate the full EPR spectrum for an
isotropic powder of the nitrokide by using only these

three transitions. The worst case we have studied is
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1/2H g

~WVaHg * Hdown :

-1/2H i
[

=1/2Hg  =Hggwn )

Fig. 2.1. Energy level diagram for a
; - typilcal nitroxide
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that of the radical chlorpromazine, VIII, at Q-band

Vil (Chloxrpromazine Radical-ion)

(12,400 gauss for HO). The six forbidden transitions
there become as much as 207 as strong as the three main
transitions. Even for this compound, however, the weak
‘transitions do not affect the composite powder. spectrum.
This is discussed in more detail in section V.

The transition moment for an EPR transition is
proportional to the square of the matrix element of the
magnetic moment perpendicular to the external field
between the two states of the transition. This magnetic
moment is proportional to the perpendicular component of

2S; since g is anisotropic one would expect the transition

intensity to be a function of the particular perpendicular
component selected. However, the anisotropies in g are
only of the order of 1 part in 1000, so the resultant

difference In intensities should vary by only 1 part in
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106; we may neglect this variation, and, in fact, take our
relative intensities as the ratios of the squares of the
matrix elements of S; for the transitioms.

We write the magnetic field in the coordinate
system in which I is diagonal:
SinDsin <?>

H - Ho (‘ Sm@wsc?

w6 (2.8)

where theta and phi are the standard polar coordinates of
the principal z-axis of the I tensor measured from the
external field. We then choose for our transition moment

the matrix element of Sf :

W

S:‘ case Sy + Sin @ S';,t (2.9)

For any other choice of perpendicular component, the
transition matrix element differs from ours by a change in
phase; the transition moment is unaffected. Our choice is
dictated by ease of computation. We evaluate this matrix
element over the exact (numerical) eigenstates of the
hamiltonian.

For an arbitrary orientation of the magnetic field,
the solution of the hamiltonian and the evaluation of the
nine possible transition'moments is a time-consuming
process: on an IBM 7090 computer, which is the computer

on which all of our calculations were performed, using the
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programs described in section IV, approximately 3 seconds
is required for each orientation. 1In order to simulate a
powder spectrum (see below) a minimum of $00-1000 orienta-
tions must be used. We therefore decided to use some form

of approximate solution to the hamiltonian.

B. The Approximate Solution

Writing our hamiltonian 2.2 in the coordinate

system in which I is diagonal, we let:

HQ = He (g' &'-" t"z /HC (2 10)
We define E as that transformation matrix such that:
[4]
B-He = He (°> ; (2.11)
{
We may then rewrite our hamiltonian as:
[ L o} i ! 2
H= Heg% + Ha-d §-I-ré (2.12)
where
s' =BS
I' =BL
Hy = B

3
i
lwe]
]
lws]
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Define S, and S, as follows:

Sk 2.13
5. - (5‘;) | (2.13)
O

we rewrite the hamiltonian as:

j"" .:He * }“T-j'{é‘l"j‘(, (2- 14)
with:
.} Hﬁgﬂ
oo (2 ‘*Sa(){ "' (T 3Ty, '73;)&-.};‘
(2 Se) {Hn - (T, T, )Y &
H'= 5T

- We will now diagonalize the first three terms of the
hamiltonian 2.14 exactly, and show that the perturbation
expansion of the fourth term gives very small corrections.
We use eigenfunctions of S, for our electronic
basis functions. The eigenvalues of S, are t1/2; there-
fore, for each state, one of the terms H or "H, must

vanish. We define the unitary matrices Al and A2 by:

+ ' ‘ ' +
{ ’:!N +‘il2 (T.’tl )T-g; ‘T'n ) l{ . ‘g‘ « (9,0 Hq,{,): %D?
| | (2.15)

. s ) “ T
{{:‘:’ W) T, ) b Ao = (90 M )™ Hapg,
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Let AqI' = lup and A,L' = Liown® We choose the following
representation for the six basis states of the system:

the electronic basis functions are eigenstates of Si s

when the eigenvalue of S“' is +1/2 we choose eigenstates

of the z-component of lup for the nuclear states; when the

- elgenvalue of Sy 1is -1/2, we choose eigenstates of the
z-component of ldown' We may readily verify that the
hamiltonian 2.14 with the deletion of the fourth term is
diagonal in this representation. We now consider the
effect of H'. Since H' involves only S  and S§ it has no
diagonal matrix elements for any of the six basis states.
To first order, therefore, our full hamiltonian is diagonal.
The utility of this approximation is predicated on the
inequalities Hé?’HN,A,B,C. We may therefore speak
unambiguously of an upper and lower manifold as in figure
2.1. Since the states in a manifold, which have relatively
small energy separations, all have the same eigenvalue of
Sy , H' connects only those states which are in different
manifolds. The second order corrections to the energies
are therefore only those terms that have energy denomina-
cors of the order of H,. The matrix element of “H' between
such connected states is of the order of the x or y hyper-
fine component; the energy corrections are therefore of the
order of 0.1 MH for typical nitroxides at X-band (3350

gauss; 9KMH). These contributions are negligible, and are

thrown cut in the numerical calculation. We do observe,
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however, if the nuclear Zeeman field becomes approximately
parallel to and equal in magnitude to the hyperfine field,
the nuclear splittings in the resultant field Edown become
exceedingly small; in this case, corrections of order higher
than second become important and the approximation breaks
down. The only case in which this occurs in practice is

in the calculation of the spectrum of chlorpromazine at
Q-band. Single orientation spectra calculated by this
approximation scheme differ markedly from those calculated
by exact diagonalization.

As before, we now proceed to calculate transition
moments, this time using our approximate eigenfunctions.
We choose Si as the transition‘moment operator; Sé connects
only states in different manifolds, and acts only on the
electronic part of the wave function. The transition
matrix element therefore depends linearly on the overlap
between the nuclear states, one quantized along Eup and

the other quantized along Hiown® We define:
N
Cos @ * g&ii? H:lowﬂ /HUL? Héown (Zn 16)

If we consider lup to be quantized along a "z" axis then
Liown e1genstates are quantized along an axis related to
this “z" axis by a rotation of ® about the x-axis; we may
therefore trivially write the overlap matrix in terms of

the rotation matrix for angle ® . This overlap matrix is:
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145 ® "Es5smd® O
\ -A#d 289 O (2.17)
- ®  -Eiin® 1t 9 ;

ro-

i‘
-
=3

Figure 2.2 shows the relationship between the various real
and pseudo-fields used in this approximation.

We have now seen how we may calculate the EPR
spectrum of a nitroxide radiéal as a function of orienta-
tion. For any orientation, there are nine possible
transitions; three of these are strong. None of the other
six lines have been seen experiﬁentally. The case where
one would expect these to be strong has not been studied.
When the field 1s aligned along an axis of symmetry in the
I tensor, all but one of the six forbidden lines vanish
exactly.

Theoretically, the spectrum we have predicted above
should have infinitely sharp lines. 1In practice, of course,
the lines are not this sharp. They are (in single crystal
solid solution) gaussian in shape and approximately four
guass wide (8). We will, in this work, take this residual
linewidth as an input parameter, much in the same way as we
take the g and I tensors as experimentally determined. The
residual linewidth is presumably due to many factors.
Interaction between spins on different radicals and residual
hyperfine interaction with neighboring protons both con-
tribute. For the region of motional speeds we consider

below, the linewidth is reasonably independent of tumbling
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Fig. 2.2. The various fields and pseudo-fields
defined in the text
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rate (as determined by comparison of our theoretical
spectra with the experimental spectra). In a rigid glass
the linewidth is about five gauss; in a nonviscous solvent
with almost free rotation the linewidth is of the order of
two gauss. We may attribute this difference to the averag-
ing out of the anisotropic contribution to the proton

hyperfine interaction.

C. Spectra from Polyecrystalline
Samples

Unfortunately for the experimentalist, it is often
quite difficult to prepare crystals in which all the para-
magnetic species have the same orientation, so that one may
measure the anisotropies on T and g directly. Single
crystals of biomolecules are especially difficult to pre-
pare, and here one must usually be content with polycrys-
talline or solution samples. (The notable exception to
this is the work of Ohnishi, Boeyens, and McConnell on
haemoglobin (6).) We will now consider the resonance
spectrum expected from a polycrystalline sample of
nitroxide radicals. |

We regard the molecules as independent, so that
the total hamiltonian for the sample may be written as thel

sum of single radical hamiltonians:

};’: Z :HL : ‘ (2‘18)
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If this approximation is made, the spectrum ¢f the system
reduces to a linear superposition of the spectra of the
individual radicals. If Ii(v ) is the spectral density
function for the ith molecule, and I(v ) is the poly-

crystalline spectral density, we write:
L= TLiom (2.19)

(In accordance with the theory developed above, each
Ii(q/) may be written as the sum of three gaussians, one
for each of the principal lines, and the six gaussians for
the near-vanishing forbidden transitions.)

We make the assumption of a large number of
individual molecules, with a distribution in orientation

=

of p!6,9), and transform the sum 2.19 to an integral

over corientation space:
In= | Lo V) pLO,9) 404 (2.20)

where 1 () is the spectral distribution function for

&%
a molecule with orientation &¢ relative to the extermal
field. The equation 2.20 is quite general; by specifying
various forms for the orientation distribution, we may
simulate various types of spectra. If we set L equal to

a delta function at a particular orientation, we may gener-
ate the spectrum of a single crystal doped with nitroxide

radicals; if we choose p as sin O, we simulate an

isotropic powder or rigid glass. By an appropriate choice
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of f we may also use this expression to simulate spectra
where the molecules are oriented by flow (1).

The practical use of equation 2.20 requires that
we express the spectral distribution function Igﬁ,(q/) in
closed form as a function of orientation, and that we can
do thevintegral over orlentation. We cannot hope to do
this In practice; we therefore map the surface of the
orientation sphere onto a grid in ©&,¢ space, and convert

the integral over this surface, to a sum over grid points:

Iwm=2 I@.a‘(ﬁ’l}f;l@;,(‘@j) (2.21)
b ¢y |

where we have made the necessary continuity assumptions on
the functions I and P - The accuracy of equation 2.21, of
course, depends on the size of our grild. We found that a
grid of 32x32 points for the half-sphere was adequate for
all the experimental spectra simulated. Note that we need
only consider the half-sphere because our hamiltonian is
invariant under inversion. For some cases, a grid of 25x25
points was found sufficient.

Having discussed the static hamiltonian and obtained
its solutions and the EPR spectra predicted from them, we
are now prepared to consider the effects of molecular motion

on the spectrum.
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III; The Effects of Mcticn on the Spectrum

The formalism,devéloped in the previous section is
based on the implicit assumption that the hamiltonian is
time-independent, that is, that the spins undergo no motion
in times of the order of the duration of the EPR experiment.
(By motion, of course, we mean only motion which does not
commute with the spin hamiltonian; translation of the spins,
which does commute, may occur, but will not affect the
spectrum.) For this to be true the spins must be rigidly
bound against rotation, as indeed they are presumed to be in
rigid glass or rigidly bound spin-labeled compounds. Experi-
mentally, this situation, although common, is not the
situation of prime importance. We must therefore consider
the intrinsically more interesting case where the spins do
executé some form of more or less rapid motion, and we must
try to calculate the effect of such motion on the observed

EPR spectrum.

A. The Theory of Anderson (11,12)

The earliest work on motional effects in magnetic
resonance spectra is that of Bloembergen, Purcell and
Pound (15). They consider the nuclear resonance spectrum

in a magnetic field which is composed of a static,
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externally applied field, H,, and a random local perturba-
tion which depends on the neighbors of the particular spin

under consideration:
-3 88 g (3.1)

The second term (local field) is taken as a dipole field,
and is presumed much smaller than the external field.
Although the motion of the spins does not directly affect
their rescnance spectrum, it does serve to vary, in a
"random"” fashion, the dipolar field. Physically, it is
evident that, as the motion becomss more and more rapid,
the broadening effect of the local field will be averaged
out. 1If, in the absence of motion, the observed resonance
line has a mean square width, AW,

1/2
7

a4 = (w2 (3.2)*

in the presence of motion with characteristic frequency,

W_, this width is reduced to approximately wz/wm.

m)
Anderson and Weiss (11) and Anderson (12) have
developed a theory of motional and exchange narrowing of
spectral lines which puts these results on a somewhat
sounder theoretical basis. Their theory also accounts for

the results of Van Vleck and Van Vleck and Gorter (16) on

1,
w

Frequencies are measured from the position of the
zerc-order line.
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exchange narrowing. The full hamiltonian for the problem

is written as the sum of three terms:

Her Ho v He v Him (3.3)
where ¢ is the zeroth order hamiltonian for the spins,
Hu 1s the broadening perturbation, and Hm is the
motional contribution to the hamiltonian. The key assump-
tion made by Anderson is that the motional term of the
hemiltonian has no direct effect on the spectrum; for this
to be true we must have:

Hol =@

Ei‘im)/g}= < (3.4

where Jé 1s the magnetic dipole moment of the system.
However, for 7, to have any effect at all, it cannot com-
mute with the broadening perturbation; Hp, is therefore
seen to modulate this broadening perturbation. In the
problem considered by Anderson, the g-factor for the
rcsonant spins is assumed isotroplc, the zeroth order term
Lo be thb 1sotrop1c Zeeman interaction, and the broadening
term to be a spin-spin dipolar coupling between the various
resonant spins of the ensemble. It may be readily verified
that equations 3.4 are satisfied for this system, since
neither H, nor J4 has any spatial dependence.

| In order Lo make his problem tractable, Anderson
Ifirst assumes the broadening ?erturbation.to be a discrete

set of frequency shifts; in the absence of motion then,
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the spectral distribution function for the absorption may

be written:

Ion=Z2Lw = 240 (3-5)

where Pi is the intrinsic probability of a given spin
having its resonance frequency shifted by Wi, with a
corresponding spectral distribution Ii(?/). For the case
of exchange narrowing, the random motion is considered to
be gaussian; for true motional narrowing, the motion is
considered to be Markoffian. (These are the only two
types of random functicns that may be conveniently handled.)
We are comncerned only with the motional part of his theory.
The motion has been assumed to be Markoffian, that
kis, the probability of a spin being in state i (of the
perturbation) at time t, given that it was in state j at
time t- & t, is independent of its state for all times
earlier than t- At. The motion is assumed smooth, so that
we may linearize the Markov transition matrix, {} , for

small times, @:

i

(3.6)

o
rI
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M =
-

=

|
[TF2na)

where L 1s a unit matrix and Tl is a transition probability
matrix. From this expression and the definition of the
correlation function @{¥) , we may obtain the correlation
function:

orte B (evp Cotign ) L 6.7
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where 1 is a column vector with all entries unity, P is
the vector of initial probabilities as in equation 3.5,
and Q is a diagonal matrix with ‘ﬁﬁw &%5% . We then
find a transformation matrix, T, such that the matrix
T*l(iw~+T'}Z is diagonal. If we then take the fourier
transform of the correlation function, which 1Is now a sum
of complex scalar exponentials, we obtain a spectral den-
sity function which i1s a sum of Lorentzians; the negative

of each of the eigenvalues of the matrix iW+TC

i

real par

ives the width of the corresponding Lorentzian, the
imaginary part the shift.

Formally, we may readily extend this treatment to

a broadening perturbation which has a continuous distribu-
tion of frequencies. The eigenvalue equation which deter-
mines the position and width of the Lorentzian lines
becomes an integral equation. If the assumption that the
Markov transition matrix depends only on the second sub-
script (that is, that the frequency after the transition
is completely uncorrelated with the frequency before the
jump) can be made, then the integral equation admits of
sclution in the limiting cases 6f infinitely rapid motion
and infinitely slow motion. An attempt to treat’less or
more rapid motion, respectively, by a perturbation expan-
sion 1s successful only in the former case; the solutions

for zero motion are singular. For the gradual slowing
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down of the motion, results in accordance with equation
3.2 are obtained.

Let us now try to apply the theory developed above
to the problem of motion in nitorxide spectra. In this
case, we may neglect the inter—molecular dipolar and
exchange contributions to the broadening: the spectra are
taken in dilute solution. We consider the entire broaden-
ing to be attributable to the anisotropies in the g and T
tensors. As mentioned above, translational motion commutes
with the entire spin hamiltonian, and is therefore of no
interest. We consider only rotational effects.

Anderson's theory is designed to treat only a
single spectral liune broadened Ly soms perturbation. In
the limit of infinitely rapid motion he must, therefore,
obtain a single infinitely sharp line for the spectrum.

The nitroxide radicals, however, exhibit three-line spectra
for all speeds of motion: mno motion may average out an
isotropic interaction. If we wish to apply this theory, we
must cpnsider the three hyperfine states to be independent,
that is,vuﬁmixed by the motion. This is not a particularly
serious fault, and, in fact, we will make this approxima-
tion in our own treatment. We then may use the isotropic
part of the hamiltonian as H,. The broadening part of the
hamiltonian is obviously the anisotropic parts of the g and

T tensor terms.



32

The moticonal part of the hamiltonian does commute
with o so that the first equation of 3.4 is satisfied;
however, the magnetic moment of the system does depend on
tne anisotropic g-tensor, aand hence will not commute with
the motion. The commutator of the second acuation 3.4
will not be identically zero, even though it will be small.
The expression for the correiation function will no longer
just depend on the frequency distribution of the broaden-
ing, but will contain other terms coming from the time
dependence of the magnetic moment. Neglecting this, we
are stcill faced with the fact that the broadening spectrum
is continuous. We are hard pressed to believe the assump-
tion that the [requencies belore and after a transition
are completely uncorrelated, since in our case the transi-
tion frequencies are smoothly'varying with orientation,
not randomly fluctuating, and the motion is best consid-

red as a small-step random walk in orientation. So we
see thet Anderson's lineshape equations cannot be solved
for a nitroxide radical, except by making some rather
untenable assumptions.

Any a priori theoretical treatment of the motion
would have to be based on an explicit hamiltonian for this
motion., At present, we cannot write down such a hamilton-
ian; we therefore look for an intuitive physical approach

to the problem of motional averaging.
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8. Our Hypothesis

We know that for the highest rotational speeds
cor.sidered here, the spectrum of a nitroxide radical
consists of three sharp lines. Similarly, at the slowest
speeds (that is, mo motion at all) the spectrum of a single
radical consists oi thfee well-resolved lines {we here
rieglact the forbidden transitions). The separation of
thesa lines is of the order of the mean hyperfine frequency,
a. 3y virtue of the uncertainty relation in the energy,

-

<aB=s3Tel )= G (3.8)

{
L
<

-
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we must be able to regard the system as being in a pseudo-
stationary state for Cimes, &t , at least as long as the
inverse of the mean hyperfine frequency: for, if this is
not true, we would not be sble to resolve the hyperfine
ilines. We now ask ourselves what parameters, in particular,
what trensition frequenciess, may we use to describe this
pseudo-stationary state. The obvious answer is found in
the following semi-classical treatment:

Let us suppose that at time t=0 the molecule is in
a vparticular eigenstate of the spin hamiltonian correspond-
ing to its instantaneous orientation &49. During every
interval of time, ¥ , the molecule undergoes a collision
with solvenZ and takes a small random step to some neighbor-

ing orientation, and is now in a state with transition
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frequency ¥ {<). This is reasonable assumption for the
motion of the spin if the nitroxide molecule is so large
compared to a solvent molecules that it may be regarded
classically (Debye limit). We then say that the observed
EPR transition frequency for the pseudo-stationary state
is the average of all the frequencies the molecule has
sampled in the time A L:
Ly

v & ,J-,‘ff;,"’"“zf'"’) (3.9)

We know that equation 3.9 reduces to the right
limit in the absence of motion, that is, the observed
resonance frequency is squal to the instantaneous resonance
frequency. If we assume that the hyperfine states are not
mixed by the motion (see below) we see that equation 3.9
reduces to the right limit for very rapid mocion as well.
Our thesis here is that this equation is wvalid for all
intermediate cases. This is only an assumption. We can-
not justify it rigorously; however, we will show that the
theoretical spectra generated under this hypothesis are in
vary close agreement with experimental spectra.

We must now consider a method for determining the
instantaneous frequencies that appear in the average 3.9.
We will make the assumption that the electron and nuclear
states are not mixed by the sudden jumping. In a sense,

we may consider this as having the spins follow their own
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instantaneous fields adiabatically. On the face of it
this assumption is difficult to justify a priori. Even

if we think of the physical motion as not a real random
walk, but rather a fairly smooth rotation, whose direction
is changed by the solvent collisions, the molecule does
sample the orientations very rapidly. So one might think
that each change will induce a certain probability of
transition between the various nuclear states, and the
molecule will rapidly forget which hyperfine state it
started in. Part of the damage of these transitions is
undone by the fact that a two-dimensional random walk is
self-intersecting infinitely often: if we return to a.
-given position in a time short compared to the energy
separation of eigenstates, so that the component states
after jumping have not had a chance to get out of phase,
we will return to our starting state again. For the
energies of the various intermediate states the molecule
has visited, we use the expectation of the instantaneous
hamiltonian over the starting eigenstate. We will assert
that the rate of transition between the various hyperfine
states is small, so that the starting eigenstate.is probably
not very different from the instantaneous eigenstates. We
may therefore approximate the energy expectation by the
eigenvalue of the instantaneous hamiltonian for the

corresponding eigenstate.
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We will now develop the methods used for perform-
ing the random walk and calculating the average transition

frequency.

C. The Monte Carlo Method

- "One of the main strengths of theoretical mathe-
matics is its concernlwith abstraction and generality:
one can write down symbolic expressions of formal equations
which abstract the essence of a problem and reveal its
underlying structure. However, this same strength carries
with it an inherent weakness: the more.general and formal
its language, the less is theory ready to provide a numeri-
cal solution in a particular application" (17). Presumahly
When we write down the Schrodinger equation as in equation
2.1 we have solved the problem. But we are here concerned
not so much with\a formal and general solution as with a
numerical result: we‘wish to be able to simulate the
experimental spectra. We must now consider the numerical
techniques that may be used to obtain solutions to
equatibn‘3;9.

Our first concern is with the derivation of a
method for generating the random walk that each molecule
is presumed to undergo. For this, we will use the Monte
Carlo method. We first consider the direct Monte Carlo

simulation of a random process.
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Suppose we have a random process, with possible
outcomes El’ Ez, E3, cae En, with corresponding probabili-

ties Pl’ P2, P3, oo Pn’ where

_%P;= 1 ' : (3.10)

el

We will divide the unit line into segments of length

Pl’ ves Pn as shown in figure 3.1. Suppose we have at

our disposal a means of generating a random number, R,
whose distribution function is uniform on the unit line.
We then simulate our random process by éaying that for
this trial, event E; occurs if the random number is in the
first segment, event Ez if the random number is in the

second segment, etc.; that is, event Ei occurs if:

-1 ‘
42?{ 4&4:1: Py (3.11)
st =

If the series of random numbers we generate does have a
uniform distribution on the unit line, the effect of the
simulation of the random process will asymptotically
approach the effect of the process itself.

A second technique that 1s referred to as the
Monte Carlo method is the technique of using a random
process to simulate a determined process which cannot be

solved in closed form. This technique is usually called
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Fig. 3.1. Division of the unit line for a
. Monte Carlo simulation of a random
event ,
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“sophisticated Monte Carlo." A typical example of this
might be the evaluation of a multidimensional integral over
a function which is not integrable in closed form. The
standard numerical technique for such an integral is to
divide the region of integration into some form of grid,
uniform in the crudest approximation, and evaluate the
function at each of the grid points and perform the direct
sum. If we use a uniform net in n dimensions with N points
for each dimension, it may be shown (17) that the limit of
accuracy for the integral is NL,
We now consider the same problem from the point of
view of sophisticated Monte‘Carlo: We generate an
n-dimensional random vector, each of whose components is
uniform over the interval of integration of the correspond-
ing variable of integration. We then evaluate the function
at the point corresponding to the random vector, generate
a new point and proceed until we have generated N2 points.
We sum all the contributions and find that the rate of
convergence of our approximation to the integral is N_n/z.
In other words, for n large, we need generate fewer points,
and hence evaluate the integrand fewer times, if we choose
the integration points at random rather than by a preset
grid (for a given degree of accuracy). 1In addition, if the
integrand is sufficiently perverse, the Monte Carlo method
may be the only way of obtaining a convergent approximation

to the integral.
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The utility of the two Monte Carlo methods dis-
cussed above obviously depends on having at one's disposal
a quick and clean method for generating a sequence of
random numbers with a given distribution function. The
quick is necessary so that you don't lose the efficiency
gained‘by an enhanced convergence rate in the time spent
evaluating the integrand at the points of the sum. The |
clean is necessary so that the distribution of random
numbers chosen does not contain any bias, and, hence, will
not weight one region of space more heavily than another.

The obvious choice for a random number generator
would be a random physical system, a sort of inverse Monte
Carlo. For example, one might use the last few digits of
kthe random noise voltage in a resistor, or any of a large
series of physvical processes which have some inherent
fluctuating noise. These methods are discussed in some
detail in the book by Shreider (18). In general, however,
physical generators of random numbers are slow, and not
particularly well suited for use with high-speed digital
computers, such as the IBM 7090 on which we perform all
our calculations.

We will take refuge in the use of pseudo-random
numbers. Pseudo-random numbers are numbers which are
generéted by some deterministic process, yet which are

believed to satisfy all of the statistical tests for
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randomness required in the particular application. The use
of pseudo-random numbers is always somewhat of avrisk: you
may not have thought of the right statistical criterion the
numbers are assumed to satisfy, but don't. Indeed, Von
Neumann, one of the originators of the Monte Carlo method,
has characterized anyone using deterministic "random
numbers" as being in "a state of sin" (19). However, with
gay abandon, we will use pseudo-random numbers for our
calculation.

There are currently in vogue three main methods for
generating series of pseudo-random numbers (20). These are
the Von Neumann mid-square technique where the ntlst random
number is generated from the nth by squaring and cxtracting
the middle digits, the multiplicative-congruential method

with the recursion relation:

R T @ Rn (mod w) (3.12)
and the mixed congruential method with recursion relation:

Rm, 5 ARntC (med ™) (3.13)

In the ébove two methods, a, ¢, and m are constants, with
m usually depending on the hardware of the actual computer
the numbers are being used with. For the IBM 7090, with
a fixed word length of 35 bits, any method of generating

35

pseudo-random numbers must repeat itself in 27~ or fewer

terms. A careful choice of the parameters in equatioms 3.12
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or 3.13 will enable us to generate a sequence of pseudo-
random numbers with period very nearly approaching this.

For our work, we will use the multiplicative-congruential

method, equation 3.12, with m.=235

to 515. This sequence can be shown to have period of the

and RO and a both equal

order of 1010, which is more than ample for our needs, to
have very little serial correlation, and to take only 8
microseconds for each number required. We will now con-
sider the way in which the Monte Carlo method can be used
to generate theoretical nitroxide spectra as a function of

molecular motion.

D. Simulation of Nitroxide Spectra

We will first consider the simulation of a spectrum
due to a single nitroxide molecule undergoing a random walk
of N steps in a time equal to its EPR lifetime (the &t of
equation 3.8). Suppose that the molecule starts at a
particular orientation O ¢, with respect to the external
field. We have divided the surface of the sphere into a
grid in both @ and @ as implied in equation 2.21, in the
discussion of powder spectra. We assume the molecule is in
one of the three hyperfine states (actually, one of the
three pairs of states whose energy differences are the
three strong transitions of thé spectrum). For each jump,
we will allow the molecule to move to one of the four

neighboring grid points. This squared-off motion is perhaps
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not the most reasonable of approximations: we really
should consider the molecule to jump to any of the con-
tinuum of states with a given increment of angle from the
starting states. We are confident, however, that the
particular form of motion we constrain the molecule to
undergo will not affect the spectrum; this should be true
whenever the motion is such that the orientation after very
long times is uncorrelated with the orientation at time
t=0.

One of the problems we must consider 1s an arti-
ficial one introduced by our particular choice of grid.
If we divide the angles © and @ into equally spaced
divisions, we will obtain a distribution of grid points
that is clustered around the poles. We will counteract
this clustering by assigning a weight function, proportional
to the sine of the theta for a given point, to the intrinsic
probability of a given orientation. Similarly, we must
avoid this orientation bias in our jumping algorithm. We
assure the statistical independence of final and initial
orienﬁations by biasing the probabilities of jumping into
a state with a given theta by the sine of that theta; that
is, for jumps to the two neighboring points differing in
the theta coordinate, we assign the relative probabilities
of increasing and decreasing theta by one unit of grid

spacing, S
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P.;. Si/‘s (9 I'B\ (3 . 14)

BT snie-3)
We still must consider the relative probabilities of
changing theta and phi. (It 1s evident that the probabil-
ities of increasing and decreasing phi, given that the
jump is in the phi direction, are both 1/2.) Clearly, the
transition probabilities for all four neighboring configu-
rations are 1/4 for jumps from the equator. Since we
determine the relative probabilities of increasing theta
and decreasing theta by statistical equilibrium considera-
tions, the ratio of the probabilities of changing theta
and phi must be independent of theta; we therefore say that
the molecule has a 50 per cent chance of changing theta
and a 50 per cent chance of changing phi.

This determination of the probabilities for jump-
ing in various directions completes our discussion of the
spectrum of a single nitroxide radical in the presence of
molecglar motion. Of course, we may obtain no equivalent
to single crystal spectra in the presence of motion. We
therefore must use the formalism of section II C.

We may represent the spectrum of a macroscopic
sample of nitroxide in the presence of motion formally by
equation 2.19; when we transform this sum over individual
molecules into a sum over orientations, we must also

include the effects of varying path, {1 :
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Ton = T Lo, q, a0 16/:9)

7,

(3.15)

We have no hope of obtaining this sum in closed form. We
therefore resort to a Monte Carlo technique for evaluating
it. We leave the expression for the resultant lineshape

" of the sample as a sum over individual molecules. We then
choose a single molecule in a random orientation and allow
it to execute the random walk described above, and, after
the required number of sfeps has been taken, we average
the frequency éf the molecule, and add it to our sum. In
practice, for each of the molecules so simulated, we
average all three hyperfine frequencies over the same
motion. This should not bias the resultant spectrum in
any way, and affords a ready means of decreasing the compu-
tation time required for a particular spectrum by almost a
factor of three. The initial orientations are chosen
weighted by the sine of the theta coordinate for each
orientation. We do this by so-called "hit-or-miss”
sampling: for each starting theta we need, we generate

a random integer, uniform over the range 0-k, where R is
the number of points on the theta grid. We then generate
another random number, this time uniform and continuous
over the unit line, and compare it to the sine of the
trial theta. If the random number is less than sine theta,

we accept the trial value of theta; if not, we reject the
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trial value, and start over again with a new trial value.
It is easy to see that this procedure will in féct generate
a series of accepted thetas with the probability distribu-
tion proportional to sine theta.

- In order to assure us that we have not made some
mistake in our selection process, we run a chi-square test
on the distribution of starting orientations. For a dis-
cussion of this test, and its applicability, see, for
example, Rao (21, theory) or Bemnet and Franklin (22, prac-
tice).

We now have completed the development of the
algorithm we will use to simulate nitroxide spectra for
varying degrees of motion. In the next section we will
discuss the computer programs that were written to apply
this algorithm, and in the last section we will discuss

the results of our calculation.
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IV. The Computer Program

We will noW‘describe in some detail the actual
programs that were used to implement all the calculations
~ described above. The program was written as a series of
subroutines, some of them in FORTRAN IV language, and some
of them in MAP assembly language, and were designed to be
run on an IBM 7090 computer under the control of the IBJOB
monitor system. Most of the program is independent of the
particular machine it is run onj; however, those sections
of the program which prepare the commands for the CalComp
plotter, which actually draws the theoretical spectra, use
some system subroutines peculiar to the Stanford University
Computation Center. These are, however, éombined into a
single subroutine which may readily be rewritten for use
with any other plotting machine and system.

The program was written to be as flexible as
possible, and handles eight distinct, although interrelated,
job types. These job types may be stacked, and each has
its own form of data, preceded by a control card identify-
ing the job type. Two of the job types are used primarily
for debugging purposes, one fof the solution to the hamil-
tonian, three for the Monte Carlo calculations, and two for

replotting previously computed spectra. We will first
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discuss the subroutines that are common to most or all of
the various job types, and then discuss the job types

themselves.

A. Common Programs

The first of the common programs we will discuss
is the master control program, MASINO. This program‘is
" quite simple: 1t reads in the control card preceding the
data for each of the job types, and branches to the appro-
priate set of subroutines. For the Monte Carlo calcula-
tions, it also reads in the two parameters defining the
calculation. These are STARTS, which give the number of
initial orientations for the calculations, and STEPS, which
give the number of jumps made by each of the simulated
molecules in its "lifetime." The master program also
Writes the first part of a heading on the output tape,
giving the job type and run date.

Common to all of the job types which generate
spectra is a subroutine called PLOTNO. Spectra are gener-
ated by the simulation routines as stick spectra, that is,
spectra with infinitely sharp lines whose height is propor-
tional to the total intensity at that point. These stick
spectra are generated on a grid 6000 points covering a
total spectral "scan" of 150 gauss. The center of the
scan is at the resonance frequency of a free electron with

g-factor equal to one-third of the trace of the g-tensor.
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This stick plot 1s written onto a scratch unit (which
should be disk storage; tape read and write takes too

long) to be read back in in blocks of 460 points. The
plotting routine then rewinds this scratch unit, and reads
in the linewidth and scale parameters to be used for the
plot of the theoretical spectrum. Each point of the stick
spectrum is expanded as the first derivative of a gaussian
line with the input linewidth, and added to final spectrum,
after being converted to the appropriate scale. When all
of the points of the stick spectrum have been expanded in
this way, the spectrum is normalized to have a total verti-
cal width of ten inches, a heading is written at the
heginning of the plot, a scale is drawn on the plot, and
the spectrum is written out point by point. The writing

of the heading and plot is done by means of a package of
plotting routines in the Stanford computation center program
library, and is done onto tape as a seriles of commands to

a CalComp plotter, which then performs the actual plotting
off-line. Control is then passed back to the calling sub-
routiﬁe.

The last of the common routines is called HEADNO
and is used to complete the heading of the output tape
started by MASTNO. The parameters for the hamiltonian, the
Monte Carlo parameters,’ and size used for the grid on the

surface of the 8,9 sphere are included in this heading.
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B. The Hamiltonian Routine

This routine is a prerequisite to all other calcu-
lations. It reads in the parameters of the hamiltonian,

specifically, the hyperfine tensor in pseudo-vector form,
the g tensor in the coordinate system in which the hyper-
fine tensor is reduced to a pseudo-vector, and the applied
magnetic field. The program then reads in the size of the
grid on the §y§> unit sphere, and prepares tables of sines
and cosines for the points of this grid. The program also
reads in three control parameters, one describing the
hamiltonian to be used, that is, whether the hamiltonian

is to be diagonalized exactly or the approximation of
section II B is to be made, the second describing the amount
of output to be generated, and the third telling the program
whether or mnot the results are to be saved on a separate
output tape. In addition, a 72-character title which is
then used as a heading for all output generated from this
hamiltonian is read in.

The program proceeds in one of two ways, depending
on which solution of the hamiltonian is required.

If the exact solution is required, for each point
on the grid, the magnetic field in the molecular coordinate
system, and the effective electron field, H., is computed.
Matrices for the three components of the nuclear spin

vector and the electron spin vector are dotted into the
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external and éffecti_ve electron magnetic fields, multiplied
by the appropriate factors, and added to the hamiltonian
métrix. The hyperfine pseudo-vector is dotted into the
three components of the SI pseudo-vector, and added to the
hamiltonian matrix. The hamiltonian matrix is generated
as a 12x12 real symmetric matrix as in equations 2.6 and
2.7, and is then diagonalized by a subroutine adapted from
SHARE. From the exact eigenvalues and eigenvectors of the
- hamiltonian, the transition frequencies and intensities are
computed, and these are then added to the stick spectrum of
a powder sample being generated. After all the points on
the grid have been covered, the stick spectrum is plotted
by PLOTNO and control is returned to MASINO.

If the approximation of section II B is to be made,
after computing the externé.l and effective electron magnetic
fields at each point, the two effective nuclear fields are
generated, From thelr magnitudes, the transition frequen-
cies are computed. Their dot product is taken, and from
this the matrix of overlap integrals is formed, and is used
directly as the rélative transition moments. These moments
and frequencies are treated as for the exact moments and

frequencies.
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C. Monte Carlo Calculations

There are three job types that are concerned with
Monte Carlo calculations. As is usual in such calculations,
accuracy is sacrificed for speed. All of the numerical work
is done from tables which have been previously prepared.

For our work, we use five-bit accuracy for most of the
tables (tables of transition frequencies, which are not
used for any arithmetic, are kept to higher accuracy).

The first of the three job types is designed to
prepare these tables on a tape, to be read in and used at
some future date. Of course, the tables are left in core
after preparation, and the program assumes one particular
Monte Carlo calculation will be performed immediately.

The Monte Carlo routines assume that a run of the
hamiltonian solution routines has been previously made and
the transition frequencies and moments from that run have
been saved on a tape. These frequencies are ‘then read in,
and the frequencies of the three strong transitions are
converted to index positions for a stick spectrum. The
program aséumes that & mesh of 32 points was used for each
angle. This is done so that we may index the theta and
phi coordinates in separate index registers and then take
the logical ”or";of these registers to get the true index
position. If the mesh size wés not a power of two, this
could not be done directly, and would cause a large increase

in running time for the Monte Carlo program. If the mesh
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size used in the calculation was not 32, the program
.writes an error.message on the output tape and terminates
execution.

A table of‘five—bit sines is prepared. A table
giving the relative probabilities of increasing and
decreasing theta is also prepared, and converted to five-
bit accuracy. These tables are then written out onto a
tape, and the program proceeds to the first Monte Carlo‘
calculation, using the values of STARTS and STEPS read
intchore storage by the master program.

For each of the required initial orientations, a
random number is generated by the multiplicative-congruence
method described above. The first five bits of this number
are used for the starting value of phi. (In general, higher
order bits tend to be more random than lower order bits in
a number generated by this method. We never use more than
the first ten bits of the 35-bit random number.) We then
generate a second random number and use the leading five
bits of it as a trial value for the initial value of theta.
The second five bits of this rahdom number are compared to
the entry in the five—bitksine table corresponding to the
trial value of theta; if the random number is less than or
equal to the entﬁy in the table, the trial value is accepted.
If not, the trial value is rejected, and we begin again with
a new random number. When we have found an acceptable theta

and phi, we add one to the value of phi, shift it five bits
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to the left, and place it in index register A; the theta
value is placed directly in index register B. Whenever we
wish to find an entry‘in our frequency tables corresponding
to the values of theta and phi in these index registers, we
simply form the 1ogical "or" of the two registers and use
the‘result as an index position in the vector array of
frequencies. Needless to say, the frequency tables were
prepared by the same indexing procedure. This procedure is
"quite efficient, in that one need not waste any positions
in core storage for unindexible frequencies, as we would

if we did not use a power of two for the grid size, and in
that the logical "or" is taken directly by the machine,
using multiple tagging of index registers, and does not
cost any more computer time than a single indexing proce-
dure.

Having determined the starting coordinates in orien-
tation space, we now alilow the molecule to jump. If no
jumps are required, that is, if we want to generate a
powder spectrum byrthe Monte Carlo method, we take the
frequencies corresponding to the initial orientation
coordinates and add them to a stick spectrum, much in the
same way we form the stick spectrum for a true powder sample.

If we aré doing a Monte Cario motional calculation,
for each of the jumps the molecule is scheduled to take,
we generate a random,number. If the first bit of the

random number is a one, we make the jump in the phi



55

direction; 1if a zero, in the theta direction. If we are
jumping in phi, the next bit of the random number is used
to determine whether we increase or decrease it. If we
are jumping in theta, we compare the next five bits of the
random number to our table of relative probabilities for
increasing or decreasing theta. TIf it is less— than or
equal to the entry in the table corresponding to the
present theta coordinate, we decrease theta; 1f greater,
we increase theta. We add the frequencies correcsponding
to the new coordinates to our average, and continue to the
next jump.

We have mentioned earlier that we need only develop
our grid on the half-sphere, since we may obtain the fre-
quencies for the other half-sphere by (inversion) symmetry.
If a jump 1s taken in I:héta, whose range is zero to pi, we
have no problem, for the relative probabilities are such
that there is zero probability of jumping past a pole.
However, i1f a jump is taken in phi, which also ranges from
zero to pi, we must consider the effects of jumping past
the boundaries of our tables. After each jump in phi, we
test to see that we are still within the half-sphere whose
frequencies are tabulated, and if we find we are not, we -
add or subtract pi from the pai coordinate (depending on
which endpoint we have jumped past), and subtract the theta
coordinate from pi to get the mirror image position of the

new coordinate, which is within the tabulated range.
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~After we héve completed all of the required jumps,
we divide the sum of transition frequencies sampled in the
random walk by the number of orientations sampled, STEPS +
1, and add these averagedAfrequencies onto the stick
spectrum. At present, there is an upper bound of 32,767
to the number of jumps that a given molecule can take.

This number is determined by the size of the register used
to contain the number of jumps still to be taken; the
programs may be modified to extend this range, but we have
not found it necessary.

When we have simulated a random walk of the required
number of steps for all of the molecules specified by
STARTS, we call the subroutine PLOTINO to plot the resultant
theoretical spectrum, after which we return control to
MASTNO.

The other two job types used for Monte Carlo simula-
tion are different from the above, only in that they assume
different locations for the tables used in the random walk
simulation. While the job type described above prepares
the tablesrfrom the tape of frequency-moment calculations
generated directly by the solution to the hamiltonian, one
of the remaining two jobs assﬁmes these tables are left in
core, and the other assumes the tables themselves have been
written onto a tape, and reads them in from this tape. Both

of these job types then proceed as above.
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D. Replottinz Routines

Two of the job types that the program can handle
are designed to replot a previously generated spectrum.
One of these two starts with a tape of transition frequen-
cies and moments, as generated by a run of the hamiltonian-
solution routines, and plots a powder spectrum from this
tape. Plotting is done exactly as it is done by the
- original program generating the tape. |

The second of the replotting routines is used to
vary the linewidth and scale parameters used for a plot
done previously, whose stick spectrum is still left on the
scratch unit by the plot routine. This subroutine was used
to decide the appropriate linewidth parameter for a series

of Monte Carlo calculations.

E. Debugging Routines

There are two routines in the complete package that
are used primarily for debugging purposes. One of these is
a routine to reset the starting value of the réndom number
ganerator.v It is used to redo a particular calculation with
the‘same sequence of random numbers as used before. A
comparison of the results of the two calculations affords
a check on program modifications.

The second routine is one that is used to perform

statistical tests on the sequence of orientations generated
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in a particular Monte Carlo calculation. If requested, a
Monte Carlo run will generate a tape containing the initial
coordinates and frequencies and the final coordinates and
averaged frequencies for the run. These are then used in

a chi-square test for randomness in the distribution of
orientations. Provision has been made to check the corre-
lation between initial and final orientations, but the

test would be valid only for a run with a very large vaiue
of STARTS. Unfortunately, the grants of computer time
made to the author were not sufficient to make such a long
run (of the order of a few hours of machine time), so that
these tests were never run. A crude check for bias in the
jumping is afforded by the spectrum in the complete averag-
ing limit., 1If this spectrum has the splitting of the three
hyperfine lines equal to the solution splitting, we know
that our bias cannot be very large. In fact, solution
spectra generated by the Monte Carlo calculation do have
the appropriate splittings so that we are confident that
our jumping procedure is free from bias.

The description of the programs given above is
purposefully short. Additional information and program
1istings are available from the author, along with copies
of the program decks and information about data formétting,

etc.
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We now proceed, in the next section, to describe
the results obtained with our programs, and compare these

results with experimental spectra.
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V. Results and Conclusions

In the three preceding sections we have discussed
the‘various methods we will use to simulate nitroxide
radical EPR spectra. We will now exhibit the results of
such simulation and compare them with the experimental
- spectra. For convenience, the structural formulae of all
the compounds under discussion are reproduced as figure 5.1.

A. Spectra in the Absence of
Molecular Motion

In an attempt to determine the regiomn of validity
of the approximation of section II B, we chose the radical-
ion chlorpromazine, VIII, at Q-band for our first calcula-
tion. Although this radical is not really a nitroxide, its
hamiltonian may be represented as in equation 2.2. The
radical is unstable, and it has not been obtained as a fully
oriented sample. Principal axis splittings have been deter-
mined, howéver, from the spectra of flowing solutions of
chlorpromazine attached to deoxyribonucleic acid (DNA) . It
is p;eoamed that the radicals are attached to the DNA mole-
cules in fixed orientation, and that the shear forces in
the flowing solution are sufficient to arient the DNA, and,

therefore, the chlorpromazine. The spectra are well
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resolved only when the flow is parallel to the applied
magnetic field; from the spectra in this case, we may
determine the largest principal axis splitting, and from
the value of the solution splitting, we may determine the
mean perpendicular splitting. Under the assumption of
axial symmetry, we obtain for the hyperfine pseudo-vector,

J:

.
T=(73,7.3,44.L) (5.1)

It is difficult to measure the g tensor from these spectra.

The original estimate in the paper of Ohnishi and McConnell

(1) is:

2.003 0 0
g = 0 2.003 0 (5.2)
0 0 2.006

The applied magnetic field is 12400 G.

In figure 5.2(a) the experimental powder spectrum
of the radical attached to DNA is shown. In figurevS.Z(b)
the theoretical spectrum generated with an assumed line-
width of‘8.0 gausé and the parameters above is shown. In
figure 5.2(c) we show the spectrum obtained when the hyper-
fine pseudo-vector is taken as above and the anisotropy in

the g temsor is taken as:

2.002 0 0
0 2.002 0 (5.3)
0 0 2.006

lioe
I
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'Fig. 5.2. Spectra of chlorpromazine radical-ion
(a) Experiment

gbg Theory ag
c) Theory ag
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Both of the theoretical spectra exhibited are calculated
ﬁsing the approiimation of section II B. A calculation
using exact solutions to the hamiltonian gave a spectrum
exactly superimposable on the approximate spectra. The
experimental spectrum and parameters are taken from the
work of Ohnishi and McConmell (1).

For the following reasons we believe that the above
spectrum provides a sensitive test of the approximation.
For some orientations of the field, the nuclear Zeeman and
hyperfine fields are approximately equal in magnitude and
oppositely directed. Whenever this occurs, as discussed
above, we expect the approximation to fail. Indeed, the
forbidden transitions for these orientations become about
20 per cent as intense as the allowed transitions, and
single orientation spectra calculated by the two methods
are barely similar. However, the resultant powder spectra
are identical, and therefore we assert that our approxima-
tion is valid for chlorpromazine radical-ion powder spectra.
For typical nitroxides at X-band, the nuclear Zeeman term
is reduced'by a factor of about four, and the hyperfine
term is increased by about. a factor of three. There are
now‘no orientations where cancellation of the two contribu-
tions occurs, and, a fortiori, the approximation is valid.

We next studied the spectra of compound IV, an

amide nitroxide. Accurate single crystal solid solution
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‘work has been done on this compound, and the hyperfine

pseudo-vector and g tensor are experimentally determined;

their values are given below:

.
7= (4.0, 14.0, 87.0)
g = [2.008 0 0
0 2.0061 0 (5.4)
0 0 2.0027

The residual linewidth in single crystal is about four
gauss. We found that we need take a value of about five
gauss in order to fit the experimental powder spectrum. It
is not hard to see that this increase is probably attribut-
able to dipolar contributions, which one would expect to be
more important in an unoriented sample, since some of the
magnetic neighbors of a given radical are expected to be
closer here than in single crystal. (The term powder spec-
trum is here used to signify any unoriented sample; experi-
mentally the spectra are usually taken in solution in a
glass at liquid nitrogen temperatures.) We here have no
leeway in fhe choice of parameters. Using the values cited
abqve, we calculate the powder spectrum shown in figure
5.3(b);* an experimental powder spectrum, kindly taken by

S. Ohnishi, is shown in figure 5.3(a).

“Exact spectra are superimposable on the approxi-
mate spectra; we used the approximate hamiltonian.
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{a) : .

(b)

Fig. 5.3. Spectra of nitroxide IV

.‘$a> Experiment
~ (b) Theory
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One more radical was studied in the absence of
motion, the radical of spin-labeled haemoglobin. 1In this
radical neither the g nor the hyperfine tensors are axially

symmetric. Single crystal spectra calculated by the

approximation of section IL B agree with the experimental

spectra.

B. Spectra in the Presence of
Motion of the Spins

For all of the Monte Carlo calculations we per-
formed, the hamiltonian parameters were taken to be those
of radical IV. Unfortunately, the experimental work was
not done on this radical; but on dansyl nitroxide, VII,
whose hamiltonian parameters have not been measured. We
hope that the parameters for these two compounds are not
very different.

We first attempted to provide a check on the Monte
Carlo method for chooeging molecules with random orienta-
tions, and to estimate the number of single molecules
'required to obtain convergence to the true spectrum. We
ran a series of Monte Carlo calculations using 100, 1000,
and 10000 randomly chosen orientations, and obtained the
spectra shown in figures 5.4 (a), (b), and (e), respectiVely.
It is observed fhat the spectra for 1000 and 10000 orienta-
tions are quite similar to each other and to the experimen-
tal powder spectrum. It is obvious that the more averaging,

that is, the more motion present in a sample, the fewer
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{c)

(o)

(c)

Fig. 5.4. Montec Carlo powder epectra

(a) 100 orientations
gbg 1000 orientations
¢) 10000 orientationms
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initial orientations are needed .to obtain convergence.
Computation time is linear in the number of starting
orientations; we therefore chose 1000 as the canonical
number and used it for all of the spectra in the presence
of molecular motion.

In .order to reassure oﬁrselves that our. random
number generator was in fact generating random numbers,
and that our selection process was unbiased, we ran a chi-
square test on the theta and phi distributions in initial
orientations for a sample of 1000. Although the number of
possible values for theta and phi is 32 for both, the expected
populations for those states with theta near the poles are
small, and, in accordance with.standard practice, were not
considered in the test. We obtained the following values

for chi-square:

34.75
28.24

'X'lq? (31)

. (5.5)
Ko (28)

The numbers in parentheses on the left side of the
equations are the degrees of freedom for each variable. -
These values are well within the 5 per cent confidence
levels for the appropriate number of degrees of freedom.
Of éourse this test merely serves to eliminate errors of

- the first kind, where we reject the hypothesis that the
numbers are randomly chosen from the assumed distribution,

when they are so chosen; a more scnsitive test would
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eliminate errors of the second kind, where we accept the
hypothesis even though it is false. The method used for
such a test i1s, in general, dependent on tha type of bias
of which onc is most afraid, and is excecdingly difficult
to apply. We are content with our cruder test, and the
additional confirmation of having obtained the right answer.

Having decided that our Monte Carlo routine was
debugged, we proceeded to allow motion of the spins. Pre-
sumably, we would want to run statistical tests on the
random jumping procedure, as discussed in section IV E,
but we could not afford the expense of such a run.

We chose four different values of solution viscosity,
by coincidence those very same values reported by Stryer and
Griffith (3), which give qualitatively different spectra for
our motional problem. The four experimental spectra were
taken of solutions of dansyl nitroxide in 95% water-

5% ethanol, 76% glycerol-19% water-5% ethanol, both at
23°C, 90% glycerol-5% water-5% ethanol at 35°C, and -15°¢;
the experimental spectra, taken from (3), are shown as the
upper spectra of figures 5.5-5.8. |

We computed theoretical spectra for the radical IV
for a large series of jumps for each molecule, ranging from
one jump to 20000. A run of 1000 initial configuratioms and
20000 jumps/molecule requires about 35 minutes of IBM 7090

computer time. We believe that 20000 jumps are sufficient to
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10 G.

{c)

Fig. 5.5. (a) Dansyl nitroxide in 95% water-
5% ethanol at 23°C
(b) Monte Carlo calculation: 20000 jumps,
5 gauss linewidth
(c) Same, 2 gauss linewidth
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(a)

(b)

Fig. 5 6. (a) Dansyl nitroxide in 76% glycerol-
19% water-5% ethanol at 23°C
(b) Monte Carlo calculation: 250 jumps
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{(a)

——t ()

Fig. 5.7. (a) Dansyl nitroxide in 90% glycerol-
5% water-5% ethanol at 35°C
(b) Monte Carlo calculation: 100 jumps
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(a)

(0)

Fig. 5.8. (a) Dansyl nitroxide in 90% glycerol-
' 5% water-5% ethanol at-15°C
(b) Monte Carlo calculation: 50 jumps
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average out almost all of the anisotropic interactions.
We are somewhat.belied by the unequal linewidths for the
three hyperfine components of the spectrum, but we observe
that the experimental spectrum of the radical IV in water
at 25°C also shows this asymmetry. Presumably'if we
allowed the molecule to take many more jumps in its life-
time, we would expect this variation of 1inewicith to dis-
appear. With the current version of the computer programs,
we can only increase the jumping rate by a factor of 1.6,
which is not sufficient to complete the averaging. Again
computer costs for further averaging become prohibitive,
certainly compared to the additional information obtained.

We matched the experimental spectrum shown in
figure 5.5 (a) by allowing the molecule to take 20000 jumps
in its effective lifetime; the theoretical spectrum so
obtained is shown in figure 5.5 (b). The other experimental

spectra were fit as follows:

Experimental Jumps / Theoretical

spectrum molecule spectrum

- 5.5(a) 20000 5.5(b) (e)
5.6(a) | 250 5.6(b)
5.7(a) 100 5.7(b)
5.8(a) 50 _ 5.8(Db)

In each case, the spectrum labeled (b) was plotted with a
linewidth parameter of five gauss; the last three theoreti-

cal spectra are seen to be in very good agreement with the
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experimental spectra. The first of this group of spectra,
taken in almost freely rotating solution, does not fit
with a linewidth of five gauss} Figure 5.5 (c) shows the
same spectrum replotted with a linewidth of two gauss, and
is in fairly good agreement with the experimental spectrum.
This additional narrowing in nonviscous solution may be
attributed to the averaging out of anisotropic contribu-
tions to the residual proton hyperfine interaction. Part
of the lack of agreement may be attributed to the fact that
the compound used for the experimental spectrum probably
does not have exactly the same hamiltonian parameters as
compound IV, which was used for the theoretical study; in
fact, the isotropic part of the hyperfine interaction is
different for the two compounds as evidenced by the differ-
ent splitting in freely rotating solution. The excellent
agreement between the theoretical and experimental spectra
precludes a very large difference between the two sets of
parameters.

We are able to obtain an estimate of the rotational
correlation time, P from our work. The rotational corre-
lation time may.be defined as the time in which a molecule
has forgotten where it started. More precisely, we form
the statistical average over molecules of the product of
an orientation parameter at time t=0 and the same parameter

at time t=T; if we assume this function to be an exponential
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‘then the inverse of the rotational correlation time is
the logarithmic derivative of the function with respect
to T. Since we are working with an orientation parameter
that may be characterized as a scalar index number (in
particular, we may use the grid-indexing procedure as
described in section IV C), we may define a correlation
time as that time in which the molecule has moved from
its initial index position to one m spaces removed. The
number of jumps required to move m spaces away from the
starting position is proportional to m2; we may then write
for the ratio of the rotational correlation time to the

molecular lifetime:

—_y!z:-
st N (5.6)

where N is the number of jumps taken in a lifetime.
Inserting the minimum lifetime of the inverse of the
hyperfine frequency, and a value of w=16 (giving an

angular motion of T¢/2 radians) we obtain as a lower
| bound for the rotational correlation time of the system
having EPR spectrum shown in figure 5.7 a value of 50
nanoseconds. Stryer and Griffith (3) obtain a value of
36 ns. by fluorescence depolarization measurements. Krause
and O'Konski (23) obtain a value of 200 ns. by elcctric
birefringence measurements on J-globulin. The accuracy

of the fluorescence depolarization method is not known.
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€. Summary and Conclusions

We have seen that a spin hamiltonian for nitroxide
or similar radicals may be written. We have presented
both the exact and approximate solutions to this hamilton-
ian, and shown that, for the region of experimental
interest, the approximation is sufficiently accurate to
enable us to fit all of the polycrystalline spectra that
have been obtained experimentally. We have examined the
effect of molecular motion on the spectrum, and shown that
the EPR experiment introduces an effective lifetime into
the system, and that we may treat the motion of the mole-
cule in times short compared to this lifetime semi-
classically. If we average the values of transition
frequency that a molecule samples in a time of the order
of its lifetime, we obtain spectra which are in excellent
agreement with experiment. We have performed Monte Carlo
calculations on a variety of different radicals and their
environments, and fit all of the corresponding spectra.

We conclude that the approximation scheme developed
above for the motion of these radicals in solution is suffi-
ciently accurate to account for the known experimental
results.

We also claim that this method‘may be of somewhat
greater generality than we have hitherto asserted. It may

presumably be used for calculations on any system, the
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position of whose electric dipole transitions is a func-
tion of orientation. The experiment to determine the
spectrum will introduce a chafacteristic minimum lifetime
into the system, of the ofder of the inverse of the sepa-
ration between transitions, and we may use the above-
described Monte Carlo method to average frequencies over
the motion that takes place in this characteristic life-

time.
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PROPOSITION I
The Singlet Triplet Gap in Wurster's Blue Perchlorate

Abstract

Crude a priori calculations of the singlet-
triplet gap (J) and the exciton bandwidth (J') for
single crystals of Wurster's Blue Perchlorate are

described.

I. Introduction

One of the first solids in which triplet excitons
were observed is Wurster's Blue Perchlorate (WBP)
(p-N,N,N',N' tetramethyldiaminobenzene perchlorate) (1,2).
Magnetic resonance measurements of the temperature depen-
dence of the magnetic susceptibility of WBP show that the
compound may be characterized by an excitation energy for
triplet excitons, J, of the order of 250 cm_l, and an
effective exciton bandwidth, J', of the order 5 emt (2).
The crystal structure of WBP at high temperatures has been
determined (3), and it has been shown that the Wurster's
cations, which afe shown in figure 1, lie in linear chains,
as shown in figure 2. The aromatic rings of adjacent mole-

cules lie in parallel planes separated by 3.64 X; the
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. Fig. 1. Schematic diagram of a single
' Wurster's cation
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closest pair of nitrogen atoms on adjacent molecules are
separated by 3.74 X. We may write the spin hamiltonian

for a single chain of these molecules as:

wiz

1.t
He Z{ IS:n Sz * T Sana Szmzk (1)

Ao

where J and J' are defined above, and Sy, @nd S, .4 repre-

h

sent the spins on the 2nt? and 2n+18°¢ molecules, which

th site. It is well known that at 1869K

together form the n
there is a sudden decrease in the magnetic susceptibility
of WBP, attributed to a phase change in which the cations,
which act as magnetic doublets at high temperatures, pair
up to form dimers with singlet ground states and triplet
excited states. Preliminary work on the low-temperature
crystal structure (4) has shown that there is indeed a
doubling of the unit cell due to dimerization. Unfortu-
nately no measurements of interatomic distances in the low
temperature form of WBP are available. If triplet excitons
may be considered to be localized, and their motion diffu-
sional, Soos (5) has shown that if the true J' is much
larger than the 5 em™ L effective bandwidth, say of the

order of 150 cm'1

, both the absence of hyperfine structure
and the exchange narrowing of the exciton resonance lines
may be accounted for. Thus it is evident that an a priori

calculation of the magnitudes of J and J' would be of great

importance in the theory of triplet excitons.
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_II. Theory

We will consider the evaluation of the singlet-
triplet gap in Wurster's Blue.Perchlorate for a pair of
Wurster's cations. We luﬁp together all the paired elec-
trons on each molecule and the positive nuclei to form a
core, and we consider the motion of the unpaired electrons
in the potential field of these two cores and the field
of their mutual electrostatic repulsion. We write the

hamiltonian as follows:

i

He Hg +Hy + Vig+ Voot vy (2)

1&& and H,, are the effective hamiltonians for a single

core and its associated electron; Vlb and V2a are the
interaction potentials between one core and the other core's
electron; 1/r12 is the electrostatic interaction between the
two electrons. We consider zeroth order wave functions for
the singlet and triplet states of the dimer to be appropri-
ately normalized sum and difference functions of the
solutions to the single core hamiltonians. We may then

readily evaluate the singlet and triplet energies:

E' = g-:'-s:i {(ﬁ.bzlﬁmlb,)-!- <a¢bg‘ ZH‘ azb,)&

(&)
B+ T {<abit Hlob) ~Cab, Gt
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where Sab is the overlap between the two localized wave
functions. Subtracting, and using the fact that the
localized functions are solutions to the single core

hamiltonians, we find for the singlet-triplet gap:

: 2 A 1 {
J= - S‘\l {(“o‘:zi Vig tVaa t ¥4, 1850, ~ Sa, <oy Vih*vm"'ﬁ'a&;)& (5)

We rewrite this as:

2

T g { Tan - S Tha = 250, Qup +255 Qua § (6)

where Tab is the actual two-electron exchange integral,
Taa is the two-electron coulomb integral, Qb is the
exchange nuclear attraction integral, and Qaa is the elec-
tron-other-core nuclear attraction integral. Equation 6
is used as the starting point for the calculation of J and

J'. In this model J and J' are taken as the singlet~

triplet gap for a near and far dimer, respectively.

III. The Calculation

The first step in the calculation of the singlet-
triplet gap in WBP was to obtain reasonable solutions to
the single core hamiltonian. McLachlan (6) has investi-
gated the effect of hyperconjugation in free radicals and
asserts that a simple Huckel calculation in which the
coulomb and resonance integrals for nitrogen are chosen

equal to those for carbon gives spin densities in better
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agreement with experiment than those obtained from a more
elaborate calculation. We therefore used the simplest
calculation.

A computer program to calculate eigenvalues and
eigenvectors of a real, symmetric matrix was adapted to
the.CalTech computation center system, and used to calcu-
late the pi-electron wavefunctions for a single Wurster's
cation. Since the exchange effect we are studying is one
that weights the regions of space rather far removed from
the nuclei, it was felt that the use of simple Slater-type
functions, which are known to underestimate the tail of
the wavefunction, would not be adequate. We used the best
available Hartree-Fock wavefunctions expressed as linear
combinations of four Slater orbitals as calculated by
Roothaan (7). The Huckel wavefunction used and the carbon
and nitrogen wavefunctions are given in the appendix.

During the summers of 1962 and 1963, the author
in collaboration with Drs. Martin Karplus and I. Shavitt
had written general computer programs for the evaluation
of one-electron, one-, two-, and three-center energy
integrals. Three center nuclear attraction integrals
were evaluated by the gaussian transform technique origin-
ally proposed by Kikuchi (8) and used by Karplus and
Shavitt (9) for the evaluation of two-electron integrals.

These programs were modified to use Hartree-Fock
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wavefunctions instéad of Slater functions, and a control
program to combine the calculated integrals into the
singlet-triplet gap for a given atomic configuration was
written. |

We neglect the two-electron terms Tab and 'I‘aa
primarily because of the lack of computer programs to eval-
uate them. This rather grotesque approximation may be
slightly justified by noting that they must lead to stabili-
zation of the triplet rather than the singlet, and, in the
large distance approximation, cancel exactly. Of course,
the other terms would also cancel in this approximation,

but we may resort to a posteriori justification.

IV. Results

The first calculation, using the equilibrium con-
figuration and nuclear charges shown in table 1, yielded
a value for 'J of 56 cm-l, almost a factor of five too low.
The amount of alternation in spacing in the low tempera-
ture phase of WBP is unknown; we varied the inter-ring
spacing (x-coord) and found that at a spacing of 0.58%
less than in the high temperature phase we may match the
experimental value. The variation of J with the inter-ring
spacing is shown in figure 3. At a time when this calcu-
lation was thought fruitful, in the interest of saving

computer time, we attempted to fit a "best" single Slater
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function to the high temperature equilibrium value of J.
The results of varying the exponent of this Slater func-
tion are shown in figure 4.

Further work on this problem would involve the
inclusion of two-electron integrals in the expression for
J and the use of considerably better wavefunctions for the

single core solutions.
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Fig. 3. Plot of J versus inter-ring spacing.
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temperature equilibrium point
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Table 1. Coordinates and effective charges for a
Wurster's dimer. Primed and unprimed numbers
refer to molecules one and two respectively.
Coordinates are expressed in atomic units.

' Effective
Atom x-coord. y~-coord. z-coord. Charge
IN 0. 0. 0. 0.3323
26 0. -2.62 0. 0.0322
3C 0. -3.95 2.25 0.0677
~4C 0. -6.55 2.25 0.0677
5C 0. -7.88 0. 0.0322
6C 0. -6.55 -2.25 0.0677
7C 0. -3.95 -2.25 0.0677
8N 0. -10.50 0. 0.3323
1'N 6.88 -1.62 0. 0.3323
2'C 6.88 0.97 0. 0.0322
3'C 6.88 2.29 2.25 0.0677
4'C 6.88 4.90 2.25 0.0677
5'C - 6.88 6.22 0. 0.0322
6'C 6.88 4.90 -2.25 0.0677
7'C 6.88 2.29 -2.25 0.0677

8'N 6.88 - 8.85 0. 0.3323
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Appendix
I. Huckel wavefunction used for the unpaired spin.

¥ = 0.57645 | IN> + 0.1793 12> -0.2603 (3C>
~0.2603 4CS> +0.1793 [5C> -0.2603 (6CD
-0.2603 7G> +0.57645 (8N

II. Self-consistent-ficld wavefunctions expressed in

terms of Slater functions (7).

[iCS = 0.24756 ©(0.95540) + 0.5773 6(1.421) +
+0.23563 6(2.5873) + 0.0109 6(6.3438).

|iNY = 0.2973 ©6(1.1937) + 0.48388 6(1.7124) +
+0.28079 6(3.0112) + 0.01352 6(7.1018).

6(x) is a Slater 2-p orbital with orbital

exponent X.
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PROPOSITION II

The Use of the Gaussian Transform Method in Evaluating

Multicenter Charge Moment Integrals
Abstract

The integral transform method for evaluating
multicenter integrals between Slater orbitals is
applied towards obtaining useful formulae for

charge moment integrals.:

I. Introduction

One of the major obstacles to a priori calculations
in quantum chémistry has long been the difficulty in evalu-
ating multicenter integrals. In 1954, Kikuchi (1) proposed
that an integral transform, expressing Slater functions in
terms of gaussian functions, be applied to this problem.
The use of gaussian functions in quantum chemistry has long
been considered (2) primarily because most of the three and
four center integrals which are relatively intractable for
Slater orbitals can be done énalytically for gaussians.

The major drawback to the use of gaussians is that they
provide a relatively poor estimate of electron distribu-

tions: their radial dependence at large distances
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seriously underestimates electron density. Boys (3) has
attempted to use gaussian functions for molecular calcula-
tions, and has given formulae for the simplest energy
integrals, that is, overlép kinetic energy, nuclear attrac-
tion, and inter-electronic repulsion integrals. Shavitt (4)
was the first to realize the applicability of the integral
transform method and has used it successfully to evaluate
some of the more useful inter-electronic exchange and
hybrid integrals. His final formulas are in terms of a
threefold numerical integration which is quite amenable to
computation with a computer. It is proposed that this
method be used to evaluate charge moment integrals which

" are of use in the theory of crystal field splittings for

molecules and the theory of electron scattering.

II. Integrals for Gaussian Orbitals

Since the transform we are going to use does not
include normalization of the gaussian orbitals, we shall
derive formulas only for unnormalized gaussian orbitals,

given in equation 1.

G ,$:) = u}{-s; el (L

Also, since formulae for higher orbitals may be derived by

elementary differentiation from formulae for 1S orbitals,

2

we will derive formulas only for 13 type integrals (3).
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We define Rn as the nth charge moment integral between

two uanormalized gaussian orbitale:
R, = S@i" ‘%P{'Sn('f‘ﬁ\\- 51.(.!“!1\1- Ik '(3" (2)

where r;, I, Iy are three distinct points in space, and
the integral is taken over all space.

It is well known that the product of two gaussians
may be expressed as a single gaussian, with orbital
exponent equal to the sum of the two original expomnents,
and centered at a point somewhere on the line joining the

two original points (to within a constant):

Gn )$0) 'G"Cf;,S,) - k‘z G(P,%15,) (3)

where Pz (S +Su%ai )/, 5,

%
el

By using this property of gaussians, we may
readily express the charge moment integrals in terms of
two basic types of integrals, one with finite limits, and

one with infinite limits:

0 t

Ry= 2K, J g Sdca& wp =S iy + Puanpnd) |
- (4)

3

(-4

o\ &

L g - .
© 5 T gttt ~ s st 1]
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K“.E r" _S TJ. s

Rur 55 f o™ ar o S(r Bl e (5

1 -8y
Rn= K“Pflﬁﬁ)—@ ® e 1("“’“ i (6)
- é(r-rs e' dy}

In the above formulae S is the sum of 51 and 595 and p is
the distance from ry to P (defined in eq. 3). We can
further simplify by letting r go to -r in the second term

of 6. Thus:
K

-~ ,_ﬂ[
"Sp

P
ot = =S¥ n e
ew- S‘l— [J{&*P)M"V'P)M{Q, Yd)x+(l+(~l\ﬂ) I{"'P\ 5 Ydf
Pk ]

Uil 9\'

{(\"«rP\ &'—p)"”}z a@v £ (=) K"“P) ¢ dv
+ hr.P\ a:gvcﬂx__{

o—%

(7

As a check on our juggling so far, we may let n = -1 in
the above formula, giving the three center nuclear attrac-

tion integral:

P
Ko T .
Q_| ¢ —-S-l;;' -2 émPf'SLt)dﬂ' (8)

which agrees with that given by Boys (3). If we were to
expand (r*.fp)m'1 by means of a binomial series, we find

that all the terms we want can be expressed as:
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S S R P
A= o [ rplaplsT)w (9

and

P ..
B = KILE Jor\P‘uPQS‘:‘-)&”

Y (10)

3

where we have dropped certain uninterestihg factors

(constants). Having developed these preliminary results
for gaussian orbitals, we are now in a position to con-
sider the use of an integral transform expressing Slater

orbitals as integrals over gaussian orbitals.

III. The Integral Transform Method

The required transform we want is a special case
of a general integral representation of the reduced, modi-

fied Bessel functions (5).

Lom % -
Ry ax) = 2 (%) ‘!9 xp (-& /as-s¥) ds (11)

For 1/2-integral values of m, these Bessel functions reduce
to polynomials in ar multiplied by exp(-ar); in particular
for m = 1/2 we find,

2p (0X) < &4 [ P wpl-oths-rsdas (12)
(]



102

We define the general charge moment integral:

Qu= 1T Y skt -y ) M, ¥y (13)

where, as in the definition of R.> the integral is over
all space, and Ny and N2 are the normallzation constants
for the 1S Slater orbitals. Then, applying the transform

of equation 12, we may express the Q, as integrals over

the corresponding R -

Qun= k ‘c& (SQ,,) UAP( n—‘% \)N N2 Rn

-]

(14)

We have seen above that the Rn's may be expressed in terms
of only the Aij and the Bij’ so we will evaluate only those
integrals in equation 14 where the Rn has been replaced by

Aij and Bij'

We first consider the simpler of the two types of
integrals, those over the Bij' Recalling the definition
of K12’ we note that K9 is a function of $1 and S, and,
therefore, may not be yanked out from under the integral

sign. Defihing Q?j as the Bij term in Qn’ we find,

L NN@L Y " b gs
Q.’l' = !‘k & ds, (5.8) & %'*“; "th ) (15

. P
.ST; Pié L‘&(‘M(’-Sa{l
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In order to simplify this appalling expression, we make
the shrewd change of variables z = sl-+s2 and u =
sl/(sf+52); in terms of the néw variables, the old are
expressed as s; = zu and s, = z(l-u). The Jacobian of
this transformation, J(sl,sz/z,u), is readily evaluated
as z. The range of z is from 0 to o, while the range of
u is from 0 to 1. In terms of these new variables, we

may Nnow express Q?j as:

| - o b
52:; Mihap fuu s fu ol "4 2 2]

Q ]

p ]
. P%MP[‘E u&«)ﬁt] 1(’("“‘:-20‘1 OLLI (16)

b

ab ! N 1.4'0', ! H 4

= MMy 2 {du Gt P ,EW* 5)
- o L‘

 tep {.z[u(!-uw% 1= [ "a'fn'-u)]}

where we have used the transformation x = y/p in obtaining
the second equality. We now observe that the integral over
z in equation 16 is of the general form of equation 1l. We
define some sundry constants, and then perform the 2z

integral:

.J.
T g (wli-u) ) (17)



e e (18)
65 [ [ e o1 21 b, (ofremry @™ 19
i dduox x P aot k(2 Tlor+dt) Ty (19)

In equation 19, we have alrcady expanded the normalization
constants for the Slater orbitals. Equation 19 now
expresses the charge moment integrals, or rather part of
them, in a form which 1s quite amenable to solution on a
computer. For the particular case of i a multiple of 2,
the x integration may be performed in terms of some special
functions, the Tm,n functions which appear in Shavitt's
expression for the four-center exchange integrals. The
major difference between our expression and his is that our
expression involves modified Bessel functions of integral
order, which lead to Tm,n of half-integral m, while

Shavitt's formulae involve half-integral Bessel functions,

and, therefore, T of integral m. However, many of the

m,n
formulae that Shavitt has derived for series expansions,
asymptotic expansions, and recursion relations of the Tm,n
(6)'may be carried over to the case of half-integral m.

In collaboration with Drs. Shavitt and Karplus, the author

has written computer programs for the evaluation of these

Tm n functions of hglf-integral m. 1In general, since the
]
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final result involves only a twofold integral, the most
straightforward method of evaluating these functions, by
Gauss-Legendre quadrature, has been found to be sufficiently
fast and accurate for mosﬁ purposes, in particular, the
evaluation of three-center nuclear attraction integrals.

We have now reduced half of our integrals to a form
adaptable to computer evaluation; we shall now go on to
consider the other type of integral, that involving the
functions Aij as defined in equation 9.

In a manner completely analogous to that used in
the previous derivation of the Q?j’ we define Q?j, perform
the same transformation of variables, and after doing the

z integration, we obtain the following formula for the Q?j:

A t o . sh,
R f+1+4a ‘0
Q;;l = })du E‘L&L P ’;5'7. L% bzld‘r(fﬂ") ) (20)

We will apparently have no trouble with the u integration,
but we must investigate the convergence properties of the
x integral. For this, we look at the expansion of km(x)

for large x (7):

k, 0y ~ %m@ Lep - % (21)

Thus, at large x, the integrand goes as x.m"-i'l/ze_X

b
which is quite a decent function. Therefore, we will have

no trouble evaluating the x integral. We may either use
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Gauss-Laguerre integration quadrature, or make the elemen-
tary change of variables y = x/I+x, which will convert the
integral to one between the limits of 0 and 1, and use
Gauss-Legendre quadrature;

It is encouraging to note at this point, that if
we set n = -1 and attempt to evaluate Q> the only term
which survives is the Boo term; we plug into our formulae

and obtain for the three-center nuclear attraction integral:

{
Q= (o' /T idu[uu-uﬂ% P Tsh,0 (22)

which is equivalent to the formula stated, but not derived
by Shavitt (8).

We have only derived formulae for 152 integrals so
far; formulae for higher orbitals can be obtained from
elementary differentiation. We note that each differen-
tiation with respect to the orbital exponent brings down a
factor of s while differentiation with respect to the

x-, y-, and z-coordinates of the ith

nucleus brings down a
factor of the orbital expoment times the x-, y-, and
z-coordinates. ‘Thus, by applying these differentiations
under the integral signs in equations 19 and 20, we may
obtain formulae for higher Slater orbitals. Shavitt (9)
has written a computer program, which given the formula
for the 182 integral will generate formulae for higher

orbitals, through 3d.
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IV. Conclusion

We have seen that the application of the integral
transform of equation 12 has enabled us to reduce the
problem of evaluating three-center charge moment integrals
to the relatively simple task of performing a twofold
numerical integration over reduced, modified, Bessel
functions. The utility of the method lies in the fact
that the product of two gaussians on different centers is
expressible as a constant times a gaussian on a third
center. Thus, we may convert a rather difficult threefold
space integration over infinite limits to a much simpler
twofold integration over finite limits.

The author would like to thank Dr. Isaiah Shavitt
for providing him with a preprint of his chapter on

gaussians from Methods in Computational Physics.
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PROPOSITION III
Isolated Electron Model for Zero-field Parameters
Abstract

A simple model for the calculation of zero-
field splittings in triplet states which may be
thought of as biradicals is proposed. This method
may be used to estimate the amount of charge

transfer present in the triplet state.

I. Introduction

The electron paramagnetic resonance (EPR) spectrum
of organic triplets'has been under considerable study
recently (1). Since the early work of Hutchison and
Mangum (2), much work has been done on the spin-spin
interaction in these triplet states. From measurements
of the principal axis splittings at high field as well
as the zeré—field resonance frequencies themselves, one
may determine the energies of the three zero-field states.

The hamiltonian for the spin-spin interaction in

such triplets may be written:

LR S I ANE ST s AEH (L
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where 21 and 3, are the spin operators for clectrons 1 and
2 respectively and g, is the vector distance between them.
It is rather easy to show that this hamiltonian may be

written as:

. 7_--{_1 '&- k2
He D(SI-5S) + € (Sx-Sy ) (2)

where x, y, and z are the principal axes for the particular
molecule under consideration. In this coordinate system,
with the use of appropropriate values for D and E one may
show that the matrix representations of the hamiltonians 1
and 2 are identical. In fact, Silverstone (3) has shown
that a "D and E" hamiltonian may be used to represent

states of higher multiplicity.
II. The Model

We now consider the isolated electron model for the
calculation of D and E. For certain types of molecules,
such as Wurster's Blue Perchlorate (WBP) or some of the
TCNQ compounds (4) two of the doublet monomers dimerize
in the éryStal state to form a singlet ground state and a
triplet excited state. The zero-field parameters of these
compounds have been determined. Since the bonding inter-
action in these compounds is not very large, one may hope
that the two electrons whose spins form the triplet state
may be considered to be independent. 1If this is so, we

may write the hamiltonian as:
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He o st P,‘%@ (1238t % (3)
3eB

where the rhos are the spin densities for the two electrons
at the sites of the atoms « and f . The two electrons
of course must not share any common atom. Using this
formula and the experimental spin densities (or those cal-
culated from a Huckel approximation) one may easily evalu-
ate the spin hamiltonian matrix, and diagonalize it to
obtain the parameters D and E. A computer program has been
written to perform this calculation and used to evaluate
D and E for a few crystals.

For WBP the experimental values are: D = 0 MH;
212F6 MH (5); the theoretical values are: D = -13 MH;
E = 236 MH.

b=
il

For Morpholinium TCNQ we £find
Experiment: D = 450 MH; E = 54 MH (6);

Theory: D = 463 MH; E = 44 MH.

We have also used this method to evaluate the zero-field
parameters for the peculiar compound bis(2,2'-diphenylene)
ﬁethane. This compound has been studied experimentally (7)
and has a dinegative ion with what is believed to be a
ground triplet state. Using spin densities given by simple

Huckel theory for the biphenyl negative ion, and assuming

the molecule to have one electron localized on each of the
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biphenyl groups, we obtain values of D and E which are
equivalent to those obtained from assuming two point
electrons about 6.57 4 apart, in excellent agreement with
the experimental value of 7 R for the mean interatomic
distance.

Thus we see that for dimeric systems it is often
possible to regard the triplet state as a biradical with
one spin on each monomer, and use this approximation to
calculate the zero-field splitting in the triplet. The
deviation of our calculated value from the experimental
value should be a measure ol the importance of charge-

transfer in the triplet state.
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PROPOSITION IV
Anomalous Linewidths in Biradical Spectra
Abstract

The effect of an exchange interaction between
two spins in a biradical is examined. It is pro-
posed that the alternation in linewidth of the five
hyperfine lines in nitroxide biradicals may be
explained as the breakdown of the usual assumption
that J > a. The line broadening calculated for the
case of J« a is also given. The results here
obtained are contrasted with those of Luckhurst (1).
An experiment to distinguish between the two theories

is proposed.

I. Introduction

In a recent paper, Luckhurst has proposed a theory
for altérnating linewidths of nitroxide biradicals in the
presence of a strong exchange coupling between the two
spins (1). By making the assumption that the exchange
interaction is very much larger than the hyperfine inter-

action, and that the exchange interaction is modulated by
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conformational isomerization in solution, he applies the
theory of Redfield'(Z) and shows that the two central
lines in the five-line hyperfine pattern should be broad-
ened more by this modulation than the central and outside
lines. We propose that a much simpler explanation is
adequate. We will calculate the shifts in the various
hyperfine lines for the case where the hyperfine frequency
is not negligible compared to the exchange frequency, and
show that the result of Luckhurst obtains. We will also
consider the other limit where the hyperfine interaction

dominates the exchange interaction.

II. Theory in the Exchange Dominant Limit

We first write down the hamiltonian for a nitroxide
biradical in the presence of an exchange interaction between
the two spins. We are considering solution spectra where
the hyperfine and g-tensors may be assumed isotropic. For
this case the hamiltonian for a single radical may be

written:
+ +
'_Hl; .9?3-5.4- a §| ';E( (l)

where a 1s the isotropic hyperfine coupling constant between
the spin 1/2 electron and the spin 1 nitrogen nucleus, g is
the isotropic g factor for the electron, and H is the

external magnetic field. We write the hamiltonian for the
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biradical as the sum of the two single radical contribu-

tions plus an exchange term:
He B+ T S-S )

The biradical system is a thirty-~six state system, and we
may write down the states that are connected by the
exchange interaction directlj. For each orientation of
the two magnetic nuclei, there are four states with differ-
ing values of the electron spin z—component.d

The exchange interaction connects two of these
four states (those two with opposite electron spins) and
connects no two states with different values of the nuclear
quantum numbers. We may write the secular determinant for
these two-state manifolds that are affected by the exchange
interaction as:

E,~u-€ Jl2

4

3'/2 -E,‘ "%-_ (3)

where Ex is the energy of the state with electron one up
and electron two down when the exchange vanishes. We solve

immediately for the two energies:

E= Ty =Y Er+ 3% (4)

L . . . . .
Spin quantization is along the direction of the
external field.
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In the limit of a « J we expand the square root and
obtain:

G\.
gw Vo TSl (5)

We need consider only the upper sign of equation 35, siﬁce
for the lower sign the electron spin function is a singlet
state, and has no magnetic transitions. From these
energies we may obtain the shifts for the eighteen compon-
ents of the spectrum.

Six of the components, two each at hyperfine
frequencies a, 0, -a are unaffected. Of the four other
transitions at hyperfine frequency 0, two.are shifted up-
field by a’/J and two are shifted down-field by the same
amount. All four of the transitions at Ta/2 are shifted.
Two are shifted up-field by a%/4J and two down-field. So
we see that in this limit the ta/2 lines are effectively
broadened by a2/2J while the outside lines are unaffected.
The central line presents somewhat more of a problem. Part
of it, with intensity equal to the intensity of the outside
lines, is unaffected. The other two-thirds of the intensity
should be shifted-by TZaz/J by the exchange interaction.

If we assume that this shift, four times the shift of the
a/2 lines, is sufficient so that the lines are distinct
from the center line, and in fact disappear into the wings
of the a/2 lines, the experimental spectrum as shown in (1)

is reproduced (see figure 1 (a)). This anomalous shift is
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Fig. 1. Stick spectra for nitroxide biradicals

(a) Exchange dominant
(b) Hyperfine dominant
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not surprising, since the observed width of the a/2 lines
is not much smaller than the splitting, and, in fact, the

five lines are not particularly well resolved.

III. Theory in the Hyperfine Dominant Limit

If we consider the hyperfine term to be much
larger than the exchange term in the square root of
equation 4, we may again expand the square root and obtain
for the energies:

E = - %-— + Ex z 326,  (Ex¥0)

or

(6)

E + 3‘1“ 5 _3:/‘_‘ (E)c-b\

If we now use these energies to calculate the spectrum we
see that the three line spectrum in the absence of exchange
is broadened by the exchange interaction. The central line
is broadened by J/2+J2/8a; the two outside lines are
broadened by J/2+J2/4a. As we first "turn on" the exchange
interaction, the three lines broaden equally. As the inter-
action becomes stronger and stronger, the outside lines are
first broadened more than the inside line (figure 1 (b)),
then begin to narrow as the outermost.component of each
begins to move in to become part of the a/2 line (when the

molecule can be considered to be in a triplet state).
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IV+ Conclusion

We have seen that we may calculate the anomalous
linewidths for nitroxide biradicals by a very simple
scheme. Our scheme gives results which agree with the
experimental work of Luckhurst, and the more complicated
relaxation theory he proposes. An experiment which would
serve to distinguish between these two theories would be
one which measures the temperature dependence of the
broadening. If the only effect on the spectrum can be
assumed to be from the exchange interaction and its modu-
lation, if Luckhurst's theory is applicable, an increase
in temperature should always serve to broaden the lines,
since motion and hence the modulation of the exchange
interaction should always increase. If our theory is
right, the broadening should be almost independent of
temperature, since it depends entirely on static proper-

ties.
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PROPOSITION V

Superconductive Matrix Element in Metals with

Molecular Impurities

Ahstract

We calculate the superconductive matrix element
in metals doped with molecular impurities. Closed-
form expressions are obtained for homonuclear
diatomic molecules. The extension of the formalism
to molecules whose electrons can be represented by

LCAO wavefunctions is discussed.

I. Introduction

Since the discovery of superconductivity in
mercury by Kammerlingh Onnes in 1911 (1), much work has
been directed towards the construction of an adequate
microscopic theory for this phenomenon (2). The first
proposal with any degree of success was that of Frdhlich
(3) who suggested that the basic interaction responsible
for superconductivity was a phonon-coupled interaction
between two electrons in the conduction band of a metal.
Since his work, Bardeen, Coopér and Schrieffer (4) have

put the phonon-coupled interaction on a more firm
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theoretical basis, and have developed a theory which
successfully accounts for the superconducting transition
in many metals. However, there are some metals for which
this theory is woefully inadequate, and mechanisms other
than the phonon-coupled interaction must be assumed.
Recently, Hoffman (5) has reported some experimen-
tal work in which thin fiims of vanadium and indium are
prepared, and a film of molecular impurity is deposited on
them. It is found that for an appropriate choice of mole-
cule, the superconducting transition temperature'is raised.
We here propose a theory, quiteAparallel to the development
of the phonon-coupled interaction in most superconductors,

which will hopefully apply to this system.

II. Theory for a Homonuclear Diatomic Molecule

We will consider a distribution of molecules in a
metallic lattice where each of the molecules is at one of
the set of points {213. For simplicity, we first consider
molecules in which there is only one excited state of
importance.- We let the interaction potential between
conduction electrons and the molecular electrons be
screened; |

e

V= %’z wp(- p4ha) (L
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We neglect the nuclei, as they may be treated by the theory
of Langer and Vosko (6) for point impurities in metals. We
write a two-electron wavefunction for the metal in the
presence of the molecularAimpurity to first order
x
IR, )~k Ry0> + 2 Ik ky, ReY w + (Rie>ke ) (2)
b2, B -Em

where the first two quantum numbers are the wave vectors
of electrons one and two respectively, and the third is the
location of the excited molecule. M(ki"kl’Ri) is the
matrix element for the inelastic scattering of a single
electron from state ki with excitation of the molecule at
Rg. E_ is the molecular excitation energy. The second
term is the equivalent of the first with scattering of
electron two instead of one. Using'these wavefunctions,
we may evaluate the effective matrix element between two-

electron states in the metal:

2 MU'k, Re Yo (g by B2 ) Eng (k,@,h,_) (3)
i ——————— +

V(Y &)=
(k“,hz‘V‘ﬁ\.“kz).~ 2 k:&—bk;

- ,1.- 2
?4 (bk, Q Ev
Our purpose here is to evaluate this matrix element
for various molecules. We first consider homonuclear
diatomic molecules, where the ground state wavefunction may
be thought of as a sum of Slater orbitals at the two

nuclei, and the excited state wavefunction as the difference
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of these functions. We may then write M as the product of

some normalization factors and two integrals:

“»

2
MKRY = v X, I, (4)
where the integrals I; and I, are defined by:

J:| = jd?’vn QA‘P ("b gru ’}u'vﬂx /V.z
(5)

Iz J‘P"'; Lep (=i ,.lz\ { ‘Pﬁ“’ -y tw)&
¥ A and sbB are the Slater functions for the electron on

atoms A and B respectively.

The integral I is trivial:

I, = 4T [0 1) (6)
Insertion of a Slater orbital with exponent I/Z, and a

fair amount of tedious algebra leads to the value for I,:

_C (2}"5-6 t—‘_\z MP (’L K ?ﬂ) Sin F &f\% (7)

where p and r‘ are defined by:

R, =Ry ~& 7
VYR (8)

Ry = Re 'Hg. ‘;c
We may run a quick dimensional check on our final expres-
sion for M and find that it is indeed in terms of energy.

We also note that:

M(K,R) = M¥(-K,R) (9)
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III. Extension to More Complicated Molecules

The most elementary extension to the calculation
above is to use Slater functions other than 1S. This is
rather trivial to do, if one uses the recursion relation
between the various orbitals and theilr derivatives (7).

We will consider the extension to various other
molecules where the ground and excited state wavefunctions
may not be considered as sum and difference functions.

If the two states are written

= L L () '
= Tk L lr (10)

t = 7:(3: Y ()
where the chi's are simple Slater functions at the
various nuclei, we may write for M:
* A
u= T Iy A V- (11)
b

where Aij is an integral;

Dy =l ap(=i o) Y Yy (12)

We now apply ourselves to the solution of this integral.

We first make the standard transformation:

(13)
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where R is the distance between the two nuclei. We will
consider only 1S orbitals, formulae for higher orbitals
being derivable from these by differentiation. We substi-
tute for the orbitals, define ¢ and @y as the spherical
coordinates of the scattering vector in the molecular

coordinate system, and obtain for A i3°

t W
TR -et-
Ny 'N"‘: - (T.cl? |1 (e A wrp| -ikR Lin{g‘azéxmwx"'” Ocr _ (14)
“ o NTEPS) }

£+v)
where:
p(iti)-= v (5 e
Ni’ Nj are normalization constants.

We now observe that the phi integration may be performed to
give a zero order Bessel function of the first kind, and the
xi integral may be thrown into the form of a Hankel trans-

form; doing these two integrals we obtain for A 5

j:
& ot I 40)
Ai} x N;NJ'? Wl -!dq vep -TH) { ITg2) - Ui=ny YA } (16)
where, as usual, we have introduced a host of new symbols:
o= ~‘$;§ca«9k Sv'-f—"QSIh@k
y= & Yep’ Jos p-ivy (17)

4 mrh
TClnym) = sz"u Jnluy) “__ tup _/,,m-.

L+
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We note that the integrals, TUL(n,m) are found in tables (8)

for n=m:

(A

_ (1 U (e
- — gt 2 . (’ ‘-"L\
;L@/m\)" T ( \.“j\-) MLy ’KWH[; )4,.;{ (18)
and for n#m may be obtained by recursion:

9’3‘ Ctnm) = 3’: {"(T(n-:,mr/) -n(nvt,mfl)} (19)

The K's above are the modified Bessel functions of the
second kind; the TU's are functions of one argument (%)
and one parameter (/‘>‘

We are now left with a single integral over eta,
which may be done by any standard quadrature method.

In conclusion, we note that we have obtained
expressions for the superconductive matrix element for a
metal with molecular impurities. By a self-consistent
treatment of these matrix elements we should be able to

calculate the transition temperatures for the system.
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