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ABSTRACT

A method is presented for the approximate calculation of the
neutron flux near plane interfaces between different heavy monatomic
gaseous media with absorption cross sections inversely proportional
to the neutron velocity, Approximate analytic results are obtained
for both the diffusion theory and transport theory models., It is
found that the flux on each side of the interface can be approximated
by the sum of two terms, One term has the same energy dependence
that would exist in an infinite medium composed of the heavy mona-
tomic gas that is on that side of the interface. The spatizl dependence
of this term is determined by diffusion theory., The other term,
'cailed a boundary layer correction, makes an appreciable contri-
bution to the flux only near the interiace. The procedure presented
develops equations and boundary conditions which determine the
different terms of the approximate flux. It is found that the approxi-
mate flux at the interface, for both diffusion and transport theory, is

the average of the two infinite medium fluxes,
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I. INTRODUICTION

The primary task of reactor physics is to caleulate the
neutron density distrioution within a given region of space containing
specified materials, From a detailed description of the neutron
density distribation all quantities (multiplication, reaction rates,
etc.) necessary for the design of a reactor can be calculated. In
general,the neutron density distribution depends on the neutron
enerpgy, the direction of neutror travel, the position in space, and
time. In elementary energy-dependent problems the nucleus is
assumed at rest before a collision, so that a neutron only loses
energy in a collision with the nucleus. This is a vzlid approxima-
tion provided that the neutron energy is much greater than the
average energy of the nucleii,

When the neutron energy is comparable to the average
nuclear energy of motion, a different assumption must be made,
because a neutron can either gain or lose energy in a collision with
a moving nuclecus. Ncutron thermalization theory accounts for this
nuclear motion. The effect of the nuclear motion is most important
for neutrons with energies less than 1 ev {electron volt), The
avcrage cnergy of the nucleii is about 0,025 cv.

If neutrons of an arbitrary energy distribution are intro-
duced intc an infinite, homogeneous, non-absorbing medium, the
resulting equilibrium distribution (after a sufficiently long time)
would be a Maxwellian distribution characterized by the tempera-

ture of the medium, In a finite, inhomogeneous, or absorbing
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system the steady state neutron distribution will differ from a
Maxwellian distribution. (For finite or absorbing systems there
must be a source of neutrons to balance ncutron losses if a steady
state is to be maintained.} If the medium is finite or inhomogenecous
the neutron distribution differs from a Maxwellian distribution
because of the transport of neutrons out of the system or transport
of neutrons between different regions of the system. Absorption
further complicates the problem because of the finite time required
for source neutrons to attain an equilibrium distribution.

Many authors consider the problem of an infinite homogeneous
medium with a prescribed nuclear speed distribution., By using an
-elastic billiard ball model for a collision between a neutron and a
nucleus and assuming isotropic scattering in the center of mass
system, they are able to calculate the encrgy exchange cross
sections needed to solve the neutron balance equation,

Wigner and Wilkins (1) considered the nucleii as a monatomic
gas with a2 Maxwellian speed distribution. They numerically solved
for the neutron density in an infinite medium composed of hydrogen
with an absorption cross section inversely proportional to the
neutron velocity. Wilkins (2) later reduced the balance equation to
an approximate differential equation for a heavy monatomic gas.

Lathrop (3) considered two nuclear spced distributions using
a harmonic oscillator model. One model used was a single energy
oscillator, and the other assumed a distribution of oscillator

energies, The neutron density was determined numerically in



both cases,

More recent efforts have attempted to take into account
spatial variations in nuclear properties. Kottwitz (4) solved for
the neutron density in two semi-infinite half spaces consisting of
non-absorbing heavy monatormic gases at different temperatures
by using diffusion theory for the spatial transport of neutrons,
Later papers {5-7) extended this application of diffusion theory to
slab, cylindrical, and spherical geometries and to problems with
absorption.

In these papers (4-7} the diffusion theory equation is solved
by the separation of variables method which results in an eigen-

- function expansion for the neutron density in each region. Then
the coefficients of the eigenfunction expansions are determined by
the interface conditions, This results in a recursion relation for
the coefficients, in which the nth coefficient depends on the first
n-1 coefficients, Hence.the cocfficients may not be sclved for
explicitly, This yields rather cumbersome expressions for the
neutron density although they are adaptable for machine calculations.

Ferziger and Leonard (8) used the one-dimensional transport
equation, but they assumed constant cross section and isotropic
scattering in fhe laboratory system, Bednarz and Mika (9) con-
sidered the one-dimensional transpozrt problem and specialized to
a fully degenerate scattering kernel, The assumption of constant
cross section is unrealistic, particularly for the absorption cross

gection. It is better to assurme isotropic scattering in the center
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of mass system than in the laboratory system, A fully degenerate
scattering kernel is a very spccialized case; none of the physical
scattering models proposed up to the present time have this pro-
perty.

Zelazny (10) uses the heavy gas scattering kernel and
transport theory but assumes constant cross sectlon. Again the
assumption of constant cross section is unrealistic, even the
scattering cross section is a function of energy for the heavy gas
modecl (see equation 2). These papers (4-10) are restrictive
because of the assumptions of a degenerate kernel, or constant
cross section, or diffusion theory.

The analysis of this thesis is limited to steady state neutron
distributions in plane geometry with step discontinuities in nuclear
properties. The absorption cross section is taken to be inversely
proportional te the neutron velocity which is a more realistic
assumption than that of constant cross section (11}, Such step dis-
continuities occur at the interface between the core and the
reflector of a reactor where there is an abrupt change in the ab-
sorption and scattering cross sections, If, in addition, the reactor
is gas cooled, the temperature changes very rapidly across the
interface between the solid material and the gas coolant,

In this analysis the nucleii are assumed to be a monatomic
gas in a Maxwellian energy distribution. Approximate analytic
results are obtained for the case of heavy gases. Aamodt et al.(12)

have shown that, regardless of the state of the material, the scatter-



ing kernel at high neutron energies approuaches that of a heavy gas.
Therefore, the assumption of a heavy monatomic gas implics that
the results obtained in this thesis should be more accurate at high
neutron energies, high cnergies being thuse greater than the tem-
perature {(measured in energy units) multiplied by the ratio of
neutron to nuclear mass,

Throughout the thesis the neutron flux, which is the neutron
density times the neutron velocity, shall be used as the dependent
variable, For plane geometry, the neutron flux will be a solution
of the time-independent, one-dimensional, linearized Boltzmann

(or transport) equation:
dp(z, E,
i ‘P(g; B + {U’R(E, z) + cra(E, z)} elz, E, 1)

co +
= S' dE'S‘ du' o _(E', p'—~E, p;z)e(z, EL, k') + S{z, E, )}, ()
R |

together with appropriate boundary conditions, The symhols are:

z = spatizl dimension
E = neutron energy
p = cosine of the angle between the z axis and the

direction of neutron fravel

o(z, E,p) = angular neutron flux at =z, ¥, and p
rra(E, z) = absorption cross section at E and z
n;rS{E, z) = scattering cross section at E and =z

1

o-S(E', p!—E, p;z) energy transfer cross section for neutrons going

from E' and p' to Eand p at z

S{z, E, )

1]

independent source strength of neutrons at

z, E, and p.
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The left-hand gide of equation 1 represents the neutron loss
from a volume element dz dE dp. The first term is the loss due to
the spatial transport out of the volume element; and the second term,
the loss duc to collisions which remove a neutron from the volume
element, The right-hand side represents the neutron gain into the
volume element. The first term is the gain duc to scattering
collisions at z which result in neutrons with energy E going in
direction p. The second term represents the independent sources
of neutrons. The source term may be omitted from the equation and
instcad imposed as a boundary condition,

The scattering cross section is related to the energy transier

cross section by:

Tos) 11
o {E, 2) = S dE'S dHl o (E, I*L‘-*Ets P";Z) . (2)
8 s
0 -1
Thus o {E, ~E', pliz) dE! dp.'/o-s(E, z) is the probability that a
neutron with energy E and direction p will be scattered into the
interval dE' about E' and dp' about p! at z.
For a monatomic gas in a Maxwellian distribution character-
ized by temperature T (measured in cnergy units), the energy

transfer cross section is:

It is common to use oy for both cross sections, the difference
being distinguished by the arguments. All cross scgtions are
macroscopic cross sections measured in units cm
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2 1/2 poo 2T , .
G'S(E', p'—E, p;z) = ._.‘[._2_ (1+ 1) (“%’1) 5 dt‘S‘ dy elt(E-E )
-0 0

B m

2
. exp{lt_r?it (E+E'-2|.LO{EE')1/2)} . (3)

where

1/2
B, = ppt + [(1 - pz){l - }L'Z)] cos Y (4)

is the cosine of the angle between g and p'. The formula assumes
alastic collisions between nentrons and nucleil and isotropic scatter-
ing in the center of mass of the neutron-nucleus system, (See refer-
ence 1 or 13 for a derivation of this formula,} The spatial dependence
of the right-hand side of equation 3 is expressed in terms of m, o
"and T where m is the ratio of nuclear to neutron mass and o

is the free atomic scattering cross section, When equation 3 is
substituted into equation 2 and the integrations performed, the

result is

(E, z) (1 T/2mE) erf (mE/T)/ 24 o mE/T (5)
o yZ) = 0O + mbE)erf{m '
S (rrmE/'l‘}l; 2

where

X _tZ

erf x = (%2 go e dt. {5a)
T

The diffusion theory approximation may be developed from
the transport equation 1 by expanding the angular flux, ¢(z, E, N),
and the energy transfer cross section in Legendre polynomizls,

Using the orthogonality of the Legendre pelynomials and rctaining
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%
only the first two coefficients of the angular flux expansion, the

resulting equations are

dijlz, E) +_{ch{E,z) + o, (E, Z)} ¢(z, E}

oz
oo
=§ dE' ¢_(E' - E;z) ¢ (2, E") , (6)
0
and
1? .?.4.'1(5:"42_:3_)- +{D‘S(E, z) t cra('E, z)}j-(z, E)
:S\ dE' g-l(E' ~ E;z) j (z, E"Y} . (7}
0
where
+1
¢(z,E) =S . ¢(z, E, p} dp (8)

is the flux (to be distinguished from the angular flux ¢(z, E, } by
its argument) and

+H

iz, E) = j X ne{z, E, u) dp (9)

is the current, From eguation 3 the moments of the energy transfer

.k
cross section arc

*This is equivalent to neglecting all moments of the angular flux
higher than the first.

**The Jacobian of the transformation form dp dy to dp, dyy is
one. The integration over Y, may then be done giving 2Zr.
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2 1/2 roo +H .
s o) = O 1 X it(E-E")
Ty (E'—E;z) = 411'(1 * m) (_fr) S._oodt.g‘_l PE “’Lo) dp.oe

. 2
. exp{ &E_:Elli;_ (E +E' - Z;J.D(EE')I/Z}- (10)

The set of equations, 6 and 7, may be reduced to an approxi-
mate differential equation for the flux, ¢(z,E), by assuming m fo
be a large quantity, With this assumption the second exponential
in equation 10 may be expanded in a power series of m—l. The
resulting terms in the series wiil be singular, but since the
moments of the energy transfer cross sccticn appear only in the

integral terms of equations 6 and 7, the singular terms can be

'interpreted as the delta function and its derivatives. That is

a0 .
sNE - EY) = .Z}—g at (i)SHEED (1)
TV
where
E+a dn
g sHE-ENVHE" dE' = | S (E") , (12)
B-a ae'™ E'=E

with a> 0, With this identification the moments of cnergy transfer

Ccross section become
7, (B E;2) 2 i+ )2

= 4.0 : - 1 + == 1 - 1

o - (1 m) B(E-EY) + S (—T {6(E £

+T6"(E - Ef)} + 0(1—2) , (13)

for £=-0 and for £:=1
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o*l(E’—"E;z)

a

= ;ﬁ {6'(E - EY + T6NE - E!)} + o( —1-2) (14)

m

A similar expansion of the scattering cross section, equation 5, in

powers of m™! yields:

o (E, z) T -mE/T
S 214 == +0| & . (15)
o 2mE m572.

The substitution of equations 13, 14, and 15 into equations 6
znd 7 and the elimination of the current, j(z, %), between the two

equations gives a single equation for the flux:

2 2 me (E, z)
L 82+—2-(ET—§—§+E§E+1————2§-—*“)}'&(%E)=0-
3r- Oz = 0K g

(16)

Equation 16 is the diffusion theory equation correct to terms of order
m-1. In this equation the diffusion term, (1/362')(82(,0(z, E)/Bzz),
and the absorption term, {Zo‘a(E, z)/e}le(z, E) ), are interprcted as
being of order m™. Also it was assumed that mE/T >> 1, so that
the remainder term in the scattering cross section (equation 15)
could be neglected.

The geometry considered in this thesis is that of a slab
occupying the space from z =0 to z = -W, imbedded in an infinite
medium, The step discontinuities in nuclear properties are ex-

pressed by o, T, and m each taking different constant values in

the slab and in the surrounding medium. In the notation of this
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thesis the subscript "1 on a quantity will refer to the slab and the
subscript "o" will refer to the infinite medium.

With this geometry the boundary condition for transport
theory is that the angular flux, ¢{z, E, n), be continuous at the
interfaces {z = 0, -W}. The boundary conditions for diffusion theory
are derived from those of transport theory by taking moments of the
interface continuity ecquation for the angular flux, This requires that
the flux, ¢{z, E), and the current, j{z,E), be continuous at the
intcrfaces. Because the problem is symmetric about z = - W/2, the
angular flux for transport theory or the flux for diffusion theory will
only he determined in the region z = - W/2.

Specific approximate analytic results are obtained for the
case of large m, (i =0,1). The equations for the slab {i =1) and
the surroundirg medium (i = 0) are expanded and terms through
order mi_l are kept. To be consistent a similar expansion should
be performed on the interface conditions and the higher order terms
should again be neglected. This is aguivalent to expressing one of

!
m; s, say m_, in terms of the other:

1.1y 0(—1-5) . a7
Ty ™My my

Therefare, the assumption of large m, and the approximation of

keeping only the first order terms in m{l, imply that m_ =my =m,
e s . . -1 . .

Thus, it is consistent with the m approximation to assume that m

is a constant throughout space., Then for m >>1 we can be sure
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that the equations and the interface conditions are satisfied to
1

order m .
In Part Il the problem is solved using the diffusion theory,
represented by equation 16, In part Il the transport equation 1 is

solved to order m-l. Part IV contains a discussion of the assump-

tions and the results,
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II, DIFFUSION THEORY

A, Introduction

To illustrate the technique which will be utilized and for
comparison reasons, the approximate model based on diffusion
theory will be treated first, From part I the diffusion equation for

slah geametry in the m-l approximation is the fellowing:

8%, (z, T 8%, (z, E)
LA 1 + ET, ——————
60‘i2 Bz° L
Bwi(z, E) mcrai(E)
T+ E ---—BTE—“" +(l - ——2"07—'— qu(Z, E) =0 , (18)

1

where if i = 0 thc equation refers to 0 =z = o0 andif i=1 the
equation refers to that portion of the slab for which - w/2=sz=0,
The sclution in the rest of space is obtained by symmetry about
z=- W/2,

The equation is made dimensionless with the change of

wariables
_ E _ 2

Then equation 15 becomes

2 A
1 A 0 ] o}
— —— 4t e—ste T+l - —3Yop {x,€)=0 , {20)
{ gaxz 862 de Ve °

for 0= x= o and
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1 8° 8” 5 a
? a—z— +Ea-1 8—2—— + < —a? +1*A-l ? ?1(.}{,{] =0 B (21)
1 X €

for -1/2<x < 0 where

T;
ai — T: , 1 =0,1 , (22)
N - criW(éfxn)”Z Ci-0,1 . (23)

and, for an absorption cross section inversely proportional to the
neutron velocity, Ai is a constant given by

mo_; (E) 1/2
{ = e (e/ai) , i=0,1 . (24)

For diffusion theory, the flux is to be continuous

#,(0, €) =9 (0, ¢} , {25)

-

. - "
and the current 15 to be continuous

1 1 890 (Or E)
o 26)
a ax o X% ? {

1 o

n

for all energies in the range of consideration,

Since the flux is equal to the neutron density multiplied by the
neutron velocity, and since the neutron density must remain finite
even ‘or zcro energy, the flux must be zero at zero energy. The large
energy boundary conditior will depend on whether or not absorpticn is
present. For the pure scattering case (Ai = 0) there are no neutron
losses from the system, consequently a neutron sourcc is

nct needed and the energy range from zerc tc

" For the large mass approximation D, = 1/30.{cf. equation 144,
page 57). b
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infinity is considered. For large energies the flux is to go to zero
in such a way that the integral of the flux over all energies exists.
If absorption is present, a source must alsc be present in order

to balance the neutron losses and maintain a steady state, This is
accomplished by limiting the energy range from zero to some high
energy, say €, and requiring the flux to equal some fixed distri-
bution at €

In any equation in which a large parameter occurs, some of
the terms of the equation may be small in different regions of the
space of the independent variables. It may,therefore,be possible
to obtain a good approximation to the exact solution to the equation
by taking advantage of the fact that the parameter is large, For
instance; in equations 20 and 21, hi is assumed large and in
different regions of the x,€ plane some of the terms of the equa-
tion are small compared to the remaining terms.
The assumption that ?xi is large implics that the slab width

W is much larger than l/e—i, which is a measure of the mean free
scattering length, Therefore it is expected that several mean free
scattering lengths away from the interface, the energy dependence
of the flux will be zpproximately the same as that of an infinite
medium, Thus the approximate solution for the flux should be
composed of two or more parts on each side of the interface. One
will be the infinite medium solution, the rest will be what we might
call "boundary layer corrections™ near the interface which will

blend one infinite medium solution into the other,
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The equations and boundary conditions for the several parts

of the solution are obtained from the original equations 20 and 21

and the original boundary conditions 25 and 26, This is accomplished

by determining which terms of the original equations and boundary

conditions are small and where they are small and then neglecting

thesc small terms in the corresponding rcgions, For this purpose

the following procedure is applied,

1. For investigation near the x = € = 0 corner of the =x,¢

plane, the change of variables

gf"?x; qi=hfe , i=0,1 , 27

is introduced into the corresponding equation 20 (for i = O}
or 21 {for i =1} and the boundary condilions 25 and 260.
{The subscript i will, in the future, be omitted from

£, n and A since the subscript i on the flux, q)i(ﬁ,n),
indicates which transfurmation (i = 0 or 1) is meant, }

2, The flux is expanded as

a0

0;(6,m) = z Mot (6, ). (28)

1
n=0

3, After the substitution of 27 and 28 into equations 20 and
21 and boundary conditions 25 and 26, coefficients of
cqual powers of A are equated to zero, The equations

thus obtained will clearly depend on the choice of a and P.
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From the transformation 27 it is seen that for a fixed value
of £ and positive a that as A goes to infinity x becomes
smaller. For a fixed valuec of £ aznd negative @, as A goes to
infinity x becomes larger. Therefore the equations derived for
positive @ should be approximately valid for small x; and the
equations for negative a should be approximately valid for large
x. {Notc that these arguments are valid for the x = 0 interface
only. To investigate the = =-1 interface the transformation
£ = ha(x +1) should be uscé instead of 27; and arguments similar
to those above would be reapplicd to this interface.} A similar
physical intcrpretation can be given for t].ae equations derived for
‘positive and negative P.

Because of the above arguments, the equation obtained for
a =f =0; {(i.e., no change in the independent variables) is expected
to be valid away from all boundaries of the region in which the
original equation holds. For this reason the solution to the equation
obtained for a =P = 0 shall be called the "interior" zpproximation.
The main characteristic of the interior approximation is that it fails
to satisfy all of the boundary conditions; thus necessitating the use
of boundary layer corrcctions ncar thosc boundarics where boundary
conditions are violated.

There is no reason to expect that the series 28 is convergent
to the exact solution to the equation, butat worst it is expected to be
asymptotic to the exact solution. It is generally cifficult to prove

either property because the exact solution is not known and indirect
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arguments are difficult. Because of the suspected asymptotic be-
havior, only the qa?(%,n) te rms will be evaluated, the remaining
terms being of order K_1. The superscript "o" will be omitted
from the following analysis; it being understood that the cpi{ﬁ, n}
is only the first term of the series 28,

‘The equation for qoi(g,‘n) is obtained as outtined in step 3,
page 16, or it can be equivalently obtained by making the change of
variables 27 in ecquations 20 and 2] and allowing A to go to infinity
for diffcrent pairs of & and P, ZEquations 20 and 21 after the change

of variables 27 may be written as

z 9

2 A\i/2
\ee e 2 hﬁnai—-—-— T 2 +(1 - hﬁ/ZAi(-?;}—) ) tpi(g, m =0,

agz 31‘]2 8n

i=0,1 . (29)

After division of equation 29 by the highest power of N and passage
to the limit of infinite A, only the terms with coefficients of A to
the zeroth power rernain, The resulting equations are best displaved
in an o,p plane. It is shown in figure l.that the result of this
operation on equation 29 divides the o, plane into three sections.
For instance, if P > max (0, 2a - 2) the resulting equation is
always ‘ngoT_m =0,

The approximation method used for the analysis of this

3%
problem will consist of the following steps.

A similar procedure is given in rcicrence 14,
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1) The zeroth order interior equation is solved and as
many boundary conditions as possible are satisfied.

2) It is ascertained which boundary conditions the interior
solutions do not satisfy.

3} Appropriate zeroth order equations are selected by the
a,f arguments, page 16, which are approximately valid
near the boundaries determined in step 2, The sclutions
to these equations, called boundary layer corrections,
are then added to the interior solutions so that the
boundary conditions determined in step 2 arc satisficd
to order Knl.

4} The new approximate solution composec of the sum of the
intericor solution and boundary layer corrections, deter-
mined in step 3, is checkead to see that all the bhoundary
conditions and differential equations are satisfied to
order A '. This must be donc because the new approxi-
mate zolution may not satisfy all the houndary conditions
that the interior sclution did (see step 1}. If the new
approximation does not satisfy a certain boundary con-
dition, steps 3 and 4 are performeoed again for this
particular boundary. This procedure continues until
all the boundary conditions are satisfied to order }\-lu

The boundary conditions are satisfied to order ).—1 since
only the zeroth term of the series 28 is calculated for each applicable

a,B pair. The next term is the series 28 is of order ?\_1; hence,
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it ig consistent tn satisfy the boundary conditions only to order )L—l.
Higher order approximations may be obtained, =zt least in principle,
by solving for more terms of the series 28.

There are two distinct problems of interest, absorbing media
and pure scattering media., These must be investigated separately
because different cnergy boundary conditions are involved in the
statements of the corresponding bhoundary value problems. These

two cascs are considered successively in the remazainder of part IL

B. Scattering Case in Diffusion Theary

For pure scattering mecdia an approximate solution to equa-
" tions 20 and 21 with Ai =0 is desired. The equations for the

boundary value problem then become

8% _(x,€) 0% (x,€) B (x,€)
> t € ) +€—"’§'E"—+‘PO(X:€)=U ’ (30)
x de

oywl =

for 0=x<o; 0=¢ <00 anc

L 8% () alp(x,€) B9 (x,€)
S +Ea1————-~—82 te —g—tolxe) =0, (31)
1 3 o

for -1/2=x=<0; 0= ¢ < o. The boundary conditions for the proh-
lem are:
1)  the flux is required to be a Maxwellian characterized by
T, at x =

€ -€
¢ (oo, €) = '"I"; e , {32)
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2) the flux and current must be continuous at the interfzce

<PO(0,€) = wl(O, €) , {33)
1 Ban(O,E) 1 qul(O. £€)

FE T R T (34)
0 1

for all energies,
3) the flux must vanish at zero energy
goi(x, 0y =0 , i=0,1, {(35)
and
4) the flux goes to zero at large energies in such a way that
the integral of the flux over all energies exist, That is,
we require that
o'}
')() v, (%, €) de {36)

exists for all =,

The first step in obtaining an approximate solution to equations
30 and 31 is to solve the interior equation. From the a,P diagram,

page 19, the interior equation (a = = Q) is

8&45.(3:, €) . (x, €)
€a, L 5 1+ e la T ‘P-(X: E)
i de € i

0, (37)

1 =0,1,

The solution to this second order diffcrential equation is

~€/a. -—€/a. €/a, t
w,(x E)=f(x)-§—e /1+g(x) ig /15‘/1.9_(11:
e i a. i a. 2 ’
i 1 -00 ¢t
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whera fi(x) and gi(x) arc arbitrary functions of % to be deter-
mined. The seconé term of th:eﬁ;%olution 38 is different from zcro
at € = 0 and behaves like 1/e for large € (1,13,15,16). Thus
to satisfy boundary conditions 35 and 36, gi(x) must be set equal
to zero for i =0 and i=1,

The spatial dependence, fi(x), of the interior approximation
is determined by considering the second order interior approxima-
tion qogz)(x, €). (see equation 28). From the procedure outlined

in step 3, page 16, the equation for qogz)(x, €} is
P g G :

2
2 —e/a. d%f.{x)
9 3 {2} __ € i i
(e:ai - +e Je + 1) @5 {x, €} = T 5= . {39)
¢ i dx

The particular solution to equation 39 is of the form

where c1 and 1::‘2

nomogencous equation. It is impossible fo select c

are constants multiplyibg the solutions to the
1 and €, 80
that the particular solution 40 satisfies both energy boundary con-
ditions 35 and 36. For instance, if Cy = 0 so that 36 is satisfied,
then 40 is different from zZero at € = 0 and therefore cdoes not
satisfy 35, Thereforeg the only way that cpi(z)(x,e) can simultaneously
satisfy both energy boundary conditions 35 and 3€ is to require the
particular solution to be zero; that is

2
d fi(x)

de

=0, i=0,1, {4-]_)
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fi(x) = Ai + Bix , 1=0,1, {42)

whetre Ai and Bi are constants. The boundary condition 32 at

x = 00 and the symmetry about x = - 1/2 yield

1 o
. (42)
A = =
0 T
@]
Thereforeg the interior approximations are
-,%—e-e, for 0=E=x< oo,
o
(43)
. ~€/a;
Al-;-‘-e , for -1/2=<x<0,
1

Note that if Al = 1/'1"1, then the interior approximation in cachk
region would be a Maxwellian distribution characterized by the tem-
perature of that region,

The interior approximations 43 satisfy the boundary conditions
at x =w, € =0, and € = w, butl they do nul sailisfy the interface
conditions., Therefore, to the interior solutions near x =0 must be
added boundary layer corrections on each side of the interface so that
the continuity of flux and current is maintained. According to the
previous arguments the equation for the boundary layer corrections
near x = 0 must have z positive value of a, We further require

that o have a definite value so that the transformation 27 will be



known explicitly,

It is seen from the ¢,P diagram, page 19 that there is only
one definite positive value of a, a =1, for which there are two
choices of B, =0 or PB< 0. The choice a =1, B =0 1leads to
the exact solution to the diffusion equation, which, as mentioned
in the introduction, is cumbersome, Tke equation witha =1, B <0
will be used for the boundary layer correction for two reasons,
First, it is desirable to have a tractable solution, e¢ven if approxi-
mate, so that the character of the results can be investigated. (The
oxact solution to diffusion theory is difficult to investigate because
the coefficients of the eigenfunction expansion cannot be solved for
- explicitly.)} Secondly, the equation with P < 0 should approximate
the situation better at high energies than at low anergies (see
page 16). This is exactly the place where the expansions of the
energy transfer and scattering cross sections are valid and where
the heavy gas model is best.

Using the subscript b to denote the boundary layer cor-

rection term, the cquation for a =1, P <0 is

8o (E.m) By (£, )
T + T} "_"'"—'a—.{,]-_—"_ + qob"l(g' T) =0 ) 1='031- (44}
If £ <0 then
£ =§£ = A\x; nznt)\.ﬁe (45)
= 1 177 1 1°°
and if &€ > 0 then
E=f =N x; n=n0=.\ie. (46)
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by the transformations 27.

The energy boundary conditions will be the same as those for

the interior solution, namely

(pb1(§’ 0y =0, i=0,1, (47)
and Lthat
0
S.O o165 M) de, i=0,1, (48)

exists for all £.
The boundary layer correction term is added to the interior
approximation for the purpose of satisfying the interface conditions.

Thusg, the continuity of flux condition 33 hecoames

e © e -e/

: - A E_-€/a
'TO_ + ‘Pbo(os"]) = A ?:le + @bl(os'ﬂ) y (49)

or the sum of the interior approximation and boundary layer cor-
rection is continuous at the interface., Since the interior approxi-
mations are constant in spacc, the continuity of current condition 34

becomes

L aqobo(O,n) _ M qubl(U, )

T dE - Er"l' 9E ' {50)
which is consistent with the m“l approximation because m has
been taken as a constant throughout space.

In addition to boundary conditions 47 through 50, cxponcential
decay in the £ direction on both sides of the interface is required

so that the effects of the boundary layer correction, qobi{&, n), will



-27-

be confincd to a narrow zone (or boundary layer) near the interface.
Notice that the equation and the boundary conditions are independent
of the choice of B; therefore,it is expected that the solution will be
independent of $, which is indeed the case,

The boundary value problem described by ecuations 44 - 50
is solved in appendix A with the aid of Fourier transforms. The

solution satisfying boundary conditions 48, 49, and 50 is

i oo 2.2
Py = (-1)"ct S. (_fe—ﬁu/a_%e-eu)uZe‘t £°/a dt, (51)
2vr Y0 o
2
where u = el/t s

The constant A from the interior approximation remaining
in the result is determined by integrating the interface condition 49

over all €

oo o
) .
T + EO o (6 €) de = aA +§0 0, (> M) de . (52)

The intcgral of the boundary layer correction term can be calculated
by integrating cquation 44 over all energies and applying the energy
boundary conditions 47 and 48 to obtain

dZ e o]

S2), fmEedes0is0, (53)

ar
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0
S{) fpbi(g, €) de = c1§ + c, = 0, i=0,1, {54)

because of the exponential decay in §. Hence,

-

A= a—%,-; . -%1 : (55)

Because equation 44 is first order in 7, only one energy
boundary condition {i.e. at a given valuc of 1) could be imposed.
This was selected to the high energy boundary condition 48, Equation
44, which governs the boundary layer correction, is known to be most
accurate at high energies since € = K_ﬁ-q, and $ 1is ncgative., Thus,
‘satisfying the high energy boundary condition 48 is consistent with
the equation employed to describe the boundary layer correction,
The discussion of the situation at small energy is deferred until
Part IV, It should be pointed out that the integral of the boundary
layer correction, equation 51, over all € gives zero, a result which
agrees with equation 54,

The zpproximation to the solution obtained by this argument
is

€c_

GDO(Z: E) = T + wbo(g' 6) ' (56)

for 0 =2 < oo, and

Ea—e/a
QDI(Z, E} = —;f;a-.-{ +(pb1{gs E): (57)

for - W/2 =z =0, where
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Uo(ﬁ/m)l/zz ifz>0,
£ = ' (57)
0‘1(6/m)1/zz ifz<0,

and rpbi(E,s) is given by equation 51.

C. Absorbing Case in Diffusion Theory

The formalism of the approximation procedure emploved in
the scattering case carries over to the absorbing case; however, the
boundary conditions must be changed. As mentioned carlier, the
presence of ahsarption requires a ncutron source so that a steady
state neutron distribution can be maintained. Tha source term
may be included cither in the transport equation 1 or imposed as
a boundary condition.

In this thesis it is assumed that the source provides high
energy neutrons (~ 1 Mev) from either fissions or independent sources
symmetrically distribnted about x = - 1/2, These high energy
neutrons migrate through the medium colliding with the nucleii until
they attain thermal encrgy (~ 0.025 eV). Because the source
neutrons have such high cnergies compared to the average nuclear

energy, the initial collisions can be considercd as oncs between the
3

neutrons and nucleii which are at rest. (Only 10-10 of the nucleii

have energies greater than 1l kev.) Therefore the spatial distribution

of the high energy ncutrons in the intermecdiate energy range, (below
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source energies and above thermal energies), say 100 kev to 1 kev,
can be adequately described by the Fermi Age model or one-
velocity diffusion theory.
The assumption of stationary nucleii for the high energy
collisions leads to the characteristic flux inversely proportional
to the energy at large energics (11,17,18). The large energy boundary
condition used in the scattering case will be replaced here by re-
quiring that the flux have a prescribed spatial distribution (symmetric
about x = - 1/2) at a certain high energy, say €, Hence, € is
restricted to the range 0 to €_. Because the flux is known to be
inversely proportional to the energy, for large energy, it would be
. convenient if the flux werc O(1/€} for large energies, even those
outside the above range, If thiswereihe case, a smooth fit for the
flux would occur at € = €,
The zero energy boundary condition will remain as in the
scattering case; that is, the flux is required to vanish at ¢ = 0,
It is known that the flux is zero at zero energy in the non-absorbing
case, and the presence of an absorber, with an absorption cross
section inversely proportional to the neutron velocity, should not alter
this property of the flux.
For the absorbing case the differential equations to which the

approximation procedure will be applied are

L 0% el 0% ue)  Be (xs€)
o + Q + o

2 z € 2 € 75

KO O g€

{1 - ﬁoe-l/z)q)o(x, €) =0 » (58)
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for 0= x< o and

1 achl(x, €) azrpl(x, €) 3401(7:. €}
S T3 Tea 7 € —%5¢
Ll ox de
+- A de/a) M A x0 = 0, (59)

for - 1/2= x <0, The absorption is represented by the parameter
Ai (see equation 24},
The energy boundary conditions in the absorbing case are

taken to be

P, 0 =0, =0, (60)

“for all x, and

wi(x. e} = ix) , (61)

where flx) is the prescribed spatial distribution of the fiux at € = €,
&
The interface conditions, continuity of flux and current, remain the

same as in the scattering case; that is

0,10, €) = ¢(0, ) , (62)
o¢ (0, €) 99.(0, €)

1 o) _1 "1

E'-; Ot B o) Ox ! (63)

for all € in the range 0 to €q
Again the interior equation is solved first. From the a,p

diagram, page 19, the interior equation (a = = 0) is

¥ .
" For the large mass assumption D; = 1/3Ui. Sece page b7, equation

141,



A

2
o 9 8 , -1/2 -
{eai : te 3¢ +1 Ai(e/ai) }cpi(x, €y=0, {64)

i=0,1.

The solution to cquation 64, which is identical with the equaticon for

an infinite medium composed of a heavy monatomic gas, is known to

be (2,13,15,16)

-€/a, X n/2
‘Pi(x: €) = if.(KJE.). < 12 b;(—g—) »i=0,1, (65)

—_—c
a. a.i
1 1 n:o
where
i i 4Ai
bD =1 s b]. = -3 (66)

i1 i R
by = 5ETD) {4Aibn_1 + 2{n Z)bn_z}, n=2. (67)

The constant Ki is chosen to be equal to the sum in brackets evalu-
ated at € = ¢, so that boundary conditions 60 and 61 are satisficd.

For the sake of brevity define

00
-e/a, . n/Z
ple) = o S0 TEY 3l (s_) L i=0,1, (68)
i K. a. Ly n\a.
1 1 1
n=0
which is the solution to the infinite medium heavy moenatomic gas

equation, 64, normalized in such @ way asto have the value unity at

£ = € .
Q

The interior approximations satisfy the large and zero energy
boundary conditions, but they do not satisfy the interface conditions.
Therefore, a boundary layer correction is required near the

interface. For the same reasons as in the scattering



case, the differential equation, 44, with a =1, <0 is used to
describe the boundary layer correction near the interface, The

equation is

8§2 + | an + ‘Pbl(gl T]) = Dl‘ i= 0’1° (69)

The addition of the boundary layer correction to the interior
solution makes it possible to satisfy the interface conditions which

are

X Oy, {0,7) Ay 9¢. o (0, n)
1 9i{0) o “bo _ 1 2£(0) !
o TBx v {€) +'&'; g Te, Bx pyle) + 7] 8t !
(71)

forall 0 =¢= €, Eguation 71 has terms of order Al and A" and
according to stcp 3, page 16, which says that only the terms with
coefficients of the highest power in A are kept in the boundary con-

ditions, cguation 71, the continuity of current condition, becomes

Ao 89,5(0:mh Ny B9y, (0, m) 72)
o ok - Ty oL °

o
The large and zero energy boundary conditions are
(£,0)=0 ’ i=0a1: (73)

Pbi

mbi(fi,rso) =0, i=0,1, (74)
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for all £. In addition, exponential decay in the £ direction away
.2
from the interface is required so that the effects of the boundary layer

corrections are confined to a narrow zone near the interface. That is,

N L (75)

for some positive ¢, which may be a function of energy.

The method of solving the boundary layer correction in the
absorbing case is very similar to that used in the scattering case.
This boundary value problem described by equations 69 through 75
is solved in appendix A, The result, satisfying boundary conditions

70, 72, 74, and 75, is

i (6 &) 22
o (£,7) :.(;:!‘l_:.f_(.g)_g._ o e lea)-o (eu) )ue-é t /4 dt,
bi 2¥r “[in(e_/e)] /2 ™1 °
i-0,1, {76)
where
1/t (77)

and rpo(e) and qal(c—:) arc the interior approximations given by
equations 65, 66, and 67 in power series form. Since the only
singularities of the differential cquation 64 for the interior approxi-
mation are at € =0 and € = o, the power series certainly converges
in the interval of interest, 0= ¢ = €, Since power series are
uniformly convergent within cvery closed disc interior to the circle

of convergence, the integrations in cquation 76 may be done term by

term, The discussion of the situation at small energy is deferred
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until Part 1V,
The approximate flux given by the boundary layer technique

for the absorbing case is -

9, (x: €) = i(x)o_(€)

-1/2
{(In e _fc) z,z2
-%‘ﬁ—’ ° T (oylear-g fen) jue ™" E P, (78)
T Q0
for 0= x < oo, and
py(x, €) = f(x)p (€}
_ -1/2
{(In eq/e) .22
+ FH0) ) (¢ {eu)-0 (eu) Jue £7/4 dt, {79)

2‘\[7: a

for -1/2 = x= 0, The ¢.(€) terms are given by equation 68,
£ is given by equation 57, and u = e”tz.

Most of the discussion of these results will be deferred until
Part IV, There are two points that should be made at the present
stage. First, the flux at the interface, x =& = 0, can be obtained

in the scattering @sc by setting £§=0irn equation 56 or 57, The inte-

grations can be performed explicitly to give

<

11 e -€
ol0,0) = {5 7 + (80)
2 TO 8,1 Tl

In the absorbing case the same operations on equation 78 or 79 gives

¢(0, €) = i%)-l{rpo(e) * o, (€) } . (81)
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Equations 80 and 81 state that the flux at the interface, in this approxi-
mation, is the average of the interior approximations extrapolated to
the interface, The energy dcpendence of the interior approximations
for x> 0 is the same as would exist in an infinite homogeneous
medium composed of the same materials The same is true for the
interior approximation for x <0, Thus,:in the slab problem where
one infinite medium solution is blended into the other across the
intcrface, it would be expected that the energy dependence of the flux
at the interfacce would depend in some manncy on the infinite medium
solutions., Therefore,the averages obtained above are very reason-
able results,

The second point is that diffusion thecory is an approximation
to the actual physical process which is taking place. The assurption
that all moments of the angular flux higher than the first could be
neglected, which is the basis of the diffusion theory model, is not
necessarily valid near places where material properties change
rapidly. At such places the angular flux is very likely to bc aniso-
tropic and consequently the higher moments may not be neglected (18).

In this problem the ragion af greatest interest is near the
interface which is the place where diffusion theory may not be valid.
A priori it is not known whether the approximation constructed
here is hetter or poorer than an exact answer to the diffusion theory
equations in the sense of yielding a result which is closer or further
from the actual flux occurring in the physical problem at and near

the interiace.
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11, TRANSPORT THEORY

A. Introduction

The purpose of Part Il is to find an approximate solution to
the transport equation 1 using the technique introduced in Part IL
The transport cquation will be solved for slab geometry, the slab
occupying the space from z = - W to z = 0. The nucleii of the
media present are assumed to be monatomic gases in Maxwcllian
energy distributions characterized by different temperatures for the
slab and the surrounding medium. From the analysis of Part II
we expect that the exact solution to the transport cquation will be
approximated by the sum of an interior approximation and a boundary
layer correction wkich will make an appreciable contribution to the
flux only near tke interfaces,

In terms of the dimensionless variables
x=za/W, €« =E/T_, (19)

the Lransporl equation is

B9 _(x, €,1) +{cr:(€) 24

-1/2
A ox a + m € } ‘if’o(x, E:IJ&)
O o

w0 2(ctpte, p)
§oaerf, o=

ap

) - Goo(xs €':P-') ’ (82)

(s}

for 0 =< x <« oo, and



1
T (E) 28 1 /-
E— t — (e/a) 1/&}401(}:, €

_B‘_ a‘?l(xt E:"") +{

)‘l 0%

o0 # U;(E',}L - e,u)
:S de'S. dp' gal(x,e'.p’), (83)
0 -1 T2

a

1

for -1/2=x=0, The subscript 1 denotes quantities in the slab
and the subscript o denotes quantities in the surrounding medium.

In terms of the dimensionless variables the scattering cross section

is
i
o _(€) ay “me/a;
5o 14t ext (mr:‘/ai)l/z.}. e 11/2 i=0,1
v; (Trme/ai)
(84)

where erf (x) is defined by equation 5.

The energy transfer cross section 1s

i
{e'.b"—e,u) 2 1/2 poo "2 . .
s _— 2(1 +~1-) (‘Er) 5 dtj " qu oitle-eh

m €

3 87 -0 ¥0
. 2
1t-a.t
X exp{ ml [e+€‘-2p0(ee')1/2 } , i=0,]1,
(&5)
where
oo = v +[0pD00?)] V2 cos u (4)

The parameters used in cquations 82 to 85 are

a; = T./T A, =0, W, i=0,1, (86)

n? i i
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and {for an absorption cross section inversely proportional to the

neutron velocity,

i
ma,(€)
2 1/2 .
by =g (/3 /2, i=0,1, (24)
is a constant.
The angular flux in the rest of space is obtained by the
symmetry about x = - 1/2
el €, ) = @(-1-x, €, -1}, x>-1/2 , (87)
At the interface, x = 0, the angular flux is to be continuous,
P10, &;p) = ¢ (0, ¢,p) , (88)

for all energies € and angles c:<:>ss“1 e At zZero energy the angular

flux is to vanish,
9. (%, 0,p) =0, i=0,1, (89)

for all x and angles cosdl . The large energy boundary condition
will agein depend on whether or not absorption is present. In the
scattering case (Ai = 0) the angular {lux will be requircd to go to
zero at large encrgics in such a way that

Qo
S. ¢, (x, €,p) de, i=0,1, (90)
0

exists for all x and angles cos-l P« If absorption is present the
energy range will be restricted to 0= € = ¢_ and the angular flux

will be required to agree with a prescribed spatial and angular distri-
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bution of flux at € These are the same energy boundary conditions
that were used for the scattering and absorbing cases in the treat-
ment based on the diffusion theory model,

We again assume that )\i is a large quantity, implying that
the slab width is much greater than the mean free scattering length,
In order to obtain the cquations which are approximately valid in the

different regions of the =x, ¢ plane, the change of variables

& =\"x , n = A Pe (91)
ig introduced into equations 82 to 85. We then pass to the limit of
infinite A . The resulting equations for different pairs of a,p will
- govern the first approximations to the flux in varicus regions of the
x, € plane, This is the samc procedure that was used in the treat-
ment of the diffusion theory model- to obtain the equations governing
first approximations. The results of this operation on the transport
equation are displayed in the o, plane, figure 2. The only new
symbol used in figure 2 is given by

=i At (e \

o {n', p'=n, 1) _ (1 L1 )2(11)1/2S00dt5 demb _it(n-n)

o, 2 m 7'
i 8 -oo Y0

+eXp {-1-:; (n+n'- Zuo(nn')l/z}, i=0,1,
{92)

where u_ is given by equation 4. The equation for a =1, B =0 hLas
been omitted from the diagram, It can be obtained by adding

p.(aqoi(é,e, w)/8€) to the left hand side of the equation for a<1, B =0.
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B. Scattering Case

1. Formulation of the boundary layer problem

For the scattering case (Ai = 0) the angular flux is required
to be Maxwellian for all p at infinite distance from the interface,

That is

. -€
o (x6 Wy~ 57 ¢, as x— o . (93)
(&}

The factor of 1/2 is included so that the integral of the angular flux
over all p is the same for large x &s that usec in diffusion theory,
According to the procedure established in Part II the first
gtep in obtaining an approximate solulion is to solve the interior
equation., For the scattering case in transport theory the interior

equation (o = 3 = 0) is

o‘t(e) @ +1 cr;(e',p‘*"e,p)
=~ > - 1 L] b ]
— o.{x, €,p) —g de S dp'e.dx, €'y p’) p , {94)
i 0 -1 1
i=0,1

where the scattering cross section, cri(e), and the energy transfer
cross section, o-is(é’,p"""e,p) are given by equations 84 and 85
reupectively.

The energy and angular dependence of the solution of equation
94 may be determined by either of two methods. For the first method
we recognized that cquation 94 is identical with the transport cquation
for an infinite homogeneous non-absorbing medium. Therefore the

flux is an isotropic Maxwellian distribution characterized by the tem-
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perature of the medium. For the second method m is assumed

. -1 . .
large ané an expansion in powers of m is performed on equation
94 using the Dirac delta function indentification equation 1. The

. . -1 .
resulting equation to order m is

A,
(1 + 'z_r:;*e.)qai(x: €, P-)

B 82 i 1l
= —— | — 1 1
:-nrl(&a.i-—z-!-tBE)SI pqui(x,t,p)d}.;

de -1
a 2ea 2 |
1 2 i i 0% _25_@_‘_)5‘ N gt
* 2(1+‘E+2m€+ m 2+m de <pi(x,€,p.)dp,
te -1
i=0,1, {95}

Tke right-hand side of equation 95 tells us that qoi(x, £, 1)

is a linear function of p, say
¢i(x,e,p) = ';DOi(x' €) +p.(p1i(x, ), i=0,3%, (96)

This implies that the diffusion or ]?1 approximation is consistent
with the large mass assumption for the interior approximation.
Therefore, <p0i(x, €) may be identified with the flux and :2h with

the current (see equations 8 and 9). The eguation for ¢Oi is

BZ‘POi[X,E} 8r.001(x. €)
EaiT+€ ——-a—e_——'f'q:JOi(x,G) =90, 1i=0,1, (97}

and the equation for P13 is

2
Eai 5] qa]i(x,E)

€
+ L
m a'&_2 m de

8¢ .(x, €) a,
1li 3 i _
+E(1 tome ) ?130% €) = 0,

i=0,1. (98)



‘Pli(xa €) =0, i=10,1- (()(}a)

The remaining equation 97 for ngi(x, €) is identical with the equation
used for the interior approximation in the treatment of the diffusion
theory model. Therefore by either method the solution to the
interior equation satisfying the encrgy boundary conditions 89 and 90
is

-E/ai

_ £ . s
cpi(x, €, 1) = :Ei(x) a; e , i=0,1, {99b)

where fi(x) is 2 function of x to be determined.

The functions I_.L(x) are determined exactly as they were in
the treatment of the scattering case based on diffusion theory. We
again find that the particular solution to the equation for the first order
term in the flux expansion (see equation 28) musl be zerv in order to
satisfy both the large and small energy boundary conditions., This

implies that

dfi(x)
dx = O » i = 0,1’ (100)
or
[ ) = “z%; , L) = A, (101}

where Lhe constant fo(x) has been chosen to salisly boundary con-
dition 93.
These results, cquations 99 and 101, could be obtained in a

completely equivalent manner by arguing that diffasion theory is ade-
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quate for the interior approximation. It has already been shown that
the large mass assumption for the interior equation derived from
transport theory is equivalent to a P1 or diffusion approximation.
Davison {18} shows that the error in the flux using the diffusion
theory anproximation is of the order of e_‘yd where d is the
éistance to the closest boundary and o is the total cross section,
Since the results obtained by the approximation plan are correct to
order ‘\_1 = (O"W)_l, the error in the flux caused by using diffusion
theory for the interior solution is less than the error inherent in the
approximation scheme away from the boundaries of the region in
which the interior sclution is valid. Therefore, we could have
started with the diffusion theory results of Part II for the interior
approximation. The detailed derivation using the approximation
scheme has been included to show this equivalence between the
interior approximation and the diffusion approximation for the large
mass assumption.

The interior approximations are therefore

€ -E
T e ’ for 0= x< o0, (102)
o]
-€/a
A:——e L for -1/2=x=o0, {103)
1

which satisfy the small cncrgy boundary condition 89, the large energy
boundary condition 90, and the boundary condition 93 at x = co.
These interior approximations do not satisfy the interface condition

88, Ilence, to. the interior approximations must be added boundary
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layer corrections, which make an appreciahle contribution to the fiux
only near the interface, so that the interface condition can be satis-
fied to order \ %,

For the boundary layer correction the equation with a =1,
P <0 will again be used. From the arguments by which the equations
were derived and the fact that P 1is negative, this equation is ex-

pected to be most accurate for large energies. Fraom the a,(

diagram, figure 2, this equation is

B¢, . (€, n, 1) N .
1 A Pr5(55 M 1)

Q0 +i —i, 4 4
_ ' 1 £ t 9 (T] s BT, IJ-) .
- S‘ dn ‘g d{-—'— (pbi(gr s, [J' ) 1= Oa 1 ’ (104)

0 -1 T3 ’

where o (n,p'=n,u) is given by equation 92, We now trcat this

equation approximately by assuming that m is large. The kernel

1

of the integral, o (n',p 'MW )/cri, is expanded in powers of m * and

the resulting terms are identified with the Dirac delta function and

its derivatives, equation 1ll, The result of keeping all terms with

cocfficients of zeroth and first power of m is

By (S5 My 1) fo )
|35 ——‘r (Pbi PP

1
=(-§+

L
m an

0 s (M
A 1
t— —)S . ?y; {6, My et)dp

»
SEND L g e ap! ¢ 0(%) i=0,1.  (05)
T] 1 ™1
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The energy boundary conditions 89 and 20 are taken to be the same
as those for the interior solution, The boundary layer correctiorn is
added to the interior approximation so that the interface condition

88 can be satiafied to order h_lz that is

ga ¢, (0,1, p) = z’-‘aiwe—Em1 + ¢, (0,%, ) (106)
ZTO bo* a b1 7 '

for all € and p. In addition, exponential decay as |E| — o is
required, so that ?ho and 2% will only be significant near the
interface.

The constant A remaining from the interior approximation
can now be determined in the same manner as it was in the treatment
of the scattering case in diffusion theory. After integrating the
interface condition 106 over all € and p and using cquation 105 to
determine the integrals of the bourndary layer corrections, the result
is

A= — (107)

Hence, to first order the interior approximations are again Maxwel-
lians characterized by the temperature of the respective media.

Several points can now bc made before we consider the con-
struction of the solution of equation 105. First, the equation 105 and
boundary conditions 89, 90, and 106 are independent of the choice of
B, the negative constant which determines the cnergy scale on which
we are working. Thereforesthe boundary layer correction, ‘Pbi’

will be independent of 3. (This was also the case in the diffusion
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theory treatment, ) Consequenlly, from now on we will use ¢ instead
of n as the energy variable in the boundary layer correction.

Secondly, if the boundary layer correction is expanded in
Legendre polynomials and only the firs( lwo Legendre coefficients
are kept as in diffusion theory, the resulfing boundary layer eguation
is identical to the boundary layer equation 44 used in the diffusion
theory model, This at leasl indicutles consistency belween the two
treatments.

Thirdly, if the limit m — o is formally carried out on the

boundary layer equation 105 the resulting equation is

Be, ;. €, p) +1

i ' . . -
4 _——'—'a_g—- +¢b1(g’ €, IJ-) = _é‘g._lfpbi(gl €, }"-‘I) dp'll 1=0!1l (108)

which is the one-velocity transport equation with multiplication equal
to one, The interface condition 106 remains the same. It can be
interpreted as a jump condition for ecach fixed €. It is known (18,19)
that the one-velocity equation 108 does not have a solution which simul-
taneously decays exponentially with distance from the interface and
satisfies a jump condition at the interface, This is related to the
fact that the limit m =~ o0 removes the energy derivatives from the
boundary layer equation 105, The energy derivatives arise in the
boundary layer equation 105 because of the expansion of the kernel

in equation 104, Thus,the limit m —*~ co removes the mechanism of
energy exchange between the neutrons and the nucleii for those
neutrons crossing the interface. Therefore, the 1’;’1_1 terms mnst be

kept in the boundary laycr equation 105 in order to account for the
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energy exchange. Tho retention of the m_l termsg allows fulfill~
ment of the exponential decay requiremecent. This point will be

further discussed in Part IV.

2. Solution of the boundary laver equation

The boundary layer equation 105 will be treated by using a
technigue similar to that introduced by Case (19) for treating the one-

velocity transport equation, We first consider solutions to the

c'gf"’q:(v, € p, (109)

where Vv is a parameter. Solutions of this form will not in genecral
satisfy the interface conditions for any choice of v. However, the

solution to equation 105 whick also satisfies the interface conditions
will then be constructed by a superposition of the special forms 109
over all admissible values of v. The substitution of 109 for

¢bi(g, M, 1) in equation 105 gives

VB oy (v,e,p) = BIZ apr,e) + £ 2208)

2m m d¢
_ pe by, €)
o de ' (110)
where

+1
a(v,¢€) = Y(v, €, }-Lr) diJ-' ] (111)

-1

+1
b(v, €) =§ p(v, e p') dn'. (112)
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Since p is real and in the range
the same intcrval,
interval.

gated scparately for these two cascs.

Case {i} v real and - 1=v =1

-1 to +1, cither v igin
so that ¥V = u is a possibility, or ¥ is not in the

The functional equation 110 for (v, e,u) must be investi-

For Vv in this range the solution to equation 110 is

m+2 € daf{v,e) pe 8b(v,¢)
WV, €, 1) = V- Zm( )+m 13 m 86’

Ay, €)8{v-u) ,

where O(Vv-u) 1is the Dirac delta function,

‘result 113 be consistent with equations 111 and 112,

foliowing two equations for a, b and X

Ba(v, €)

b(v, €) = - f—g (a(v,e*) te—g

2ve Bb(v, €)

}.,(V, E) = a(v: E) - m e

{113)

It is now required that

This gives the

) ’ (114)

2 Be

) {z(@gaw o) + 2€ 2alt, e)) ve oo, e)}g d

(115)

%
From eguations 114 and 115 , two of the unknown functions a(v, €},

b{v,€) or A({v,e€) may be determined in terms of the remaining one,

a(v, €} will be chosen as the unknown function.

Eventually the

&%
“All integrals are evaluated in the principal value sense when

necessary,
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interface vondiiion 106 will yield a funcilonal equation which wilil
determine af{v, €).

Equation 114 indicates that b{v, €) is of order m-l, consc-
quently —I%- db(v, €) Z 1

BE‘ €) is of order m °. Tu be counsistent with the m

€ B, e
m

approximation the term 3¢ should be eliminated from

equation 105 for v in the interval {-1,1) because it is of order rn-z°

If this is done, A(v,€) as given by equation 114 bccomes

+1
My, €) = a(v,€) - v (nzl;z)'a(v,e) + £ 3—‘3%—6)} S‘_lg—% ,
{116)

so that

+
Wvae) =g B v, 0 ¢ £ B2l0)

+1 .
+<alv, €) '(M afv, €) 'l‘-]:-—rfl M)S‘ .._d..E.._ 6(1;..“).

2m Be L
(117)
Case (ii) v not in the interval (-1,1)
The solution to equaticn:110 for V in this range is
. _ v m+2 € Balv,e) pe Bhiv, e}
v, &0 = V- 2m a{v, €} * m Q€ m de - (118)

The substitution of this result into equation 112 again yields equation
114 for b(v,€) in terms of a(v,€), We again conclude that
€  8b(v,e€)

— B 1is of order :rn_2 and, therefore, should be eliminated from

equation 105 for v in this range. Then equation 118 becomes
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+
bl e w) = g i av, o) + 5 2alat (119)

The substitution of 119 into equation 11l gives a first order differential

equation for a{v,¢),

B -1, 1 m+2 € 9a(v, €)
a(v, €} =V tarh {-.;){ 5 Vs € T = ==L (120)

The solution to this equation is

al(v, €) = V(v) exp{m én < (1 - ml:;Z v ‘ca.:-'lh_1 (%))} s (121)

where V(¥} is an arbitrary function of v to be determined.

Since the boundary layer correction qobi({:,, €, 1) will be
constructed as a superposition of special solutions of the form
e-g/'qu(V, €,p) over all admissible values of v, W(v,e¢,p) will obey
the same boundary conditions at € =0 and € = @ as (pbi(é,e s B b
Because of the definition 111, a(v,€) is required to obey the same
boundary conditions at € = 0 and € = as (v, €,p) and conse~
quently of -;abi(ﬁ, €,). To satisfy the condition at zero energy we

must have

+2 - 1
Re(l-mmvtanhl(-ﬁ))>0. (122)

so that a{v,0) = 0, To satisfy the condition at large energies we

must have

Re (1- iz Vtanh“l(%)> <-1, (123)
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so that the intcgral of a(v,c) ovcr all € oxists. Hence, there are
no values of v in this range which satisfy both conditions simultane-
ously unless V(v) = 0, Thus,the only admissible values are those
of casc {i}; inee, ¥ realand - 1=v =1,

We now superpose solutions of the form 109 over all values
of v in the interval (-1,1) and obtain in this way the boundary layer

corrections

11

*"bi‘g’ €, ) = Wi(V)e'g/vq:(v, e, p)dv, i=20,1, (124)
-1

where Wi(V) is an arbitrary function of v to be determined and
W(v, e,1) is given by equation 117 in terms of a{v, €) which also

must be determined. The requirement of exponential decay of the

boundary layer corrections as |£[— o is satisfied by selecting

T1, if v>0 ,
WO(V) = { (12.5)

0 il v<0

0 implies & = 0, and

since 1

0, if v>0 ,
WI(V) = (126)
-1 if v<Q

| 4 »

since i =1 implies £ = 0, All further v dcpendence is expressed

in er»&/qu(v’ €,u}. Thus,the boundary layer corrections become

1
(Pbo(gs €, ) = SO e—g/“"{J (v, €,p) dv, (127)
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for £ = 0, and

0
«pbl(é, €, 1) = - S‘ ! e_g/vtfl(v,ﬁ.p) dv , (128)

for &£ = 0,

The interface condition 106 then becomes

€ e—e/a —e 11
ﬁ-(‘—z—-e )‘ J{v, e, p) dv
o]

a -1

+1
+2 0 ’
a0 (B a0 + 5 ) (2

~Atl
v m+2 € dalv,€)
+‘§_1 7};( >—=a(v, €) + — 2= )dv, {129)

with the aid of cquation 117 which gives WU{v, €,p) in terms of a(v, €).
Fquation 129,which must determine a(v, €), is treated in detail in

appendix B, The result is

B 0 -eu/a ) )
a_(p"e) = —-—'€-'i_‘- g dt( c_’______z,,_,_ - e Eu)uze ot
™o Y0 a
X (X cos Xt - @ sin Xt), (130)
where
a = e t/m (131)
= 4 [{tanh’l )% +—“—2-] B (132)
X =3 S 4 !
_ 1 _ 4 -1
0= 3 (1 = X tanb p) . {133)
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Therecfore,the approxzimate solution for the angular flux using

the zpproximation scheme is, from 127,

EG-G 1] "‘E/V
P, (%, €, 1) = 55 +S e 7 Yv, e, p) @V, (134)
o 0
for 0 = x < o, and from 128,
-€/a 0 -
€e -E /v, _
§01(X,€s}l) = 'i'ﬁ—l— - §~le / (v, e, ) dv, (135)

for -1/2=x=0, P(v, e, ) is given by equation 117. The integral of

the angular flux ¢(x,e,p) over all p, called the flux ¢(x, €}, is

-€ i
7% €) = S5 + (l\oeug/”a(v. €) av (136)
o ot
for 0= x < oo, and
-¢/a 0
<01(Xa €) = %—T—l— i SI 1e g/va(", €) av , {137}

for - 1/2 <= x = 0, where a(v,€) is given by equalion 130, The flux
from transport thecory, equations 136 and 137, is to be compared
with the flux from diffusion theory, equations 56 and 57.

The approximate flux at the interface x =§ = 0 is

-€ 1
¢(0, €) = E% +S a(v, €) dv
0 0
{:e_e 1 #
= =7 + -Z—S‘ a{v, €) dv, (138)
o] -1

since a(v,€) is an even function of v, Using 130 to 133 the integra-

tion may be performed explicitly to give
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-€ -€/a
1/ €c €e
(P(O! E) - E( T + 2T ) M (139}
o 1
which is the same result for the interface flux as that obtained on the
basis of diffusion theory.
Various consequences of the resnlt represented by erquations

136 and 137 will be discussed in Part IV,

C. Absorption Case

The case with absorption present is very similar to the
scattering casc. As in the treatment in Part Ll based on diffusion
theory, the energy variable is restricted to the range 0= e = € .
.We must determine an appropriate boundary condition for the angular
flux at € = € In Part II it was argued that the Fermi age model
or one~velocity diffusion theory was adequate to describe the high
energy neutrons, The same arguments hold in the present case.
Thus, at intermediate energies all moments of the angular flux
highe r than the first may be neglected.

Then from one-velocity diffusion theory, the boundary con-

dition for the angular flux at ¢ = €5 is
-1 . df(-‘f)} . _
(Pi(xi EO’ P») = 'Z{f(x) }-"Di dx » 1=0,1, (140)
whe re Di. is the diffusion constant at € = ¢, and f(x) 1is the

prescribed function for the ncutron flux (see equation 61}. The

diffusion constant is given by
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1 _ 1 1 .
b= —=3, [1*9&), i=01 (141)
30 (e ) i
5 s}
where the last part of equation 141 follows from equation 15, For

the large mass assumption the boundary condition 140 becomes

oyl e = 3 {itx) - 5 S} i=0n 42

to order mvl.

At zero energy the angular flux is required to be zero

(pi{x, O,p) =0 , {143)

for all x and p. At the interface the angular flux is to be continuous,

9,40, € 1) = 9(0, €, ), (144)

for all OSESEO and -1=p=1,

We again start the approximation procedure by solving the
interior equation. From the analysis of the scattering case in
transport theory it is known that the large mass assumption is con-
sistent ‘with diffusion theory for the interior zpproximation. With
the large mass assumption the interior equation is

Bzwi(x, €, ) 8o, (x, €, p)

-1/2 oy
€a, 862 + e 5C + (1- Ai(e/ai) )qoi(x, €,4) =0,

i=0,1. {145)

Equation 145 may be obtained by expanding the equation with a = = 0

from figure 2 for large m ,or from the treatment of the absorbing
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case in diffusion theory, equation 64, The solution to equation 145

satisfying boundary conditions 142 and 143 is

o) = 20 - £ SAY L) ii00, 4
i3

where qai(e) is given by 68,

The solutions given in 146 satisfy the required conditions at
zero energy and for large energy, but do not satisfy the interface
condition 144, Therefore,a boundary layer correction, again deter-
mined from the equation for a =1, <0 from figure 2. must be
added to the interior approximation so that the interface condition
is satisfied to order 2!, The equation governing these boundary
layer corrections (with the large mass assumption) is derived in

the manner illustrated in the previous cases. I turns out to be

Bcp (‘t:v €, P-) + qu (&s E;l-l')
i TP . R AR
B 5 to 6 €)= -1 mg_l P dp
+1 8, (&, €, ")
m+2 . € 9%hi ? \
+ Sl(“ﬁ" Ppi(Sr &) T o — e )d” '
i=0,1, (147)

which is the same as cquation 104 which was used to determine the
boundary layer correction for the scattering case in transport theory,

The boundary conditions are
(Pbij(g’ 0! }-L) = Ol 1= OJ]- ] (148)

‘Pbl(‘i: EO’ I-’-) =0, i=0,1 » {14:9)
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and the intcrface conditign 144, with the additivn of the boundary

layer corrections becomes
?,(0,&,p) o (0,€,p) =¢(0,€, ) +¢,(0,¢,u} , (150)

for all 0=e= €, and -1=p=<1 The cpi(O, €,.) terms are
given by equation 146. In addition to 148, 149, and 150, exponential
decay of Pp; 2 |§| — w is required so Lhal the effect of ?Li
is limited to the region near the interface.

The preliminary steps in solving for the boundary layex
correction by the method introduced by Case (19) are identical to
those in the treatment of the scattering case in transport theory.

.We again look for solutions to equation 147 of the form
EM i, e, (151)

and the boundary layer correction is then given by a superposition of
the special forms 151 over zali admissible values of v. It is again

# , i
found that the term r—%S‘ p' BLN;’EG’ ) dp' is of order m 2 for all

-1
values of vV and,therefore,should be eliminated from equation 147

. . . . -1 . . .
as being inconsistent with the m approximation. For Vv in the

interval (-1,1), (v, e€,pn) is given by

oot =52 (B2 a0+ & 25420

v+l
) m+2 € da(v, €) du'
t4alv, €} v( 2m a(v, €} + m Be ) _13_-%'-

X 6(v-p) , (152)
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where a(v, €) is a function which will eventually be determined by
the interface condition 150,
For v not in the interval (-1,1} u(v, e,p) is given by

equation 121. We must again have

m+2 .. -1,1
Re [1 = vV tanh -1;)]> o, (153)
in order to satisfy 148 that the boundary layer correction vanish at
zero energy. From the discussion in Part Il of the absorbing case

in diffusion theory, it is known that the flux at high energies is

inversely proportional to the energy. Since Y(v, €,p) must have

the same encrgy behavior as the flux, we must have

Re [1 - mrgz V tanh (-11;)] <-1, (154)

in order that the boundary layer correction be less than or cqual to a
constant times t-:—l for large €. Thus, agein the only admissible
values of v are those in the interval {-1,1).
1o satisfy the requirement of exponential decay in the §
direction, we again find the boundary layer correction is of the form
3
ProlEr€ak) = Sioe'g/vlbtv,sn ) av, (155)

for £ > 0, and

0
‘Pbl(grerf-l-) = _S‘ e_g/vq“‘v,E,}l) dv, {156)

for £ <0, Y{v,c,p) is given by cquation 152. The interfacc con-
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dition 150 becomes

~4+]
991(0,6,;0 - rPO(O,e,}L) =S (v, e,p) dv , (157)
-1

which after the substitution of 152 for (v, €,p) becomes a functional

equation for a{v, €). This functional equation is

+1
0,(0, €, p) - @510, e, p) =alp, €) - (m—”‘ alp, €) + — M’) [J-S. v

2m m Q€ R

+]
+S’ v (m+2 alv, ) + % Ba(V,e))dv_ (158)

VR 2m de

Equation 158, which determines a(v, €}, is treated in appendix B,

The result is

-1 (% e lew) o, (eu)
af{v, €) = —T-rl-JS‘O dt <£() ((pl(Eu) -(pO(Eu))_ _‘:;_ dii?)( 10_1 _ OUO )}

X uepet(x cos Xt - O sin 6t) , (159)

wWhere

w=e /M (131)

and ¥ and 6 arc functions of v given by equations 132 and 133,
The approximate angular flux which resgults from using the
boundary layer technique is then

P 1 _
plx € 1) = %(ﬂX} ) '3%: El':ﬂ"(:f)') ?ot€) +50e g/vq’(“ﬁs#)dh

(160)

for 0 = x< oo, and
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0 .
Qol(xsEr IJ-) = %(f(x} - '3%—"]'"@%)(91(5) - S—le"‘g/"ql(v, €, E-L) av,

{161)

for ~1/2=x=0. y(v,n,u} is given by equation 152,
The integral of the angular flux, equation 160 and 161, over all
i, called the flux, is

qao(X.E) = f{x)e (E) +5 A a{v, €) dv, (162)
0

for 0 = x < oo, and

G
oyl €) = ixdgy(e) - L e av, (163)

for - 1/2=x < 0. a(v,e} is given by equation 158, Thkis lux,
equations 162 and 163, is to be compared with that obtained from
diffusion theory, equations 78 and 79,

It should be noted that svlulivns 160 and 161 do not satisfly
boundary condition 142, If the term in brackets in equation 159 is
expanded about t =0 at € = €g the resulting expansion is

p )  @,(e
a(“'eol wm}? dde%(o)(qal(eo) qDO(€O:)) Edfd(g)( 1010 ) ?7{) D))}

-1y

x(92+x2‘

7 )
X {( -35 + oY+ xm} ( ) . aes

Tke integral of afp, 60} over all p, which is greater than the term

. . . . . -2
which eaters in reaction rate calculations, is of order m .
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Therefore,the amounl by which 160 and 101 {ail to satisfy boundary
condition 142 is of order m_2 and,hence,is within the error involved
in the large mass approximation of the equations. Therefore, no
additivnal boundary layer correction wiil e added to Lthe approxi-
mation obtained.

The approximate flux at the interface may be calculated by
setting £ = 0 in cquation 161, The inlegral vver a(¥,€) may be

performed giving
00, €) = A2 (o e) + pile) ), (165)

where goo(e) and qal(e) are given by equation 63.
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IV. DISCUSSION OF ASSUMPTIONS AND RESUT.TS

A. Discussion of Assumptions

In applying this or any othcr analysis to an actual reactor
calculation, it must be ascertained that the initial assumptions of
the analysis are satisfied by the actual system. For the present
analysis to be applied to an actual system both m and A must be
large and the step discontinuities in material properties must bhe well
approximated. At the core-reflector interface the step discontinuity
in cross sections is applicable; however, the step discontinuity in
temperaturc is applicable only for certain reactors. If the tempera-
ture changes from ane value ta annther in a distance less than one
mean free scattering length,{or equivalently, a small fraction of 1),
then the step function description of the temperature is a good
approximation since most of the neutrons in the region of rapidly
changing temperature would come from a region of uniform tempera-
ture,

if the cove and reflector are in contact, the heat gencrated
in the core is conducted to the reflector. In this case the temperature
wotld not be well approximated by a step function since the tempera-
ture would moest likely be changing continuously over a distance of
several mean free scattering lengths, In some reactors there is a
gap between the core and reflector. The heat generated in the core
iz remnoved by a coolant circulating through the core, In such
systems therc is little heat transferred from the core to the reflector.

Consequently, the step function description of the temperature should
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be a good approximation for such systems., For the case of gas
cooled reactors, where the temperature does change rapidly across
the solid-coolant interface, this approximation method would be
applicable only if the coolant channel is wide (i.e. X\ large). The
assumption of the step discontinuity in temperature is a useful
starting point for analytical analysis of the problem of neutron
distributions in materials with spatial tempecrature variation,

The assumption that A be large is not too restrictive.

the free atomic cross section, is given by (13)
i
o = 47R"N , {166)

where R, the nuclear radius, equals 1,2 X 10-13m1/3 centimeters (20}
and N is the number of nucleii per cubic centimeter. For diffusion

theory A\ is

Ap = 0. 266 pm™>/6 w, (167)
and for transport theory
Ay = 0,109 pm /3 (168)

T

where p is the density in grams per cubic centimeter and W is the
slab width in centimeters, For example, with carbon {m =12, p = L, 6)

the A's are

P
1

0.0536 W,
(169)

o
|

=0.0763 W,
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Thus, for a carbon system 200 cm. wide, X\ is of order 10.

From equations 167 and 168 we see that for the sazne W and -
the same material, M\p is larger than Ap. Since the boundary layer
arguments imply that the error from the actual flux is of order ?\—1,
the flux derived from transport theory has a smaller error than the
approximate flux derived from diffusion theory for the same slab
width, W,

The assumption of a heavy gaseous medium is the most un-
realistic of the assumptions because very few reactor materials
arc hecavy gases. Most reactor materials zre crystalline solids,
hence the collisions occur between a neutron and a bound nucleus.,

. The energy exchange cross section is considerably more complicated
if the effects of chemical binding are taken into account. The heavy
gas energy exchange cross scction is the only one that is amenable
to an analytic attack.

Aamodt et al. (12)have showr that all energy exchange cross
sections approach that of the heavy gas at high ncutron encrgics
(E/T >1/m). Nelkin's (21} analysis shows a weak dependence of the
thermal spectrum on the choice of the medel used to calculate the
cnergy exchange cross sections for heavy nucleii. The equations 44
and 105 used to calculate the boundary layer correction were derived
from an argument which assumed that A was large. This argument
implied that the equations were better approximations at high neutron
energies, For these reasons the results obtained in this thesis are

expaected to he hetter, in the sense of being closer to the actual flux
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that exists in the physical problem, at high neutron energies
(E/T > 1/m).

The assumption of large N and the subsequent a,p argument
leads to the cquations used for the different regions of the x,¢
plane. This is equivalent to establishing different models for the
different regions. For instance, the interior equation (@ = § = ()
is identical with the infinite medium equation. This expresses the
fact that neutrons far from the interface are not affected by the
presence of the interface. It is interesting that the boundary layer
eguations, 44 and 105, have constant cross section; implying that
the energy dependence of the cross sections is not important for that
- portion of the flux attributed to the boundary layer corrections,
Absorption anc the temperature ratio enter the boundary layer cor-
rection calculation only through the boundary conditions st the inter-
face, These are consequences of the assumption of large X and the
a,f argument,

Two large parameters, m and A, arc present in the equa-
tions. The o, argument was applied to the equations using A\.

At first sight there is no recason why m can not be used for the

a,P argument. However, the equations correctly describe the
neutron migration regardless of the size of )\, even infinite A, This
is not so with m since the linrcar transport equation does not cor-
rectly describe the situation for infinite mass. For infinite mass
the linear transport equation allows for no means of energy transfer

because it neglects neutron-neutron collisions, Also for infinite
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mass the slowing down time is infinite with the linear transport
theory model. For these two reasons an equilibrium distribution
can never be established in the case of infinite mass with the linear
transport theory modcl, We must, therefore, limit our considcra~
tions to large but finite mass. Hence, m may not be used for the

a,f argument,

B. Discussion of Results

In Parts Il and IiI, four different problems were considered:
scattering and absorbing media for both the diffusion theory and
transport theory models. In all four cases an approximate flux,
‘composed of two parts, was constructed using a boundary layer
technigque, The energy dependence of one part, called the intericr
approximation, was found to be the same as that which would exist
in an infinite medium, The other part, called a boundary layer
correction, made an appreciable contribution to the flux only near

the interface,

1. Boundary Conditions

For the scattering case the flux was required to be zero at
zero energy. At large cnergies the flux was required to go to zero
in such a way that the integral of the flux over all energies existed,
Far from the interface in either direction the flux appreoaches a
Maxwellian distribution characterized by the temperaturc of the medi-

um, The above energy boundary conditions on the flux hold because
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the flux must be intermadiate between the two Maxwellian distri-
butions, each of which has these characteristics,

For the absorbing case the flux is still required to be zero
at zoro energy beeause the presence of the absorber should not alter
this property of the flux., At a fixed large energy €, the flux was
required to attain a certain prescribed spatial distribution, which is
equivalent to a neutron source, The interior approximations were
constructed to satisfy these energy boundary conditions; therefore,
only the boundary layer corrections need to be investigated.

The transport theory boundary layer corrections are super-
positions of solutions of the form e—g/vLP(V, €,1) over all allowable
-valucs of the parameter Vv, It was necessary to use both the zero ener-
gy and large energy boundary conditions in order to eliminate values
of v except those in the interval -1 to +1. To determine a unique
solution to the functional equation which arose from the requirement
of continnity of flux at the interface, only the small energy boundary
condition was satisfied. It was shown in appendix B that the large
energy houndary condition was satisfied for the scattering case.

It was shown in Part Il that, for the absorbing casc, thc boundary
condition at € = €, failed to be satisfied by an amount of order m 2'.
It is also quite obvious from the form of the solutions, equations 134
and 138, that thc condition of exponential decay in the § dircction is
satisfied.

In the treatment based on diffusion theory, the situation is

quitc diffcrcnts. Here only the large energy boundary condition was
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satisfied, The differential equation 44 governing the boundary layer
correction is a partial differential equation which is of first order

in the energy variable; therefore, only one energy boundary condition
could be imposed. The corresponding equation in transport theory,
equation 105, 1s a functional equation involving c¢nergy and spatial
derivatives and integrals over all p. 3Both energy boundary con-
ditions are used until the problem is reduced to a first order
differential ¢quation in the energy variable. At that stage, again
only one energy boundary condition could be satisfied, The saolutions
to the respective boundary layer equations are determined uniquely
only if the boundary conditions mentioned above are selected as

"the ones to be satisfied for the respective theories,

It remains to investigate the diffusion theory boundary layer

corrections for small energies., At the same time exponential decay

in the £ direction will be demonstrated,
We define
(e o] 2 2.2
Heye) = S5 | exp (ceet/t 4 —@2- . -5--5-—) at, (170)
2¥w Y0 t '

for £ = 0, According to equation 61, the boundary layer correction

for £ = 0 1is then given by

o, o6r€) = —%I It,e /a) - -,-,_%(-} I(Ese) , a71)

for the scattering case, We will investigate 170, which is only one

term of the boundary layer correction. The behavior of the boundary
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layer correciion can then be obtained fromm equation 171,
The integral 170 exists for €, > 0 because the integrand, is
continuous and exponentially small for large t. At t =0 the inte-

2
1/t dominates al small t., Witk

grand is zero if € > 0, since «¢
the change of integration variables y =£1t, the integration may be

performed at £ = 0, to give

1(0,€) = < ¢, (172)

rolm

To investigate the situation for small €, we may not set
€ =0 in the integrand, since the integral is divergent >ecause of
the behavior of the integrand at small t. L'Hospital's rule cannot
.be applied to find the limit as € goes to zero, because:the resulting
integ#al is still divergent when e = 0.

If € > 2, we may use the inequality

2
RYLIIN t+d) 5 >0 (173)

i

in the first term of the exponential of equation 170 to obtain

00 2.2
I(t‘f,,(-:)S-F'i e € SI exp(“(egz)-gét )dt

t

=£c™¢ eTEVE2 (174)

Equation 174 shows the exponential decay in the £ direction for e < 2;
the larger the valuc of €, the greater the rate of decay. Therefore,
the width of the boundary layer correction decreases as € increases,

This is to be expected since at large energies the boundary layer
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corrections are required to do very little smoothing of the interior
approximations across the interface.

If 0<e <4 we again use inequality 173 to obtain

2 2.2
I(¢, ¢) = <& [exp(‘ 3 /s '"25") e—E/z‘Sﬂme CE . _.__54‘5 ) at
Y ax

2V t 0 2t2
-2
_ 16€e e-E/Ze-g ./e;Zu (175)

Agzin for € > 0, there is exponential decay in the § direction,
although it is guite slow for small e,

It is now possible to determine the region in the =z,¢ plane
'in which the boundary layer correction (,abo(é, €) makes an appreci-
able contribution to the flux., Suppose we require the fluik cpo(z, €},
for z >0, to be described to within a certain percentage, say five

per cent, of the Maxwellian interior approximation, so that

‘Po(z: ‘-:) ) ‘Pbo(gs E') <0. 05 (1 6)
1) = | 2R <o.05, 7
T;i:ee_e T;]‘se'E

A
!

where € = 0'0(6/1'1’1)1/22.
If € > max (2, 2a} equations 171 and 174 show that 176 will hold
e
for those values of € and € for which

-2 -
a  eoxp [we(él— -1) -£ -;: -2:] + -;— exp (-€afe-2) = 0,05 (177)

NI

s
We require 1/2 < a <1, so that the exponentials in equation 177 are

not growing with increasing €. This limits the range of temperature

ratios "a" considered, If a > 1, a different argument is used,
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On the other hand, if 0 < e < min (4,.43), we obtain from 171 and 175
the result that 176 will hold if

1

E(I"E)
, WK «/2 . 72
”"*Ezez b2 1—_.,—2-2e_e EVIE 505 (178

is satisfied. Now if the temperature ratio 'a'' 1is in the range
1/2<a <2, the energy intervals e > max (2, 2a) and
0 < e <min {4, 4a) overlap.

Equations 177 and 175 define a region in the z,¢ plane in
which the boundary layer correction contributes less than 5 per cent
of the total flux. The general naturc of this region is indicated by
the shaded area in figure 3. Since upper bounds were used for the
integral I{£,¢) in deriving 177 and 178, the shaded region indicated
in figure 3 is actually contained within the precise region in which
P contributes less than 5 per cent of the total flux. In this sense
the shaded region is a conservative estimate.

Equation 178, or alternatively figure 3, indicate the possibility
that the flux may not vanish at zero energy. To investigate this
possibility, a lower bound to the integral 170 is needed. A lower
bound may be constructed to show that
-2 35—52/4 In{2/¢€)

e, g) > &8 "
m €{ln2/¢)

. (179)

for 0 < e <2, For € — 0, we obtain from 179, that I{e,£) > wo.
However, this does not mean that the boundary layer correction

necessarily viclates the zero energy boundary condition because
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there may be canccllation between I{§,c} and I(§, %) as € goes to
zero. It has been impossible to show this one way or the other,
because of the complicated form of the integrals 170, It would not

be too surprising if the zero energy boundary condition was violated,
because the boundary layer equation is expected to be a good approxi-
mation only at high energies,

It would be even more difficult to show thc character of the
flux for small encrgies in the absorbing case. The flux is repre~
sented by an infinite serics of terms of the form 68, For small
energies the upper bound for each term would bechave as in 175, and
the lower bound as in 179, There would, of course, be different
constants multiplying each term, but the energy behavior of each
term would be the samc. In thc absorbing case the same cancellation
at small energies might occur because of the infinite series repre-
sentation of the interior approximations, Again it has been impossible

to show whether or not the mero energy boundary condition is satisfied,

2¢ Flux at the Interface

There exists only one analytic solution reported in the litera-
tare with which comparisons of the present results can be made. This
is the soluticn to the diffusion equation 16 for two semi-infinite media
at different temperatures in the pure scattering case, Using the same
boundary conditions as uscd in this thesis, Kottwitz {4) gives the

flux as
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©
66“6 \ n.1 - REO
qoo(z,e) = =7 [1 +Z Cn(l"a) Ln(E)e (180)
° n=1
for z = (¢, and
-¢/a & +Vn't
oylz,€) =%—T—1— [1+Z c - 1)Ll ()e 1} (181)
n=l

for z =<0, The §i variables are rclated to z by

6 =o_(6/m)/ % 2, (182)

£ = 0'1(6/1‘11)1/23 . (183)

"The L:l(e)'s are the Laguerre polynomials of first order and degree

n. The Cn's are constanis to be determined by the recursion relation

L. n
1 +Z (k) -1*a +./&/m) C_=0, n=1, (184)

k=1

The symbol "a" denotes the temperature ratio, Thus, the notation in
equations 180 and 181 is the same as that used in the present work,
Equations 180 and 181 are to be compared to the approximate
flux obtained by the boundary layer technique, equation 56 for
diffusion theory, or equation 136 for transport theory, for the case of
large A\, Large M\ implies large slab width, so that the geometry
of the problem is essentially that of two semi-infinite media,
The most interesting place to compare the flux is at the inter-

face, since away from the interface the flux is the same as that which
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exists in an infinite medivms The seclution given by Koltwitz cvalu-

ated at the interface is

e @
(0, €) = 52 [1 +) Cn(l-a)nLi(E)]

o

n=1
Q0
-e/a
=-E-?-—-—[1+z c Q- l)“Ll(E)}, (185)
T_ n a n a
a 1 n=1

The approximate flux at the interface using the boundary layer

technique employed in the present work is

1 Je -e € -e/a
=YY= e + e
2 {TO a.Tl }

(’OBL(O’ €) =
Q0O
_ee€ [1 + 1—> (-2 (G)jl (186}
TO 2 i I ®
n=1

This result follows from equation 81 in the case of diffusion theory,

or from equation 139 for transport theory.

Based on Kottwitz! calculation of the first twenty Cn's, it

seems reasonable to assume that

1 o~ < L 0,94
=7 SC_S0.06+ =2, (187)

for all n=1, With assumption 187 it can be shown that for small €

€ 1 (3 Oa 06

for 1/2<a< 2
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The approximate flux at the interface, frora the boundary
layer treatment, for smaltl ¢ is

3 1
0p1,(0s €} o -E-T;(l + ";:-_; ) . (189)

Consequently, for small €

(,DBL(O, €)= ‘PK(OJ €), (190)

for 1/2<a< 2.

For large € we are unable to make a rigorous comparison
of qu(O, €} to @BL(O, €) because of difficulties in obtaining the
asymptotic form of the Cn’s for large n. (Equation 187 is not ade-
quate for large energy considerations,) This is due to the complicated
nature of the recursion relation 184, However, because the integral
over all € of PR is the same as that of ?q1, and since ?B1 is
greater than PK for small €, it may be conjectured that Pk should
be greater than ?BL for large €.

Figure 4 is a plot of qu(O,E) and chL(O,e‘) vs, € for a=3/2,
T, - 1. From figure 4 it can be seen that the above relationships of
?p1, o ¢x hold for this particular value of a.

It is interesting that the approximate flux at the interface is
the average of the interior approximations extrapolated to the inter-
face, for both the scattering and absorbing cases, It would be expected
that the interiace flux would be, in some sense, intermediate between

thc values of the fluxcs for the infinite media. The average of the
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two intinite media fluxes is, therefore, a very reasonable result,

It is not surprising that the approximate method applied to
the diffusion cquation yields a different interface flux than the exact
answer to the diiffusion equation by Kottwitz. It is surprising that
the approximation method yields the same approximate interface
flux in both the diffusion thecory and transport theory models, Dif-
tusion theory itseli is an approximation to transport theory and the
quality of this approximation is poorest near the interface (11,17, 18),
However, a small distance from the interfacc the diffusion theory
result and the transport theory result are different as the preceding

analysis of the small energy behavior has demonstrated.

3. Neutron Current at the Interface

The neutron current, when calculated according to diffusion

theory, is given by equation 7 as

. -1 a‘Pi(zl E) 2 1/2 aﬁpi(zv €} .
}i(zt €) = 30_i B = - (ﬁ) _gg_— s, 1i=0,1, (191)

where

E-o(F) =. (192)

The fluzx, qai(z,e), for the scattering case is given by equation 5§,

The approximate neutron current in the pure scattering case is

) -
mT ZTO 0 a.?. 2

1/2 *Q0 ;-Eu/a o 22 £ 2,2
R S B

(193)

for £ > 0, where
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u=e . {194)

It may be noted that § cannot be set equal to zero directly in 193
because the resulting integral is divergent. We, therefore, make

the change of variable y = £t/2 and recognize that

oo 5 - 2
S‘ (1-2y%)e™ dy =0, (195)
O

The current may then he written as

j{z,€) = -———’5-——— SOO vz(e“‘fv- E.?.%) -(e-e— e_E/a )
P Worm T £ 0 2 2

a a

> 2
X {l-2y9eY ay, (196)

where
2, 2
v = e4g /Y .

An application of L'Hospitals rule in 196 gives

.y 2 1/2 € o 2 -€u c-Eu/a -€ eFE/EL
e = I 0 TR L Cl 2 B G-y | 0
o)

a a

{197}

2
where u = cl/t . The integral in this equation exists for € > 0, be-
cause at large t the integrand is O(l./tz) .
In transport theory the neutron current is given by equation 9

to be
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+
iz, €) '—“S‘ pe(z, €, p) dp
-1
2 o (1 -ep
=" T Be Oe vea(v, €} dv (198)
for z> 0, where
£ =02 (199)

and a(v, €¢) is given by equation 130 for the scattering case. In the

scattering case the approximate neutron current at the interface is

e ) 1
J{z.¢e) = Emi So g‘ v [(2’€E)e—eu - -1—2- (2 - &8 )e-eu/a]
0

a
a
2 -6t . )
X u“e {9 sin xt - ¥ cos xt) dv dt , (200)
where
wset/m (131)
- 21 -1
X = 71% [(tanh IV}Z + %] , (132)
_ 1 _ T -1
8= 3 (- Zx tanh'v), (133)

Because of the form of the integrals in equations 197 and 200, it is
difficult to find either the sign of the current or the behavior for large
€y

The coefficient of the neutron current from diffusion theory

1/2

js m s while that from transport theory is m-l. Thus, the mag-

nitude of the approximate neutron current at the interface is different



-83-

for the two theories., From this we conclude that the approximate
fluxes near the interfaces are quite different, even though the
approximate fluxes at the interface are the same. The analysis of
the small energy behavior also indicates this to be the case.

From the above analysis it would seem that the first moment
of the angular flux is small and, therefore,diffusion theory would be
adequate even though the interface is present. However, thers is no
reason to suspect that the second, third, etc, moments of the angular
flux can be neglected when compared to both the zeroth and first

moments,

4, Further Remarks

For the problem of a large sphere or cylinder the same
boundary layvers should be added to the appropriate interior solutions,
since a large sphere or cylinder looks the same as a slab for a
neutron near the interface. Other energy dependent cross sections
can be treated by the same method presented in this thesis, If in the
limit of infinite energy the absorption cross section is zero, the
boundary layver equations will remain the same., Thus, the only
requirement for obtaining an analytic solution is that the interior
equations have an analytic solution.

The analysis of the transport theory model would seem to be
the most reliable result, because fewer assumptions are involved.
Also, transport theory should be inherently better than diffusion

theory near the interface. The transport theory results are no more
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difficult to obtain than those of diffusion theory.

This method of analyzing energy dependent problems seems
useful for the case where flux transients, represented by the boundary
layer corrections, are introduced by inhomogeneities of material
properties, This is the first time, to the authors knowledge, that
inhomogeneities of material properties and non-constant cross
section have been treated simultanecously, The results should be
useful for preliminary reactor calculations to take into account the

effects of interfaces on reaction rates.



APPENDIX A
SOLUTION OF THE BOUNDARY LAYER EQUATION

IN DIFFUSION THEORY

In applying the boundary layer technique to the diffusion theory
model it was found necessary to add boundary layer corrections to
the interior approximations near the interface, x =0, in order to
satisfy the requirement of continuity of flux at the interface., The
boundary value problem determining the boundary layer correction is
given by equations 44 through 50 for the scattering case and by
equations 69 through 74 for the zbsorbing case. 'Lhese two cases
may be combined in the following manner.

The relevant equation is

2
87p(E, 1) + 3%{:};: )] +o(E,n) =0, (A1)

5t 2

for %0, If £<0 then £ =& =Nx, ¢, ) =9(E,m), and n= Nfe
If £>0 then £ =€ -\X, elEn)= oy Eam)y and n = hge. B is
the negative constant which determines the energy scale on which we

are working.

The boundary conditions for large £ arc
qo(ﬁ,n)"‘e-clgl as £ >z, (A2)

for some c > 0, where ¢ may be a function of energy.

At § = 0 the boundary conditions arc

+ -
99(0 ,n) _ 9¢(0 , m)
13 = 5% ) {A3)
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and
207, M) = (07, ) = hle) = h(x Py (A4)

In the scattering case, the function h is given by
e {A5)
while in the absorbing case

hie) = £(0)(g, (€) - @ (€} ) , (46)

where qJ](E) and qoo(e) are the interior approximations given by
equation 68.

The boundary condition at zero energy is that
p(£,0) =0, (AT)

In the scattering case, ¢(§,1N) is to go to zero for large 7

in such a way that
o]
SIO e(&,m}) de (A8)

exists for all £, In the absorbing case, € is limited to the range

0 to €, At e=€ ,
) 0

e{€, e} =0 (A9)

Because the differential equation Al is first order in the energy
variable, only one energy boundary condition can be imposed. Since
the arguments which lead to equation Al implied that the equation was

most accurate at high energies, the large energy boundary condition
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A8, for the scattering casc, or A9, for the absorbing case, is
the natural one to impose on ¢

Taking the Fourier transform of equation Al gives

n 2880 1 162506, ) = - 1bON Py (A10)

where

@ . ~0
a(p,m) = fo P o(g, m) en +5 a6Poie, m ag.  (am)
-0

The general solution of the first order differential equation AlQ is

2 . AN 2 2
2le.m) = - ipnf '15' v P Py ay +oppm™? L, (A12)

Y
where Cip)} is an arbitrary function of p introduced by integrating
Equation Al0. With the change of intcgration variables, v = Rps,
equation Al2 becomes
2 e 2 Z
— . -1 - -1
pe ) = - 10”7 5P nie) as + o L, (A13)
Y
In equation Al3, y and C(p) are to be sclected so that boundary
condition A8, for the scattering case, or A9, for the absorbing case,
iz satisficd, We now consider the scattering and absorbing cases

separately,

Case (i} Scattering Case

For the scattering case, boundary condition A8 is satisfied by

selecting
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C{p) =0, (Al4)

2
because the integral of n° "l does not exist for any P over all 1,

Since h{s) is an exponential function, we select
v =00, (A15)

so that the integral in equation Al3 is exponentially small for large
€. Therefore the integral of ¢{p,n) over all 7 exists,
The Fourier inversion theorem now provides the solution ¢

of Eqguation Al as

S\p -b/41 )
p(§, ) = S2lE) S‘m £ (A o"s/a. i)&e /41n(s/e se.
€

a T
24w 0 In 2 3/2
€
(A1D)
‘.l/t2 .
With the change of inlegration variables s = €e » eyuation

Al6 becomes

o =211 2.2
g m = 528 o) (% eTeu/2- )uze"t S, (am)
2T 0 o

where

ws=et/t, (A18)

Case (ii) Absorbing Case

For the absorbing case, boundary condition A9 is satisfied by

selecting

c{p)=0, (A19)
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'Y = EO » (AZO)

then ¢(t, Eo) = 0, The Fourier inversion thecorem then gives

> QD 2 2
olg, ) = £3825 (oy(eu) - o (en) Jule M at,
2{11' TO [11’1(&'0/6)] “'1/2
(A21)

where the change of integration variables s = €el/t2 has been intro-
duced, and u is given by equation Al8, cpo(e) and ga.i(e) are given
by equation 68.

If we had chosen to satisfy the zero energy boundary condition,
A7, instead of the high energy boundary condition, AB or A9, it would
have been impossible to determine C{p)s If p > 1, the term C(p}npz'l,
in the general solution AlZ, always goes to zero as 1 goes to zero.
Therefore, C{p) would remain undetcrmined for p >1., We might
then try to impose the high energy boundary condition, but we would
find that it would be impossible to satisiy it after the zero energy
boundary condition has been satisfied. Thus the requirements ¢— 0
as n—0 and S‘D g dn < o0 are incompatible for the differential
equation AlO,

The change of variables

n=e ’ Ll-’(gs T) = T]‘P(Ea T]) ) (AZZ)

converts equation Al into the heat eqyuatiun
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DEME, ™) | BWE.T)
352 aT

Therefore, the high energy boundary conditions correspond to initial
conditions, It is known that not both initial and final values of the
solution to the heat equation can be prescribed. Therefore, only one
energy boundary condition can be prescribed for the solution to

equation Al,
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APPENDIX B

SOLUTION OF THE INTERFACE CONDITICON
IN TRANSPORT THEORY

In the treatment of the first approximation for the boundary
layer correction in transport theory, the interface condition 106
yielded the functional equation 129 (in the scattering case) or 158

{in the absorbing case) for alp,€). The equations are of the form

V41 f
mi2 € 0alv, €)
oalV, €)
_I(Zma(v)+m de )dp

h(e) + pk(e) S

..1"’!-1

=a(p.€)+p( a(p, )+E —J&)S‘

+ES (m+2 a(v, €) + - ._ail’_i)) . (B1)

In the scattering case, h and k are

—E‘/
€ (e Za _e“E) ) (B2)

h(e) =

k(e}y =0 , {B3)

In the absorbing case, they have the values

h(c) = 5 KOMey(e) - ¢ (<) ), (D4)

Ke) = - L 26(0) (‘Pl(e) _9‘;0“)) ’ (55)

6 ox oy
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where qoi(e) is given by equation 68. The boundary condition at

Zero energy is

a{p,0) =0,

for all y.

(B6)

Fquation Bl will be solved using boundary condition Bé6 by

making use of the techniques for treating singular integral equations

given by Muskhelishvili (22). All integrals are to be evaluated in

the principal value sense when necessary,

Integrating cguation Bl for all p yields

+H
hic) = I—ZS‘ 3.([.1-, £€) dp .

Thus the left-hand side of equation Bl becomes

_ 2h(e) _ 2e dh{e) + pk(e) .

m m de

We define the following functions

V~z

#
Alz, €) = 2111.&1 V. ) g, ,

+
e - 4§ (-3 0 e

m m

where z is complex,

(B7}

(B8)

(B9)

(E10)

(B11)

The functions A, H, and R are analytic in the z plane cut

from -1 to +l and are mero at infinity. Aes = approaches the cut

from above or below the Plemelj formula gives



-93-

+1

A (}’-: €) =% > a(}l., €) + 2.".15‘1 aévuﬁ‘} av , (B12)

H' (g, )-iz( ihle) iﬁ‘fi—lz."i’mme;)

+
+_;__§ ( zh(e) 2€ .@_(_EJ +vk(e)> , (B13)

27l -1 m.

+1
+ . dy
R7{p) = wi +‘S_1 el {(B14)

where the upper or lower sign indicates that z approaches the cut

from above or below, respectively. We,therefore,have

AT o) - AT @) = alp @), (B15)

2, o) + A7 (p.s)-—z—“; i(v—d dv , (Bl6)
-1

H'ge) - H (g, e) = 228& . 2¢ dhle)y g, (B17)

R7(p) - R7(p) = - 2mi, (B18)
+ - # dv

R(e) +R (p) = - ZS_I el {B19}

With the help of B8 and Bl15 through B19 equation 31 may now

be written as

Hi(u, €) - H (g, ) = AT, ) - A (s o)

B R+ R [ B2 2T 0T ) + S 2 (A% AT Q)

- E (R (p) R (p))[m+2 (A (p. e}+A (p, €) ) +m E?c (A+(p. €} tA (u, E))].

(B20)
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where it has been assumed in the last term that differentiation with

respect to € and integration with respect to vV can be interchanged.

Upon multiplying out the terms of equation B20 we obtain

H ', €)-A"(u, €) 4R (1) [EE.T.% At oS 22 (e ]

= H (4, €)-A (4, €)+pR {u)[n-l“—t—zA (1, )+—f?1 a—‘%é“’—e)} . (B21)

Now the function

F(z, €) = Hlz, €)- Alz, €)+zR(7) [n__y_z Al )+ 2R E) E)] :

(B22)

is zero at infinity since H and A are zero at infinity and zR{z)
tends to two as z tends to infinity., Furthermore, F(z, €) is

analytic everywhere in the 2z plane except possibly at the cut from
-1 to Y1 because H, A, and R are analytic everywhere except at the
cut, However, the difference in F{z, €) across the cut is zero by
equation B2l. Therefore, ¥(z,¢€) is analytic everywhere and zero
at infinity and consequently it must be zero everywhere by Liouville's
theorem. Equation B22 then becomes the first order inhomogeneous

differential equation
8 Al=, €) m m oy -
€ + (1 + > R ) Az, €) = - H{z, €) . (BZ23)

From the definition 39, A(z,€) will obey the same energy

boundary condition Bé that a(p, €) does; a(w,€) will then be deter-
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mined from equation Bl5, The general solution of equation B23 is

-glz} e
Aure) - B €

zR(z) 0 Yg(z)-lﬂ(z, y) dy + c(z)e'g(z‘) . (B24)

where c(z) is an arbitrary function of z introduced by integrating

equation B23, The function g{z) is given by

glz) =1+ %3 2REE) ° (B25)

In order to satisfy the zerc energy boundary condition B6, c(z)
must be zero since Re {g(z)} > 1. If we had chosen to satisfy the
large energy boundary condition, c(z) would remain undetermined.
Therefore, we must satisfy the zero energy boundary condition in
order to determine the solution uniquely,

Equation B10 may be rewritten as

_ R(z) dileh(e)) , k() _z
H{z,€) = prp de + = {1 > R(z} ). {(B26}

Sabstitution of B26 into B24 and integration by parts on the first term

gives

e 1 \&lz)
Alz,€) = 'z?ln""{ h(e) + (g(z)-1) fo ({g) h(y) %}}

€ g{z)
+ —1}; {z(z)-1) S'o (%) k{y) %? . (B27)

a{p, €) is now determined from equation B15, g+(p) and g (p)
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are determined from equations B25 and Bl4., The result for the

scattering case after the change of variables t = -m ln y/e is
00 -eufa
€ e -€u \ 2 -6t
aly, €) = S dt(————— - e )u e
"IJ’TO 0 a.2
(6 sin xt - ¥ cos xt) , (B28)
where
a= et (B29)
'rr 12, wh-l
X = rm [(tanh 19 M T] ' (B30)
8 = %‘- (1 - %x tanh™! [TH {B31)

o
If equation B28 is integrated over all €, the S. alp, €} de

exists becausc the remaining integral over t exists, The integral

over t exists because 0, as given by equation B3l, is positive for
all p.

For the abserbing case the result is

o [ p. (e} o (eu)
am,a:%fo at Lf(oxqal(euwo(eun—%*’f“”(1 %o )]

ox oy Ty

X ue_et(e gin yt - ¥ cos Xt) . (B32)

The results B28 and B32 may be verified by substitution irto equation
Bl.
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