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Abstract

The runup of long waves

This is a study of the fundamental physical processes of the runup of long waves
with the objective to understand some coastal effects of tsunamis.

The runup of nonbreaking long waves on plane beaches is studied and an exact
solution is developed for the runup of solitary waves. The maximum runup predicted by
this solution is compared to laboratory data from this and other investigations and it is
found to be in good agreement. A runup transducer was developed and deployed in the
laboratory to provide data for the shape of the runup tongue. The exact solution is shown
to model the details of the climb of the wave satisfactorily.

The runup of breaking long waves on plane beaches is investigated in the
laboratory by studying different long waves and bores of finite volume. The runup is shown
to be a function of a momentum scale determined from the generation characteristics of the
incoming wave. The runup number is introduced and it is demonstrated that it models the
runup process adequately. It is also observed that arbitrary long waves have runup numbers
smaller than, or at most equal to, the runup number of breaking solitary waves, suggesting
that on a given plane beach breaking solitary waves run-up further than other long waves
with similar generation characteristics.

An exact result is established for the force on an accelerating plate in a fluid with a
free surface. The result is used to explain some of the results of this study and other results
on the hydrodynamic forces on moving partitions. |

A technique is developed to generate arbitrary, long, continuously evolving waves
at any desired location in a laboratory model. The technique is applied in the laboratory and

it is shown to be successful in reproducing complex waveforms.
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Chapter 1
Introduction

The objective of this study is the theoretical and experimental investigation of the
runup of long waves on plane beaches. This problem arises in the evaluation of the coastal
effects of tsunamis. Tsunamis are long water waves generated either by submarine tectonic
displacements, or landslides. At generation, tsunamis are waves of small amplitude with
wavelength large compared to the local depth ; they are essentially shallow water waves.
Shallow water waves propagate at a speed approximately equal to the square root of the
product of the depth and the acceleration of gravity. In a water depth of 4 km a tsunami
travels at a speed of 200 m/sec or 720 km/hour. As a tsunami approaches coastal waters
refraction and shoaling may amplify the wave appreciably. The flooding usually associated

with tsunamis causes significant damage to structures and beaches in coastal areas.

1.1 Tsunamis and tsunami runup. It is conjectured that the first historical reference
to coastal inundation by a tsunami is an episode associated with the eruption of the Thira
volcano in the eastern Mediterranean, about 1500BC-1450BC. The event coincides with the
devastation of the highly developed Minoan civilization on the northeastern coast of the
island of Crete [Warren (1985)]. Although the immediate agent of the catastrophe was fire,
it is hypothesized that a tsunami destroyed whatever had survived the fire. More recently,
there are accounts of tsunamis in Japan dated back at least 1300 years. According to a
current compilation of historical occurrences of tsunamis there have been 143 reported
tsunamis between 1861 and 1961 [Camfield, (1980)]. The most recent major tsunami

occurred in 1983 in the sea of Japan, and it resulted in the loss of about 100 lives.
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The process of tsunami generation and propagation is now well understood. The
runup process is not. There is consensus that one suitable physical model for the process of
tsunami runup is the formalism of long waves propagating through a constant depth region
and encountering a sloping beach [Meyer, (1972)]. . This geometry is shown in
figure (1.1.1). It represents a two-dimensional model, and it is frequently justified by
arguing that wave refraction turns the wave crests, so that in the final stages of approach to
the shoreline the runup process is essentially two-dimensional. The two-dimensional model
has been shown to produce realistic results [Hammack, (1972)], except in cases of tsunami

runup in estuaries, bays and harbors.

Historically, there have been two types of long waves used in the investigations of
tsunami runup. A small number of studies have used solitary waves and undular bores. The
others have used periodic long waves. Since there are no records of the surface elevation of
a tsunami close to its source, there is little agreement about which model best describes a

tsunami.

1.2 The runup of periodic long waves. Linear theory. The first study on
tsunami runup was that of Kaplan (1955) who generated periodic waves that climbed a
sloping beach after travelling over a constant depth region. He derived two empirical

relationships from his experiments, of the form :

<0.316
R
== 0.381 (——S——-) , when tanf} = 1/30, (1.2.1a)
and 0.315
% =0.206 (-——EI——) , when tanf = 1/60, (1.2.1b)
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where R is the maximum wave runup, H is the offshore wave height, L is the offshore
wavelegth, and P is the beach angle. The ratio R/H can be thought of as an amplification
factor; for a vertical wall and inviscid flow conditions, R/H =2. Unfortunately tables of
data were not published, so that it is not possible to determine whether the waves used in
the experiments were breaking or nonbreaking, or whether they were long or short waves.
The only information available is that the wave-steepness parameter H/L was in the range
(2x10‘3, 10'1). Nevertheless, equations (1.2.1) have been used extensively since, both for
verification of theoretical models and for comparison with other laboratory studies within and

beyond the range of Kaplan's data set.

The first analytical investigation of the propagation problem over the bathymetry
defined in figure (1.1.1) was that of Keller and Keller (1960). They derived the following
expression for the runup of periodic waves on a sloping beach using the linear nondispersive

theory :
R/H = 1/{ J2(0) + I 2(0)} 112, (1.2.2)

where v = 4ntH/(Ltanf). Shuto (1967) solved the linearized form of the equation of motion

for inviscid flow in Lagrangian coordinates and derived a similar expression, of the form :
R/H = 1/Jy(v) (1.2.3)

The three relationships (1.2.1), (1.2.2) and (1.2.3) have formed the basis of
most studies in periodic long wave runup. Many studies have included the effects of bottom
roughness, composite beaches, irregular waves, and varying channel widths. An

extensive review of the literature of the subject can be found in the work of Togashi (1981),
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who did a systematic compilation of the predictions of various laboratory investigations and
compared them amongst themselves and with the analytical results (1.2.2) and (1.2.3).
Figure (1.2.1) shows one comparison for wave runup on a 1:30 beach, exactly as presented

by Togashi.

This figure is indicative of the state of the art and it has appeared in several review
articles in the last ten years. It does not provide confidence in using any of the models
presented, except perhaps in the range of values of wave steepness where the models do not
contradict each other. One possible explanation is that the models represent data for different
types of waves . In the nonbreaking wave region, Shuto's laboratory data are in the same
range as Togashi's. Both seem to agree with the analytical results (1.2.2) and (1.2.3) in that
range, which is reasonable since both analytical results refer to nonbreaking waves. These
predictions are inconsistent with the data in the figure attributed to Kishi and Hanai, and to
Kaplan (1955). Although it is not clear whether the latter are derived from breaking or from
nonbreaking waves, one can hypothesize that they were derived from breaking wave data.
This would be consistent with the other breaking wave data shown in the figure. Indeed, if
this is the case, then it is obvious that different functional variations exist for the different
breaking categories rather than the "unifying" fit reported by Togashi
R/H=46.0(H/L)%4%8_  There appears to be no apparent physical reason why runup data
derived from experiments with breaking and nonbreaking waves should follow the same

quantitative relationship.

It is interesting to attempt to reconstruct figure (1.2.1) by examining the data in
groups depending on their breaking characteristics. For nonbreaking waves, and when
H/L < 0.001, the Bessel functions of equation (1.2.2) can be replaced with their expansions

for small arguments. This reduces (1.2.2) to R/H=1, arelationship which agrees with
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the data in the figure. The data also indicate that R/H is constant for surging waves and
constant for breaking waves, although the scatter of the data does not permit positive
identification of the values of these two constants. This observation is also consistent with
data presented by Kishi (1962), for values of H/L in the range (6x10%, 1.5x1073), but
inconsistent with the extrapolated fit of Kaplan's data in that range. [Kaplan's experiments

were conducted with H/L in the range (2x1073, 10'1).]

To obtain further insight in Kaplan's data, one can use some of the results of the
runup of waves on steep beaches. Battjes (1971) argued that for deep water waves

climbing on steep beaches,

R 1
f‘I =K tanB TI'T-/LO (1.2.4)

where K is a constant that was set equal to one, and L is the deep water wavelength. He
named the parameter tanf NH/ L, the Irribarren parameter, after Irribarren and
Nogales (1949) who were the first to present it. Equation (1.2.4) was shown to agree well
with breaking wave data for slopes in the range (1/3,1/7). Battjes (1971) was also able to
derive breaking criteria based on this parameter. Although equation (1.2.4) with K=1 is not
compatible with Kaplan's data, it seems reasonable to assume a variation of the same form
and determine the constant K. Using equations (1.2.1a) and (1.2.1b), one finds that
K=11.43 for the 1/30 beach slope and K=12.36 for the 1/60 slope. Averaging the two

values, Kaplan's result can be restated as follows :

-0.316
g— = 11.89 tanp (%{ ) , when tanp = 1/30, 1/60. (1.2.5)
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If Kaplan's data represented deep water waves, then L=L_, and equation (1.2.5)
would be consistent with the analysis of Battjes, equation (1.2.4). In any case, there is no
contradiction if one asserts that the experimental data for breaking waves of figure (1.2.1)

indicate that the runup to height ratio is a constant for values of the wave steepness less

than 0.004.

It is interesting to note that this behaviour was also noticed by Hunt (1959). Hunt
did a comprehensive study of periodic wave runup on gentle beaches. He concluded that,
" for slopes of tanP less one half, the ratio R/H will increase slightly for values of
(H/T?)12, then level off at its maximum value; and finally R/H will decrease with

decreasing values of the wave steepness ". The region where the "leveling off" of Hunt's
data occured is the long wave region. Possibly because his work had always been
synonymous with "regular” wave runup, this result has never been used in the studies of

long wave runup.

A similar conclusion can be drawn from figure (1.2.2), which depicts the variation
of the runup to height ratio with the parameter (d/L)cotP, where d is the depth. This
parameter is the ratio of the horizontal distance from the initial shoreline to the toe of the
sloping beach over the wavelength, and in the Japanese literature it is referred to as the long
wave parameter. It has the distinct advantage that the ratio d/L is proportional to the square
root of the coefficient of the correction term for the vertical acceleration in the approximation
of the equations of motion presented by Boussinesq (1872). The figure is taken directly from

areview article by Togashi (1983), where he presented a best fit of the data of the form :

log(R/H) = 0.421- 0.095 log{(d/L)cotB}- 0.254 log{(d/L)cotB}, (1.7.1a)
in the case 0.1 < (d/L) cotp. Otherwise, he found that :
log(R/H) =0.421- 0.109 log{(d/L)cotB} - 0.286 log{(d/L)cotB} . (1.7.1b)

The runup of long waves. Chapter 1
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Togashi's empirical fit was an attempt to derive a single functional variation for
different wave types and different slopes; it is identified in the figure (1.2.2) with a solid
line. There is no physical reason why such a relationship should exist. In fact, the figure
indicates that, for each beach slope and each category of breaking and nonbreaking waves

represented in the figure, the ratio R/H is a constant.

On the basis of the analytical results and of the laboratory data presented, one may
assert that for long periodic waves the ratio of the runup to wave height depends explicitly
on the beach slope and on the breaking character of the incoming wave. It depends
implicitly on parameters such as cot(d/L) and H/L; whether a wave breaks or not and the
breaking wave type is a function of these parameters. If there is an expilicit dependence, it
has not been demonstrated yet in the laboratory. However, it is clear that further detailed

investigations are neccessary to qualify these statements.

1.3 The runup of periodic and nonperiodic long waves. Nonlinear theory.

The other long wave model that has been used in studying the runup of tsunamis is the model
of nonperiodic long waves. Strictly, a nonperiodic long wave is any wave of infinite
period. In practice, the name is used to refer either to single long waves of translation, or to

solitary waves, or to undular bores.

1.3.1 The runup of periodic long waves. Nonlinear theory. The foundations of
the study of the runup of nonperiodic long waves were laid with the work of Carrier and
Greenspan (1959). They derived a nonlinear transformation to commute the nonlinear
shallow water wave equations into a single linear equation. Their equation is quite general
and it describes the motion of any nonbreaking wave on a sloping beach. The transformation

is discussed in detail in chapter 3. Carrier and Greenspan applied their method to calculate
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the runup of a periodic wave and solved several other initial value problems. Carrier (1966)
used the transformation to calculate the evolution of a long wave generated by a bottom
displacement, propagating over varying topography, and then climbing up a sloping beach.
Spielvogel (1979) assumed an exponentially shaped surface profile at maximum runup and
derived the evolution of the wave during the rundown. Although the transformation is a
very powérful tool for calculating the runup of nonbreaking waves, no further work has

been reported to derive other exact solutions.

1.3.2 The runup of solitary waves. Solitary waves are waves consisting of a single
volume of fluid propagating entirely above the undisturbed free surface. A solitary wave
was first observed by Scott Russell (1844), who described it and who suggested various
methods for generating one in the laboratory. In the present study, the name solitary wave

is used to describe the permanent form wave with a surface profile n* (x*,t*) defined by :

n* (x*,t¥) = H sech? [y (x*-c*t*)], where y= \/—i—%

(1.3.1)

c* is the local phase velocity. This profile was derived by Boussinesq (1872), and it is also
an exact solution of the KdV equation, developed by Korteweg and deVries (1895). In
inviscid flow, the solitary wave propagates over constant depth without any change in its
shape; it is a permanent form wave. As it is evident from (1.3.1), two variables, the
wave height H and the water depth d, define this wave uniquely. Figure (1.3.1) shows the

propagation of a solitary wave in an inviscid fluid over constant depth and with H/d=0.1

The first investigation on the runup of solitary waves was the laboratory study of

Hall and Watts (1955). They used a rectangular channel with a plane beach and established a
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relationship between wave height H/d, the beach slope B, and the dimensionless runup R/d

of the form :

) Y
= K@) ( " ), (13.2)

where K and ¢ were reported to be functions of the beach angle B. This result was later

confirmed in the experimental studies of Camfield and Street (1966), Kishi and Saeki (1966)

0.2 Y T T T T

t*/(/g/d)=80 /\
/\ t*/(/g/d)=60
0
/\ t*V(g/d)=40
/\ t*IV(gld)=20
/\ initial profile
0

n*/d o

-02 1 L 1 i 1
““0 25 50 75 100 125 150
x*/d

Figure 1.3.1 The propagation of a solitary wave with H/d=0.1 over constant depth,
according to the KdV equation (C1.1). The Peregrine (1966) algorithm was used with
Ax =At =0.1
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and Saeki et al (1971). Since then, equation (1.3.2) has been used extensively to check
numerical calculations. The relationship can be justified by dimensional analysis, but until

the present investigation there has been no attempt to explain its origin analytically.

The first attempt to find a numerical solution to the problem of a solitary wave
propagating over constant depth, and then climbing a sloping beach was Heitner's (1969).
He solved the shallow water wave equations including a term to correct for friction by using
the finite element method. He presented some surface profiles for the propagation and
runup of solitary waves and infinite bores and reported good agreement with the
experimental data on maximum runup. However, the solution does not appear to reproduce
the flow details well, a possible manifestation of the computational constraints of that time.
Gopalakrishnan (1978) used a semi-discrete method (finite elements in space and finite
differencing in time) to solve a modified form of the shallow water wave equations that
included a term to account for vertical accelerations. He proceeded to calculate runup profiles
of oscillatory waves, solitary waves, and waves that he referred to as bores. He reported
good agreement with the Camfield and Street (1966) data. Although both finite element
models appear to be capable of solving the problem, it is difficult to evaluate their

advantages in problems with simple boundaries relative to finite difference models.

The current state-of-the-art numerical solutions were accomplished in the studies of
Pedersen and Gjevik (1983), and Kim, Liu and Ligett (1983). Pedersen and Gjevik
derived the equations of motion for long waves in an arbitrary channel in Lagrangian
coordinates and solved them numerically. They presented results for the maximum runup of
solitary waves on plane beaches in rectangular channels. Their numerical data are in good
agreement with experiments for some cases and in poor agreement in others; the cause of the

discrepancy is explained in chapter 3. Kim, Liu and Ligett (1983) used a boundary integral

The runup of long waves. Chapter 1
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method to solve the equations of motion for the problem of a runup of a solitary wave
generated by a piston movement in a numerical wave tank. They presented data for the
maximum runup of solitary waves and reported good agreement with the Hall and

Watts (1955) data.

One common feature of the numerical studies referred to is that it is impossible to
obtain any quantitative information from the computational models without repeating the
solution procedure, except for those values of the parameters for which the equations were
integrated in each study. This is unfortunate because it does not allow for an independent
comparison of the solutions among themselves and with the appropriate laboratory data.
The qualifier appropriate refers to the fact that, with the possible exception of Heitner's
(1969) study where it was attempted to model the formation of shocks, all numerical studies
have modelled nonbreaking waves and have used the Hall and Watts (1956) laboratory-data
set to verify their results. However, Hall and Watts do not distinguish between breaking and
nonbreaking waves in their presentation, and, as shown in chapter 3, the behaviour of
breaking and nonbreaking solitary waves is different. This observation renders inconclusive
any comparisons that have used extrapolations from the Hall and Watts data set. A

comparison with the appropriate data for each model will be presented in section (3.5.1).

It appears that the only attempt to derive an exact solution to calculate the runup of
solitary waves is that of Gjevik and Pedersen (1981). They used Carrier's hypothesis,
discussed in section (3.5.2), to assign a boundary condition to the shallow water wave
equations form for waves propagating on plane beaches. By using Laplace's transform
techniques, they derived a solution for the runup of the monochromatic wave that best fits
the Boussinesq solitary wave profile (1.3.1). The profile of the monochromatic wave they

used is given by : n*(X, t)=(H/2) (1 - coswt), where T,=mn/2, Th=1.018(c*/H)\/ (H/d),
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o is the wave frequency, and where X, is the distance from the shoreline to the toe of the
sloping beach. They also derived a breaking wave criterion and reported good agreement

with some unpublished experiments.

1.3.3 The runup of bores. A bore is one of the natural phenomena that can best be
defined by describing it. Peregrine (1967) describes a bore as a transition between two
different uniform flows of water. " In its most common form a bore is a turbulent, breaking

zone of water whose length is a few times the depth of water . " Meyer (1972) describes a
bore as a " region of steeper surface slope of relatively short horizontal extent [where] it is
found that the study of the water motion in such a region can be avoided by combining the

use of nonlinear beach equations (whenever they are valid) with an assumption of overall
conservation of mass and momentum in the region of steeper surface slope. ". Whitham

(1974) defines bores as the discontinuities described by the following equations :

Uluh] + [u?h+@/2)h?] =0 (1.3.3a)
-u[n] + [uh] =0, (1.3.3b)

where U is the dimensionless speed of the bore, h is the dimensionless total depth of the
flow, uis the dimensionless water particle velocity, and the brackets indicate the difference
of the quantity inside when evaluated just ahead and just behind the djsgontinuity. These
discontinuities " are in reality the turbulent bores familiar from water wave theory as
‘hydraulic jumps’ or breakers on a beach ". Hibberd and Peregrine (1979) distinguish
between a bore and a bore region. "Waves break in various ways, but in most
circumstances there is a region near the shoreline where the waves have short steep turbulent
fronts, that is bores, and otherwise have very gentle slopes. This region which we call the

‘bore region’ can be large or small depending on the slope of the beach and of the incident
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waves ". Bores are also caused at tidal inlets when an incoming tide travels up a river.
Lynch (1982) describes a tidal bore as " a solitary wave that carries a tide upstream " . He
continues : " the formation of bores represents the turn of the tide ". A useful idealization is
the concept of a uniform bore. It refers to a bore that propagates into still water with
uniform flow conditions behind the bore front. [Peregrine (1966)] Figure (1.3.2) shows an

infinite bore propagating over constant depth.

0.1 1 T 1 T T T T T
o e
t/(Vg/d)=120
~~
o)
OD.
~’
Lo -
t*/(g/d)=80
=
0 -
t*/(g/d)=40
_— initial profile
0 i L 1 L L 1 { {
g 20 40 60 80 100 120 140 160 180

x*/d

Figure 1.3.2 The evolution of a uniform bore propagating over constant depth. The inital
velocity profile is given by u*(x*,t*) = 0.5gH[1-tanh(x*/5d)] with H/d = 0.1. The
Peregrine (1966) algorithm was used with Ax =At = 0.1.
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Although these definitions describe seemingly different natural phenomena, one
common characteristic of the range of waves identified as bores is the manner with which
the bore propagates until it reaches the shoreline where the bore collapses. The bore front
may change shape, but the bore does not evolve into another type of wave until it collapses.
It seems therefore most reasonable to define a bore as a long breaking wave of sufficient
volume so that it propagates over considerable distances without reforming into a
nonbreaking wave. Since it is not easy to generate uniform and tidal bores in the laboratory,
in this study the name bore will refer to a wave that is generated broken and propagates as a

breaking wave until it collapses close to the shoreline.

The study of the runup of bores has been profoundly influenced by the work of
Whitham (1958). While working on the problem of shock wave propagation through
nonuniform regions of flows, he suggested a method to circumvent the difficulty of
evaluating differential relationships on a discontinuity. His idea was to apply the differential
relationships which must be satisfied by the flow variables on the shock wave, immediately
behind it . This practice has become known as the Whitham bore rule . Whitham derived
approximate formulae for the variation of the height and the strength of a bore. He observed
that for strong bores, the bore height 11 varies like the square root of the depth, and,
consequently, the bore collapses as it approaches the shoreline. His result was verified by
numerical methods by Keller, Levine and Whitham (1960). They also remarked on the
insensitivity of the solution to detailed initial conditions. Whitham's approximate result was
verified to a higher order by Ho and Meyer (1962). They did not assume any detailed initial
conditions, but only a monotoneity property for the wave propagation to reflect the
requirement that there is shoreward flux of mometum. They were able to determine an
approximate bore path. Shen and Meyer (1963) extended Ho's and Meyer's result, and

they calculated the bore path after the bore collapses. Their result implies that the maximum
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runup is related simply to the speed of the bore as follows :
R=U%)2g; (1.3.4)

U is the speed of the bore when the bore reaches the shoreline. They also discovered the
existence of a singularity in the solution, occuring during the backwash. They interpreted it
as representing the hydraulic jump that forms during the rundown of breaking waves. Barker

and Whitham (1980) rederived Ho and Meyer's results with a more intuitive method.

It is evident that the climb of bores on sloping beaches is now well understood
analytically. Unfortunately this understanding does not simplify the numerical calculation
of the runup of bores. In computational terms, the runup process is a moving boundary
problem. Any finite difference type of solution of such problems must first establish suitable
criteria for introducing new grid points in the solution domain in order to account for the new
boundary position. The state of the art of the numerical solutions was achieved with the
work of Hibberd (1977) and Packwood (1980). Hibberd used tools developed in the last
three decades for solving moving boundary problems in other fields, but he was the first to
successfully complete the calculation of the climb of a uniform bore on a sloping beach. His
algorithm is known as the Hibberd and Peregrine solution. Packwood used the same
computational approach, but improved the details of the shoreline solution procedure. He
proceeded to calculate the runup of a periodic waveform consisting of a series of bores
climbing up a beach with the objective to model the climb of breaking periodic long waves;
his numerical results agreed well with laboratory data during the climb of the waves on the
beach indicating the power of the Hibberd and Peregrine. Hibberd's solution was
reproduced in the present study, and it is presented in detail in appendix B. Figure (1.3.3)

shows an example of a uniform bore climbing up a sloping beach. Iwasaki and Mano (1979)
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presented another numerical scheme and claimed good agreement with experimental data.
Mano (1983) did further unpublished work and was able to expand on the Hibberd and

Peregrine solution by using different conditions at the shoreline.
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Figure 1.3.3 The climb of a uniform bore with initial H/d = 0.2. The Hibberd and
Peregrine (1979) algorithm was used with Ax =0.01 and At = 0.04. (See appendix B)
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Both the analytical methods and the numerical solutions described appear adequate
to solve the problem of a bore propagating up a sloping beach, but only when boundary
conditions are specified at some location on the beach for all times. Because of this
limitation, it has only been possible to solve problems that allow for this specification, i.e.,
periodic waves or uniform bores. Using these solutions, it is not yet possible to calculate
the runup of the bore that forms after a wave breaks on the beach, or the runup of a single

breaking wave climbing up a beach.

Given the mathematical interest that bores have generated, it is quite surprising to
discover that there seem to be only two experimental studies in the runup of bores. This can
be attributed to the fact that bores are generally difficult to generate repeatably in the
laboratory. Also, there is the widely held belief that the bore theory has been verified in the
laboratory; this belief has been based on experiments with breaking periodic waves

designated as bore experiments and compared with results from the bore theory.

The first laboratory study is that of Shen (1965), who worked on developing a bore
generator to model the process of tsunami runup in a model of Hilo bay in the island of
Hawaii. He experimented with three different waves generators, and he produced bores of
finite volume in a rectangular channel with strengths H/d in the range [0.1 to 0.3] and

measured their runup on a 1:33 beach. He presented his results in the form :

RH=f (H/A, ¢*T /d), (1.3.5)

where H is the bore height before it starts climbing on the beach, and c* is the wave speed at
that location, while T is a measure of the duration of the wave motion. To his surprise, he

found the R/H ratio to be a constant with values in the range [2.0 , 2.4] for rough beach
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surfaces and (2.6, 3.0) for smooth surfaces. Larger values of the duration parameter
c¢*T/d produced slightly larger runup excursions than smaller values did. However, the

variations were well within the experimental errors.

The other bore generation and runup study was that of Miller (1968). He used the
apparatus developed by Miller and White (1966) to generate strong bores in a rectangular
channel and then measured their runup. He reported his results in the form :
R/d =f (1+H/d), where 1+H/d is the bore strength. He found strong correlation between
R/d and the bore strength, for different slopes and surfaces. Many attempts have been
made to use his result for the purpose of verifying numerical calculations for the runup of
uniform bores, but with little success. One can speculate that this is the case because of the
particular geometry of Miller's experiment. The wavemaker was operated in such a location
that at maximum stroke the piston was only 0.76 m (2.5 ft) from the toe of the beach. The
water depth in these experiments varied from 6.1 cm (2.40 in) to 12.2 cm (4.80 in), thereby
allowing approximately ten depths through which the wave could propagate before reaching
the shoreline. The stroke of the piston was 2.44 m (8.0 ft), and the generated waves were
such that H/d ~ 1. A simple calculation shows that it is quite likely that the piston was still
in motion by the time the wavefront reached its maximum runup point and this may have
interfered with the reflection process. If this observation is correct, then Miller's data

cannot be compared directly with analytical models of infinite bores.
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1.4 The present study. It is quite obvious that the current understanding of the runup
process is fragmented and incomplete. There exist analytical results for the runup of
nonbreaking periodic waves and for the runup of uniform bores. There exist numerical data
for the runup of nonbreaking periodic waves, nonbreaking solitary waves, and uniform
bores. There exist laboratory data for the runup of peﬁodic waves, for the runup of
solitary waves, and for the runup of bores. There exist no data on the runup of long
nonperiodic breaking waves (that are not solitary waves), or on the runup of bores of finite
volume. There has been no verification of the linear or nonlinear theory of wave runup for
nonperiodic waves. There is no realization of the differences between the runup of breaking
and nonbreaking waves. There is little physical understanding of the runup process and

there has been no attempt to explain the empirical results.

This study attempts to resolve some of these questions and to provide a more
coherent approach to long wave runup problems. It is the first study to examine

nonbreaking waves, breaking waves, and bores of finite volume.

The experimental equipment used in the study is described in chapter 2. In
chapter 3, solitary waves are used as a long wave model to establish differences between
breaking and nonbreaking waves, and to evaluate the relevance of the nonlinear theory in the
runup process. An exact result is derived to explain the empirical relationships regarding
solitary wave runup. In chapter 4, single long waves and bores of finite volume are used to
determine appropriate invariants to describe the runup. It is found that a single parameter
based on the generation characteristics of a wave maybe be sufficient to determine its runup.
Conclusions are stated in chapter 5. Appendix A presents an exact theory to calculate the
forces on an accelerating plate. Appendix B presents an algorithm to calculate the runup of

uniform bores. Appendix C presents a method for generating arbitrary waves in the
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laboratory. Appendix D presents a calculation for the Fourier transform of a solitary wave.

The composite picture that emerges is that, during runup, waves behave differently
according to their breaking characteristics. The runup of nonbreaking waves can be
predicted accurately from the linear theory. The climb of nonbreaking waves can be
modelled adequately with the nonlinear theory. The runup of any single long wave can be
determined from its generation characteristics. Solitary waves provide a limiting case for the
runup of breaking long waves. There exist maximum runup values that nonbreaking

waves, breaking waves and bores may achieve on any given beach.
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Chapter 2

Experimental apparatus and procedures

This chapter describes the experimental equipment used in this investigation and its
operation. The equipment consists of a wave tank, a wave generation system, a plane
beach to study runup, a force measuring system, and different tranducers to monitor the

wave motion.

The wave tank is decribed in section 2.1. The wave generation system consists of a
piston attached to a wave carriage that carries a vertical plate. As the piston moves, the plate
translates horizontally and displaces the adjacent fluid, thereby generating waves. The
piston is driven by a hydraulic system. The hydraulic system and the wave carriage are
described in section 2.2 They are controlled by a servo-system, operated by a function
generator ; section 2.3 describes the servo-system, and section 2.4 describes the function
generator. The force measurement system was developed to determine the force on the
accelerating piston due to the hydrodynamic pressures on its front face; it is described in
section 2.5. Three different wave transducers were used, and their design and operation is

discussed in section 2.6. Section 2.7 gives an account of the experimental procedures.

In this chapter all dimensions are stated in the system of units used in the
construction of the particular piece of equipment described, or in the measurement of the
particular variable being discussed. The equivalent dimension in SI or in US customary

units is given in parentheses.
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2.1 The wave tank. The wave tank used in this investigation is a 123.8 ft (31.73 m)
long, 2.0 ft (60.96 cm) deep and 15.5 in (39.37 cm) wide tank consisting of 12 identical
sections. It has been described by French (1969), Hammack (1972), and Goring (1979).
A schematic drawing of the wave tank is shown in figure (2.1.1), and a typical section is
shown in figure (2.1.2). The side walls of each section consist of plate glass panels
measuring 5.0 ft (1.52 m) long, 25.0in (63.50 cm) high, and 0.5 in (1.27 cm) thick. The
bottom of each section consists of painted steel channel section 1.0 in (2.54 cm) thick.

There are carriage rails running along the whole length of the tank.

A ramp was installed at one end of the tank to model the bathymetry consisting of a
plane beach joined to a constant depth region as in figure (1.1.1). The beach had a slope of
1 vertical to 19.85 horizontal and it was constructed out of four anodized aluminum plate
sections, each measuring 8.0 ft (2.44 m) long by 15.0 in (0.38 m). The ramp was sealed to
the tank walls by inserting a polysterene rod in between the edges of the ramp and the side
walls, and then filling the gap with silicone. The toe of the ramp was distant
14.95 m (48.19 ft) from the rest position of the piston. A schematic drawing of the side
view of the tank with the ramp is also shown in figure (2.1.1). Figure (2.1.3) is a

photograph of a view of the wave tank.

In one of the later stages of this investigation it became necessary to determine the
force on the plate due to the hydrodynamic pressures on its front face.. To perform this
measurement with a force cell, the fluid behind the plate must be drained rapidly ; otherwise
the force cell would measure the difference between the forces on the front and the back face
of the plate. To this end, the tank was modified by installing a bulkhead 2.0 in (5.08 cm)
behind the rest position of the piston. A drainage hole of 1.0 in (2.54 cm) diameter was

drilled on the flume bottom with its center distant 1.0 in (2.54 cm) from the bulkhead.
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2.2 The hydraulic system. The hydraulic system 1is described in detail by
Goring (1978). Its most important element is an electromechanical servo-valve that controls
the flow of hydraulic oil into a hydraulic cylinder. The piston moves in response to the oil-
flow in the cylinder. Oil flows to the valve from two oil accumulators which hold the fluid
under pressure. The oil is supplied to the accumulators from an oil reservoir through an axial
flow pump. The servo-valve is a Moog Model 72-103 and it is rated at 60 gpm
(0.227 m3/min) at 40 ma current. The accumulators are two ten gallon pressure vessels
containing rubber bladders filled with nitrogen gas. The accumulators hold about 7.0 gal
(0.026 m3) of oil at the rated pressure of 3000 psi (20.68 MPa). The oil reservoir has a
capacity of 40 gal (0.152 m?3) and the oil pump is a Denison constant flow pump rated at 2.9
gpm (0.011 m3/min) at 3000 psi (20.68 MPa). It is powered by a 7.5 hp (5.6kW), 1800

TPm motor.

Two hydraulic cylinders were used, alternately. One cylinder, referred to as " the
long cylinder”, is a Miller Model DH77B cylinder with 2.5 in (6.35 ¢cm) bore and 1.375 in
(3.49 cm) rod and permits piston strokes up to 96 in (2.44m). The other, referred to as
" the short cylinder " is a Miller Model DER-77 cylinder with a 5.0 in (12.7 cm) bore and
1.75 in (4.45 cm) rod, and it permits a stroke of 16.0 in (40.6cm). Either cylinder can be
connected to the wave carriage through a vertical post on the carriage. In the schematic

diagram in figure (2.1.1) the long cylinder is shown connected to the wave plate carriage.

The wave plate carriage carries the plate that generates the waves. The wave
carriage is borne on rails supported on a steel truss that is structurally independent from the
wave tank. The rails are Pacific-Bearings hardened steel rods of 1.250 in (3.175 cm)
diameter, Model No SA-20-120. Four Pacific-Bearings linear roll bearings, Model No
SPB-20-OPN, are used for the ride of the carriage on the rails.
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2.3. The servo-system. The purpose of the electro-mechanical servo-system is to
supply the servo-valve with the electric current necessary to drive the piston to follow a
specified trajectory. In the absence of frictional forces this process has a linear transfer
function; the piston velocity is proportional to the hydraulic oil flow rate through valve,
which is itself proportional to the voltage applied across the valve. Then, to move the piston
one would only have to apply a voltage proportional to the desired piston trajectory.
However, the force required to get the piston moving from its at rest position and the other
dynamic frictional forces distort the transfer function. If the piston is to follow a specified
trajectory accurately, feedback must be provided to correct the motion in real time. This is
the function of the servo-controller, which compares the current position of the piston to the
desired position and adjusts its output so that there is no difference between the two

positions.

The servo-controller used in this study is a Moog AC/DC controller Model No
82-151, with its power supply, model no 82-152. The controller was modified by the
addition of a resistor array to allow fine tuning of the system damping and of a Dither
oscillator to provide a 600 Hz excitation to the valve. The continuous excitation reduces the
force required to overcome static friction and enables smoother movements from rest. The

amplitude and the frequency of this excitation do not produce any free surface motions.

Two different transducers are used to measure the plate position and to output the
feedback voltage. When the long cylinder is driving the wave carriage, a ten-turn
potentiometer riding on a precision rack is used, in a rack and pinion arrangement. (The
potentiometer is shown in the schematic drawing in figure (2.5.1).) When the short cylinder
is in place, a linear variable differential transformer (LVDT) is used. Details of both

systems maybe found in Goring (1978).
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In the course of this study it became obvious that the LVDT device is the superior
transducer for this application. It measures the position of the piston directly, while the
potentiometer measures the position of the wave plate carriage to infer the piston position.
The two measurements are equivalent only when the piston is attached to the carriage;
when the carriage is disconnected from the piston for servicing, the feedback voltage of the
potentiometer informs the controller of the carriage position which the controller interprets as
the piston position. The controller forces the piston to move to the carriage position, an
action with unpredictable results when the carriage is not in place. Also, the potentiometer

requires tedious readjustment of its backlash gear when reinstalling the wave carriage.

2.4 The function generator. The purpose of the function generator is to store a
specified trajectory in binary form and then convert the data to a voltage signal. It consists
of a digital to analog converter with a buffer that stores data and was manufactured by
Shapiro Scientific Instruments (SSI), Corona del Mar, California. The generator accepts
data either manually or from a tape reader. The generator stores the data in memory and
displays them sequentially with an LCD display. The rate with which data is dumped to the
controller may vary continuously from 1 byte/sec to 10° bytes/sec and this rate determines
the duration of motion. Since the memory buffer holds 1kbytes, the generator can create
trajectories of duration from 0.001024 sec to 1024 sec. The system also allows sequential

access of the memory to change data in specific data addresses.

The generator is connected to an amplifier to adjust the gain of the generated signal.
This amplifier is called the "wave form conditioner " and was also designed by SSI. It
allows adjustment of the gain of the voltage signal, so that the complete range of motions
possible with the cylinder in operation can be realized. It also permits adjustment of the
initial piston position and it resets the piston to its initial position. Details of the design of

the system can be found in Goring (1978).
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The introduction of microcomputers in the laboratory has rendered devices like the
function generator and the tape reader obsolete. The digital-to-digital (DTD) or
digital-to-analog (DTA) interfaces of a microprocessor perform the same functions easier and
faster. Two microcomputers were available for this study, a PDP11/60 processor running
under the RSX-11M operating system and an LSI-11/23 running under the RT-11 operating
system. Both CPU's are manufactured by the Digital Equipment Corporation. The 11/60 is
equipped with an AD11-K and an AA11-K interface, while the 11/23 is equipped with a
DRV11-J and an AD11-J board. In early stages of the investigation, the AA11-K interface
was used to transmit a voltage signal directly to the wave form conditioner bypassing the
function-generator. Later, the DRV 11-J interface was used to transmit trajectory data to the
function generator memory, thereby replacing the tape-reader. The macro routine used to

control the DRV 11-J was written by Skjelbreia (1982).

The use of the two interfaces has certain advantages but also disadvantages
compared to using the function generator. The DRV11-J interface allows fine tuning of
the trajectory in essentially real time. However, it is rated for a communications distance of
10 ft (3.28 m). This distance is quite restrictive in the laboratory, where the L.S111/23
system is often used elsewhere. Communication over a distance of 100 ft (32.81 m) was
often achieved, but the operation was erratic. The problem was solved by keeping the
11/23 and the function generator physically near, when a particular experiment required
continuous adjustment of the trajectory. The AA11-K interface is not restricted by its
distance from the signal destination, when operating in the DTA mode. It allows resolution
up to four times higher than the one possible when using the function generator. However
it must be operated in real time, thereby prohibiting the checking of the integrity of the

incoming signal.
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2.5 The force measuring system. For this investigation the wave carriage was
instrumented with a force measuring system with the objective to determine the force on the
piston plate due to the hydrodynamic pressures exerted when the fluid is displaced. The
system consists of a load cell mounted in line between the piston and the piston mount in the

wave carriage, and a calibration scale. The arrangement is shown in figure (2.5.1).

The load cell is a universal load cell rated at 100 1bs (22.4 Nt) and is a model 34b
force tranducer, manufactured by West Coast Research Company, Santa Monica,
California. The cell is temperature compensated and its electrical ouiput is 3.0 mv/Volt. Its
full load deflection is 0.012 in (0.030 mm). Its physical presence does not interfere with the
operation of the feedback loop. The load cell is excited with an 8805A Hewlett Packard |
Carrier preamplifier (HP 8805A), which also demodulates and amplifies the output signal.
The signal is simultaneously recorded by the AD11-J interface of the 11/23 system.

A calibration system was designed so that the cell can be calibrated in place so as to
include any effects from side loading. It consists of a low-friction pulley with its axis
perpendicular to the side rails and a scale, as shown in figure (2.5.1). A steel wire [tensile
strength 2500 psi (17.2 MPa)] rides over the pulley and connects the wave plate carriage
with an aluminum bucket. The force cell is calibrated by placing lead weights in the bucket
and recording the cell ouput. When the bucket is loaded, a force is applied through the wire
to the wave carriage. This force is transmitted to the load cell, which then compresses
between the stationary piston and the wave plate carriage. This method calibrates the cell in
compression only, which is not a severe limitation since the hydrodynamic force on the
plate is usually compressive. When calibration in tension was required, the calibration was

extrapolated. This practice was in accordance with the manufacturer's recommendations.
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2.6 The wave transducers. Three different wave transducers were deployed in this
study. One transducer is the n-frame resistance-type wave gage. The two other gages
were developed during the course of this investigation. They are the plate wave gage and
the runup gage array. The next sections describe the principles of operation of these gages.

Calibration curves are presented in section 2.7.

2.6.1 The n-frame wave gage. The n-frame wave gage used in this study is an
instrument that measures water surface elevation. It consists of a pair of stainless steel wires
of diameter 0.01 in (0.254 mm) spaced 0.16 in (4.06 mm) apart. The wires are insulated
from each other and are streched taught between the open ends of a thin rod bent in a
n-shape. When the wires are immersed in a conducting fluid, they form a resistor; the
level of immersion is the resistance load. The gage is placed on a Wheatstone bridge to
enable adjustment of the base level of resistance. Details may be found in Okoye (1970).
Excitation is provided from an HP 8805A preamplifier. As the fluid level changes, the
bridge becomes unbalanced and the preamplifier monitors the output voltage, demodulates

it, and amplifies it. The output is recorded by the AD11-J interface of the 11/23.

In this study the gage was calibrated by immersing it in the wave tank and recording
the immersion depths and the output voltage. The calibration device described in
Goring (1978) and Lepelettier (1980) was used in some preliminary experiments. It
consists of an array of syncronous motors. Each motor has appropriateugearing to allow
linear motion of a gear shaft on which the wave gage is mounted. The motion of the motors
is adjusted by a control motor which is rotated manually. This calibration system has the
disadvantage of producing calibration curves with non-uniform density of data points.
Since the AD11-J allows external starts for sampling data, the point-gage method was used

for calibration. The wave gage is immersed a given depth in the tank and the AD11-J is
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triggered to record a sample of the voltage output. The procedure is repeated until the
calibration is completed. Then the 11/23 produces the calibration curve and an HP7470A

plotter plots it.

2.6.2 The plate wave gage. The plate wave gage was developed with the objective to
measure thé water surface elevation on the face of the wave plate while the plate is in motion.
It was designed to enable calibration for measuring elevations up to 30 cm (11.81 in). Itis
a 50 cm (19.68 in) long plexiglass rod with T-shaped crossection. Its front face is 0.375
in (9.52 mm) wide. Two 0.01lin ( 0.254 mm) diameter steel wires were embedded in the
rod inside two 0.005 in (0.127 mm) diameter grooves, 0.187 in (0.48 cm) apart. To
provide lateral support to the gage, a lucite plate of 0.50 in (1.27 cm) thickness and with
dimensions 23.00 in (58.42 cm) by 15.25 in (38.73 cm) was mounted flush on the piston
plate. The wave gage rod slides inside a groove machined with a dove tail drill on the front
surface of the lucite plate. When the gage is not being calibrated, the front face of the plate
appears as a flat surface with two wires protruding a distance of 0.005 in (0.127 mm) from

it. The location of the wave gage is shown in figure (2.5.1).

The plate gage operates as a resistance-type wave gage. To measure surface
elevations of the same order as the local depth, the gage has to be calibrated in depths larger
than the local depth. To enable such calibration depths, a hole was drilled in the bottom of
the wave tank to create a well. A 30 cm (11.81 in) long piece of brass pipe of 0.5 in
(1.27 cm) diameter was mounted beneath the hole. A valve was installed at the free end of
the pipe for drainage. (See figure (2.5.1)) Tests were conducted to determine the influence
of the proximity of the walls of the pipe to the electrostatic field set by the wires and no
observable effects were noted for the combination of 0.5 in (1.27 cm) pipe with the pair of

0.01 in (0.254 mm) wires. During calibration, the wave gage is immersed in the wave tank

The runup of long waves. Chapter 2



37

and eventually it enters the pipe. A typical calibration curve is shown in figure (2.7.4b).
From the data points in the figure it is not possible to determine when the wave gage entered
the pipe, indicating that the pipe did not interfere with the calibration process. The gage was

immersed in the well only when measuring surface elevations larger than 20 cm (7.87 in).

2.6.3 The runup gage. Parallel wire resistance wave gages cannot be used for wave
measurements close to the shoreline. As with the case of measuring wave heights on the
piston plate, the small local depths ( relative to the surface elevations to be measured) do not
permit in situ calibration. Also, the gages cannot be calibrated in deeper water and then
moved back, because of the strong boundary effects arising when the wave gage is in close
proximity with the surface of the beach. These problems have discouraged measurements of

wave height close to the shoreline with conventional techniques.

The most notable success in such measurements was the study of Battjes and
Roos (1974). They developed a transducer that consisted of a parallel wire wave gage
immersed in a tray filled with water and with a cover flush with the ramp face. The
arrangement of their gages resembles the geometry of the plate wave gage calibration system,
differing only by the fact that their wave gages are partially immersed in their "wells"
continuously. Their instrument produced good results in measuring the wave heights of
periodic waves climbing up sloping beaches. However, it has not been copied in other

investigations, possibly because of construction difficulties.

A new type of transducer was developed in this study for the measurement of runup
heights. It will be referred to as the runup gage . It consists of an array of capacitance wave
gages mounted on an aluminum frame, as shown in the schematic drawing in figure (2.6.1).

The distance between the probes can be varied from a minimum of 3 in (7.62 cm) in 3in
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(7.62 cm) increments. (These distances reflect topological limitations imposed by the
support bracket of each gage.) In all cases in this study, the transducer was used with the
probes mounted with equal spacing between them. The effective length of the probes is
adjusted by sliding the gage inside its support bracket. Figure (2.6.2) shows a photograph.
of the runup gage.

Each gage consists of a wave probe and an electronics box. Each probe is made of
steel rod of 0.030 in (0.76 mm) diameter and is fitted in a glass capillary tube with 0.062 in
(1.58 mm) outside diameter. The glass tube acts as the dielectric. The probe is attached to
the electronics box with a BNC connection. This arrangement permits rapid replacement of

the probe when one of the capillary tubes breaks.

The gage operates as a capacitance wave gage. The electronic circuit that drives it is
shown in figure (2.6.3a). An external oscillator is used to drive the gates of a field effect
transistor (FET) which provides alternating current to the the wave probe. The output
current passes through a radio frequency choke and then returns to a current to voltage
converter. The circuit diagram for the current to voltage converter is shown in figure
(2.6.3). [Montenegro, (1984)]. The output voltage is recorded directly by the AD11-K
interface of the 11/23. Since the FET has high input impedance, there is practically no
loading effect. As a result, there is no cross-talk between probes even at the smallest

interprobe spacing permitted by the geometry of the runup gage, i.e., 1.5in (3.81 cm).

One basic advantage of this system is that the transducers always maintain the same
distance from the surface of the beach, thereby eliminating the need to account for wall
effects during calibration; to calibrate the runup gage the entire frame is moved down the

ramp, and changes in the local depth and voltage for each gage are recorded.
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Figure 2.6.3 The circuit diagrams for the runup gages probes and the current to voltage
converter.
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The runup gage was tested dynamically by comparing its output with that of
conventional n-frame gages. The comparison was done at a location near the toe of the ramp
where both instruments could be deployed. It was accomplished by reproducing the same
wave in the laboratory and by measuring it at the same location twice, once with the n-frame
gage and then again with one of the runup probes. The comparison produced identical
results. To test the performance of the runup gage when measuring surges on a dry bed,
the gage was deployed at a distance of 0.06 depths seaward from the initial shoreline. A
16mm movie camera operating at 63.25 frames per second was used to record the climb of a
wave on the beach, simultaneously with the runup gage. Figure (2.6.4) shows the
comparison between the cinematographic data and the runup gage data. The data agree well
during runup, but differ slightly during rundown. This may be attributed to the difficulty of
identifying accurately the position of the free surface in the movie frames when digitizing
images of flows with small depths ; this identification is harder during rundown than during

runup, because then the windows of the tank have been wetted from the runup of the wave.

2.7 Experimental procedures. This section describes some of the laboratory
procedures and software to collect data and do the analysis. Four different types of
measurement were performed: measurements of the piston position, of the force on the

piston, of wave heights using n-frame gages, and of wave heights using the runup gage.

2.7.1 The piston motion measurements. The measurement of the piston position is
performed with either the potentiometer or the LVDT described in section 2.3. When the
piston moves, the output voltage of the appropriate transducer is recorded first by an

HP 8802A medium gain amplifier and then by the AD11-K interface of the 11/23.

The runup of long waves. Chapter 2



43

G2

"BIOWED S1A0W w9 B im pue afes duunt oy
[IIM PIINSBIW 9(°(-=P/xX I8 SUONBAIJ[S 90BJInS Usom1dq uosuedwoo v $°9°z aandiyg

(098) 4}
02

Gl

o] "

0} 4 Ge (0]

e
Sz

I

BIep JIAOW WWIQT 4 4
eiep o8 dnuny —

0°0

Chapter 2

The runup of long waves.



44

The stroke of the piston is defined as its maximum excursion and it is also recorded.
The stroke divided by the maximum amplitude of the voltage signal is used to convert the
latter into a trajectory time history, in a linear fashion. This practice was possible because:
the piston trajectory for all applications in this study was a monotonically increasing function
of time. The measurement of the actual piston stroke in every experiment was necessitated
by the fact that the piston motion was found to be a function of the pressure existing in the
hydraulic system and the characteristic time of the motion. Tmes shorter than 1.000 sec
produced distorted trajectories and produced strokes up to 5% off the intented ones.
Depending on the stroke length, the error in measuring the piston motion varied between one

to five percent. The noise level of the signal was in the same range.

2.7.2 The force measurements. The force measurements were performed with the
force cell described in section 2.5. The force cell was calibrated before each run by adding
lead weights on the bucket. To facilitate the data reduction, weights were added up to the
anticipated loading level on the plate. A typical calibration curve is shown in figure (2.7.1).
The force cell was proven to be a superb instrument, with highly repeatable éahbmﬁon and
performance. The error in the instrument calibration was less than one percent of the

maximum load used in the calibration curve.

The force cell data were used to derive the force on the front face of the plate. When
the piston moves, the recorded force is the vector sum of the hydrodynamic pressure forces
on the front and rear of the plate and the "tare" force (which is the force necessary to move
the piston). The hydrodynamic forces on the rear of the plate were reduced substantially by
draining the fluid behind the plate rapidly. The drainage network is described in section 2.1.
Initially the water level behind the plate is at the same level as the free surface on the front.

The bulkhead behind the plate (shown in figure (2.5.1)) limited the volume of fluid between
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the plate and the bulkhead to about a gallon (3.7851). After the gate valve was opened, the
fluid drained within 3 or 4 seconds to a level of 0.5 in (1.27 cm). The force due to this
remaining fluid is easy to calculate, given the total force measurement, and the fact that the
pressure on the front face, when the piston is not moving, is hydrostatic. When the piston
starts moving, the volume behind the piston expands and the water level drops even further.
The remaining fluid and any fluid leaking from the sides of the piston plate drains rapidly and

does not contribute appreciably to the net hydrodynamic pressure force on the piston.

80 | |
B 1122-A
70+~ — LINEAR FIT _

Force (Ibs)

Volts

Figure 2.7.1 A typical calibration curve for the force cell.
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The other quantity needed to determine the force on the front face is the "tare" force
of the piston. In an ideal system, this force would be the product of the plate acceleration
with the plate carriage mass. However, the action of static and dynamic friction forces
necessitates the explicit measurement of the force for every possible trajectory to be used for
the piston motion. To perform this measurement the tank is completely drained and the side
walls are wetted with a spray bottle ; the plate is then moved with the trajectory whose

associated tare force is to be determined, and the resulting force time history is recorded.

Although the measurement of the force on the piston plate was repeatable when
water was in the tank, the measurement of the tare force did not produce reproducible
results. Figure (2.7.2) shows the force required to move the piston, a measure of the piston
velocity, and the associated impulse of the motion, as functions of time, for three
realizations of the same linear piston motion. The actual piston velocity was determined by
numerical differentiation of the motion signal and the impulse by numerical integration of the
force signal. As it can be seen from the figure, there is a 72% difference between the

impulse results associated with that motion.

The behaviour shown in figure (2.7.2) was persistent for many of the trajectories
tested. In an effort to understand this apparent paradox, that the same motion under
identical conditions required different impulse in different realizations, the wave generation
system was stripped down. First the wiper blades were removed from the sides of the
piston plate; then the seals of the linear motion bearings on which the piston carriage is riding
were also removed. The reproducibility of the impulse of the motion did not improve
substantially. Then an effort was made to calculate the transfer function of the system by
determining the delta function response. However, it failed to reveal any characteristics of

the wave generation system responsible for the poor results.

The runup of long waves. Chapter 2
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Because of this limitation, only data from runs where the tare force was
reproducible in at least ten realizations of the same motion will be presented in the subsequent

discussion of the laboratory results.

[T T T i
— 1230-D
— 1230-E
—— 2BO-F
48 - =
(=3 'V A4
o o.5 i

Force (1bs)

! i
.o 1.8 2.0

Figure 2.7.2a Three tare force measurements under identical plate motions. The stroke is

equal to 12.55 cm (4.94 in) and the generation time is 1.000 sec. The plate is moving with a
ramp motion. (See section 4.2.2.)

volts/sec

Figure 2.7.2b A measure of the plate velocity.

Ibs-sec

t* (sec)

Figure 2.7.2c¢ The impulse associated with the force measurements of figure (2.7.2a).
Note how small changes in the force signals produce large differences in the impulse.
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2.7.3 The wave height measurements. Wave height in the constant depth region of
the tank were measured using resistance type wave gages as described in section 2.6. Any
wave transducers deployed in a given experiment were balanced and calibrated before each
experiment. The calibration was performed by varying the elevation of the wave gage
sequentially and then triggering the 11/23 to record the corresponding voltage. The software
displayed different degree polynomial fits for the calibration data, and the user was
prompted to select the desired fit . Then the calibration curve was plotted on an HP 7470
plotter. Usually the fit selected was of degree four. Figure (2.7.3a) shows a typical
calibration curve for one of the w-frame gages, and figure (2.7.3b) shows a typical
calibration curve for the plate wave gage. The calibration of the resistance wave gages was

accurate to within 0.5% of the maximum elevation included in the calibration curve.

2.7.4 The runup height measurements. The runup height measurement is
performed in a different fashion than the other wave height measurements because all ten
transducers are calibrated simultaneously. The runup gage includes its own excitation
system, and no balancing of the system is necessary. The output signal is recorded directly,

i.e., without amplification.

The gage was calibrated before each run as follows. The gage was moved
sequentially down the ramp and the 11/23 was triggered to record the voltage data from all
gages. As the runup gage became immersed in the fluid, not all of the probes were
immersed in the same depth. The software inquired for the interprobe separation distance,
and the initial immersion depth of the first gage in the array, and then monitored whether a
given probe was immersed in the water and its immersion depth. Then the calibration curve
was constructed for each gage and then was plotted on the HP 7470A plotter. A typical
calibration curve is shown in figure (2.7.4). The calibration of each probe was accurate to

within five percent of the maximum elevation.
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2.7.5 General specifications of the data acquisition. All of the wave data
collected in this investigation were in the form of voltages recorded by the AD11-J interface
board of the 11/23. The board specifications indicate conversion accuracy to 0.001 volts.
This value was checked periodically with precision voltmeters, and the AD11-J gave results

repeatable to 0.005 volts.

All calibrations described in sections 2.7.2, 2.7.3, and 2.7.4 involved
measurements of voltages. The average of ten samples was used to establish a particular
voltage value for each calibration point. The voltage range used in the calibrations was
typically between -2.0 to 4.0 volts, except in the runup gage, where the range was from

0.0to 1.4 volts.

Data was collected from 16 channels simultaneously. The macro routine that
performed the data sampling was written by Skjelbreia (1982). The number of data
collected imposed an effective limit on the sampling rate, even when virtual arrays were used

for temporary data storage. The sampling rate used ranged from 2000 Hz to 125 Hz per

channel.

The data were converted in real-time to dimensionless numbers, using the
calibration coefficients of each run. It was stored in FILES-11 format, and it was displayed
on the HP 7470 plotter as soon as the data acquisition of each run was completed. (Budget
limitations did not permit the acquisition of a graphics display. ) All software used in this
study for data acquisition, reduction, analysis, display and plotting were developed by the

author.
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Chapter 3

The runup of solitary waves

In this chapter an exact solution of the linear and a nonlinear shallow water wave
equations is derived for the climb of long waves on plane beaches. An exact result is
developed for calculating the runup of nonbreaking solitary waves and is compared with
experimental data. It is found that the linear theory predicts the maximum runup of solitary
waves well, and that the nonlinear theory describes the climb of solitary waves up sloping
beaches equally well. Some differences between breaking and nonbreaking solitary waves

are discussed and some of the unresolved questions posed in the introduction are explained.

3.1 Basic equations and solutions. Consider a topography consisting of a plane
beach of slope 1 : cotB adjacent to a constant depth region, as shown in figure (3.1.1).

Non-dimensional variables are now introduced as follows :

A

E,,,,,/ ,,,f L i /
.

Figure 3.1.1 A definition sketch for a solitary wave climbing up a sloping beach.
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x=x"/d, h=h"d, n=n"/d, t=t"Vg/d, and u=u"*/gd, (3.1.1)

where the star indicates dimensional variables and d is the characteristic depth of water. The
origin of the coordinate system is at the initial position of the shoreline and x increases

seaward. The topography is described as follows :

hy (x) = x tan 3 when  x < cotf, (3.1.2a)
and

hg(x) =1 otherwise. (3.1.2b)

The local undisturbed water depth is h . Consider a propagation problem in this region

described by the nonlinear shallow water wave equations :

h, + (hu), =0 (3.1.3a)
u +uy,+h =0 (3.1.3b)
h(x)=hyx)+nxt . (3.1.3¢)

3.2 Linear theory. The system of equations (3.1.3) can be linearised by retaining the

first order terms. The following equation results :

Ny - Mehg) =0 : (3.2.1)

When the undisturbed depth hy is constant, equation (3.2.1) reduces to the classical wave

equation, with the steady state solution :

N (1) = Aerkxeet) o A ek(x-ct) | whenhy(x) =1 . (3.2.22)

The runup of long waves Chapter 3



54

When hj = x tanf, then the substitution =2a)\/xcotb, transforms (3.2.1) into a Bessel

equation of order zero. The steady solution is :
N (x,t) = B (&,B) J, (2kVxcotB) eKet | when hy (x) = x tanB.  (3.2.2b)

Note that, with the normalization used, the phase velocity is unity, i.e., c = 1. However, c is
retained for compatibility with other formulations. Solutions for arbitrary boundary
conditions can be derived for both cases, hy(x) =1 and hy(x) = x tanf3, by standard
methods. An elegant solution method for the case hy(x) = x tanf} will be outlined presently.

Let {=Vx. Then (3.2.1) becomes :

Mg + (I/C)ng =4 cotB Ny - (3.2.3)

Expanding 1 (,t) in a Fourier-Bessel series one obtains :

n(&t) = Ecn(t) JoG.D) (3.2.4)

n=1,00

where j_ is the nth zero of J;. Multiplying (3.2.4) by s J;(,,s) , integrating from O to 1

and using the orthogonality condition of the Bessel functions results into :

2 1
J- sJoG )M s, ds. (3.2.5)

c,(t)=
[J,G1% o

Using the identity d/dz {J;(j,z)} =], Jo(i,z) - (1/2) J,(j,z) and substituting (3.2.4) into

(3.2.3) the following differential equation is obtained for the coefficients of the series :

The runup of long waves Chapter 3
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dZc_ i2

= e (3.2.6)
{

Once an initial value n (C,to) is specified, then c (t;) can be derived explicitly from
(3.2.5) ; then ¢ (t) follows directly from (3.2.6). For example, the steady state solution can
be derived immediately by letting 1 (§,t) = a(Q)e"I®t. Then (3.2.6) becomes i 2 =4w?cotf
and then N(§,t) = B J, (00) e 10t \where B is an arbitrary constant. A similar solution is
presented in Carrier, Krook and Pearson (1966), page 372, for an equation that describes

the free vibrations of a hanging chain.

A solution for the combined topography (3.1.2) can be derived by matching the
outer solution (the solution in the constant depth region (3.2.2a)) and its x-derivative, to
the inner solution (the solution on the sloping beach (3.2.2b)) and its x-derivative at x= X,

the toe of the beach. Let constant A; be the amplitude of the incident wave, A_be the
amplitude of the reflected wave, B (k,) be the amplitude of the wave transmitted to the
beach, referred to as the amplification factor , and k be the wavenumber. This matching
was first performed by Keller and Keller (1960). Given an incident wave of the form

n(xt) = A, e+ | the following expressions are obtained for B and A

-ikX0
\ 2 Ai e
Bk, B) = , (3.2.72)
Jo2X ) - 1 J,2X k)
and
-2 ikX,
A KB = Ae : (3.2.7b)

This solution can be used to study the behaviour of more general waveforms
approaching the sloping beach. As Stoker (1947) pointed out, the standing wave solution

(3.2.2) can be used to obtain travelling wave solutions by linear superposition, since the
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governing equation (3.2.1) is linear and homogeneous. For an incident wave of the form :
=  -ikct
n&t) =) dk)e dk, the transmitted wave to the beach has the form :

oo -ik (X,+ ct)

Jo2kVxXp) e

N = 2] k) dk . (3.2.8)
-0 Jo2Xok) -1T,2X k)

- This solution is only valid for 0 < x. When x <0, then (3.2.1) does not reduce to Bessel's
equation. In order to obtain details of the wave in the region x < 0 one must solve the

nonlinear set (3.1.2).

3.3 Nonlinear theory. To solve the nonlinear set (3.1.3) for the sloping beach case,

where hy(x) = x tanf3, Carrier and Greenspan (1959) introduced the following hodograph

transformation,
u=yJc, (3.3.1a)
x =cotB [6%/16 - y,/4 + u?/2], (3.3.1b)
t=cotf [y /o-A/2], - (3.3.1¢0)
and n=y,/4-u?2. (3.3.1d)

This reduces the set (3.1.3) to a single linear equation,

(G‘VG)G = Wn‘ (3'3'2)
The transformation is such that in the hodograph plane, i.e., the (o,A) space, the shoreline is

always at 0=0. This can be seen by observing that when o= 0, (3.3.1b) implies that

1 = -xtanP, which is a relationship valid only at the shoreline tip.
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Equation (3.3.2) can be solved with standard methods. In its steady state form, it
is Bessel's equation of order zero. If an initial condition is available, one can use Hankel
transform techniques, as demonstrated by Carrier (1966). If a boundary condition is
available, then the method of choice is the Fourier transform technique. Let « be the

transform variable, the wavenumber in the (G,A) space, distinct from k the wavenumber in

the (x,t) space. Define the Fourier transform of y (6,A) as ¥(o,x) = J Y(o,A) Ak gy,

If initially , '¥(0,,K) = F (), then the solution bounded at 6= 0 and G = oo has the form :

Jo(o%)
w«m—f F o) —— &gy (333)

J 0(c501<:)

To complete the solution of (3.3.2) an appropriate initial or boundary condition must
be specified. Carrier and Greenspan (1958) presented a general solution to the initial value
problem when the velocity u (x,t,) is initially zero (t, is the initial time) . Spielvogel (1974)
used that solution to derive the evolution of the wave during rundown, assuming initially
an exponentially shaped runup profile. Carrier and Greenspan (1958) also presented
solutions with u (x,t)) # 0, but for specific initial conditions. In general, it is difficult to
specify initial conditions on a sloping beach, without making restrictive assumptions for the
incoming and reflected waveforms. For similar reasons, a boundary condition for all times
can not be specified apriori for an arbitary incoming wave. Even when boundary or initial
conditions are available in the (x,t) space, the process of deriving the equivalent conditions
in the (0,A) space is not trivial. Also, matching of an inner solution with an outer solution
is not easy, because the resulting equations cannot be solved by simple elimination as in the

derivation of equations (3.2.2).

These difficulties have restricted the use of the Carrier and Greenspan formalism.
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This is quite unfortunate because the problems described can be circumvented. Carrier
(1966) demonstrated how to specify a boundary condition when available or when reflection
is negligible. Another method will be described presently for specifying such a condition,

including reflection.

‘Carrier (1966) pointed out that far from the shoreline nonlinear effects are small.
(The validity of this statement will be examined later, when the results of this theory are
compared with experiments. ) The transformation equations can then be simplified by
neglecting terms ~O(u?). To the same order, V,/4 << 6%/16 (since 6%/16 ~ O(1)), and

Iy /0| << [M2], since [M2| ~ O(10). This reduces (3.3.1)to:

u =V, /O, n=wyy/4,
x=cotf (6%/16) and t=-cotp (A2) . (3.3.4)

These equations are linear and allow specification of a boundary condition directly, once the

equivalent condition is known in the (x,t) plane.

One method for specifying a boundary condition in the physical space is to use the
solution of the equivalent linear problem, as given by equation (3.2.6). This is certainly
correct to the same order of approximation as (3.3.4). The obvious choice for specifying the
boundary condition is the seaward boundary. This is dictated by the requirement to use the
linearised form of the transformation at the furthest possible location from the initial position
of the shoreline, but at a location where the Carrier and Greenspan formalism is still valid.
This is the point x = X, and it corresponds to the point 6=0,=4 in the (c,A) space. Then
NXyt) = (1/4)y,(4,A). The boundary condition F(x) in the (0,x) plane is determined

from (3.3.3) and (3.2.8) by repeated application of the Fourier integral theorem. Assuming
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that y (G,,A) goes to zero at A =teo, then the solution of (3.3.2) follows as,

oo - KX g 1K /2
8i J- 20(k) JO(GKXO/2 ) €
Yy (CA) = = dk. (3.3.5)

Xo "ok (Jy(2X40) -1 J,(2X,0))

It is interesting to compare the predictions of the linear and of the nonlinear theories
for the maximum runup and minimum rundown. It will be shown that they are identical.
The maximum runup according to the linear theory is the maximum value attained by the

wave amplitude at the initial position of the shoreline, x=0, or,

o0 - ik (Xy+ct)
D) e

noy =2 4 dk .

-0 J)2X0) - 1 J,(2X k)

(3.3.6)

A

In the nonlinear theory the maximum runup is given by the maximum value of the wave
amplitude at the shoreline, | (xg,t), where xg defines the shoreline path and corresponds to
0=0. Let ug be the shoreline velocity; then, by definition, dx¢/dt=ug. To find x{ one may

use equation (3.3.1d) to obtain :

o - iKX g+ iKAX /2
W (03) ug? O(x) & ug?
N Xgt) =4 T~ 2 dg -— . 3.3.7D
0 J)(2XgK) - i J,2Xy%) 2

At the point of maximum runup, the velocity of the shoreline becomes zero. Settingu =0

and 6 =0in the transformation equations (3.3.1), reduces themto :

u=0, N=y,/4, x=-ncotf, t=-(/2)cotf. (3.3.8)
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Substitution of these values in equation (3.3.7) reduces it to (3.3.6), proving that the
maximum runup predicted by the nonlinear theory is identical to that predicted by the linear
theory. At the minimum rundown point the shoreline also attains zero velocity, and the
same argument implies that the linear and nonlinear theory results for the minimum runup are
identical. This behaviour was first noted by Carrier (1971), but had not been previously
identified as resulting from the effective linearization of the transformation equations at the
maximum and minimum excursion of the wave. This is paradoxical , since the linear and
nonlinear theory solution differ most at the initial shoreline. (See, for example,

figure (3.5.3)).

3.4 The solitary wave solution. The results of the previous section will now be
applied to derive a result for the maximum runup of a solitary wave on a plane beach. A

solitary wave centered at x = X at time t = 0 has the following surface profile :

H

n (X:O) = d

sech?[y (x-X)], (3.4.1a)

where 3H
Y = \1—45 (3.4.1b)

The transform function @ (k) associated with this profile is derived in appendix D. Itis

given by :

DK) = % k cosech (ck) elkxl , (3.4.2)

where o0 = 7/2y. Substituting this form in equation (3.3.6) and defining the dimensional
surface elevation at the initial position of the shoreline as R (t), then the following

relationship results :
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oo -ik (6+ ct)
J' kcosech(ok) e

o Jy2X k) - 1T,2X k)

R
d

w| &

dk , (3.4.3)

where 6 = X-X; This integral can be evaluated with standard numerical methods.
However, to obtain physical insight on the quantitative dependence of R (t) on H/d and X,
- the integral must be evaluated analytically. To perform the evaluation one can use contour

integration techniques.

Consider the integral Ic(t) defined along a closed contour C in the upper half plane,

consisting of the semicircle z = Irl and the real axis,

zcosech(oz) e =12 (8+ct)
ILo- I

dz . (3.4.4)
Jo2X,2) -1J,(2X2)

The integral I.(t) can be broken into two parts, the integral Io(t) along the semicircle
perimeter and the integral Ir(t) along the real axis segment (-r,r). (Note that R/d = (4/3)Ir(t)’
and it is the desired integral (3.4.3).) Ir(t) converges for all times, but Ic(t) converges in

the domain D, bounded by C, only when :
0 < X +X;,-cty . (3.4.5)
Otherwise it converges in the sector defined by :

O<alRe zI +(3X,-X,+ct)lm z1<0 . (3.4.6)

To perform the integration (3.4.4), one must define the poles of the integrand in D. Since

the numerator is an analytic function in D, the poles of the integrand are the zeroes of the
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denominator. Consider the function f(z) = J 0(z)—J 1(z) defined in D and let N denote the
number of zeroes and P the number of poles of f(z) in the same domain. By the principle of

the argument,

1 f'(z)
N-P- dz. 3.4.7)
2ni Cf(z)

Using Bessel function identities (Abramowitz and Stegun (1970)), this expression becomes:

1 [ J@-i)/'®@ 1 1 J, @)z
N-P= dz =—J)dz ~—— ) ——————dz. (34.3)
2ni €Jy(2)-i),(2) 2 ¢ 2 C¢J@-il,(@

The integral J cdz is the integral of analytic function around a closed path inside its domain
of analyticity; itis equal to zero. The second integral of the right hand side of the equation
cannot be evaluated in closed form. However, an upper limit for its modulus can be

obtained. On the circular arc, z=re'®, and for large r one can easily show that when

Imz>0:
|J1(Z)lS|‘/"12t‘; sin (z - E)_ !17|Lnelm z (3.4.9)
and that :
. 2 1
Jo@ -iJy@ 121V = efm z_ T L emz (3.4.10)

L, and L jare the remainders in the corresponding asymptotic expansions. All sides in
these inequalities are positive definite. Dividing them by parts in the right order and

multiplying the resulting expression by 1/|z| results in the following relationship :
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1,@) /2!
<
1Jy@ -1, 22

as Izl -> oo, (3.4.11)

An upper bound can also be obtained for the straight line segment of the contour C, where

Im z=0,. Letx=Re z.Then:

& /xl 1/l 1
< S

< < — Vx whereJ, (x) #0. (3.4.12)
1Jo® -1J,@1 VdHT2+1)

x|

The inequality is also valid when J, (x) = 0. Noting that the length of the semicircle is nir
and of the line segment is 2r, and substituting the upper limits of the moduli along each
segment , one obtains that :

1 5@ /2 1

1 1
— J——————dz £ — I nr(—) +2r(—) | <
2 ‘¢ JO(Z) -i Jl(z) 2% 2r T ]

2+ 72
2n

<1l. (3.4.13)

Since the function J (z) - iJ;(z) does not have any poles in the upper half plane, then N =0.
This implies that the integrand of (3.4.4) has the same poles z,, as the function z cosech(az).
They are z =nmi/oe, n=1,2,3.... The residue of the function at these poles is a and it is

given by :

%y (6 +ct)n

nmi
a = (-1° ( ) , (3.4.14)
a? 7 Jy4yXon) -1J,(4yXgn)

where use was made of the relationship o = n/(2y). Then, by the Cauchy integral formula :

- b Clp e 2Y@+con

IL,o=— . (3.4.15)
o? n=lee Ij(4yXgn)-il,(4yXgn)
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By Jordan's lemma, the line integral along the semicircle I (t) goes to zero for large r. In

the limit as r — oo, the integral IC (t) along C is equal to the integral along the real axis,

I_(t). Then :

2y 0+ ct)n

R ()
d

n(-D* e
g H
d

: (3.4.16)
n=le Io(4yXyn)-iL,(4yXyn)
This result can be further simplified by using the asymptotic form for large arguments of the

modified Bessel functions. For 4X y>>1, then:

1/4 n 32 - -2y (X,+X,-ct)n
B0 gnx, 62y 2 oe L. (3417

n=1,e

This form of the solution is particularly helpful for calculating the maximum runup. The
series in (3.4.15) is of the form 2(-1)“*1113/2)(“ and its maximum occurs when
X = 0.481 = ¢70-732_ This value defines the time t_, when the wave reaches its

maximum runup, i.e., where (3.4.15) has a maximum, as :

0.366

t .= (-cl—) (X +X, - ) . (3.4.18)

The value of the series at ty,, is zmax and it is equal to 0.15173. Defining as R the
maximum value of R (t) and evaluating the term 8V (V3) 2

(3.4.15) becomes :

max and writing X =cotf,

H, 54
=y >

=2.831 Veotp (d

(3.4.19)
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This result can also be derived by finding ¥ from the nonlinear theory solution (3.3.5) and
then using the appropriate shoreline conditions (3.3.8) to find M(x,t). It is valid when
4X y>>1, ie, v (H/d) >> 0.288 tanf, and when the series converges as discussed. To
derive surface profiles one must use the nonlinear theory and solve the transformation

equations (3.3.1) to determine N(x,t). The functions /0 and v, are given by :

oo - ik6+ikAX /2
y, 16i xcosech (ak) J(oxXy/2 ) e
BAJE dec,  (3.4.20)
6 3 ‘e o [J,2X g0 -1J,2X,0)]
and
) - iKB+ikAX /2

1 4 kcosech (ax) Jy(oxXy/2)e

— vy, = dx . (3.421)
4 3 - J,2X ) - i J,2X %)

These integrals can be evaluated directly for given (G,A) ; then the transformation equations
(3.3.1) can be used to evaluate 1, u, x, and t explicitly. The function v, is shown in
figure (3.4.1) as a function of o,A, for the particular conditions H/d = 0.0185,

X,=19.85, and X, = 37.35

3.5. Comparison of the {theory with experimental and numerical data. This
discussion has the objective to determine how well the linear and the nonlinear theory model
the equivalent physical phenomenon. This is done in three stages. First, the asymptotic
result (3.4.19) is compared with data collected in this and previous studies. Then, surface
profiles generated in the laboratory are presented to evaluate the accuracy of the linear and the
nonlinear theory. Finally, a comparison between the predictions of the theory with
laboratory data is presented for the wavefront path. All the experiments to be referenced
were conducted in the wave tank described in chapter 2 using the techniques discussed there.

Solitary waves were generated as discussed in section 4.2.3.
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The function ;. (0,4) defined by (3.4.21) for 2 0.0185 wave climbing
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3.5.1 Maximum Runup. The maximum runup of breaking and nonbreaking solitary
waves realized in the laboratory on a 1:19.85 beach is presented in figure (3.5.1); the data

included in this figure are listed in table T3.1 .

The abscissa is the height-to-depth ratio of the solitary waves in the constant depth
region. It was calculated from the surface elevation time history measured at a distance from
the toe of the beach equal to (1/2)L, where L is a measure of the horizontal extent of the

wave, and it is defined by :

= %cosh-ld(l/o.OS), where y="V %—EI— X (3.5.1)

This practice was adopted to maintain a constant relative propagation distance (L /2) from the
measurement location to the toe of the beach. Refering to figure (3.1.1), L/2 = X,-X,,.

As a consequence, longer waves were measured further form the beach than shorter waves.

The ordinate is the normalised maximum runup R/d which is defined as the
maximum vertical excursion of the shoreline at the time of maximum runup t_, . It should
be noted that in the experiments the shoreline usually had a parabolic shape at the time of
maximum runup. Its minimum and average position at that time were recorded and the
runup distances defined with these lengths exhibited similar dependence on the
height-to-depth ratio as the runup distance defined from the maximum position of the
shoreline. For example, for the breaking wave data the dependence of maximum runup

based on the maximum position of the shoreline is:

R H. 0582
=110 (3.5.2a)
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The maximum runup based on the average position of the shoreline takes the form :

R H. 0.606
1= 0.918 (a-—) ) (3.5.2b)

The two dimensional character of the shoreline was repeatable. It was more prevalent in the
breaking wave data than in the nonbreaking wave data, suggesting that it may be a side wall

effect.

To generate the data of figure (3.5.1) different flow depths were used, ranging
from 6.25 cm (2.46 in) to 38.32 cm (15.08 in), to determ_ine if the depth can be scaled out
from the laboratory experiments; Pedersen and Gjevik(1983) had reported experiments
where the runup relationship for a given slope was influenced by the depth. In the present
experiments a wave of a particular height-to-depth ratio had practically identical normalized
runup at different depths. (See, for example table T3.1.) The same conclusion can also be
drawn from the Hall and Watts (1953) data. This is exactly what would be expected on

dimensional considerations.

Figure (3.5.1) shows two distinct runup regimes, one for breaking and one for
nonbreaking waves. Breaking for this particular beach slope 1:19.85 occurs first during
backwash when H/d = 0.044; breaking during runup first occurs when H/d = 0.055. Since
the theoretical result (3.4.19) is valid even if the wave breaks during the backwash, the
qualifier nonbreaking refers to waves that do not break during runup. The solid line
represents the asymptotic solution (3.4.19). The asymptotic result appears to be describing

the nonbreaking data adequately.
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The existence of the two different runup regimes has never been observed
previously. One explanation is that most experimental investigations have dealt primarily
with breaking solitary waves; it is difficult to generate and measure nonbreaking solitary
waves of H/D < 0.05 in the laboratory. Even when nonbreaking wave data were examined
in the past, they were grouped with breaking wave data for the purpose of deriving empirical
relationships. Since no theoretical results were available to suggest a different variation for

nonbreaking waves, the phenomenon was overlooked.

To verify this observation and to generalise the asymptotic result for other slopes,
the runup law was compared to other published data on solitary wave runup (Hall and
Watts (1953), Pedersen and Gjevik (1983), Kim, Liu and Ligett (1984)). In the two lafter
investigations the authors have done numerical simulations of the runup, so that there is no
doubt that their data refers to nonbreaking waves. However, the former investigation
includes both breaking and nonbreaking wave data without identifying them. To perform
such aposteriori identification, it is neccessary to use a breaking criterion. The criterion,
that solitary waves break when H/d > 0.479 (tanB)!%%, has been reported by Gjevik and
Pedersen (1981) to be in good agreement with laboratory data for solitary waves. (It is
discussed in section 3.6.) This relationship was used for the purpose of identifying the
nonbreaking wave data in the Hall and Watts data set. Figure (3.5.2) includes laboratory
data from the investigations mentioned. (Table T3.2 lists the same data and their sources,
while table T3.3 lists the numerical data referenced.) The abcissa is the runup law,
equation (3.4.19), and the ordinate is the maximum runup. The runup law does seem to
explain the data satisfactorily. No data were included for slopes smaller than 1:19.85,
because no such data are yet available ; on a 1:100 slope, the highest nonbreaking wave is
the wave with H/d~0.003 wave. Waves of such small amplitude are difficult to measure in

the laboratory and need a long propagation distance to develop fully.
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The identification of the nonbreaking wave data in the Hall and Watts data set and its

comparison with the runup law (3.4.19) offers some insight why the two regimes in solitary
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Figure 3.5.2 The maximum runup of nonbreaking waves climbing up different beaches.
Comparison between laboratory data from different laboratory investigations. The symbols
indicate different beach slopes. The data presented are listed in table T3.2.
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wave runup had been overlooked. Kim et al (1983) studied the runup of nonbreaking
solitary waves on steep beaches. Their comparison with the data of Hall and Watts (1955)
revealed no significant discrepancies because most of the that data for steep slopes refer to
nonbreaking waves. In fact, the Hall and Watts data for the 45° angle contain no breaking
wave experiments. In the study of Pedersen and Gjevik (1983), the discrepancy of their
numerical data for mild slopes from the extrapolated relationships of Hall and Watts is
obvious; for mild beaches most of the Hall and Watts data refer to breaking waves.
Pedersen and Gjevik reference some other solitary wave experiments which were done in
depths of 10 cm (3.93 in), 15 cm (5.09 in), and 25 cm (9.84 in), and they state that their
numerical results agree with the 25 cm depth experiments much better than with the 10 cm or
the 15 cm depth experiments. They attribute the discrepancy to "frictional effects (that)
become more important in deeper channels ". It is impossible to comment on this statement,
because it has not been possible to obtain the referenced data set. However, it can be
hypothesized that their 25 cm depth data set included more nonbreaking wave data than the
10 cm or the 15 cm depth sets, since it is easier to generate nonbreaking waves in the larger
depth (25cm) than it is in the shallow depths (10cm). Empirical relationships that include
nonbreaking wave data are more likely to agree with numerical simulations than relationships
that do not. Table T3.3 lists the data on solitary wave runup derived in the numerical

simulations discussed.

3.5.2 Surface profiles. To obtain a better understanding of the validity of the theory
described in section 3.4, it is necessary to examine runup profiles in detail and to compare
them with the linear and nonlinear models. Two different representations of the data are
given : profiles showing the variation with time at fixed locations and profiles showing the

variations in space at fixed times.
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To derive surface profiles from the linear theory solution, equation (3.4.2) can be
substituted directly into (3.2.8) and the integral can be evaluated with the contour integration
methods presented in section 3.4. Surface profiles for the nonlinear theory for given G,A
are derived explicitly using equations (3.3.1), (3.4.20) and (3.4.21). However, to compare
the theory with laboratory data it is neccessary to derive 1 at specific points in the (x,t) plane,
at point‘s where measurements exist. Since the transformation equations define 7 implicitly
in terms of x and t, a numerical scheme is neccessary to derive it explicitly. If one seeks

the solution at a particular x=x, then one may solve (3.3.1b) with Newton' s method. The

iterations take the form:

1 X ( C;)-x
w1 =0; ~ R (3.5.3)
X, ©/8- (1/4)\4/;‘6 - (UW/0) (Yye-u)

where the index i refers to the ith iterations. By varying A in (3.5.3), one obtains complete
time histories, albeit notat equispaced intervals. To find the solution for a given ¢ , one

may solve (3.3.1c) with the following iteration algorithm :

1 Eo-t L)
Mg =A;+ (3.5.4)
X, Wi,/o -05

To obtain surface profiles at given times, & is varied in (3.5.3) from O to 4. The
iteration schemes involve evaluation of two integrals, Y, , Y, » in addition to y, and v
which are always needed to calculate the solution at arbitrary x,t. This imposes no further
computational complexity, because these quantities are monitored routinely for the
calculatihg the Jacobian of the transformation. The iterations converged rapidly and with

little computational effort, usually in less than 10 steps.
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In general, when evaluating any of the integrals Y, o, W4 » W, OF ¥, numerically,
care should be exercised because the Bessel functions in the integrands vary rapidly. The
argument of the functions is 2X,K, and therefore for any given slope 1:X, the optimal
integration range should be determined to ensure convergence with the least number of
steps. This is done easily, either by comparing preliminary integration results with the
corresponding series expansion of the form of (3.4.17) or by using standard methods. In
this study, the Symbolic Manipulator Program (1983) was used to verify series and integral
evaluations. (It was not possible to derive the result (3.4.16) analytically using the SMP.)
When numerical evaluation of integrals was performed for the solitary wave with
H/d=0.0185, and when X;=19.85, the integration step dx was set equal to 0.004, the

range of x was [-1.6,1.6], and the number of panels was 800.

Figures (3.5.3a) through (3.5.3f) show the comparison of the linear solution
(3.2.8) with the nonlinear theory solution derived from (3.3.5) and with laboratory data for
a solitary wave of H/d =0.0185. The profiles are plotted as a function of the dimensionless
time at different locations away from the initial position of the shoreline. For x=19.85,
15.71, 9.95, and 5.10, there is no significant difference among the three profiles.
However, closer to the shoreline, at x=0.25 and x= 0.74, the nonlinear effects become
important and the linear theory greatly overestimates the wave profile. It is also apparent that
dissipation attenuates the wave height close to the shoreline. An interesting feature of these
surface profiles is their behavior during the time interval from approximately t=125 to
t=138, where there is no data displayed. This is the time of the backwash, or rundown of
the wave; the shoreline retreats beyond the particular measurement location, and there is no
flow depth to be measured. The shoreline then returns but does not stop moving at its initial
position; it continues its motion and behaves as an underdamped oscillator. This is a

characteristic phenomenon of the runup process and was observed in all the waves studied.
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The data in figure (3.5.3) confirm Carrier's hypothesis. Carrier (1966)
hypothesized that far from the shoreline nonlinear effects are small, so that the linear form of
the transformation equations can be used. This implies that the term u?/2 can be neglected in
(3.3.1b) and (3.3.1d) when x=X, . This is indeed an excellent approximation as can be seen
in figures (3.5.3a) through (3.5.3d). It does not limit the application of the theory to
"linéar" waves. As it can be seen in figure (3.5.2), it predicts reasonable maximum runup

values even on the 1:1 slope for waves up to H/d=0.5, waves which are highly "nonlinear".

Figure (3.5.4) is a different representation of the same H/d=0.0185 solitary wave as
the wave in figure (3.5.3). It shows the wave at different instants as it climbs up the beach.
These profiles shown can be visualised as being ‘photographs’ of the free surface. Different
symbols in the figure identify different realizations of the same wave at different depths.
This display is also intented to give a measure of the overall experimental errors associated
with this study. The profiles are compared with the nonlinear theory, as derived from
(3.3.5) using ®(k) from (3.4.2). The nonlinear theory appears to predict the details of the
climb of the wave on the beach relatively well. Near the shoreline tip the theory
overestimates the wave height, as expected ; viscous effects are more important in this

region of the flow.

Figure (3.5.4) contains data from many realizations of the H/d=0.0185 wave.
However, when the wave was generated in the laboratory at different depths, the actual
H/d ratio (H/d),,, ranged from 0.0177 to 0.0209. To perform the comparison with the
theoretical profile, the experimental data were scaled by multiplying with a factor equal to
0.0185/(H/d),_p,,;- This variation may be due to random experimental error and due to the
response of the hydraulic system. If all experiments were run at the same depth, then there
would be much less variation in the H/d ratio of the generated wave ; this was not possible

due to miscellaneous water leaks around the wave tank.

The runup of long waves Chapter 3
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One problem encountered when comparing surface profiles obtained in the
laboratory at different depths is time synchronization; waves arrive at the measurement
location x  at different times and the resulting time series cannot be superposed, unless the
time origin is shifted. One standard method to synhcronize an ensemble of wave profiles at
some reference location Xq, is to transform each wave profile from MN;i(X,t) 1o Ny(X,t+AL ),
where At ; is the difference between the times the crest of the ith wave and that of the
reference wave pass through x . However, this technique may obscure variations due to
local changes in the phase speed. To obtain one single At, for all locations of every run i, a
different practice was adopted. The profiles were shifted from M,(x_,t) to N,(x ,t+At),
where At, is the interval between the time the plate starts moving to generate the ith wave
and the time the wave crest passes through x=X,. X1>is the location where the wave is
measured to determine its H/d ratio and is given by X=X+ L /2, where L is defined by
(3.5.1) By the definition of the boundary condition (3.4.1a) in the theoretical development,
t=0 when the wave crest passes through x=X,. This technique simply shifts the time origin

of each run so that it corresponds to t=0 in the definition of the solitary wave (3.4.1a).

3.5.3 The wavefront path and the evolution of the tail. The wavefront path is
the locus of the points (x,,, t,), where t, is the time when the front of the wave passes
through x,. The path over the sloping beach is shown in figure (3.5.5) as a trajectory in the
(x,t) space, and the data is compared with the predictions of the nonlinear theory. Away
from the shoreline, the wave is seen to propagate slower in the laboratory than in the
theoretical development. When the wavefront reaches the initial shoreline position, the
velocity of the front decreases dramatically and the theory appears to predict the shoreline

path well.

The runup of long waves Chapter 3
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Figure (3.5.5) also includes data for the tail of the wave. This appears to be the first
observation of the evolution of a solitary wave tail in the laboratory. The development of a
tail behind a solitary wave propagating over slowly varying topography has been noted in the
solution of KdV-type equations by Ablowitz (1971), Johnson (1973) and Ko and Kuehl
(1978). The soliton tail generated a lot of interest when Miles (1979) pointed out that, while
these solutions conserve the KdV mass, they do not conserve the actual mass; he suggested
that a reflected wave be added to the solution to account for the mass deficit. Smyth (1984)
observed that, since the KdV equation is restricted in motion in one direction, to study the
question of whether a reflected wave exists, the Boussinesq equations must be used to allow
motion in both directions. He demonstrated how part of the mass that Miles added to the

reflected wave can be accounted for by higher order corrections to the tail expansions.

Figure (3.5.5) shows the path of the beginning of the near tail of the wave and the
formation of a " shelf " region separating the incident from the reflected wave. (The term
near tail 1is used to distinguish it from the far tail ; the latter refers to a group of small
oscillatory waves sometimes trailing a solitary wave. In these experiments no far tail was
observed to form.) To visualise the near tail one should refer to figure (3.5.6). The figure
shows the surface elevation time histories at different locations as the wave climbs up
on the beach, as realized in the laboratory. The profiles at x=5.10 and at x=2.76 indicate

the formation of a shelf.

An interesting phenomenon is evident in figure (3.5.5). Although the t-wavelength
of the incident wave does not change considerably as the wave climbs up the beach, the
x-wavelength does. (The t-wavelength is a measure of the duration of the wave at a
particular x, i.e., the period. The x-wavelength is a measure of the horizontal extent of the

wave at a given t.) This observation is contradictory to the standard practice in asymptotic

The runup of long waves Chapter 3
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Figure 3.5.6 The climb of a 0.0185 wave up a 1:19.85 beach as realized in the
laboratory. Profiles are shown as functions of t=t*Vg/d for different x=x*/d.
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models which is to assume that the waveform does not change substantially when a wave
propagates over slowly varying bottom, and to use the Boussinesq (3.4.1) or an equivalent
profile valid at constant depth to describe the wave over a sloping beach. For the 0.0185
wave climbing up a 1:19.85 beach, this assumption seems reasonable only for the
t-description of the wave. However, thisis not a typical example of a solitary wave over
a slowly varying bottom, and caution should be exercised in any attempt to generalise this

result.

3.6 Validity of the solution The solution described in section 3.4 is valid for functions
®(k) such that the Jacobian of the transformation (3.3.1) is never zero. The Jacobian
becomes zero when the surface slope on/ox in the (x,t) plane becomes infinite. Physically,
this point is usually interpreted as the point of wave breaking. In this section a relationship
will be derived to determine the limiting H/d for solitary waves climbing up a plane beach of

slope 1:X, without breaking .

The Jacobian of the Carrier and Greenspan transformation is given by
J= (tc2 - txz). Since it is anticipated that the tranformation becomes singular close to the
shoreline, the Jacobian is expanded around ¢ = 0. Substituting (3.3.1c) in the Jacobian and
taking the limit as ¢ —» 0, thenJ = (ux-1/2)2. When u is given by (3.4.21), then the

Jacobian is always regular when :

- KB+ KAX /2
) > S3coseckak e

0= =X, dx -
2 3 0 Jy(2X, %) -1J,(2Xy %)

<0 (3.6.1)

Nlr—‘

The integral can be evaluated with the formalism described in section 3.4, if one replaces the

function zcosechaz in (3.4.4) with z3cosechaiz. It can be verified by inspection that the

The runup of long waves Chapter 3
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radius of convergence of the resulting contour integral is the same as for (3.4.5). For large
values of 4X y, the terms of the Laurent series can be replaced by their asymptotic form.

Then,

u, =-12 \ (m3)X 52 (—E—I—) s Z(-nn n"2y®, (3.6.2)

D=1,°°

with %= exp{-V3H/d (6+AX/2)}. The series attains its maximum value at ¥=0.636 and

this implies that the Jacobian first becomes zero when :

I
= = (“"‘) {“"““——‘ —X -X } (3.6.3)
© Xy, V3wd o

The limiting H/d ratio for the validity of the theoretical analysis is then given by :

H/d = 0.8183 X107 : (3.6.4)

This is a weaker restriction than that derived by Gjevik and Pedersen (1981),

H/d =0.469 X107 (3.6.5)

There are two major differences between the two results :
1) The breaking criterion (3.6.4) indicates when a wave first breaks during the runup
process. The Pedersen and Gjevik criterion (3.6.5) indicates when a wave first breaks
during the rundown process. Since, as the wave height is increased, waves start breaking
first during rundown forming the so called backwash bore, it is expected that a criterion for

breaking during rundown will be a stronger criterion than a criterion that determines when

The runup of long waves Chapter 3
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waves break during runup. An equivalent criterion with Pedersen and Gjevik's cannot be
derived with the formalism of section 3.4, because the series expansions of the integrals are
only valid during runup. [See equation (3.4.5).]

2) The Pedersen and Gjevik result was derived by using the sinusoidal wave profile that best
fits the Boussinesq profile. (See section 1.3.2, page 14) Equation (3.6.4) is based on the
actual Boussinesq profile (3.4.1).

It is a well documented phenomenon that the shallow water wave formalism predicts
wave breaking earlier than it actually happens in nature. It is interesting to examine what
the theory predicts for the climb of solitary waves that are slightly larger what (3.6.4)
requires. For the slope used in this study, 1:19.85, wave breaking first occurs in the
backwash bore when H/d = 0.017, while the breaking criterion (3.6.4) predicts that
breaking first occurs during runup when H/d = 0.029. Consider the climb of a 0.040 wave.
Figure (3.6.1) is a sketch of the Jacobian of the transformation as a function of A as
¢ — 0. Figure (3.6.2) shows the wave profile realized in the (x,t) plane when the Jacobian
first goes through zero, and it indicates the wave curling over as it starts to break. Note, that

the laboratory realization of the same wave does not exhibit breaking.

On intuitive grounds, it is expected that beyond A ; any analytical results in the (x,t)
plane will be meaningless. Also, in numerical simulation of the climb of breaking solitary
waves, the solution becomes unbounded soon after the slope of the wavefront becomes
infinite. It is therefore surprising to discover that the analytical solution recovers and seems
to predict the runup at later times satisfactorily. This is demonstrated in figure (3.6.3). The
theory models the laboratory data equally well, before and after the breaking point t = 36.
The same phenomenon occurs during the randown. The Jacobian goes through zero again at

7»02, which corresponds to t = 62, but the solution recovers at later times.
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To resolve this apparent paradox, one may speculate that although the solution
beyond A, , for example at A = A ;+AA, may not be the valid solution to the original
boundary value problem, it is a valid solution to a new boundary value problem with
boundary values specified at (0, 7‘c1+A7‘ ). What figure (3.6.3) indicates, is that the
solution beyond (0, A,) is relatively insensitive to the actual values at that point, i.e., to the
actual shape of the wavefront at the point of breaking. This appears to be another
manifestation of the same physical phenomenon that allows for Whitham's bore rule, which
postulates that the solution for the problem of the climb of a bore on a beach may be

determined by applying the relationships valid at the bore front behind the bore face.

3.7 Surface profiles for breaking solitary waves. The relationship between R/d
and H/d is different for breaking and nonbreaking solitary waves, as it is shown in figure
(3.5.1) . The phenomenology of the climb of breaking wave will be explored in this and the

next sections.

Surface profiles as function of x for given times for solitary wave with H/d=0.30 are
shown in figure (3.7.1). The time origin is defined in a similar fashion as for nonbreaking
waves. Since the experiments included in the figures were performed at different depths,
the syncronization of the profiles in figure (3.7.1) was performed as discussed in section
3.5. As can be seen from that figure (3.7.1c) breaking occurs between t=20 and t=25, and
is accompanied by a dramatic flattening of the surface profile; this occurs when the wave
collapses after plunging. Note the characteristic triangular shape of the wave just before
breaking ; this shape is often used to depict bores schematically. The maximum runup of the
wave is attained between t=45and t=50. Attime t= 60, the wave rushes down the beach

and the backwash bore forms.
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3.8 The reflection process. After waves climb up a beach, the process of the
rundown begins and a reflected wave is generated which propagates seaward. Nonbreaking

and breaking waves have significantly different behavior during rundown.

Figure (3.8.1) shows the transformation of the 0.040 solitary wave as a function of
time at different x-locations. Figure (3.8.2) presents the equivalent data for the climb of a
0.30 solitary wave. In both figures the reflected wave is observed at locations where 2.5<x.
Close to the shoreline, for x<2.5, the incident and the reflected wave cannot be identified
individually ; they merge into a single wave. Both figures indicate that the reflected wave
has a dipole character. This can also be seen in figure (3.5.6) for the 0.0185 wave. This is a
very intriguing phenomenon, because it is counterintuitive. When a one-signed incident wave
climbs up a beach one would expect a one-signed wave to be reflected. Also, although the
linear and nonlinear theory of section (3.1) and (3.2) predict perfect reflection for
nonbreaking waves, the dipole character is more pronounced for nonbreaking waves. Since
both the linear and nonlinear theory agree well with the laboratory data at the toe of the beach
(see figure 3.5.4) it is likely that the dipole wave reforms into a one signed wave after
propagating over the constant depth region. This dipole character of the reflected wave was
also noted by Carrier and Noiseux (1983) in a study of the reflection of long waves off a

shelf.

Although both nonbreaking and breaking waves generate reflected waves of similar
shape, the process of generation is different. When nonbreaking waves climb up a beach a
reflected wave is generated continuously; the continuous reflection manifests itself as a shelf
between the incoming and the outgoing waves . It can be seen in figures (3.5.4) and (3.8.1).
However the reflected wave generated from the 0.30 wave is negligible, until after the

wave reaches its maximum runup when the reflection process begins. This behaviour was
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C. 1 T T
x*/d =-2.34
o S\
x*/d =-1.37
o
x*/d = -0.01
o)
x*¥/d=1.15
o
x*/d = 2.76
n*d o
x*/d = 5.53
D e
x*/d = 9.98
o
x*/d = 14.82
O =
x*/d = 19.82
D —
—-0. 1 u} i
o) 50 100 150
t*V(g/d)

Figure 3.8.1 The climb of a 0.04 wave up a 1:19.85 beach as realized in the laboratory.
Profiles are shown as functions of t=t*\/g/d for different x=x*/d.
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x*/d = -8.06
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x*/d =-5.25
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x*/d =-2.74
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x*/d = 2.66
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x*/d =5.35
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Figure 3.8.2  The climb of a 0.30 wave up a 1:19.85 beach as realized in the laboratory.
Profiles are shown as functions of t=t*Vg/d for different x=x*/d.
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also observed in experiments with breaking solitary waves with H/d = 0.1, 0.5, and 0.6.

Peregrine (1967) observed the formation of the shelf behind a solitary wave during
reflection in a numerical computation of the climb of long waves on a beach. He derived an
approximate expression for the height of the shelf at the toe of the beach, M. It takes the

form :

1 1
Mes = 5 tanB ( 3 —a 12 (3.8.1)

It is interesting to observe that for a H/d=0.0185 solitary wave climbing up a 1:19.85 beach,
Nys=0.0020, while the laboratory data implies that Mo = 0.0029. When H/d = 0.30, the

laboratory data do not indicate the formation of a shelf.

The reflection process from a sloping beach is usually characterized with the
reflection coefficient, which is the ratio of the incident to the reflected wave. Since the
height of the reflected wave cannot be determined accurately because of the dipole nature of
the wave, one can define a reflection coefficient from the ratio of the height of the positive
wave of the dipole Hy; to the height of the incident wave. The following values were

derived from the laboratory data for the 1:19.85 beach :

Hg,/H =0.52 when H/d =0.0185,
Hygy /H =0.53 when H/d = 0.040, (3.8.2)
Hdr /H =0.12 when H/d = 0.30.

One can hypothesize that these differences between breaking and nonbreaking waves exist
because the breaking and nonbreaking waves have different incident wavelengths. Very long

waves see the beach as a vertical wall; the x-wavelength changes rapidly and reflection starts
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immediately. “The shorter, steeper waves , initially at least, propagate up the beach as if the
beach is not present. The wavelength remains constant and reflection starts well after the

entire wave is on the beach.

3.9 Summary and conclusions. In this chapter a theory was presented and an exact
result was derived for the runup of nonbreaking solitary waves on plane beaches. Detailed
measurements of the runup distribution of nonbreaking and breaking solitary waves were

presented. There are four major conclusions.

1) The linear theory predicts that the maximum runup of nonbreaking solitary waves on plane

beaches is given by the runup law :

;—‘— ~2.831 Veotp (—?—) i (3.4.19)

This relationship models the laboratory data well.

2) Profiles derived from the nonlinear theory model the climb of nonbreaking solitary waves
satisfactorily. Since a solitary wave initially has dispersion and nonlinearity in balance,
this observation implies that nonlinear effects are more important than dispersion during
shoaling.

3) Breaking and nonbreaking waves behave in a different manner during runup and
rundown. The runup variation with wave height is different for breaking and nonbreaking
waves. The reflection process is also different; nonbreaking waves generate a reflected
wave continuously while the breaking waves generate significant reflection only after the

wave reaches its maximum runup.
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4) There are different breaking criteria for determining if a solitary wave of given

height-to-depth ratio will break as it climbs up a sloping beach and for determining if it will
break during the rundown .

Waves will break during runup if H/d>0.818 cotp-19? (3.6.3)
and

they will break during the rundown if  H/d >0.469 cotp~109, (3.6.4)

It can also be concluded that, even when the nonlinear theory indicates wave
breaking, it may still be possible to continue with the runup calculation, since the flow
beyond the point of wave breaking appears to be insensitive to the details of the wave at

breaking. However, extreme caution should be used in interpeting any results derived in

this manner.

The runup of long waves Chapter 3



110

Chapter 4

The runup of breaking long waves

This chapter describes some results for the runup of long waves on plane beaches.
Different long waves are described by introducing a momentum and an energy scale. One
single parameter, the runup number, R, = Rg!3/(S?d/T)*> derived from the momentum
scale may be sufficient to describe the runup process. The energy and momentum scale are
shown to represent integrals of motion at generation. Different regimes are derived for
waves that break on the beach, waves that break offshore and reform before reaching the

beach, and bores of finite volume.

4.1 The runup hypothesis Consider the wave propagation problem defined in
figure (4.1.1). The piston PP' moves with trajectory & (t) for time T and generates the
waveform n*(x,t). The wave propagates a distance | and reaches the sloping beach; then it

climbs up the beach, reaches the shoreline and runs up on the dry bed.

'v;\':} Y‘ _Lil
i‘_s—“’g’z Id//m INITTAL SHORE{//E%/R(

z KX POSITION x*=0

7

P A B

Figure 4.1.1 A definition sketch for long wave generation, propagation and runup.
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On physical grounds :
R the maximum runup @),

is a function of :
d the undisturbed water depth (L),
() the piston trajectory (L),
P the density of water (M/L3),
18 the viscocity of water M/TL),
1 the propagation distance L),
g the acceleration of gravity L/T?)
€ the bed roughness height @),

and
B the beach slope (dimensionless).

This formulation is sufficient to describe the problem. Indeed, if the equations of
motion were solvable for arbitrary initial conditions, then the specification of the plate
motion as a boundary condition and the other physical parameters would be sufficient to
define the maximum runup. For nonbreaking waves, the equations of motion can be solved
as demonstrated in chapter 3 using as a boundary condition the wave derived with the
generation algorithm of appendix C. For breaking waves, the current state of the art
permits definition of the jet in front of a plunging wave, butitis unable yet to complete the
calculation and provide details for the wave that forms beyond breaking. However, one can
hypothesize that, if suitable integrals of the motion could be defined, then it might be
possible to solve the integrated form of the equations of motion and use the solution to derive

the runup. Ideally, any such integrals should be motion invariants.

This hypothesis is very appealing for three reasons. First, because it has the

potential to reveal the fundamental processes that define wave runup. Second, because it

The runup of long waves Chapter 4



112

allows runup predictions without knowledge of the details of wave propagation, if the
motion invariants are defined in the generation region. Third, because it is easier to define
and measure motion invariants during the process of wave generation in the laboratory, and

it is potentially easier to estimate them there in the prototype.

Although the assertion that the runup depends on motion invariants at generation
seems obvious, it has never been suggested in the past. In fact, no direct connection
between wave generation and wave runup has ever been explored. All past investigations
have concentrated in relating wave runup with the details of the incident wave, rather than
with its generation characteristics. For this reason, it will first be established that such
relationship exist, and then possible integral invariants for describing the process will be

suggested.

4.2 Dimensional analysis. Consider the propagation problem of figure (4.1.1). Let
the piston move with a specified trajectory & (t), with stroke S and duration T. Consider
the family of waves generated in this manner. The runup of these waves is given by the

following relationship,

R = f(d9 Sa T, P H 1’ 8 & B) (4~2°1)
There are ten independent variables with a total of three physical dimensions ; Buckingham's
T-theorem requires that there exist seven dimensionless groups. One particular choice of

groups leads to the relationship :

R/id =f (S/(TVgd), TV(g/d), Vd, e/d, B, SI/Tv) 4.2.2)
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The paraméte; S/(Tgd) can be identified as the generation Froude number Fr and it will be
referred to as the generation number. The parameter Sd/TV is the generation Reynolds
number Re. The Reynolds number is of the order of 104, a manifestation of the fact that
the inertial forces are predominant during wave generation. If viscosity is excluded from
the list of variables, then the Reynolds number may be omitted in the preliminary analysis.
The bed roughness parameter can also be omitted from the list of parameters, because it does
not act to change the wave substantially in the range of I/d considered [Naheer, (1978)].
This reduces the number of dimensionless groups to four. If one considers fixed

propagation distances and fixed slopes, then it follows that :
R/d =f (S/(TVgd), TVg/d) (4.2.3)

Without experimental data, it is impossible to derive the functional form of this
relationship. However, it is possible to identify its qualitative behaviour. Consider waves
propagating over a given depth d. For a given generation number S/(TVgd), the runup
should generally increase as the generation time increases, because then the stroke increases
in proportion, thereby generating higher waves. However, this behaviour should not be
observed for very large generation times T\/g/d , because then the process takes place in a
quasi-static manner. Itis liicely that for any given generation number, there is some limiting
generation time beyond which there is no further increase in the runup. Conversely, for a
given generation time the runup should increase as the generation number increases, since

then the stroke increases and larger amplitude waves are generated.

The relationship between the runup and the generation characteristics of a given long
wave can also be described by looking at the breaking character of the wave, i.e., whether

waves climb up the beach without breaking, whether they break, or whether they propagate
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as bores. Such a relationship is suggested from the behaviour of periodic waves. (See
section 1.2.) Waves generated at small generation numbers and moderate generation times
are small amplitude shallow water waves. They propagate over the constant depth region
and then climb up the beach without breaking. Waves generated with very short generation
times break during the generation process and reform immediately. Very high wave
generation velocities and moderate generation times result in waves that are generated broken
and propagate without reforming; they are bores of finite volume. Although it is expected
that nonbreaking waves will have shorter runup excursions than waves that break as they
climb on the beach and that the latter waves will have smaller excursions than bores, no such

relationship has ever been reported.

To determine the functional form of (4.2.3) and to assert how the breaking character
of the wave affects its runup, the results from two sets of experiments will be presented.
The two sets of experiments differ in the trajectory function used to generate the waves; in
the near field, the generated waves also differ and the names type R waves and type S waves
are used to identify the two resulting wave hierarchies. In the first set of experiments the
emphasis is on examining the dependence of the runup on the generation parameters, while
in the second set of experiments the emphasis is on detrmining how the runup varies as the

breaking character of the wave changes.

4.2.1 Waves generated with a ramp trajectory. (Type R waves.) In this set of
experiments waves were generated by displacing the plate with constant velocity
vp=d§/dt=S/T ; the dimensionless plate velocity is the generation number. The trajectory is

a ramp function, and it is defined by :

The runup of long waves Chapter 4



115

E(t%) = (SIT) t* | forO<t*<T. 4.2.4)

This is the simplest possible piston motion ; it has the distinct advantage that the wave
generation process can be entirely defined using two parameters only. Waves generated in
this fashion will be referred to as type R waves. Examples of these waves are shown in

figures (4.2.1), (4.2.2) and (4.2.3).

-0. 02

o 25

Figure 4.2.1a The wave height at the plate during the generation of a type R waves with

S/(TVgd) = 0.604 and TV(g/d)=15.00

n*/d 0.04 -

0. D2 —

50

il (g/d)

Figure 4.2.1bThe resulting wave motion at 20 depths from the toe of the beach associated

with the wave motion of figure (4.2.1a).
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Figuré (4.2.1) shows the wave amplitude at the piston plate and the amplitude of the
resulting wave motion measured several depths away from the generation region; the
generation number is 0.604. Figure (4.2.2) shows the resulting wave heights when the
generation number is increased one order of magnitude to 5.788. Both the amplitude at the

plate and the amplitude of the wave downstream increase ten-fold.

0. 6
Q. 4 I
0. 2 'ﬂ
o
-0. 2 .

O 25
Figure 4.2.2a The wave height at the plate during the generation of a type R wave with
S/(TVgd)=5.788 and TV(g/d)=15.00.

ag. 8
0.6 -
0. 4 — e
Q.2+~ -~
o ]

-0. 2
@] 50

t*V(g/d)

Figure 4.2.2b The resulting wave motion after the generation of the type R wave in
(4.2.2a). This wave is a bore of finite volume and propagates to the toe of the beach and
beyond without reforming into a nonbreaking wave.
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0. 4 T T
a | -
S/d = 2.96
O -
S/d =2.22
o J/V\NV\N\AW .
S/d =1.48
O ———k/\/\ww -
| S/d = 1.12
S/d =0.91
D ——-—/\—/W\ANWVVVW\W —
S/d =0.62
O -—————-/\j\/\/\IVW . ._
S/d = 0.50
G F———— "\ N A -
-~ §/d = 0.38
()] -—————_—/\/\/\/\/MM_ -
S/d =0.26
~-0. 4 | |
0 100 200 300

t*V(g/d)

Figure 4.2.3  The wave hierarchy generated with a ramp trajectory with TV(g/d)=7.2
and different strokes. (Type R waves.)
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The wave shown (4.2.1) is nonbreaking wave, while the wave indicated by (4.2.2) is a
wave that propagates broken withour reforming into a nonbreaking wave ; according to the
definition of section 1.3.3, it is a bore of finite volume. Both figures show waves generated

with TV(g/d) =15.0.

Figure (4.2.3) shows the hierarchy of long waves generated with a generation time
of 7.200 and generation numbers S/(T\/ gd) varying from 0.08 to 0.8. All waves were
measured at a distance of 20 depths from the toe of the sloping beach. The waves generated
with S/d < 0.38 are nonbreaking waves, those that are generétcd with 0.38 < S/d < 2.22
break only as they climb on the beach, and waves generated with 2.22 < §/d < 2.96 are
bores of finite volume. All waves shown assume the shape of a leading solitary wave with a
long tail. (The profiles are not syncronized in time and their relative positions do not

necessarily reflect differences in propagation velocities.)

The relationship of the runup of waves generated using the ramp motion (4.2.3)
with their generation number is presented in figure (4.2.4). The ordinate of the figure is the
maximum runup realized when a wave was generated with the corresponding generation
number in the abscissa and with the generation time implied by the symbols. For the range
of times TV g/d considered, longer generation times generally produce higher runup for a
given generation number. All the data included in the figure refer to waves that break only
when they climb on the beach. Note that the runup R/d of these waves is in the range
[0.2,0.78]. Higher runup values are only possible by generating broken waves or bores of
finite volume. Smaller runup values can only be achieved by nonbreaking waves. This
phenomenon is also observed with the runup of waves that are generated with a solitary

wave type trajectory. These waves will be examined in the next section.
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Figure 4.2.4  The runup vs. generation number variation for type R breaking waves.

4.2.3 Waves generated with a solitary wave type trajectory. (Type S
waves.) In this set of experiments, waves were generated by using different solitary
wave type trajectories. A solitary wave type trajectory is the piston motion that would
generate a solitary wave of given H/d, if the appropriate stroke and time were specified.

This trajectory &(t) is defined implicitly by the equation :
kE(t* ) = H tanh [y(ct* - E(t* )/d], 4.2.4)

where 7Y is the dimensionless wavenumber, and 'Y = \/(3/4)H/d, c=V (1+H/d), andx and t

by (3.1.1). The appropriate stroke S/d and the generation time ™V g/d are defined by :
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S/d = V(16/3)HA , (4.2.5)
and
TVg/d = 2/yc) (3.80 + H/d). (4.2.6)

Details of the derivation of these values may be found in Goring (1978). To generate a
perfect solitary wave of given H/d, as defined by the Boussinesq profile (3.4.1), the
wavemaker must execute a trajectory &(t) with S/d and T\/g/d specified by (4.2.4), (4.2.5)
and (4.2.6) respectively. Such waves will be refered to as zype S waves.. If different

values are specified , a train of long waves is generated.

Figure (4.2.5) shows an example of the wave motion that results when using a
solitary wave type trajectory. It shows the plate velocity, the wave amplitude at the plate,
and the resulting wave for a generation number of 0.7 and a generation time of
™V g/d=7.50. Figure (4.2.6) shows the wave hierarchy obtained when the generation time is
kept constant at T‘/g/d=15.0 and the stroke S/d is varied as indicated in the figure. The
waves in the hierarchy of figure (4.2.6) were generated at depths ranging from 15 cm
(5.90 in) to 30 cm (11.81 in). Waves generated with S/d < 0.7 are nonbreaking, while
waves generated with 0.7 <2.0 < S/d are broken waves or bores. (The profiles are not
synchronized in time and their relative posititons do not necessarily reflect differences in

propagation velocities.)

The relationship of the runup of type S waves with the generation number is shown
in figure (4.2.7). (Table 4.2 lists the data used in preparing this figure.) All the data in
represented in the figure propagate without breaking in the constant depth region, but break
as they climb up the beach. The behaviour is qualitatively similar as in the study of type R
waves. However, it is interesting to note that for waves generated with large generation

times (T\/(g/d) > 17.00) the behaviour changes. As the generation time increases, the runup
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Figure 4.2.5a The plate velocity
- S/(TVgd)=0.7 and T~(g/d)=7.50.

used to generate a solitary type wave with
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The wave height at the plate resulting from the morion in figure (4.2.5.a).
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Figure 4.2.5c

The resulting wave motion at 20 depths from the toe of the beach. Type S

wave. Note that the maximum velocity and maximum wave heights are nearly equal.
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Figure 4.2.6a The wave height at the plate for the wave hierarchy generated with a
solitary wave type trajectory with TV (g/d)=15.00 and with different strokes. Type S waves.
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Figure 4.2.6b The wave height 20 depths from the toe of the beach for the wave
hierarchy generated with a solitary wave type trajectory with TV(g/d)=15.00. Type S waves.
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does not increase further, and eventually it decreases. Although there is not enough data to
derive the exact form of the functional dependence (4.2.2), one general conclusion can be
drawn. For a given piston velocity very short (T\/g/d < 10) and very long (30 <T‘Jg/d)

generation times are less efficient in producing beach excursions. Generation times sucﬁ that

15< T\/g/d < 27 appear to produce the highest runup.

Figure (4.2.7) also indicates that waves that propagate unbroken and break on the
beach can achieve maximum runup in the range of [0.2, 0.82]. This behaviour was also
observed in the experiments for type R waves. Apparently, this is a manifestation of a more
general phenomemon; it appears that there is a maximum runup that nonbreaking and

breaking waves and bores of finite volume may achieve.

Figure (4.2.8) shows the dependence of the runup R/d on the generation number
S/(TY gd) for waves that break as they propagate over the constant depth region, reform
before they reach the toe of the beach and then break again as the climb up the beach, and
for waves that propagate broken, i.e., bores of finite volume. The maximum runup range
that breaking-reforming waves achieve is [0.63, 0.78], while the maximum runup that bores

achieve is [0.72, 1.01].

Figure (4.2.8) suggests that the runup of breaking/reforming waves is independent
of the generation number. This observation implies that, although these waves were
produced with different generation characteristics, the leading waves that emerge after these
waves reform are similar and that they have, initially at least, the same height-to-depth
ratio. This conclusion is also suggested by the work of Dally, Dean and Dalrymple (1984),
who presented a model for a breaking wave decay. In their model, along wave propagates

up a sloping shelf into a constant depth region. The wave breaks as it climbs up the shelf and
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reforms into & wave with a "stable wave height". Based on laboratory experiments, they
reported an average value for this stable wave height equal to 0.40, apparently independent
of the detailed initial conditions of the wave. Since in their work the sloping shelf was
introduced in the flow to create a decaying breaking wave, it is reasonable to suggest that a
"stable" wave height exists for decaying breaking waves generated by other means, such as
moving partitions. It is intriguing to observe that the average wave runup for all broken
waves of figure (4.2.8) which is R/d =0.714 + 0.05 corresponds to a solitary wave with
H/d = 0.469, indicating that the leading wave that emerges when breaking waves reform

over constant depth is a solitary wave of H/d = 0.469.

The figure also shows that the runup of bores is a much stronger function of the
generation number. This is expected ; after a bore first forms, any further increase of the
generation number at a given generation time produces higher runup. However, there is a
practical limit to the maximum runup a bore may attain. Very high generation numbers
produce jets of waters sputtering from the wave generator and the resulting bores do not
climb up any higher on the beach. The highest runup achieved on the 1:19.85 beach was
1.01. This should be viewed as a limit for the runup of bores of finite volume; uniform
bores will attain higher runup. However, it is likely that there is a maximum runup possible
for any given beach, since the size of the incident wave is ultimately limited by

hydrodynamic stability constraints.

4.3 The runup number. The group of parameters used so far to describe the runup
process, R/d, S/(TVgd) and TVg/d has two limitations. One is that two parameters are
required to describe the runup process uniquely. Two, there are differences between the
behaviour of waves generated with a ramp trajectory (type R) and with a solitary wave type

trajectory (type S). For example, for any given values of the generation number S/(TVgd)
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and the generation time Tvg/d, type S waves achieve higher runup excursions than type R
waves. This difference may be an artifact of the analysis, since the generation number does
not account for differences in the time history of generation. It is conceivable, that another
set of independent variables may contain some parameters with values in ranges where they
do not significantly affect the runup; then a single dimensionless group may be capable to

describe the process. In this section two such groups will be presented and evaluated.

In an attempt to determine one single parameter to describe the process of wave
runup, it is instructive to consider the kinematic analogy of a material particle moving up a
frictionless inclined plane. Suppose that before the particle climbs on the plane it has
acquired momentum mv;. As it climbs on the inclined plane the component of the
gravitational force in the direction of motion acts to change its momentum according to
Newton's law, F=dM/dt. This implies that its velocity changes like dv./dt* = -g sinf3,where
B is the angle of inclination of the plane to the horizontal. The particle reaches its maximum

vertical elevation, R, attime T

max » When its velocity becomes zero. Then v;=gT__ sin

and hence R=vi2/2g. The same result may be arrived at by considering the balance between
the potential energy at the maximum excursion and the initial kinetic energy of the particle.
Therefore, itis likely that two important parameters that define the runup of a wave are the

energy and momentum of that wave before it starts climbing up the sloping beach.

The kinematic analogy cannot be carried any further. When a wave climbs up a
beach the process of reflection may reduce substantially the incident wave energy and
momentum. Also, energy may be dissipated through other non-kinematic processes, like
wave breaking, while momentum can be dissipated through friction and changes in the
topography. Nevertheless, appropriate energy and momentum scales will be derived to

determine whether they can be used to define wave runup.
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Consider a wave of given spatial momentum distribution per unit mass and per unit
width in the direction of wave propagation M,, incident on a given sloping beach and
producing a maximum runup height R. The basic variables are three : the runup with
dimensions of L, the momentum distribution per unit mass and per unit width with
dimensions of L3/T and the acceleration of gravity with dimensions of L/T2. These three
variables can only produce one dimensionless group : Rgl/>/M_ 3. If, instead of the
~ momentum, the incident energy distribution per unit mass and per unit width E is

considered as one of the variables, then the appropriate dimensionless group takes the form

R g1/3 /E 173 .

To define exactly the wave momentum distribution M,, amplitude and velocity data
must be available to calculate the integral M = I y u* dvol, over the entire volume V
occupied by the wave. In practice this is difficult to accomplish. However, an estimate of
the integral, a momentum scale, may be obtained by arguing that one characteristic velocity
of the wave is its generation velocity S/T and one characteristic volume is the volume
displaced during generation Sd; then the momentum should scale like S?d/T. The resulting
dimensionless group takes the form Rg!//(S2d/T)%> and it will be henceforth referred to as
the runup number R. The kinetic energy distribution can also be scaled by the same
kinematic analogy ; the energy scale is (S/T )2Sd, and the resulting dimensionless group is
Rg!3/(S3d/T2)13.

To investigate the validity of this preliminary analysis it will be assumed that the
two dimensionless groups derived from the momentum and energy scales are equal to the

constants C_, and C, respectively. Then the following relationships are expected to hold :

RgI/S R g1/3

————— C and = C (4.3.1)
(SZd/T)ZIS m (S3d/T2 )1/3 €
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These relationships may be rewritten in the following form :

R 2 j/s g3 \If3
- = — |(a) and = C ( ) (b) 4.3.2
d " (dT\/gd  \T24%g )

el

The dependence of the maximum runup R/d on the momentum (4.3.2a) and the
energy (4.3.2b) scales is presented in figures (4.3.1) and (4.3.2) for both type R and type S
breaking waves respectively. Figure (4.3.1) suggests that the following relationships exist

for breaking waves, i.e., waves that break only as they propagate up the beach :

§2  \25) 092
= 1.1016{( > } for breaking type R waves, (4.3.3a)

R (/ §2  \¥5)0937
—=1.1083 {( ) ‘ for breaking type S waves, (4.3.3b)

1/3) 0.752
} for breaking type R waves,  (4.3.4a)

and

>
S3 1/3) 0.657
= 0.945 { ' } for breaking type S waves.  (4.3.4b)

The scatter of the data in the figures (4.3.1) and (4.3.2) suggests that the constants
C,, and C, are both functions of the generation time, although the runup versus momentum
relationship is a weaker function than the runup versus energy relationship. Also, the scatter
in the type S wave data is larger that with the type R wave data. However, there is one
important difference between the runup variation with momentum and with energy. The
runup variation with momentum (predicted by (4.3.2a)) conforms well with the fit of the data

(4.3.3), but the energy variation (4.3.4) does not conform well with (4.3.2b). The exponent
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Figure 4.3.1b The runup variation versus the momentum scale for type S breaking

waves.
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Figure 4.3.2a The runup variation versus the energy scale for type R breaking waves.
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Figure 4.3.2b The runup variation versus the energy scale for type S breaking waves.
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in the power law (4.3.4) is less than one, and this implies that the runup is less sensitive to
increases in energy than what the kinematic analogy predicts. This behaviour is anticipated
because energy dissipation reduces the available energy for the runup; as the energy
increases the rate of energy dissipation also increases and the runup increases at a slower
rate than if there was no dissipation. Therefore, the momentum relationship (4.3.2a) is more

appropriate than the energy relationship (4.3.2b) in modelling runup.

Since the runup number R, = Rg!”/(S2d/T)*> scales as predicted from the
kinematic argument, it is interesting to check whether it is a function of other generation
parameters. The dimensional analysis of section 4.2 suggests that the following relationship
may exist between the independent variables when the propagation distance and the bed

roughness are constant :

Rg!® fS. S g SOy
(SZd/r)Zlg (ﬂ_g?l d Tv

(4.3.5)

Figure (4.3.3) presents the runup number plotted as a function of three of the four
independent variables of (4.3.5) for type R waves. (No data were available for other beach
slopes.) The figures include data from waves that break only as they climb up the beach. It
is seen that for the runup number is nearly independent of the S/d, the generation number
S/TVgd , and the Reynolds number Re. It is also seen that the R, is relatively
independent of the generation time. The average value of the runup number for breaking
type R waves is 0.7437. (See table T4.1) Figure (4.3.4) presents the runup number as a
function of S/d, and S/TVgd for type S waves. (See table T4.2, also.) It does appear that
the runup number is a weak function of the generation time and that breaking waves have
higher runup numbers than nonbreaking waves, breaking-reforming waves and bores of

finite volume. The average runup number for type S waves is 1.014 .
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Figure (4.3.5) compares the runup number variation with the generation number for
three different wave families : type R, type S and type P waves . Type P waves were
generated with a parabolic shaped trajectory ; an example of the piston motion and the
resulting surface wave motion is shown in figure (4.3.6). Solitary waves are formally type
S waves but they are identified in (4.3.5) explicitly. The average runup number for all

waves represented in figure (4.3.5) is 1.023 with a standard deviation equal to 0.04675.

g g ! ) ! T J ¥ 1 LB B
4.0} ' ® TypeR waves -
3.0F x Type S waves -
O Type P waves
2.0} a Solitary waves .
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Figure 4.3.5  The runup number variation with the generation number for type R, S and

P breaking waves. Type P waves are described in figure (4.3.6). The figure above includes

data from the runup of solitary waves (defined by equation (3.4.1).
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Figure 4.3.6b The wave height at the plate resufting from the morion in figure (4.3.6a).
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Figure 4.2.1c The resulting wave motion at 20 depths from the toe of the beach.
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An interesting observation is suggested by figure (4.3.5). Solitary waves have the
highest runup number among all other waves in the figure. This implies that if a solitary
wave and another long wave (type R, S or P) have generation characteristics such that the
momentum scale S2d/T is the same for the two waves, the runup of the solitary wave will
be bigger or equal to the runup of the other long wave. Only type S waves may have runup
numbers as large as solitary waves, and an examination of such S wave data revealed that

those waves had generation characteristics similar to solitary wave characteristics.

This phenomenon can be explained if it is realized that arbitrary plate motions
usually generate waveforms consisting of one leading wave and a train of oscillatory waves.
(See, for example, figures (4.2.3) or (4.2.6b)). It is reasonable to suppose that the runup of
a long waveform will be primarily affected by the momentum of the leading wave that
emerges from the long wave group. This momentum is less that the generated momentum
which is partitioned between the leading wave and the tail ; therefore a solitary wave with the
same momentum will have higher runup. This conclusion can also be deduced if one recalls
that according to the nonlinear dispersive wave theory any long wave of arbitrary shape
and positive volume will eventually split into a series of solitary waves, analogously to the
manner with which the linear dispersive theory predicts that any wave will split into a series
of periodic waves with different wavenumbers ; the calculation of the emerging solitary
waves at infinity can be performed with the inverse scattering algorithm first developed by

Gardner et al. (1967).

This is a very exciting result. It suggests that it may be possible to determine the
highest runup number on a sloping beach simply by calculating the runup number of solitary
waves on the same beach. It is therefore quite interesting to relate the energy and
momentum parameters presented with the energy and mometum integrals of motion at

generation and to determine whether similar results can be obtained.
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4.4 Intégf‘als of the motion. Impulse, Power, Energy flux and
Momentum flux. In this section four integrals of motion will be described, and their
relationhip to the maximum runup will be presented for three different wave types, waves
generated with a ramp trajectory (type R waves), waves generated with a solitary wave type
trajectory (type S waves) and waves generated with a parabolic wave (type P waves). It
will be shown that two flux integrals have a relationship with the runup which appears to be
independent of the wave type and the generation time. Each integral of motion will be
evaluated by reference to two figures. One of the figures will present the variation of the
particular integral of motion with the generation time for breaking type R waves. The other
figure will include data from experiments with type R, type S and type P waves. The data in
this figure will include nonbreaking waves, breaking waves, broken waves, and bores of

finite volume.

4.4.1 The impulse integral. The momentum of any two dimensional wave motion
generated by a moving partition can be related directly with the impulse of the generating
mechanism. In the case of a plane wavemaker generating waves in a frictionless fluid, the

generated momentum equals the impulse of the force on the piston.

To calculate the impulse imparted to the wave motion by the generation process, the
momentum conservation equation in its integral form will be used. One may consider a
material control volume, or a control volume of fixed geometry through which fluid flows.

In the first case, one may use the conservation of momentum equation in the form :

E = M , 4.4.1)
de*

where M is the momentum contained in a control volume . (Symbols with underbars
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indicate vectorial quantities.) The momentum is given by :

M= ev(t) pY dvol . 4.4.2)

Consider a control volume cv(t) which always contains the same mass; at the end of the plate
motion the control volume coincides with the volume PP'DA of figure (4.1.1). The length of
the volume is such that, at the end of the piston motion, when t* = T, the wave has not yet
reached the toe of the beach. Initially, at time t*=0, the fluid is at rest. As the plate moves,
momentum is generated due to the action of surface forces. Assume that there is no fluid
behind the plate. The total momentum imparted by the plate to the wave motion is calculated

by integration of (4.4.1), as follows :

T
IEdt* = I o j exdvol de* —j px dvol - I )pz_dvol 4.4.3)
0 o dt

At t*= 0 there is no momentum in the fluid, and the corresponding integral in (4.3.3) is
zero. The first integral represents the momentum in the fluid at time t*=T. The total force
equals the force acting on the plate minus the force on the right boundary of the control
volume. Since the wave does not reach that boundary during the generation time, that force

arises only from hydrostatic stresses. Then, (4.4.3) reduces to :

J. F,dt* - —pgdzT M, (T) (4.4.4)

where pr is the force per unit width on the plate in the x-direction and M, is the

momentum per unit width in the same direction.

The runup of long waves Chapter 4



141

Equation (4.4.4) can be used to calculate the momentum imparted to the wave
motion by the plate motion. In appendix A an exact theory is derived to determine the force
pr on the plate during wave generation. This theory will now be used to determine the
impulse. The law of the plate (A1.16) requires that the force on accelerating vertical plate in

a fluid with a free surface with wave height at the plate M, and depth d is given by :

d’n

_L 2, L 2 P
Fox= 7 P (Mprd)"+ 3P (Myrd)” 2. (4.4.5)

The wave height on the plate was measured in many of the experiments presented in the
previous section and (4.4.5) can be evaluated exactly. The force on the plate was also
measured with a load cell. However, only in few cases it was possible to derive pr

directly from the load cell measurements. (See section (2.5)).

Figure (4.4.1) shows an example of the procedure used to calculate the impulse
from load cell data. This is one particular motion for which reproducible results were
obtained for the tare force on the plate. (This is the force needed to move the piston without
any fluid in the tank.) The plate moves in a depth of 13.68 cm (5.38 in) for 4 sec with the
ramp trajectory defined by (4.2.4). The force required for this motion is shown in figure
(4.4.1a). Note that the increase in the force evident in the first milliseconds of the record is
due to the fact that the fluid behind the piston has drained. Figure (4.4.1b) shows a measure
of the piston velocity and figure (4.2.1c) shows the wave amplitude at the piston.
Figure (4.4.1d) shows the impulse due to the motion of the plate with fluid in the tank
which is the integral of the force shown in figure (4.4.1a) and the impulse due to the tare
force. Figure (4.4.1e) compares the net impulse derived from the difference of the impulses
in figure (4.4.1d) and the impulse derived from the law of the piston (4.4.5). Itis seen that

the law of the plate predicts the impulse quite well.
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Figure 4.4.1a The force required to produce a type R wave in a depth of 13.68 cm,
with generation number S/[TV(gd)] = 0.24 and TV(g/d)=8.46.
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Figure 4.4.1b The plate velocity, in units of volts/sec, used to generate the type R wave
described in figure (4.4.1a).
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Figure 4.4.1c The wave height at the plate generated with the motion indicated in figure

(4.4.1a)
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Figure 4.4.1d The impulse derived from the force (figure (4.4.1a)) and from the tare
force required to move the plate.
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Figure 4.4.1e Comparison between the impulse of the force obtained from the load cell
and data derived from equaticr (4 4 %),
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Figure 4.4.1f The integral of the momentum flux derived with the wave data of figure
(4.4.1c).
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Figure (4.4.2a) shows the maximum runup plotted against the measured impulse
for type R waves. Figure (4.4.2b) shows the same variation for type R, S and P waves.
For type R waves the relationship takes the form, R/d = 0.334 (JF Hdt )0-367 | where
F p=Fp/(0.5pgd2). Figure (4.4.2a) shows that the runup to impulse relationship exhibits a
strong dependence upon the generation time. Figure (4.4.2b) indicates it is also a function

of the wave type. Itis obvious that the generated impulse is not motion invariant.

It is interesting to reflect why this is the case. If there is no significant reflection
before the wave reaches its maximum beach excursion , the generated momentum
determines the runup by the relationship F,, = dM,/dt, where F, is the force on the beach
due to the wave motion and M, is the wave momentum contained in the material volume that
includes the entire flow field; this is the volume PBCP' shown in figure (4.1.1). When the
wave reaches the point of maximum runup, then M, = 0; otherwise the wave would
continue its climb. However, if there is reflection, then there is an additional force due to
the generation of the reflected wave should be considered and this force may be responsible
for a reduction in the momentum available to the wave. It is also possible that shear forces
dissipate the momentum as the wave propagates over the constant depth region, so that the

generated momentum is reduced before reaching the beach.

To obtain some insight into the first process, one may use the exact solution derived
in chapter 3 to examine the forces acting on a sloping beach during wave runup. Consider
the fixed control volume ABCD shown in figure (4.1.1). It consists of the volume between
two vertical planes, one at the toe of the beach and the other at the point of maximum runup.

The conservation of momentum in this volume requires that :

oM, J‘
Fr,=— * J pxxnds, (4.4.6)
ot S

The runup of long waves Chapter 4



145

10' F « zZo<7-< eo ! ]
| @ 4.0<T < 6.0 _
] 6.0 < T < 8.0 |
o 8.0 < 7T < 12.0
+ 12.0 < T < 16.0 7
| % 16.0 < T < 20.0 |
O 20.0 < T < 30.0
10° 7]
— - » -
L ] »» E
i e ]
x x ¥
- 'R £ 2] R
x +r i
i a® ' ]
. .m
10_1, i i i bt g} 1 n i PN SO | nl
107} 10° 10
Figure 4.4.2a The runup vs impulse variation for type R breaking waves.
1 [ T T T T T T I'I T T A T T T T T-
1o° T 0 Type R waves ]
u *  Type S waves 3
T % | TypeP waves ]
o
om®
R/d 107 F o, P
- X X m 7
i gpe @ ]
L a ]
L o %« H o 5 .
xg‘ DB-
- [ ] & ] - 4
-
- ager o ¥ «
8] .D 5 [} S
- [w} X; D%D ] E
o ., 0O Oy
)
o o goe
- n
lo 1 Bl 1 o i 1 ' 1 d i
107! ° 10}

JFpxdt*/(pgd?V(d/g))

Figure 4.4.2b The runup vs impulse variation for type R, S and P waves.
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FTx is the sum of all forces acting on the volume in the x-direction, va is the momentum
contained inside the volume and S is the surface of the volume. The forces acting on the
volume are the reaction from the sloping beach to the hydrodynamic pressure due to the

wave motion Fbx, the force on the sea boundary of the beach (AB) F| and a force

x’
arising from shear stresses at the surface of the beach F;,. The forces F, and F,_, the
integral of the flux, and dM,, /dt* can be evaluated, if one uses the shallow water
formalism where the pressure is hydrostatic and where u*=c*n*/(n*+d). In particular, the

force on the sea boundary x*=X* is given by :
F, () = (1/2) pg [N*( X *, t*) + d]2. (4.4.7)

The momentum per unit width inside the control volume is :

*

M, (t*) =p J’ wk(x*,u* ) [*(x*t*) +d] dx* . (4.4.8)
Xo*

The force on the beach is determined from :

s*
F, (t%)=-pg tanﬁf N*x*, %) dx* | (4.4.9)
XO*

and the flux integral is given by the flux of momentum through the sea boundary AB :

J AB ¥ X0 ds = pu*A(Xp¥,th)IN*( Xp*,t%) + d)] (4.1.10)

For example, consider a solitary wave with H/d=0.040 climbing up a 1:19.85 beach.
Equations (4.4.7) through (4.4.10) can be calculated as described in section 3.4.

Figure (4.4.3) shows the evolution of the various terms of the momentum equation (4.4.6).
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It is seen tﬁat-the momentum flux through AB is negligible and that the force on the beach
F,, and the force on the boundary F, determine the rate of change of momentum oM, /ot*.
The evolution of F, clearly indicates continuous generation of a reflected wave; even at the
point of maximum runup t_, ~ 48, there is still finite contribution from F_, to the rate of
change of momentum . Since the reflected wave is usually dependent on the incident
momentum distribution, it is unlikely that different momentum distributions with identical

momentum will produce the same runup.

4.4.2 The energy of the wave motion. The energy imparted to the wave motion can
be calculated by computing the work done by the piston to generate the waves. At every
step of the motion, the work, dw, is such that dw = Fp dx*. The total work done by the
piston can be found by integrating over the entire piston motion. If there are only
conservative forces acting on the system, then this work is equal to the energy imparted to

the wave motion, Ep . This energy is given by :
J. i %
- — *
Ep = . pr dt (4.4.11)

If data for the plate motion and for the wave height on the plate is available, then this integral
can be calculated directly using (4.4.5) . Figure (4.4.4a) shows the runup variation with the
energy for breaking type R waves. Figure (4.4.4b) shows the runup to energy
relationship for type R, S and P waves. It is seen that the generated power does not
describe the runup process in a unique fashion. This is not a surprising result given the

non-conservative nature of the energy dissipation during wave breaking.
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4.4.3. The integral of the momentum flux at the plate. In section 4.3 the runup
number was shown to be a powerful concept in modelling the runup; to derive that number a
momentum scale was introduced, S2d/T . The integral of motion that scales in a similar

fashion is the integral of the momentum flux at the plate.

The integral of the momentum flux at the plate per unit width and per unit mass is
denoted by P, and is determined as follows. When the piston moves a distance d§, it
displaces a volume of fluid equal to d?;(’np*+d), where np* is the wave height at the front
face of the piston. This volume of fluid acquires the piston velocity d&/dt*. Then the
momentum per unit mass imparted to the adjacent fluid column at every step is given by
d&(np*+d)(d§/dt*). Integrating over the duration of motion and using the substitution

d&=(d&/dt*)dt*, one obtains :

T
d 2
P, = JO( (f*) (np*+d) dt* (4.4.12)

It is interesting to note that, if the plate motion was generating a permanent form
wave, then P; would represent the local integral of the momentum flux. This is because,
during wave generation, the water particle velocity is u*(&,t *)=d&/dt*. In physical terms,
the flux can be thought of as the excess transfer of momentum due to the wave motion and it
resembles the radiation stress introduced by Longuet-Higgins and Stéwart (1960) to model
the wave-current interaction. When vertical accelerations are negligible,
Longuet-Higgins (1962) showed that the radiation stress is directly proportional to the
energy of the motion. However, the radiation stress formalism was derived for periodic
wave motions and it is not obvious how it can be extended readily in solitary wave type

propagation problems.

The runup of long waves Chapter 4



LB T T LA A S N R | T T T T T

10 | x 2.0<7T <« 40 1
I & 40<T < 6.0 ]
m 6.0<T< B0 ]
" 0 8.0 «<T < 12.0
-+ 12.0 < T < 16.0 1
. & 16.0 < T < 20.0 J
O 20.0 < T < 30.0
L 4
o {. -
R/d 100 | ‘
b [ ] * -
[ at * 1
L n 4
xe *

r ] | IR 1) A
- ‘l“ |
.uﬁ 4

r *

an*?t

-1

10 . ot il N S | N T

1072 107} 10° 10!

Figure 4.4.5a The runup variation with the integral of the momentum flux for type R

breaking waves.
1 s T T T L3 T L. ) II T T L) T T L AN ¥ " L] T T T T T ¥ '<
100 g Type R waves 3
- % TypeS waves, ]
- " TypeP waves ]
]
o
10° - o SUDE o ? ]
L X 2 ﬂl;:l'n a° 1
i o wf 8O ]
R/ L o oo . Ffu = g
= 8
i - ] LI . _
-
| gxuuxlmﬂ j
s % 08
R a * R ow -
x 315’0
o ho'o =
107 Mg 8 N | . N . et i
107% 107} 10° 10!

Jiagjarycny* +ayaee £ (@2V(ean

Figure 4.4.5b The runup variation with the integral of the momentum flux for type R, S
and P waves.

The runup of long waves Chapter 4



152

Figure (4.4.5) shows the relationship between the runup and the integral of the flux
for type R, S and P waves. For breaking waves, the integral of the momentum flux does
seem to correlate well with the runup ; the relationship between the two variables is given by
R/d =0.644 P, 0351 ( P, is the dimensionless integral of the momentum flux and is defined

by P; =P; /[d?V(gd)].) It appears that P; may be motion invariant.

4.4.4 The integral of the energy flux at the plate. One more flux integral maybe
defined at the plate. During generation , the kinetic energy per unit width that the water
column next to the plate acquires is (1/2)pd&( np*+d)(d§/dt*)2. Then, the energy flux per

unit width is given by :
[y
2E;= pJ} (=) (np*+d) de* (4.4.13)
0 dr*

This integral can be evaluated directly. If the generated wave was a permanent form wave,
this integral would represent the integral of the energy flux past one vertical crossection of
the flow field. Note that the energy scale derived from the characteristic length and time
scales of generation at the piston is (S/T)?Sd, which is one measure of the mean value of

E; per unit mass .

Figure (4.4.6a) shows the variation of the runup with the energy flux for breaking
type R waves. Figure (4.4.6b) shows the runup variation for type R, P, and S waves. The
integral of the energy flux also correlates with the runup well. It is apparent that it is motion

invariant, although it is not obvious why this is the case.
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4.5 Summary and conclusions. In this chapter experimental results were presented for
the runup of different types of long waves of different breaking characteristics. There are

three major conclusions :

1) There are maximum runup values a wave may attain depending on its breaking character,
i.e., whether a wave is a nonbreaking wave, a breaking wave, a breaking/reforming wave

or a bore of finite volume. For the 1:19.85 beach, these values are given by :

Nonbreaking waves R/d < 0.22
Breaking waves 0.19< R/ < 0.81
Breaking/reforming waves 0.64< R/d < 0.80
Bores of finite volume 0.77< R/ < 1.10

Similar runup regimes should exist for any beach slope. (The ranges will differ for different
slopes). This is also suggested by the analysis of chapter 3, where breaking and nonbreaking
waves were found to have different runup variations for all slopes where data are available.

2) The generation characteristics of a long wave determine its runup. In particular, if the
momentum scale is estimated using the generation length and time scales, then the resulting
dimensionless group is motion invariant. The runup number based on the momentum scale

was introduced and it was shown that for a 1:19.85 beach:

RgI/S

R. = =
(S%d/T)%5

. 1.0 £0.3 (4.5.1)

The exact value of the runup number depends weakly on the generation time and the wave
type. It was also shown that the energy and momentum scales represent measures of the
mean values of the integrals of the momentum flux and of the energy flux respectively and

that the generated momentum and the generated power are not motion invariant.
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3) Breaking solitary waves have the highest possible runup number among all other wave

types studied, thereby providing a limiting condition for calculating wave runup.

The last two propositions are very intriguing, but it is necessary to obtain more data
with long waves climbing up other beaches before drawing any conclusions for the
generality of these results. However one may speculate that since the momentum scale is
independent of the beach slope, then for any beach of angle B equation (4.5.1) should be
replaced by :

R g1/5
(S2d/T)2/5:

f(B) (4.5.2)

Since solitary waves always emerge from arbitrary long waves of positive volume
propagating over constant depth , it is reasonable to expect that the solitary wave will

always represent a limiting waveform for calculating the runup on any given beach.
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Chapter 5

Conclusions

The objective of this study has been the investigation of some of the fundamental
processes associated with long wave runup on plane beaches. The outcome is an improved
understanding of the runup process, an improved ability to predict long wave runup and the

resolution of some unresolved questions about the interpetation of runup results.

The runup of nonbreaking long waves has been investigated theoretically and in the
laboratory and good agreement has been obtained between the two endeavors. The empirical
runup relationships have been explained by asymptotic analysis. Surface profiles during the
runup process have been presented for the first time. The runup of breaking waves, waves
that break and reform, and bores of finite volume has been investigated in the laboratory ;
one momentum and one energy scale have been introduced to describe these waves. A runup
number has been derived from the momentum scale and it has been found capable of
describing the runup satisfactorily. Two other parallel investigations were conducted to
assist the understanding of the phenomenology of long waves; an exact result has been
discovered on the hydrodynamic forces on accelerating plate and a technique has been

derived to generate arbitrary waveforms in the laboratory.

The following basic conclusions may be drawn from this study :
1) The linear theory predicts that the maximum runup of nonbreaking waves on plane

beaches is given by the runup law:

H 5/4

R
1- 2.831V cot (E) (3.4.19)
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This relationship models the laboratory data very well. The linear and the nonlinear theory
when solved with identical initial conditions predict identical runup heights. The nonlinear
theory models the details of the surface elevation of the climb of a long wave on a beach
satisfactorily, indicating that dispersion is a much weaker process than nonlinearity during

shoaling.

2) Two different runup regimes exist. Breaking and nonbreaking solitary waves exhibit
different behaviour at maximum runup and cannot be modelled with relationships derived for
nonbreaking waves. Nonbreaking solitary waves reflect continuously as they climb up a
beach, while breaking waves reach their maximum shoreline excursion before significant

reflection occurs.

3) The maximum runup that a long wave may achieve depends on its breaking
characteristics. The following are the limiting values for each breaking category for the

1:19.85 beach :

Nonbreaking waves R/d < 0.22
Breaking waves 0.19 <R/d < 0.81
Breaking-reforming waves 0.64 <R/d < 0.80
Bores of finite volume 0.77<R/d < 1.10

4) Long waves propagating over constant depth can be described with the momentum scale
S2d/T. The runup of breaking waves can be modelled uniquely with the runup number
based on this momentum scale. For waves climbing up a 1:19.85 beach, the runup number

is given by :

Rg1/5

= s 1.023 £ 0.3
(S%d/T)
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The runup number will presumably have different values for different slopes. The
momentum and the energy scales are measures of the average values of the integral of the
momentum flux at the plate and the integral of the energy flux at the plate respectively ; the

generated impulse and energy imparted to the wave motion are not motion invariant.

5) Nonbreaking, breaking, breaking-reforming waves and bores of finite volume have
runup numbers that are smaller or equal to the runup number of breaking solitary waves.
This allows for the determination a conservative estimate for the highest possible runup on a

sloping beach.

6) The force on an accelerating vertical plate in an inviscid fluid with a free surface can be
calculated exactly with the law of the plate :
dn *

1
= pd2 — (A1.16)

1 o
F=p > gd
This result is a consequence of the fact that the vertical velocity on the front face of
the plate is distributed linearly over the depth. It imposes limits on the range of validity of

the classical wavemaker theory when the latter is used to calculate forces.

7) Continously evolving long waves can be generated at any location in a two- dimensional
laboratory model using the backwards propagation and generation (BPG) algorithm. The
algorithm can reproduce satisfactorily waveforms that would otherwise have evolved after a

breaking wave reforms after it propagates over constant depth.
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Appendix A

The calculation of the hydrodynamic forces on an
accelerating plate in a fluid with a free surface.

Introduction. The problem of determining the forces on an accelerating plate in a fluid
with a free surface has been studied extensively in account of its fundamental consequences
in two different fields. In earthquake engineering it is of importance in the designing of
dams to withstand seismic motions; during strong ground shaking dams move and displace
the adjacent reservoir fluid, inducing hydrodynamic pressures that must be properly
accounted for in the dam design. In coastal engineering, determination of this force is
necessary in designing equipment to generate waves in the laboratory, or when solving
wave generation problems. Exact knowledge of the solution of the equations of motion is
essential for determining the forces on the plate and for establishing the boundary conditions

to be used for calculations of the resulting wave motion.

The classical theory of determining forces on moving plates was developed by
Westergaard (1933). He solved the linearized equations of motion and derived an expression
for the hydrodynamic pressures exerted on a vertical dam undergoing simple harmonic
motion. Von Kdrmdnn (1933) used a heuristic argument to derive an approximation to
Westergaard's result, but assumed that the free surface remains undisturbed during the dam
motion. Zangal and Heafeli (1952) considered the case of a dam whose upstream face is not
vertical and determined the pressure with an electrical analog model. Chwang and Housner
(1978) generalised von Kdrmdnn's approach for dams with sloping faces. Chwang (1978)
solved the same problem with potential flow. With the exception of Westergaard's work, all

other investigations have implicitly assumed that the dam moves with constant acceleration
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and that the water surface remains undisturbed during the dam motion. This approach is
equivalent to assuming that the hydrodynamic forces during the dam motion are due to the
displacement of a fluid confined in a region adjacent to the dam. This is known as the
classical hydrodynamic dam theory. Chwang (1983) attempted to include the effect of the
the motion of the dam to the free surface, but did not include the effect of the free surface to

in the calculation of the hydrodynamic force.

Havelock (1929) first solved the problem of forced gravity surface waves in water
using the linear theory. Kennard (1948) solved the same problem with a different method.
In a series of papers, Biésel (1948), and Biésel and Souquet (1951) derived the solution for
a simple wavemaker undergoing simple harmonic motion. In a classic paper, Ursell et
al. (1960) verified the linear theory in the laboratory. Gilbert et al. (1971) generalised the
wavemaker theory for random small amplitude waves. The small amplitude wave generation

theory developed in these investigations is known as the wavemaker theory.

Despite this extensive amount of work, there had been no solution to the problem of
calculating the forces on a plate moving with variable acceleration, or to that of wavemaker
generating finite amplitude waves. The latter problem is discussed in appendix C. A method

will be presented next to calculate the hydrodynamic force on a moving plate directly.

A.1 Calculation of the hydrodynamic force on an accelerating plate. The law
of the plate. In this section an exact theory will be presentéd for calculating the
hydrodynamic force acting on an accelerating, rigid, vertical plate, given the piston motion
and the water depth on the piston during its motion. The derivation proceeds by first
deriving a result for the gradient of the horizontal velocity du/ox. The vertical velocity
distribution on the plate is determined, and then it is used in the equations of motion for

inviscid flow to evaluate the pressure.
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Consider a moving rigid plate PP' as shown in figure (A1.1). The origin of the
coordinate system is at the initial position of the plate. The displacement of the plate from its

initial position is &(t).

2 1

P
y N (X,t)

< s

— & (1)~

]
d
P {

Figure Al.1 A definition sketch for wave generation.

The appropriate boundary condition for the fluid motion is that the fluid adjacent to the plate

move with the same velocity as the plate. This requirement can be expressed as :

dé
— =u(x=£(t),y,t) forallysuchthat0 <y< n(x,t)+d (Al.1)
t

Note that all variables in this discussion are dimensional, unless otherwise stated.

Differentiating (A1.1) with respect to time, one obtains :

d%¢ __du __Ou | d€Qdu

e7e _ au =22 57 Al2
a2 T @ |,_gy Ot dtOs (A12)
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since du/dy is zero at the plate, a consequence of the rigidity of the plate. Integrating this

equation over the entire depth, i.e., from y =0to y =n(x,t) + d, one obtains:

@€ = oy + & % gy
= aW T, ™ (AL3)

n+d g2 g /"+d du d¢ [T 0u
I :

The integral on the LHS can be integrated directly since the integrand is not a function of y.

The first integral of the RHS can be integrated using Leibniz's rule to give :

Ou

= (n+d)5.

n+d

(Al1.4) .

The second integral of the RHS of equation (A1.3), J (du/ox ) dy, can be evaluated by
substitution, if one uses the two-dimensional conservation of mass equation for an

incompressible fluid, du/dx=-dv/dy. This process results into :

n+d 9y n+d 9y
jC Y 0 dy

AlS
ot z=§,y=n+d ¢ )
Then, equation (A1.3) reduces to :
9 v
é_@_"_ _ _d__é + jd_é rz=§,y=n+d (A16)
8t  diz ' dt n+d
Equation (A1.2) can now be used to find du/ox. Then :
v
3u - c=€¢,y=n+d (A17)
dz n+d

(In the equation for du/dx the kinematic free surface condition was used to eliminate v.)
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Integrating the conservation of mass equation along the path x = &(t), one obtains that :

_dn_y

’U(CE = E,y,t) = dt m. (A18)

which is the vertical velocity distribution on the accelerating plate. Now, consider the
equation of vertical motion for inviscid flow,

19p Dv

where D/Dt is the material derivative operator. Integrating from Oto y, one obtains that:

1 YDv
p[p(x,y, ) — p(z,0,t)] 9y+/0 W

Applying this equation at y =1n-+d, assuming thatp, =0, and given the requirement of the

continuity of pressure across the free surface, then :

n+d Dv

1
— — —dy. A

Substituting this equation into equation (A1.10), the vertical pressure distribution results :

n+d Dv

1
—pl@ ) = gln +d—y) + /,, D - (AL12)

To evaluate it, it is useful to calculate the material derivative Dv/Dt= dv/dt + udv/ox +vov/dy.
Let d/dt denote the operator 0/dt + ud/ox evaluated at x = &(t). Then,

Dv d, y dny d.1 y? dn

S GRRt/ A DT SR AN e/ AV
Dt dt(n+ddt)+8y[2(n+d)2(dt) ] (A1.13)
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where use was made of equations (A1.7) and (A1.8). Evaluating this expression gives :

Dv _ y d*q
Dt ntdd (ALY

Substituting this result into the equation of motion yields :

1 1 1 d%y
—_—— = — —— e d2_ 2_
pp(m,y,t) gin+d—y)+ 27T d [(n+d)? —¥?]. (AL15)

Integrating this equation over the entire depth gives the total force acting on the plate, as :

1 1 d?n
F=- d)? + = /N .
5P9(n +d)* + 2p(n + d) iz (A1.16)

The pressure distribution result and the total derivative dn/dt will now be used to evaluate
the derivatives on/0x and dn/dt on x =E(t). Differentiating (A1.11) with respect to x, one

obtains that :

222 _ A ~—dy. (AL.17)

1dp  0n 6/”+de
pozx oz 9z J,

The integral in this expression can be evaluated by Leibniz's rule. Aty =1+d,

a ("¢ Dv

Dv dn Dv
oz J, Dt ™Y

— 9z Dt

_9nd’n (AL18)
y=nid Oz dt2’

y=n+d

The pressure gradient can also be obtained from the conservation of momentum equation in
the x-direction (-1/p)dp/ox = d%€/dt2. Then, combining this relationship with (A1.16) and
(A1.17) the following relationship is obtained for on/ox :
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dn

on . d2¢ 1
oz

- 2
z=£(t) dt? g+ %‘?‘

)' (AL.19)

Substituting this expression into the total derivative of 1, dn/dt, gives dn/dt directly. Then:

d2
%lz_ _dn _ iiﬁ(_.@i__). (A1.20)
z=gr) @ dtg4 L2

The name law of the plate has been coined as a rubric to describe the theory
presented in this section, although it will also be used to refer to equation (A1.16) alone.
This name is used to emphasize the fact that the vertical velocity on a moving plate can only
vary linearly with depth. It will be used to discuss the linear theory result for calculating the

hydrodynamic forces on accelerating plates.

A.2 Comparison with the linear wavemaker theory. In this section the law of the
piston results are compared with the predictions of the linear wavemaker theory. In the
linear model the advective accelerations are neglected, and the total d;erivative Dv/Dt in the
equation of vertical motion is substituted by dv/dt. Postulating the existence of a velocity

potential @ and integrating the equation of motion over the depth one obtains :

p oD

0T a0 &), (A2.1)
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where y =y - d. Integrating (A2.1) gives the total force per unit width on the plate :

L J'O oD |
d

and it is the linear theory equivalent expression of (A1.16). The range of integration is
[-d,0]; in using the linear theory the amplitude of the resulting wave motion is assumed to
be small, so that the boundary conditions are applied at y =0 rather that y=n1. To estimate
the order of the correction term to the hydrostatic force in (A2.2) , assume a plane
wavemaker undergoing small amplitude, simple harmonic motion defined by &(t) =Scosat.

The velocity potential is given by :

dSw .
o= 5 [- b, cosh(kyy) elkoX +iX b, cos (k y)e 'kn"]ei‘ot (A2.3)

n=],ee

This solution was originally derived by Havelock (1929). & is defined by 8 = dw?/g, and it
is the same parameter referred to as o by Gilbert et al. (1971). The dimensional

wavenumbers k_ and k are defined implicitly by the dispersion relationships,
kdtan(k d) =8 and kyd tanh (k,d)=-3, (A2.4)

while the coefficients b, and b, are evaluated directly from the boundary condition at the
piston plate, d®/dy =d&/dt at x=0. This procedure results into the following expressions :

bosinh (kid) ( 5 )3 1

kd kd (k) 2-8% +3

(A2.5)

and
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Lt P (} (A2.6
kd (d)2+8 -

A direct comparison between equation (A2.2) and (A1.16) is now possible. d®d/ot
and 92®/0t2 can be evaluated at x=0 through (A2.3), for a range of values of §. Since
d?n/dt? is not known apriori in the generalised theory, the linearised form of (A1.15) will

be used. Then:

F= %-pgd2+ %pd2§%n— (A2.7)

ot?

Figure (A2.1) compares the force on the plate as computed by the linear theory
(A2.2), and as computed by the law of the piston (A1.16); the amplitude was calculated
from the kinematic free surface condition, N1 = -(1/g)d®/ot . The force is shown as a
function of the dimensionless time, for &=0.1, 1.0 and 10.0. It is seen that for §=0.1,
the two estimates are almost identical. For the larger 8, the linear theory (A2.2)

underestimates the linearised result of the generalized theory (A2.7).

This is certainly a paradoxical a result. If the linear theory was consistent, then the
results of the linear theory and of the linearised form of the general theory should have been
identical for any value of & where the linear theory is valid. Apparently the linear theory
solution is not valid for values of 8~O(1), although these values are given in the usual
wavemaker nomograms, such as those in Gilbert et al. (1971). To prove this assertion, the
vertical velocity distribution on the front face of the piston is calculated according to the linear

theory, and it will be demonstrated that it violates the continuity equation for large d.

The vertical velocity distribution at x= 0 is calculated from (A2.3) and it is given by:
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O L.
— Linear theory
|~ — - Law of the piston
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0=1.0
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Figure A2.1  Variation of the total force on an plate undergoing simple harmonic
motion. for different values of d=dw?/g.
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o® So
v —= 3 [- bykysinh(kyy) coswt + sincwt 2 bk, cos (k y) ] (A2.8)
ay n=1,0

For small 9§, the vertical velocity distribution is linear over the depth. This can be seen by
arguing that for V8 << 1, then b, = k, =+ & . To the same order, k = nm, and
b ~2(-1)*182/(nr)3. Substituting these approximations in (A2.8) results in a linear vertical
velocity distribution, consistent with the conservation of mass equation du/ox = -dv/oy,

ie.,

Sg Y
v= — — cosmt (A2.9)
od d

This result is also consistent with the law of the plate result, (A1.8), since one can derive
from (A2.3) that on/dt = (Sg/wd) coswt. This result is shown in figure (A2.2a), where the
vertical velocity is calculated according to (A2.8), for different times in the cycle of the
oscillatory motion. As the frequency increases, the velocity distribution deviates from the
linear distribution, indicating a breakdown of the solution. This is shown in figures
(A2.2b,c,d). Based on these results, an approximate limiting criterion for the validity of the
linear theory is & < 0.07. (An exact result can also be derived with some further

computational effort.)

It is interesting to note that in the definitive set of experiments [Ursell et al (1961)]
when the "predictions of the linear theory were "verified", 8 was in the range [0.057, 4.974].
The authors compared the measured value of the ratio of the wave height to the piston stroke

to the theoretical value, which is given by :

H 2(coshk d - 1)
— = (A2.10)
S

(sinh2k d + 2k d)
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The agreement was very good and the authors concluded that their experiments " constituted

a close verification of the small-amplitude wave theory... and that this theory may be used

with confidence to calculate waves (and probably also forces) in more complex cases...".

Although, there is no experimental evidence to refute the above statement, it can be

speculated that the agreement was partially fortuitous. This hypothesis is suggested by the

fact that their laboratory results agree equally well with the theoretical results for steep finite

0.04 T T 1 I i T 1 1 i
0.02
o~
0
; 0.00
~
>
-0.02
=)
=Y4]
=
<.
>
_0.4 | i 1 1 | ! | i |
00 O. 0.2 03 04 05 06 O7 08 09 1.0

y/d

Figure A2.2a,b Variation of the vertical fluid velocity on the front face of the plate, as

calculated by the linear theory using equation (A2.8) with & = 0.001 (a) and 8=0.1 (b)
Appendix A
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amplitude waves, with 0.045 < H/L <0.048 and 0.078 <H/d < 0.256, a range where
the linear theory is clearly not valid. Since the equation (A2.10) was evaluated by Ursell et
al. (1962) several depths away from the wavemaker, it is possible that the linear theory
describes the motion well away from the wavemaker, but that it is limited when applied
directly in the wave generation region, next to the wavemaker. It is therefore arguable
whether the linear theory can be used to calculate forces in the entire range of values as

suggested by Ursell et al. (1962).

1.5 1 T T T T T T Y T

(c)

-1.5 ! ] ! ! ] ! | ! !
0.0 0. 0.2 03 04 05 06 07 08 0.9 1.0
3 T T T T T T Y T T

——— e

(d)

-2 1 ] ] 1 ! I ] ] ]

00 Oof 02 03 04 05 06 OT7T 08 09 1.0
y/d
Figure A2.2¢,d Variation of the vertical fluid velocity on the front face of the plate, as
calculated by the linear theory using equation (A2.8) with 8 =1.0(c) and & =9.0 (d)
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On physical grounds, the limitation arises because high frequency plate motions are
associated with large plate velocities. Since, to first order, the amplitude on the plate
normalized with the depth is equal to the plate velocity normalised with the phase speed \ gd,
it follows that the amplitude on the front face is not negligible. (This is shown in section
A.3.) It is therefore no longer permissible to evaluate the free surface condition at y=0

rather than on y = n(t).

A.3 A note on determining the wave amplitude at the plate. The determination
of the wave forces on an accelerating piston requires knowledge of the wave height
distribution on the front face of the plate. In many cases this distribution may not be
available. However, it can be calculated when generating shallow water by using the
method of characteristics. Let Vo denote the dimensionless plate velocity given by

vpz(dE,*/dt*)/\/ gd ; then the dimensionless wave height at the plate 1, is given by :
1 2
Mp=Vp+ 7 Vp™ (A3.1)

One would expect that this relationship is only valid for plate motion such that the
shallow water wave theory remains valid, i.e., for motions involving small vertical
accelerations. In this sence, the relationship is not expected to be valid when np*/d becomes
O (1), since such motions are associated with vertical accelerations, dn*%/dt*2~ O (g). It
is therefore remarkable to discover the wide range of amplitudes for which (A3.1) is valid.
This is demonstrated in figure (A3.1) which shows the relationship between the maximum
wave amplitude at the piston, [np*/d]max, plotted against the maximum velocity of the plate,
[vp*/\/gd] max , for the waves described in chapter 4. It is seen that equation (A3.1) is

indeed a good model for the relationship between the two variables.
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When the plate generates broken waves and bores, the surface amplitude at the plate
can also be calculated with the classical bore theory. Assume that plate is generating a
uniform bore of height n+d, which propagates with speed U. A convenient form for the

bore conditions is given by Whitham (1974), and it is :

U=u+ \/ g(“”‘;)f‘”d) (A32)

From conservation of mass, one may derive that :

ne
n+d

(A3.3)

Combining (A3.2) with (A3.1), the following expression results :

u=gn Vi- % n (A3.4)

n+d

Behind the uniform bore, the fluid velocity is equal to the plate velocity, u/N (gd) =vp, so
that (A3.4) may be used to calculate Np. This relationship is also shown in figure (A3.1)
and it is seen that it predicts identical results with the' relationship derived from the method of
characteristics (A3.1), for( plate velocities less than 0.3. This is expected, since for small
Ny (A3.1) and (A3.4) both reduce to N, =Vp- For larger plate velocities (A3.1) and (A3.4)
diverge, but they are not sufficiently different to draw any general conclusions from this set

of data.

The relationship between the dimensionless amplitude at the plate and the
dimensionless plate velocity is obvious in a comparison of figure (4.2.5.a) with (4.2.5b).

It is apparent that the wave amplitude at the plate can be approximated with the plate velocity

The runup of long waves Appendix A



174

in many cases. This result is also consistent with the long wave equations, where the wave

amplitude is approximately equal to the depth averaged water particle velocity.

loo 1 L] 1 1 T 111 ‘ \ i i ] 1 ‘/I
[ e TypeS non-breaking ’ J
- @ Type R non breaking ,
L a TypeP non breaking = 6%
. @ TypeS breaking -
a TypeR breaking % a _
- a TypeP breaking
| @ TypeS broken+bores oo&‘ i
@ TypeR broken+bores A
>
g
5 107F .
}d - :
N i i
i ° ——— Method of characteristics 7|
¢ —— Bore relations
~2 1 L [N R B ] 1 1 [ I T B A
s 10~ 10°

Figure A3.1  The maximum wave amplitude on the front face of a plate as a function of
the maximum velocity of the plate.
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Appendix B

The runup of a uniform bore

Introduction. Peregrine (1966) describes a uniform bore as a " transition between

different uniform flows of water ". A bore with a gentle transition propagating over
constant depth can be modelled using standard methods [Peregrine (1966)]; eventually it
transforms into an undular bore, as shown in figure (1.3.2) When a bore climbs on a
sloping beach the transition region narrows; the bore evolves into a discontinuity (a shock)
in the distribution of the dependent variables. This process imposes a serious impediment in
the analysis of the climb of the bore up a beach, since no differential relationships can

formally be applied once a discontinuity develops.

Certain approximate analytical solutions that account for discontinuities have been
derived since Whitham's (1958) original contribution (see section 1.3.3). There has been
no exact solution. However the problem is ideally suited for numerical computation,
where flow variables are computed at discrete locations and times. Under certain
conditions, shocks may be admitted and higher order solutions can be obtained. One
such ﬁniie difference procedure was devised by von Neumann and Richtmeyer (1950)
permitting shocks to develop in the interior of the flow. This procedure is described in
Richtmeyer and Morton (1967) in detail. Another procedure that allows shocks to form and
propagate was developed by Lax and Wendroff (1960). This latter procedure has been used
with success in free surface problems by Houghton and Kasahara (1968), and by Sielecki
and Wurtele (1970). Hibberd (1977) and Hibberd and Peregrine (1979) were the first to

The runup of long waves Appendix B



176

apply the Lax-Wendroff scheme in free surface flows with discontinuities, and they
calculated the runup of a uniform bore. Packwood (1980) used the same scheme and
included terms for frictional dissipation. Mano (1983) developed a similar Lax-Wendroff
type procedure and used the Crank-Nickolson scheme [Gerald, (1983)] to advance the

solution.

The Hibberd and Peregrine (1979) algorithm, denoted hereafter as H&P , is now
considered the state of the art method for solving the problem of a uniform bore climbing on
a plane sloping beach. It was reproduced in this study for the purpose of determining

whether it is capable to calculate the solution for the runup of a finite bore.

B.1 The Lax-Wendroff technique. The Lax-Wendroff (1960) scheme applies to

conservation laws of the form .

oW of

—a“t“*f _é;K=O B (Bl.l)

where U is the conserved vector quantity, f is a vector function of W, and K is a vector.
For long waves propagating over a uniformly sloping beach, the shallow water wave

equations can be written in the Lax-Wendroff form, if one sets :

W = [h, hu],
f =[hu, hu2+h%/2] = [hu, (hu)%h + h?/2], (B1.2)
and K =[0,h],

where the following normalization was used :
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h = (cosp) h*/d, x = (sinP) x*/d, t= (sinP) t*Vg/d, u=u*~Ngd (B1.3)

1: cotP is the beach slope, and h, x, t, and u are the dimensionless water depth, distance,
time and depth averaged velocity respectively and are defined as in chapter 3. This choice of
dimensionless variables allows for solutions that are independent of the beach slope. To
facilitate the finite difference calculation, dW/dt is expressed in terms of x-derivatives.
This is accomplished by using the Taylor expansion of W(x,t) in t, by retaining terms of

O(A), and by using the relationship :

)% of oW -
=3 =1 A = (B1.4)
ot oA ox
where
of [ 0 1
A= — = . 1.5
oW h-(hu)?h? 2 (hu)h (B13)

Equation (B1.1) can now be solved with an explicit finite differencing scheme.
Since W, f, and K are vectors and A is a matrix, the solution vector of (B1.1) is usually
obtained by solving the resulting system of two equations with the two unknowns, h and
hu. However, (B1.1) can also be solved directly by defining a complex solution vector,
U =h+iuh. This definition takes advantage of complex variable operations that certain
compilers allow, and it was used in this study because it simplifies the solution and allows
for more compact code. The convergence of the scheme was established by Lax and
Wendroff (1960). The stability of the scheme is determined by the Courant-Friedrichs-Lewy
criterion which requires that AX/At 2 u + ¢, where Ax and At are the grid size and the time

increment respectively.
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B2. The Hibberd and Peregrine solution Hibberd and Peregrine used the following

initial vector to represent a uniform bore :

(1, u] when 1<x
Wi t=0) = { (B2.1)
[1-xtanB, 0] when 1<x<0

They considered the wave propagation in the region 1<x<0. To complete the solution, data
must be specified for all times at x=1, the sea boundary. They accomplished this by using
the characteristic form of the shallow water wave equationsA to calculate the Riemann

invariant B, defined as follows :
B =u-2c-t tanB (B2.2)

The characteristic form of the equations requires that :

ap op
— =-(u€) — (B2.3)
ot oX

If B is known forx =1, t=0, then (B2.3) can be used to calculated B for all times, and

then boundary values can be calculated through (B2.2).

Once seaward boundary values are specified, the Lax-Wenfroff equation (B1.1)
can be integrated explicitly. The details can be found in Hibberd and Peregrine (1979). The
only difficulty arises when the bore reaches the initial position of the shoreline. Up to this
stage in the calculation the shoreline boundary has been assigned the undisturbed flow
values, i.e., W=[0,0], so as to permit the integration of the solution to the next time step.

Now the decision must be made whether this value should be modified, and, if so, whether
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new grid points should be introduced in the computational domain. Hibberd and Peregrine
proposed a shoreline algorithm that uses linear extrapolation to predict provisional values
and then local integration of the equations of motion to correct these values. Iwasaki and
Mano (1979) used a different shoreline procedure to introduce new grid points. They
modelled the plane sloping beach with a ladder-like topography with small steps. Their
algorithm introduces a new grid point in the computation when the water depth exceeded the

height of the step at the last grid point.

B3. Implementation of the Hibberd and Peregrine algorithm. The shoreline
algorithm was implemented for calculating the runup of uniform bores with mixed results.
The solution procedure followed Hibberd's (1977) description. The only detail that may be
added to that recounting is the fact that when negative depths values are predicted in the
intermediate steps of the shoreline procedure they should be retained instead of being set

equal to zero; otherwise the algorithm does not converge. [Peregrine (1980)].

The H&P algorithm produced good results when used to calculate the runup of a
uniform bore. Figures (B3.1) shows the climb of a uniform bore defined by equation
(B2.1) with uy= 0.1 . In these calculations Ax = 0.01 and At = 0.04, and the x-grid
included 100 nodes. (These are also the values used by H&P.) The integration of the
solution proceeded smoothly, but could only be advanced up to the point of maximum
runup. Beyond that point numerical instabilities developed and floating overflows resulted,
even though the H&P rundown procedure was used. Instabilities also developed when
calculating the runup of strong bores. This is shown in figure (B3.2) which shows the runup
of a bore with uy= 0.6. This instabilities were not present in Hibberd and Peregrine's

solution, so they may be due to incorrect interpretation of the algorithm.
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The algorithm was then used to attempt to calculate the runup of a finite bore. A
finite bore was generated by propagating a 0.30 solitary wave up a 1:20 sloping beach. The
Lax-Wendroff technique was used to solve the propagation problem over the combined
topography of a constant depth region joined to a sloping beach. (see figure 1.1.1) The

result is shown in figure (B3.3). The figure shows the inital profile as a function of x. The
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Figure B3.1 The runup of a uniform bore with initial strength uy=0.1 Ax=0.01 and
At=0.04
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last profile shown has triangular shape and it is very similar to the profiles of finite bores
realized in the laboratory. When the solution was integrated past this profile the
Lax-Wendroff scheme also developed instabilities. This problem was circumvented by
smoothing of the solution. Smoothing was used instead of any artificial viscocity terms
because the objective was to obtain some representation of a finite bore profile at the

shoreline instead of deriving the solution for the runup of a solitary wave after
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Figure B3.2 The runup of a uniform bore with initial strength uy=0.6 Ax=0.01 and

At=0.04
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breaking. Once the bore reached the shoreline the H&P algorithm was used to advance the
solution. The shoreline algorithm worked well to initiate the motion of the shoreline, but
soon thereafter numerical instabilities developed close to the shoreline tip and the integration
was stopped. Although it would have been possible to suppress the overflows by different
numerical switches, it was felt that the accuracy of the solution would be compromised and
that the final code would be of no use other than for the particular case it was developed for.
However the calculation did point to the fact that the H&P algorithm in its original form is a

powerful but a very sensitive numerical procedure.

0.50 T j T j T T T T T
0.25: i
n*/d o—
T I — 0 0
x*/d

Figure B3.3 The climb of a 0.30 solitary wave up a 1:19.85 beach. The Peregrine
(1967) algorithm was used.
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Appendix C

The generation of arbitrary long waves
in the laboratory

Introduction. In many laboratory investigations it is desired to expose the model of a
coastal structure to a particular shape of a finite-amplitude long wave. In nature the prototype
wave propagates from the generation region to its destination, and it changes shape through
amplitude and frequency dispersion and energy dissipation. Frequently it is not practical to
model the entire bottom topography from the generation region to the structure in order to
realize similar wave shapes in the laboratory. The problem then arises of how to produce
the appropriate wave in the model when it is not possible to scale exactly the natural
processes that transform the wave.

In this section a method is presented which allows the creation of any relatively
arbitrary long wave at a given location in a two-dimensional constant depth wave tank.
The method is developed in two stages. First, a propagation algorithm is used to determine
the wave that must be created by the wave generator to produce the desired wave at the
specified location. Then, a generation algorithm is used to calculate the motion of the wave

plate necessary to create the wave that resulted from the propagation algorithm.

C.1 The propagation algorithm. Usually, when a particular long wave form is to be
realized in the laboratory at a specified location it is neccessary to generate an entirely
different wave in the generation region and let this wave evolve into the desired wave. To
determine this initial wave one must solve an initial value problem backwards in time, i.e.,
find the solution at t = -T from the solution at t=0 and then specify a suitable propagation

model.
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An appropriate propagation model for long waves travelling over constant depth is
the KdV equation [Korteweg and de Vries (1895)] ; it can also be derived from the
Boussinesq equations. Many variants of this equation exist; the one chosen for this study is

the one presented by Peregrine (1966). It has the form :

Ju Jdu on 1 %
—+u—+ — = - — + O@E%c?) (CL1)
ot ox  0x 3 ox%ot

where € is the ratio of the wave height to the water depth and ¢ is the ratio of the water
depth to the wavelegth and all the flow variables are normalized as in chapter 3. Both € and
o are assumed to be small; to the same order as (C1.1), n = u.

Equation (C1.1) was adopted as the propagation model in this study. However, the
equation has only two known classes of exact solutions. To use this equation with arbitrary
initial conditions a numerical procedure is necessary. Peregrine (1966) presented a robust
differencing scheme of this equation and proceeded to calculate the evolution of an undular
bore. Hammack (1972) used the same algorithm to calculate the propagation of waves
generated by vertical bed displacements. The resulting matrix of the coefficients of the
solution vector is tridiagonal so that the system of equations can be solved directly by back
substitution. The only difference between the technique used here and Peregrine's (1966)
practice was that the time step At used in the integration of the equation was negative, since it
was desired to advance the solution backwards in time. To determine the appropriate grid
size and time step size for the numerical calculation several test runs were executed. The Ax
and At were halfed until a solitary wave of approximately the same height as the desired
waveform propagated in the numerical wave basin without any change in form. (This change
is usually a reduction in the maximum wave amplitude and is attributed to numerical
dispersion.) For a propagation length of 100 depths and for solitary waves of H/d ratio such
that 0.1<H/d<0.5, the numerical grid parameters that gave the best combination of least

numerical dispersion and largest grid size were Ax =At=0.01.
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For the purpose of determining whether the propagation model could be used for

reasonable, but relatively arbitrary long waves , an initial wave form was defined as follows:

0.5 A[1-tanh (.750x)] when 0<x<A

u(x,t=0)= (C1.2)
0.5 A[1-tanh(.125x)] when A <x <2\

where A is the wave amplitude and 3A is the wavelength. Different cases were run with A
ranging from 0.1 to 0.5 and A = 10. The numerical scheme was stable for propagations
distances of at least 400 depths; the only limitation on the propagation length was the
maximum array size that could be included in the code. (Although the code was of the order
of 50 statements, it was executed on a PDP11/60 with 128kbytes of RAM.) Figure (C1.1)
is an example of the backwards Iiropagation of the profile defined by equation (C1.2). The
profiles shown are the wave amplitude as a function of x at time intervals equal to 40At. To
interpret the figure, the x-axis may be thought of as the side view of a two-dimensional
wave tank and the surface profiles as still photographs of the wave motion superposed on
each other.

A more intriguing test of the propagation model is shown in figure (C1.2). This
figure shows the numerical propagation, backwards in time, of an initial wave profile
derived from laboratory experiments. This profile resulted when a breaking wave , after

propagating over constant depth, reformed into a nonbreaking wave consisting of a leading

solitary wave followed by a train of oscillatory waves. The propagation model appears to
predict that the original wave (that evolved into the laboratory wave) is a nonbreaking
solitary wave following an oscillatory train of small amplitude waves. Although it can be
argued that this is the expected behaviour since the propagation equation can model only
nonbreaking waves, it can also be argued that the propagation model could have produced

unbounded solutions to indicate the presence of discontinuities at earlier times. This is quite
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of the a wave that evolves after a broken wave reforms,

Figure C1.2 The evolution

and are spaced at time intervals equal to 0.4V(d/g).

The Peregrine (1966) algorithm was used with Ax=At=0.01.

The profiles are shown as functions x
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fascinating because it suggests that it is possible that the same long wave may evolve from

two different waves. This assertion will be examined in section C.3.

C.2 The generation algorithm. Long waves can be generated in the laboratory in
many ways. Scott -Russell (1844), the first person to describe a solitary wave, suggested
some methods for long wave generation ; many of them are still in use. In this study waves

were generated by moving a vertical plate, as decribed in chapter 2.

The primary reason for using the vertical plate is that tﬁe long wave model (C1.1)
refers to the depth averaged horizontal velocity u. Since during wave generation it is
attempted to induce the fluid particles to move with a specified velocity, itis sensible to use
a wave generation system that forces the fluid particles in a uniform manner across the depth.

This means that the trajectory of the plate &(t) is defined by :

dg

el (3] (C2.1)

This is the trajectory equation and it matches the plate velocity with the velocity of the
generated wave at each generation step. It accounts for the fact that the wave evolves
continuously during generation as it is moving away from the generation area. It is not an

easy equation to solve analytically or numerically.

There are two special cases of this equation : one, when the generated wave is a

permanent form wave, and two when the wave is a small-amplitude wave :
A. When the wave is one of permanent form, then one can introduce a phase 8 = x-ct, and
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write :

dg_
el IC) (C2.2)

Since for permanent form long waves the amplitude is related to the water particle velocity by
the following relationship :

-

u n+1

, (C2.3)

then the trajectory equation can be solved directly to give :
J‘G
&0 = . n(¢) do (C2.4)

Goring (1978) developed an algorithm to solve this equation to determine the trajectory to
generate solitary waves and cnoidal waves. He verified his technique in the laboratory and

obtained excellent results.

B. When small amplitude waves are generated, then equation (C2.1) can be linearised to

give the following form of the trajectory equation :

dg
il O, 1) (C2.5)
This equation defines & as an explicit function of time and it can be integrated directly to find
the trajectory. Equation (C2.5) is used routinely in most laboratory investigations to generate
finite amplitude waves because of its simplicity. In most cases the difference between the
solutions of (C2.5) and (C2.1) is small. However, when a specific wave must be generated

for comparisons with an analytical model, it is necessary to use equation (C2.1).
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In the present study the trajectory equation (C2.1) was solved by using the
propagation model (C1.1). This is neccessary because the wave to be generated evolves

continuously. When the intgeration of (C2.1) beginsatt=0:

g—f (0,0)=u (0, 0) (C2.6)
while at time At later :
dg§
@ (AE, At) = u (AE, At). (C2.7)

Since the wave is evolving, u (A, 0) # u (A, At), and it becomes necessary to employ a
propagation model to determine the solution for all times. This is not the case for permanent
form waves, because once u (x,0) is known then u (x,t) can be determined explicitly for all

x and t.

Let the origin of the coordinate system be at x=0, and let the plate be located at
x=X.,. Suppose that it is desired to calculate the wave trajectory &(t) that will generate a

given wave system U(x,t) . Let V = d&/dt. By definition,
V [t=0] = U[ Xp, 0]. (C2.8)

To determine V [t=At], one may use the propagation model defined by (C1.1). At time At

the plate will have moved a distance AE = V[t=0]At, and its velocity at At will be given by :
V [t=At] =U [XP+A§, t=At]. (C2.9)

Forany n, & is the current plate position and V_=V(nAt) is its current velocity ; the plate
position at the next step is § +V_At, and its velocity is given by :
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V.. =V I0+DA] =U [ +V At, (n+1)At] (C2.10)
Repeating (C2.10) until the wave is generated determines the required trajectory & (t).
There are two practical considerations :

1) It is not possible apriori to determine when to stop the integration procedure, i.e., when
the whole wave has been generated. It is reasonable to continue the integration until the time
t=T, when V =0 and dV/dt =0, and then stop. T is then defined as the generation time.
When this procedure is used the exact time of ending the integration procedure is immaterial
as long as the wave has had sufficient time to evolve. The stroke S is given by the

relationship S =E(T).

2) The equation (C1.1) is usually solved numerically with Peregrine's (1966) algorithm. His
practice is to define an initial condition U (x,0) at M grid point each distant Ax apart, and then
to use a central differencing scheme to advance the solution in time and thus determine
U (x,At). Under these conditions, the solution will not generally be available at arbitrary x,
as the use of (C2.10) may require. If this is the case, linear interpolation is required
between two adjacent grid points. For example if, m=Int {(& + V_At)/Ax}, then one
may intérpolate between U[mAx, (n+1)At] and U[(m+1)Ax, (n+1)At] to obtain
U [§n+VnAt, (n+1)At]. (Int is the function that finds the largest integer smaller that the

argument of the function.)
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C.3 Experimental results. Two sets of experiments will be presented in this section.
The first verifies the backwards propagation and generarion algorithm (BPG, for short) for
waves assumed to be of permanent form locally, while the second verifies the algorithm for

arbitrary waves.

Figure (C3.1) shows the evolution hierarchy of a wave defined by equation (C1.2)
with A=0.3. The wave identified in the figure was used as an initial condition for the
propagation model (C1.1). The other waves evolve at the distances indicated away from the

plate.

Figure (C3.2) shows this profile and the trajectory neccessary to generate it as
calculated by using equation (C2.2). (In this particular run it was assumed that the wave is a
permanent form wave locally, i.e., around the generation region. This is a reasonable
assumption ; in this case, the generation region is of the order of four depths and the wave is
not expected to change significantly over distances of this order.) Figure (C3.3) shows the
comparison between the theoretical profiles and those obtained in the laboratory by using the
BPG algorithm. Although the effects of dissipation are more evident in the experiments, the

agreement is quite good.

In the next set of experiments a broken wave was generated by the plate in the
manner described in chapter 4. The wave reformed and the profile that evolved was
recorded. This profile was used as an initial condition to the BPG algorithm and the
resulting wave was measured at the same location as the former wave. Then the two waves

were compared.
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Figure C3.1  The evolution of the wave defined by equation (C1.2) with A=10 and
A=0.3 backwards and forwards in time. The profiles are shown as functions of the

dimensionless phase and are spaced at intervals of t=20.
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Figure C3.2a The wave that must be created at the generation region so that it may
evolve into the desired waveform (marked initial profile in figure (C3.1)).
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~ Figure C3.2b The trajectory required to generate the wave of figure (C3.2a).
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The evolution of the wave used as the initial condition is shown in figure (C1.2).
Figure (C3.4a) shows the initial wave profile generated after one broken wave reformed.
Figure (C3.4b) shows the evolution of that profile backwards in time. Figure (C3.4¢)
shows the trajectory computed by solving (C2.1) with the algorithm (C2.10) and using the
profile in figure (C3.4b) as initial condition.

Figure (C3.5a) shows the comparison of the initial wave (also shown in C3.4a)
with the wave obtained from the laboratory experiments after the plate moved with the
appropriate trajectory (shown in (C3.4c)). Itis seen that the two laboratory profiles agree
fairly well with each other, but not as well as the agreement shown in the previous set of
experiments, for example in figure (C3.3). One possible explanation is the use of
boundary data to initiate the BPG algorithm rather than initial data ; the wave profiles were
available only as function of time and the assumption was made that the spatial representation

of the initial wave did not differ significantly from the time respresentation.

Figure (C3.4b) shows the comparison between the initial wave profile, shown in
figure (C3.4a), and the profile that is generated at the same x-location, if one uses the
linearised form of the trajectory equation (C2.5). The generation algorithm produces

superior results compared with the linearised trajectory equation.

Conclusion. Given the arbitrary nature of the waves generated in this study, and the
fact that it was possible to reproduce a wave resulting after a breaking wave reformed, it is

concluded that the BPG alogorithm is a powerful tool for generating long wave in the

laboratory.
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Figure C3.4a The wave that is generated after a broken wave reforms.
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Figure C3.4b The wave that must be created at the generation region so that it may
evolve into the wave shown in figure (C3.4a).
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Figure C3.4c The trajectory required to generate the wave motion in figure C(3.4a).
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Appendix D

The Fourier transform of a solitary wave.

A solitary wave propagating over constant depth has a velocity profile given by
n(z,t) = (H/d)sech?y(z — ct), where v = y/3H/4d. To determine the transform of
the function n(z,t), it is useful to evaluate the following integral :

I(k) = /oo sech?(rz)e'**dz (D1.1)
-0
The integral converges for all real z. (When z — 00, then sech?(rz) — 0).

To calculate the Cauchy principal value of (D1.1) by contour integration con-
sider the function f(z) = sech?(7r2)e***, where z = z + iy plane, The function I (k)
represents an integration of the function f(z) along the entire real axis. Consider
the rectangular contour C which extends fromz=Rtoz=R+itoz=—-R+1 to
z=—R to z = R. f(2) has one pole of order two inside C at z = 1/2; it is analytic

everywhere else in the strip 0 < y < 1. The residue at the pole is 2 / wke“i" Let
Ic = § sech?(nz)e***dz. Then : -

R 1
I :/ sech?(rz)e**2dz + i/ sech®m(R + 1y)e kv +ikRqy

-~R 0
. (D1.2)

-R
+[ sech?n(x + i)e™**dx + i/ sech?n(—R + iy)e v Ry,
R 0

The integral over (R, —R) is equal to —e~k times the integral over (—R, R). The
integrals over (0, 1) are bounded by e~¥¢~"®. In the limit as R — oo (D1.2) becomes:

0
—zﬁe_%k =(1- e“k)/ sech?(rz)e'**dz. (D1.3)

T —0

This equation implies that [ sech?(rz)e’**dz = (k/m)cosech(k/2). The desired
transform follows from a change of variable; it is given by :

L / ~ sech?(yx)e**dx = —l-{——cosech(ﬂ—k) (D1.4)
27 J oo .2y 27" '
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Table T3.1

Runup of solitary waves up a 1:19.85 beach

ExpNo d TV(@d) Fr H/d R/d
(cm)

116-6 /80 625 16.539  0.076 0.250 0.506
116-5 /80 625 27.675 0.026 0.072 0.233
1168B /80 8.01 10.015 0.193 0.448 0.723
1219-2 /79 9.79  27.828  0.026 0.078 0.251
1219-5 /79 979 11812  0.142 0.384 0.621
1219-4 /79 9.81 19.430 0.053 0.097 0.274
1219-6 /79 9.84 9.805  0.197 0.462 0.659
1219-8 /79 9.84 10.194  0.189 0.528 0.649
1219-1 /79 9.89  15.547  0.081 0.236 0.467
1027a /84 13.17. 13369  0.105 0.294 0.542
281A /80 1454 10012  0.192 0.610 0.780
281C /80 1454 10201  0.189 0.591 0.790
281L* /80 1454 10201  0.189 0.607 0.805
281E* /80 1454 10201  0.189 0.607 0.780
1167C /80 15.50 9912  0.194 0.601 0.801
122068 /79 1567 27.851  0.026 0.090 0.270
1220-4 /79 1572 15.626  0.081 0.259 0.519
1220-3 /79 1576 12245  0.133 0.407 0.659
1220-2 /79 1576  10.193  0.190 0.590 0.810
10292 /84 1562  13.329  0.105 0.298 0.551
1029b /84 1565 13.356  0.109 0.322 0.591
1220-5 /79 1569 19.610  0.053 0.170 . 0.407
36a /85 16,70  15.329  0.087 0.273 0.487
33b /85 17.53 14961  0.089 0.276 0.495
221F /80 19.42 10200 0.189 0.633 0.842
221-6 /80 19.42 10200 0.189 0.625 0.825
221B /80 19.47 10200 0.189 0.626 0.862
225¢c /85 19.56  14.164  0.094 0.283 0.527
2252 /85 19.62  14.142  0.094 0.286 0.513
217b /85 2085  41.498  0.011 0.036 0.124
1220-9 /79 2092 19311  0.054 0.188 0.409
122010 /79 2092  15.545  0.081 0.271 0.513
122011 /79 2080 11.757  0.109 0.323 0.555
122012 /79 2092 12.018 0.136 0.416 0.686
626a /84 21.01  19.946  0.049 0.159 0.384
626b /84 2144 16955  0.048 0.160 0.384
626c /84 21.47 21232 0.043 0.143 0.366
218a /85 22.08 41.419  0.011 0.036 0.121
128-1d /80 2349 13229  0.110 0.394 0.641
4112 /83 2400 38.692  0.132 0.048 0.182
127-1 /80 2638 16.678  0.076 0.267 0.507
1125a /85 28.43 40989  0.012 0.039 0.152
1126a /85 28.55 40947  0.012 0.040 0.156
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717a /R4
624F /84
624E /84
624D /84
624B /84
624A /84
624C /84
623C /84
623A /84
622A /84
622B /84
621A /84
622C /84
622D /84
410-2 /83
410-1 /83
25-2a /80
7712b /84
772a /84
25-1 /80
411-4 /83
625K /84
6251 /84
625H /84
411-3 /83
625G /84
625F /84
625E /84
625C /84
625B /84
624G /84
625A /84
24-1 /80
420-3 /82
420-1 /83
420-2 /83
419-2 /83

Explanations :

The runup of long waves
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29.14 61765  0.006 0.021 0.076
2934 71400  0.004 0.014 0.049
29.35 19.032  0.028 0.051 0.198
29.40  30.534  0.021 0.075 0.258
29.62 32,665  0.019 0.065 0.228
29.63 35387  0.016 0.055 0.207
29.54 30462  0.021 0.073 0.248
29.72 35397 0.016 0.056 0.207
29.73  43.456  0.010 0.034 0.144
29.75 61765  0.005 0.018 0.074
29.77  87.495  0.003 0.009 0.036
29.80 61.764  0.005 0.018 0.075
29.83 49449  0.008 0.027 0.108
29.86 43469  0.011 0.038 0.146
30.00 39.777  0.013 0.047 0.191
30.48  38.748  0.013 0.047 0.195
30.93 19.807  0.052 0.188 0.425
3097 61.768  0.006 0.019 0.078
31.06 61.746  0.005 0.019 0.076
31.38 28.526  0.026 0.094 0.288
33.31 88.001 0.003 0.009 0.041
3352 113.222  0.002 0.005 0.019
33.55 104.676  0.002 0.006 0.022
33.61 97.922  0.002 0.007 0.026
33.65 50.246  0.008 0.028 0.123
33.65 92.297  0.002 0.008 0.029
33.76  57.528  0.006 0.023 0.087
33.84  65.143  0.005 0.017 0.063
3404 53.076  0.007 0.024 0.098
3424 75269  0.004 0.012 0.048
3429 71395  0.004 0.014 0.052
3439 79869  0.003 0.009 0.036
35.35 19.607  0.052 0.193 0.426
3797 41.019 0.012 0.044 0.182
37.99 54982  0.007 0.025 0.102
3799  58.585  0.006 0.022 0.098
38.32  43.153  0.010 0.039 0.162

a) All waves with H/d>0.055 are breaking waves.

b) The data are ordered with respect to the local depth.

¢) The values given for the generation time and stroke are not
necessarily those specified by (4.2.5) and (4.2.6); to generate the
Boussinesq profile (3.4.1) exactly, it is frequently necessary to
"tune” the hydraulic system and try different generation times until
the desired wave is generated. The values listed are the values
actually used.

d) The height-to-depth ratio is measured at a distance (1/2)L from
the toe of the beach ; L is given by equation (3.5.1).
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Published data on the runup of nonbreaking solitary waves.

Table T3.2
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source slope H/d R/d R/d
(cotP) exper runup

law
625k /84 19.850 0.0052 0.019 0.018
625i /84 19.850 0.0065 0.022 0.023
625h /84 19.850 0.0071 0.026 0.026
625g /84 19.850 0.0080 0.029 0.030
622b /84 19.850 0.0092 0.036 0.036
411-4 /83 19.850 0.0095 0.041 0.037
625a /84 19.850 0.0097 0.038 0.038
625b /84 19.850 0.0129 0.048 0.055
624g /84 19.850 0.0141 0.052 0.061
624f /84 19.850 0.0144 0.049 0.063
625¢ /84 19.850 0.0170 0.063 0.077
621a/622a /84 19.850 0.0180 0.074 0.083
772a/772b /84 19.850 0.0190 0.077 0.089
775c/117a /84 19.850 0.0210 0.075 0.101
420-2 /83 19.850 0.0220 0.098 0.104
625f /84 19.850 0.0230 0.087 0.113
625¢/420-1 /83/84 19.850 0.0250 0.100 0.125
622c /84 19.850 0.0270 0.108 0.138
411-3 /83 19.850 0.0280 0.123 0.144
H&W 11.430 0.0460 0.196 0.204
11.430 0.0500 0.178 0.226
H&W 5.671 0.0500 0.146 0.159
5.671 0.0560 0.154 0.184
5.671 0.0640 0.188 0.217
5.671 0.0680 0.203 0.234
5.671 0.0720 0.229 0.251
5.671 0.0740 0.235 0.260
5.671 0.0760 0.222 0.269
5.671 0.0820 0.261 0.296
5.671 0.0860 0.254 0.314
5.671 0.0880 0.304 0.323
5.671 0.0910 0.254 0.337
5.671 0.0950 0.304 0.356
5.671 0.1040 0.296 0.398
5.671 0.1070 0.323 0.413
5.671 0.1090 0.435 0.422
5.671 0.1140 0.382 0.447
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P&G

H&W
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3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732
3.732

2.747
2.747
2.747
2.747
2.747
2.747
2.747
2.747
2.747
2.747

2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
2.144
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0.0500
0.0540
0.0610
0.0680
0.0700
0.0720
0.0760
0.0810
0.0910
0.0980
0.1010
0.1020
0.1030
0.1080
0.1240
0.1260
0.1340
0.1360
0.1380
0.1420
0.1480
0.1560
0.1780
0.1810
0.1880
0.1890

0.0390
0.0500
0.0610
0.0880
0.1370
0.1190
0.2210
0.2390
0.2980
0.3480

0.0540
0.0610
0.0700
0.0720
0.0750
0.0810
0.0860
0.0960
0.1010
0.1040
0.1120
0.1210
0.1220
0.1320
0.1410
0.1430

0.173
0.173
0.156
0.179
0.178
0.193
0.199
0.197
0.240

0.442
0.450

0.561
0.081

0.129
0.142
0.166
0.190
0.197
0.204
0.218
0.236
0.273
0.300
0.311
0.315
0.319
0.339
0.402
0.411
0.443
0.452
0.460
0.477
0.502
0.536
0.632
0.646
0.677
0.682

0.081
0.111
0.142
0.225
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2.144 0.1440 0.338 0.368
2.144 0.1490 0.395 0.384
2.144 0.1500 0.459 0.387
2.144 0.1560 0.391 0.406
2.144 0.1620 0.406 0.426
2.144 0.1720 0.465 0.459
2.144 0.1880 0.493 0.513
2.144 0.2160 0.592 0.611
2.144 0.2220 0.612 0.632
2.144 0.2440 0.760 0.711
2.144 0.2650 0.557 0.788
2.144 0.2830 0.803 0.856
2.144 0.3440 1.110 1.092

H&W 1.000 0.0540 0.098 0.074
1.000 0.0610 0.115 0.086
1.000 0.0640 0.132 0.091
1.000 0.0650 0.130 0.093
1.000 0.0670 0.159 0.097
1.000 0.0760 0.141 0.113
1.000 0.0820 0.170 0.124
1.000 0.0860 0.177 0.132
1.000 0.0920 0.172 0.143
1.000 0.0960 0.236 0.151
1.000 0.1010 0.212 0.161
1.000 0.1060 0.241 0.171
1.000 0.1070 0.204 0.171
1.000 0.1170 0.265 0.194
1.000 0.1210 0.256 0.202
1.000 0.1320 0.273 0.225
1.000 0.1340 0.318 0.230
1.000 0.1360 0.330 0.234
1.000 0.1380 0.283 0.238
1.000 0.1470 0.282 0.258
1.000 0.1540 0.382 0.273
1.000 0.1560 0.322 0.278
1.000 0.1720 0.374 0.314
1.000 0.1880 0.424 0.351
1.000 0.2100 0.495 0.403
1.000 0.2120 0.467 0.407
1.000 0.2420 0.601 - 0.481
1.000 0.2430 0.613 0.483
1.000 0.2960 0.803 0.618
1.000 0.3040 0.778 0.639
1.000 0.4800 1.270 1.131
1.000 0.5040 1.310 1.202

Explanations :  a) The column identified as R/d runup law refers to the predictions
of the asymptotic result (3.4.19). The data on the 1:19.85 slope
are data from this study. Nonbreaking data have been identified
using the breaking criterion (3.6.3). (See section 3.5.1.)

b) The acronyms are explained after table T3.3.
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Table T3.3

Nonbreaking solitary wave runup data from numerical calculations.

source Slope H/d R/ R/d R/d
runup exper
law

H&H (th) 10.000  0.0300 0.100 0.112

H&H (th)  10.000  0.0500 0.180 0.212

KLL (th)  3.732 0.0500 0.135 0.129 0.173

KLL (th)  3.732 0.1000 0.308 0.308 0.281

KLL (th)  3.732 0.2000 0.766 0.732 0.599

H&H (th)  3.333 0.0500 0.150 0.122

H&H (th)  3.333 0.1000 0.310 0.291

P&G (th)  2.747 0.0500 0.127 0.111 0.115

P&G (th)  2.747 0.0980 0.275 0.257 0.252

P&G (th)  2.747 0.1930 0.599 0.600 0.552

P&G (th)  2.747 0.2940 0.958 1.016 0.898

KLL (th) 1.000 0.0600 0.129 . 0.084 0.115

KLL (th) 1.000 0.1000 0.159°  0.159 0.212

KLL (th) 1.000 0.2000 0.504 0.379 0.454

KLL (th) 1.000 0.4800 1.610 1.131 1.270

L D fxr
§ At
4 <

Explanations:  The column identified as R/d runup law refers to the predictions
of the exact result (3.4.19). The column identified as R/d
experiments refers to the Hall and Watts (1953) data.

The acronyms in the table refer to the following sources :

H&H : Heitner, K.L. and Housner, G.W. 1970 Numerical
model for tsunami runup, Proc. ASCE, WWS3, 701-719.
KLL : Kim, S.K., Liu, P.L-F. and Ligett, J.A. 1983
Boundary 1ntegral equation solutions for solitary wave
generation, propagation and run-up, Coastal Engineering, 7,
299-317.

P&G : Pedersen, G. and GJCVlk B. 1983 Run-up of solitary
waves, J. Fluid Mech., 135, 283-290.

H&W: Hall, J.V. and Watts, G.M. 1953 Laboratory
investigation of the vertical rise of solitary waves on
impermeable slopes, Beach Erosion Board, US Army Corps of
Engineers, Tech. Memo 33, 14pp.
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Table T4.1a
Nonbreaking type R waves
ExpNo d TV(g/d) Fr R/d R,
(cm)
219-1 /83 19.80 15.725 0.048 0.201 0.765
221-1 /83 19.54 15.723 0.048 0.204 0.764
2252 /83 16.21 15.730 0.039 0.166 0.735
225-3 /83 16.07 15.728 0.040 0.170 0.747
227-1 /83 15.76 15.732 0.040 0.177 0.766
227-2,3 /83 15.76 15.732 0.050 0.218 0.796
228-1 /83 15.65 15.716 0.026 0.104 0.651
228-2 /83 15.65 15.716 0.039 0.166 0.743
228-34 /83 15.65 15.716 0.051 0.220 0.794
120-bc /84 13.08 16.056 0.038 0.140 0.638
72-ii /85 19.01 14.367 0.034 0.127 0.657
71-pp /85 18.95 7.022 0.057 0.175 0.795
71-xx /85 18.95 7.022 0.047 0.144 0.755
72-aa /85 18.91 7.030 0.038 0.106 0.660
72-bb /85 18.83 7.045 0.070 0.210 0.805
72-ff /85 19.10 6.995 0.028 0.079 0.627
72-gg /85 19.06 7.002 0.043 0.129 0.738
72-kk /85 20.05 3.497 0.063 0.113 0.630
72-11 /85 20.00 3.502 0.081 0.149 0.672
72-mm /85 19.90 3.511 0.073 0.129 0.636
72-nn /85 19.90 3.511 0.093 0.173 0.698
72-00 /85 20.24 3.481 0.109 0.205 0.732
Table T4.1b
Breaking type R waves
ExpNo d TV(g/d) Fr R/ R,
(cm)

217-4 /83 20.02 15.722 0.087 0.332 0.779
217-5 /83 20.02 15.750 0.125 0.450 0.789
218-1 /83 19.97 15.770 0.164 0.544 0.767
221-3 /83 19.54 15.723 0.128 0.455 0.781
223-1 /83 12.99 15.712 0.091 0.323 0.729
223-2 /83 1291 15.760 0.122 0.421 0.752
223-34 /83 1291 15.760 0.153 0.503 0.750
223-5 /83 12.86 15.729 0.184 0.567 0.730
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223-6,7 /83 12.84 15.742 0.214 0.652 0.744
223-89 /83 12.80 15.741 0.243 0.707 0.726
223-0 /83 12.72 15.728 0.245 0.712 0.727
223-a /83 12.68 15.753 0.277 0.765 0.709
223-b /83 12.70 15.741 0.307 0.798 0.681
224-1,2 /83 16.63 15.760 0.092 0.358 0.801
224-3 /83 16.60 15.728 0.066 0.278 0.814
224-12 /83 16.63 15.760 0.092 0.358 0.801
224-3 /83 16.60 15.728 0.066 0.278 0.814
117-a /84 14.45 8.239 0.157 0.454 0.859
120-a /84 13.68 15.700 0.128 0.444 0.765
71-cc /85 18.51 7.105 0.122 0.331 0.812
71-dd /85 18.41 7.125 0.141 0.380 0.829
71-ee /85 18.62 7.084 0.168 0.494 0.943
71-ff /85 18.37 7.132 0.208 0.501 0.803
71-gg /85 18.41 7.125 0.300 0.689 0.822
71-hh /85 19.15 6.986 0.323 0.705 0.801
71-ii /85 19.15 6.986 0.369 0.803 0.820
71-nn - /85 18.40 7.120 0.300 0.662 0.790
72-dd /85 19.30 6.958 0.087 0.253 0.822
72-ee /85 19.15 6.986 0.111 0.313 0.838
72-hh /85 19.03 7.008 0.249 0.608 0.848
72-ss /85 20.10 3.493 0.142 0.261 0.753
T2-tt /85 20.02 3.500 0.177 0.324 0.785
72-yy /85 19.89 3.511 0.318 0.546 0.826
72-ww /85 20.01 3.501 0.423 0.675 0.814
73-cc /85 19.92 3.509 0.259 0.450 0.802
Table T4.1c
Breaking-reforming type R waves
ExpNo d TV(g/d) Fr R/ R,
(cm)

71-kk /85 19.14 6.987 0414 0.714 0.664
71-1 /85 19.08 6.998 0.461 0.733 0.625
71-mm /85 19.05 7.004 0.507 0.728 0.575
71-00 /85 19.10 6.995 0.645 0.792 0.516
73-aa /85 20.02 3.500 0.634 0.724 0.632
73-bb /85 19.97 3.504 0.846 0.731 0.506
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Table T4.1d
Bores of finite volume - type R waves
ExpNo d TV(g/d) Fr R/d R,
(cm)
223-c /83 12.68 15.753 0.339 0.959 0.757
223-de /83 12.60 15.803 0.371 1.024 0.751
224-4 /83 16.57 15.743 0.373 1.123 0.821
224-5 /83 16.45 15.723 0.376 1.102 0.801
224-6 /83 16.46 15.718 0.404 1.091 0.748
120-d /84 12.82 16.218 0.357 0.993 0.743
224-7 /83 16.44 15.728 0.429 1.091 0.714
224-8 /83 16.40 15.747 0.474 1.151 0.694
225-1 /83 16.22 15.725 0.337 0.957 0.760
71-ss /85 19.05 7.004 0.738 0.929 0.543
71-tt /85 19.05 7.004 0.738 0.926 0.542
71-r /85 18.94 7.024 0.833 1.052 0.558
Table T4.2a
Nonbreaking type S waves
ExpNo d TV(g/d) Fr R/d R,
(cm)

428-1 /85 14.70 3.831 0.048 0.063 0.418
428-2 /85 14.70 3.831 0.059 0.104 0.585
428-5 /85 14.69 3.833 0.064 0.149 0.785
428-6 /85 14.68 3.834 0.069 0.150 0.744
428-3 /85 14.70 3.831 0.075 0.138 0.640
428-23 /85 14.45 3.510 0.080 0.168 0.767
428-245 /85 14.44 3.511 0.086 0.145 0.625
428-4 /85 14.69 3.833 0.091 0.187 0.743
423-2 /82 18.32 3.659 0.100 0.216 0.811
329-2 /82 25.53 6.199 0.010 0.009 0.173
317-1 /82 14.54 8.214 0.020 0.022 0.217
326-2 /82 13.54 8.512 0.030 0.053 0.372
428-17 /85 14.59 7.519 0.030 0.133 0.981
317-3 /82 14.54 8.214 0.033 0.081 0.534
428-8 /85 14.66 7.501 0.039 0.162 0.970
428-9 /85 14.64 7.506 0.045 0.177 0.945
421-abc /85 16.37 7.741 0.050 0.201 0.974
130-c /84 16.47 7.502 0.056 0.209 0.937
28-4 /83 2275 15.734 0.022 0.165 1.161
421-ijk /85 16.37 15.540 0.025 0.178 1.136
316-3 /82 14.70 24.507 0.025 0.162 0.862
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Table T4.2b
Breaking type S waves
ExpNo d TV(g/d) Fr R/d R,
(cm)
421-def /85 16.30 3.388 0.099 0.234 0.914
85-3 /82 15.28 3.397 0.100 0.220 0.851
330-5 /82 21.65 3.366 0.101 0.203 0.782
79-1ab /82 19.04 3.589 0.104 0.233 0.855
428-7 /85 14.66 3.837 0.107 0.244 0.852
89-3 /82 19.28 3.403 0.125 0.255 0.825
929-4 /82 17.60 3.404 0.138 0.289 0.863
421-23 /85 16.16 3.896 0.149 0.332 0.884
421-24 /85 16.15 3.897 0.149 0.326 0.868
331-2 /82 21.15 3.405 0.149 0.313 0.879
423-1 /82 18.32 3.659 0.150 0.318 0.863
712-3 /82 25.05 3.398 0.154 0.338 0.926
85-4 /82 15.25 3.401 0.154 0.305 0.835
79-3 /82 19.04 3.589 0.156 0.345 0.915
714-4 /82 19.74 3.398 0.175 0.361 0.892
89-2 /82 19.32 3.399 0.175 0.354 0.875
718-4 /82 12.00 3.400 0.197 0.356 0.800
423-3 /82 18.32 3.659 0.200 0.428 0.923
712-4 /82 22.85 3.401 0.200 0414 0.919
79-4 /82 19.04 3.589 0.206 0.440 0.934
714-5 /82 19.74 3.398 0.224 0.442 0.897
718-3 /82 12.00 3.400 0.247 0.508 0.953
421-3 /82 18.56 3.635 0.250 0.510 0.923
719-4 /82 11.74 3.401 0.250 0.442 0.821
84-1 /82 15.39 3401 0.250 0.470 0.873
712-5 /82 22.80 3.398 0.251 0.501 0.928
85-1 /82 15.28 3.397 0.252 0.471 0.870
79-5 /82 19.04 3.589 0.256 0.517 0.922
718-5 /82 12.00 3.400 0.273 0.478 0.828
718-6 /82 11.99 3.401 0.273 0.484 0.838
714-6 /82 19.72 3.400 0.275 0.528 0.909
719-1ab /82 11.74 3.437 0.297 0.524 0.845
85-5 /82 15.25 3.401 0.299 0.576 0.927
718-2 /82 12.00 3.400 0.300 0.558 0.896
718-7 /82 11.99 3.401 0.300 0.513 0.824
79-6 /82 19.04 3.589 0.306 0.599 0.927
88-1 /82 15.07 3.397 0.320 0.588 0.897
714-1 /82 19.81 3.645 0.326 0.651 0.951
421-2ab /82 18.58 3.633 0.350 0.657 0.908
719-3 /82 18.56 3.401 0.350 0.588 0.835
718-1 /82 12.00 3.400 0.351 0.596 0.844
85-2 /82 15.28 3.397 0.355 0.600 0.842
88-2 /82 15.07 3.397 0.360 0.639 0.887
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428-27
330-1
421-4,5
326-3
326-3
428-10
428-112
421-no
428-15
428-14
- 130-a
317-4ab
330-6
326-4
428-16
428-20
130-b
329-3
428-21
428-1
331-3
428-22
317-6
317-7ab
317-2ab
428-2ab
326-5
216-2
815-a
126-1
121-1a
929-1
929-2
929-3
928-1
126-8
28-1
28-5
28-2
127-a
3012
28-3
421-Im
127-b
27-4
3011
217-3
129-a
27-5
216-3
216-1
129-b
28-7

/35
/82
/85
/82
/82
/85
/85
/85
/85
/85
/84
/82
/82
/82

/83
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14.32
22.04
16.31
13.54
13.54
14.62
14.62
16.19
14.60
14.59
20.28
14.54
21.65
13.54
14.59
14.52
19.59
25.53
14.50
14.70
21.15
14.47
14.54
14.54
14.54
19.90
13.54
15.27
17.52
13.23
13.93
17.63
17.63
17.63
17.63
13.14
22.78
22.73
22.78
14.16
23.95
22.75
16.23
13.79
22.83
23.96
20.02
13.45
22.83
15.27
15.29
13.25
2273
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3.526
6.672
7.755
8.512
8.512
7.512
7.512
7.784
7.517
7.519
7.609
8214
6.731
8.512
7.519
7.537
71.742
6.199
7.543
7.021
6.811
7.550
8.214
8.214
8.214
7.021
8.512
7.614
7.483
11.943
11.740
11.473
11.473
11.473
10.808
11.984
15.723
15.741
15.723
15.740
15.731
15.734
15.549
15.949
15.765
15.728
15.722
15.757
15.765
15.173
15.163
15.772
15.741

0.396

0.626
0.200
0.236
0.198
0.198
0.244
0.265
0.307
0.315
0.319
0.315
0.327
0.387
0.355
0.392
0.458
0.472

0.515
0.530
0.532
0.598
0.574
0.632
0.664
0.687
0.701
0.719
0.706
0.489
0.617
0.652
0.667
0.672

0.208
0.224

0.793
1.028
1.001
0.788
0.788
0.982
0.982
1.073
1.105
1.074
1.015
0.967
1.139
0.951
1.045
1.128
1.099
1.102
1.119
1.109
1.127
1.178
1.071
1.028
1.053
1.142
1.079
1.104
1.002
1.163
1.157
1.171
1.198
1.207
1.205
1.213
1.281
1.299
1.272
1.065
1.330
1.313
1.171
1.167
1.302
1.282
1.249
1.154
1.256
1.303
1.262
1.136
1.300
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3014 /83 23.92 15.741 0.124 0.736 1.298
27-6 /83 22.80 15.775 0.129 0.766 1.308
216-4 /83 15.27 15.173 0.133 0.752 1.273
315-2 /82 14.87 16.245 0.035 0.186 0.891
315-3 /82 14.87 16.245 0.040 0.223 0.960
315-4 /82 14.87 16.245 0.045 0.261 1.023
315-5 /82 14.87 16.245 0.050 0.288 1.037
315-6 /82 14.87 16.245 0.060 0.335 1.043
315-7 /82 14.87 16.245 0.070 0.403 1.109
315-8 /82 14.87 16.245 - 0.100 0.606 1.254
34-10 /82 14.87 17.753 0.111 0.571 1.049
315-10 /82 14.87 16.245 0.130 0.647 1.085
34-1 /82 12.45 17.753 0.139 0.676 1.037
34-2 /82 12.45 17.753 0.139 0.684 1.049
34-11 /82 12.45 17.753 0.139 0.672 1.031
3159 /82 14.79 16.288 0.151 0.717 1.066
316-2 /82 14.70 24.507 0.035 0.272 1.106
316-4 /82 14.70 24.507 0.047 0.323 1.037
316-5 /82 14.70 24.507 0.055 0.358 1.014
35-23 /82 12.29 26.803 0.056 0.390 1.050
316-6 /82 14.70 24.507 0.065 0.419 1.038
316-1 /82 14.70 24.507 0.087 0.546 1.071
35-24 /82 12.29 26.803 0.112 0.632 0.977
35-26 /82 12.29 26.803 0.166 0.718 0.811
36-31 /82 9.38 30.680 0.043 0.230 0.725
36-32 /82 9.38 30.680 0.064 0.365 0.837
36-33 /82 9.38 30.680 0.085 0.451 0.824
36-34 /82 9.38 30.680 0.096 0.494 0.819
330-9 /82 21.62 33.680 0.100 0.555 0.858
36-35 /82 9.38 30.680 0.117 0.596 0.843
Table T4.2c
Breaking-reforming type S waves
ExpNo d TV(g/d) Fr R/d R,
(cm)

714-2 /82 19.75 3.397 0.351 0.636 0.900
419-1 /82 18.18 3.673 0.368 0.691 0914
423-5ab /82 18.32 3.659 0.400 0.717 0.888
88-3 /82 15.07 3.397 0.401 0.642 0.818
423-6 /82 18.30 3.661 0.450 0.738 0.832
88-4 /82 15.07 3.397 0.451 0.665 0.771
423-7 /82 18.30 3.661 0.500 0.743 0.770
89-4 /82 19.28 3.403 0.501 0.762 0.812
88-5 /82 15.07 3.397 0.501 0.675 0.720
423-8 /82 18.30 3.661 0.550 0.749 0.719
423-9 /82 18.30 3.661 0.602 0.765 0.683
423-10 /82 18.30 3.661 0.701 0.785 0.620
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430-1 /82 19.41 7.109 0.225 0.750 1.129
326-7 /82 13.54 8.512 0.230 0.682 0.939
430-2 /82 19.41 7.109 0.250 0.750 1.038
326-6 /82 13.54 8.512 0.250 0.738 0.950
320-4 /82 25.53 6.199 0.251 0.727 1.058
130-d /84 16.19 7.566 0.254 0.724 0.964
129-c /84 12.99 7.517 0.259 0.707 0.931
430-3 /82 19.41 7.109 0.275 0.740 0.949
428-3 /82 19.90 7.021 0.323 0.778 0.881
130-e /84 16.05 7.599 0.331 0.721 0.776
326-8 /82 13.54 8.512 0.350 0.679 0.667
216-5 /83 15.27 15.173 0.159 0.719 1.053
3013 /83 23.92 15.741 0.164 0.793 1.118
34-3 /82 12.45 17.753 0.166 0.672 0.894
34-12 /82 12.45 17.753 0.166 0.664 0.883
126-3 /83 13.25 11.934 0.196 0.719 0.981
126-7 /83 13.14 11.984 0.234 0.760 0.900
126-5 /83 13.21 11.953 0.272 0.740 0.777
126-4 /83 13.23 11.943 0.295 0.726 0.714
126-6 /83 13.21 11.953 0.327 0.732 0.664
34-1314 /82 12.45 17.753 0.194 0.676 0.795
217-1 /83 20.02 15.722 0.196 0.757 0.927
216-6,7 /83 15.26 15.178 0.213 0.760 0.884
34-5 /82 12.45 17.753 0.221 0.676 0.715
34-15 /82 12.45 17.753 0.223 0.664 0.699
34-16 /82 12.45 17.753 0.249 0.692 0.666
36-36 /82 9.38 30.680 0.138 0.628 0.778
33-8 /82 7.83 55.966 0.140 0.776 0.747
35-25 /82 12.29 26.803 0.149 0.706 0.867
36-37 /82 9.38 30.680 0.159 0.655 0.724
35-18 /82 12.45 26.630 0.166 0.672 0.761
35-17 /82 12.45 26.630 0.167 0.660 0.744
Table T4.2d
Bores of finite volume - type S waves
ExpNo d TV(g/d) Fr R/d R,
(cm)

329-1 /82 25.53 6.199 0.366 0.769 0.829
33-12 /82 7.83 11.193 0.702 0.969 0.490
3015 /83 23.92 15.741 0.205 0.827 0.976
23-1 /83 23.35 15.718 0.209 0.789 0.917
23-2 /83 23.35 15.718 0.251 0.809 0.812
34-6 /82 12.45 17.753 0.276 0.700 0.620
23-3 /83 23.32 15.728 0.292 0.876 0.778
26-1 /83 23.03 15.723 0.297 0.897 0.786
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27-3 /83 22.85 15.739 0.300 0.895 0.779
347 /82 12.45 17.753 0.304 0.745 0.611
28-10 /83 22.68 15.758 0.326 0.922 0.751
28-8 /83 2271 15.748 0.326 0.942 0.766
289 /83 22.68 15.758 0.326 0.951 0.773
34-8 /82 12.45 17.753 0.331 0.846 0.648
28-11 /83 22.66 15.765 0.343 0.964 0.753
339 /82 7.83 55.966 0.140 0.770 0.741
35-19 /82 12.45 26.630 0.221 0.834 0.751
35-20 /82 12.45 26.630 0.239 0.894 0.755
3521 /82 12.45 26.630 0.239 0.890 0.752
35-22 /82 12.45 26.630 0.260 0.923 0.730
3527 /82 12.29 26.803 0.296 1.079 0.766
33-6 /82 7.83 22.386 0.315 0.751 0.545
33-7 /82 7.83 22.386 0.351 0.776 0.517
33-14 /82 7.83 22.386 0.351 0.763 0.509
Table T4.3
Breaking type P waves
ExpNo d TV(g/d) Fr R/d R,
(cm)

326-a /84 34.48 34.185 0.026 0.275 1.252
326-b /84 33.55 34.959 0.026 0.287 1.297
328-c /84 18.73 41.992 0.040 0.359 1.064
329-a /84 19.39 32.034 0.050 0.357 0.975
330-b /84 11.71 51.684 0.050 0.386 0.877
331-a,b /84 11.79 50.589 0.051 0.400 0.901
331c /84 29.94 29.072 0.035 0.316 1.203
41-b /84 29.81 32.614 0.032 0.293 1.144
415-a /84 8.76 58.480 0.061 0.415 0.767
415-b /84 8.68 60.350 0.075 0.504 0.773
415c /84 8.40 43.901 0.106 0.524 0.697
415d /84 8.30 55.599 0.086 0.524 0.746
415 /84 8.13 53.416 0.091 0.500 0.692
415-f /84 19.60 33.768 0.060 0.406 0.947
416-b /84 16.68 21.700 0.037 0.209 0.853
416-d /84 16.34 29.388 0.036 0.456 1.693
416c /84 16.48 35.154 0.051 0.266 0.688
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Table T4.4a

Integrals of the motion. Type R waves.

ExpNo d TV@d) S/d Mom  Impulse Energy Power R/
(cm) flux flux
72kk /85 2005 3497 0219 0.0139 0.0967 0.0009 0.1205 0.113
721 /85 2000 3502 0285 0.0231 0.1680 0.0018 0.1586 0.149
72mm /85 1990 3511 0256 0.0194 0.1061 0.0014 0.1437 0.129
72nn /85 1990 3511 0327 0.0304 0.2258 0.0026 0.1910 0.173
7200 /85 2024 3481 0380 0.0430 0.2946 0.0046 0.2261 0.205
72ss /85 2010 3493 0498 0.0762 0.3028 0.0107 0.2993 0.261
72t /85 2002 3500 0.619 0.1201 0.4725 0.0207 0.3972 0.324
73cc /85 1992 3509 0909 0.2839 1.0118 0.0708 0.6985 0450
T2yy [85 1989 3511 1116 04538 1.4826 0.1377 0.9500 0.546
T2ww /85 2001 3501 1479 09163 2.3248 0.3727 1.4935 0.675
73aa /85 2002 3500 2218 23570 2.7944 1.4698 2.5796 0.724
73bb /85 1997 3504 2964 4.0701 4.7231 3.2337 3.9153 0.731
T2gg /85 1906 7.002 0299 0.0125 0.2332 not available 0.129
T1xx /85 1895 7.022 0332 00157 0.3237 0.0007 0.1733 0.144
Tipp /85 1895 7.022 0401 0.0227 0.3958 0.0013 0.2208 0.175
T2cc  [85 1883 7.045 0558 0.0447 0.4278 0.0035 03124 0.245
72dd /85 1930 6958 0606 0.0543 0.5436 0.0046 0.3434 0.253
T2ee /85 19.15 6986 0773  0.0922 0.4850 0.0102 0.4533 0313
Tlec /85 1851 7.105 0.870 0.1159 0.5588 0.0142 0.5175 0.331
Tlee /85 1862 7.084 1187 02189 1.0435 0.0361 . 0.7621 0.494
7lnn /85 1840 7.126  2.141  0.8005 1.9934 0.2390 1.6570 0.662
71 /85 1837 7.132 1481 03511 1.2003 0.0721 0.9943 0.501
Tigg /85 1841 7.125 2140 0.7751 2.0757 0.2276 1.6484 0.689
7ihh /85 19.15 6986 2256 09412 2.8062 0.2976 1.9297 0.705
7ii /85 19.15 698 2574 13119 3.9163 0.4700 25373 0.803
71kk /85 19.14 6987 2.894  1.6020 2.4807 0.6684 24305 0.714
711 /85 19.08 6998 3229 22366 4.4380 1.0218 34103 0.733
7imm /85 1905 7.004 3554 26272 4.5560 1.3074 3.8004 0.728
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7100
71ss
T
Tlrr
72hh
72ii
1204
221-1
228-1
120b
228-2
225-3
227-1
2272
2273
228-3
2284
228-5
2174
217-5
2212
219-2
223-1
224-2
224-1
2232
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/85
/85
/85
/85
/85
/85
/84
/83
/83
/84
/83
/83
/83
/83
/83
/83
/83
/83
/83
/83
/83
/83
/83
/83
/83
/83
/83

223-3,4/83

218-1
223-5
223-7
223-8
2239
2230

/83
/83
/83
/83
/83
/83

223-B /83

19.10
19.05
19.05
18.94
19.03
19.01
12.82
19.54
15.65
13.16
15.65
16.07
15.76
15.76
15.75
15.65
15.65
15.64
20.02
20.02
19.54
19.80
1299
16.61
16.66
1291
19.54
12.91
19.97
12.86
12.83
12.81
12.79
12.72
12.70
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6.995

7.004

7.004

7.024

7.008
14.367
13.311
16.949
16.658
18.711
17.814
16.955
16.821
17.184
17.315
16.975
17.402
16.964
16.912
17.220
16.694
17.273
17.224
17.706
17.480
17.103
17.076
18.149
17.438
17.346
17.523
16.644
17.849
17.336
18.175

4.513
5.171
5171
5.850
1.745
0.484
5.783
0.761
0.400
0.595
0.606
0.619
0.633

0.791

0.785
0.791
0.797
0.990
1.363
1.968
1.069
1.120
1.430
1.443
1.451
1.919
2.015
2.407
2.587
2.890
3.366
3.816
3.835
3.859
4.832
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4.4600
5.9057
5.9252
7.5560
0.5188
0.0165
4.7736
0.0383
0.0111
0.0254
0.0243
0.0256
0.0265
0.0414
0.0421
0.0419
0.0421
0.0651
0.1253
0.2722
0.0761
0.0839
0.1395
0.1426
0.1422
0.2585
0.2894
0.4179
04872
0.6273
0.8626
1.1812
1.1694
1.1807
1.9391

6.3264
6.6547
7.0517
6.5877
2.1183
0.3238
4.4035
0.7241
0.3610
0.3571
0.5455
0.5340
0.5085
0.6939
0.8057
0.6295
0.6971
0.8579
1.3866
2.0360
1.0411
1.0729
1.3591
1.5023
1.4257
2.0209
2.1433
2.6495
2.8352
3.2393
3.9000
4.3945
4.6084
4.6571
5.9882

2.7891
4.2274
4.2424
6.1232
0.1251
0.0005
2.9012
0.0019
0.0003
0.0006
0.0010
0.0011
0.0011
0.0021
0.0022
0.0022
0.0022
0.0042
0.0108
0.0339
0.0052
0.0060
0.0173
0.0131
0.0130
0.0314
0.0370
0.0636
0.0792
0.1156
1.8300
0.2903
0.2845
0.2882
0.5922

5.5604
6.5127
6.5597
7.3890
1.3397
0.2468
54620
0.4091
0.2058
0.1328
0.3204
0.3284
0.3346
0.4267
0.4260
04242
0.4290
0.5409
0.7925
1.2230
0.5998
0.6253
0.8334
0.8524
0.8490
1.9370
1.2751
1.5846
1.7385
2.0129
2.4699
2.9857
2.9911
3.0142
4.1505

0.792
0.929
0.926
1.052
0.608
0.127
0.993
0.204
0.104
0.137
0.165
0.169
0.176
0.218
0.219
0.220
0.220
0.269
0.331
0.450
0.269
0.285
0322
0.359
0.355
0420
0.454
0.503
0.544
0.567
0.649
0.703
0.711
0.711
0.797
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223-C /83 1268 17.680 5.338 24235 6.6541 0.8157 4.8202 0.959
223-E /83 1260 17.153 5840 3.0464 7.6135 1.1279 5.6596 0.975
2244 /83 16.57 16866 5864  3.0600 7.4871 1.1372 5.6206 1.122
225-1 /83 1622 16954 5295 23771 6.1709 0.7994 4.6275 0.957
224-5 /83 1645 17.808 5906 3.0621 7.2881 1.1490 5.5881 1.101
2246 /83 1646 17293  6.354  3.5887 7.9301 1.4409 6.1814 1.091
224-7 /83 1644 17381 6.738  4.1254 8.3417 1.7599 6.7702 1.090
224-8 /83 1640 17402 7461 5.1976 9.2590 24511 7.9416 1.151
120a /84 1368 17.832 2.002 02924 1.8563 0.0145 1.2295 0.444
120c /84 13.00 21556 0599  0.0226 0.4198 0.0010 0.2975 0.144
223-6 /83 1285 29.690 3367 0.8682 3.8761 0.1849 24636 0.655
219-1 /83 1980 33.026 0.746 0.0186 1.3978 0.0005 04000 0.201
Table T4.4b
Type S waves
ExpNo d TV(g/d) S/d Mom Impulse Energy Power R/d
(cm) flux flux
3011 /83 2396 14.461 1.291  0.3009 1.7030 0.0651 0.9482 0.529
3012 /83 2395 15770 0.647 0.0673 0.7566 0.0073 0.3927 0317
3013 /83 2392 16497 2558 13264 3.3253 0.5638 2.3682 0.793
3014 /83 2392 14806 1918 0.6887 2.3530 0.2234 1.5785 0.736
3015 /83 2392 14191 1217 22746 4.3059 1.2710 3.4561 0.826
261 /83 23.03 15820 4644 47983 4.9721 3.7116 5.1267 0.897
274 /83 2287 17867 1.016 0.1701 0.9198 0.0288 0.6448 0446
275 /83 2283 17935 1606 04513 1.6198 0.1202 1.1503 0.614
276 /83 2280 17684 2021 0.7388 2.0334 0.2472 1.5431 0.765
281 /83 2278 16537 0403  0.0423 0.3901 0.0045 0.2248 0.207
282 /83 2278 13545 0.564  0.0488 0.5383 0.0045 0.3181 0.267
283 /83 22775 14447 0.688 0.0741 0.6780 0.0084 0.4058 0.323
284 /83 2275 14716 0341 00171 0.2995 0.0010 0.1802 0.165
285 /83 2273 14558 0437 0.0286 0.3897 0.0021 0.2379 0.224
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286 /83 2273 13776  0.813 0.1055 0.8358 0.0142 0.4925 0.319
287 /83 22,73 15714 1.904 0.6481 1.9112 0.2044 1.4257 0.722
288 /83 2271 15879  5.138  6.2285 5.8662 5.3038 6.2111 0.934
289 /83 22.68 16.521 5.144  6.4891 6.4618 5.5568 6.6032 0.951
2810 /83 22.68 15942 5112 63468 6.1314 5.4081 6.4264 0.939
2811 /83 2266 16897 5410 74836 6.8716 6.7742 7.1430 0.968
2162 /83 15.27 8.849 1.610 1.1848 2.0069 0.6493 1.3542 0.719
2163 /83 1527 15421 1.629  0.4920 1.6734 0.1386 1.1975 0.646
2164 /83 1527 15.389 2.016 0.7926 2.2010 0.2770 1.6186 0.752
2165 /83 1526 14977 2416 1.1913 2.6574 0.4988 2.1006 0.719
2166 /83 1526 12.139 3.229 24761 3.5154 1.4429 3.2952 0.767
2172 /83 20.02 15400 3.070 1.9653 3.6725 0.9996 3.0207 0.787
2173 /83 20.02 14420 1.357 0.3189 1.4854 not available 0.528
130a /84 2028 9960 0.636 0.1125 0.6014 0.0204 0.3861 0.314
130b /84 19.58 10.643 0.967 0.2904 1.0840 0.0810 0.6910 0.472
130c /84 1647 11592 0418 0.0409 0.3440 0.0045 0.2242 0.208
Table T4.4c
Type P waves
ExpNo d TV(gd) SA Mom  Impulse Energy Power R/
(cm) flux flux
326a /84 3448 29486 0.877 0.0415 0.4069 0.0024 0.4368 0.275
326b /84 33,55 28.075 0.859 0.0474 0.5797 0.0030 0.4540 0.287
328c /84 1873 34.622 1.665 0.1517 1.5831 0.0164 0.9405 0.361
329a /84 1939 31.866 1.611 0.1415 1.3577 0.0150 0.8754 0.356
330a /84 12.84 69996 2387 0.1244 6.9502 0.0063 14910 0.393
330b /84 11.71 38881 2575 0.2946 2.3880 0.03% 1.4763 0.386
331a /84 11.85 47.167 2559  0.2893 2.3276 0.0382 14854 0.395
331b /84 11.73 40384 2.559 0.2914 2.3461 0.0389 1.4666 0.405
331c /84 2994 26.285 1.015  0.0685 0.7296 0.0057 0.5332 0.316
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41a

41b

415a
415¢
415d
415e
415f
415g
416¢c
416a
416b
416d

Explanations: The column entries refer to the following integrals :

/84
/84
/84
/84
/84
/84
/84
/84
/84
/84
/84
/84

30.21
29.81
8.76
8.40
8.30
8.13
19.60
18.36
16.48
18.02
16.68
16.34

22.748
31.345
48.594
42.968
42.008
41.347
22.271
10.614
18.949
16.468
20.093
28.142

Mom flux

Impulse

Energy flux

Power

1.005
1.050
3.548
4.494
4.819
4.920
2.019
0.462
1.051
0.717
0.801
1.806
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0.0662
0.0637
0.4796
0.8002
0.8285
0.9041
0.2100
0.0085
0.0333
0.0333
0.0590
0.1651

Jagaer2m sy /1aVga)

0.7809
0.5137
3.6608
4.5981
4.9810
6.0824
1.4483
0.1521
0.3921
0.3892
0.7242
2.2531

0.0054
0.0045
0.0746
0.1508
0.1548
0.1749
0.0251
0.0003
0.0020
0.0009
0.0047
0.0173

JF ndt*lped (/g

Jaear i rardeeed®

,[ Fpy (d&/dt*) dt*/[pgd?]

0.5179
0.5319
2.1098
28724
29212
3.1492
1.0042
0.1141
0.3243
0.2840
0.4699
1.0155

0.373
0.293
0415
0.499
0.524
0.491
0.409
0.117
0.266
0.135
0.209
0.456

The numerical value of the generation time TV (g/d) indicated in this
table may be different from the value of the generation time indicated in
table T4.3. When calculating the integrals of the motion, the range of
integration was determined by the time instant when the plate velocity

first became zero. This range defines one measure of the characteristic
generation time and it is listed in the table T4.4. Another measure of the
generation time is the time indicated by the function generator ; this

value was used in table T4.3. Under ideal operating conditions the two

values are identical; however, the response of the hydraulic system

often distorts the generation time specified by the function generator.

This difference is more prominent in the generation of type P waves.
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