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Abstract

We study multiple steady states in distillation. We first analyze the simplest case
of ternary homogeneous azeotropic mixtures. We show that in the case of infinite
reflux and an infinite number of trays (oo/oo case) one can construct bifurcation
diagrams on physical grounds with the distillate flow as the bifurcation parameter.
Multiple steady states exist when the distillate flow varies non-monotonically along
the continuation path of the bifurcation diagram. We derive a necessary and sufficient
condition for the existence of these multiple steady states based on the geometry of
the distillation region boundaries. We also locate in the composition triangle the feed
compositions that lead to these multiple steady states.

We further note that most of these results are independent of the thermodynamic
mode] used. We show that the prediction of the existence of multiple steady states
in the oo/oo case has relevant implications for columns operating at finite reflux and
with a finite number of trays. Using numerically constructed bifurcation diagrams for
specific examples, we show that these multiplicities tend to vanish for small columns
and/or for low reflux flows. Nevertheless, the co/oco multiplicities do exist for columns
at realistic operating conditions. We comment on the effect of multiplicities on column
design and operation for some specific examples.

We then extend the homogeneous mixture results to ternary heterogeneous mix-
tures. We study the co/oo case in much more depth and detail by demonstrating
how the co/oo analysis can be applied to different column designs. More specifically,
we show how the feasible distillate and bottom product paths can be located for tray
or packed columns, with or without decanter and with different types of condenser
and reboiler. We derive the fully detailed, necessary and sufficient condition for the
existence of these multiple steady states based on the geometry of the product paths.
Simulation results for finite columns show that the predictions carry over to the finite

case.
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The complete list of the co/oo case predictions is presented. The implications
of these multiplicities for column design, synthesis and simulation are demonstrated.
More specifically, we show how the co/oo predictions can be useful for the selection of
the entrainer, the equipment and the separation scheme. We show that, in some cases,
the column operation at an unstable steady state may have some advantages. The
important issue of the effect of the thermodynamic phase equilibrium on the existence
of multiplicities is discussed. Using the co/co analysis, we identify entire mixture
classes for which multiplicities are inherent and robust. Mixtures with ambiguous
VLE data are studied; we show that in some cases a slight VLE difference between
models and /or experimental data may affect the existence of multiplicities while other,
major VLE discrepancies do not. Finally, we identify the key issues and the pitfalls
one should be cautious about when designing or computing the composition profile

of an azeotropic distillation column with a commercial simulator.
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Chapter 1 Introduction

Among the separation processes, distillation is undoubtedly the most widely prac-
ticed technique for separating mixtures in the chemical process industries. In the
petroleum industry the separation of nonazeotropic mixtures is most common (stan-
dard or nonazeotropic distillation). In the chemical and specialty chemical industry,
however, standard distillation is an exception and the separation of mixtures forming
azeotropes is the rule (azeotropic distillation).

In this manuscript, the term “azeotropic distillation” covers the general notion
of distillation of azeotrope forming mixtures. Therefore, this term includes the case
where a solvent enhances separation (extractive distillation), as well as the case where
the added component introduces a new azeotrope which is removed as either the dis-
tillate or the bottoms (classical definition of azeotropic distillation). But it also in-
cludes distillation-based separation schemes that are neither extractive nor azeotropic
distillation in the conventional sense.

The use of the term “azeotropic distillation” with this broader meaning has been
established during the last decade when a number of researchers have started looking
at separation schemes other than the classical extractive and azeotropic distillation.
These studies revealed the underlying common basis of all these processes and led to
the development of tools and techniques applicable to any distillation process. Note
that under this unifying methodology, standard distillation is just a special case.

Although the design and control of standard distillation have been extensively
studied, this is not the case with azeotropic distillation. Some of the articles on azeo-
tropic distillation provide strong evidence that the design and operation of azeotropic
columns can present a serious challenge and can give rise to problems never encoun-
tered in standard distillation, e.g., steady state multiplicity, oscillations, counter-

intuitive column design.
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More specifically, Laroche et al. (1992) have shown that ternary homogeneous™
azeotropic distillation columns can exhibit unusual features, not observed in standard
distillation. For example, increasing the reflux does not always increase separation
and infinite reflux does not imply maximum separation; meeting the same specifi-
cations with a larger number of trays sometimes requires higher internal flows; the
direct and the indirect sequence of standard distillation are not feasible, while other
separation schemes (in which the intermediate boiler is recovered as a pure distillate
or bottom product) are. Laroche et al. (1992) show that the understanding of these
features is critical for proper column design, control and simulation.

Among their surprising features, it has been discovered that azeotropic distilla-
tion columns can exhibit multiple steady states, i.e., two or more different steady
states for the same set of operating parameters. The term “multiple steady states”
is used in the literature to describe various, sometimes quite different situations. In
this manuscript, by multiple steady states we mean what is generally referred to as
output multiplicities, 1.e., columns with the same inputs (the same feed, distillate,
bottoms, reflux and boilup molar flows, the same feed composition, number of stages
and feed location) but different outputs (product compositions) and hence different
composition profiles. We are mainly investigating this type of multiplicities although
we also discuss some aspects of state multiplicities, i.e., columns with the same inputs
and outputs but with different composition profiles (states).

The implications of these multiplicities for distillation simulation, design and op-
eration are numerous and can be critical for design decisions (see chapter 4 for more
details). For example, the existence of multiple solutions may cause problems in sim-
ulations, such as, a higher convergence failure rate. Furthermore, the computation of
only one solution may also result in misleading conclusions and decisions regarding
the separation under consideration caused by disregarding some eligible, and possibly,
attractive solutions.

Multiplicities may also cause problems in column operation and control. When

*The mixture under consideration is called homogeneous if only one liquid phase exists throughout
the composition range and heterogeneous if two liquid phases exist for some compositions.
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two or more steady states exist for the same inputs it is possible that under some
disturbance, the column profile jumps from the desirable, in terms of product purity,
steady state to another undesirable steady state, i.e., a steady state with low product
purity. Evidence of the operational problems that multiple steady states can cause
is given by Kovach and Seider (1987). Their conclusion is that the experimentally
observed erratic behavior of the industrial tower they study is due to the existence of
multiple steady states.

The study of multiplicities in distillation has a long history (see chapters 2 and 3 for
more details). Rosenbrock (1962) proved that the steady state of distillation columns
separating a binary homogeneous mixture is unique under the assumption of constant
molar flows (i.e. neglecting the energy balances). Magnussen et al. (1979) first
presented simulation results that show the existence of three steady states (two stable
and one unstable) for the heterogeneous mixture of ethanol - water - benzene. The
results of Magnussen et al. (1979) triggered great interest in multiple steady states in
distillation. It was conjectured that multiplicitiesin distillation are caused by multiple
phases but a rigorous explanation was lacking. The belief that heterogeneity is the
cause for such multiple steady states directed the attention towards heterogeneous
azeotropic distillation. Consequently, several articles were published where the results
of Magnussen et al. (1979) were studied extensively and where multiplicities for other
heterogeneous systems were reported.

Laroche (1991) first reported simulation results that show multiple steady states
for a homogeneous ternary mixture (acetone - heptane - benzene) with nonideal vapor-
liquid equilibrium (VLE) and under the assumption of constant molar flows. This
discovery became the starting point for the study presented here. The aims of this
work are: (1) to provide an explanation for the existence of multiple steady states in
distillation, (2) to develop rules for the prediction of these multiplicities and (3) to
demonstrate the implications of multiplicities for distillation column design, synthesis
and simulation.

The work presented here is not a simulation-based case study. It is an analytical

work based on physical grounds, and more specifically, on the analysis of the limiting
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case of infinite reflux and infinite number of trays (the co/oco case hereafter). Based
on this analysis, we have been able to provide a physical explanation for the existence
of multiple steady states in distillation and moreover we developed graphical rules
for the prediction of these multiplicities. Using the co/oc analysis, we can predict
exactly when multiplicities occur in the co/oo case. We show that the predictions
carry over to columns operating at finite reflux and with a finite number of trays.
The implications of these multiplicities for column design, synthesis and simulation
are demonstrated. Numerical computations are used to illustrate the theoretical
results.

The thesis overview has as follows:

In chapter 2 we first present a review of the literature on multiple steady states
in distillation. The fact that the multiplicity reported by Laroche (1991) occurs in a
column separating a homogeneous mixture at high reflux and with a large number of
trays directs our study to the analysis of the co/oc case. In chapter 2 we study the
existence of multiple steady states in ternary homogeneous azeotropic distillation. The
emphasis is on the basic development of the steps of the co/oco analysis, the derivation
of the multiplicity conditions and the implications of the co/oo case multiplicities for
columns at finite reflux and with a finite number of trays (finite case). In chapter 2
we show that the co/oco multiplicities carry over to the finite case and moreover that
they may exist at realistic operating conditions, that is, for small reflux and a small
number of trays.

In chapter 3 we extend the homogeneous mixture results to ternary heterogeneous
mixtures but more importantly we study the co/oo case in much more depth and de-
tail by demonstrating how the oo/oo analysis can be applied for different column
designs. More specifically, we discuss the differences between packed and tray col-
umns, columns with and without decanter, columns with partial and total condenser
etc. In chapter 3 we present the fully detailed and general geometrical multiplicity
condition. Simulation results for finite columns show that the predictions carry over
to the finite case.

In chapter 4 the complete list of the co/oo case predictions is presented. The
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implications of these multiplicities for column design, synthesis and simulation are
demonstrated. More specifically, we show how the co/oco predictions can be useful
for the selection of the entrainer, the equipment and the separation scheme. We show
that, in some cases, the column operation at an unstable steady state may have some
advantages. The important issue of the effect of the thermodynamic phase equilibrium
on the existence of multiplicities is discussed. Using the co/oo analysis, we identify
entire mixture classes for which multiplicities are inherent and robust. Mixtures with
ambiguous VLE data are studied; we show that in some cases a slight VLE difference
between models and/or experimental data may affect the existence of multiplicities
while other, major VLE discrepancies do not. Finally, we identify the key issues and
the pitfalls one should be cautious about when designing or computing an azeotropic
distillation column.

Finally, in chapter 5 we summarize the conclusions of the work presented here,

and in chapter 6 we offer some future work perspectives.
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Chapter 2 Multiple Steady States in

Homogeneous Azeotropic Distillation

2.1 Introduction

The study of multiplicities in distillation has a long history. Rosenbrock (1962) proved
that the steady state of distillation columns separating a binary mixture is unique
under the assumptions of (1) constant molar flows (i.e. neglecting the energy balances)
and (2) that to every value of vapor composition y there corresponds a unique value
of liquid composition z in equilibrium with y. This assumption does not exclude the
cases of nonideal vapor-liquid equilibrium (including the cases where an azeotrope is
formed between the two components).

Petlyuk and Avetyan (1971) first conjectured the possibility of multiple steady
states in the distillation of ternary homogeneous systems under the assumptions of
constant molar flows and nonideal vapor-liquid equilibrium (Wilson equation). They
conjectured that multiple steady states exist when a distillation product region is a
quadrangle. However, as we will show this condition is neither necessary nor sufficient
for the existence of multiple steady states. Moreover, they do not identify any physical
mixture that may lead to these multiple steady states.

Magnussen et al. (1979) present simulation results that show the existence of
three steady states for the heterogeneous mixture of ethanol - water - benzene. In
these calculations the phase splitter is removed; instead, a second feed at the top of
the column is considered (this second feed is the same for all three steady states).
Moreover, the liquid composition profiles of all three steady states lie entirely in the
single liquid phase region. Therefore, although the mixture ethanol - water - benzene
can exhibit liquid - liquid phase split, the multiplicities presented in that article

cannot be explained by the heterogeneity of the mixture. Hence, the explanation for



7
the existence of the aforementioned multiplicities should be sought in the regime of
homogeneous azeotropic distillation. Finally, it should be noted that the multiplicities
were observed with the UNIQUAC and NRTL activity coeflicient models but a unique
steady state was found with the Wilson equation model.

Doherty and Perkins (1982) considered the case of nonideal vapor - liquid equilib-
rium and constant molar flows. They proved the stability of the unique steady state
in binary distillations (uniqueness was already proven by Rosenbrock, 1962). They
also prove that a unique steady state exists for single-staged columns of any mul-
ticomponent mixture. Using the above results, they conclude that the multiplicity
reported by Magnussen et al. (1979) is a consequence of multiple components and
multiple stages.

The results of Magnussen et al. (1979) triggered great interest in multiple steady
states in distillation. The belief that heterogeneity is a possible cause for such multi-
ple steady states directed the attention towards heterogeneous azeotropic distillation.
Consequently, several articles were published where the results of Magnussen et al.
(1979) were studied extensively and where multiplicities for other heterogeneous sys-
tems were reported (Prokopakis and Seider, 1983; Kovach and Seider, 1987; Widagdo
et al., 1989; Rovaglio and Doherty, 1990; Bossen et al., 1993).

However, other types of systems have also been investigated. In a simulation study
Chavez et al. (1986) and Lin et al. (1987) found multiple steady states in interlinked
distillation columns. The multiplicity they report is due to the interlinking and is not
found in single columns.

Sridhar and Lucia (1989) and Lucia and Li (1992) considered binary mixtures
with nonideal VLE and included energy balances in the model. They showed that
a unique steady state exists for binary homogeneous multistage separators for some
sets of column specifications and identify specifications that can exhibit multiple
steady states. Sridhar and Lucia (1990) show that a unique steady state exists for
multicomponent homogeneous multistage separation processes with fixed temperature
and pressure profiles.

Jacobsen and Skogestad (1991) present two different types of multiplicities in
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binary distillation columns with ideal VLE:

- Multiplicity in Input Transformations.

Constant molar flows are assumed. Multiplicities occur when some flows are
specified on a mass basis (instead of a molar basis) and are due to the nonlinear

mass to molar flow transformation.

- Multiplicity when molar reflux and boilup are used as specifications (LV con-
figuration).
Energy balances are included in the model. This type of multiplicity does not

occur for the case of constant molar flows.

Kienle and Marquardt (1991) and Helfferich (1993) investigated multiplicities in
single column sections. Helfferich (1993) argues that these types of multiplicities dis-
appear in practice (finite length column sections with finite mass-transfer rates). The
implications of those multiplicities for complete distillation columns are unclear. More
recently, Kienle et al. (1992) reported multiple steady states in complete columns for
the ternary homogeneous mixture of acetone, chloroform and methanol.

The starting point for the study presented here were the multiple steady states
reported by Laroche et al. (1990, 1991, 1992) for a homogeneous ternary mixture
(acetone - heptane - benzene) with nonideal VLE and under the assumption of con-

stant molar flows.

2.2 Background

The term “homogeneous azeotropic distillation” covers the general notion of distilla-
tion of azeotrope forming mixtures where a single liquid phase exists in the region of
interest. Usually, homogeneous azeotropic distillation units perform the separation
of a binary azeotrope into two pure components through the addition of an entrainer
which alters the relative volatility of the two azeotrope constituents without inducing

liquid - liquid phase separation.
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Unless stated otherwise, we use the following convention to refer to a given mix-
ture: L (I, H respectively) corresponds to the component which has the lowest (in-
termediate, highest resp.) boiling point; we also denote the entrainer by E. We use
the same notation in italics (L, I, H, E) to denote the corresponding flow rates of
the components in the feed. The locations of the feed, distillate and bottoms in the
composition triangle are denoted by I, D and B respectively. Again, the correspond-
ing flowrates are denoted by the same letters in italics (F', D, B and R for the reflux
flow).

In all simulations presented in this chapter, the column operates under atmo-
spheric pressure, there is no pressure drop in the column and the condenser is total.
Moreover, constant molar overflow and a tray efficiency of 1 are assumed. Vapor
pressures are calculated using the Antoine equation and liquid activity coefficients
are calculated using the Van Laar equation. The appendix contains more informa-
tion on the thermodynamic model as well as the Antoine and Van Laar coefficients
used in the examples. The tray counting starts from the reboiler (number 0) and
ends at the top. Finally, in all composition profile figures the liguid mole fractions
are depicted.

A widely used concept for the description of azeotropic distillation is that of
the simple distillation residue curve (hereafter called residue curve). The simple
distillation process involves charging a still with a liquid of composition z and gradual
heating. The vapor formed is in equilibrium with the liquid left in the still; the vapor
is continuously removed from the still.

A residue curve is defined as the locus of the composition of the liquid remaining
at any given time in the still of a simple distillation process. Residue curves are

governed by the set of differential equations (Doherty and Perkins, 1978):

dl‘i
d€

=T Yis 231,,C—1

where 7 is the component index, C is the number of pure components in the mixture,

yi () is the mole fraction of component ¢ in the vapor (liquid) phase, and ¢ is the
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dimensionless warped time.

At infinite reflux, the differential equations which describe packed columns become
identical to the residue curve equations. Thus residue curves coincide exactly with
composition profiles of packed columns operated at total reflux, and they give a very
good approximation of composition profiles of tray columns at infinite reflux.

In this manuscript, a distillation region is defined as a subset of the composition
simplex in which all residue curves originate from the same locally lowest-boiling pure
component or azeotrope and end at the same locally highest-boiling one. The curves
which separate different distillation regions are called residue curve boundaries. In
this manuscript, the term distillation region boundary (or just boundary) is used for
both residue curve boundaries (interior boundaries) and the edges of the composition

simplex.

2.3 Infinite Reflux and Infinite Number of Trays

In this section we present an extensive analysis of the case where the reflux and the
number of trays are infinite (the co/oco case hereafter). The idea for examining this
situation came from the multiplicities reported by Laroche et al. (1990, 1991, 1992).
The homogeneous mixture under consideration is that of acetone (L), heptane (H) and
benzene (I). In this case there is only one binary azeotrope formed between acetone
and heptane (93% acetone, 7% heptane). Benzene, the intermediate boiler, is used as
entrainer for the separation of the acetone - heptane azeotrope. Figure 2.1 shows the
residue curve map of this ternary mixture (001 class according to the classification
by Matsuyama and Nishimura, 1977).

Figure 2.2 depicts the separation sequence and information about the azeotropic
column. The feed composition and flows, the number of trays and the distillate,
bottom, reflux and reboil flow rates are identical for both steady states. Figures 2.3
and 2.4 shows the two different stable steady state profiles reported by Laroche et al.
(1990, 1991, 1992). In the first case (Figure 2.3) the column yields 99% acetone (L)
at the top and 95% heptane (H) at the bottom while in the second case (Figure 2.4),
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Figure 2.1: Acetone - heptane - benzene residue curve diagram.
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Concentration Entrainer feed Azeotropic feed

Acetone (L) 0.0 0.90
Heptane (H) 0.0 0.10
Benzene (1) 1.0 0.0

Benzene (I) recycle

l 90.909091
Tray #64

8000.0

100.0

Azeotropic feed 7
N\ Tray #46

Benzene makeup Y 1010101

Tray #26 | 8090.909091

-

>
10.10101 Heptane (H)

Figure 2.2: The acetone - heptane - benzene separation sequence.

the top product is a mixture of 93% acetone and 7% heptane (azeotropic mixture).
In this column, the reflux to feed and the reflux to distillate flow ratios are very
high - in the order of 100. Table 2.1 summarizes simulation results with different
reflux and associated reboil flows. All other column parameters are kept constant at
their values shown in Figure 2.2. Table 2.1 shows that only one stable steady state
exists for reflux flows less than 6600 while two stable steady states are observed for
any higher reflux. Actually, no matter how large a reflux flow was used, two stable
steady states were always found . This result suggests that this type of multiplicity
may also occur at infinite reflux. This observation simplifies the study of multiplicities
significantly since at infinite reflux column profiles coincide with residue curves.
Moreover, the column shown in Figure 2.2 has 64 theoretical trays which is quite a
large number. This suggests that this multiplicity may occur in columns with a large
number of trays (infinite number of trays in the limit). Columns at infinite reflux and
with an infinite number of trays are obviously a special case of infinite-reflux columns

which simplifies our analysis even further.
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Table 2.1: Acetone mole fraction in the distillate for various reflux flows.

R (kmol/min) |First stable profile| Second stable profile
500 0.93 ---
1000 0.93 ---
5000 0.93 ---
6500 0.93 ---
6600 0.93 0.99
7000 0.93 0.99
8000 0.93 0.99
10000 0.93 0.99
20000 0.93 0.99
100000 0.93 0.99

2.3.1 Existence of Multiple Steady States

In this section we study in detail the co /oo case. We use a 001 class ternary mixture to
illustrate the analysis of this situation. Figure 2.5 shows the residue curve map of this
type of ternary mixture. In this diagram, there is only one minimum boiling binary
azeotrope between the light (L) and the heavy (H) component. The azeotrope is an
unstable node, the light and the intermediate pure component corners are saddles
and the heavy-component corner is a stable node. All residue curves start from the
azeotrope and end at the heavy component corner; there are no interior distillation
boundaries in this diagram and hence the whole triangle forms a single distillation
region.

At infinite reflux, column profiles coincide with residue curves. In the special case
of columns with an infinite number of trays there is one additional requirement: The
column profile should include a pinch point. There are four candidate pinch points in

the residue curve map shown in Figure 2.5, namely the three pure component corners
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Figure 2.5: Residue curve diagram of a 001 class ternary mixture.
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and the azeotrope. Therefore, in the co/oo case, the only acceptable columns belong

to one of the following types:

I. Columns whose distillate composition is that of the azeotrope (unstable node).
In this case, the column profile starts from the azeotrope (top of the column),
follows a residue curve and ends at an arbitrary point on the same residue curve

(bottom product).

II. Columns whose bottom product composition is pure heavy component (stable
node). In this case, the column profile starts from an arbitrary point in the
composition triangle, follows the residue curve that passes through this starting

point and ends at the heavy component corner (bottom product).

III. Columns whose composition profiles run along the edges of the triangle and
contain at least one of the saddle corners (light and intermediate component
corners). In this case, the top and bottom products lie on the edges of the

triangle.

In the oco/oo case, given a feed composition and a feed flowrate F, the only
unspecified parameter is the distillate flow rate D (the bottom flow rate is B = F'— D
from the overall material balance). In order to find whether multiple steady states
can occur (i.e. whether different column profiles correspond to the same value of D)
we find all possible composition profiles by tracking the distillate and bottoms in the
composition triangle, starting from the column profile with D = 0 and ending with the
column profile with D = F. That is, we perform a bifurcation study (continuation
of solutions) using the distillate flow as the bifurcation parameter. This task can
be achieved because in the co/oo case a continuation of solutions can be carried out
based on physical arguments only. The light component mole fraction in the distillate
zpyr 1s recorded along this “continuation path.” The analysis that will follow can be
applied to any feed composition but just for simplicity, we assume a feed that lies on
the line connecting the azeotrope and the corner I. Therefore, F = L + I + H and
L/(L + H) equals the azeotropic composition of the light component.
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If D=0then B=F =L+ 1+ H and therefore the composition of the bottom
product coincides with that of the feed F. Hence the bottom product composition is
an interior point of the composition triangle (i.e. it does not lie on an edge). The
only acceptable column profile (as defined above) that ends (bottom product) at an
interior point of the triangle is the one that starts (top of the column) from the
azeotrope and follows the residue curve that the bottoms composition lies on. This is
a type I column profile. Figure 2.6a shows the column profile for D = 0. Therefore,
in this case, zpr, = L/(L + H), the azeotropic composition.

Using this as a starting profile, we will find all possible type I column profiles for
the given feed. Since, for this type of profile, the top of the column coincides with the
azeotrope, the material balance line is a segment of the line connecting the azeotrope,
the feed and the intermediate component corner (for this particular choice of feed
composition). Therefore the bottom composition (B) can be any point on the line
segment between the feed F and the intermediate component corner (I). Figure 2.6b
illustrates a type I column profile with the aforementioned characteristics. As B moves
along the FI line segment from F to I the line BF continuously lengthens. Therefore,
according to the lever material balance rule, the bottoms flow decreases monotonically
from the initial F' to I while the distillate flow will increase monotonically from
initially 0 to L + H. The composition of L in the distillate (zpy) for all type I
column profiles is kept constant and equal to the azeotropic composition L/ (L+ H).
Therefore, a column profile of type I (similar to that of Figure 2.6b) exists for 0 <
D < H+ L. '

Figure 2.6¢c shows the profile with the bottoms composition B located at the inter-
mediate component corner (I) and the distillate composition located at the azeotrope.
In this case, D = H + L and B = I. Both B and D lie on an edge of the composition
triangle and therefore in this case the column profile belongs to type III. Using this
as a starting profile, we will find all possible type III column profiles for the given
feed.

In this type of profiles, both D and B must lie on the edges of the triangle. There

exist two alternative routes: B should move along either the IL edge or the IH edge.
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In the first case, the material balance implies that D has to move on the line segment
between the azeotrope and the heavy component corner (H). This is not allowable
though because there is no residue curve connecting D and B. In the second case, D
has to move along the line segment between the azeotrope and the light component
corner while B lies on the IH edge. In this case, there exists a residue curve connecting
B and D.

Figure 2.6d illustrates such a column profile. Since D lies on the LH edge the com-
position of the intermediate component I in the distillate is zero and therefore the
whole amount of I fed into the column is recovered in the bottom product. Because
B lies on the IH edge, there exists some amount of heavy component in the bottom
product while the whole amount of L fed is recovered entirely in the distillate. There-
fore B > I and consequently D < H 4+ L. As D moves along the LH side from the
azeotrope to the light component corner, the amount of the heavy component in the
distillate decreases and consequently the distillate flow decreases monotonically from
L+ H to L (when D is located at the light component corner). Therefore, a column
profile of type III similar to that shown in Figure 2.6d exists for L + H > D > L.
Since all the light component fed is recovered in the distillate, zpr, = L/D. Therefore
along this part of the continuation path, the light component concentration in the
distillate increases monotonically from L/(L + H) to 1.

Figure 2.6e shows the profile with the distillate composition D located at the light
component corner (L). In this case D = L and B = I+ H. As B moves further along
the IH side towards the H corner, D moves along the LI edge towards the corner I.
Figure 2.6f illustrates such a type I1I column profile. In this case, D contains no heavy
component, some amount of the intermediate component and all the light component
fed. Consequently, B contains no light component, some amount of the intermediate
component and all the heavy component fed into the column. As B moves along
the IH edge towards the heavy component corner the bottom product flow decreases
monotonically from the initial I + H to H (when B is located at the H corner).
Consequently along this part of the continuation path the distillate flow increases

monotonically from L to L + I. Therefore a column profile of type III similar to that
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Figure 2.6: e-h. Column profiles with infinite number of trays at infinite reflux.
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shown in Figure 2.6f exists for H < D < I + H. Along this part of the continuation
path, zpy = L/D and hence zpp decreases monotonically from 1 to L/(L + I).

Figure 2.6g shows the column profile with the bottoms composition B located at
the heavy component corner (H). In this case B = H, D = L+ and zp;, = L/(L+1).
B is not allowed to move along the HL edge because a residue curve connecting B
and D does not exist. Therefore all type 111 profiles have been found. The last case
to be examined is the type II profiles. In this case the bottoms product composition
is 100% heavy component (H corner). Therefore, the material balance line lies on the
line connecting the feed F and the heavy component corner H. Hence , the distillate
composition D can be any point on this line between the feed F and the LI edge.
Figure 2.6h shows a type II column profile with the aforementioned characteristics.
As D moves towards F, the length of DF decreases. Therefore, according to the lever
material balance rule, the distillate flow increases monotonically from the initial 7+ L
to I + L + H(= F') while the bottoms flow decreases from H to zero. Therefore a
column profile of type II similar to that shown in Figure 2.6h exists for I+ L < D <
I+ L+ H = F. Along this part of the continuation path, the composition of L in the
distillate decreases from L/(L+1) to L/(L+1+ H) according to the rule zp;, = L/D.
Finally, the endpoint of this exhaustive search for all possible column profiles is the
column profile with D = F, B =0 and zpr, = 2p;.

Now, we put all these pieces together by recording zpy vs. D in a diagram
(Figure 2.7). In the beginning as D increases from zero to L + H, zp; remains
constant at L/(L + H) (the azeotropic composition). Then D decreases from L + H
to L while zpy = L/D and therefore increases from L/(L+ H) to 1. Then D increases
again from L to L 4+ I and finally to F while zpr, = L/D and hence decreases from
1 to L/(L + I) and finally to L/F (the feed composition). For illustrative purposes
only, in Figure 2.7 we draw two separate curves, ce and eh, although they are actually
coinciding ( zpr = L/D ). Points a - h in Figure 2.7 correspond to the column profiles
shown in Figures 2.6a - 2.6h. Figure 2.7 shows that for D between L and L + H there
exist three steady states (points 1 - 3):

e Point 1 always corresponds to a column profile of type I like the one depicted
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in Figure 2.6b.

e Point 2 always corresponds to a type III column profile where the distillate
composition lies on the line segment between the azeotrope and L (similar to

Figure 2.6d).

e For point 3 there are two cases:

—If ] <« H and D > L+ I then point 3 corresponds to a type Il column
profile (similar to that of Figure 2.6h).

— In the case that I > H (Figure 2.7) as well as in the case that I < H but
D < L + I, point 3 corresponds to a type III column profile where the
distillate composition lies on the LI edge (similar to that in Figure 2.6f).

In our analysis, a special choice of feed composition has been used. It is very
simple to apply the same procedure to any feed composition and prove that for any
feed composition inside the composition triangle three steady states exist. Therefore,
for this class of residue curve diagrams, namely the 001 class, three steady states
exist for any feed composition. Moreover, in this case the existence of multiplici-
ties is independent of the thermodynamic model used to describe the vapor - liquid
equilibrium.

Given any ternary mixture, its residue curve diagram and a feed composition, it
is very simple to conclude whether multiple steady states can occur in the co/oo case
by applying the procedure described above. Next, we examine the key issues that

lead to the existence of these multiple steady states.

2.3.2 Analysis

In the previous section, we tracked a “path” generating all possible column profiles
starting from the column profile with D = 0 (type I) and ending at the column
profile with D = F (type II). In the beginning D increases, then decreases and then

increases again. The key feature that brought about the multiple steady states is that
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in a segment along this “path” D decreased. Therefore, in order to find rules for the
existence of multiple steady states, we have to first answer why D decreased along
the continuation path.

In this section, we assume that distillation boundaries are straight lines (this
assumption will be dropped later). Therefore, any distillation region containing n (n
> 3) singular points is an n-polygon. In every distillation region there is one unstable
node (the origin of all residue curves in the region), one stable node (the endpoint
of all residue curves in the region) and n-2 saddles. Finally, we assume that F is an
interior point of a distillation region. It is easy to show that for feeds on a straight
distillation region boundary, D cannot decrease along the continuation path. This is
the case for any feed located on the edges of the triangle (binary feeds) in Figure 2.5.

Using arguments similar to those in the previous section, it is easy to show that
along the continuation path, first we track all possible type I column profiles, then
those of type III and last all type II column profiles. Moreover, again using the

arguments which were discussed in the previous section, it can be proven that:

Fact 1 Along the continuation path, D increases monotonically as we track all type

I and type II column profiles.

Therefore, a decrease in D can only occur as we track the type III column profiles,
i.e., columns whose composition profiles run along the edges of the distillation region
where F is located and contain at least one of the saddle singular points. In this case,
the top and bottom products lie on the edges of the distillation region. Next we will

show the following:

Fact 2 Along the continuation path, D increases monotonically for all type III col-

umn profiles that contain only one saddle singular point.

Figure 2.8 shows a column profile (DsB) that contains only one saddle point (s).
The lines ds and sb are distillation region boundaries. The arrows on ds and sb show
the direction of the residue curves; this direction coincides with the direction of the

>

continuation path. D’sB’ is another, “later,” column profile along this path. We

examine what happens to D as we move from DsB to D’sB’.
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Figure 2.8: D increases monotonically for column profiles that contain only one saddle
singular point.
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Draw the line that is parallel to BB’ and passes through . Name D” the point
where this line intersects the D'B’ line. By construction, FB/DF = FB’/D”F. Since
D"F>D’ F then FB/DF < FB’/D’ F. Therefore by the lever material balance rule, we
conclude that D increases along the continuation path. This result is independent of
the angle dsb, and therefore D increases monotonically for all type III column profiles
that contain only one saddle singular point. Q.E.D.

Note that fact 2 is equivalent to the following:

Fact 3 A decrease in D can only occur as we track type III column profiles that

contain at least two saddles.
Two consequences of fact 3 are:

(1) If multiplicities exist, one of the multiple steady state profiles will contain at

least two saddles.

(2) A necessary condition for the existence of this type of multiplicities is that the

residue curve diagram contains at least two neighboring saddles.

The situation of at least two neighboring saddles arises in 77 out of the 113
possible residue curve diagrams (as classified by Matsuyama and Nishimura, 1977).
Among the residue curve diagrams that do not contain two neighboring saddles are
the ideal case (000 class) and the case of a heavy entrainer that does not introduce
any additional azeotropes (100 class) which are depicted in Figure 2.9. Note also that
no more than three steady states can exist in the case of two neighboring saddles
while for certain feed compositions it is possible that more than three steady states
exist in the case of more than two neighboring saddles.

However, the condition of at least two neighboring saddles is not sufficient for the

existence of multiple steady states. There are two additional requirements.

Geometry of the Distillation Boundaries

The existence of multiplicities depends on the geometry of the distillation boundaries

that form the two saddles. Figures 2.10a and 2.10b illustrate two cases of two



L-I azeotrope

I > H

Figure 2.9: Residue curve diagrams of a. a 000 class b. a 100 class ternary mixture.
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neighboring saddles. The only difference between the two is the orientation of the
ds distillation boundary. In order to check if D increases or decreases along the
continuation path, the procedure used for the proof of fact 2 is applied.

In Figure 2.10b, the line from D that is parallel to BB’ crosses the D'B’ line
segment while it does not cross it in Figure 2.10a. Hence in Figure 2.10a, D”"F > D'F
while D”F < D'F in Figure 2.10b. As a result D increases in Figure 2.10a whereas D
decreases in Figure 2.10b. Therefore multiple steady states exist only for the situation
depicted in Figure 2.10b. Note that the existence of multiple steady states depends
on the relative position of the boundaries ds and s’b while the location of the ss’
boundary does not play any role. If the boundaries ds and s'b are parallel then D
remains constant along this part of the continuation path. Therefore, in this case
there exists an infinite number of profiles with different product compositions for a
constant distillate flow D.

In summary, for the existence of multiplicities it is required that (geometrical
condition): As we move along the continuation path from D to D’ and accordingly
from B to B’, the line that passes from D and is parallel to BB’ crosses the D'B’ line

segment.

Appropriate Feed Composition

Even if a residue curve diagram contains two neighboring saddles with the appropriate
geometry (as described above) for the existence of multiplicities, there might be some
feed compositions for which multiple steady states do not exist. Figure 2.11 shows
a residue curve diagram that belongs in the 231 class. In this diagram there are
two distillation regions. In the lower region there are three saddles (two of them
neighboring) while in the upper region there is only one saddle. Therefore if the feed
composition lies in the upper region, a unique steady state exists for each value of
D. However, placing the feed in the lower region is not sufficient for the existence of
multiple steady states.

As it can be seen from Figure 2.11, ab and Ic form the only pair of boundaries that

enables the existence of multiple steady states. Hence, the only feed compositions
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Figure 2.11: Residue curve diagram of a 231 class ternary mixture and the appropriate
feed region.
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that will exhibit multiple steady states are those that can be separated in a distillate
lying on ab and a bottom product lying on Ic for some value of D. Therefore, multiple
steady states exist for any feed located in the convex hull formed by ab and Ic (shaded
region in Figure 2.11).

In summary, multiple steady states exist only for the feed compositions that lie
in the convex hull formed by a pair of distillation region boundaries that satisfy the

geometrical condition described above.

Summary

In this section we studied the co/oo case for a ternary mixture under the assumption
of straight line boundaries. We found a necessary condition for the existence of mul-
tiplicities (at least two neighboring saddles). Furthermore, the conditions developed
above for the geometry of the boundaries and the appropriate feed compositions con-
stitute a necessary and sufficient condition for the existence of multiple steady states
in co/oo case.

Although we assumed that the line connecting two singular points (distillation
boundary) is straight, fact 1 is independent of the shape of the boundary. More-
over, the discussion about the geometry of the distillation region boundaries and the
appropriate feed compositions can be generalized to curved boundaries. This is the

topic of the next section.

2.3.3 Curved Boundaries

Distillation region boundaries that do not coincide with the sides of the composition
triangle are often curved and in some cases highly curved. The curvature of the
boundary may affect the region of feed compositions that lead to multiplicities because
the geometry of the boundaries is changed. This is illustrated by Figure 2.12. This
figure is similar to Figure 2.11 with the difference that the interior boundary ab is
curved. However, the location of the azeotropes in the composition triangle is the

same in both figures. The following interesting result can be easily shown: if multiple
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Figure 2.12: The curvature of the boundary affects the appropriate feed region.

steady states exist under the straight boundaries assumption, then, assuming that
the azeotropic compositions do not change, these multiplicities still exist even if the
boundaries are curved, although the appropriate feed region is changed.

Point d is the point on the boundary ab where the tangent to the boundary is
parallel to Ic. It is apparent that the boundary segment ad and the boundary Ic
satisfy the geometry requirement for the existence of multiplicities while bd and Ic
do not. Therefore, in this case the appropriate feed location is inside the convex hull
formed by ad (not ab) and Ic (shaded region in Figure 2.12).

In the previous section we concluded that the occurrence of two neighboring sad-
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dles is a necessary condition for multiplicities when boundaries are straight. This is
not true in the general case of curved boundaries, because highly curved boundaries
can function as “pseudo-saddles” and therefore can induce multiplicities.

Figure 2.13 shows a residue curve diagram belonging to the 021 class. In this
figure there is a highly curved boundary that separates the composition triangle
in two distillation regions. In each region there are two routes which go from the
unstable node to the stable node along the region boundaries (a total of four routes,
namely a—L—I, a—H, a—=b—I, a—b—H). In the right region there is only one
saddle singular point and in the left region there are two saddles but they are not
neighboring. Therefore, if the boundary running from a to b were a straight line, there
would not exist multiplicities for this mixture. The boundary ab is curved enough so
that there exists a point ¢ on it where the tangent to the boundary is parallel to the
IH edge.

Now, the geometrical condition can be applied to check for multiplicities. Note
that the distillate and bottoms compositions should lie on the same route and there-
fore we only have to check the geometrical condition along the four routes mentioned
above. Also note that the type III column profile with an infinite number of trays
should contain a saddle singular point and therefore this constitutes an additional
restriction.

The a—b—H route contains one saddle point (b). The restriction due to the
infinite number of trays implies that the geometrical condition should be checked
only for columns whose distillate lies on ab and whose bottom product lies on bH
(i.e. columns with distillate and bottom product lying on ab are not permitted in
the infinite number of trays case). If the distillate lies on cb then the geometrical
condition is not satisfied for any bottoms product on bH. However, if D lies on ac
then for any B on bH the geometrical condition is satisfied. Figure 2.14 shows the
continuation path of all possible column profiles for a given feed. The ratio FB /
DF and therefore D decreases as D moves from a to ¢ and hence multiplicities exist.
Similarly, for the a—b—I route, the condition for multiplicities is satisfied if D lies

on ac and the bottoms composition is any point on Ib. Note that the geometrical
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Figure 2.13: Residue curve diagram of a 021 class ternary mixture that contains a
highly curved boundary.
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condition is not satisfied for any D’ but only for D’ sufficiently close to D. Also note
that the geometrical condition is not satisfied for the other two routes. Therefore
multiplicities exist for this mixture for feed compositions which can be separated into
a distillate lying on ac and a bottom product lying on Ib or bH, i.e., for feeds located
in the convex hull formed by ac and IH.

In the case examined above, provided D lies on ac, the geometrical condition is
satisfied for any B on IH. This is due to the fact that IH is a straight line. The
most general case where both D and B lie on curved boundaries is illustrated by
Figure 2.15. In this figure, point e is the location on ab where the tangent to the ab
boundary is parallel to the tangent to the bc boundary at point c. Similarly, f is the
point on bc where the tangent to the bc boundary is parallel to the tangent to the
ab boundary at point a. For some D on ab, there exist some B on bc that satisfy the
geometrical condition. In general, for each D on ae there exists a different set Sg(D)
of bottoms compositions that satisfies the geometrical condition. For example if D
is located at point a then Sg(D) is the boundary segment fc while if D is located at
e the Sp(D) is just the point c. Hence for each D the appropriate feed composition
is the convex hull formed by D and Sgp(D). Therefore, the feed compositions that
exhibit multiplicities lie in the union of all the convex hulls formed by D and the
corresponding Sg(D). In Figure 2.15 the appropriate feed region is shaded and it is
clear that it does not coincide with the convex hull formed by ae and fc.

However, the aforementioned definition of the appropriate feed region is not abso-
lutely accurate because it does not cover some rare cases that may arise, for example,
when the boundaries contain inflexion points. In these cases, Sg(D) may contain an
inflexion point and/or it may consist of more than one non-connected boundary seg-
ments. Hence, for each D the appropriate feed composition is the union of the areas
enclosed by D and each boundary segment that belongs to Sg(D) (not the convex
hull formed by D and Sg(D)). Accordingly, the feed compositions that exhibit mul-
tiplicities lie in the union of all the areas enclosed by D and each boundary segment
that belongs to the corresponding Sg(D). Since the above accurate definition of the

appropriate feed region is much more complicated than the previous one (involving
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Figure 2.14: Highly curved boundaries can induce multiplicities.
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Figure 2.15: The appropriate feed region in the case of two curved boundaries.



39

the convex hulls), the latter will be used in the following.

2.3.4 A Degenerate Case

A different type of multiplicity occurs when the feed is located on the straight line con-
necting the unstable node with the stable node of a distillation region. Figures 2.16a
and 2.16b show two such cases. Figure 2.16a shows the residue curve diagram of a
nonazeotropic ternary mixture. The feed F is located on the LH edge of the triangle
and hence F' = L+ H (binary feed). It is very easy to show that as we track the con-
tinuation path starting from the column profile with D=0 and ending at the column
profile with D=F", the distillate flow D increases monotonically, D and B always lie
on LH and actually the whole column profiles lie on LH (binary profiles). However,
some alternative profiles exist when D=L. In this case, the distillate composition
D is located at the light component corner L. and the bottoms composition B is lo-
cated at the heavy component corner H. Since all residue curves originate from L and
end at H, there exists an infinite number of alternative column profiles when D=L.
Except for the binary profile, the rest of the profiles seem somewhat strange since
they correspond to feeding a ternary column with a binary mixture (L and H) which
is sharply separated into its constituents while the third intermediate component is
“trapped” in the column.

The situation is similar (but somewhat less strange since the feed is a ternary
mixture) in Figure 2.16b depicting a residue curve diagram belonging in the 222-m
class. An infinite number of column profiles exists when D is located at the ternary
azeotrope and B at a pure component corner. This type of multiplicity (infinite num-
ber of profiles with the same product compositions for a specific distillate flowrate)
may be similar to the ones reported by Kienle and Marquardt (1991) and Helfferich
(1993). The practical implications of the degenerate type of multiplicities reported
here are unclear, i.e., we don’t know whether (1) these multiplicities are an artifact of
the co/oo case and therefore do not exist for finite columns at finite reflux or (2) some

finite number of multiple steady states still exist for finite columns at finite reflux.
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Figure 2.16: Degenerate multiplicities for (a) a 000 class and (b) a 222-m class ternary
mixture.
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Hence, a more thorough investigation of this topic is needed.

2.3.5 Summary

In this part we examined in detail the existence of multiple steady states in the oco/oo
case of a ternary mixture. More specifically, we answered the following questions:

Given a ternary mixture and its residue curve diagram,

(1) find whether multiple steady states exist for some feed composition and

(2) locate the feed composition region that lead to these multiple steady states.

The necessary and sufficient geometrical condition for the existence of multiple
steady states (question 1) is summarized in the following:

The continuation path is defined as the path generating all possible column profiles
starting from the profile with D=0 and ending at the profile with D=F. Multiple
steady states occur when D decreases along this path. This can be checked by the
following procedure: Pick a distillate D and a bottom product B, both located on
some distillation region boundaries and such that the column profile that runs from
D to B along the distillation region boundaries contains at least one saddle singular
point (type III column profile). Now pick D’ and B’ sufficiently close to D and B
respectively and such that the column profile from D’ to B’ is a “later” profile along
the continuation path. For the existence of multiple steady states it is required that:
As we move along the continuation path from D to D’ and accordingly from B to B’,
the line that passes from D and is parallel to BB’ crosses the D'B’ line segment.

The condition for the appropriate feed region (question 2) is summarized in the
following:

Pick a distillate D. Find the set of all bottom products such that the geometrical
condition is satisfied for the picked D. Name this set Sg(D). For the chosen D the
appropriate feed composition is the convex hull formed by D and Sg(D). Pick another
distillate and repeat. In general, for each distillate there exists a different set of

bottoms compositions that satisfies the geometrical condition. Therefore, the feed
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compositions that lead to multiple steady states lie in the union of all the convex

hulls formed by D and the corresponding Sg(D).

2.4 Finite Reflux and Finite Number of Trays

The 0o/o00 case is the limiting case of high reflux and a large number of trays. There-
fore, if the geometrical condition is satisfied for a given residue curve diagram then
multiplicities will exist for some sufficiently large finite reflux and finite number of
trays. However, the inverse is not true. The geometrical condition is only a sufficient
condition for the existence of multiplicities when the reflux and the number of trays
are finite. At infinite reflux, the column profiles coincide with residue curves. This
is not true at finite reflux. Moreover, column profiles at finite reflux depend on the
location and the number of the feed streams. Therefore, the residue curve map cannot
be used for the study of the finite reflux and finite number of trays case.

In this section, first we present steady state bifurcation results for the mixture
acetone (L) - heptane (H) - benzene (I-E) which show that the prediction for the
existence of multiple steady states in the co/oo case carries over to columns operating
at finite reflux and with a finite number of trays. We further show that, although
the predictions were made in the co/co case, it does not mean that multiple steady
states do not exist for realistic operating conditions (low reflux and number of trays).
However, apart from the fact that the co/oco case predictions carry over, the results
presented here should not be generalized because they are specific to the particular
example. The column characteristics are depicted in Figure 2.17. In this column, a
mixture of 90% acetone and 10% heptane (the azeotropic composition is 93% acetone
and 7% heptane) is separated using benzene as the entrainer. Acetone is recovered in
the distillate while the bottom product (heptane and benzene) is fed to the entrainer
recovery column (Figure 2.2) from which heptane is recovered and benzene is recycled
to the azeotropic column. For this example, the distillate, reflux and entrainer flows as
well as the number of stages are treated as parameters. The bifurcation calculations

were conducted with AUTO, a software package developed by Doedel (1986). Liquid
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Concentration Entrainer feed Azeotropic feed

Acetone (L) 0.0 0.90
Heptane (H) 0.0 0.10
Benzene (I-E) 1.0 0.0
-
-t -
N=44 Reflux R Distillate D
PARAMETERS
R, E, D N

Entrainer Feed E

e

Azeotropic Feed
F =100 kmol/min 1 | Boilup ¥V
Bottoms B
o

Figure 2.17: Acetone (L) - heptane (H) - benzene (I-E) azeotropic column.
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activity coefficients are calculated using the Van Laar equation (multiple steady states

were also obtained using the Wilson equation but they are not presented here).

2.4.1 Varying the Distillate Flow

Figure 2.18 shows typical bifurcation diagrams with the distillate flow as the bifurca-
tion parameter for the column depicted in Figure 2.17 with E/F =1 and various R.
If R is low enough (R/F =2), a unique steady state is calculated by the continuation
algorithm. For higher values of R (R/F =4, 10, 50), multiple steady states exist for
some D. In these cases, a unique stable steady state exists for low D. D increases
until the continuation algorithm reaches the first limit point. Beyond that point an
unstable steady state is calculated (dashed curve). Along this part of the continua-
tion path zpy, increases while D decreases until the second limit point is encountered.
Beyond the second limit point, D increases again and a second stable steady state is
calculated. Hence, two stable and one unstable steady states exist for distillate flows
between the two limit points (multiplicity region); a unique stable steady state exists
otherwise.

Note the similarity of those continuation paths with the continuation path we
tracked in the oo/oo case (Figure 2.7). Also note that in Figure 2.18 the multiplic-
ity region expands as the reflux flow increases. Figures 2.19a and 2.19b show the
reflux - distillate multiplicity region for two different entrainer feed flows. As the
reflux decreases, the multiplicity region becomes more narrow and at some point the
multiplicities vanish. Note that, although those multiple steady states were predicted
at infinite reflux, they still exist at very low reflux values. Note also that, since the
overall feed does not lie on the line connecting the azeotrope with the pure benzene
(I) corner, the distillate flow multiplicity interval of this column in the co/oo case is
not between L and L+H (90 and 100 kmol/min) but between 90 and 96.6 (=90/0.93)
kmol/min. Moreover, the column has only 4 trays in the lower section and therefore
some discrepancy from the co/oo case prediction is expected. In addition, note that

the column with £=1 kmol/min is much closer to the infinite reflux and infinite re-
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Figure 2.18: Bifurcation diagrams for a column with N=44 trays, E/F' =1 and various
R/F. The distillate flow is the bifurcation parameter.
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boil condition than the column with £=200 kmol/min. The above explains why the
distillate multiplicity region at high reflux in Figure 2.19a (EF=1 kmol/min) is much
closer to the oco/oo case prediction than the corresponding region of Figure 2.19b

(E=200 kmol/min).

2.4.2 Varying the Entrainer and Reflux Flows

In these studies, the column depicted in Figure 2.17 is used with the distillate flow
fixed at 90.9 kmol/min. The bifurcation calculation results are summarized in Fig-
ure 2.20. The four pictures at the bottom of Figure 2.20 show typical bifurcation
diagrams with the entrainer feed flow as the bifurcation parameter for various fixed
reflux flows. At very low reflux, a unique stable steady state exists for all entrainer
feed flows. As the reflux increases, three multiple steady states appear for some en-
trainer feed flow interval. Like in the case where the distillate flow is the bifurcation
parameter, there is just one continuation path with two limit points. For entrainer
flows between the two limit points, three steady states exist. The dashed curve
depicts the unstable steady state. The entrainer flow range between the two limit
points expands as reflux increases. Figure 2.21 shows the actual bifurcation diagram
for R =500 kmol/min.

The six pictures on the right side of Figure 2.20 show typical bifurcation diagrams
with the reflux flow as the bifurcation parameter for various entrainer flows. Contrary
to the cases where the entrainer and the distillate flows are the bifurcation parameters,
there are generally two separate continuation paths in each diagram. One of them
expands along the whole range of reflux from zero to infinity. Along this path, a
stable steady state is calculated. The second path generally extends to infinite reflux
but vanishes at some finite reflux flow (limit or turning point). Along this second
path, one stable and one unstable steady state are calculated.

At high entrainer flows, the second (two-steady-state) path lies below the single
steady state path while the situation is reversed at low entrainer flows. Therefore,

at high entrainer flows the unstable state is “connected” to the low conversion stable
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48

XDL —
N =44 L R
D=90.9 kmol/min WL
300 F’—‘
= _ . e ; R
=
£ 200 -
S One Steady State
z
E 100 |
E ] 77| Three Steady States
= XDL
0 M/ / -
0 500 1000 1500 R
REFLUX (kmol/mm) DL
\ :
XDL XDL XDL L

E\E . E

Figure 2.20: Entrainer - reflux multiplicity region and typical bifurcation diagrams
with the entrainer and reflux flows as the bifurcation parameters.
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Figure 2.21: Bifurcation diagram for a column with N=44 trays, R =500 kmol/min
and D =90.9 kmol/min. The entrainer feed flow is the bifurcation parameter.
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state whereas at low entrainer flows it is “connected” to the high conversion stable
state. Hence, three steady states exist for reflux flows above the limit point while a
unique stable steady state exists for reflux flows below that limit point. Moreover, as
the entrainer flow is decreased the limit point of the two steady state path moves to
lower reflux values. The above characteristics can be seen in the upper four pictures
on the right of Figure 2.20. Figure 2.22 shows the actual bifurcation diagram for
E =80kmol /min.

At very low entrainer flows, the two-steady-state path does not extend to infinite
reflux and a second limit point appears at high reflux. At even lower entrainer flows,
the two steady state path disappears and a unique steady state exists throughout.
The above are illustrated by the two lower pictures on the right of Figure 2.20.

Finally, the central picture of Figure 2.20 shows the entrainer-reflux multiplicity
region. The multiplicity region expands as reflux is increased. Note that multiplicities

persist for low entrainer and reflux flows which is the region of operation in practice.

2.4.3 Effect of the number of trays

In the first part of this chapter we have shown that multiplicities exist for columns with
an infinite number of trays. Doherty and Perkins (1982) proved that multiplicities
cannot exist for single-staged “columns.” It is expected then, that multiplicities
vanish as the number of trays decreases below some critical number.

The effect of decreasing the number of stages is depicted via bifurcation diagrams
where the distillate and reflux flows are fixed and the entrainer flow is the bifurcation
parameter. Figure 2.23 shows four such diagrams for columns similar to the ones
depicted in Figure 2.17, i.e., with the feed location fixed on tray 4 and different
number of stages N. Three steady states exist for some very narrow entrainer flow
interval for the columns with 23 and 22 trays while multiplicities vanish for the 21
and 15 tray columns. Figure 2.24 shows the entrainer - reflux multiplicity region
for three columns with 44, 33 and 23 stages and fixed distillate flow. It is apparent

that the multiplicity region for the 23 tray column is very narrow. Moreover, no
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multiplicities were found for columns with less than 22 trays. Therefore, multiplicities
vanish for columns with number of stages below some critical value. However, the
relationship between the number of stages and the location of the multiplicity region

in the entrainer - reflux plane is not clear.

2.4.4 Curved Boundaries

In this subsection we present an example which illustrates that highly curved bound-
aries can induce multiplicities. The ternary mixture under consideration is that of
acetone (L), methanol (H) and chloroform (I) also studied by Kienle et al. (1992).
The corresponding residue curve diagram is shown in Figure 2.25. It belongs to the
311-s residue curve diagram class. There are three binary azeotropes (a,b,c) and one
saddle ternary azeotrope (s) in this diagram.

The interior residue curve boundaries (Figure 2.26) divide the composition triangle
in four distillation regions and therefore there are eight routes (two for each region)
from an unstable node to a stable node along the distillation region boundaries. Note
that none of the routes contains two neighboring saddles and that sa is the only
boundary that is highly curved and therefore might induce multiplicities.

There exist two routes that contain sa, namely c—s—a and b—s—a. Now check
the geometrical condition by tracking each route in the proper direction (the proper
direction is the direction of the continuation path, i.e., the one that starts with the
distillate located at the unstable node and ends with the bottoms located at the stable
node). It is very simple to show that the distillate flowrate increases monotonically
for the c—s—a route. In contrast, the geometrical condition is satisfied for some feed
locations as we track the b—s—a route. The shaded region in Figure 2.26 depicts
the appropriate feed composition region for which multiplicities will be observed in
the oo/oo case.

The above findings are supported by simulation results for a column with 30 trays,
D/F =.5, R/F =100, a feed composition of 26.5% acetone, 23% methanol and 50.5%

chloroform , a feed flowrate of 100 kmol/min and a feed tray located at stage 14.



53

0.99 ==

- - — - c—
- — -

0.97 ¢

Acetone composition at distillate

-=-=--25 Trays
.
——— rays
0.95 ¢ —-—-15 Tro%s
0.93
0.0 100.0 200.0 300.0 400.0

ENTRAINER (kmol/min)

Figure 2.23: Vanishing multiplicity in small columns with R =1500 kmol/min and
D =90.9 kmol/min.



o4

D=90.9 kmol/min

300
| 44 Trays

E | 33 Trays s
% 200 . | 23 Trays o
£
)
~
z
2 100 =
-
e
Z
=

0 g

100 300 500 700 900 1100 1300 1500

REFLUX (kmol/min)

Figure 2.24: Entrainer - reflux multiplicity region variation with the number of trays.



55

Acetone

1.0 7

0.8 1

o Binary Azeotropes

0.6 -

O'O N 1 ! I ' | ' 1 ' |
0.0 0.2 0.4 0.6 0.8 1.0

Chloroform Methanol

Figure 2.25: The acetone - methanol - chloroform residue curve diagram.



56

0.8 1

o Binary Azeotropes

0.6 -

0.2 1

00— — e o N
0.0 0.2 0.4 0.6 0.8 1.0

Chloroform Methanol

Figure 2.26: The four distillation regions and the appropriate feed region in the
acetone - methanol - chloroform composition triangle.



57
Figures 2.27, 2.28 and 2.29 show the three different column profiles (two stable and

one unstable) with the above specifications. Figure 2.30 shows the location of the
three profiles relative to the distillation region boundaries in the composition triangle.
Note that the column operates at high reflux but not at infinite reflux and does not
have an infinite number of trays. Hence, it is expected that the column profiles do not
exactly follow the residue curve boundaries. Figure 2.31 shows bifurcation diagrams
with the distillate flow as the bifurcation parameter for R/F =1, 5 and 100. The
three steady states persist for reflux to feed ratios as low as 1.

Finally, a note on the use of different liquid activity coefficient models. Using
the one-parameter regular solution model, the residue curve diagram obtained is very
similar to the one obtained with Van Laar (Figure 2.25), i.e., the sa boundary is
highly curved. Using the two-suffix Margules model, the sa boundary is again highly
enough curved but the curvature is not as profound as in Figure 2.25. Nevertheless,
simulation results showed that multiple steady states exist in this case, too. Contrary
to the previous cases, the boundaries do not seem to be curved enough when using
the Wilson equation. However, caution should be taken in all such cases because
the curvature of the boundary close to the boundary end points (singular points)
may change dramatically and hence there might exist a small boundary segment that
enables the existence of multiple steady states. Also note that this does not necessarily
mean that the appropriate feed region is small. This situation was observed for the
mixture isopropanol (I) - toluene (H) - methanol (L) (021 class, see Figure 2.13)
using the Wilson equation. Simulation and bifurcation study results showed that the
observed multiple steady states were due to the high curvature of the boundary very

close to the methanol (L) - toluene (H) azeotrope.

2.5 Effect of the VLE model

The geometrical sufficient condition for the existence of multiplicities at finite reflux
is based on arguments about the distillation region boundaries at infinite reflux. In

general, the orientation and the curvature of those boundaries depends on the specific
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thermodynamic model used. Therefore it is expected that switching from one VLE

model to another may affect the existence of multiplicities

e quantitatively only, i.e., multiplicities still exist but there are different appro-

priate feed composition regions, distillate - reflux multiplicity regions etc.

o qualitatively, i.e., multiple steady states exist using one model while they do

not exist using another one.

For example, in the acetone - heptane - benzene case (001 class) multiple steady
states exist in the co/oco case for any feed composition inside the composition trian-
gle, regardless of the specific thermodynamic model used. This independence from
the thermodynamic model is inherent in any 001 class residue curve diagram. How-
ever, quantitative differences between the models exist for the entrainer - reflux and
distillate - reflux multiplicity regions. On the other hand, when the existence of mul-
tiplicities depends on the orientation and/or the curvature of some interior residue
curve boundaries, it is possible that multiple steady states exist when using one ther-
modynamic model while they do not exist when using another model.

Out of the 113 residue curve diagram classes, we identified 77 that contain two
neighboring saddles. In 41, among those 77 classes, multiple steady states exist in the
oo /oo case independent of the thermodynamic model used, while in the remaining 36
classes the existence of multiplicities depends on the geometry of the residue curve
boundaries and hence on the thermodynamic model. The existence of multiple steady
states due to highly curved boundaries, however, is possible for any residue curve di-
agram that contains an interior residue curve boundary. The type of multiplicities
discussed here cannot occur in the 000 (nonazeotropic mixture) and 100 (heavy en-
trainer) classes and it is highly unlikely that it occurs in the 020 (light entrainer)
class because it would require a very strange boundary shape.

Using a databank with information on the azeotropic (or zeotropic) behavior of
binary mixtures, we found 3700 ternary mixtures belonging in the 001 or 002-m
classes, 340 ternary mixtures belonging in the 003 or 004-M classes and 275 ternary

mixtures belonging in the 103 or 104-M or 203-m classes. All 7 classes are among
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the 41 that give rise to multiplicities independent of the geometry of interior residue
curve boundaries. Note, however, that this is the result of a preliminary rough search
which, for example, does not exclude ternary mixtures with two liquid phases.

Finally, a note on the fact that the geometrical condition is not necessary for the
existence of multiple steady states in the finite reflux case. Finite reflux boundaries
are not as rigorously defined as infinite reflux ones. It is known that the shape of the
distillation boundaries changes with reflux. Therefore, it may be possible that multi-
plicities exist at some range of finite reflux flows (due to some “distorted” boundaries)
while the geometrical condition is not satisfied for infinite reflux boundaries. The

above can cause another discrepancy observed for different thermodynamic models.

2.6 Effect on Design and Operation

In this section we briefly discuss the effect of multiplicities on the distillation column
design and operation. In separation flowsheet synthesis procedures, the calculation
of the achievable product sets is commonly one of the first steps. It is apparent that
if multiple steady states exist, there are subsets of the achievable product sets which
correspond to unstable steady states. Hence, these subsets are qualitatively different
from the rest of the achievable product sets since they are not really achievable without
stabilizing control.

Next we examine the problem of avoiding the multiplicity region (i.e., operating in
the single steady state region) and meeting the product specifications (defined later).
Here, the number of stages and the entrainer flow are fixed while the distillate and
reflux are the design parameters. The column specifications are 99% purity of ace-
tone in the distillate and 99% acetone recovery. By superimposing the reflux-distillate
regions where the above specifications are met on the corresponding multiplicity re-
gions (Figures 2.19a and 2.19b) we obtain Figures 2.32a and 2.32b for the two fixed
entrainer flows. If £ =1 kmol/min (Figure 2.32a) the column specifications are only
met inside the multiplicity region and therefore multiplicities cannot be avoided in

this case. However, if the entrainer flow is increased to 200 kmol/min, there exists
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a reflux-distillate region where the specifications are met and a unique steady state
exists. Therefore, we can meet the column specifications and avoid the multiplicity
region at the expense of a higher entrainer feed flow.

Finally, we examine whether it is possible to “jump” from the high conversion
stable steady state to the corresponding low conversion stable steady state under
a feed composition disturbance while operating in the multiplicity region. In some
sense, we examine whether it is necessary to operate in the single steady state region.
Here, the column has 44 trays, the entrainer flow is 1 kmol/min, the reflux flow
is 1000 kmol/min and no control action is used (open-loop behavior). The feed
originally contains 90% acetone and 10% heptane and under these conditions three
steady states exist. The column originally operates at the high conversion state
(99% acetone in distillate). From time zero to 6000 seconds the feed composition is
changed to 91% acetone and 9% heptane. Note that under these conditions a single
(low conversion) stable steady state exists. Finally, at time 6000 seconds the feed
composition is changed back to its original value. Figure 2.33 shows that the column
profile “jumps” from the high conversion state to the low conversion state (93.17%
acetone in distillate) because of the feed composition disturbance. The calculations
were repeated for smaller disturbance time intervals (1000, 2000, 4000 seconds) but
this time the acetone composition returned to its original 99% purity. Therefore, it
seems that for this particular design it is relatively difficult to “jump” from one stable
profile to the other and hence, this result disputes whether it is necessary to operate
in the single steady state region.

However, the material presented in this section is just a brief illustration of the
implications of multiplicities on column design and operation and a more thorough

investigation of this subject is needed.

2.7 Conclusions

In this chapter we study multiple steady states in ternary homogeneous azeotropic

distillation. First we examine in detail the infinite reflux and infinite number of trays
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(00/o0) case. We present a systematic procedure which determines whether multi-
plicities exist for any given residue curve diagram and feed composition. Through
this procedure we answered the following questions:

Given a ternary mixture and its residue curve diagram, we can for the oo/oco case

(1) find whether multiple steady states exist for some feed composition and

(2) locate the region of feed compositions that lead to these multiple steady states.

We derive (1) the necessary and sufficient geometrical condition for the existence
of multiple steady states and (2) the condition the feed compositions must satisfy to

lead to multiple steady states. A few other important results are the following:

In the case of straight boundaries we found that two neighboring saddles is a

necessary condition for the existence of multiplicities.

If multiple steady states exist under the straight boundaries assumption, then,
assuming that the azeotropic compositions do not change, these multiplicities
still exist even if the boundaries are curved, although the appropriate feed region

is changed.

Highly curved boundaries (pseudosaddles) can induce multiple steady states.

For columns operating at finite reflux the geometrical condition is only a sufficient
condition for the existence of multiple steady states. We use an example to show that
the prediction for the existence of multiple steady states in the oo/oo case carries over
to columns operating at finite reflux and with a finite number of trays. We further
show that, although the predictions were made in the co/oo case, it does not mean
that multiple steady states do not exist for realistic operating conditions (low reflux
and entrainer feed flows and small number of trays). However, apart from the fact
that the co/oo case predictions carry over, the observations presented here should not
be generalized because they are specific to the particular example. We also present

an example which illustrates that highly curved boundaries can induce multiplicities.
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We offered some comments on the effect of the thermodynamic model on the
existence of multiplicities and we show that some of the results presented here do not
depend on the specific thermodynamic model used. Finally, we briefly discuss the
effect of multiplicities on the column design and operation. The consideration here
is whether it is necessary to operate in the single steady state region (i.e. avoid the
multiplicity region). A more thorough investigation of this topic is needed.
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2.9 Appendix

The appendix contains information on the thermodynamic model used in the simula-
tions presented in this chapter. Vapor - liquid equilibrium calculations are based on

the following equation:

yiP = 2, PP*(T)v(T, z)

where P=1 atm in all simulations presented here.

Vapor pressures were computed by the Antoine equation:

B;
InP* = A; + ———
mh T+ C;
where T in °K and P in N/m?. Table 2.2 contains the Antoine coefficients for the
components used in the simulations.

Liquid activity coefficients were computed by the Van Laar equation:

Tln’Yk - Z Akizz Z Ak12k~z - Z ZA_H ijz

Tk itk Jk

where z; is the effective volume fraction,
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Table 2.2: Antoine coefficients for the components used in the simulations.

A B C
Heptane 20.7664 -2911.32 -56.514
Benzene 20.7936 -2788.51 -52.360
Acetone 21.3099 -2801.53 -42.875
Methanol 23.4832 -3634.01 -33.768
Chloroform 20.865 -2696.9 -46.16

Table 2.3: Van Laar coeflicients for the acetone - heptane - benzene mixture.

i J| Heptane Benzene Acetone
Heptane 0 159.20 569.40
Benzene 112.00 0 144.20
Acetone 444 .80 189.60 0

In this model A; = 0, A;; = 0 implies ideality, and if A;;/A;;=0/0 set A;;/A;=1.

Tables 2.3 and 2.4 contain the Van Laar coefficients for the mixtures acetone - heptane

A]'i
2 =T T, —/}.
[(Cergis)

- benzene and acetone - methanol - chloroform respectively.
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Table 2.4: Van Laar coefficients for the acetone - methanol - chloroform mixture.

i ] Acetone Methanol Chloroform
Acetone 0 205.40 -260.23
Methanol 232.00 0 597.03
Chloroform -234.17 313.06 0
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Chapter 3 Multiple Steady States in

Heterogeneous Azeotropic Distillation

3.1 Introduction

A thorough review of the literature on multiplicities in distillation has been presented
in chapter 2. Here we focus on the articles on multiplicities in heterogeneous mixtures.
Magnussen et al. (1979) first presented simulation results that show the existence
of three steady states (two stable and one unstable) for the heterogeneous mixture
of ethanol - water - benzene. In these calculations (1) constant molar overflow is
assumed and (2) the phase splitter is removed; instead, a second feed at the top of
the column is considered (this second feed is the same for all three steady states).
The multiplicities were observed with the UNIQUAC and NRTL activity coeflicient
models but a unique steady state was found with the Wilson equation model. On all
the stages in all three profiles there is only one liquid phase. A similar multiplicity
was observed for the system ethanol - water - pentane.

The results of Magnussen et al. (1979) triggered great interest in multiple steady
states in distillation. The belief that heterogeneity is a possible cause for such multiple
steady states directed the attention towards heterogeneous azeotropic distillation.
Consequently, several articles were published where the mixture ethanol - water -
benzene and especially the results of Magnussen et al. (1979) were studied extensively
and where multiplicities for other heterogeneous systems were reported.

More specifically, Prokopakis et al. (1981) using a column without decanter (fixed
second feed composition), the NRTL thermodynamic model and including enthalpy
balances verified the three “regimes” found by Magnussen et al. (1979) but not
multiplicity. For the mixture isopropanol - water - cyclohexane they report two steady

states for the same specifications. In these steady states, however, the entrainer
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flowrate in the boilup and the reflux flowrate and composition are held constant
while the product flowrates are different. Hence these do not constitute an output
multiplicity as defined above. For both mixtures they find that one of the steady
states is “infeasible” in the sense that its overhead vapor composition lies outside the
binodal curve and hence this profile cannot describe the profile of the column with
the decanter. Again, there is no phase separation on the stages.

Prokopakis and Seider (1983a,b) using a column with decanter, the UNIQUAC
thermodynamic model with binary parameters different from the ones used by Mag-
nussen et al. (1979) and including enthalpy balances, again verified the three oper-
ating regimes, conjectured that one of them is unstable but no multiplicities were
found.

Kovach and Seider (1987a,b) present simulation (homotopy-continuation) and ex-
perimental results of the mixture secondary butanol - water - disecondary butyl ether
(together with butylenes and methyl ethyl ketone impurities). Although no multi-
plicity is found, they locate two steady states (one with a single liquid phase on all
trays and the other with two liquid phases on 70% of the trays) over a narrow range
of the reflux ratios and conclude that this is consistent with the experimentally ob-
served erratic behavior of the column. Using homotopy-continuation for the mixture
ethanol - water - benzene they locate five steady states for the same specifications
(output multiplicity). There is some concern whether the overhead vapor composi-
tion lies outside the binodal curve for three of the five profiles. Note that in all these
calculations the condenser and the decanter are not included in the model. When
they are included in the model three steady states are calculated.

Venkataraman and Lucia (1988) perform continuation studies for the ethanol -
water - benzene column studied by Prokopakis and Seider (1983a) with the bottoms
flow as the continuation parameter. They find three steady states over a narrow
range of bottoms flow. Kingsley and Lucia (1988) show that there is a minimum
tray efficiency for which these multiplicities exist. For columns with tray efficiency
less than this minimum, a unique steady state exists for the whole range of bottoms

flow. It is important, however, to note that the three steady states are calculated
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without taking into account the presence or absence of two liquid phases on a tray
(ignoring the liquid split) and hence they do not correspond to any realistic column
(they can be used as the starting point of a heterogeneous distillation calculation).
Kingsley and Lucia (1988) show that all these three profiles “ultimately lead to the
same heterogeneous solution.” The authors were unable to produce heterogeneous
multiplicities.

Widagdo et al. (1989) perform parameterization with respect to the aqueous
reflux ratio for the mixture secondary butanol - water - disecondary butyl ether (also
Kovach and Seider, 1987a,b). They find three steady states over a narrow range of
the aqueous reflux ratio. This multiplicity occurs when a second liquid phase appears
on the top tray. A single-stage bifurcation analysis shows a unique solution and the
authors suggest that other effects, such as the recycle, may be responsible.

Rovaglio and Doherty (1990) study the mixture ethanol - water - benzene using a
column with decanter and different sets of parameters for the UNIQUAC model. They
find three steady states for all parameter sets (including those used by Magnussen
et al., 1979 and Prokopakis and Seider, 1983a,b) through dynamic simulations. For
some sets two liquid phases exist on some trays, for others a single liquid phase exists
on all trays. Their dynamic simulation results are consistent with the five steady
states reported by Kovach and Seider (1987b).

Cairns and Furzer (1990) study the multiplicities by Magnussen et al. (1979) using
the UNIFAC(VLE) model. Two of the steady states were obtained only by ignoring
the phase splitting and hence they conclude that these profiles are fictitious. They
also report two steady states (one again obtained by ignoring the liquid split) for the
mixture ethanol - water - isooctane.

Bossen et al. (1993) study the mixture ethanol - water - benzene for a column with
decanter using UNIFAC and UNIFAC(VLE). They find four steady states. In one of
them, the whole profile as well as the decanter lies in the homogeneous region. The
products of the other three profiles have exactly the same compositions and flowrates.
The only difference between these three profiles is the location of the front of sharp

ethanol and benzene composition changes. These three profiles are in good agreement
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with the results of Rovaglio and Doherty (1990).

Rovaglio et al. (1993) study the multiplicities found by Rovaglio and Doherty
(1990) through dynamic simulations as well as many of the previously reported mul-
tiplicities for the mixture ethanol - water - benzene. They demonstrate that although
these steady states satisfy the convergence criteria “there may be small differences
in the necessary make-up flowrates needed to keep these states constant and stable.”
They conclude that “the problem of multiple steady states seems to be associated
with the numerical aspects related to the relative small amount of feed make-up.”

The study presented here is the continuation of our previous work (chapter 2)
on homogeneous azeotropic distillation. A summary of this previous work will be

presented in the following.

3.2 Preliminaries

The term heterogeneous azeotropic distillation covers the general notion of distillation
of azeotrope forming mixtures where two liquid phases exist in some region of the
composition space. Usually, heterogeneous azeotropic distillation units perform the
separation of a binary azeotrope into two pure components through the addition of
an entrainer which alters the relative volatility of the two azeotropic constituents and
enables separation by inducing liquid - liquid phase separation.

Unless stated otherwise, we use the following convention to refer to a given mix-
ture: L (I, H respectively) corresponds to the component which has the lowest (in-
termediate, highest resp.) boiling point; we also denote the entrainer by E. We use
the same notation in italics (L, I, H, E) to denote the corresponding flow rates of
the components in the feed. The locations of the feed, distillate, bottoms, reflux and
overhead vapor in the composition triangle are denoted by F, D, B, R and V respec-
tively. Again, the corresponding flowrates are denoted by the same letters in italics
(F, D, B, R and V).

Two widely used tools for the description of azeotropic distillation are the simple

distillation residue curves (hereafter called residue curves) and the distillation lines.
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Residue curves: The simple distillation process involves charging a still with a
liquid of composition z and gradual heating. The vapor formed, y(x), is in equilibrium
with the liquid left in the still; the vapor is continuously removed from the still. A
residue curve is defined as the locus of the composition of the liquid remaining at any
given time in the still of a simple distillation process. Residue curves are governed by

the set of differential equations (Doherty and Perkins, 1978):

where x and y(x) are the molar compositions of the liquid and vapor phase respec-
tively, and ¢ is the dimensionless warped time. Equation (1) defines the residue curves
for homogeneous and heterogeneous mixtures; in the case of heterogeneous mixtures,
x is the molar composition of the overall liquid phase (Pham and Doherty, 1990).

A distillation region is defined as a subset of the composition simplex in which
all residue curves originate from the same locally lowest-boiling pure component or
azeotrope and end at the same locally highest-boiling one. The curves which separate
different distillation regions are called residue curve boundaries. The term distillation
region boundary (or just boundary) is used for both residue curve boundaries (interior
boundaries) and the edges of the composition simplex.

Distillation lines: The definition of distillation lines (Zharov and Serafimov,
1975; Stichlmair et al., 1989; Stichlmair and Herguijuela, 1992), on the other hand,
originates directly from the description of tray columns operating at infinite reflux.
In these columns, the liquid composition of tray n+1 equals the composition of the

vapor in equilibrium with the liquid of tray n (the tray below):

Zharov and Serafimov (1975) define the distillation line as the set of points x whose
y(x), i.e., the vapor composition in equilibrium with x, also lies on the same distillation

line. Using the recursion formula (2) forward (z, — z,4,) and backwards (z,,,; —
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z,), a sequence of points in the composition space can be calculated (Stichlmair et al.,
1989; Stichlmair and Herguijuela, 1992). By definition, all the points of this sequence
lie on the same distillation line. Although it is very easy to calculate a sequence of
points lying on some distillation line, the calculation of the whole distillation line is
not trivial because there does not exist an explicit expression to exactly calculate the
points of a distillation line between two points of a sequence. It is very common,
hence, to just connect the points of a sequence by straight lines and use this as the
approzimate distillation line.

The distillation lines, as defined by Zharov and Serafimov (1975), do not cross each
other. If this were not the case then there would exist two different vapor compositions
in equilibrium with a single liquid composition (the composition at the intersection of
the distillation lines). It is later shown that the distillation lines may only coincide in
the two-liquid phase region. The approximate distillation lines, however, may cross
each other. Figure 3.1 shows how two approximate distillation lines, belonging to the
same or different exact* distillation lines, can cross.

From the discussion above and Figure 3.1, it should be clear that an exact distilla-
tion line is constructed by an infinite number of sequences of points calculated using
equation (2), and hence there is an infinite number of approximate distillation lines
associated with a single exact distillation line. Figure 3.1 shows two sequences of
points, a and b, on the same exact distillation line. The composition profiles of tray
columns in the composition space are obviously not continuous. The way the exact
distillation lines are defined/constructed from tray column profiles explains why the
exact distillation lines are continuous. It should also be clear that an exact distil-
lation line, although continuous similarly to residue curves, is not a packed column
profile. Hereafter, in illustrations of distillation line diagrams, the smooth, exact dist-
illation lines are drawn, while in computed distillation line diagrams the approximate

distillation lines, that connect the points of a sequence, are used.

“In the following, the terms distillation lines and eract distillation lines both refer to the lines
defined by Zharov and Serafimov (1975) only (not the approximate ones). The adjective “exact” is
used only when it is required to distinguish between the (exact) distillation lines and the approximate
distillation lines.
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Distillation lines

exact
————— - approximate

I - — ' L

Figure 3.1: Approximate distillation lines belonging to the same or different exact
distillation lines may cross. The exact distillation lines do not cross. Points a and b
belong to two different sequences of points calculated using equation (2).
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Zharov and Serafimov (1975) further showed that distillation lines (1) have the
same singular points with residue curves and (2) behave similarly to residue curves
close to singular points. Nevertheless, distillation lines do not generally coincide with
residue curves. Usually, the direction opposite to that of residue curves is used for the
distillation lines. In this manuscript, in order to avoid the confusion of referring to
the same singular point as a stable node in residue curve diagrams and as an unstable
node in distillation line diagrams, we use the direction of residue curves for distillation
lines too. Figure 3.2 illustrates the residue curve, the exact distillation line and the
approximate distillation line that go through a point x in the composition triangle.
The residue curve crosses the exact distillation line and is tangent to the line segment
of the approximate distillation line connecting x and y(x).

Similarly to residue curves, in the distillation line diagram there may exist distil-
lation regions and boundaries which can be different from the regions and boundaries
in the residue curve diagram. The calculation of distillation line boundaries is easier
than the calculation of any other exact distillation line. The reason is that using
equation (2) we can determine arbitrarily large sets of points that belong in one or
the other of the two regions the boundary separates. The distillation line boundary
lies between the two sets and hence a much better approximation (compared to just
connecting the points of a single sequence) can be obtained.

Ilustrative example: As an illustrative example throughout this chapter we
use the mixture ethanol (L) - water (H) - benzene (I-E). Ethanol and water form an
azeotrope which can be separated using benzene as the entrainer. Figure 3.3 illustrates
the residue curve diagram of this type of ternary mixture at 1 atm. In this diagram,
there are two binary homogeneous azeotropes (X and Y), one binary heterogeneous
azeotrope (Z) and one ternary heterogeneous azeotrope (T). The ternary azeotrope is
an unstable node, the pure components are stable nodes and the binary azeotropes are
saddles. All residue curves start from the ternary azeotrope (globally lowest-boiling
point) and end at one of the three pure component corners (locally highest-boiling
points). There are three interior distillation boundaries in this diagram running from

the ternary azeotrope to the three binary azeotropes. The boundaries separate the
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e Residue curve

\\ Distillation line

----- ® Approximate distillation line

- L

Figure 3.2: The residue curve, the distillation line and the approximate distillation

line that go through point x.
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H

Figure 3.3: Residue curve diagram and VLLE of the mixture ethanol (L) - water (H)
- benzene (I-E).

composition space in three distillation regions.

Figure 3.3 also shows the heterogeneous liquid boiling envelope (line UCW) of this
mixture at 1 atm. Liquid compositions located inside the heterogeneous liquid boiling
envelope will split in two liquid phases whose compositions will lie on the envelope.
Point C is the critical point. We refer to the water-rich phase (line UC) as phase 1
and to the entrainer-rich phase (line CW) as phase 2. The straight lines connecting
two liquid phases in equilibrium are the tie lines. The vapor in equilibrium with
any liquid in the two-phase region lies on the vapor line ZTQ. Point Q is the vapor

in equilibrium with a liquid located at the critical point. Note that heterogeneity
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causes a singularity of the VLLE: the liquid composition in equilibrium with a vapor
composition on the vapor line is not unique since it can be any point on some tie line.

Figure 3.4 illustrates the distillation line diagram for the same mixture at 1 atm.
Qualitatively, the distillation line diagram is similar to the residue curve diagram of
Figure 3.3. The locations of the boundaries and the distillation regions, however,
are somewhat different. In the heterogeneous region, some part of the distillation
line boundaries has to coincide with the vapor line (this is shown in section “Tray
vs. packed columns”). Hence, the boundaries TX and TY and the vapor line co-
incide close to the ternary azeotrope. The point of deviation from the vapor line
for each boundary is the composition of the vapor in equilibrium with the liquid at
the intersection of the heterogeneous liquid boiling envelope and the boundary. The
boundary TZ lies on the vapor line while the other two boundaries deviate from the
vapor line at some point and therefore they do not contain point Q. This is because
the boundaries do not contain the critical point C.

With this information (residue curve and distillation line diagrams and VLLE) we
are able to thoroughly analyze the case of infinite reflux and infinite number of trays
(or infinitely long packed columns), which we hereafter denote as the oo/co case. In
the following we present a general method for the study of multiplicities in the oo /oo
case. We discuss both tray and packed columns for completeness. We illustrate this
method using the mixture ethanol - water - benzene as the illustrative example. In
this example, the column operates under constant atmospheric pressure, there is no
pressure drop in the column, a tray efliciency of 1 is assumed and the condenser is
total. We discuss the issues of tray efliciency and other condenser and reboiler types
in the special topics section.

It is assumed that Figure 3.3 and Figure 3.4, describe the thermodynamic equi-
librium of the mixture at 1 atm. These figures could be obtained from experimental
data or using any thermodynamic model. In fact, the specific Figure 3.3 and Fig-
ure 3.4 are drawn so that they illustrate the qualitative characteristics of the following
thermodynamic model: (1) Ideal vapor (2) Vapor pressures are calculated using the

Antoine equation with parameters from Gmehling and Onken (1977) (3) liquid ac-
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H

Figure 3.4: Distillation line diagram and VLLE of the mixture ethanol (L) - water
(H) - benzene (I-E).
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tivity coeflicients are calculated using the UNIQUAC equation with pure component
parameters from Gmehling and Onken (1977) and binary parameters estimated from
UNIFAC using Aspen Plus (1988). The appendix contains more information on the
thermodynamic model as well as the Antoine and UNIQUAC parameters. Figure 3.5
and Figure 3.6 show the actual, computed residue curve and distillation line diagrams,
respectively, using the above thermodynamic model. Note that Figure 3.3 ( 3.4 resp.)
is simply a drawing of Figure 3.5 ( 3.6 resp.); they both have the same qualitative
features, Figure 3.3 ( 3.4 resp.), however, has some important features exaggerated
for illustrative purposes. Figure 3.3 and Figure 3.4 are used in the analysis of the
00/0o case.

In the following we summarize the results obtained in the co/co case for homo-
geneous mixtures (chapter 2). Although these results were derived for residue curve

diagrams, we show that similar results hold for distillation line diagrams.

3.2.1 Composition Profiles in the co/co Case

Packed columns: At infinite reflux, the differential equations which describe packed
columns become identical to the residue curve equations (Laroche et al., 1992). Thus
residue curves coincide exactly with the liquid composition profiles of packed columns
operated at total reflux. In the special case of infinitely long packed columns there
is one additional requirement: The column profile should contain at least one pinch
point. Pinch points at infinite reflux can only be the singular points of the residue
curve diagram, i.e., the pure components and the azeotropes. Therefore, the packed
column liquid composition profiles in the co/oo case should follow residue curves and
contain at least one pure component or azeotrope. Hence the only acceptable columns

belong to one of the following types:

I. Columns whose top liquid composition* is that of an unstable node. In this

*The top (bottom) liquid composition refers to the upper (lower) end liquid composition of the
column profile without the reboiler and condenser. Therefore, the top (bottom) liquid composition
does not generally coincide with the top (bottom) product composition. We discuss the effect of the
reboiler and condenser on the product compositions in the special topics section.
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Figure 3.5: The actual, computed residue curve diagram and VLLE of the mixture
ethanol - water - benzene.
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Figure 3.6: The actual, computed distillation line diagram and VLLE of the mixture
ethanol - water - benzene.
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case, the column liquid composition profile starts from the unstable node (top
liquid composition), follows a residue curve and ends at an arbitrary point on

the same residue curve (bottom liquid composition).

II. Columns whose bottom liquid composition is that of a stable node. In this
case, the column liquid composition profile starts from an arbitrary point in the
composition triangle, follows the residue curve that passes through this starting

point and ends at the stable node (bottom liquid composition).

III. Columns whose liquid composition profiles run along the boundaries (edges of
the triangle and/or interior boundaries) and contain at least one of the saddles.

In this case, the top and bottom liquid compositions lie on the boundaries.

Figure 3.7 illustrates the three acceptable types of liquid composition profiles of
packed columns for the mixture shown in Figure 3.3. The type I and II profiles contain
a node singular point at one of the two ends (at the top and at the bottom resp.).
The type 111 profiles contain an interior pinch point which can only be a saddle. Note
that at any point in the column, the liquid and vapor compositions are identical (by
the material balances) and hence the liquid and vapor profiles coincide.

Tray columns: Similarly, composition profiles of tray columns in the co/oo case
should follow distillation lines and contain at least one pinch point, i.e., pure compo-
nent or azeotrope. Again there are three acceptable types of profiles similar to the
ones described above; simply replace residue curves and boundaries with distillation
lines and distillation line boundaries in the above. Although residue curves and dist-
illation lines do not coincide, it is very common to consider that residue curves give a
good approximation of composition profiles of tray columns at infinite reflux. In the
previous chapter on homogeneous azeotropic distillation, this assumption was made.
We will show later that this approximation may not be appropriate when the residue
curve boundaries and the distillation line boundaries significantly deviate from each

other. The effect of heterogeneity on this approximation will also be discussed later.
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Figure 3.7: The three acceptable types of profiles in the oo/oo case.
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3.2.2 Existence of Multiple Steady States

In the previous section we demonstrated how the column composition profiles should
look in the co/oo case. Using the information above and the overall material balances,
we can locate the feasible distillate and bottom product compositions for any given
feed. In the co/oo case of a homogeneous column, given a feed composition and a feed
flowrate F', the only unspecified parameter is one product flow, e.g., the distillate flow
rate D (the other flow rate is specified by the overall material balance). In order to
find whether multiple steady states can occur (i.e. whether different column profiles
correspond to the same value of D) we find all possible composition profiles by tracking
the distillate and bottoms in the composition triangle, starting from the column profile
with D = 0 and ending with the column profile with D = F. That is, we perform a
bifurcation study (continuation of solutions) using the distillate flow as the bifurcation
parameter. This task can be achieved because in the co/oco case a continuation of
solutions can be obtained based on physical arguments only. Multiple steady states
exist when the distillate flow varies non-monotonically along the continuation path
of the bifurcation diagram and more specifically, for our continuation path choice,
when the distillate flow decreases in a segment along this path. Therefore, in order
to find rules for the existence of multiple steady states, we have to first find out when
D decreases along the continuation path.

Some important results of our thorough analysis (chapter 2) are the following:
Along the continuation path, D increases monotonically as we track all type I and
type II column profiles. Therefore, a decrease in D can only occur as we track the
type I1I column profiles, i.e., columns whose composition profiles run along distillation
region boundaries and contain at least one of the saddle singular points. We further
show that the existence of multiplicities depends on the relative position (geometry) of
the distillation region boundaries, and hence the location of the distillation boundaries
is the only information required to conclude on the existence of multiplicities.

Using the results of this analysis we derive the necessary and sufficient geometrical

condition for the existence of multiple steady states which is summarized in the



92
following:

Geometrical, necessary and sufficient multiplicity condition: The con-
tinuation path is defined as the path generating all possible column profiles starting
from the profile with D=0 and ending at the profile with D=F. Multiple steady
states occur when D decreases somewhere along this path. This can be checked by
the following procedure: Pick a distillate D and a bottom product B, both located on
some distillation region boundaries and such that the column profile that runs from
D to B along the distillation region boundaries contains at least one saddle singular
point (type III column profile). Now pick D’ and B’ sufficiently close to D and B
respectively and such that the column profile from D’ to B’ is a “later” profile along
the continuation path. For the existence of multiple steady states it is required that:
As we move along the continuation path from D to D’ and accordingly from B to
B’, the line that passes from D and is parallel to BB’ crosses the D’'B’ line segment
(Figure 3.8).

We further show that the existence of multiplicities depends on the feed compo-
sition and we locate the feed composition region that leads to multiple steady states.
The condition for the appropriate feed region is summarized in the following:

Appropriate feed region condition: Pick a distillate D. Find the set of all bot-
tom products such that the geometrical condition is satisfied for the picked D. Name
this set Sp(D). Note that Sg(D) is always part of a distillation region boundary and
that in some rare cases, Sg(D) may contain an inflexion point and/or it may consist
of more than one non-connected boundary segments. Draw the straight line segments
connecting D with the end points of each boundary segment that belongs to Sg(D).
For the chosen D, the appropriate feed composition is the union of the areas enclosed
by each boundary segment that belongs to Sp(D) and the corresponding straight line
segments connecting D with the end points of the boundary segment of Sg(D). Pick
another distillate D and repeat. In general, for each distillate D there exists a dif-
ferent set of bottoms compositions, Sg(D), that satisfies the geometrical condition.
Therefore, for any given mixture, the feed compositions that lead to multiplicities

lie in the union of all the areas enclosed by each boundary segment that belongs to
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B B'

Figure 3.8: The geometrical multiplicity condition is I. not satisfied (D increases
along the continuation path) II. satisfied (D decreases along the continuation path).
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some Sg(D) and the corresponding straight line segments connecting the distillate D
associated to Sp(D) with the end points of the boundary segment of Sg(D).

Figure 3.9 illustrates the appropriate feed region condition. The geometrical con-
dition is satisfied for distillate compositions D on the boundary segment ad. For any
D on the boundary segment ad, the set Sg(D) is the straight line segment Ic. Hence,
for any D on the boundary segment ad, the appropriate feed region is the triangle
Dle. Therefore, the appropriate feed region for this mixture is the union of all these
triangles, i.e., the shaded area adlc. Note that, for the mixture shown in Figure 3.9,
the set Sp(D) (1) consists of just one, straight line boundary segment and (2) is the
same for all distillate compositions D that satisfy the multiplicity condition. The
appropriate feed region condition described above covers the general case of Sg(D)
consisting of more than one, curved boundary segments and being different for each
D.

The above results have been originally derived for residue curve diagrams. It is
obvious that similar results hold for distillation line diagrams by simply substituting
residue curve boundaries with distillation line boundaries. Using the above results,
we are able to study the existence of multiple steady states in the oo/oco case for
mixtures that exhibit two liquid phases. We will perform this task in two steps: First

for packed and tray columns without decanter and then for columns with decanter.

3.3 Columns without decanter

In the homogeneous case, the composition of the distillate is that of the stream drawn
from the top of the column. This is also the case when no decanter is used in hete-
rogeneous azeotropic distillation. Hence the techniques developed for homogeneous
azeotropic distillation can be directly applied in this case. In particular, the case of
heterogeneous mixtures using packed columns without decanter is identical to the one
studied in the previous chapter on homogeneous azeotropic distillation. We study

packed columns first.
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Figure 3.9: For any D on the boundary segment ad, the appropriate feed region
is the triangle DIc. For this mixture, the region of feed compositions that lead to
multiplicities is the union of all these triangles, i.e., the shaded area adlc.
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Figure 3.10: Packed columns without decanter: No multiplicities.

Packed columns: The only information required in this case is the residue curve
boundaries as shown in Figure 3.10. The computation of the residue curve boundaries
obviously requires VLLE information. As soon as Figure 3.10 is obtained, however,
no other VLLE information (vapor line, heterogeneous envelope, etc.) is required and
hence the mixture depicted in Figure 3.10 can be treated as if it were a homogeneous
mixture belonging to the 222-m class according to the classification by Matsuyama
and Nishimura (1977).

In each of the three regions, there are two routes which go from the unstable node
to the stable node along the region boundaries (a total of six routes, namely T—X—1L,,

T—-X-H, T5Y—>L, T-Y—=I, T-Z—-I, T-Z—H). Note that the distillate and
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bottoms compositions should lie on the same route and therefore we only have to
check the geometrical condition along the six routes mentioned above. All routes
contain only one saddle singular point. Since the type III profile of an infinitely
long column should contain at least one saddle, it is apparent that for any route the
distillate may only lie on the interior boundary while the bottoms may only lie on
the edge of the triangle.

It is only for these locations of D and B that the geometrical condition needs
to be checked. The condition is even further simplified since the line BB’ (see the
geometrical condition above) may only lie on some edge of the triangle. Moreover,
for this type of residue curve diagram, the distillate of type III profiles along the
continuation path will move along one of the interior boundaries monotonically in the
direction from T towards the other end of the boundary. The geometrical condition for
this particular type of residue curve diagram can be then simplified to the following:
For the existence of multiple steady states it is required that (1) some line parallel
to the LH edge intersects the interior boundary TX more than once, or (2) some line
parallel to LI intersects TY more than once, or (3) some line parallel to IH intersects
TZ more than once.

In applying the geometrical condition, caution should be taken close to the bound-
ary end points (singular points) because the curvature of the boundary may change
dramatically in the neighborhood of a singular point and hence there might exist a
small boundary segment that enables the existence of multiple steady states. For mix-
tures belonging to the 222-m class the geometrical condition cannot be satisfied close
to any binary azeotrope no matter what is the orientation of the boundary. Close to
T, on the other hand, the interior boundaries (as well as the vapor line) are tangent
to the direction of the eigenvector associated with the smallest absolute eigenvalue of
the linearized equation (1) at point T (principal eigendirection). Depending on the
orientation of the principal eigendirection and on the side from which each boundary
approaches T, the geometrical condition may or may not be satisfied. In Figure 3.10,
the geometrical condition is not satisfied for any interior boundary and therefore no

multiplicities exist for packed columns.
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Tray columns: Similarly, for tray columns, we only have to check the aforemen-
tioned simplified geometrical condition for the interior distillation line boundaries
which are shown in Figure 3.11. Points a and b in Figure 3.11 are defined as the
points of TX where the tangent to the boundary is parallel to the LH edge. The
condition is not satisfied for the boundaries TY and T7Z, it is satisfied, however, for
the boundary TX. By applying the geometrical condition in its original form, it is
easy to show that the distillate flowrate decreases along the continuation path for
distillate compositions located on the ab segment of the boundary TX and bottoms
located at any point on the LH edge. Therefore, the set Sg(D) is the edge LH for
any D on ab. Hence, the shaded region in Figure 3.11 depicts the feed composition
region that leads to multiple steady states.

We will next track the whole continuation path (as described above) for a tray
column with the feed composition F shown in Figure 3.12. The feed is homogeneous
and lies in the lower left distillation region where T is the unstable node and H the
stable node. The light component mole fraction in the bottoms z gy, is recorded along
the continuation path. Figure 3.12 also depicts the feasible distillate and bottoms
compositions (D and B) in the composition triangle and Table 3.1 shows the location
of D and B, the distillate flowrate D changes, the light component mole fraction in
the bottoms zp; and the type of the column profile along the continuation path. In
summary, the continuation path goes as follows:

We start with the type I profile with the distillate D at the ternary azeotrope T
and the bottoms B at the feed F. Hence, D = 0 and zpy, = zpr. Then, we track all
type I profiles. The distillate D for all profiles lies on T while the bottoms B lies on
the straight line Fd by the material balance. Along this part of the continuation path
both D and zp; increase.

Next, we track all type III profiles with the distillate D for all profiles on the vapor
boundary TX and the bottoms B on the LH triangle edge. As D moves from T to «,
B moves from d to e and hence zp;, decreases while D increases. It is very simple to
show using the lever material balance rule that D decreases as D moves from a to b.

At this part of the continuation path, B moves from e to f and hence zz; decreases.
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Figure 3.11: Tray columns without decanter: multiplicities for feeds in shaded region.
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Figure 3.12: Tray columns without decanter: the continuation paths for D and B.
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Table 3.1: Information along the continuation path for tray columns without decanter.
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Then, as D moves from b to ¢, B moves from f to H and hence zp; decreases while

D increases. Note, that beyond some point along this last part of the continuation
path, the column profile becomes totally homogeneous (some part of the profile was
in the heterogeneous region before).

Finally, we track all type II profiles. The bottoms B for all profiles lies on H while
the distillate D lies on the straight line cF by the material balance. Along this part of
the continuation path D increases (reaching F' at the end point) while zp; remains
constant zp; = 0. Figure 3.13 shows a sketch of the bifurcation diagram of zg, vs.
the bifurcation parameter D. It is apparent that for some distillate flowrate range,
three steady states exist. Hence, for the mixture under consideration, there exists a

qualitative difference between packed and tray columns.

3.3.1 Tray vs. packed columns

If the residue curve boundaries are straight lines then the corresponding distillation
line boundaries are also straight lines and they coincide with the residue curve bound-

aries. In this case, the study of multiplicities gives identical results for both packed
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Figure 3.13: Bifurcation diagram of the mole fraction of L in the bottoms vs. the
distillate flow for tray columns without decanter.
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and tray columns. This was the case with the homogeneous mixture acetone - hep-
tane - benzene studied in chapter 2 where the edges of the composition triangle were
the only boundaries.

In the case of curved boundaries, however, some discrepancy between the residue
curve and distillation line boundaries is expected. At a first level, this discrepancy
results in some quantitative differences between packed and tray columns, i.e., differ-
ences in the appropriate feed region, the range of distillate flow where multiplicities
exist etc. Because residue curve diagrams are much easier to calculate, it is com-
monly assumed that they provide a good approximation of tray columns as well. In
the previous chapter on homogeneous azeotropic distillation, we used only residue
curve diagrams for the theoretical study of multiplicities while the simulations were
conducted for columns with trays. A very good agreement between the theory and
the simulations was obtained even for residue curve diagrams with highly curved
boundaries where tray column profiles may significantly deviate from residue curves.

The study of the mixture ethanol - water - benzene, however, showed that quali-
tative differences are also possible. Note that qualitatively different results may also
be obtained for homogeneous mixtures. Also note that the curvature of a boundary
is not the only measure of the discrepancy between residue curve and distillation
line boundaries. The local “difficulty” of a separation, the “distance” between a lig-
uid and a vapor composition in equilibrium plays a role, too. The more “difficult”
a separation is, i.e., the smaller is the distance between z and y(z), the smaller is
the difference between the residue curve and distillation line boundaries. It is not
easy, however, to identify the mixtures where qualitative differences occur between
the predictions using the residue curve boundaries and the behavior of tray columns.
This is particularly true for homogeneous mixtures although we are not aware of any
mixture exhibiting such qualitative differences.

Next we show (1) why the difference between the residue curve and distillation
line boundaries can be much more profound for heterogeneous mixtures and (2) how
the VLLE, in particular the vapor line, can give us an indication when to expect

qualitative differences between packed and tray columns. Note that the above state-
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ment is not in conflict with the fact that heterogeneous columns without decanter
and homogeneous columns are treated identically regarding multiplicities.

It was mentioned above that the residue curve diagram of the heterogeneous mix-
ture depicted in Figure 3.10 could also be the residue curve diagram of a homogeneous
mixture belonging to the 222-m class. This is not true, however, for the distillation
line diagram of the same mixture, i.e., Figure 3.11 cannot be the distillation line di-
agram of any homogeneous mixture. In Figure 3.11 both distillation line boundaries
TX and TY lie on the vapor line close to T and they share a common part. Bound-
aries for homogeneous mixtures cannot coincide at some segment and then divert.
This can only happen for mixtures exhibiting two liquid phases and it is due to the
singularity of the VLLE: the vapor compositions in equilibrium with the liquid com-
positions of the two-dimensional two-liquid phase region lie on the one-dimensional
vapor line.

In fact, all distillation lines (not the boundaries only) inside the heterogeneous
region have to coincide with some part of the vapor line. This can be easily shown
using equation (2): consider a tray with liquid composition in the heterogeneous
region; then by (2) the liquid composition of the tray above, as well as of all the
trays on top of that, will lie on the vapor line. Therefore, for heterogeneous mixtures
distillation line boundaries may significantly deviate from the corresponding residue
curve boundaries because they have to follow part of the vapor line. Hence, the vapor
line gives an indication of the geometry of some part of the distillation line boundaries
which can be useful for the prediction of multiplicities of tray columns.

For heterogeneous mixtures similar to ethanol - water - benzene, in particular, it is
very probable that some distillation line boundary will significantly deviate from the
corresponding residue curve boundary because there are 3 residue curve boundaries
running from T to each binary azeotrope and only 2 directions to approach T along
the vapor line. The vapor line in Figure 3.3 lies close to the residue curve boundaries
TY and TZ, but far from the third residue curve boundary TX. Note however that
this i1s not the key feature that leads to multiplicities for tray columns; it is the

geometry of the vapor line and in particular the turn from the left to the right of the
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top end of the vapor line. Figure 3.14 shows the same mixture (Figure 3.3) with a
slightly different vapor line that runs close to TZ and TX. From Z to Q, the vapor
line runs continuously from the right to the left. In this case, it is highly probable
that, similarly to packed columns, no multiplicities exist for tray columns (since parts
of the vapor line coincide with only parts of the distillation line boundaries we cannot

be absolutely sure).

3.3.2 Summary

In this section we studied the co/oo case of packed and tray columns without decanter
for mixtures that may exhibit two liquid phases. We presented the accurate geomet-
rical condition for the existence of multiplicities for the aforementioned cases as well
as for packed and tray homogeneous columns. We discussed the differences between
packed and tray columns, between residue curve and distillation line boundaries and
the role of the vapor line for heterogeneous mixtures. Since residue curve boundaries
are easier to calculate than distillation line boundaries, we derived guidelines on when
it is justified to use residue curve boundaries for the study of multiplicities of tray
columns.

These guidelines are: (1) For homogeneous mixtures: residue curve boundaries
provide a good approximation except when the boundaries are highly curved (al-
though we are not aware of any mixture where the approximation fails). (2) For
heterogeneous mixtures: on one hand, residue curve boundaries inside the two-liquid
phase region may provide a very poor approximation of distillation line boundaries.
On the other hand, the vapor line gives an indication of the geometry of the distilla-
tion line boundaries in the two phase region. Hence, the combination of residue curve
boundaries and the vapor line can be used for the qualitative prediction of multiplic-
ities of tray columns (Figure 3.3 and Figure 3.14). If this prediction is different from
the one for packed columns, then it is suggested that the distillation line boundaries
should be used for detailed results on multiplicities of tray columns.

A final note on the significance of this section. Although a column with decanter
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Figure 3.14: The residue curve boundaries and the vapor line can be used for the
qualitative predictions of multiplicities in tray columns without decanter. For the
mixture shown, the different vapor line suggests that no multiplicities exist for tray

columns without decanter.
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is required for the separation of the mixture ethanol - water - benzene (illustrative
example), there exist other heterogeneous mixtures where a column without decanter
is needed to achieve separation, e.g., ethanol - water - ethyl ether. More importantly,
however, this section’s analysis provides necessary information for the study of the far
more common case of heterogeneous columns with decanter: the location of the fea-
sible compositions of the stream drawn from the top of the column and consequently

the overall composition of the liquid that settles in the decanter.

3.4 Columns with decanter

The existence of two liquid phases in the decanter at the top of a heterogeneous
azeotropic distillation column in the co/oco case adds another parameter to the prob-
lem. The column with the decanter is depicted in Figure 3.15. The overhead vapor
V is fed to a total condenser and the resulting liquid settles in the decanter. The
overall distillate flow is composed of two liquid streams with compositions those of
the two liquid phases in equilibrium. The two stream flows, D; and D,, are the
independent parameters in this case and D = D; + D,. In general, z;, # z, and
zp # zp. Since the column operates at infinite reflux (R/D — oo and V/D — o0)
the compositions of R and V are the same (zr = zy) and hence the residue curve
and distillation line models accurately describe the column profiles of packed and tray
columns with decanter respectively. For specific choices of D; and Dj it is possible
to have z, = zgr = zy and hence columns without decanter are a special case of
columns with decanter. When zy lies outside the heterogeneous liquid region there
is no phase separation in the decanter and hence the column becomes identical to the
column without decanter.

In this framework, the first step will be to locate the feasible overhead vapor V,
distillate D and bottoms B regions for the column with decanter shown in Figure 3.15.
In the case of columns without decanter a feasible column (1) has to belong to one
of the three acceptable column profile types (restriction on the location of B and D)

and (2) D, F and B have to lie in this order on a straight line (material balance).
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Figure 3.15: Column with decanter
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The situation is slightly different for columns with decanter. The material balance
condition is obviously the same, but the condition imposed by the acceptable profile
types restricts the location of B and V, not D. We proceed then as follows: for each
profile type (1) we locate the acceptable V and B (this is just from the definition
of the profile types and hence the feed location is not considered at this stage); (2)
for the acceptable V found, we locate the possible D that can be drawn from the
decanter; (3) the feasible D and B, then, are the pairs of the previously located sets
that satisfy the material balance and finally (4) from the feasible D we can locate
the corresponding feasible V region. We apply the above procedure for the feed F
shown in Figure 3.16 for a packed column. The feed composition is again located at
the lower left distillation region.

We start with the type I profiles. In these profiles, V may only lie at the ternary
azeotrope T while B can be any point in the composition triangle. Since V lies in
the heterogeneous region, the distillate D can be any point on the tie line ab that
goes through T. From the material balance, we find that the feasible B region is the
quadrangle FcLd and the feasible D lies on the tie line ab (aFc and bFd are straight
lines). The feasible regions are shown in Figure 3.16.

Next, the type III profiles. For columns without decanter, it was shown that the
distillate may only lie on an interior boundary (e.g. TX) while the bottoms may only
lie on the corresponding edge of the triangle (e.g. LH). Similarly, for columns with
decanter, V may lie on an interior boundary while B may only lie on the corresponding
edge of the triangle. If V lies on TZ, then B has to lie on IH and the material balance
cannot be satisfied. If V lies on TY (Figure 3.17) then B has to lie on LI and hence
for the material balance to be satisfied the distillate D has to lie somewhere on the
left of the straight line LF. Let f and e be the points where the LF straight line
intersects the heterogeneous liquid boiling envelope and the aTb tie line respectively.
Let g be the point where the tie line from f intersects the boundary TY. Then, the
feasible D lies in the a fea part of the heterogeneous region, the feasible B on the Le
line segment and the feasible V on the ¢T part of the boundary TY.

If V lies on TX (Figure 3.18) then B has to lie on LH and hence for the material



110

Feasible

Y
|
Y I
~
a -—-~ \\\

H - - I

Figure 3.16: The feasible overhead vapor V, distillate D and bottom product B regions
for a packed column with decanter and given feed F in the oo/oc case for type I
profiles.
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Figure 3.17: The feasible overhead vapor V, distillate D and bottom product B regions
for a packed column with decanter and given feed F in the oo/oco case for type III
profiles with V on TY.
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Figure 3.18: The feasible overhead vapor V, distillate D and bottom product B regions
for a packed column with decanter and given feed F in the co/oo case for type III
profiles with V on TX.

balance to be satisfied the distillate D has to lie somewhere on the right of the straight
lines LI and HF. Let h and j be the points where the TX boundary intersects the
heterogeneous envelope and the HF straight line respectively. Let hi be the tie line
from h. If V lies on jh then the feasible D also lies on 7k and the feasible B on Hk
(hFk is a straight line). If V lies on AT then the feasible D lies in the e fhibe part of
the heterogeneous region that is shown shaded in Figure 3.18 and the feasible B lies
on Lk.

Finally, in the type II profiles (Figure 3.19), the bottoms B always lies on H. Then
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Figure 3.19: The feasible overhead vapor V, distillate D and bottom product B regions
for a packed column with decanter and given feed F in the oo/oco case for type II
profiles.

D can only be a point on the straight line F'; by the material balance. Since D lies
in the homogeneous region V also lies on Fj.

Now we put all these pieces together (Figure 3.20): (1) the feasible V region is
the boundary segments Tg and Tj and the straight line jF, (2) the feasible D region
consists of the straight line jF, the boundary segment jh and the abiha part of the
heterogeneous region (shaded in Figure 3.20), (3) the feasible B region consists of
the LH edge, the Lc line and the FdLc quadrangle. Qualitatively similar results are

obtained for tray columns using the distillation line boundaries. Some quantitative
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Feasible

Figure 3.20: The feasible overhead vapor V, distillate D and bottom product B regions
for a packed column with decanter and given feed F in the co/oo case for all acceptable
profiles.

differences are expected because of the different boundary locations while the shape
of the vapor line does not affect the location of the feasible distillate D.

So far we considered both Dy and D, as the system parameters. One can reduce
the system parameters to one by imposing a “policy” on the distillate, for example,
keeping the ratio D;/D; constant. The most common policy used in heterogeneous
azeotropic distillation for columns like the one used for the separation of the mixture
ethanol - water - benzene, is to recover as distillate a portion of the entrainer-poor

phase only (i.e. D,=0) and recycle a mixture of the two liquid phases. Next, this
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Figure 3.21: The distillate and bottoms continuation paths for packed columns with
decanter and D,=0.

policy is studied in detail.

Since D;=0, then D=D, and hence when V lies in the heterogeneous region, the
distillate may only lie on the part of the heterogeneous liquid boiling envelope on the
left of the critical point. Figure 3.21 shows the distillate and bottoms composition
continuation path in the composition triangle when D,=0. The distillate D follows the
line a fhyF and the bottoms B the line FcLkH. The light component mole fraction in
the bottoms z gy, is recorded along the continuation path. Table 3.2 shows the location
of D and B, the distillate flowrate D changes, the light component mole fraction in

the bottoms z g7, and the type of the column profile along the continuation path. It is
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Table 3.2: Information along the continuation path for packed columns with decanter

and D,=0.
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very simple to show using the lever material balance rule that D decreases as D moves

from f to h and accordingly B moves from L to k. Figure 3.22 shows a sketch of the
bifurcation diagram of zpy, vs. the bifurcation parameter D. It is apparent that for
some distillate flowrate range, three steady states exist. Figure 3.23 illustrates three

steady state profiles with the same D.

3.4.1 Geometrical Condition and Feed Region

So far, we demonstrated how to locate the feasible product regions for a given feed
when both D; and D, are used as parameters. We also showed how to locate the
products continuation path in the triangle and how to construct the corresponding
bifurcation diagram using the distillate flow as parameter for a given feed and a given
distillate policy, D;=0. Here, we answer the following questions: Given a residue
curve (or distillation line) diagram and a distillate policy for columns with decanter,
find if multiple steady states exist for some feed compositions and for some distillate

flowrates. Locate the feed compositions that lead to multiplicities. We demonstrate
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Figure 3.22: Bifurcation diagram of the mole fraction of L in the bottoms vs. the
distillate flow for packed columns with decanter and Dy=0.
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Figure 3.23: The three steady state profiles with the same distillate flowrate for

packed columns with decanter and Dy=0.
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these, using the ethanol - water - benzene mixture for a packed column with decanter
and distillate policy Dy=0.

From the discussion above, it is apparent that the key difference between columns
with and without decanter is the location of the distillate continuation path. Once
this path is located, the geometrical condition for the existence of multiplicities can
be directly applied because it only checks if the distillate flowrate decreases along the
continuation path. The information required in this case is the residue curve bound-
aries and the VLLE, heterogeneous envelope and tie lines, as shown in Figure 3.24.
In the section of columns without decanter we located the distillate and bottoms
compositions for which the multiplicity condition should be checked based solely on
the knowledge of how column profiles look like in the co/oco case. Therefore, these are
also the locations of V (the overhead vapor stream) and B for columns with decanter.
Hence, we only have to check the geometrical condition for V lying on an interior
boundary and B lying on the corresponding binary edge of the triangle.

Next, we locate the distillate D when V lies on the interior boundaries under the
distillate policy D;=0. If V lies on TZ then D lies on aU. Let h and [ be the points
where the heterogeneous envelope intersects the boundaries TX and TY respectively.
If V lies on TX then D lies on ahX while if V lies on TY, D lies on aklY (Figure 3.24).
Now the geometrical condition can be applied for the following distillate - bottoms
locations: ahX - LH, ahlY - LI, aU - HI. Since the bottoms in all pairs lies on a
triangle edge (similarly to columns without decanter), the geometrical condition can
be simplified to the following : For the existence of multiple steady states it is required
that (1) some line parallel to the LH edge intersects the distillate route ahX more
than once, or (2) some line parallel to LI intersects ahlY more than once, or (3) some
line parallel to HI intersects aU more than once.

The conditions (2) and (3) are not satisfied. Condition (1) is satisfied, however,
between a and k. By applying the geometrical condition in its original form, it is easy
to show that the distillate flowrate decreases along the continuation path for distillate
compositions located on the ah segment of the distillate route and bottoms located

at any point on the LH edge. Therefore, the set Sp(D) is the edge LH for any D on
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Figure 3.24: The information required to apply the geometrical condition and the
feed composition region (shaded) that leads to multiplicities for packed columns with
decanter and D,=0.
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ah. Hence, the shaded region in Figure 3.24 depicts the feed composition region that

leads to multiple steady states.

3.5 Special Topics

Reboiler and other condenser types

Reboiler: In the previous analysis, as well as in chapter 2, we assumed that the bot-
tom product composition is equal to the composition of the lower end of the column
profile. This is exactly correct if a total* or a thermosyphon' reboiler is used. In this
case, the reboiler does not provide any additional enrichment. However, the typical
reboiler type used in practice, i.e., the partial reboiler shown in Figure 3.25, is equiv-
alent to an additional equilibrium stage. This does not affect at all the description of
tray columns since the reboiler composition is just another point on the distillation
line the column profile follows (Figure 3.25).

It is not exactly correct, however, in the general case of packed columns since the
composition of the reboiler may not lie on the residue curve that the profile follows
(Figure 3.25). Instead, the liquid leaving the reboiler is in equilibrium with the
leaving vapor whose composition is equal to the one of the lower end of the packed
column profile (by the material balance in the co/oco case). Therefore, for packed
columns with a partial reboiler, the bottom product composition zg is defined by
the equilibrium relationship y(2g) = Zjpwer_ena- 1he effect of the use of a partial
reboiler (instead of a total reboiler) on the study of multiplicities of packed columns
is summarized in the following.

The use of partial or total reboiler has no impact on type II column profiles. In

both cases, the bottom product composition is that of a stable node and both column

*By total reboiler we mean the equivalent of the total condenser, i.e., a unit that boils the whole
amount of liquid exiting the lower end of the column; the bottoms product is some portion of the
vapor formed in the reboiler.

"The bottoms product of the thermosyphon reboiler is some portion of the liquid exiting the
lower end of the column. The remaining amount of liquid exiting the lower end of the column is
boiled and returned to the column as boilup. The thermosyphon reboiler is identical to the total
reboiler in terms of input-output stream compositions.
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at infinite reflux:

Yieb = y(xreb) Xlower_end = Yreb

glower«end

------------- distillation line -=-nn------. distillation line
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tray columns packed columns

Figure 3.25: The effect of the use of a typical, partial reboiler on the bottom product
composition for tray and packed columns.
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Figure 3.26: The effect of the use of a typical, partial reboiler on type I profiles of
packed columns.

-

profiles are identical, i.e., they follow the same residue curve, for the same distillate
flowrate. In type I column profiles, the feasible bottom product compositions lie on
the straight line that goes through the feed F and the unstable node (Figure 3.26)
independent of the reboiler type. Hence, the reboiler type does not affect the part
of the product continuation path that corresponds to type I profiles. The profiles,
however, of columns with the same B but different reboilers are different, i.e., they
follow different residue curves, as is shown in Figure 3.26.

The use of a partial reboiler may have a significant effect on the feasible products
only for type III column profiles. This effect is illustrated in Figure 3.27. In this

figure, the top profile end lies on LX and the lower profile end lies on the residue
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Figure 3.27: The effect of the use of a typical, partial reboiler on the bottom product
composition of type III profiles of packed columns.

curve boundary XH (plain line). The curved dashed XH line is the location of the
liquid compositions whose vapor in equilibrium lies on the residue curve boundary
XH. If a total reboiler is used then the bottoms product composition is equal to the
profile lower end composition and therefore B lies on the residue curve boundary XH.
This is the case we studied in the analysis of multiplicities in the previous sections. If
a partial reboiler is used, however, B will lie on the curved dashed XH line. This is the
case when the use of a partial reboiler affects quantitatively and possibly qualitatively
the existence of multiplicities.

Note, however, that in the special case of type III column profiles with the profile

lower end lying on a straight line residue curve boundary (or a binary edge), B lies
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on the boundary (or edge) regardless of the reboiler type. In this case, the plain and
dashed lines of Figure 3.27 are identical. This is the case with the mixture ethanol
- water - benzene. For this mixture, we have shown above that the type III profile
lower ends (or equivalently the bottoms product B for columns with total reboiler)
cannot lie on an interior residue curve boundary; they can only lie on a binary triangle
edge. Therefore, for the ethanol - water - benzene mixture type, the use of the partial
reboiler does not affect at all the multiplicity results derived above for columns with
a total reboiler.

Condenser: In addition, all our analysis was made for columns with a total
condenser. We can study other condenser types in a way similar to the above study
of columns with different reboiler types. For example one can consider using a partial
condenser and recovering as distillate only the vapor from the partial condenser.
This situation is equivalent to the previous case of the partial reboiler. No difference
for tray columns is expected since the partial condenser vapor composition, i.e., the
distillate D, lies on the distillation line the column profile follows.

In packed columns, however, the distillate D may not lie on the residue curve the
profile follows. Again, the condenser type does not affect the product continuation
path that corresponds to type I and II profiles. It may have a significant effect on
the feasible products only for type III column profiles. In this case, the distillate
composition zp is defined by the equilibrium relationship 2p = y(Zypper_ena)- Since
Zypper _end 10T type III column profiles lies on residue curve boundaries, the distillate D
will lie on the lines of vapor compositions in equilibrium with liquid compositions on
the residue curve boundaries. Therefore, one has to calculate these lines for accurately
describing packed columns with a partial condenser. These lines are depicted dashed
in Figure 3.28 for the mixture ethanol - water - benzene.

Note that these dashed lines lie between the residue curve boundary and the
corresponding distillation line boundary and that similarly to the distillation line
boundaries, the dashed lines in Figure 3.28 coincide with some part of the vapor
line in the heterogeneous region. This is why the dashed lines look similar to the

distillation line boundaries although they do not generally coincide with them (unless
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Figure 3.28: The effect of the use of a partial condenser on the feasible distillate
product composition of type III profiles of packed columns without decanter.
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the whole boundary lies in the heterogeneous region). By applying the multiplicity
condition when D lies on the dashed lines (packed columns using a partial condenser
and recovering as distillate only the vapor from the partial condenser) we conclude
that multiplicities do exist. In the previous sections a unique steady state was found
for packed columns with a total condenser. Therefore, for the mixture ethanol - water
- benzene and for packed columns without decanter we conclude that the existence
of multiplicities depends critically on the condenser type.

Recovering portions of both the liquid and the vapor phase as distillate, makes the
situation similar to the previous study of columns with decanter since it adds another
parameter to the problem (the liquid to vapor flow ratio recovered as distillate). For
tray columns, D will lie on the approzimate distillation line while for packed columns,
D will lie between the residue curve boundary and the corresponding curve (dashed
line in Figure 3.28) of vapor compositions in equilibrium with liquid compositions on
the residue curve boundary. For columns with decanter, the combination of a partial
condenser and a decanter can also be studied in a similar way.

Another situation very commonly encountered in practice is the use of a subcooled
condenser in columns with decanter. In the co/oo case, using a subcooled condenser
does not affect the column profile. The only difference would be the use of the
binodal curve at the temperature and pressure of the subcooled condenser (instead
of the heterogeneous liquid boiling envelope used for the total condenser) to locate
the distillate composition.

The examples above show that one can easily study the existence of multiplicities
for many combinations of reboiler and condenser types with or without decanter; it
only requires to locate the feasible product curves or regions for the various alterna-

tives based on the ideas described above.

Tray efficiency

So far, we considered tray columns with a tray efficiency of 1. We also considered
packed columns which can be regarded as tray columns with an infinitesimal tray

efficiency e (e — 0). It is apparent that columns with tray efficiency 0 < 5 < 1, would
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“lie” somewhere in between. In fact, the corresponding distillation region boundaries
would really lie between the residue curve and distillation line boundaries. Note that
the fact that distillation lines coincide with the vapor line close to T is true only if
n = 1. For the illustrative example studied for columns without decanter, there exists
a tray efficiency value n* such that multiplicities exist only if > n*. For columns

with decanter, however, only quantitative differences are expected.

A degenerate multiplicity

In chapter 2 we showed that in the co/co case of homogeneous azeotropic distillation
there exists a different, degenerate, type of multiplicity consisting of an infinite num-
ber of profiles with the same product compositions for a specific distillate flowrate.
Apparently, this is not an output multiplicity; it is a case of state multiplicity, i.e.,
multiple steady states with the same feed and product compositions and flowrates
but with different composition profiles. This type of multiplicity occurs for feeds
located on the straight line connecting the unstable node with the stable node of a
distillation region and for the specific distillate flowrate that places the distillate at
the unstable node and the bottoms at the stable node. This is because there is an
infinite number of residue curves running from the unstable node to the stable node.
More specifically, for a mixture belonging in the 222-m class, this type of multiplicity
occurs when D is located at the ternary azeotrope T and B at a pure component
corner. The column type, packed or tray, is irrelevant for homogeneous mixtures.
The case of heterogeneous mixtures and packed columns without decanter is iden-
tical with the homogeneous case, i.e., the degenerate type of multiplicity occurs for
feeds located on the straight line segments TL, TI and TH. For tray columns without
decanter, however, there is a difference because a part of every distillation line (suf-
ficiently close to T) coincides with some part of the vapor line (Figure 3.4). Hence,
there is an infinite number of distillation lines that connect a point on the vapor line
with a pure component corner (Figure 3.29). Note that the above does not affect the
characteristics of this degenerate multiplicity; it only affects the feed region for which

this degenerate type of multiplicity occurs. For tray columns, the feed region, instead
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Figure 3.29: The region of feed compositions that lead to the degenerate type of
multiplicity for tray columns without decanter.

of being three one-dimensional lines, is the union of the three areas enclosed by the
part of the vapor line in each distillation region and the corresponding pure compo-
nent vertex i.e., it is a two-dimensional region (shaded region in Figure 3.29). Note
however that this two-dimensional feed region is not generic because the distillation
lines do not coincide with the vapor line for columns with tray efficiency n < 1. For
these columns the degenerate multiplicities occur for the feeds described above for
packed columns.

The situation is different for columns with decanter and distillate policy D,=0. If

the bottoms is located at a stable node and the distillate D on the left part UC of
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the heterogeneous envelope (D = Dy), then there exists an infinite number of profiles
whose bottoms is the stable node and their other end, V, is located on the tie line
from D. This is true for both tray and packed columns. Figure 3.30 illustrates the
degenerate type of multiplicity by depicting five different tray column profiles with
identical B and D. The overhead vapor V lies on the tie line from D. The composition
of the liquid at the top tray is different for all five profiles. The overhead vapor V,
however, is the same for the three profiles on the right because the corresponding
top tray liquid compositions lie on the tie line in equilibrium with the vapor with
composition the point where the tie line from D and the vapor line intersect. Note,
however, that the latter phenomenon, infinite number of different column profiles
with the same D, B and V, occurs only for tray columns with tray efficiency equal 1.

Hence, the degenerate type of multiplicity for columns with decanter occurs for
feeds located in the union of the three areas enclosed by each one of the three pure
component vertices and the corresponding part of UC that D may lie on (L-al, [-UC,
H-UR). This region is shown shaded in Figure 3.31. In this case, contrary to the case
of tray columns without decanter, the existence of the two-dimensional feed region
is generic and more specifically, independent of the tray efficiency 5. This difference
may help the study of the degenerate multiplicities since in the previous cases the
feed had to exactly lie on a straight line that cannot be very accurately located.
Another slight difference with the case of columns without decanter is that although
the product compositions are the same for all the infinite number of profiles, the
location of V maybe different. As it was shown before, V is the same only in some
profiles of tray columns with tray efliciency equal 1.

Another important point for some future investigation of this degenerate type
of multiplicity is that for the feed shown in Figure 3.21 the continuation of profiles
should go through this infinity of profiles. The reason is very simple. In Figure 3.21
if B is located close to L on Le, then the profile runs along the TYL boundary like
profile 1 does in Figure 3.23. If B is located close to L on Lk, the profile runs along the
TXL boundary (similarly to profile 2 in Figure 3.23). Therefore, when B is located
at L and D at f (Figure 3.21) the profile should move from the TYL boundary to
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Figure 3.30: Five different column profiles with identical B and D (degenerate multi-
plicity) for a tray column with decanter and D,=0.
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Figure 3.31: The region of feed compositions that lead to the degenerate type of
multiplicity for tray columns with decanter and D,=0.
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the TXL boundary, i.e., it will scan the infinite number of profiles of the degenerate
type of multiplicity. This phenomenon occurs for packed as well as tray columns with
decanter and arbitrary tray efficiency.

This type of multiplicity (infinite number of profiles with the same product com-
positions for a specific distillate flowrate) may be similar to those reported by Kienle
and Marquardt (1991) and Helfferich (1993)*.  The practical implications of the
degenerate type of multiplicity reported here are unclear i.e., we don’t know whether
(1) these multiplicities are an artifact of the co/oo case and therefore do not exist for
finite columns at finite reflux or (2) some finite number of multiple steady states still
exist for finite columns at finite reflux. Hence, a more thorough investigation of this

topic 1s needed.

Distillate policies - Discontinuity

In our study of columns with decanter we discussed the commonly used distillate
policy D,=0. One can define another policy by tracing an arbitrary path of D in the
heterogeneous shaded region in Figure 3.20. For example, suppose that the distillate
D follows the Th path along the TX boundary; the path Tk defines a distillate policy
that makes the column with decanter equivalent to the column without decanter. It
is apparent that since the paths are defined arbitrarily, one can easily draw paths that
would exhibit an arbitrary number of steady states. For example, for the feed shown
in Figure 3.20, it is easy to show that if some vertical line (parallel to the LH edge)
intersects the distillate path more than once then multiplicities exist. Moreover, the
larger the number of the intersection points, the larger the number of the multiple
steady states. Therefore, if the distillate follows a continuous-S-shaped path along a
vertical line, the column will exhibit a number of steady states proportional to the
number of the path S’s.

We have shown that in the co/oco case of columns with decanter there exist two

"Kienle and Marquardt (1991) and Helfferich (1993) investigated multiplicities in single column
sections. Helfferich (1993) argues that these types of multiplicities disappear in practice {finite
length column sections with finite mass-transfer rates). The implications of those multiplicities for
complete distillation columns are unclear.
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parameters yet to be specified: Dy and D, or equivalently the distillate flowrate D
and the ratio D;/D. For the feed shown in Figure 3.20, we now want to draw the
3-D surface which depicts the light component mole fraction in the bottoms xg; as
a function of both the distillate flowrate D and the ratio Dy /D (bifurcation diagram
with two bifurcation parameters). We derive this 3-D diagram by sketching the “cuts”
of the surface for several distillate policies with constant ratio D;/D, i.e., we draw the
bifurcation diagrams with the distillate flowrate D as the only bifurcation parameter
while the ratio Dy /D is fixed. We focus on the part of the bifurcation diagrams which
corresponds to heterogeneous profiles.

If D1/D=1 (i.e. D,;=0) we obtain the bifurcation diagram of Figure 3.22 which
we place in Figure 3.32 at the Dy /D=1 plane. The line abc (Figure 3.32) corresponds
to heterogeneous profiles. Along ab, zp; and D monotonically increase and along bc,
they both decrease. Point b marks the point of the highest zp; achieved and point
¢ denotes the end of the heterogeneous part of the bifurcation diagram. The points
b and ¢’ are the projections of b and c on the plane zg;, = 0. Two heterogeneous
steady states exist for distillate flowrates between ¢’ and ¥'.

If D;/D=0, it is easy to show that D will move on the b part of the heterogeneous
envelope (Figure 3.20). The line def of Figure 3.32 sketches the heterogeneous part of
the bifurcation diagram of columns with distillate policy D, /D=0. Along de, zgy and
D increase and along ef, gy, decreases while D still increases. The distillate flowrate
D is monotonically increasing along de f and therefore, a unique heterogeneous steady
state exists for columns with distillate policy D;/D=0.

Using similar arguments we sketch the other two “cuts” in Figure 3.32 which show
bifurcation diagrams for constant D;/D. Now it is easy to draw the whole surface
which is shown in Figure 3.32. The line be is the set of points of the highest zp;,
achieved for every fixed D;/D. The line ¢f is the end of the heterogeneous part
of the bifurcation diagram for every fixed D;/D. The lines ¥'¢’ and c¢'f’ are the
projections of be and ¢f on the plane zg; = 0.

We can distinguish two parts of the surface shown in Figure 3.32. The surface

abeda is formed by the part of the “cuts” with constant D;/D where zp; and D
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Figure 3.32: The mole fraction of L in the bottoms vs. the distillate flow and the
ratio Dy /D for packed columns with decanter. Numbers in italics: the number of
heterogeneous steady states in the D - D,/D parameter space.
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monotonically increase until gy reaches its highest value. The second part of the
surface, bcfeb, is formed by the part of the “cuts” of constant D;/D where zpy,
monotonically decreases beyond the point of the highest zp; value. The dark-shaded
(light-shaded resp.) portion of bcfeb depicts the part of the “cuts” of constant Dy /D
where the distillate flowrate D decreases (increases resp.). For simplicity, one may
consider the dark-shaded part of the surface bcfeb as the portion of bcfeb that lies
under the surface abeda, although this is not exactly correct.

It is apparent that the projection of the dark-shaded portion of the surface befebon
the plane gy, = 0 marks the parameter space region where two heterogeneous steady
states exist. The region ¢'b'gc’ in Figure 3.32 depicts the approximate parameter space
region of two heterogeneous steady states. Figure 3.32 also shows that if Dy /D is less
than some value r, a unique heterogeneous steady state exists. Any arbitrary path of
D in Figure 3.20 will correspond to a different “cut” of the surface in Figure 3.32 and
depending on the shape of the “cut,” to a different number of multiple steady states.

Also note that the kF part of the bifurcation diagram of Figure 3.22 that corre-
sponds to homogeneous profiles is placed at the D;/D=1 plane in Figure 3.32 (ch
line). This is obviously its “natural” location by continuity (point A of Figure 3.20
belongs to the phase 1 part of the heterogeneous boiling envelope). Any other con-
stant D;/D distillate policy exhibits a discontinuity at the point where the profile
along the continuation path becomes homogeneous. For example, if D;/D=0 the bi-
furcation diagram consists of the lines de f (heterogeneous part) and ch (homogeneous
part) of Figure 3.32 and apparently it exhibits a discontinuity (jump from f to ¢). A
very important factor for the presence or absence of discontinuities in the bifurcation
diagrams is the location of the critical point C. If C were located to the left of point
h in Figure 3.21 (D2=0), a discontinuity would occur between points C and %, i.e.,
the distillate would not be allowed to lie on Ch under the distillate policy D;=0 since
Ch would correspond to phase 2. In addition, the changed orientation of the tie lines
would give different feasible product regions in Figure 3.20.

In the case of columns without decanter, similarly as the homogeneous case, there

is no discontinuity along the continuation path and therefore, multiple steady states
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exist if and only if the distillate flowrate decreases along some part of the continua-
tion path. In the case of columns with decanter and a given distillate policy, however,
we just showed that discontinuity is possible at the transition from heterogeneous
to homogeneous profiles. Therefore, in this case, in addition to the aforementioned
multiplicity condition, one has to check the distillate flowrate ranges of the hetero-
geneous and homogeneous branches of the continuation path for possible distillate

flowrate overlap and consequently multiplicity.

3.6 Finite Reflux and Finite Number of Trays

The oo/oo case is the limiting case of high reflux and a large number of trays. There-
fore, if the geometrical condition is satisfied for a given mixture then multiplicities
will exist for some sufficiently large finite reflux and finite number of trays. However,
the inverse is not true, i.e., there may be mixtures that exhibit multiple steady states
in finite columns but these multiplicities do not exist in columns operating at the
oo/oo conditions. Therefore, the geometrical condition is only a sufficient condition
for the existence of multiplicities when the reflux and the number of trays are finite.

At infinite reflux, the column profiles coincide with residue curves or distillation
lines. This is not true at finite reflux. Moreover, column profiles at finite reflux
depend on the location and the number of the feed streams. Therefore, the residue
curve and distillation line diagrams do not provide an accurate description of columns
at finite reflux and with a finite number of trays.

In this section, we present steady state bifurcation results for the mixture ethanol
(L) - water (H) - benzene (I-E) with the distillate flow D as the bifurcation parameter.
These bifurcation results show (1) that the predictions for the existence of multiple
steady states in the oo/oo case carry over to columns operating at finite reflux and
with a finite number of trays and (2) that, although the predictions were made in
the co/oo case, it does not mean that multiple steady states do not exist for realistic
operating conditions (low reflux and number of trays).

In all simulations presented here, we use a tray column with a total condenser
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while the reboiler constitutes an additional equilibrium stage (partial reboiler). Con-
stant molar overflow and a tray efficiency of 1 are assumed. Finally, the column
operates under atmospheric pressure and there is no pressure drop in the column.
The thermodynamic model described in the preliminaries of this chapter is used for
the VLLE calculations. The tray counting starts from the reboiler (number 1) and
ends at the top. The bifurcation calculations were conducted with AUTO, a soft-
ware package developed by Doedel (1986). In the following, we present steady state
bifurcation results for two columns, one without decanter and one with decanter.

Column without decanter:

The column characteristics are depicted in Figure 3.33 and they are similar to the
column studied by Magnussen et al. (1979). The column has 27 ideal stages (including
the reboiler). The reflux flow is fixed at R=345.157. A mixture of 89% ethanol and
11% water, is fed at stage 23 (Fy). It is assumed that the distillate D of the column in
Figure 3.33 is fed to a decanter (not included in the model); the benzene-rich phase
from the decanter is returned to the column. Since the decanter is not included in
the model, a second stream (IF;) is fed at the top of the column (Figure 3.33) to
compensate for the returned benzene-rich phase from the decanter and the benzene
make-up stream. The flowrate and composition of the second feed F, are the same
as the one Magnussen et al. (1979) specified “according to experimentally observed
liquid-liquid equilibria.” The location of the overall feed (F=F;+F;) composition in
the composition triangle is similar to the one illustrated in Figure 3.12. Therefore,
Figure 3.13 illustrates the predicted oo/oo case bifurcation diagram for the column
in Figure 3.33.

Moreover, in the co/oo case, the distillate flowrate range where three steady states
exist can be predicted. For the overall feed F of this example, this is done by calculat-
ing the distillate flowrates corresponding to points f and e of Figure 3.13, or equiv-
alently, the distillate flowrates of columns with distillate compositions D at points
a and b of Figure 3.12. The latter can be easily calculated using the lever rule for
material balances, the known overall feed composition F and the location of points

a and b (Figure 3.12). Note that, in locating the points a and b in the composition
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Fz =100.00 F2 = 45.32
Ethanol (L) 89.00 9.90
Benzene (I) 0.00 33.62
Water (H) 11.00 1.80
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Figure 3.33: The column without decanter used in the numerical continuation calcu-

lations.
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triangle, the actual, computed distillation line diagram (Figure 3.6) should be used,
not the illustration (Figure 3.12). Using the lever rule for material balances it can be
shown that for the overall feed F of this example, the distillate flowrates of columns
with D at points @ and b are equal to the benzene feed flow (F7=33.62) divided by
the benzene mole fraction at points a and b respectively. Using the actual, computed
distillation line diagram, the benzene composition was found to be equal to 0.52793
at point @ and 0.52935 at point b. Therefore, it is predicted that in the co/oco case,
three steady states exist for distillate flows between 63.51 and 63.68.

Figure 3.34 shows the computed bifurcation diagram with the distillate flow as
the bifurcation parameter for the column in Figure 3.33. A unique stable steady state
exists for low D. D increases until the continuation algorithm reaches the first limit
point. Beyond that point an unstable steady state is calculated (dashed curve). Along
this part of the continuation path zp; decreases while D decreases until the second
limit point is encountered. Beyond the second limit point, D increases again and a
second stable steady state is calculated. Hence, two stable and one unstable steady
states exist for distillate flows between the two limit points (multiplicity region); a
unique stable steady state exists otherwise. Note the similarity of this continuation
path with the continuation path we tracked in the oco/oco case (Figure 3.13) and of
the computed multiplicity region (D between 63.06 and 63.68) and the predicted one.
Some discrepancy from the oo/oco case prediction is expected. Finally, note that,
although those multiple steady states were predicted at infinite reflux, they still exist
at low reflux values (R/F =2.4).

Column with decanter:

The column characteristics are depicted in Figure 3.35. The column has 27 ideal
stages (including the reboiler). The reflux flow is fixed at R=508.369. A mixture of
89% ethanol and 11% water, is fed at stage 23 (F;). In this case, the second feed
(F2) at the top of the column is the benzene make-up stream. The location of the
overall feed (F=F;+F;) composition in the composition triangle is similar to the one
illustrated in Figure 3.21 and hence, Figure 3.22 illustrates the predicted oo/oco case

bifurcation diagram for the column in Figure 3.35 with the exception that the mole
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Figure 3.34: Bifurcation diagram with the distillate flow as the bifurcation parameter
for the column without decanter.
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fraction of ethanol at point k of Figure 3.22 is larger than zpy,.

Again, in the co/co case, the distillate flowrate range where three steady states
exist can be predicted. For the overall feed F of this example, this is done by calcu-
lating the distillate flowrates of columns with distillate compositions D at points f
and h of Figure 3.21. These can be easily calculated using the lever rule for material
balances, the known overall feed composition F and the location of points f and A
(Figure 3.21). Again, in locating the points f and h in the composition triangle,
the actual, computed distillation line diagram (Figure 3.6) should be used, not the
illustration (Figure 3.21). Using the lever rule for material balances it can be shown
that for the overall feed F of this example, the distillate flowrates of columns with
D at points f and h are equal to the benzene feed flow (F7=1.962) divided by the
benzene mole fraction at points f and h respectively. Using the actual, computed
distillation line diagram, the benzene composition was found to be equal to 0.08038
at point f and 0.47067 at point h. Therefore, it is predicted that in the co/oo case,
three steady states exist for distillate flows between 4.17 and 24.41.

Figure 3.36 shows the computed bifurcation diagram with the distillate flow as the
bifurcation parameter for the column in Figure 3.35. A unique stable heterogeneous
steady state exists for low D. D increases until the continuation algorithm reaches
the first limit point. Beyond that point an unstable heterogeneous steady state is
calculated (dashed curve). The distillate flow D decreases along the unstable part
of the continuation path until the second limit point is encountered. Note that it is
purely coincidental that the second limit point appears to be on the heterogeneous
stable part of the continuation path (it does not because the other component mole
fractions are different). Beyond the second limit point, D increases again and a second
stable, but homogeneous, steady state is calculated. Hence, two stable (one hetero-
geneous and one homogeneous) and one unstable (heterogeneous) steady states exist
for distillate flows between the two limit points; a unique stable steady state exists
otherwise. Again, note the similarity of this continuation path with the continuation
path we tracked in the co/oco case (Figure 3.22) and of the computed multiplicity

region (D between 4.23 and 24.41) and the predicted one. Some discrepancy from
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Figure 3.35: The column with decanter used in the numerical continuation calcula-
tions.
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Figure 3.36: Bifurcation diagram with the distillate flow as the bifurcation parameter
for the column with decanter.
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the co/oco case prediction is expected.

3.7 Conclusions

In this chapter we examine in detail the existence of multiple steady states in the
oo/oo case of a ternary mixture. More specifically, we answer the following questions:
Given a ternary (homogeneous or heterogeneous) mixture and its VL(L)E diagram

(residue curve diagram for packed columns, distillation line diagram for tray columns),
(1) find whether multiple steady states exist for some feed composition and
(2) locate the feed composition region that leads to these multiple steady states.

The existence of multiplicities (question 1) can be checked by the procedure de-
picted in Figure 3.37 which is summarized in the following:

Locate the singular points (pure components and azeotropes) in the VL(L)E di-
agram. Locate the m distillation regions. In every distillation region containing k
singular points, there is one unstable node, one stable node and k-2 saddles. For each
region there exist two routes which go from the unstable node to the stable node
along the region boundaries (a total of 2m routes).

For each route, mark the n singular points along the route as follows: point 1,
the unstable node; points 2 to n-1, the saddles; point n, the stable node. The only
eligible column profile lower end compositions along this route lie on the part between
points 2 and n. This is the profile lower end route. Accordingly, the eligible column
profile upper end (overhead vapor) lies on the part of the route between points 1 and
n-1. This is the profile upper end route. These two routes define the locations of the
upper and lower end column profile compositions for which the geometrical condition
should be checked (type III column profiles).

Note, however, that the geometrical condition directly involves the distillate and
bottom product routes which may be different from the profile upper and lower end
routes depending on the type of the equipment used at the column ends (condenser,

reboiler, decanter). In this chapter, we show how the distillate and bottoms routes



146
(associated with a given pair of upper and lower profile end routes) can be located
for any equipment combination. Tables 3.3a and 3.3b show how the distillate and
bottom product routes are related to the profile upper and lower end routes for some
equipment types and for tray and packed columns respectively.

Finally, we define the continuation path (and its direction) as the path generating
all possible column profiles starting from the profile with D=0 and ending at the
profile with D=F. Multiple steady states occur when D decreases along this path.
This can be checked by the following condition:

Geometrical, necessary and sufficient multiplicity condition: Pick a dis-
tillate D and a bottom product B, both located on some pair of distillate and bottoms
product routes and such that (1) the line segment D'B’ crosses the line segment DB
(to ensure that there exists a feed composition associated with both profiles) and (2)
the column profile that runs from D to B along the distillation region boundaries
contains at least one saddle singular point (type III column profile). Now pick D’ and
B’ sufficiently close to D and B respectively and such that the column profile from D’
to B’ is a “later” profile along the continuation path. For the existence of multiple
steady states it is required that: As we move along the continuation path from D to
D’ and accordingly from B to B’, the line that passes from D and is parallel to BB’
crosses the D'B’ line segment.

Finally, for columns with decanter and a given distillate policy, we show that dis-
continuity is possible at the transition from heterogeneous to homogeneous profiles
along the continuation path. In this case, in addition to the aforementioned geomet-
rical condition, one has to check the distillate flowrate ranges of the heterogeneous
and homogeneous branches of the continuation path for possible distillate flowrate
overlap and consequently multiplicity.

The condition for the appropriate feed region (question 2) is summarized in the
following:

Appropriate feed region condition: Pick a distillate D. Find the set of all bot-
tom products such that the geometrical condition is satisfied for the picked D. Name

this set Sp(D). Note that Sp(D) is always part of a distillation region boundary and
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distillation line diagram (tray columns)
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- distillation region boundaries
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y

Locate the 2m unstable to stable node routes

l

Locate the 2m pairs of upper and lower profile end routes

i

Locate the 2m pairs of distillate and bottom product routes
based on the type of the equipment used at the top and the
bottom of the column (condenser, reboiler, decanter)

:

For each pair of distillate and bottom product routes
apply the geometrical condition.

Figure 3.37: The general procedure for checking the existence of multiple steady
states in the co/oo case of any ternary mixture.
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denser/reboiler/decanter). a. tray columns b. packed columns.

a. Tray columns (tray efficiency=1)

Total Reboiler

Partial Reboiler
B = liquid

B route = lower end route

Total Condenser

Partial Condenser

D route = upper end route

D = vapor
D route composed of:
gOtfﬁ (or Subcooled) | the homogeneous part of the upper end route &
&OB ens:r ‘th - the part of the 1st phase of the heterogeneous
i ec:gl EB wi liquid boiling envelope (or binodal curve)
policy Lo= that can be obtained from the phase split of the

heterogeneous part of the upper end route

b. Packed columns (= tray columns w/ tray efficiency — 0)

Total Reboiler B route = lower end route
Partial Reboiler B route = line of liquid compositions in equilibrium
B = liquid with vapor compositions on the lower end route

Total Condenser

D route = upper end route

Partial Condenser
D = vapor

D route = line of vapor compositions in equilibrium
with liquid compositions on the upper end route

Total (or Subcooled)
Condenser

& Decanter with
policy D 2:0

D route composed of:

- the homogeneous part of the upper end route &
- the part of the 1st phase of the heterogeneous
liquid boiling envelope (or binodal curve)

that can be obtained from the phase split of the
heterogeneous part of the upper end route
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that in some rare cases, Sp(D) may contain an inflexion point and/or it may consist
of more than one non-connected boundary segments. Draw the straight line segments
connecting D with the end points of each boundary segment that belongs to Sg(D).
For the chosen D, the appropriate feed composition is the union of the areas enclosed
by each boundary segment that belongs to Sg(D) and the corresponding straight line
segments connecting D with the end points of the boundary segment of Sg(D). Pick
another distillate D and repeat. In general, for each distillate D there exists a dif-
ferent set of bottoms compositions, Sg(D), that satisfies the geometrical condition.
Therefore, for any given mixture, the feed compositions that lead to multiplicities
lie in the union of all the areas enclosed by each boundary segment that belongs to
some Sp(D) and the corresponding straight line segments connecting the distillate D
associated to Sg(D) with the end points of the boundary segment of Sg(D).

The procedures and conditions described above constitute the fully detailed, accu-
rate and totally general answers to the questions about the existence of multiplicities
and the feed compositions that lead to these multiplicities in the 0o/co case. Given
a mixture and its VL(L)E diagram, we show via an illustrative example how the spe-
cific VL(L)E diagram structural information can be used to simplify these conditions
(unavoidably by reducing the degree of generality) to some very simple tests. We
also discuss the differences between packed and tray columns, between residue curve
and distillation line diagrams, the effect of tray efficiency as well as the role of the
vapor line for heterogeneous mixtures. Since residue curve boundaries are easier to
calculate than distillation line boundaries, we derive guidelines on when it is justified
to use residue curve boundaries for the study of multiplicities of tray columns (at the
expense of less quantitative accuracy).

As an illustrative example throughout this chapter we use the mixture ethanol -
water - benzene. For this mixture and the specific VL(L)E model and parameters
used, we derive the following conclusions regarding multiplicities in the co/oo case
solely based on (1) the residue curve boundaries, the heterogeneous region envelope,
the distillation line boundaries and the line of vapor compositions in equilibrium with

liquid compositions on the residue curve boundaries, if accurate quantitative results
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are needed, or (2) the residue curve boundaries, the heterogeneous region envelope
and the vapor line, if somewhat less accurate quantitative results are sufficient.

Columns without decanter: In this case, we identify that the existence of
multiplicities critically depends on the location of the distillate path away from the
binary edges and more specifically in the heterogeneous region. We show that the
location of the vapor line is very crucial in this case. We further show that the reboiler
type has absolutely no effect on the existence of multiplicities for this particular
mixture class.

For tray columns with tray efficiency 1, we conclude that multiplicities exist re-
gardless of the condenser type. For packed columns, multiplicities exist if a partial
condenser is used and the distillate product consists of the vapor phase only. A unique
steady state exists, however, for packed columns with a total condenser. Finally, for
tray columns with a total condenser, we conclude that there exists a tray efficiency
value 7* such that multiple steady states exist only if n > *.

Columns with decanter: We show that the existence of multiplicities depends
on the distillate policy. The most common distillate policy for this mixture, i.e.,
recovering as distillate a portion of the entrainer-poor phase only (D,=0) and re-
fluxing a mixture of the two liquid phases, is studied in detail. We conclude that
under this distillate policy: (1) the existence of multiple steady states is generic for
this heterogeneous mixture class and therefore the presence of multiplicities does not
critically depend on some specific VL(L)E characteristic as long as the basic quali-
tative structural properties of the VL(L)E diagram are preserved, (2) consequently,
using different reboiler, condenser and column types does not qualitatively affect the
existence of multiplicities although some quantitative differences are expected.

Finally, using numerically constructed bifurcation diagrams, we show that the
oo/oo case predictions carry over to columns operating at finite reflux and with a
finite number of trays. We also discuss a different, degenerate type of multiplicity
(infinite number of profiles with the same product compositions for a specific distillate
flowrate) whose practical implications are unclear and therefore, a more thorough

investigation of this topic is needed.
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3.9 Appendix
The appendix contains information on the thermodynamic model used in this chapter.
Vapor - liquid equilibrium calculations are based on the following equation:

yiP = 2; PP (T )v(T, z)

where P=1 atm in this chapter.

Vapor pressures were computed by the Antoine equation:

B;
T+ C;

InP™ = A; +

where 1" in °K and P?** in atm. Table 3.4 contains the Antoine coefficients given by
Gmehling and Onken (1977) for the components used in this chapter.

Liquid activity coefficients were computed by the modified UNIQUAC model.
The exact form of the modified UNIQUAC model used here is given in equations
(6.11-11)-(6.11-22) and (6.15-9)-(6.15-12) in Prausnitz et al. (1986).

Table 3.5 contains the UNIQUAC parameters R, Q and Q' for the pure components
ethanol, water and benzene given by Gmehling and Onken (1977). Note that Q=Q".
Table 3.6 contains the UNIQUAC binary parameters a;; in °K (equation 6.11-17 in
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Table 3.4: Antoine coefficients for the components used in the chapter.

A B C
Ethanol 12.0455965 -3667.705 -46.966
Benzene 9.2080465 -2755.642 -53.989
Water 11.9514465 -3984.923 -39.724

Table 3.5: UNIQUAC pure component parameters used in this chapter.

R Q Q'
Ethanol 2.1055 1.972 1.972
Benzene 3.1878 2.4 24
Water 0.92 1.4 1.4

Table 3.6: UNIQUAC binary parameters a;; in °K for the ethanol - benzene - water

mixture.

i Ethanol Benzene Water
Ethanol 0 -43.0334 -32.9976
Benzene 384.892 0 903.800
Water 203.843 362.300 0
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Prausnitz et al., 1986) for the mixture ethanol - water - benzene used in this chapter;
the UNIQUAC binary parameters a;; were estimated from the UNIFAC model using
the Aspen Plus (1988) property parameter estimation option.
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Chapter 4 oo/c0 Predictions and Implications

for Design, Synthesis and Simulation.

4.1 Introduction

In chapters 2 and 3, we presented a thorough study of the existence of such multi-
ple steady states in ternary homogeneous™ and heterogeneous azeotropic distillation.
They provided a simple physical explanation and developed graphical predictive rules
for the occurrence of these multiplicities based solely on the VL(L)E of the ternary
mixture. These results were obtained by the thorough analysis of the case of infi-
nite reflux and infinite number of trays (or infinitely long packed columns), which we
hereafter denote as the oco/oco case. In chapters 2 and 3, we also showed that the
prediction of the existence of multiple steady states in the oo/oco case has relevant
implications for columns operating at finite reflux and with a finite number of trays.

The implications of these multiplicities for distillation simulation, design and oper-
ation are numerous and can be critical for design decisions. The existence of multiple
solutions may cause problems in simulations, e.g., a higher convergence failure rate.
Furthermore, the computation of only one solution may also result in misleading
conclusions and decisions regarding the separation under consideration caused by
disregarding some eligible, and possibly, attractive solutions.

Multiplicities may also cause problems in column operation and control. When
two or more steady states exist for the same inputs it is possible that for some
disturbance, the column profile jumps (or shifts) from the desirable - in terms of
product purity - steady state to another undesirable steady state, e.g., a steady state

with low product purity. Evidence of the operational problems that multiple steady

*The mixture under consideration is called homogeneous if only one liquid phase exists throughout
the composition range and heterogeneous if two liquid phases exist for some compositions.
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states can cause is given by Kovach and Seider (1987). Their conclusion is that the
experimentally observed erratic behavior of the industrial tower they study is due to
the existence of multiple steady states.

In addition, the existence of multiplicities in distillation has implications for dist-
illation design and synthesis. This is mainly an issue of control-design interactions.
The reason is that alternative designs may have different control properties. One
design alternative may be much more difficult to control than another. Since we
know that multiple steady states can cause control problems, it is apparent that the
existence of multiplicities has several implications for design and synthesis, e.g., for
the selection of the entrainer, the equipment and the separation scheme.

In this chapter, first we briefly review the co/oco analysis (chapters 2 and 3).
Then we present the co/oo case multiplicity predictions. Finally, we demonstrate the
implications of these multiplicities and predictions for column design, synthesis and

simulation.

4.2 Tools and preliminaries

Two widely used tools for the description of azeotropic distillation column profiles
are the residue curves (Doherty and Perkins, 1978) and the distillation lines (Zharov
and Serafimov, 1975; Stichlmair et al., 1989). By drawing a number of these curves
or lines in the composition space, one can construct a mixture’s residue curve or
distillation line diagram.

The singular points of both residue curves and distillation lines are the pure com-
ponents and the azeotropes and they can be stable nodes, unstable nodes or saddles.
Zharov and Serafimov (1975) showed that distillation lines (1) have the same singular
points as residue curves and (2) behave similarly to residue curves close to singular
points. Nevertheless, distillation lines do not generally coincide with residue curves.
Usually, the direction opposite to that of residue curves is used for the distillation
lines. In this chapter (like in chapter 3), in order to avoid the confusion of referring to

the same singular point as a stable node in residue curve diagrams and as an unstable
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node in distillation line diagrams, we use the direction of residue curves for distillation
lines, too.

A distillation region is defined as a subset of the composition space in which all
curves originate from the same singular point (locally lowest-boiling pure component
or azeotrope) and end at another singular point, which is the same for all curves,
however (locally highest-boiling pure component or azeotrope). The curves which
separate different distillation regions are called distillation region boundaries. The
term distillation region boundary (or just boundary) is used for both residue curve
or distillation line boundaries (interior boundaries) and the edges of the composition
space. Chapter 3 provides a more detailed review of residue curves and distillation
lines.

Unless stated otherwise, we use the following convention to refer to a given mix-
ture: L (I, H respectively) corresponds to the component which has the lowest (in-
termediate, highest resp.) boiling point; we also denote the entrainer by E. We use
the same notation in italics (L, I, H, F) to denote the corresponding flow rates of
the components in the feed. The locations of the feed, distillate, bottoms, reflux and
overhead vapor in the composition triangle are denoted by F, D, B, R and V respec-
tively. Again, the corresponding flowrates are denoted by the same letters in italics
(F,D, B, Rand V).

Figure 4.1 illustrates the residue curve diagram of the ternary homogeneous mix-
ture acetone (L) - heptane (H) - benzene (I-E). In chapter 2, we used this mixture as
the illustrative example throughout most of the co/oco analysis because it belongs to
the simplest class of homogeneous mixtures that exhibit multiple steady states, i.e.,
the 001 class according to the classification by Matsuyama and Nishimura (1977).
In this diagram, there is only one binary azeotrope between the light and the heavy
component, the whole composition triangle is a single distillation region and there
are no distillation region boundaries. Benzene is the entrainer that enables the sep-
aration of the acetone - heptane azeotrope (93% acetone and 7% heptane). We use

this diagram for the illustration of the co/oco analysis.
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L-H azeotrope

I-E - H

Figure 4.1: Illustration of the residue curve diagram of a ternary homogeneous mix-
ture belonging to the 001 class, e.g., acetone (L) - heptane (H) - benzene (I-E).
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4.3 oo/oco Analysis

In the co/oo case, it is very easy to predict the column profiles with minimum com-
putations. The oo/oo case analysis is performed in three steps. First we study how
the column profiles look like in this limiting case of infinite reflux and an infinite
number of trays. Then we determine the feasible product regions in the composition
space. Finally, based on the above information, we construct a bifurcation diagram
which reveals whether multiple steady states exist or not. The three basic steps of
the 0o/oo analysis presented in chapters 2 and 3 can be summarized in the following:
1. Column profiles. At infinite reflux, the composition profiles of packed columns
coincide with some portion of residue curves (Laroche et al., 1992) while the profiles
of tray columns coincide with distillation lines. Moreover, columns with an infinite
number of stages (or infinitely long packed columns) should contain a pinch point.
Pinch points at infinite reflux can only be the singular points of the residue curves
(or distillation lines), i.e., the pure components and the azeotropes. Therefore, in the
0o/ o0 case, column profiles follow residue curves (packed columns) or distillation lines
(tray columns) and contain at least one singular point (pure component or azeotrope).
Hence, the only acceptable column profiles in the co/oo case belong to one of the
following three types: I. Columns whose top liquid composition is that of an unstable
node; II. Columns whose bottom liquid composition is that of a stable node; III.
Columns whose liquid composition profiles run along the boundaries (edges of the
triangle and/or interior boundaries) and contain at least one saddle singular point.
2. Feasible product regions. In order to locate the feasible product regions, some
more information is required (in addition to the co/oo case profile characteristics):
the equipment at the top and the bottom of the column, i.e., the type of reboiler
and condenser (partial or total); whether a decanter is used or not (for heterogeneous
mixtures); the product phase. Furthermore, the feed composition should be provided
and finally it is obviously required that the material balances are satisfied.
Using the above information the feasible product regions can be located. Fig-

ure 4.2 shows the feasible distillate and bottoms lines for the mixture acetone - hep-
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Figure 4.2: The feasible distillate and bottoms lines for the mixture acetone (L) -
heptane (H) - benzene (I) and some feed F.

tane - benzene and some feed F. Note that, in the co/oo case, given a feed composition
and a feed flowrate F' (and a distillate policy for columns with decanter, see chap-
ter 3), the only unspecified column parameter is one product flow, e.g., the distillate
flow rate D.

3. Bifurcation diagram. A bifurcation diagram with a product flowrate as the
bifurcation parameter can be constructed by performing a continuation of solutions
along the feasible product lines (continuation path). The existence of multiplicities
(i.e. different column profiles corresponding to the same value of product flowrate)
can be determined by examining the product flowrate along the continuation path
using the lever rule. Multiple steady states exist when the product flow varies non-

monotonically along the continuation path.
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Figure 4.3: Bifurcation diagram showing the light component mole fraction in the
distillate zpr, as a function of the distillate flow.

For example, in Figure 4.2, the distillate flowrate D associated with any feasible
distillate D can be easily calculated using the lever rule for material balances. For
any feasible distillate D, it is also very simple to calculate the light component mole
fraction in the distillate zpy. By repeating this procedure for all feasible distillate
compositions, a diagram showing zpr, as a function of the distillate flowrate can be
constructed. In other words, by tracking the distillate D along the feasible distillate
line, we construct a bifurcation diagram with the distillate flow as the bifurcation
parameter. The bifurcation diagram is illustrated in Figure 4.3.

There are two turning points in this diagram and three steady states exist for a
range of the distillate flow. The key feature for the existence of the co/co multiplicity
is that the distillate flow varies non-monotonically as we track the path of the feasible

distillate compositions. We demonstrate this point by studying what happens as the
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distillate D moves around the light component corner from point a to b and then ¢
(Figure 4.2). It does not require more than just looking at Figure 4.3 and applying
the lever rule for material balances to show that the distillate flowrate at points a
and c is larger than the one at point b. Therefore, moving from a to b the distillate

flowrate decreases and then from b to c it increases.

4.3.1 Geometrical multiplicity condition

From the above, it is clear that in order to derive rules for the existence of multiple
steady states, one has to identify when the product flows vary non-monotonically
along the continuation path. In chapters 2 and 3 we developed the geometrical,
necessary and sufficient, multiplicity condition which answers the following question:
Given any ternary mixture, its VL(L)E diagram and a column design (tray or packed
column, condenser and reboiler types, decanter etc.), find whether multiple steady
states exist for some feed composition in the co/co case. Furthermore, the appropriate
feed region condition was developed; using this condition, the feed composition region
that leads to these multiple steady states can be located.

Based on the above analysis and the developed conditions, we can predict ezactly
when multiple steady states occur in the oo/oo limiting case. The geometrical multi-
plicity condition enables the prediction of multiplicities from the structural properties
of the VL(L)E diagram; and what is meant by structural properties is not necessar-
ily the detailed VL(L)E diagram, but, in most cases, the character and location of
singular points, the location of boundaries and the location of the two-liquid phase
region for heterogeneous mixtures. It is clear that the existence of multiplicities for
any mixture depends on the structural properties of its VL(L)E diagram (physical
explanation).

The reader is referred to chapters 2 and 3 for more details on the co/oo analysis,
and in particular for the geometrical multiplicity condition and the appropriate feed
region condition which are not described in this chapter.

In summary, in chapter 2 we study the existence of multiple steady states in
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ternary homogeneous azeotropic distillation. The emphasis is on the basic develop-
ment of the steps of the co/occ analysis, the derivation of the multiplicity conditions
and the implications of the co/oco case multiplicities for columns at finite reflux and
with a finite number of trays (finite case). In chapter 2 we show that the co/oo mul-
tiplicities carry over to the finite case and moreover that they may exist at realistic
operating conditions, that is, for small reflux and a small number of trays. Note that
the geometrical condition is only a sufficient condition for the existence of multiplic-
ities when the reflux and the number of trays are finite, i.e., multiplicities will exist
for some sufficiently large finite reflux and finite number of trays but there may be
mixtures that exhibit multiple steady states in finite columns, but not in columns
operating at the co/oco conditions.

In chapter 3 we extend the homogeneous mixture results to ternary heteroge-
neous mixtures but more importantly we study the co/oco case in much more depth
and detail by demonstrating how the co/oo analysis can be applied for different col-
umn designs. More specifically, we discuss the differences between packed and tray
columns, residue curve and distillation line diagrams, columns with and without de-
canter, columns with partial and total condenser etc. In chapter 3 we present the fully
detailed, accurate and totally general geometrical multiplicity condition. Simulation

results for finite columns show that the predictions carry over to the finite case.

4.3.2 oo/oo predictions

In summary, we list all the information that can be obtained from the analysis of the
0o/oo case, 1.e., the co/oo predictions.

1. Existence of multiplicities: For any ternary (homogeneous or heteroge-
neous) mixture and column design, we can predict whether multiplicities exist for
some feed composition and some product flowrate, using the geometrical, necessary
and suflicient, multiplicity condition.

2. Feed composition region that leads to multiplicities: For any ternary

mixture and column design, we can locate the feed compositions region that leads to
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multiplicities, for some product flowrate, using the appropriate feed region condition.

3. Feasible product regions: For any ternary mixture, column design and feed
composition, we can locate the feasible product regions in the composition space.

4. Bifurcation diagram construction: For any ternary mixture, column de-
sign and feed composition, we can construct a bifurcation diagram with a product
flowrate as the bifurcation parameter by performing a continuation of solutions along
the feasible product lines.

5. Location of turning (limit) points: For any ternary mixture, column design
and feed composition, we can identify the characteristics of the VL(L)E diagram, i.e.,
locate the points in the composition space, responsible for the turning (limit) points
of the constructed bifurcation diagram. Note that in some cases, these points in the
composition space are independent of the feed composition.

6. Product flowrate multiplicity range: For any ternary mixture, column
design and feed composition, we can predict the product flowrate range where multiple
steady states exist. This is a direct consequence of the prediction of the location of
turning points; the product flowrate multiplicity range, however, always depends on
the feed composition.

7. Column composition profile: For any ternary mixture, column design,
feed composition and (distillate or bottoms) product to feed ratio, we can locate the
column composition profile in the composition space. Therefore, the composition
profiles of multiple steady states can be predicted.

The co/oo case is the limiting case of high reflux and a large number of trays.
Therefore, if the geometrical condition is satisfied for a given mixture then multiplici-
ties will exist for columns with some sufficiently large finite reflux and finite number of
trays. The operating conditions where the multiplicities vanish cannot be predicted.
Note that in finite columns multiplicities may be affected by column parameters,
such as, the feed location and the enthalpy balances, which do not play any role in
the co/oo case. Nevertheless, the simulation results in chapters 2 and 3 show that
the co/oo multiplicities do exist for columns at realistic operating conditions. Obvi-

ously, in finite columns, some deviations from the co/co predictions are expected; the
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smaller the reflux and the column length, the larger the deviations from the oo/oco

predictions.

4.4 Implications for Design, Synthesis and Simu-
lation

The implications of the existence of multiple steady states for distillation design,
synthesis and simulation are presented in the following. We discuss the problems
multiplicities may cause, how multiplicities may affect design decisions and in what
ways the co/oo predictions may be helpful.

Multiplicities may cause problems in column operation and control. When two or
more steady states exist for the same inputs it is possible that for some disturbance,
the column profile jumps (or shifts) from the desirable - in terms of product purity -
steady state to another undesirable steady state, e.g., a steady state with low product
purity.

In chapter 2 we present an example how this may happen for some feed disturbance
for a column separating the mixture acetone - heptane - benzene (¢f. Figure 27). By
changing the feed composition from 90% acetone to 91% acetone, holding this new
feed composition for a period of time and then changing it back to its original value,
the column profile jumps from the high purity (99% acetone) to the low purity (93%
acetone) steady state. Note, however, that this is just a single example and it should
not be used to derive any general conclusions.

Some other evidence of the operational problems that multiple steady states can
cause is given by Kovach and Seider (1987). They study an industrial azeotropic
distillation tower that performs the dehydration of sec-butanol. They conduct simu-
lations as well as experiments. Their conclusion is that the experimentally observed
erratic behavior of this industrial tower is caused by the existence of multiple steady
states.

The existence of multiple steady states raises new questions and problems for
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distillation control and operation. For example: When is the control of a column
operating in the presence of other steady states difficult?; What are the areas of
attraction of the stable steady states?; What is the appropriate start-up strategy that
would drive the column to the desired steady state?; How difficult is it to stabilize
the unstable steady state? etc. These topics are not investigated in this chapter.

It is clear that multiplicities may cause some serious problems to column operation
and control (erratic behavior, instabilities, start-up problems). Because of the control-
design interactions, one has to take into account the effect of design on control at
the level of synthesizing and designing the separation sequence. The reason is that
alternative designs may have different control properties. One design alternative may
be much more difficult to control than another. Since we know that multiple steady
states can cause control problems, it is apparent that the existence of multiplicities
in distillation has implications for distillation design and synthesis. These issues as

well as the implications of multiplicities for simulation are presented in the following.

4.4.1 Entrainer selection

The problem of entrainer selection can be formulated as follows: given an azeotrope
that we want to separate into its constituents, choose the entrainer that makes the
separation feasible and economical. The first step of entrainer selection is usually
the entrainer screening. At this step, the less promising candidate entrainers are
discarded and the most promising ones are kept for further evaluation. The entrainer
screening is essentially a test that determines whether a candidate has or does not
have a certain set of properties. It separates the candidates set into two (or more)
pools with desirable or undesirable properties.

Lets assume that we want to choose the entrainer that enables the separation of
a given azeotrope and that, in addition, we want to avoid multiplicities (because of
the potential control problems).

Mixture classes with multiplicities: It would be nice if we could exclude the

candidate entrainers that produce VL(L)E diagrams that will always have multiplic-
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ities. Using the oo/oco analysis, we are able to identify entire mixture classes for
which the multiplicities are inherent. (“Inherent,” in the sense that multiple steady
states exist for any mixture belonging to such classes.) It is apparent that for these
classes the multiple steady states are robust, i.e., the multiplicities do not vanish if
the VL(L)E model and/or the VL(L)E model parameters are changed, as long as the
resulting VL(L)E diagram still belongs to the same class.

The 001, 002-m, 003 and 004-M are such classes (Figure 4.4). In addition, we can
predict that for mixtures belonging to these classes, multiplicities exist for any feed
composition. More specifically, three steady states exist for any feed composition and
for any mixture belonging to the 001 and 003 classes; three and possibly five (for some
feed compositions) steady states exist for mixtures belonging to the 002-m and 004-M
classes. Using a databank with information on the azeotropic (or zeotropic) behavior
of binary mixtures, we found 3700 ternary mixtures belonging to the 001 or 002-m
classes and 340 ternary mixtures belonging to the 003 or 004-M classes. These classes
will always exhibit multiplicities and hence all candidate entrainers that produce such
VLE diagrams can be excluded from the entrainer selection search.

Mixture classes without multiplicities: It would be nice to retain all the
candidate entrainers that produce VL(L)E diagrams for which multiplicities will never
exist. Using the oco/oo analysis, we can identify entire mixture classes for which
multiplicities can be generically excluded, i.e., there will be no multiple steady states
for any mixture belonging to such class, for any feed composition, for any VL(L)E
model and parameters (as long as the resulting VL(L)E diagram still belongs to the
same class).

For example, the 100 and 020 (heavy and light entrainers, resp., introducing no
additional azeotropes) are such classes. Figure 4.5 illustrates a heterogeneous VL(L)E
diagram with the aforementioned multiplicity properties. The mixture acetic acid (H)
- water (I) - propyl formate (L) belongs to this class. Therefore, for these mixture
classes, multiplicities are not an issue to worry about; the candidate entrainers that
produce such VL(L)E diagrams can be kept for further evaluation.

Mixture classes with multiplicities in some feed region: Finally, there
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are all the other classes where multiplicities sometimes exist, depending on the feed
composition. It would be nice if we could locate the region of feed compositions
for which a unique steady state exists and select (if possible) a feed composition in
this region. Obviously, the co/oo analysis can be very useful since one of the co/co
predictions is that of the feed composition region that leads to multiplicities.

For example, Figure 4.6 illustrates the VL(L)E diagram of the heterogeneous mix-
ture benzene (I) - heptane (H) - methanol (L). The only information needed to locate
the feed region for which multiplicities occur is the distillation region boundaries and
the two-liquid phase region. The shaded regions in Figure 4.6 depict the feed regions
for which multiple steady states occur; Figure 4.6a for a column without decanter,
Figure 4.6b for a column with decanter (and distillate consisting of a portion of the
heptane-rich phase). Figure 4.7 illustrates similar results for the mixture acetone (L)
- chloroform (I) - water (H).

Using the co/oco analysis we can locate the feed composition region where no
multiple steady states exist and immediately predict if multiple steady states exist
for any given feed. It is important to note that we can obtain all this information
with a minimum of numerical computations since the method is graphical. Because
of that, we do not need to use any specific thermodynamic model for the VL(L)E
description; instead, we can even use experimental data, if available. Note that the
graphical VL(L)E data shown in Figures 4.6 and 4.7, i.e., the boundaries and the
two-liquid phase regions, are illustrations of the computed VL(L)E diagrams shown
in Pham and Doherty (1990a).

Obviously, in finite columns, some deviations from the co/oo predictions are ex-
pected. For small enough reflux and column length, multiplicities vanish and so does
the feed region for which multiple steady states occur. This, however, does not nec-
essarily mean that the feed region “shrinks” as the operating conditions move away
from the co/oco case; there may be feed compositions in the neighborhood of, but
outside the oo/oo appropriate feed region, for which multiplicities exist at some fi-
nite conditions while a unique steady state exists in the co/oo case. Is this some

different type of multiplicity, irrelevant to the co/oco multiplicity? The proximity of
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Figure 4.6: The VL(L)E diagram of the heterogeneous mixture benzene (I) - heptane
(H) - methanol (L). The shaded regions depict the feed regions for which multiple
steady states exist for a column a. without decanter b. with decanter
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Figure 4.7: The VL(L)E diagram of the heterogeneous mixture acetone (L) - chloro-
form (I) - water (H). The shaded regions depict the feed regions for which multiple
steady states exist for a column a. without decanter b. with decanter.
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such feed compositions to the co/oo appropriate feed region clearly indicates that
this phenomenon happens because of the expected descrepancies between the finite
and the co/oo case (a boundary crossing, for example) and therefore it should not be

interpreted as some different type of multiplicity.

4.4.2 Column design and separation scheme selection

The separation scheme selection is another step in any separation synthesis and design
procedure. Although the separation scheme selection may involve some column design
decisions, the selection of the complete and detailed column design is usually a later
step in the separation sequence design. Here we assume that we want to choose the
separation scheme and column design for a given separation and that, in addition, we
want to avoid multiplicities.

In chapter 3 we discussed in detail the effect of different column designs (tray or
packed columns, different types of condenser and reboiler, columns with or without
decanter) on the existence of multiplicities. Therefore, for a given separation scheme,
multiplicities may or may not exist depending on the selected column design. More-
over, since different separation schemes may require different column designs, it is
apparent that multiplicities may exist for one separation scheme alternative while
they do not exist for another.

Column design selection: We demonstrate the effect of the column design on
multiplicities using the mixture ethanol (L) - water (H) - benzene (I-E) which was
extensively studied in chapter 3. Figure 4.8a illustrates the mixture’s residue curve
diagram and Figure 4.8b its distillation line diagram. The two-liquid phase region
is shown in both figures. The two diagrams are very similar with the exception of a
small difference in one distillation boundary, TX, close to the ternary azeotrope T.

Using the oo/oo analysis we can immediately predict if multiplicities exist for
packed or tray columns, with or without decanter for any feed composition F. For
the feed I' shown in Figure 4.8, we conclude the following (see chapter 3, for more

details):
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Figure 4.8: The residue curve (a) and distillation line (b) diagrams of the heteroge-
neous mixture ethanol (L) - water (H) - benzene (I-E).
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For packed columns without decanter (Figure 4.8a), a unique steady state exists
while for tray columns without decanter (Figure 4.8b) multiplicities do exist. On
the other hand, for columns with decanter, using trays or packing does not make a
difference; in both cases multiple steady states exist. The reason is that for columns
with decanter, the different distillation boundaries do not affect the distillate product
composition which will lie on the two-liquid phase region envelope for both tray and
packed columns.

Therefore, for a column without decanter, we can avoid multiplicities by selecting
a packed column instead of a tray column. For a column with decanter, we cannot
avoid the multiple steady states.

Separation scheme selection: It is apparent that the effect of column design
on multiplicities will have implications regarding the existence of multiplicities for
different separation schemes. We demonstrate this using the mixture ethanol (I) -
water (H) - ethyl ether (L-E). We want to separate the azeotrope between ethanol
and water using ethyl ether as the entrainer. There are two alternative schemes that
achieve this separation. Figure 4.9 illustrates the mixture’s VLLE diagram, the two
alternative flowsheets and the material balances of the two schemes in the composition
triangle. Suppose that we want to choose one of the two and that we want to avoid
multiple steady states.

In the first scheme, two columns are used. The first one is a column with decanter;
the second one without decanter. The separation scheme works similarly as the one
used for the separation of the ethanol - water azeotrope using benzene as the entrainer
(Pham and Doherty, 1990b). The overall feed (F+R) of the first column is separated
in pure ethanol at the bottoms and F2 at the top. Note that F2 is a portion of the
water-rich phase in the decanter and that the first column reflux consists of a mixture
of the entrainer-rich and the water-rich phase. The second column separates F2 into
pure water at the bottoms and R which is recycled.

The second scheme involves one column without decanter that separates the over-
all feed (F+E) into pure ethanol at the bottoms and the heterogeneous azeotrope
between water and ethyl ether (H/E) at the top. The top product is fed to a de-
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Figure 4.9: Two separation schemes for the separation of the ethanol (I) - water (H)
azeotrope using ethyl ether (L-E) as the entrainer.
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canter and it is separated into water and entrainer which is recycled. Note that such
a scheme is not feasible in the case of the ethanol - water - benzene mixture because
of the ternary azeotrope which restricts the column distillate product away from the
water - entrainer binary edge.

Using the oo/oco analysis, we can predict that a unique steady state exists for the
column of the second scheme and the second column of the first scheme. For the first
column of the first scheme, however, there exists another steady state at the same
operating conditions. Figure 4.10 shows the two steady state profiles (for an overall
feed F’ slightly off the distillation region boundary for illustrative purposes). The
second steady state is homogeneous and the bottoms product is far from being the
desired pure ethanol. Note that these are single column multiple steady states and
have nothing to do with column interlinking. Although the homogeneous steady state
does not satisfy the material balances for the first scheme, it may very well affect the
column operation and control.

Therefore, since we want to avoid multiple steady states, the co/oco analysis sug-

gests that we can immediately rule out the first scheme.

4.4.3 Critical VL(L)E data - Design of experiments

It was shown above that, using the co/oo analysis, we are able to identify entire
mixture classes for which the multiplicities are inherent and other classes for which
multiplicities can be generically excluded. For these classes the existence (or nonexis-
tence) of multiple steady states is robust, i.e., multiplicities do not vanish (or appear
resp.) if the VL(L)E model and/or the VL(L)E model parameters are changed, as
long as the resulting VL(L)E diagram still belongs to the same class.

There exist, however, mixture classes for which the existence of multiplicities
depends critically on some key feature of the VL(L)E. Using the oco/oco analysis, we
can identify these key features.

The 222-m class: Figure 4.11 illustrates three residue curve (or distillation line)

diagrams of mixtures belonging to the 222-m class. There are three binary azeotropes
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Figure 4.10: The two steady state profiles of the first column of scheme a.
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(X,Y,Z), one ternary azeotrope T and three interior boundaries (TX, TY, TZ). In
chapter 3 we have shown that the geometrical multiplicity condition for mixtures
belonging to the 222-m class can be simplified to the following: For the existence
of multiple steady states it is required that (1) some line parallel to the LH edge
intersects the interior boundary TX more than once, or (2) some line parallel to LI
intersects T'Y more than once, or (3) some line parallel to IH intersects TZ more than
once.

Using the co/oo analysis, it can be shown that the orientation of the boundaries
near T is critical for the existence of multiplicities. More specifically, close to T, the
boundaries are tangent to the principal eigendirection, the direction of the eigenvec-
tor associated with the smallest absolute eigenvalue of the linearized residue curve
differential equation at point T. Depending on the orientation of the principal eigendi-
rection at the ternary azeotrope and on the side from which each boundary approaches
the ternary azeotrope, the geometrical condition may or may not be satisfied.

Figure 4.11a shows a 222-m class diagram for which a unique steady state exists.
Figure 4.11b shows another diagram with a different principal eigendirection at T.
In this case, multiple steady states exist for feed compositions in the shaded region.
Figure 4.11c is similar to Figure 4.11a with the only exception that the boundary
TY approaches T from the other side of the principal eigendirection. Contrary to
Figure 4.11a, multiple steady states do exist for feed compositions in the shaded
region of Figure 4.11c. Figure 4.11d shows six sections of the composition space
separated by the lines parallel to LI, LH and IH that go through T. Each section is
marked with one or two boundary names. Given a 222-m class mixture, multiplicities
exist, if some part of a boundary lies in a section marked with the boundary’s name.

Note that, although both residue curve and distillation line boundaries are tangent
at T, the distillation line boundaries exhibit a higher curvature than residue curve
boundaries. Using the residue curve diagram (instead of the distillation line diagram)
for the study of multiplicities of tray columns for mixtures belonging to the 222-m
class, may, in some cases, result in the wrong conclusion. Finally, note that, since

curved boundaries can be crossed in the finite case, it is possible that, for some 222-m
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Figure 4.11: Three residue curve (or distillation line) diagrams of mixtures belonging
to the 222-m class (a,b,c) and a graphical illustration of the simplified multiplicity
condition for 222-m class mixtures (d). a. Unique steady state b. and c. Multiple
steady states for feed compositions in the shaded regions.
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mixtures, multiplicities exist for finite columns while they do not exist in the oo/co
case. We believe that this may explain the output multiplicities Kienle et al. (1993)
have reported for several mixtures belonging to the 222-m class.

The ethanol - water - benzene mixture class: In chapter 3 we have shown
that for columns without decanter, the heterogeneous mixture ethanol (L) - water (H)
- benzene (I-E) can be treated as if it were a homogeneous mixture belonging to the
222-m class, 1.e., the only information required is the residue curve and distillation line
boundaries which are shown (together with the two-liquid phase region) in Figure 4.8.
In chapter 3 we also show why the difference between the residue curve and distillation
line boundaries can be much more profound for heterogeneous mixtures and how the
VLLE, in particular the vapor line in the two-liquid phase region, can provide an
indication when to expect qualitative differences between packed and tray columns.

In chapter 3 we find that for the mixture ethanol (L) - water (H) - benzene (I-
E) and the specific thermodynamic model and parameters used, for packed columns
without decanter a unique steady state exists while for tray columns without decanter
multiplicities do exist. The key feature that leads to multiplicities for tray columns
1s the geometry of the vapor line and in particular the turn from the left to the right
of the top end of the vapor line (ZQ) which is shown in Figure 4.12.

Suppose that using another VL(L)E model and/or parameters or using experi-
mental data, the vapor line shown in Figure 4.13 is obtained. In fact, we obtained a
VLLE diagram qualitatively similar to the one illustrated in Figure 4.13 for another
mixture; the isopropanol (L) - water (H) - benzene (I-E) mixture. Figure 4.12 and
Figure 4.13 are very similar with the exception of a small difference in the vapor line.
In Figure 4.13 the vapor line runs continuously from the right (Z) to the left (Q).
Using the co/oco analysis we can predict that in this case, it is highly probable* that
multiplicities do not exist for tray columns. This small change in the vapor line may

make the difference between multiple steady states and a unique steady state.

*Since parts of the vapor line coincide with only parts of the distillation line boundaries we cannot
be absolutely sure. The computation of the distillation line boundaries could provide an accurate
prediction.
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Figure 4.12: The residue curve diagram and the vapor line ZQ of the mixture ethanol

(L) - water (H) - benzene (I-E).
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Figure 4.13: The residue curve diagram and the vapor line ZQ of the mixture iso-
propanol (L) - water (H) - benzene (I-E).
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Ambiguous azeotropes: So far, we discussed the VL(L)E ambiguity within the
same mixture class, i.e., what may happen if some VL(L)E characteristic is different
(1) between mixtures belonging to the same mixture class or (2) between different
VL(L)E models/parameters for the same mixture provided that the resulting VL(L)E
diagrams still belong to the same class. It is possible, however, that for some mixtures
there exist some more fundamental ambiguity, namely ambiguity regarding the exis-
tence of azeotropes. Obviously, this means that the mixture may belong to different
mixture classes depending on whether the ambiguous azeotrope exists or not. We
study two cases here. We examine what may happen to the existence of multiplicities
of a 001 class mixture (1) if a maximum boiling azeotrope between the light and
the intermediate component is introduced and (2) if a minimum boiling azeotrope
between the intermediate and the heavy component is introduced.

1. According to the experimental binary azeotropic data reported by Horsley
(1973), the mixtures methanol (L) - benzene (H) - butyraldehyde (I) and methanol
(L) - toluene (H) - butyraldehyde (I) belong to the 001 class. The Wilson binary
parameters were estimated from the UNIFAC model using the Aspen Plus (1988)
property parameter estimation option. Using these estimated Wilson binary param-
eters the residue curve diagrams of the two mixtures were calculated.

Figure 4.14 illustrates the qualitative characteristics of both diagrams; the cal-
culated diagrams belong to the 401 class. Apparently, a spurious maximum boiling
azeotrope (Y) between the light and the intermediate component is introduced by
the VLE model and parameters. The location of this spurious azeotrope was found
to be very close to the intermediate pure component corner.

Using the co/oo analysis, we can predict that, independent of the locations of the
azeotrope Y and the boundary YH, multiplicities do not vanish by the introduction of
a maximum boiling azeotrope between the light and the intermediate component, for
any 001 class mixture. For the mixtures mentioned above, the existence of multiple
steady states using the estimated Wilson parameters for the VLE calculations has
been verified via simulations. Note, however, that the region of feed compositions

that lead to multiplicities is now restricted to the region above the YH boundary
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Figure 4.14: The residue curve diagram of a 401 class mixture. The shaded region
depicts the feed compositions for which multiple steady states exist.
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(shaded region in Figure 4.14) and that differences (with the 001 class predictions)
in the column profiles are expected because of the boundary YH. Nevertheless, using
the co/oo analysis, we were able to predict, without any VLE diagram calculation,
that an additional maximum boiling L-1 azeotrope does not affect the existence of
multiplicities for any 001 class mixture.

2. The experimental binary azeotropic data reported by Horsley (1973) for the
mixture benzene - heptane is somewhat ambiguous. More specifically, there is a
total of four references regarding the mixtures’ azeotropic behavior at atmospheric
pressure. Most (three) of them report that the mixture is zeotropic while one (the
earliest reference) reports a minimum boiling azeotrope at 99.3% wt. benzene. We
use the 0o/oo analysis to study the consequences of the (potential) existence of such
an azeotrope on the multiplicities predicted (and reported via simulations) for the
mixture acetone (L) - heptane (H) - benzene (I).

Figure 4.15 shows two possible residue curve diagrams. The mixture now belongs
to the 021 class. There are two binary azeotropes, X and Y, and a boundary, XY,
connecting the two azeotropes. The main difference between Figure 4.15a and Fig-
ure 4.15b is the shape of the XY boundary. More specifically, in Figure 4.15a there
is no straight line parallel to IH that intersects the boundary XY more than once.
In Figure 4.15b, there exist such lines. For the diagram shown in Figure 4.15a, we
predict that in the co/oo case a unique steady state exists for any feed composition.
For the diagram shown in Figure 4.15b, however, multiplicities exist for feed compo-
sitions in the shaded region. It is apparent that, in this case, the information of the
existence of another azeotrope (Y) is not sufficient to draw conclusions and that the
boundary has to be calculated.

In chapter 2, using several different thermodynamic models (Van Laar, Wilson)
and parameter sets, we found no azeotrope between benzene and heptane. Using
Aspen Plus (1988) and its physical properties option set SYSOP7, i.e., the UNIFAC
liquid activity coefficient model and the Redlich-Kwong equation of state for vapor
phase properties, we found that a minimum boiling azeotrope between benzene and

heptane is predicted. Its molar composition is 98.82% benzene and 1.18% heptane.
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Figure 4.15: Two residue curve diagrams of mixtures belonging to the 021 class. a.
Unique steady state b. Multiple steady states for feed compositions in the shaded
region.
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Figure 4.16 shows the location of both azeotropes and the distillation line boundary
using the above physical properties set. Note how close to the triangle edges the
boundary lies. It is clear that Figure 4.16 is similar to Figure 4.15b and that mul-
tiplicities exist using this physical properties set, too. Therefore, in this case, the
introduction of the, potentially erroneous, minimum boiling benzene - heptane azeo-
trope does not affect the existence of multiple steady states (although, in principle,
it could).

Design of experiments: The above examples show that apart from the mixture
classes for which a unique steady state or multiple steady states are inherent and
robust, there are other classes for which the existence of multiplicities is sensitive
and depends critically on some key feature of the VL(L)E. Using the co/oco analysis
we can identify these key VL(L)E features, e.g., the eigendirection at the ternary
azeotrope and the location of the vapor line.

Most importantly, however, in case there are doubts about the used VL(L)E data,
using the co/oo analysis one can predict if this ambiguity of the VL(L)E data may lead
to erroneous conclusion about multiplicity. Note that since the method is graphical,
experimental data may be used to resolve these issues. When experimental data are
not available or they are insufficient, the co/oco analysis gives indications on how to
design the appropriate experiments to resolve whether multiplicities exist or not. For
example, for the mixture ethanol (L) - water (H) - benzene (I-E), one would have to

experimentally locate the part of the vapor line above the ternary azeotrope.

4.4.4 Operation

In this section, we discuss how multiple steady states may affect the operation of a
column at a stable or unstable steady state from the design point of view.

Product set restrictions: Suppose that we wish to operate a column at a (open-
loop) stable steady state. Apparently, when multiple steady states exist, parts of the
feasible product sets correspond to unstable steady states. Therefore, for operation

at a stable steady state, the feasible product set is restricted. Figure 4.17 illustrates
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Figure 4.16: The location of the acetone (L) - heptane (H) and benzene (I) - heptane
(H) azeotropes and the computed distillation line boundary using the Aspen Plus
SYSOPT physical properties set.
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this for the mixture acetone (L) - heptane (H) - benzene (I-E). Figure 4.17 shows
the feasible distillate and bottoms sets for a given feed F. It also shows the parts of
the feasible product sets that correspond to unstable steady states. Suppose that the
column has a specification of 99% acetone in the distillate. Figure 4.17 shows that,
for operation at a stable steady state, benzene will be the 1% distillate impurity. In
order to achieve 99% acetone and 1% heptane in the distillate or any other distillate
composition lying on the acetone - heptane binary edge, between pure acetone and
the azeotrope, stabilizing control action is required. It is therefore important to locate
these qualitatively different product regions in the design parameter space.

Distance from instability: Suppose that again we want to operate at a stable
steady state but we want to know how close to instability we are. Based on the co/oo
predictions, we can extract simple rules regarding the distance from instability.

For example, Figure 4.18 illustrates the VL(L)E diagram of the mixture ethanol
(L) - water (H) - benzene (I-E). One of the co/oco predictions is the location of turning
(limit) points of the bifurcation diagram that can be constructed in the co/co case.
For columns with decanter and distillate consisting of a portion of the water-rich
phase and for the feed composition F shown in Figure 4.18, two turning points exist
in the bifurcation diagram (chapter 3). Using the oo/oco analysis, these two limit
points can be located along the distillate and bottoms continuation paths (feasible
product lines); a total of four points (Figure 4.18), two along the feasible distillate line
(points on the two-liquid phase region envelope) and the corresponding two points
along the feasible bottoms line (points on the ethanol - water edge).

Note that, among the four points, the locations of the two depend on the feed com-
position while the locations of other two are independent of the feed F (Figure 4.18).
The most interesting one is the point marked with an asterisk, which is located at
the pure ethanol corner which is actually the desired product of this separation. The
conclusion derived by the location of this limit point is that: the higher the ethanol
purity at the bottoms, the closer is the column operation to instability.

Operation at unstable steady state: So far, we discussed the implications of

multiplicities for the operation at a stable steady state. But we may not want to stay
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Figure 4.17: The feasible distillate and bottoms sets for a given feed F of the mixture
acetone (L) - heptane (H) - benzene (I-E).
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Figure 4.18: The location of the limit points along the distillate and bottoms contin-
uation paths for the mixture ethanol (L) - water (H) - benzene (I-E).
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away from the unstable steady state; we may want to operate at the unstable steady
state because it may have some advantages.
For example, in the case of the ethanol (L) - water (H) - benzene (I-E) mixture.

Suppose that we have the following bottoms product composition specifications:
IBI, 2 995%, IBI S 001%

We can achieve these specifications by operating either at a stable or at an unstable
steady state. Figure 4.19 illustrates the two steady state profiles in the composition
space. While the bottoms ethanol mole fraction (zpr) at the unstable steady state is
99.5%, at the stable steady state, in order to satisfy the bottoms benzene mole fraction
(zp1) specification, the ethanol mole fraction in the bottoms should be 99.99%. This
is so, because at the stable steady state the separation is limited by the benzene mole
fraction specification. Since the distillate composition of the stable steady state has
to lie on the ethanol - benzene edge, the bottoms ethanol mole fraction should go as
high as 99.99% and hence the operation at the stable steady state may require a large
reflux ratio and/or a large number of stages. Therefore, in this case, by operating at
the unstable steady state the specifications may be achievable with a smaller number

of trays and/or lower reflux (compared to the operation at the stable steady state).

4.4.5 Simulation

In this section we discuss something different from the issues above, an application
for numerical computations. The existence of multiple solutions may cause prob-
lems in simulations, such as, a higher convergence failure rate. Furthermore, current
commercial simulators cannot find multiple solutions. When multiplicities exist for a
given column specification, the solution simulators calculate, using some convergence
algorithm, depends on the simulator-generated or user-supplied initial column pro-
file. The computation of only one of the solutions lurks the danger of disregarding
some other eligible, and possibly, attractive solutions and it may therefore result in
misleading conclusions and decisions regarding the separation under consideration.

The problem for simulations is how to pick initial profiles that will lead to the
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Figure 4.19: The stable and unstable steady state profiles satisfying the ethanol (L)
- water (H) - benzene (I-E) column specification.
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computation of specific solutions. Using the co/oo analysis, we can locate the oo/oo
case composition profiles of the multiple solutions in the composition space. For
example, Figure 4.20 illustrates the three steady state profiles for the 001 class mixture
acetone (L) - heptane (H) - benzene (I-E) and some given feed F. Using these as initial
profiles for a computation, there is a better chance to find all the solutions. There
is no guarantee, however. Therefore, the co/oco analysis, apart from just “warning”
about the existence of multiple solutions for some mixture, it also provides good
initial profiles for simulations. Using these initial profiles, the computation of specific
solutions, and possibly, a higher convergence rate and/or lower computation time
may be achieved.

In the following, we present simulation results which demonstrate the computation
of specific solutions by providing initial profiles based on the co/oo case predictions.
Aspen Plus (1988) is used for the simulation of a column separating the acetone (L)
- heptane (H) azeotrope using benzene (I-E) as the entrainer. The column character-
istics are depicted in Figure 4.21. Appendix A contains detailed information about
the column design and specifications, the thermodynamic model used and the Aspen
Plus convergence parameters. The Aspen Plus input file is also provided in Appendix
A (for the readers who want to reproduce the results).

The Aspen Plus physical properties option set SYSOP7, i.e., the UNIFAC liquid
activity coefficient model and the Redlich-Kwong equation of state for vapor phase
properties, is used. Using this option set, all property model parameters are provided
by the Aspen Plus databanks and although there exists the option of modifying
the parameter values, we chose not to because we want to keep things as simple as
possible.

Using the SYSOP7 physical properties set, the acetone (L) - heptane (H) azeotrope
has composition 91.23% acetone and 8.77% heptane. It was shown above that using
this physical properties set, a minimum boiling benzene (I) - heptane (H) azeotrope
exists (at 98.82% benzene and 1.18% heptane) and therefore the ternary mixture
belongs to the 021 class. Figure 4.15b illustrates the mixture’s distillation line diagram

and the feed region that leads to multiplicities while Figure 4.16 shows the location of
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Figure 4.20: The three steady state profiles for the 001 class mixture acetone (L) -
heptane (H) - benzene (I-E) and some given feed F.
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the azeotropes and the distillation line boundary computed using the above physical
properties set.

We have shown above that the introduction of the distillation line boundary does
not qualitatively affect the existence of multiplicities. Note, however, that the region
of feed compositions that lead to multiplicities is now restricted to the shaded region
illustrated in Figure 4.15b and that differences (with the 001 class predictions) in
the column profiles are expected because of the XY boundary (Figure 4.15b). For
example, in the co/oo case for feeds in the region to the right of the boundary,
the type III column profiles are restricted by the XY boundary and consequently
the highest purity of acetone that can be recovered in the distillate is restricted by
the XY boundary, too. In addition, for the diagram shown in Figure 4.16 and the
column characteristics depicted in Figure 4.21, multiplicities exist in the oco/co case
for distillate flows between 94.0 and 100.0 kmols/hr. If the XY boundary did not exist,
the corresponding distillate flow range would be between 91.23 and 100.0 kmols/hr.

For any ternary mixture, column design, feed composition and (distillate or bot-
toms) product to feed ratio, we can locate the column composition profiles of the
oo /oo multiplicities in the composition space. Although, this co/oco prediction can
be very detailed, we are not going to do that. Instead, a very rough estimate of the
oo/oo profiles is to be used as initial profiles for the simulations. More specifically,
we are not going to use the thermodynamic model for any calculation, e.g., to obtain
some distillation line (z — y(z) calculation sequence which corresponds to some oo /oo
tray column profile) or any temperature profile estimate. Only some very basic in-
formation about the profile characteristics is used for the construction of the initial
profiles.

First, because of the proximity of the XY boundary to the triangle edges we
are going to ignore the boundary and construct the initial profile estimates based
on Figure 4.20 (001 class). Second, based on the main characteristics of the multiple
steady state profiles shown in Figure 4.20 and the overall feed composition, we roughly
estimate the location of the distillate and bottoms product in the composition space

so that the material balances are approximately satisfied for some distillate flow in



200

the distillate multiplicity range. Third, based on the co/oco profiles, we identify the
singular points its profile contains. By recognizing the fact that many trays are
required to approach a singular point, we separate the column in sections of trays
located at singular points and sections below, above or between singular points. We
arbitrarily assign an equal number of trays for each section. The whole estimated
profile is generated by linear interpolation between the two end compositions of each
section.

Although the above, abstract description of how to construct a rough initial profile
for simulations may seem very complicated, in practice, it is very simple. Note that
Aspen Plus performs the linear interpolation automatically, so we typically have to
specify the composition of only three to six trays.

Figure 4.22 shows two such initial profiles in the composition triangle. The one
marked as [P3-BF100, is an initial profile based on the characteristics of profile 3 of
Figure 4.20 for a column with a benzene feed of 100 kmol/hr. This profile consists of
two sections: the composition on trays 1 to 22 is that of the acetone - heptane azeo-
trope (singular point) while the compositions of trays 23 to 44 are linearly distributed
between the acetone - heptane azeotrope and the estimated location of the bottoms
(tray 44) composition. The latter was computed by an approximate material balance
for the overall feed composition and for a distillate flow in the multiplicity range.

Similarly, the initial profile IP1-BF10 (Figure 4.22) is based on the characteristics
of profile 1 of Figure 4.20 for a column with a benzene feed of 10 kmol /hr. This profile
consists of three sections: fourteen tray compositions are distributed along the acetone
- benzene edge, sixteen tray compositions are located at the benzene corner (singular
point) and fourteen trays are distributed along the benzene - heptane edge. Again,
the locations of the distillate and the bottoms were selected so that the material
balances are (approximately) satisfied. Appendix A contains the necessary additions
to the Aspen input file if the IP3-BF100 or the IP1-BF10 profile is to be used as
initial estimate for the simulation.

Table 4.1 summarizes the simulation results for eight sets of column specifications

(input). The benzene feed flowrate, Fj, the feeds tray, N, the reflux flowrate, R,
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Figure 4.22: Two profiles, IP3-BF100 and IP1-BF10, used as initial estimates in

simulations. Some indicative tray numbers are shown. BF: Benzene feed.
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Table 4.1: Simulation results using Aspen Plus and different sets of benzene feed
flowrate, Fy, feeds tray, Np, reflux flowrate, R, distillate flow, D and with or without
a user-supplied initial column profile. F;, R and D in kmols/hr; CF: Convergence
failure.

INPUT ouTPUT
User-supplied
F] NF R D Initial Profile IDL | TDH | DI
100 | 22 | 10000 | 95 None 96 | .01 | .03
IP3-BF100 91 | .09 | .00
94 None CF
IP3-BF100 91 | .09 | .00
1000 | 95 None 96 | .01 | .03
IP3-BF100 95 1 .05 | .00
94 None 97 1 .01 | .02
IP3-BF100 95 1 .05 | .00
93 None CF
IP3-BF100 95 | .05 | .00
10 | 22 500 | 94 None 91 | .09 | .00
IP1-BF10 97 | .01 | .02
1000 | 94 None .91 | .09 | .00
IP1-BF10 97 | .02 | .01
32 | 1000 | 93 None 91 | .09 | .00
IP1-BF10 .98 | .01 | .01

and the distillate flow, D, are different in these eight sets while all the other column
parameters are fixed to the values reported in Figure 4.21. Two benzene feed flowrates
(100 and 10 kmols/hr) are used resulting in two different overall feed compositions.
The mole fractions of acetone, heptane and benzene in the distillate (zpr, zpy and
zpy resp.) of the solution Aspen Plus converged to, are reported in Table 4.1 as the
simulation output. For each set of input specifications, there are two outputs. The
first one corresponds to the solution computed without using any user-supplied initial
profile, the second one using some user-supplied initial profile.

If F;=100 and no user-supplied initial profile is used, Aspen Plus fails to locate
a solution in two out of the five input sets. For the other three input sets, Aspen
Plus calculates a solution in which the main impurity in the distillate is benzene.

Figure 4.23 shows the profile computed by Aspen Plus without using a user-supplied
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initial profile for the first set of input specifications. It seems that when F;=100,
Aspen Plus converges to a solution corresponding to profile 1 of Figure 4.20.

Using IP3-BF100 as the initial profile for the computation, Aspen Plus converges
for all five sets of input specifications (F7=100) to a solution resembling the profile
3 of Figure 4.20. For the first and second specification sets, this is quite obvious
since the distillate is located at the acetone - heptane azeotrope. For the third,
fourth and fifth specification sets, however, the distillate composition is 95% acetone
and 5% heptane. It is therefore not that clear, by this information alone, whether
they correspond to profile 3 or profile 2 of Figure 4.20. The fact that their bottoms
compositions do not lie on the benzene - heptane binary edge and the fact that the
distillate composition (95% acetone and 5% heptane) does not change as the distillate
flow varies, however, indicate that they also correspond to profile 3 of Figure 4.20.
The fact that the distillate is not located at the acetone - heptane azeotrope is due to
the expected discrepancy of finite columns from the co/oco predictions. Figure 4.23
shows the solution computed using IP3-BF100 as the initial profile for the first set of
input specifications. The initial estimate IP3-BF100 is also shown.

In the two cases the computation failed to converge, we used as initial estimate an-
other profile resembling profile 1 of Figure 4.20. Another solution was not calculated,
however. Note that the initial estimate used was a rough estimate and therefore, it
could be substantially improved by using more co/oo case information. Using a bet-
ter estimate may lead to the desired solution. Note, however, that in these two cases,
the distillate flow is very close to the limits (second specification set in Table 4.1)
or outside (fifth specification set in Table 4.1) the distillate flow multiplicity range
predicted in the co/co case. Hence, it is possible that multiplicity, and consequently
a profile corresponding to profile 1 of Figure 4.20, does not exist for these two spec-
ification sets. Nevertheless, using the co/oo predicted profile as an initial estimate
for simulations, we have been able to (1) compute a solution in the two cases where
convergence has failed and (2) compute a second solution in the other three cases.
Note that we were unsuccessful in calculating the third solution, corresponding to

profile 2 of Figure 4.20, probably because of its instability.
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Figure 4.23: Solutions computed by Aspen Plus for F;=100, Np=22, R=10000 and
D=95.
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If F;=10 and no user-supplied initial profile is used, Aspen Plus calculates a
solution in which the distillate is located at the acetone - heptane azeotrope (profile
3 of Figure 4.20) for all three specification sets shown in Table 4.1. Using IP1-BF10
as the initial profile for the computation, Aspen Plus converges for all three sets
of input specifications to another solution corresponding to profile 1 of Figure 4.20.
Figure 4.24 shows both solutions computed by Aspen Plus in the composition triangle
for the last set of input specifications. Note that the solution computed using IP1-
BF10 as the initial profile crosses the distillation line boundary and achieves a 98%
acetone purity at the distillate. The boundary crossing in finite columns also means
that the distillate flow multiplicity range extends beyond its co/oo limits. The last
specification set shows multiplicities for D=93 kmols/hr while the co/oco predicted
range was between 94 and 100.

This last set of examples (F7=10) shows that, when the existence of multiplicities
is ignored, the “blind” use of a commercial simulator may result in misleading con-
clusions and decisions regarding the separation under consideration. Based on the
simulation results without a user-supplied initial profile, one would conclude that the
column could not break the acetone - heptane azeotrope. Using the oo/oo column
profile predictions, we were able to show that there exists another eligible solution

that breaks the azeotrope.

4.5 Conclusions

In this chapter, we briefly review the co/oo analysis (chapters 2 and 3) by presenting
the three basic steps of the analysis: the characteristics of the column profiles, the lo-
cation of the feasible product regions and the construction of the bifurcation diagram.
We then present all the information that can be directly obtained from the analysis
of the co/oo case, i.e., the co/oo predictions. More specifically, we can predict the
existence of multiplicities, the feed composition region that leads to multiplicities,
the feasible product regions, the bifurcation diagram, the location of turning (limit)

points, the product flowrate multiplicity range and the column composition profiles.
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Next we present the implications of the existence of multiple steady states for
distillation design, synthesis and simulation. We discuss the problems multiplicities
may cause, how multiplicities may affect design decisions and in what ways the co/co
predictions may be helpful. We first discuss the problems for column operation and
control (erratic behavior, instabilities, start-up problems) but then we focus on the
implications of multiple steady states for distillation design, synthesis and simulation.

We show how multiplicities may affect the entrainer selection. Using the oo/oo
predictions, we demonstrate the identification of classes of mixtures with unique
steady state for any feed or with inherent and robust multiple steady states. We
further show how multiplicities may be avoided by the appropriate column design
and separation scheme selection. Using the co/oco analysis, we identify the key fea-
tures of VL(L)E responsible for the existence of multiple steady states. This is a
valuable information in the case there are doubts about the accuracy of the VL(L)E
data used, because one can predict if this ambiguity of the VL(L)E data may lead to
erroneous conclusions about multiplicity and because it gives indications on how to
design the appropriate experiments to resolve whether multiplicities exist or not.

Next we show how the existence of multiple steady states restricts the feasible
product sets for stable steady state operation and how the co/oo analysis can provide
information on the distance from instability. On the other hand, we demonstrate
that it is possible that we may not want to stay away from the unstable steady state
because operation at the unstable steady state may have some advantages, e.g., the
specifications may be achievable with a smaller number of trays and/or lower reflux
(compared to the operation at the stable steady state).

Finally, we discuss the problems multiple solutions may cause in simulations and
consequently for design. We show that if the existence of multiple solutions is ignored,
the “blind” use of a commercial simulator may result in misleading conclusions and
decisions regarding the separation under consideration caused by the negligence of
some eligible, and possibly, attractive solutions. We show that using the oo/co pre-
dicted profiles as initial estimates for simulations, there is a better chance, but no

guarantee, to find all the solutions and to compute a solution in cases convergence
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has failed.
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4.7 Appendix

Aspen Plus (1988) is used for the simulation of an acetone (L) - heptane (H) - benzene
(I-E) column. The Aspen Plus physical properties option set SYSOP7, i.e., the
UNIFAC liquid activity coefficient model and the Redlich-Kwong equation of state
for vapor phase properties, is used. The outside loop convergence tolerance and feed
flash tolerance has been decreased to 107 (default 107*). Because of the mixture’s
liquid phase nonidealities the nonideal algorithm is used and the maximum number
of outside loops is set to 100 (default 25).

The column has 44 stages (including the reboiler and the total condenser), oper-
ates under atmospheric pressure and there is no pressure drop in the column. The
azeotropic feed composition is 91.23% acetone and 8.77% heptane and the azeotropic

feed flow is 100 kmols/hr. The Aspen Plus input file is listed below:

IN-UNITS  MET
OUT-UNITS MET
COMPONENTS A C3H60-1/ H C7H16-1/ B C6H6
PROPERTIES SYSOP7
FLOWSHEET
BLOCK MSSCOLUMN IN=FAZEO FBENZ OUT=TOP BOT
STREAM FAZEO V-FRAC=0. PRES=1
MOLE-FLOW A 91.23/H 8.77/B 0.00
STREAM FBENZ V-FRAC=0. PRES=1
MOLE-FLOW A 0.00/H 0.00/B #BFF#
BLOCK MSSCOLUMN RADFRC
PARAM NSTAGE=44 ALGORITHM=NONIDEAL MAXOL=100 &
TOLOL=0.0000001 FLASH-TOL=0.0000001
FEEDS FBENZ #NF# / FAZED #NF#
PRODUCTS BOT 44 0/TOP 1 0
P-SPEC 1 1. / 44 1.
TRAY-REPORT TRAY-OPTION=ALL-TRAYS
COL-SPECS RDV=0. D=#DF# L1=#RF#

Note that, the above input file cannot be run as is because the numerical values
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of the benzene feed flowrate, the feeds tray, the reflux flowrate, and the distillate flow
have been replaced with the character sets with the number sign at their beginning
and end (#BFF#, #NF#, #RF#, #DF# resp.). In order to obtain the simulation results of
Table 4.1, these character sets should be substituted with the corresponding numerical
values listed in Table 4.1.

In addition, in order to obtain the simulation results of Table 4.1 using one of the
two user-supplied initial profiles (IP3-BF100 or IP1-BF10), the following lines should
be added at the end of the input file:

; IP3-BF100 initial profile

X-EST1 A 0.91/HO0.09/ B0.00/
22 A 0.91 /HO0.09/ BO0.00/
44 A 0.08 /H 0.01/ B 0.91

Y-EST1 A 0.91/HO0.09/ B 0.00 /
22 A 0.91 /HO0.09/ BO0.00/
44 A 0.08 /HO0.01/ B O0.91

or

; IP1-BF10 initial profile

X-EST1 A 0.99/ HO0.00/ Bo0.01/
15 A 0.00 / H0.00/ B 1.00 /
30 A0.00/HO0.00/B1.00/
44 A 0.00 / H 0.47 / B 0.53

Y-EST1 A 0.99/ H0.00/ B O0.01/
15 A 0.00 /H 0.00/ B 1.00 /
30 A0.00/HO0.00/B1.00/
44 A 0.00 /HO0.47 / B 0.53

Note that Aspen Plus requires that both liquid and vapor estimates (X-EST,
Y-EST resp.) should be provided. The vapor initial profiles for both IP3-BF100 and
IP1-BF10 are identical to the corresponding liquid initial profiles. No temperature

profile estimate is included.
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Chapter 5 Conclusion

In chapter 2 we study multiple steady states in ternary homogeneous azeotropic dist-
illation. First we examine in detail the infinite reflux and infinite number of trays
(0o/o0) case. We present a systematic procedure which determines whether multi-
plicities exist for any given residue curve diagram and feed composition. Through
this procedure we answered the following questions:

Given a ternary homogeneous mixture and its residue curve diagram, we can, for

the co/oco case
(1) find whether multiple steady states exist for some feed composition and

(2) locate the region of feed compositions that lead to these multiple steady states.

We derive (1) the necessary and sufficient geometrical condition for the existence
of multiple steady states and (2) the condition the feed compositions must satisfy to

lead to multiple steady states. A few other important results are the following:

In the case of straight boundaries we found that two neighboring saddles is a

necessary condition for the existence of multiplicities.

If multiple steady states exist under the straight boundaries assumption, then,
assuming that the azeotropic compositions do not change, these multiplicities
still exist even if the boundaries are curved, although the appropriate feed region

1s changed.

Highly curved boundaries (pseudosaddles) can induce rmﬂtiple steady states.

For columns operating at finite reflux the geometrical condition is only a sufficient
condition for the existence of multiple steady states. We use an example to show that
the prediction for the existence of multiple steady states in the co/oco case carries over

to columns operating at finite reflux and with a finite number of trays. We further
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show that, although the predictions were made in the co/oco case, it does not mean
that multiple steady states do not exist for realistic operating conditions (low reflux
and entrainer feed flows and small number of trays). However, apart from the fact
that the co/oo case predictions carry over, the observations presented here should not
be generalized because they are specific to the particular example. We also present
an example which illustrates that highly curved boundaries can induce multiplicities.

We offered some comments on the effect of the thermodynamic model on the
existence of multiplicities and we show that some of the results presented here do not
depend on the specific thermodynamic model used. Finally, we briefly discuss the
effect of multiplicities on the column design and operation. The consideration here
is whether it is necessary to operate in the single steady state region (i.e. avoid the
multiplicity region). A more thorough investigation of this topic is needed.

In chapter 3 we examine in detail the existence of multiple steady states in the
0o /oo case of a ternary mixture. More specifically, we answer the following questions:
Given a ternary (homogeneous or heterogeneous) mixture and its VL(L)E diagram

(residue curve diagram for packed columns, distillation line diagram for tray columus),
(1) find whether multiple steady states exist for some feed composition and
2) locate the feed composition region that leads to these multiple steady states.
p g P y

The existence of multiplicities (question 1) can be checked by the procedure de-
picted in Figure 5.1 which is summarized in the following:

Locate the singular points (pure components and azeotropes) in the VL(L)E di-
agram. Locate the m distillation regions. In every distillation region containing k
singular points, there is one unstable node, one stable node and k-2 saddles. For each
region there exist two routes which go from the unstable node to the stable node
along the region boundaries (a total of 2m routes).

For each route, mark the n singular points along the route as follows: point 1,
the unstable node; points 2 to n-1, the saddles; point n, the stable node. The only
eligible column profile lower end compositions along this route lie on the part between

points 2 and n. This is the profile lower end route. Accordingly, the eligible column



213

profile upper end (overhead vapor) lies on the part of the route between points 1 and
n-1. This is the profile upper end route. These two routes define the locations of the
upper and lower end column profile compositions for which the geometrical condition
should be checked (type III column profiles).

Note, however, that the geometrical condition directly involves the distillate and
bottom product routes which may be different from the profile upper and lower end
routes depending on the type of the equipment used at the column ends (condenser,
reboiler, decanter). In chapter 3, we show how the distillate and bottoms routes
(associated with a given pair of upper and lower profile end routes) can be located
for any equipment combination. Tables 5.1a and 5.1b show how the distillate and
bottom product routes are related to the profile upper and lower end routes for some
equipment types and for tray and packed columns respectively.

Finally, we define the continuation path (and its direction) as the path generating
all possible column profiles starting from the profile with D=0 and ending at the
profile with D=F. Multiple steady states occur when D decreases along this path.
This can be checked by the following condition:

Geometrical, necessary and sufficient multiplicity condition: Pick a dis-
tillate D and a bottom product B, both located on some pair of distillate and bottoms
product routes and such that (1) the line segment D'B’ crosses the line segment DB
(to ensure that there exists a feed composition associated with both profiles) and (2)
the column profile that runs from D to B along the distillation region boundaries
contains at least one saddle singular point (type III column profile). Now pick D’ and
B’ sufficiently close to D and B respectively and such that the column profile from D’
to B’ is a “later” profile along the continuation path. For the existence of multiple
steady states it is required that: As we move along the continuation path from D to
D" and accordingly from B to B’, the line that passes from D and is parallel to BB’
crosses the D'B’ line segment.

Finally, for columns with decanter and a given distillate policy, we show that dis-
continuity is possible at the transition from heterogeneous to homogeneous profiles

along the continuation path. In this case, in addition to the aforementioned geomet-
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Figure 5.1: The general procedure for checking the existence of multiple steady states
in the co/oo case of any ternary mixture.
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rical condition, one has to check the distillate flowrate ranges of the heterogeneous
and homogeneous branches of the continuation path for possible distillate flowrate
overlap and consequently multiplicity.

The condition for the appropriate feed region (question 2) is summarized in the
following:

Appropriate feed region condition: Pick a distillate D. Find the set of all bot-
tom products such that the geometrical condition is satisfied for the picked D. Name
this set Sp(D). Note that Sg(D) is always part of a distillation region boundary and
that in some rare cases, Sg(D) may contain an inflexion point and/or it may consist
of more than one non-connected boundary segments. Draw the straight line segments
connecting D with the end points of each boundary segment that belongs to Sg(D).
For the chosen D, the appropriate feed composition is the union of the areas enclosed
by each boundary segment that belongs to Sg(D) and the corresponding straight line
segments connecting D with the end points of the boundary segment of Sg(D). Pick
another distillate D and repeat. In general, for each distillate D there exists a dif-
ferent set of bottoms compositions, Sg(D), that satisfies the geometrical condition.
Therefore, for any given mixture, the feed compositions that lead to multiplicities
lie in the union of all the areas enclosed by each boundary segment that belongs to
some Sg(D) and the corresponding straight line segments connecting the distillate D
associated to Sg(D) with the end points of the boundary segment of Sg(D).

The procedures and conditions described above constitute the fully detailed, accu-
rate and totally general answers to the questions about the existence of multiplicities
and the feed compositions that lead to these multiplicities in the co/oo case. Given
a mixture and its VL(L)E diagram, we show via an illustrative example how the spe-
cific VL(L)E diagram structural information can be used to simplify these conditions
(unavoidably by reducing the degree of generality) to some very simple tests. We
also discuss the differences between packed and tray columns, between residue curve
and distillation line diagrams, the effect of tray efficiency as well as the role of the
vapor line for heterogeneous mixtures. Since residue curve boundaries are easier to

calculate than distillation line boundaries, we derive guidelines on when it is justified
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Table 5.1: The distillate and bottoms routes for various types of equipment (con-
denser/reboiler/decanter). a. tray columns b. packed columns.

a. Tray columns (tray efficiency=1)

Total Reboiler

Partial Reboiler
B = liquid

B route = lower end route

Total Condenser

Partial Condenser

D route = upper end route

D = vapor
D route composed of:
g(’t"‘:il (or Subcooled) | "y o homogeneous part of the upper end route &
&Olr)l ensir 4 - the part of the 1st phase of the heterogeneous
" eC&]‘)n SI(') w1 liquid boiling envelope (or binodal curve)
policy U= that can be obtained from the phase split of the

heterogeneous part of the upper end route

b. Packed columns (= tray columns w/ tray efficiency — 0)

Total Reboiler B route = lower end route
Partial Reboiler B route = line of liquid compositions in equilibrium
B = liquid with vapor compositions on the lower end route

Total Condenser

D route = upper end route

Partial Condenser

D route = line of vapor compositions in equilibrium

D = vapor with liquid compositions on the upper end route
D route composed of:
gota; (or Subcooled) | _ the homogeneous part of the upper end route &
&OB ens:r th - the part of the 1st phase of the heterogeneous
i eczg1 EB wi liquid boiling envelope (or binodal curve)
policy LUy= that can be obtained from the phase split of the

heterogeneous part of the upper end route
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to use residue curve boundaries for the study of multiplicities of tray columns (at the
expense of less quantitative accuracy).

As an illustrative example throughout chapter 3 we use the mixture ethanol -
water - benzene. For this mixture and the specific VL(L)E model and parameters
used, we derive the following conclusions regarding multiplicities in the co/co case
solely based on (1) the residue curve boundaries, the heterogeneous region envelope,
the distillation line boundaries and the line of vapor compositions in equilibrium with
liquid compositions on the residue curve boundaries, if accurate quantitative results
are needed, or (2) the residue curve boundaries, the heterogeneous region envelope
and the vapor line, if somewhat less accurate quantitative results are sufficient.

Columns without decanter: In this case, we identify that the existence of
multiplicities critically depends on the location of the distillate path away from the
binary edges and more specifically in the heterogeneous region. We show that the
location of the vapor line is very crucial in this case. We further show that the reboiler
type has absolutely no effect on the existence of multiplicities for this particular
mixture class.

For tray columns with tray efficiency 1, we conclude that multiplicities exist re-
gardless of the condenser type. For packed columns, multiplicities exist if a partial
condenser is used and the distillate product consists of the vapor phase only. A unique
steady state exists, however, for packed columns with a total condenser. Finally, for
tray columns with a total condenser, we conclude that there exists a tray efficiency
value n* such that multiple steady states exist only if > n*.

Columns with decanter: We show that the existence of multiplicities depends
on the distillate policy. The most common distillate policy for this mixture, i.e.
recovering as distillate a portion of the entrainer-poor phase only (D;=0) and re-
fluxing a mixture of the two liquid phases, is studied in detail. We conclude that
under this distillate policy: (1) the existence of multiple steady states is generic for
this heterogeneous mixture class and therefore the presence of multiplicities does not
critically depend on some specific VL(L)E characteristic as long as the basic quali-

tative structural properties of the VL(L)E diagram are preserved, (2) consequently,
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using different reboiler, condenser and column types does not qualitatively affect the
existence of multiplicities although some quantitative differences are expected.

Finally, using numerically constructed bifurcation diagrams, we show that the
oo/oo case predictions carry over to columns operating at finite reflux and with a
finite number of trays. We also discuss a different, degenerate type of multiplicity
(infinite number of profiles with the same product compositions for a specific distillate
flowrate) whose practical implications are unclear and therefore, a more thorough
investigation of this topic is needed.

In chapter 4, we briefly review the co/oo analysis (chapters 2 and 3) by presenting
the three basic steps of the analysis: the characteristics of the column profiles, the lo-
cation of the feasible product regions and the construction of the bifurcation diagram.
We then present all the information that can be directly obtained from the analysis
of the co/oo case, i.e., the co/oo predictions. More specifically, we can predict the
existence of multiplicities, the feed composition region that leads to multiplicities,
the feasible product regions, the bifurcation diagram, the location of turning (limit)
points, the product flowrate multiplicity range and the column composition profiles.

Next we present the implications of the existence of multiple steady states for
distillation design, synthesis and simulation. We discuss the problems multiplicities
may cause, how multiplicities may affect design decisions and in what ways the co/oco
predictions may be helpful. We first discuss the problems for column operation and
control (erratic behavior, instabilities, start-up problems) but then we focus on the
implications of multiple steady states for distillation design, synthesis and simulation.

We show how multiplicities may affect the entrainer selection. Using the oco/oc
predictions, we demonstrate the identification of classes of mixtures with unique
steady state for any feed or with inherent and robust multiple steady states. We
further show how multiplicities may be avoided by the appropriate column design
and separation scheme selection. Using the co/oco analysis, we identify the key fea-
tures of VL(L)E responsible for the existence of multiple steady states. This is a
valuable information in the case there are doubts about the accuracy of the VL(L)E

data used, because one can predict if this ambiguity of the VL(L)E data may lead to
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erroneous conclusions about multiplicity and because it gives indications on how to
design the appropriate experiments to resolve whether multiplicities exist or not.

Next we show how the existence of multiple steady states restricts the feasible
product sets for stable steady state operation and how the co/oco analysis can provide
information on the distance from instability. On the other hand, we demonstrate
that it is possible that we may not want to stay away from the unstable steady state
because operation at the unstable steady state may have some advantages, e.g., the
specifications may be achievable with a smaller number of trays and/or lower reflux
(compared to the operation at the stable steady state).

Finally, we discuss the problems multiple solutions may cause in simulations and
consequently for design. We show that if the existence of multiple solutions is ignored,
the “blind” use of a commercial simulator may result in misleading conclusions and
decisions regarding the separation under consideration caused by the negligence of
some eligible, and possibly, attractive solutions. We show that using the oo/co pre-
dicted profiles as initial estimates for simulations, there is a better chance, but no
guarantee, to find all the solutions and to compute a solution in cases convergence

has failed.
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Chapter 6 Future Work

In this work, we provided a simple physical explanation and we developed simple
graphical predictive rules for the occurrence of multiplicities in both homogeneous
and heterogeneous ternary mixtures by investigating the limiting case of infinite reflux
and infinite number of trays. Although not included in this manuscript, we have
been able to extend these ideas and results to quaternary mixtures. The composition
space is now the unit pyramid and although some problems arise due to the increased
dimensionality, the extension of the graphical rules is relatively straightforward. The
extension to mixtures of more than four components, however, is not trivial. Note,
however, that other azeotropic distillation problems, such as, the entrainer selection
and the flowsheet synthesis and design, in the case of multicomponent mixtures are
also far from a general solution.

Recently, the application of diagrams similar to the residue curve diagrams for the
design and synthesis of reactive distillation columns has been studied (Venimadhavan
et al., 1994; Buzad and Doherty, 1995). Although these methods are not yet fully
developed, we believe that multiplicity prediction techniques for reactive distillation
can be developed using these reactive distillation diagrams. The extension, for exam-
ple, to mixtures with equimolar, fast reactions (equilibrium-controlled process) seems
quite straightforward.

We have shown that the predictions of the existence of multiplicities in the co/oo
case carry over to the case of finite reflux and finite number of trays; we cannot
predict, however, in what extent. Moreover, multiple steady states may exist in the
finite case caused by a mechanism different from the one in the oo/co case (maybe
in some of the multiplicity examples reported by Kienle et al., 1993). Furthermore,
state multiplicities have been reported in some simulation studies (e.g., Rovaglio and
Doherty, 1990); it is not clearly understood whether these multiplicities are real or

just numerical artifacts. Finally, the multiplicities studied here occur for columns
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without controllers (open-loop). What happens to multiplicities for columns with
controllers? Are there control strategies for which the open-loop multiplicities vanish
in columns with controllers? All the above issues, related to the existence of multiple
steady states, need to be addressed in future studies.

Multiplicities may cause problems in column operation and control. When two
or more steady states exist for the same inputs it is possible that while operating at
the desirable steady state some disturbances or changes of the operating conditions
push the column profile to another undesirable steady state or result in erratic column
behavior. Moreover, preliminary studies have shown that, in some cases, stable steady
states exhibit exotic behavior never before encountered in distillation, namely, open-
loop oscillations which means that the steady state is a stable focus in the state
space. The study of the control characteristics of the stable steady states is thus
essential for the proper operation of such columns. Finally, there might be separation
sequences where it is desirable to operate at an unstable steady state. Therefore, the
stabilization of the unstable steady state is essential in these cases.

The existence of multiple steady states raises new questions and problems for
distillation control and operation. For example: When is the control of a column
operating in the presence of other steady states difficult?; What are the areas of
attraction of the stable steady states?; What is the appropriate start-up strategy that
would drive the column to the desired steady state?; How difficult is it to stabilize
the unstable steady state? etc. These topics, related to the effect of multiplicities on
column operation and control, are not investigated in this work but they are questions
future studies have to answer. These answers could lead to the development of column
design and synthesis guidelines on when, i.e., for what column designs, it is important
to avoid the existence of multiplicities, with what design modifications this can be
achieved, for what column designs the existence of multiplicities does not pose an

operational problem, etc.
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