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SUMMARY 

In this paper the fully nonlinear theory of finite deformations of 

an elastic solid is used to study the elastostatic field near the tip of 

a crack. The special elastic materials considered are such that the dif­

ferential equations governing the equilibrium fields may lose ellipticity 

in the presence of sufficiently severe strains. 

The first problem considered involves finite anti-plane shear 

(Mode III) deformations of a cracked incompressible solid. The analysis 

is based on a direct asymptotic method, in contrast to earlier approaches 

which have depended on hodograph procedures. 

The second problem treated is that of plane strain of a compressible 

solid containing a crack under tensile (Mode I) loading conditions. The 

material is characterized by the so-called Blatz-Ko elastic potential. 

Again, the analysis involves only direct local considerations. 

For both the Mode III and Mode I problems, the loss of equilibrium 

ellipticity results in the appearance of curves ("elastostatic shocks") 

issuing from the crack-tip across which displacement gradients and stres­

ses are discontinuous. 
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INTRODUCTION 

Among a number of recent papers devoted to the study of the struc­

ture of finite elastostatic fields near the tip of a crack, 1 the investi­

gations summarized in [4], [5] and [6] are concerned in particular with 

elastic materials whose corresponding equilibrium equations are capable 

of losing ellipticity at sufficiently severe strains. All three of these 

papers treat the so-called "small-scale nonlinear crack problem" asso­

caited with the finite anti-plane shear (Mode III) of an infinite slab 

containing a crack of finite length and deformed to a state of simple 

shear at infinity. 

The principal feature of the results reported in [4]. [5] and [6] 

is the appearance of two curves, issuing from each crack-tip and termi­

nating in the interior of the body, across which the displacement gradi-

ent and the stresses are discontinuous. Such "elastostatic shocks" have 

been discussed in general terms elsewhere [7]. 

The analysis in [4], [5] and [6] depends critically on the fact that 

the finite anti-plane shear problem is governed by a second order quasi­

linear partial differential equation and can therefore be successfully 

treated with the help of the hodograph transformation. For the more im­

portant problem of the plane deformation of a cracked slab by tensile 

loading at infinity (the Mode I problem) the hodograph transformation is 

not available because the associated quasi-linear system of differ­

ential equations is of the fourth order. 

1see [l], [2], [3] for reviews of recent work in this area. 
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In the present paper, we first show that the qualitative features 

of the results in [4] and [5] for the Mode III crack problem can be ob­

tained by a direct local asymptotic analysis which makes no use of the 

hodograph transformation. The advantage of the procedure used here lies 

in its applicability to the plane strain Mode I problem which constitutes 

our main objective. We determine the qualitative structure of thecrack­

tip field in the latter problem for the so-called Blatz-Ko strain energy 

density introduced in [8] in connection with experiments on a highly com­

pressible rubber-like material. It is known (see [9]) that thismaterial 

is capable of a loss of equilibrium ellipticity at severe deformations. 

In Section 1 we quote pertinent results from the nonlinear equilib­

rium theory of homogeneous and isotropic elastic solids and we introduce 

the special deformations and materials appropriate to this study. Sec-

tion 2 begins with the formulation of the Mode III crack problem dealt 

with in [4]. We obtain the asymptotic representation near the crack-tip 

of a number of solutions of the displacement equation of equilibrium 

valid on overlapping domains. The final solution is then generated by 

a consistent matching across two symmetrically located elastostatic 

shocks. In Section 3 the tension crack problem is treated in an analo­

gous manner and we find the corresponding asymptotic solutions to lead­

ing order. Section 4 is devoted to higher order considerations and a 

discussion of the results. 
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l. PRELIMINARIES FROM NONLINEAR ELASTOSTATICS 

In this section we present a brief summary of the equilibrium the-

ory of finitely deformed, homoqeneous and isotropic elastic solids. The 

two special deformations and materials relevant to this study are then 

discussed. 

Let R be an open region occupied by the interior of a body in its 

undeformed configuration and denote by x the position vector of a ma-,...., 

terial point in R. A deformation of the body, indicated by 

y=y(x)=x+u(x) for all xE!it , (l.l)l 
,...,, ,......,,......, ~ ,....,,r..-

is a mapping of ~ onto a domain ~* in which u(x) ,...., ,...., is the displace-

ment field. We assume the transformation (1 .1) to be invertible. 

Let F be the deformation-gradient tensor field associated with 

the mapping (1 .1) and J its Jacobian determinant, so that 

F = vy , J = det F > 0 on lit • ,....., ,..., ( 1 . 2) 

For an incompressible material the deformation must be locally volume 

preserving, whence J = 1 on in.. Define C and ~ by 

( l . 3) 

These deformation tensors have common fundamental scalar invariants 

given by 

1Letters underlined by a tilde represent three-dimensional vectors and 
tensors. 
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To continue, we let T be the actual (Cauchy) stress tensor field ,...., 

on R* and £, the corresponding nominal (Piola) stress field on 

T and CT are related by ,..., ,...., 

-1 T (T)-1 T = J CT F ' CT = J, F ,...., ,....,,...., ,...., ,......., ,.._, (1. 5) 

The balance of linear momentum, in the absence of body forces, leads to 

the following equivalent alternative forms of the local equilibrium 

equations: 

divT=O on R* or divCT=O on 6t • (1.6) 
r-J ~ ,....,, ,...._, 

Suppose g is a surface in R and g* its deformation image in 

R*. Let n and n* be the respective unit normals to g and g* so ......, ,...., 

that the associated nominal and true surface tractions are given by 

s = CT n on g , t = ' n * on g* ,._ , ,....,, rw,.._, (1. 7) 

It can be shown that 

t=O on 8* if and only if s=O on g ,..., ,...., ( l . 8) 

this proposition is important because it allows the boundary condition 

on a traction free surface g* to be specified on the undeformed sur-

face 3. 

Let W be the stored energy per unit undeformed volume character-

istic of a given elastic material. For compressible materials 
0 

W= W(I 1 ,I 2,I 3) and the corresponding constitutive relation can be given 
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in either of the following equivalent forms 

(1.10) 

where 

z =-2- ~+I~ z =_:1_~ 
( 

0 0 ) 0 

1 113 ar 1 lar2 '2 113a12 ' 

(1.11) 

* For incompressible materials, W= W(I 1 ,I2) and the corresponding con-

stitutive law takes the form 

(l.12) 

or, equivalently, 

(l.13) 

Here P is the arbitrary hydrostatic pressure required to accommodate 

the constraint J = /I3 = l. 

We now turn to two special classes of finite deformations: anti-

plane shear and plane strain. For these the region ~ occupied by the 

undeformed body is taken to be cylindrical and a fixed cartesian 

1 stands for the idem tensor. ,.... 
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coordinate frame is chosen so that the x3-axis is parallel to thegen­

erators of R. Let £ be the cross-section of R in the plane x3 = 0. 

To begin, we assume that the material occupying R is incompress-

ible. A deformation (1.1) on ~ is an anti-plane shear if it is of the 

form 

As shown in detail in [10], the deformation (1 .14) can in general only 

* be sustained by materials whose strain energy density W=W(I 1,I 2) is 

of suitably restricted form. Here we consider a class of materials 

* shown in [10] to be compatible with (1.14) for which W depends onlyon 

* W(3)=0 (l .16) 

*1 * here W is the derivative of W with respect to r1. As indicated in 

[4], substituting (l .14) into the constitutive law for incompressible 

materials (l.12), (1.13) permits the reduction of the field equations to 

[W'(I 1 )u ] = U on t:> ,a , a 

1Greek subscripts take the range 1,2 while Latin subscripts assume the 
values 1,2,3. Repeated subscripts are summed. 

2Note that 11 =3 in the undeformed state. 
3subscripts preceded by a comma indicate partial differentiation with 
respect to the corresponding material cartesian coordinate. 
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with 

2 2 
I 1 = 3 + I vu I ' I vu I = u u ,a ,a 

(l .18) 

The components of Cauchy stress are given by 

(1.19) 

T = 0 
aS 

An elementary solution of (l.17), corresponding to a state of sim-

ple shear with amount of shear y, is given by 

( 1. 20) 

For this deformation 

(O~y<m) ( 1. 21 ) 

We refer to the graph of T(Y) vs. y as the response curve in simple 

shear for the material at hand. Because of the inequality (1 .15), the 

displacement equation of equilibrium (1 .17) can be shown to be elliptic 

at a solution u and at a point (x1,x2) if and only if 

Thus,the condition of ellipticity is satisfied if the slope of the re-

sponse curve in simple shear is positive at an amount of shear equal to 

1see [11]. 
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the magnitude of the local displacement gradient vu(x1 ,x2). 

The incompressible material to be considered here was introduced in 

[4]; its response function T(y) in simple shear is given by 

for Q;:;;;y;:;;;l 

T (y) = ( 1 . 23) 
µY-l/ 2 for 1 ;:;;;y<oo 

where µ is the shear modulus at infinitesimal deformations. The re-

* sponse curve (1.23) is described in Fig.l. The elastic potential W(I 1) 

associated with this material reduces to 

{ 

t0,-3) 
* wo,) = 

L - 3~ + 2µ (I 1 - 3) 1I4 

( l. 24) 

(4;:;;; r
1 

<oo) . 

We observe for this material, the differential equation (1 .17) is 

elliptic at a solution u and at a point (x1 ,x2) if lvul <l; it is 

hyperbolic if lvul >l. In this paper we shall study weak solutions u 

of (1.17) whi are continuous and have piecewise continuous first and 

second partial derivatives on ~- Clearly, these continuity require-

ments allow for the possibility of finite jump discontinuities in vu 

as well as in the stresses across curves in ~. Equilibrium requires 

that, across such a curve c, the axial component of Piela traction 

given by 

( 1 . 25) 

must be continuous. In (1.25) au/an is the normal derivative of u 
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on C. We call such a curve an 11 eguilibrium shock 11
• 

Let us now suppose the material occupying the cylindrical region 

R to be compressible. A plane deformation of R parallel to the 

(x1 ,x2)-plane is described by 

y = X + U (x1 ,x2) 
a a a 

(l .26) l 

For a plane deformation, the fundamental scalar invariants are related 

by r2 = I1 + r3 -1, so that the strain energy density W(I 1 ,I2,I 3) for 

compressible materials can be written as 

( 1 . 27) 

where 

I= I1 - 1 , J = /13 ( 1. 28) 

Equations (l.26)-(1.28), in conjunction with (1.9)-(1.11) and (1.6), 

provide the coordinate equations of equilibrium: 

(1.29) 2 

(
3
2w 32w ) + -J + --- I s E y = 0 

3
} , S 3 I 3J , S Sy ap p , y 

1one may consult [12] for a detailed treatment of plane-strain deforma­
tions. 

2
saS are the components of the two-dimensional altenator. 
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together with the in plane stress components 

(1.30) 1 

0 0 

a = 2 awl y + 3WJ t: E y on :& • 
aS 8 a, S 8 Sy ap p ,y 

( l. 31) 

Furthermore, 

The differential equations (1 .29) may suffer a loss of ellipticity 

at solutions that have sufficiently severe local deformations. The el-

1 ipticity conditions for the system (1 .29) are discussed in [7] and due 

to their complicated nature will not be reproduced here. 

The special compressible material that concerns us has the elastic 

potential 

(µ >O) ( l. 33) 

where µ is a constant. This strain energy density was proposed by 

Blatz and Ko [8] to model a highly compressible rubber-like material. 

The basic properties of the Blatz-Ko material are investigated in [9]. 

It is shown in [9] that, for the material characterized by (1 .33), the 

coordinate equations of equilibrium (l.29), are elliptic at a solution 

ya and at a point (x1 ,x2) if and only if the invariants I and J, 

found through (1.32), satisfy 

1c is the two-dimensional Kronecker delta. aB 
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2J ::; I< 4J ( 1. 34) 

In view of the potential loss of ellipticity, it is natural to require 

of the coordinates ya(x1 ,x2) only the relaxed smoothness specified for 

u on 19. Thus, there may be curves c across which discontinuities in 

the deformation gradients 

the Piola tractions 

y B occur. a, 
Across such equilibrium shocks, 

( l . 35) 

must be continuous to maintain equilibrium. 

Finally, the homogeneous deformation corresponding to a state of 

plane strain uniaxial stress parallel to the x2-axis is of interest. 

For the Blatz-Ko material (1 .33), such a deformation is described by 

( 1 . 36) l 

where the stretch A is a constant. The associated true and nominal 

stresses are 

i) ' 

(1. 37) 

- ( -1/3 -3) 
0 22 - µ A - A , o11 = o12 = 0 21 = 0 on 

Suppose a solution to the governinq differential equations (l.29) 

corresponds locally to a state of plane strain uniaxial stress with 

principal stretch ratio A. If A lies on the interval (A;1 ,A0 ), 

1see [9]. 



-12-

where 

( 1. 38) 

the field equations will be locally elliptic (see Fig.2). 
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2. ANTI-PLANE SHEAR DEFORMATIONS NEAR THE TIP OF A CRACK 

In the present section we give the formulation and asymptotic solu-

tion of a nonlinear crack problem involving finite anti-plane shear de­

formations. This analysis is included to provide valuable insight into 

the more challenging tension crack problem considered in the next section. 

Let the open cross-section £ be the plane domain exterior to the 

1 ine-segment 

( 2. 1 ) 

as depicted in Fig.3. Thus, the region ~ corresponds to the undeformed 

configuration of an all-around infinite body with a plane, infinitely 

long crack of width 2a. 

The body is composed of the special incompressible material intro­

duced in Section 1 and characterized by the response curve in simple 

shear (1 .23). Suppose the body is subjected at infinity to a simple 

shear parallel to the edges of the crack. An assumption, consistent with 

the loading and the particular material, is that the deformation is en­

tirely one of anti-plane shear as given in (1.14). Referring to Eqs. 

(1.17), (l.18) and (l .24) we obtain the governing differential equation 

for the unknown out-of-plane displacement u: 

v2u=O for jvuj<l (2.2a) 

[jvuj-312u ] = O for jvuj >l 
,a ,a 

(2.2b) 
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At infinity we stipulate 

u = yx2 + o (1) on f; xx ""'00 
a a ' 

(2.3) 

where the positive constant y is the amount of shear. Further, we as-

sume that the crack boundary in the deformed body remains traction free. 

According to (1.8), (1.25) and the inequality in (1 .15), this require-

ment is equivalent to 

u, 2(x1 ,0±)=0 (-a< x1 <a) (2.4) 

Note that the solution u to the boundary value problem (2.2)-(2.4) 

is to obey the continuity requirements set down in Section l. Also, for 

the problem at hand we require that u be bounded within any circle of 

finite radius centered at the crack-tips and the limits vu(x1 ,0±) are 

to exist and be continuous for -a <x1 <a. 

The nonlinear crack problem formulated above is one of considerable 

difficulty. Knowles and Sternberg [4] considered the so-called "small-

scale nonlinear crack problem" associated with the global problem de­

scribed above. In the small scale problem, ~ is assumed to be small 

compared to unity and the finite crack is replaced by a semi-infinite 

one. One seeks a so1ution of (2.2) which satisfies (2.4) on the semi-

infinite crack and which, at infinity, "matches" the near-tip field pre-

dieted by the linearized theory for the original global problem associat­

ed with the finite crack. An exact solution to this small-scale prob­

lem was constructed in [4] by means of a hodograph transformation. Here, 

we consider the global problem and use a direct asymptotic approach to 

study the field near the crack-tip. 
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Let (r,e) be local polar coordinates in the undeformed configura-

tion as shown in Fig.3. Then, 

x1 - a = r cos e , x2 = r sin e (2.5) 

The tip of the crack is denoted by r = 0, while e = n and e = -n rep-

resent the upper and lower crack faces, respectively. 

We first investigate the possibility of 11 smooth 11 solutions near the 

crack-tip. Suppose the global solution to the crack problem admits the 

asymptotic representation 

uniformly on -n:$8 :s;n. In (2.6) m is a constant in the range 

(2. 7) 

and v is a 11 smooth 11 function on [-n,n]. Here, we say a function is 

smooth if it is at least twice continuously differentiable on its domain 

of definition. In the present problem, symmetry implies 

v(e) = -v(-e) (2.8) 

The boundary condition (2.4) yields 

v=O on 8=-TI,n (2.9) 

where the dot denotes the differentiation with respect to e. The re­

strictions (2.7) on m guarantee that the displacement remains bounded 

1The asymptotic equality symbol ",.,.,11 is used in the following sense; 
u"""rmv(e) is equivalent to u=rmv(e)+o(rm) as r---0. 
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near r=O for -1T::;e:;;;1T, while permitting unbounded displacement gra-

dients. 

Equations (2.6) and (1.18) imply 

lvul"'P(e)rm-l as r-+O, (2.10) 

where 

(2 .11) 

for -1T::;e::;1T. Clearly, if p(e)>O, then lvul >l as r ..... 0, -1T:::;.e:::;.1T, 

so that (2.2b) applies. Assume this to be the case and substitute (2.6) 

into (2.2b). Retaining only the dominant power of r provides the gov­

erning differential equation for v(e): 

2pv - 3pv +m(3-m)pv = o , (2.12) 

on (-1T,1T). 

If m=O in (2.12), we obtain the solution v(e)=ce+b (band c 

are constants). Consideration of (2.8) and (2.9) requires v(e) :;=:O for 

-'IT ::;; e ::;; 1T. We may thus restrict m to the interval ( 0, 1 ) . 

The differential equation (2.12) can be analyzed in the phase plane. 

Details of this analysis are given in [12]. One finds in this way that 

the general solution of (2.12) may be written in the form 

mv ( e) = V cos iJ! ( e) I w
0 

+ cos 21)! ( e) 1-1I 2 ( 1 - m) 

where ijJ(e) is the general solution of 

(l/3+cos21)!)~+(w +cos21)!)=0 , 
0 

(2.13) 

(2.14) 



-17-

for -TI<8<TI. In (2.13), V is constant which we assume to be positive 

and 

w
0 

= 1/3(3 - 2m) (2.15) 

Observe that for 0 < m < 1 , one has l/3<w <l. 
0 

In Eq.(2.13) we must 

have w +cos 21)! ~ 0 to assure bounded displacements. Further, we note 
0 

that if p is calculated from (2.13), (2.11), it vanishes nowhere on 

[-TI,TI], as was assumed. 

In view of Eqs. (2.8), (2.13) and (2.14) we choose 

ijJ(O)=TI/2 (2.16) 

so that (2.9) holds if and only if 

1)J(TI)=2nTI, ijJ(-TI)= (2n+l)TI, n=0,±1,±2, ... (2. 17) 

In Fig.4 we sketch the curve ijJ=ijJ(e) governed by (2.14), (?..16) and 

(2.17) for the case n=O. It is apparent from the figure that there 

are no continuous solutions of the boundary value problem for 1jJ - this 

result is found to be independent of the choice of n. Consequently, 

there does not exist a smooth function v on [-TI,TI] that satisfies 

(2.12), (2.8) and (2.9). 

We now wish to generalize the Ansatz (2.6) concerning the form of 

u near r = 0 in such a way as to permit discontinuities in vu across 

certain curves issuing from the crack-tips. Accordingly, we suppose 

that there are two curves, &+ and &-, defined in a neighborhood of 

the origin by 
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+ g- : 6 = ±e ( r) , O<r:$r 
0 

where e(r) is a smooth positive function such that 

e(r) ,..,Ar8 as r-0 

(2.18) 

(2.19) 

and A>O, s~O are constants to be determined. If s=O in (2.19), 

then A is required to satisfy O<A<n and the curves g± are tangent 

to the rays 6 =±A at the origin. When + s > 0, g and g- are both 

tangent to the x1-axis at the origin. Since our interest lies in re­
+ producing the results in [4], in which the shocks g- are found to be 

tangent to the x1-axis at r=O, we treat here only the case s>O in 

(2.19). The case s = 0 is discussed in Appendix A. 

It is convenient to introduce the regions fl, ~+ and ~ (Fiq.5) 

as follows 

"'- = [( r, 6) 1-e ( r) < 6 < e ( r) , 

+ ~ = [(r,6)le(r)<6<n , (2.20) 

~-= [(r,6)l-n<6<-e(r) , 

We first investigate solutions of the differential equation (2.2b) which, 

in the region fl, have the asymptotic form (2.6), where v(6) is a 

smooth odd function defined for -6
0 

$6 ::;;6
0 

for some 6
0

, 0<6
0 

<n. 

The exponent m is now permitted to be neoative, but rmv(6) must re­

main bounded as (r,6) approaches the origin from within U. 

If m<O, we find that (2.10), (2.11) still apply as r->0 in fl 

and v(6) must again satisfy (2.12), which leads to the same implicit 
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representation given in (2.13)-(2.15) except that now m<O. Note that, 

in this case, (Q
0

>1 and hence ui
0

+cos2wt-O. As before, (2.16) ac­

counts for the parity condition (2.8). Integrating (2.14), subject to 

(2.16), yields 1/!(8) implicitly through 

( (1-m) -le ( )J i 8=- ij!-TI/2)+ (3 -m)w1tan w1tan ~J-TI/2 (-8
0

<8<8
0
), (2.21) 

where 

w = [~1/2 
1 -m J (m < 0) 

and 

- 1 ( 1 ) ( 1 - m) - 1 ( wl ) 80 =-l/2cos j + (3 -m)w1tan 12 , 

(2.22) 

0<8 <TI. (2.23) 
0 

At this point Eq.(2.21) cannot be inverted explicitly to furnish 

w= 1/!(8). It does, however, indicate that ij;(8) is a continuously dif-

ferentiable function which increases monotonically on (-8
0

,8
0

) from a 
l . 

value w
0

=1/2 cos- (-1/3) to TI -1/!
0 

and is antisymmetric about 8 = 0, 

iJ;=TI/2. In view of these facts, we confirm through (2.13), (2.21) the 

existence of a smooth function v on (-8
0

,8
0

) which satisfies (2.12) 

and has the appropriate symmetry. Thus, 

(2.24) 

represents an asymptotic solution to the hyperbolic differential equa­

tion (2.2b) on U. 

1Here, the inverse trigonometric functions take their principal values. 



-20-

For !el <<l, Eqs. (2.13) and (2.21) provide 

(2.25) 

where 

p
0 

= p(O) (2.26) 

From (2.18), (2.19), (2.24) and (2.25) we observe that the displacement 

remains bounded as the crack-tip is approached from within fl if 

s+m:2:0. 

We now seek a solution to (2.2) valid on the region + 
I; . Assume 

the displacement on 1;+ admits the general form (2.6) where the expo-

nent m:2:0 takes on the smallest possible value - boundedness of the 

displacement as the origin is approached in 1;+ necessitates m be 

nonnegative. We find that 

u ....... b + rv ( e) as r-. 0 on F; + (2. 27) 

where b is a positive constant and now v is a smooth function on 

(O,n] that obeys the boundary condition v(n) = 0. Note that the con-

stant b is the solution corresponding to m= 0 and recall, for 

O<m<l in (2.6), there are no smooth solutions of (2.2) on (0,n] sat-

isfying the boundary condition on e = n. 

Substituting (2.27) into either (2.2a) or (2.2b) leads to the same 

differential equation: 

v+v=O (O<e<n) (2.28) 
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The most general solution of (2.28) for which the boundary condition 

v(e) = 0 is satisfied is 

v ( e) = c cos e , o < e $'IT (2.29) 

where c is a constant. In ~-, the dominant term analogous to (2.29) 

is obtained by symmetry. 

It is convenient at this point to present the results of a higher 

order analysis. If lei <l we find 

k u,,.,b+crcose+dr cosk(e-n) (k>l) as r-+0 on + 
~ . ( 2. 30) 

Note that !vu! ,..,lei <l as r_,0 which assures the ellipticity of the 

displacement equations of equilibirurn on + 
~ . 

What remains now is to construct an asymptotic solution to thecrack 

problem near the crack-tip - continuous, piecewise smooth and with con-
+ 

tinuous nominal tractions across g-. To this end, we confine our atten-

tion to 0$8$7f and note that (2.8) generates the solution in the lower 

half-plane. 

The requirement that u be continuous across &+, together with 

(2.18), (2.19), (2.24), (2.25) and (2.30}, clearly implies 

(2.31) 

so that necessarily 

, s = -m (2.32) 

We now address the continuity of the non-zero nominal traction s3 
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(1 .25) across the shock 8+. The asymptotic forms of the traction (1 .25) 

on the two sides of g+ are evaluated through (l .18), (1 .24) where the 

displacement on the hyperbolic side of the shock is given by (2.24), 

(2.25) while, on the elliptic side, we use (2.30). The tractions are 

found to be continuous across g+ if and only if 

p112r112(m-l)"'(m-l)bcr-l +dp ksin knrk+m- 2 
0 0 

(2.33) 

The possible relationships between the exponents k and m that 

permit an asymptotic balance in Eq.(2.33) are described in Fig.6. Asymp­

totic solutions to the next order of the displacement equation of equi-

1 ibrium (2.2a), (2.2b) were found on s+ and 'JI in an attempt toelim-

inate some of the cases I-V in the figure. However, the solutions had 

sufficient flexibility so as to allow the necessary higher order match­

ing across an appropriately chosen shock g+ for all the five cases. 

Our purpose, in this paper, is to reproduce the solution in [4] in the 

vicinity of the crack-tip·and hence we assume case II to hold, so that 

m=-1, k=2 (2.34) 

Equations (2.33), (2.34) reveal that 

(2.35) 

We note that for m=-1, (2.21) can be inverted analytically and on sub­

stitution into (2.13) furnishes, after some algebra 
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v(e) = 2-5/2P (3cos e + P(e))3/2 sine 
0 (cose+P(e)) l/2 (-e <e<e) 

0 0 

P(e) = (9cos 2 e- 8) 112 (-e <e<e) 
0 0 

(2.36) 

( 3. 37) 

-1 ( ~ ) and e
0 

=cos 212/3 . This completes the matching to leading order. 

To conclude, we summarize the asymptotic representation for the 

solution to the crack problem (2.2)-(2.4) in the vicinity of the right 

crack-tip. Equations (2.24), (2.30) together with (2.34), (2.35) give 

pl/2 
u,...,b- ~b rcose+dr2cos2e as r-0 on ~+ 

(2.38) 

where b>O, O<p
0

</21) and d are unknown constants and v(e) is given in 

(2.36). In (2.38), ~+ is the elliptic region and U the hyperbolic 

region described in (2.20). The displacements on ~- are obtained 

through symmetry. Equations (2.18), (2.19) and (2.32) indicate the elas-

+ -tostatic shocks g and g have the following asymptotic form 

(2.39) 

The above results are consistent with those found in [4] on taking 

the limit r-0. However, in the local analysis presented here, the 

constants b, d and p
0 

in (2,38) remain undetermined. In contrast, 

the specific small-scale nonlinear crack problem treated in [4] leads 
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to fully determined values of b, d and p
0

. Furthermore, for each suc­

cessively higher order calculation we obtain one additional unknown con­

stant. The reader may refer to [4] to obtain representations for the 

stresses near the crack-tip. 
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3. PLANE STRAIN DEFORMATIONS NEAR THE TIP OF A CRACK 

In this section we present the formulation and first order asymp-

totic analysis of the nonlinear plane strain crack problem which consti-

tutes the main purpose of this study. 

Let R be the undeformed configuration of a cylindrical body whose 

cross-section ~ in the (x1 ,x2)-plane is described in Fig.3. The line 

segment ~ (2.1) is the boundary of ~ and represents a crack of width 

2a. The material making up the body is cor.ipressible and has the Blatz-Ko 

plane strain elastic potential (1.33). 

Suppose the body is subjected to uniform uniaxial tension at infin-

ity perpendicular to the crack faces, so that the actual stresses satis-

f y 

as x x - oo a a 
( 3. l ) 

where -r>O is the magnitude of the applied load. The crack faces are 

to remain traction free. Applying (1 .7) and (1 .8) results in the bound-

ary conditions 

cra2(x1,0±)=0 (-a<x1<a). (3.2) 

As a consequence of (3.1) and (3.2) the deformation conforms to (l.26), 

corresponding to plane strain parallel to the (x1 ,x2)-plane. Accordingly, 

the relevant coordinates y must satisfy the equations of equilibrium 
a 

(l.29),together with (1.32) and (1 .33). The conditions at infinity (3.1) 

and boundary condition (3.2) are represented in terms of the coordinates 



-26-

through (1.30)-(1.32). The solution y to the boundary value problem a 

must be continuous and piecewise smooth on ~ as indicated in Section l. 

We insist also, that the solution be bounded in the vicinity of the 

crack-tip and the limits Ya,B (x1 ,0±) exist and are continuous for 

-a< x1 <a. 

An analytical solution to the global problem is not attempted here. 

We consider instead, the asymptotic character of the solution in the 

neighborhood of the crack-tip. 1 

Let (r,e) be the polar coordinates introduced in (2.5) and 

y =y (r,e) be the local deformation near the right crack-tip. From a a 
0 

(l.29), with W given by (l.33), we obtain the appropriate form for the 

governing differential equations, namely 

2 ( -2 ) Jv y - 2 J y + r J 
8
y 

8 a ,ra,r , a, 

(a~ B) (3.3) 

for r>O, -n<e<n. In (3.3), 

) -3 R(r,e =1-IJ (3.4) 

where (1 .32) gives 

(3.5) 

2 2 -2 2 2 
I ( r' 8 ) = Y 1 , r + Y 2, r + r (y l , e + Y 2, e) (3.6) 

1The existence of a solution is assumed. 
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for r>O, -TI ::::;e :::;TI. The loading at infinity (3.1) indicates the fol-

lowing coordinate symmetries: 

( r > O, -TI ::::; e :::;;. TI) (3. 7) 

Substituting (1 .31), (1.33) into (3.2) provides the boundary conditions 

on the crack faces 

e = -TI, TI for r > 0 (3.8) 

To complete the formulation we stipulate that the resulting deformations 

have the same smoothness as that specified for the global problem. 

Now turn to the asymptotic solution of the crack problem. We fol-

low the anti-plane shear example in the previous section and assume that 

the local deformation field is represented by 

m 
y ,....r av (e) as r-0 (no sum on a) 

a a 
(3.9) 

where ma are cons tan ts. In Apoendi x B we consider 0::::; min [m1 ,m2J < l 

in an attempt to find a solution, consistent with (3.3)-(3.8), in which 

v are smooth functions on [-TI,TI]. We conclude from the analysis that 
a 

no such deformations exist. Motivated by the anti-plane shear problem, 

we now let g+ and g- be the curves originating at r = 0 described 

in (2.18), (2.19). Also, define the regions + U, t;, and 

neighborhood of the crack-tip through (2.20) (see Fig.5). 

Suppose (3.9) holds on U with 
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m2 = m < 0 , m < m1 
(3.10) 1 

and va are smooth functions on (-e
0

,8
0

) (O<e
0

<n). We assume here, 

that the deformations are "most severe" in the x2-direction. We let 

where q is a continuously differentiable function for -8 < e < e and 
0 0 

(3.5), (3.9) and (3.10) infer the constant v>2(m-l). Further, (3.6), 

(3.9) and (3.10) provide the asymptotic form of the scalar invariant I, 

namely 

(3.12) 

where 

(3. 13) 

Proceeding as in the case (B.23) in Appendix B we find that (B.25)­

(B.27) hold on (-e
0

,e
0

) for m<O. Equations (B.29)-(B.32) provide 

expressions for v2 and q on (-e
0

,e
0

) while the symmetry (3.7) and 

smoothness across the ray e=O is guaranteed by (B.34). In (B.34) vie 

choose El =O and hence (B.29)-(B.32) reduce to
2 

1The case m1 =m2 <0 is treated in a manner similar to that of the case 
of positive equal exponents discussed in Appendix B. We find that the 
coordinates (3.9) and the parity condition (3.7) are incompatible. 

2
The case q;::;: l is not treated here. We find this leads to inconsis­
tent result J(r,0) = 0 for all sufficiently small r>O. 
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q(8)=QIE: +cos2iJ;(8)! 113 (m-l) 
0 

(3.15) 

for -8
0

<8<8
0

,where v2 and Qare positive constants and 1)!(8) 

satisfies 

Furthermore, 

(l/2+cos2iJ;)~+(E:0 +cos2iJ;)=O, iJ;(O)=TI/2 . 

E: =1-m/2, v=2/3(m-l) 
0 

Integrating (3.16) yields 

where 

E:4 = [m; 4J1/2 (m< 0) 

and 

(3.16) 

(3.17) 

(3.19) 

(3.20) 

The expressions (3.18)-(3.20) indicate that iJ;(8) is a smooth function 

on (-8 ,8 ) and hence v2(8) (3.14), q(8) (3.15) are also smooth 
0 0 

with the correct parity for -8
0 

< 8 < 8
0

• 

We now evaluate the y1-coordinate to leading order. Note that 

(3.13), (3.14) and (3.15) imply 

(3.21) 
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with Q
0 

= QV2_ 213 The Jacobian is evaluated using (3.5), (3.9), (3.10) 

and again through (3.11), (3.21 ). Equating the two results provides the 

asymptotic equality 

(3.22) 

m /m 
on flt. Assume first, m1 <1/3(4-m) and find v1(e)=V1J v2(e)J 1 

on (-e
0

,e
0

) where v1(>0) is a constant. The restrictions (3.10) 

imply that m1 = 0 and v1 (e) = v1 is the only smooth solution across 
1 e=O. Taking y1(0,e)=O (-1T~8~1T) requires V

1
=0. Now let 

m1 = 1 /3 ( 4 - m) (3.23) 

and obtain a nonhomogeneous first order differential equation for v1 

from (3.22). We establish that the homogeneous solution is unbounded on 

e = 0 and is neglected, while the smooth particular solution gives 

where 

= 2(2 +m) <l for m<O . E:5 3m (3.25) 

E qua t ions ( 3 . 9 ) , ( 3 . l 0 ) , ( 3 . l 4 ) , ( 3 . 1 7) , ( 3 . 2 3 ) - ( 3 . 2 5 ) prov i de an 

asymptotic solution to the differential equation (3.3)-(3.6) such that 

1The deformation is normalized so that the crack-tip does not move with 
respect to the x1-axis. 
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as r-0 on 'JI . (3.26) 

Further, (3.11), (3.17) and (3.21) give 

(3.27) 

while substituting (3.26) and (3.27) into (3.3) (a= 1) reveals 

(3.28) 

It is apparent from (3.12) and (3.27) that I>>J on 'JI and thus the 

coordinate equations of equilibrium are hyperbolic at the solution (3.26) 

on 'JI. 

For Jel <<1, (3.14)-(3.16) and (3.24) provide 

-1 /3 30oPo l 2 4 " 
v1 = (4 -m) [l - 6 m(4-m)e +o(e )] I 

as e ..... 0 , (3.29) 

where 

po=p(O) (3.30) 

Equations (2.18), (2.19), (3.26) and (3.29) infer that the y2-coordinate 

remains bounded on 'JI in the limit r-0 if s+m::::O. 
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+ We now seek solutions to the governing equations (3.3) on ~ . Sup-

pose 

+ + y = e ..... b + rv ( e) as r _, 0 on ~ 
a a a a 

(3.31) 

where b are constants and v are now smooth functions on (0,TI]. As a a 

in the anti-plane shear problem we obtain the representation (3.31) after 

first assuming (3. 9) holds on ~+ with 0 ~min[m1 ,m2 J<1 and draw on 

results from Appendix B. The constants b are the solutions (B.5) 
a 

for m1 = m2 = 0. The case m1 = m2 = m (O<m< 1) yields v1 (e) = cv2(e) 

on (0,TI], where c is a constant. If c = 0 we recover the unequal 

exponent case. The boundary conditions on e =TI are given in (B. 28). 

After a tedious analysis we prove that no smooth solution v2 exists 

on (0,TI] that is compatible.•with (B.28) and can be matched to the hyper­

bolic solution on 'JI across 8+. 

Substituting (3.31) into (3.3)-(3.6) and retaining the leading order 

terms gives 

[(vi+2v~)v2 +v 1 v 2 v 1 J(v 1 +v1) 

- [ ( v~ + 2vi) v 1 + v 1v2 v 2] ( v 2 + v 2) = 0 
(3.32) 

for O<e<TI. The differential equations (3.32) are equivalent to 

v + v = 0 on ( O, TI) 
a a 

(3.33) 
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unless the determinant of the coefficients of (v + v ) vanishes on 
a a 

(O,n). 1 Assume (3.33) holds and thus 

(3.34) 

for O<esn, where A are constants. The solution (3.34) obeys the 
a 

boundary conditions (3.8). 

Observe from (3.26), (3.29), (3.31), (3.34) and (2.18) that 

h ,..,3Q p-l/3(4-m)-lrl/3( 4 -m) ~ "'b +;\ r as 
1 00 '1 1 l 

1/3(4-m)>l for m<O we arrive at 

+ r_, 0 on g . As 

(3.35) 

as a prerequisite for continuous coordinates across &+. Letting the 

scalar invariants take on their leading order values calculated through 

(3.5), (3.6), (3.31), (3.34) and (3.35), the ellipticity condition (l .32) 

reduces to (2-13) 314 <1;\21<(2+13)314 . Physically, in the vicinity 

of the crack face, we expect the leading order homogeneous deformation 

(3.31 ), (3.34) and (3.35) to represent a state of uniaxial tension par­

allel to the y2-direction. This limits the range of the stretch ratio 

further, so that elliptic solutions of interest obey 

(3.36) 

1rt can be shown that functions Va that produce a vanishing determi­
nant are not consistent with either the boundary conditions on the 
crack face or the matching across g+. 
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+ In what follows we require the solution on ~ to higher order. 

Noting (3.31) and (3.34)-(3.36), we now assume 

as r-0 on ~+ (3.37) 

where k>l is constant and f are smooth functions on (0,-rr]. 
a 

Equation (3.37) satisfies the differential equations (3.3) to the appro-

pri ate order if 

(3.38) 

where L is the differential operator, 
a 

L1 (f1 ,f2;k,A) = (2 + K+ Kcos 2e)f1 +2K(k- l )sin 2ef1 

+ k[k(2 + K) - K(k - 2)cos 2e]f 1 

+ N[sin 2ef 2 - 2(k -1 )cos 2ef 
2 

- k(k- 2)sin 2ef2] (3.39) 

.. . 
L2(f1 'f 2; k 'A ) = ( 2 + M - M cos 2 e ) f 2 - 2M ( k - 1 ) sin 2 e f 2 

+ k[k(2 + M) + M(k- 2)cos 2e]f 2 

+ N[sin 2ef
1 

- 2(k -1 )cos 2ef
1 

- k(k- 2)sin 2ef1J (3.40) 

In (3.39) and (3.40) 

(3.41) 
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The boundary conditions (3.8) infer 

(3.42) 

Furthermore, (3. 7) implies 

(3.43) 

We now generate the first order asymptotic solution with the appro­

priate smoothness to the small scale nonlinear crack problem (3.3)-(3.8). 

Consider Q:::;;e :::;;n and refer to (3.43) to provide the deformation in the 

lower half-plane. Accordingly, the matching conditions are 

+ + e = h on & 
a a 

(3.44) 

together with continuous Piola tractions across &+. We compute the 

general expression for the nominal tractions through (1.7), (1 .31) and 

( 1 . 33) : 

are the components of the normal vector n in polar coordinates. ,..., 

Let a= 2 in (3.44) and use (2.18). (2.19), (3.26), (3.29) and 

(3.37) to find 

(3.46) 

Take b2 >O, then 

b = Ap s = -m 2 0 ' 
(3.47) 
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Similarly, let a= 1 in (3.44) and use (3.47) to obtain 

-1/3 
,-l/3Ar-m+f,(O)rk-l,.., 30opo -l/3(m-l) 0 (3 48) /\ (4 -m) r as r- . . 

Here and in what follows we assume that the functions f are analytic 
a 

on [O,n] and hence can be represented by a Taylor series about e= 0. 

Before matching tractions on &+ we modify the result (3.28) so 

that 

Q =l and R=O(r8/ 3(l-m)) as r-0 on U. 
0 

(3.49) 

We confirm (3.49) by first assuming the existence of an equilibrium so­

lution in the neighborhood of the crack-tip that has the general form 

+ (3.26) and (3.37) with the curve g given by (2.18) and (3.47). Force 

equilibrium in the x1-direction on a circular region in £ centered at 

r= 0 necessitates that (3.49) holds on takinq the limit r-o. 1 

Equating the tractions (3.45) across g+ and drawing on (3.47) and 

(3.49) yields 

The relationships between the exponents k and m that could provide 

1The result (3.49) assures no concentrated forces act at the crack-tip. 
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a solution to (3.48) and (3.50) are presented in Fig.7. We note the 

similarity between this figure and the diagram obtained for the anti­

plane shear problem (see Fig.6). Again, we choose k and m through 

a distinguished limit and thus 

m= -1/2 , k= 3/2 . (3.51) 

In view of (3.51), the equations (3.48) and (3.50) give 

A=)..l/3(~p-l/3_f (0)) 
3 0 1 (3.52) 

Recall in (2.18), (2.19) that A is a positive constant and hence 

f (O)<~p-1/3 
1 3 0 

(3.54) 

Equations (3.38)-(3.42), (3.51) and (3.53) constitute a boundary 

value problem for f on [O,n]. For convenience set 
a 

where f satisfies 
a 

with 

f ( 8) = p 1 /3f ( 8) 
a O a 

(3.55) 

(3.56) 
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(3.57) 

A closed form solution to the differential equation (3.56) appears to be 

difficult to construct. However, a numerical analysis indicates that 

for values of A obeying the inequality (3.36) the nondimensional bound­

ary value problem (3.56), (3.57) does possess analytic solutions. For 

A f A* , where 

(3.58) 

the solutions depend uniquely on A. We find that A= A* is an eigen­

value associated with the homogeneous version of (3.56), (3.57). Only 

one eigenfunction exists together with the particular solution. We note 

that in all the solutions, f 1(0)<2/3, complying with (3.54). 1 

We now present a summary of the asymptotic solution to the crack 

problem considered here. Applying the results (3.47), (3.51) and (3.53) 

to (3.26), (3.37) and (3.43) gives 

+ -1/3 -1/3 3/2- ( ) e1 ,,..A rsine+p
0 

r f1 e 

as r---0 on t;+ , (3.59) 

-1/3 3/2-- Ar cos e + p 
0 

r f 2 ( e) 

1Analytic solutions to (3.38)-(3.42) and (3.53) were found for integer 
values of k with A arbitrary and for arbitrary values of k with 
A= 1. These solutions were used to check the numerical procedure. 
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as r-- 0 on U . (3.60) 

( 3. 61 ) 

where p
0 

is a positive constant and A a constant satisfying (3.36). 

In (3.59), f (e) is a smooth function governed by (3.56), (3.57). For 
a 

m= -1/2 the implicit equation for i)!(e) (3.18) can be inverted analyti­

cally as in the anti-plane shear problem. This result and (3.14) even­

tually yields 

, 2112 (2cose+P(e)) . 
8 v2(e; = 3 p

0 1 sin 
(cose+P(e))~ 

(3.62) 

where 

(3.63) 

Further, (3.13), (3.24), (3.25) and (3.62) provide 

1 

( 
8

) = 2 1I2 - 1 /3 (cos e + P ( e)) 1' 
vl Po (2cose+P(e)) 

(3.64) 

Alternative representations for v are obtained from (3.29), (3.49) 
a 

and (3. 51) in the neighborhood of e = 0: 
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as e - O (3.65) 

+ Finally, in (3.59)-(3.61), t and t are elliptic regions and W 

the hyperbolic region given in (2.20). The domains are separated by the 

elastostatic shocks g+ and &- • Referring to (2.18), (2.19), (3.47), 

(3.51) and (3.52) we find 

+ ;\ l/ 3 2 - 1/2 
g-: e = ±e(r) , e(r),.., (-) (-- f (O))r as r-0 . (3.66) p

0 
3 l 
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4. HIGHER ORDER CONSIDERATIONS AND RESULTS 

What remains to complete the first order analysis is the evaluation 

of the constant A and hence the functions f (e) on [O,n]. In this 
a 

section we calculate these unknowns numerically through higher order 

considerations and the subsequent results are presented. 

To begin, we replace (3.66) by the two term asymptotic representa-

ti on 

± A l/ 3 2 1/2 t 
g: e=±e(r). e(r),...(-) (3 -f

1
(o))r +Br as r-0, (4.1) 

Po 

where B and t > 1 /2 are undetermined constants. The domains + u, I; 

and i; remain as defined by (2.20). Similarly, (3.60) is modified, 

such that 

as r-o on u . (4.2) 

In (4.2) n1 >3/2 and n2>-l/2 are constants while w1(e) and w2(e) 

are smooth functions on (-n/6,n/6). Equations (3.27), (3.49) and (3.51) 

provide the Jacobian to leadin9 order. Now assume 

- l 2/ 3 \)1 J,._.,r p (e)+r q1(e) as r .... O on U . (4.3) 

The constant v1 is greater than -1 and q1(e) has the same continuity 
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as p(e) (3. 13) on (-n/6,n/6). 

Observe that (3.49) and (3.51) imply 

4 R.-r u(e) as r-0 on 'II , (4.4) 

with u(e) a continuously differentiable function for -n/6<e<n/6. 

A further asymptotic representation for R is generated from the defini-

tion (3.4)-(3.6), together with (4.2) and (4.3). On equating this ex-

pression to (4.4) we arrive at 

on 'II. Suppose 

(4.6) 

and thus (4.5) and (4.6) gives 

on (-i·i) (4. 7) 

The governing differential equation (3.3) with a=2 infers, when the 

coordinates are replaced by (4.2) and the Jacobian by (4.3), (4.6), that 

w2, q1 further satisfy 

(4.8) 

for -TI/6 < e < n/6. 

It is convenient at this point to assume suitably smooth solutions 
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exist to (4.7) and (4.8) on (-rr/6,rr/6). For small jeJ, we find by 

making use of (3.29), (3.51) and (3.65) in (4.7) and (4.8), that 

as e _, 0 (4.9) 

where p1 is a positive constant of integration. 

Next, we consider the Jacobian to higher order. Through (3.5), 

(4.2), (4.3) and (4.6) we find 

on !I. Take n1 to have its smallest possible value 

whence 

Again we assume the existence of a smooth solution,while for small Jel 

equations (4.9) and (4.12) give 

as e _, o . (4.13) 

Now turn to the solutions of the differential equations (3.3) on 

1Note, if n1 <n 2 +2, w1 is unbounded on e = 0. 
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the elliptic domain + ~ . We replace (3.59) by 

1 l 3 2 

~l ...., A - Jr Sin 8 + p: Jr "2 fl ( e) + p: J r 2g
1 

( e) 

1 2 1 3 

~2 ....,1-3 p~ (~-T1 (o))-1'rcos e+p: 3r2 T2(e) as r_,0 on~+, (4.14) 

where g (e) are analytic functions on [O,n]. In (3.3) we assume the 
a 

coordinates conform to the representation (4.14) and obtain the follow­

ing differential equations for ga: 

(4.15) 

where the differential operators L are defined in (3.39) and (3.40). 
a 

Furthermore, 

2 5 
3 ~ • - -3 . 

H
1 

(T
1

,T2;1-)=41' [(J1f1)+3J1 f1
] - 6:\ (sine J

1 
+ 2cos eJ

1 
)J

1 

4 7 7 
(4.16) 

+ 1c3[3R
1 
T

2 
- R

1
f2 + 2sin e(2:\- 3J 2 - 1cR2) + 2cos e(2:\- 3J2 - 1cR2)"J 

2 l 

H 2 (Tl 'T 2 ; A ) = 4 A -
3 [ ( J 1 t 2 )° + 3J 1 T 2 J - 6 A -

3 ( 2 s i n e j 1 - c 0 s e J 1 ) J l 

4 1 l (4.17) 

- 1c3[3R1T
1 

- R1f1 +2cos e(21c- 1J2 - 1c- 3R2)- 2sin e(21--1J2 -1c- 3R2).], 
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} (4.18) 

4 

R
1 

= ;i.. - l [ s i n 8 [ t ;i.. - 3 ( 2 + K) fl + ( 2 + M ) f 
2

] 

4 

+cos 8[;i..- 3 (2 + K)f
1 

- t(2 + M)f2J} , 

8 8 

R2 = -;i..- 2[!(2 + K- 3>c3cos 28 )f~ + !(2 + M + 3>c - 3cos 28 )f~ 

8 8 

+ (2 + K+ 3>c3cos 28)~ + (2 + M- 3;i..- 3cos 28)f~ 

8 8 

+ 9 (;i..3 fl T1 - >c - 3 t 2 T2 )sin 28 - 3N[tCt1 T2 +fl f 2 )cos 28 

In (4.18)-(4.20) the constants K, M and N are supplied by (3.41). 

The boundary conditions on the crack face 8 =TI (3.8) suggest 

4 7 
.!__ -3_( 3-3-2 -2 )) 

3g1(TI)-2A 92 'IT)=2;\ (3f1(TI)-f2('IT , 

4 7 

g
2

(TI)-2>c-:rg,(TI)=-3;\- 3 f,(TI)f2('IT) . 

(4.19) 

(4.20) 

( 4. 21 ) 
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Associated with (4.15) is the homogeneous solution 

} (4.22) 

on [O,n], where G1 - G4 are arbitrary constants. The formulation of 

the boundary value problem for g on [O,n] is completed once bound­
a 

ary conditions on e = 0 have been established. 

We proceed now with matching the higher order solutions on fl and 

~+ across the elastostatic shock 8+. Recall that the smoothness of the 

complete solution to the problem (3.3)-(3.8) requires continuous coordi­

nates and Piola tractions across 8+. 

Equating the coordinates on g+ usinq (3.44), (4.1), (4.2), (4.9), 

( 4. 11 ) , ( 4. 13) and ( 4. 14) 1 eads to 

l 1 1 t - - - n +-
2 + (_.0_)3(£- f (O))p r 2 2 ->.r,...., p Br 

0 

In (4.23) we let 

p ' 3 1 1 
0 

n=O,t=l 2 

and referring to (3.57) suggests 

as r--0 . (4.23) 

(4.24) 



-47-

(4.25) 1 

(4.24), (4.25) and continuity of the tractions (3.45) across g+ reveals, 

after considerable algebra 

4 7 8 1 

3gl ( 0) - 2 A - Jg 2 ( 0) = - ~ A - 5 + i A - J (A - J - 3) fl ( 0) - ~ A 3 f~ ( 0) 

7 4 4 

+~A- 3f~(O), (i- r, (O))gz(O) + [~A- 3 - 2A3(t- r, (O))]gi (0) (4.26) 

What remains is to solve the boundary value problem (4.15)-(4.21) 

and (4.26). Recalling (4.21), (4.22) and (4.26) we note that the homo-

geneous system has the nontrivial solution 

4 

~(s) = 2A- 3 ~1A 1 sin 2s , 

( 4. 27) 
4 4 4 

~ ( 8) = [M (A - 3 N - 3M) + [2A - 3 N + ( 2 + M) (3M -A - 3 N) ]cos 2e J Al ' 

1For A obeying (3.36), 1/2- fi(O) 'f 0. 
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where Al is an arbitrary constant. Consequently, in order for a solu­

tion to the nonhomogeneous problem to exist the eigenfunction (4.27) 

must be orthogonal to the right hand sides in (4.15). 

The particular solution to (4.15) is found in terms of A and f 
a 

1 through the method of variation of parameters. This expression, with 

(4.22), facilitates a numerical investigation into the existence of a so­

lution to the boundary value problem. We find functions gP(e), satisfy-
a 

ing the nonhomogeneous differential equations (4.15)-(4.20) and the 

boundary conditions (4.21), (4.26), if 

3 

A = A;, 2. 657 < ( 2 + /3) If (;, 2. 685) (4.28) 2 

This result, together with the eigenfunction (4.27), provides the com­

plete solution: 

g (e) = gE!(e) +gP(e) on [O,n] 
a a a 

(4.29) 

The numerical solutions obtained for f and gP with A= A are shown 
a a. 

Fig.8. Some pertinent results from the figure are 

(4.30) 

-p ( ) .:. -p ( ) - ;;P ( ) .:. ;;P ( ) .:. gl 0 --.020, 920 -0, 91'IT-.105,92TI --.152 

l -
Recall that the functions fa on [O,n] depend uniquely on A for 
At-A* given in (3.58). If A=A·k, fa comprises of an eigenfunction 
and a particular solution. 

2The result (4.28) is confirmed by an independent numerical computation 
in which (4. 15)-(4.20) subject to (4.21), (4.26) were treated directly 
using a standard differential equation solving routine. 
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The differential equations (4.7) and (4.8), in which the exponents 

n2 and t are given by (4.24), yield 

( 4. 31 ) 

where 

(4.32) 

The function v2(e) (3.62) satisfies 

>0 for 

(4.33) 

= O for e = ± ~ 

and thus w2 is a smooth function on (-rr/6,rr/6). Furthermore, (4.12) 

and (4.24) provides 

I e I 4 

w1 (e) = v24
(e) f v~(cv)(jp- 3(cp)v 2 (cr) - 3v1 (cr))w2(cr)dcr , (4.34) 

which also has the appropriate continuity on (-rr/6,rr/6). The constant 

p1 is evaluated through (4.25), (4.28) and (4.30) to reveal 

pl ; - . 035 (4. 35) 
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which, in conjunction with (4.9), (4.13) and (4.24), gives 

- ~ 2 -1 w
1 

= W
1

p
0

3+0( e ) , w
1 

; • 006 

as 

w2 ; - .035 J 
Summary o'f the final results 

8 ..... 0 . (4.36) 

From Eqs. (4.2), (4.11), (4.14), (4.24) and (4.28) we observe that 

the second order asymptotic solution to the local crack problem (3.3)­

(3.8) is as follows: 

on ~+ ( 4. 37) 

3 

:Y, "'r2 v-, ( 8 ) + r2w, ( e ) 

1 as r-+ 0 on u ' (4.38) 

y-
2

,.., r- 2 v-
2 

( e) + w-
2 

( e) 

where 

(4.39) 

and the coordinates on ~ are obtained through symmetry. The constants 

c2, da are found to be 
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c2 ; 1.013, d1 ;. 722, d2 ; - 2.657 (4.40) 

Recall that g (e) = ge(e) + gP(e) on [0,TI] in (4.37). An analytical 
a a a 

expression for ge(e) is given in (4.27) while gP(e), together with 
a a 

f (e), are described in Fig.8. In (4.38) a 

1 

v1 (e) = p~ v1 (eL v2(e) = p~ 1v2(e) 

2 2 (4.41) 

wl (e) = p~wl (e), w2(e) = p: 3 w2(8) ' 

where v1(e) and v2(e) are found in (3.62) and (3.64), respectively. 

We refer to Eqs. (4.31)-(4.36) to obtain expressions for w (e). In ad-
a 

dition, we note that the domains ~+ and 'JI (2.20) have theelastostatic 
+ shock g (2.18), (2.19) as a common boundary. In view of (4.1), (4.24), 

(4.25), (4.28), (4.35) and (4.39) the asymptotic representation of the 

shock reduces to 

y;-_, 0 (4.42) 

The constant c2 is given in (4.40) and 

c3 ; . 036 (4.43) 

In the analysis summarized above the remaining unknown constants are 

p
0 

(>O) and \l in ga (see (4.27), (4.29)). 

The results (4.37)-(4.43) represent a locally one-to-one map of the 

neighborhood of the crack-tip. Calculating the deformation image of the crack 
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face e ='TT in terms of the nondimens i ona l i zed spa ti a 1 coordinates 1 eads to 

1 

Y2""'c2+C4Yr (c2;1.013, C4;8.24) as (4.44) 

The crack-tip (r=O) deforms onto the line -c2 ::;;y2::;;c 2,:Y1 =0 andthe 
+ *+ shock g (4.42) maps onto g which is found to satisfy 

2 

:Y2""'c2 -c5yf (c5 ;3.48) as (4.45) 

* The curves (4.44), (4.45) are sketched in Figure 9 where II and 
~ + 
~ correspond to the respective images of II and ~ . It is apparent 

from the figure that, in the vicinity of r = 0, the traction free faces 

(e =±TI) open to almost flat surfaces oriented in the direction of the 

applied load at infinity. The fact that the curves extend slightly into 

the half-plane :Y1 >O cannot be explained by this local analysis. 

We now list the Cauchy stresses as functions of the material coordi-

nates (r,e) in the upper half-plane computed from (1 .30), (1 .33) and 

(4.37), (4.38): 

{~-l/3rl/2E (e) 
+ 

Tll 0 11 
on ~ 

-l"<d 

µ o(r4) on II 

{(1 -A-B/
3

) = • 926 on ~+ 
T22 

(4.46) _,__, 

jl 1 on II 

~-1/3rl/2E (e) + 
T12 0 12 on ~ 

-ro; 

µ o(r2) on II 
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where 

l 

Ell (e) = 3A3(cos ef1 +f sin ef1) +A -l (sin ef2 -fcos ef2) 

(4.47) 

and recall A;_ 2.657. In the hyperbolic region 'JI the leadin9 terms in 

the coordinates do not contribute directly to the stresses Tll and 

T12 . The functions E11 (e) and E12 (e) on [0,TI] are plotted in Fig.10. 

The stresses (4.46) indicate that the material in the neighborhood of the 

crack-tip is subjected to deformation that approximates uniaxial tension 

parallel to the y2-axis. 
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APPENDIX A 

In this Appendix solutions to the anti-plane shear crack problem 

are found which include two elastostatic shocks that are asymptotically 

tangent to rays issuing from the crack-tips. 

To this end, let g+ and g- be curves defined in (2.18), (2.19) 

with s = 0 and A= e*, so that 

where 

+ 
g-: e = ±8 ( r) , O< r:::;; r 

0 

e(r),_,e* as r-0 

(A. l) 

(A.2) 

The regions u1, u; and U2 described in Figure 11 are defined locally 

as fol lows 

u1 = [ ( r , 8 ) I - e ( r ) < e < e ( r ) , O<r:s;r} , 
0 

u2= [(r,e)l -n<8<-e(r) ' 

O<r:;;r} 
0 

O<r:s;r} 
0 

(A.3) 

Keeping in mind the symmetry imposed by the deformation at infinity (2.3) 

we assume the displacements admit the representation 



where the exponents m satisfy 
a 
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as r- 0 on !.t 2 

O<m < l 
a 

(A.4) 

(A. 5) 

Furthermore, v1(8) and v2(8) are smooth functions on the overlapping 

intervals (-81 ,81) and [n,8 2), respectively - the angles 81 and 82 
(yet to be determined) obey 8 * ~ 81 s; n and 0 < 82 s; 8 *. The boundary con­

ditions (2.4) imply 

(A. 6) 

We repeat the analysis resulting in Eqs. (2.10)-(2.15) for the pres-

ent case and find the general solutions for v ( 8): 
a 

m v (8)=V cosiµ (8)!v +cos2iµ (8)!-l/ 2(l-ma) 
aa a a a a 

(A. 7) 

where iµ ( 8) is the solution of 
a 

(~+cos2iµ )~ +(v +cos2iµ )=O 
a a a a 

(A.8) 

The constant v is assumed positive while 
a 
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1 
v = -( 3 - 2m ) 

a 3 a (A.9) 

We note also that v +cos 2iJ; ~ 0 in order that the displacements be 
a a 

bounded. 

In what follows, we consider o~e:;:;1T and refer to (A.4) for the 

displacement in the lower half-plane. As in (2.16), let 

ij;l (0) = 1T/2 (A. 10) 

so that v1(O)=0. The boundary condition (A.6) is satisfied, without 

loss of generality, by stipulating 

(A. 11 ) 

The solutions iJ; 1(e) and iJ;2(e) governed by (A.8)-(A.ll) are sketched 

in Figure 12. The function iJ;1 (e) decreases monotonically from a value 

of 1T/2 at e = 0 (as specified by (A.10)) and approaches the asymptote 

~= l/2cos-1(-v1) in the· limit e .... oo. iJ;2(e) is a decreasing single 

valued expression on the interval [e
0

,1T] where 

(A.12) 
1 

* = [3 -m2] 2 
v m ' 

2 

Further, we note that iJ;2(e
0

)=iJ;
0 

while iJ;
2

(1T)=O. 

On substituting iJ;a(e) into (A.7) we find v1 (e) and v2(e) are 
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smooth functions defined on [O,n) and (e
0

,n] respectively - the in­

terval (e
0

,n) is common to both domains in accordance with the original 

assumption (where e = n 1 

the correct sign, namely 

Al so V > 0 
a 

implies v 
a 

n::;e<e 
0 

* Accordingly, the shock angle e must satisfy 

e <e*<n 
0 

have 

(A.13) 

(A.14) 

An asymptotic equilibrium solution displaying adequate smoothness is 

now generated to this anti-plane shear crack problem by matching the dis­

placements and associated tractions across the shock g+. 

Continuity of displacements (A.4) requires 

(A.15) 

On referring to (A.l), (A.2) and (A.13) we conclude that asymptotic equal­

ity (A.15) holds if and only if 

(A. 16) 

This result, together with (A.7) provides one matching condition across 

the shock: 

(A. 17) 



where 

-60-

1 
v = v = -( 3 - 2m ) 

Ct 3 

Further, (A.14) indicates that 

The remaining condition to hold on g+ pertains to the matching 

(A.18) 

(A. 19) 

of tractions. Equations (l.18), (l.24), (1.25), (A.4) and (A. 7) imply 

2 Iv+ cos 21/!1 ( e *) 1-1I2 ( 1-m) = 

v2 Iv+ cos 2w2(e*) 
L .J 

In view of (A.17), (A.20) is replaced by 

which, in turn, can be written in the form 

sin21/!1 (8*) 

sin21/J,.,(8*) 
L 

(A.20) 

(A.21) 

(A.22) 

Here, J(·) is a monotonically decreasing function on [O,ijJ
0

] with the 

end points J(O) = rr/2 and ~(1)!0 ) = 1/!
0

• 

What remains is to prove the existence of a solution to (A.22) for 

an admissible value of 8. The shock condition (A.17) can be made to 

hold merely through an appropriate choice of the ratio v1;v2. From the 

sketch of J(1)!2(8)) in Fig.12 it is apparent that we can find an angle 

8* (depending uniquely on m) for which the curves 1)!1(8) and ~(1/! 2 (8)) 
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intersect and thus satisfy (A.22). 

Consequently, there exists a system of solutions to the crack prob­

lem (2.2)-(2.4) in which the displacement field near the crack-tip is of 

the form 

(A.23) 

where 

for -e*<e<e* 

(A.24) 
for 

In (A.23) the exponent O<m< l remains undetermined from the leading 

order analysis. The function v(e) on [-TI,TI] (A.24) possesses a dis­

continuous first derivative across the elastostatic shock g+ (A.l), 

(A.2). The shock angle e* and v(e) depend on the unknown exponent 

m while v(e) is also arbitrary with respect to a multiplicative con­

stant. An appeal to symmetry reveals the displacement on u2. Further­

more, the displacement equation of equilibrium is everywhere hyperbolic 

as r _, 0 for -TI :;; e :;; TI. 

We now consider the stresses associated with the deformation (A.23). 

The nontrivial components of the actual stress field are obtained, in 

terms of the polar coordinates (r,e,z) = (r,e,x3), from (1.18) and (1.19): 

*, au *, l au 
Trz=2W(Il)ar, Tez=2W(Il)rae 

(A.25) 

* 2 Tzz = 2W'(I 1) !vu! 
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where 2 I1 =3+jvul. Referring to (1.24), (A.7), (A.8) and (A.23) yields 

with 

}(1-m) -} }(1-m) -} 
Trz""'µr cosl/!(e)p (e), , 82 --µr sinl/1(8)p (e) 

1 
m-1 2 ) Tzz"'µr p (e as r _, O ( -1T :$ 8 :$ 1T) 

1 
p(e) = Vlv+cos 2l/!(e)i- 2(l-m) 

In (A.26) and (A.27) 

l/11 ( 8) for -e*<e<e* 

l/J ( e) = l/12(8) for e*<e:;:;1T 

1T-l/J2(-8) for -1T::;e<-e* 

Finally, V=V1 on (-e*,e*) and V=V2 on (e*,rr], [-TI,-e*) such 

that the ratio v1;v2 is given in (A.17) 

(A.26) 

(A. 27) 

(A.28) 

The asymptotic solution presented in this Appendix was not found in 

[4]. In that study the applied shear at infinity y was assumed small 

compared with one and the solutions to the appropriate displacement equa-

tion of equilibrium in the vicinity of the crack-tip where chosen so as 

to facilitate matching onto the linear elasticity solution valid else­

where. We note that the hodograph transformation used in [4] to solve 

the small-scale problem may not yield all possible solutions. Further-

more, for more severe deformations at infinity in which y is not neces-

sarily small, the results in [4] are no longer appropriate. In such 

cases, displacements of the form (A.23) may occur near the crack-tips. 
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APPENDIX B 

Here, we establish that no smooth solutions of the form (3.9) exist 

for the problem (3.3)-(3.8). Accordingly, we let 

m 
y ,.., r av ( e) as r _, 0 (no sum) 

a a 

uniformly for -TI::;; e::;; TI, where m are constants such that 
a 

Further, we stipulate 

v t 0 a 

(B .1) 

( B. 2) 

(B.3) 

are smooth functions on [-TI,TI]. The symmetry (3.7) associated with this 

problem implies 

(B.4) 

The inequality (B.2) assures singular deformation gradients and bounded 

displacements at r = 0. 

Suppose m1 = m2 = 0 in (B. l), whereupon the coordinate equations of 

equilibrium (3.3) are satisfied, to leading order, if 

,....,2 ·2 ·2 
p (e)=v

1
(e)+v2(e)=O on [-TI,TI] (B.5a) 

or 
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J .... Qr- 2/ 3p(8), p(8)tO on [-1T,1T] as r-0 , (B.5b) 

where Q is a positive constant. Equations (B.3), (B.4) are not con­

sistentwith (B.5a) on [-1T,1T]. Now assume (B.5b) holds and note that equi­

librium of an arbitrary region ~=[(r,8) IO<r<r
0

,81<8<8 2,01<0 2 i:: (-1T,1T)] 

requires, in the 1 imit as r .... 0, that 
0 

(B.6) 

According to the boundary conditions (3.8), 

(B. 7) 

The results (B.6) and (B.7) are incompatible with the assumed smoothness 

of va and thus eliminating the case m1 =m2 =0. 

Now let 

O<m<l (B.8) 

in (B.l). Replacing the coordinates in (3.3) by (B.l) and retaining 

dominant powers of r, provides two coupled nonlinear differential equa­

tions. Assume the equations hold on (-1T,1T) and let 

v1 (8) = p(8)cos cp(8), v2(0) = p(8)sin cp(8) on [-1T,1T] (B.9) 

If 

n(e) = r)(8)/p(e), x(8) = ~(e) on [-1T,1T] (B.10) 

the differential equations reduce to 
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2 2 . . 3 3 
( 3m + n )x - [ n n - m ( m + 4 ) n - n Jx + n x = 0 , (B.11) 

. c· 3 )2 3 2mn x - mn + m - ( 4 - m n ] x + ( 4 - 3m) x = 0 , (B.12) 

on (-n,n). The boundary conditions on the crack faces (3.8) imply 

(B.13) 

In view of (B.9) and (B.10), (B.13) is equivalent to 

p(e)=O or x(e)=O, 5(e)=O on e=-n,n (B.14) 

Solutions of (B.11) and (B.12) subject to (B.14) can be examined in 

the phase plane. For convenience, let 

SJ(e) = n2(e), X(e) = i(e) on [-n.n] (B.15) 

and derive, from (B.11) and (B.12), the trajectory equation 

dX = 2XF(SJ,X) 
dll G(SJ,X) (X>O,SJ>O) (B.16) 

with 

2 F(SJ,X) = 2(1 - m)X - [m (2 + m) - (2 - m)SJ] (B.17) 

2 3 2 G (SJ , X ) = [ 3m ( 4 - 3m) + ( 4 - 5m) SJ] X + [ ( 4 - 3m ) SJ - 3m ] ( m + SJ ) (B.18) 

The trajectories X = X(SJ) are sketched in Figs. 13 and 14. From 

the figures we note that if X(e*) = i(e*) = O (SJ(e*) t- Q
0

) for some 

-n:;;;e*:S:n then, X(e)::::O on [-n,n]. Further, a solution to (B.11) 
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and (B.12) such that n and X lie on the separatrix can only attain 

the values at the equilibrium point, n=n
0 

and X=O, in the limit 

e -+ -oo or +oo . Consequently, the boundary condition ( B. 14), in which 

x(e)=O on e=-TI,TI, can only be satisfied if x(e)=~(e):::O on [-TI5rr]. 

From (B.9) we conclude v (e) = c p(e) on [-TI,TI] while (R.4) implies 
a a 

the cons tan ts c = 0. 
a 

Assume now the first condition in (B.14) holds and consider, in par-

ticular, the crack face e =TI. From (B.10)-(B.12) and (B.16)-(B.18) we 

obtain an implicit representation for p(e): 

p ( e ) = e c.9( 8 ) (B.19) 

on [-TI,TI],with 

X(e) 2 
c.9(e)=J m(3m -n(X)) dX (B.20) 

4XF(n(X),X) . 
x ('IT) 

In (B.20), the appropriate trajectory n= st(X) (X>O) is chosen with 

regard to the boundary condition p(TI) = 0, which dictates 

c.9( e) - -oo as e -+ 'IT 

We investigate the possibility of satisfying (B.21). Suppose T 

is a curve n = st(X) in the phase plane that intersects the straight 

line F(n,X)=O when e=11 (see Fig.13). Thus, the integral (B.20) 

( B. 21 ) 

is singular at the boundary. Further analysis indicates the integrand 

is O[(X-X(TI)f 112] as X-+X(TI) on T which implies the condition 

(B.21) is not attained. Now let X(TI) = oo. It can be shown from 



(B.16)-(B.18) that 

( (4-5m)) 
r1 = 0 \x 4 ( 1 -m) 

Q=O(logX) 

n = o(l) 
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(O<m<4/5) 

(m=4/5) as X--oo (B.22) 1 

(4/5<m< l) 

Using (B.22) in (B.20) we again find the integral remains bounded for 

O<m<l. It is apparent then, that suitably smooth solutions of (B.11) 

and (B.12) cannot be made to satisfy (B.14). 

What remains is to account for the case m1 'f m2. Accordingly, let 

m2 = m < m1 , 0 < m < l (B.23) 

Define the function q(e) on [-n,n] through 

(B.24) 

where (B.l), (B.23) and (3.5) indicate that the constant v>2(m-l). 

Further, we assume q is continuously differentiable on (-n,n) and is 

continuous up to the boundaries e = -n,n. 

Substituting (B.l), (B.23) and (B.24) into the coordinate equilibrium 

equations (3.3)-(3.6) and considering only the 1eading order terms we ob-

tain two nonlinear differential equations for q and v2. Eliminating 

q from one equation yields 

1Note that 0<(4-5m)/4(1-m)<l for O<m<4/5. 
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22 2 .. 2 2 22 2 4 mv 2 ( 4m v 2 - p ) ( v 2 + m v 2 ) - 2 ( m - l ) p ( 2m v 2 + p ) + 3 vp = 0 , ( B . 2 5 ) 

2 2 2 • l 2 2 (2m v2 + p )q - z-(2vmv2 + p )q = 0 , (B.26) 

for -n < 8 < n, where 

2 2 2 ·2 p (8)=m v2(8)+v (8) ( B. 27) 

on [-n,n]. Equations (B.l), (B.23), (B.24) infer the boundary conditions 

on e=-n,n. (B.28) 

The technique adopted to solve the differential equation (2.12) is 

applied to (B.25). We obtain 

(B.29) 

(B.30) 

on [-n,n], where v2 and Q are positive constants and ~(8) satisfies 

( B. 31 ) 

on (-n ,n). The constants s
0 

- s
3 

are given by 
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s
0 

= 2 _ 2
2 

(m - v) , s
1 

= m - l 2(1 - s
0

) 

m( 1 - 2s ) 
0 

2(v+l)(l-s )-m 
0 

(B.32) 

for O<m< l. We note that if O< s < 1 
0 

any solution iJ;(e) of (B.31) 

on the finite interval [-TI,TI] must necessarily satisfy 

This condition is violated only in the limit e--oo or +oo. 

Equation (B.29) accommodates the smoothness requirement and the 

parity condition (B.4) if we choose 

iJ;(O)=TI/2 and s 1 =o or s 1:2:l 

(B.33) 

(B. 34) 

Taking s 1 =o in (B.32) 9ives s
0

=l-m/2 and v=2/3(m-l). The bound­

ary conditions (B.28), together with (B.29), (B.30) and (B.32), then 

imply without loss of generality, that 

1/J (TI) = Q , 1/J (-TI) = TI and o3 = v2 
. 2 (B.35) 

Note that for O<m< 1, 1/2< s < 1 and assume the existence of a smooth 
0 

solution to the boundary va1ue problem (B.31), (B.34) and (B.35). Ac-

cordingly, for some value of e on (-TI,TI) iJ; must attain the value 

iJ;1 = l/2cos-1(-s
0

) and thus contradicting the result (B.33). He con­

clude then, that no smooth solutions exist for iJ; and hence v2 on 

[-TI,TI]. A similar conclusion is reached for the case s1 ;;;; 1. 
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FIGURE I. RESPONSE CURVE IN SIMPLE SHEAR 
FOR THE SPECIAL INCOMPRESSIBLE 
MATERIAL CHARACTERIZED BY (1:23) 
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ACTUAL STRESS VS. AXIAL STRETCH 
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FIGURE 3. GEOMETRY OF THE GLOBAL CRACK 
PROBLEM 
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FIGURE 5. UNDEFORMED CONFIGURATION 
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FIGURE 6. (m,k)-DIAGRAM FOR THE ANTI­
PLANE SHEAR CRACK PROBLEM 
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FI GU RE 7. ( m , k ) - DI AG R FOR THE PLANE 
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FIGURE 9. DEFORMATION IMAGE OF THE PLANE 
STRAIN CRACK PROBLEM 
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FIGURE 10. NUMERICAL SOLUTIONS FOR E
11

(8) AND E12(8 ). 
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FIGURE 11. LOCAL GEOMETRY NEAR THE CRACK-TIP 
FOR THE ANTI-PLANE SHEAR PROBLEM 
TREATED IN APPENDIX A 
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FIGURE 12. SKETCH OF THE PHASE ANGLE 
.;_ (8) VS. 8 REFERRED TO IN 
a 
PPENDIX A 
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