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iv Abstract

Abstract

Linear cable theory lies at the core of our understanding of how an individual neuron works. Cable
theory usually assumes that neurons do not interact significantly except at specific, anatomically
specialized locations (synapses and gap junctions). An analysis of the extracellular electrical fields
shows that spikes in one neuron could cause a depolarization of several mV in a dendrite or axon
passing by its initial segment. This is somewhat larger than typical chemical synapses; such ephaptic
interactions could possibly play a role in controlling action potential failure at branch points.

Applying conclusions of linear cable theory to nonlinear spiking neurons has led to incorrect ideas
about neural function. For example, in linear cable theory changing the membrane conductance can
be used to scale the amplitude of EPSPs. Shunting inhibition has therefore been repeatedly proposed
as a mechanism for division or normalization. This mechanism does not work if the neuron is spiking,
i.e., when the output is firing rate rather than EPSP amplitude. When a neuron spikes, its time-
averaged voltage does not increase much even if the firing rate goes up; therefore current through a
shunt resistance is independent of firing rate, and shunting inhibition acts subtractively rather than
divisively.

Cable theory also predicts that EPSPs are low-pass filtered by the membrane resistance and
capacitance, and investigators have therefore assumed that the membrane time constant determines
how fast a neuron can respond. Agin, because of the spiking mechanism, the membrane potential
never reaches steady state, so the time constant is not obviously relevant. The dynamics of firing
rates may be better described by currents than voltages.

Applying this principle to the dynamics of simple feedback networks shows that a key factor in
the response time of a network is the adaptation current. Without adaptation, the network time
constant can be long because it is the gain of the network multiplied by the synaptic time constants.
Adaptation can cancel out the long tails of synaptic current, significantly speeding up response
times. Recurrent inhibition has a similar effect.

Another key factor determining input current is synaptic depression and facilitation. Recurrent
networks are especially sensitive to synaptic depression because of the feedback; within a very
short period of time the network behaves like a feedforward network because the recurrent synapses
have been depressed away. However, facilitation and depression can act together to provide a
log-exponential transform, allowing subtractive inhibition at one stage to have a divisive effect at

another.
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Part 1

Foundations of Cable Theory

The wide world is all about you: you can fence yourselves in, but you cannot for ever

fence it out.

— J. R. R. Tolkien



2 CHAPTER 1. INTRODUCTION

Chapter 1 Introduction

1.1 What is a neuron supposed to do?

After a century of work, our knowledge of the phenomenology of neural function is staggering.
Hundreds of different brain areas have been mapped out in various species. Neurons in these re-
gions have been classified, subclassified, and reclassified based on anatomical details, connectivity,
response properties, and the channels, neuropeptides, and other markers they express. Hundreds
of channels have been quantitatively characterized, and the regulation and gating mechanisms are
beginning to be understood. Every issue of neuroscience journals reports identification of several
new proteins related to vital functions such as synaptic transmission, neurotransmitter synthesis, or
various metabolic functions of neurons.

Despite this wealth of descriptive data, we still do not have a grasp on how exactly these thou-
sands of proteins are supposed to accomplish computation. For example, how is it that cells in
primary visual cortex respond only to stimuli of a certain orientation? Primary visual cortex is
probably the most intensively studied piece of the brain, and orientation-selective responses are the
most obvious characteristic of the cells. Yet despite thirty years of intensive study, and even a Nobel
prize in the field, the mechanism of orientation selectivity is still hotly debated. We cannot answer
with certainty even the most basic questions: How important is inhibition in determining orientation
selectivity? Is recurrence important? Are dendritic nonlinearities important? In short, what is it
about the neurons or the network that actually gives it orientation selectivity?

At least part of the reason for such confusion is an inadequate understanding of the basic bio-
physics. Contradictory simplified models of neurons have been used to understand the same func-
tions. As an extreme example, neurons are sometimes regarded as high-pass filters (coincidence
detectors; McCulloch and Pitts, 1943; Abeles, 1982; Softky, 1995), sometimes as low-pass filters
(Hopfield, 1984; Carandini et al., 1996b), and sometimes as more complicated kinds of filters. Of
course the results are different. In some cases, as I will show in chapters 4 and 5, untested assump-
tions and simplifications have led to incorrect theories of the operation of cortical neurons. Difficult
experiments to test these theories have been performed, experiments which never needed to be done
if the fundamentals had been more carefully thought through.

To address this problem, this thesis reanalyzes a few of the premises and conclusions from

biophysical analyses of neurons. First, I examine in detail the assumptions behind cable theory



CHAPTER 1. INTRODUCTION 3

and compartmental modeling, especially the assumption that neurons communicate only through
anatomical specializations like gap junctions or synapses. Models usually assume that if synaptic
inputs are completely specified, then the output of the neuron is also determined. The goal of
biophysical modeling has been to calculate and to understand how this output depends on the
synaptic input. The primary mathematical framework, one-dimensional cable theory, assumes that
ion concentrations and extracellular potentials do not change appreciably because of the activity of
neighboring cells.

Is the extracellular environment sufficiently constant that we can make this approximation? Only
a small fraction (usually about 20%) of the space in the brain is actually extracellular (Nicholson,
1995; Sykovd, 1997). At the narrowest, there is only about 20 nm between one cell membrane
and the membrane of its neighbor (Van Harreveld, 1966, 1972). Because of the small size of the
extracellular space, there has been speculation over the years that some of the assumptions of cable
theory might break down. In fact, I show in chapter 2 that they may break down near cell bodies of
cortical neurons. A single spike from a cortical neuron is accompanied by an extracellular potential
of 3 mV or more near the cell body. This field potential can have a substantial effect on nearby
neural elements, in some cases much stronger than the effect of a typical synapse. It is possible that
such effects could play at least a small role in some kinds of computation.

The second part of this thesis also analyzes the effect of a spike from a neuron, but this time on the
neuron itself. Surprisingly, although action potentials are the most obvious behavior of neurons, they
have been overlooked in many simplified neural models. There have been a number of studies which
assume that the output of the neuron is the membrane voltage, rather than the firing rate. Over the
last thirty years, many people have calculated what factors influence the membrane voltage—the
shape of the dendritic tree, the various active conductances in the dendrites, the conductance of the
cell—while ignoring the largest effect on the membrane voltage, the action potential and subsequent
repolarization. Not only crude non-spiking models of neurons, such as variants on the Hopfield point
neuron model, are affected by this oversight. Even sophisticated compartmental models and analytic
work often assumes that the output of the neuron is directly proportional to what the voltage at
the soma would be if there were no spiking mechanism.

In a non-spiking neuron, shunting inhibition (inhibition with a reversal potential near the “resting
potential” of the neuron) has a divisive effect on the membrane potential of the neuron, so it has
been postulated as a mechanism for division or normalization. In a spiking neuron, however, I found
that it has a subtractive effect (chapter 4). In a non-spiking neuron, the rate of membrane potential
change is governed by the time constant of the cell; the time constant is a measure of how quickly
the cell approaches steady state, and so it has been used as a measure of the rate at which a neuron

can respond. But a spiking cell has no steady state, and in fact the membrane time constant is
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not a useful measure of response time; instead, other factors such as synaptic time constants and
adaptation conductances determine the dynamics of firing (chapter 5).

The third part of this thesis builds on the observation that synaptic time constants and adaptation
control the firing rate of an individual cell, and extends this to recurrent networks. Cortical feedback
is thought by some to be essential in the response of cortical cells (Douglas and Martin, 1991).
However, recurrence greatly amplifies the effects of any delays in feedback, and recurrent systems
can have unreasonably slow response times. In chapter 6, I analyze how spike frequency adaptation
can substantially speed up the response of a recurrent system so that it is little slower than a
feedforward system. Recurrence also greatly amplifies the effect of nonlinearities in the feedback.
Synaptic depression and facilitation can therefore have a profound impact on the operation of these
circuits (chapter 7).

What is a neuron supposed to do? We are still a long way from answering this question. This the-
sis rules out some incorrect answers, and begins to examine other factors such as synaptic depression

and ephaptic transmission which may possibly play a larger role than we expected.

1.2 Assumptions and derivation of the cable equation

Most models of neurons are based on the idea that the neural membrane is a leaky capacitor. For
“neurons” which do not have any spatial extent, this takes the form of a simple RC circuit (e.g.,
Hopfield, 1984; Carandini et al., 1996b; see section 1.3 and figure 1.4), possibly with a spiking
mechanism (the integrate-and-fire neuron; Lapicque, 1907). Point neurons are simple because there
is only one voltage to account for, and therefore are widely used in modeling. For some properties
of neurons, however, variations of voltage with location can be important. In this case, neurons
must be described by the cable equation, a partial differential equation that takes into account the
capacitance and leakiness of the neural membrane and the finite resistance of the intracellular space.

Since several parts of this thesis deal with violations of various assumptions of cable theory, it is
helpful to set thém down explicitly in some detail. Cable theory in neurobiology has a long history,
having first been applied to neurons in 1863 by Matteucci and a decade later by Hermann, and
subsequently elaborated by many investigators (see Rall, 1977 for a historical overview). In its most
general form, the “core conductor” model, a long thin electrically conducting core is surrounded by
a membrane. The core cross section is sufficiently small that it can be treated as one-dimensional.
Usually, the membrane is surrounded by extracellular space which is assumed to be isopotential
(grounded). However, an effectively one-dimensional extracellular space surrounding the cable is
sometimes considered by making a minor modification to the equation, and this is the form we will

derive here. The assumptions in the derivation are:
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1. Magnetic fields are negligible. The magnetic field makes a difference of about one part in

10° (Rosenfalck, 1969) because the currents involved are not large.

2. Ion concentrations and fluxes may be treated as continuous variables, ignoring
stochastic effects. This is generally a good assumption. For example, although extracellular
clefts can be extremely narrow (e.g., 20 nm at the narrowest), there are still 36,000 potassium
ions per square micron in such a cleft. All other relevant ions have higher concentrations
(except intracellular calcium), so effects due to a finite number of ions are not likely to be

important.

A more important source of stochastic variations in ion flux is random channel openings. There
may be only 3-4 channels per square micron of membrane (e.g., see Colbert and Johnston,
1996). Random variations in channel openings might even cause spontaneous action potentials
in very small structures such as dendritic spines (Strassberg and DeFelice, 1993; Chow and

White, 1996). This may explain why very small axons are not myelinated (Franciolini, 1987).

However, most structures of interest are not so small. When we assume that ion concentrations
and fluxes are continuous variables, then ionic flow in the extracellular fluid and through

membranes is well modeled by the Nernst-Planck equation for electrodiffusion (see Hille, 1977):

Fzigs Vm‘) , (1.1)

(3

where J; is the flux of ions of species ¢, D; is the diffusion coefficient, n; is the concentration,
¢ is the potential, z; is the valence, and RT/F = kT /e ~ 27 mV measures how electrical

potential trades off against thermal energy.
This equation must be coupled with several others that describe how J; influences ¢ and n;.
First, the total amount of any species remains constant, so

Bm

=V (1.2)

Second, the flow of ions alters ¢ by changing the local charge density p:

6p 6’)’},.5

The charge density affects the potential through Gauss’s law,

Vi =—p (1.4)
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where € is the permittivity.

3. The extracellular and intracellular space can be treated as if it were homogeneous,
rather than modeling all membranes explicitly. Intracellular space in most neurons has
numerous membranes, including various vesicles and the endoplasmic reticulum. Extracellular
space is densely packed with dendrites, axons, and glia. It would be difficult to make any
general statements unless it is possible to ignore the complex geometry of the space. Fortu-
nately, the distance scale of electrical potential variations is usually much larger than such
inhomogeneities. It is therefore a good approximation to replace the potential by its average
over some small volume, and adjust the dielectric constant appropriately. See appendix A for

an explicit test of this idea for an array of parallel axons.

As a result, only the plasma membrane of the cell being studied needs to be explicitly modeled,

and the extracellular and intracellular space can be replaced by homogeneous resistive fluids.

4. Extracellular and intracellular ion concentrations do not change appreciably. This
assumption is examined critically for extracellular potassium in chapter 3. This assumption
has been examined for the intracellular space by Qian and Sejnowski (1989, 1990) and found

to hold everywhere except in very small structures like dendritic spines.

If ion concentrations are roughly constant, the Nernst potentials for the various ions are well-
defined, and flow through ion channels can be expressed as I; = g;(E; — Vi), where g is possibly

voltage-dependent.

Also, the diffusion term in equation 1.1 can be neglected. Combining the flux of all ions into

a total flux of charge J = Foz;J;, equations 1.1-1.3 become

J=—0V¢ (1.5)
op
b v AR 1.6
5 v-J (1.6)
where
F2
g = Ej; ;ZZD{H,Z (17)

is the conductivity.

5. The intra- and extra-cellular fluids are electrically neutral. Equation 1.4 can be
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combined with equations 1.5-1.6 to obtain

op o

ot —2F (1.8)

which indicates that the system relaxes to electroneutrality with a time constant of €/o..
o for extracellular space is about 0.3 pS/um (300 Q-cm; see, e.g., Ranck, 1963 for empirical
measurements; this can also be calculated directly from equation 1.7 using diffusion coefficients
adjusted for tortuosity, as in section 3.4 on page 53). Taking into account the dielectric constant
of water, and the effect of all the membranes in the extracellular space, the permittivity of
tissue is about 10° times the permittivity of empty space in the relevant frequency range

(Rosenfalck, 1969), so the time constant will be about 3 ps.

To a good approximation, then, the charge density p is always 0 on the time scales we are inter-
ested in.! This is an important simplification; it means that the capacitive effects of inactive
membranes can be ignored because very little current crosses them. Both the extracellular and
intracellular space are almost purely resistive, and therefore the potential is an instantaneous
function of the transmembrane current. In other words, the only time dependence is in the
membrane of the cells producing the extracellular potential (in the activation and inactivation

of conductances and in the capacitance); other membranes play a negligible role.

When we set p = 0 and 8p/0t = 0, equations 1.5 and 1.6 turn into Laplace’s equation,

V- (eVe¢)=0 (1.9)
with the boundary conditions

oV -n=Jny, (1.10)

where n is-the normal to the membrane and J,, is the transmembrane current per area (Rall,

1969).

6. The intracellular space can be treated as one-dimensional. In other words, the radial
voltage drop is negligible compared to the longitudinal voltage drop on the relevant distance
scale; essentially all the current flow is axial. A mathematical analysis is too lengthy to present
here, but this assumption has been studied in detail (Clark and Plonsey, 1966; Rall, 1969) and

found to be true in almost any practical case.

1The same conclusion can also be reached from the phase of complex impedance measurements at relevant fre-
quencies (e.g., Plonsey, 1969).



8 CHAPTER 1. INTRODUCTION

Ve(z — dz) Ve(z (z + dz)

_\/\/\/\—_\/\/\/\— 1 Extracellular

re(z — dz/2) dz re(z +dz/2)d

lzmdz

cmdz —— % gm dz Vi =V; = Ve

l dz
ri(z —dz/2) dz ri(z +dz/2)d ! Intracellular
W(z_d;)\N\/\“,j(‘w/\/\/\‘(m

Figure 1.1: Schematic for the core-conductor model including a one dimensional extracellular space.

This reduces equation 1.9 to a one dimensional PDE. However, it is often more intuitive to
think in terms of equivalent circuits; a one dimensional intracellular space is properly described
by the bottom half of the circuit in figure 1.1. Summing the currents into the bottom node
gives

Vie=do) ~Vile) ;. Viletds) = Vi(e)

r; dz r; dz =0 (1.11)

where V; is the intracellular potential, 1,, is the current through the membrane into the cell
per unit length, r; = ma?/o; is the resistance per unit length of cytoplasm, a is the radius of
the axon, and o; is the intracellular resistivity. After simplifying,

2V,
822

T, (1.12)

7. No other neurons inject current into the extracellular space. This assumption will
be analyzed in detail in chapter 2. This implies that neurons’ electrical activity are entirely
independent of each other: there is no cross talk. The extracellular potential is either 0 or due

solely to the neuron being considered.

8. The extracellular space can be treated as either one-dimensional or isopotential
(grounded). The validity of a one-dimensional extracellular space model will be analyzed in

detail in section 2.2.2. It is equivalent to assuming that most of the extracellular current is
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flowing radially rather than axially. Physically, this means that the cable is surrounded by a
non-conducting sheath with a radius not too much larger than the cable itself. This is the
case, for example, if an axon is removed from the animal and placed into oil with only a thin
layer of water around it, as was commonly done in the early days of neurophysiology. It also
may be a good approximation for axons in peripheral nerve because of the connective tissue

surrounding the fibers.

Summing the currents into the top node of figure 1.1,

0V,

55 = Telim (1.13)

where r, = (7b? — ma?) /o, is the resistance per unit length of the extracellular space, b is the

radius of the sheath surrounding the neuron, and o, is the extracellular resistivity.

The large volumes in the central nervous system cannot be modeled as one-dimensional, be-
cause the extracellular current flow is not mostly axial (see section 2.2.1). In this case, Laplace’s
equation (equation 1.9 must be solved. However, field potentials are usually small in compar-
ison with the transmembrane potentials (on the order of tens of microvolts). For this reason,

the extracellular potential is usually set to 0 (i.e., r, = 0).

9. The membrane can be modeled by a capacitor in parallel with a conductance as
shown in figure 1.1. If there is more than one conductance in the membrane, then gm = > g;

and En, = (3. 9:F:)/ Y. gi, where E; is the Nernst potential for each species of ion.

As long as the g; have a suitable voltage dependence, this will always be the case; however,
analytic results from cable theory are only useful if g; does not depend strongly on voltage or
time. This is often approximately true in neurons when the membrane potential is not close
to threshold. When neurons are firing then g; cannot be considered approximately constant,
and the predictions of linear cable theory break down. While it may seem obvious, neglect of

this fact has led to some important misconceptions (chapters 4 and 5).

From figure 1.1,

OV,
im = gm(Vim — Em) + cm—F— (1.14)
ot
The neuron may be accurately modeled by cable theory if and only if these assumptions hold. Adding
equations 1.12 and 1.13 gives
9V B Ve 0%V,
022 022 922"

(re +7i)im (1.15)
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Substituting this into equation 1.14 gives the full cable equation:

1 0V OV

Tetr; 022 gm(Vin = Em) + cm ot (1.16)
or
0%V, V.
9 m o _ m
N = Vi — By + 75 (1.17)

where A2 = 1/gm(re +7;) and 7 = ¢/ gm.

The effect of the extracellular space, with these assumptions, is merely to increase the effective
intracellular resistance, i.e., to change r; into r; + r.. This is because the axial intracellular currents
are equal and opposite to the axial extracellular currents.

Near a cell body, extracellular fields may be several mV. When considering axons and dendrites
passing near the cell body of another cell, assumptions 7 and 8 are violated, and the extracellular
fields must be explicitly taken into account. I show that axons and dendrites passing near the
cell body feel a depolarization approximately equal to the amplitude of the extracellular potential

(chapter 2).

1.3 Implications of cable theory

Some early researchers such as Lorente de N6 (1947b) argued on the basis of extracellular records
that active propagation of impulses in dendrites was important for function. Intracellular work in
motoneurons, however, showed that if dendrites are active, their threshold for impulse generation is
certainly much higher than the axon and soma (Fuortes et al., 1957; Coombs et al., 1957a, 1957b),
and many properties of the dendrites could be well accounted for by passive cable theory (Rall, 1977).
The classic conception of a neuron, as developed by Eccles, Rall, and others, is that dendrites sum
up and smooth éynaptic inputs, and deliver the results as an EPSP to the soma. The soma, it is
assumed, converts the EPSP into a firing rate. A great deal of experimental and theoretical work
has gone into measuring how various manipulations affect the amplitude of the somatic EPSP.
How does the soma convert EPSPs into firing rates? This is a much more subtle question
than it appears at first sight. Before the origins of the action potential were well understood, it
was not appreciated how significantly the action potential itself affects the membrane potential.
For example, when studying the stretch receptor in a muscle, Katz (1950) noted that in response
to a steady stimulus there was “a local preliminary depolarization which re-develops after each

discharge and which varies with the strength of the stimulus.” Today, after years of compartmental
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This figure has been censored for copyright reasons.

Figure 1.2: The slow potential theory. Taken from Stevens (1966), figure 4-1. Used completely
without permission.

models and theoretical analysis of the cable equation, it seems that the best way to understand this
depolarization is as an effect of a transmembrane current (see below). But since the current could not
be measured directly at the time, the earlier physiologists tended to regard the observable voltage
change as the fundamental quantity, which they sometimes called a generator potential (Granit,
1947, 1955; Granit et al., 1963). In this example, Katz (1950) disabled spiking pharmacologically
in muscle stretch receptors and measured the amplitude of the generator potential. He found that
it was proportional to the firing rate for the same stimulus without local anesthesia, and concluded
that “the local spindle potential appears to be an essential link between the input and output of the
sense organ....”

The same idea is carried somewhat further by the classic textbook of Stevens (1966). The slow
potential theory (figure 1.2) is the idea that “an above-threshold depolarization whose magnitude
changes relatively slowly” is faithfully encoded in the firing frequency of the cell. Temporal summa-
tion in the dendrites of a postsynaptic cell will yield a depolarization proportional to the frequency.
As a result, “nerve impulse frequency appears to be translated back into a depolarization similar to

the one which originally generated the axonal nerve impulses.”

Regarding the depolarization as the cause of the spikes, as Katz and other early investigators
did, is certainly correct as far as it goes, since clearly if there is no depolarization there will be no
spikes. However, treating the generator potential as if it is a real potential can be misleading. When

spikes are disabled, the generator potential is a long slow depolarization, as shown schematically
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in figure 1.3A. When spikes are not disabled, the observed potential is not a set of spikes riding
on top of the unaltered generator potential (shown in dotted lines), as would be expected from a
model which first computes the generator potential and then computes a firing rate. Instead, at the
spike initiation zone the depolarization is chopped off by each spike and begins anew after the spike
repolarizes (figure 1.3B). That was why the physiologists had to disable spikes to see the generator
potential. There is no place in the neuron where the membrane potential is equal to the generator

potential®.

A. Generator potential

A I
i !
[ !
I
i
!

\ Figure 1.3: A schematic of the membrane
voltage with spikes disabled (the generator
potential; A) and with spikes enabled (B).
When spikes are enabled, the membrane po-

B. With spiking mechanism tential is not the generator potential with
spikes riding on top of it (dotted lines in A);

the potential is truncated at threshold (grey
lines) and begins anew after each spike.

VAV V Ve

!

It may seem uncharitable to quibble with the best physiologists in the world about one of their
ideas that after a half century of intensive research looks a trifle naive. The reason for examining it
in some depth is that although we do not often use the term “generator potential” any more, many
modern modeling and experimental efforts are based on exactly the same idea. This idea leads to
some important misconceptions about neural function.

Consider, for example, the recent model of Carandini and Heeger (1994) and Carandini et al.
(1996b, 1997) in figure 1.4. This model has been quite popular for explaining some features of
normalization in cortex, and in fact has set experimentalists looking to confirm its biophysical
prediction of a large conductance change. It explicitly computes an above-threshold membrane
potential V,, (effectively the generator potential, though these authors did not call it so) using a
conductance-based model of a neuron. It then converts this membrane potential into a firing rate

but the spiking mechanism itself has no influence on the membrane potential.

2The case where the spike mechanism is electrotonically distant from the site of input will be dealt with later, in
the chapters devoted to shunting inhibition (chapter 4) and time constants (chapter 5). The spiking mechanism can
still influence the average voltage at electrotonically distant sites and still should not be neglected.
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Figure 1.4: The model of Carandini and Heeger (1994) and Carandini et al. (1996b, 1997). The key
feature of this model is that an above-threshold voltage is computed using the usual RC model of
a neuron. This above-threshold voltage is turned into a firing rate, but the firing mechanism itself
has no effect on the voltage.

This model is singled out only because it has been quite popular lately. Many other point-
neuron models are based on the same idea (e.g., Sejnowski, 1977; Hopfield, 1984; Nelson, 1994) and
the results from this thesis apply equally to them. The same is also true of some compartmental
models which examine closely the magnitude of the somatic EPSP, and treated the time course and
amplitude of this EPSP as indicative of how the cell’s firing rate will be affected, without actually
modeling the firing mechanism (e.g., Koch et al., 1983; parts of Bernander et al., 1991; Rapp et al.,
1992). But since there is no place in the spiking neuron where the membrane voltage is equal to
the generator potential, different physics apply to the membrane voltage when the neuron is firing
and when it is not. Models which use passive cable properties to compute a generator potential,
and then convert the above-threshold potential into a firing rate, are not properly based on the
underlying biophysics. One consequence of this mistake is that shunting inhibition was thought to
have a divisive effect on firing rates (chapter 4). A second consequence is that the membrane time

constant was thought to be critical in determining the temporal dynamics of firing rate (chapter 5).

When the generator potential is a long slow depolarization as shown in figure 1.3, it is often
better to think of the current injected into the neuron as fundamental rather than the voltage. The
generator potential amplitude is proportional to the injected current, so the same information is
present in both numbers. But the current is a real physical current, and to a first approximation its
time-average value is unaffected by the existence of spikes (chapter 4). For this reason, it is a better

predictor of the firing rate than an above-threshold membrane potential.

When the generator potential is not above threshold most of the time, but instead spends most
of the time below threshold and has only short excursions above, then it may more appropriate to

think in terms of voltage rather than current to predict the spiking pattern. Since the voltage is only
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occasionally above threshold, spiking will not have as drastic an influence. This is a fundamentally
different mode of operation: the spiking output is not determined by the sum of large numbers of
small, independent inputs, but by the timing of fluctuations (Shadlen and Newsome, 1994; Softky,
1995). If the fluctuations arise from simultaneous synaptic inputs, then the neuron can be thought
of as a coincidence detector (Abeles, 1982).

Which mode do neurons actually operate in? The classical conception of a neuron is based
primarily on motoneurons, and it seems clear that their primary function is to sum up inputs and
reporting the result as an analog value. It is still a matter of debate to what extent other neurons
operate in different modes. In some cases, neurons obviously act as coincidence detectors, such as in
the sound localization pathway, and they have clear anatomical specializations to enable them to do
so. In neocortex, it is not yet clear what the best way to think of a neuron is. Most experimentalists
and modelers assume the summing mode. This is true of the normalization models such as the
model of Carandini and Heeger (1994) discussed above. It is also true of the so-called “canonical
microcircuit” or cortical amplifier models that inspired the network analysis in chapters 6 and 7
(Douglas and Martin, 1991; Maex and Orban, 1992, 1996; Douglas et al., 1995; Somers et al., 1995;
Ben-Yishai et al., 1995; Suarez et al., 1995; Holt et al., 1996); in fact, attempts to explain the
behavior of these models led to the considerations discussed in this section. For this reason, most

of this thesis pertains to the summing mode.

1.4 Small circuits of neurons

The classic Hubel-Wiesel model postulates that orientation selectivity in simple cells in cat visual
cortex arises primarily from convergent input of thalamic cells chosen so that the response is ori-
entation selective. In the thirty years since their pioneering work, the mechanism has been hotly
debated, especially the importance of inhibition in sharpening the response. It appears that the
thalamic input onto cortical simple cells is orientation tuned but only weakly so (Pei et al., 1994;
Vidyasagar et al;, 1996; but see Reid and Alonso, 1995), although it is clear that the total synaptic
input onto cortical cells is sharply orientation tuned (Ferster, 1986, 1987). Experiments with ion-
tophoresed bicuculline appear to indicate that inhibition is important in generating direction and
orientation selectivity (Sillito, 1975, 1977); however, blocking inhibition intracellularly in a single
cell has only a small effect on the sharpness of orientation tuning (Nelson et al., 1994). IPSPs are
strongest for stimuli of the preferred orientation rather than for other orientations, and in fact seem
to have the same orientation tuning as EPSPs (Ferster, 1986). Searches for hidden IPSPs (shunting
inhibition) have uncovered no significant conductance changes (Douglas et al., 1991; Dehay et al.,

1991; Berman et al., 1991, 1992; Douglas and Martin, 1991; Ferster and Jagadeesh, 1992; but see
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Borg-Graham et al., 1996).

Models from our lab and other labs (Douglas and Martin, 1991; Maex and Orban, 1992, 1996;
Douglas et al., 1995; Somers et al., 1995; Ben-Yishai et al., 1995; Suarez et al., 1995; Holt et al.,
1996) have been developed to explain these puzzling observations. Previously, all models had as-
sumed that only feed-forward connections were important in generating the response. Yet over 95%
of the excitatory synapses onto a layer IV cortical cell come from other cortical cells (Peters and
Payne, 1993; Peters et al., 1994). It is clear from a number of anatomical studies that cortical cells
usually make excitatory connections only to other cortical cells in the same orientation column, or
with cells in other columns that have similar receptive fields (Kisvarday et al., 1997).Thus most of
the excitatory input a cell receives comes from other cells with almost the same receptive field. This
observation suggests that the cortical circuitry could be described as an amplifier. A small amount
of thalamic current causes cortical cells to spike. Activation of recurrent synapses causes the cells
to spike more, and so on; the resulting firing rate is much larger than if there were only feedforward
input. Inhibition may be necessary for sharpening the orientation tuning, but only a small amount
of inhibition is necessary to counter the small amount of geniculate input which triggers the am-
plification cascade; it is not surprising that it might not have been seen in intracellular recordings.
The inhibition needs to be only slightly more broadly tuned than excitation, as found recently in
anatomical work (Dalva et al., 1997; Kisvarday et al., 1997), to have a significant sharpening effect
(Douglas et al., 1995; Somers et al., 1995); it is not surprising that experiments find that inhibition
has approximately the same tuning as excitation. Blocking inhibition in a single cell has only a
small effect, because most of the excitatory input into that cell is already orientation-tuned since it
comes from other cortical cells.

How long does the recurrent circuitry take to act? A thalamic input triggers a few spikes which
cause more recurrent input, leading to more spikes, leading to more recurrent input; but the whole
process takes a certain amount of time. In positive feedback loops in electrical engineering, the time
constant of an amplifier system is usually approximately the gain of the amplifier times the time
constant involved in the feedback. Our models have assumed a gain of around 5, and the feedback
will have a time constant of on the order of 80 ms if NMDA receptors are involved. As a result, the
network time constant ought to be around 400 ms. This is rediculously long. Celebrini et al. (1993)
argued that since orientation tuning seems fully developed in the first spikes, a recurrent mechanism
is ruled out. However, recurrent models of orientation tuning show the same property (Somers et
al., 1995), and in general cortical amplifier models do not have such a long time constant. However,
no detailed analysis of the factors that influence the dynamics of the response has been performed.
In chapter 6, I use the considerations and formalism developed in chapter 5 to provide a simple

explanation for why network models do not show such long time constants.
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A second issue with recurrent models is the sensitivity to nonlinearities in the feedback. One
kind of nonlinearity which is known to be present in some synapses is depression: if the presynaptic
cell fires a train of action potentials, later EPSPs in the postsynaptic cell are smaller than the first
EPSP. Although this phenomenon is well known in other systems (see Zucker, 1989 for a review),
the extent of synaptic depression in neocortex was not appreciated until recently (Thomson and
West, 1993; Thomson et al., 1993b; Thomson and Deuchars, 1994; Stratford et al., 1996; Markram
and Tsodyks, 1996; Tsodyks and Markram, 1997; Abbott et al., 1997). Synaptic depression turns
out to have a profound effect on properties of such circuits, so much so that there is practically no

steady state amplification, unless it is countered by facilitation at other synapses (chapter 7).



CHAPTER 2. EPHAPTIC INTERACTIONS 17

Chapter 2 Ephaptic interactions

2.1 Introduction

Studies on squid giant axons (Arvanitaki, 1942), crab motoneurons (Katz and Schmitt, 1940, 1942),
and even algal strands (Tabata, 1990) showed that when two axons were placed in a medium with
reduced extracellular conductivity, activity in one axon could depolarize the other. Such interactions
are called ephaptic (Greek “touching onto”, rather than synaptic, “touching together”; Arvanitaki,
1942). The early studies were done before the chemical nature of synaptic transmission in the CNS
was understood, and were thought to be evidence that transmission was purely electrical (see Eccles,
1964; Faber and Korn, 1989). In extreme cases an action potential can be induced in an inactive
axon by a nearby one. In fact, ephaptic transmission may underly pathological activity in motor
neurons some kinds of facial spasms, or in crushed nerves or in nerves damaged by multiple sclerosis
(see Faber and Korn, 1989; Jefferys, 1995).

What determines the magnitude of the potential around a neuron? Suppose, for example, we have
an isotropic spherical cell with no dendrite. Because of conservation of charge and electroneutrality
of the cell, the net current into the extracellular space is 0, and the extracellular potential will
always be 0 no matter what electrical activity happens at the cell’s membrane.* The same holds for
a space-clamped axon. In fact, the total current through the membrane of any neuron must always
equal 0, no matter what the neuron does, because of conservation of charge. However, current may
enter at one point and exit at another. In this case, the current loop must be completed through
the extracellular space. Current flow in the extracellular space causes potential differences which
can be measured.

Currents in the extracellular space come from two distinguishable sources: synaptic currents
and action potential currents. Synaptic currents are small in comparison with the action potential
currents, but they last for several ms and in laminar structures the synaptic currents from thousands
of neurons can sum up to make field potentials on the order of several mV. On the other hand,
currents from action potentials are quite large, but they are usually very brief and diphasic, unlike
the synaptic currents. As a result, it is rare for action potentials from adjacent cells to be aligned

precisely enough to sum up; if they are misaligned by a fraction of a ms, they will tend to cancel

1This can also be seen from circuits. The equivalent circuit is the same as in figure 1.1 on page 8 with the
intracellular resistive grid removed; the intracellular node (V;) is floating and not connected to anything. It is clear
from the circuit that there can be no transmembrane current, because the capacitive current must always equal the
ionic current.
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out. It is fairly clear that most slow field potentials (with time courses longer than a ms) and
also potentials recorded over large areas (e.g., the EEG) are due primarily to synaptic currents
rather than action potential currents (Creutzfeld and Houchin, 1974). In fact, a number of models
of extracellular field potentials do not even include action potentials in the calculation (Rall and
Shepherd, 1968; Klee and Rall, 1977; Wilson and Bower, 1989). Current source-density (CSD)
analysis has been used extensively in laminar structures like neocortex and olfactory cortex to
understand the sequence of events in response to electrical shock stimulation (see Mitzdorf, 1985),
so a great deal is known about the extracellular potentials from synaptic currents.

There is some evidence that the electrical fields due to summed synaptic input from thousands of
neurons are strong enough to influence firing significantly. Even fields as small as 2.5 mV/mm can
significantly modulate population responses, and such fields certainly occur during normal operation
(see Jefferys, 1995). These fields could have a small general excitatory or inhibitory effect over a
large area of cortex, but the interactions are unlikely to be specific. I have chosen to concentrate
rather on interaction based on the fields from single action potentials because their fields are less
well studied and could have more specific effects.

See Rosenfalck (1969) for a thorough review of the earlier literature pertaining to axons, and
Faber and Korn (1989) for a thorough review of ephaptic interaction in general. Plonsey (1988)
discusses solutions and approximations for unmyelinated axons. A relatively readable review on the
general theory of volume conductors is Malmivuo and Plonsey (1995), ch. 8. A general but old

review on potentials from cells is Hubbard et al. (1969), ch. 7.

2.2 Extracellular potential produced by spiking activity

2.2.1 Axon in a volume conductor

The fields around axons have been extensively studied, largely because the geometry is fairly regular
and the pulse propagates down the axon without change of shape. Since there are no barriers
to conduction over large volumes of the central nervous system (assuming the ventricles and pial
surface and other boundaries are far away), the potential around axons in the brain can be modeled

by Laplace’s equation (equation 1.9 on page 7),
Vi =0 (2.1)
with the boundary condition that ¢ = 0 at the point at infinity and

0V n=Jp, (2.2)
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where J, is the transmembrane current density and n is the normal to the membrane, at membranes
which are active.

These equations are identical to the equation for potential due to charges located at the same
position as the current sources; o, is dual to the permittivity ¢, and J,, is dual to the charge density
on the sheet. As a result, solutions from electrostatics can be immediately applied to the problem
of potential in a volume conductor.

For example, if we approximate the axon as a line (neglecting its thickness), then we can use the
solution for potential from a line of charge. The potential from a single point? a distance R away is

¢ = I /47 Ro., so the potential from a whole line of sources a distance r away is

#lrz) =~ /_O; dro, Zw;‘gz—;—) Ei:l_ z")? (2:3)

where i,,(2) = 2waJ,, is the transmembrane current per length.

This approximation, first made by Lorente de N6 (1947a), leads to relatively understandable
expressions for the potential and shows qualitatively what factors influence it®. Furthermore, in
an unbounded volume conductor, this approximation is very good even at the axon membrane (see
section C.2.3).

The transmembrane currents from a simulated axon are shown in figure 2.1, and the correspond-
ing field in figure 2.2. For axons, the extracellular potential at the neuron membrane is roughly
proportional to the transmembrane current there, because the action potential is spread out over a
large spatial distance and only nearby points contribute to the sum in equation 2.3.

The transmembrane current in an action potential is roughly a dipole, or two back-to-back
dipoles (an axial quadrupole, sometimes in this configuration called a tripole): current flows out of
the axon ahead of the action potential and behind it, and into the axon during the action potential
(figure 2.1). Analytic expressions can be written for the potential from dipoles in an infinite volume
conductor (put delta functions into equation 2.3). These considerations suggest that far away from
the neuron, poténtials should decline as 1/r? as they do for a dipole (Rosenfalck, 1969) or 1/r® as
for a quadrupole (Plonsey, 1977).

In mammals, unmyelinated axons with diameters much larger than 1 pum are rare; one would

2The finite volume of the axon has only a negligible effect on the potential from a point source, so it is sufficiently
accurate to use the Green’s function for a point source in free space.

31t is often inconvenient to specify the transmembrane current J,, since it is difficult to measure. The extracellular
potential ¢ can also be computed directly from the intracellular potential (Geselowitz, 1966), since J., can be
computed from the spatial variation of the intracellular potential V; (equation 1.12 on page 8) rather than from the
membrane conductance and capacitance (equation 1.14). The resulting expression is

6= / o5 8%V, dz (2.4)

o Te 022 4n2q2r
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Figure 2.1: Current flow across the membrane in a propagating action potential propagating to the
left at an instant'in time. Top, transmembrane voltage; Middle, sodivm and potassium conductances;
Bottom current density as a function of position along the axon. The total current is first positive,
then negative, and then there is a smaller positivity. Numbers are for an axon with a diameter of 1 um
and the conductance values from Hodgkin and Huxley (1952). The action potential propagates with
a speed of 440 um/ms. Only a short segment of the axon is shown. The capacitive (displacement)
current is of course the derivative of V,,,, The ionic current is close to —dV,,/dt except that it is
shifted. See Jack et al. (1983), ch. 9, for a discussion of the currents.
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Figure 2.2: The extracellular potential around the axon of figure 2.1. See section C.2.2 for how the
potential was computed.
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not expect extracellular potentials to be orders of magnitude greater than shown in figure 2.2.
Measured potentials from single axon activity are in general quite small, usually on the order of tens
of microvolts. Potentials do not fall off drastically near the fiber, so there is no particular reason
to think that the extracellular potentials are not accurately measured by the electrode because of
tissue destruction or finite electrode size. It is unlikely that a unmyelinated mammalian axon in a
volume conductor will have an extracellular potential larger than a few tens of microvolts. This is

not enough for significant interaction (see below).

2.2.2 Axon in a sheath: the core conductor model

In the nerves of the peripheral nervous system, the extracellular space around axons is not well
modeled as an infinite volume conductor. Peripheral nerves, even those which are unmyelinated,
are surrounded by Schwann cells and a sheet of collagenous tissue (the endoneurium). Many axons
join together into a fascicle which is surrounded by a second, thicker sheet of connective tissue, the
perineurium. Fascicles are joined together to form the nerve, which is surrounded by a third, thick
layer of connective tissue called the epineurium. One function of these sheaths, particularly the
perineurium, appears to be analogous to the blood-brain barrier: to isolate the axons from changes
in the extracellular environment (see Low, 1976; Peters et al., 1991, ch. XII).

The perineurium is often modeled by a single cylindrical resistive or non-conducting sheath sur-
rounding the axon at some distance from it. (The same model applies to experimental preparations
where a nerve is lifted out of the tissue into air or oil; Stein and Pearson, 1971.) In this case, if
the sheath is close enough to the axon, the current flow is essentially radial, and the core-conductor
model holds.

If there is a sheath that surrounds the neuron and the diameter b of the sheath is small enough
that the core-conductor approximation is valid, then the amplitude of the potential can be easily

computed (Clark and Plonsey, 1968; Rosenfalck, 1969; Stein and Pearson, 1971; Plonsey, 1977):

2 o; a?

-——==V
0. b2

p=——"0 vy, = gid V,, =

ritre " o0 + 0o (b2 — a?) (2:5)

Note that the core conductor model predicts that the potential has the same shape as the intracellular
action potential. This is different from the case of an unlimited volume conductor, where for a
monophasic action potential there is a triphasic extracellular potential (Rosenfalck, 1969).

If there is no sheath or if the sheath is too far away to use the core-conductor approximation,
then the solution is more complicated and there is no useful simple expression (see Plonsey, 1977
for a review). Obviously the solution must collapse to the core-conductor model when the sheath

radius b is not too large compared to the radius of the fiber, but it has been difficult to find a simple



CHAPTER 2. EPHAPTIC INTERACTIONS 23

criterion for when this occurs. Rosenfalck (1969) argued that the core-conductor model breaks down
for b > 2a. Trayanova et al. (1990) after a detailed analysis found empirically that it was valid up for
b < 5a but this will depend on the value of a (25 um in their case) and shape of the action potential
as well so this result is not generally useful. Stein and Pearson (1971) suggest without proof that
the core-conductor model is valid as long as radial voltage variations are not significant, i.e., when
the conductance between the neuron and the sheath is small compared to the conductance along
the axon. This works out to (b*> — a?)logb/a < 21> where [ is the length of the rising phase of the
action potential.?

Another way of deriving limits on the validity of the core-conductor model is to compare it to
another approximation which is known to be valid when b is large. The line-source model discussed
above is known to be within 5% of the true solution when b > 5a (Trayanova and Henriquez, 1991).
Unfortunately, there is no simple expression for the potential from a line source when a sheath is
present. Instead, it is necessary to resort to analysis in the spatial frequency domain. We first
separate variables for a non-zero o, and later we take the limit as a — 0 later; otherwise singularities
appear in the solution too early.

We assume ¢ = R(r)Z(z). Laplace’s equation then turns into:

7"+ kZ=0 (2.6)
rR" + R — k*rR=0 (2.7)

to which the solution is Z = e®** and R = Aly(|k|r) + BKo(|k|r) where A and B are constants
determined by the boundary conditions. At the sheath boundary r = b, dR/dr = 0; also, R is

normalized so that R(a) = 1. After some manipulation,

_ Ky (|k[b) Lo ([K|r) + L1 (|%[b) Ko (|K|r)

R = (kD) To([Ela) + 1 (KB Eo(Fla) 28)
d(k,r) = /_ e**R(k,r)d(k, a) dk (2.9)

where $(k,a) is the Fourier transform of the potential at r = a. [Since R(k,a) = 1, ¢(k,r) =

o(k,a)R(k,r).] We now apply the boundary condition at the membrane surface:

J_ %
Oe T or
e OR R
N v/—oo € ’ E?I’I‘Zagb(kva) dk

4Stein and Oguztoreli (1978) also attempted to solve for extracellular potential, but they assumed a given surface
potential instead of a transmembrane potential. Since the surface extracellular potential varies strongly with the
radius of the sheath, this is not a useful way to understand what affects extracellular potentials.
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implying that

R J [oR]™!
¢(k,a) = - {5} .

_ I K (k)i (k) — L (|k[b) K ([Klr)
oelk| K1 (|k[b)Io(|kla) + 11 (|k[b) Ko(|kla)

To obtain a line-source model, we now let the axon radius ¢ — 0 while keeping the total current

constant. Defining J = Jyag /a, after some algebra

lisg (i) = 220 (%%IO(WT) n Ko<|k|r>) . (2.10)

This should be a good approximation as long as kap < 1 and ap < b.
The core-conductor model is valid if the radial variation of potential is not significant, i.e., if the
potential at r = b is about the same as the potential at the surface of the axon. Using the identity

In(2)K1(2z) + I (2) Ko(2) = 1/z, the potential at r = b is

(k,b) = Jg—?om (2.11)
By comparison, the extracellular potential from the core-conductor model is given by:
2
g;f = %52% (2.12)
Peore (k) = —Ue(bﬁzg) i 02]‘1322 (2.13)
Therefore
Gkb) _ Kb (2.14)

beore(k) 20 (k)

This is shown in figure 2.3. The core-conductor prediction is within 10% of the line-source prediction
for kb < 1. This corresponds to I > 27b, where [ is the shortest significant spatial scale of the action
potential.

If the action potential has a rise time of say 0.1 ms and a speed of 0.5 mm/ms, then the
characteristic length [ will be around 0.1 ms x 0.5 mm/ms = 50 pum. Hence the core-conductor
model could be valid for sheath radii up to 300 um.

In general, the actual potential will be larger than what is given by the core-conductor approx-

imation®. Therefore the core-conductor approximation can be used to decide when extracellular

5(2)801‘6 ~ ¢3 for small b, and for large b, and écore — 0, while (13 does not approach 0.
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potentials will be significant. It is reasonable to suppose that a 1 mV potential might have a sig-
nificant effect (see section 2.3), while something smaller would probably be negligible. Equation 2.5
predicts that if Vi, = 100 mV, then 0;a?/0.b* > 0.01 for a 1 mV potential. o¢;/0. is at most 5,
so one would predict significant extracellular potentials only if a/b > 0.04. For an axon of radius
a = 1 pm, this implies b < 25 pm. Mammalian perineurial sheaths usually have a radius greater
than 50 um (Low, 1976; Peters et al., 1991), so interaction is unlikely.

There is a substantial body of work predicting the extracellular fields of myelinated axons (e.g.,
Marks and Loeb, 1976; Ganapathy and Clark, 1987; Stephanova et al., 1989; Struijk, 1997). Since
myelin decreases the capacitance of the membrane, much less current flows and the potentials are
smaller. In keeping with this, it is much more difficult to record any neural activity in white matter

(David Kewley, personal communication).

2.2.3 Cells with dendritic trees: theory and past work

Extracellular potentials from action potentials around cell bodies and dendritic arbors are different
from the potentials around axons. Most obviously, they can be much larger, sometimes 5 mV or
more® (Freygang, 1958; Freygang and Frank, 1959; Terzuolo and Araki, 1961; Rosenthal, 1972; Towe,
1973). A much larger area (the proximal dendritic tree) is simultaneously depolarized by currents at
or near the soma, so the current that flows must be larger. Also, the shapes can be different because
the action potential does not propagate in the same way. Analysis is complicated by the irregular
geometry of dendrites and cell body, and in general the fields are not well understood.

One approximation which is sometimes made is based on the line source model, equation 2.3.

630 called “giant potentials” of 20 mV or more can be recorded when the electrode is pushed up against the
membrane. These are caused by a resistive seal between the membrane and the electrode and are therefore an artifact
of the electrode’s presence. See Hubbard et al. (1969), pp. 282-283.
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Since potential at any point is a sum of contributions of all points in the neuron weighted by 1/R,
where R is the distance to the point, only nearby points will have a large effect on potential unless
there are very large current sources far away. Therefore, the potential at the membrane ought to be
approximately proportional to the transmembrane current at that point. This is quite accurate for
axons (compare figure 2.1 with figure 2.2). Although was once used to understand field potentials
around cells, it does not accurate in this case (Rall, 1962) because the effect of sources and sinks
near the soma or axon initial segment can be large compared to the effect of current through the
dendrites at the point being considered. Nevertheless, determining where a particular peak in the
extracellular field is largest can be a clue to its origin. This generalization also breaks down if a large
population of spatially distributed neurons is active exactly simultaneously (Klee and Rall, 1977),
such as in response to an electrical shock, or when the field is due primarily to slower events such
as synaptic input.

A second tool for intuition is to formulate the problem in terms of volume sources. Because
dendritic trees are complicated and irregular, the boundary conditions for solution of Laplace’s
equation (equation 1.9 on page 7) are prohibitively complicated. One can average the tissue over a
small volume, changing current flux across membranes into current source density. From conservation

of charge,
V-I=1 (2.15)

where I (the current source density) is the sum of all the transmembrane currents in some small

volume. Since J = —oV¢ (equation 1.5 on page 6),
V-oV¢=-I. (2.16)

If o is a scalar (conductivity is roughly isotropic) then equation 2.16 has exactly the same form as
Gauss’s law in electrostatics (equation 1.4 on page 5). Current source density in volume conductors
is dual to charge density in electrostatics. This means that the mathematical techniques which have
been useful in electrostatics apply equally well to the fields around cells. This was used by Bishop
and O’Leary (1942) and Lorente de N6 (1947b) for a population of neurons with a regular geometry
to try to explain the different shapes of extracellular action potentials along the microelectrode
track.

For example, suppose that the dendritic field of a given cell” is approximately spherically symmet-

ric. Then the field from an action potential originating at or near the soma will also have spherical

7Or population of simultaneously activated cells in a nucleus, as Lorente de N6 (1947b) originally analyzed it.
Approximations to this situation are not uncommon in the various nuclei in the brain.
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symmetry. Taking integrals of both sides of equation 2.16 over a spherical volume of radius r and

// oF - dS = /// () dv (2.17)

where E = —V¢ is the electric field and I(r) is the total current inside a sphere of radius r. Using

applying the divergence theorem,

spherical symmetry,
T 5
4rr?E(r) =/ I(r") 4mr'” dr' (2.18)
0

For r larger than the radius of the dendritic field, the right hand side is 0 since all current that flows
out through the soma must flow back in through the dendrites somewhere. Therefore no potential
at all will be visible beyond a certain radius, no matter what activity there is in the dendrites; hence
this is called a “closed field” (Lorente de N6, 1947b).8

For r within the radius of the dendrites, there will be a measurable potential. When the action
potential is in the rising phase at the soma, I at the soma will be negative, but in the dendrites
I will be positive. When the action potential begins to repolarize, I will be positive at the soma
and negative in the dendrites. The potential from this cell is therefore diphasic, in contrast to the
triphasic potential from an axon. The shape of the potential will always be approximately the same
(negative then positive) wherever it is recorded. This is different from the potential from an “open
field” where the potential can be triphasic or be first positive then negative.

Rall (1962) used the closed field approximation to estimate the magnitude of the extracellular
potential for stellate cells. Many kinds of cells do not have spherically symmetric dendrites, but
part of their tree can be regarded as spherical. For example, in the case of a pyramidal cell the
potential from the whole cell can be regarded as the sum of a closed field (the soma and basal
dendrites) and a dipole source (the soma and apical dendrites). The extracellular potential is large
and initially negative near the soma, and declines rapidly with distance. Probably most of the
current from the somatic spike flows out through the basal dendrites, but a small fraction of it lows
up into the apical dendrite. As a result, potentials around the apical dendrites are small and initially
positive. Of course, this approximation breaks down since action potentials propagate actively up
the dendrites, but it turns out that the potential due to dendritic spikes is much smaller than the
potential due to the somatic spike.

It has been difficult to make general statements about extracellularly recorded action potentials

beyond these qualitative considerations (Lorente de N6, 1947b, 1953). The shapes and magnitudes

8 A population with cell bodies at the periphery and dendrites in the center, such as in the superior olive, also is a
closed field; its field potentials are opposite in sign from the closed field discussed above.
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of the electric potentials depend sensitively on the membrane currents and when the action potential
reaches different parts of the neuron. In early work the extracellular potentials at different positions

were used to answer questions such as:

e Is synaptic transmission electrical or chemical? (For example, see the lively discussions by

Eccles and others at a symposium on the spinal cord, Malcolm and Gray, 1953)

e Where does the spike initiate? The correct answer, in the axon, was determined by a number
of extracellular studies (thalamic cells: Freygang, 1958; motoneurons: Freygang and Frank,

1959; Terzuolo and Araki, 1961) and incorrectly by others (Fatt, 1957).

e Do dendrites carry spikes? Extracellular recordings were interpreted to support dendritic
spikes in some cell types for many years (cortical pyramids: Clare and Bishop, 1955; spinal
motoneurons: Fatt, 1957; Terzuolo and Araki, 1961; hippocampal pyramids: Sperti et al., 1967;
Buzsaki et al., 1996; Purkinje cells: Eccles et al., 1966; Nicholson and Llinés, 1971), although
there were some disagreements (Freygang, 1958; Freygang and Frank, 1959; Nelson and Frank,
1964; Rosenthal, 1972). Lorente de N6 (1947b) even showed that the action potential does
not propagate as far into the dendrite of motoneurons in later spikes of a burst, evidently due
to branch point failure. This result caused considerable excitement when it was rediscovered

fifty years later with different techniques (Spruston et al., 1995; Hoffman et al., 1997).

Analysis of extracellular action potentials has been largely neglected in recent years (an exception
is Buzsédki et al., 1996), partly because extracellular potentials are difficult to interpret, and partly
because dendrites were considered passive for theoretical convenience. More emphasis has been
placed on the origin of field potentials due to synaptic input in a population of neurons (Mitzdorf,

1985; Bullock, 1997).

2.2.4 Cells with dendritic trees: model results

Since little is known about the fields around cells, I computed the extracellular potential directly
from a compartmental model. The purpose of this thesis is not to develop an accurate detailed model
of a cell, but instead to understand the electrical fields around it; so I used a previously published
model of a neocortical cell (Mainen and Sejnowski, 1996) without modification. This model was
chosen because its spikes initiate in the axon (Mainen et al., 1995). Proper spike initiation is critical
for computing the extracellular potential, because the potentials are much larger near the region of
spike initiation than anywhere else (see below). In this model, the action potential initiates in the

axon hillock and initial segment of the axon, where there is postulated to be a very large density of
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sodium channels, as large as at a node of Ranvier.?

A second advantage of the model of Mainen and Sejnowski (1996) is that the dendrites are weakly
active, and action potentials propagate actively up into the tree, so it can be used to study how active
propagation in the dendrites affects the fields. The model uses measured sodium channel densities
in the dendrites (for young rats; see Stuart and Sakmann, 1994). There is some controversy about
these values, however, because they evidently change significantly with age. In the hippocampus
in older rats, for example, the sodium channel density is much higher, but the sodium currents are
balanced out by a high density of potassium A currents so the dendrites are still only weakly active
(Hoffman et al., 1997).

In the peripheral nervous system, cell bodies of neurons are usually surrounded by a sheath of
Schwann cells. In the central nervous system, ensheathment of the cell body and axon initial segment
is more variable. Miiller cells in the retina ensheath ganglion cells (Stone et al., 1995). Purkinje cells
have a complete covering of astroglial processes around the cell body. Neocortical pyramidal cells
appear not to have any covering at all. In neocortex, one finds dendrites and axons in abundance
even directly apposed to the cell body and axon hillock (Peters et al., 1991). Thus in neocortex we
are justified in ignoring the complicating effects of a sheath.'?

Calculation of the field potential was based on the line source model, with a homogeneous
unbounded extracellular space with a conductivity of 0.3 um/uS (330 Q-cm; e.g., Ranck, 1963).
The potential and field amplitudes are directly proportional to 1/, so the effect of a change in o,
is trivial to calculate. See section C.2.3 for details. Results are shown in figure 2.4 and figure 2.5.
It is difficult to account for every detail of the field potential, but most of the obvious features can
be understood. First consider the largest potentials, which occur near the axon hillock and initial
segment. This area of the neuron has an extremely high density of sodium channels in the model
(maximum conductance if all are open is 30,000 pS/um 2, in comparison with 20 pS/um ? in the
soma and dendrites). The inward currents are large because current through the axon hillock is
what depolarizes the soma and proximal dendrites.

The action potential initiates in the distal part of the initial segment (actually in the first node
of Ranvier). It then propagates up the initial segment (not shown), slowing down considerably in
the axon hillock because of the increasing diameter and the load of the soma and the dendrites. The

initial negativity in the extracellular potential (the “A spike” in the nomenclature of Fuortes et al.,

9In EM views of axon initial segments, there is a dense undercoating below the plasma membrane similar to the
dense undercoating at the nodes of Ranvier, and in fact fluorescent neurotoxin probes specific for the sodium channel
stain the hillock of cultured motoneurons and cortical cells more brightly than the cell body (Angelides et al., 1988).
However, physiological measurements in hippocampal pyramidal cells by Colbert and Johnston (1996) indicated only
a low density of sodium channels in the hillock/initial segment. It is still unclear exactly where in the axon the action
potential begins.

10The sheath of satellite cells is probably more for maintaining a constant concentration of potassium and other
ions; see chapter 3.
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Figure 2.4: Field potentials in a plane around the simulated layer V cortical pyramidal cell. z and
y axes are in units of ym. Each trace was taken from a point at its center. Shaded areas indicate
different voltage scales. Closer than 20 pym to the axon hillock, field potentials are much larger than
shown here (see figure 2.5 for closeup). The soma is at (0,0), and the axon descends straight below
it. The apical dendritic trunk is slightly to the left of 2 = 0 and goes up approximately straight, so
the larger potentials at the top center are from the apical dendrite. The field potentials look roughly
similar in other slices through the volume, so only this slice is shown.

Figure 2.5: Field potentials near the soma of the simulated layer V cortical pyramidal cell. The
peak field potential is slightly over -5 mV and occurs next to the axon initial segment. Note that
the peak amplitude on this graph is much higher than in figure 2.4 because the traces are closer to
the axon initial segment.

1957 for motoneurons) is due to the action potential in the distal initial segment, since it occurs at
the same time as the maximum current from the distal initial segment (see figure 2.6). Because of
charge conservation, current flowing in through the initial segment must flow out somewhere in the
cell; in fact, there is an initial positivity near the apical dendrite (figure 2.4) because the potential
from the local outward current there was larger than the potential from the inward current at the
initial segment. This sign reversal in the apical tree is commonly observed in physiology (e.g., Sperti
et al., 1967; Rosenthal, 1972).

A second negativity (the “B spike”) in the field potential is due to the firing of the axon hillock,
especially the proximal part (figure 2.6). This negativity is larger because the area of the hillock
is larger than the initial segment, and also because the axon hillock is driving the depolarization
of the soma and proximal dendrites. In fact, the field potential can be as large as -5 mV within a
few microns of the hillock. Again, this reverses in sign far up the apical dendrite because of current
outflow there.

Is this double-peaked structure observed, or is it an artifact of this model? The amplitude of the
first peak is quite small in most places. With a noise level of 40 pV (primarily due to firing of other
neurons; David Kewley, personal communication), it is unlikely that it could be resolved except by
spike-triggered dveraging. A peak with a shoulder might be observable very near the axon initial
segment. Often a shoulder on the waveform is seen near the soma of a variety of neurons, including
CA1 pyramidal cells (Sperti et al., 1967; Buzsdki et al.,, 1996), possibly pyramidal tract neurons
(figure 1 of Rosenthal, 1972), and motoneurons (Fatt, 1957; Terzuolo and Araki, 1961; Nelson
and Frank, 1964). In some of these examples, two separate peaks rather than just a shoulder can
sometimes be discerned (e.g., Fatt, 1957). By direct comparison of intracellular with extracellular
voltage, the extracellular A spike has classically been attributed to the axon hillock/initial segment,
and the B spike to the soma and possibly proximal dendrites (Terzuolo and Araki, 1961). In the

model here, however, the B spike is due not to currents from soma/dendrites but from the axon
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hillock; this probably could not be discerned experimentally because the potential in the soma very
closely follows the potential in the axon hillock, and the transmembrane currents cannot be measured
directly.

As illustrated by this model, extracellular field potentials can reveal a good deal about spike
initiation and propagation within the cell. As mentioned above, there is still some controversy about
exactly where in the cortical cell the action potential initiates, and whether the axon hillock/initial
segment has sufficient numbers of sodium channels to be the site of initiation. Extracellular fields
are a sensitive indicator of the location of currents. In the slice, where it is possible to visualize
a single neuron within the tissue, it would be relatively easy to examine the extracellular fields
around a cell which can be stimulated by an intracellular electrode. The location where where the
earliest negativities are largest is an indicator of where the spike initiates. One could also determine
whether the large negativity comes from the axon hillock as predicted from the model of Mainen
and Sejnowski (1996), from the soma/proximal dendrites (from the classical motoneuron model), or
from further out in the axon (Colbert and Johnston, 1996).

In the model, the action potential propagates up the apical tree'!, but dV,,/dt is very small
because of the much lower sodium channel density. The field potentials are therefore extremely small
(sometimes less than 10 pV) and are difficult to observe directly. However, Lorente de N6 (1947b)
was able to examine the fields from thousands of simultaneously activated neurons to conclude that
action potentials propagate into the dendrites, and that often propagation fails for successive spikes
in a burst. Buzsaki et al. (1996) found the same result for a single hippocampal cell in vivo using
spike triggered averaging to estimate the average extracellular waveform more accurately.

There are several important features of the extracellular action potential for ephaptic interaction.
First, as noted above, it is very large, much larger than the extracellular fields around axons.
Second, it is more confined in space than fields from axons. For an axon in a sheath, for example,
¢ x =V, (equation 2.5 on page 22), so the field may be spread out over a mm or more depending
on the speed of propagation (see figure 2.1 on page 20). In contrast, the extracellular field has a
large amplitude over only a small region (50 pum for this particular model; sometimes over 100 pm
measured experimentally). The field has a much larger gradient, and this turns out to be important

for interaction.

2.3 Effect of extracellular potential on neural elements

Ephaptic interactions between axons have been observed in a variety of preparations where the

extracellular resistance is artificially increased, including squid giant axon (Arvanitaki, 1942; Ramén

11 A movie of this can be seen at http://www.klab.caltech.edu/"holt/thesis/.
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Figure 2.7: Circuit for computing the effect of extracellular potentials.

and Moore, 1978), crab motoneuron axons (Katz and Schmitt, 1940, 1942), frog sciatic nerve (Kocsis
et al., 1982), and even algal strands (Tabata, 1990). This situation has attracted a good deal of

theoretical interest because of the simplicity of the geometry.

A number of studies have addressed the effects of electrical fields on axons, particularly myeli-
nated axons, because of their importance in electrical stimulation experiments. Some modeling work
in the hippocampus has shown the importance of coupling to the extracellular potential (Traub et
al., 1985a, 1985b) in epileptiform bursts. There has been almost no attempt to examine the effect
of the field potential produced by a single spike on other cells. Rall (1962) guesses that coupling
could have an effect based on preliminary calculations which he does not explain. I am unaware of

any subsequent work on the problem of ephaptic interaction of cells rather than axons.

Obviously, if the potential of the whole brain is raised relative to a distant ground, there will be
no effect at all on neural activity, since the intracellular potentials will rise by the same amount.
It is the gradients of the extracellular potential, rather than the magnitude of the potential itself,

determine the effect.

2.3.1 Infinite straight cables

Consider first the case of a passive unmyelinated cable with a varying extracellular electric potential

V., as shown in figure 2.7'2. Summing the currents into the junction gives (Clark and Plonsey, 1971;

12This figure assumes that V. does not change significantly from one side of the cable to the other, i.e., that there
is no @ dependence in Ve. If V. does depend noticeably on 6, V. and Vi, can be replaced with their average over 6
and exactly the same equation results.
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Plonsey and Barr, 1995'%)

¢ OV + 9mVm = 162%
™ 9t gm Vm = r; 022 (2.19)
1[0V . '
T \ 822 0z2
since Vy,, = V; — V. With the usual definitions 7 = ¢,/gm and A% = 1/7;g,,, this becomes!*
Vi, 5 (0%V 0%V, .
T T Vi = A ( 52 T 5.2 ) (2.20)

The extracellular potential acts like a distributed current (the ephaptic current) with a magnitude
of iepn = (1/7;)02V, /02* per unit length.
For an intuitive understanding of what this means, it is helpful to consider the Fourier transform

of equation 2.20 in both space (k) and time (w):
WV + Vi = —E2X\2V,, — B2X2V, (2.21)

or

R —-k'2>\2

™= T ior e (2.22)

Clearly the biggest that Vm(k) can ever be is —Ve(k), and that occurs for large kA%, Therefore the
largest V;,,(z) can be is —V,(z). This occurs when V;(z) is approximately constant, i.e., when the
spatial scale of the changes of V,(z) is much less than the length constant of the fiber at the relevant

frequencies.

Interaction between two axons

This upper bound is not reached in practice for axonal interaction. Instead, for the term fw7r in
the denominator of equation 2.22 dominates, implying that most of the current is capacitive (Clark
and Plonsey, 1971). For example, in the simulations of figure 2.1, if the axon is placed in a sheath,
Ve &< —Vin, so the dominant spatial frequency in V, is about & = 7/1000/um (based on the half-width
of the action potential), and the dominant temporal frequency will be w = kv = 4407 /1000/ms. If

18 An alternative formulation based only on V; and V, instead of Vj, and V, is possible but involves time derivatives
of Ve (Rubinstein and Spelman, 1988). Electrodes sense V;; however, membrane channels sense Vp,, so Vi, is more
relevant for the biophysics.

14Note that this A value is different from X in the core-conductor model when the extracellular space was treated
as one-dimensional (equation 1.17 on page 10). In that case we assumed that the only contribution to V. was from
the axon under study; here we assume that the contribution to V. from the axon under study is negligible, and the
only contributions come from other neurons.
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there is another axon at rest with the same parameters nearby (A = 220 ym and 7 = 1.1 ms), then
k?)\? ~ 0.5 and wr ~ 1.5; the difference between these is more extreme for the axon considered by

Clark and Plonsey (1971). k*)? in the denominator can be neglected:

iwr Vi &~ —E2X2V,. (2.23)
Taking the inverse transforms,
OVm _ 20%Ve ‘
o A 552 (2.24)

(2.25)

The membrane will therefore be excited with a spatial distribution given by 0V, /0z. Since in a
nerve surrounded by a sheath V, is proportional to the negative of the intracellular voltage of the
active fiber (equation 2.5 on page 22), an inactive fiber’s membrane will first be hyperpolarized, then
depolarized.

This pattern of depolarization and hyperpolarization also explains the result when both axons
conduct action potentials. If the action potentials are almost abreast, their current sources and sinks
are lined up (figure 2.8 top). Each attempts to hyperpolarizes the other, and both will slow down. If
one is slightly behind the other (figure 2.8 bottom), the leading axon will depolarize the lagging axon
and speed its action potential up. Staggered action potentials are stable; the outward currents in
one axon line up with the inward currents in another. As a result, even if the propagation velocities
are different when each axon is alone, the two action potentials will still propagate in step. Both
action potentials can propagate faster than either would alone (Katz and Schmitt, 1942; Maeda et
al., 1980; Tabata, 1990; Barr and Plonsey, 1992) because propagation of an action potential in the

second fiber changes the effective extracellular resistance.

Aligned Action Potentials

o B Figure 2.8: Patterns of current flow in two interacting

24 Rafhal T Y axons. Top, action potentials exactly aligned. In this

7Y R AR Yy case, both axons try to hyperpolarize the other at the

e front of the action potential, so both slow down. Bot-
. . tom, action potentials staggered, with sources and sinks

Staggered Action Potentials lined up. The currents from the leading axon depolar-

[T FliF— 1 ize the lagging axon at the front of its action potential,
. . speeding it up.
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A battery of theoretical studies has addressed the phase-locking of action potentials in adjacent

fibers mathematically and with simulations®®.

However, unless precise spike timing (less than 1
ms) is important for the information carried by small unmyelinated fibers, the synchronization and
phase-locking effects will be unimportant even if the extracellular potentials were large enough to
have a noticeable effect. For this reason, I will not consider ephaptic interaction between two axons
further.

Myelinated axons are more sensitive to extracellular fields for several reasons. They have larger
diameters and lower membrane conductances. Therefore ) is longer, and the k?A? terms in equa-
tion 2.22 are relatively larger. The capacitance is much lower, lowering the iw7 term. Therefore V;,,
will be closer to its limit of —V,. The nodes of Ranvier have low thresholds, making it more likely
that a transmembrane potential shift will initiate an action potential. Several studies have estimated
the response of myelinated axons to various kinds of electrical stimulation by the experimenter (e.g.,
Ranck, 1975; MacNeal, 1976; Tranchina and Nicholson, 1986; Rattay, 1987; Altman and Plonsey,

1990; Rubinstein, 1991). Although myelinated axons are more sensitive to extracellular fields, they

generate much smaller electrical fields, so interaction seems unlikely to be significant.

Interaction of cell bodies and infinite cables

Axons and dendrites in cortex also pass next to cell bodies, where the extracellular fields are much
larger. The fields around cells are much more confined than around axons, and therefore kX is
much bigger. From figure 2.6, the dominant spatial frequency in the action potential is around
k = 7/50/pm and the dominant temporal frequency is w = 7/0.15/ms. For the axon of figure 2.1
passing by this cell body, kX% ~ 190 and wr =~ 20. Unlike axonal interaction, then, the capacitive
current is much smaller than the axial currents. As a result, V,, & —V, and has the same time
course as V.

Despite the crudity of this analysis, it is not a bad good predictor of the transmembrane potential.
The actual transmembrane potential is shown in figure 2.9. In fact, V,, is almost equal to -V,
especially near the cell body where V, is changing rapidly with position.

Although ephapses can be characterized by localized current injection (section 2.3.1), just as
synapses can, this example shows that they have somewhat different properties. Because the ephaptic
current depends on the second derivative of the extracellular potential (equation 2.20), a peak in
the extracellular potential produces an ephaptic current which is depolarizing at the peak and

hyperpolarizing flanking the peak (see the currents in figure 2.9). In fact, the total ephaptic current

15Markin, 1970a, 1970b, 1973a, 1973b; Scott, 1977; Scott and Luzader, 1979; Maeda et al., 1980; Eilbeck et al.,
1981; Keener, 1989; Barr and Plonsey, 1992; Bose and Jones, 1995
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Figure 2.9: The membrane potential of a long straight passvive cable located near a cell body.
Extracellular potential, induced transmembrane potential, and the ephaptic current are shown as a
function of position for several different times during the action potential. This axon was perpen-
dicular to the plane of figure 2.4 and intersected it at (5, —20) (near the axon hillock).
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into an cable is given by
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As a result, the transmembrane potential is more localized and does not spread in the same way as
a point, current source injection would.

The Fourier analysis also predicts what the effect of parameter variations is on induced poten-
tial. Since k*)\? > wr, changing 7 = ¢,,/gm by changing the capacitance within reasonable limits
should have little effect on the result (figure 2.10A). Also changing A = \/0;a/2g,, by changing
the intracellular resistivity (figure 2.10B) or the cable diameter (figure 2.10C) within physiological
limits has little effect because k?\? appears in both the numerator and the denominator. Changing
the membrane conductance g,, has the same effect on both k2)\? and wr and has little effect on the
result as long as wr + k222 >> 1 (figure 2.10D).

In general, for cables passing near cell bodies, parameter variations within reasonable physi-
ological limits have only small effects on the peak amplitude or the time course of the induced
transmembrane voltage. The only parameter that has a large effect on the magnitude of ephaptic
voltage transients is the location of the cable. The magnitude of the extracellular electrical field
decreases sharply with distance; more than 10 pm away from the axon hillock, the peak extracellular
potential amplitude has dropped to less than 1 mV, and induced transmembrane voltages also drop

by the same amount.

2.3.2 Finite or bent axons, cells, and dendrites

Neural elements are straight for long distances only in nerve tracts, and perturbations of action
potential timing are unlikely to be of great significance in such cases. Potentially more interesting
interactions occur in neuropil, where it is much more important to consider neural elements with
sharp bends, terminations, and branches. The effect of the extracellular potential is mediated by the
derivative of its gradient in the direction of the axon or dendrite, and the gradient changes abruptly
when the direction of the axon or dendrite changes. Therefore the largest effects can be seen at

bends in neural processes (Markin, 1973b; Tranchina and Nicholson, 1986).

In neuropil, the modified cable equation 2.19 on page 36 must be rewritten in terms of an arc

length parameter s instead of distance z, where the cable is described parametrically by z = z(s),
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Figure 2.10: Effect of varying cable parameters on the transmembrane voltage induced by a spike
in a nearby cell. Only the voltage at the center of the cable (the peak voltage) is shown. A:
Variations in capacitance c,,, affecting only 7. B: Variations in intracellular resistivity, affecting
only \. C: Variations in the radius of the axon, which affects only A. D: Variations in the membrane
conductivity, which affects both A? and 7 proportionately. The parameter configuration used for
figure 2.9 is shown with a solid black line in all four panels. In all cases, there is little effect within
physiological parameter regimes.
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y =y(s), z = z(s). With this modification, summing the currents into the node in figure 2.7 gives
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As discussed previously, this is exactly the standard cable equation except that V,,, replaces V; and

(2.26)

there is a distributed current (the ephaptic current) injected into the cell of magnitude

, 8 (10V,\ (8 1)V, 18V,
Zeph*az(g%)*(&g)aw 332 (2.27)

per unit length. The derivatives of the extracellular potential at the surface of the cable V. depends

on the extracellular potential ¢ in the tissue volume in a somewhat complicated way. We assume
that ¢ on one side of the cable is approximately the same as ¢ on the other side of the cable, so
we can treat the cable as one dimensional and use V, = ¢ at a point instead of defining V, as the
average of ¢ over the cable’s circumference.

oV,
Os

=V¢ - T=-E-T (2.28)

where E is the electric field and T is the normalized tangent vector,

de dy dz
=(=,—=,— . 2.29
(ds’ ds’ ds) (2.29)
The effective current is proportional to the second derivative,
o2V, d(Ey, By, E,) dT
e .2 2 p R I 2.30
Ds? Oz, y, 2) s (2.30)

where 8(Ey, Ey, E,)/0(z,y, z) is the Jacobian of E (the Hessian of —¢).

Axons and dendrites in neuropil tend to have kinks rather than smooth bends, so T is discon-
tinuous and dT/ds is a sum of ¢ functions. As a result, the current source consists of a distributed
current (the first term in equation 2.30) and a series of point current sources at each bend (the

second term). The magnitude of each point current source is

(160 T ,
ton =5 (3 - 709 (231

where T(s™) and T(s™) are the tangent vectors on each side of the kink.
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A similar situation occurs at a branch point. Summing the currents into the node in figure 2.11

gives
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If we consider the transmembrane potential instead of in-
tracellular potential, it looks like there is a current of magni-
tude
i 6‘/(241 _l Bng _1__ 6%c
re 0sq 1y Osp T Osc (2.34)
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injected at the node.

There is also an effective current injected at the ends of

axons or dendrites. At the end of the cable, no intracellular Figure 2.11: Calculation of ephap-

tic current at a branch point.
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axial current flows (sealed end condition):

1ov; . 1
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Once again, in terms of V,,,, it is as if there is a point current source of magnitude

10V,

1
1oV _lg. 2.
Len = -5 E-T (2.36)

located at the end.
These special cases are all subsumed by a general rule: at any point along the cable, the ephaptic

current is
1
Iepp =——E-T (2.37)
T

summed over all of the cable segments that join at that point. This rule is also applicable for

discontinuous changes in r;.
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How much influence do these ephaptic currents have? Extracellular potentials produced by cell
spiking, at least from this particular pyramidal cell model, change very rapidly in space, and the in-
duced transmembrane potential is already almost equal to the extracellular potential (section 2.3.1);
Vo cannot grow any larger. For fields which do not change so rapidly in space, such discontinuities
focus the effects of the electrical field and are likely to be important. For example, if electrical stimu-
lation causes an action potential, it is much more likely to initiate at a discontinuity (Tranchina and
Nicholson, 1986). With regard to interaction between cells, if the model for generation of extracel-
lular potential is inaccurate and fields do not change as rapidly as it predicts, then kinks, terminals,

and bifurcations will be the only places where V,,, ~ —V.

2.4 Where does ephaptic interaction occur?

Ephaptic interaction has observed experimentally in a number of non-physiological situations, such
as axons placed next to each other in a highly resistive medium (Katz and Schmitt, 1940, 1942;
Arvanitaki, 1942; Ramén and Moore, 1978; Tabata, 1990) and in simultaneous electrical stimulation
of many axons (Kocsis et al., 1982) or cells (Nelson, 1966; Magherini et al., 1976; Dalkara et al.,
1986; Turner and Richardson, 1991). It is clearly important in a number of pathological situations
(reviewed in Faber and Korn, 1989; Jefferys, 1995). So far, there have been only two clear demon-
strations of its effect in normal operations. In the case of the Mauthner cell (see Korn and Faber,
1980; Faber and Korn, 1989) the extracellular resistivity in the surrounding space is much larger
than in most other systems by a factor of five or so, and as a result extracellular field potentials
from firing of the Mauthner cell can be as large as 50 mV. In this case, inhibition has been observed
bidirectionally, from the Mauthner cell to its inhibitory afferents and vice versa.

In the mammalian cerebellum, basket cells form a cap around Purkinje cell bodies. Because of
glial cells and tight junctions, there is a strong barrier to current flow. The spike does not propagate
actively into the synapses of the basket cell; as a result, there is a large current outflow from the
synapse rather than an inflow, and the extracellular potential from the synapse is positive rather
than negative. The Purkinje cell thus experiences a transient electrical hyperpolarization, followed
by inhibition from the chemical transmitter (Korn and Axelrad, 1980).

The purpose for this electrical inhibition is unclear, since there is no obvious reason why a very
fast inhibition is necessary. In fact, the purpose of the system may have nothing to do with ephaptic
inhibition. For example, suppose that the tight junctions are present for some other reason (e.g.,
to prevent diffusion of neurotransmitter or some other chemical) and the ephaptic interaction is a
side effect. There is also a reciprocal ephaptic interaction: when the Purkinje cell fires, the basket

cell’s synaptic terminals will be strongly depolarized. If active conductances were present in the
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terminals, it might be possible for a spike to be initiated accidently ephaptically in the basket cell
terminals. Perhaps for this reason the terminals are not active, and an unintended side-effect of
inactive terminals is ephaptic inhibition.

So far there has been no clear evidence for ephaptic interactions in systems without such unusual
geometries. For a long time there has been a suspicion that ephaptic effects could be important in
the hippocampus, where the extracellular resistivity is somewhat higher than elsewhere in the brain.
Several studies have shown significant effects of field potentials in response to electrical stimulation
(Dalkara et al., 1986; Turner and Richardson, 1991) but so far no interactions without electrical
stimulation are known except in epilepsy (Snow and Dudek, 1984; Traub et al., 1985a, 1985D).

Ephaptic effects are probably not interesting if all they do is accelerate or retard an action
potential, as for a nerve bundle (section 2.3.1). Much more interesting are the cases where an
action potential which would not otherwise be present occurs because of an action potential in a
neighboring cell, or where an action potential that would have been present disappears. Ephaptic
effects are not likely to be very large, since extracellular fields are almost never over a few mV,
and probably never cause a spike on their own except in some pathological cases which are only of
medical interest. They can affect action potential generation only in structures close to threshold:
near the spike initiation zone of a neuron, or at points with low safety factor for propagation.

It is still unclear exactly where the spike initiates (Regehr and Armstrong, 1994). Early studies
of motoneurons indicated clearly that the spike initiated somewhere in the axon, presumably the
initial segment (Fuortes et al., 1957; Coombs et al., 1957a, 1957b; Dodge and Cooley, 1973). More
recent studies reached the same conclusion for neocortical pyramidal cells (Stuart and Sakmann,
1994). In hippocampus, it was formerly thought that the fast prepotentials observed in somatic
recordings were dendritic spikes, but now it seems more likely that these are impulses of adjacent
neurons conducted through gap junctions (MacVicar and Dudek, 1981). In these cells too, action
potentials appear to initiate in the axon, probably at the first node of Ranvier rather than the axon
initial segment, and propagate into the dendrites (Colbert and Johnston, 1996). In all of these cases,
the site of action potential initiation is somewhat removed electrotonically from the synaptic input
and has a very high density of sodium channels in order for it to have a lower threshold than the
soma. For several reasons one might expect ephaptic effects to be noticeable occasionally at the sight
of initiation. First, it is close to several different geometrical inhomogeneities. There is a change in
diameter from the soma and initial segment. Furthermore, bends and bifurcations near the soma
are not uncommon. Second, cell bodies are lined up in layers in cortex and especially hippocampus;
the sites of initiation are where the electrical fields are the largest are thus close to each other.

Once the action potential initiates, it propagates down the axon and up into the dendrites.

For many years there has been speculation that under some circumstances propagation can fail at
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branch points in the axonal arborization (Swadlow et al., 1980). For example, action potentials from
cerebellar granule cells might fail at the T-junctions with the parallel fibers (James Bower, personal
communication). More recently, there is solid experimental evidence that failure occurs at dendritic
branch points (Hoffman et al., 1997) and also presumably at axonal branch points (Debanne et
al., 1997). In each of these cases, the place where the action potential is most likely to fail is also
the place where ephaptic effects are largest: at a bifurcation. Interaction could occur if the action
potential causing the large extracellular field is almost exactly coincident with the action potential
in the dendrite or axon. Alternatively, if an A current is present (as suggested by recent results
of Hoffman et al., 1997 in dendrites and Debanne et al., 1997 in axons), and it can be somewhat
inactivated by ephaptic depolarization, ephaptic interaction might reduce branch point failure even
if the spikes are not exactly coincident.

Dendritic bundles have been another candidate for ephaptic interaction (e.g., see Schmitt et
al., 1976; Roney et al., 1979; Faber and Korn, 1989). Dendrites of many kinds of cells in many
regions of the brain and spinal cord, including apical dendrites of neocortical pyramidal cells, come
together in bundles (see Roney et al., 1979 for a review) and the dendrites are often weakly active.
Sometimes the dendrites are coupled through gap junctions®; sometimes gap junctions are absent
and it is possible that ephaptic interactions mediate coupling (Matthews et al., 1971; Zupanc, 1991).
However, I find that potentials surrounding dendrites are likely to be very small, except possibly very
near the soma, unless all the cells in the bundle fire together. If the purpose of dendritic bundling
is to facilitate interaction, then the interaction is probably chemical rather than merely electrical.

Ephapses around cell bodies can be considerably stronger than typical excitatory chemical
synapses between pyramidal cells. Unlike chemical synapses, however, they are difficult to mod-
ify once a neurite is grown because the magnitude of the depolarization is roughly independent of
the cable properties of the post-ephaptic membrane (section 2.3.1). If ephaptic effects computa-
tionally useful, then it would be reasonable to expect that growth cones are directed by the electric
fields set up by cell spiking activity.

Electric fields are known to have an influence on some growth cones. Depending on the type
of cell and the experimenter, the magnitudes of the effect range from no effect even at fields as
high as 200 mV/mm, to a noticeable effect at fields as weak as 2.5 mV/mm (see McCaig, 1988).
Neurites are usually attracted to the cathode but in some cases they grow toward the anode. Axons
and dendrites of the same cell may be affected differently; for example, dendritic growth cones on
hippocampal cells in culture turned toward a cathodal microelectrode but axonal growth cones were

unaffected (Davenport and McCaig, 1993). Substantial DC voltage gradients exist in the developing

163ee Dermietzel and Spray (1993). In neocortex in development: Peinado et al. (1993); in adult hippocampus:
MacVicar and Dudek (1981); in motoneurons: Magherini et al. (1976).
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embryo, and electric fields may be one of the cues that growth cones use for guidance (McCaig and
Zhao, 1997).

The vast majority of work on galvanotropism is concerned only with DC electrical fields; as
far as I know, only one paper examines the effect of fields of the kind that might be produced by
neural spiking activity (Patel and Poo, 1984). These experimenters found that Xenopus neural tube
neurons grew asymmetrically when pulsed fields as low as 50 mV/mm (the lowest value tested) were
applied; in general, the amount of asymmetry was the same as if the neurons were exposed to a DC
field with the same time averaged value. Most neurites tended to grow toward the cathode, both
in DC and pulsed fields. The same experimenters also performed time-lapse photography studies
which showed that individual growth cones turned toward nearby microelectrodes when the field
strength at the growth cone was as low as 6 mV/mm as long as the pulse frequency was sufficiently
high. Fields of this magnitude certainly exist around spiking neurons, though they are very brief. If
fields from action potentials do have an effect, it seems that they would guide the growing neurites
nearer to cell bodies of neurons which are active in development.

Can the brain use short range ephaptic interaction to do anything useful, or is it just unwanted
cross talk? Ephaptic interactions which affect branch point failure in axons could be used as a kind
of switch: if cells in one region have just been active, then action potentials are more successfully
propagated into that region. The purpose of action potential propagation in dendritic trees is not
yet as clear; if it has to do with Hebb-based learning, ephaptic interactions could affect the signal
that conveys the cell’s own firing rate to its distal tips, so learning would occur only if the cell and
neighbors located at strategic positions have both been active. In both of these cases, however,
ephaptic interactions would be much smaller than the effect of repetitive activity in the axon or
dendrite itself.

Ephaptic interaction is not trivial to observe experimentally using microelectrodes. Some inves-
tigators have used two electrodes, or a double-barelled pipette electrode and compared the extracel-
lular and intracellular potentials directly. In hippocampal epileptic bursts, Snow and Dudek (1984)
found that oftenrthe intracellular potential briefly decreased immediately before an action potential,
raising the question of what triggered the spike. However, the transmembrane potential showed a
clear depolarization leading up to the spike. This finding, that the actual change in V}, is opposite
in sign to V,, is typical of ephaptic interactions; V, and V; move in the same direction, but V; moves
less than V.. A two-electrode experiment to test for ephaptic interaction on the distance scales
examined here would be difficult because the two electrodes have to be so close together; one must
be inside a small structure like an axon or dendrite, and the other must be within a few microns of
the membrane.

Another way to look for specific ephaptic interaction would be to work in slices where synaptic
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transmission has been pharmacologically disabled. Because of new microscopy techniques, it is
now possible to record from the soma and the distal apical dendrites of the same pyramidal cell.
Propagation of action potentials up the apical tree, and failure at branch points, have been observed
in such preparations (Spruston et al., 1995; Hoffman et al, 1997). Action potentials could be
evoked in the soma and recorded in the dendrites, while at the same time activating nearby cells
either by glutamate iontophoresis, a minimal stimulation protocol, or even intracellular stimulation.
Since normal chemical synaptic transmission is disabled, any effects on propagation failure must
be electrical. Gap junctions can be ruled out by closing them pharmacologically, or possibly by
examining the intracellular records for depolarization in one cell when the other spikes. Of course,
propagation of action potentials up the apical tree of a neuron in vivo will be strongly influenced
by the extensive ongoing synaptic activity, so this experiment can only indicate whether the effects
are large enough to be significant. This technique is more difficult to apply to axonal branch point
failure unless one can reliably trace an axon and measure intracellularly at different points in the
arbor.

Ephaptic interactions with magnitudes of several mV are just on the border of being significant.
The magnitude of these interactions is approximately proportional to the extracellular resistivity;
if this were much higher, ephaptic effects would be much more widespread in the central nervous
system. Some cross-talk may occasionally be useful for computation, but widespread crosstalk would
probably be damaging. Extracellular resistivity is controlled primarily by the size and tortuosity
of the extracellular medium. Since ephaptic effects are just on the border of being widespread, it
is possible that the fundamental limits on average spacing between neural elements are set by the

constraint to minimize ephaptic interactions.
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Chapter 3 Extracellular potassium and other

diffusible signals

3.1 Introduction

Besides the ephaptic effects considered in chapter 2, there are a number of other possible non-synaptic
interactactions between neurons. Neurons clearly use some means of communicating without mor-
phological specializations, e.g., gaseous messengers such as NO or CO. A number of other chemical
interactions are possible, mostly based on byproducts of normal operation.

For example, there has been considerable interest in diffusion of neurotransmitter away from the
synapse, possibly activating adjacent neural elements. Often glia are present around synapses to
prevent such diffusion (see Peters et al., 1991, pp. 288-290), but in some cases there is evidence of a
significant effect (see Fuxe and Agnati, 1991).

Extracellular pH changes in neural activity because of neural metabolism, and extracellular pH
has a profound influence on neuronal excitability. Rapid pH decreases of 0.1-0.2 pH units results
in a net decrease in excitability (Sykovd, 1991). However, even during intense stimulation the pH
rarely changes by more than 0.1 units except in pathological cases, so pH is unlikely to be a means
of communication.

Other kinds of non-synaptic interaction have been suggested, mostly based on glia. For example,
it is clear that NMDA receptors require glycine or D-serine in the extracellular medium to function
at all. It is unclear where the required amounts come from. Interestingly, astrocytes do contain
both glycine and D-serine, and they release it into the extracellular space non-synaptically via an
antiporter mechanism in response to depolarization. Glial cells depolarized in response to ambient
glutamate or other neurotransmitters or extracellular potassium increases (Attwell et al., 1993; Shell
et ol., 1995). Extracellular concentrations of other kinds of neurotransmitter are also controlled by
glia (Cull-Candy, 1995; Pfrieger and Barres, 1996). It is possible, then, that glia modulate synapses in
computationally interesting ways through controlling transmitter concentrations in the extracellular
space. This area is not well enough explored experimentally to make any conclusions yet.

Probably the most important possible kind of chemical non-synaptic interaction is due to changes
in extracellular ion concentrations. Concentration differences of ions across neural membranes give

rise to most electrical activity in neurons, and therefore changes in these concentrations are po-
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tentially of great significance for the computations neurons perform (see reviews in Somjen, 1979;
Erulkar and Weight, 1979; Sykovd, 1983, 1991, 1997; Nicholson and Rice, 1991; Ereciniska and Silver,
1994; Jefferys, 1995).

Outside the neuron, the concentration of potassium is low and the concentration of sodium is
high. For this reason, the extracellular sodium concentration does not change significantly, while
the extracellular potassium ion concentration can sometimes double or triple in periods of intense
activity. Intracellularly, the situation is reversed, so potentially sodium accumulation could be
important. However, the intracellular volume is usually much larger than the effective extracellular
volume so concentration changes play little role (except in dendritic spines; Qian and Sejnowski,
1989, 1990).

In the peripheral nervous system, extracellular potassium seems to be cleared primarily through
diffusion and reuptake by neurons. As a result, potassium transients can last up to 50-100 s (Hoppe
et al., 1991). In the central nervous system, potassium homeostasis seems to be one of the primary
functions of astrocytes. At rest, their membrane has a large potassium permeability, enabling
them to buffer it rapidly. They can also pump potassium faster than neurons. They are coupled
through gap junctions, enabling potassium and other molecules to be moved more rapidly over long
distances (Gardner-Medwin and Nicholson, 1983; Gardner-Medwin, 1983a, 1983b). There has been
some speculation that the astrocytic network could regulate neuronal activity in computationally
important ways by distributing extracellular potassium according to some blueprint, but at the
present this seems unlikely (see Somjen, 1979).

Changes in extracellular potassium occur over large regions in epilepsy or when a nerve is repeat-
edly shocked electrically, because many cells are simultaneously active and the potassium homeostasis
mechanisms are overloaded. In such cases, [K] can rise from 3 mM to 10 mM or more (20-50 mM
in the case of spreading depression). Extracellular potassium changes are therefore undoubtably
important for various kinds of epilepsy (see Sykové, 1983, 1997; Jefferys, 1995). It is less clear
whether they are important in normal operation.

Small increases in extracellular potassium concentrations do occur in response to sensory stimuli.
Large changes of up to 3 mM (AEk =~ 20 mV) can be measured in spinal cord 5-10 minutes after
injecting formalin or turpentine into a rat’s paw, apparently due to abnormal self-sustained neuronal
firing in response to such painful stimuli (see Sykové, 1991). More normal sensory stimuli cause less
significant but still noticeable changes. For example, light touches or pinches cause a change of 0.1
to 0.5 mM (AEgk = 0.8 to 4.2 mV) in spinal cord (Sykovd, 1991). When light is turned on a toad
eyecup, there is a slow decrease in [K™*] of up to 0.5 mM between the photoreceptors and the pigment
epithelial cells, and an increase of 0.4 mM (AEyx = 3.4 mV) primarily in the inner plexiform layer

(Karwoski and Proenza, 1987). In visual cortex, passing a bar across a cell’s receptive field caused
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a change of 1-2 mV in Ex (Singer and Lux, 1975; Lux, 1976) or possibly higher (AEx = 7 mV,
calculated from depolarization of glial cells). It is hard to see how such increases in extracellular
potassium could be computationally useful, since they occur over a large area and they have a time
course of hundreds of milliseconds; all neurons in the area would be affected, and the affect would
last long after the stimulus is gone.

More interesting from a computational viewpoint is that extracellular potassium ions can act
like a specific neurotransmitter over short distances. The action potential in the presynaptic neuron
causes [K'] in the synaptic cleft to rise, depolarizing the postsynaptic cell. In some specialized
systems, this effect is known to be important. For example, the calyx synapse from the type I
hair cell completely surrounds the cell body of the hair cell. Goldberg (1996a, 1996b) has shown
that because of this geometry, [K*] rises significantly in the cleft and augments the response to the
traditional neurotransmitter (ACh). In some cases, KT is the only neurotransmitter. The giant
interneurons of the cockroach come together in close apposition, and there is clearly an excitatory
interaction between them, but there is no chemical synapse or gap junction. Instead, potassium
released by an action potential in one is sufficient to depolarize the other (Yarom and Spira, 1982;
Spira et al., 1984).

There have only been a few attempts to record potassium concentration changes from single
spikes. A change of 0.02 mM (AEg = 0.2 mV) was recorded for single spikes from mesencephalic
reticular formation neurons. Bursts of activity caused larger responses (0.2 mM, AEg = 1.7 mV,
Sykova, 1991). For technical reasons, however, the actual change near the neuron is certainly much
higher. First, ion-selective microelectrodes have a response time of at least several milliseconds due
to the ion exchanger; simulations show that the largest local increases have a time course shorter
than this (see below). Second, recording electrodes necessarily destroy the extracellular space.
This is not a problem when recording field potentials because the voltage does not change much
over distances comparable to the size of the electrode, but it is a serious problem when measuring
concentrations, because the peak concentration change is expected to be localized to only the cleft
immediately adjacent to the active neuron (see below). Hence the actual [K™] transients due to single
action potentials cannot be measured experimentally with current technology except at considerable
distances from the cell.

The transmembrane current caused by changes in extracellular potassium is proportional to the
area of the membrane over which the change occurs (see section 3.7. As a result, the effect of
changes in extracellular potassium will not be significant if it only occurs over a tiny area. Since
I am not attempting to study increases in potassium over large volumes caused by the activity of
many neurons, the only remaining kinds of possible interaction are cases where neural elements are

apposed to each other for large areas, e.g., dendritic or axonal bundles. The changes in potassium
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due to a spike at a cell body is likely to be larger because the potassium currents are larger, but it

is also much more localized and so will have much less effect.

In this chapter, I have not attempted to compute the changes in extracellular potassium very
precisely; instead, I have used simple approximations to estimate whether the effect is appreciable
and worth modeling in some detail. These approximations indicate that potassium from single spikes
is not likely to have a significant effect anywhere, so it is not worth simulating in detail on a fine
spatial scale. A number of other theoretical studies have examined extracellular potassium on a
much coarser spatial scale and longer time scale (Vern et al., 1977; Cordingley and Somjen, 1978;

Green and Triffet, 1985).

3.2 Nernst potential of Potassium

If the baseline extracellular potassium concentration is nx o before = 3 mM (1.8 x 108 K+ ions/um?;
see Ereciniska and Silver, 1994 for dozens of references) and it changes to Nk o after, the potassium

reversal potential changes by

AEx = Zﬂ_f_li log NK,0 after &_1: log N K,o0 before
€ NK,; e nK,i
kT NK,o after
= — log ——r——m

€ N K, 0 before

AFE¥ is approximately a linear function of Ang over the possible parameter range (figure 3.1) with

a slope of kt/enk , = 1.4 x 107° mV-pm? /ion.

12

s Figure 3.1: Potassium reversal potential as a func-
\26' I tion of the change in concentration of potassium.
M Over the possible relevant parameter regime, this
is approximately linear.

4 6, 8
An,, (ions/pum”) < 10°
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3.3 Magnitude of potassium flux across membrane

If the membrane capacitance is 0.8 pF/cm?, it is easy to show that about 5000 ions/pm? must
flow across the membrane to change the voltage by 100 mV (approximately the height of an action
potential). The number of potassium ions that actually flow across the membrane is considerably
larger than this, however, because the sodium channel has not entirely shut off when the potassium
channels open; there is overlap in the conductances. In measurements with radioactive tracers in a
variety of unmyelinated invertebrate systems, the actual number of ions is usually about a factor of 3
larger than this minimum estimate (Cohen and De Weer, 1977). As a result, about 15,000 potassium
ions/pm? cross the membrane. (I could calculate exactly how much K+ crosses the membrane given
a particular model of the action potential, but I do not have a model I am sufficiently confident in
to make the prediction better than the empirical estimate.)

In the discussion that follows, I will assume that the flux of potassium, Jx, is constant for
the time of repolarization and then suddenly drops to 0. It would be possible to calculate exactly
the detailed time course of the extracellular potassium given a particular model, but since model
parameters are not known, there is no advantage in using a smoothly varying time-dependence
for Ji. Since the action potential repolarization phase lasts about 0.5 ms, this gives us Jx =
30,000 ions/um? /ms. This provides an upper limit on [K*] changes since it is likely that a significant
fraction of the potassium crosses the membrane more than 0.5 ms later than the repolarization of

the action potential.

3.4 Diffusion model

On the time scales we are interested in, potassium mobility is governed entirely by diffusion (the
Nernst—Planck equation, equation 1.1 on page 5) and passive transport across membranes; active
pumping is much too slow. The extracellular space is full of barriers to diffusion; there are membranes
of axons, dendrites, and glia. To obtain an upper bound, I assume that these membranes are
relatively impermeable to potassium on. Glial membranes are highly permeable to potassium, and
this undoubtably a major means of potassium transport over long distances (Gardner-Medwin and
Nicholson, 1983; Gardner-Medwin, 1983a, 1983b). However, it turns out that peaks in potassium
concentration are localized to areas so small that there might not be any glia.

The Nernst-Planck equation can be used in a tortuous medium such as the extracellular space

simply by modifying the diffusion constant:
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where A is an empirical constant called the tortuosity of the medium (Nicholson, 1980; Nicholson
and Phillips, 1981; see reviews in Nicholson and Rice, 1986, 1991; Nicholson, 1995). Tortuosities
have been measured for a variety of tissues and are usually around 1.6 (Nicholson, 1995; Sykova,
1997). If Dg = 2.5 pm?/ms (Gardner-Medwin, 1983b; Qian and Sejnowski, 1989), then D% = 0.75
pum?. This may be an overestimate; measurements suggest a value about 5-6 times lower than the
coefficient in physiological saline (0.39 um?/ms; see references in Vern et al., 1977; Cordingley and
Somjen, 1978).

The other necessary modification to the equation is that only a small fraction (usually about
20%, but about 30% in the molecular layer of the cerebellum; Nicholson, 1995; Sykov4, 1997) of the
volume of the tissue is actually extracellular. This means that the concentrations of ions change by
a factor of five more than they would in a liquid with the same D7,.

The Nernst-Planck equation describes electrodiffusion in three dimensions. However, for axons,
we can take advantage of cylindrical symmetry and discard the angular dependence of ¢ and ng.
Furthermore, action potentials are spread out over a significant length of axon; if the propagation
velocity is 0.1 mm/ms (for the slowest of the parallel fibers in the mammalian cerebellum), and
the repolarization lasts 0.5 ms, potassium is being exuded over a length of 50 pum, which is much
longer than the relevant diffusion lengths for short times (see below). In other axons, the action
potential will be spread out over much larger distances so axial diffusion will be even less important.
Therefore, to estimate the short time concentration changes, we also discard the dependence on
location along the axon. The problem is reduced to finding the radial dependence of concentration
changes around an infinite cylinder.

The most significant outflow of potassium ions occurs during the repolarization phase of the
action potential, where the extracellular field is positive and the gradient is directed away from
the axon. This electric field will encourage positive charges to migrate away from the axon, so the
concentration changes near the axon will be smaller than they would be without the electric field.
Mathematically, this can be seen from equation 1.1 on page 5 by noting that for fixed Jx, a larger
|Vé| means a smaller |Vng|. Jg will of course not be exactly fixed, but unless concentration changes
or electric potentials are very large, it is approximately independent of Ang and ¢.

Therefore if we want to estimate the largest possible magnitude of the concentration changes, it is
a reasonable simplification to ignore the electric field. This is in fact not a bad approximation, since
the extracellular potential is usually very small, on the order of microvolts except in situations where
current flows through a restricted volume (section 2.2.2). Furthermore, the extracellular potentials

decay less steeply than the concentration gradients®. So if extracellular potassium ion concentrations

1The same equation governs extracellular current flow as extracellular ionic diffusion, except that for practical
purposes extracellular current flow is always in equilibrium whereas time is very important for diffusion. Therefore
the the gradients will be the same as for diffusion which has reached steady state, and these gradients are smaller
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change significantly, then |Vng|/nx will be significantly greater than [Vé|/ak.

After all these simplifications, the problem is reduced to a one-dimensional equation:

ong ., [(0°ng  1Ong
ot —DK< or? + r or > (3:2)

with the boundary condition that Jx = D} 0nk/Or at the membrane (r = rq) is a given value.

The Green’s function solution to equation 3.2 can be obtained using an integral transform (Ozi§ik,

1993, p. 111, or Carslaw and Jaeger, 1959, pp. 341-345). The full solution is

Ang = / t roG(r, t|ro, t )JK (3.3)
G(r,tr',t") / fe o tRﬁ() r)Ro(r') dg (3.4)
Rg(r) = Jo(Br)Y1(Bro) — Yo(Br)Ji(Bro) (3.5)
N(B) = J; (Bro) + Y7 (Bro), (3.6)

where Ang is the change in potassium concentration. (The absolute concentration ng is unimpor-
tant if we neglect the electric fields.)
We are only interested in sources located at r' = r¢ (at the membrane). Using the identity that

J1(2)Yo(2) — Jo(2)Y1(2) = 2/7z, the Green’s function G(r,t|rg,t') simplifies to

27T oD B2t JO(,B"')YEL (ﬂTD) (6T)Jl (/87'0)
0 Jo Jf (Bro) + Y7 (Bro)

G(Tv To, At) dﬁ (37)

I believe this integral cannot be solved in closed form in terms of common special functions (see, e.g.,
Jaeger, 1942, and the asymptotic expansions in Zonneveld and Berghuis, 1955)2. I approximated

this under some limiting conditions and analyzed it numerically for the remainder.?

3.5 Analytic solution for large axons

It is possible to treat the axon as a thine line instead of a cylinder. The solution for this special case
can be expressed in terms of exponential integrals, a well-understood special function. Unfortunately,
although the line source approximation worked well for the fields around axons (section 2.2.1 on

page 18), it does not work well for diffusion of potassium. Potassium falls off very steeply with

than for time-dependent diffusion.

2Some variations on this problem can be solved easily, such as a Gaussian cylinder (Vern et al., 1977) or a point
source (Nicholson and Phillips, 1981).

A similar unpublished analysis (a Ph. D. thesis) is briefly described in Cordingley and Somjen (1978) but only
for much longer time scales.
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distance on short time scales (see below), and the falloff over the radius of the axon as predicted by

the line source model is significant.

Instead of treating the radius of the axon as very small, as in the line source model, it is better to
treat it as extremely large. Qualitatively, we expect larger changes in potassium ion concentration
around large axons than small axons, simply because there is more space within a given distance
around a small axon than a large axon.* Thus to estimate the maximum effects we should look
at large axons. If we let ro — o0, the geometry changes from a cylinder to an infinite sheet. The

Green’s function for this geometry is well known to be®

G(r,r',t) = WQD te_(r_rl)2/4D*t (3.8)
avrD*

where r is the distance from the sheet. If the only source is at = 0 and diffusion is only allowed in

the positive 7 direction, then the concentration is:

t JK

AnK:/ G0,r, t")—dt'
0 o
JK

t o—r?/4D*¢
!
dt

- avrD* Jo Vi

This is still an intractable integral® but if we look at the place where the concentration is the

highest (r = 0), it is easy:

2J t
A77'1{',max = =K

a V wD* (3.9)

Using the values discussed above, we find that after a 0.5 ms repolarization, Ang = 1.4 x 10°
ions/um® and AEx = 2 mV. While this only gives the upper limit on a concentration change, it
roughly shows how the change should depend on the various parameters. For example, if the same
amount of potassium is exuded over a 1 ms time course instead of 2 0.5 ms time course, then Jg is

halved and ¢ is doubled, decreasing Ang by a factor of /2.

4Crudely speaking, suppose ions can diffuse a distance Ar in the relevant time. Then the volume they occupy will
be w(ro + Ar)? — w2 = w(2roAr 4 Ar2). Into this volume, 27ro - Jxr At ions/um are discharged. The change in
concentration will be 2mroJx At/mw(2ro Ar+ Ar?). This function initially increases linearly with ro but then saturates;
the more exact solution has the same qualitative behavior.

5This can also be derived as a limiting case of equation 3.7.

6 Actually, it can be written in closed form in terms of degenerate hypergeometric functions (Whittaker’s functions).
However, I didn’t find this form enlightening.
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3.6 Numerical solution

This upper limit is attained for realistic values of ro. I evaluated equation 3.3 numerically” and
found that Ang has basically reached its maximum value of about 2 mV for 7y = 2 um. Note that
Ang is proportional to Jx, so if the ion flux is different, the y axis in figure 3.2 can be rescaled

proportionately.

0.25

Ang  (md)

=
g
11 \; Figure 3.2: Change in concentration of potas-
5 sium ions at the axon membrane as a func-
tion of axon radius at the end of 0.5 ms for

L 0.5
0.05 Jx = 30,000 ions/um 2.
0 . 0
0.1 1 10 100
g (pm)

The potassium ion concentration changes fall off roughly exponentially with distance over the
relevant range (figure 3.3). Given an exponential decay, unit analysis predicts that the form of the
function must be Ae=B"/VD™t where A and B are unitless constants, since v/D*t is the only way to
combine the relevant parameters to give units of length. I found that B = /2 provides close fits to
the slope.

Figure 3.4 shows how the the potassium ion concentration changes vary with both distance and
time for various values of rqg. It is clear that the spatial scale of potassium diffusion is very limited
on these time scales; noticeable concentration changes will only be seen by the cell’s immediate
neighbor, and in fact only at the places where the membranes are apposed, not on the other side.
In fact, the limited spatial scale suggests that a continuum diffusion model is not appropriate; it
might be more useful to make a model with discrete elements. I do not expect changes of orders
of magnitude in these numbers with such a model, however. In fact, a model by Lebovitz (1996)
explicitly includes only the immediately adjacent 20 nm of extracellular space and models the rest

of the tissue by a simple permeability to a constant reservoir.

"For r = ro, we can use the identity Jo(8ro)Y1(Bro) — J1{Bro)Yo(Bro) = —2/7Bro again to simplify the computa-
tion:
4igro [ 1—e D 7/g

Ang =
K= %D a Jo PI2() +Y2()

} dy (3.10)

where v = Bro. For large v, JZ(v) + YZ(y) ~ 2/, and e~ D28 oy 0, so the integral from some point onward
can be evaluated analytically. The remainder was evaluated numerically using Matlab’s 4’th order adaptive Runge-
Kutta—Fehlberg method.
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The time scale for changes in extracellular potassium is very short. Concentration falls precipi-
tously after Jx drops to 0. This can be seen more clearly in figure 3.5 for several different ro values.
Modulations in extracellular potassium are important only during the time that the potassium is
actually crossing the membrane; as soon as potassium ceases to cross the membrane, extracellular
levels fall very rapidly. If there is short range interaction between neurons based on extracellular

potassium, it has a very short time course.

3.7 Significance of changes in Fx

Are these changes in extracellular KT significant? No matter what happens, they cannot result in
a larger membrane potential change than 2 mV, since Ex changes by at most 2 mV. However, an
EPSP of 2 mV would be large in cortex and could have a significant effect.

A Dbetter way to estimate the significance is to calculate the extra current due to the increased

extracellular potassium concentration:
ATl = gKAEK (3.11)

In dendrites, a typical time constant is 7 = 20 ms and the membrane capacitance is 8 x 10~¢ nF/um?
(0.8 puF/cm?), so the membrane conductance is 4 x 10~7 uS/um?, most of which is due to potassium
channels. Roughly, then, if AEx = 2 mV, there is a peak current of 8 x 10~7 nA/um?. It seems
unreasonable to suppose that membranes could be in apposition for more than 100 um?, so the
maximum current into the cell would be 0.08 pA. By contrast, the peak current from a typical
cortical synapse with a peak conductance of 0.5 nS and a 60 mV driving force is 30 pA, and this
current may last several ms. In dendrites, one also finds that action potentials take much longer

than 0.5 ms to repolarize, so the actual flux of potassium may be much lower. Brief potassium
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Figure 3.4: Contour plots of the changes in KT concentration around an axon for various sizes of
axons. Numbers on the contours are changes in Ex (mV).
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transients from single action potentials are therefore unlikely ever to be significant in interaction

between dendrites in bundles.

Sustained potassium increases of this magnitude have been shown to cause small increases in
conduction velocity of cerebellar parallel fibers, presumably because the axon is about 1 or 2 mV
more depolarized everywhere (Kocsis et al., 1983). Axons typically have shorter time constants
(about 1 ms or less), implying that they could come close to their steady state value during the time
course of an action potential. As a result, it is possible that in a bundle of unmyelinated axons,
very transient extracellular potassium increases could speed up conduction slightly. However, as
discussed in section 2.3.1 on page 36, a small change in latency is unlikely to be critical for most

computations.

Lebovitz (1996) in his simulations found significant effects of extracellular K™ changes only when
he assumed a very narrow extracellular cleft and a large distance (20 um) to the reservoir where [K™]
was held constant. His model is difficult to compare directly because he modeled the extracellular
space in terms of a monolayer of tiny rectangular cells surrounding one very large cell. It appears,
however, that in the cases where he found significant interaction via K™, his extracellular volume
fraction was much too small (5% or even much less). He also adjusted his diffusion coeflicient
for tortuosity even though he explicitly models all of the membranes; however, this only changes
the diffusion constant by a factor of 1.5, which does not explain the three orders of magnitude
difference. There are some other details of his calculations which are unexplained in the paper.
With the numbers he gives, the peak AEg is about 7 mV, and yet for that case he calculates that
the transmembrane voltage change is also about 7 mV. This is difficult to understand since the shift
in Ex is very short-lived by my calculations. Lebovitz does not show the time course of Ang but
he fits it to an exponential; in my calculations it seems to fall much faster than exponentially from

its peak.
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The effect of the slow evoked potassium transients that are measurable with ion-selective elec-
trodes (e.g., Singer and Lux, 1975; Karwoski and Proenza, 1987) will be much larger than the
transients from single spikes. First, the relevant area is larger, since [K*] is elevated over the en-
tire surface of the neuron, which is from 10* pym? to 5 x 10* um?. This raises the above estimate
of current by two or three orders of magnitude. Second, such large scale extracellular potassium
transients are very slow, so the result will be a sustained current with an amplitude comparable to
the peak of a synaptic current. It is not surprising, then, that such potassium transients cause a
noticeable change in neural excitability.

Increases in extracellular potassium also affect synaptic transmission because they depolarize
presynaptic terminals. Initially, this results in an increase in release probability. Beyond a certain
point, however, it results in a decrease in transmitter release, evidently because the spike fails to
propagate into the terminal because sodium conductances are inactivated (Somjen, 1979; Sykova,

1983, 1987).
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Part 11

Implications of Cable Theory

In the space of one hundred and seventy-six years the Mississippi has shortened itself
two hundred and forty-two miles. Therefore... in the Old Silurian Period the Mississippi
River was upward of one million three hundred thousand miles long.... Seven hundred
and forty-two years from now the Mississippi will be only a mile and three-quarters
long.... There is something fascinating about science. One gets such wholesome returns

of conjecture out of such a trifling investment of fact.

— Mark Twain
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Chapter 4 Shunting Inhibition and Firing Rates

4.1 Introduction

Many neuronal models treat the output of a neuron as an analog value coded by the firing rate of
a neuron. Often the analog value is thought of as what the somatic voltage would be if spikes are
pharmacologically disabled (sometimes called a generator potential; see section 1.3). The neuron is

modeled as if the spiking conductances were not present, as shown in black in figure 4.1.

s Figure 4.1: A simplified neuron at steady state.
174 Synaptic current can be discharged either through
the leak or the spiking mechanism. If the cell does
not spike, then the current through the resistor
will be equal to Isy,; changing G will change V
- proportionately. If the cell is spiking, then some
L of the synaptic current will be discharged through
the spike mechanism (grey) so changing G will not

have the same effect.

H

Isyn G l Ileak

If there are no spikes, all the synaptic current Iy, must flow through the the leak (figure 4.1),
so the voltage will be proportional to the synaptic current:
IS i
V==L
G

where Iy, is the synaptic current and G is the input conductance. A firing rate is then computed

directly from this above-threshold membrane potential:
f=9V)

where g is some monotonic function. For example, f,u: &< V2 in Carandini and Heeger (1994) or
fout = tanh(V) in Hopfield (1984).

Varying G, for instance via activation of inhibitory input with a reversal potential close or equal
to the cell’s resting potential (also known as “silent” or “shunting” inhibition), will directly affect
the generator potential V' in a divisive manner. A recent and quite popular model (Carandini
and Heeger, 1994; Nelson, 1994) has suggested that changing G by shunting inhibition would be a

useful way to control the gain of a cell: when the inhibitory input rate increases, the slope of the

Most of the contents of this chapter can be found in Holt and Koch (1997).
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input—output relationship decreases (figure 4.2A) but the threshold does not change much.

A. Divisive B. Subtractive

— —
o W
o ()

W
j

Firing Rate (Hz)

0 05 1 15 0 05 I
I (nA)

syn

Figure 4.2: A comparison of divisive and subtractive inhibition. A. Divisive inhibition changes the
slope of the input—output relationship. In this case, f = g(V) was a linear function of V and G was
varied from 10 to 70 nS in equal steps. B. Subtractive inhibition shifts the curves by subtracting a
current. Here I, varies from 0.08 to 0.058 nA in equal steps.

On the other hand, inhibition which is not of the shunting variety should have a subtractive effect
on the input—output relationship. If the reversal potential of the inhibition is far from the spiking
threshold, then the inhibitory synapse will act more like a current source; the cell’s conductance
is not changed much, but a hyperpolarizing current is injected. This current simply shifts the
input-output relationship by changing Iy, to Isyn — Iinn (figure 4.2B) where Iy, is the inhibitory
current.

Simplified models based on a generator potential ignore the effect of the spiking mechanism
(figure 4.1 and assume that the behavior of the neuron above threshold is adequately described
by the subthreshold equations. But when the cell is spiking, not all the current flows through the
conductance GG. The spiking mechanism itself removes charge, primarily through the potassium
conductances that are responsible for repolarizing the spike (Koch et al., 1995). Because of the
spiking mechanism, we find that changing the membrane leak conductance by shunting inhibition
does not have a divisive effect on firing rate, casting doubt on the hypothesis that such a mechanism
serves to normalize a cell’s response. A similar conclusion has been reached independently by Payne

and Nelson for certain classes of neuron models (personal communication; Payne and Nelson, 1996).

4.2 Model description

Compartmental simulations were done using the model described by Bernander et al. (1991, 1994)
and Bernander (1993) and Koch et al. (1995). The geometry for the compartmental models were

derived from a large layer 5 pyramidal cell and a much smaller layer 4 spiny stellate cell stained
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Type Reversal Number gz T Area density
potential Near Far
z — 40 x — 100
AMPA 0 mV 4000 1 nS 0.5 1+ tanh | ———
m n ms + tan ( 5573 ) 1+ tanh 5573
GABA, —70mV 500 1nS  5ms e2/50 1+ tanh (2 2; ;20
GABAg  —95mV 500 0.1nS 40 ms ze~2/50

Table 4.1: Parameters of synapses in the compartmental models. z is the length of dendrite in um
that separates this compartment from the soma. The “near” area density was used for figure 4.3;
the “far” area density was used for figure 4.5 on page 70. The normalization for the area density is
not included in the expression because it depends on the geometry; different neurons have different
fractions of their membrane at a given distance from the soma.

during in vivo experiments in cat (Douglas et al., 1991) and reconstructed. Geometries of both cells
are shown as insets in figure 4.3B. Each model has the same eight active conductances at the soma,
including an A current and adaptation currents (see Koch et al., 1995 for details). The somatic
conductance values were different for each cell, but the same conductance per unit area was used
for each type of channel. Dendrites were passive. Simulations were performed with the program
NEURON (Hines, 1989, 1993a).

To study the effect of GABA, synapses and shunting inhibition, we did not explicitly model
each synapse; we set the membrane leak conductance and reversal potential at each location in
the dendritic tree to be the time-averaged values expected from excitatory and inhibitory synaptic
bombardment at presynaptic input firing rates fg and fr (as described in Bernander et al., 1991).
To compute the time averaged values, synapses were treated as alpha functions with a given time
constant and maximum conductance (g(t) = gmaste */7e~ /7). The area density of synapses at a
given location on a dendrite was a function of the length of dendrite that separated the area from
the soma (see table 4.1). Two different sets of densities (“near” and “far”) were used, depending on
whether inhibitory synapses were near the soma or far from the soma. The “near” configuration is
identical to the distribution used by Bernander et al. (1991) and reflects the anatomical observation
that inhibitory synapses are mostly located near the soma in cortical pyramidal cells. The “far”
configuration is not intended to be anatomically realistic. For simplicity, we used the same number
of synapses for both the spiny stellate cell and the layer V pyramidal cell models.

Our integrate—and—fire model is described by

av
OE = —ngm + Isyn for V < Vyy, (41)

where gieqr is the input conductance and C' is the capacitance and Iy, is the synaptic input. When

the voltage V exceeds a threshold Vi the cell emits a spike and resets its voltage back to 0. We
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Figure 4.3: Changing gj.qr has a subtractive rather than a divisive effect on firing rates. A. Current
discharge curves for the integrate—and—fire model, with gjeqr varying from 10 to 70 nS (from left to
right) in steps of 10 nS. B. Fully adapted firing rates of the two cells as a function of excitatory
input rate for different inhibitory input rates. From left to right, the curves correspond to a GABA 5
inhibitory rate of 0.5, 2, 4, and 6 Hz. Note that in all of these cases, the curve shifts rather than
changes slope. In this case, inhibitory synapses were near the soma (“near” configuration in table 4.1
on the preceding page), as found in cortical cells.

used C =1 nF, greor, = 16 08, Vi, = 16.4 mV, which matches the adapted current—discharge curve
of the layer 5 pyramidal cell model quite well (not shown). Results are not changed if a refractory

period or an adaptation conductance is added to the integrate—and—fire model (also not shown).

4.3 Proximal inhibition

Changing gieq does not change the slope of the current—discharge curve for integrate—and-fire cells
(figure 4.3A); it primarily shifts the curves. It therefore has a subtractive rather than a divisive
effect.

The compartmental models behave very similar to the integrate-and—fire unit. For two different
geometries (a layer V pyramid and a layer IV spiny stellate cell), we computed the fully adapted
firing rate as a function of the excitatory synaptic input rate for various different rates of inhibitory
input to synapses with GABA s receptors (figure 4.3B). The slope of the input—output relationship
does not change when the GABA, input amplitude is changed; the entire curve shifts. The same
effect can be observed when considering the current—discharge curves (not shown).

This effect is most easily understood in the integrate—and—fire model. In the absence of any
spiking threshold, V' would rise until V' = Isy, /grear (figure 4.4 on page 68). Under these conditions,
the steady state leak current is proportional to the input current. However, if there is a spiking
threshold, V never rises above V. Therefore no matter how large the input current is, the leak
current can never be larger than Vi, gieqr. We can replace the leak conductance by a current whose
value is equal to the time-average value of the current through the leak conductance ({Ijeqr) =

Gieak (V)), and simplify the leaky integrate-and—fire unit to a perfect integrator. (Now, however,
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(Iiear) will be a function of I,y,.) If the current is suprathreshold, the cell will still fire at exactly
the same rate because the same charge fOT(Isyn — I1ea) dt is deposited on the capacitor during one
interspike interval T', although for the leaky integrator the deposition rate is not constant.

For constant just supra-threshold inputs, (V') will be close to Vi, and (Ijeqr) will be large. For
larger synaptic input currents, the time-averaged membrane potential becomes less and less (since
V' has to charge up from the reset point) and, therefore, the time-averaged leak current decreases

for increasing inputs (compare figure 4.4A and B). It can be shown that

Isyn if Isyn < T/L‘hglealc

I 1
VihGicak N
th9ieak (Vthgleak IOg(l - Vthgleak/[syn)

<Ileak> = (4'2)

) otherwise.

For large Iy, , and even for quite moderate levels of Iy, just above Vi giear, the lower expres-
sion is approximately equal t0 gieqr Vin /2, independent of I, (figure 4.4C). Therefore it is a good
approximation to replace the leak conductance by a constant offset current. The current—discharge
curve for the resulting perfect integrate-and-fire neuron is simply!

. Iy — (Trear) _ Tsyn Jleak
1= CVin - OV 20 (4.3)

Shunting inhibition (varying gie.r) above threshold acts like a constant, hyperpolarizing current
source, quite distinct from its subthreshold behavior.

For currents just above the threshold, the initial slope is larger® for larger gieqr values (fig-
ure 4.3A), which is the opposite of divisive normalization. One way of understanding this is to
observe that for larger gje.x there is a larger range of synaptic currents where I}, is decreasing no-
ticeably since gjeqr is a scale parameter in equation 4.2. This effect is not visible in the compartmental
models because they include adaptation currents which tend to linearize the current—discharge curve.
The magnitude of this effect is also strongly reduced by noise (not shown).

A similar mechanism explains the result for the compartmental models (figure 4.3B). In these, the
voltage does rise above the firing threshold. However, spiking conductances are so large that during
a spike any proximal synaptic conductances will be ignored. Furthermore, the spiking mechanism
acts as a kind of voltage clamp on a long time scale (Koch et al., 1995) so that the time averaged
voltage including the spike remains approximately constant (see appendix B and especially figure B.4

on page 132).

1 This expression can also be derived from the Laurent expansion of the current-discharge curve for a leaky inte-
grator, f(Isyn) = —gieak/C10g(1 — VinGiear /Lsyn), in terms of 1/Isyn around Isy, = co (Stein, 1967).

2 Actually, the slope is infinite for the leaky integrator at Isyn = Iyp; however, for Isy, slightly greater than I, it
decreases more slowly to the constant value of 1/CVy, when gjeqr is higher.
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Figure 4.4: Why shunting inhibition has a subtractive rather than a divisive effect on an integrate—
and-fire unit. A. The time-dependent current across the leak conductance Ije,; (in nA) in response
to a constant 0.5 nA current into a leaky integrate—and-fire unit with (solid line) and without (dashed
line) a voltage threshold, Vi,. The sharp drops in Ije.r occur when the cell fires, since the voltage
is reset. B. Same for a 1 nA current. Note that [j.,; with a voltage threshold has a maximum
value which is well below Ij.,; without a voltage threshold. C. Time-averaged leak current ((Ijeqr))
in nA as a function of input current, computed from the analytic expression. Below threshold, the
firing rate model and the integrate—and—fire models have the same Ij.qr, but above threshold (jeqr)
drops for the integrate—and—fire model because of the voltage threshold. For I, just greater than
threshold, the cell spends most of its time with V & Vi, 80 (Ijeqr) is high (panel A; at threshold,
Lieay = VinGiear)- For high Iy, the voltage increases approximately linearly with time, so V has a
sawtooth waveform as shown in panel B. This means that (Ijeqr) = (max Ijeer)/2 = VinGieak/2-
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4.4 Distal inhibition

Shunting inhibition does not act divisively for an “anatomically correct” distribution of inhibition,
where synapses are close to the cell body, because the spiking mechanism clamps the somatic voltage.
However, distal synapses are not so tightly coupled electrically to the soma, so one might expect
that distal GABA inhibition might act divisively. Since the spiking mechanism can be thought of
as a kind of voltage clamp (Koch et al., 1995), one can study the neuron’s response by examining
the current into the soma when it is clamped at the time-averaged voltage V; (Abbott, 1991). For
analysis, we simplify the dendritic tree into a single finite cable which has an excitatory synapse
(conductance gg, reversal potential Fg) and an inhibitory synapse (gr and Ey) located at the other
end. The cable has length I, radius r, specific membrane conductance Gje.p, intracellular resistivity
R; and a length constant A = \/7/(2R,—Gleak) . Using the cable equation, one can show that at

steady-state the current flowing into the soma from the cable is

_198(Ee — Ve ™) + g1(Br — Vie™) + goo Vie™®

(95 + 90)(1 = e25) T guol1 + e20) (1.4)

Tsoma = _gooI/s + 29006

where L = I/) is the electrotonic length of the cable and goo = 77%/%1/2G car /R; is the input
conductance of the cylinder but with infinite length. (In this equation, all voltages are relative to
the leak reversal potential, not to ground.) Despite the simplification involved in equation 4.4, it it

qualitatively describes the response of the compartmental model.

First, in the absence of any cable (L = 0), this equation becomes linear in both gg and g; and

inhibition acts to subtract a constant amount from Ils,me, as we have shown above.

When L # 0, some divisive effect is expected since gy appears in the denominator. However, a
subtractive effect will persist due to the term containing gy in the numerator. The reversal potential
of GABA, synapses (increasing a membrane conductance to chloride ions) is in the neighborhood
of —70 mV relative to ground, while the time-averaged voltage when the model neuron is spiking is
around —50 mV (Koch et al., 1995). When a cell is spiking, therefore, a non-zero driving force exists
for GABA, inhibition. In the pyramidal cell model, the subtractive effect turns out to be much
more prominent than the divisive effect even for quite distant inhibition (figure 4.5 on the following
pageA). Both the inhibitory and excitatory synapses have been moved to more than 100 um (which
is more than 1 \) away from the soma. To a good approximation, inhibition still subtracts a constant

from both the current delivered to the soma and the firing rate of the cell.

Equation 4.4 predicts that if the term containing gy is removed from the numerator, then a
divisive effect might be visible. When we changed the reversal potential E; of the GABA 4 synapses

as well as the leak reversal potential Ej..; to —50 mV, we found that there is indeed an observable
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Figure 4.5: The effect of more distant inhibition on firing rates for the layer 5 pyramidal cell. A: The
effect on the input—output relationship when inhibitory synapses are more distant from the soma
(“far” configuration in table 4.1 on page 65). Inhibitory rates are 0.5 Hz (solid) and 8 Hz (dashed).
In these simulations, Ey, the GABA reversal potential, had its usual value of —70 mV. Top: The
voltage clamp current when the soma is clamped to —50 mV, close to the spiking threshold of the
cell. Bottom: The adapted firing rate when the soma is not clamped. Very little divisive effect is
visible on the firing rate; there is a slope change for firing rates less than 20 Hz, but this is too
small to have a significant effect. B: Same as A, except that Er and the reversal potential of all leak
conductances were changed to —50 mV so there is no driving force behind the GABA synapses or
the membrane passive conductance. A clear change in slope for low firing rates is evident. However,
even for this rather unphysiological parameter manipulation, subtraction prevails at moderate and
high input rates.



CHAPTER 4. SHUNTING INHIBITION AND FIRING RATES 71

Figure 4.6: When gg is not small compared
to g1, then inhibition acts more subtractively

1

somal - than divisively even when the IPSP rever-
________ sal potential is equal to the somatic volt-
Lioma,2 age. The two upper curves are I;yme as

a function of gg for two different values of
gr such that gr + B changes by a factor
of two in equation 4.5. The lower curve is
the difference between those two curves. For
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25 such that gg/(g9sr + B) = 1 for the smaller
value of g;.

change in slope at low firing rate (figure 4.5B). For higher firing rates, however, inhibition still acts
approximately subtractively. We demonstrate this in the extreme case of moving both E; as well as
the reversal potential associated with the leak conductance to —50 mV (which is also the value to
which the somatic terminal of the cable is clamped). Under these conditions, equation 4.4 simplifies

to

JE
Lsoma(9E, gr) = constant + A— 22 4.
soma(9E, gr) = constant + prr—— (4.5)

where A and B are independent of g and gr. Clearly if gp is small, changing g7 simply changes
the slope. When gg is not small, then it turns out that changing g; has an effect which is more
subtractive than divisive (figure 4.6).

Another way of thinking about this is that Isoma(9E,9r) = log(gr/gr) for gg > gr. Thus
Isoma(9m, 91r) = log(gr) — log(gr) and inhibition is subtractive.

Since in the “far” model both kinds of synapses have the same distribution, their firing rates
are proportional to the conductances. With the synaptic parameters we have used (table 4.1),
ge/9r = 0.8fg/fr; therefore, we expect to see a subtractive effect when gg > 6 Hz, and this is

approximately true (figure 4.5B).

4.5 Conclusions

Divisive normalization of firing rates has become a popular idea in visual cortex (Albrecht and
Geisler, 1991; Heeger, 1992a; Heeger et al., 1996). It has been suggested that this is accomplished
through shunting inhibitory synapses activated by cortical feedback (Carandini and Heeger, 1994;
Nelson, 1994). Most discussions of shunting inhibition have assumed that the voltage at the location
of the shunt is not constrained and may rise as high as necessary (e.g., Blomfield, 1974; Torre and

Poggio, 1978; Koch et al., 1982, 1983). However, when the shunt is located close to the soma, the
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voltage at the site of the shunt cannot rise above the spike threshold. Therefore the current that can
flow into the cell through the shunting synapse is limited, and at moderate rates becomes a constant
offset (figure 4.4C; appendix B). The current through the shunt is approximately independent of
the firing rate. For this reason, shunting inhibition under these circumstances implements a linear
subtractive operation.

Even if the conductance change is not located close to the soma, it may not have a divisive effect
(figure 4.5A). First, when the cell is spiking, shunting inhibition is not “silent”: there is a significant
driving force behind GABA, inhibition, since the somatic voltage is clamped to approximately
—50 mV by the spiking mechanism and the reversal potential for GABAA inhibition is in the
neighborhood of —70 mV. Second, even if the reversal potential for GABAA and the leak reversal
potential are set to —50 mV, inhibition acts divisively only if the excitatory synaptic conductance is
small compared to the inhibitory conductance (figures 4.5B and 4.6). Large excitatory conductances
are expected when the cell receives significant input (Bernander et al., 1991; Rapp et al., 1992) so
the subtractive effect of large conductances is relevant physiologically.

Current—discharge curves are affected as predicted by the simple integrate—and-fire model in
response to IPSPs and GABA iontophoresis in motoneurons in vivo (Granit et al., 1966; Kernell,
1969) and cortical cells in vitro (Connors et al., 1988; Berman et al., 1992). The input-output
curves for different amounts of inhibition do not diverge for larger inputs, as would be required for
a divisive effect; in fact, they converge at high rates because of the refractory period (Douglas and
Martin, 1990). In recordings from Limulus eccentric cells, current—discharge curves show both a
slope change and a shift (Fuortes, 1959) because the site of current injection is distant from the
site of spike generation.® Rose (1977) showed that iontophoresis of GABA onto an in vivo cortical
network appeared to act divisively. Because shunting inhibition has a subtractive effect on single
cells, this could possibly be caused by a network effect (Douglas et al., 1995).

For synapses close to the spike generating mechanism, as well as for the integrate-and—fire unit,
the subtractive effect of conductance changes does not depend on the reversal potential of the
conductance. Changing the reversal potential is equivalent to adding a constant current source in
parallel with the conductance, and in a single compartment model this will obviously merely shift
the current—discharge curve. Therefore, like inhibitory input, proximal excitatory input does not
change the gain of other superimposed excitatory inpus.

Similarly, our results are not affected by a “weak reset” (where the voltage is reset to a voltage
closer to Vi, instead of to 0; Tsodyks and Sejnowski, 1995; Troyer and Miller, 1996); such models

are mathematically equivalent to an integrate—and—fire model of the kind we consider here with a

3In this case, only the current—discharge curve was measured; the considerations in Figs. 4.5 and 4.6 are not
relevant. A slope change is expected for current injection but not synaptic input.
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lower Vi, and a leak conductance with a non-zero reversal potential.

Our analysis assumes that synaptic inputs change on a time scale slower than an interspike
interval. High temporal frequencies may be present in synaptic input currents for irregularly spik-
ing neurons. Furthermore, our analysis assumes passive dendrites; active dendritic conductances
complicate the interaction of synaptic excitation and inhibition.

Although we cannot rule out that under some parameter combinations shunting inhibition could
act divisively on the firing rates, we have not found such a range for physiological conditions.
In combination with our integrate—and-fire and single cable models, we believe that a different
mechanism is necessary to account for divisive normalization.

The compartmental models and associated programs are available from ftp://ftp.klab.caltech.

edu/pub/holt/holt_and_koch_1997_normalization.tar.gz.
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Chapter 5 The Membrane Time Constant and

Firing Rate Dynamics

5.1 Firing rate dynamics in single compartment neurons

Action potentials report only intermittently the activation of their source neuron. Therefore, the
post-synaptic cells must estimate the activation either by averaging single presynaptic action po-
tentials over times longer than the average inter-event interval, or by taking the near instantaneous
average over multiple sources of similar presynaptic input. Whatever combination of these strategies
is used, the speed of response of the post-synaptic cell is interesting because it bears on the rapidity

with which a signal can propagate through a network of neurons.

5.1.1 Response time of non-spiking or firing-rate neurons

The passive membrane time constant is often used to characterize the time scale of a neuron’s
response to changes in its input. Injecting a constant current into the soma of a cortical neuron
causes the membrane potential to increase gradually with a time course governed by the membrane’s
passive properties, if active currents are disabled. In a simplified one-compartment model, such as the
kind considered by Hopfield (1984) and Carandini and Heeger (1994), the passive response to somatic
input can be approximated by a simple equivalent electronic circuit consisting of a capacitance and
a conductance in parallel (black lines in figure 5.1). The voltage response at the output node of this

circuit to a current input is given by

dv

E (5.1)

Ql~

LA
"~ "RC

where V' is the membrane potential, C' is the membrane capacitance, R is the membrane resistance,
and 7 = RC is the membrane time constant. This model can be simply extended to account for
the effects on the time constant of variable parallel synaptic conductances that could control the
gain and temporal integration of neurons (Bernander et al., 1991; Rapp et al., 1992; Carandini and
Heeger, 1994). A neuron with a complicated dendritic geometry behaves qualitatively similarly in

response to somatic current injection: the rate of somatic voltage change is also governed by the

This work was done in collaboration with Rodney Douglas and Misha Mahowald, to whom I am indebted for
some of the text as well.
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Figure 5.1: Simplified circuit models which ignore
the spatial extent of the neuron and collapse it
to a single point are usually based on this circuit.
The time constant, 7 = RC, is the time it takes
for the membrane voltage V to reach 1—1/e of its
final value in response to a step change in current.
Often in firing rate models (black), the voltage is
computed using this circuit and then a firing rate
is computed as a function of the voltage. The time
constant then determines the dynamics of the fir-
ing rate because firing rate dynamics are essen-
tially the same as the voltage dynamics. In mod-
els which represent spikes explicitly (grey), when
the voltage reaches a threshold, it is reset to 0.
The presence of the spiking mechanism completely
changes the dynamics not only of the voltage but
also of the firing rate; the voltage never reaches
an equilibrium, so there is no time constant that
governs the firing rate.

time constant 7 (Rall, 1962, 1969). The differences between an extended and a point neuron will be

considered in section 5.2.

The important issue is that the passive time constant is often seen to be crucial to the response,
even if the response consists of action potentials. As discussed in section 1.3 on page 10, in some
older literature and a number of newer models, voltage is viewed as the primary signal, and action
potentials are thought of as merely minor perturbations. For this reason neuronal models that are
concerned with average neuronal activation rather than individual spike timing commonly reduce
the neuron to a single compartment whose dynamics are given by equation 5.1, and whose firing

rate is some monotonic function of the somatic voltage:
f=9V) (5.2)

Usually, g is sigmoidal, that is, a monotonic increasing, positive and saturating function (as in the
popular choice of f = tanh V' in Hopfield (1984)). However, other functions have also been used (e,g,
f o V2 in Carandini and Heeger (1994)). Such firing-rate models incorporating a low-pass filter
to capture the passive properties of the underlying membrane have been applied widely in abstract
neural network analysis (e.g., Hopfield, 1984 and the innumerable papers spawned from it, such as
Kleinfeld, 1986) and also in more biological models (e.g., Wilson and Bower, 1989; Wargotter and
Holt, 1991; Abbott, 1991; Carandini and Heeger, 1994; Carandini et al., 1996a, 1996b, 1997). In
this class of model the firing rate can only change gradually in response to a rapid change in I.

For small steps in input current g(V') is approximately linear. In the linear regime, the firing rate,
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f, is simply I convolved with a first order low pass filter with time constant 7, and is therefore a
smoothed version of the input.

The response to a step input current provides a useful case for comparisons. Suppose a firing-rate
neuron has a constant input current Ip = 0, and then at time ¢ = 0 the current is suddenly changed
to I;. How long will it take the firing rate to reflect the new input value? The remarkable property
of linear systems is that they take a single characteristic time to approach their equilibrium state,
regardless of how far it is. Doubling the input current doubles the distance to the equilibrium state
but the system still only takes a time 7 to reach 1 — 1/e of equilibrium state. For this reason, the
subthreshold time constant has been used as a measure of how long each stage in a feedforward
neural network will take.

It is possible to shorten the response time by introducing a nonlinearity. For example, if g(V) is
a saturating function (Hopfield, 1984) and the steady state firing rate of the neuron is close to its
maximum rate, then the firing rate may reach 1 —1/e of its final value much earlier than V reaches
1—1/e of its final value. Convergence time in a saturating neuron is the time that it takes V to rise
high enough to saturate the firing rate, not the time for voltage to reach equilibrium. Increasing the
current will allow V' to reach that level faster.

However, in most parts of the brain, neurons are typically not either silent or firing at their
maximum rates. Furthermore, this kind of a saturating nonlinearity has several disadvantages.
First, the firing rate of this neuron responds more slowly to decreases in current than a linear
neuron for precisely the same reason as it responds more rapidly to increases in current: the firing
rate changes slowly as a function of voltage when the voltage is high. Second, the saturating neuron

does not transmit analog information; it either discharges near its maximum rate, or does not.

5.1.2 Response time of spiking neurons

Another important kind of nonlinearity is the spiking mechanism itself. The integrate—and—fire
model is the simplest spiking model, and has been used extensively ever since it was proposed
by Lapicque (1907). This model neuron has a membrane voltage which also obeys equation 5.1.
However, when the voltage reaches a threshold Vi, a spike is emitted and the membrane voltage is
reset (figure 5.2A).

The dynamics of the firing rate of a leaky integrate and fire neuron differ fundamentally from the
dynamics of the firing rate models governed by equation 5.2. In firing rate models or in a subthreshold
integrate-and-fire neuron, T measures the time to reach 1—1/e of a steady state membrane potential.

However, if the neuron is firing the voltage never reaches equilibrium. Therefore 7 is not a measure

INote that the effective time constant can be increased in the presence of positive feedback; recurrent networks
often have much longer time constants than their individual components (chapter 6).
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A. Figure 5.2: Sample spike rasters in response to a
step current injection. Arrows mark onset of cur-

r rent. The firing rate in spiking cells does not grad-
ually increase; the effect of the change in current is

B A fully visible in the first interspike interval. A. An
. integrate—and—fire unit, R = 20 MQ, C = 1 nF,
Vin =164 mV, I = 1.6 nA. B. A layer V com-
partmental model from Bernander et al. (1991),

A | ‘ 1.5 nA. This model shows adaptation; the firing
C. JUUL{L’\\-J\J rate reaches its maximum after the first ISI and
M{ declines slowly after that. C. A cell in vivo from

area 17 of the anesthetized cat responding to a

A 0.6 nA injection current. Taken from Ahmed et

D. al. (1993). D. For comparison, the firing rate as a
50 ms function of time from a non-spiking non-adapting

model neuron with a time constant of 20 ms. Un-

1 like the spiking neurons, this neuron’s firing rate

increases gradually.

of response time.

A spiking neuron’s steady state is a limit cycle (an oscillation), not an equilibrium value. In its
simplest form, the integrate-and—fire unit has only one state variable, its membrane voltage. When
the neuron spikes, and the state variable is reset, it loses memory of the previous input current, and
begins to respond to the new current by charging toward the threshold. If there is a step change
in current, from these considerations it follows that the first complete interspike interval after the
change reflects the new current; everything during the first interspike interval after the change is
exactly the same as during the second interspike interval, so the second interval will not be different
from the first.

Figure 5.2 shows the step response of an integrate—and—fire unit, a compartmental model of a
cortical pyramidal neuron, and an experimental record derived from a neuron in cat visual cortex
in vivo. The first interspike interval already reflects the new firing rate—the convergence occurs on

as short a time interval as can be defined (i.e., the interspike interval).

More complicated spiking neurons behave similarly. Compartmental models (figure 5.2B) and
cortical cells in witro (figure 5.2C) also reach their maximum firing rate by the first interspike interval.

Thereafter, the firing rate decreases slowly because of adaptation.

Unlike the firing rate neuron, the response time for a spiking neuron is not the time to reach
an equilibrium voltage which is proportional to the input. In the case of the simplest possible
spiking mechanism, the integrate-and-fire neuron, the neuron is on its new steady-state limit cycle
immediately, as soon as the current changes, so in one sense it can be said that there is no delay at

all. If one is looking at the spiking output of an ensemble of neurons, this means that the change
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Figure 5.3: Measures of the response times of different kinds of neurons. Ty, is the maximum time
it takes for an integrate—and-fire cell to fire one spike; since the firing rate of such a neuron has
reached its final value after the first interspike-interval after a change in input, this is a measure of
the speed of response. 7 is the subthreshold time constant, and is a measure of the response speed of
the firing rate models. A. Effect of changing the current I on the response time. Using this measure,
responses of a spiking neuron become faster with larger changes. B. Effect of changing the resistance
R. Paradoxically, the spiking neuron becomes faster as T increases. Parameters: C = 0.207 nF,
Vin =164 mV.In A, R=383MQ, 7= RC =8 ms. In B, I = Vi,/Rpin = 4.3 nA.

can be detected instantly (see below); however, if one can only examine a single neuron’s output,

there will be no measurable effects until that neuron actually spikes.

For a single neuron, then, the relevant response time is the time required for V to reach a
particular voltage: the threshold, Vi,. In the case of the non-spiking neuron, the response time is
the time to reach (1 — 1/e) of its steady state value, which varies with the input; in this case, the
response time is the time to reach a voltage which does not vary with the input. As a result, the

response time will be shorter for stronger inputs.

Unless inhibition is strong, V will always be greater than the reset voltage. The maximum

latency is therefore the time the membrane takes to charge up from reset with the current I;:

Vin
< — —_—— N
T RClog (1 A ) (5.3)

When the final firing rate is higher, the latency is shorter. Although the time constant, 7 = RC), is
independent of the input current, the latency, Ty, decreases with increasing current (figure 5.3A).
The situation is slightly different for step decreases in input current, because it takes more time

to measure a low firing rate. In this sense, the response to a decrease in firing rate is slow because

to measure the new firing rate a postsynaptic neuron will have to wait for one interspike interval
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at the new low firing rate. However, after waiting for just one interspike interval at the old rate, a
postsynaptic neuron can detect that the firing rate has decreased because the spike does not occur
at the expected time. It may have to wait much longer to find out exactly how much the firing rate
has decreased.

If 7 is increased by increasing the neuron input resistance R, the rate of change of the subthreshold
voltage is actually higher because increasing R reduces the leak current. Therefore the spiking neuron
reaches threshold more quickly (figure 5.4). In contrast, although dV/dt is also higher in the firing
rate model when R is increased, it takes longer to reach 1 — 1/e of the equilibrium voltage because
the equilibrium voltage is also increased (figure 5.4A). In the extreme case, when 7 — oo, the firing
rate model does not even asymptotically approach an equilibrium, but the integrate—and—fire emits
spikes from its steady state limit cycle sooner than it does for a finite 7. Therefore decreasing T will
not make a spiking neuron respond faster, as is required by some models (Carandini and Heeger,
1994); if anything at all, it makes it respond slower.

The nonlinearity in the spiking model is in the membrane voltage, whereas in the saturating
model the nonlinearity is in the translation between the membrane voltage and firing rate. Both
kinds of nonlinearity can speed up the response because the voltage needs to rise to a given constant
value rather than a value dependent on input. However, the spiking neuron communicates an analog

value, whereas the saturating neuron communicates only a digital value (0 or maximum firing rate).

5.1.3 Response time of an ensemble of neurons

So far we have considered the temporal response of single neurons, in which the firing rate can be
defined only for a whole interspike interval. In this case, it makes no sense to talk about response
times on any time scale less than the interspike interval. However, postsynaptic neurons receive input
from many different presynaptic neurons. The response times of an ensemble of spiking neurons may
be a more relevant measure of response than the event times of only a single neuron. A PSTH of
firing times can be constructed, not for the response of a single neuron to a repeated stimulus, but
for the responses of many neurons to a stimulus presented once. As usual in neurophysiology, the
PSTH can be used to define a firing rate during a short time interval dt: f = number of cells x
P(one cell firing)/dt. There is no requirement that d¢ be longer than an interspike interval; the firing
rate is well defined for much shorter time scales because we are examining the output from many
neurons.

Suppose that many identical neurons which are independent of each other are all responding to
the same input stimulus. (Knight, 1972 has analyzed this case in some detail for population encoding

of a sensory stimulus.) For simplicity, suppose for the moment they are non-leaky integrate-and-fire
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Figure 5.4: Increasing the membrane time constant makes firing rate models slower (A) and spiking
models faster (B). The subthreshold voltage of the integrate and fire model (B) is exactly the same
as the non-spiking model (A) until a threshold (dotted line in A) is crossed. Increasing R increases
the rate of change of voltage for V' > the resting voltage, but it also changes the equilibrium voltage.
Non-spiking neurons therefore converge more slowly as the time constant increases; as = — oo, the
voltage continues rising until other nonlinear effects become important. In contrast, the integrate—
and-fire model actually responds earlier for larger 7. In both A and B, parameters were the same.
Current changed from 0 nA to 0.85 nA at time 0. C = 1 nF, and R was varied from 20 M to co.
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neurons. If the ensemble is completely desynchronized, then a histogram of voltages across the
population will be flat, as shown in figure 5.5A. If the input stimulus is a steady current Iy, then the
membrane potential of each neuron is steadily increasing according to CdV/dt = Iy; each neuron
moves rightward along the voltage histogram at a rate proportional to the current. When a neuron
reaches the voltage threshold Vi, it fires an action potential and resets its voltage. Hence, in this
simplified system, the firing rate is described completely by the population’s voltage histogram. The
fraction of cells which fire in the small time interval d¢ is simply p(V')dV = I dt/CVy,, represented
by the shaded area in the figure, and so the firing rate is f = NIdt/C'dt = NI/C.

Note that f is directly proportional to the current and has no other time dependence, so if the
current changes instantly, so does the ensemble’s firing rate. If the voltage histogram starts out flat,
it remains flat even if I changes, so the firing rate of the ensemble has exactly the same time course
as the input current. Figure 5.5B shows a simulation of this for a step change in current. The change
can be seen in the PSTH in the first bin; there is no need to wait a time T}, as is necessary if there is
only one presynaptic neuron. This is true for increases or decreases in input (simply reverse the time
axis in figure 5.5). In theory, how fast a neuron postsynaptic to such a population could detect a
change in its inputs is limited only by the number of statistically independent inputs (Panzeri et al.,
1996) and by the activation time of the sodium current (simulations not shown). This is unlike the
response of a firing-rate neuron of the sort described by equations 5.1 and 5.2, or even an ensemble
of such neurons. Because of the low-pass filtering stage (equation 5.1), the firing rate cannot change
instantaneously in the firing-rate model.

This analysis depends critically on the assumption that different neurons of the ensemble are not
synchronized to each other, i.e., that their phases are randomly distributed. Nothing can be said in
general about what happens if the phases are nonuniformly distributed, because there are infinitely
many kinds of nonuniform distributions. Also the mechanism by which the nonuniform distribution
arises may influence the network response. Such situations must be analyzed on a case-by-case basis.

One case which has been analyzed in some detail is the effect of a leak on the response of otherwise
independent integrate-and-fire neurons (Knight, 1972). A leak causes the ensemble to synchronize
to transients. Suppose, for example, the input current is just about equal to the current threshold.
Then, during one interspike interval, each leaky cell spends more time close to threshold than close
to the reset potential (consider the bottom trace, 7 = 20 ms, in figure 5.4). Therefore most of the
cells in the ensemble have their voltage close to the voltage threshold; the probability distribution
in figure 5.5A will be sharply peaked near Vy,. If the current is suddenly increased, most of them
fire at about the same time. As a result, the system acts like a nonlinear high-pass filter—exactly
opposite the low-pass filter behavior of firing-rate model cells.

This effect is less important if initially the cells were firing at moderate rates or if a moderate
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Figure 5.5: Response of a large number of identical non-leaky integrate—and-fire neurons to the
same current. A. If the neurons are not synchronized to each other, the probability distribution
of membrane potentials p(V) dV will be uniform as shown. Each neuron’s membrane potential is
increasing at a constant rate (arrows) which is determined by the input current. The firing rate
of the population is proportional to the fraction of cells that fire in a given time di (the shaded
area). dt can be as small as desired, so it is possible to define a firing rate for a population on a
much smaller time scale than the interspike interval. B. A change is visible in the ensemble response
immediately after the current step. Top, the current injected. Middle, spikes from the collection
of neurons. Bottom, a histogram of the population response with a bin size of 5 ms. The fraction
of cells which are firing increases discontinuously. This is unlike the behavior of firing rate models
described by equations 5.1 and 5.2, which cannot change firing rate discontinuously. Parameters:
C=1nF, Iy =02nA,; =1.6 nA, Vy = 16.4 mV, 1000 neurons.
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amount of noise? is present in the system (Knight, 1972). Since some level of noise seems reasonable,
the analysis in chapter 6 assumes that firing rates of an ensemble are proportional to the input current

with no additional time dependence.

5.2 Dynamics of passive spatially extended neurons

So far, we have only considered the response of a cell with no spatial extent. However, in a neuron
with a dendritic tree, the voltage at the sites of synaptic input is not the same as the voltage at the
locus of spike initiation. If the dendrites are largely passive, the current which reaches the soma has
some high temporal frequencies removed and does not exactly represent the current at the synapses.

A great deal of work has gone into examining how EPSPs are affected by dendrites (e.g., Rall,
1977, Agmon-Snir and Segev, 1993; Zador et al., 1995). Examining EPSP time courses and am-
plitudes at the soma assumes that the somatic voltage is free to rise, and that the somatic voltage
determines firing rates. But when a spiking mechanism is present, this is not true; over long time
scales, the soma’s voltage is effectively clamped to a value approximately independent of the input
(Koch et al., 1995; chapter 4; appendix B).

Instead, it is better to look at the current which arrives at the soma. As discussed in section 5.1.3,
the firing rate of an ensemble of point neurons follows the time course of the current to a high degree
of precision. This is true also for neurons with passive dendritic trees (figure 5.6). The current from
the dendrites was measured by voltage clamping the soma. Then the firing rates of an ensemble
of neurons responding to the dendritic current was measured. The firing rate changes due to the
dendritic current are virtually identical to the firing rate changes when the measured somatic current
is injected at the soma rather than at the dendrites. Furthermore, the time course is almost exactly

determined by the somatic current, rather than the somatic voltage.

5.3 Temporal dynamics are primarily dictated by the time
course of synaptic currents

If the membrane time constant does not strongly affect the response of the neuron, what factors do?
In real neurons, the lower bound on the response time to changes in injected current is determined
by the activation time constant of the sodium current. This time constant is very short (in the
neighborhood of 0.1 ms at physiological temperatures), and so other delays and time constants are

likely to dominate circuit operation.

2Very large amounts of noise have a small nonlinear low-pass filtering effect dependent on the noise amplitude
because of the way they disturb the voltage histogram (not shown).
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Figure 5.6: The time course of firing rate change in response to an electrotonically distant step
current input of 0.1 nA. A current step at the tip one of the basal dendrites was applied to an
ensemble of neurons firing with uniformly distributed phases, and the firing rate of the ensemble
measured (curve with e). In a separate simulation, the voltage at the soma was clamped to —50 mV
and the clamp current measured to determine the amount of current reaching the soma from the
dendrite (solid line). This current was then applied to the soma of another ensemble of neurons
(curve with v7). In a single neuron which was not firing, the time course of the voltage at the soma
was measured (dotted line). Clearly the time course of the clamp current is a much better predictor
of the ensemble firing rate than the somatic voltage. Adaptation currents were present in the soma,
so0 the firing rate falls off although the clamp current does not.

First, currents from distal synaptic inputs are smoothed by passive membrane properties, as
pointed out prominently by Rall (Rall, 1967, 1989) (for one way of quantifying this see Agmon-
Snir and Segev (Agmon-Snir and Segev, 1993)). The contribution of voltage-dependent sodium and
calcium current in the dendritic tree of neocortical and hippocampal neurons (Andersen et al., 1980;
Turner, 1988; Nicoll et al., 1993; Stuart and Sakmann, 1994; Johnston et al., 1996) in shaping the
temporal dynamics of synaptic input under physiological conditions remains unclear at this moment.

Second, synaptic currents have a finite rise and decay time.®? Excitatory transmission through
AMPA synapses can be extremely fast (EPSCs have decay times less than 5 ms), but if current
through NMDA receptors is important, then much longer time constants can be expected (up to
100 ms depending on the isoform of the NMDA receptor). The membrane time constant itself is
largely irrelevant to synaptic integration (Koch et al., 1996); instead it is the intrinsic time course
of the synapses that dominate the process, particularly the EPSC decay time constant. Indeed,
the temporal dynamics in our models of networks of spiking cells are governed primarily by the
time course of synapses and adaptation currents (unpublished data; Suarez et al., 1995). Synaptic

low-pass filtering comes to replace the membrane low-pass filtering assumed in rate models, and

3Note that it is the time course of synaptic current rather than the EPSP time course which is important for firing
rate dynamics.
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so the removal of the membrane time constant makes little difference for many results that have
been obtained from firing rate models that incorporate the membrane time constant. However,
each neuron has multiple connection time constants, because there are different synaptic decay
time constants depending on the kind of synapse (AMPA, NMDA, GABA,, GABAg, etc.), and
some synapses have slow rise times as well, so the dynamics may be much richer (Buanomano and
Merzenich, 1995). Furthermore, the passive membrane time constant decreases in the presence of
synaptic input (because synaptic input increases the membrane conductance significantly; Bernander
et al., 1991; Rapp et al., 1992), but the synaptic time constants will be unaffected by fast synaptic
input. (Slow, neuromodulatory synaptic input can, of course, affect the channel opening or closing
rates.)

Third, it takes a finite amount of time for impulses to propagate down an axon and activate the
synaptic machinery. For local cortical circuitry, this delay is around 0.5 ms. However, for feedback
connections to the thalamus, the delay can be as long as 10-20 ms (Tsumoto et al., 1978; Tsumoto
and Suda, 1980; Swadlow and Weyand, 1981; Swadlow, 1983) and sometimes even greater than 40 ms
for the axons projecting from the visual claustrum to the cortex (Swadlow, 1983). Conduction time
is important in the temporal dynamics of the response to lateral olfactory tract stimulation (Wilson
and Bower, 1992); it is unclear how important it is in neocortical processing.

Network models based on explicitly spiking neurons have of course never fallen into the trap of
assuming that the membrane time constant determines the dynamics of firing rate (e.g., Wilson and
Cowan, 1972; Treves, 1992, 1993; Tsodyks and Sejnowski, 1995; Buanomano and Merzenich, 1995).
Some network models based on firing rates, especially more recent ones, have properly replaced
the subthreshold time constant by one or more synaptic time constants (Griffith, 1963; Amit and
Tsodyks, 1991b; Amit and Brunel, 1993; Burkitt, 1994; Brunel, 1996) and written the firing rate as
an instantaneous function of the input current. In symbols, equations 5.1 and 5.2 are replaced by

(Frolov and Medvedev, 1986)
f=n) (5.4)

where h(I) is the current—discharge curve*. Because current—discharge curves are often quite linear
over the relevant range of operations (Granit et al., 1963; Ahmed et al., 1993), a linear threshold
unit with no intrinsic dynamics may be a satisfactory simplification of a real neuron. It obviously
lacks some important features known to be present in real neurons (e.g., burst generation), but it

may be useful whenever a neuron’s firing rate rather than the timing of its spikes is important.

4Note that the response to synaptic current may be different from the response to a constant current if the current
is just above threshold (Frolov and Medvedev, 1986; Amit and Tsodyks, 1992), because the leak makes the neuron
sensitive to fluctuations if the interspike interval is long compared to the time constant. The function A(I) could be
adjusted accordingly.
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Neglecting nonlinear synaptic interactions (Mel, 1994) and synaptic depression and facilitation
(Markram and Tsodyks, 1996; Abbott et al., 1997), we can write for the total postsynaptic current

from one kind of synapse

Ut
T
~—

Isyn = Zwlfz * Grec ( .
A

where w is the weight, i,.(t) is the time course of the EPSC from a single spike, and * denotes
convolution. This applies to both excitatory and inhibitory currents, even for shunting inhibition,
since shunting inhibition does not act qualitatively different from non-shunting inhibition (chapter 4).

If we assume that the postsynaptic current decays exponentially, i.e. if 4,e.(t) = ige™*/7sv | this

equation becomes (Frolov and Medvedev, 1986):

dl, I .
L L %0 Z wzfi(t) (5.6)
dt Teyn ;
This is of the same form as equation 5.1, and indeed many modern attractor models have simply
substituted I for V and 7y, for 7.5 Such a simple substitution is not possible, however, if there are

two different kinds of synapses (e.g., excitatory and inhibitory) with different time courses.

Similarly, adaptation may be modeled by
Iadapt = f * Z.acla;ut (58)

where 4440p:(t) is the time course of the current that comes into a cell after a single spike through

the calcium dependent potassium current I4yp and other adaptation conductances.

5.4 Conclusion

Firing rate point models of nerve cells which assume that the membrane time constant is relevant
above threshold are widespread and continue to be used. We suggest that such models would be
more accurate if the time constant were simply discarded. The idea of an above threshold voltage
should also be abandoned and replaced by an input current (Amit and Tsodyks, 1991a, 1992).

Reasoning about voltages above the spiking threshold as if they were equilibrium states leads not

5 Another class of models attempts to compute not the instantaneous firing rate but the time averaged firing rate:
(fy=Fxe " (5.7)

where 7 is the temporal coarse-graining time constant (Wilson and Cowan, 1972, 1973), i.e., the time scale over which
averaging is performed. Such a formulation also leads to equation 5.6. In this case, however, T has no biophysical
significance; it is an artifact of the conversion between a discrete spike train and a continuous firing rate (see Abbott,
1994). With an ensemble of neurons, however, there is no difficulty in converting a discrete spike train into a firing
rate, so no arbitrary 7 needs to be defined.
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only to an erroneous view of the importance of the membrane time constant, but also to a mistaken
understanding of synaptic effects such as shunting inhibition (chapter 4; Holt and Koch, 1997). It is
more useful to think of the soma as receiving a current from the dendrite which it converts directly
into a firing rate (Abbott, 1991; Amit and Tsodyks, 1991a, 1992; Bernander et al., 1994; Carandini
et al., 1996b; equation 5.4).

The spiking mechanism is usually thought of as a means of transmitting an analog value over a
long distance without distortion. However, a further important property of the mechanism is that
it can speed up the response of individual neural elements. Without the spiking mechanism, each
stage of a feedforward neural network would take at least as long as the membrane time constant to
come close to its equilibrium value. With spiking neurons, however, each stage needs to take only as
long as the synaptic delay plus the synaptic time constant. If only current through AMPA receptors

is important, this time can be just a few milliseconds.
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Chapter 6 Adaptation and recurrent circuits

6.1 Introduction

It is a well-known engineering principle that feedback slows

down a system’s response. Consider, ior example, a simple discrete-

time version of the cortical amplifier network in figure 6.1. The
population of cells feeds its own output back as input with a synap-

tic weight w. If the synaptic delay time is 7, then this system can

be crudely modeled by

where « is the slope of the current—discharge curve.

@) =a(wf(t —7) + Iy)

v

Figure 6.1: Simplified cortical
(6.1) amplifier circuit. Neurons in
the population are connected

to each other with excitatory

The impulse response of this system is obtained by setting Iy = connections.
1/a for t = 0 and Iy = 0 for subsequent times:
f(t) — (Oé'l,U)t/T — et(logaw)/‘r. (6.2)

The response for various values of w are shown in figure 6.2. The system becomes very slow as the

amount of recurrent input aw increases.
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Figure 6.2: The impulse response of the
discretized system of equation 6.1. Note
that the syste