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Abstract

In Part I, we study the adiabatic limit for Hamiltonians with certain complex-
analytic dependence on the time variable. We show that the transition probability
from a spectral band that is separated by gaps is exponentially small in the adia-
batic parameter. We find sufficient conditions for the Landau-Zener formula, and its

generalization to nondiscrete spectrum, to bound the transition probability.

Part II is concerned with eigenvalue asymptotics of a Neumann Laplacian —A% in
unbounded regions 2 of R? with cusps at infinity (a typical example is = {(z,y) €
R2:z> 1, |y| < e }). We prove that Ng(—A%) ~ Ng(Hy)+E /2 Vol(Q), where Hy
is the canonical, one-dimensional Schrodinger operator associated with the problem.
We also establish a similar formula for manifolds with cusps and derive the eigenvalue

asymptotics of a Dirichlet Laplacian —A% for a class of cusp-type regions of infinite

volume.

In Part III we stﬁdy the spectral properties of random discrete Schrodinger oper-
ators H,, of the form —A + &,(w)(1 + |n]|*), @ > 0, acting on 1?(Z¢), where &,(w) are
independent random variables uniformly distributed on [0,1]. We show, for typical w,
that H, has a discrete spectrum iff a > d, and we calculate its eigenvalue asymptotics.
If d/k > a > d/(k + 1) for positive integer k, we prove that for typical w and non-
random strictly decreasing sequence ag, Oess(H,) = [ag, 00), 0ac(H,) = 0. The large k
asymptotic of sequence ay, is studied. We also investigate the continuous analog of the

above model.
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Introduction

This thesis consists of three parts—three different research topics which I have
been investigating during my residence as a graduate student at Caltech. Since every

part has its separate introduction, we give here just a brief overview.

The first part is concerned with the time evolution of slowly changing quantum-

mechanical systems. It is based on joint work with Jan Segert [JS1], [JS2].

The second part deals with the spectral properties of Neumann Laplacian in un-

bounded regions of R2. It is based on joint work with B. Simon and S. Molchanov
[IMS].

The third part is concerned with the spectral properties of random discrete Schro-
dinger operators with unbounded, nonhomogeneous potential. It is based on joint work
with A. Gordon, S. Molchanov and B. Simon.

There are a number of research results that were originally planned to become a
part of this thesis, but have not been incorporated for the simple reason of lack of time.
This mainly concerns Part I, regarding the application of techniques developed there to
quantum Hall systems—which will be discussed in [J], and Part III, since [GIMS] will
contain considerably more results than were presented here. For better or for worse,
the projects started with this thesis do not end with it, but will probably occupy me

for some time to come.



Part I

Exponential Approach to the Adiabatic Limit

and the Landau-Zener Formula



Chapter 1: Introduction

We consider the evolution generated by a time-dependent Hamiltonian H(t) in the
adiabatic limit. We recall that this is the limit where the time dependence becomes
slow, H(t/7) as 7 tends to infinity. Consider a state that lies in some spectral subspace
of H(ty), and let the system evolve. By transition probability we mean the probabil-
ity that the system is measured at some later time to lie outside the initial spectral
subspace. The spectral subspaces of interest are usually separated by gaps from the
remainder of the spectrum for all values of ¢ in some interval. The adiabatic theorem
states that the transition probability across a spectral gap goes to zero as 7 goes to
infinity. The rate of vanishing of the transition probability depends on the smoothness
of the time dependence. If the time dependence is k times differentiable (in a sense to
be specified), then the transition probability is O(1/7¥). This has been proven under
very general conditions in [KAT1], [NEN], [ASY].

We study time-dependent Hamiltonians for which the transition probability across
spectral gaps is O(exp(—27L)) for some L > 0. We call this behavior ezponential
approach to the adiabatic limit. It is generally believed that exponential approach to

the adiabatic limit is related to some type of analyticity in the complex time plane.

This observation is widely attributed to Landau, arising from his 1932 study [LN]
of atomic transitions induced by collisions. Zener [ZEN] showed that a particular two-
level system exhibits exponential approach to the adiabatic limit. There is a formula
for the exponential rate of approach, often called the Landau-Zener formula, or just
the Landau formula. A partial chronology of related work in the physics and chemistry
literature follows. Stueckelberg [ST] independently studied exponential approach by
the WKB method, but his paper received relatively little attention, presumably because
of its relative length and complexity. The currently common version of the Landau-

Zener formula appeared in a paper of Dykhne [DY2] on two-level systems, and is
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described in more general terms in the book of Landau and Lifshitz [LNLF]. Davis and
Pechukas [DVPE] have analyzed in greater detail the two-level system, and Hwang and
Pechukas [HWPE] considered the finite-level system. For some applications in physics
see [IKN], [GBC], [HX], notably [ZIM] for a discussion of the Zener diode.

The Landau-Zener paradigm is to consider transitions between noncrossing eigen-
values E; and Ej, in the limit where the system is prepared at time —oo, and measured
at time +o0o. Suppose that the gap function Ei(t) — E;(t) has an analytic extension
to the complex t-plane, and that there is a point w in the complex t-plane where

Ey(w) — E;(w) = 0. The Landau-Zener formula then states that the approach to the

adiabatic limit is exponential, with the constant L:
L = Tm( / (Bu(2) — Ei())d). (1.1)
0

Zener [ZEN] proved that this formula holds for the simple two-level Hamiltonian

H(t) = (’15 }) , (1.2)

by reducing the problem to a second-order differential equation, the asymptotics of
which had been previously analyzed. For two-level systems depending analytically on

time, this formula appears to be correct [DVPE].

For more complicated systems, even with a finite number of levels, the applicability
of the Landau formula is a difficult question; see e.g. [HWPE]. In 1960, Bates [BAT)
argued that the Landau-Zener formula is problematic when applied to the very process

for which it was created, namely, atomic collisions:

This formula . .. has been used in a number of computations and because of its
attractive simplicity it is introduced in many textbooks on quantum mechanics.
The object of the present note is to point out that it is in fact invalid over much

of the energy range for which it seemingly was designed, and certainly has been
employed.

Although our considerations are quite different from Bates’, we are also interested in

examining the applicability of the Landau formula. We shall prove several theorems
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about exponential approach to the adiabatic limit. In special cases, particularly for a
finite-dimensional Hilbert space, our expression for the exponential rate resembles that

of the Landau formula. We now state the simplest case of our results.

An analytic operator-valued function T'(z) on the strip S(a) = {z € C| —a <
Im(2) < a} is said to belong to H!(a) if
oo
Sup. / |T(z + ic)||dz < oo.
—a<c<a
o0
Suppose that H is a bounded, self-adjoint operator, and let P; be the spectral
projection of H onto a band separated by a gap ¢g; > 0 from the remainder of the
spectrum. Let H(t;7) = W(t/r)HW~1(t/7), with W(t) unitary for real ¢t. If the
system is prepared to lie in the band P; at time %y, the probability that at time ¢ it

has made a transition to a state outside the band P, is denoted by pi(t,ts; 7). We then

have

Theorem 5.4. Suppose that the derivative W'(t) is analytically extendible to S(a),
and W'(-) € H'(a). Then there is a finite constant C, such that

lim lim p;(¢,t0;7) < Cqexp(—27ag;).

t—oo tg——o0

Note that ag; equals the imaginary part of the integral of g;(2) from 0 to ¢a, so this

result resembles the Landau formula.

The techniques we use are an extension of those introduced by Avron, Seiler, and
Yaffe in [ASY], see also [KS]. The complex-analytic properties enter through the Cauchy

integral formula, mainly in the guise of properties of analytic operator-valued functions
in the Hardy class H'(a).

We briefly mention some recent related work, with no pretense of completeness. K.
Yajima has independently developed related ideas for two-level Hamiltonians [YAJ]. G.
Hagedorn [HG2| has examined an exponential approach to the adiabatic limit for tran-

sitions between two eigenstates. Hagedorn techniques involve matching an adiabatic
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expansion near level crossing [HG1] to an adiabatic expansion away from level crossing.
Several recent papers of Berry [BEX, BHI, BGE] address similar issues. Datta, Ghosh,
and Engineer [DGE] have studied the time-dependent, two-level system.

We finally remark that application of the techniques developed in this part to the
quantum Hall systems will be studied in [J].



Chapter 2: Prerequisites

2.1. EXISTENCE OF SOLUTIONS, AND SPECTRAL THEOREM

We briefly review the theory of existence of a solution to a time-dependent Schro-
dinger equation. If the Hamiltonian H(t) is bounded, the existence and uniqueness of
the solution is easily proved by differential equation techniques. We briefly outline some
consequences of the work of Kato-Yosida [YOS], [RS2] for unbounded Hamiltonians.
Our discussion follows [ASY], [KS], restricted to the C* case. For a bounded open
interval I C R, consider a family of Hamiltonians H(t), t € I. We suppose that the

following conditions are satisfied.

Al) H(t) is self-adjoint, bounded from below, with a t-independent domain D, closed
with respect to the graph norm of H(0).

A2) The function H(t), t € I, mapping I to £(D,H), is C*.

Here H denotes the Hilbert space, and £(X,Y") is the normed space of linear maps
from X to Y.

We then have ([ASY], Thm. 2.1.)

Proposition 2.1. The initial value problem

i0,U(t,t0)p = H(t)U(to,0)¢, U(to, to)p = ¢ (2.1)

has a unique solution with the following properties: U(t,%q) is a unitary propagator,

strongly continuous in ¢t and ¢, and U(¢, t)¢ is continuously differentiable for all ¢ € D.

Recall that a unitary propagator is a two-parameter family of unitary operators
U(t, 1), (t,%0) € R x R, satisfying



Ut,t) =1,

(2.2)
Ult, to) = Ut, t)U(t1, to).

We now review the functional calculus of a self-adjoint operator. This is one for-
mulation of the spectral theorem (see [RS1], Theorem VIIIL.5). Let H be a self-adjoint

operator. Then to each bounded Borel function f(-) on R corresponds the operator
s = [ soyap.

Furthermore, f(H) is bounded, namely, ||f(H)| < ||f(-)|[z~(®), and the assignment
is an algebraic homomorphism, in the sense (fg)(H) = f(H)g(H). Let 8 C R be a
Borel set, and x the characteristic function. xs(H) is then the spectral projection of
H onto 3. Denoting the spectrum of H by o(H), it is clear that xg(H) = Xpno(m)(H)-

2.2. THE ADIABATIC THEOREM, SPECTRAL BANDS AND SPECTRAL
GAPs

We now turn to a discussion of the adiabatic theorem, following [ASY]. In the
adiabatic limit, we consider Hamiltonians that vary slowly. We consider H(t/7), as 7

becomes large, and study the 7 dependence of U(t/7,t,/7). Equivalently, a linear time

rescaling gives

10,U,(s, s0) = TH(s)U, (s, s0), U:(so,50) = 1. (2.3)

We shall from now on work with the time-dependent Schrédinger equation of the form
(2.3).

The adiabatic theorem basically states that if a time-dependent Hamiltonian has
a spectral band that is separated for all s by gaps from the remainder of the spectrum,

then as 7 — o0, U,(s,sp) does not evolve states across the gaps. We make these

concepts more precise.

Consider a single Hamiltonian H and a closed interval (not necessarily bounded)
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[a,b] € R. We shall frequently consider a collection [a;,;], where ¢ belongs to some
index set, and denote the corresponding spectral projections by P; = X(q;,5](H). Denote

by H|; the restriction of H to the range of P;, and by o(H|;) the spectrum of this

restriction?! .

We interchangeably call both P; and o(H|;) = [ai, b)) N o(H) a spectral band.

The generalization to a time-dependent Hamiltonian H(s) is immediate. Letting
a;(s) and b;(s) be functions, the term spectral band refers to [a;(s), bi(s)]No(H(s)) and
the corresponding spectral projection Pi(s) = X{as(s)b:(s))(H(8)). By H(s)|: we denote
the restriction of H(s) to the range of Pi(s). If a;(s) and b;(s) are locally bounded, we
call the band finite.

There is nothing in the definition of a band implying that it is separated from the
remainder of the spectrum. That information is described by the notion of spectral

gap:
Definition 2.2. The gap gi(s) of a band P;(s) is the distance in R between o(H(s)];)
and the complement of the spectrum, o(H(s)|s), where P(s) =1 — Pi(s);

gi(s) = dist[o(H(s)]:); o (H(s)|1)]- (2.4)

We rephrase the gap condition for the adiabatic theorem of [ASY] with this termi-
nology:

A3) The band Py(s) is finite, and there is an € > 0 such that g;(r) > € for all 7 € [so, 3]

Associated with the band P;(s) is a unitary propagator U,(s, so; F;), that is defined

as the solution of a certain differential equation. It has the property that it intertwines
Pi(s); ie.,

Py(s) = Ua(s, s0; P))Pi(50)Ua"" (s, 50; ).

1 This is not in general the same as the spectrum of H P; acting on H, but does coincide on the

complement of {0}.



10

The adiabatic theorem, in the version of [ASY], says that the adiabatic evolution

Ua(s, so; P;) approximates the actual evolution U, (s, s¢) in the following sense?

Theorem 2.3. Supposing conditions Al), A2), and A3), and that the support of P!(-)

is contained in the interior of the interval [sg, s]; then

Py(s) — U,(s, 50)Pi(s0)U,"1(s,80) = O(1/7™).

We shall require a more specific notion of spectral gap.

Definition 2.4. For a time-dependent Hamiltonian H(s) with spectral bands Pi(s)
and P;(s), the oriented gap gii(s) is defined by

gri(s) = inf o(H(s)|x) — sup o(H(s)];)-

Remark 1: Definition 2.4 defines the oriented gap between two bands, whereas Defi-
nition 2.2 defines a related notion of gap between a single band and the remainder of
the spectrum. While g; is nonnegative, gi; may be negative. Consider a band P; with
a nonzero gap g;. Split the remaining spectrum Py = 1 — P; = P, + P,, where P, is

the spectrum strictly above P;, and P, is the spectrum strictly below. Then

g; = min(gy;, gi) > 0. (2.5)

Remark 2: A band may consist of a single point of spectrum. Suppose that P, and P;
are two such bands, with o(H|x) = Ex € R and o(H|;) = E; € R. Then

ki = —Gir = Ek - E,'. (26)

2 The appendix of [KS] contains a revised proof of lemma 2.7 in [ASY].
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Chapter 3: Intertwining

3.1. TRANSITION PROBABILITIES

We discuss transitions between bands. Let P;(s) and P;(s) be bands, with no gap
assumptions at this point. Let ¢ € H be a normalized state in the range of P;(s), and
¥ a normalized state in the range of P;(s). We consider a quantum mechanical system
prepared in the state ¢ at scaled time so (physical time 7sg). The time evolution of the
state is prescribed by the Schrédinger equation, and a measurement is made at scaled
time s (physical time 7s). The probability that the system is measured to be in the
state v is given by

Py (8,50, 7) = |(,U(s,50)0) .
We define the transition probability pii(s, so;7) to be the supremum over all the
normalized states in the respective subspaces of the probabilities,
Pri(s,50;7) = sup  sup  py4(S,50;7)
$EPy(sYH $EPi(s0)H (3.1)
= || Pe(s)Ux(5, 50)Pi(s0)lI>-

Let Ps(s) = 1 — Pi(s) be the complementary band of P;. Then py;i(s,so) is the
total transition probability for a state starting in the band P;. We use the shorthand

Pi(S, S0, T) = Pf,i(S, 50, T). (3-2)

Remark: An immediate consequence of Theorem 2.3 is p;(s, so;7) = O(1/7%).

3.2. ADMISSIBLE HAMILTONIANS

We shall consider separately two types of time-dependent Hamiltonians. The first

type is actually a special case of the second, but it provides a more transparent example

of the techniques.
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Suppose that for each s € R, W(s) is a unitary operator and W(0) = 1. We further
assume that the map W : R — L(H) is C?; i.e., W'(s) exists as a bounded operator,

depending continously on s. We now define the less general case of our time-dependent

Hamiltonians.

Definition 3.1. For W(s) as above, we call the time-dependent Hamiltonian H(s)

unitarily admissible if it is of the form
H(s) = W(s)HW~1(s) (3.3)

for some self-adjoint operator H. If H is unbounded with domain D, we further

assume that W(s)D = D for all s € R, and that there exists a unique solution of the

Schrédinger equation3.

The admissible Hamiltonians exclude numerous interesting cases, so we generalize
by letting pieces of the spectrum shift relative to each other. As before, take a self-
adjoint operator H, with domain D. We now decompose H as a sum of operators

acting on mutually orthogonal subspaces.

We consider a countable Borel partition of R. Namely, let {Q,},n € J C Z be
disjont Borel sets with U,€), = R. Defining

Qn = Xﬂn(H)’ ne ']a (34)
the following properties are immediate from the functional calculus;

Zanl; n#Em= QnQm=0;

neJ

QuHé¢=HQn¢, ¢€D:

We call the {Q,} the spectral partition of H associated to {,}.

3 For example, it is sufficient that conditions A1) and A2) hold.
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Definition 3.2. A time-dependent Hamiltonian H(s) is admissible if it is of the form

H(s) = W(s)[H +)_ Aa(8)Qu]W ™' (5), (3-5)

neJ

where {Q,} is a spectral partition of H, and the functions A,(s) are continuous, with
sup,cs |An(s)| locally bounded. If H is unbounded with domain D, we further assume

that W(s)D = D, and that the Schrédinger equation has a unique solution.

We can assume A, (0) = 0 without loss of generality. We also note that if H is self-
adjoint with domain D, then H(s) is self-adjoint with the same domain. This follows

from the fact that > A,(s)@, is a bounded operator, and is from the Kato-Rellich
theorem [RS2].

Taking J = {0}, the set with one element, and @y = 1, one sees immediately
that unitarily admissible, time-dependent Hamiltonians are admissible. This of course

corresponds to the trivial partition Qy = R.

3.3. INTERTWINING OF PROJECTIONS

Consider a unitarily admissible Hamiltonian H(s). Consider the spectral band
Pi(8) = X{a: ps)(H(8)), where a; and b; are constants that do not depend on s. We shall
often use the shorthand H = H(0), P; = P;(0), etc. Then it is evident that

Pi(s) = W(s)PW™1(s). (3.6)

This is the prototype of intertwining of spectral projections.
Let P(s),s € R, be a one-parameter family of self-adjoint projection operators.

Definition 3.3. A unitary propagator U(s, so) is said to intertwine the time-dependent

projection P(s) if for all s, s € R,

P(s5)U(s,s0) = U(s, 30)P(5s0)- (3.7)
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It is clear that
Wa(s, so) = W(s)W(s0) (3.8)
is a unitary propagator. Furthermore W}(s, so) is a bounded operator, by the bound-

edness assumption on W’(s). The following lemma is then immediate.

Lemma 3.4. Let H(s) be a unitarily admissible Hamiltonian, and let Pi(s) =
Xjas,bi)(H (8)) be a spectral band with a; and b; constant. Then Wg(s, so) intertwines
Py(s).

Proof : Follows from the definitions and Equation (3.6).

When generalizing to admissible Hamiltonians, one must keep in mind that the
spectrum of H(s) is no longer constant. Let P; = X{q,5](H) be a band of H = H(0)

such that for some n € J, P,Q, = P;. This condition is equivalent to [a;,b;] N o(H) C
Q. No(H).

Definition 3.5. A spectral band P;(s) of an admissible Hamiltonian H(s) is called
compatible if it is of the type

Pi(s) = Xja:+An(o)bi+Aa() (H(5)), (3.9)
where a; and b; are the s-independent constants above.

Defining Q,(s) = W(s)Q,W1(s), the following lemma characterizes the (non-
crossing) compatible spectral bands. We point out that the decomposition (3.5) of an

admissible Hamiltonian is not unique.

Lemma 3.6.

a) Let H(s) be unitarily admissible. A spectral band P;(s) is compatible if and only
if it is of the form P;(s) = Xa,6,)(H(s)) (as in Lemma 3.4).

b) Let H(s) be admissible and P;(s) a compatible spectral band with nonzero gap,
gi(s) > 0. Then H(s) can be decomposed in the form (3.5), in such a way that
Py(s) = Qy,(s) for some n; € J.
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Proof :
a) Taking Qo = 1, and Ay(s) = 0, the result is immediate from Definition 3.9.

b) There exists by assumption an n € J such that Pi(s)Q.(s) = Pi(s). Split Q,
into two orthogonal projections, Q,,(s) = Pi(s) and Qn,(s) = (1 — Pi(s))Qn(s).
Taking A,,(s) = Ap,(s) = An(s) and augmenting the index set accordingly gives

the desired decomposition. 1

We now consider the intertwining of compatible bands.

Lemma 3.7. Let H(s) be an admissible Hamiltonian, and P;(s) a compatible spectral

band. Then Wg(s, so) intertwines Pi(s).

Proof : The proof follows immediately from P;(s) = W(s)P;W~1(s). 1

The following definition is motivated by the construction of [ASY].
Definition 3.8.
a) The self-adjoint operator B(s) is given by
B(s) = iW'(s)W1(s)

(3.10)
= W§(s, 50)We (s, 50).

b) The operator V,(s,sq) is defined by the solution, if it exists, for a dense set of
¢ € H, of the equation

z—_______"’Vf(;;SO)‘b = 1[Wa"(s, 50) H(s)Wa(s, 50)] Vi(5,50)¢;  Vi(s0,50) = 1. (3.11)

Wa(s, s0) = Wg(s, s0)Vr(s, s0). (3.12)

It should come as no surprise that for admissible Hamiltonians, the solutions

Vi (s, 89) of Equation (3.11) can be explicitly constructed.



16

Lemma 3.9.

a) For unitarily admissible Hamiltonians,

Vi (s, 50) = W(so)[exp(—i7(s — so) H)]W ™ (s0). (3.13)
b) For admissible Hamiltonians,

Vi(s, s0) = W(so) exp(—it|(s — s0)H + Z / An(2)Q, dx])W1(sp).

ned S0

Proof :

a) For unitarily admissible Hamiltonians,

T[We™ (s, 50)H(8)Wg(s, 50)] = TH(s0),

and the solution of Equation (3.11), with ¢ € D, is given by

V.(s,s0) = exp(—i7(s — so)H(s0)),

or equivalently by Equation (3.13).

b) The proof is analogous, using the additional fact that H commutes with all Q. »

From the explicit solutions, we have V;(s,s9)D = D.

Lemma 3.10. If V,(s,s0)D = D, then for ¢ € D,

OWy(s,s
VA 08 (o) 4 B Wals,so)ds Wals,s0) = 1.
Proof : Straightforward calculation. 1

The following intertwining lemma is the analogue of Lemma 2.3 of [ASY]. Part a)

actually follows from part b), but we prove a) separately to provide a simple example.



17
Lemma 3.11.

a) Let H(s) be a unitarily admissible Hamiltonian, and P;(s) a compatible spectral

band. Then Wy(s, so) is a unitary propagator which intertwines F;(s).

b) Let H(s) be an admissible Hamiltonian, and P;(s) a compatible spectral band.

Then Wy(s, so) is a unitary propagator that intertwines P;(s).

Proof :

a) Note that P;(so) commutes with V;(s, s¢), and use Lemma 3.4.

b) The proof is similar, using Lemma 3.7, and the fact that P;(so) commutes with

Vi(s, so) only if P; commutes with all the Q. |

Remark: Both Wg and W, mimic the physical time evolution U, in the adiabatic limit,
in the sense that none of the evolutions allows the crossing of spectral gaps. One would
expect Wy to be a better approximation than W, since it contains information of the

dynamical phase V,. This is in fact the case, as is explained in [ASY] in a slightly
different setting.

3.4. DISCRETE SPECTRUM

In this section, we analyze time-dependent Hamiltonians with discrete noncrossing
spectrum, continuous in s. With mild regularity conditions, such Hamiltonians are
automatically admissible. There is an explicit construction, that is due to Kato, of
an intertwining operator (see [KAT1] and Chap. 2.4 of [KAT2]). This construction
yields not only the admissibility, but also further regularity properties that shall be

important for the discussion of the Landau-Zener formula.

The spectral representation of H(s) is of the form

H(s)=) Eu(s)Pa(s), neJCZ (3.14)

neJ

For each s, the P,(s) form a complete orthonormal set of projections, and we assume
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that P,(s) depends continuously on s. We rewrite Equation (3.14) in a form more

closely resembling Definition 3.2. Defining A,(s) = E.(s) — E.(0),
H(s) = SIE0) + Au()|Pals). (3.15)
neJ

By the spectral theorem, for each s, there exists a (nonunique) unitary W(s) such
that for alln € J,

P(s) = W(s)P,(0)W~1(s).
Thus for each s, H(s) can be written in the form (3.5), with H = H(0) and @, = P,(0).
This does not suffice to show that H(s) is admissible. W(s) and A,(s) have to
satisfy further conditions. We assume that for all s, all H(s) have a common domain D.

Further, assume that all P,(s) are continuously differentiable, and the sum ), || Ps(s)l|

converges in norm, uniformly on compact subsets of R. With these assumptions,

L(s) = & SIPA(s), Pals)]

neJ

is a bounded self-adjoint operator, continuous in s.
Let W(s) be the solution of the differential equation
iW'(s) = L(s) W(s), w(0) = 1. (3.16)
Existence and uniqueness follow from standard techniques, discussed in the sequel. We
now show that W(s) intertwines all the levels.

Lemma 3.12. (Kato [KAT1])
a) For each n € J,

[L(s), Pa(s)] = iPy(s)- (3.17)

b) For each n € J,
Pu(s) = W(s)Pa(O)W™'(s).

Proof :
a) We derive two simple identities. First, 0 = P[(P?)’ — P'|P = PP'P. Second, if
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n#k,0=(P,P) = P.P, + P,P,. Expanding the commutator and using these
identities gives (3.17).

b) Applying P,(0) to the right-hand side of (3.16), obtain
i[W(s)P.(0)] = L(s)[W(s)P.(0)],  [W(0)Px(0)] = Pu(0)-
Compute the derivative,
i[Pa(s)W(s)]' = iP,(s)W (5)Pu(s)W'(s)
= (iP,(s) + PaL(s))W(s)
= L(s)[Pa(s)W (s)]-
Here we first used (3.16) to obtain W', and then (3.17) to evaluate iP, + P,L.

[Pn(s)W(s)] and [W(s)P,(0)] satisfy the same differential equation, with the same

boundary condition at s = 0. They must then coincide by uniqueness of the solu-

tion. 1

We now restrict ourselves to the finite-dimensional Hilbert space, which will appear

naturally in the discussion of the Landau-Zener formula.

Proposition 3.13. Let H(s) act on a finite-dimensional Hilbert space. Suppose H(s)
has a noncrossing spectrum continuous in s, and all P,(s) are continuously differen-

tiable. Then H(s) is admissible, with W(s) given by Equation (3.16).

Proof : Follows from Definition 3.2 and Lemma 3.12. [
Remark: Suppose H(s) acts on an infinite-dimensional Hilbert space, and has dis-
crete noncrossing spectrum. In addition to the conditions of a), suppose that the
sum Y., P.(s) converges in norm, uniformly on compact sets. Further suppose that
sup,, |Ea(s) — En(0)| is locally bounded. Then it follows that H(s) meets all the con-
ditions of admissibility, except possibly for the existence and uniqueness of the uni-
tary propagator for the time-dependent Schrodinger equation. We outline the proof
that W(s)D = D. By the assumption, all H(s) have domain D. Since sup, |A.(s)]
is locally bounded, the operator 3., A,(s)Px(s) is bounded for any s. Using (3.15)
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and Kato-Rellich, we get that . FE,(0)P,(s) is self-adjoint with domain D. Now
>n En(0)P,(s)W(s) = W(s)H(0), so we see that W(s)D = D.

Certain of the operators associated to admissible Hamiltonians can be written more

explicitly for Hamiltonians with discrete spectrum. Referring to Definition 3.8 a), we
see that

B(s) = Lis) = § Y IPA(s), Pals)] (3.18)
neJ
We also have

Vi (s, s0) = W(sp) exp(—iTZ/En(s)ds Po(0))W1(sp).

neJ S0

Remark: We finish with a comparison of Wa(s, sp) with Ua(s, so; P,) of [ASY, KS].

For Hamiltonians with discrete spectrum,
Wa(s,s0) = Z Ua(s, 505 Pn)Pn(80)-
ncJ

While the Ua(s, so; P,) intertwine the single level P,(s), the Wa(s, so) intertwine Py(s)

for all k € J simultaneously.

3.5. CoOMPARING TIME EVOLUTIONS

We now introduce operators that will allow us to compare the physical time evo-

lution U.(s, so) with the evolution Wy(s, so). Following [ASY], we define the analog of
the wave operator in scattering theory.

O(s,s0) = Wa'(s,50)U-(s, 50),
(3.19)
= V-r_l(S, SO)WG_l(sa 50)U-(s, s0)-

Definition 3.14.
a)
Kg(s,50) = We™' (s, 50)Wa(s, 50)-



21
b)

K.(s,50) =V, 1(s, 50)Kg(s, 50)Vx(s, 50).
Remark 1: Unlike B(s) (Definition 3.8), Ks(s, o) is not independent of sq. In fact,
Ka(s,s0) = W(so)WH(s)W'(s)W ™ (s0).

Further, note that

K.,-(S, So) = —iWA—l(S, SO)B(S)WA(S, 80).

Remark 2: For discrete spectrum, our K, (s, sg) is analogous to the K-(s, P) of [ASY].

The difference is that our K, (s, so) generates intertwining of all levels simultaneously.

Lemma 3.15.

@’(S, 80) = —K,-(S,So)@(S,SQ), @(80,80) =1.

Proof : Since B(s) is bounded, by the Kato-Rellich theorem [RS2], both H(s) and
H(s) + B(s)/t are self-adjoint with the domain D. The rest is a direct computation,

using part b) of Lemma 3.10. Since U, (s, so) preserves the domain D, we have

3[@(g;so)¢] = Wad a[UT(;:;so)qb] L+ E[WA‘l(:c,g(;)UT(s, 50)%)] L
= —K.,-(S, 80)(“)(8, 50)(}5.

Now K.(s,sg) is bounded, and D is dense; the proof follows.

We will be interested in the limit s — —o00, s — 00. O(s, sg) will not generally
behave well in this limit. It is convenient to introduce a new wave unitary operator

(s, so) that behaves better in the limit.
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Definition 3.16.

a)
Q(s, 80) = WA(O, 80)@(8, So)WA_l(O, 30)

(3.20)
= WA(O, S)U.,-(S, S())WA(S(), 0)

b) If the following limit exists, define

Q= lim lim Q(s,sg). (3.21)

8—00 89— —00

The following proposition will play a central role. We frequently use the shorthand
of omitting a variable when it is set equal to 0, e.g., K, (s) = K.(s,0), H = H(0), and

Proposition 3.17.

(s, s0) = —K+(s)Q(s, s0), Q(so, 80) = 1. (3.22)

Proof : Use Lemma 3.15 and the unitary propagator composition property of Wy.

We now discuss the computation of the transition probabilities for admissible
Hamiltonians from the operators defined above. Recalling Equation (3.1), and as-

suming that the bands P;(s) and Py(s) are compatible with H(s), we obtain
Pri(5,80;7) = ||Wa(s, s0) Pe(50)Wa™ (s, 50)Ur(s, s0) Pi{50)|I?
= || Pi(50)O(s, s0) Pi(50)II*
= || P23, s0)Pill, (3.23)
Bri(r) = |PQR|? = | PO POPY,
Bi(r) = |1 = P)QR|%.

We have used that Pi(s) = Wa(s, so)Pi(s0)Wa~(s,50) by Lemma 3.11, and the
unitarity of Wy.
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In the sequel, we will consider data that is analytically extendible to regions of the

complex plane. We retain the shorthand Kg(z) = K¢(z,0), etc.
Definition 3.18. Denote by S(b,a) the open strip in the complex plane

S(b,a) = {z € C|b < Im(2) < a}. (3.24)
We use the shorthand S(a) for the symmetric strip S(—a, a).

It is convenient to define ., an operator related to €2, and the corresponding K-,

analogous to K.

Definition 3.19. Suppose Kg(s) is analytically extendible (as an operator-valued
function) to S(a). Then for s, sy € R, define Q(s, sp) as the solution of the following

differential equation with the initial condition:

e o M { o\ o . —
Qc(a, So) = —J\TC\S)QC(o,So), 90(30,30) =1

—~~
w
[\~
(%2

g

where
K..(s) =V, (s)Kg(s +ic)V,(s).

As before, if the following limit exists, define

Q.= lim lim (s, so). (3.26)

8—+00 89— —00
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Chapter 4: Technical Tools

4.1. DIFFERENTIAL EQUATIONS ON THE REAL LINE

In this section, we collect some standard material about regularity of solutions of
first-order linear differential equations. These are operator-valued, but this does not
produce any complications. We will apply this to the differential equation for €2, and
will thus be dealing with bounded operators only, even though the time-dependent
Hamiltonians may be unbounded. The basic method is the successive iteration of the

corresponding Volterra integral equation.

We consider the operator-valued differential equation on R,
;U (s,80) = —F(s)U(s,$0); U(so,50) =1, (4.1)

Here F(s) and U(s, sg) are operators on the Hilbert space H, and s, s € R.

Proposition 4.1. In the above equation, suppose F' : R — L(H) is continuous. Then

there exists a solution U(s, so) with the following properties:
a)
U(s, s0) = Z U;(s, so0),
=0

where

ta

Uj(S, 80) = (—)j /dt] /dtj_l v /dtlF(tj)F(tj_l) . F(tl) (42)

S0

b)

UG sl <exe | [1F@at)
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¢) If furthermore | F(-)|| € L}(R), then the following limits exist;

(:Tj = lim lim Uj(s, so),
T sose——oo (4.3)
U= lim lim U(s,so),

8—00 80—>—00

171 < exp (IFOll2 ) -

Proof : Integrating the differential equation (4.1),
U(s,s9)=1— /F(t)U(t,so) dt.
S0
Part a) is the the formal iterative solution of this integral equation. To prove a) and

b), we need to show convergence of the series. We have

8 t; ta
”Uj(S,S())” S /dt] / dtj_l . '/dth(tj,tj_l, e ,tl), (44)
with G(tj,t;-1,...,t1) = |FE)| NF (=)l <« |F(t1)]|. Define I = [s,so] C R. Then

the region of integration in (4.4) is the quotient I//S;, where S; is the permutation

group, acting by interchanging coordinates. Now G is S;-invariant, so

]

1U; (s, so)ll S% U dt ||F (t)ll} : (4.5)

0

Summing the series, we get the bound b), and the convergence of a).

To prove ¢) and d), we use the same idea, and in addition show that the estimates

are uniform in s and so. If || F(:)||z:m) = f, We see that the bound (4.5) gives

Lo
NU;(s, s0)ll < ﬁ[f] (4.6)

for any s and sq. 1
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The two-parameter family U(s, sg) of operators satisfies a composition law like

Equation (2.2) for a unitary propagator, the difference, of course, being that if F(s) is

not anti-self-adjoint, then U(s, s¢) is generally not unitary. We call a two-parameter

family of invertible operators satisfying Equation (2.2) an invertible propagator. De-

compose F' into its self-adjoint and anti-self-adjoint parts, FF = F, 4+ F_, with Fl =F,,
and F1 = —F_.

Lemma 4.2. With the assumptions of Propostion (4.1),

a)

b)

U(s, so) is an invertible propagator. Furthermore, if Ft(z) = —F(z) for all z €

[s0, 8], then U(s, sp) is a unitary propagator.

U(s, s¢) is the unique solution of Equation (4.1) .

Proof :

a)

b)

Repeating the arguments of Proposition (4.1) for the equation

L'(s,s0) = L(s, s0)F(s), L(sg,80) =1,

we find that L(s,sq) exists, and L(s,sq) = U(sp,s). One checks from the series
expansions that L(s,so)U(s,se) = 1= U(s, s9)L(s, s0), so L(s,s0) = U~(s, 8¢). If
F = F_, one sees from the series that U(s, sg) = Li(s, s9), so U is in fact unitary.

The rest follows directly from the series expansion.

Suppose B(s, sg) is a solution of (4.1). Define C(s,so) = U~Y(s, s9)B(s, s9). Then

C satisfies the differential equation

C'(s,s0) =0, C(s0,50) = 1,

which has the unique solution C(s,s¢) = 1, and B(s, so) = Uf(s, s¢).

Part b) of Lemma 4.2 suggests that we may be able to improve the bounds of parts

b) and d) of Proposition 4.1. The self-adjoint part of F(s) is responsible for the growth

of ||[U(s, s0)||, as we now make precise.
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Corollary 4.3. With the assumptions of Proposition 4.1,
UG soll <ex | [Pt
S0

1Tl < exp (|IF+(llzr(wy) -

Proof : Define V(s, sg) to be the solution of
V'(s,s0) = —=F_(s)V(s, s0), V(sg,50) = 1.

V' (s, s¢) is unitary by part a) of Lemma 4.2.

Then defining W (s, so) = V~1(s, s0)U(s, s¢), we find

W'(s,s0) = —[V (s, 80) Fy(s) V(s,s0)]W(s,s0), W (so,s0) = 1. (4.7)
Applying part ¢) of Proposition 4.1 to Equation (4.7),
S
W soll <exo | [ IR @ |
S0
Wl < exp (IF+ Ol ) »

where we have used the unitarity of V to obtain |V-1F, V| = ||F,||. Using once again
the unitarity of V, ||U]|| = ||W|l. 1

4.2. FuncTioNs oN THE COMPLEX STRIP

In this section, we examine the solutions of first-order differential equations with

coeflicients that can be analytically extended from the real line to a strip in the complex

plane. We will derive estimates on the analytic continuations of the solutions, using

the series-expansion methods of the previous section. We will further define the Hardy

class H? of functions on the strip. We recall the notation S(b, a) of Definition 3.18.

We now consider Equation (4.1) with analytically extendible coefficients.
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Lemma 4.4. Suppose F(s) in Equation (4.1) is analytically extendible to S(b,a).
Then:

a) The solution U(s, so) is analytically extendible to S(b, a) in both variables.

b) For z,z,w € §(b,a),

U(z,20) = U(z,w)U(w, 2p).

c) For 2,29 € S,
1
UG, 20) =1l S exp | [ 1FGo+ 8 — 2l dt ) -1
0

Proof : We solve 0,U(z,2)) = —F(2)U(z, %) for 2,29 € S(b,a). The methods of
Proposition 4.1 carry over, where we integrate over any continuous path joining 2y and

z. a) and b) follow trivially. To prove c), subtract 1 from both sides of the Volterra

integral equation, and take norms. 1

We now define a class of functions on S(b,a) for which the naive analogue of the
Cauchy integral theorem holds on an infinite rectangle. The books [HOF], [KOOS]

are general references on classical (complex-valued) Hardy classes, and [RSRV] covers

some of the operator-valued theory.

Definition 4.5. Let H?(b,a), 1 < p < 0, be the space of functions T : S(b,a) — L(H)
that satisfy the conditions a) and b) below, and let H?(a) = H?(—a, a).

a) The H?(b,a) norm of T is finite, where the norm is defined by

[Tllae o) = sup T +16)|| o (.-

—a<ce<a

b) T(z) is strongly analytic on S(b,a); i.e., for h € C, limy_o(T(z + h) — T(z))/h

exists in the operator norm topology.
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Remark 1: Since we are dealing with continuous functions,

\T||ao@ay = sup | T(2)|,

b<Im(z)<a

and functions belonging to H*(b, a) are uniformly bounded on the strip.

Lemma 4.6. If T(-) € H?(b,a) and R(-) € H*®(b,a), then the pointwise product
T(-)R(-) € HP(b,a).

Proof : Immediate.

Remark 2: Condition b) of Definition 4.1 can be replaced by the apparently weaker
condition b’) below: (a)A(b) is equivalent to (a)A(b’).

b’) For any ¢ € H, T(z)¢ is analytic on S(b, a); i.e., for h € C, the limit lim,_o(T(2 +

h)¢ — T(z)$)/h exists in the Hilbert space topology.

4.3. PROPERTIES OF THE HARDY CLASSES

This section describes results related to those of Paley and Wiener in their work

on Fourier transforms of analytic functions [PLWI]. The first lemma is the Cauchy

formula for an infinite rectangular contour.

Lemma 4.7. Let T' € H!(b,a), and take real constants § and o such that b < § <
a < a. Then for z € §(8, a),

o0 o0

_ 1 [T@+ip) , 1 [ T(t+ia)
T(z) = '/t+iﬁ-—zdt 27ri/t+z'oz-—zdt

—o0 —00
Proof : Without loss of generality, take z = iy, with 8 < v < a.

a) For z > 0, let I'; be the rectangular contour with vertices (z,:8), (z,ia), (—z,ia),

and (—z,:8). By the ordinary Cauchy theorem, for any > 0,

T(iv) = zi ]i T 1, (4.8)

w Jp, w— 1y
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We shall show that the contribution to the contour integral of the vertical segments

vanishes as £ — +o00. Define

i

G(z) = / Te+iy) 4

T+ 1y — vy
iB
By the Fubini theorem,
too +oo a
[ atc@i < [ [ime+m)
+1 +1 8

< (a = D)||T|lm v,0)-
Taking the derivative,

dG(z) _ T(x+ia) T(z+1iB)

dx r+ia—iy x+if—1y

+oo
dG(z)
dr ||——=|| < 1(a)-
/ T ” d.’l? —_ 2"T“H (a)

+1

Combining these bounds immediately implies

lim G(z) = 0.

z—+oo

(4.9)

(4.10)

Remark: This lemma is actually true for H?, 1 < p < co. The proof is modified by

using the Holder inequality in (4.9) and (4.10).
Proposition 4.8. With the same assumptions as Lemma 4.7,

a)

lirlgl /||T(3c +ir)|| dr = 0.
B

(e <] o0

/ T(¢ +iB) dt = / T(t +ia) dt.

-0 -0
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Proof :
a) Choose € > 0 such that b < § — € and a + € < a. By Lemma 4.7,

[ITE+iB =, . [ IT¢+i(a+e)|
TEN S | sim-a-a%F ] Tria+a-a

—oo —oo

dt. (4.11)

Integrating, we find for z # 0,

27r/||T(x+i7“)||dr

<]°dt / (AU, Wtiat gl )

t—z+i(f—e—7)] [t—z+ilat+e—r)

< /dt/dTFx(t,r),
— B

where we define

Fy(t,r) = T+ i3 - lft))_ll :ﬂti’e(f +i(a+ 6))”
G(t,r) = \T(t + z(ﬁ ))” 'L‘ |T(t + i(a + )N -

For any fixed (¢,7) € Rx[8, o], one checks that lim, .1, F;(,7) = 0. Furthermore,
G(t,r) € L'(R x [8,d]), and for each z € R, F,(t,r) € L}(R x [8,¢]). Now
the dominated convergence theorem ([RS1], thm. 1.16), together with the bound
|F.(t,7)| < G(t,7), yields the result.

b) For the rectangular contour I', of Lemma 4.7,

?{, T(2) dz = 0.

Now the Cauchy theorem and part a) imply the statement.

Corollary 4.9. H!(—o00,00) = {0}.
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Proof : Follows directly from Lemma 4.7, (or Equation (4.11)), by taking f — —o0

and a — oo. ]

The preceding results are essential for obtaining the exponential bounds for even
the simplest case of bounded unitarily admissible Hamiltonians. The following result

is used for more general Hamiltonians.

Lemma 4.10. Let T € H(b,a), and b < v < § < a. Then
a) T(-) € H®(v,9).

b) T'(-) € H'(y,9).

¢) Let {c,}, 7 < cn < 8, be a sequence that

converges to ¢, v < ¢ < 6. Then

NT(- + ¢ca) =~ T(- + )|l 1wy — O.

Proof : Choose § such that b < 3 <+, and «a such that § < a < a.

a) Use Lemma 4.7,
1 ||\7°( 1(ba 1 ||T( 1(bh.a
Ir)) < L1 | L ITOe o
27 |if — Im(2)| 27 |ia — Im(2)|

NT () ln2 b,a) ( 1 1 1 1 )
su T(2)|| < ———— | max(——, + max y ™) | .
731m(}3)36“ @l 27 (’r—ﬂ 0—7) (0—5 5*5)

b) Using Lemma 4.7 and the Lebesgue dominated convergence theorem, we get for

z € 5(8,a)

oy L [ T@+ip) 1 [ T(t+ia)
T(z)~27ri (t+iB — 2)? 2 J (t+ia—2)2

Now for any ¢ such that v < ¢ < §, we obtain the c-independent finite bound

R o I +iB) IT(t + i)
I+ il < 5 [ d /dt[(t—$)2+(ﬂ—7)2+(t—fv)2+(a—5)2 '
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c) Forz € R,

IT(z + ica) - Tz + i) < / 1T (2 + iy)ldy]

/ dz||T(z +ic,) = Tz +ic)| £ fen = cf - |IT"C)llmr r,0)-

—00

The statement now follows from part b).

If S(b,a) contains the real axis, and an element T(-) € H(b, a) is self-adjoint on
the real axis, then by the Schwarz reflection principle, T is automatically an element

of H(c), where the symmetric strip is defined by ¢ = max(|b|, a).

4.4. HArDY CLASSES AND ADMISSIBLE HAMILTONIANS

In this section, we consider admissible Hamiltonians for which W”(s) has an analytic

extension that belongs to H'(a). We show that this is equivalent to Kg(-) € H(a) and
B(-) € H'(a).

Proposition 4.11. Let W(z) be an analytic operator-valued function on S(a) such
that Wi(s) = W~1(s) for all s € R. Then the following are equivalent:

a) W'(z) € H(a).

b) Kg(z) = W(2)W'(z) € HY(a).

¢) —iB(z) = W(2)W~1(z) € H(a).

Proof : On the real axis, W™1(z) = W(2*). Since W(z*) is analytically extendible
to S(a), W~1(2) is also analytically extendible, and the equality holds for all z € S(a).

b) < a) = c): We start by proving that if W’ € H!(a), then W € H*®(a). For z € R,
we denote by C,(z) the piecewise linear path from = to z that consists of the

vertical line [z, £ +4Im(z)] and the horizontal line [z +:Im(z), z]. Take W(0) = 1;
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then for > max(0, Re(2)),
W(z) = W(z) + / W(w) du.
C.(2)
Taking the limit £ — oo, the integral on the vertical line vanishes by part a) of

Proposition 4.2, and the integral on the horizontal line is bounded since W’ ¢

H!(a). For any z € S(a), we get by the triangle inequality the uniform bounds
W)l <2+ W ()llm @ < oo,
W) < 2+ Wl (@) < oo,

where the bound on W~! follows from W~1(2) = W'(2*). The proof of b) «
a) = c¢) follows from (4.12) and Lemma 4.6.

(4.12)

¢) = a): We first prove that if ¢) holds, then W € H®(a). It is a tautology that
W(z) = Wg(z,0), and that

We(z,20) = —iB(2)Wg(z, 29), Wal(z20,20) = 1.

Take x > Re(z), and by Lemma 4.4 b),
Wa(2,0) = Wa(z, 2 + ilm(z)) We(z +ilm(2), z) We(z,0)
Lim |We(2,0)]| < [Wa(z, & +ilm(2))]-

Here we have used Lemma 4.4 c) to bound the second term by 1, and Corollary
4.3, along with the self-adjointness of B(s) on the real axis, to bound the third

term by 1. Using Proposition 4.1 d) on the remaining term, find
IW (N = Wa(z,0)]| < exp (IB()llu1 (@) -
The result now follows from W'(z) = —iB(z)W(z) and Lemma 4.6 .
b) = a): Define Ug(z, 2) to be the solution of
Ui(z,20) = —Kg(2)Ug(z, 29), Uc(zp,20) = 1.

As before, we find Ug(+,0) € H®(a). On the real axis, the solution is Ug(s,0) =
W~!(s). By analytic continuation, Ug(z,0) = W~1(2) = Wi(z*), so W() €
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H*(a). The result follows from W' = W K¢ and Lemma 4.6.
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Chapter 5: Unitarily Related Hamiltonians

We now study transition probabilities for a unitarily admissible time-dependent
Hamiltonian H(s) = W(s)HW~1(s). We consider the case where W (s) is analytically
extendible to the strip S(a). The main result is that if W’(2) belongs to the Hardy
class H!(a), then the total transition probability from a compatible spectral band P;,
Pi(1) = O(exp(—27ag:)), where g; is the gap between the band P; and the complemen-
tary spectral band 1 — P;. We recall that a compatible spectral band for a unitarily ad-
missible Hamiltonian is specified by an interval {a;,b;] C R, with Pi(s) = X{q; ;) (H(5)).
We further recall that p;(7) is defined as the maximum probability that a state in the
range of Pi(sq) evolves into a state in the range of (1 — Pi(s)), in the limit 59 — —oo,

s — 00. The assumptions we make will be sufficient for this limit to exist.

We first consider bounded unitarily admissible bounded Hamiltonians, and analyt-
ically continue the differential equation for 2. This has the advantage of giving the
exponential bound in a relatively transparent way. It has the disadvantage that the
method does not generalize to unbounded Hamiltonians. In the second section, we
generalize to unitarily admissible Hamiltonians that may be unbounded. The method
is a term-by-term analysis of the series solution for the integral equation for Q. We
then apply these results to a simple class of Hamiltonians where the geometric context

of the method, the appearance of Berry’s phase in particular, is readily understood.

The following lemma is the key to the relative simplicity of the unitarily admissible
Hamiltonians. Let Cy = {z € C|0 < £Im(2)}.

Lemma 5.1. Consider a unitarily admissible Hamiltonian H(s). Then

a) For 5,7 € R,

V(s +1) = Vi(s)Vi(r).
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b) If H is bounded, then V,(s) is analytically extendible to the complex plane, and

Vi(w + 2) = Vo (w)V,(2), w,z € C.

c) Let P be a spectral projection of H. If PH is bounded below, then PV ~!7(s) is
analytically extendible to C, and V,(s)P is extendible to C_. Furthermore,
PV, Y(w + 2) = PV, Y (w)V,"1(2), w,z € Cy,
Ve(w + 2)P = Vo (w)Vo(2)P, w,z€ C_.

Similarly, if PH is bounded below, then PV, is extendible to C_, and V, P to
C,.

Proof : The proofs follow from the functional calculus of the self-adjoint operators H

and PH. |

5.1. TRANSITION PROBABILITIES IN THE BOUNDED CASE

For bounded unitarily admissible Hamiltonians, the differential equation for Q2 can

be continued to the complex strip, giving exponential decay in a simple way.

Lemma 5.2. Let H(s) be a bounded unitarily admissible Hamiltonian. Then for

5,50 € R,and —a<c<a,

Qs + ic, 5o + ic) = V71 (ic)Qu(s, s0)V:(ic), 5,50 € R. (5.1)

Proof : We prove that both sides are solutions of the same differential equation with

the same initial conditions. By Proposition 3.17 and analytic extension, the left-hand

side of Equation (5.1) satisfies

[Q(s +ic, 50 + ic)) = —K (s + ic)[QUs + ic, s + ic)], Qs + ic, 89 + ic) = 1.
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Taking the derivative of the right-hand side of (5.1),

V271 (ic)2(s, s0) V2 (ic)] =
= V.7 (s +ic)Ka(s + ic)Vi(s +ic)[Va " (ie) (s, 80) Vi (ic)],
V1 (ic)Q(s0, 50) Vi (ic) = 1.
Here we have used the fact that ). is the solution of the differential equation (3.25),
and also the algebraic identity V,(s)V;(ic) = V;(s + ic) from Lemma 5.1 b). So both

sides solve the same differential equation with the same boundary conditions, and are

thus equal. 1

The boundedness of H entered in the preceding lemma, as we needed to have V. (ic)

bounded. The following proposition is the central identity from which the exponential

bounds will easily follow.

Proposition 5.3. Let H(s) be a bounded unitarily admissible Hamiltonian with
W'(-) € H'(a). Let P; and Py be spectral bands. Then for —a < ¢ < a,

P.OP, = P, exp(——’rcHPk)Qc exp(7cHP;)P;. (5.2)

Proof : For 5,50 € R, we have by Lemma 4.4 b),
Q(s,80) = s, s + ic)QU(s + ic, 5o + ic)Qsp + ic, 89),
= Q(s, s +ic)V, (i) Q(s, 50) Vi (ic)Qso + ic, so).
The second identity above follows from Lemma 5.2. We now show that in the limit,

lim Q(sq + ic, sp) =1

$g——

9.
lim Q(s, s + ic) = 1. (5:3)

Suppose ||H|| = 7. Then for z € S(a),

VA2l < exp(ray) 2 V= 7'(2)||.
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Now by Proposition 4.11, Kg(-) € H!(a), and
| K-(2) = Ve (2) Ka(2) V(2|
< exp(2ra7)|[Ka(2)|l

IK-( e < exp(2ran)||Ke()lla,
so K, € H!(a). By Lemma 4.2 b)

lim / K, (z + ir)|dr = 0,
0

r—too
and (5.3) follows from Equation (3.22) by applying part ¢) of Lemma 4.4.

We now have
Q = V., Y (ic)Q.V,(ic),

and the proposition follows by sandwiching with projections, and expressing V, as an

exponential using Lemma 3.13. 1

Remark: When we generalize to unbounded and admissible Hamiltonians, the addi-

tional work will be obtaining the analogue of Proposition 5.3.

We recall the Definition 2.2 of the gap g;(s) between the compatible spectral band
P;(s) and the complementary band 1 — P;(s), and note that for unitarily admissible

Hamiltonians, it is a constant g;.

Theorem 5.4. Let H(s) be a bounded unitarily admissible time-dependent Hamilto-
nian, and P;(s) the projection onto a compatible spectral band. If W’(-) € H!(a), then

there is a finite constant C, such that the total transition probability

Di(1) < Cpexp(—27ag;:).

Proof : If the gap g; is not positive definite, the result follows trivially from unitarity
of the time evolution, so assume ¢; > 0. P(s) = 1 — Pi(s) is the projection onto the
complementary band. Split the projection Py = P, + P,, where P, projects onto the
spectrum above P;, and P, onto the spectrum below P;. From Equation (2.5), g1; > 0
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and g;2 > 0.
By Proposition 4.11, Kg(-) € H!(a). Take for F, the finite constant

Fo = exp (|| Kot (Ml @)
< exp (| Ka() () »

recalling that Kg,(2) is the self-adjoint part of Kg(2). Applying Corollary 4.3 to
Equation (3.25), and using the unitarity of V;(s) for s € R,

(5.4)

192l < exp (I{Kre()}+ 1))
< exp (| Ke (- + i)l my) -

‘ (5.5)
< sup< exp (|\KG+(- + zc)HLx(R)) )
—a<c<a
< F,.
Now using Proposition 5.3, for —a < ¢ < a,
|PeQP/|| < Fo || exp(—rcH|i)| || exp(reH]:)|- (5.6)
Then for P, = P;, and 0 < ¢ < a,
||P1S~2Pi|| < Fyexp(—7cinf o(H|;)) exp(resup o(H|;)) (5.7)
< Fy exp(—Tcgii), '
and taking a sequence ¢, < a that converges to a,
|P.QP;|| < F, exp(—Tagy;). (5.8)
Similarly, for P, = P, and —a < ¢ < 0,
]|P2§~2P,;|| < Fyexp(—7esup o(H|2)) exp(rcinf o(H|;)) (59)

< F,exp(Tcgiz),

and a sequence converging to —a gives

N PQP)|| < F, exp(—Tagis). (5.10)
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Recall that the transition probability is given by

pi(r) = (1 = P)QP?
= |POY P+ P)QP)
< ||PQR)? + || PP
< 2F? exp(—27ag;),

(5.11)

where we have first used (5.8) and (5.10), and then (2.5).

Remark: We could have proved the theorem without decomposing K¢ into Kg, and
K¢, but with a larger F,,. This can be done by using Proposition (4.1) d) instead of
the refinement Corollary 4.3. The refinement is, however, particularly advantageous

for small a, since |[Kg(- + ic)||z1m) goes to 1 as ¢ — 0. Thus for small 7 one might

sometimes obtain a better bound by applying the theorem with some o' < a.

5.2. TRANSITION PROBABILITIES IN THE UNBOUNDED CASE

In this section, we generalize the proof of exponentially bounded transitions to
unbounded unitarily admissible Hamiltonians. The technique is bounding the iterative

solution of the differential equation for 2 termwise.

We assume as before that the analytic extension of W/(-) € H'(a). That implies
Kg(-) € H'(a) by Proposition 4.11, and restricted to the real axis, Kg(-) € L!(R). By
the unitarity of V,(-) on the real axis, K,(-) € L'(R). We can now apply Proposition
4.1 b), c) to the differential equation (3.22) that is solved by Q, obtaining

=0

() (—-)j / de / de_l see [ d31 KT(Sj)KT(Sj_l) . K’T(Sl).

Lo

(5.12)
Q;

The integrand belongs to L}(R7), and changing coordinates is allowed by Fubini. With
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the coordinate transformation

=S85, Wk =Sk — Sk+1; k=1a"'aj—17
' | 5.13
5; = Z, sk=x+2wk; k=1,...,7-1, ( )
and sandwiching with projections, Equation (5.12) gives
0 0
PijPi ‘—’(—)j X Pk{ / dwj_l s / dw1
y e - (5.14)
/ dz K (2)K(z + wj-1)... K;(z + Z‘,’:llwl)] P..
Recall the Definition 3.19 of K,..
Lemma 5.5. Let H(s) be a unitarily admissible Hamiltonian with W’(-) € H'(a). Let

P; and Py be finite spectral bands; i.e., HP; and HP; are bounded operators. Fix any
(wj_1,...,w1) € RI. Then for —a < c< a,

o0

Pk[ / dz K. (z)K.(z +wj—1)... K.(z + I wl)]
= PkVT‘l(ic)[/ dz Kro(2)Kre(z + wjz1) ... Kro(z + f;llwz)] Vi (ic)P;.

Proof : Define the function
Z2() = PR (VK- + w5) - Ko (- + B w) P
= PV (Ko ( Ve Hwj—1)Ka(- + wj—1). .. (5.15)
Kg(- + Di5 w)Vo (i w)Vo() P
Here we have used K, (s) = V,71(s)Kg(s)V,(s) and Lemma 5.1 a). By Proposition 4.11,
Kg(+) € H'(a). Since Z(-) is a product of functions that are analytically extendible

to S(a), Z(-) is itself extendible. Now choose b such that |¢] < b < a. Then by
Lemma 4.10 a), Kg(- +w) € H*®(b) for any w € R. We conclude by Lemma 4.6 that



43
Z(-) € HY(b). We can now apply Proposition 4.2 b) to Z(-),

[ o]

/ dz P K. (2)K (z + w;j—1)... K. (z + E{;llwl)P,- =

= / dz PV, Y (z + ic)Ke(z + ic)V; " Hw;-1)Kg(x + ic + wj-1) . ...

V., Y w)Kg(z + ic+ E{;llw,)V,.(Z{;llwl)V,.(x + ic)P;,

and the result follows from the grouping of terms using Lemma 5.1.

We now have the generalization of Proposition 5.3 to unbounded unitarily admis-

sible Hamiltonians. The unbounded Hamiltonians cause slight complications.

Proposition 5.6. Let H(s) be a unitarily admissible Hamiltonian with W'(.) € H!(a).
Let P; and Pj be spectral bands.

a) If HP; and H P, are bounded, then

PQP; = Py exp(—1cH Py ), exp(TcHP;)P;. (5.16)
b) If HP; is bounded above, HP, is bounded below, and 0 < c < a, then equation
(5.16) holds.

c) If HP; is bounded below, HP; is bounded above, and —a < ¢ < 0, then equation
(5.16) holds.

Proof :

a) Use Lemma 5.5 in Equation (5.14), and then change coordinates back to the orig-
inal set (s;,...,s1). Comparing the resulting expression with (5.12), immediately
recognize

PQ,P; = PV, 7 (ic)Qe;V, (i) P,

Now sum over j; the series converges by Proposition (4.1).
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b),c): Decompose P; and P, as countable sums of orthogonal projections,

Pi=) Pim, Pc=) Pim,

Pi,m-Pi,m’ = 6m,m’-Pz',m7 Pk,mPk,m’ = 6m,m'Pk,m-
Require further that HP,,, and HP;,, be bounded for all m. Then from part a),

Pk,mflPi,m/ = Prmexp(—7cH Pk,m)()c exp(TcHP; 1y )P .

Summing over m and m' and using the functional calculus of H gives the result. g

The bound on the transition probabilities is the same as in Theorem 5.4:

Theorem 5.7. Let H(s) be a unitarily admissible (possibly unbounded) time-depen-
dent Hamiltonian, and P;(s) the projection onto a compatible spectral band (possibly

not finite). If W/(-) € H!(a), then there is a finite constant C, such that the total

transition probability

Di(1) < Cq exp(—271ag;).

Proof : Almost identical to the proof of Theorem 5.4, with Proposition 5.6 éubstituted
for Proposition 5.3. We comment only on the parts that differ. As before, split 1 — P;
as Py + P,. First note that either £'P; is bounded below and HP; is bounded above,
or P, = 0. If the former holds, the1 by Proposition 5.6 b), the bound (5.7) is valid.
If P, =0, the bound (5.7) holds tri- ially. Similarly, either HP, is bounded above and
HP; is bounded below, or P, = 0. By proposition 5.6 c), the bound (5.9) is valid in
the former case, and trivially valic in the latter. The remainder of the proof carries

over without modification. 1

5.3. VECTOR OPERATORS AND BERRY’S PHASE

In this section, we consider a simple example of a unitarily admissible Hamiltonian.



45

The prototype for this type of Hamiltonian is B(s) - J, where B(s) € R3 is a time-
dependent magnetic field, and J is the triplet of angular-momentum operators. This
is perhaps the primary paradigm in the development of Berry’s phase, and has been
extensively analyzed in the adiabatic limit [B], [SIM1]. The geometric description
of this system in the adiabatic limit is well known. We shall first obtain sufficient
conditions for the applicability of Theorem 5.7 (or Theorem 5.4). We then give a
geometric description of the operator Kg(s), which turns out to be intimately related

to Berry’s phase. Recent work of Berry [BH], [BG] also addresses some related issues.

Choose a unitary representation of SU(2) on the Hilbert space. The representation
may be reducible. Let {J1, J2, J3} be the self-adjoint generators of the representation.
We must assume that the J; are bounded operators, which unfortunately excludes the
interesting case of H = L?(R3) with the natural action induced by the rotation group
SO(3). For a € R3, use the notation a - J = a1J; + asJy + azJ;. The commutation

relations of the generators are, for a,b € R3,

[a-J,b-J]=i(axb)-J (5.17)

Definition 5.8. A triplet V' = {V}, V5, V3} of self-adjoint operators is a vector operator
if for a,b € R3,

[@a-V,b-J)=i(axbd)-V.
For example, the angular momentum operator J itself is a vector operator.

We now define our time-dependent Hamiltonians H(s) [SEG]. Consider a smooth

path k(s) from R to the unit vectors in R3; i.e., k(s) - k(s) = 1. The Hamiltonians we

consider are of the form
H(s)=k(s)-V + Hj, (5.18)
with [a - J,Hj] = 0, and V a vector operator. We will neglect domain questions in

this section; the reader may alternately assume H(s) is bounded. Let Wg(s) be the
solution of the equation

iWh(s) = [(k(s) X K(5)) - J] Wa(s),  Wr(0) =1. (5.19)
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Lemma 5.9. For a time-dependent Hamiltonian of the form (5.18), Wy intertwines

the Hamiltonian in the sense
H(s)Wg(s) = Wg(s)H(0). (5.20)
Proof : Using k' - k = 0, obtain
[(kxK) Jk-V]=ik'-V (5.21)
by applying (5.18). Now the right-hand side of Equation (5.20) satisfies
[(We(s)H(0)) = —i(k(s) x K'(s) - J) [W(s)H(0)].

Taking the derivative of the left-hand side of (5.20),

[H(s)Wr(s) = (K- V) Wr—i(k-V + Hr)(k x k' - J)Wg
=—i(kx k- J)k-V + H)Wg
= —i(k(s) x K'(s) - J) [H(s)Wr(s)],
where we have used (5.21), and the commutativity of H; with J. Both sides of equation

(5.20) thus satisfy the same differential equation, with the same boundary conditions,

and the equality comes from the existence of a unique solution. 1

Corollary 5.10. The time-dependent Hamiltonian (5.18) is unitarily admissible, with
W (s) = Wg(s). Furthermore, B(s) = k(s) x k'(s) - J.

Remark: The previous lemma resembles Lemma 3.12. In fact, when H(s) of the form

(5.18) has discrete spectrum of multiplicity one, Wg(s) coincides with the intertwining

operator of Lemma 3.12. Using

P(s) = —i[k(s) x K'(s) - J, Pu(s)],
it follows that

£ YOIP(s), Pals)] = (K(s) x K(s)) - /.
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Alternately, the equivalence of the intertwining operators follows from the uniqueness of
SU(2)-invariant connections on line bundles over S2. For H(s) of the form (5.18), with
discrete but not nondegenerate spectrum, the two intertwining operators are in general
different. The actual evolution of the system in the adiabatic limit approximates the

Kato form of the evolution. See [SEG] for details.

We say the vector-valued function k'(s) belongs to HP(a) if each component, with

respect to a basis, has an analytic extension to S(a) that belongs to H?(a).

Proposition 5.11. Let H(s) be a Hamiltonian of the form (5.18). Let P; be a
spectral band with gap g;. If ¥'(-) € H(a), then

Di(1) = O(exp(—27ag;)).

k € H*(a). By Lemma 4.6, B(-) = ¥’ x k- J € Hl(a), and by Proposition 4.11,
W' € H'(a). We can now apply Theorem 5.4 (or Theorem 5.7 if H(s) is unbounded). y

Proof : As in the proof of Proposition 4.11, one first checks that if &' € Hl(a), then

By reparametrization of the time coordinate, we can consider a slight generaliza-
tion. Letting Hy = 0, we have H(s) = k(s)-V. Now let r : R — R be a C! diffeomor-
phism. By a simple application of the chain rule to the time-dependent Schrédinger

equation, one checks that U, (s, sq) = UT(r~1(s),r~!(sp)), where U is the solution of

the Schrédinger equation for

o) = H(r Y(s)) _ 1
Hi(s) = OoT|omr1(sy  T(r=1(s))

k(r~1(s))- V. (5.22)

Thus a Hamiltonian of the form H(s) = ¢(s)k(s) - V, with ¢(s) € R,, is equivalent,
by a reparametrization of the time coordinate, to a Hamiltonian of the form k(s) - V,

with k(s) € §2 c R3. The applicability of the time reparametrization is of course not
limited to Hamiltonians of type (5.18).

We now turn to the geometric interpretation of Kg(s). The geodesic curvature of
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the path k(s) on the unit sphere 52 is given by
K(s) - (K (s) x k(s)
O '
Integrating the geodesic curvature with respect to the Riemannian length element
dl(s) = |K'(s)|ds, define

Kq(s) =

8 ]

1(5)= [ madita) = [ ya) da,

0 0

where C,(s) = |k'(s)]x4(s).

If we have a smooth, closed curve on S2, i.e., for some s., k(s.) = k(0), and
K'(s.) = k'(0), then the Gauss-Bonnet Theorem [SP], [KL] states that v(s,) is equal to
the spherical area of the region bounded by the curve. It is well known that the Berry’s
phase of a nondegenerate eigenstate around this path is proportional to the area [B],
[SIM1], the constant of proportionality being the eigenvalue of k - J. One may think
of Cy(s) as the local Berry’s phase for this particular system.

The following proposition shows how these ideas enter into the expression for
K¢(s). Recall that Kg(s) is the fundamental quantity for the computation of the
transition probabilities, and it is only for K¢(-) € H'(a) that Proposition 4.11 lets us

phrase the results in terms of W’(-). We can without loss of generality take k(0)-J = J3,
and k'(0) - J = |K'(0)] Jo.

Proposition 5.12.

Kg(s,0) = i|k'(s)| exp(—iv(s)J3) Jy exp(iy(s)Js)
= K (s)|(cos(y())1 + sin(x()) )

Proof : Define an orthonormal moving frame? of the curve k(s) C R3

K(s) x K(s)

) K(s) _
al®) =ks), ed=mEar @)= "5y

NZOl

4 This particular frame is not a Frenet frame.
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Since for any s this is an orthonormal basis, we have the obvious property that for any
vector a € R3, a = (a-e;1) e; +(a- e2) e2+ (a- e3) e3. Define
L(s) = —iW™1(s)(es(s) - )W (s).
From (5.19) it follows that Kg(s,0) = W (s)W'(s) = |k'(s)|L(s).

Taking the derivative of L(s), the term with W' cancels the term with (W~')’, and
we are left with
L'(s) = ~iW™(s)(e4(s) - IW(s).
Now €f - e3 = 0 from the orthonormality, and

_(B(s) X K(s) K (s) _
W)l ’

e5(s) - ex(s) = —es(s) - e1(s) =

and the orthonormal basis property yields

e3(s) = (e3(5) - ea(s)) ex(s) = —Cy(5)ea(s)-
Using this and e; = —e; X e3 and the commutation relations,
L'(s) = =Cy(s)WH(s)lea(s) - J,eals) - JIW(s)
= [—1iCy(s)e1(0) - J, L(s)},
where we have used the intertwining property. This differential equation for L(s) can

be integrated,

L(s) = exp(~iv(s)k(0) - J)L(0) exp(i7(s)k(0) - J). !
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Chapter 6: Admissible Hamiltonians

We first obtain a bound for the transition between two compatible bands of an
admissible Hamiltonian. We then specialize to a finite-dimensional Hilbert space, where
the connection with the Landau-Zener formula is most apparent. Finally, we discuss
bounds on the total transition probability from a compatible band to the complement

of the spectrum. Recall the abbreviated notation H = H(0), P; = P;(0), gr; = g:(0),

etc.

6.1. TRANSITIONS BETWEEN Two BANDS

In this section, we obtain an exponential bound on the transition probability pr. ()

between two compatible spectral bands P;(s) and Pi(s) of an admissible Hamiltonian

H(s) = W(s)[H + ) Au(5)Qu]W(5).
neJ

The exponential bound we obtain coincides in certain cases with the Landau expression,
but is not in general identical. We will always assume, without loss of generality, that
An(0) = 0. Recall that by Lemma 3.6 b), we can without loss of generality assume
that Pi(s) = Qn,(s) for some n; € J. Since we are interested in transitions, we
assume Pi(s)Pi(s) = 0, and thus we can take Pi(s) = Q,,(s) for some n; € J. We
abbreviate notation by using the same index; i.e., Pi(s) = Qi(s), Pi(s) = Qr(s), with
i,k considered as elements of the index set J. Further assume W’(-) € H'(a), as for
unitarily admissible Hamiltonians, which implies Kg(-) € H'(a). Finally, suppose all
the functions A,(s) are analytically extendible to S(a).

We now consider some gap properties of compatible spectral bands for admissible

Hamiltonians. It is a consequence of the definitions of compatible bands that

gk’,-(z) = gk,z' -+ Ak(z) — Ai(Z), zZ € S(a), (61)
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where of course gr; = gx,i(0). We assume that gi;(s) # 0 for all s € R, making the

choice of the origin s = 0 irrelevant.

Definition 6.1. For k € J, define
Gu(2) = z'su[J) Im(gn £(2)), z € 8(a).
ne

Then Im(g,(2)) > 0, since Im(grx(2)) = 0.

Definition 6.2. Let k,7 € J. For —a < ¢ < a, define

ic 0 oo
Lii(c) = Im ( / gk,i(z)dz) - / Tm(g(t + ic))dt — / (g, (¢ + ic))dt,

0 —00 0

0

ic 0 [oe]
Tui(c) = Im ( / gk,i(z)dz> + / (G, (¢ + ic))dt + / (G, ( + ic))dt.
—o0 0

Remark: If the spectra of H|; and H|; are single points, then recalling (2.6), gr; =

—Gik, and

Lia(0) = —Lii(e). (62)
Defining
A(z) = isupIm(A,(2)), z € S(a),
it is clear that "

Im(7i(2)) = Im(A(2) = Ai(2))- (6.3)

Keeping in mind the Equation (2.6) for (6.2) levels, the following lemma indicates
the connection with the Landau formula.

Lemma 6.3. Forr € R,

a)

0

r+ic
Im (/ gk,,-(z)dz) > Ly ;(c).

b) The inequality of part a) is an equality if and only if for all 2 < r, g;(z + ic) = 0,
and for all z > r, g (xz + ic) = 0.
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r4ic
Im (/ gk,i(z)dz) < Lis(c).

0

d) The inequality of part c) is an equality if and only if for all z < r, Gi(z + ic) = 0,
and for all z > r, g,(x +ic) = 0.

Proof : First prove b) and d), using (6.3). Parts a) and c) then follow from the non-

negativity of g;. 1

For a fixed 7 and (w;_y, ...,w;) € R’ adopting the shorthand w = E{;ll wy, define
the function Z; : S(a) — L(H) by

Z1i(q) = Qe K () K (g + wj_1) ... K (g +w)Q. (6.4)
Lemma 6.4. Let Q; and Q. be finite; i.e., HQ; and H(Q}; are bounded operators. Let
z € R.
a) If 0 < ¢ < a, then assuming L, ;(c) is finite,
| Zki(z + ic)|| <
< exp(—1Ly ()| Ka(z + ic)||| Ka(z + ic + wi—1)|| - - | Ka(z + ic + w)|.
b) If —a < ¢ <0, then assuming fi,k(c) is finite,
| Zei(z +ic)|| <
< exp(tLix(c)|| Ko(z + ic)|[[| Ka(z + ic + wi—1)|| -+ | Ko (z + ic + w))|.
Proof : Using K,(s) = V.7 (s)Kg(s)V,(s),

Zri(9) = QeVe " Q) Ka(@Va(@)V- (g + wjm1) Ka(g + wi)Va(g + wj1)

-1 (6.5)
Vi g + Wj—1 + Wj—2) ... Ke(g + w)Vo(g + w)Q;.

Note however that Lemma 5.1 a) no longer holds. Consider the outer terms, and keep
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in mind that w < 0:

z+tic
QrVy Yz + ic) = Qrexp (iT(z + ic) HQ:) exp (iT/Ak(Z)dZ) ,
0
c4ictw

Ve(z +ic+ w)Q; = exp (—iT / A,-(z)dz) exp (—it(z +ic+ w)HQ;) Q

0

Now for any bounded operator X € L£{H) we obtain, by rearranging the scalar factors,

QrVy Mz +ic) XV, (z + ic + w)Q; = exp (iT/(Ak(Z) - Ai(z))dz) X
0

A \ (6.6)
X exp (m:/A;(t + 1r\df) exp ( /_/_\_ (t + ic)dt | Qi exp(it(z + ic) HQy) x
o+w }

0
x X exp(—it(z + ic + w)HQ;)Q;,

and taking the norm,

|QxVr (z + ic) X Vi(z + ic + w) Q|| < exp (—TIIII /(Ak(z) - Ai(z))dz) X
0

X exp (— ]Im(A,-(t + ic))dt) exp (—T/Im(Ak(t+ic))dt) X

4w 0

x||Qr exp(—7cHQW)|| | X ||| exp(rcHQ:))Qll.

We now consider the terms V;(z + ic)V,~}(x + ic + r), with r < 0.

Vi(x + ic)V, Yz + ic + r) = exp(itrH) exp (—zr Z Qn / AL(t+ zc)dt)

neJ 4T
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\Vi(z + ic)V: " (x + ic + 7)|| = sup exp (7‘ / Im(A,(t + z'c))dt)
n€J
z+r

< exp ('r / Im(A(t + ic))dt) .

z+r

(6.7)

Using the composition property of the exponential,

IVe(z +ic)Va e +ic + wi—) - | Va(e + e+ T w)Ve N (@ + e + w)|

< exp (7’ / Im(A(t + ic))dt) .

z+w

Combining these estimates, and using the fact that Im(A — A,,) > 0,

1Zei(z +ic)]| <exp|—rIm (Au(z) — Ai(2))dz |exp| 7 [Im(B(E +ic) — At + ic))at
" U

X exp (T / Im(A(t + ic) — A(t + ic))dt) || exp(—7cH|i)|||| exp(TcH]|;))| x

0

X || Kg(z + ic)||[| Ka(x + ic + wj—q)|| - - - || Kg(z + ic + w)]],

the result follows by using bounds of the form (5.6) through (5.9), and rearranging

terms using (6.1) and (6.3). 1

We now obtain a generalization of Lemma 5.5.

Lemma 6.5. Let H(s) be an admissible Hamiltonian with W'(-) € H(a). Let Q; and
Qi be finite spectral bands. Fix (w;_;,...w;) € RY.

a) If

OiIl}ga Lk’z(b) > o0,
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then for any ¢, 0 < c < a,

o0

| Qk [/ dz K. (2)K,(z + wj—1)... K. (z + w)] Q:ll

—00

< exp(=7Lis(0)) / do||Ke(z + )] - | Ka(z + ic + w)|.

b) If
sup Lix(b) < oo,
—a<b<0
then for any ¢, —a < ¢ < 0,

x| / dr K (@)Ko(o + wy) ... Kola + )] Q]

Proof : The proof mirrors the proof of Lemma 5.5, with some complications. As

before, Kg(-) € H'(a). It is clear that Zj;(q) is analytic on S(a).

a) Fix b such that ¢ < b < a. Then Kg(- + w;) € H*(0,b) by Lemma 4.10 a). By

assumption, the H*°(0,b) norm of the (nonanalytic) bounding function of Lemma
6.4,

hx +ic) = exp(——TLk’i(c)),

is finite. Then by Lemma 4.6, Z;(-) € H'(0,b). For 0 < € < b, use Proposition 4.2
b) to obtain

/ Zas(t +ic)dt = / Zu(t +ie)dt. (6.8)

Consider the limit ¢ — 0. By Lemma 4.10 ¢), Kg(- + i€) converges in L!(R) to
Kg(+). The restriction of Z;(-) to S(0,c¢) is a product of Kg(-) and terms that
belong to H*(0,c). Thus Z (- + i€) converges in L!(R) to Z;(-), and Equation
(6.8) holds for € = 0.
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The result now follows from Lemma 6.4 a).

b) The proof of part b) is completely analogous.

The next result is our version of the Landau formula.

Theorem 6.6. Let H(s) be an admissible Hamiltonian, P;(s) and Py(s) compatible
spectral bands (not necessarily finite) which we take to be of the form Q;(s) and Qy(s)

with ¢,k € J. Assume W'(-) € H(a).
a) If gr; > —o0o (equivalently gi;(s) > —oo for all s € R), and
oirgiaék’i(b) > %%

then for any ¢, 0 < ¢ < a,

Pri(7) < Caexp(—27Ly (c)),
where C, is a finite constant independent of c.
b) If g;x > —oo (equivalently g; x(s) > —oo for all s € R), and
sup f,-,k(b) < 00,
—a<b<0

then for any ¢, —a < ¢ <0,

(1) < Coexp(TLi(c)),
where C, is a finite constant independent of c.

Proof :

(6.9)

(6.10)

(6.11)

(6.12)

a) We first obtain a bound on ||QxQQ;|| assuming that HQ; and HQj are bounded.
This follows the proof of Proposition 5.6. Define the finite constants® G, =
exp(|| Ka(-)ll a1 (), and Cy = G2. Use (5.14) and Lemma 6.5 to bound ||Q:Q;Q:.
Then change coordinates back to the (s;,...,s1) of (5.13). We then obtain the

5 G, > F,, with F, defined in (5.4), as we are bypassing the analogue of Proposition 5.6.
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bound

3 Ko()m @)
1Qk$2;Qill < eXp(_TL.k,i(C))(” al 3|'IH Q) .

The factor 1/;! comes from the fact that the region of integration is a simplex in R/
(as in Equation (5.12)). Then summing over j and squaring to obtain a bound on

the transition probability via (3.23) completes the proof of part a) for the special
case that HQ; and HQ; are bounded.

To extend the proof to the more general situation gi; > —o0, we use a technique

similar to that in the proof of Proposition 5.6 b) and c). Decompose Q; and Q;, as

sums of orthogonal projections,

Qi = Z Qi,m, Qk‘ = Z Qk,ma

m=>0 m=0

Qi,in,m’ = 6m,m’Qi,m, Qk,ka,m’ = 6m,m’Qk,m-
Require as before that HQ;,, and HQy,, are bounded for all m. We can always
perform this decomposition such that for any y > 0,
Gkmsismt = inf 0 (Hlkm) — sup 0(H|im') = gri + y(m + m').
Then we have
D NQkm Qi || < Gaexp(—7Ly;(0)) S exp(~Teym) Y exp(—reym')
m,m/' m m’

G, eXP(“T.I_fk,i(C))
= (1 —exp(—7ey))?’

where we have summed the product of the two geometric series. Since y can be

taken arbitrarily large, the proof of part a) in the general case follows.

b) Part b) is proved the same way.

In certain special cases, this result is equivalent to the Landau formula. In general,
we see from Lemma 6.3 that the exponential approach is slower than that given by the

naive Landau formula, possibly even an increasing exponential which does not give a

useful bound.



58

6.2. FINITE DIMENSION AND LANDAU-ZENER FORMULA

We now return to admissible Hamiltonians on a finite-dimensional Hilbert space.
First recall Proposition 3.13, which states that a finite-dimensional Hamiltonian H(s),
with noncrossing spectrum and certain mild regularity conditions, is admissible. Fur-
thermore, there are explicit prescriptions for the intertwining operators. We shall now
suppose that the Hamiltonian H(s) is analytically extendible as an operator-valued
function to a strip S(b) in the complex plane. We refer to [DY2], [DVPE|, [HWPE] for

a previous discussion of analyticity and the Landau-Zener formula for finite-dimensional

Hilbert space.

We briefly review some general results concerning such matrix-valued analytic func-
tions, following Kato (Chap. 2.1 in [KAT?2]). Let N be the dimension of the Hilbert
space. In any compact subset of S(b), there are a finite number of exceptional points,
where eigenvalues cross. At all other points, the number of distinct eigenvalues is
constant, which is of course bounded by N. If the number of distinct eigenvalues is
less than IV, then some eigenvalues are permanently degenerate. We can write the
admissible Hamiltonian in such a way that the number of distinct eigenvalues away
from an exceptional point is equal to |J|, the cardinality of the index set. On a simply
connected region that does not contain any exceptional points, the eigenvalues E,(2)

and spectral projections P,(z) are analytic functions.

At an exceptional point, there are two possibilities. The first possibility is that all
the eigenfunctions are analytic. In this case, the projections may either be analytic or
have poles of integer order. A special case is an exceptional point that occurs on the
real axis, since all the H(s) are self-adjoint on the real axis. At an exceptional point
on the real axis, the projections are analytic (Thm. 1.10, Chap. 2.1 [KAT2]). We can

use this fact to relax the restriction on noncrossing eigenvalues in Proposition 3.13.

The second possibility is that some of the eigenvalues are sheets of an analytic
function that has a branch point at the exceptional point. The eigenvalues are still

continuous at such a branch point, but clearly are not analytic. Using a theorem of
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Butler ([BUTL], Thm. 1.9, Chap. 2.1 [KAT2]), one can show that unless all of the

eigenvalues are single-valued analytic functions at the exceptional point, not all the
spectral projections can be analytic at the exceptional point. However, even if all the

eigenvalues are single-valued, spectral projections can still have poles.

At an exceptional point, we then generally expect B(s) as given by Equation (3.18)
to be nonanalytic. Let a < b be the distance from the real axis to the nearest such
exceptional point. Then for all n, P,(s) and P/(s) are extendible to analytic functions
on the strip S(a). We suppose further that P.(-) € H!(a — ¢), for some small positive
€. Duplicating the argument in the proof of Lemma 4.10, we conclude that P,(-) €
H*(a — €). Now by Lemma 4.6, it easily follows that B(s) = L(s) € H'(a — €¢). By
Lemma 4.10, both W'(-) € H'(a — ¢€), and we can apply Theorem (6.6).

We first adapt some of the notation to this simple case. Defining
E(z) = isup Im(E,(z)),
neJ

Definition 6.2 becomes

L) =t | [(Bi) = Bz | — [ 1n(B+ ie) = B+ ie)a
0 —o0
- / (B (¢ + ic) — Eu(t + ic))dt,
0

Lig(c) = =Ly ().

Let the exceptional point be at r + 7a, r € R. Now recall Lemma 6.3. If for all

z <7, Im(E(z + ic)) = Im(E;(z + ic)), and for all z > r, Im(E(x + ic)) = Ex(z +ic),
we obtain

r4ic
Lis© =T | [ (Bi2) - Bi(2))a:
0
An analogous result holds for L;4(c). Now for ¢ = a — ¢, assuming the conditions

of Theorem 6.6 are satisfied, we obtain an expression similar to that of Landau. The
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exponential rate can be made arbitrarily close to the Landau rate, but the multiplicative

constant need not be uniform in e.
We summarize the above discussion, assuming for concreteness that Er(0) > E;(0).

Theorem 6.7. Let H(s) be a finite-dimensional Hamiltonian that is analytically

extendible to S(b). Let r + ia be the point of eigenvalue crossing that is closest to the
real axis. Assume that all P/(-) € H}(a — ¢€), and
0<%>I<1£—eLk’i(b) et
If there is a sequence r, +1c, in §(a) converging to r +i(a — €) such that for all z < r,,
Im(E(z + ic,)) = Im(E;(z + ic,)), and for all z > r,,, In(E(x + ic,)) = Ex(z + icy),
then the transition probability is bounded by
r+i(a—e)
Dr,i(T) < Cya—eexp | —27Im / (Er(z) — Ei(2))d=

0

Proof : Evident from the above discussion.

Remark 1: Note that any eigenvalue crossing can ruin the analyticity of W'(z); it does

not have to be crossing of E; with Fj.

Remark 2: The conditions in the theorem single out two unique levels ¢ and k for
which the Landau formula holds (within €). For other levels, one can obtain a weaker

exponential bound using L, ., which is generally not equal to the Landau expression;

recall Lemma 6.3.

6.3. TOTAL TRANSITION PROBABILITY

We now consider transitions from a compatible band P, to the remainder of the
spectrum, instead of transitions to a given compatible band Py as above. We again
assume that P;(s) = Qi(s). We can use Theorem 6.6 to bound Py ;(7) for all k # i
in J, and sum to obtain a bound on p;(7). If the index set J is finite, and Py ;(7)

is exponentially for each k # ¢, then the total transition probability is exponentially
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bounded. If the index set is infinite, even if each P ;(7) is exponentially bounded, the
total transition probability may not be exponentially bounded, because the sum over
k # ¢ may diverge, or the rate of exponential approach may not be bounded away from

zero. We now formalize these rather simple notions.

If the gap g; > 0, then we can without loss of generality write H(s) as an admissible

Hamiltonian in such a way that gr; > 0 for all ¥ > ¢, and g; > 0 for all k < s.

Definition 6.8.
a) If i < k, define

if £ < 1, define

b) The Landau constant L; is defined by
Li = inf Lk,,'.
ki

c) We say the levels are nonaccumulating with respect to Q; if

Zexp(—Lk,,-) < oo.

ki

Remark 1: If J is finite, and L; > —o0, then the levels are clearly nonaccumulating.
If J is infinite, and for all but a finite number of k, Ly; > Ak — 3| + o for some real

constants o and A > 0, then the levels are nonaccumulating with respect to @Q;. This

is the motivation for the terminology.

Remark 2: Note from part a) that if the transitions increase energy, we go to the

upper half plane, and if they decrease energy, we go to the lower half plane, in accord

with the arguments of Landau and Lifshitz [LNLF].

Theorem 6.9. Suppose that g;(s) > 0 for all s € R, and the @Q,, are indexed as above.
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Suppose that for all & > ¢,
i (D) > —
oinf Ly i(b) > —oo,
and for all k < 1,
sup Lix(b) < 0.
—-a<b<0
If the levels are nonaccumulating with respect to @); then there is a finite constant D,

such that for 7 > 1,
Pi(7) < Dgexp(—7Ly).

Proof : From Theorem 6.6 , we have
pk,i(T) S Ca eXp(—QTLk’i).
Summing over k # ¢ gives, as in (5.11), for 7 > 1,

pi(1) < C, Z exp(—27 L)

k#i
< Caexp(—2rL;) Y exp(—27(Ly; — Li))
k#i
< Coexp(—27Li) Y exp(—2(Ly; — L)),
k#i

which is finite.
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Part 11

Eigenvalue Asymptotics of the Neumann Laplacian

of Regions and Manifolds with Cusps
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Chapter 7: Introduction

Let Q be a region in R%. We recall that the Neumann Laplacian Hy = —A%} is

the unique self-adjoint operator whose quadratic form is

g(f,f)= [ |VfI*da (7.1)
/

on the domain HY(Q) = {f € L2(Q) | Vf € L*(Q)}, where the gradient is taken in the
distributional sense. One similarly defines the Dirichlet Laplacian Hp = —A% as the
unique self-adjoint operator whose quadratic form is given by the closure of (7.1) on
the domain C§°(£2). If Q is a bounded region with a smooth boundary it is well known

that both Hy and Hp have compact resolvent and that their eigenvalue distributions
are given by Weyl’s law

Ng(Hy) ~ Ng(Hp) ~ (;-Td)dVol(Q)E‘”Z, (7.2)
where by f(E) ~ g(E) we mean limg_., f(E)/g(E) = 1. We denote by 74 the volume
of a unit ball in R?, by Vol(Q2) the Lebesgue measure of 2 and by Ng(A) the number
of eigenvalues of the operator A which are less than F. If one drops the condition that
1 has a smooth boundary, nothing dramatic happens with the Dirichlet Laplacian
Hp. As long as Vol(2) < oo, Hp will have a compact resolvent and (7.2) remains
true [ROS1]. On the other hand, the spectrum of Hy can undergo rather spectacular

changes. The following theorem was proved in [HSS):

Theorem. Let S be a closed subset of the positive real axis. Then there exists a

bounded domain 2 for which

aess(HN) =S.

In the previous Theorem, €2 can be chosen in such a way that its boundary has a
singularity at exactly one point. We will be interested in the other extreme, namely

when the domain () retains a nice boundary, but is unbounded, and in particular is of
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the form

Q={(z,y)eR?: z2>1,|y| < f(z)}. (7.3)
In the sequel we will suppose that f is C*°[1,00), strictly positive, and that its first
three derivatives are bounded (although less regularity could be required). If f(z) — 0,
the Dirichlet Laplacian still has a compact resolvent [MOLA], but if f(z) = z™%, or
even if f(z) = exp(—=z) (so Vol(Q) < o), Davies and Simon [DVSM] showed that
0a.(Hy) is nonempty. The difference in the spectral behavior is again striking, and
one feels that a rather rapid decay of f should be required to ensure compactness of

the resolvent of Hy. The following beautiful theorem was proven in [EVHR].

Theorem. If Q is given by (7.3), Hy has a compact resolvent if and only if

wl_1_)1£1° (I/T(—tjdt) (!f(t)dt) =0. (7.4)

In this part we will study the large E asymptotic of the eigenvalue distribution of Hy
in the regions (7.3). As in [DVSM], the main role is played by the one-dimensional

Schrédinger operator

Hy = —%; tV(E), V@) =g (-’})2 +s (f%)/ (75)

acting on L2[1, 00), and with Dirichlet boundary condition at 1. We make the following
two hypotheses:

V(z) — oo, () > 0 asz — o0; (H1)
if 0 <e<1, Ng((1£e)Hy)= Ng(Hy)(1+ O(e)). (H2)

Our main result is

Theorem 7.1. If (H1) and (H2) are satisfied, we have
E
NE(HN) ~ NE(Hv) + EVOKQ) (76)
Remark 1: (H1) implies that

f@)+f(@P/fz) =0  asz— o0 (7.7)
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(see Section 8.1). In turn, Davies and Simon [DVSM] showed that if (7.7) is satisfied,

Hy will have compact resolvent if and only if Hy does. Consequently, both sides in (7.6)
are finite, and in particular (H1) implies that Vol(Q) < co. (H2) prevents Ng(Hy ) from
growing too rapidly (e.q. exponentially), which is needed to make our perturbation
argument work. For example, it is satisfied if V is convex functions [TTCH] or if
V(z) ~ 2 (Inz)?,a > 0. On the other hand, if V(z) ~ lnz (e.g. f(z) = exp(—zlnz)),

it is not, and our argument does not apply.

Remark 2: The fact that ) is symmetric is irrelevant. If @ = {(z,y) : 2 > 1, - fi(z) <
y < fo(x)}, (7.6) remains valid providing that fi' — 0, fo — 0, and that Hy, defined
with f = (fi + f2)/2, satisfies (H1), (H2). Also, if (H1) is replaced by a more involved
hypothesis, the result extends (as usual [ROS1], [DVSM]) to the case when R? is
replaced by R4, (z1,z,) € R™, 2, e R Q= {z | z./f(z1) € G, 1 £ 21 £ o0},
where G is a bounded connected set. The asymptotic is given by (8.6) (replacing M
with ).

Example 1: Let f(zr) = exp(—2z®). Hy has a compact resolvent if and only if o > 1.

One calculates

2 -1
Vi) = Lo - %2V

The semiclassical formula [TTCH] yields

1/(1-a -

NelHv) ~ 1% -11)\/% (%) o r(3%1—/+(?%2(a11) )1)))E VAR,
and thus both (H1) and (H2) are satisfied. (7.6) and (7.8) imply that the asymptotics
of Np(Hy) satisfies Weyl’s law if @ > 2, and is given by (7.8)if l < a < 2. If o = 2 we
have Ng(Hy) ~ E/2(Vol(Q) 4+ 1/2). The leading order is the same as in Weyl’s law
but the constant is larger. We observe a phase transition in the eigenvalue asymptotics
for the value a, = 2. In [DVSM] it was shown that for a = 1, 0,.(Hy) = [1/4, 00), and
for 0 < o < 1, 0.(Hy) = [0,00). In both cases oging(Hn) = @, and o,,(Hy) consists
of a discrete set 0 = A\ < A2 € ... < X, — oo of embedded eigenvalues of finite
multiplicity. (See the Appendix.)

(7.8)
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Example 2: Let f(x) = exp(—22g(x)), g(z) = 1+cos?(y/In(1 + ) ). We have V(z) ~
z2g(x)? and the semiclassical formula yields

E

(H1), (H2) are satisfied, and we observe that Ng(Hy)/E stays bounded above and
below, but limg_,., Ne(Hy)/E does not exist.

The simplest way to understand the result of Theorem 7.1 is to consider a subspace
P of L?(Q2) consisting of functions u, which depend on the z variable only. On C3(Q)NP
the form (7.1) acts as
1/

and viewed as a form on L2([1,00),2f(z)dz) yields an operator that is (up to a minor

d

a—;u(w) 2f(x)da:,

change of boundary condition at z = 1) unitarily equivalent to Hy. It is now immediate
that Ng(—A%) = Ne(Hy) (f(E) = g(E) means that liminfg_... f(E)/g(E) > 1), but
in an equally simple way we can say even more. Denote Qf = {(z,y) : 1 < z <

L, |yl < f(z)} and put an additional Dirichlet boundary condition along the line
z = L. Dirichlet-Neumann bracketing yields

E
Ng(=A%) = Ng(Hy) + EVOI(QL)-

Letting L — oo, we obtain the one-sided inequality in (7.6), which is obviously true
under the sole condition that f is a C2[1,00) function. It is the other, nontrivial
direction of (7.6) which forces us to place conditions on f and V, and which could be
proven using techniques developed in [SIM3], [DVSM] . The main technical point in
such an approach is to obtain control of Hy on the subspace orthogonal to P. Here we
will adopt a different strategy which, we believe, sheds some new light on the problem.

Let M = (—1,1) x (1,00) be a strip with the metric
ds?, = da? + f(z)?dy?, (7.9)

and denote by Hy the Laplace-Beltrami operator on M with the Neumann boundary
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condition. Separating the variables we obtain that Hy is unitarily equivalent to the
operator @, Hn acting on @, L*([1, 00), dz), where
. nr \°
H,=Hy + (2_f-(_x—))
with the boundary condition ¢'(1) = (f(1)/2f(1))%(1). The main technical ingredient
in this approach is to show that Ng(€D,, Hn) satisfies Weyl's law. Then the analog
of Theorem 7.1 for Hy is immediate. After a suitable coordinate change, the region
) is transformed into the strip M, with a metric that is (under the conditions of

the Theorem 7.1) asymptotically of the form (7.9). At this point, a relatively easy
perturbation argument will yield (7.6).

Finally, we remark that the above approach appears useful in studying eigenvalue
asymptotics of a Dirichlet Laplacian in a region Q given by (7.3), with f(z) — 0 and
Vol(2) = co. While we can recover most of the known results on the asymptotics of
Ng(Hp) in such regions (but not all, e.g., we cannot treat the case f(z) = (In(14z))™!,

see [ROS1|, [BER]), here we restrict ourselves to giving a new proof of the well-known

Theorem 7.2.(Rosenblum-Simon) Let 2 = {(z,y) : |z|*|y| £ 1}. Then

1 2\ P(1+1/20) _i/941/2 -
NE(HD)N'\/—";(;) C(l/a)F(3/2+1/2a)El Hize jf0<a<]l,

1
NE(HD)N;EIIIE, ifClt=].,

where ( is the standard zeta function. The case a > 1 follows by symmetry.
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Chapter 8: Neumann Laplacians on Manifolds
and Regions with Cusps

We begin by studying the eigenvalue distribution of a Laplace-Beltrami operator on
a Riemannian manifold of the form M = N x [1,00), with a metric ds3;, Vol(M) < co.
Here, N is a compact, oriented Riemannian manifold (with or without boundary),
dim(N) = d, with a metric ds%, and a volume element dmy. We remark that the
boundary of M does not have to be C*, but it is certainly piecewise C*, and therefore
causes no problem in the discussion below (see, e.g., [CH]). In Sections 8.1 and 8.2
we treat the case when the metric on M has a warped product form. Perturbations
are studied in Section 8.3. Finally, in Section 8.4, we derive Theorem 7.1 as an easy

consequence of the results obtained for manifolds.

8.1. PRELIMINARIES
We suppose that the metric on M is given by
dsi; = dz? + f(x)%dsy, (8.1)

where f is a positive C*°[1, 00) function, and that
Vol(M) = Vol(N) / f(z)%dz < oo. (8.2)
1

If d =1, (8.2) is a consequence of (H1). Hy, the Laplace-Beltrami operator on M with
Neumann boundary conditions, acts on a Hilbert space L2(M,dm ) and is the unique

self-adjoint operator whose quadratic form is given by the closure of

16,9) = [199fdms (8.3)
M

on C3(M). In (8.3), dmy = fldmydz and V is the gradient on M. Of equal impor-
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tance for us is the Laplace-Beltrami operator Hy p on M with the Dirichlet boundary
condition along {1} x N, and the Neumann one on the rest of the boundary. It is
defined as a closure of the form (8.7) on the subspace of C3(M) consisting of functions

that vanish along {1} x N. The analog of (7.5) is the one-dimensional Schrodinger

operator of the form

Hy = jz V@), VE)=E (‘; )2 +5 (’%) (8.4)

with the Dirichlet boundary condition at 1. Denote by

Cy = ((4m) /20 ((d + 3)/2)) . (8.5)

The following lemma, which we prove in Section 8.2, is the main technical ingredient

in our approach.

Lemma 8.1. Suppose that V(z) — oo, f(x)?V(z) — 0 as ¢ — co. Then
Ng(Hy) ~ Ng(Hy p) ~ Ng(Hy) + E@Y2C4Vol(M). (8.6).

In the sequel we collect, for reader’s convenience, a few simple results that will be

needed later. Let
Dy ={¢:¢€ Coy(M),vp = 0},
where v is the outward unit normal vector field on OM. Hy acts on Dy as

1
~ f(a)? 0z

1
f(z)?

where HY is a Laplace-Beltrami operator of N. HY has a compact resolvent [CH]; its

Hy(9) = 0 foy o

Hy(¢),

spectrum consists of discrete eigenvalues 0 = Mg < A1 < A2 < ... < A\, — 00, and we

denote by ¢ the corresponding eigenfunctions. Introducing

Ly(M) = {g: g(=,1) = ()8} (1), / (=) f(z)"dw < oo},
1
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we obtain the decomposition
L*(M) = @ Ly(M) = P Li([1, ), f(x) da).
n>0 n>0
The operator Hy splits accordingly

Hy =D Hyn,

n>0
where Hy , acts on L2([1,00), f(z)%dz) as

An

Hivn = Py

i

Under the unitary map

U : L*([1,00),dz) — L2([1,00), f(z)¥dz), U(¢) = f~%%¢

Hpy , transforms as

2

_ d
H,=U 1fIN,nU— d2+V(£L‘)+

f2( )’

and (if V' is bounded below) is essentially self-adjoint on

Dy = {¢ : ¢ € C{[1,00), /(1) = d/2(f'(1)/ F(1))(1)}.

(8.7)

(8.8)

Hy is unitarily equivalent to the operator @, H, acting on @, L*([1, 00), dz).
Similarly, Hy p is unitarily equivalent to @n>0H where HP is the operator (8.7)
with the Dirichlet boundary condition at 1. The spectral analysis of Hy and Hyp

reduces to the spectral analysis of the one-dimensional Schrédinger operators H,,, HP.

We will need

Lemma 8.2. If V(z) — oo as £ — 00, we have

Ng(HP) < Ng(H,) < 1+ Ng(HP)

for all n > 0.

(8.9)
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Proof : We just sketch the well-known argument. C§°[1,00) is a form core for H?

and thus Ng(HP) < Ng(H,) follows from the min-max principle [RS4]. Let
D= {y:9 e Ci1,00), ¥(1) = 0}.
If L stands for an arbitrary vector subspace of L?[1,00), the min-max principle yields

Ng(H,)= sup dimlZ, Ng(HPY= sup dimL.

LCDy LCD
(Hn¥,$)<E (HD ¢, 9)<E
YEL,|vl=1 VEL,Jj%ll=1

Fix L C Dy and let Ly = {¢ € L : ¢(1) = 0}. Observing that dimL/Ly < 1 we
derive (8.9).

1
We finish with the following
Lemma 8.3. If d =1 and (H1) is satisfied, we have
f(@) + | (@) + f(2)*/ f(z) + f(2)V () — 0 as z — oo. (8.10)
Furthermore, for large z, f is convex and strictly decreasing.
Proof : The result follows from
)2
@) =24V @) + L
I
8.2. PROOF oF LEMMA 8.1
Denote Ay = @5, Hn, Ap = @,51 HY. (8.6) will follow if we prove that
lim w = lim Ne(Ap) = CyVol(M). (8.11)
Fooe B@FD/2 — Booo FEF)/2

Let

m =max f(z)?, M =max|V(z)f(z)’|
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We have that Ng(HP) =0 if A, > mE + M, and thus
Ne(Ap) < Np(4) € Ng(Ap) + #{n : A\ < mE + M}
= Ng(Ap) + O(EY/?),

since Weyl’s law applies for HY. Consequently, it suffices to prove (8.11) for Ap. By
the Karamata-Tauberian Theorem [SIM1], (8.11) will follow if we prove

%irr&t(d"'l)/2 Tr(exp(—tAp)) = (4m)~D/2Vol(M). (8.12)
First, note that
l1mtd/2 > exp(—tAi) = (47)"¥*Vol(N) (8.13)
k>1

[CH], and in addition
14/?2 Zexp(—t)\k) <L (8.14)
k>1
for a uniform constant L and for all ¢ > 0. The Golden-Thompson inequality [SIM1]
yields

o0

Tr(exp(—tHP)) < \/_ exp(—t - (V(z) + M/ f(x)?))dz.

Fixe >0,A\ >e>0,and let R >0 be big enough so that |f2(z)V(z)| < e if z > R.
Let ¢ = inf,ep,p V(z). We have

Tr(exp(—tHj

< 2\/H [ (-t e = 21/ f(0") da

((d+1)/2 Tr(exp(—tAD)) — Zt(d+l)/2 Tr(exp(—tHk))
k>1

)43 (8 £(2)?) Pexp (—t(h — €)/ f()?) do
Using (8.14) and the Lebesgue dominated convergence theorem, we obtain

_Vol(N)
(d+1)/2 d
lllil_)s(}lpt Tr(exp( tAD) (4 )(d+1)/2 /-f ) dz.
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It remains to show
lim ionft<d+1>/2 Tr(exp(—tAp)) > (4r)~@D/2yol(M). (8.15)

Let R > 1 be a positive number; make a partition of [1, R) into k intervals I,, of equal

size. Denote by H}} the Dirichlet Laplacian on I,,,, and let

dn = sup f(z)7%,  c= sup |[V(z)].

z€Im z€[1,R]

Dirichlet-Neumann bracketing yields

Tr(exp(~tH,)) > D exp(—t(c + Andm))Tr(exp(—tHF)).

m=1
Obviously, Tr(exp(—tH®)) = Tr(exp(—tH},)) for all m, and

_1 R
STk

%irrétl/2 Trexp(—tH}) =

We have

k
1 R
im inf(dt1)/2 - - —d=?lim i /2 -
h:ftnlonft E Tr(exp(—tH,)) > NG mE=1kdm hrtrilonf(td"‘) E exp(—tdn,An)

n>0 n>0

k
= Vol(N)(4m)= (412}~ %d;;f/?.

m=1

Using that f is continuous and passing to the limit ¥ — oo we have
R
lim i(]nft(d+1)/2 Tr(exp(—tAp)) > (4n)~@HD/2 Vol(N) / f(z)4dz.
1

Letting R — oo we obtain (8.15) and (8.12).

8.3. METRIC PERTURBATIONS
In this section we suppose that a metric on M is given by

ds?; = a(t, x)%dz? + B(t, z)*ds%, (8.16)
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where a, 3 are two positive, C* functions on M. We also suppose that

Vol(M) = /a . fldmydz < 0.
M
After a suitable coordinate change, the region 2, given by (8.3) (if (H1) is satisfied),
transforms into (—1,1) x (1, 00) with a metric of the form (8.16). That is the reason
why we choose to discuss (8.16), even if a much larger class of perturbations can be
treated along the same lines (see [FRHS], [PR1] for related discussions). Hy, Hy,p
are defined, as in the previous section, via the closure of the quadratic form (8.3)
(with dmys = « - B%mydz) on the appropriate subspace. If there exists a function f,
satisfying the condition of Lemma 8.1, such that « — 1, § — f as x — 00, one expects

that Ng(Hy) should not be too far from Ng(Hy), where Hy is the Laplace-Beltrami
operator on M for the metric
d33, = dz® + f(z)%dsy,. (8.17)

It is indeed the case. Denote My = N x [L, 00),

gl = sup |g(¢, )],

(tx)eMy

and let

V(L) = lla =1l +15/6 = Uz + Vel + 1IV(/B)lz, (8.18)
where V is the gradient on M with the metric (8.17). For Hy given by (8.4), we have

Lemma 8.4. Suppose that v(L) — 0 as L — oo, that f and V satisfy the conditions
of Lemma 8.1, and that Ng(Hy ) satisfies (H2). Then

Ng(Hy) ~ Ng(Hy p) ~ Ng(Hy) + E@D2C,Vol(M).

We remark that while Vol(M) is calculated in the metric (8.16), the operator Hy arises
from the metric (8.17).

Proof : We will consider only Hy. A virtually identical argument applies for Hy p.

For L > 1, denote by Hj p, HZ p the Laplace-Beltrami operators acting on N x [1, L],
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My, with the metric (8.16) and the Dirichlet boundary condition along N x {L}, on
the rest of boundary we take the Neumann one. Denote by H I‘f’ p the Laplace-Beltrami

operator on My with the metric (8.17) and with same boundary condition as HItD.
Let

U: L2(ML,aﬁddmNdw) - L2(ML, fddmNda:)

be a unitary mapping defined as

U(g) = (a- (B/H)H) ¢ =(1/g) - ¢.

The operator HI*J"D is then unitarily equivalent to the operator acting on L2(M,

fldmydz), which we again denote by H{’ p and whose quadratic form is given by

the closure of

/ IV(9¢)* ap*dmyde (8.19)
M

on the subspace

Coo(Mp)={¢ : ¢ € C{(My), ¢(t,L) = 0}.
Vector fields V¢, %qﬁ are given as

1040
—5553;‘5; ﬂQVNCb,

o, 090

Vo= 5 5+ 7V,

where Vy is the gradient on N. If ¢ € Cg,L(ML) and has norm 1 as an element of
L3( My, fiddmydz), we estimate

(HEp - Hip)d, ¢)‘ < / ‘IV(gfﬁ)IQaﬁd = |§¢|2fd| dmydz
My

< [A@ITEHP + |90 - (96| ramyas,

My,

where

A(L) = [11/4l7 (1(2/@)* = Ll + I(F/6)* = 1lIz) + (1/9)* = LIz
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Furthermore, we have
V(g8)1? < (Vo2 (lgll? + llgllz - 1 glllz)+
+ 1617 (Va3 + Ngllz - 1V alllz),
190a- 0)F = 196| <199 (llg® = 1z + gl - 1 9glll )+

+ [ - (NIValliZ + llgllz - NV alllz).
Because v(L) — 0, all the constants in the above estimates are O(v(L)), and we

conclude that

|((H;§D — B p)o, ¢)\ < Dy(L) ((H;Dqs, ) + 1) , (8.20)

for an L-independent constant D. In the sequel we take L large enough so that Dv(L) <
1, and then absorb D into »(L). (8.20), min-max principle, and Lemma 8.1 yield (recall
that f(EF) = g(E) means liminfg_,, f(E)/g(E) > 1)

Ng(H} p) = Np_yo) (1 + v(L)Hf p) ~ Ne((L + v(L)HE ). (8.21)

If Hy is the operator (8.6) acting on L?([L,0),dz), we observe that the asymp-
totic of Ng(Hy,;) does not depend on the boundary condition at L, nor on L itself.

Consequently, in the sequel we will deal only with Hy . Denote

Cy(L) = lim inf NE((;/.;&%;)HV), Co(L) = limsup NE((%N:(I;;I;;)HV).
(H2) implies
Lh—I»Iolo Ci(L) =1, nglolo Co(L) = 1. (8.22)

(8.21), (8.22) were the two essential ingredients of the argument. Denote by VO](HL)
the volume of My, in the metric (8.16). We have

Ng(Hy) = Np(Hg p) + Ne(Hf p)
> EV2C,Vol(N x [1, L)) + Ne((1 + »(L)H} ) (8.23)
> I(L) (E(d+1)/2Cd(Vol(N x [1,L)) + Vol(My)) + NE(HV)) ,

where

I(L) = min {(1 +y(L))" 2 CZ(L)} .
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(8.23) follows from Dirichlet-Neumann bracketing, Lemma 8.1 and the fact that the
eigenvalue distribution of a Laplace-Beltrami operator on a compact manifold with a
piecewise smooth boundary and mixed boundary conditions satisfies Weyl’s law [CH].
Replacing the boundary condition along N x {L} with the Neumann b. c., we get the

operators Hy v and Hf y, and a completely analogous argument gives

Ng(Hy) 2 Ng(Hp y) + Ne(Hf v)

< S(L) (B@DRC,(VOU(N x [1, L)) + Vol(My)) + Ne(Hv)) , (8.24)

where
S(L) = max {(1 — y(L))"Otd2 CI(L)} :

As L — oo, I(L) — 1, S(L) — 1, Vol(My) — 0, Vol(N x [1,L)) — Vol(M), and the

lemma follows from (8.23), (8.24). 1

It is now obvious why our argument fails in the case when Ng(Hy ) grows expo-
nentially fast (C1(L) = Co(L) = oo). It is natural to conjecture that in such cases

Ng(Hy) ~ Ng(Hy), but it is unlikely that the above argument can be modifed to

prove it.

8.4. Proor orF THEOREM 7.1

One consequence of hypothesis (H1) (see Lemma 8.3) is that f is a strictly decreas-
ing function for large x. The familiar Dirichlet-Neumann bracketing argument, which
will be repeated in detail once again below, implies that without loss of generality we

can assume f'(z) < 0 for z > 1. We construct a change of variable as follows: Let

Y
ez, y) = -+, -1<e< L.
@9 = 76)
¢ 1s the first integral of the equation
By _,. I

da:_y.f'
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The equation for the orthogonal lines is given by
dy _
v L
dr f
whose first integral is

y ft)
+ | 7 (t)dt

Any C! function of this first integral is an orthogonal coordinate to €. Let

F(t)
F(z —=dt;
=] 76
note that F is a decreasing function (f’ < 0) and denote a = lim,_,o, F(z). The inverse
function F~! is well defined on (a, 0], and for R large enough we have

2
%—+F(m)€(a,0], z>R, (z,y)e€.

Let
n(z,y) = F~ (y*/2+ F(z)), (z,y) € Q, z > R.

It is easy to check that (£, 7) is one-one, and that Jacobian D(e,n)/D(x,y) ~ 1/ f(z) #
0 for z large. Denoting (for ¢ > R)

= {(z,9) : (z,9) € Q, n(z,y) > c}, (8.25)

we conclude that for a large ¢, (¢,n) is a C*®-bijection between ; and half-strip
M = (-1,1) x (¢, 00) with a C*-inverse. The eigenvalue asymptotics of a Laplacian on
a bounded region with piecewise C* boundary and with mixed boundary conditions
satisfies Weyl’s law. Consequently, putting an additional Dirichlet or Neumann b. c.
along n(z,y) = ¢, we observe that it is enough to prove the statement for Hy, Hy p,
the Laplacians on §2; with respectively Neumann or Dirichlet b. c. along n(z,y) = ¢,
and the Neumann b. ¢. on the rest of the boundary. The above change of variables
transforms Hy, Hy p into Laplace-Beltrami operators on M, with the metric ds3; =

dz(e,n)? + dy(e,n)?, the Neumann or Dirichlet b. c¢. along [-1,1] x {c}, and the
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Neumann b. c. along {£1} X [¢,00). An easy calculation shows

da? + dy?= (1 +9? (%%)2> ) (de2 FA(x) + dn? (J;((;’)) )2 ( J{,((’Z]))) 2) . (8.26)

In the notation of Section 8.3
o () (R8)- (0 (38))

e\ 2 -1/2
B(e,n)=f(:r)°(1+y2 (%)) ,

and it is a straightforward (but rather long) exercise in differentiation to show that

la(e,n) =1 =0Fm),  |f(n)/B(e,n) — 1| = O(F(n)),

~ 1 6&(8, 77) Ba(S, 77) _
[Va(e, n)| < ‘ o || o ‘ = O(F(n)), (8.27)
9 /a(e, ) < | 7 22+ | 2L — o,

where

F(n) = £l + £ ]l + £l + 1 ()*/ f(m).
In obtaining (8.27) we have used the fact that the third derivative of f is bounded

(recall 7.3). Lemma 8.3 implies that F(n) — 0 as 7 — ooc. Theorem 7.1 is now an

immediate consequence of Lemmas 8.3, 8.4.
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Chapter 9: Dirichlet Laplacians on Regions with Cusps

9.1. SoME GENERALITIES

There have been quite a few results [ROS1], [TAM], [SIM3], [BER] on the asymp-
totics of the eigenvalue distribution of Hp in regions Q2 given by (7.3) when f(z) — 0
and Vol()) = oo. Here we give a new treatment which, besides being elementary,
seems to cover most of the interesting examples. We refer to the papers of Rosenblum
[ROS1] and Davies [DV2] for a detailed discussion of the spectral properties of Hp in

limit-cylindrical domains.

We suppose that f is convex and that
f(a) + f"(z) + f'(2)*/ f(z) — 0 as z — oo. (9.1)

If Vol(Q?) = oo, limg_.. Ne(Hp)/E = 0, and we restrict ourselves to studying the
operators Hp, Hp n on §; given by (8.25), with respectively Dirichlet or Neumann
boundary condition on 7(z,y) = c. Performing the same change of variable as in the
previous section, we obtain the Laplace-Beltrami operators on M = (—1,1) X (¢, o0)
with the metric (7.9) and with the Dirichlet boundary conditions on {£1} X [¢, 00) and
the Dirichlet or Neumann b. c. on [—1,1] x {c}. Let us first analyze Hp y. If Hp y is
the Laplace-Beltrami operator on M with metric (8.26) and with the same boundary

condition as Hp y, we obtain, as in Sections 8.3, 8.4, that for any € > 0 we can find c

big enough so that

Ng((1 — €)Hy p) = Ng(Hy,p) = Ne((1 + €)Hy p). (9.2)

Separating the variables, we obtain that H p,~ is unitarily equivalent to ®n21 H,, given
by (8.7), acting on B3, L?[c,00), and with the boundary conditions (8.8) at z = c.
(9.1) implies that V(z)f(x)? — 0, and (eventually increasing € in (9.2)) we can restrict
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ourselves to studying

d? nr \2
A_gg—dxﬁ(wx)) . (9.3)
Starting with Hp on §;, we end up with operator (9.3) with Dirichlet boundary con-
dition at ¢, which we denote by Ap. (9.2) implies that limg_.o Ng(A)/E = oo, and,
as in Section 8.2, we observe that the asymptotic of Ng(A) does not depend on the
boundary condition at ¢, nor on c itself. Consequently, we can restrict ourselves to

studying Ap with ¢ = 1. The strategy is now clear: If we show that

. . NE((]. + G)AD) _
e i Ne(Ap) | © (94)

we have Ng(Hp) ~ Ng(Ap), and the asymptotics of the original problem follows.

To demonstrate the effectiveness of the above strategy, we prove Theorem 7.2.

9.2. Proor orF THEOREM 7.2

We can obviously restrict ourselves to studying only the horn @ = {z: z > 1, |y| <
z~°}, and multiplying the result by 2 if 0 < @ < 1, or with 4 if @ = 1. (9.1) is trivial.
The operators Ap become

d? nr\2
=+ (7)<

n>1
acting on L?[1,00). Suppose that we prove

1 (2\V° (1 1
417241 /2 _ - < l _. i
%1_1)13t Tr(exp(—tAp)) NG (7() ¢ (a) r (Qa + 1) ,if0<a<1 (9.5)

and
1

. —~1y—1 _ - . —
%Lr)%t(lnt )" Tr(exp(—tAp)) yp ifa=1. (9.6)

Then, by the Karamata-Tauberian Theorem ([SIM1}, [SIM3]),

~ L (2 e o) L/20) +1) ipnrayaa) ; N
Ne(Ao) 2ﬁ(ﬂ> ) rGR+1/Ga)" y 0<a<l,

NE(AD)N%EIHE ifOl=].,
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(9.4) is immediate and the theorem follows. It remains to prove (9.5), (9.6). It should

not come as a surprise that the argument closely follows the one of Section 8.2.

Case 0 < a < 1: The Gordon-Thompson inequality yields

1 x
/24120y (exn(—tAp)) < t1/2+1/2a ————/ex —t(nw/2)2x2*)dx
(ttao) 20 S [ entttarsofe

£)"%(2) o
o232 (2)" <)o)

IA
,H

3

N

and it is immediate that

lim sup t1/2+1/22 Ty (exp(—t A ))<i 2 l/aC 1 r —1—+1
10 Dir="m \x '

It remains to prove

2 2 1/e 1 1
llltn })nft [I(exp( t. 1D)) 2 \/E (ﬂ') C ( ) I (2 + 1) . (97)

Make a partition of [1,00) into intervals I of equal size 1/m. Denote by HP the

Dirichlet Laplacian on I, and by

dp = supz®®,  Qu(t) = mt"/*Tr(exp(—tHP)),
z€l}

V(@) = di - xi(a), (9.8)

k>0

where x;. is the characteristic function of the interval I,. Putting additional



84

Dirichlet boundary conditions at the end points of intervals I, we get

t1/241/2e e (exp(—tAp)) > t1/241/2* ) " Tr(exp(—tHP)) Y exp(—t(nr/2)’dy,)

k>0 n>0

> Q=Y / exp(—t(nr2)2Vin())dz

n>0
2\ Ve 1\ Ve b
= Qmn(t) (;r_) Z (;) / exp(—V(z))dz
n>0 t1/2a(pr [2)1 /e
9 i/a N 1 1/a %
20,0 (2) 2 (2) [ ewl-Va@is
1 tl/ZG(N.,r/2)l/a
Using that
. 1
11_{% Qm(t) - ma
we get
e 1/241/2 2 (2\/" &\
llﬁhnft Tr(exp(—tAp)) > 7= (;) zl: (;) /exp(—Vm(x))dx.
0

Letting N — oo and m — oo, we obtain (9.7) and (9.5).

Case a = 1: As before

Tr(exp(~t4p)) < — = E / exp(—t(nr/2)222)da

n>0

twfz / exp(—z?)dx.

Ving (2

(9.9)

Split the positive integers into two sets, I; = {n : nvf < 2/r} and I, = {n :
nyt > 2/w}. We have

1%;2 -—\/_//2 exp(—z*)dz < -—%exp( \/_n7r/2) (9.10)

=0(1)ast — 0,
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8

7 / exp(— 2)d.’l: < — Z —
nel \/Zﬂﬂ'/? nGI] (9.11)

1
~—Int"tast—0.
47

In (9.11) we used that 1+1/2+...+1/n—1lnn — v, as n — oo, where 7 is the
Euler constant. From (9.9), (9.10), (9.11) we get that

limsupt(lnt~)"'Tr(exp(—tAp)) < Zl——
t—0
To prove that
liltn ionft(ln ™) Tr(exp(~tAp)) > Zl;’ (9.12)

we proceed as follows. Let I = {n : ny% < 2¢/7 }, and with notation (9.8) we
have

t(Int ™) Tr(exp(—tAp)) > Qm(t)t2(lnt~1)? Z/exp( —t(n7[2)* Vi (z))dz

x

= Qm(t)% Z %(lnt“l)'1 / exp(—Vn(z))dz

n>0 Vinr /2
00

> Qu(t) 2t ™) Y T / exp(—Vin())ds.

nel

Ast — 0,
e 1 1
Qm(t) — \/_ (Int™1) 125_45,

nel
and consequently,

hmlnft(lnt Y=1Tr(exp(~tAp)) > 5 \/_/exp(—Vm(x))dx

Letting € — 0 and m — oo, we obtain (9.12) and (9.6).
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Appendix

If Q is given by (7.3) and V by (7.5), let us make the following two hypotheses:
For some ¢ > 0,

|f'(@)| + f'(2)?/ f(z) = O(z™7); (HA1)
[V(2)| = O(~1~). (HA?)
Recently, Davies and Simon [DVSM] proved the following
Theorem A.1. If (HAl) and (HA2) are satisfied, we have
a) Oac(Hpy) = [0,00) of uniform multiplicity.
b) Gung(Hn) = 0.

c) The pure point spectrum consists of a discrete set of eigenvalues, \,, each of finite

multiplicity with A, — oo.

For example, (HA1) and (HA2) are satisfied if f(z) = 7%, 8 > 0, orif f(x) = exp(~z%)
for 0 < @ < 1/2. On the other hand, if 1/2 < a < 1, (HA1) remains valid, but (HA2)
does not; namely, V is not a short-range potential any more. (We remark that the
case o = 1 is somewhat special, because then V' = 1/4; the argument of [DVSM]
shows that Theorem A.1 remains valid with the stipulation that o,.(Hy) = [1/4,0).)
Anyhow, for 1/2 < @ < 1, V is certainly a long-range potential ([HOR4], [PR2]),
and authors of [DVSM] conjectured “that it is likely that one can modify .. .[their]...
argument” to prove the analog of Theorem A.1. While it is certainly the case that
Theorem A.l remains valid if (HA2) is replaced with the sole condition that V is a
long-range potential, the technicalities of the long-range scattering theory (whose role
is to become clear soon) tend to obscure the simplicity and beauty of the argument
in [DVSM]. There is, however, an important special case (which covers the above

examples) which is easily technically tractable.

In the sequel, Hy stands for the one-dimensional free Laplacian. Let u(8) : L2(R) —
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L%*(R) be a unitary mapping defined as

u(0)d(x) = exp(8/2)¢(exp(8)x).

A potential V', defined on the whole real line, is dilation-analytic ([PR2], [RS4]), if V

is Hyp-compact and the operator-valued function
C(8) = w(0)Vu(8) ™ (Ho + 1)™!

extends to an analytic operator-valued function on the strip S(e) = {2 : —a < Im(z) <

a} for some a > 0.

We make the the following hypothesis on V, given by (7.5):

V is a C*[1, 00) function and all derivatives of V are bounded; (HA3)
HA3
[V'(2)l = O(=""7°).
Define
V(z) = V(jz| + 1), z eR.
Theorem A.2. If (HA1) and (HAS3) are satisfied, and V is a dilation-analytic po-

tential, all three conclusions of Theorem A.l remain valid.

Remark 1: The requirement that V be C* with bounded derivatives is somewhat
artificial, and can definitely be dropped by slightly extending the argument below (see
Remark 3). Nevertheless, the assumption of dilation analyticity of V is essential, and

our proof does not extend to a larger class of potentials.

Example : If f(z) = exp(—2z®) for0<a <1,
~ a? o ala—1 a—
V() = £ (o] + 100 ~ A8 ggp 4 go-2

and one easily checks that the conditions of Theorem A.2 are satisfied. The theorem

also covers the case f(z) =xz7%, 3> 0.

We will prove Theorem A.2 below, using ideas of Davies and Simon. Nevertheless,

assuming additionally that f is a convex function for large z, Theorems A.1 and A.2 can
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both be proved using ideas developed in Chapter 2 (and indirectly ones from [DVSM],
see also [FRHS)). Such an approach clarifies where the above result comes from, and we

just sketch the main steps. Let us start again with the half-strip M = (—1,1) x (1, o0)

with the metric
dsi; = dz? + f(z)%dz?, (A.1)

and let H ~ be the Laplace-Beltrami operator on M with the Neumann boundary con-
dition. Separating the variables, we obtain that H v is unitarily equivalent to @, Ha,
where H, is given by (9.7). If V is bounded and f(z) — 0, @,,, H, will have a dis-
crete spectrum and any nontrivial spectral behavior can come only from Hy . For V
short- or long-range, all three conclusions of Theorem A.1 are valid. If Q is given by
(7.3), performing the same change of variable as in Section 8.4, we obtain the Laplace-
Beltrami operator on M with a distorted metric (8.26), which is asymptotically of the
form (A.1). Perturbations can be controlled as in Sections 8.3 and 8.4, and assuming
(HA1), it is easy to show that the two Laplace-Beltrami operators, arising from the
metrics (A.1), (8.26), are the short-range Enss-pair (see [PR2]), regardless of V being
a short- or long-range potential. Now, H ~, the operator in the metric (Al), plays
the role which is usually played by the free Laplacian. It causes no problems when
potential V' is short-range, because then Hy and Hy are again the short-range Enss
pair, and Theorem A.1 follows by a straightforward application of the short-range Enss
theory [DVSM], [PR2]. In the long-range case the above strategy obviously does not
apply. Neverthless, the uniform propagation estimates, which are valid for Hy and
which are the essential ingredient of the Enss theory, are now valid for Hy, provid-
ing V is dilation-analytic [PR2]. Then, a long-range modification of the Enss theory

argument follows basically line by line the simple short-range case, and Theorem A.2

follows.

Instead of making the above argument rigorous, we will give a modification of the
original Davies and Simon argument (in fact, since we are relying so heavily on the
Enss theory, the discussion above can also be considered as a modification of their

argument). The two approaches seem to be complementary and each of them reveals
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a part of the picture. The reader, already familiar with the change of variable trick,

should see the other part of the story, namely, the direct spectral analysis approach of
[DVSM].

Proof of Theorem A.2

Needless to say, our argument follows the one in [DVSM] almost line by line. Let Hy
be the operator (8.5) with the Neumann boundary condition at 1, and denote by

D= {y : ¥ € C*1,00),¢'(1) = 0}

its domain of essential self-adjointness. Let J : L(R) — L?(2) be the embedding

To(z) = ¢(z)/ v 2f (),

and denote Q = 1—JJ*. The following theorem is the backbone of Davies and Simon’s,

and hence our, argument.

Theorem A.3. [DVSM] If (HA1) is satisfied, we have:

a) If ¢ € D,

I(Hy + 1) % (HyJ = JHy)$|| < 2-1f' 6]l + 1))/ £)ell2 + Cla(L)],
where C is a uniform constant.
b) Q(Hy +1)~'/2 is a compact operator.
c) If g is a continuous function on RU{oo}, g(Hn)J — Jg(Hy) is a compact operator.

Remark 2: The part a) is independent of (HA1), and for parts b) and c) it suffices to
assume that f + (f)2/f — 0. As we already remarked in the Introduction, the form
of Hy, restricted to the subspace consisting of functions which depend on z-variable
only, naturally yields the operator Hy. The control of perturbations, viewing Hy as
a perturbation of Hy, is given by the above theorem. Having complete knowledge of
the spectral properties of Hy, and with Theorem A.2 at hand, it is fairly obvious how

to use the scattering theory to deduce spectral information about Hy. While we are
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going to use the time-dependent approach of Enss, as was done in [DVSM], one can
equivalently use the stationary scattering theory, as in [PR1], [HOR], and presumably
a modification of the Mourre theory, as in [FRHS]. While the above two approaches
are somewhat more lengthy (and less elegant), they yield more information: One can
construct a generalized eigenfunction expansion (see [PR2], [HOR]), and tackle the

issue of the structure of the embedded eigenvalues. We are not going to discuss those

methods here.

We now collect some standard results from the Enss theory. Extend V as an even
function around the point z = 1. If Hy is the operator (8.5) on the whole real line,
its restriction to the subspace consisting of functions that are even around the point
z = 1 coincides with Hy . Translating by 1, we observe that qu is unitarily equivalent
to Hy+ 17, which we also denote by fIV. Let A be a scale transformation around z = 1
(see [CFKS], [PR2]),

A=Z(z-1)p+p-(@—1),
where p = —iD = —id/0z in an z-space representation. A is essentally self-adjoint
on CP(R), its spectrum is purely absolutely continuous on (—o00,00), and A leaves
invariant the subspace of functions that are even around 1. By P. we denote the
spectral projections of A on (0, 00), and by P§ the spectral projections on £(%a, o0).
Obviously, P, + P_ = 1. It is a standard result that (under conditions (HA1) and
(HA3)) the operator Hy has no (strictly) positive eigenvalues, and that o,.(Hy) =
[0,00), Osing(Hy) = 0. In the sequel we will use Enss’ notation where F(M) stands for
the characteristic function of the set M, and P,. will denote the spectral projection on
the absolutely continuous subspace of Hy. Because of the view of Hy as a restriction

of Hy (keeping the above translation in mind), we have

Lemma A.4.

a) Let g be a C* function with support in |, 8], @ > 0. Then for any § > 0, N > 0,
and a,

IFQ <z < [t['*) exp(—itHy)g(Hv)PL|| = O(It| ™) (4.2))

as t — +o0.
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b) s— tEIinoo PS exp(—itHy) = 0.

Remark 3: For a proof we refer to [PR2], Theorem 12.4. The fact that ¥ is infinitely
differentiable (and that its derivatives are bounded) is used in the proof. Strictly
speaking, ¥ does not have to be differentiable at the point x = 0. Nevertheless, it
is C* away from 0, with derivatives that remain bounded on the whole real line, so
a glance at the proof in [PR2] shows that it causes no difficulties. Another way of
resolving the issue is to decompose 17, using the Weierstrass transformation [PR2],
into a smooth, long-range, dilation-analytic part and a short-range part. The short-
range part will contribute to the estimate a) of Theorem A.3, while (A.2) certainly

holds for the long-range part, and the argument below carries over without changes.

Using the Weierstrass transform trick, one can also drop the assumption that V' is C*.
The final preparative Lemma is the following

Lemma A.5. Let

S(R) = ||(Hy +1)"Y*(HJ — JHy)(Hy + 1)"'F(z > R)|.
Then, if (HA1) is satisfied, [° S(R)dR < 0.

Proof : The proof is standard, and follows line by line the argument of Lemma 5.4 in
[CFKS]. Let j be a C* function with 0 < j(z) < 1and j(z) =1for z < 1/2, j(z) =1
for x > 1. Denote jr(z) = j(x/R). We have jpF(x > R) = F(z > R), and

[(Hv +1)7,jr] = (Hv +1)"/(D?jr + Djr- D)(Hy + 1)™".

It is trivial to estimate |D?jg|,|Djgr| < (C/R) - jg/2, and thus

S(R) < |(Hy + 1)™"*(HyJ — JHy)(Hy + 1) jg||
< |(Hy + 1)7*(HyJ — JHy)jr(Hy + 1)+
+ (Hy +1)Y3(HyJ — JHy)(Hy + 1)"Y(D%*jgr + Djg - D)(Hy +1)7}|
< O(R™'™) +C'S(R/2)/R.

We used Theorem A.3 and (HA1) in the above estimates. Iterating the last inequality
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and using that S(R) is bounded, we derive

S(R) < O(R™'"9 + C"/R?,

and the lemma follows.

We now follow step by step the argument of [DVSM].
Step 1: s— tlirin (Hy +1)"Y2exp(itHy)J exp(—itHy )P, exists.
—I0

Let us consider only the limit ¢ — oo; a similar consideration applies to the other one.

By Cook’s criterion, it suffices to show that
/ |(Hy + 1)7Y2(HJ — JHy ) exp(—itHy )g(Hy ) P2 ||dt < oo,
0

where g is as in Lemma A .4, since U, jJRang(Hy )P{ is dense in H,.(Hy ). Denote
A(t) = ||(Hy + 1)"Y*(HJ — JHy) exp(—itHy )g(Hy ) P2|.

Choosing § < € in (A.2), we estimate, using Lemmas A.3 and A 4,
A(t) < ||(Hy + 1)"Y3(HJ - JHy)(Hy + 1) F(z > 79|+
+||F(1 < z < t7'7) exp(—itHy)(Hy + 1)g(Hv)P¢||
<Ot 1) + o(t7?).
Step 2: The wave operators OF =s — tE:anoo exp(itHy)J exp(—itHy ) P,. exist.
(Hy +1)7Y2J — J(Hy + 1)~/2 is compact by Theorem A.3, and thus

s — tlian exp(—itHy)((Hy +1)7Y2J — J(Hy + 1)"Y2) exp(—itHy )P, = 0.

By Step 1, Q% ¢ exist if ¢ € Ran(Hy + 1)"1/2P,, and the last set coincides with
Hae(Hy).

Step 3: (Hy + 1)~V%Q* — J)g(Hy)Ps is a compact operator.
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First, (Hy+1)"'/2(exp(itHy)J exp(—itHy )—J)g(Hy )Py converges in the operator
norm, and thus it suffices to show that each of these operators is compact. Such

operators are finite integrals of the operators of the form

(Hy +1)"Y%(HJ — JHy) exp(—itHy )g(Hy ) Ps, (A.3)
and thus it suffices to show that operators (A.3) are compact. But it is a consequence
of the part c) of Theorem A.3.

Step 4: If ¢, € Huc(Hy)*, with ||(Hxy + 1)¢n|| bounded and (Hy + 1)¥/2¢, — 0

weakly, then ||¢,|| — 0 as n — oo.

First, (QF)*¢, = 0 for all n, and thus for any C$°((0,00)) function g, step 3 yields
Pyg(Hy)J"¢a — 0.

Since Py + P_ =1 and g(Hy)J* — J*g(Hy) is a compact operator, we obtain that
J*g(Hv )¢n — 0. Since ||(Hy + 1)¢,|| is bounded, we estimate

lg(HN)bn — ¢nll < Cllg(Hn) — 1. (A4)

Since g is arbitrary, the left-hand side of (A.4) can be made arbitrarily small, and thus

J*¢, — 0, and so JJ*¢, — 0. By Theorem A.3, Q¢, = (1 — JJ*)¢p, — 0, and we
conclude that ¢, — 0.

Step 5: 04ing(Hn) = 0 and in any finite interval Hy has only finitely many eigenvalues.

If any of the statements is not valid, we can construct an orthonormal sequence ¢,
s0 that ¢, € Hac(Hy)t, [(Hy + 1)¢,|| is bounded, and (Hy + 1)/2¢, — 0 weakly.
Step 4 implies then that ¢, — 0, which contradicts the fact that the sequence ¢, is

orthonormal.
Step 6: 0,.(Hy) has multiplicity one.

It suffices to show that Ran Q* = H,.(Hy). Suppose that it is not, namely that we can
find a non-zero vector ¢ € Hoo(Hy)N(Ran Q)L ND(Hy). Define ¢, = exp(—inHy)¢.
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The part b) of Lemma A.4 yields
Py(Q27)*¢n = Pyexp(—inHy )Poc(2 )¢ — 0, as n — 0o.
Thus, as in the step 4, ||¢.]| — 0, and we derive that ¢ = 0, a contradiction.
Step 7: There exists a discrete set of embedded eigenvalues.

This is a consequence of symmetry of ) with respect to the axes z = 0. Let F
be the subspace of L%(2) consisting of those functions that are even under reflection

(z,y) — (z,—y). That subspace is invariant under Q and Hy and thus Hy restricted

to it has a compact resolvent, by Theorem A.3.
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Part 111

Spectral Properties of Random Schrodinger Operators
with Unbounded Potentials
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Chapter 10: Introduction

It is already a part of folklore that multiplicative perturbations of the Anderson

model show rather “unusual” spectral behavior. The basic paradigm is the discrete

Schrodinger operator on 1?(Z!)
H, = Hy + V,(n), Vi(n) = A, (w)|n|®,

Hyu(n) = 2u(n) — u(n + 1) — u(n — 1),

where £,(w) are independent random variables with bounded, compactly supported
density r(x), and A is a parameter. For a < 0, the above model has been extensively
studied in [SIM7], [DSS1], [DSS2|, [DEY], and their main results can be summarized
as follows (note that for a < 0, V,,(n) — 0 as |n| — oo and thus ges(H,) = [0,4]).

Theorem With probability 1 :

(a) For —1/2 < a < 0, spectrum in [0, 4] is pure point with eigenfunctions decaying as
exp(—C|n|"*2).

(b) For @ < —1/2, spectrum in [0, 4] is purely absolutely continuous.

(c) For @ = —1/2 and X large, spectrum in [0,4] is pure point with polynomially
decaying eigenfunctions, while for A small H, will have some singular continuous

spectrum.

For a > 0, |n]* — oo, but this does not imply that spectrum is necessarily discrete:
If 7(x) does not vanish in some neighborhood of 0, &, can get arbitrarily small with
positive probability and thus eventually compensate for growth of |n|® within infinitely
many sites. That in turn can lead to a nontrivial spectral behavior. Let us consider the
simplest case when &, are independent random variables uniformly distributed on [0, 1]:
It was shown in [GMO] that for a. e. w, H,, will have a discrete spectrum if and only if

a > 1. Furthermore, if d/k > o > d/(k + 1), 0es(H,,) = [ar, 00), where a;, is a strictly
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decreasing sequence of positive numbers, o(H,) = o,,(H,,), and the eigenfunctions
decay superexponentially. Thus, while for o < 0 the essential spectrum is always [0, 4]
with a phase transition in its nature at @, = —1/2, for @ > 0, the essential spectrum is
always pure point but its endpoints are piecewise constant functions of the parameter
a(!). In this part we are interested in obtaining the multidimensional analog of the

above results when a > 0; namely, we will study the operator
H, = Hy + &(w)(1 + |n]®), a>0, (10.1)

acting on [2(Z4). In (10.1), |n| = (35 n?)!/2, £.(w) are independent, random variables
uniformly distributed on [0, 1], and

Hop(n)= D ¢(n)—¢(m),  |Holl =44, (10.2)

fn—m|y=1
where |n|s = 3 |n;|. We view §,(w) as a random field on @),,54(0, 1] = 2, and denote
by P the corresponding probability measure, and by E the mathematical expectation

on . Before stating our main results, we introduce some notation. For X C Z¢ denote

by Cga(X) the set of all ¢ € 1?(Z¢) with support in X. Let D be the form associated
to Ho,

D(g)= Y. I|e(m)—d(n)?, (10.3)

(n,m)
In—m|y=1

where (n,m) reminds that each pair appears only once in the summation. Denote

AX)= inf D)
¢Ecﬁn(x)

If #X < 00, A(X) is the smallest eigenvalue of the spectral problem
Hyp=Xp, @(n)=0if neZ\ X.

Following [GR], we say that a set Ay, C Z? is a k-animal (or just animal) if Ay is

connected and #A; = k. Modulo translation, there are only finitely many animals of
the size k. Let

ar = inf A(Ag). (10.4)
Ag
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Obviously, a;, is a strictly decreasing sequence of positive numbers. Those animals for
which the infimum in (10.4) is attained we will denote by Az and call them tamed
animals. As we will see later, taming the animals (namely, obtaining control over ay,

Ary) is not an easy task at all.

In the sequel, f(z) ~ g(z) stands for lim, f(z)/g(x) = 1. With the above

notation, our main results are stated as follows.

Theorem 10.1. H, has a discrete spectrum P —a.s. if and only if @ > d. Furthermore,
if N,(E) denotes the number of eigenvalues of H,, that are less then E, we have that

for « > d and for a. e. w

N,(E) ~ d . B>, (10.5)

where 7, denotes the volume of a unit ball in R

Theorem 10.2. If d/k > o > d/(k + 1) for positive integer k, we have for a. e. w

a) Oess(Hy) = [ar, 00)

b) 0ac(H,) =0

Theorem 10.3.(A. Gordon) Let Ap be the lowest eigenvalue of a Dirichlet Laplacian
of a unit ball in R%. Then

ap r~ k_d/2 . )‘D-

Remark 1: Only affecting the values of constants, we can suppose random variables
¢, have common nonnegative absolutely continuous density which is of the form z# on
[0,8) for some 8,6 > 0. On the other hand if &, are uniformly distributed on [-1,1],
Theorem 10.1 remains valid (with appropriate reformulation of (10.5)), while part a) of

Theorem 10.2 has to be replaced with o(H,,) = (—00,00) (part b) also remains valid).

Remark 2: The constant Ap, introduced in Theorem 10.3, coincides with the smallest
zero of the Bessel function Jy/a_1. So, if d =2, Ap = 2.4048...,if d = 3, A\p = 7w and
Ap ~ d/2 for d large.

The above results are the first part of a program of investigation of random
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Schrodinger operators with nonstationary potentials. Already for the model (10.1)
we have right now much more detailed spectral information. In [GJMS] we will
show that o(H,,) = opp(H,) with superexponentially decaying eigenfunctions and that
#0oaisc(H,) < 0o for typical w. In [GIMS] we also study the integrated density of states
of H,. These results are somewhat technically involved and we will not discuss them

here (partly because some details still have to be worked out).

The continuous analog of the above theorems exists and will be discussed in Chapter
13.

We finally remark that Theorem 10.3 is entirely a contribution of A. Gordon.
Although the author has previously proven the continuous analog of it, Theorem 13.3,
he even had a wrong conjecture for the discrete case! For the sake of completeness,

Gordon’s beautiful result is included here.
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Chapter 11: On the Discrete and Essential Spectrum

This chapter is devoted to proofs of Theorems 10.1 and 10.2.

11.1. ON THE ESSENTIAL SPECTRUM

In this section we prove that for a. e. w, H,, has discrete spectrum iff @ > d and
that for d/k > a > df(k + 1), 0ess(Hy,) = [ag, 00).

A sufficient and necessary condition for Hy + V,,(n) to have discrete spectrum is
that

|Vo(n)] — oo as |n| — oo. (11.1)

Let ¢ > 0 be fixed and denote
A ={w: &(w) - (14 |n]*) < ¢}

P(AS) = ¢/(1 + |n|*) and ) P(A%) converges if and only if @ > d. Borel-Cantelli

lemma implies that (11.1) holds iff @ > d, and thus the first part of Theorem 10.1
follows.

Let us suppose that d/k > a > d/(k + 1). Denote I = 2k - Z¢, and decompose
Z¢ = UnerJn, Where 7, is the cube of volume (2k)d centered at n. Let Ar be an
arbitrary tamed k-animal that contains 0, and denote by A% its translation by the

vector n € I. To show that

Oess(Hy) D [ak, 00) P-as. (11.2)

it suffices (using Weyl!’s criterion and the fact that the essential spectrum is a closed

set) to construct for every rational A > 0 and for a. e. w a sequence g;, satisfying

lim ||(H, — XA — a)ei]| = 0. (11.3)
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Fix a sequence b; — 0, and denote for n € [
Ab = {w: X —b; < V,(z) <A+ b; for z € A%}

P(A%) > b;,C/(1 + |n|*)* for a suitable uniform constant C, and thus Y P(A%) di-
nel
verges. The Borel-Cantelli lemma and diagonal argument implies that there exists with

probability 1 a strictly increasing (w-dependent) sequence n; such that
Va(n) — A < b; for n € A%

If g is an eigenfunction corresponding to ag, set ¢y to be zero outside Ar and denote
wi(n) = @o(n — n;). It is trivial to check that (11.3) is satisfied and (11.2) follows.
It remains to show that

inf oess(H,,) > ag P-a.s. (11.4)
The following simple lemma is the backbone of our argument.
Lemma 11.1. For v > 0 let

B, = {w : in the ball B(n,|n|?) there exist k + 1 points n; such that

(11.5)
Voo(ni) < [}
Then, for v small enough, with probability 1, only finitely many events B, take place.

Proof : It is easy to show that for « small enough
P(B,) <L C- |n|(k+1)(d7+7—a) < C|n|"d“,

where C is a uniform constant. Thus, for such v, > P(B,) < 00, and the Borel-Cantelli

lemma implies the statement. 1

The discrete version of Persson theorem ([CFKS], Theorem 3.12) states

inf 0es(H,) = sup inf (¢, H, o).
Kczd $€C(ZI\K)
#K<oo [oll=
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Let K be a ball, centered at 0, of large enough radius so that outside K no event B,

takes place for a. e. w. Let

R = inf |n|,
n¢K

and let
A, ={neZ\ K : V,(n) < 1}.

For a. e. w, A, is a disjoint union of animals of size # < k. Let B = Z¢\ (K U A,),
and for ¢ € Cg,(Z%\ K),||¢]| = 1 denote

by = {gg,(n), if n € A,; by = {g,(n), if n € B,;

otherwise; otherwise.

Obviously,
(¢1,62) =0, llnl* + liall® = 1.

For R > ai, we have

(Hw¢7 ¢) = (Hw¢la ¢1) + (Hw¢2a ¢2) + 2Re(Hw¢17 ¢2)

> arl|é1)|® + R||p2)|® + 2Re(Hod1, ¢2)
> ai + (R = a)||dell”> — 2| Holl - ll#1]l - ll2ll
1642

> ap — .
= Tk R—ak

Consequently,

1642

inf 0ess(Hy,) > ar — 7 P —as.

By taking K big enough, R can be made arbitrarily large and (11.4) follows.

11.2. ABSENCE OF ABSOLUTELY CONTINUOUS SPECTRUM

The following simple consequences of Lemma 11.1 will be of use below (and are of
essential importance in [GJMS], where we prove localization). Let d/k > a > d/(k+1),

and for a suitable vy let

A, ={n :V,(n) <In|"}.
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According to Lemma 11.1, for a. e. w we have a decomposition
Ao=JAnw),  A@n,w)nAm,w)=0.
n>0
(In the sequel we drop the w-dependence, which is clear within the context.) A(0) is

a finite region chosen in such a way that for n &€ A(0), no events B, take place (see

(11.5)), and A(n) are animals of size < k. For X,Y C Z¢, we define
d(X,Y)=min{|s-s'| : s€ X, s €Y},

and let ~ be a relation of equivalence on {A(n) : n > 0} defined as
A(n) ~ A(m) & (3ny = n,ng,...,n; such that
d(A(n;), A(niy1)) < Cmax{|s|]”, |s'|" : s € A(mi), ' € A(niy1)},
for a suitable constant C. Let G® be the union of the elements of the i-th class of
equivalence. By taking C small enough, it is trivial to show that #G® < k (otherwise

some event B, happens for n g€ A(0)) and that for ¢ # k

d(GD,G®Y > Cmax{|s|", |s]" : s € GV, s’ € GP}.

The point of the above is the following. Think about G as potential wells. Then,
for typical w and outside a finite (w-dependent) set, wells have no more then k points
and are separated by high and long potential barriers. These barriers make tunneling
difficult, and one should expect that (at least) there is no a. c. spectrum. That intuition

is very close to the one in [SIMSP], where among others the following (deterministic)

theorem was proven.

Theorem 11.2. Let {C,}3%, be a sequence of disjoint cubes in Z¢ of side I,, and let

d, = d(Cy,Cr). Suppose that potential V satisfies
V(ky>0for k¢l ]JCa,
n>1

and that, for any € > 0,
Zlﬁ‘l exp(—ed,) < oo.
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Then
Oac(Ho + V)N (—00,0) = 0.

The above theorem is quite general. For example, its immediate consequence is that if

in addition we have

lim V(m) = oo, (11.6)
mgucn
then
ou(He+ V) =0. (11.7)
Thus, that in our model we have
cac(H,) =10 P-a.s. (11.8)

can be shown as follows. To every G we associated the point n; € G in such a way

that G is contained in cube Cj, centered at n; and of side C|n;|7, and moreover
d(C;, C;) = Dmax{|ni|",|n;|"}. (11.9)

Since for every p and any € > 0,
> |nlP exp(—¢ln|") < oo,
neZd

the result follows.

11.3. Proor oF THEOREM 10.1

To calculate the eigenvalue asymptotics, first note that monotonicity of N,(E)
implies that it is enough to consider the case when E — oo is an integer. We proceed

as follows. Denote by

+ _[1, if&(w)- (14 |n|*) £ E x44;
Xg(n,w) = { , otherwise.

and set Si(w) = 3 xE(n,w). Because ||Hy|| = 4d, we have

neZd

Sz(w) < Ny(E) < Sf(w).
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Since

E+4d
ESE)=#{n:(1+|n|*) < E+4d} + E —_—,
1+ [n|®
n:14|n|*>E+4d
one easily obtains

1
Jim EUE(SE) = 74+ / — dx

||
T a—-d
It remains to show that
E~Y*(8E —E(S%)) » 0 as E — oo P-as. (11.11)

First note that

i | " E+4d
E((SEY) < 251 | (#{n: (1 + |n|*) < E £ 4d})* + (Z) Hf=1(1+|m|“))

n;>E+4d V4

and thus (as in (11.11)) limsupy_, ., E-%*/*E((S£)*) < C, where C is a uniform con-
stant. Let nE(n,w) = x5(n,w) —E(xE(n,w)). n5(n) is a sequence of independent (but
not identically distributed) random variables satsfying |nE(n)| < 2, E(nE(n)) = 0. We

have
E((S§ - E(S§))™) = B(()_ 75(n))™)
neZd
< C- Edk/a
for a uniform constant C. The first inequality in (11.13) follows from simple combina-

torics and the observations that

#{n :mEn,w) #0} <S5 E(D_ m(n) =0,

nezZd
(see also Section 13.2) For € > 0, the Chebyshev inequality yields

E-24/°B((S% — B(S$))*)

Pg = P{E~"/*|S5 — E(S%)| > €} < 2k

E—dk/o
2k

<C
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Ifdk/a>1, ), Pg< oo (remember, E was an integer), and Borel-Cantelli Lemma
E=4d+1
yields (11.12).
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Chapter 12;: Taming the Animals

This chapter is devoted to A. Gordon’s proof of Theorem 10.3.

We start by introducing the continuous analog of the (10.3). If Q is a region in R4,

the Dirichlet Laplacian —A$} is the unique self-adjoint operator whose quadratic form

is given by the closure of

D(u) = [ |Vu]*dz
/

on C&°(9). In the sequel we will suppose that all regions under consideration have a
piecewise smooth boundary. If ||, the Lebesgue measure of (2, is finite, —A% has a
compact resolvent, and its smallest eigenvalue is given by

A(Q) = inf D(u). (12.1)

uGC&°(Q)
flull=1

The corresponding eigenfunction u is a C*°(§2) function satisfying
—Au(z) = A(Q)u(x) for z €qQ, u(z) =0 ifz € 0.
It is also known that u(z) > 0 for z € Q. For positive r let
A = inf{A(Q): || =r}. (12.2)

The infimum in (12.2) is achieved when Q is a ball of volume r [CH], A; = Ap and
Ar = Ap/r. For notational simplicity, in the sequel we will suppose that d = 2. We

will prove

Lemma 12.1.

a < % . (1 + 0(1/\/—15)) :

Lemma 12.2.

Ao 140(1/Vk)

ap = —

k 143-#0Ar,/k
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Lemma 12.3. If Ary, k > 1 is a sequence of tamed k-animals, we have

lim 704k _

Jim — 0.

Theorem 10.3 is an immediate consequence of the above three lemmas. Their proofs

are somewhat subtle and we devote to each a separate section.

12.1. Proor or LEMMA 12.1

To avoid confusion, throughout the chapter we use Latin letters to denote elements
of L2(R?), and Greek letters for elements of I2(Z¢). By || - || We denote the norm on

R2? given by ||(e1,¢2)|lec = max{|e;,|e2|}. To any subset X of Z? we correspond a

region X, in R? whose closure is given by
X.={ze€R?: sup|jz — yll < a}. (12.3)
yeX

If Ay is an arbitrary animal, A,/ is the region given by (12.3) with @ = 1/2. For
A(Ag,/2) given by (12.1), we denote the corresponding eigenfunction by u and set

w(z) =0ifx ¢ Ag1/o. Toevery z € F = {z € R? : ||z|l < 1/2}, we associate a
function ¢, on Z? so that

éz(n) = u(n + ), n ez

Obviously, ¢.(n) # 0 iff n € Ag. Furthermore,

/ 6o |[2dz = / S un o)=Y / wn+o)de=|u.  (124)
F F T nF
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Let ey = (1,0), e2 = (0,1). We have for i = 1,2

/ Z((ﬁw(n +€) — ¢ (n)) dz = Z /(u(n +z+e)—uln+))de
F " nF

"Z/ (/3u(n+az+te,)dt)2dx
S/;/ (au(n -(;;:i+te,-))2dtdx
- (e

R?

Summing over ¢ we obtain

/'D(@)dx < D(w), (12.5)

F

and consequently there exists at least one zg € F such that

D($ay) < D(u) = AAp2)llull* = A(Ar172)l| bz |-
It is immediate that
ar < A(Ar) < A(Agj2)

Let a > 1//2 be arbitrary, and denote by B(r) the ball of radius r centered at 0. For
k large enough let S = B(y/k/7 — a) N Z2. We have

§ = 1S12l < |B(/E]7 - a+1/V3)| < |B(/R]m)| = F, (12.6)

and so there exists a k-animal A; that contains S. We have

Akaja D Sij2 D B(Wk[m —a—1/V2),
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and consequently,

ar < A(Ak1j2) < AB(VE[T—a—1/v2))

(A7 —a—1/V2P
= %(1 +0(1/VE)).

The lemma follows.

12.2. Proor oF LEMMA 12.2

Let A;, C Z2? be an arbitrary animal, and let ¢ be the normalized eigenfunction
corresponding to A(A;). We extend ¢ to a continuous function » : R? — R in the
following way: u(k) = ¢(k) if k € Z2, and on each quadrant Q;; = {(z1,22): i <71 <
i+1, j <xy<j+1}, uis of the form

’LL(.’IIl, IL'Q) = a;; + b,'j.’l)l + cijze + d,‘jil)'l.’EQ.

Such extension exists and is unique. We divide the rest of the argument into three

steps.
Step 1: D(u) < D(¢).

The change of variable e, = 17 — i — 1/2, €3 = 2 — j — 1/2 transforms Q;; into the
quadrant @ = {(e1,€2) : |e1] £ 1/2, |e2| £ 1/2}, and u(z) into the function

U(e) = h + agy + beg + ce1€2,

for suitable ¢, j -dependent constants h, a, b, c. We have

Ou i = U = 2, _ 2, 2
/(3371) dx_/(ael) ds—/(a+ce2) de = a” + /12, (12.7)
Q Q

tJ

and
%(u(l + 1).7) - u(Z,j))2 + (U(Z + ]-aj + 1) - ’U,(Z,j + 1)2) =

DN =

(UQ/2,-1/2) - U(-1/2,-1/2) + (U(1/2,1/2) - U(=1/2,1/2)))
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= %((a —¢/2)’ + (a+¢/2)’) = a® + /4.

From (12.7), (12.8) we obtain, summing over i, j,
/ Ou : dr < Z(u(z +1,5) — u(i,§))?
axl — - 7.] ’.] H)
R? I
and similarly

/ (g_;)z e < F(uti +1) = uli )

R2

The result follows by adding (12.9), (12.10).

Step 2: |lu|> > 1 —3A(Ax)/4.
First, note that

/ u(z)?dz = /(h + ag; + beg + ce162)?de; deo
Qi,j 2
= h% 4+ (a® +b?)/12+ 2/24
>h? =u(i+1/2,j+1/2)%
Consequently,

lull® > uli+1/2,5 +1/2)%

2y

(12.8)

(12.9)

(12.10)

(12.11)

Let Z?2 be a dual lattice of Z2, obtained by translating Z2 by the vector (1/2,1/2). Let

T : 12(Z2) — 12(Z2) be the averaging operator defined as
. : 1 . .
Ty +1/2,5+1/2) = Zzzp(z +1/2+£1/2,5+1/2+1/2).
+.+
From its very definition, u|5, = T¢ , and

llull 2 flulzg.ll = T4l

The adjoint T* : 12(Z2) — 12(Z2) is given by

w oo 1 . :
T n(i,§) = 7 _ni£1/2,j £1/2),
+,+

(12.12)
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and we have ||T|| = ||T*||,

llwll = IT*T4|. (12.13)

Let B,(a) be a ball of radius a centered at n (in the Euclidean metric), and denote
by B(a) the k-independent number of integer points contained in By(a). Let K, :
12(Z?) — 12(Z?) be defined as

Kau(n)=%)- Z u(m).

meEBy(a)

For example, Hy = 4(K; — 1). For any k we have A(Ax) < 4, ¢ > 0 on A, and

consequently,

Kig(n) > (1 - A(A)/9¢(n),  Kig(n) > (1 — A(Ar)/4)*(n).

A direct calculation yields

o 111
T'T = 1+ 5K+ K,
1, 1

— 2_ = -
K= 2K} - 5K - 51.

Thus, using (12.12) we obtain
lull 2 IT*T¢ll 2 (T"T¢, ¢)

2> %(1 — A(Ax)/4) + -;-(1 - A(Ak)/4)2, (12.14)

and consequently,

llull® > 1 — 3A(Ax)/4.

Step 3:
Ap 1+ 0(1/VE)

= T+3 #0Ane/k
From the above two steps we obtain, if A(Ax) < 4/3,

Dw) . _ D@  __ A4
Tull = T-3A(Ap)/4  1-3A(AR)/4°

(12.15)
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Let Ag, be given by (12.3), with a = 1. u belongs to the quadratic form domain of
the Dirichlet Laplacian in the region A, and from (12.15) we get
A(A)
AApy) € ————.
(Ara) < 7= 3A(Ag)/4

Consequently,

A(Axy) AplAes|™!

A A > 3 > ?
( k) - (1 +3A(Ak’1)/4) -1+ 3}\D|Ak,1|_1/4 (1216)
= Ap|Ak1|~H(1 + O(1/k)).

(12.16) is trivially satisfied if A(Ax) > 4/3, and so is true for all k. We also have
|Ar1| < #Ak + 3 - #0A,, and consequently,

Ap  14+0(1/Vk)

Ap
> —_ .
A4 k 1+3-#0A./k

~ k+3-#0A,

(1+0(1/k)) = (12.17)

(12.17) is true for any k-animal, and in particular for any tamed k-animal Ap. The

lemma follows.

12.3. Proor orF LEMMA 12.3

For n,m € Z¢, a path between n and m is a sequence of sites ny,no,...n; such
that n; = n,n, = m,|n; — nj_1|+ = 1. For X C Z2, denote
OnX = {m € X : there exists a path of length < n starting at m
and ending at m' € Z2 \ X}.

Obviously, X = 0X. If Arg, k > 0, is a chosen sequence of tamed animals, we will

prove

k—o0 k
The lemma follows by setting n = 1 in (12.18). As before, ¢ denotes the normalized

eigenfunction corresponding to a; = A(Ar). For X C Z¢ let

lellx = l6(n).

neX

=0. (12.18)

Again, we split the proof into three steps.
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Step 1: |13, 45, = O(ar) = O(1/k).

If m € 0,Ary, there exists a path of length I < n, m = my,m,,...,my, |m;j_1 —

mjil+ =1, m; ¢ Arg. We have

l
l(m)] <Y 1é(mj—1) — $(m;)?
i=1

!
lp(m)? < "Z l¢(m_1) — ¢(m;)|>.
=1

Any couple (m,m'), |m — m’|4 = 1 can belong only to finitely many paths of length

n, the number depending only on n, and consequently,there exists a uniform constant
C, so that

Do kP <Ca D |8(m) = d(m)] = Co-ar = O(L/k).

mE AT | fml']n) .
m’'—m +=

Step 2: Denote O} = Ary \ 9,A7y, and let (m) = max{0,$(m) — b/Vk} for
0 <b< 1. Then

(a) D(¥) < D(¢).

(b) ¥l =10

(c) If Z7 = 0P U {m € Ary : ¥(m) > 0} then #(Zp \ OF) = O(1) as k — oo.
The part (a) is trivial. To prove (b), let ¢(m) = max{¢(m),b/vk}. Then

1813, = 3 Bm)PE<I#®=1,  w(m)=g(m)-b/VE,

""-EAT,k

and the Minkowski inequality yields

1/2
Il > 1Bllaz, — ( > bg/k) >1-b.

meAT,k

To prove (c), note that from Step 1 we have

#{m € 8, Ary, : d(m) > b/VEk} = O(1).
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On the other hand, ¥(m) > 0 iff ¢(m) > b/vk and (c) follows.
Step 3: If o, = limsup,_, . (#0,Ar)/k, then lim, o 0, = 0.

We first remark that 0 < o3 < as < ... <1, and consequently, lim, ., o, = @
exists. Let # = 1 — « and suppose that § < 1. Let p € (6,1) be arbitrary, and denote

6, = liminf#z’“

k—o00 k

From Step 2 we have that

#2E _ ——OI(:) 41— ¥ondrs (12.19)

ko k
and consequently, 8, = 1 — a, < p for n large enough. Step 2 also implies that for any

b> 0 and any ky € R, there exist k, m, k > ko, m < pk, so that #A} = m and
A(ZD) < ap/(1 = b)2. (12.20)

First, (12.20) implies that § > 1/4. Otherwise, we can choose p < 1/4 and derive from
(12.17), (12.20)

Ap

— (1+0(1/m)) L am < A(ZE)

a Ap - (12.21)
< < . 1/VEk)).
< T2 < g (L+0U/VR)

m/k < p, and so when k — 00, m — 0o as well, and we obtain 1/4 < p(1 — b)? for all

b > 0, which contradicts the choice p < 1/4.

Let 0 < € < 1 be chosen in such a way that p/6 < 1/(1 —¢€). For n large enough,

6, < p and consequently, §/6, > 1 — . There exists a sequence k; — oo so that

# an AT,k N
m —

li

h n-
jmeo  kj

On the other hand, from (12.19) we derive

Onr1 AT
lir'nsupw <apy <1,
J—oo )
kj kj
lim 207 _ g, lminf O >4 > 6.
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Because 00; = O; \ Of,,, we have

o0y -
limsup# ki < 0n — 6

< <E&.
Jj—oo #OEJ' 0"

Again, Step 2 (c) yields

n

lim sup 2

For j large enough, to any k; we correspond m; with m; < pk; so that #Zg, = m; and
(12.20) is true. It follows from (12.17) that for any é > 0 and large enough j,

Ap(1 — 6) Ap(l — 6)
mJ(l +3- #GZ,’:J/m,) - pk](l + 35)

<E.

A(ZE) 2

On the other hand, from (12.21) and Lemma 12.1 we obtain

A(ZR) < (1?“",))2 < k]-(lAi)- o +0(1//k5)),

and consequently, for a large 7 we have

, 1-6
pz (- Fga ey

The numbers b, ¢, § can be chosen to be arbitrarily small and so p > 1, which contra-

dicts the choice of p, namely, that § < p < 1. So, § = 1, and for all n, a, = 0. The

lemma, follows.
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Chapter 13: Continuous Model

In this chapter we study the continuous analog of the model (10.1), namely, the
random Schrodinger operators H, = —A + V,(z), acting on L2(R¢), where

Vo(z) = &(w)(1 + |n|*)  for z € I,. (13.1)

In (13.1), I, are unit cubes centered at integers, R? = Upczal,, and &, are as in
(10.1). It certainly does not come as a surprise that, suitably modifed, the results of
the previous chapters remain valid for H,,. The continuous analog of the k-animals,
for which we reserve the same name, are the connected regions consisting of k cubes

from {I,}. For a k-animal A, A(Ai)stands for the lowest eigenvalue of a Dirichlet

Laplacian —Af)k. We set again
ar = inf A(Ay).
Ag

B(p, q) stands for the Beta function,

1
B(p,q) = /-’L‘”"l(l -z)" 'z, p>0, ¢>0.
0

Theorem 13.1. H, has discrete spectrum P-a.s. if and only if @ > d. For o > d and

for a. e. w,

d () d d d/2+d/a
NL(E) ~ a—d(Zﬂ')dB a,2+1 E . (13.2)

Theorem 13.2. If d/k > o > d/(k + 1), we have for a. e. w
a) Oess(Hy,) = [ak, 00).

b) o..(H,) = 0.
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Theorem 13.3. With Ap as in Theorem 10.3,

ap ~ k=% . Ap.

The probabilistic part of the proofs coincides with the one from the discrete case
(and so does the intuition where the above results come from), while the rest of the
argument suffers mostly minor technical changes. The remarkable difference is that in
contrast to the discrete case, the proof of Theorem 13.3 is trivial (!). Naturally, that
does not mean that model (13.1) is simpler to study than (10.1). For example, proving
the absence of a singular continuous spectrum for operators (13.1) seems to be beyond
the reach of existing techniques (the problem is not in the decay of the resolvent kernel

but in the Simon-Wolff theorem). Such problems remain to be studied in the future.

We finally remark that while in the discrete model the proofs trivially accommodate
the case when &, are uniformily distributed on [—1,1], in the continuous model a new
class of phenomena emerges. Already for @ > 2, it is not clear at all that operators
H,, are essentially self-adjoint on CZ(R?). In the one-dimensional case, that question
was answered in [GMO), where furthermore it was shown that for 0 < @ < 2 o(H,,) =
opp(Hy) = (—00,00), while for & > 2 the spectrum is discrete (!). To prove essential
self-adjointness in a dimension larger than one (we believe that operators are essentialy
self-adjoint on C(R?)) is a much harder problem. Also, we believe that in a dimension
larger than one and for all «, one has o(H,) = (—00,00), which should be quite easy
to prove, providing self-adjointness questions are answered. The models where &, has

a negative component also remain to be studied in the future.

13.1. ProoF oF THEOREM 13.1

For a > d, V() — oo P—a.s. when |z| — oo, by the argument of Section 11.1.
Thus, for & > d, H, certainly has a discrete spectrum. We give details of the eigenvalue
asymptotics calculation since we will consider some generalizations in the next section.

Again, note that monotonicity of the function N,(E) implies that it is enough to



119

consider the case when E — oo as an integer. To simplify notation, we replace 1+ |n|*
with |n|*, observing that by the min-max principle such change cannot alter the result.
For E fixed, denote by @ g(w) a cube centered at the origin whose edges are parallel to
the axes, such that V,(z) > E for ¢ ¢ Qg(w). For a > d, |Qe(w)| < oo P-a.s, and as
in Section 11.4, E(|Qz(w)|F) < CE®/* where C is a uniform constant. Without loss
of generality, we can assume that |Qg(w)| is an integer. Denote by N,f':w(E) the number
of eigenvalues that are less than E of the operator —A + &,|n|® in the cube I,,, subject
to the Dirichlet and Neumann boundary conditions, respectively. Dirichlet-Neumann

bracketing implies (note that H,, > E outside Qg)

Y N},(E) < NJ(E)< Y N;(E)

neZd neZd

Denote (- ); = max{-,0}. Weyl’s law for cubes [RS4] gives

NE(E) = (2—;)— (B = &a(@)n|*),) " + rE(E)

where |rE(E)| < C-E“~Y/2 for a uniform constant C. After summing over n, a simple

calculation yields

Ni(E 1
S gimars = e 2 g (160 | g7
ne

neZd

a>+)d/2 +r5(E),  (13.3)

where r*(E) — 0 as E — oo (or more precisely, |r*(E)| < D - E~'/2 for a uniform

constant D). Denote
. \ 472
).)

ﬂf(w,E) = gni(w,E) - E(grzzh(w’E))'

0 B) = ((1-60)| 7

and let

Rewrite the right-hand side of (13.3) as

W E-4le Z E( C,:::(w, E)) + (277-:-1)d Ed/e Z m:::(w, E) + 'I’i(E). (13.4)
n€z? neZd
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The first sum of (2.2) approaches

1a  (714)?
/ (&))" = (4 000) s

when E — oo. It remains to estimate the second sum. Note that nf(w,E) are

independent random variables that satisfy

E(nf) =0, InE| < 2. (13.6)

The rest of the argument is identical to that in Section 11.4. Let M = |Qg(w)|, and

consider (after relabelling)

E(an(w,m?’“) B Y o/ T

74 k;>0 i=1
n€ kyt-e +kM"'2k

B Y [eEe)® )((%)')/Hk'

k;#1 =1
ky+-- +kM—"2k

< ClRpW)I"

where C is a uniform constant. The above estimates follow from elementary combina-

torics and (13.6). Chebyshev’s inequality yields

Pg = P{ ‘E—d/“(z ) ‘ > e} < P{ E“zdk/a(z )2k > €2k}

nezs n€zd 13.7
c (13.7)

S Farfagh’

If dk/a > 1, Y%, Pr < co and the Borel-Cantelli lemma implies that

E~d/e Z nE(w,E) - 0 P-as. as E — oo.
neZd

(13.2) follows.

Let now o < d. As in Section 11.1, we obtain that for a. e. w, within infinitely

many cubes I,,,(w) we have V,,(z) < 1. If —Ap is the Laplacian with Dirichlet boundary
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condition along the boundary of such cubes, we have
inf oess(—A + V,(2)) < inf oes(—Ap + V(2)) < a3 + 1.

Thus, H,, cannot have discrete spectrum for a < d.

13.2. MORE ON THE EIGENVALUE ASYMPTOTICS

The proof of (13.2) can be extended to cover one interesting example which, to
the best of our knowledge, has not been studied before. It involves the case where

the random variables &, are no longer independent. Let H, be a random Schrodinger

operator of the form
H, = —A+&(z,w)|z|,

where £(z,w) is a stationary random field on some probability space (£, F, P). On
the random field we impose the following conditions: £(z,w) is ¢-mixing with ¢(z) <
Cln~+9(2 4 |z|) and 0 < ¢; < &(z,w) < ¢p P-as.. We recall

Definition: For I' C R¢, denote by Fr the sigma algebra generated by {£(z,w) : z €
T'} and by d(I'1,T'3), the distance between I'; and T'y. A stationary random field §(z,w)
is p-mixing if there exists a function ¢ : Rt — R*, lim,_ ¢(z) = 0, such that for
A€ Fr,, Be Fr,

|P(AN B) — P(A)P(B)| < ¢(d(T1,T'2))P(A).

The operator H, certainly has a discrete spectrum and its eigenvalue asymptotics

is given by the following

Theorem 13.4. Let us suppose that in addition to the above conditions one of the

following is true:

a) (z,w) =¢&,(w) forz eI,
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b) |¢(z,w) — &(y,w)| < M|z —y| P-as., for non-random constant M. Then

N(B) ~ S (2,44 1) Ble0y o) pre,

Remark 1: Consider for a moment the averaged Schrodinger operator
H = ~A+E(§(0,w))|z].

Its eigenvalue distribution is given by

N(E) ~ Z((;d);B (fl- g+ 1) (E(£(0,w))) "4 p/2tdle,

The Jensen inequality implies that for o < d, randomness pulls the eigenvalues down,
while for @ > d it pulls them up. The critical value is a = d, when the asymptotics of

the two distributions coincide.

Remark 2: The result (and the proof) extend to the case when

Vo(e) = &{(z,w)l2]* a(z),

where a(z) = a(z/|z|) is a strictly positive continuous function on the unit sphere 9.

Let g,(z) = max{ (1 — &(w)|z|* a(x)),0}. The asymptotic has the form

Eh—mo Ed72(+d3 =E / (gw(l’))d/ 2dz.

Proof :
a) First note that cube Qg can be chosen now in an w-independent way. The construc-
tion of the previous section carries through, and the estimate (13.6) remains true,

but because of the dependence of nF (w, E), some additional argument is needed to
establish that

St(w) = |Qe|™ Z nf(w,e) >0 P-as. as E — co. (13.8)
n€QE
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We drop + in the sequel. For E > 1,

Var(SE) S |QE|_2 Z ICOV(ﬂn,ﬂn+m)|

nn+meQE

<40|Qel > W2+ |m|)
nn+meQE

< Din~U+)(E)

for a uniform constant D. We used |Cov (7, Tn+m)| < 4p(m) (see, e.g., Billingsley
[BIL)).

Let v > 0 be fixed and consider a subsequence Sg, for Ey = [(1 + 7)*] + 1.
Chebyshev’s inequality yields

Var(SE, ) < C

PEk = P{lsEk‘ > 6} < 2 2kl+s"

The series Y po, P, converges and the Borel-Cantelli lemma gives Sg, — 0, as
k — oo P- a.s. To pass to the general case, note that for every E there exists an

E such that E; < E < Ej41, and consequently,
limsup|Sg(w)| < Ly  P-as.
E—oo

for a uniform constant L. Taking v — 0, we get (13.8) and part a) follows.

Approximate ¢ by a piecewise constant field for a net of cubes of volume €. Apply-

ing part a) we get an upper and a lower bound on N,(E) . Then let € — 0. 1

13.3. Proors oF THEOREMS 13.2 AND 13.3

The main role in our argument is played by the following

Theorem 13.5. Let {C,}22; be a sequence of disjoint balls in R¢ of diameter I,,, and

let

d, = min{|z — 7’| : z € Cy, &’ € C,, for some n # m}.
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Let {C!}%, be a sequence of balls such that C;, has the same center as C, and has a

diameter I, + d,. Let V be in L}, .(R¢), bounded below, and satisfying
V(z)>0ifz¢|JCn, V(@)2dyifzeC,\Ca.

Then, if for every € > 0
Z(l +19) exp(—ed,) < oo,
we have

Oac(—A + V) N (—00,0) = 0. (13.9)

Remark: Think about C, as potential wells. In comparison to Theorem 11.2, it is the
distance-size ratio of the wells together with the potential walls surrounding them that

prevents tunneling at negative energies. From the technical point of view, that makes

life much easier.

Proof : We will give a somewhat sketchy argument. Let D,, D/, be balls of diameters
ln +dn/3, U, + 2d,/3 and with the same center as C,. Denote § = U,D, and let
—Ap be Laplacian with the Dirichlet boundary condition along 35, the boundary of
S. Denote H =~-A+V, Hp = —Ap + V. The theorem will follow if we show that

K = exp(—H) — exp(—Hp)

is a trace class operator, since then (see, e.g., [RS3]) 0.c(H) = 0uc(Hp), and it is
obvious that g,.(Hp) N (—00,0) = 0. K is a positive operator, and trace norm is just

a trace. One can show, following the argument of Theorem 9.2 and Theorem 21.1 in
[SIM1], that

1

() = [ o [exp | - [Vio(9)ds | dinseao),
0

R4 P

where pig 2,1 is a Wiener measure (time ¢ = 1) conditioned at point (x,x), and

P={w: w(s) € dS forsome 0 < s < 1}.
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If z € R4\ U, D', one can easily estimate (see [SIM1], Lemma 21.3)

/exp (_ /V(w(s))ds) duO,z,z,l(w) < CeXp(—dlSt(IL',aS))/2,
0

P

where C can be chosen as exp(—a)/(27)¥? if V > a. So,

[ o fexe (— / V(w<s)>ds) tneas@) < CY [ expi=t/a)i

RIA\UD!, " t>d. /6

< C'Zexp(—dn/24) < 00.

n

It remains to estimate

Zn:/dx/eXp (—jV(w(s))ds) dp g1 (w).

As in [SIM1], we denote by b a d—dimensional Brownian motion, with a probability

space (B, B,db). E(f) stands for mathematical expectation of a function f, and E(A)
for a db— measure of a set A. For x € D), denote
Apg, ={w: max lw(s) — z| > d,./6}.

We have
Moz (Asd,) = Hopoa{w : max |w(s)| 2 d./6}

< E( pax [b(s)] 2 dn/6)

<2 E(|p(1)| 2 dn/6)

< Cexp(—d,/6),
where C is a uniform constant. In the above, we used the Levy and Chebyshev inequal-
ity [SIM1], and the fact that Gaussian random variables have exponential momentum.
Since for some sg,0 < 59 < 1, w(sg) € 85, we conclude that w € P\ A, 4, in the time

interval [0, 1] never leaves C}, \ C, (or belongs to a set of gz . 1-measure 0), and we

have

/ V(w(s))ds > du.
0
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Thus, if z € DJ,

[ dbocea@yexs (— / V(w<s>>ds) < Clexp(=d, /6) + exp(~dy),

4

and finally, for suitable constant C,

dr [ exp | — V(w(s))ds) dpozz1(w) < C(ln + dy)? exp(—d, /6).
[o=(]

Since
> (ln + dn)* exp(—da/6) < oo,

the theorem follows.

Again, it is an immediate consequence of Theorem 13.5 that if in addition

lim V(z) = oo, (13.10)
z@&UnCnp
we have
Ouc(=A+ V) =0.

We now deduce part b) of Theorem 13.5 as in Section 11.2. Let C, be the w-
dependent balls chosen as in (11.9). One certainly can choose balls C), so that the

conditions of Theorem 13.5 are satisfied. Since 13.10 is also valid, we deduce part b)
of Theorem 13.2.

For the above choice of C,, C,, let H, p be the operator H, with the Dirichlet
boundary condition along 0S5, as in the proof of Theorem 13.5, and let IA{(‘,,D be the
operator H, p with an additional Dirichlet boundary condition along boundaries of

G® —s (recall their definition in Section 11.2). We certainly have

0 < exp(_Hw) - exp('—ﬁw,D) < exp(_Hw) - CXP(—H‘,,D),



127

and so exp(—H) — exp(—ﬁ p) is a trace-class operator. In particular, we have
Oess(Hy,) = O'ess(ﬁw,p).

Thus, it immediately follows that inf aess(fIw, D) > ag, and one shows that
aess(ﬁw,p) C |ak, 00),

following line by line the Weil-sequence argument of Section 11.2. Part a) of Theorem
13.2 follows.

For simplicity of writing, we again prove Theorem 13.3 only in the case d = 2. If
Ap is an arbitrary k-animal, and if B is a ball of volume %k in R2, we have
Ap
P
and so ax > M;. On the other hand, as in (12.6), for large k and any a > 1/v/?2,
there exists a k-animal A; which contains the ball B(y/k/7 — a — 1/v/2) of radius

VE/T —a—1/y/2, and so

A(Ax) > A(B) =

ar < %’(1 + O(1/VE)).

Theorem 13.3 follows.
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