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ABSTRACT 

Olefin cross-metathesis (CM) is a thermodynamically controlled metathesis reaction that is 

governed by statistical product distributions and a mixture of olefin stereoisomers.  In fact, 

while the reaction allows for the functionalization of α-olefins under mild conditions, it has 

not been used widely due to a lack of selective processes.  The research effort disclosed 

here has provided some new solutions to the selectivity issues involved with CM.  These 

include the use of olefins with altered steric and electronic properties allowing for selective 

olefin functionalization by CM.  After an introduction to state-of-the-art CM in Chapter 1, 

the discussion continues with CM work in earlier generation ruthenium catalyst systems 

(Chapter 2).  The next two chapters reveal new substrate scope in CM using more active 

ruthenium based catalysts developed in this group, including the synthesis of trisubstituted 

olefins (Chapter 3) and directly functionalized olefins (Chapter 4).  Once discoveries in 

expanding substrate scope were accomplished, the final chapter outlines an empirical 

model for understanding the electronic and steric factors in CM selectivity across a variety 

of olefin metathesis catalysts.  This model also provides a method to determine whether 

selective CM can be performed for target-oriented synthetic efforts.  In addition, a better 

understanding of selectivity issues allows for the discovery of new reaction platforms and 

expands the synthetic utility of CM is discussed in Chapter 5.  
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Chapter 1: Introduction to Olefin Cross-Metathesis (CM) 

Efficient generation of diverse molecular structures and the efficient 

interconversion of functional groups are central to advancement of the chemical sciences.  

Olefins represent a highly versatile functional group that can be readily generated and 

transformed to other useful functional groups in a reliable manner, including epoxides, 

aziridines, and diols.1  Alkenes are also a ubiquitous element in many complex organic 

molecules, and efficient installation of stereodefined olefins is a formidable challenge.  

For example, stereodefined tetrasubstituted olefins represent an unsolved problem in 

organic chemistry.2   Because of the functional utility of olefins, a variety of 

intermolecular and intramolecular alkene forming methods exist.  For palladium 

catalyzed methods, an activating group, which requires several steps to install, is usually 

required for the reaction to proceed (Scheme 1), such as aryl and vinylhalides and 

triflates.  In addition, non-metal processes frequently employ reactive functional groups, 
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such as aldehydes and ketones.  Once these reactive functionalities are introduced, the 

subsequent cross-coupling reactions are very reliable alkene C-C bond forming 

processes.  In many cases, however, protective groups are required to mask these 

functional groups prior to their conversion to olefins, such as carbonyl protective groups.  

Another drawback to these traditional methods is the use of harsh reagents, such as triflic 

anhydride and brominating reagents, to prepare cross-coupling reagents.  However, a 

conceptually different approach to olefin formation by cross-coupling would be through 

the exclusive use of α-olefins, where no change in oxidation state occurs and the only 

reaction byproduct is ethylene, namely, olefin cross-metathesis (CM).  

Olefin cross-metathesis (CM) represents an alternative to the olefination methods 

described above, where olefins themselves are the reactive functional group (Scheme 2).   

This is particularly convenient since there are many commercially accessible α-olefin 

sources.  In addition, CM could be used to install natural product relevant alkenes, similar 

to the ways that ring-closing metathesis (RCM) has been utilized by organic chemists to 

build naturally occurring carbocycles.  However, CM also possesses the ability to append 

functional groups to olefins that can be used in subsequent reactions.  In fact, CM may be 

able to install the functional groups used in other olefin formation processes described in 

Scheme 1, such as silyl, stannyl, and boryl functionalities.  It is this rapid conversion of a 

α-olefin to useful functionalized synthons that provides CM with a unique opportunity, 

R
XX+

Scheme 2 : Direct Cross-coupling with Olefinic Starting Materials

R
Olefin Cross-Metathesis

+



 3

unlike RCM and ring-opening metathesis polymerization (ROMP), to install both 

structural and functional elements.  However, the major limitation of CM is controlling 

elements of selectivity and this is a formidable challenge for the utility of CM as a 

reliable synthetic method. 

Olefin metathesis is a thermodynamically controlled reaction that has become a 

highly versatile synthetic method for access to alkene containing compounds.  In fact, 

olefin metathesis chemistry has had a profound impact in several areas of synthetic 

organic chemistry; including organometallic chemistry,3 polymer chemistry,4 and small 

molecule synthesis.5   Central to these synthetic accomplishments is the development of 

single-component transition metal catalysts that exhibit organic functional group 

tolerance (Figure 1).  If selective reactions can be performed by a transition-metal 

complex at olefinic sites, then a wide variety of applications are possible.  This is a 

difficult challenge since a variety of metal-catalyzed processes are excellent at converting 

olefins to other functional groups, including a variety of oxidation processes.1  The 

repeated demonstration of functional group tolerance provides synthetic chemists with 

the confidence to subject highly valuable materials to metathesis conditions.  These 

applications are central to the success of any catalytic transition metal method.  

Historically, palladium-catalyzed cross-coupling reactions, such as Suzuki,6 Stille,7 and 

N
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Heck8 reactions exhibit excellent functional group tolerance and have been rewarded by 

numerous applications in total synthesis.  Fortunately, a diverse set of transition metal 

catalysts have been employed in functional group tolerant olefin metathesis reactions, 

with varied degrees of catalytic activity (Figure 1). The catalysts have been prevalent in 

complex organic synthesis.  However, these systems have not been extensively applied to 

CM due to unresolved problems of selectivity.  

Several representative examples of the most commonly used single-component 

homogeneous olefin metathesis catalysts are those listed in Figure 1.  Earlier examples 

include commercially available alkoxy-amido molybdenum carbene catalyst 19 and 

ruthenium-based catalyst 2,10 both have been used in a variety of metathesis reactions. 

Interestingly, both of these catalysts have developed a synergistic relationship in the 

metathesis literature.  For example, while 1 has demonstrated greater catalytic activity 

than 2, it is more difficult to handle in the presence of air and water, and can be poisoned 

by certain organic functional groups.   Late transition-metal systems, such as catalyst 2, 

have had been widely used in a variety of applications in organic chemistry. Even though 

catalyst 2 exhibits lower metathesis activity to that of 1, catalyst 2 is less susceptible to 

decomposition by air, water, and organic functional groups.  However, the apparent 

compromise between functional group compatibility and activity has been overcome with 

the recent development of catalyst 3.11  These imidazoylidene based systems have been 

discovered due to a more detailed understanding of the initiation of this family of 

catalysts.  While still maintaining the characteristics of ease in handling and functional 

group compatibility, catalyst 3 possesses greater electron density at the metal center due 

to σ-donation from the imidazoylidene ligand.  This factor, coupled with reduced π-
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backbonding in imidazoylidene ligands versus phosphine, leads to greater preference for 

olefin binding and higher metathesis activity of these systems.  This catalyst has been 

demonstrated to have higher activity in metathesis applications than 1 or 2, and its use in 

selective CM is discussed below.  All three of these catalysts, and related derivatives,12 

have been widely used in ring-closing metathesis (RCM),13 ring-opening metathesis 

polymerization (ROMP),14 acyclic diene metathesis polymerization (ADMET),15 and 

ring-opening/cross-metathesis (ROX)16 (Scheme 3).  In addition, asymmetric variants of 

RCM17 and ROX18 have been reported with related ligands sets, illustrating another 

example of functional group tolerance in the generation of chiral functionalized olefinic 

compounds.  The issues of functional group tolerance in other metathesis processes also 
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apply to CM, e.g., making olefins preferentially reactive in the presence of other 

functional groups, such as halides, aldehydes, alcohols.  However, the challenge in CM is 

not merely the tolerance of these functional groups as has been demonstrated in RCM and 

ROMP synthetic endgames, but the participation of these functionalities in determining 

CM selectivity.  Finally, the fact that CM will be more commonly used early in a 

synthetic scheme than any other metathesis process requires an efficient method to make 

functionalized olefins that are useful reagents for subsequent manipulations.   

Despite the advances in olefin metathesis for RCM, ROMP, and ROX over the 

past several decades, CM has received significantly less attention in the literature.  In 

fact, the dimerization of olefins resulting from an unsuccessful RCM reaction is often 

where the status of CM has been relegated to within the metathesis literature.   However, 

the applicability of CM can not be mistaken, since it allows for the functional 

homologation of a variety of olefins in a single synthetic step using widely available 

olefinic precursors.  A wide variety of unfunctionalized olefinic precursors are accessible 

from petrochemical and oleochemical19 sources.  Therefore, the conversion of these 

unfunctionalized olefins to functionalized ones is of great importance.  Unfortunately, 

because CM is a simple intermolecular reaction governed by thermodynamics, several 

complications are inherent to the reaction.  First, due to low catalytic activity and lack of 

selectivity in CM, a complex product mixture is often obtained (Scheme 4).  For 

example, combining two olefins in equal stoichiometry that react with the catalyst at 

similar rates would result in only 50% of the desired CM product.  In addition, both 

undesired homocoupling products would also be obtained as the mass balance in the 

reaction.  For the development of a synthetically efficient reaction, 90% conversion of a 
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starting material to CM product, nearly 10 equivalents of the CM partner would be 

necessary.  Additional complications arise when low catalytic activities do not 

completely consume the terminal olefins in the reaction.  These factors make CM 

reaction even more difficult to execute, requiring the separation of five distinct reaction 

components.  The presence of unreacted starting olefin is partially due to the lower 

effective catalyst loading in CM than in RCM, since an excess of one CM partner is 

usually required. In addition, since intermolecular processes are involved, slow reactions 

rate hamper catalyst activity.  Therefore, greater catalyst activity is central to advancing 

CM methodology by properly consuming all olefinic starting materials and reducing the 

number of reaction components to three products, two homodimers, and the CM product. 

In this regard, the high activity of catalyst 3 has been instrumental in providing the 

reactivity necessary to consume all starting materials to simplify product mixtures and 

greatly increase the utility of CM. 

Another challenge in CM is the mixture of trans and cis isomers that are obtained 

for each new product in the reaction, and this represents the most striking limitation to 

selective CM.  For example, olefin stereoselectivity is an issue in all metathesis 

processes, but is only pertinent to RCM of large rings (>8 carbons) and in backbone 

structure in ROMP polymers.  In CM, however, the issue of olefin stereoselectivity is 

centrally important to the utility of the method.  It is these unresolved issues of selectivity 

R1 R2+ Olefin Cross-Metathesis
R1 R2

50%

R1 : R2

1:1

2:1

4:1

CM yield

66%

80%

10:1 91%

20:1 95%
Scheme 4: Statistical Distribution of CM Products

- C2H4
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+

+
R2 R2



 8

that have made CM a less developed synthetic method compared to ROMP, ROX, and 

RCM.  Development of a selective olefin CM is still in its infancy and will be addressed 

in the first part of this chapter by investigating three distinct selectivity issues: 

stereoselective olefin formation, cross-coupling product selectivity by eliminating 

homodimerization pathways, and olefin chemoselectivity in complex organic molecules.  

By examining these aspects of selectivity in CM, synthetic chemists have recently 

become more comfortable in using CM in complex organic molecule synthesis.  

Olefin stereoselectivity is central to any successful CM process.  One approach to 

this problem has been in using removable tethers in RCM as a means to generate cis 

olefins.  It should be noted that there is no general catalyst solution for the formation of 

cis olefins from a CM reaction.  Therefore, several groups have developed RCM as a 

method to template cis olefins, followed by tether cleavage.20  However, this does not 

address generating trans olefins, which is attainable in some stereoselective CM reactions 

and is discussed below.  Therefore, it is hoped that steric perturbations may 

PhO

PhO

SiMe3
PhO SiMe3

PhO Si(i-Pr)3

2 equiv.
DME, 23 °C, 4h

2 mol%

72% isolated yield
2.6:1 E/Z

Scheme 5: Different Stereoselectivity Based on Allylsilane Substituents

3 3
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+

DME, 23 °C, 4 h

2 mol%catalyst 1+
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lead to improved trans olefin CM selectivity.  The first findings in this area were reported 

by Crowe et al. in regards to allylsilane CM using catalyst 1 (Scheme 5).21   For example, 

they observed enhanced trans selectivity with the use of larger silicon substituents where 

allyltrimethylsilane produces a 2.6:1 E/Z ratio where the use of allyltriisopropyl silane 
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results in a 7.6:1 E/Z ratio with the same terminal olefin CM partner at similar CM yields.  

Collectively, these results represent the first example of remote stereocontrol in cross-

metathesis and have also been demonstrated by this group in simple allylic alcohols 

protecting group sterics using catalyst 2 (Scheme 6).22  For example, CM of a α-olefin 

with allyl acetate equivalent leads to a 4.7:1 E/Z ratio, where 

BzO

BzO

OAc

AcO

BzO OAc

BzO OTBS

2 equiv.

CH2Cl2, 40 °C, 12 h

5 mol%

89% isolated yield
4.7:1 E/Z

Scheme 6: Different Stereoselectivity Based on Allyl Protecting Groups

7
7

77% isolated yield
10:1 E/Z

7 7

+

CH2Cl2, 40 °C, 12 h

5 mol%catalyst 2+

catalyst 2

OTBS

TBSO
2 equiv.

 

allylic silyl ethers can enrich the trans isomer to a synthetically useful 10:1 E/Z ratio. In 

addition, Blechert demonstrated that removing heteroatom substituents from the allylic 

Scheme 7: Allylic Substitution Effects on CM Olefin Stereoselectivity

N
H
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O
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position reduced trans selectivity.  Perhaps, the most impressive results of allylic 

stereocontrol from this work are in regards to substituted allylamines.  Using catalyst 1, 

Blechert demonstrated the first exclusively trans selective CM reaction using purely 

steric contributions (Scheme 7).23  These authors also suggest the possibility of 
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coordinating groups can affect product and stereoselectivity, but are unable to provide a 

model for the observed selectivities.  Regardless, the installation of a synthetically useful 

allylsilane under complete stereocontrol is extraordinary.  In addition, the functional 

group tolerance of catalyst 1 is remarkable, since minimal racemization of a highly 

epimerizable center is observed.  This example also demonstrates excellent selectivity for 

the CM product and the factors contributing to this will be discussed in detail later.  In 

addition, recent work by Taylor and co-workers has demonstrated kinetic CM control in 

the CM of substituted homoallylic alcohols with allylsilanes using ruthenium catalyst 3 

(Scheme 8).24   These authors demonstrate that secondary metathesis of the 

Ph

OH

CH3

Ph

OH

CH3

Ph

OH

CH3

SiMe3

5 mol%

CH2Cl2, 40 °C, 4 h
4 equiv.

catalyst 3

81% yield, 80:20 E/Z

86% yield, 92:8 E/Z
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disubstituted CM products was not observed, allowing for selective production of CM 

product.  However, the most surprising result from this work demonstrated that olefin 

diastereoselection can be governed by relative stereochemistry of substitution at the 

allylic and homoallylic position.  For example, a trans substitution relationship leads to a 

much higher ratio of the trans olefin isomer.  The relay of stereochemistry in the allylic 

and homoallylic position to the newly formed olefin is unprecedented.  In addition, 
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presence of substituents helps trans selectivity, since the E/Z ratio falls to 70:30 without 

any allylic substituents present, similar to what was previously observed by Blechert and 

our group.  These examples show how allylic substitution can assist in the formation of 

trans olefins.    

Another important selectivity issue in CM is product selectivity.  Product 

selectivity in CM revolves around improving the statistical distribution of CM product 

relative to homodimer formation as described in Scheme 2.  Limiting formation of 

homocoupled product is particularly problematic in CM since there is no inherent 

orthogonality in the reactive functional groups present, unlike the other cross-coupling 

methods described in Scheme 1.  However, if the statistical distribution of heterocoupled 

and homocoupled olefin products can be overcome, then the use of simple olefinic 

starting materials would be extremely useful to synthetic chemists.  In addition, limiting 

the equivalents of CM partners in a selective CM process also reduces the resultant 

catalysts loading by eliminating unproductive homodimerization pathways.  Generally, 

the two ways to prevent homodimerization of one olefin are by making the olefin 

electron-deficient or by adding steric bulk.   

The underlying implication is that one CM partner would provide a resting state 

metal carbene, such as an α-olefin.  Therefore, the other CM partner would only react in 

a productive manner to CM product, such as an electron-deficient olefin (Scheme 9). 

Thereby, the α-olefin can dimerize rapidly and reversibly react with an electron-deficient 

olefin, forming a CM product that is less accessible to subsequent secondary metathesis 

reactions.  Differences in the rates of these processes allow for selective formation of CM 

product.  There are several important conditions that must be met for successful selective 
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CM.  First, a catalyst system must sufficiently react with an α-olefin and its dimer, on a 

timescale where productive CM with a second olefin can occur.  The extent to which the 

second functionalized olefin is consumed in CM is typically governed by the rate of 

M
Init

Functional+

Functional
Init

M
H

H

M
Alkyl

H

Alkyl

Alkyl
Alkyl+

Functional

Functional

Alkyl

M
H

H

C2H4

Alkyl

C2H4

Scheme 9: Proposed Reaction Pathway in Selective Cross-Metathesis

Not active for 
secondary metathesis

Active for 
secondary metathesis

 

reaction with the catalyst and by how many cycles the α-olefin dimer can react with the 

catalyst in a degenerative manner.  In fact, it is this degenerate scrambling of the α-olefin 

dimer and the CM product that can reduce catalytic efficiency in simple 

thermodynamically controlled CM.  This is due to propensity of both CM olefins to form 

stable alkylidenes with a metal carbene catalyst.  One way to ascertain the reactivities of 

alkylidenes is by independent organometallic synthesis of these intermediates.  One 

example of this has been performed on ruthenium-alkylidenes containing electron-

withdrawing groups, such as acrylate esters.25   It was discovered that the (bis)-phosphine 
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containing ester carbenes were thermodynamically unstable, as were highly reactive 

initiators with even unstrained olefins, such as cyclohexene.  In addition, the formation of 

carbenes with tertiary or quaternary allylic carbons is not accessible by metathesis, also 

noting their thermodynamic and kinetic instability.26    Therefore, these olefins that do not 

form stable alkylidenes may be excellent partners for CM with α-olefins.  This approach 

is discussed in Chapter 4 as a method to synthesize functionalized olefins.  

 The second condition is that the functionalized olefin CM partner does not 

dimerize, or undergoes a slow dimerization relative to formation of CM product.  This 

can be accomplished by adding electron-withdrawing groups on the olefin, decreasing its 

reactivity to an electrophilic carbene center.  Another method to decrease 

homodimerization is by the addition of steric bulk at the allylic and homoallylic 

positions.  The first report of allylic substituted olefins and the first electron-deficient 

olefin to participate in selective CM is by Warwel and Winkelmüller in their 

homologation of terminal olefins with styrene (Scheme 10).27  They were able to 

Ph
Ph

0.4 mol% WCl6 / Et2O / SnBu4

CHCl3, 50 °C, 1 h

Scheme 10: Selective Styrene CM with Ill-defined catalysts

84% yield
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2
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3

 

demonstrate that both electronic (styrene) and sterics (allylic substitution) factors can 

govern CM product selectivities.  Used as intermediates in alkyl benzene synthesis, 

heterogeneous catalyst systems of Re2O7/Al2O3 and others were employed in the reaction 
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of symmetrical unfunctionalized olefins with 4-vinylcyclohexene and styrene.  

Unfortunately, the catalyst also promoted olefin migration to the isomeric 1-

vinylcyclohexene with the homogeneous WCl6/SnBu4 catalyst system, but did allow for 

excellent CM efficiencies, beyond simple statistical mixtures.  In addition, 

stereoselectivities of these reactions were not reported, making it unclear what effect a 

secondary allylic carbon has on olefin stereoselectivity.     

However, the non-statistical product distribution, obtained by Warwel and 

Winkelmüller favoring heterocoupled product illustrates the first kinetically-controlled 

CM reaction due to a slow dimerization of styrene to stilbene.  These authors 

demonstrated that stilbene participation in CM with internal olefins required higher 

catalyst loadings, harsher reaction conditions, and led to lower conversions versus using 

styrene (Scheme 11).  These results demonstrate that resubjecting an isolated 

50 °C, 5 h

Scheme 11: Internal Olefins in Styrene CM with Ill-defined catalysts

61% yield

+

2 equiv.
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homodimer, such as stilbene, can determine if selective CM is in operation.  On the 

contrary, it was observed that higher yields of CM were obtained using symmetrical 

internal olefins versus terminal olefin counterparts (92%) versus terminal olefins (61%).  

The authors conclude that several catalytic cycles were consumed in dimerization of 

aliphatic olefins rather than in productive CM, leading to lower yields.  This work 
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demonstrates the advantages of using certain disubstituted olefinic starting materials 

rather than their α-olefin counterparts.   CM with styrenes has been reinvestigated within 

the last several years using well-defined homogeneous catalysts. Molybdenum-based 

catalysts have been particularly useful in these reactions due to their commercial 

availability and provide different results from those obtained by Warwel.  Initially, 

Schrock et al. discovered different rates of styrene dimerization to stilbene using different 

ligand sets on molybdenum.28   Crowe and co-workers concurrently demonstrated the 

kinetic CM between α-olefins with styrenes using catalyst 1, providing stereoselective 

trans olefins (Scheme 12).29   This also is a unique 

23 °C, 1 h

Scheme 12: Styrene CM with Molybdenum Catalyst 1
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reaction since they determined that stilbene was not a good partner for CM.  However, 

the trans stereoselectivity observed here may have also been observed in the earlier work 

by Warwel, but simply was not reported.  Crowe and Zhang also found that the reaction 

between styrene and an internal olefin dimer exclusively produces the CM product, but 

not on a timescale relevant to productive CM. These experiments argue that a highly 

selective process, where neither homodimer is formed, but only the CM product is 

formed.  This is a remarkable reaction, since the elimination of all potential unproductive 

homodimerizations helps explain such an efficient reaction.  
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However, the advantageous use of internal olefins in CM, as initially described by 

Warwel and Winkelmüller, has also been shown to operate in several catalyst systems.  

For example, concurrent to their work with styrene CM, Banasiak examined the role of 

internal olefins in insect pheromone synthesis using ill-defined tungsten Fischer carbene 

complexes.30   Several important observations were made from this work.  For example, 

it was observed that the removal of ethylene increases catalyst efficiency and trans 

stereoselectivity by providing an entropic driving force in the reaction.  The improved 

stereoselectivity may be possible due to secondary metathesis of the products leading to 

the more thermodynamically favorable trans olefin.  In addition, it was found that the use 

of internal olefins, instead of the corresponding α-olefins, allowed for lower catalyst 

loadings, greater CM product selectivity, and higher trans diastereoselectivity. These 

results were also corroborated in this group using catalyst 2 and allyl acetate (Scheme 

13).22  The improvement in CM efficiency can be attributed to independent mechanistic 

BzO

BzO OAc

OAc

AcO

BzO OAc

BzO OAc
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Scheme 13: Terminal Olefin Homologation with Allylic Alcohols
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studies that indicated a lower stability of the intermediate methylene carbene relative to 

alkyl substituted carbenes.  The formation of an intermediate methylidene is reduced with 

the use of one set of symmetrically disubstituted olefins.26  This also provides an example 

of the advantage of using single-component catalyst systems in CM.  Since intermediate 

catalytic species can be independently synthesized and studied, the use of single 
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component homogeneous systems allows for a synergistic relationship between 

organometallic mechanistic studies and developing efficient synthetic methodology.  The 

increased catalyst stability attained with internal olefins can be attributed to greater 

secondary metathesis processes that can improve trans stereoselectivity, similar to what 

Banasiak observed in catalytic reactions in pheromone synthesis with ill-defined 

catalysts.  Therefore, CM product selectivity and olefin stereoselectivity issues must be 

properly addressed to develop synthetically useful CM processes.  While ill-defined 

catalysts were not very tolerant of functional groups and undergo wanted side reactions 

(such as olefin isomerization) and do not provide much opportunity for mechanistic 

studies, they did provide some insights into achieving selective CM processes by 

judicious choice of CM partners.  Many of these observations have been verified with 

single component catalyst systems.   

Another area of selective CM reactions involves allylsilane CM.  Bespalova and 

co-workers initially looked at commercially available allyltrimethylsilane in the simple 

CM with other terminal olefins using ill-defined tungsten catalysts, but did not report 

olefin stereoselectivities and product selectivity based on CM partner choices.31  

However, several years later, Crowe et al. reinvestigated allylsilanes CM with 

molybdenum carbenes and found that they react analogously as terminal olefins, due to 

nucleophilic character of these olefins.21  This allows for selective CM with styrenes and 

other electrophilic olefins, such as acrylonitriles.  In addition, these results demonstrate 

the first electronic matching in CM, allowing for certain combinations of olefins to 

furnish CM products in high product selectivity. However, when allylsilane CM is 

performed with α-olefins, statistical product mixtures are achieved in a modest 2.6-4.9:1 
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E/Z ratio.  These results provided a rationale for the observed selectivities based on 

reactivity patterns of well-defined metal carbene catalysts. In addition, Blechert et al. 

demonstrated that binding one olefin to a polymer support can suppress its 

homodimerization and increase CM efficiency using catalyst 2.32  This can be 

rationalized based on slow diffusion of polymer-bound olefins, limiting their 

homodimerization.  However, at this point, a general model for product selectivity in CM 

is missing despite some important discoveries made in the area.   

Interestingly, the lack of selectivity in CM led to the initial application of CM in 

combinatorial chemistry, as a method to introduce structural diversity.33  While work in 

developing selective CM methods was still in progress, several groups began applying 

CM to more functionalized substrates to determine olefin chemoselectivity and functional 

group tolerance of well-defined homogeneous catalysts.  The application of CM has been 

demonstrated in several arenas, including materials chemistry, bioorganic chemistry, and 

natural product synthesis.  The application of CM to total synthesis has been only 

recently demonstrated as a means to introduce structurally relevant olefins and in 

preparing olefinic reagents for subsequent chemistry.    

One of the earliest applications of CM was demonstrated by Feher and co-workers 

in the homologation of vinyl-substituted silsesquioxanes with a variety of terminal olefins 

in moderate to good yields.34   These topologically spherical silsesquioxanes have 

interesting materials properties and CM allows for rapid access to a diverse set of 

compounds in one synthetic step simply by changing CM partners.  Additionally, styrene 

CM with silsesquioxanes was also demonstrated with ruthenium catalyst 2 and provides 

excellent trans stereoselectivity.  Marciniec and co-workers demonstrated in early CM 
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work the selective CM between vinylsiloxanes and a variety of terminal olefins, 

including styrenes (Scheme 14).35  These reactions demonstrated another family of 

directly functionalized olefin that can be employed in selective CM.  Therefore, the work 

by Feher and co-workers is an excellent example of CM methods being applied 

Scheme 14: Vinylsiloxane CM with Styrene and α-olefins Using Catalyst 2
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to interesting molecules for materials applications.  Another important application of CM 

to materials science was demonstrated by Duran and Kloeppner.36  These workers 

demonstrated one of the first olefin chemoselective CM reactions in their synthetic route 

to polyalkylanilines.  These polyalkylanilines were applied in the formation of ultrathin 

Langmuir films for application in nonlinear optical materials and electroluminescent 

materials.  Using ruthenium-based catalyst 2, terminal olefin dimerization was 

accomplished cleanly in the presence of a cis styrenyl bond (Scheme 15). This 

demonstrates that chemoselectivity, accomplished here by catalyst choice, is an 

catalyst 2

under vacuum, 23 °C, 72 h

Scheme 15 : Chemoselective CM of Terminal Olefin with Styrenyl Bond

1.7 mol%8
O2N

95% isolated yield

8

O2N

NO2
8

 



 20

important point in CM development.  This result is particularly interesting since styrene 

CM has been widely demonstrated, but is inoperative here due to the nitro withdrawing 

group.  In addition, the cis styrenyl bond was formed by Wittig chemistry, demonstrating 

the direct orthogonality between CM and Wittig olefination strategies.  Styrene CM has 

been widely applied due to excellent trans selectivity and has been the subject of recent 

work.  For example, Kawai and co-workers have demonstrated the selective CM between 

styrene derivatives and vinylferrocene using 1 allowing for CM between two electron 

deficient olefins in moderate yields.37   Styrene CM has also been demonstrated by 

Biagini et al. using protected homoallylglycine derivatives in albeit low yields, and 

demonstrates some of the early work in bioorganic chemistry.38   Wong and co-workers 

were able to dramatically improve upon styrene CM yields with 2 in their preparation of 

Silyl Lewis X mimetics.39   In addition, Roy and co-workers also demonstrated CM 

styrene with O-allyl glycosides to make extended alkenyl glycosides.40  Not only do these 

two studies illustrate the first applications of CM in carbohydrate synthesis, but also 

demonstrate the wide variety of styrenes employable with catalyst 2 to rapidly generate 

biologically relevant molecules.  In fact, these reports establish much of the functional 

group tolerance now associated with the catalysts in CM and pushed the limits of CM 

reactivity with catalyst 2.  With the high degree of stereoselectivity observed in styrene 

CM, it has been widely used in a variety of applications, and is summarized in Scheme 

16.  This demonstrates that if a selective process can be discovered, it possesses a broad 

application in synthetic chemistry.  Additional types of selective CM processes are 

described in detail in the following chapters.  
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 With some work in the area of cross-metathesis begin reported, there was nearly 

concurrent work in the area of application of CM to bioorganic systems in addition to the 

styrene examples mentioned above.  Much of this work was directed at simple 

dimerizations, rather than performing cross-coupling.  However, Diver and Schreiber 

accomplished an important application of CM in the dimerization of immunosuppressant 

FK506.41   The functional group compatibility was a central highlight to this work with 

the use of ruthenium catalyst 2 albeit in moderate yields.  The lack of protecting groups 

employed and presence of other olefins inert to the reaction conditions is a remarkable 

feature of this work and is one of the first chemoselective CM reactions. In addition, 

work by Roy and co-workers has exploited CM both in a variety of areas, including early 

work glycoside dimerizations42 and heterocoupling reactions with styrenes (Scheme 

16).40  Perhaps one of the most unique applications of CM in carbohydrate chemistry has 
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been in the work of Seeberger and co-workers with regards to their automated 

oligosaccharide synthesizer.43  This work demonstrates the unique orthogonality of olefin 



 22

metathesis in respect to many standard carbohydrate reactions in the context of complex 

synthesis of up to dodecomer oligosaccharides.  As well precedented before in non-

carbohydrate systems, Seeberger and co-workers used metathesis in the release of the 

oligosaccharide from solid support by ethylenolysis, without interruption of complex 

carbohydrate functionalities.  Finally, similar work has been demonstrated in the nucleic 

acid area with simple dimerization of allylnucleosides44 and cross-metathesis between 

vinylphosphonate containing nucleotides with vinylnucleosides to generate “dimeric” 

nucleotides.45  In summary, there are a rich amount of applications of CM in bioorganic 

chemistry and these applications provided new avenues in understanding peptides and 

carbohydrates through biologically stable C-C bonds.     

  Finally, with the use of CM in method development stages and in biological 

applications, the utilization of CM by synthetic organic community has been somewhat 

more obscure.  Until very recently, unlike its intramolecular variant (RCM), CM has not 

been used in a complex target-oriented synthesis.  However, recent reports in the area 

have been focused on two classes of CM utility: dimerization strategies and chain 

elongation.  One of the first examples of the dimerization approach has been work done 

by Smith and co-workers in their synthesis of (-)-cylindrocyclophanes A and F (Scheme 

17).46  In their synthesis of this class of dimeric natural products, a thermodynamically 

Scheme 17: CM Dimerization Strategy in Cylindrocyclophane Synthesis
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controlled head-to-tail CM reaction, and subsequent ring-closure was used to construct a 

22-member cyclophane exclusively as the E,E-isomer. Perhaps the most interesting part 

of this work is the excellent olefin stereocontrol achieved with remote olefinic 

substitutions in the homoallylic position.  Smith and co-workers also demonstrated that 

subjecting an independently synthesized head-to-head dimer to the metathesis conditions 

leads to the same head-to-tail dimer [7,7]-cyclophane product.  In addition to this work, 

Corey and co-workers have reported another interesting dimerization strategy in the 

synthesis of the squalenoid Glabrescol and its meso diastereomers.47  One of the 

remarkable features is the amenability of catalyst 1 toward vinyl epoxide functionality 

and other substituted olefins in the farnesyl acetate derived substrate.  The dimerization 

approaches described to date have highlighted CM as a functional group tolerant method 

to rapidly regenerate thermodynamically favored products in excellent yield.   

Second, several examples of chain elongation by CM have been recently 

disclosed, requiring efficient cross-coupling of differing functionalities.   Zercher et al., 

in their formal synthesis of the natural product FR-900848, have demonstrated a chain 

elongation approach in polycyclopropane synthesis.48  As previously described in our 

group, a two-step CM approach was utilized in this synthesis.22  An initial dimerization of 

a vinyl cyclopropane provided a homodimer that was used in excess with another 

different vinylcyclopropane CM partner, to generate the heterocoupled product in 

excellent yield with moderate stereoselectivity.  Interestingly, the CM reaction utilized 

provided a higher than statistically predicted CM yield, but an explanation for this 

selectivity was not described.  In addition, Itoh and co-workers performed a similar CM 

with fluorinated vinylcyclopropanes, and demonstrated that while the direct dimerization 
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of certain substituted vinylcyclopropanes proceeds in low yield, they provide exclusive 

trans olefin formation, which was unprecedented.49  These examples from the target-

oriented synthetic literature corroborate independent results where the use of allylic 

alcohol protecting groups limits homodimerization and provides enhanced trans 

diastereoselection.  Finally, Leighton and co-workers have applied a recent example of 

CM allylic stereocontrol to their synthesis of mycoticin A (Scheme 18).50  As an early 

Scheme 18 : Total Synthesis Applications of Terminal Olefin Homologation by CM
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step in their formal synthesis of their target, they applied an acrolein acetal CM22 in 

excellent stereocontrol to a substrate with both allylic and homoallylic substitution, 

derived from a crotylation reaction.  The imidazoylidene containing ruthenium catalyst 3 

was employed and demonstrated an excellent method for chain elongation with a masked 

aldehyde source.  In the Leighton synthesis, CM was demonstrated early in a synthesis 

due to its efficiency in generating a highly functionalized acyclic synthetic precursor; 

however, there is also a recent example of CM employed as an endgame in synthesis.  

Reiser et al. perform a late-stage CM with 1-dodecene in their synthesis of (-)-Roccellaric 

acid, a member of the γ-butyrolactone family of natural products (Scheme 18).51  By 
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performing a cross-metathesis reaction at the end of their synthesis, a wide variety of 

side-chains can be introduced to generate diversity, since several members of the γ-

butyrolactones family of natural products have exhibited antibiotic and antitumor 

properties.  The use of CM by the synthetic organic community in both early and late 

steps represents the viability of CM to make important bond constructions 

stereoselectively and in a high yield.  CM has also been employed in generating diversity 

through the use of readily available olefinic cross-partners.  

 In conclusion, the use of olefin cross-metathesis has started garnering attention as 

a viable tool in organic synthesis.  Many fundamental studies on the functional group 

tolerance, electronic factors, and steric parameters required for stereoselective synthesis 

have been investigated with a variety of catalysts systems.  In fact, some of the most 

exciting work is related to the kinetic CM product formation by slowing the 

homodimerization of one olefin partner.  Simultaneously, CM has been applied to total 

synthesis and in biological area generating rigid alkenyl C-C bond constructions.  In fact, 

the central challenges in CM still center on the elimination of homocoupling products, 

generating products with good stereoselectivity, and increasing substrate scope.  In 

addition, extensive organometallic work to improve overall catalyst activity will allow for 

low catalyst loadings and efficient preparation of bulk starting materials.  These 

challenges represent challenges unique to CM from those in endgame RCM and ROMP 

applications.  The following discussion will address selective CM reactions recently 

discovered and a model to assist in understanding product selective CM processes and 

their applications to new reaction platforms.   
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Chapter 2: Ruthenium (bis)-phosphine Catalysts in CM  

The formation of carbon-carbon bonds in an efficient and stereoselective manner 

is a central part of synthetic chemistry.  The ability to build complex molecules from 

accessible precursors provides the intermediates for complex synthesis.  One such 

approach for carbon-carbon bond formation is through the olefin metathesis reaction.  

The olefin metathesis reaction is a metal alkylidene catalyzed reaction that exchanges 

olefin substituents via metallocyclobutane intermediates.1  Two applications of this 

reaction have been in ring-opening metathesis polymerization2 (ROMP) and ring-closing 

N

Mo

CH3C(CF3)2O
CH3C(CF3)2O

i-Pri-Pr

Ph

CH3
CH3

Figure 1 : Commonly Used Olefin Metathesis Catalysts
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metathesis (RCM) of acyclic dienes.3  With the recent advent of a new family of 

metathesis catalysts with dihydroimidazolylidene catalyst 1,4 the scope of olefin 

metathesis has been greatly expanded.  The commercial availability of 1 and other well  

defined homogeneous catalysts, such as the parent ruthenium benzylidene catalyst 2,5 the 

molybdenum alkoxy-imido alkylidene 3 developed by Schrock et al.6 has made the olefin 

metathesis reaction practical for small molecule synthesis (Figure 1).   

The amount of work in RCM and ROMP has overshadowed work in the 

intermolecular variant of olefin metathesis, olefin cross-metathesis (CM).  This is largely 

due to the mixture of products and low stereoselectivity of the products obtained in the 
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reaction, limiting its synthetic practicality (Scheme 1).  Six possible products can be 

R2+R1

1 equiv. 1 equiv.

- C2H4

R2

R1

50%

R1

R1

R2

R2

25% 25%

+ +

6 possible products

Scheme 1: Complex Mixture Obtained in Cross-Metathesis (CM) 

obtained including unreacted starting material.  The lack of olefin stereoselectivity, as 

well as low product selectivity limits the utility of CM.  However, CM has recently been 

reinvestigated in the Grubbs group and began with the use of disubstituted olefins as 

chain transfer agents in the formation of telechelic polymers in a tandem ROMP/CM 

process (Scheme 2).7  The use of this chain transfer agents allows for excellent control of 

Scheme 2: Telechelic Polymer by ROMP/CM

catalyst 2

AcO
OAc

40

40 equiv. 1 equiv.

+ OAcAcO

 

molecular weight as well as furnishing functional groups that can be used in the synthesis 

of block co-polymers.8  This inspired the use of disubstituted olefins in CM to limit the 
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number of side products formed in the reaction and demonstrate the interplay between 

polymer and small molecule chemistry in olefin metathesis.  The use of allylic alcohols 

(or protected equivalents) also allowed for a systematic investigation into alkene 

stereoselectivity and CM product selectivity.  This approach allows for selective 

formation of CM product via a two step process (Scheme 3).9  This protocol offers the 

R1

Homo-metathesis
R1

R1

Hetero-metathesis (CM)

R2R1 R2 R2 R2
+

desired CM product

Scheme 3: Two-step CM Protocol Limits Side-Products  

advantage of reducing the mixture of products in the reaction by using an excess of the 

symmetrical (R1) dimer.  In addition, it was found that the use of an internal olefin is 

most efficient due to catalytic intermediates involved (Scheme 4).  For example, the use 

BzO

BzO OAc

OAc

AcO

BzO OAc

BzO OAc

2 equiv.

CH2Cl2, 40 °C, 12 h

5 mol%

89% isolated yield
4.7:1 E/Z

Scheme 4: Terminal Olefin Homologation with Allylic Alcohols

7
7

4 equiv. 81% isolated yield
3:1 E/Z

7 7

+

CH2Cl2, 40 °C, 12 h

5 mol%catalyst 2+

catalyst 2

 

of cis-2-butene-1,4-diacetate provides greater CM yields and higher trans selectivity than 

using the same number of equivalents of allyl acetate.  It has been speculated that the first 

reaction provides a higher yield due to greater catalyst lifetime, by reducing the amount 

of a terminal ruthenium methylidene (M=CH2) produced in the reaction.  It was 

previously shown in mechanistic studies that the ruthenium methylidene is unstable and 
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is not readily active for reentry into the catalytic cycle.10  This may account for the 

difference in yields, and increase in trans selectivity due to secondary metathesis of the 

resultant CM product to the more thermodynamically favorable trans olefin isomer.  

 The goal of our initial work with catalyst 2 was to expand the substrate scope of 

olefins that can be used in selective CM reactions.  In addition, we wished to employ 

substrates that provided high trans stereoselectivity in the CM reaction, since most CM 

reactions between α-olefins lead to stereoselectivities that are not synthetically useful (3-

4:1 E/Z).  With the discovery that vinyl dioxolanes were selective CM partners with α-

olefins provided products with good stereoselectivities,11 other isosteric vinyl dioxolanes 

were investigated.  Tartrate acetals, vinyl cyclopentane, and vinyl boronate12 (Scheme 5) 

were found to be excellent substrates for CM with catalyst 2.  For example, the tartrate 

acetal of acrolein participates in a highly selective CM reaction with a α-olefin to provide 

product 4 in excellent yield.  This allows easy access to a protected α,β-unsaturated 

aldehyde in one step from olefinic precursors.  In addition, 
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Scheme 5: Selective Terminal Olefin CM with Vinyl Dioxolane Isosteres
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the facile formation of product 5 is noteworthy, which can be further manipulated in 

Suzuki coupling chemistry.13  In fact, this reaction is a simple way to homologate olefins 

to Suzuki synthons without requiring the use of more reactive alkyne functionality and 

subsequent hydroboration.  With the high trans stereoselectivity achieved, this reaction 

can be viewed as a formal C-H activation of an olefinic proton and subsequent 

conversion to a boronate ester.  This demonstrates an example of using CM not only to 

build C-C bonds of structural importance, but also to make useful reagents for further 

synthetic transformations.  Finally, in the all carbon analog of the acrolein acetal, 

vinylcyclopentane also furnished the CM product in good yield; however, the selectivity 

for the CM product is near statistical ratios in providing product 6.  The enhanced trans 

product of the reaction may be due to steric factors of the constrained ring.   

This reaction has been recently applied to the synthesis of (+)-brefeldin by Wang 

and Romo.14  These workers were able to use two CM reactions in their synthetic route, 

demonstrating one of the first examples of CM as a key step in total synthesis.  In an 

early step in their synthesis, they were able to install an allylsilane moiety by CM, 

followed by addition into the β-lactone to provide a highly diastereoselective synthesis of 

the vinylcyclopentane core (Scheme 6).  An additional CM reaction was used in an 

extremely convergent manner to install one of the two olefins in the natural product.  The 

CM piece was used in a two fold excess, but did provide a higher yield of CM product 

than the statistical distribution.  Although the stereoselectivity in the cross-metathesis is 

moderate (4:1 E/Z), the convergent nature of the synthesis and the mild reaction 
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conditions of the CM step provide a nice application of vinylcyclopentane CM 
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Scheme 6 : Selective CM Reactions in the Synthesis of (+)-Brefeldin
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methodology.  The authors also noted that the dimerization of the substituted 

vinylcyclopentane is slower, and illustrates that subtle steric differences can increase CM 

efficiency.  This example also demonstrates the excellent functional group orthogonality 

between olefin CM and Horner-Wadsworth-Emmons olefination.  Finally, even though 

we demonstrated that catalyst 2 could use vinylcyclopentane as the CM partner, these 

authors required the use of more active catalyst 1 to afford useful yields of the CM 

product.  However, the participation of vinylcyclopentanes has been nicely applied to 

complex synthesis.   
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In addition to the CM reactions described above, we also wanted to optimize the 

homodimerization conditions of α-olefins.  The homodimerization of olefinic compounds 

is well precedented.  In pioneering work by Diver and Schreiber, the immunosuppressant 

FK506 was homodimerized by olefin metathesis to probe cellular function.15  In addition, 

recent work has been done in generating novel compounds for biological application in 

the dimerization of sphingolipids16 and nucleosides.17  It is particularly noteworthy that 

these applications of CM predate those in natural product synthesis.  However, many of 

these reactions are performed at elevated temperature with high catalyst loadings.  

Therefore, we wished to investigate a mild, solvent-free method to accomplish 

homodimerization.  For example, dimerization of undecenylic aldehyde acetal proceeded 

in 83% isolated yield (4:1 E/Z) to the symmetrical dimer (Scheme 7).  

7

23 °C, under vacuum, 12h

0.7 mol%catalyst 2O

O 7

O

O O

O
7

notebook: AKCI-11

83% isolated yield
4:1 E/Z ratio

Scheme 7 : Solvent-free Homodimerization by Cross-Metathesis

7

 

This reaction has the added advantage of not requiring solvent and being performed 

under ambient temperatures by simply applying gentle vacuum to assist in the removal of 

ethylene.  The efficiency of the CM reaction under such low catalyst loadings is also of 

significance.  Another substrate that was investigated for dimerization was phenyl allyl 

sulfone.  We were interested in this substrate, as a method to install sulfur functionality 

by metathesis (Scheme 8).   It has been previously shown that the participation of reduced 

sulfur functional groups, such as allyl sulfides was not compatible with late transition 

metal catalysts, such as 2.18  Initially, we discovered that the dimerization of phenyl allyl 
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sulfone could be achieved using 2, albeit in low yields (Scheme 8).  However, when the 

Scheme 8 : Selective Terminal Olefin CM with Allylic Sulfones
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CM reaction with a α-olefin was conducted, an excellent yield of CM product was 

obtained, beyond a simple statistical outcome.  This result, as well as the reaction with 

the tartrate dioxolane in Scheme 5, provided the first evidence of selective CM reactions 

where the relative dimerization rates of CM partners are significantly different leading to 

non-statistical product distributions.  In addition to achieving good product selectivity, 

we discovered that a variety of olefins also provide moderate trans olefin 

stereoselectivity, making these reactions synthetically useful.  In conclusion, these results 

began to provide some insight into reactivity patterns of olefins in CM using catalysts 1 

and 2 and will be discussed in subsequent chapters.  

 

Experimental Section. 

 General Experimental Section.  NMR spectra were recorded on either a JEOL 

GX-400 or GE-300 NMR.  Chemical shifts are reported in parts per million (ppm) 

downfield from tetramethylsilane (TMS) with reference to internal solvent.  Multiplicities 

are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), 

and multiplet (m).  The reported 1H NMR data refer to the major olefin isomer unless 
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stated otherwise.  The reported 13C NMR data include all peaks observed and no peak 

assignments were made. High-resolution mass spectra (EI and FAB) were provided by 

the UCLA Mass Spectrometry Facility (University of California, Los Angeles). 

 Analytical thin-layer chromatography (TLC) was performed using silica gel 60 

F254 precoated plates (0.25 mm thickness) with a fluorescent indicator.  Flash column 

chromatography was performed using silica gel 60 (230-400 mesh) from EM Science. All 

other chemicals were purchased from the Aldrich, Strem, or Nova Biochem Chemical 

Companies, and used as delivered unless noted otherwise. CH2Cl2 was purified by 

passage through a solvent column prior to use.19 

 

Compound 4.  Acrolein-(L)-methyltartrate acetal (215 µl, 1.0 mmol) and 9-decen-1(tert-

butyldimethylsilane)-yl  (165 µl, 0.5 mmol) were simultaneously added via syringe to a 

stirring solution of 2 (12 mg, 0.014 mmol, 2.9 mol %) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture 

was then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 

cm), eluting with 5:1 hexane:ethyl acetate.  A clear oil was obtained (214 mg, 94% yield, 

9:1 trans/cis as determined by 13C relative intensities of peaks at 125.3 and 124.8). 1H 

NMR (300 MHz, CDCl3, ppm): 6.00 (1H, m), 5.55 (2H, m), 4.82 (1H, d, J = 3.7 Hz), 

4.73 (1H, d, J = 3.7 Hz), 3.80 (6H, s), 3.57 (2H, t, J = 6.6 Hz), 2.07 (2H, m), 1.50-1.21 

(12H, m), 0.87 (9H, s), 0.02 (6H, s)  13C NMR (75 MHz, CDCl3, ppm): 170.6, 170.2, 

141.1, 125.3, 124.8, 108.1, 102.7, 63.8, 53.4, 53.3, 33.4, 32.6, 30.0, 29.9, 29.7, 29.0, 26.5, 

26.3, 18.9, 14.8.  Rf = 0.23 (9:1 hexane:ethyl acetate);  HRMS (FAB) calcd for 
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C23H42O7Si [M+H]+ 459.2778, found 459.2776. Elemental analysis Calcd: C: 60.23, H: 

9.23; Found: C: 59.98, H: 9.15. 

 

Compound 5. 2-Ethenyl-4,5-tetramethyl-1,3,2-dioxaborolane20 (130 µl, 1.0 mmol) and 

9-decen-1-yl benzoate (145 µl, 0.5 mmol) were simultaneously added via syringe to a 

stirring solution of 2 (11 mg, 0.013 mmol, 2.5 mol %) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture 

was then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 

cm), eluting with 20:1 hexane:ethyl acetate.  A pale yellow oil was obtained (127 mg, 

67% yield, only trans isomer detected in 1H-NMR spectra).  1H NMR (300 MHz, CDCl3, 

ppm): δ 8.03 (2H, d, J = 6.9 Hz), 7.54 (1H, t, J = 7.4 Hz), 7.43 (2H, t, J = 7.6 Hz), 6.62 

(1H, dt, J = 6.9, 6.4 Hz) 5.39-5.28 (1H, broad m), 4.30 (2H, t, J = 6.7 Hz), 2.14 (2H, m), 

1.75 (2H, q, J = 6.8 Hz), 1.50-1.05 (22H, broad m) 13C NMR (75 MHz, CDCl3, ppm): δ 

167.2, 155.3, 133.3, 130.1, 128.9, 83.5, 65.7, 36.4, 29.9, 29.7, 29.3, 28.7, 26.6, 25.3.  Rf = 

0.26 (20:1 hexane:ethyl acetate);  HRMS (FAB) calcd for C23H35BO4 [M+H]+ 387.2711, 

found 387.2699. 

 

Compound 6. Vinylcyclopentane (140 µl, 1.0 mmol) and 9-decen-1-yl benzoate (140 µl, 

0.5 mmol) were simultaneously added via syringe to a stirring solution of 2 (11 mg, 0.013 

mmol, 2.5 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 10:1 

hexane:ethyl acetate.  A clear oil was obtained (110 mg, 66% yield, 7:1 trans/cis as 
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determined by integration of peaks at 5.38 and 5.34 ppm). 1H NMR (300 MHz, CDCl3, 

ppm): 8.05 (2H, d, J = 7.3 Hz), 7.54 (1H, m), 7.44 (2H, t, J = 7.5 Hz), 5.38 (2H, m), 4.32 

(2H, t, J = 6.7 Hz), 2.48-2.32 (1H, m), 1.98-1.21 (22H, broad m)  13C NMR (75 MHz, 

CDCl3, ppm): 167.2, 135.9, 135.6, 133.3, 130.1, 129.0, 128.9, 65.7, 43.9, 34.4, 33.8, 

33.1, 30.2, 30.0, 29.8, 29.6, 29.3, 26.6, 25.7.  Rf = 0.61 (10:1 hexane:ethyl acetate);  

HRMS (EI) calcd for C22H32O2 [M]+ 328.2402, found 328.2400. 

 

Compound 7.  Undecylinic aldehyde acetal (0.6611 g, 3.0 mmol) was added via syringe 

to a flask containing 2 (18 mg, 0.021 mmol, 0.7 mol %).  The flask was fitted with a 

vacuum adapter and placed under vacuum (100 mtorr) for 12 hours.  The reaction 

mixture was then purified directly on a silica gel column (2x10 cm), eluting with 15:1 

hexane:ethyl acetate.  A white solid was obtained (0.5112 g, 83% yield, 4:1 trans/cis as 

determined by 1H integration of peaks at 5.45 and 5.28 ppm).  1H NMR (300 MHz, 

CDCl3, ppm): δ 5.45-5.28 (2H, m), 4.30 (2H, t, J = 6.6 Hz), 4.05-3.83 (8H, m), 1.97 (4H, 

broad m), 1.60 (4H, broad m), 1.50-1.25 (24H, broad m) 13C NMR (75 MHz, CDCl3, 

ppm): δ 130.8, 105.2, 65.3, 34.4, 33.1, 30.1, 30.0, 29.8, 29.7, 29.6, 24.6.  Rf = 0.19 (15:1 

hexane:ethyl acetate);  HRMS (EI) calcd for C24H43O4 [M - H]+ 395.3161, found 

395.3164. 

 

Compound 8.  Allyl phenyl sulfone (1.0881 g, 6.0 mmol) was added via syringe to a 

flask containing 2 (51 mg, 0.062 mmol, 1.0 mol %).  The flask was fitted with a vacuum 

adapter and placed under vacuum (100 mtorr) for 12 hours.  The reaction mixture was 

then purified directly on a silica gel column (2x10 cm), eluting with 2:1 hexane:ethyl 
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acetate.  A white solid was obtained (.3725 g, 37% yield, 8:1 trans/cis as determined by 

1H integration of peaks at 5.77 and 5.61 ppm). 1H NMR (300 MHz, CDCl3, ppm): 7.84-

7.80 (4H, m), 7.69-7.52 (6H, m), 5.61-5.57 (2H, m), 3.76 (4H, dd, J = 1.9 Hz)  13C NMR 

(75 MHz, CDCl3, ppm): 138.8, 134.6, 129.9, 129.6, 129.0, 128.9, 126.9, 60.1.  Rf = 0.20 

(2:1 hexane:ethyl acetate);  HRMS (FAB) calcd for C22H32O2 [M+ H]+ 337.0576, found 

337.0568. Elemental analysis Calcd: C: 57.12, H: 4.79; Found: C: 56.88, H: 4.95. 

 

Compound 9.  Allyl phenyl sulfone (155 µl, 1.0 mmol) and 9-decen-1-yl benzoate (145 

µl, 0.5 mmol) were simultaneously added via syringe to a stirring solution of 2 (12 mg, 

0.014 mmol, 2.7 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 2:1 

hexane:ethyl acetate.  A clear oil was obtained (196 mg, 90% yield, 8:1 trans/cis as 

determined by integration of peaks at 5.60 and 5.46). 1H NMR (300 MHz, CDCl3, ppm): 

8.03 (2H, d, J = 7.3 Hz), 7.83 (2H, d, J = 7.3 Hz), 7.63-7.41 (6H, m), 5.50-5.34 (2H, m), 

4.30 (2H, t, J = 6.6 Hz), 3.72 (2H, d, J = 6.9 Hz), 1.95 (2H, m), 1.72 (2H, m), 1.43-1.08 

(10H, broad m)  13C NMR (75 MHz, CDCl3, ppm): 167.2, 142.3, 134.1, 133.4, 130.0, 

129.6, 129.5, 129.1, 128.9, 116.4, 115.7, 65.6, 60.7, 55.8, 33.0, 29.8, 29.7, 29.6, 29.4, 

29.3, 29.2, 27.8, 26.6.  Rf = 0.42 (2:1 hexane:ethyl acetate);  HRMS (EI) calcd for 

C22H32O2 [M+H]+ 415.1943, found 415.1953. Elemental analysis Calcd: C: 69.54, H: 

7.29; Found: C: 69.72, H: 6.95. 
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20 Prepared according to a literature procedure: Hunt, A. R.; Stewart, S. K.; Whiting, A. Tetrahedron Lett. 
1993, 34, 3599-3602. 
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Chapter 3: Synthesis of Trisubstituted Olefins by CM 

Trisubstituted carbon-carbon double bonds are a recurring motif in a diverse array 

of organic molecules. Therefore, new stereoselective methods for generating 

trisubstituted olefins remain an ongoing challenge in the area of synthetic organic 

chemistry. A wide variety of organic methodologies have been investigated to date, 

including intramolecular Claisen rearrangments,1,2 Wittig olefination,3 Julia couplings,4 

Peterson olefination,5 alkylation of sulfonyl hydrazones,6 and direct methods for the 

preparation of flourinated trisubstituted alkenes.7 Transition metal mediated routes, 

including hydromagnesization,8 hydrozirconation,9 and the use of organocuprates,10 has 

also been reported, but often suffer from use of harsh stoichiometric reagents. Therefore, 

a mild and catalytic method of preparing trisubstituted olefins will be synthetically 

useful, such as olefin cross-metathesis (CM) by employing a variety of commercially-

available olefin metathesis catalysts (Figure 1).  

While a variety of trisubstituted olefins have been synthesized by ring-closing 

metathesis (RCM), the intermolecular CM reaction had not been reported.  Wagner et al. 

reported the ADMET polymerization of 2-methyl-1,5-hexadiene with catalyst 3 to 

polymers of moderate molecular weight that had trisubstituted olefins in the polymer 

backbone (Scheme 1).11  In addition, the polymer exhibits perfect 1,4 architecture in the 

polyisoprene structure.  Previously, Crowe et al. reported that 1,1-disubstituted olefins 

N

Mo

CH3C(CF3)2O
CH3C(CF3)2O

i-Pri-Pr

Ph

CH3
CH3

Figure 1: Commonly Used Olefin Metathesis Catalysts
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were unreactive CM partners with styrene using catalyst 3 (Scheme 1).12  For example, in 

the presence of a 1,1-geminally disubstituted diene only the α-olefin is active for 

metathesis.  However, the highly active ruthenium-based olefin metathesis catalyst 1 

containing 4,5-dihydro-imidazol-2-ylidene ligands has been reported to catalyze the 

RCM of a wide variety of highly substituted dienes (Scheme 2).13  The high activity of 

these catalysts for RCM prompted the investigation of their potential application in cross-

metathesis of 1,1-disubstituted olefins.  We were able to accomplish the first example of 

intermolecular CM between geminal disubstituted olefins and α-olefins to generate 

trisubstituted olefinic products.14  Our studies began with the use of 2-methyl-1-undecene 

as an unfunctionalized geminal disubstituted olefin for CM with vinyl dioxolanes 

(Scheme 3).  This provides direct access to a protected trisubstituted α,β-unsaturated 

aldehyde in moderate yields.  In this reaction, the vinyldioxolane component (3 

equivalents) was added in four equal parts over a six hour period. This maintained a low 

concentration of dioxolane homodimer and increased the isolated yield of cross-

Ph

2.0 equiv.

catalyst 3 (1 mol%)
CH2Cl2 / 23oC / 1 h

89% isolated yield
All E isomer

+ Ph

Scheme 1: Gem-disubstituted Olefins Inert to Catalyst 3

5 mol% catalyst
CH2Cl2, 45 oC, 1 h

E E

E E

E = CO2Me

catalyst 1 = quant. conv. by 1H-NMR
catalyst 2 = NO REACTION

E E 5 mol% catalyst
CH2Cl2, 45oC, 1.5 h

E E

catalyst 1 = 90% conv. by 1H-NMR
catalyst 2 = NO REACTION

Scheme 2: Higher Susbtituted Olefins by RCM using Catalyst 1
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metathesis product by 10 percent.  We found that certain homodimers, such as this 

dioxolane homodimer, were not as active for subsequent CM as the terminal dioxolane 

equivalent.  Therefore, a low concentration of α-olefin reduces the formation of an 

unreactive homodimer and increases the yield of CM product. A variety of geminally-

disubstituted olefins participate in CM with a variety of α-olefins and their equivalents 

(Table 1, Entry 3-6).  Unlike the case of vinyldioxolane as the CM partner, these α-olefin 
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yields.  In addition, coupling to allyl sulfone (Entry 1), and 1,4-diacetoxy-cis-2,3-butene  

(Entry 2) can be achieved in good yields with moderate trans stereoselectivity. We were 

surprised to observe the excellent CM reactivity of allyl sulfone (87% isolated yield, 

Table 1, Entry 1) since other sulfur-containing functionalities are known to deactivate 

late-transition metal catalysts.15  We had previously demonstrated the CM of allyl 

sulfones with α-olefins using catalyst 2.16  Functionalized disubstituted olefins (Table 1, 

Entries 4 and 5) also proved excellent substrates for this reaction, and showed improved 

yields relative to purely alkyl substituted examples in Entries 1-3.  We observe that the 

benzoate ester functionality may increase reactivity of the geminal olefins with the 

catalytic ruthenium species, but the reason why is unclear.  We were also interested in 

incorporating functional groups that could be incorporated by CM.  For example, 1,1-

disubstituted vinyl boronates participate in CM with α-olefins with improved E/Z 

selectivity (Table 1, Entry 6).  In fact, the cis and trans isomers obtained are separable by 

column chromatography.  These products are useful for the synthesis of a variety of 

trisubstituted olefins by Suzuki couplings.  This reaction is also advantageous to 

performing hydroboration of the corresponding alkyne, where a mixture of regioisomers 

would be obtained.17  The regiospecificity of CM is important to note, since the choice of 

CM partners allows one to access either desired regioisomer.  Unfortunately, using a 1,1-

disubstituted vinylboronate containing a homoallylic silyl ether did not provide 

appreciable amounts of CM product, so the reaction seems sensitive to steric bulk beyond 

methyl groups as the other geminal substituent.  Finally, we also are able to incorporate 

quaternary allylic carbons as shown in Entry 7.  This provides a trisubstituted olefin with 

a fully substituted allylic carbon in moderate yield and stereoselectivity.  This reaction 
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then allows for contiguous stereocenters to be installed by a simple CM reaction.  The 

utility of allylic substitution in CM selectivity will be discussed in subsequent chapters.  

Finally, it should be noted that in all these reactions, the disubstituted olefin does not 

undergo homodimerization, enabling quantitative recovery of unreacted starting material. 

These represent the first examples of cross-metathesis reactions between geminal 

disubstituted olefins and α-olefins employing ruthenium alkylidenes 1 and 4. Protected 

homoallylic and allylic alcohols under these reaction conditions have shown the best 

conversion to CM product so far. 

 However, we were relatively disappointed with the olefin diastereoselectivity and 

moderately high catalyst loadings and reaction temperatures required in these reactions.  

Therefore, we wanted to investigate the use of symmetrical 1,1-geminally disubstituted 

olefins.  Another reason why we wished to investigate these olefins was to increase 

substrate scope, since only methyl groups as the second geminal substituent are used in 

Table 1.  We anticipated that the use of identical substituents on the geminal carbon 

would expand the substrate scope, without being complicated by the issue of poor 

stereoselectivity.  In fact, we have been able to affect the convenient CM of symmetrical 

1,1-disubstituted olefins with a variety of CM partners.  Of particular interest is an 

isoprenoid synthetic route by the homologation of α-olefins with isobutylene or 2-

methyl-2-butene using catalyst 1.18  The reactions of a variety of olefins with isobutylene 

provide excellent CM yields.  We were particularly pleased with these reactions since the 

prenyl groups generated are a ubiquitous structural element in a variety of natural 

products.  Conventional methods to install this structural unit involve Wittig olefinations 

of an aldehyde or Claisen rearrangement of tertiary allyl ethers.   However, the ability for 
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CM to use exclusively olefinic starting materials to generate trisubstituted olefins, instead 

of using more reactive aldehyde functionalities, such as those employed in Wittig 

chemistry will be useful.  In fact, since both of these reactions use orthogonal functional 

groups, this opens avenues for two-directional synthesis using CM and Wittig olefination.   

Our initial work in 1,1-symmetrically disubstituted olefins began with the cross-

metathesis of isobutylene with α-olefins (Table 2).   These reactions offer a convenient 

alternative to the use of Ph3P=C(CH3)2 and the corresponding aldehyde to form prenyl 

functionality.  Prenyl groups are a ubiquitous structural element in many natural products 

and are also frequently employed in ene chemistry.  For example, the reaction works well 

with simple α-olefins (Entry 1) as well as with 1,2-disubstiuted olefin starting materials 

(Entry 2).  In addition the reactions tolerate substrates that could ring close as 

demonstrated in the homoallylic hepatadiene case (Entry 3).  Senecioic acid derivations 

are also readily available from the CM reaction with the corresponding acrylate ester, 

Product Isolat. yieldMetathesis Partner

88

Entry

4a

3

1

Table 2. Cross Metathesis with Isobutylene using catalyst 1

96

2

83

R R+

neat

1 mol%

40oC, 12 h

catalyst    1

OAcAcO OAc

OBz OBz

O

O
O

O

OAc OAc 97
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demonstrating the use of electron-deficient olefins (Entry 4).  In all of these cases, the 

workup is straightforward where the excess isobutylene (bp -6.9 oC) is allowed to 

evaporate leaving catalyst and CM product.  With these results in hand, we investigated 

other symmetrically substituted olefins and found that both methylene cyclohexane and 

2-methylene-1,3-dibenzoate work well as CM partners with 5-hexenyl acetate (Scheme 

4).  Even though the yields are  lower, these reactions offer a straightforward method to 

homologate olefins without the use of ketone precursors.  In addition, since the 1,1-

disubstituted olefin does not dimerize, it can be fully recovered and recycled in 

subsequent CM reactions.  These substrates have also been used in this group for 

homologation to allylboronates19 and α,β-unsaturated carbonyl containing olefins,20 

thereby demonstrating good substrate scope. 

Interestingly, we did observe a small background dimerization of a small amount 

of isobutylene to tetramethylethylene (<15%), but this did not affect the CM efficiency.  

The CM efficiency is surprising since the catalyst loadings are very low relative to the 

amount of bulk olefin in the reaction, with an effective catalyst loading of 0.0001 mol%.  

The inability of the 1,1-disubstituted olefin to readily homodimerize allows it to serve as 

both a reaction solvent and as an effective cross partner.  These factors allow for selective 

CM to the trisubstituted olefinic product in excellent yield.  However, the background 

OAc

OAc

BzO

BzO

BzO
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Scheme 4: CM of Symmetrical Disubstituted Olefins
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dimerization of isobutylene to tetramethylethylene prompted us to investigate the use of 

tetramethylethylene as a more convenient CM partner, since it is a liquid at room 

temperature (bp 73 oC).  Unfortunately, this did not provide a synthetically useful amount 

of CM product, but we were able to use 2-methyl-2-butene (bp 35-38 oC) as a useful CM 

partner where the entropic driving force is the loss of propene.  In fact, we were surprised 

to see very efficient CM with this substrate at 35 oC and room temperature (Table 3).   

This reaction represents the first CM reaction that involves the productive CM of 

trisubstituted olefins with α-olefins to generate useful products.  Our previous results 

Product Isolat. YieldCM partner

97

Entrya

4

5

3

1

Table 3. Cross Metathesis with 2-Methyl-2-butene using 1
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required higher catalyst loadings (5 mol%) and refluxing CH2Cl2 to get productive CM 

yields.  One general note is the ease in performing these reactions, where no solvent is 
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required, all reagents were handled on the bench, and only ambient temperatures are 

needed to afford CM products in excellent yield.  The substrate scope in these CM is 

quite general, including allylphosphonates (Entry 1), which allows for an efficient 

synthesis of prenyl diene reagents from commercially available starting materials. In 

addition to amenability of an electron-deficient styrene (Entry 2), unprotected aldehydes 

work well, allowing direct orthogonality to Wittig methods (Entry 3).  Substituted 

allylbenzenes (Entry 4 and 5) are also well tolerated in the reaction.  Particularly 

interesting is the CM of phenolic allylbenzene (Entry 5), where CM is a convenient 

alternative to aromatic Claisen chemistry that would initially require the synthesis of 

tertiary phenoxy ether.  In fact, we were pleased to find that this method has been applied 

in an allyl to prenyl conversion in the synthesis of the core of Garsubellin A.21   In all of 

these reactions in Table 3, we were able to detect a small amount of the methyl CM 

product, but observed that this material is consumed in the course of the reaction to 

furnish the more thermodynamically stable trisubstituted olefin.  Therefore, we wanted to 

see if there were olefin CM partners that would not readily perform metathesis on a 

methyl terminated product.  For example, in the reaction of n-butyl-acrylate with 2-

methyl-2-butene, we were able to detect only a small amount (< 5%) of the senecioic acid 

derivative, but observed the majority of material converted to n-butyl-crotonate (Scheme 

5).  In this case, the propagating species of catalyst 1 was unable to perform secondary 

metathesis of the initial CM product.  Additionally, in the CM reaction of a secondary 

allylic benzoate with 2-methyl-2-butene furnishes a mixture of methyl and dimethyl 

capped products that can not be converted to more thermodynamically stable 
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trisubstituted olefin even upon re-subjecting the mixture to fresh catalyst and 2-methyl-2-

1 mol%

35 °C, 12 hr

neat

Scheme 5. Product Distribution by 1H-NMR of Challenging CM Substrates
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butene.  These results lead to three important points about the differences in the use of 

isobutylene and 2-methyl-2-butene in CM reactions to install prenyl groups.  First, 

despite the ease of the 2-methyl-2-butene reaction, the substrate scope in isobutylene CM 

is greater because it can perform CM on sterically challenging and electron-deficient 

olefins.  Second, that 2-methyl-2-butene can be a useful method to install either methyl or 

dimethyl groups based on the reactivity characteristics of the CM partner, i.e. the ability 

of the methyl terminated product to undergo secondary metathesis.  Finally, these 

reactions can be used to determine the reactivity of new CM substrates, specifically the 

extent of secondary metathesis of initial CM products.  This has an important impact on 

determining product selectivity in CM and will be discussed in the following chapters.       

In conclusion, the cross-metathesis reactions between symmetrical disubstituted 

olefins and terminal olefins employing ruthenium alkylidenes 1 and 4 have been 

presented.  These reactions allow for the selective functionalization of α-olefins to 

trisubstituted olefins.  Even though there are limitations in terms of sterics on the 1,1-

disubstituted component, these reactions do tolerate a wide variety of functionalities and 

substitutions including those that are used in alternative olefination methods.  Of 

particular synthetic interest is the convenient conversion of terminal olefins to prenyl 
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groups.  This method allows for an efficient one-step formation of trisubstituted olefins 

under mild reaction conditions and low catalyst loadings and further demonstrates the 

utility of olefin metathesis in organic synthesis.  

 

Experimental Section. 

 General Experimental Section.  NMR spectra were recorded on either a JEOL 

GX-400, GE-300 NMR, or Varian Mercury NMR.  Chemical shifts are reported in parts 

per million (ppm) downfield from tetramethylsilane (TMS) with reference to internal 

solvent.  Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), 

quartet (q), quintet (quint), and multiplet (m).  The reported 1H NMR data refer to the 

major olefin isomer unless stated otherwise.  The reported 13C NMR data include all 

peaks observed and no peak assignments were made. High-resolution mass spectra (EI 

and FAB) were provided by the UCLA Mass Spectrometry Facility (University of 

California, Los Angeles). 

 Analytical thin-layer chromatography (TLC) was performed using silica gel 60 

F254 precoated plates (0.25 mm thickness) with a fluorescent indicator.  Flash column 

chromatography was performed using silica gel 60 (230-400 mesh) from EM Science. All 

other chemicals were purchased from the Aldrich, Strem, or Nova Biochem Chemical 

Companies, and used as delivered unless noted otherwise. CH2Cl2 was purified by 

passage through a solvent column prior to use.22 

 

Compound 5. 2-Methyl-1-undecene (110 µl, 0.5 mmol) and 2-vinyl-1,3-dioxolane (100 

µl, 1.0 mmol) were simultaneously added via syringe to a stirring solution of 1 (12 mg, 
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0.015 mmol, 2.9 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 9:1 

hexane:ethyl acetate.  Pale yellow oil was obtained (60 mg, 67% yield, 3:1 E/Z based on 

relative intensities of 13C peaks at 122.1, 121.2 ppm).  1H NMR (300 MHz, CDCl3, ppm): 

δ 5.48 (1H, m), 5.22 (1H, m), 4.00 (2H, app t), 3.87 (2H, app t), 1.96 (2H, m), 1.75 (3H, 

s), 1.46-1.25 (17H, m) 13C NMR (75 MHz, CDCl3, ppm): δ 122.1, 121.2, 101.0, 100.6, 

65.4, 40.1, 32.4, 32.1, 30.1, 30.0, 29.9, 27.9, 27.7, 23.2, 14.6. Rf = 0.26 (9:1 hexane:ethyl 

acetate);  HRMS (EI) calcd for C15H28O2 [M]+ 240.2083, found 240.2089. 

 

Compound 6. 2-Methyl-1-undecene (110 µl, 0.50 mmol) and allylphenylsulfone (155 µl, 

1.0 mmol) were simultaneously added via syringe to a stirring solution of 1 (30 mg, 0.035 

mmol, 7 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and refluxed 

under nitrogen for 12 hours.  The reaction mixture was then reduced in volume to 0.5 ml 

and purified directly on a silica gel column (2x10 cm), eluting with 9:1 hexane:ethyl 

acetate.  Clear oil was obtained (139 mg, 87% yield, 3.4:1 E/Z based on relative 

intensities of 13C peaks at 110.6, 111.0 ppm).  1H NMR (300 MHz, CDCl3, ppm): δ 7.84-

7.80 (2H, m), 7.69-7.52 (3H, m), 5.64 (1H, m), 3.76 (2H, d, J = 6.9 Hz), 1.96 (2H, m), 

1.75 (3H, s), 1.46-1.25 (14H, m), 0.87 (3H, t, J = 6.3 Hz) 13C NMR (75 MHz, CDCl3, 

ppm): δ 147.3, 139.9, 129.5, 129.1, 111.0, 110.6, 56.7, 56.5, 40.2, 32.4, 32.3, 30.1, 30.0, 

29.9, 29.8, 28.1, 24.0, 23.2, 16.6, 14.6. Rf = 0.53 (9:1 hexane:ethyl acetate);  HRMS (EI) 

calcd for C19H30O2S [M + H]+ 323.2045, found 323.2046. Elemental analysis Calcd: C: 

70.76, H: 9.38; Found: C: 70.66, H: 9.43. 
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Compound 7. 2-Methyl-1-undecene (110 µl, 0.50 mmol) and cis-2-butene-1,4-diacetate  

(160 µl, 1.0 mmol) were simultaneously added via syringe to a stirring solution of 1 (21 

mg, 0.025 mmol, 5 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 9:1 

hexane:ethyl acetate.  Clear oil was obtained (63 mg, 53% yield, 2.5:1 E/Z based on 

integrations of 1H peaks at 4.57, 4.66 ppm).  1H NMR (300 MHz, CDCl3, ppm): δ 5.32 

(1H, m), 4.57 (2H, d, J = 6.9 Hz), 2.07-1.96 (5H, m), 1.75 (3H, s), 1.46-1.25 (14H, m), 

0.87 (3H, t, J = 6.3 Hz) 13C NMR (75 MHz, CDCl3, ppm): δ 171.6, 118.6, 110.0, 62.0, 

40.1, 32.6, 32.4, 30.1, 29.8, 28.1, 24.0, 23.2, 21.6, 16.6, 14.6. Rf = 0.53 (9:1 hexane:ethyl 

acetate);  HRMS (EI) calcd for C15H28O2 [M]+ 240.2085, found 240.2089.  

 

Compound 8. 2-Methyl-1-undecene (110 µl, 0.50 mmol) and 5-hexenyl-1-acetate (170 

µl, 1.0 mmol) were simultaneously added via syringe to a stirring solution of 1 (20 mg, 

0.024 mmol, 4.8 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 9:1 

hexane:ethyl acetate.  Clear oil was obtained (83 mg, 60% yield, 2.3:1 E/Z based on 

relative intensities of 13C peaks at 125.0, 124.2 ppm).  1H NMR (300 MHz, CDCl3, ppm): 

δ 5.06 (1H, m), 4.04 (2H, t, J = 6.9 Hz), 2.03 (3H, obs s), 2.08-1.91 (4H, m), 1.69-1.57 

(2H, m), 1.57 (3H, obs s), 1.47-1.05 (16H, m), 0.87 (3H, t, J = 6.3 Hz) 13C NMR (75 

MHz, CDCl3, ppm): δ 171.7, 136.7, 125.0, 65.1, 40.2, 32.5, 32.4, 30.2, 30.1, 29.9, 28.8, 
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28.5, 28.0, 26.7, 23.2, 21.5, 16.6, 14.6. Rf = 0.35 (9:1 hexane:ethyl acetate);  HRMS (EI) 

calcd for C18H34O2 [M]+ 282.25556, found 282.25588.  Elemental analysis Calcd: C: 

76.54, H: 12.13; Found: C: 75.96, H: 12.15. 

 

Compound 9. 1-Benzyloxy-3-methyl-3-butene (95 µl, 0.50 mmol) and 5-hexenyl-1-

acetate (170 µl, 1.0 mmol) were simultaneously added via syringe to a stirring solution of 

1 (18 mg, 0.021 mmol, 4.3 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 20:1 hexane:ethyl acetate.  Clear oil was obtained (121 mg, 80% yield, 2.8:1 

E/Z based on integration of 1H peaks at 2.49, 2.43 ppm).  1H NMR (300 MHz, CDCl3, 

ppm): δ 8.03 (2H, d, J = 6.9 Hz), 7.54 (1H, t, J = 7.4 Hz), 7.42 (2H, t, J = 7.6 Hz), 5.26-

5.20 (1H, m), 4.38 (2H, t, J = 6.6 Hz), 4.00 (2H, t, J = 6.3 Hz), 2.51-2.41 (2H, m), 2.06-

1.99 (5H, m), 1.68 (3H, s), 1.58 (2H, m), 1.36 (2H, m) 13C NMR (75 MHz, CDCl3, ppm): 

δ 171.8, 167.1, 133.4, 132.0, 131.0, 128.9, 127.5, 65.0, 64.0, 39.3, 31.8, 28.1, 26.5, 24.2, 

21.6, 16.6. Rf = 0.52 (9:1 hexane:ethyl acetate);  HRMS (EI) calcd for C18H24O4 [M]+ 

304.1674, found 304.1686.  Elemental analysis Calcd: C: 71.03, H: 7.95; Found: C: 

70.67, H: 7.92. 

 

Compound 10. 1-Benzyloxy-2-methyl-2-propene (90 µl, 0.51 mmol) and 5-hexenyl-1-

acetate (170 µl, 1.0 mmol) were simultaneously added via syringe to a stirring solution of 

1 (21 mg, 0.026 mmol, 5.0 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 
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reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 20:1 hexane:ethyl acetate (500 ml) and then elute with 9:1 hexane:ethyl 

acetate.  Clear oil was obtained (120 mg, 81% yield, 4:1 E/Z based on integration of 1H 

peaks at 5.41, 5.63 ppm).  1H NMR (300 MHz, CDCl3, ppm): δ 8.03 (2H, d, J = 6.9 Hz), 

7.54 (1H, t, J = 7.4 Hz), 7.42 (2H, t, J = 7.6 Hz), 5.63 (1H, m), 4.67 (2H, s), 4.00 (2H, t, J 

= 6.3 Hz), 2.18-2.01 (5H, m), 1.97 (3H, s), 1.61 (2H, m), 1.43 (2H, m) 13C NMR (75 

MHz, CDCl3, ppm): δ 171.3, 166.6, 133.0, 130.7, 130.6, 130.5, 129.7, 129.3, 128.5, 70.7, 

64.5, 28.4, 25.8, 21.6, 14.2. Rf = 0.43 (9:1 hexane:ethyl acetate);  HRMS (EI) calcd for 

C17H22O4 [M + H]+ 291.1596, found 291.1589.  Elemental analysis Calcd: C: 70.32, H: 

7.64; Found: C: 69.89, H: 7.76. 

 

Compound 11. 5-Hexenyl-1-acetate (170 µl, 1.0 mmol) was added via syringe to a 

stirring solution of 1 (21 mg, 0.026 mmol, 5.0 mol %) and 2-isopropenyl-4,4,5,5-

tetramethyl-[1,3,2]-dioxaborolane23 (84 mg, 0.50 mmol) in CH2Cl2 (2.5 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel column 

(2x10 cm), eluting with 9:1 hexane:ethyl acetate (500 ml).  Clear oil was obtained (101 

mg, 72% yield, 8.2:1 E/Z based on integration of 1H peaks of isolated compounds at 6.25, 

6.03 ppm).  1H NMR of E isomer (300 MHz, CDCl3, ppm): δ 6.25 (1H, t, J = 6.8 Hz), 

4.00 (2H, t, J = 6.3 Hz), 2.12 (2H, m), 1.97 (3H, s), 1.80-1.60 (5H, m), 1.51-1.41 (2H, 

m), 1.26 (12H, s).  HRMS (EI) calcd for C17H25BO4 [M]+ 282.2005, found 282.2011.  Rf 

= 0.41 (9:1 hexane:ethyl acetate), minor isomer (Z) Rf = 0.50. Spectra match those of a 
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related known compound, see: Yamamoto, Y.; Fujikawa, R.; Yamada, A.; Miyaura, N. 

Chem. Lett. 1999, 1069. 

 

Compound 12. 1-Benzyloxy-2-methyl-2-propene (82 µl, 0.51 mmol) and 2-vinyl-2-

methylcyclohexanone (135 µl, 1.0 mmol) were simultaneously added via syringe to a 

stirring solution of 4 (30 mg, 0.036 mmol, 7.2 mol %) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture 

was then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 

cm), eluting with 9:1 hexane:ethyl acetate (500mL).  Light brown oil was obtained (76 

mg, 53% yield, 3:1 E/Z based on integration of 1H peaks at 5.63, 5.41 ppm).  1H NMR 

(300 MHz, CDCl3, ppm): δ 8.03 (2H, d, J = 6.9 Hz), 7.54 (1H, t, J = 7.4 Hz), 7.42 (2H, t, 

J = 7.6 Hz), 5.63 (1H, m), 4.67 (2H, s), 2.47-2.23 (2H, m), 1.95-1.81 (9H, m), 1.04 (3H, 

m). Rf = 0.57 (9:1 hexane:ethyl acetate). 

 

Compound 13.   To an oven dried, 100 mL Fischer-Porter bottle with Teflon stir bar, 

ruthenium metathesis catalyst 1 (21.0 mg, 0.025 mmol, 3.7 mol%) was added.  The bottle 

was capped with a rubber septum and flushed with dry nitrogen and cooled to -78 oC.  5-

Hexenyl-1-acetate (110 µL, 0.66 mmol) was injected into the bottle.  Once the substrate 

was frozen, a pressure regulator was attached to the bottle.  The bottle was evacuated and 

backfilled with dry nitrogen 3 times.  Subsequently, isobutylene (5 mL, 50 equiv.) was 

condensed into the bottle.  The bottle was backfilled to ~2 psi with nitrogen, sealed, and 

allowed to slowly warm to room temperature, at which time it was transferred to an oil 

bath at 40 oC.  After stirring for 12 hours, the bottle was removed from the oil bath and 
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allowed to cool to room temperature.  The isobutylene was slowly vented off at room 

temperature until the pressure apparatus could be safely disassembled.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel column 

(2x10 cm), eluting with 20:1 hexane:ethyl acetate (500mL).  Clear oil was obtained (108 

mg, 97% yield).  1H NMR (300 MHz, CDCl3, ppm): δ 5.08 (1H, m), 4.03 (2H, t, J = 6.9 

Hz), 2.02 (3H, s), 2.00 (2H, obs q, J = 7.2 Hz), 1.67 (3H, s), 1.63-1.56 (5H, m), 1.41-1.31 

(2H, m).  13C NMR (75 MHz, CDCl3, ppm): δ 171.2, 131.9, 124.2, 64.8, 28.5, 27.8, 26.3, 

26.0, 21.3, 18.0. Rf = 0.43 (9:1 hexane:ethyl acetate).  

 

Compound 14.   To an oven dried, 100 mL Fischer-Porter bottle with Teflon stir bar, 

ruthenium metathesis catalyst 1 (21.0 mg, 0.025 mmol, 5.0 mol%) was added.  The bottle 

was capped with a rubber septum and flushed with dry nitrogen and cooled to -78 oC.  

cis-2-butene-1,4-diacetate (80 µL, 0.51 mmol) was injected into the bottle containing 2.5 

mL CH2Cl2 (it was later found that this is not necessary for the reaction to proceed).  The 

bottle was evacuated and backfilled with dry nitrogen 3 times.  Subsequently, isobutylene 

(2 mL) was condensed into the bottle.  The bottle was backfilled to ~2 psi with nitrogen, 

sealed, and allowed to slowly warm to room temperature, at which time it was transferred 

to an oil bath at 40 oC.  After stirring for 12 hours, the bottle was removed from the oil 

bath and allowed to cool to room temperature.  The isobutylene was slowly vented off at 

room temperature until the pressure apparatus could be safely disassembled.  The 

reaction mixture was then reduced in volume to 0.5 ml and purified directly on a silica 

gel column (2x10 cm), eluting with 20:1 hexane:ethyl acetate (500mL).  Clear oil was 

obtained (108 mg, 97% yield).  1H NMR (300 MHz, CDCl3, ppm): δ 5.34 (1H, m), 4.55 
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(2H, d, J = 7.2 Hz), 2.04 (3H, s), 1.75 (3H, broad s), 1.70 (3H, broad s). Rf = 0.66 (9:1 

hexane:ethyl acetate).  Spectra matches that of previously reported characterization, see: 

Vani, P. V. S. N.; Chida, A. S.; Srinivasan, R.; Chandrasekharam, M.; Singh, A. K. 

Synth. Commun. 2001, 31, 219. 

 

Compound 15.   To an oven dried, 100 mL Fischer-Porter bottle with Teflon stir bar and 

containing 4-Benzyloxy-1,6-heptadiene (200 mg, 0.66 mmol), ruthenium metathesis 

catalyst 1 (13.3 mg, 0.016 mmol, 1.7 mol%) was added.  The bottle was capped with a 

rubber septum and flushed with dry nitrogen and cooled to -78 oC.  Once the substrate 

was frozen, a pressure regulator was attached to the bottle.  The bottle was evacuated and 

backfilled with dry nitrogen 3 times.  Subsequently, isobutylene (10 mL) was condensed 

into the bottle.  The bottle was backfilled to ~2 psi with nitrogen, sealed, and allowed to 

slowly warm to room temperature, at which time it was transferred to an oil bath at 40 oC.  

After stirring for 12 hours, the bottle was removed from the oil bath and allowed to cool 

to room temperature.  The isobutylene was slowly vented off at room temperature until 

the pressure apparatus could be safely disassembled.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 20:1 hexane:ethyl acetate (500mL).  Clear oil was obtained (241 mg, 96% 

yield).  1H NMR (300 MHz, CDCl3, ppm): δ 8.05 (2H, d, J = 7.2 Hz), 7.53 (1H, t, J = 7.2 

Hz), 7.42 (2H, t, J = 7.6 Hz), 5.19 (2H, t, J = 7.2 Hz), 5.10 (1H, q, J = 6.0 Hz), 2.42-2.36 

(4H, m), 1.69 (6H, s), 1.63 (6H, s).  13C NMR (75 MHz, CDCl3, ppm): δ 166.0, 134.2, 

132.4, 129.8, 128.0, 119.7, 75.0, 32.7, 26.0, 18.0. Rf = 0.76 (9:1 hexane:ethyl acetate).  
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Compound 17. 5-Hexenyl-1-acetate (167 µL, 1.0 mmol) and 2-methylenecyclohexane 

(60 µL, 0.50 mmol) were added simultaneously via syringe to a stirring solution of 1 (19 

mg, 0.023 mmol, 4.6 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser 

and refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 20:1 

hexane:ethyl acetate.  Clear oil was obtained (68 mg, 65% yield). 1H NMR (300 MHz, 

CDCl3, ppm): δ 5.04 (1H, t, J = 7.2 Hz), 4.05 (2H, t, J = 6.3 Hz), 2.11-1.97 (9H, m), 1.69-

1.31 (10H, m). 13C NMR (75 MHz, CDCl3, ppm): δ 171.4, 128.7, 120.9, 64.9, 37.5, 29.0, 

28.9, 28.5, 28.2, 27.3, 26.9, 26.8, 21.4. Rf = 0.68 (9:1 hexane:ethyl acetate). 

 

Compound 18. 5-Hexenyl-1-acetate (170 µL, 1.0 mmol) was added via syringe to a 

stirring solution of 1 (15 mg, 0.018 mmol, 3.3 mol %) and 2-methylenepropane-1,4-

dibenzoate (163 mg, 0.55 mmol) in CH2Cl2 (2.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 9:1 hexane:ethyl acetate (500mL) and then elute with 4:1 hexane:ethyl 

acetate.  Clear oil was obtained (109 mg, 48% yield) as well as (94 mg, 0.31 mmol) of 

and 2-methylenepropane-1,4-dibenzoate starting material. CM product 1H NMR (300 

MHz, CDCl3, ppm): δ 8.03 (4H, d, J = 6.9 Hz), 7.54 (2H, t, J = 7.4 Hz), 7.42 (4H, t, J = 

7.6 Hz), 5.92 (1H, t, J = 7.5 Hz), 4.99 (2H, s), 4.92 (2H, s), 4.05 (2H, t, J = 6.3 Hz), 2.29 

(2H, q, J = 7.5 Hz), 2.01 (3H, s), 1.69-1.64 (2H, m), 1.53-1.45 (2H, m). 13C NMR (75 

MHz, CDCl3, ppm): δ 171.3, 166.5, 136.8, 133.2, 133.1, 130.2, 130.1, 129.8, 128.5, 

128.4, 67.7, 64.5, 60.8, 28.6, 27.8, 26.1, 21.4. Rf = 0.13 (9:1 hexane:ethyl acetate). 
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Compound 19.  2-Methyl-2-butene (3.0 mL) (Aldrich Chem. Co.) and 5-hexenyl-1-

acetate (230 µL, 1.47 mmol) were added simultaneously via syringe to a stirring solution 

of catalyst 1 (11 mg, 0.013 mmol, 0.85 mol%) under a nitrogen atmosphere.  The flask 

was allowed to stir at room temperature for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 mL and purified directly on a silica gel column (2x10 cm), 

eluting with 25:1 hexane:ethyl acetate to provide the cross metathesis product (244 mg, 

1.43 mmol, 97% yield) as a light brown oil.  1H NMR (300 MHz, CDCl3, ppm): δ 5.08 

(1H, m), 4.03 (2H, t, J = 6.9 Hz), 2.02 (3H, s), 2.00 (2H, obs q, J = 7.2 Hz), 1.67 (3H, s), 

1.63-1.56 (5H, m), 1.41-1.31 (2H, m).  13C NMR (75 MHz, CDCl3, ppm): δ 171.2, 131.9, 

124.2, 64.8, 28.5, 27.8, 26.3, 26.0, 21.3, 18.0. Rf = 0.43 (9:1 hexane:ethyl acetate).  

 

Compound 20.  2-methyl-2-butene (3.0 mL) (Aldrich Chem. Co.) was added via syringe 

to a stirring solution of catalyst 1 (15 mg, 0.018 mmol, 2.8 mol%) and 

diethylallylphosphonate (100 µL, 0.62 mmol) under a nitrogen atmosphere.  The flask 

was fitted with a condenser and heated to 35 oC under nitrogen for 12 hours.   The 

reaction mixture was then reduced in volume to 0.5 mL and purified directly on a silica 

gel column (2x10 cm), eluting with 10:1 ethyl acetate:hexanes (500 mL) followed by 

20:1 ethyl acetate:hexanes (300 mL) to provide the cross metathesis product (123 mg, 

0.60 mmol, 97% yield) as a viscous oil. 1H NMR (300 MHz, CDCl3, ppm): δ 5.15 (1H, 

m), 4.06 (4H, m), 2.47 (2H, dd, J = 21.9, 7.8 Hz), 1.67 (3H, d, J = 5.4 Hz), 1.58 (3H, d, J 

= 4.2 Hz), 1.24 (6H, J = 6.9 Hz) and matches that of a previous characterization, see: 
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Kiddle, J. J.; Babler, J. H. J. Org. Chem. 1993, 58, 3572. Rf = 0.29 (1:1 hexane:ethyl 

acetate). 

 

Compound 21.  2-methyl-2-butene (3.2 mL) (Aldrich Chem. Co.) and 3-nitrostyrene 

(190 µL, 1.36 mmol) were added simultaneously via syringe to a stirring solution of 

catalyst 1 (11 mg, 0.013 mmol, 1.0 mol%) under a nitrogen atmosphere.  The flask was 

fitted with a condenser and heated to 35 oC under nitrogen for 12 hours.   The reaction 

mixture was then reduced in volume to 0.5 mL and purified directly on a silica gel 

column (2x10 cm), eluting with 10:1 hexane:ethyl acetate to provide the cross metathesis 

product (229 mg, 1.29 mmol, 95% yield) as a light brown oil.  1H NMR (300 MHz, 

CDCl3, ppm): δ 8.16-7.99 (2H, m), 7.61-7.40 (2H, m), 6.42-6.28 (1H, m), 1.93 (3H, s), 

1.87 (3H, s).  13C NMR (75 MHz, CDCl3, ppm): δ 138.8, 134.8, 131.8, 129.4, 129.1, 

123.4, 121.4, 120.8, 27.1, 19.7. Rf = 0.41 (9:1 hexane:ethyl acetate).  Spectra matched 

those previously reported, see: Wan, P.; Davis, M. J.; Teo, M.-A. J. Org. Chem. 1989, 54, 

1354.  

 

Compound 22.  2-methyl-2-butene (3.2 mL) (Aldrich Chem. Co.) and undecylinic 

aldehyde (270 µL, 1.30 mmol) were added simultaneously via syringe to a stirring 

solution of catalyst 1 (11 mg, 0.013 mmol, 1.0 mol%) under a nitrogen atmosphere.  The 

flask was fitted with a condenser and heated to 35 oC under nitrogen for 12 hours.   The 

reaction mixture was then reduced in volume to 0.5 mL and purified directly on a silica 

gel column (2x10 cm), eluting with 10:1 hexane:ethyl acetate to provide the cross 

metathesis product (231 mg, 1.18 mmol, 91% yield) as a clear oil.  1H NMR (300 MHz, 
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CDCl3, ppm): δ 9.74 (1H, s), 5.10 (1H, m), 2.42 (2H, m), 1.96 (2H, m), 1.68-1.50 (8H, 

m), 1.47-1.30 (10H, m). Rf = 0.31 (9:1 hexane:ethyl acetate).  

 

Compound 23. 2-methyl-2-butene (3.2 mL) (Aldrich Chem. Co.) and 

pentafluoroallylbenzene (225 µL, 1.47 mmol) were added simultaneously via syringe to a 

stirring solution of catalyst 1 (13 mg, 0.015 mmol, 1.0 mol%) under a nitrogen 

atmosphere.  The flask was fitted with a condenser and heated to 35 oC under nitrogen for 

12 hours.   The reaction mixture was then reduced in volume to 0.5 mL and purified 

directly on a silica gel column (2x10 cm), eluting with 20:1 hexane:ethyl acetate to 

provide the cross-metathesis product (316 mg, 1.34 mmol, 91% yield) as a clear oil.  1H 

NMR (300 MHz, CDCl3, ppm): δ 5.13 (1H, m), 3.37 (2H, m), 2.42 (2H, m), 1.75 (3H, s), 

1.65 (3H, s). 13C NMR (75 MHz, CDCl3, ppm): δ 134.9, 119.1, 25.9, 21.7, 17.9.  Rf = 

0.93 (9:1 hexane:ethyl acetate).  

 

Compound 24.  2-methyl-2-butene (3.0 mL) (Aldrich Chem. Co.) was added via syringe 

to a stirring solution of catalyst 1 (13 mg, 0.015 mmol, 1.0 mol%) and 2-vinyl-1-tert-

butyldimethylsilyloxyphenol (263 mg, 1.06 mmol) under a nitrogen atmosphere.  The 

flask was fitted with a condenser and heated to 35 oC under nitrogen for 12 hours.   The 

reaction mixture was then reduced in volume to 0.5 mL and purified directly on a silica 

gel column (2x10 cm), eluting with 10:1 hexane:ethyl acetate to provide the cross 

metathesis product (290 mg, 1.05 mmol, 99% yield) as a clear oil.  1H NMR (300 MHz, 

CDCl3, ppm): δ 7.31-6.86 (4H, m), 5.40 (1H, m), 3.45 (2H, d, J = 7.2 Hz), 1.87 (3H, s), 

1.82 (3H, s), 1.15 (9H, s), 0.37 (6H, s). Rf = 0.89 (9:1 hexane:ethyl acetate).  Compound 
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spectra match those of the methyl ether analog, see: Strunz, G.; Ya, L. Can. J. Chem. 

1992, 70, 1317. 
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Chapter 4: Synthesis of Functionalized Olefins by CM 

 

 The generation of olefins with electron-withdrawing functionality, such as α,β-

unsaturated aldehydes, ketones, and esters, remains an important transformation in 

organic chemistry. The most common approach to these compounds is by use of the 

Horner-Wadsworth-Emmons (HWE) reaction of stabilized phosphonium ylides with 

aldehydes and ketones.  Other approaches include metal-catalyzed cross-coupling 

reactions, such as the Heck reaction.1  These compounds are highly versatile in a variety 

of reactions, including a variety of conjugate addition reactions.2  Therefore, the ability to 

rapidly generate these compounds is highly advantageous.  One possible method to 

synthesize these products may be through the use of olefin cross-metathesis (CM) using 

commercially available catalysts 1 - 4 (Figure 1).  This would be particularly useful, since 

ethylene would be the only byproduct in the reaction and a wide variety of commercially 

available acrylates and vinyl ketones could be used in the reaction (Scheme 1).  However, 

the use of electron-deficient olefins in CM has been met with limited success.  One of the 

initial reports, by Crowe and Goldberg,3 showed that acrylonitrile participated in a cross-

metathesis reaction with a variety of terminal olefins using catalyst 3 (Scheme 2).  

N

Mo

CH3C(CF3)2O
CH3C(CF3)2O

i-Pri-Pr

Ph

CH3
CH3

Figure 1: Commonly Used Olefin Metathesis Catalysts
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However, other α,β-substituted olefins such enones and enoic esters, were 

R+

Scheme 1: Proposed α,β-Unsaturated Carbonyl CM with Olefinic Starting Materials

R
Olefin Cross-Metathesis + H

H

R'

O
R'

O

H

HR' = alkyl, hydrogen, alkoxy

 

not compatible with molybdenum alkylidene 3 making the methodology strictly limited 

to acrylonitriles.  However, ruthenium alkylidenes 1 and 4 bearing N-heterocyclic 

carbene ligands displayed unique new activity in CM 

CN

+

Scheme 2: Acrylonitrile CM with Molybdenum-based catalysts

catalyst 3 (5 mol%)
6

CH2Cl2, 23 oC, 3h
2 equiv.

4
CN

72% isolated yield
8.5:1 Z/E ratio

 

towards previously metathesis inactive substrates with catalyst 2 and 3, such as 1,1-

geminally disubstituted olefins as described in the previous chapter.  Therefore, we 

decided to investigate CM of α,β-unsaturated carbonyl containing olefins.  There had 

been one report of CM of acrylate esters with catalyst 2 at the same time as this work, but 

the yield is low and requires high catalyst loadings (Scheme 3).4  In addition, a large 

excess of acrylate was required to provide any measurable amount of CM product.  

However, the homologation of terminal olefins with α,β-unsaturated carbonyls has been 

efficiently accomplished using ruthenium alkylidenes 1 and 4. The reaction exhibits 

excellent selectivity in terms of product selectivity and stereoselectivity.5  

O CO2CH3

Fe

catalyst 2 (20 mol%)

CH2Cl2, 40 oC, 24h
+

2
10 equiv.

O

Fe
2

38% isolated yield
>20:1 E/Z ratio

CO2CH3

Scheme 3: Previous Acrylate CM with Ruthenium bis-phosphine catalysts
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 In exploring a variety of geminally disubstituted olefins in cross-metathesis (vide 

infra), we discovered that methyl methacrylate participates in a cross-metathesis reaction 

with α-olefins to generate the trisubstituted enoic ester 5 in moderate yield with excellent 

stereoselectivity (Scheme 4). This led to the investigation of a variety of α,β- carbonyl 

containing compounds in CM (Table 1).  Particularly notable are the excellent yields 

attained with aldehydes (Table 1, Entry 3) where the desired oxidation state can be 

directly accessed; unlike using HWE chemistry where the ester needs to be initially 

formed followed by reduction.6  In addition, the CM reaction between an allyl alcohol 

and vinyl ketone work well, demonstrating that α-olefins bearing functionality at the 

allylic position can be used (Entry 4).  Finally, a double CM reaction can be performed 

catalyst 4 (5 mol%)

CH2Cl2, 40 oC, 12h
2 equiv.

62% isolated yield
>20:1 E/Z ratio

Scheme 4: Initial Acrylate CM with Ruthenium imidazolylidene catalysts

TBSO
CO2CH3+

8
TBSO

8

CO2Me

Notebook AKCI-89 5

AcO
CHO

3

Product Isolated
Yield

92c >20:1
CHO

Entry

0.53

5

Table 1. Cross-Metathesis Reactions with Unsaturated Esters, Aldehydes and Ketonesa

TBSO
CO2CH37

BzO
CO2CH3

62

91

>20:1

>20:1

CO2CH3

CO2CH3

0.5

2.0

1

2

aReactions with 3-5 mol% of 1 or 4

E/Zb

bRatio based on 1H-NMR spectra

7

4

TBSO
7

AcO
3

BzO
7

Notebook

AKCI-89

AKCI-110

JPM

O
AcO

OOAc

AcO
AKCI-203>20:181

Unsaturated
CarbonylCM Partner

OBz OBz
EtO2C CO2EtCO2Et AKCII-93>20:1764.0

0.5

cReaction performed by J.P. Morgan, Grubbs Group

Equiv.

5

6

7

8

9
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on a homoallylic benzoate (Entry 5).  This substrate may be susceptible to base-promoted 

eliminate under Wittig conditions, but is completely amenable to CM conditions with an 

excess of the acrylate partner.  It should be noted that acrylic amides and acids have also 

been applied by this group in similar CM reactions and demonstrated good substrate 

scope.7  In addition, the reactions are all trans selective, making them synthetically 

useful.  In summary, these discoveries opened new possibilities for the use of CM as an 

efficient and highly stereoselective carbon-carbon bond forming reaction.   

 In the reactions using acrolein as the CM partner, an interesting trend developed 

as the reaction was optimized.  For example, we observed a decrease in CM efficiency as 

the ratio of acrolein to catalyst increased.  We imagined that the commercial purity of 

acrolein may have been inhibiting catalyst activity.  Therefore, many of the reactions that 

were not efficient reactions with acrolein proceeded in good yields when crotonaldehyde 

was used as the aldehyde source, since it is available in greater than 99% purity from 

Product Isolated
Yield

Entry

3

5

Table 2. Cross-Metathesis Reactions with Acrolein versus Crotonaldehydea

1

2

aReactions with 3-5 mol% of 1 or 4

E/Zb

bRatio based on 1H-NMR spectra

4

Notebook

AKCII-30>20:189

Unsaturated
CarbonylCM Partner

2.0

cReaction performed by J.P. Morgan, Grubbs Group

Equiv.

12

AcO
3

CHO 2.0 62c >20:1 JPMAcO
CHO

3

AcO
3

CHO 2.0 95d >20:1 AKCII-23AcO
CHO

3

d Yield determined by NMR

AcO
AcO

CHO
CHO

10

OBz
OBz

CHO AKCII-34>20:1562.1CHO

11

AcO
3

1.0 77 >20:1 AKCII-25AcO
CHO

3
CHO

6
7

2.2 98 >20:1 AKCII-28CHO
7

CHOH

O

H

O

13
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Aldrich.  There was a significant increase in yield under identical reaction conditions 

(Table 2, Entries 1 and 2).  This reaction optimization allowed for a variety of new α,β-

unsaturated aldehydes to be prepared, including ones that could eliminate under HWE 

conditions, such as homoallylic benzoate (Entry 3).  The crotonaldehyde CM method also 

provides access to a variety of cinnamaldehydes that can be prepared by CM, such as 4-

acetoxycinnamaldehyde 12 (Entry 4).  This is an important result since almost 700 

styrenes are commercially available, while there are only 20 cinnamaldehydes are 

available.  It is also important to note that many of these reactions are highly selective 

CM processes, where 1:1 stoichiometry provides more that 50% CM product (Entry 5) 

and is discussed below in detail.  In addition, the functional group tolerance of the 

catalyst allows for the installation a α,β-unsaturated aldehyde in the presence of an 

aliphatic aldehyde (Entry 6).  In all of these reactions, exclusive formation of the trans 

olefin isomer is observed, as it is formed as the kinetic product in the reaction and not a 

result of secondary metathesis to the more thermodynamically favored product. For 

example, the productive CM formation of a trans-cinnamate is on a faster timescale than 

the metathesis-based isomerization of a cis-cinnamate to the trans-cinnamate.  It is not 

clear why the trans olefin is the initial product, since there are no direct analogies 

between the metallocyclobutane intermediates involved in this reaction and 

oxophosphatane intermediates invoked in stereocontrol in Horner-Wadsworth-Emmons 

chemistry.  Regardless, the stereoselectivities observed make these reactions useful for 

further synthetic manipulations.8 

Next, we wished to further investigate the level of product selectivities in these 

reactions.  Our hypothesis was that by using electron-deficient olefins, dimerization of 
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these olefins should be slow relative to productive CM formation.  We were able to test  

this by using a 1:1 stoichiometry in the CM reactions (Scheme 5).  For example, the need 

for an excess of one of the CM substrates is required in all previous examples of CM, 

since homodimerization of both olefin partners is unavoidable or incomplete reaction of 

the electron-deficient olefin.  However, we found that both acrolein and acrylates could 

be used in slight excess to provide excellent CM yield.  Again, in the acrylate CM 

reaction, base sensitive homoallylic substrates are excellent partners for CM.  We became 

interested in understanding what factors were responsible to such unprecedented 

selectivity in CM.  For example, we knew that under certain reaction conditions, the 

acrylate dimerization was quite efficient, but was much slower that acrylate CM with α-

olefins.9  It was previously shown by Blechert et al. that propensity for dimerization is 

not the proper measurement for determining a candidate for selective CM with α-olefins, 

since certain olefins that can individually dimerize also participate in selective CM.10  We 

wished to investigate if the CM products obtained in these selective reaction were 

accessible for secondary metathesis.   

OBz

catalyst 1 (5 mol%)

CH2Cl2, 40 oC, 12h
1 equiv.

86% isolated yield
>20:1 E/Z ratio

Scheme 5: Product Selective CM with Ruthenium Imidazolylidene Catalysts

AcO
CHO

+
4

AcO
4

CHO

Notebook AKCI-270

catalyst 1 (4.4 mol%)

CH2Cl2, 40 oC, 12h

96% isolated yield
>20:1 E/Z ratio

CO2Et+

Notebook AKCII-18

1.2 equiv.

1 equiv. 1.2 equiv.

OBz

CO2Et

10

14
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The concept of secondary metathesis is critical in developing efficient CM 

processes.  For example, in polymerization reactions, molecular weight distributions and 

polymer backbone architecture are affected by the ability of a given catalyst to scramble 

newly formed olefins.  Similarly, for selective CM secondary metathesis of productive 

CM product needs to be significantly reduced or eliminated.  This insures that 

homodimers of α-olefins, for example, are funneled to the CM product.  In addition, by 

using an α-olefin that rapidly forms a dimer that is completely accessible to secondary 

metathesis, one can enhance the quantity of CM product by reacting with any available 

functionalized olefin (such as an acrylate).  Therefore, the removal of ethylene from the 

system from the functionalized olefin can only occur by reacting in a productive manner 

with an α-olefin to form CM product.  In addition, we tested the ability for catalyst to 

perform secondary metathesis on acrylate CM products by resubjecting them to the 

metathesis conditions.  We found that these reactions did not scramble the productive CM 

reactions.  To further illustrate this important point, we carried out the reaction of ethyl 

crotonate under the optimized reaction conditions for acrylate CM and found the CM 

reaction efficiency was dramatically lower (Scheme 6).  Even though the entropically 

catalyst 1 (2 mol%)

CH2Cl2, 40 oC, 12h
1 equiv.

98% isolated yield
>20:1 E/Z ratio

Scheme 6: Acrylate versus Crotonate in CM with Ruthenium Imidazolylidene Catalysts

AcO
CO2Et

+
4

AcO
4

CO2Et

Notebook AKCII-278

catalyst 1 (2 mol%)

CH2Cl2, 40 oC, 12h

50% isolated yield
>20:1 E/Z ratio

AcO
CO2Et

+
4

AcO
4

CO2Et

Notebook AKCIII-15
H3C

1 equiv.

1 equiv. 1 equiv.

15
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driven loss of a volatile gas (propylene) exists for crotonate CM partners, we found that 

this reduced the yield of CM product by 50%.  Therefore, the 1,2-disubstituted α,β-

unsaturated carbonyl containing olefin formed in these reactions is not readily accessible 

for secondary metathesis.  Fortunately, this kinetic formation of CM products does not 

lead to low olefin stereoselectivity.  This is surprising since many metathesis catalysts 

often provide cis-substituted olefins as a kinetic product.   

As the range of substrates for CM was being expanded, we also became interested 

in using more challenging α-olefins as the CM partner.  In fact, since these α,β-

unsaturated compounds are useful synthons in organic chemistry, we wished to make 

some challenging substrates by CM and the results are outlined in Scheme 7 and 8.  For 

example, the ability to do CM between two enones is possible, although the yields are 

modest (Scheme 7).  However, the ability to produce a molecule with a α,β-unsaturated 

ketone in the presence of a protected α,β-unsaturated aldehyde is useful.  Traditional 

routes to these types of compounds involve lengthy protective group manipulations.  

However, the yields of these reactions are lower, since they involve electron deficient 

components that may not react well with an electrophilic metal center.  In the case of 

vinyl dioxolane CM with methyl vinyl ketone, the steric bulk of the substrate probably 

catalyst 1 (3 mol%)

CH2Cl2, 40 oC, 12h

1 equiv.
41% isolated yield

Scheme 7: CM between Two Functionalized Olefins

+

Notebook AKCI-197

catalyst 1 (5 mol%)

CH2Cl2, 40 oC, 12h

45% by 1H-NMR

+

Notebook AKCI-205

1.2 equiv.

2 equiv. 1 equiv.

O

O
MeO

O

O

O

O

MeO

O

O

O

O
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lowers its direct reaction with the catalyst.  At the same time, we were also interested in 

CM reactions of unprotected alcohols with catalyst 1 (Scheme 8).  While unprotected 

alcohols are well tolerated by ruthenium-based catalyst systems, they do lower reaction 

efficiencies, particularly allylic alcohols.  In addition, there was no prior work that 

described the CM of highly substituted secondary and tertiary allylic alcohols.  Therefore, 

we investigated the CM of acrylates with substituted allylic alcohols and the results are 

summarized in Scheme 8.  We were gratified to find these substrates work well with 

catalyst 1, even though a two fold excess of the acrylate component is required for high 

CM conversions.  In summary, these reactions allow for highly functionalized olefin to 

be synthesized by stereoselective CM.  

At this point, with the unique reactivity trends of catalyst 1 and 4 in providing 

highly selective CM products, we became interested in expanding the substrate scope of 

these reactions beyond α,β-unsaturated carbonyl functionalities.  For example, we began 

the investigation of α,β-unsaturated phosphonates as potential CM partners.  Olefins that 

contain phosphonate functionality are used extensively in synthetic organic chemistry.  

For example, allylic phosphonates are employed in the preparation of dienes and 

Scheme 8: Acrylate CM with Subsitituted Allylic Alcohols

catalyst 1 (4 mol%)

CH2Cl2, 40 oC, 12h
2 equiv.

92% isolated yield

+

Notebook AKCI-278

catalyst 1 (4 mol%)

CH2Cl2, 40 oC, 12h

95% isolated yield

+

Notebook AKCII-172

1 equiv.

2 equiv. 1 equiv.
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polyenes by Horner-Emmons olefination, providing products with improved 

stereoselectivity as compared to the corresponding phosphonium salts.11  The reaction of 

organic halides with trialkyl phosphites (Michaelis-Arbuzov reaction) is used primarily 

for the synthesis of allylphosphonates (Scheme 9).12  However, elimination and/or loss of 

olefin stereochemical integrity are often competitive with product formation under the 

reaction conditions.  Palladium catalyzed cross-coupling of hydrogen phosphonates to 

conjugated dienes and allenes has also been developed, but requires high reaction 

temperatures and provides low regioselectivity in highly substituted phosphonates 

products (Scheme 10).13  In addition, these methods require the use of highly reactive 

functional groups, such as allenes, dienes, and alkyl halides, so the use of simple olefinic 

precursors would be advantageous.  

Vinylphosphonates are important synthetic intermediates14 and have been 

investigated as biologically active compounds.15  Vinylphosphonates have been used as 

X R

100-160 oC

P(OEt)3 P R

O

EtO
EtO

Bhattacharya, A. K.; Thyagarjan, G. Chem. Rev. 1981, 81, 415.

Scheme 9: Synthesis of Allylphosphonates by Michaelis-Arbuzov Reaction

X = halide

• P
O

O

O

H

P
O

O

O

H

P O
O

O

P O

O

O

Scheme 10: Synthesis of Allylphosphonates by Hydrophosphorylation Reactions

+
PdMe2(dppf) 3-5 mol%

1,4-dioxane (0.2 - 0.5 M)
66% yield

Zhao, C.-Q.; Han, L.-B.; Tanaka, M. Organometallics 2000, 19, 4196-4198.

+ PdMe2(dppb) 3-5 mol%

1,4-dioxane (0.7 M)
76% yield

Mirzaei, F.; Han, L.-B.; Tanaka, M. Tetrahedron Lett. 2001, 42, 297-299.
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intermediates in stereoselective synthesis of trisubstituted olefins16 and in heterocycle 

synthesis.17  The synthesis of vinylphosphonates has also been widely examined and a 

variety of non-catalytic approaches have been described in the literature.18   Recent 

metal-catalyzed methods include, alkyne hydrozirconation,19 palladium catalyzed cross-

coupling,20 and Heck coupling of aryldiazonium salts (Scheme 11) with vinyl 

phosphonates,21 but are limited by the requirement of highly reactive functional groups in 

the substrates. Therefore, a mild, general and stereoselective method for the synthesis of 

vinyl and allylphosphonates using commercially available starting materials would be 

valuable, and may provide an additional degree of orthogonality to the previously 

reported syntheses.  This also allows for the application of selective CM to install both 

phosphonate structural elements as well as provide a method for the synthesis of useful 

reagents.  We have been able to apply catalyst 1 to the CM of vinyl and 

allylphosphonates using commercially available precursors.24  Previously, phosphorus-

containing α,ω-dienes, such as allylphosphonates and allylphosphoramides, have been 

utilized as RCM substrates by Hanson and co-workers using catalyst 2.22  In addition, 

Gouverneur and co-workers have demonstrated the intramolecular RCM of allylic 

phosphine oxides, phosphinates, and phosphoboranes using 2 and an unsaturated analog 

of 1.23  However, the intermolecular CM reaction of phosphonates has not been 

previously reported and was the focus of this work. 

R

N2BF4
P
O

OEt
OEt

Pd/CaCO3

MeOH, 50 oC
R

P
O

OEt
OEt

2 mol%

Brunner, H.; Le Cousturier de Courcy, N.; Genet, J.-P. Synlett 2000, 201-204.

Scheme 11: Synthesis of Vinylphosphonates by Heck Coupling of Diazonium salts

+

81-99% yield
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Olefins couple efficiently with diethylvinylphosphonate to generate α,β-

unsaturated phosphonates in excellent yield using catalyst 1.  Terminal olefins were 

reacted with commercially available diethyl vinylphosphonate and after column 

chromatography, a 95% yield of CM product 20 was obtained exclusively as the (E) 

isomer (Scheme 12) with 5-hexene-1-acetate.  Importantly, no dimerization of the 

vinylphosphonate was detected by 1H-NMR allowing for selective CM.  Unprotected 

aldehyde functionality is well tolerated with the ruthenium catalyst 1 to provide 21 in 

good yield.  For example, compound 21 is properly functionalized for a subsequent 

intramolecular reaction, demonstrating the orthogonality of CM and Horner-Emmons 

chemistry.  In addition, CM provides a unique method to synthesize these compounds 

directly from olefins demonstrating the utility of this method.  In addition, 

vinylphosphonic acids are compatible with the catalyst and can also provide the CM 

product in good yields, even though their solubility in CH2Cl2 is low.  A wide variety of 

other CM partners for vinylphosphonates were included in our initial report in 

literature.24  In fact, a report shortly after this work was able to couple vinylphosphonates 

to nucleosides using CM.25  Finally, these reactions by ruthenium-catalyzed CM offer a 

choice of regioselectivity by choice of CM partners, while palladium-catalyzed 

catalyst 1 (4 mol%)

CH2Cl2, 40 oC, 12h

1.8 equiv.
72% isolated yield

>20:1 E/Z ratio

Scheme 12: CM of Vinylphosphonates with α-olefins

+

Notebook AKCI-2231 equiv.
8
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catalyst 1 (4 mol%)

CH2Cl2, 40 oC, 12h

95% isolated yield
>20:1 E/Z ratio
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Notebook AKCI-212
1 equiv.
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hydrophosphorylation provides the more substituted 1,1-geminal product predominantly 

and provides a mixture in other cases (Scheme 13).26   

 

 Second, diethylallylphosphonate was investigated as a potential CM partner.  This 

was a particularly interesting substrate for CM reactions because of the variety of dienes 

that can be synthesized from substituted allylphosphonates (Scheme 14).  In addition, 

since diethylallylphosphonate is commercially available, one can easily gain access to 

these diene synthons.  It has been previously demonstrated that some allylic functional 

groups improve cross-coupling selectivity and disfavor homodimerization by creating an 

electronic or steric match.  We attempted to take advantage of this to improve CM 

efficiency and stereoselectivity.  It is particularly important to have good stereoselectivity 

in these reactions since olefin stereochemistry is usually transferred to a newly formed 

olefin in the Horner-Emmons reaction.  As summarized in Table 3,  

Scheme 14: CM of Vinylphosphonates with α-olefins

catalyst 1 (5 mol%)

CH2Cl2, 40 oC, 12h
70-93% isolated yield

P +

1 equiv.

EtO

O

EtO

2 equiv.

R

PEtO

O

EtO
R

Ph HP(OMe)2

O

PPh
OMe
OMe

Ph

P
OMe
OMe

Scheme 13: Alternate Regiochemistry in Hydrophosphorylation Routes to Vinylphosphonates

+
cis-PdMe2(PPh2Me)2 3 mol%

THF, 67 oC, 15-20 h
+

93% 7%
Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571-1572.
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allylphosphonates are viable CM partners, providing slightly enhanced CM ratios relative 

to the predicted statistical mixture.  For example, in the reaction between styrene and the 

allylphosphonate, equal stoichiometry leads to a 56% yield of CM which is close to the 

50% statistical yield.  However, both homodimers can be recovered and recycled in the 

reaction.  In addition, some challenging styrenes are excellent CM partners (Table 3, 

Entry 2 and 3) and provide the E-isomer exclusively. In these cases, the CM selectivities 

are higher because of the slower dimerization of these styrenes to their stilbenes.  An 

alkyl bromide can be installed (Entry 5) showing orthogonality to Arbuzov chemistry and 

a  trisubstituted allylphosphonates is also produced in excellent yield with modest 

stereoselectivity (Table 3, Entry 6).  Finally, the reaction of allylphosphonates with ethyl 

acrylate is also an efficient reaction to get to diene esters synthons.  All CM products 

Isolated Yield E/Z ratiob

2.5:1

4:1

>20:1

70%

93%

74%c

90%

>20:1

3.3:185%c

>20:173%

OAc

Product

3

O
PEtO

EtO

O
PEtO

EtO

Cl

Br

7

O
PEtO

EtO

O
PEtO

EtO

O
PEtO

EtO

O
PEtO

EtO

Br

CM Partner (2 equiv.)

OAc
3

Br

Cl

7

Br

Entry

Table 3.  Synthesis of Allylphosphonates by CMa

Notebook
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AKCII-41

AKCII-356
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2

1
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>20:187%c AKCII-2107 OEt
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a 3-7mol% of catalyst 1 used  b Determined by 1H and 31P-NMR  c 1 equiv. of allylphosphonate and 2 equiv. of α-olefin used
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were easily separated from their respective homodimers by column chromatography.  We 

continued to investigate a variety of other substrates that were inactive olefins for CM 

using other ruthenium-based catalyst systems to study activity and selectivity in more 

detail.   

 At this point, mechanistic work in understanding why imidazoylidene-based 

catalyst systems are more active than their parent bis-phosphine catalyst 2 was 

undertaken.  By detailed mechanistic analysis, it was discovered that the preference for 

olefin binding in catalyst 1 was over ten thousand times greater than in catalyst 2.27  This 

is particularly interesting, since the competing pathway in these systems is rebinding a 

basic phosphine ligand.  In addition, this work also demonstrated the upper limit of rate 

of binding olefin is nearly equivalent to binding phosphine in systems such as 1.  With 

this in mind, we decided to investigate olefins that contain potentially good ligands for 

ruthenium metal centers.  This is perhaps the true test or functional group tolerance in 

olefin metathesis, where an olefin is preferentially chosen by the catalyst rather than a 

potential ligand.   One objective in this chemistry is to make ligands for other metal 

centers by performing a selective CM with catalyst 1.  For example, reduced oxidation 

states of sulfur are notoriously good ligands for late transition metal centers due to soft-

soft compatibility.28  It was previously demonstrated that sulfides are only tolerated with 

earlier transition-metal 

catalyst systems, such as 

3.29  However, we were 

able to effect the 

dimerization of methylallyl sulfide in moderate yields with good stereoselectivity 
Scheme 15: Allylmethylsulfide Dimerization with Catalyst 1

catalyst 1 (5 mol%)
S

CH2Cl2, 40 oC, 3h
S

69% isolated yield
6:1 E/Z ratio

S

Notebook AKCII-146
29
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(Scheme 15).  Other functional groups at the vinylic position were also investigated in 

cross-metathesis, and the results are summarized in Table 4.  We were particularly 

O

FF

FF

CF3

F F

c Added over a 12 hr. period

P
Ph

O

Ph

Si(OEt)3

AcO
3

Product Isolated
Yield

34 >20:1

Entry

2.03

Table 4. Cross-Metathesis Reactions with Functionalized Olefins
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bRatio based on 1H-NMR spectra
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surprised to observe the reaction of phosphine oxides with catalyst 1 proceeded in 

excellent yields considering that phosphines are good ligands for ruthenium-based 

catalysts (Entry 1).  In addition, the olefins stereoselectivity in a CM with an allyl acetate 

equivalent is excellent, increasing the utility of the method.  It is even possible to use 

these products from a metal-catalyzed reaction as ligands for other metal systems.  We 

were also interested in using functional groups that are highly reactive with other late-

transition metals.  For example, butadiene monoxide (Entry 2) participates in cross-

metathesis with catalyst 4 in moderate yields.  This reaction allows for the simple 

homologation of olefins with vinyl epoxides, and the products are highly versatile 

synthons due to their inherent ring-strain.  It is surprising that olefins with direct 

functional groups on them, such as epoxides, are well tolerated by catalyst 1.  The vinyl 

epoxide methodology has been recently applied in the CM of two different vinyl 

epoxides in the synthesis of ABC ring systems of Thyrsiferol and Venustatriol.30  We 

found that the slow addition of butadiene monoxide over a 12 hour period substantially 
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increased the conversion due to maintaining an appreciable amount of terminal epoxide 

available for CM.  In addition, we found that an electron-deficient fluorinated alkene 

(Entry 3) also participates in CM with terminal olefins with excellent stereoselectivities.  

After this report, an expanded set of substrates with fluorinated alkanes in CM has been 

reported with a related catalyst system.31  Similar to the CM of vinyl boronic esters with 

terminal olefins employing ruthenium benzylidene 2 (vide infra), vinyl siloxanes are also 

very good CM partners using 4 (Table 4, Entry 4), but yielded only 36% of cross-product 

with ruthenium benzylidene 2.  These siloxanes are useful synthons for further 

manipulation, such as Suzuki-type aryl halide cross-couplings.32  It has recently been 

reported that vinyl siloxane CM is also catalyzed by 2,33 but it appears that in this system, 

catalyst 4 provides considerably higher yields of the CM product.  

 In summary, these reactions with functionality directly on the olefin have opened 

several new avenues for the application of CM in organic synthesis.  Particularly, these 

reactions provided the opportunity for highly selective CM both in terms of product 

selectivity and olefin stereoselectivity.  A dramatic difference in activities is observed 

between catalyst 2 and catalysts 1 and 4.  For example, in the chemistry of α,β-

unsaturated esters with terminal olefins, catalyst 2 simply performs the dimerization of 

the α-olefin component (Scheme 16A).  Catalyst 2 is not inactivated upon the addition of 

a α,β-unsaturated ester (such as ethyl acrylate), but simply does not incorporate this 

olefin.  This is quite different from catalyst 3, which is poisoned for any metathesis upon 

addition of acrylates.3  Crowe and Goldberg explain this in terms of a possible 

heteroatom coordination of the acrylate to the molybdenum center.  However, when 

catalyst 1 or 4 is used in the same reaction, then a highly selective CM reaction between 
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the two olefins in equal stoichiometry occurs with exclusive trans olefin stereoselectivity 

under refluxing methylene chloride conditions (Scheme 16B).  However, this reaction 

does contain a background dimerization of the acrylate component that accounts for the 

other 10% of the material in the reaction.  This occurs due to secondary metathesis of the 

productive CM product and by a direct acrylate dimerization.  However, both of these 

processes are slower that productive CM, so they are small byproducts in the reaction.  

Upon the optimization of the reaction, we hypothesized that using a lower reaction 

temperature may assist in CM product selectivity.  In fact, when we performed the CM at 

room temperature, there was no acrylate dimerization product and a higher yield of the 

CM product (Scheme 16C).  This procedure is advantageous since all of the side products 

in the reaction (starting acrylate, α-olefin, and α-olefin dimer) can all be recycled in 

subsequent CM reactions.  However, where an acrylate dimer is formed, it can not be 

efficiently recycled in a subsequent CM.  In conclusion, when such a large difference in 
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activity is discovered in any catalytic system, one needs to survey the landscape of 

substrate compatibility.  With this surveillance complete, we began to develop a model 

and contextual method to use CM in selective organic synthesis and is discussed in the 

final chapter. 

 

Experimental Section. 

 General Experimental Section.  NMR spectra were recorded on either a JEOL 

GX-400 or GE-300 NMR.  Chemical shifts are reported in parts per million (ppm) 

downfield from tetramethylsilane (TMS) with reference to internal solvent.  Multiplicities 

are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), 

and multiplet (m).  The reported 1H NMR data refer to the major olefin isomer unless 

stated otherwise.  The reported 13C NMR data include all peaks observed and no peak 

assignments were made. High-resolution mass spectra (EI and FAB) were provided by 

the UCLA Mass Spectrometry Facility (University of California, Los Angeles). 

 Analytical thin-layer chromatography (TLC) was performed using silica gel 60 

F254 precoated plates (0.25 mm thickness) with a fluorescent indicator.  Flash column 

chromatography was performed using silica gel 60 (230-400 mesh) from EM Science. All 

other chemicals were purchased from the Aldrich, Strem, or Nova Biochem Chemical 

Companies, and used as delivered unless noted otherwise. CH2Cl2 was purified by 

passage through a solvent column prior to use.34 

 

Compound 5.  9-Decen-1(tert-butyldimethylsilane)-yl (330 µL, 1.0 mmol) and methyl 

methacrylate (55 µl, 0.51 mmol) were added simultaneously via syringe to a stirring 
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solution of 4 (21 mg, 0.026 mmol, 5.2 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted 

with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was 

then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 9:1 hexane:ethyl acetate.  A viscous oil was obtained (110 mg, 62% yield).  

1H NMR (300 MHz, CDCl3, ppm): δ 6.75 (1H, m), 3.71 (3H, s), 3.57 (2H, t, J = 6.3 Hz), 

2.14 (2H, m), 1.81 (3H, app s), 1.50–1.05 (12H, broad m), 0.87 (9H, s), 0.02 (6H, s).  13C 

NMR (75 MHz, CDCl3, ppm): δ 169.2, 143.2, 143.1, 128.0, 63.8, 52.1, 33.4, 30.0, 29.8, 

29.2, 29.1, 26.5, 26.3, 18.9. 12.9. Rf = 0.81 (9:1 hexane:ethyl acetate);  HRMS (EI) calcd 

for C19H38O3Si [M+ H]+ 343.2668, found 343.2677.  Elemental analysis Calcd: C: 66.61, 

H: 11.18; Found: C: 66.47, H: 11.03. 

 

Compound 6. 9-Decen-1-yl benzoate (145 µl, 0.52 mmol) and methyl acrylate (90 µl, 

1.0 mmol) were added simultaneously via syringe to a stirring solution of 4 (17 mg, 0.022 

mmol, 4.2 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 9:1 

hexane:ethyl acetate.  A white crystalline was obtained (151.4 mg, 91% yield, >20:1 E/Z 

by olefinic 1H coupling constants).  1H NMR (300 MHz, CDCl3, ppm): δ 8.01 (2H, app d, 

J = 7.2 Hz), 7.50 (1H, m), 7.45 (2H, m), 6.93 (1H, dt, J = 15.9 Hz, 6.9 Hz), 5.78 (1H, app 

d, J = 15.9 Hz), 4.28 (2H, t, J= 6.6 Hz), 3.68 (3H, s), 2.15 (2H, m), 1.74 (2H, p, J = 6.6 

Hz), 1.49–1.05 (10H, broad m).  13C NMR (75 MHz, CDCl3, ppm): δ 167.5, 167.1, 150.0, 

133.3, 131.1, 130.0, 128.8, 121.5, 65.5, 51.8, 32.7, 29.8, 29.5, 29.2, 28.5, 26.5.  Rf = 0.40 
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(9:1 hexane:ethyl acetate);  HRMS (EI) calcd for C19H26O4 [M+ H]+ 319.1909, found 

319.1914.  Elemental analysis Calcd: C: 71.67, H: 8.23; Found: C: 71.31, H: 8.24. 

 

Compound 8. cis-2-butene-1,4-diacetate (145 µl, 0.95 mmol) and methyl vinyl ketone 

(40 µl, 0.48 mmol) were added simultaneously via syringe to a stirring solution of 1 (15 

mg, 0.018 mmol, 3.7 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser 

and refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 9:1 

hexane:ethyl acetate.  A clear oil was obtained (55 mg, 81% yield).  1H NMR (300 MHz, 

CDCl3, ppm): δ 6.75 (1H, dt, J = 15.9, 4.8 Hz), 6.23 (1H, dt, J = 16.2, 2.1 Hz), 4.75 (2H, 

dd, J = 4.8, 2.1 Hz), 2.26 (3H, s), 2.11 (3H, s). 13C NMR (75 MHz, CDCl3, ppm): δ 

197.8, 170.5, 140.0, 131.1, 62.9, 27.6, 21.0.  Rf = 0.38 (9:1 hexane:ethyl acetate). 

 

Compound 9.  Ethyl acrylate (220 µl, 2.03 mmol) was added via syringe to a solution of 

4-benzyloxy-1,6-heptadiene (109 mg, 0.50 mmol) and catalyst 1 (14 mg, 0.016 mmol, 3.2 

mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and refluxed under 

nitrogen for 12 hours.  The reaction mixture was then reduced in volume to 0.5 ml and 

purified directly on a silica gel column (2x10 cm), eluting with 5:1 hexane:ethyl acetate.  

The product was obtained (137 mg, 76% yield) as an oil.  1H NMR (300 MHz, CDCl3, 

ppm): δ 8.00 (2H, d, J = 7.2 Hz), 7.55 (1H, t, J = 7.2 Hz), 7.42 (2H, t, J = 7.8 Hz), 6.91 

(2H, dt, J = 15.6, 7.2 Hz), 5.91 (2H, d, J = 15.6 Hz), 5.92 (1H, quint, J = 6.0 Hz), 4.15 

(4H, q, J = 7.2 Hz), 2.61 (4H, t, J = 6.9 Hz), 1.24 (6H, t, J = 7.2 Hz)  13C NMR (75 MHz, 
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CDCl3, ppm): δ 165.9, 165.7, 142.5, 133.3, 129.8, 129.7, 128.5, 124.9, 71.5, 60.6, 36.4, 

14.4.  Rf = 0.40 (3:1 hexane:ethyl acetate). 

 

Compound 10 (Table 2, Entry 5). trans-crotonaldehyde (44 µl, 0.53 mmol) and 5-

hexenyl-1-acetate (85 µl, 0.51 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (20 mg, 0.024 mmol, 4.7 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted 

with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was 

then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 4:1 hexane:ethyl acetate + 2% Et3N.  A clear oil was obtained (66 mg, 0.39 

mmol, 77% yield).  1H-NMR (300 MHz, CDCl3, ppm): δ 9.46 (1H, app d, J = 7.5 Hz), 

6.83 (1H, dt, J = 6.8, 15.6 Hz), 6.10 (1H, qt, J = 1.5, 8.1 Hz), 4.05 (2H, t, J = 6.3 Hz), 

2.34 (2H, q, J = 6.9 Hz), 2.00 (3H, s), 1.67-1.52 (4H, m).  13C NMR (75 MHz, CDCl3, 

ppm): δ 194.0, 171.2, 157.9, 133.4, 64.2, 32.5, 28.4, 24.6, 22.6, 21.3.  HRMS (EI) calcd. 

for C9H14O3 [M]+ 170.0943, found 170.0878. Rf = 0.23 (9:1 hexane:ethyl acetate). 

 

Compound 11.  trans-crotonaldehyde (88 µl, 1.06 mmol) was added via syringe to a 

solution of 1-benzyloxy-3-butene (89 mg, 0.50 mmol) and catalyst 1 (15 mg, 0.018 

mmol, 3.5 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 4:1 

hexane:ethyl acetate.  The product was obtained (58 mg, 0.28 mmol, 56% yield) as an oil.  

1H NMR (300 MHz, CDCl3, ppm): δ 9.54 (1H, d, J = 7.5 Hz), 8.01 (2H, d, J = 8.0 Hz), 

7.56 (1H, t, J = 7.8 Hz), 7.44 (2H, dt, J = 7.2 Hz), 6.90 (1H, dt, J = 15.9, 6.6 Hz), 6.24 
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(1H, ddd, J = 15.9, 7.8, 1.2 Hz), 4.50 (2H, t, J = 6.3 Hz), 2.81 (2H, q, J = 6.6 Hz).  13C 

NMR (75 MHz, CDCl3, ppm): δ 193.6, 166.4, 153.3, 134.8, 133.3, 129.8, 129.6, 128.6, 

62.6, 32.3.  Rf = 0.09 (9:1 hexane:ethyl acetate). 

 

 

Compound 12. trans-Crotonaldehyde (87 µl, 1.05 mmol) and 4-acetoxystyrene (80 µl, 

0.50 mmol) were added simultaneously via syringe to a stirring solution of 1 (17 mg, 

0.020 mmol, 4.0 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 4:1 

hexane:ethyl acetate.  A white solid was obtained (85 mg, 0.45 mmol, 89% yield).  1H 

NMR (300 MHz, CDCl3, ppm): δ 9.70 (1H, d, J = 7.5 Hz), 7.61-7.49 (3H, m), 7.20-7.03 

(2H, m), 6.70 (1H, dd, J = 15.6, 7.5 Hz), 2.34 (3H, s). 13C NMR (75 MHz, CDCl3, ppm): 

δ 193.5, 169.1, 152.8, 151.6, 131.8, 129.8, 128.8, 127.5, 122.5, 121.9, 21.5.  Rf = 0.17 

(9:1 hexane:ethyl acetate). 

 

Compound 13. trans-Crotonaldehyde (87 µl, 1.05 mmol) and undecylinic aldehyde (104 

µl, 0.48 mmol) were added simultaneously via syringe to a stirring solution of 1 (14 mg, 

0.016 mmol, 3.3 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 5:1 

hexane:ethyl acetate + 2% Et3N.  A yellow oil was obtained (91 mg, 0.46 mmol, 98% 

yield).  1H NMR (300 MHz, CDCl3, ppm): δ 9.72 (1H, t, J = 1.8 Hz), 9.46 (1H, d, J = 8.1 
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Hz), 6.82 (1H, t, J = 15.6, 6.9 Hz), 6.07 (1H, ddt, J = 15.6, 7.5, 1.8 Hz), 2.39 (2H, dt, J = 

7.2, 1.8 Hz), 2.29 (2H, app q, J = 6.6 Hz), 1.60-1.44 (4H, m), 1.28 (8H, s).  Rf = 0.12 (9:1 

hexane:ethyl acetate). 

 

Compound 14. Ethyl acrylate (65 µl, 0.60 mmol) and 2-benzyloxy-4-pentene (100 µl, 

0.49 mmol) were added simultaneously via syringe to a stirring solution of 1 (18 mg, 

0.021 mmol, 4.4 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 9:1 

hexane:ethyl acetate.  A pinkish oil was obtained (130 mg, 0.47 mmol, 96% yield).  1H 

NMR (300 MHz, CDCl3, ppm): δ 8.01 (2H, d, J = 8.0 Hz), 7.56 (1H, t, J = 7.8 Hz), 7.44 

(2H, app t, J = 7.2 Hz), 6.95 (1H, dt, J = 15.6, 7.2 Hz), 5.90 (1H, dt, J = 15.9, 1.5 Hz), 

5.24 (1H, quint, J = 6.3 Hz), 4.14 (2H, q, J = 7.2 Hz), 2.67-2.50 (2H, m), 1.35 (3H, d, J = 

6.3 Hz), 1.24 (3H, t, J = 7.2 Hz).  13C NMR (75 MHz, CDCl3, ppm): δ 166.0, 165.8, 

143.4, 132.9, 130.3, 129.5, 128.3, 124.3, 69.9, 60.4, 38.6, 19.9, 14.4.  Rf = 0.36 (9:1 

hexane:ethyl acetate). 

 

Compound 15. Ethyl acrylate (130 µl, 1.20 mmol) and 5-hexenyl-1-acetate (200 µl, 1.20 

mmol) were added simultaneously via syringe to a stirring solution of 1 (20 mg, 0.024 

mmol, 2.0 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and refluxed 

under nitrogen for 12 hours.  The reaction mixture was then reduced in volume to 0.5 ml 

and purified directly on a silica gel column (2x10 cm), eluting with 9:1 hexane:ethyl 

acetate.  A clear oil was obtained (253 mg, 1.18 mmol, 98% yield).  1H NMR (300 MHz, 
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CDCl3, ppm): δ 6.80 (2H, dt, J = 15.3, 7.2 Hz), 5.69 (1H, dt, J = 15.3, 1.8 Hz), 4.08 (2H, 

q, J = 7.2 Hz), 3.89 (2H, t, J = 6.3 Hz), 2.14 (2H, q, J = 6.9 Hz), 1.89 (3H, s), 1.62-1.42 

(4H, m), 1.16 (3H, t, J = 6.9 Hz).  Rf = 0.42 (9:1 hexane:ethyl acetate). 

 

Compound 16. Methyl acrylate (90 µl, 1.00 mmol) and methyl vinyl ketone (40 µl, 0.48 

mmol) were added simultaneously via syringe to a stirring solution of 1 (13 mg, 0.016 

mmol, 3.2 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and refluxed 

under nitrogen for 12 hours.  The reaction mixture was then reduced in volume to 0.5 ml 

and purified directly on a silica gel column (2x10 cm), eluting with 9:1 hexane:ethyl 

acetate (500 mL) followed by 3:1 hexane:ethyl acetate (1000 mL).  An oil was obtained 

(25 mg, 0.20 mmol, 41% yield).  1H NMR (300 MHz, CDCl3, ppm): δ 7.03 (1H, d, J = 

16.2 Hz), 6.65 (1H, d, J = 16.2 Hz), 3.80 (3H, s), 2.36 (3H, s).  Rf = 0.37 (3:1 

hexane:ethyl acetate). Compound matched spectra of previously characterized 

compound: Miyashita, M.; Yamaguchi, R.; Yoshikoshi, A. J. Org. Chem. 1984, 49, 2857. 

 

Compound 17.  Methyl vinyl ketone (40 µl, 0.48 mmol) and 2-vinyl-1,3-dioxolane (100 

µl, 1.00 mmol) were added simultaneously via syringe to a stirring solution of 1 (14 mg, 

0.017 mmol, 3.4 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 9:1 

hexane:ethyl acetate.  An oil (25 mg) was obtained as a mixture of desired product to 

vinyldioxolane homodimer in 1:2 molar ratio.  1H NMR (300 MHz, CDCl3, ppm) of CM 
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product: δ 6.56 (1H, dd, J = 15.9, 4.8 Hz), 6.33 (1H, dd, J = 15.9, 0.9 Hz), 5.44 (1H, dd, J 

= 4.8, 0.9 Hz), 4.02-3.92 (4H, m), 2.36 (3H, s).  Rf = 0.30 (9:1 hexane:ethyl acetate).  

 

Compound 18.  Ethyl acrylate (110 µl, 1.02 mmol) and rac-3-butene-2-ol (43 µl, 0.50 

mmol) were added simultaneously via syringe to a stirring solution of 1 (18 mg, 0.021 

mmol, 4.3 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and refluxed 

under nitrogen for 12 hours.  The reaction mixture was then reduced in volume to 0.5 ml 

and purified directly on a silica gel column (2x10 cm), eluting with 4:1 hexane:ethyl 

acetate.  An clear oil (66 mg, 0.46 mmol, 92%) was obtained. 1H NMR (300 MHz, 

CDCl3, ppm) of CM product: δ 6.94 (1H, dd, J = 15.6, 4.8 Hz), 6.00 (1H, dd, J = 15.6, 

1.5 Hz), 4.48 (1H, m), 4.18 (2H, q, J = 6.9 Hz), 2.06 (1H, broad s), 1.32 (3H, d, J = 6.6 

Hz), 1.28 (3H, t, J = 7.2 Hz), Rf = 0.21 (3:1 hexane:ethyl acetate).  The compound 

matches a previous report, see: Morikawa, T.; Washio, Y.; Harada, S.; Hanai, R.; 

Kayashita, T.; Nemoto, H.; Shiro, M.; Taguchi, T. J. Chem. Soc. Perkin Trans. 1 1995, 

271. 

 

Compound 19.  n-Butyl acrylate (55 µl, 0.38 mmol) and 2-methyl-3-butene-2-ol (20 µl, 

0.19 mmol) were added simultaneously via syringe to a stirring solution of 1 (6 mg, 0.007 

mmol, 3.7 mol%) in CH2Cl2 (1 ml).  The flask was fitted with a condenser and refluxed 

under nitrogen for 12 hours.  The reaction mixture was then reduced in volume to 0.5 ml 

and purified directly on a silica gel column (2x10 cm), eluting with 8:1 hexane:ethyl 

acetate (500 ml) followed by 4:1 hexane:ethyl acetate (300 ml).  A clear oil (34 mg, 0.18 

mmol, 95%) was obtained.  1H NMR (300 MHz, CDCl3, ppm): δ 6.97 (1H, d, J = 15.6 
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Hz), 5.98 (1H, d, J = 15.6 Hz), 4.12 (2H, t, J = 6.6 Hz), 1.95 (1H, broad s), 1.62 (2H, 

quint, J = 6.9 Hz), 1.35 (6H, obs s), 1.44-1.32 (2H, m), 0.91 (3H, t, J = 7.2 Hz).  13C 

NMR (75 MHz, CDCl3, ppm): δ 167.1, 154.7, 118.0, 71.0, 64.6, 30.9, 29.5, 19.4, 14.0. Rf 

= 0.39 (3:1 hexane:ethyl acetate).  Elemental analysis Calcd: C: 64.49, H: 9.74; Found: 

C: 64.33, H: 9.98.  The compound matches a previous report of the methyl ester, see: van 

Haard, P. M. M.; Thijs, L.; Zwanenburg, B. Tetrahedron Lett. 1975, 803.  

 

Compound 20.  Diethylvinylphosphonate (80 µl, 0.52 mmol) and 5-hexenyl-1-acetate 

(170 µl, 1.01 mmol) were added simultaneously via syringe to a stirring solution of 1 (16 

mg, 0.019 mmol, 3.6 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser 

and refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 3:1 

hexane:ethyl acetate (500 ml) followed by ethyl acetate (500 ml).  A clear oil (138 mg, 

0.50 mmol, 95%) was obtained.  1H NMR (300 MHz, CDCl3, ppm): δ 6.65 (1H, ddt, J = 

23.7, 15.3, 6.6 Hz), 5.56 (1H, ddt, J = 20.7, 17.1, 1.5 Hz), 4.03-3.88 (6H, m), 2.20-2.12 

(2H, m), 1.94 (3H, s), 1.57-1.40 (4H, m), 1.21 (6H, t, J = 7.2 Hz).  13C NMR (75 MHz, 

CDCl3, ppm): δ 171.1, 153.1 (d, J = 4.3 Hz), 117.4 (d, J = 187 Hz), 64.2, 61.8 (d, J =  5.6 

Hz), 34.0, 33.7, 28.3, 24.5, 21.2, 16.7, 16.6. 31P NMR (121 MHz, CDCl3, ppm): δ 20.2. Rf 

= 0.18 (1:1 hexane:ethyl acetate).  HRMS (EI) calcd. for C12H23O5P [M + H]+ 279.1361, 

found 279.1358.  Spectra correspond to a previously characterized compound, see: 

Zhong, P.; Xiong, Z. X.; Huang, X. Synth. Commun. 2000, 30, 273. 
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Compound 21.  Diethylvinylphosphonate (80 µl, 0.52 mmol) and undecylinic aldehyde 

(200 µl, 0.96 mmol) were added simultaneously via syringe to a stirring solution of 1 (18 

mg, 0.022 mmol, 4.2 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser 

and refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 2:1 

hexane:ethyl acetate (500 ml) followed by 1:1 hexane:ethyl acetate (700 ml).  A clear oil 

(114 mg, 0.37 mmol, 72%) was obtained.  1H NMR (300 MHz, CDCl3, ppm): δ 9.76 (1H, 

s), 6.77 (1H, m), 5.62 (1H, m), 4.06 (4H, m), 2.41 (2H, dt, J = 7.5, 1.8 Hz), 2.21-2.17 

(4H, m), 1.60-1.20 (16H, m).  13C NMR (75 MHz, CDCl3, ppm): δ 178.1, 154.6 (d, J = 

4.2 Hz), 116.3 (d, J = 187 Hz), 62.1 (d, J = 5.7 Hz), 34.4, 34.3, 29.3, 29.2, 29.1, 27.9, 

25.1, 16.7, 16.6. 31P NMR (121 MHz, CDCl3, ppm): δ 19.6. Rf = 0.28 (1:1 hexane:ethyl 

acetate).  HRMS (EI) calcd. for C15H29O4P [M - H]+ 303.1725, found 303.1718. 

 

Compound 22.  Diethylallylphosphonate (65 µl, 0.36 mmol) from Acros Organics and 

styrene (85 µl, 0.74 mmol) were added simultaneously via syringe to a stirring solution of 

1 (13 mg, 0.015 mmol, 4.2 mol%) in CH2Cl2 (2.0 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 3:1 hexane:ethyl acetate (300 ml) followed by 2:1 hexane:ethyl acetate (500 

ml), then with 1:1 hexane:ethyl acetate and finally 200mL of ethyl acetate.  A brown oil 

(65 mg, 0.26 mmol, 70%) was obtained.  1H NMR (300 MHz, CDCl3, ppm): δ 7.40-7.20 

(5H, m), 6.52 (1H, dd, J = 15.9, 5.4 Hz), 6.15 (1H, m), 4.20-4.00 (4H, m), 2.75 (2H, ddd, 

J = 22.2, 7.5, 1.2 Hz), 1.32 (6H, t, J = 6.3 Hz).  13C NMR (75 MHz, CDCl3, ppm): δ 
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136.9 (d, J = 3.5 Hz), 134.8 (d, J = 15 Hz), 128.7 (d, J = 0.6 Hz), 127.7 (d, J = 0.9 Hz), 

126.4 (d, J = 2.0 Hz), 126.3, 119.0 (d, J = 11.7 Hz), 62.2 (d, J = 6.6 Hz), 31.2 (d, J = 

138.9 Hz), 16.7 (d, J = 5.9 Hz). 31P NMR (121 MHz, CDCl3, ppm): δ 28.0. Rf = 0.22 (1:1 

hexane:ethyl acetate).  Spectra correspond to a previously characterized compound, see: 

Kiddle, J. J.; Babler, J. H.  J. Org. Chem. 1993, 58, 3572. 

 

Compound 23.  Diethylallylphosphonate (70 µl, 0.39 mmol) from Acros Organics and 2-

chlorostyrene (100 µl, 0.78 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (13 mg, 0.015 mmol, 3.9 mol%) in CH2Cl2 (2.0 ml).  The flask was fitted 

with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was 

then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 1:1 hexane:ethyl acetate (400 ml) followed by 1:4 hexane:ethyl acetate (500 

ml).  A brown oil (105 mg, 0.36 mmol, 93%) was obtained.  1H NMR (300 MHz, CDCl3, 

ppm): δ 7.47 (1H, dd, J = 7.8, 1.8 Hz), 7.27 (1H, m), 7.20-7.11 (2H, m), 6.86 (1H, d, J = 

15.9, 5.1 Hz), 6.18-6.06 (1H, m), 4.15-4.02 (4H, m), 2.77 (2H, ddd, J = 22.2, 7.8, 1.2 

Hz), 1.28 (6H, J = 7.2 Hz).  13C NMR (75 MHz, CDCl3, ppm): δ 134.8 (d, J = 3.6 Hz), 

132.6 (d, J = 2.6 Hz), 130.9 (d, J = 15.0 Hz), 129.6, 128.6, 126.8, 126.7, 121.9 (d, J = 

11.7 Hz), 62.2 (d, J = 6.5 Hz), 31.2 (d, J = 138.9 Hz), 16.6 (d, J = 5.9 Hz). 31P NMR (121 

MHz, CDCl3, ppm): δ 27.4. Rf = 0.33 (1:1 hexane:ethyl acetate).  Spectra correspond to a 

similar previously characterized compound, see: Kiddle, J. J.; Babler, J. H.  J. Org. 

Chem. 1993, 58, 3572. 
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Compound 24.  Diethylallylphosphonate (70 µl, 0.39 mmol) from Acros Organics and 2-

bromostyrene (100 µl, 0.77 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (12 mg, 0.015 mmol, 3.8 mol%) in CH2Cl2 (2.0 ml).  The flask was fitted 

with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was 

then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 1:1 hexane:ethyl acetate (400 ml) followed by 1:3 hexane:ethyl acetate (500 

ml).  A brown oil (98 mg, 0.29 mmol, 75%) was obtained.  1H NMR (300 MHz, CDCl3, 

ppm): δ 7.48 (2H, td, J = 8.1, 1.0 Hz), 7.23 (1H, app t, J = 7.2 Hz), 7.06 (1H, app t, J = 

7.5 Hz), 6.83 (1H, dd, J = 15.6, 5.1 Hz), 6.16-6.03 (1H, m), 4.17-4.00 (4H, m), 2.78 (2H, 

ddd, J = 22.2, 7.5, 1.2 Hz), 1.30 (6H, t, J = 7.2 Hz).  13C NMR (75 MHz, CDCl3, ppm): δ 

136.6 (d, J = 3.4 Hz), 133.4 (d, J = 15.0 Hz), 132.9, 128.9, 127.6, 127.1 (d, J = 2.3 Hz), 

123.3 (d, J = 2.9 Hz), 122.1 (d, J = 11.7 Hz), 62.3 (d, J = 6.5 Hz), 31.2 (d, J = 138.9 Hz), 

16.7 (d, J = 6.0 Hz). 31P NMR (121 MHz, CDCl3, ppm): δ 27.4. Rf = 0.36 (1:1 

hexane:ethyl acetate).  Spectra correspond to a previously characterized compound, see: 

Kiddle, J. J.; Babler, J. H.  J. Org. Chem. 1993, 58, 3572. 

  

Compound 25.  Diethylallylphosphonate (175 µl, 0.98 mmol) from Acros Organics and 

5-hexene-1-acetate (85 µl, 0.51 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (17 mg, 0.021 mmol, 4.0 mol%) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture 

was then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 

cm), eluting with 3:1 hexane:ethyl acetate (500 ml) followed by 1:1 hexane:ethyl acetate 

(500 ml), and finally 2:1 ethyl acetate/hexane.  An yellow oil (110 mg, 0.38 mmol, 74%) 
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was obtained as a 4:1 E/Z ratio by 1H peak integration at 2.41 and 2.54 ppm.  1H NMR 

(300 MHz, CDCl3, ppm): δ 5.58-5.26 (2H, m), 4.05-3.03 (6H, m), 2.45 (2H, dd, J = 21.6, 

7.2 Hz), 2.02-1.94 (2H, m), 1.94 (3H, s), 1.58-1.29 (2H, m), 1.39-1.31 (2H, m), 1.21 (6H, 

t, J = 7.2 Hz).  13C NMR (75 MHz, CDCl3, ppm): δ 171.1, 135.5 (d, J = 14.5 Hz), 119.2 

(d, J = 11.0 Hz), 64.5, 62.0 (d, J = 6.6 Hz), 36.2, 30.7 (d, J = 139 Hz), 27.2, 25.3, 16.7, 

16.6. 31P NMR (121 MHz, CDCl3, ppm): δ 28.2. Rf = 0.18 (3:1 hexane:ethyl acetate).  

HRMS (EI) calcd. for C13H25O5P [M]+ 292.1439, found 292.1436.  Spectra correspond to 

a previously characterized compound, see: Balczewski, P.; Mikolajczyk, M. Synthesis 

1995, 392. 

 

Compound 26.  Diethylallylphosphonate (85 µl, 0.48 mmol) from Acros Organics and 4-

bromo-1-butene (25 µl, 0.24 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (8 mg, 0.009 mmol, 3.9 mol%) in CH2Cl2 (1.25 ml).  The flask was fitted 

with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was 

then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 1:1 hexane:ethyl acetate (400 ml) followed by 1:4 hexane:ethyl acetate (500 

ml).  A clear oil (58 mg, 0.20 mmol, 85%) was obtained as a 3.3:1 E/Z ratio by 13C peak 

heights at 132.3 and 130.8.  1H NMR (300 MHz, CDCl3, ppm): δ 5.44-5.65 (2H, m), 

4.11-4.02 (4H, m), 3.35 (2H, t, J = 6.9 Hz), 2.62-2.49 (4H, m), 1.28 (6H, t, J = 7.2 Hz). 

13C (75 MHz, CDCl3, ppm): δ 132.1 (d, J = 14.5 Hz), 130.7 (d, J = 14.0 Hz), 62.1 (d, J = 

6.6 Hz), 36.0, 32.3, 30.7 (d, J = 139 Hz), 27.2, 16.7 (d, J = 6.0 Hz). 31P NMR (121 MHz, 

CDCl3, ppm): δ 28.2. Rf = 0.30 (1:1 hexane:ethyl acetate). 
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Compound 27.  Diethylallylphosphonate (100 µl, 0.56 mmol) from Acros Organics and 

2-methyl-1-undecene (220 µl, 0.98 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (17 mg, 0.020 mmol, 3.6 mol%) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture 

was then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 

cm), eluting with 3:2 hexane:ethyl acetate (500 ml) followed by 1:1 hexane:ethyl acetate 

(200 ml).  A brown oil (137 mg, 0.43 mmol, 77%) was obtained as a 2.5:1 E/Z ratio by 

1H peak integration at 1.69 and 1.60 ppm.  1H NMR (300 MHz, CDCl3, ppm): δ 5.17-

5.10 (1H, m), 4.10-4.00 (4H, m), 2.52 (2H, dd, J = 21.6, 7.8 Hz), 2.02-1.95 (2H, m), 1.60 

(3H, d, J = 3.6 Hz), 1.34-1.22 (20H, m), 0.84 (3H, t, J = 6.3 Hz).  13C NMR (75 MHz, 

CDCl3, ppm): δ 140.6 (d, J = 14.2 Hz), 112.2 (d, J = 10.8 Hz), 61.9 (d, J = 6.6 Hz), 39.9 

(d, J = 2.6 Hz), 32.1, 29.9, 29.8, 29.6, 29.5, 28.0, 27.4, 25.6, 23.7, 22.9, 16.7, 16.7, 16.4, 

14.3.  31P NMR (121 MHz, CDCl3, ppm): δ 29.9. Rf = 0.28 (3:1 hexane:ethyl acetate).  

Spectra matches those found in a previous characterization, see: Onoda, T.; Shirai, R.; 

Koiso, Y.; Iwasaki, S. Tetrahedron 1996, 52, 14543. 

 

Compound 28.  Diethylallylphosphonate (45 µl, 0.25 mmol) from Acros Organics and 

ethyl acrylate (55 µl, 0.51 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (14 mg, 0.017 mmol, 6.5 mol%) in CH2Cl2 (2 ml).  The flask was fitted with 

a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 2:1 hexane:ethyl acetate.  A clear oil (55 mg, 0.22 mmol, 87%) was 

obtained.  1H NMR (300 MHz, CDCl3, ppm): δ 6.91-6.78 (1H, m), 5.92 (1H, dd, J = 15.3, 
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4.8 Hz), 4.20-4.04 (6H, m), 2.71 (2H, dd, J = 23.1, 8.1 Hz), 1.32-1.23 (9H, m).  13C NMR 

(75 MHz, CDCl3, ppm): δ 165.6, 137.4 (d, J = 11.2 Hz), 125.9 (d, J = 13.3 Hz), 62.4 (d, J 

= 6.8 Hz), 60.7, 30.8 (d, J = 138 Hz), 16.6 (d, J = 6.0 Hz), 14.5.  31P NMR (121 MHz, 

CDCl3, ppm): δ 25.5. Rf = 0.13 (1:1 hexane:ethyl acetate).  Spectra matches those found 

in a previous characterization, see: Beckström, P.; Jacobsson, U.; Norin, T.; Unelius, C. 

R. Tetrahedron 1988, 44, 2541. 

 

Compound 29.  Allylmethyl sulfide (30 µl, 0.27 mmol) was added via syringe to a 

stirring solution of 1 (12 mg, 0.014 mmol, 5.1 mol%) in CH2Cl2 (1.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture 

was then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 

cm), eluting with 9:1 hexane:ethyl acetate.  A clear oil (14 mg, 0.09 mmol, 69%) was 

obtained as a mixture of 6:1 E/Z as assigned by relative 1H integration at 5.51 and 5.62 

ppm.  1H NMR (300 MHz, CDCl3, ppm): δ 5.53-5.49 (2H, m), 3.10 (4H, dd, J = 4.5, 2.1 

Hz), 2.02 (6H, s).  Rf = 0.74 (9:1 hexane:ethyl acetate).  Spectra matches those found in a 

previous characterization, see:  Caserio, M. C.; Fisher, C. L.; Kim, J. K. J. Org. Chem. 

1985, 50, 4390.  

 

Compound 30.  cis-2-butene-1,4-diacetate (70 µl, 0.44 mmol) was added via syringe to a 

stirring solution of Allyldiphenylphosphine oxide (53 mg, 0.22 mmol) and 1 (14 mg, 

0.017 mmol, 7.5 mol%) in CH2Cl2 (1.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 2:1 
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hexane:ethyl acetate.  A white semi-solid (62 mg, 0.20 mmol, 90%) was obtained.  1H 

NMR (300 MHz, CDCl3, ppm): δ 7.80-7.40 (10H, m), 5.79-5.55 (2H, m), 4.40 (2H, m), 

3.10 (2H, dd, J = 14.1, 7.2 Hz), 1.92 (3H, s).  13C NMR (75 MHz, CDCl3, ppm): δ 170.7, 

132.1 (d, J = 2.9 Hz), 131.1 (d, J = 9.4 Hz), 130.4 (d, J = 11.4 Hz), 128.8 (d, J = 11.4 

Hz), 124.0 (d, J = 9.0 Hz), 64.4 (d, J = 2.0 Hz), 34.8 (d, J = 67.8 Hz), 21.1.  31P NMR 

(121 MHz, CDCl3, ppm): δ 31.0. Rf = 0.13 (1:1 hexane:ethyl acetate).  Spectral data 

matches those reported in a previous characterization, see: Clayden, J.; Warren, S. J. 

Chem. Soc. Perkin Trans. 1 1993, 2913. 

 

Compound 31. 9-Decen-1-yl benzoate (145 µl, 0.52 mmol) and butadiene monoxide 

(160 µl, 1.98 mmol) and was added simultaneously via syringe to a stirring solution of 4 

(21 mg, 0.027 mmol, 5.0 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 20:1 hexane:ethyl acetate.  A clear oil was obtained (95 mg, 55% yield, 5:1 

trans/cis as determined by relative integrations of 1H peaks at 5.94 and 5.75 ppm).  1H 

NMR (300 MHz, CDCl3, ppm): δ 8.03 (2H, app d, J = 7.2 Hz), 7.55 (1H, m), 7.44 (2H, 

m), 5.94 (1H, dt, J = 15.3 Hz, 6.9 Hz), 5.12 (1H, dd, J = 8.7 Hz, 6.3 Hz), 4.31 (2H, t, J= 

6.6 Hz), 3.30 (1H, m), 2.63 (1H, m), 2.03 (1H, m) 1.76 (2H, m), 1.51-1.22 (10H, broad 

m).  13C NMR (75 MHz, CDCl3, ppm): δ 167.2, 137.8, 137.6, 133.3, 130.1, 128.9, 128.1, 

65.6, 53.0, 49.3, 32.9, 29.9, 29.7, 29.6, 29.4, 29.3, 26.6.  Rf = 0.38 (9:1 hexane:ethyl 

acetate);  HRMS (EI) calcd for C19H26O3 [M+ H]+ 303.1960, found 303.1960.  
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Compound 32. 2,2,3,3,4,4,5,5,6,6,6-Nonaflouro-1-hexene (175 µl, 1.0 mmol) and 5-

Hexenyl-1-acetate (85 µl, 0.51 mmol) were added simultaneously via syringe to a stirring 

solution of 4 (17 mg, 0.022 mmol, 4.2 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted 

with a condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was 

then reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 9:1 hexane:ethyl acetate.  An amber oil was obtained (62 mg, 34% yield). 1H 

NMR (300 MHz, CDCl3, ppm): 6.40 (1H, m), 5.65 (1H, m), 4.07 (2H, t, J = 6.3 Hz), 2.10 

(2H, m), 2.05 (3H, app s), 1.72 (2H, m), 1.53 (2H, m)  13C NMR (75 MHz, CDCl3, ppm): 

171.6, 143.2, 143.0, 118.2, 117.8, 117.5, 64.5, 32.1, 32.0, 28.5, 25.0, 23.2, 21.4, 14.6.  Rf 

= 0.72 (9:1 hexane:ethyl acetate).  

 

Compound 33. Vinyltriethoxysilane (190 µl, 1.0 mmol) and 5-hexenyl-1-acetate (85 µl, 

0.51 mmol) were added simultaneously via syringe to a stirring solution of 4 (21 mg, 

0.027 mmol, 5.2 mol %) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in volume 

to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 10:1 

hexane:ethyl acetate.  A clear oil was obtained (126 mg, 81% yield, 11:1 trans/cis as 

determined by integration of 1H NMR peaks at 5.40 and 5.28 ppm).  1H NMR (300 MHz, 

CDCl3, ppm): δ 6.38 (1H, dt, J = 18.9 Hz, 6.3 Hz), 5.41 (1H, app d, J = 18.9 Hz), 4.03 

(2H, t, J = 6.3 Hz), 3.79 (6H, q, 6.9 Hz), 2.16 (2H, m), 2.02 (3H, s), 1.59 (2H, m), 1.47 

(m, 2H), 1.20 (9H, t, J = 7.1 Hz).  13C NMR (75 MHz, CDCl3, ppm): δ 171.6, 153.4, 

120.3, 64.8, 64.4, 58.9, 58.8, 36.5, 36.3, 28.8, 28.6, 25.2, 24.4, 18.7.  Rf = 0.31 (10:1 
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hexane:ethyl acetate). HRMS (FAB) calcd for C14H28O5Si [M+ H]+ 305.1784, found 

305.1770. 
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Chapter 5: A Model for Selectivity in CM 

Olefin cross-metathesis (CM) is a convenient route to functionalized and 

higher olefins from simple alkene precursors, but has been an underrepresented area 

of olefin metathesis when compared to ring-opening metathesis polymerizations 

(ROMP)1 and ring-closing metathesis (RCM).2  This is in large part due to several 

factors: first, low catalyst activity to affect a reaction where no enthalpic driving force 

exists (such as ring-strain release in ROMP polymerizations) or the entropic 

advantage of intramolecular reactions (such as RCM); second, low product selectivity 

for the CM product; and third, low stereoselectivity in the newly formed olefin.  

However, work in CM has recently gained prominence due to the availability of 

catalysts with varied activities, such as 1,3 2,4 and 35 (Figure 1).  This has opened 

new avenues for selective reactions, both in 

N

Mo

CH3C(CF3)2O
CH3C(CF3)2O

i-Pri-Pr

Ph

CH3
CH3

Figure 1: Commonly Used Olefin Metathesis Catalysts
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terms of offering stereoselective reactions, expanding the variety of functional groups 

amenable to CM, and installing highly substituted olefins by CM.  The formation of 

structural elements in natural products by CM and synthesizing reagents by CM for 

further synthetic transformations can now be accessed by using active and functional 

group tolerant metathesis catalysts.  At this stage of CM development, a manner to 

classify and predict reaction efficiencies is important to make CM a useful synthetic 

method.  

Central to CM reaction efficiency is to the use of two olefins that dimerize at 
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different rates. If the dimerization rate of each olefin by CM is similar and completely 

reversible, then the reaction will be governed by statistics (Scheme 1).  For these 

R1
R2

+
Olefin Cross-Metathesis

R1 R2

50%

R1 : R2

1:1

2:1

4:1

CM yield

66%

80%

10:1 91%

20:1 95%
Scheme 1: Statistical Distribution of CM Products

R1 R1

R2 R2

 

reactions, one would have to use nearly 10 equivalents of one CM partner to provide 

90% of CM product.  Not only is this an inefficient reaction, it also requires high 

catalyst loadings since many metathesis cycles are consumed in unproductive 

homodimerization events and secondary metathesis of these homodimerization 

products.  Therefore, improvements in product selectivity should improve efficiency 

and lower catalyst loading.  The underlying principal necessary to improve CM 

efficiency is the use of one olefin that dimerizes at a significantly slower rate than the 

formation of cross-metathesis product.  Another scenario arises where two olefins 

both dimerize at much slower rates than formation of productive cross-metathesis 

product.  However, it is difficult to independently study all the factors that determine 

where selective CM occurs.  Therefore, the development of a model based on 

empirical data that categorizes olefins based on the reactivities in CM will allow for 

predictability in the design of selective cross-metathesis reactions.   

Our investigations began with the utilization of catalyst 1 and 2 with a variety 

of substrates that have not been previously used in CM reactions.  Our intention was 

that by placing sterically large and electron-withdrawing groups near the reacting 

olefin, we could improve cross-metathesis efficiency, by disfavoring 

homodimerization and trans stereoselectivity by steric congestion.  Under these 

conditions, we not only wanted functional groups to be tolerated by the catalyst, but 
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wanted the functional groups to direct CM selectively.  This is a salient point since 

currently olefin metathesis catalysts are largely judged by functional group tolerance 

in complex synthesis.  As a result of our investigations, a significant number of new 

substrate classes that participate in selective olefin cross-metathesis reactions have 

been discovered.6  While a descriptive model of selective CM processes has not been 

yet been disclosed, we noticed that several different types of olefins could be properly 

matched to provide highly selective CM yields.7  These observations provide the 

foundation for a model that combines our work in CM with those from other groups 

to provide a working model for selective CM.  By developing this model, we have 

been able to access new reaction platforms, such as a three-component CM reaction.   

 Our investigations in exploring CM selectivity started with primary allylic 

alcohols. For example, catalyst 1 and 2 are able to incorporate allylic alcohols with 

good to moderate stereoselectivity (Scheme 2).  The CM reaction between 

Scheme 2: Olefin Isomerization by Secondary Metathesis Processes

+

80% isolated yield
1 equiv. 2 equiv.

3 mol% of catalyst

CH2Cl2, 40oC, 12 h
AKCI-23

OAcOAc
OAc E/Z ratio

catalyst 1

catalyst 2

7:1

3.2:14

allylbenzene and an allylic alcohol equivalent provides the CM product in 80% 

isolated yield with both catalyst 1 and 2.  The yields are based on statistics since four 

equivalents of allyl acetate is used in the reaction and provides 80% CM product 

(Scheme 1).  However, the reaction with catalyst 1 provides a much higher amount 

of the trans olefins isomer, presumably due to the catalyst reacting with the CM 

product formed in the reaction, a phenomena known as secondary metathesis.  

Efficient secondary metathesis occurs when all components in the reaction are equally 

accessible to the metal alkylidenes complex, including homodimers and the CM 

product.  Therefore, the increased trans ratio is simply an effect of the higher activity 
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of catalyst 1 toward the product than catalyst 2.  Secondary metathesis of the CM 

product provides a metathesis-based isomerization to the more thermodynamically 

favorable trans isomer.  By this account, secondary metathesis processes account for 

the different stereoselectivities observed.  Therefore, trans selective metathesis 

processes will actually involve non productive selective reactions, so accomplishing 

both of these goals may be difficult.  As will be described below, eliminating 

secondary metathesis of the CM product allows for product selective CM to occur by 

making homodimers reactive to the catalyst, but not the CM product.  In addition, 

these reactions may also provide better trans olefin selectivity due to sterics, even 

with reduced secondary metathesis reactions.       

Our studies in the investigation of the inherent stereoselectivity of secondary 

allylic alcohols in CM (Table 1) provided some important initial results in the role of 

sterics in selective CM.  Investigations in this area began with 3-5 mol% of catalyst 

1 in CH2Cl2 and heated to 40 oC for 12 hours. Excellent 

2o Allylic Alc. Product
Iso. Yield 

(%) E/Z ratioaCross Partner (Equiv)

Table 1. Secondary Allylic Alcohol CM

38 18:1

53 6.7:1

 Notebook

AKCI-177(1.8)

AKCII-24

OAc

AcO

92 13:1 AKCI-188OAc

OAc

10:182 AKCI-180OAc

(0.5)

OAcHO

BzO

BzO

TBDPSO

OAc

OAc

OAc

HO

BzO

BzO

TBDPSO

(2.0)

(2.0)

62b 14:1 AKCII-282
OAc OAcHO HO(1.0)

Entry

1

5

2

3

4

a Determined by 1H-NMR b Reaction performed at 23 oC

50 14:1 AKCII-276

5

6

7

8

stereoselectivity was observed, but the CM product was obtained in low yields in CM 

with another allylic alcohol (Table 1, Entry 1).  We were pleased to find that our 

hypothesis of the addition of a methyl group at the allylic position leads to much 

greater trans selectivity, compared to a 7:1 E/Z ratio obtained with a primary alcohol 
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(Scheme 2).  Similar results were also obtained using catalyst 2 demonstrating a 

general trend in reactivity that is not catalyst specific.8  Next, we investigated the 

reaction of these secondary allylic alcohols with simple α-olefins.  We were also 

intrigued to find that most of the trans selectivity obtained by Entry 1 is retained when 

a simple α-olefin is used in the reaction (Entry 2), but with much higher CM yields.  

We also decided to investigate if protecting groups were required to obtain 

stereoselectivity in this system.  We hypothesized that the addition of protecting 

groups would increase sterics and lead to decrease CM reactivity, but with greater 

trans selectivity.  Interestingly, the reactivity trends were as we expected, but the 

stereoselectivities obtained were surprising.  In fact, we observe greater trans 

selectivity with the unprotected alcohol (Entry 3) to provide CM product, than using a 

bulky protecting group, such as a tert-butyldiphenylsilyl ether (Entry 5).  In addition, 

we performed the reaction at room temperature in equal stoichiometry and found a 

slight preference for the CM product (62% vs. 50%) while not dimerizing the 

secondary alcohol component (Entry 4).  It is not clear why a smaller protecting 

group allows for greater trans selectivity, but may in part be due to greater secondary 

metathesis of the CM products.  The presence of small protecting groups, therefore, 

allows for greater access to secondary metathesis based isomerization similar to the 

reactions outlined in Scheme 2.  These results provided some early results into the 

role of sterics into product selectivity and olefin diastereoselectivity in CM.   

During the course of our earlier studies with catalyst 2, we found that fully 

substituted allylic carbons/quaternary centers did not participate in CM.8  They did 

not eliminate activity of the catalyst, but simply did not participate in the reaction.  

Therefore, with greater activity observed with catalyst 1, we began to investigate the 

reaction of quaternary allylic olefins with α-olefins.  We hypothesized that we could 

get excellent stereoselectivity in CM with these substrates (Table 2) due to sterics.  
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4o Allylic Olefin Product YieldCM Partner

90

Entry

4

5

2

3

1

AKCII-269

Notebook
Reference

OAc

OAc

O O 1.0 OAc 91 AKCI-294

AcO
OAc 93b AKCII-175

OAc

Equiv.

2.0

excess

OAc
O O

Table 2. Quarternary Allylic Olefin Cross-Metathesisa

93 AKCI-178
HO

2.0 OAc
OAcHO

9

10

11

12

O O 2.0 O O

13

70 AKCI-277

a 3-5 mol% of catalyst 1 used, CH2Cl2, 40 oC, 12h    b Reaction performed at 23 oC

These reactions are useful because they are able to install highly substituted carbons 

in a stereodefined manner.  We were pleased to discover that these reactions are the 

first example of exclusive trans olefin selectivity in CM based solely on alkyl 

substituents.  For example, an unprotected tertiary alcohol (Entry 1) provides an 

excellent yield of the CM product with only the trans isomer observed by 1H-NMR.  

Alkyl substituents have also been explored in the reaction and work quite nicely with 

catalyst 1 with a variety of α-olefins or equivalents (Entry 2 and 3).  Entry 3 

provides a convenient method to homologate terminal olefins with a tert-butyl group.  

Finally, the homologation of a α-olefin with the cyclic acetal of methyl vinyl ketone 

can provide the CM product in excellent yield in 1:1 stoichiometry (Entry 4).  In 

addition, styrene can be used as a CM partner with the cyclic ketal, with the balance 

of the cyclic ketal recovered as starting material (Entry 5).  These represent the 

unique control of product and stereoselectivity in CM based purely on steric 

considerations. 

With the vinyl ketone used in Table 2, Entry 4 and 5, there was no 

observation of the dimer of the cyclic acetal.  However, when a tertiary alcohol in 

Entry 1 was used in the CM at 40 oC, there was a background dimerization of the 

tertiary alcohol.  Therefore, when a similar substrate was used in 1:1 stoichiometry, a 
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reduced yield of CM product was observed (Scheme 3).  The dimerization of a 

Scheme 3: Alter CM Selectivity by Steric Factors

+

69% isolated yield
1 equiv. 1 equiv.

catalyst 1 4 mol%

CH2Cl2, 40oC, 12 h
AKCII-90

TBSO
6 OH TBSO

6 OH

+

97% isolated yield

1 equiv. 2.2 equiv.

catalyst 1    6 mol%

CH2Cl2, 40oC, 12 h
AKCII-254

AcO
2 AcO

2 OTBS
OTBS

14
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tertiary allylic alcohol can be performed in excellent yields.  If the dimer is 

resubjected under the same reaction with a α-olefin, then no CM product is observed.  

This indicates that once the dimer is formed in a CM reaction, it does not undergo 

secondary metathesis presumably due to steric bulk of the dimer.  In addition, we 

found homodimers of olefins with tertiary allylic carbons were not accessible for 

secondary metathesis either.  Interestingly, this undesired dimerization can be 

suppressed to a large extent by using a silyl protecting group (Scheme 3).  This 

provides higher CM selectivity due to steric contributions of the protecting group.  

This demonstrates the use of steric bulk to alter reactivity patterns in CM and provides 

a way to alter selectivity in CM.  At this point, we also wished to investigate the 

electronic parameters required for selective CM in addition to the effects of sterics 

described above.       

Styrenes represent one of the classes of olefins used in widely in CM with ill-

defined catalyst systems,9 as well as 2,10 and 3,11 because of high trans selectivity in 

the CM product.  In all these cases the dimerization of styrene to stilbene was 

reported to be slow, allowing for moderate selectivities in CM.  However, with 

catalyst 1 we saw a significantly different reactivity.  For example, with 2.5 mol% of 

catalyst 1, the dimerization of styrene to stilbene was achieved in 94% isolated yield.  

Consequently, the CM reactions of styrene with terminal olefins (Table 3) is governed 
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Table 3. Cross-Metathesis of Styrenes with Terminal Olefins

Cross-Partner Aromatic :
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1 : 1 47%
2

2

1 : 1 80%

3 : 1 98%2
2

1 : 1.2 51%

1 : 2 50%

Br
Br

2 : 1 90%
2

2

NO2 NO2

2 : 1 48%

Catalyst

1

1

1

1

3

3
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1

3

7

6

2
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F

OAc
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1 : 2 98%15

Notebook

TLCa

AKCII-104

AKCII-97

AKCI-299

AKCII-51

Ref. 10a

Ref. 10a,b

AKCI-297

a Reaction performed by Tae-Lim Choi, Grubbs group  bOnly E isomer observed

by statistical product distributions (Entry 1) unlike reactions using catalyst 3, as 

reported by Crowe and Zhang (Entry 2).11  Interestingly, alterations in styrene 

structure allows for selective CM reactions with terminal olefins.  For example, the 

use of 2-bromostyrene as the CM partner leads to selective formation of the CM 

product (Entry 3).  By simply using an excess of this styrene, near quantitative 

conversion of α-olefin and full recovery of starting material without any stilbene 

formation was achieved.  We believe that 2-bromostyrene is an optimized case with 

terminal olefins, where both the steric bulk of the bromine atom and its electron-

withdrawing character also contribute to its selective CM with α-olefins.  Crowe and 

Zhang also were able to incorporate ortho-substituted styrenes in CM with catalyst 2, 

but found that their reactivity is low with terminal olefins (Entry 4).11  This may be 

due to low catalyst activity toward electronic-deficient styrene substrates, since the 

accompanying terminal olefin was dimerized.  We observed a similar trend only 

when multiple electron-withdrawing substituents are present.  For example, 2,5-
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difluorobenzene was subjected to CM conditions and only moderate yields of CM 

product were isolated (Entry 6).  This is a particularly noticeable difference since 2-

fluorostyrene was a nearly quantitative CM reaction (Entry 5).  Finally, as a method 

to determine if the parent styrene reaction is completely reversible, trans-stilbene was 

successfully used as a styrene surrogate in CM with allylic acetate CM partners (Entry 

7) to yield a statistical product ratio.  This is unprecedented since ill-defined 

catalysts, 2, and 3 are not able to efficiently use stilbene as a CM partner, providing 

another example of the unique reactivity of catalyst 1. 

With the differences in reactivity observed with styrenes, we investigated CM 

of styrenes with olefins that did not behave like terminal olefins.  We had previously 

disclosed that a variety of α,β-unsaturated esters, amides, ketones, and acids are 

excellent CM partners with terminal olefins.6c,h  In addition, it has been 

demonstrated by Crowe and Goldberg that CM of π-substituted olefins, such as 

acrylonitriles, were not compatible in CM with styrenes using catalyst 3 because they 

possessed similar electronic properties.  They suggested that CM required matching 

of a more nucleophilic, electron-rich olefin with either styrene or acrylonitrile.12  

However, in contrast to Crowe’s work with catalyst 3, we found that styrenes are 

excellent CM partners with electron-deficient α,β-unsaturated carbonyl, such as 

acrylate esters using catalyst 1 (Table 4).  We discovered that the reactivity trends of  

styrenes were different in these CM reactions when compared to α-olefins CM in 

Table 3.  It was observed that ortho-substituted styrenes that did not dimerize readily, 

were also not good CM partners with acrylates (Entries 3, 9-11).  In addition, 

styrenes that readily dimerized to stilbene were excellent CM partners with acrylates, 

such as styrene (Entry 1) and 4-nitrostyrene (Entry 6).  In addition, the CM method 

allows for direct orthogonality to Wittig chemistry since unprotected benzaldehydes 

work well (Entry 7).  Similar results were also obtained using vinyl phosphonates as 
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Isolated Yield

Table 4. Styrene Cross-Metathesis with Acrylate Esters
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the “enone” component.6d  It was also interesting that simple ortho-alkyl groups did  

not reduce styrene dimerization, since 2,4-dimethylstyrene was also able to react in 

good yield acrylate esters (Entry 2), but that electron-withdrawing functionality at the 

ortho position, such as 2-trifluoromethyl styrene (Entry 4) plays a large role in 

determining CM efficiency.  In addition, two methyl groups at the ortho position 

completely destroy CM reactivity with acrylates (Entry 3).  Therefore, for proper 

CM selectivity, the two olefins in CM need to have a difference in rate of reaction 

with the metal alkylidene complex.  

As additional evidence for alteration in styrene reactivity based on 

substitution patterns, we investigated ortho-phenol styrene derivatives.  These are 

interesting substrates for catalytic reactions, since several derivatives form stable 

benzylidene complexes.13  However, instead of inhibiting catalyst activity, a variety 

of protected phenols are active for catalytic CM (Scheme 4). 
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Scheme 4: ortho-Phenol Cross-Metathesis
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We found that small protecting groups, such as acetate, allowed for excellent CM with 

acrylates.  The balance of the material in this reaction was recovered as the stilbene 

dimer.  This protection pattern is similar to other unhindered styrenes in Table 4.  

However, when a larger protecting group is employing, such as tert-butyldimethylsilyl, 

then CM with acrylates gives poor yields, in contrast the reaction provides very good 

yield with allyl acetate equivalents.  In this case, this substrate reacts like 2-

bromostyrene due to steric bulk and is very selective in CM with α-olefins. This 

suggests that CM with allylic esters and acrylate esters may proceed by different 

reaction pathways, and that small changes in protecting groups can affect CM 

selectivity. 

With these observations with styrene CM, we began to formulate a reactivity 

model to describe these results and others observed in CM.  Instead of simply 

looking at absolute homodimerization as a measure of an olefin’s ability to participate 

in selective CM, we looked at relative homodimerization and describe olefins on a 

gradient scale of their propensity to undergo homodimerization to determine certain 

matched cases for selective CM.  In addition, not only is ability to dimerize a 

contributing factor, but also the ability to perform secondary metathesis on the 

homodimerized products.  Accounting for these factors, leads to a model that 

comprises four distinct olefin types which predicts product selectivity in CM (Figure 

2).  For example, Type I olefins are ones that undergo a rapid homodimerization, and 
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Type I - Rapid homodimerization, homodimers consumable

Type II - Slow homodimerization, homodimers only partially consumable

Type III - No homodimerization, homodimers not consumable

Figure 2. Olefin Categorization and Rules for Selective CM

Type IV - Olefins inert to CM, but do not deactivate catalyst

Reaction between two olefins of the same type = Thermodynamic CM

Reaction between olefins of two different types = Kinetic CM
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where their homodimers equally participate in CM as well as their terminal olefin 

counterpart.  It is this ability (or inability) to perform secondary metathesis on a 

newly formed CM olefin that is essential to understand in predicting selective CM.  

For example, when two Type I olefins are used in a CM reaction, they will react in a 

manner to provide a statistical product mixture, or thermodynamic CM.  As seen in 

the case of catalyst 1, styrenes without large electron-withdrawing ortho-substituents, 

as well as primary allylic alcohols (and protected derivatives) are Type I olefins, as 

seen in Table 3, Entry 1.  Therefore, when two olefins of the same type are combined, 

statistical mixtures are usually obtained. For example, when two Type II olefins are 

combined, such as in Table 4 Entry 10, non-selective CM yields are obtained.  Table 

5 summarizes all known CM substrates reported in the literature as well as our work 

disclosed here.  When two olefins of different types are reacted; a second reaction 

pathway is possible.   

A second CM reaction pathway leads to non-statistical or kinetically 

controlled CM reactions, where the CM product predominates with respect to 
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Table 5. Olefin Categories for Selective CM

Type 1

Type 2

Type 3

Ru

PCy3

PCy3

PhCl

Cl
Ru

PCy3

PhCl

Cl

NN

Type 4

Olefin type

Terminal olefin8

Allylsilanes14,18,19

Styrene9,16

Styrenes (no large ortho substit.)6c,d,f,h

Styrenes (large ortho substit.)6d,f

1,1-Disubstituted olefins6a

Vinylphosphonates6d

Phenyl Vinyl Sulfone22

4o allylic carbons (all alkyl substituents)
3o allylic alcohols (protected)

1,1-disubstituted olefins
disubstit. α,β-unsaturated carbonyls
4o allylic carbon containing olefins8

Perfluorinated alkane olefins8

3o allylamines (protected)14
Trisubstituted allylic alcohols (protected)

Vinyl boronates8

Terminal olefins,6  1° allylic alcohols, esters6g,20

Allylboronate esters,6f  Allylic halides6f,6h

2° allylic alcohols, vinyl
dioxolanes8

Acrylate esters,6b,h amides,6c acids,6c

aldehydes,6b,6d,24ketones,6b 
unprotected 3° allylic alcohols,6g,6f

vinyl epoxides6b  2o allylic alcohols

Allylphosphonates,6d 
phosphine oxides,6g sulfides,6g protected amines6g

Allylsilanes25

1° allylic alcohols, ethers, esters8,19,21

Allylboronate esters10f

Allylhalides17

Vinylsiloxanes16

Perfluorinated alkane olefins6b,23

(fast 
homodimerization)

(slow 
homodimerization)

(no homodimerization)

(spectators to CM)

N

Mo
CH3C(CF3)2O

CH3C(CF3)2O

i-Pri-Pr

Ph

CH3
CH3

Terminal olefins11a,b,12,14

Allylsilanes11b

Styrene11a,11b

Allylstannanes15

1,1-disubstituted olefins11a

Acrylonitrile12

1 2 3

Vinyl nitro olefins

Tertiary allylamines14

 

homodimers.  The formation of a kinetic CM product also greatly limits secondary 

metathesis processes that would scramble productive CM products, as well as allow 

for unwanted homodimers to be converted to CM product.  Conversely, reactions 

between Type I olefins, leading to thermodynamically controlled reactions are 

accessible to secondary metathesis.  Kinetic CM reactions are mediated by olefins 

where the rates of dimerization are significantly different and/or slower that CM 

product formation.  Kinetic CM requires the reaction of olefins from two different 

types.  For example, in a reaction between a Type I olefin, such as α-olefins, and 

acrylate esters (Type II), highly selective reactions are possible in nearly 1:1 

stoichiometry (Scheme 5).  In this case, the acrylate esters are Type II olefin that  

undergoes homodimerization to a small extent under the reaction conditions allowing 

for selective reactions with olefins of the Type I (4-acetoxystyrene) in 1:1 

stoichiometry.  Additionally, there is also the case where one of olefins in CM does 

not dimerize at all (Type III olefin), such as methacrolein, allowing for selective CM 
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in equal stoichiometry as shown in Scheme 5.6i  In the methacrolein reaction, the 

entropic driving force of isobutylene loss allows for a selective reaction, allowing for 

Scheme 5: Olefin Cross-Metathesis Mediated by Equal Stoichiometry
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a regio- and stereoselective formal allylic oxidation of one of the terminal methyl 

groups.  It is important to distinguish between Type II and Type III olefins because 

Type II homodimers are formed, but are not significantly active in subsequent 

metathesis reactions.  The inability of Type III olefins to homodimerize allows it to 

also undergo selective reactions with Type II CM partners.  For example, most 1,1-

disubstituted olefins will readily perform selective CM with α-olefins as well as 

acrylate esters6e (Type II) and acrolein acetals6a (Type II), but will not homodimerize 

with itself.  However, two Type II olefins (such as methyl vinyl ketone and methyl 

acrylate) can react with each other but will generally undergo non-selective CM.6e 

Therefore, it is important to use olefins from two different types to achieve selective, 

or kinetic, CM.   

A fourth olefin type is one that is not affected by a particular catalyst, but 

does not inhibit catalyst activity toward other olefins.  This provides a foundation for 

chemoselective CM, which is critical for differentiating between olefins in the 

synthesis of complex molecules.  To a first approximation, this can be determined by 

the CM of a Type I or Type II olefin in the presence of a Type IV olefin.  For 

example, using catalyst 2, a disubstituted α,β-unsaturated carbonyl containing olefin 

(Type IV) is not affected, allowing for selective reactions between a Type I olefin 
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dimer and a Type II olefin (Scheme 6).  Interestingly, the Type IV olefin for catalyst 

2 is formed in a kinetic TypeI/Type II CM using catalyst 1.  An additional 

demonstration of a Type IV olefin involves recent work in our group also 

demonstrated a selective reaction of geraniol at one of its trisubstituted olefin (Type I 

since it can be made by a thermodynamic CM reaction) in the presence of another 

trisubstituted olefin that contains a bulky allylic protecting group, a Type IV olefin 

(Scheme 6).6i  This allows for the conversion of natural 

catalyst 2 (10 mol%)
CH2Cl2, 40oC, 12 h

78% isolated yield
4.5:1 E/Z ratio

Type IType IV

O

O Type IV

AcO

OAc
2 equiv.
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O

TBDPSO CO2Et CO2EtTBDPSOcatalyst 1 (5 mol%)
CH2Cl2, 23 °C, 12 h

All E Isomer
61% isolated yield

Type I
Type IV Type II

1 equiv.

+

+

O
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+
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AKCII-61
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AKCII-63

AKCII-196

Scheme 6: Chemoselective CM based on Olefin Categorization
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olefinic sources such as geraniol and nerol to other synthetically useful compounds 

and is an interesting application of selective CM processes.   

This model for CM outlined in Figure 2 also explains results reported by 

other groups.  For example, Blechert et al. used steric constraints and heteroatom 

functionality to demonstrate that a highly substituted allylamine (Type IV for catalyst 

2) could be benign to CM in the presence of two Type I olefins (Scheme 7).14  

Interestingly, in the same report by Blechert, catalyst 3 was used to effect a highly 

selective CM reaction of that same allylamine (Type III for catalyst 3) with 

allylsilanes (Type I) in excellent yield (Scheme 7).  In addition, this is one of the first 

examples of using steric bulk at the allylic carbon to obtain high olefin 

stereoselectivity and is comparable to the results we observed in Table 1 and 2 with 

catalyst 1.  Similarly, Crowe and Zhang performed a selective CM between a Type I 
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terminal olefin and styrene (Type II for catalyst 3) and conducted in the presence of a 

1,1-disubstituted olefin (Type IV).11  As demonstrated previously in our lab,6a with 

the more active catalyst 1, 1,1-disubstituted olefins are a Type III olefin that is active 

N
H

OTr

O

O

SiMe3

1.5 equiv.

catalyst 2 (5 mol%)
CH2Cl2, 40 oC, 4 h

50% isolated yield of only regiosisomer
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Ph

2.0 equiv.
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(A) Work by Blechert, et al.

(B) Work by Crowe and Zhang

Scheme 7: Chemoselective Cross-Metathesis using Catalysts 2 and 3
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for CM to form trisubstituted olefins.  This shows that while more active catalysts 

will have a larger set of CM active olefins (Type I, II, III) it is useful to understand 

Type IV olefins for all catalysts, in order to determine possible chemoselective CM 

reactions.  While electronic and steric parameters of olefins account as contributing 

factors in ways olefins are classified, other factors are often implied in determining 

selectivity, including chelating ability of certain functional groups to metal catalysts.  

For example, the effects of carbonyl groups, such as acetate protecting groups, and 

allylic heteroatoms have been implied to alter reactivity in CM.  It is for these 

reasons that a comprehensive empirical model is necessary that account for all of 

these observations all of the methodology that exists in CM with different catalysts.  

Therefore, an olefin classification system for CM allows for the straightforward 

interpretation of efficient CM reactions (Scheme 5) as well as chemoselective CM 

reactions (Scheme 6 and 7).  Table 5 represents all reported CM substrates for 

catalysts 1, 2, and 3 and provides chemists with two basic functions.  First, it 
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provides a reference point for synthetic chemists to utilize/design a potential selective 

CM reaction.  Second, for those working to develop more active metathesis catalysts, 

it provides a set of olefins not currently active for CM (i.e., Type IV olefins) for new 

catalysts to attempt to use and place into the metathesis active Types (I, II, III).  Up 

to this point, methodology developed in the area of olefin metathesis has been marked 

by repeated use of the most active catalyst available.  However, where advantages in 

selective CM are presented with less active catalysts, then the utility of CM can be 

truly materialized.  For example, in styrene CM with α-olefins, the use of catalyst 2 

or 3 provides better selectivity that using the most active catalyst for that olefin, 

namely catalyst 1.  In addition, since these catalysts are commercially-available 

reagents, it is easy to employ the most selective catalyst without much effort.  In 

addition, as new olefins are active for CM, placing them in an appropriate olefin type 

will allow them to be used more effectively in selective CM.  Finally, the olefin 

categorization allows chemists to predict highly chemo and regioselective reactions.  

For example, as shown in Scheme 8, it is possible to have an unsymmetrical diene 

react differently based on its CM partners.  For example, a Type II (acrylate)/Type I 

(homoallylic alcohol) coupling occurs at room temperature while leaving the Type II 

olefin (secondary allylic alcohol) unreacted.  Subsequently, this Type II olefin 

undergoes a selective CM reaction with a Type I olefin (unsubstituted styrene) while 

not performing secondary metathesis on the previous 
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CO2EtPh

AKCII-115
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kinetic CM olefin product.  These examples demonstrate that defining selectivity 

patterns in CM not only effects reaction stoichiometries, but also provides a method to 

construct complex molecules with multiple olefinic sites.    

In addition to describing selectivity in the simple homologation of two olefins 

in a CM reaction, the olefin classification in Table 5 also provides an opportunity to 

discover new reactions, such as multi-component processes.  While a three 

component reaction is theoretically possible, the large mixture of compounds from 

non-selective processes has made this an unattractive method to develop.  However, 

with the current model of selective CM described here, two important things have 

been learned.  First, that under kinetic CM control, secondary metathesis of the 

resulting olefins can be significantly slower than productive CM.  Second, by using 

two olefins that do not perform CM with each other, then a third diene containing 

olefin can be functionalized at both olefinic sites to provide an unsymmetrical product 

(Scheme 9).  In such a reaction, olefins of three different types are converted to one 

Scheme 9: Three Component Olefin Cross-Metathesis
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main product as a single stereoisomer.  This reaction is successful because the Type 

III and Type II olefins react at a much slower rate with each other than their respective 

reactions with a Type I olefin.  In addition, the products from these individual 

reactions do not undergo secondary metathesis, allowing for selective reactions.  The 

formation of a kinetic CM product also allows for chemoselective coupling, where a 

one-pot sequential CM reaction can occur (Scheme 10).  For example, if two CM 
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Scheme 10: One-pot Three Component Olefin Cross-Metathesis

40 °C, 3 h+

O

Ph

O

47% isolated yield

All (E,E) isomer

2 eq. 1 eq.

Type I Type II

1) catalyst 1 (5 mol%)

40 °C, 12 h

2)

Ph 3 equiv.

catalyst 1 (5 mol%)

Type I

Notebook AKCIII-26

28

 

partners are used in a three-component reaction that can perform efficient CM with 

each other, such as styrene and methyl vinyl ketone, then a sequential addition 

strategy avoids the unwanted side reaction.  Therefore, by categorizing olefins and 

predicting their reactivity patterns, a variety of unsymmetrically substituted dienes 

can be prepared (Table 6). These reactions allow for a way to use olefin categorization 

to effectively predict proper three-component reactivity.  In theory, any combination 

of a Type I, II, and III can be combined to provide a three-

Table 6. Three Component Olefin Cross-Metathesisa

O
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component product (Method A).  In addition, if two Type I olefins need to be 

coupled, then one kinetic CM olefin needs to be formed first, followed by a second 

CM reaction (Method B).  The reactions add a new level of complexity to olefin 

metathesis reactions, and are possible due to development of stereoselective CM and a 
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better understanding of CM reactivity patterns. 

 In conclusion, a model for reactivity patterns of olefins in CM is described.  

This model is able to account for all known CM reactions.  In most cases, the 

classification of an olefin can predict its product selectivity patterns.  In conjunction 

with our discovery of stereoselective CM with sterically encumbered olefins and 

electron-deficient olefins, we have been able to address both product and 

stereoselective reactions.  In addition, by understanding the inherent reactivity of 

olefins in CM with a variety of catalysts, one can access new reaction platforms, such 

as multi-component CM reactions.  These findings should allow for the application 

of CM to the synthesis of complex organic molecules and increase the utility of olefin 

metathesis in organic chemistry in general.   

 

Experimental Section. 

General Procedure: 

 Analytical thin-layer chromatography (TLC) was performed using silica gel 

60 F254 pre-coated plates (0.25 mm thickness) with a fluorescent indicator.  Flash 

column chromatography was performed using silica gel 60 (230-400 mesh) from EM 

Science. All other chemicals were purchased from the Aldrich or TCI America and 

used as delivered unless noted otherwise. CH2Cl2 was purified by passage through a 

solvent column prior to use. Catalyst 1 and 2 were stored and manipulated on the 

bench. NMR spectra were recorded on a Varian Mercury 300 MHz NMR. 

 

Compound 4.  cis-2-butene-1,4-diacetate (160 µl, 1.0 mmol) and allylbenzene (55 

µL, 0.50 mmol) were added simultaneously via syringe to a stirring solution of 2 (11 

mg, 0.014 mmol, 2.7 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 
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reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 9:1 hexane:ethyl acetate (500mL). Pale oil was obtained (76 mg, 80% 

yield, trans/cis as determined by integration of peaks at 4.73 and 4.55 ppm).  1H 

NMR (300 MHz, CDCl3, ppm): δ 7.34-7.17 (5H, m), 5.92 (1H, m), 5.65 (1H, m), 4.55 

(2H, app d), 3.41 (2H, d, J = 3.3 Hz), 2.06 (3H, unresolved s).  13C NMR (75 MHz, 

CDCl3, ppm): δ 171.4, 135.1, 134.0, 129.2, 129.1, 126.8, 125.8, 65.5, 60.8, 39.2, 21.6.  

Rf = 0.53 (9:1 hexane:ethyl acetate);  HRMS (EI) calcd for C12H14O2 [M-H]+ 

189.0916, found 189.0916. 

 

Compound 5.  cis-2-butene-1,4-diacetate (160 µl, 0.9 mmol) and 2-benzyloxy-3-

butene (90 µL, 0.51 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (11 mg, 0.015 mmol, 2.8 mol%) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 9:1 hexane:ethyl acetate (500mL). Pale oil was 

obtained (48 mg, 0.19 mmol, 38% yield). Spectra compared to reported compound, 

see: Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder, R. A.; 

Bussmann, D. A. J. Am. Chem. Soc. 2000, 122, 58. Rf = 0.36 (9:1 hexane:ethyl 

acetate). 

 

Compound 6.  5-Hexenyl-1-acetate (170 µl, 1.0 mmol) and 2-benzyloxy-3-butene 

(90 µL, 0.51 mmol) were added simultaneously via syringe to a stirring solution of 1 

(15 mg, 0.018 mmol, 3.5 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 3:1 hexane:ethyl acetate (500mL). Clear oil was obtained (121 mg, 0.42 



 123

mmol, 82% yield, 10:1 E/Z determined by relative 13C peak heights at 71.9 and 68.0 

ppm). 1H NMR (300 MHz, CDCl3, ppm): δ 8.02 (2H, t, J = 7.2 Hz), 7.51 (1H, t, J = 

7.2 Hz), 7.40 (2H, t, J = 7.8 Hz), 5.80-5.70 (1H, m), 5.61-5.51 (2H, m), 4.02 (2H, t, J 

= 6.6 Hz), 2.09-1.98 (5H, m), 1.65-1.55 (2H, m), 1.47-1.38 (5H, m).  13C NMR (75 

MHz, CDCl3, ppm): δ 171.2, 165.9, 132.9, 132.8, 130.9, 130.2, 129.7, 128.4, 71.9, 

64.6, 32.1, 28.4, 25.6, 21.4, 20.9.  HRMS (EI) calcd for C17H22O4 [M + H]+ 

291.1596, found 291.1601. Rf = 0.50 (3:1 hexane:ethyl acetate). 

 

Compound 7.  5-Hexenyl-1-acetate (170 µl, 1.0 mmol) and 3-butene-2-ol (45 µL, 

0.52 mmol) were added simultaneously via syringe to a stirring solution of 1 (12 mg, 

0.014 mmol, 2.7 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser 

and refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 

9:1 hexane:ethyl acetate (500mL) followed by 3:1 hexane:ethyl acetate (500mL). 

Brown oil was obtained (89 mg, 92% yield, 13:1 E/Z determined by relative 1H 

integrations at 4.62 and 4.24 ppm). 1H NMR (300 MHz, CDCl3, ppm): δ 5.66-5.40 

(2H, m), 4.22 (1H, quint, J = 7.8 Hz), 4.02 (2H, t, J = 7.8 Hz), 2.09-1.98 (5H, m), 

1.65-1.55 (3H, m), 1.47-1.38 (2H, m), 1.32 (3H, app d).  13C NMR (75 MHz, CDCl3, 

ppm): δ 171.2, 134.7, 130.2, 69.7, 64.2, 32.1, 28.4, 25.6, 22.4, 20.9.  Rf = 0.26 (3:1 

hexane:ethyl acetate). Compound spectra match those of previously characterized (Z) 

compound, see: Bratt, K.; Garavelas, A.; Perlmutter, P.; Westman, G.. J. Org. Chem. 

1996, 61, 2109 

 

Compound 8.  5-Hexenyl-1-acetate (85 µl, 0.51 mmol) and 2-tert-

butyldiphenylsilyl-3-butene (300 µL, 1.07 mmol) were added simultaneously via 

syringe to a stirring solution of 1 (23 mg, 0.027 mmol, 5.3 mol%) in CH2Cl2 (2.5 ml).  
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The flask was fitted with a condenser and refluxed under nitrogen for 12 hours.  The 

reaction mixture was then reduced in volume to 0.5 ml and purified directly on a silica 

gel column (2x10 cm), eluting with 20:1 hexane:ethyl acetate.  Brown oil was 

obtained (115 mg, 0.27 mmol, 53% yield, 7:1 E/Z determined by relative 1H 

integrations at 4.58 and 4.28 ppm). 1H NMR (300 MHz, CDCl3, ppm): δ 7.73-7.68 

(4H, m), 7.42-7.36 (6H, m), 5.58-5.45 (1H, m), 5.40-5.32 (1H, m), 4.28 (1H, quint, J 

= 6.0 Hz), 4.05 (2H, t, J = 6.9 Hz), 2.06 (3H, s), 1.96 (2H, q, J = 6.9 Hz), 1.63-1.53 

(2H, m), 1.41-1.34 (2H, m), 1.17 (3H, d, J = 6.3 Hz), 1.08 (9H, s).  13C NMR (75 

MHz, CDCl3, ppm): δ 171.3, 136.1, 136.0, 135.2, 135.1, 135.0, 134.8, 134.6, 129.7, 

129.0, 127.9, 127.7, 127.6, 127.5, 70.6, 64.8, 31.9, 28.4, 27.4, 27.3, 25.8, 25.0, 24.9, 

21.4, 19.6.  Rf = 0.56 (9:1 hexane:ethyl acetate).  Compound spectra match those of 

previously characterized (Z) compound, see: Bratt, K.; Garavelas, A.; Perlmutter, P.; 

Westman, G.. J. Org. Chem. 1996, 61, 2109. 

 

Compound 9.  5-Hexenyl-1-acetate (170 µl, 1.02 mmol) and 3-methyl-1-penten-3-

ol (60 µL, 0.51 mmol) were added simultaneously via syringe to a stirring solution of 

1 (20 mg, 0.024 mmol, 4.8 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 3:1 hexane:ethyl acetate.  Brown oil was obtained (100 mg, 0.47 mmol, 

93% yield). 1H NMR (300 MHz, CDCl3, ppm): δ 5.58 (1H, dt, J = 15.6, 6.6 Hz), 5.46 

(1H, d, J = 15.6 Hz), 4.02 (1H, t, J = 6.6 Hz), 2.06-1.92 (5H, m), 1.61-1.35 (6H, m), 

1.18 (3H, s), 0.81 (3H, t, J = 6.9 Hz).  Rf = 0.40 (3:1 hexane:ethyl acetate).   

 

Compound 10.  5-Hexenyl-1-acetate (50 µl, 0.30 mmol) and 3,3-Dimethyl-1-hexene 

(95 µL, 0.61 mmol) were added simultaneously via syringe to a stirring solution of 1 
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(12 mg, 0.014 mmol, 4.7 mol%) in CH2Cl2 (1.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 20:1 hexane:ethyl acetate.  Clear oil was obtained (61 mg, 0.27 mmol, 

90% yield, only one olefin isomer observed by 1H-NMR). 1H NMR (300 MHz, CDCl3, 

ppm): δ 5.38-5.18 (2H, m), 4.04 (2H, t, J = 6.6 Hz), 2.04 (3H, obs s), 2.01 (2H, q, J = 

6.9 Hz), 1.67-1.57 (2H, m), 1.43-1.37 (2H, m), 1.20 (4H, app d, J = 3.3 Hz), 0.93 (6H, 

s), 0.87-0.82 (3H, m).  13C NMR (75 MHz, CDCl3, ppm): δ 171.3, 140.1, 125.2, 64.8, 

46.0, 36.0, 32.6, 29.3, 28.3, 27.7, 26.3, 21.3, 18.1, 15.2.  Rf = 0.68 (5:1 hexane:ethyl 

acetate). 

 

Compound 11.  cis-2-butene-1,4-diacetate (50 µl, 0.32 mmol) was added via syringe 

to a stirring solution of 1 (10 mg, 0.012 mmol, 3.8 mol%) in 3,3-Dimethyl-1-butene 

(2 mL, 15.52 mmol).   The flask was fitted with a condenser and stirred under 

nitrogen for 12 hours at room temperature (23 oC).  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 50:1 hexane:ethyl acetate.  Clear oil was obtained (92 mg, 0.60 mmol, 

93% yield, only one olefin isomer observed by 1H-NMR). 1H NMR (300 MHz, CDCl3, 

ppm): δ 5.75 (1H, dt, J = 15.6, 1.2 Hz), 5.45 (2H, dt, J = 15.3, 6.6 Hz), 4.50 (2H, dd, J 

= 6.3, 1.2 Hz), 2.05 (3H, s), 1.01 (9H, s).  Rf = 0.62 (9:1 hexane:ethyl acetate). 

 

Compound 12.  5-Hexenyl-1-acetate (81 µl, 0.48 mmol) and 2-methyl-2-vinyl-1,3-

dioxolane (50 µL, 0.48 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (14 mg, 0.017 mmol, 3.7 mol%) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 
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column (2x10 cm), eluting with 5:1 hexane:ethyl acetate.  Clear oil was obtained 

(100 mg, 0.44 mmol, 91% yield, only one olefin isomer observed by 1H-NMR). 1H 

NMR (300 MHz, CDCl3, ppm): δ 5.77 (1H, dt, J = 15.3, 6.9 Hz), 5.42 (1H, dt, J = 

15.6, 1.5 Hz), 4.05 (2H, t, J = 6.6 Hz), 3.96-3.82 (4H, m), 2.14-1.98 (5H, m), 1.55-

1.45 (2H, m), 1.42-1.35 (5H, m).  Rf = 0.31 (9:1 hexane:ethyl acetate). Spectra match 

those of known compounds that are related, see: Camps, J.; Font, J.; de March, P. 

Tetrahedron 1981, 37, 2499.  

 

Compound 13.  Styrene (32 µl, 0.28 mmol) and 2-methyl-2-vinyl-1,3-dioxolane (63 

µL, 0.55 mmol) were added simultaneously via syringe to a stirring solution of 1 (7 

mg, 0.008 mmol, 3.0 mol%) in CH2Cl2 (1.3 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 20:1 hexane:ethyl acetate.  Clear oil was obtained (37 mg, 0.19 mmol, 

70% yield, only E olefin isomer observed by 1H-NMR). 1H NMR (300 MHz, CDCl3, 

ppm): δ 7.42-7.25 (5H, m), 6.71 (1H, d, J = 15.9 Hz), 6.15 (1H, d, J = 15.9 Hz), 4.05-

3.92 (4H, m), 1.57 (3H, s).  13C NMR (75 MHz, CDCl3, ppm): δ 136.3, 129.9, 128.8, 

128.1, 126.9, 107.9, 64.9, 30.0, 25.6.  Elemental analysis Calcd: C: 75.76, H: 7.42; 

Found: C: 75.47, H: 7.63.  Rf = 0.41 (9:1 hexane:ethyl acetate).  

 

Compound 14.  1-tert-butyldimethylsilyloxy-9-decene (190 µl, 0.57 mmol) and 3-

methyl-3-buten-2-ol (55 µL, 0.54 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (17 mg, 0.020 mmol, 4.0 mol%) in CH2Cl2 (2.5 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 9:1 hexane:ethyl acetate.  A clear oil was obtained 
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(121 mg, 0.37 mmol, 69% yield) and only one olefin isomer detected in 1H-NMR.  

1H NMR (300 MHz, CDCl3, ppm): δ 5.60-5.58 (2H, m), 3.58 (2H, t, J = 6.6 Hz), 

2.01-1.96 (2H, m), 1.54-1.47 (4H, m), 1.36-1.24 (14H, m), 0.89 (9H, s), 0.03 (6H, s). 

13C NMR (75 MHz, CDCl3, ppm): δ 137.9, 127.4, 70.8, 63.5, 33.1, 32.4, 31.9, 30.1, 

29.7, 29.6, 29.5, 29.4, 26.3, 26.1, 22.9, 18.7, 14.4, -4.9 ppm. Rf = 0.23 (9:1 

hexane:ethyl acetate).   

 

Compound 15.  5-hexenyl-1-acetate (40 µL, 0.24 mmol) was added via syringe to a 

stirring solution of 1 (12 mg, 0.014 mmol, 6.0 mol%) and 2-tert-

butyldimethylsilyloxy-2-methyl-3-butene (106 mg, 0.53 mmol) in CH2Cl2 (1.5 ml).  

The flask was fitted with a condenser and refluxed under nitrogen for 12 hours.  The 

reaction mixture was then reduced in volume to 0.5 ml and purified directly on a silica 

gel column (2x10 cm), eluting with 9:1 hexane:ethyl acetate (500 ml) followed by 3:1 

hexane:ethyl acetate (300 ml).  A clear oil was obtained (73 mg, 0.23 mmol, 97% 

yield) and only one olefin isomer detected in 1H-NMR.  1H NMR (300 MHz, CDCl3, 

ppm): δ 5.60-5.50 (2H, m), 4.05 (2H, t, J = 6.6 Hz), 2.04-1.99 (5H, m), 1.70-1.58 (2H, 

m), 1.47-1.40 (2H, m), 1.26 (6H, s), 0.85 (9H, s), 0.03 (6H, s). 13C NMR (75 MHz, 

CDCl3, ppm): δ 171.3, 139.6, 125.9, 73.1, 64.7, 32.1, 30.9, 28.5, 26.2, 26.0, 21.4, 18.4, 

-1.66 ppm. Rf = 0.18 (9:1 hexane:ethyl acetate).   

 

Compound in Table 3, Entry 3.  5-hexenyl-1-acetate (70 µL, 0.45 mmol) and 2-

bromostyrene (170 µL, 1.36 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (19 mg, 0.021 mmol, 4.8 mol%) in CH2Cl2 (2.5 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 20:1 hexane:ethyl acetate.  A light brown oil was 
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obtained (130 mg, 0.44 mmol, 98% yield) and only one olefin isomer detected in 1H-

NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.52-7.43 (2H, m), 7.29-7.02 (2H, m), 

6.70 (1H, d, J = 15.9 Hz), 6.13 (1H, dt, J = 15.9, 6.9 Hz), 4.09 (2H, t, J = 6.6 Hz), 

2.28 (2H, app q), 2.04 (3H, s), 1.74-1.53 (4H, m). 13C NMR (75 MHz, CDCl3, ppm): 

δ 171.3, 139.6, 133.4, 132.9, 129.3, 128.4, 127.5, 126.9, 126.2, 64.6, 32.8, 28.4, 25.8, 

21.4 ppm. HRMS (EI) for C14H17BrO2 : Calcd 296.0412, Found 296.0403.  Rf = 0.34 

(9:1 hexane:ethyl acetate).   

 

Compound in Table 3, Entry 5.  cis-2-butene-1,4-diacetate (75 µL, 0.48 mmol) and 

2-fluorostyrene (24 µL, 0.20 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (8 mg, 0.009 mmol, 5.0 mol%) in CH2Cl2 (1.0 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 10:1 hexane:ethyl acetate.  A brown oil was 

obtained (38 mg, 0.20 mmol, 97% yield) and only one olefin isomer detected in 1H-

NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.48-7.42 (1H, m), 7.24-7.19 (1H, m), 

7.12-7.00 (2H, m), 6.79 (1H, d, J = 16.2 Hz), 6.36 (1H, dt, J = 15.9, 6.3 Hz), 4.74 (2H, 

dd, J = 6.3, 1.2 Hz), 2.11 (3H, s). 13C NMR (75 MHz, CDCl3, ppm): δ 170.8, 162.0, 

158.7, 129.5 (d, J = 8.3 Hz), 127.6 (d, J = 3.5 Hz), 126.4 (d, J = 3.8 Hz), 125.9 (d, J = 

5.2 Hz), 124.2 (d, J = 3.7 Hz), 115.8 (d, J = 21.9 Hz), 65.3, 21.3 ppm. 19F NMR (282 

MHz, CDCl3, ppm): δ -118.2 (t, J = 5.9 Hz).  Rf = 0.34 (9:1 hexane:ethyl acetate).   

 

Compound in Table 3, Entry 6.  cis-2-butene-1,4-diacetate (160 µL, 1.01 mmol) 

and 2,5-difluorostyrene (62 µL, 0.50 mmol) were added simultaneously via syringe to 

a stirring solution of 1 (13 mg, 0.015 mmol, 3.0 mol%) in CH2Cl2 (2.5 ml).  The 

flask was fitted with a condenser and refluxed under nitrogen for 12 hours.  The 
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reaction mixture was then reduced in volume to 0.5 ml and purified directly on a silica 

gel column (2x10 cm), eluting with 9:1 hexane:ethyl acetate.  A dark brown oil was 

obtained (53 mg, 0.25 mmol, 50% yield) and only one olefin isomer detected in 1H-

NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.42-7.10 (2H, m), 6.90-6.80 (2H, m), 

6.71-6.55 (1H, m), 4.75 (2H, app d), 2.11 (3H, s) ppm. 13C NMR (75 MHz, CDCl3, 

ppm): δ 162.7, 159.4, 134.3, 130.5, 128.8, 120.0, 123.3, 111.8, 65.6, 21.3.  Rf = 0.48 

(9:1 hexane:ethyl acetate). HRMS(EI) for C11H10F2O2 Calcd: 212.0649, Found: 

212.0644.    

 

Compound in Table 3, Entry 7.  cis-2-butene-1,4-diacetate (24 µL, 0.15 mmol) was 

added via syringe to a stirring solution of 1 (4 mg, 0.015 mmol, 3.0 mol%) and trans-

stilbene (23 mg, 0.13 mmol) in CH2Cl2 (1.3 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 9:1 hexane:ethyl acetate.  A clear yellow oil was obtained (23 mg, 0.13 

mmol, 51% yield) and only one olefin isomer detected in 1H-NMR.  1H NMR (300 

MHz, CDCl3, ppm): δ 7.42-7.26 (5H, m), 6.65 (1H, d, J = 15.9 Hz), 6.29 (1H, dt, J = 

15.9, 6.3 Hz), 4.75 (2H, app d), 2.11 (3H, s) ppm. Rf = 0.41 (9:1 hexane:ethyl acetate).  

Compound spectra match that of trans-cinnamyl acetate in Aldrich compound library. 

 

Compound in Table 4, Entry 1.  Methyl acrylate (90 µL, 1.00 mmol) and styrene 

(60 µl, 0.52 mmol) were added simultaneously via syringe to a stirring solution of 1 

(20 mg, 0.024 mmol, 4.5 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a 

condenser and refluxed under nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), 

eluting with 20:1 hexane:ethyl acetate.  A white crystalline solid was obtained (78 
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mg, 0.48 mmol, 92% yield) and only E olefin isomer detected (by coupling constants) 

in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.64 (1H, d, J = 15.6 Hz), 6.40 

(1H, d, J = 15.9 Hz), 3.83 (3H, s).  Rf = 0.53 (9:1 hexane:ethyl acetate).  Compound 

spectra match that of trans-methyl cinnamate in Aldrich compound library. 

 

Compound in Table 4, Entry 2.  Ethyl acrylate (110 µL, 1.02 mmol) and 2,4-

dimethylstyrene (75 µl, 0.51 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (10 mg, 0.012 mmol, 2.4 mol%) in CH2Cl2 (2.5 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 20:1 hexane:ethyl acetate.  A clear oil was obtained 

(91 mg, 0.45 mmol, 87% yield) and only E olefin isomer detected (by coupling 

constants) in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.95 (1H, d, J = 15.9 

Hz), 7.48-7.45 (1H, m), 7.02-7.00 (2H, m), 6.33 (1H, d, J = 16.2 Hz), 4.26 (2H, q, J = 

6.9 Hz), 2.41 (3H, s), 2.33 (3H, s), 1.34 (3H, t, J = 7.2 Hz).  13C NMR (75 MHz, 

CDCl3, ppm): δ 167.3, 142.2, 140.3, 137.7, 131.6, 127.2, 126.4, 118.2, 60.6, 21.6, 

20.0, 14.6. HRMS (EI) for C13H16O2 : Calcd 204.1150, Found 204.1155.  Elemental 

analysis Calcd: C: 76.44, H: 7.90; Found: C: 76.07, H: 8.05.  Rf = 0.70 (9:1 

hexane:ethyl acetate). 

 

Compound in Table 4, Entry 4.  Ethyl acrylate (75 µL, 0.69 mmol) and 2-

trifluoromethylstyrene (50 µl, 0.34 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (15 mg, 0.018 mmol, 5.1 mol%) in CH2Cl2 (2.0 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 9:1 hexane:ethyl acetate.  A brown oil was obtained 
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(37 mg, 0.15 mmol, 44% yield) and only E olefin isomer detected (by coupling 

constants) in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 8.05 (1H, app d), 7.70-

7.31 (4H, m), 6.43 (1H, app d), 4.20 (2H, q, J = 6.9 Hz), 1.31 (3H, app t).  Rf = 0.70 

(9:1 hexane:ethyl acetate). Compound matches spectra previously reported of the 

methyl ester, see: Vallgårda, J.; Appelberg, U.; Csöregh, I.; Hacksell, U. J. Chem. Soc. 

Perkin Trans. 1 1994, 461. 

 

Compound in Table 4, Entry 5.  Ethyl acrylate (81 µL, 0.56 mmol) and 3,4-

dimethoxystyrene (56 µl, 0.38 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (13 mg, 0.015 mmol, 4.0 mol%) in CH2Cl2 (2.0 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 9:1 hexane:ethyl acetate.  A clear oil was obtained 

(96 mg, 0.36 mmol, 96% yield) and only E olefin isomer detected (by coupling 

constants) in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.62 (1H, d, J = 15.9 

Hz), 7.10 (1H, dd, J = 8.4, 2.0 Hz), 7.05 (1H, d, J = 2.1 Hz), 6.85 (1H, d, J = 8.1 Hz), 

6.30 (1H, d, J = 15.9 Hz), 4.20 (2H, t, J = 6.6 Hz), 3.91 (6H, s), 1.73-1.62 (2H, m), 

1.50-1.38 (2H, m), 0.96 (3H, t, J = 7.2 Hz).  13C NMR (75 MHz, CDCl3, ppm): 

δ 167.5,151.2, 149.3, 144.6, 127.6, 122.8, 116.1, 111.2, 109.7, 64.6, 56.2, 56.1, 31.1, 

19.5, 14.1. Rf = 0.24 (9:1 hexane:ethyl acetate). 

 

Compound in Table 4, Entry 6.  Methyl acrylate (90 µL, 1.00 mmol) and 4-

nitrostyrene (75 µl, 0.51 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (10 mg, 0.012 mmol, 2.3 mol%) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 
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column (2x10 cm), eluting with 9:1 hexane:ethyl acetate.  A white crystalline solid 

was obtained (93 mg, 0.45 mmol, 89% yield) and only E olefin isomer detected (by 

coupling constants) in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 8.25 (1H, dd, 

J = 7.2, 2.1 Hz), 7.74-7.66 (4H, m), 6.55 (1H, d, J = 16.2 Hz), 3.84 (3H, app s).  Rf = 

0.30 (9:1 hexane:ethyl acetate). Spectra match those of previously characterized 

compound, see: Huang, X.; Xie, L.; Wu, H. J. Org. Chem. 1988, 53, 4862. 

 

Compound in Table 4, Entry 7.  Ethyl acrylate (110 µL, 1.02 mmol) and 4-

vinylbenzaldehyde (75 µl, 0.49 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (16 mg, 0.019 mmol, 3.8 mol%) in CH2Cl2 (2.5 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 9:1 pentane:ethyl acetate.  A dark yellow oil was 

obtained (85 mg, 0.42 mmol, 83% yield) and only E olefin isomer detected (by 

coupling constants) in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 10.00 (1H, s), 

7.90-7.64 (4H, m), 6.52 (1H, d, J = 15.9 Hz), 4.26 (2H, q, J = 7.2 Hz), 1.33 (3H, t, J = 

7.2 Hz).  Rf = 0.28 (9:1 hexane:ethyl acetate). Spectra match those of previously 

characterized compound, see: Syper, L.; Mlochowski, J. Synthesis 1984, 747. 

 

Compound in Table 4, Entry 8.  Ethyl acrylate (110 µL, 1.02 mmol) and 2-

fluorostyrene (60 µl, 0.50 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (12 mg, 0.014 mmol, 2.8 mol%) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 9:1 hexane:ethyl acetate.  A clear oil was obtained 

(70 mg, 0.36 mmol, 72% yield) and only E olefin isomer detected (by coupling 
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constants) in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.80 (1H, d, J = 16.2 

Hz), 7.55-7.49 (1H, m), 7.35-7.30 (1H, m), 7.17-7.05 (2H, m), 6.52 (1H, d, J = 16.2 

Hz), 4.26 (2H, q, J = 6.9 Hz), 1.33 (3H, J = 7.2 Hz).  13C NMR (75 MHz, CDCl3, 

ppm): δ166.9, 137.3, 133.8, 131.9, 129.2, 124.6, 121.1, 121.0, 116.5, 61.0, 14.7.  Rf 

= 0.39 (9:1 hexane:ethyl acetate). Spectra match those of previously characterized 

compound, see: Houghton, R. P.; Voyle, M.; Price, R. J. Organomet. Chem. 1983, 259, 

183. 

 

Compound in Table 4, Entry 9.  Ethyl acrylate (96 µL, 0.89 mmol) and 2-

chlorostyrene (57 µl, 0.44 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (19 mg, 0.022 mmol, 5.0 mol%) in CH2Cl2 (2.5 ml).  The flask was 

fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 10:1 hexane:ethyl acetate.  A clear oil was obtained 

(58 mg, 0.27 mmol, 62% yield) and only E olefin isomer detected (by coupling 

constants) in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 8.07 (1H, d, J = 15.9 

Hz), 7.62-7.59 (1H, m), 7.42-7.26 (3H, m), 7.17-7.05 (2H, m), 6.43 (1H, d, J = 15.9 

Hz), 4.26 (2H, q, J = 6.9 Hz), 1.33 (3H, J = 7.2 Hz).  13C NMR (75 MHz, CDCl3, 

ppm): δ166.6, 140.5, 133.8, 132.9, 131.2, 130.3, 127.8, 127.2, 121.1, 61.6, 14.7.  Rf 

= 0.63 (9:1 hexane:ethyl acetate). Spectra match those of previously characterized 

compound, see: Berrier, C.; Gesson, J. P.; Jacquesy, J. C.; Renoux, A. Tetrahedron 

1983, 40, 4973. 

  

Compound in Table 4, Entry 10.  Ethyl acrylate (73 µL, 0.67 mmol) and 2-

bromostyrene (42 µl, 0.33 mmol) were added simultaneously via syringe to a stirring 

solution of 1 (22 mg, 0.026 mmol, 7.7 mol%) in CH2Cl2 (2.5 ml).  The flask was 
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fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 10:1 hexane:ethyl acetate.  A clear oil was obtained 

(42 mg, 0.17 mmol, 49% yield) and only E olefin isomer detected (by coupling 

constants) in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 8.07 (1H, d, J = 15.9 

Hz), 7.62-7.59 (2H, m), 7.35-7.22 (2H, m), 6.39 (1H, d, J = 15.9 Hz), 4.26 (2H, q, J = 

6.9 Hz), 1.33 (3H, J = 7.2 Hz).  Rf = 0.60 (9:1 hexane:ethyl acetate). Spectra match 

those of previously characterized compound, see: Dyker, G.; Grundt, P. Helv. Chim. 

Acta. 1999, 82, 588. 

 

Compound in Table 4, Entry 11.  Ethyl acrylate (110 µL, 1.02 mmol) and 2,5-

difluorostyrene (60 µl, 0.48 mmol) were added simultaneously via syringe to a 

stirring solution of 1 (16 mg, 0.019 mmol, 4.0 mol%) in CH2Cl2 (2.5 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 9:1 pentane:ethyl acetate.  An oil was obtained (19 

mg, 0.09 mmol, 19% yield) and only E olefin isomer detected (by coupling constants) 

in 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.75 (1H, d, J = 15.9 Hz), 7.53-

7.37 (1H, m), 6.97-6.90 (2H, m), 6.75 (1H, d, J = 15.9 Hz), 4.26 (2H, q, J = 6.9 Hz), 

1.33 (3H, J = 7.2 Hz).  Rf = 0.52 (9:1 hexane:ethyl acetate). 

 

Compound 17.  cis-2-butene-1,4-diacetate (95 µl, 0.60 mmol) was added via 

syringe to a stirring solution of 1 (15 mg, 0.018 mmol, 5.7 mol%) and 2-propene-tert-

butyldimethylsilyloxy-phenol (76 mg, 0.31 mmol) in CH2Cl2 (2.0 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 
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column (2x10 cm), eluting with 20:1 hexane:ethyl acetate. Clear oil was obtained (88 

mg, 0.29 mmol, 94% yield) and all trans olefin by coupling constants in 1H spectra .  

1H NMR (300 MHz, CDCl3, ppm): δ 7.45 (1H, dd, J = 7.5, 1.2 Hz), 7.14 (1H, app t, J 

= 7.5 Hz), 7.02-6.90 (2H, m), 5.80-5.70 (1H, dd, J = 8.1, 1.2 Hz), 6.22 (1H, dt, J = 

16.2, 6.0 Hz), 4.73 (2H, dd, J = 6.0, 1.5 Hz), 2.10 (3H, s), 1.03 (9H, s), 0.21 (6H, s) 

ppm.  13C NMR (75 MHz, CDCl3, ppm): δ 170.8, 153.0, 129.0, 128.9, 127.7, 126.6, 

123.0, 121.5, 119.7, 65.6, 26.1, 21.3, 18.6, -3.9.  Rf = 0.51 (9:1 hexane:ethyl acetate);  

HRMS (EI) calcd for C17H26SiO3 [M]+ 306.1651, found 306.1648. Rf = 0.51 (9:1 

hexane:ethyl acetate). 

 

Compound 18.  Ethyl acrylate (65 µl, 0.60 mmol) was added via syringe to a 

stirring solution of 1 (13 mg, 0.015 mmol, 5.0 mol%) and 2-propene-tert-

butyldimethylsilyloxy-phenol (75 mg, 0.30 mmol) in CH2Cl2 (1.7 ml).  The flask 

was fitted with a condenser and refluxed under nitrogen for 12 hours.  The reaction 

mixture was then reduced in volume to 0.5 ml and purified directly on a silica gel 

column (2x10 cm), eluting with 20:1 hexane:ethyl acetate. Clear oil was obtained (28 

mg, 0.09 mmol, 30% yield) and all trans olefin by coupling constants in 1H spectra.  

1H NMR (300 MHz, CDCl3, ppm): δ 8.09 (1H, d, J = 16.2 Hz), 7.55 (1H, dd, J = 7.8, 

1.5 Hz), 7.28-7.22 (1H, m), 6.99-6.82 (2H, m), 6.37 (1H, d, J = 16.5 Hz), 4.24 (2H, q, 

J = 7.2 Hz), 1.32 (3H, app t, J = 7.2 Hz), 1.03 (9H, s), 0.22 (6H, s).  13C NMR (75 

MHz, CDCl3, ppm): δ 167.3, 154.7, 140.0, 131.4, 127.4, 126.1, 121.7, 120.1, 117.9, 

60.5, 26.1, 18.6, 14.6, -3.9.  Rf = 0.45 (9:1 hexane:ethyl acetate). 

 

Compound 19.  Ethyl acrylate (95 µl, 0.88 mmol) was added via syringe to a 

stirring solution of 1 (13 mg, 0.015 mmol, 3.4 mol%) and 2-propene-acetoxyphenol 

(78 mg, 0.44 mmol) in CH2Cl2 (2.0 ml).  The flask was fitted with a condenser and 
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refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 

20:1 hexane:ethyl acetate (300 ml) followed by 3:1 hexane:ethyl acetate (500 ml). 

Clear oil was obtained (90 mg, 0.38 mmol, 87% yield) and all trans olefin by coupling 

constants by 1H-NMR.  1H NMR (300 MHz, CDCl3, ppm): δ 7.73 (1H, d, J = 15.9 

Hz), 7.62 (1H, dd, J = 7.8, 1.5 Hz), 7.39 (1H, td, J = 7.8, 1.5 Hz), 7.27-7.22 (1H, m), 

7.11 (1H, dd, J = 7.8, 1.2 Hz), 6.43 (1H, d, J = 16.2 Hz), 4.25 (2H, q, J = 7.2 Hz), 

2.37 (3H, app s), 1.32 (3H, t, J = 7.2 Hz).  13C NMR (75 MHz, CDCl3, ppm): δ 

169.2, 166.7, 149.3, 137.9, 131.1, 127.7, 127.2, 126.4, 123.2, 120.4, 60.8, 21.2, 14.5.  

Rf = 0.20 (9:1 hexane:ethyl acetate).  Elemental analysis Calcd: C: 66.66, H: 6.02; 

Found: C: 66.54, H: 6.07.   

 

Compound 20.  Ethyl acrylate (54 µl, 0.50 mmol) and 4-acetoxystyrene (77 µl, 0.48 

mmol) were added simultaneously via syringe to a stirring solution of 1 (18 mg, 0.021 

mmol, 4.2 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 

9:1 hexane:ethyl acetate. Clear oil was obtained (99 mg, 0.43 mmol, 88% yield) and 

all trans olefin by coupling constants in 1H spectra.  1H NMR (300 MHz, CDCl3, 

ppm): δ 7.62 (1H, d, J = 15.9 Hz), 7.52-7.49 (2H, m), 7.11-7.08 (2H, m), 6.36 (1H, d, 

J = 15.9 Hz), 4.23 (2H, q, J = 7.2 Hz), 2.27 (3H, s), 1.31 (3H, t, J = 6.9 Hz).  13C 

NMR (75 MHz, CDCl3, ppm): δ 169.2, 166.9, 152.2, 143.6, 132.2, 129.3, 122.3, 

118.6, 60.8, 21.5, 14.7.  Rf = 0.21 (9:1 hexane:ethyl acetate).  Elemental analysis 

Calcd: C: 66.66, H: 6.02; Found: C: 66.54, H: 6.07. 

 

Compound 21.  Methacrolein (10 µl, 0.12 mmol) was added via syringe to a stirring 
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solution of 1 (6 mg, 0.007 mmol, 6.3 mol%) and 1-Acetoxy-5-methyl-2-hexene (19 

mg, 0.11 mmol) in CH2Cl2 (1.0 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 

9:1 hexane:ethyl acetate.  Clear oil was obtained (20 mg, 0.1086 mmol, 97% yield) 

and all trans olefin by 1H and 13C spectra.  1H NMR (300 MHz, CDCl3, ppm): δ 9.41 

(1H, s), 6.51 (1H, app t), 4.02 (2H, t, J = 6.9 Hz), 2.37 (2H, q, J = 7.2 Hz), 2.04 (3H, 

app s), 1.74-1.54 (7H, m).  13C NMR (75 MHz, CDCl3, ppm): δ 195.2, 171.2, 153.9, 

139.8, 64.2, 28.8, 28.5, 25.1, 21.3, 9.6.  Rf = 0.11 (9:1 hexane:ethyl acetate).  

Spectra matches those of previously characterized compound by J. P. Morgan, Grubbs 

group.   

 

Compound 22.  Methyl vinyl ketone (22 µl, 0.30 mmol) and 1,5-hexadiene (105 µL, 

0.88 mmol) was added simultaneously via syringe to a stirring solution of 1 (11 mg, 

0.013 mmol, 4.3 mol%) in CH2Cl2 (2.5 ml).  The flask was fitted with a condenser 

and refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 

3:1 hexane:ethyl acetate.  Clear oil was obtained (29 mg, 0.23 mmol, 78% yield) and 

all trans olefin by 1H spectra.  This compound is a mixture of terminal olefin and its 

corresponding dimer. Rf = 0.32 (9:1 hexane:ethyl acetate). 

 

Compound 23.  cis-2-butene-1,4-diacetate (25 µL, 0.16 mmol) was added via 

syringe to a stirring solution of 2 (4 mg, 0.005 mmol, 9.0 mol%) and compound 22 (9 

mg, 0.054 mmol) in CH2Cl2 (1.0 ml).  The flask was fitted with a condenser and 

refluxed under nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 
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4:1 hexane:ethyl acetate.  Yellow oil was obtained (10 mg, 0.23 mmol, 78% yield) as 

a 4.5:1 E/Z olefin mixture by 1H NMR integration at 4.60 and 4.51 ppm. Rf = 0.50 

(3:1 hexane:ethyl acetate). 

 

Compound 24.  Ethyl acrylate (25 µL, 0.16 mmol) was added via syringe to a 

stirring solution of 1 (16 mg, 0.019 mmol, 3.9 mol%) and tert-butyldiphenylsilyloxy 

geraniol (193 mg, 0.054 mmol) in CH2Cl2 (2.5 ml).  The flask was stirred under 

nitrogen at 23 oC for 12 hours.  The reaction mixture was then reduced in volume to 

0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 15:1 

hexane:ethyl acetate.  A clear oil was obtained (131 mg, 0.30 mmol, 61% yield).   

Rf = 0.54 (9:1 hexane:ethyl acetate). 1H NMR (300 MHz, CDCl3, ppm): δ 7.76-7.64 

(4H, m), 7.45-7.35 (6H, m), 6.96 (1H, dt, J = 15.6, 6.6 Hz), 5.84 (1H, dt, J = 15.9, 1.5 

Hz), 5.44-5.39 (1H, m), 4.25-4.05 (4H, m), 2.32-2.12 (4H, m), 1.45 (3H, s), 1.29 (3H, 

t, J = 6.9 Hz), 1.06 (9H, s).  

 

Compound 25.  Ethyl acrylate (115 µL, 1.06 mmol) and 3-acetoxy-1,5-hexadiene 

were (55 µl, 0.36 mmol) were added simultaneously via syringe to a stirring solution 

of 1 (16 mg, 0.019 mmol, 5.1 mol%) in CH2Cl2 (2.0 ml).  The flask was stirred 

under nitrogen at 23 oC for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 ml and purified directly on a silica gel column (2x10 cm), eluting with 

9:1 hexane:ethyl acetate.  A clear oil was obtained (64 mg, 0.30 mmol, 84% yield).   

Rf = 0.28 (9:1 hexane:ethyl acetate). 1H NMR (300 MHz, CDCl3, ppm): δ 6.85 (1H, dt, 

J = 15.9, 7.2 Hz), 5.87 (1H, dt, J = 15.6, 1.5 Hz), 5.85-5.72 (1H, m), 5.38-5.19 (3H, 

m), 4.17 (2H, q, J = 7.2 Hz), 2.56-2.51 (1H, m), 2.06 (3H, s), 1.28 (3H, t, J = 6.9 Hz).    

 

Compound 26.  Styrene (30 µL, 0.26 mmol) was added via syringe to a stirring 
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solution of 1 (7 mg, 0.008 mmol, 10.0 mol%) and compound 25 (19 mg, 0.08 mmol) 

in CH2Cl2 (1.0 ml).  The flask was stirred under nitrogen at 23 oC for 12 hours.  

The reaction mixture was then reduced in volume to 0.5 ml and purified directly on a 

silica gel column (2x10 cm), eluting with 5:1 hexane:ethyl acetate.  A clear oil was 

obtained (16 mg) as a 3.4:1 mixture of compound 25 and 26 (calculated 13 mg, 0.041 

mmol, 52% yield).   Rf = 0.28 (9:1 hexane:ethyl acetate). 1H NMR of Compound 26 

(300 MHz, CDCl3, ppm): δ 7.40-7.26 (5H, m), 6.98-6.82 (1H, m), 6.65 (1H, d, J = 

15.6 Hz), 6.20-6.08 (1H, dd, J = 15.6 Hz, 6.6 Hz), 5.85-5.72 (1H, m), 5.58-5.51 (1H, 

m), 4.17 (2H, q, J = 7.2 Hz), 2.68-2.61 (2H, m), 2.06 (3H, s), 1.28 (3H, t, J = 6.9 Hz).    

 

Compound 27.   To an oven dried, 100 mL Fischer-Porter bottle with Teflon stir bar, 

ruthenium metathesis catalyst 1 (14 mg, 0.017 mmol, 7.0 mol%) was added.  The 

bottle was capped with a rubber septum and flushed with dry nitrogen and cooled to  

-78 oC.  1,5-Hexadiene (85 µL, 0.72 mmol) and methyl vinyl ketone (20 µL, 0.24 

mmol) was injected into the bottle.  Once the substrates were frozen, a pressure 

regulator was attached to the bottle.  The bottle was evacuated and backfilled with 

dry nitrogen 3 times.  Subsequently, isobutylene (10 mL) was condensed into the 

bottle.  The bottle was backfilled to ~2 psi with nitrogen, sealed, and allowed to 

slowly warm to room temperature, at which time it was transferred to an oil bath at 

40oC.  After stirring for 12 hours, the bottle was removed from the oil bath and 

allowed to cool to room temperature.  The isobutylene was slowly vented off at 

room temperature until the pressure apparatus could be safely disassembled.  The 

reaction mixture was then reduced in volume to 0.5 ml and purified directly on a silica 

gel column (2x10 cm), eluting with 10:1 hexane:ethyl acetate.  Clear oil was 

obtained (32 mg, 0.21 mmol, 89% yield).  1H NMR (300 MHz, CDCl3, ppm): δ 6.78 

(1H, dt, J = 15.9, 6.6 Hz), 6.07 (1H, dt, J = 15.9, 1.5 Hz), 5.12-5.06 (1H, m), 2.26-
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2.14 (7H, m), 1.69 (3H, s), 1.60 (3H, s).  Rf = 0.53 (9:1 hexane:ethyl acetate). 

Spectra matches that of a previous characterization, see: Coxon, J. M.; Garland, R. P.; 

Hartshorn, M. P. Aust. J. Chem. 1972, 25, 353. 

 

Compound 28. 1,5-Hexadiene (70 µL, 0.59 mmol) and methyl vinyl ketone (25 µL, 

0.30 mmol) were added simultaneously via syringe to a stirring solution of 1 (18 mg, 

0.021 mmol, 7.1 mol %) in CH2Cl2 (2.0 ml) under a nitrogen atmosphere.  The flask 

was fitted with a reflux condenser stirred at 40 oC with a continuous flow of nitrogen 

for 3 hours.  At that point, a solution of styrene (25 µL, 0.30 mmol) and catalyst 1 

(16 mg, 0.019 mmol, 6.2 mol%) in CH2Cl2 was cannula transferred.  The reaction 

mixture was stirred at 40 oC for an additional 8 hours.  The resulting solution was 

then reduced in volume to 0.5 mL and purified directly on a silica gel column (2x10 

cm), eluting with 15:1 hexane:ethyl acetate to provide cross product (Rf = 0.33 in 9:1 

hexane:ethyl acetate) as a clear oil (28 mg, 0.14 mmol, 47% yield).  1H NMR (300 

MHz, CDCl3, ppm): δ 7.35-7.21 (5H, m), 6.87-6.79 (1H, m), 6.42 (1H, d, J = 15.9 

Hz), 6.27-6.10 (2H, m), 2.41 (4H, app s), 2.26 (3H, s).  Spectra matches that of a 

previously characterized compound, see: Johns, A.; Murphy, J. A.; Sherburn, M. S. 

Tetrahedron 1989, 45, 7835. 

 

Compound 29. 1,5-Hexadiene from (33 µL, 0.28 mmol) was added via syringe to a 

stirring solution of 1 (18 mg, 0.021 mmol, 7.6 mol %) and ethyl acrylate (30 µL, 0.28 

mmol) in 3,3-Dimethylbutene (1.5 mL, excess) under a nitrogen atmosphere.  The 

flask was stirred under a continuous flow of nitrogen for 12 hours at room 

temperature (23 oC).  The reaction mixture was then reduced in volume to 0.5 mL 

and purified directly on a silica gel column (2x10 cm), eluting with 8:1 hexane:ethyl 

acetate to provide cross product (Rf = 0.39 in 5:1 hexane:ethyl acetate) as a viscous oil 
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(39 mg, 0.19 mmol, 67% yield).  1H NMR (300 MHz, CDCl3, ppm): δ 6.95 (1H, dt, 

J = 15.9, 6.6 Hz), 5.80 (1H, dt, J = 15.9, 1.5 Hz), 5.50-5.40 (1H, m), 5.27 (1H, dt, J = 

15.3, 6.6 Hz), 4.05 (2H, q, J = 6.6 Hz), 2.26-2.12 (4H, m), 1.28 (3H, t, J = 7.2 Hz), 

0.98 (9H, s). 

 

Compound 30. 1,5-Hexadiene from (40 µL, 0.34 mmol) was added via syringe to a 

stirring solution of 1 (14 mg, 0.017 mmol, 5.0 mol %), ethyl vinyl ketone (33 µL, 0.33 

mmol) and 2-vinyl-1,3-dioxolane (100 µl, 1.00 mmol) and CH2Cl2 (2.0 ml) under a 

nitrogen atmosphere.  The flask was fitted with a reflux condenser stirred at 40 oC 

with a continuous flow of nitrogen for 12 hours.  The reaction mixture was then 

reduced in volume to 0.5 mL and purified directly on a silica gel column (2x10 cm), 

eluting with 8:1 hexane:ethyl acetate to provide cross product (Rf = 0.34 in 3:1 

hexane:ethyl acetate) as a viscous oil (41 mg, 0.19 mmol, 51% calculated yield) 

which consists of a mixture of CM product and vinyl dioxolane dimer.  1H NMR of 

compound 31 (300 MHz, CDCl3, ppm): δ 6.77 (1H, dt, J = 15.9, 6.6 Hz), 6.09 (1H, dt, 

J = 15.9, 1.5 Hz), 5.96-5.85 (1H, m), 5.56-5.45 (1H, m), 5.16 (1H, d, J = 6.0 Hz), 

4.06-3.72 (4H, m), 2.52 (2H, q, J = 6.6 Hz), 2.40-2.20 (4H, m), 1.04 (3H, t, J = 7.2 

Hz). 

 

Compound 31. 1,5-Hexadiene (70 µL, 0.59 mmol) was added via syringe to a stirring 

solution of 1 (25 mg, 0.030 mmol, 10.0 mol %), ethyl acrylate (32 µL, 0.30 mmol) 

and 2-bromostyrene (185 µl, 1.48 mmol) and CH2Cl2 (1.5 ml) under a nitrogen 

atmosphere.  The flask was fitted with a reflux condenser stirred at 40 oC with a 

continuous flow of nitrogen for 12 hours.  The reaction mixture was then reduced in 

volume to 0.5 mL and purified directly on a silica gel column (2x10 cm), eluting with 

15:1 hexane:ethyl acetate to provide cross product (Rf = 0.31 in 9:1 hexane:ethyl 
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acetate) as a viscous oil (47 mg, 0.15 mmol, 51% yield).  1H NMR (300 MHz, 

CDCl3, ppm): δ 7.54-7.45 (2H, m), 7.27-7.22 (1H, m), 7.10-6.98 (2H, m), 6.75 (1H, d, 

J = 16.2), 6.12 (1H, m), 5.88 (1H, d, J = 16.2 Hz), 4.10 (2H, q, J = 6.6 Hz), 2.40 (4H, 

app s), 1.15 (3H, t, J = 7.2 Hz). 

 

Compound 32. 1,5-Hexadiene (63 µL, 0.53 mmol) and ethyl acrylate (58 µL, 0.53 

mmol) were added simultaneously via syringe to a stirring solution of 1 (22 mg, 0.026 

mmol, 5.2 mol %) in CH2Cl2 (2.5 ml) under a nitrogen atmosphere.  The flask was 

fitted with a reflux condenser stirred at 40 oC with a continuous flow of nitrogen for 

1.5 hours.  At that point, styrene (180 µL, 1.57 mmol) was added via syringe.  The 

reaction mixture was stirred at 40 oC for an additional 11 hours.  The resulting 

solution was then reduced in volume to 0.5 mL and purified directly on a silica gel 

column (2x10 cm), eluting with 10:1 hexane:ethyl acetate to provide cross product (Rf 

= 0.38 in 9:1 hexane:ethyl acetate) as a clear oil (41 mg, 0.18 mmol, 34% yield).  1H 

NMR (300 MHz, CDCl3, ppm): δ 7.35-7.21 (5H, m), 7.04-6.96 (1H, m), 6.47-6.40 

(1H, m), 6.24-6.16 (1H, m), 5.86 (1H, d, J = 15.6 Hz), 4.08 (2H, q, J = 6.6 Hz), 2.41 

(4H, app s), 1.31 (3H, app t).  Spectra matches that of a previously characterized 

methyl ester, see: Johns, A.; Murphy, J. A.; Sherburn, M. S. Tetrahedron 1989, 45, 

7835. 
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