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ABSTRACT
The absolute cross sections for the reactions Li7(o., o) Li7
*

and Liq(oc, oc')Liq (. 48), have been measured in the range of
energies and angles, 1.6 < E ol = 12,0 MeV, 20° < ech = 1500,
using thin Li7— bearing targets. Solid state detectors were used
fo detect the scattered o-particles. Nineteen scattering anomalies
have been observed in this energy range. In the excitation energy

11
range, 9.88 < Eexc. (B™) <
The measured cross sections were fitted in this energy region

11. 27 MeV, six levels were observed.

using a multilevel R-matrix theory model-program for the 7094
computer. The best fits were obtained with the assignments:
9.88(3/27), 10.26(3/27), 10.32(5/27), 10.60(7/2%), 11.0(5/27),
11.27(7/ 2+, a/ 2+). Some alternatives for these assignments are
discussed. The results were found to be consistent with the level
structure of the analogue nucleus Cu. The applications of the
rotator model of the nucleus to the excited states of B11 and C11

are discussed,
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I, INTRODUCTION

A nuclear, multi-channel, two-body scattering experiment
may emphasize several points of view depending on the predominant
reaction mechanism.

A matrix quantity, called the collision lifetime @, which is
often found useful when classifying such mechanisms,~can be defined
by the equation

9= 59’

~

where t = ﬁ/i%, § is the unitary § matrix, t denotes hermitian
conjugation.

The matrix @ can be diagonalised. It can be shoWn(l) that if,
for some value of gxe total energy E, the eigenvalues of Q are large
compared to Ro/v, where Ro is an approximate range fo; the inter-
action and v is the relative velocity of the fragments in the incoming
channel, then metastable states of the whole system will be formed
whose structure is well defined, These states are usually called
resonances of the compound system(nucleus). If, on the other hand,
the above condition is not realized, several types of reactions are
possible, some of which ("'direct' type) can yield information con-
cerning the residual system. In this study we shall be mostly
interested in the first case, that is resonant scattering, and assume
the properties of the residual system known.

Figure 1 shows the status, before this experiment, of the
energy level diagram for Bll, the compound nucleus formed in the
resonant scattering of alpha particles on Liq. Some relevant



features of this diagram are:

a) Few levels above an excitation energy of 8. 57 MeV have
spin and parity assignments.

b) The (Li7, o) channel which opens at 8. 67 MeV excitation
and the (Li7*(. 48), a') channel which opens at 9. 15 MeV provide
the only heavy particle decay modes up to about 11, 4 MeV where
several other channels open within a few hundred keV.

¢) Several levels in that energy region have been seen only
*
in the reaction Li7(<x, c:U)Lir7 (0. 48), by observing the . 48 MeV

deexcitation gamma ray(z_ 4).

From these and other considerations discussed below it was
felt that a detailed investigation, as a function of energy and angle,
of the alpha particle yield from the present reactions mijght shed
light on these highly excited states of Bll.

Recent successes in generating the normal-parity ground-

(

suggest that a similar effort be applied to excited level sequences,

state level sequence 5,6) from rotational model considerations

although additional complications are to be expected, TI'or example,

(7 .

in the case of Be9 for such an excited
(8)
1V,

Since new level assignments have been obtained recently by

(9, 10)

which the analogue states in B11 are accessible via alpha plus Li7

evidence has been found

sequence, as predicted by the Nilsson Mode

Overley in the mirror nucleus C 11 at excitation energies for
scattering, there is an additional incentive for this experiment,

Any spin assignment we can get for B11 helps us identify the analogue
state and/or allows a confirmation of the C11 assignments.



We shall discuss in order, the experimental techniques used,
the treatment of the raw data before analysis, the precision of the
data, the analysis of such data in the framework of R-matrix theory,
the results of the analysis, and finally, a comparison of the results
with various nuclear models,



IL ACQUISITION OF DATA

A, Description of Apparatus

1, The Alpha Beams

The beams of alpha particles were supplied by two
different electrostatic generators (E. S. G.) of the Van de Graaff type
located in the Kellogg and Sloan buildings on the C. I T. campus.
For laboratory beam energies below 3. 22 MeV, the Kellogg 3-MeV
E.S.G. was used. Above this energy and up to 12 MeV the O, N, R, -
C.L T. tandem accelerator was used.

a) The low energy beam

This beam is first analysed magnetically to select the 1t
charge state and then passes through an electrostatic analyser
(E. S. A.) to define its energy within about 2-5 kev(ll). The analyser
calibration was redetermined using the standard Li7(p, n) threshold

technique(l 1)

and found consistent with the previous measurements
within the accuracy quoted above., Two sets of tantalum cups placed
at the exit of the E. S. A, defined a square beam, 1 mm on the side,
at a distance of approximately 24 cm from the target (see Figure 2
for a schematic view of the target chamber). A sharp focus indicated
by maximum beam intengity in the target chamber was first obtained;
then the beam was defocussed at the ion source by decreasing the
focus electrode voltage until the intensity dropped by about a factor
of two. .Stable & beams of about . 05 microamperes were consistently
obtained this way. After several hours of bombardment thin targets
showed a uniform blackening over the 1 mm square area hit by the

beam. The meaning of this blackening will be discussed under target
properties.



Beam integration was performed using the electrometer-
tube beam-integrator which is part of the electronic equipment of the
3-MeV E.S. G.. I was found that +900 volts on the target was
sufficient to insure that the beam intensity measured with and without
target was the same to about 5% at all energies employed. An
electron suppressor with a 3 mm diameter hole was placed inside
the target chamber and maintained at -300 V. A beam '"'scraper"
with a 1. 6 mm diameter hole helped keep slit scattering from being
observed in the counter.

Figure 2 shows the general layout of the target chamber.
A cold trap extension can be seen in the figure. We will comment on

it when discussing target properties.
b) The high energy beam

At energies between 3. 22 and about 4. 5 MeV we have
used the singly charged beam from the tandem accelerator, Above
4.5 MeV the doubly charged beam is more prolific and was thus
used. The highest energy data were taken at 12 MeV alpha lab
energy.

Due to the particular beam-optical focussing system of
the tandem accelerator, the tandem beams were found to be con-
sistently less uniform over a 1 mm square area at the target than
those of the 3-MeV E. S, G,. Beam collimation at the entrance to
the target chamber (11' diameter in this case) was done twice,
first, 5 feet from the target with a square aperture 1.2 mm on the
side, and again 1 foot from the target with a 1 mm square aperture,
these apertures being defined by tantalum slits, After alignment
and maximization, the beam was defocussed at the target room
quadrupole, located about 10 feet from the target, by a factor of 6 to



8 in intensity. This beam was still often found to have a "hot" spot
in its center. The procedure would be repeated until a better beam
was obtained. Indeed the intensity distribution seemed to vary with
time in a difficult-to-predict fashion. When taking small energy
steps it is fairly easy to hold the beam current at a fixed value but
due to the lack of a beam profile scanning device it was not possible
to guarantee the uniformity throughout a large number of energy
changes. Target depletion is sensitive to beam uniformity so that
the only recourse during excitation runs was to come back frequently
to a given energy to check the target depletion. For angular distri-
butions this problem was less severe since the beam focussing was
then left undisturbed.

In the 11" scattering chamber used here the target was
held at ground potential and the beam was stopped in a 2"'-diameter
X 6'"-long Faraday cup, 1 foot beyond the target, which ‘;vas held at
50 V. above ground potential. The doubly-charged alpha beam
appeared unchanged to within 1% when the thin target was put in
the beam. The singly-charged beam was stripped to doubly-charged
upon passing through the target and the measured beam current was
doubled (to an accuracy of 1%). Again the same cold trap extension
was used during the tandem experiments in order to decrease the

accumulation of contaminants on the bombarded area of the target.

2. Detectors and associated Electronic Circuitry

Scattered charged-particle energy spectra were obtained
using solid statc Au-Si surfacc barrier detectors 200 microns or
more in thickness. A counter energy resolution of 40 keV or better

was demanded from the detector although the line width due to the



target thickness was often 75 keV or more, especially at low
bombarding energy. A low-electrical-capacity connection coupled
the detector to a low-noise charge-sensitive preamplifier. The
output from the preamplifier was then shaped, amplified to a 20-50 V.,
level and fed to a 400-channel transistorised pulse height analyser.
The analyser and sometimes also the beam were gated by the current
integrator. Spectra of 200 channels or less were recorded on
punched paper tape for subsequent analysis.

The gamma-ray excitation curve shown in Figure 3 was
obtained using a 2'' x 2" Nal scintillator crystal "integrally- mounted"
on a photomultiplier tube and inserted in a 2''-thick cylindrical lead
shield(lz). The crystal was placed 7' from the target at 90 degrees
to the beam axi's, and viewed the gamma rays through a 1/2" x 2"
diameter lucite port., A transistorized phototube preamplifier fed
the signal to the same pulse-height analyser system as used for
obtaining charged-particle spectra.

3. Target Chamber and Detector Geometry

In setting up the target chamber and counter geometry

we had in mind the following considerations:

a) The incident beam should be parallel, uniform and
monoenergetic. In addition, it should be possible to collect all the
beam after passage through the thin target.

b) The target (and the target holder) should be repro-
ducibly locatable in height and angle with respect to the beam axis,
should not intercept the incident or the scattered beam and should

introduce no appreciable degradation of the non-scattered beam.



¢) The counter collimator should see just the bombarded
area, introduce no appreciable additional collimator scattering and

define the laboratory angle.

d) Since the bombarded area seems to be chemically
very active, the vacuum around the beam entrance and target should

be good and particularly free from hydrocarbon vapours.

These requirements led to the configuration sketched in
Figure 2, for the low energy part of the eXperiment, which was
performed in a 5, 5""-diameter target chamber. The same counter
collimator and cold trap extension were used at higher energy in the
11" chamber.,

The large chamber configuration was similar., There
the initial angular calibration was done by sighting with a telescope
along the optical axis of the beam., The active area on the counter
wasg defined by a . 015" x . 200" vertical slit made from tantalum
. 005" thick. The plane of this slit was at a distance of 1. 75" from
the target, The broadening of the angular aperture at GL = 20 degrees
due to the vertical extension of the counter collimator slits, was
calculated and found to be unimportant,

This concludes our description of the apparatus., It is
by no means exhaustive and indeed we have discussed only those
points which were either of special relevance for this experiment

or which have caused difficulty.

B, Target Preparation and Properties

The targets we used to collect the data presented in this thesis

consisted of thin layers of Li7OH or Li7F, supported on thin carbon-



foil backings. Our method for making carbon foils is essentially

identical to the one used at Harwell by Dearnaley(ls).

Our only
comment on this point is that, in the art of self-supporting thin-film
fabrication, moderate care is no virtue and exaggerated cleanliness
1s no vice. The target layer was sometimes evaporated while the
carbon was still on the glass and sometimes on the mounted foil,

We have produced good targets using both methods., To make the
hydroxide targets, Li7 metal was evaporated in vacuo on the backing
and allowed to form Li7OH by introducing water vapour in the bell-
jar. To make the other type of farget, Li7F was evaporated directly
on the backing. Our success rate in making targets turned out to be,
on the average, about 25%. The average thickness of the carbon
backing was about 10 ugm/ c1rn2 and no foils thicker than 15 ugm/ cm2

were uscd,

To calculate the energy loss of alpha particles in our targets,

we have used the formulae(14)
GOL Sp
e (I-1)
72 7.2
¢ g Pl /4
*mol, Ko ¥p) = acy K)+ bey (0), (I-2)
where € ocIE is the specific energy loss of alpha particles at the

(15).

energy E, etc. (EE) was evaluated from Zaidins's graphs
The resulting curves for the energy loss vs E are presented in
Figure 4. We have found that, for E < 2 MeV, the energy loss
was higher than the values given by the graph. In fact the dotted
line shown in the graph, obtained by putting -Z—-2 = 4 at all encrgies,
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seemed to give agreement with our observed value for the energy
loss at about 700 keV.

In Figure 5 we present a semi-log plot of a pulse-height
spectrum obtained by scattering alphas from a fresh carbon foil,
at 90 degrees in the laboratory and at 2 MeV lab. incident energy.
The high atomic weight contaminants probably come from the
release agent used (Duponol C, a brand of sodium lauryl sulfate,
similar to Shell "Teepol", which is recommended by Dearnaley)
and have caused no difficulty, However, the low energy asymmetry
of the elastic peak (often more pronounced than that shown in Figure 5
and the rising low energy background were severe experimental
limiting factors. At backward angles, the scattered alpha particles
from lithium have low energy and so could not be well resolved
from the background. The forward angle alpha groups merged with
the elastic alpha groups from the other constituents of tI;e target and
thus could not be well separated at very forward angles
(GL < 25 degrees lab.,). A foil, sufficiently thick to stop 100-keV
alphas, was inserted in front of the counter and did completely remove
the low energy rising background; from this we concluded that it was
composed of heavy charged particles. We have also verified that it
was present at all settings of the counter angle. Further tests were
made to determine the origin of this background. When the target
foil was removed and the foil holder was otherwise left undisturbed,
the low energy background disappeared; this meant that it was not due
to stray beam scattering from the target holder, A low Z (A127; the
target chamber is made of steel!) anti-scattering baffle was placed
on the opposite side of the target chamber, facing the counter

aperture; this made no difference and thus eliminated rescattering
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effects associated with the target chamber, as a source of the back-
ground. We then proceeded to compute the shape of the energy
spectrum, resulting from single and double scattering in a thin
target; we found that this spectrum has a low energy rising back-
ground roughly proportional to 1/E3 and an asymmetrical line shape.
For a target thickness of 500 A, however, the calculated effect was
smaller, by a factor of 10, than the observed one. If may be that
target non-uniformity tends to enhance it. Another possible expla-
nation is that we were observing the true beam energy distribution,
as defined by the tantalum slits, the low energy component being
produced by energy losses in the beam passing through the edges
of the slits.

We have also studied the line shape of the elastic alphas from
C12 and L:i’7 with a 16" double-focussing magnetic spectrometer(lﬁ).
The superior resolution of the magnetic spectrometer allows an
actual measurement of the energy loss inside the target. Knowing
the approximate magnitude of the nuclear cross sections involved one
could then compute a value for the specific energy loss in the target.
Figures 6 and 7 show typical inverse-momentum spectra. In the case
of 012 (Figure 6) we could unfold the spectrometer line shape. This
proved more difficult for the Li7OH target for various reasons, which
we will not discuss here, There is an alternate method, possibly less
accurate but sufficient for our purpose, to measure the energy loss of
the incoming beam in the target, which we will describe shortly.

We now turn to a short discussion of the problem of carbon
buildup on the bombarded target spot. Figure 8 shows a profile of
the alphas elastically scattered by the carbon present in a Li7OH
target after approximately 1000 microcoulombs of bombardment at
about 2. 75 MeV. This was done with ""reflection geometry', and
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with the Li7OH deposit facing the counter. The main carbon peak,
due to the backing, is shifted as expected. One also notices a
sizeable contribution all the way through the target due to carbon
accumulation, This was also clearly visible in spectra made with
sulid-slale counters. Such targets when inspected visually at atmos-
pheric pressure were definitely opaque, while the part not bombarded
was definitely transparent. It is to minimize this effect that a cold
trap extension was installed. We have found that the trap extension
decreased the carbon accumulation rate by a factor of 5 or
more.

Another way to measure the energy loss of the incident beam
in the target is to look at narrow resonances in the yield as a function
of the bombarding energy. There is one such peak in the reaction
congidered here, Li7(oc, a’)Li7*(. 48), at EL = 8,08 McV (scc
Figure 3). We define the target angle as the angle between the
normal to the target plane (on the backing side) and the beam di-
rection. We first measure the excitation function over the resonance,
at GL = 60° and a target angle of 0°. This is then repeated with a
target angle of 600, which doubles the target thickness. A compari-
son of the two yield curves reveals a shift in the peak position and a
broadening of the line, the magnitude of the effect depending on the
ratio of target thickness to the width of the resonance, By folding a
Breit-Wigner line shape of width T with a rectangular target window,
one finds the relation between the target thickness AE t and the shift
of the peak, Figure 9 shows the effect for AE : = 0, T/2, T with
normalization to the same total number of scattering nuclei. We
have measured these two excitation functions with a target whose
thickness was independently estimated to be about 65 keV (from a

magnetic spectrometer measurement). Good agreement with the
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curves no. 2 and 3 of Figure 9 was found. A simple calculation gave
the values Er = 3,03 £ .015 MeV and I‘L = 110 + 15 keV after the
target thickness corrections. Similar yield curves were measured

at the tandem laboratory both as a check of target thickness and
energy calibration. All our data were taken with targets satisfying
AEt/Z < 30 keV, at 6 = 45° and E; = 3.1 MeV., with one exception:
the data shown in Figures 11 and 12 above 7.5 MeV were taken with a
AR t/ 2 ~ 250 keV target and shifted accordingly. All angular distri-
butions runs were corrected by raising the beam energy by AE t/ 2.

The quality of a target was gauged by considering the peak-to-
valley ratio of the number of counts, in the pulse height spectra of
the alpha particles scattered at SL = 60°. A few very good targets
yielded useable data down to GL = 200, with a peak-to-valley ratio
of 10° or higher at 8, = 60° (compare Figure 10), During prolonged
bombardment the peak-to-valley ratio decreased. Targets were
discarded when it became less than 50.

Target depletion was often a problem for the high energy part of
the experiment. All targets showed a slow depletion rate of about
1%/100 microcoulombs, although occasionally some targets would
be depleted by as much as 50% in a bombardment of 100 micro-
coulombs. Data from the latter targets were rejected, while the

data from the former were corrected for depletion.

C. Running Procedure

Once the beam was obtained as explained previously, energy
spectra were compared with the scattering kinematics to confirm
the identity of the scattering nucleus. Since separated Li7 was used
throughout the experiment this was relatively simple.
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During excitation function runs, frecquent checks at a given
energy were performed when depletion was suspected. No angular
distributions showing depletion greater than 1% per point were
analysed.

The target condition was monitored by noting the target
chamber vacuum (always < 5. x 1078 mm Hg), the peak-to-valley
ratio, and the size of the carbon scattering edge. For each run,
the following information was recorded: date and run number, beam
energy (E.S. A, or N, M. R. setting), counter and target angles,
energy spectra from the analyser on punched paper tape, analyser
live-time, clock-time, channel no, of elastic and inelastic peaks,
charge integrated and approximate beam intensity.

Yield curves as a function of bombarding energy were done
first (Figures 11 and 12) to locate the resonances, and then angular
distributions at fixed energies (Figures 14, 17-20), We have taken
data in the energy range 1.5 MeV < E oL =< 12 MeV and the angular
range 25° < ea 1, = 150° with varying detail, depending on the
amount of information wanted in any energy region. Thirty-eight
angular distributions were measured containing on the average 15
angles each, These plus the excitation functions (Figures 11, 12
and 16), in steps of 100 keV or smaller, constitute the data obtained
for this study.
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III, ANALYSIS OF THE DATA

A. Reduction of the Spectra

A typical solid-state counter spectrum is shown in Figure 10.
An average data collection session would result in 30 to 100 such
spectra taken at various bombarding energies and laboratory angles.
The reduction of a spectrum consists in summing the counts under
the relevant peaks, subtracting the background, normalizing to a
given amount of charge, correcting for dead time, effective target
thickness (which was changed either when a new spot was selected or
the target angle changed) and performing depletion corrections when
applicable. When this is done, one has a set of 30 to 100 numbers
which are each proportional to a differential eross section in the
laboratory system of coordinates and all have the same relative
normalization,

Since over 1000 spectra were recorded on punched paper tape,
it was not found practical to carry out the plotting and reduction by
hand, A program was written for the Datatron 220 computer, located
in the Booth Computing Center, to plot the spectra on a digitilized
point plotter under program control. This program and a few other
simple ones, which were used for data reduction and émalysis, will
not be described here since they represent rather standard coding
techniques and involve no interesting physics or mathematics.

Once the plots were obtained, the background was drawn in by
hand from the knowledge of the spectrum shape for a similar target
without Li'7 in it. The number of background counts per channel
along with dead time, live time, and integration normalization were
punched on paper tape. We spliced this tape to the data tape and
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used the resulting reel of tape as input to another program which
summed the peaks, subtracted the background and performed the

two other corrections. The partially corrected yields obtained at
this point, were then plotted vs. energy or angle, as needed, to
detect gross errors which were then corrected. The final correction
for relative target thickness was done by hand. At this point we had
laboratory angular distributions and yield functions.

B. Absolute Normalization

Li and Sherr(ll) have obtained absolute normalization for the
total inelastic cross section of the reaction Li7(on, on')Li7* (. 48), using
thick target technigues, with a probable error < 20%. This normali-
zation was used in Figure 3, where we have extended their work and
that of Bichsel and Bonner(z) to higher energy. Figure 3 was used to
supply the absolute normalization for the wholc cxpecriment, as we
will explain shortly, The usual normalization in experiments of this
type consists in assuming Rutherford scattering at forward angles and
low energy (E oL, = 1 MeV would be required in this case). This
method was not found practical here because of the difficulties
involved in making accurate low-energy thin-target measurements,
with an alpha beam and a LiOH target.

The next step was then to normalize all the angular distri-
butions and yield curves with respect to one another, To do this we
first plotted the excitation functions for the elastic and inelastic
scattering yield at 6, = 60°, from E; = 1.5 MeV to E; = 12 MeV,
This curve was mecasurcd scveral times, with various targets, in
overlapping fashion, This assured us of a correct relative normali-
zation to about 10% from the lowest energy to the highest. We then

used this yield curve to normalize the angular distributions to one
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another. Thus, at this point, all the data at all energies and angles,
contained one normalization constant (called CNO, in Fortran
language). These laboratory cross sections were next converted
to the center-of-mass system with the help of a simple Fortran
program.

The last step in determining cross sections from the data was
to evaluate the number CNO defined above, To do this we have fitted,

using the standard least-squares method(17)

, the inelastic angular
distributions with expansions in Legendre polynomials. Although the
coefficients CL of the Legendre polynomials PL(G) proved rather
unstable, for L > 1, as Lmax was increased up to 6, the coefficient
C0 could be obtained reliably. Figure 13 shows the energy dependence

of this coefficient, Since it is proportional to OI , which we
2

already know (Figure 3), and CNO, which we Wantt?cz:)a}ietermme , the
problem is solved. The error flags in Figure 13 indicate the average
fluctuation of C o 28 Lmax was increased in integral steps from 1to 7.
The agreement with the gamma ray (. 48 MeV) yield curve is good so
that the relative normalization is accurate to approximately 5%. This
scale was used in Figures 11, 12, 14, 16, 17-20, all showing

measured cross sections.

C. Accuracy of the Measurements

The sources of error on the stated values of the cross section
are: a) counting statistics, b) background subtraction, c) target
thickness instabilities, d) energy variation of the beam integration
efficiency, e) variations in the pulse height analyser efficiency with
counting rate (dead time corrections), f) uncertainties in the absolute

normalization constant derived from the work of Li and Sherr.
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We have found that background subtraction was a much more
important source of errors than the counting statistics, for the
integrated charge we have used. The statistical error on the number
of counts in a peak was, on the average, 3% (1000 counts) for the
elastic peaks. Although the background could be consistently esti-
mated, it is difficult to state the absolute accuracy with which it
could be determined. For E oI, < 2.7 MeV, we have estimated the
background subtraction error to range from 2% to 50%, in the best
and worst cases respectively. One may get a rough idea of these
two effects by noting the scatter of the points in Figures 14, 17-20.
The errors due to target instabilities in our final values of the
relalive cross sections are no more than 2-4%, due to the multiple-
checks system we have used during the runs. For E oL 2.5 MeV
we claim 5% accuracy in beam collection efficiency stability; in the
region 1.5 MeV < Ea

1,
estimate, No reliable data were obtained below EocL = 1,5 MeV due

< 2.5 MeV, 10% accuracy represents a fair

in part to this effect. We have always taken care to keep the multi-
channel analyser dead-time below 20%, and the beam intensity
constant during a run. We have verified that under those conditions
the dead time correction was correct within 2%. The Li and Sherr
measurement is quoted to about 20% accuracy. This represents the
greatest uncertainty; on the other hand it is certainly the hardest
number to obtain,

Thus, the overall absolute accuracy of our measurement is
about 22% for the elastic cross section and 26% for the inelastic cross

section.
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D. Extraction of Resonance Parameters

The object of this section is to outline the procedure we have
used to determine the spins and parities of some of the levels
observed in this cxpcriment.

What we have done is to specialize the general expansions of
R-Matrix theory(m) to the case uf two channels only. A computer
program, written in Fortran language, was used to calculate
angular distributions and yield curves for a given set of resonance
parameters, which were then plotted and compared visually with
the data. The resonance parameters were then varied and the values
giving best agreement with the data were noted. In part IV the
results for each resonance are discussed in detail. The next few
paragraphs consist of elementary considerations related to the
expansion in partial waves of the scattering amplitude. Two often-
(19) 5ng 1),

The scattering amplitude for two spinless particles, scattering

quoted references will be referred to as JW

in their center-of-mass system, has the familiar expansion (LT,
equation 1, 24)

w0

K@ = ) QL+ i - P (x). (T- 1)
L=0

When the particles have spin, the expressions given by LT are
more complex. However, JW have pointed out that in the so-called
helicity representation, the expression analogous to (II1-1) is again

simple, namely,

ki@,0 = ) (@7+1) 8E) ') (IT1- 2)
J
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where, j,i = spin projection along the direction of motion (helicity),

in the final and initial states, respectively,

dgrl(x) = rotation operator (also the wave-function for a
symmetrical top), and
f'J]l(E) = gcattering amplitude in the state J, at energy E, with

initial and final helicities i and j.
If we have many channels, (III-2) is similar again but has channel
indices (c, c¢') attached to fJ.

Now, the number of J values contributing to (III- 2), at a given
energy, is limited by the centrifugal and Coulomb barriers. The
number of independent amplitudes for each J value is limited by the
number ol channels, the spins in each of them, unilarity and time
reversal invariance. We first find the number of amplitudes for eéch
J value = 3/2.

The two channels of interest are:

c=FE LS =3/2)+as = 07,
(M- 3)
'7*(

ct=1¢ Li' ((48)(S = 1/27) + a'(S = 07),

for E_; < 4.46 MeV, the B'” + n threshold. For each J value > 3/2

we have the set of states |i, ¢’ :

[3/2,E) , |1/2,E)> , |-1/2,E) , |-3/2,E) , |1/2,1), |-1/2,1),

(II-4)

where i = g - y lpl = gpin projection along the direction of motion
(not along the z axis, as is usually done). The scattering amplitude
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matrix (j, c’ IFJ Ii, ¢’ is then a 6 x 6 matrix of complex energy-
dependent functions (not all independent). JW further show that
under time reversal, this matrix is transposed; therefore, it must
be symmetric to be invariant. JW also show that a state |J,i,¢?
transforms under parity according to

J-S,
PlJ,i,c) = -(-1) 13, -i,¢? (IM1-5)

where S, = 3/2, SI = 1/2 in our case. Using (III-5) we may define

E
a new basis for the states (IlI-4) as |m, |il,c) :

|+, 13/21,E2, |+, |1/2],E), | -, |1/2],%), | -, [3/2],E),

|+ 11/2],D, | -, |1/2],D>. (III- 6)

Since EJ’ m conserves parity, it breaks up into two 3 x 3 matrices in

the basgis (III-6). The unitary S matrix §J’ T is related to EJ’ m by

7= (g0 - 1)/21 . (1m-7)

It is easy to see that if we define

8= (@-i07 (ML iK) . (1m-8)

where K'is a real, symmetric 3 x 3 matrix, then E is unitary and ,E
is smnI;etric. Thus, we conclude that six independent real functions
of energy are necessary to completely describe our reaction, for
each J > 3/2,m, below the B0 4 1 threshold.
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The next important question is to find the effect of the barriers,
in order to determine the number of contributing J values. Although
the helicity representation is very convenient for formal consider-
ations, it turns out that the Coulomb amplitude is not diagonal in that
basis (since it is diagonal in the basis which diagonalizes the spin
projection along the z axis). An alternate set of complete channel
labels is |{J, M, L, ¢’ (the familiar J, M representation). Since M is
conserved during scattering, we may neglect that index in the
labelling, The matrix element between the two bases is given by
JW as

1/2

_ 2L+ 1 .
(J, L,SIJ,MC- [ZT——_-rl} c(y, S.» 730, N (IMI-9)

Table I shows these matrix elements, corrected for parity, for

1/2 < J = 9/2. We have found it convenient, throughout this work,
to refer to nuclear properties in the |J,m, | 7], ¢ ) basis, then to see
what actually comes out by referring to Table I to find what L values
were involved, We wish to point out some particular features of the
matrix elements given in Table I. Let us assume that the J = 3/2°
channel were resonating, Such a state could decay in the channels

[ Ix],ed=1 11/2],8), | 11/2],>, | 13/2]|,E). Each of these in turn
consists of a definite mixture of L values, so that in the limit where
|n]| is a good guantum number, a strong effective spin-orbit force
must be present to account for the mixture. Although || is known
to be a good quantum number in molecular-beam scattering

(20)

experiments , involving semi-classical rotators, it is not known
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whether the same result should hold for nuclei. It is unfortunate that
in the cases studied here, we were not able to decide the question,
because of the very strong L. dependence of the penetration factors,
Figure 15 shows a graph of the penetration factors for L. = 0-6, using
a nuclear radius of 8.0 fermis. In part IV we shall discuss the
reasons for this unusually large radius.

We have developed enough formalism, at this point, to see what
would be involved in an attempt to unfold the data directly, using a
truncated partial wave expansion. The simplest approach is to fit the

data with a linear least-squares expansion of the cross section. This

then neglects unitarity. We have attempted such a fit, with no success
whatsoever, The linear fit is highly unstable, in a curious fashion:
using a six-parameter fit on an angular distribution consisting of 30
angles, we obtained values of xz of order 6-10, which is quite
reasonable, but the values of the determined parameters were of
order 105, whereas they should have been of order unity. This type
of linear instability was discussed in detail by Overley in his thesis;
we find the same effect here,

A more sophisticated approach is the use of non-linear least-
squares fitting routines., We may estimate the number of independent
amplitudes that should be included in truncated expansion, at E , = 4,0
MeV,. After consulting Figure 15 we conclude that an L = 4 resonance
has a maximum width of about 700 keV,. If we include partial waves
up to L = 4, Table I tells us that 46 independent amplitudes contribute
to the expansion. Our data is not precise enough to determine that
many numbers, not to mention the multiple solutions that certainly
exist, due to the many possible roots of non-linear equations, Even
if helicity is assumed to be a conserved quantum number, 23 ampli-

tudes still survive,
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Thus, we sce that a model program is mandatory, and the
method outlined above, in the second paragraph of this section, is
the preferred choice. The detaliled equations for a single resonance
in the presence of a Coulomb field and a potential background are
given in Appendix I, along with a definition of units. The results
confained in Appendix I were found essential in the process of
debugging the more complex many-level model-program described
in Appendix II. The reader is urged to peruse Appendices I and I
now, since the model-program will, from now on, be our main tool.

We have made a list of all the scattering anomalies observable
by visual inspection of the measured yield curves (Figures 11, 12
and 16). This list is presented in Table III. Six anomalies are
visible below E ol = 4, 38 MeV, so we expect that at least a six-
level model will be necessary to explain the observed cross section,
As pointed out in Appendix II, each level can be specified by the
following five parameters; E_, I I G/ TE

T

Y
-1 'L+2 I . : X
. Glven I‘T, TE , ¥, the reduced widths Y3 /2, E?

YL

P = tan

Y1 /2, E? Y1/2,1 are easily calculated (this is done by the model-

program as shown in Table IV). In addition, the potential radius

must be specified, As a starting point, a one-level {it was attempted
in the region of the 10, 60 MeV resonance (level 4 in Table III), since
its width is small (see Figure 12). Mainly because of the strong

L = 3 interference effect visible in Figure 18, an 7/ 2+ soon appeared
as the best choice. The potential and penetration radii, however, had

to be given different values. We selected
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R = 3.8 fermis ,

pot.

R = 6,0 fermis.
pen.

These choices for the radii will be discussed in detail in part IV, A
second level was added and its parameters adjusted to produce the
best results. Then the parameters of both levels were varied to

see if the addition of a new level might allow new posgibilities, The
point of diminishing returns was reached with a 7-level model whose
parameters are given in Table IV, The level at E = 2,90 is heavily
shifted and actually resonates at E oL = 3.6 MeV; it corresponds to
level 5 of Table HI, The level at EC. M 2.5 MeV only supplies
background., The other five levels are levels 1, 2, 3, 4, 6, of
Table IIl, In this manner, the first six levels of Table II were
accounted for. Including debugging time, Table IV represents about
three hours of 7094 time, The computer run from which Table IV
and Figures 21-23 were obtained, took three minutes of that time.
We next present a detailed discussion of the results contained in

Table IV and discuss some alternatives.
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IV. RESULTS

We divide this section into two parts, Part A contains a rather
detailed discussion of the spin assignments for the six anomalies
visible below the Bm + n threshold. Part B deals with the few
results that can be obtained above that threshold and up to 16,31 MeV
excitation, the highest energy at which data were obtained.

A, Spins and Parities of Levels Between 9, 88 and 11, 46 MeV Exc.

The six levels occur at excitation energies 9. 88, 10,26, 10, 32,
10.60, 11,0, and 11, 27. We discuss them in order of increasing

excitation energy.

1. The 9. 88 MeV Level

Our best fit to this level, using the model-program, is
J"=3/ 9", We shall now present arguments to explain why this is a

preferred value. The resonant elastic cross section, at resonance,

I‘EZ(ZJ + 1)
is o ———p—, while the inelastic one goes like I‘ETI(ZJ + 1)/ Tp -
T
T
From Figure 3, showing the total inelastic cross section, we may

write

= .16, (IV-1)

yielding
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x(1-x)(2T+ 1) =.64, (Iv-2)

where x = I‘E/ I, S=3/2. This quadratic equation in x has the
following solutions

J 1/2 3/2 5/2 1/2 9/2
x, .50+.260 .20 .12 .09 .07 (IV-3)
X, .50-.26i .80 .88 .91 .93

2

It is to be expected, and we have checked numerically, that, if

we use the second solution, the elastic cross section will show the
resonance quite strongly. Now it is characteristic of the data
(Figures 11, 16-20), that this level has a very weak effect in the
elastic channel. For this reason the fits using the second solution
were poor and were discarded. Since Xg = 1- Xy = I‘I/I‘T, the
table (IV-3) also prescribes I‘I/ T,., for the selected solution.

We have then found numerically and this can be inferred from
appendix I, that J =1/ Zi, %, = 0.5, gave a sizeable elastic inter-
ference at 159° and somewhat too small a total inelastic cross section.
For this reason, lhese assigiumenls seem less likely than 3/ 2"

(table IM). Next we consider the penetration factor., We have

2
Iy = 2P vy, and, (Iv-4)

2
2 h 2 2



28

where PL is the penetration factor plotted in Figure 15, for the L
YL12 is the so-called

reduced width and eLIZ the dimensionless reduced width which would
C. M. from Table IV,

we make a list of the values of 62 for the remaining J ,

values shown in Table I and Ro = 6 fermis.

be 1 for a square well. Taking TT = 0,15 MeV

g7 3/9" 3/2” s5/28 5727 /2t w/2n 92t 9/9”

2 (Iv-6)

SI 1.5 6.5 66, 6.5 66. >100. >100, >100.

4

On the basis of (IV-6), in order not to have too large a value of 92,

our choice is narrowed down to J" = 3/ o2t m might be argued that
if most of the wave function for that level were concentrated near
the nuclear surface, the Wigner limit (62 = 1, 5) might be exceeded.
But, if we take into account the energy derivative of the level shift,
we find that the observed width TTO of a resonance is bounded from
above by the inequality

L P S s ? (IV"7)

where P is the penetration factor in the channel 'c' for which 03 - =,
ds

and EE—C is the energy derivative of the shift function, evaluated at ER
ds |

andr = Toe In this case EEE was found large enough to give all the
assignments of (IV-6), except 3/ 2+, a value of I‘TO < .075 MeV,
Indeed, it was in the process of fitting this resonance that we were

forced to increase the radius for penetration, from the usually



29

accepted value(4) of 3.8-4, 8 fermis, to the value ¢ fermis used here.
It was found very difficult to maintain I‘I/ I‘T and I“TO simultaneously,
when using a small radius, even when the Wigner limit was very
badly exceeded, due to the effect mentioned above, Figures 21-23
show the computed cross section near that resonance
(E oC. M, = 1. 209 MeV) and should be compared with Figures 3, 16
and 11, The agreement is qualitatively excellent and quantitatively
fair,

We have also found that the potential phase shifts resulting from
a radius of 6 fermis produced too large a background cross section.
Thus, we used a different radius to compute them. The value used
in Figures 21-23 was 3, 8 fermis. This procedure may be justified
on physical grounds, following some calculations made by Vogt(zz).
Vogt has shown that using a Saxon-Woods potential having a surface
thickness of 1 fermi, the penetration factor was effectively increased
by a factor of nearly 8, over the value predicted when using a square
well with the same average radius. However, the non-resonant phase
shifts for a Woods-Saxon potential having an average radius Ro and a
square well with radius Ro are similar, We shall return later to the
question of background scattering, in connection with possible direct

interaction effects.

2. The 10, 26 and 10, 32 MeV Levels

We consider these two anomalies together because I/D,
the ratio of the width to the separation is of order unity. The C. M.
energies where these anomalies appear are E - 1.59 and 1,656 MeV.
The laboratory energies are 2,50 and 2, 60 MeV., In Figure 3, showing
the y-ray yield, only one anomaly is visible at 2, 50 MeV, In
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I'igure 11, showing the elastic 90° ¢, M. yield, only one anomaly is
visible again, but this time around 2, 65 MeV. Figure 16, showing
the 159° elastic cross section, reveals a well-developed low-energy
asymmetry for the 10, 32 MeV level, Since it was easy to reproduce
this asymmetry numerically, using two levels (see Table IV and
Figures 21-23), we believe there is little doubt about the presence

of two levels close together in energy. The 10,32 MeV level was

11 23)

first observed rather weakly, in the reaction Blo(d, p)B™" by Elkins( ]
with a total width of 54 + 17 keV in the C. M. system. This is not
inconsistent with the yield curve Figure 11, Figures 21-23 gshow the

model-program prediction for a level at E = 1,59 MeV, with

C.M.
J=3/2, T m, = 200 keV, and another one at Ec m O= 1. 656
MeV, withJ = 5/2 , rTC. M T 100 keV, at eC.M. = 159°, This

prediction is in good qualitative agreement with the data (Figure 16).
From Figure 11, we see that the elastic yield at 90° has
a very strong anomaly. This anomaly presumably comes from one
of the two levels presently under consideration. The 90° yield, for
a negative orbital-parity resonance, does not interfere with anything
and only receives contributions from the square of the resonant
amplitude; this squared term may be non-zero since the particles
involved have spin. We have tried, on the computer, all values of
J from 1/ 2" to 9/ 2+, and found that none of them gave yield curves
similar to that of Figure 11. The discrepancy is, in this case, two-
fold: first, the positive parity levels give symmetrical line shapes
(no interference) and second, the calculated scattering anomalies
are always too small, even with large values for J. For this reason
we believe that one of the two states has negative parity (most
probably the 10, 32). Such a state will interfere with the background
at 90°, Unfortunately, it turns out that the phase of the Coulomb
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amplitude gives a negative interference term for all the values of

J considered (< 9/2). This implies that the potential phase shift

is large, For a reasonable value of the potential radius (3.8-5
fermis), however, we get only a slight improvement (the interference
term is too small but is at least positive), so that we can not get the
large effect shown in Figure 11, Indeed, we were not able to find any
background, due to any number of resonances, which would give
correct yield curves both at 90° and 159°. One of our best results

is given in Figures 22 and 23. It may be argued that a broad level
(say 3/2) with the proper mixture of L = 0, 2 might give an inter-
ference at 90° while not being visible at backward angles. This
possibility was investigated numerically, No resonant background
was found suitable, essentially because the interference of the
resonant background with the Coulomb amplitude was always negative
and tended to cancel the positive interference with the 1. 656 MeV
state,

There remain two alternatives: either we select a
different potential radius for each L value or we introduce a non-
resonant background in the R-matrix itself. An earlier version of
the model-program attempted to take into account the elastic back-
ground due to a square well of fixed depth, It was found that the
effect of the square well was very sensitive to the depth and radius
selected, since, in this case, a square well may produce sharp
resonances (I’ < 300 keV), because of the Coulomb barrier. Also,
equation IX-1,3 of LT

- R°

1 1
E! = “I-ja ’ (N—S)
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indicates that a new penetration factor P' = Im L' must be chosen
when the background RO is present. As an example, if we consider
only the R due to the finite Coulomb repulsion inside the nucleus,
we find that P' actually has some zeros for certain values of the
energy, thus completely excluding any observable resonances there.
Our conclusion was that an R® term could only be included if one
were doing a straight inversion of the data with few partial waves,
We have not attempted to use separate potential radii for each L
value, because it is then difficult to maintain a smooth angular
dependence for the background cross section. We will discuss how
this lack of background knowledge influences our fit,

Assuming for the time being that the 1. 656 MeV level
has J"= 5/ 2" ,we look at the 1.59 MeV state, To study the possi-
bilities here, we repeat the steps (IV-1)-(IV-3), using this time

2
k 0'I
41 res

x(IV-2) now has the solutions

= ,065, obtained from Figure 3. The quadratic for

J 1/2 3/2 5/2 7/2 9/2

Xy . 135 .070 . 042 . 034 . 027 (Iv-9)

X . 845 . 930 . 958 . 966 . 973

2
The first solution is unsuitable because it produces only a very small
effect in the elastic channel, and it was therefore discarded. It

turns out that using J=3/2%, the asymmetry at 159° can be reproduced
quite well (compare Figures 22 and 16). The fit is rather insensitive
to parity. I we take J>5/2 the asymmetry comes out too large, if
we take J=1/2 it comes out somewhat too small. Because of our
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failure to reproduce the 90° yield around this doublet, caution must
be exercised in putting limits on the spin of this level., Thus a
conservative estimate is 1/2 < J < 5/2 (parity unknown), with 3/2°
as our best fit.

Using this value for the 1, 59 MeV level, we have found
that J = 5/2°, 7/2" were equally likely for the 1.656 MeV state, 1/2"
‘and 3/2 being excluded because they gave too small a yield at 1590,
9/2 being excluded, because it gives too small a barrier penetration.

3. The 10, 60 MeV Level

After the target thickness corrections, we find the
resonance energy to be EaL = 3.032 + . 01 MeV and the width to

be I‘T lab = 100 + 10 keV, In the C. M. system these values are
respectively 1. 93 and . 070 MeV. Our value for the excitation
11

energy in B is in good agreement with the recent measurement
of Groce et al. ¥ (B__ = 10,594 x 0.012 Mev).

From the ela'stic angular distributions given in Figures
17-20, it is not difficult to see that an elastic yield curve, at
ec. M. = 140, 80, shows no sign of the resonance, This angle is a
zero of P, (cos 6). This means that, in the elastic channel, the
observed flux is almost entirely due to a L = 3 resonating amplitude
interfering with the non-resonant amplitude. An obvious explanation
for this is to have a strongly inelastic resonance with = 7/ 2+, 9/2"
(see Table I). Because J M= g9/2" decays with L = 5 in the inelastic
channel, we may exclude it, since the penetration factor is too small
(Figure 15). The model-program results for J M= 7/ 2+,
= 75 keV T, =37.5 keV E =1, 94 MeV

I«TC.M. C.M.’” "E C.M.’” "rC.M.
can be seen in Figures 21-23. The agreement with the data is good.
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The yield in the elastic channel is rather sensitive to the type of
background used, and to the value of I‘E/ I‘T. Some backgrounds
were used, for which I‘E / 1“T =, 3 gave a reasonable value of the
1592 cross section, For these backgrounds the resonant yield at
140. 8° was small. For the model given in Table IV, the angle
where the zero resonant yield occurs is shifted slightly, but the
general behaviour of the computed elastic and inelastic angular
distributions (not shown here) is in good agreement with the data
(at these higher energies the inelastic angular distributions could
be measured more reliably), The models built on J = 3/ 2+, 5/ 2t
would offer no explanation for the strong F-wave elastic inter-
ference since they can decay via P-wave in the elastic channel.
Furthermore, J" = 3/2" yields a total inelastic cross section
which is too small by about a factor of two, while 5/ 2" fails in the
same respect by about 25%. Thus, 7/ 2" is preferred and 5/2" is,
a possible, though unlikely alternative.

4, The 11.0 MeV Anomaly

The only evidence we have for the existence of a state
at this energy is a broad maximum in the total inelastic cross
section (Figure 3), around E oI, = 3-6 MeV. Since this cross section
remains rather high, up to 5 MeV, it is quite possible that many
broad levels are overlapping in that region. For this reason, our
fit to this anomaly only indicates that this anomaly may be a state.

We have found that the non-resonant tfotal inelastic cross
section up to E ol = 3. 2 MeV could be fitted rather well, assuming a
large P and D-wave inelastic amplitude (the S-wave inelastic
amplitude is D-wave in the elastic channel, and would be expected
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to rise more slowly with incrcasing bombarding energy than the
P-wave inelastic amplitude, which is also P-wave in the elastic
channel). A broad state with J" = 1/ 2", Lp=4.0MeVy
I‘E /I‘I = 1, was located at E «C. M. = 2.5 MeV to saturate the in-
elastic P-wave channel. With l"T = 4.0 MeV, it also served the
purpose of maintaining the total inelastic yield at higher energy.

We then looked for a spin and parity assignment, to
superimpose on the broad 1/ 2" level, which would fit the elastic
159° and QOOC. i, Yields, while providing the correct total in-
elastic cross section. The only levels having a D-wave inelastic
amplitude are 3/2" and 5/2°, Of these, 5/2 seemed to give a
somewhat better overall fit to the elastic yield curves and angular
distributions and to the 11, 27 MeV state which we will discuss
next. It was selected for presentation here for this reason.
Because of our selection for the boundary condition at the nuclear
surface, which was chosen for the 1. 656-MeV level, the 5/2°
level is heavily shifted, from E .M, = 2. 90 MeV in Table IV to
ErC. M. = 2,15 MeV in Figure 21.
5. The 11,27 MeV State

This state was first identified by Groce et al. (24) at
Eexc. = 11, 266 + ., 007 MeV, Since it has a negligible inelastic
width (Figure 3), it has escaped detection in previous work on the
inelastic scattering,
The elastic vield curve at 15900. M. (Figure 16) shows a

large peak at about 4, 1 MeV = 2,61 MeVC M. We thus expect

Lab
to find a large value for the spin of that level. The elastic yield

shows only a small symmetrical bump at GC M = 90° (Figure 11),
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indicative of a positive parity level (no interference at OC M= 900).
Many choices for spin and parity were tested with the model-
program, Models with J < 3/2 could not reproduce the large 159°

cross section, and were rejected. Models with J T 5/2 , 7/2°, or

’
9/2" showed rather pronounced 90° interference and were also
rejected. The three remaining possibilities, in order of decreasing
goodness-of-fit, were J M= 7/ 2+, 9/2+ and 5/ 2", The assignment

5/ 2" suffers from two diseases: its 159° cross section is too small,
and if it has any P-wave component, the line shape is incorrect at
159° (a dip on the low energy side). The two remaining choices,

7/ 2% and 9/ 2+, seem equally promising, the 7/ 2" giving somewhat
too small a cross section and the 9/2+ producing the opposite effect.
However, the background due to the 11, 0 MeV anomaly can be
adjusted in both cases to give good fits, Each of the two possi-
bilities has a special appeal. A level with J" = 7/2+ at 11, 28 MeV
excitation energy could supply S-wave flux into the opening neutron
channel at 11,46 MeV, A threshold cusp might then be seen there(zs)
which would explain the scattering anomaly, which occurs at pre-
cisely that energy (see Figures 3 and 12), On the other hand, a
level with J" = 9/ 2" hasan L = 5 decay in the inelastic channel,

Thus, we would have an obvious explanation for the lack of inelastic
yield for that level, since the penetration factor would then be very
small,

B, The Scattering Anomalies from 11, 46 to 16, 31 MeV

We have pointed out earlier that the opening of several new
channels, near 11, 4 MeV exec. in pl! (see Figure 1), makes our

model-program inadequate above this energy, since il is a {wo-
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channel model. However, for the sake of completeness, wc now
summarize qualitatively whatever can be concluded about this
energy region without performing detailed numerical calculations.
We have made a list of all the bumps and kinks that can be
seen in Figures 11 and 12, which show the elastic and inelastic
yield at 8 ol = 60° vs the laboratory bombarding energy. This list
is presented in Table III, along with the approximate width of these
anomalies and some comments, Thirteen ""objects'" are seen in the
energy range under present consideration, It is probable that they
do not all represent states of Bll. For example, the anomalies
numbered 7, 11, 14, 15, 18, all coincide, within their width, with
the thresholds for forming the first five excited states of Bm plus

(25)

a neutron. Since tests exist'™ "/, within R-matrix theory, to

determine the effects of S-wave neutrons thresholds, which effects

are sometimes known to be large(zﬁ)

, it might be prudent o investi-
gate this point before building nuclear models involving these
anomalies., We spend the next paragraph discussing the general
features of the observed cross section, before going into a detailed
discussion of the thirteen observed anomalies,

The behaviour of the cross section is rather puzzling in this
many-channel region, apart from apparent threshold effects. The
elastic cross section shows strong backward peaking (Figures 17-20)
while the inelastic angular distributions (Figure 14) seems to have
diffraction-type maxima and minima, whose positions have a smooth
energy dependence, We may speculate lhal this behaviour is due to
the presence of a large direct interaction amplitude, We have in-
vestigated numerically some simple models for this effect, I one
considers Li7 to look somewhat like an alpha particle bound to a
triton, one can show rather simply that triton exchange effects tend
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to uncouple the even and odd L amplitudes. This effect can be
represented in a naive way using a "direct' and an "exchange"
potential, When one considers only the cross section due to the
""hard sphere' phase shift, its angular dependence is no longer
@ the potential vanishes
for even L values and the background cross section acquires a

monotonic, For example, if Vex =~V

strong backward peak! We do not present here any details of

these calculations because they are not quantitatively relevant due
to their oversimplification of the problem. The inelastic scattering
might also be understood as an exchange mechanism, if we do not
assume that the exchanged triton is captured in the ground state of
the triton-alpha system. However, there is another source of in-
elastic scattering which could also be important; it is a transition
from the ground state to the first excited state of Li7 via the BE(2)
matrix element, which is known to be near the collective limit(27’ 28)
(BE(2) = 7.3+ .15 e2f4). We have calculated the total Coulomb
excitation cross section ) at E o= 2.0 MeV, that is, .56 MeV
below the Coulomb barrier for R = 5 fermis. We find

= 4x10°3, (IV-10)

Coul. exc.

This is too small to have an appreciable effect, but, this is only the
contribution of the Coulomb force. There is, in principle, no
objection to using the nuclear force to make the transition. Since the
potential strength squared occurs in (IV- 10), it is not unrealistic to
expect a factor of 100 or more in enhancement of the eross section as

we go over the Coulomb barrier. This would then give the BE(2)
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excitation cross section a value comparable to the one actually
observed. The energy dependence, at a fixed angle, of a direct
interaction cross section may exhibit broad maxima and minima,
If the direct amplitude is allowed to interfere with a few narrow
resvnances, the resulting (total or differential) inelastic cross
section may show bumps that are displaced in energy from the
resonance position. For this reason, the level identification may
be unreliable. This should be kept in mind in the next few para-
graphs where we discuss our thirteen anomalies,

We begin with anomalies number 7 and 8 (Table II) at 11. 46
and 11, 60 MeV exc. In Figure 11 (900 elastic) they are not resolved,
and all we see is a small bump at about 11.5 MeV exc. and a small
dip about 100 keV higher, If this dip is an interference effect, then
one of the two levels should be of negative parity. In Figure 12
(920 inelastic), they are again unresolved and only a large peak can
be seen around 11,5 MeV, In Figure 3 (total inelastic), they are
barely resolved. I they represent one level which has an S-wave
neutron width, then this level should be 5/2% or 7/2" and it is
expected to produce a threshold cusp. This is not unattractive in
view of the similarities between the yields here and those near the
10. 60 (7/2") and the 11.27 (7/2%, 9/2%). This object would further
have to be identified with the bump seen at 11.68 MeV exc. in the
reaction Liq(on, n)B11 (3()). The highly speculative nature of this
assignment is indicated by a double bracket in Table III,

Anomaly number 9 in the list is well resolved in all our data.
In Figure 11, however, it appears as a definite dip in the 90° elastic
cross section. From this we may infer that this level has negative

parity.
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Next we consider items 10 and 11. Level 10 is included in
order to account for the broad maximum in the elastic cross section
in the region 5 MeV < EOL < 6 MeV, Item 11 represents only a
small dip in the elastic cross section above the threshold for
Blo*(1+, 717 + n.

Level number 12 at 12,55 MeV exc. is well resolved in the
inelastic channel, but it appears highly unsymmetrically in the
elastic scattering. If this is an interference effect, then this level
must be of negative parity.

Items 13 and 14 are again considered together. Level 13
appears to be about 300 keV wide, but its proximity to a neutron
threshold could distort it considerably. Since it only shows up as
a dip in the elastic cross section, it should also have negative parity.
Item 14 is a kink in the elastic cross section at 13.20 MeV, It was
also seen as a strong peak in the plot of xz vs energy for a sixth
order Legendre polynomial fit to the inelastic cross section (this
fit is not presented here for reasons mentioned previously).

Items 15 and 18 are unresolved in Figure 12 (inelastic 92°),
and only a dip is observed in Figure 11 (elastic 90°) at 14.0 MeV exc.
Does this mean again negative parity for item 167?

Anomaly number 17 might be close enough to the threshold
Bm* (2+, .36) + n at 15, 04 MeV exc. (item 18), to be distorted; i
this were the case these two anomalies might be produced by having
one broad level suffering from threshold distortion, I, on the other
hand, threshold distortion does not take place, then items 17 and 18
should be considered as separate levels,

Finally, item 19 represents a small peak in the 92° inelastic
yield at about 15,73 MeV exc. It does not show up in Figure 11, A(30)
)

resonance at this energy has also been seen in the reaction Li7(on,n
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It is probable that detailed angular distributions of the
reactions Li7(a, on)Li7 and Li'?(a, ou)Li7* (. 48) could yield more
detailed information about the level structure of B11 in this energy
region, using techniques similar to the ones we have used in
section A of this part of the thesis, if the question of threshold
effects could be settled properly. Such a study would also require
much better information on the reaction Li7(oc, n)BlO* than is

presently available,
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V. COMPARISON WITH NUCLEAR MODELS

We have seen in part IV that, as a result of the present experi-
ment, we have some new information about the level structure of
B11 in the excitation energy region from 9, 88 to 11,27 MeV, In
part A of this section, we compare our results with those that have
been obtained for the mirror nucleus CH. In part B, we seek to
understand the experimental evidence about the level structure for
the A ?8)11 system, in terms of the shell model(3 1) and the unified

model* ™/ of the nucleus.

11

A. Comparison of the Levels of B~ and C11

As we have seen earlier, the level structure of B11 appears
rather complex above 11, 46 MeV exc,, the energy of the first
threshold for neutron decay., Since it is not known, at the present
time, to what extent these neutron-decay channels can distort the
various observed particle spectra, we will limit our comparison to
excitation energies below 11.46 MeV. Another reason for this
limitation is that little information is available about the levels of
Cn, above 10, 89 MeV exc.

Figure 25 shows a scale diagram for the energy levels of B

and Cll. The lower energy part of this figure is adapted from

11

Olness et al. (32). The level sequence starting at 9. 28 MeV exc. in

C11 is adapted from Overley and Whaling(lo) . The levels in Bll,

above 9. 28 MeV exc. were discussed earlier in this work and the
identification of the analogues of these states in C11 will be discussed

presently.
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Thirteen states in 1311 are reported between 6. 81 and 11, 23
MeV exc. As an empirical rule for finding analogue states, we
subtract . 52 MeV from all these energies and look for nearby states
of Cll, having approximately the resulting energies. This yields
the following list:

11 11 11
exe. (B ) Eexc. (B™7)-.52 MeV Eexc. ™ AR
6. 81 6. 29 6. 35 0.06
7, 30 6.8 6. 90 0.12
7. 99 7.47 7. 50 0.03
8. 57 8. 05 8.10 0.05
8. 92 8. 40 8.43 0.03
9.19 8. 67 8. 66 -0.01
9,28 8.176 8.70 -0.06 (V-1)
9.88 9. 36 9. 28 -0,08
10, 26 9.74 9.74 0.0
10, 32 9, 80 - -
10. 60 10, 09 10, 08 -0.01
11,0 10, 48 - -
11, 27 10. 75 10. 69 -0.06

Beginning with the 9. 87 MeV level in Bll, we associate with
it a level a 9, 28 MeV exc, in Cll, reported once by Cerineo(33),
but not seen by Overley in the elastic scattering of protons by BlO.
Our present assignment for this level would then be 3/ 2+, which
would imply a D-wave decay for it, in the channel BIO + p, at about
600 keV. Since this level should have a large width in the channel
Be'7 + @, it would not have been seen by Overley because its Wigner
limit width for decay into Blo + p is about 13 keV, Overley could
not see states below E = 700 keV, which had r p/ Tp <0, 05,

One of the members of our doublet at 10, 26 and 10, 32 MeV exc,

in B11 should be associated with the 9. 74 MeV anomaly in Cn.
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Overley has rcported difficulties in fitting his observed cross section
in the region of the 9. 74 MeV level. The dotted line below the

10. 08 MeV level in Figure 25, indicates his conjecture to explain

the discrepancy. The existence of this doublet, and, if it exists,
which state in 011 is the analogue of the other member of the doublet
in BH, remain uncertain,

It is gratifying that our most definite assignment, J" = 7/27
for the 10, 60 MeV level in Bn, finds its analogue in the 10, 08 MeV
level in Cll, which is also reported to be 7/ 2" by Overley(m).

We find no analogue, in Cll, for the 11.0 MeV state in BH.
However, because of its large width (T,]I =3 MeVi ), this level
would be very difficult to identify in C1 , in all the ex{)eriments
which have been carried out,

The 11, 23 MeV level in B11 should be the analogue of the
10, 69 MeV state in Cn. The spin assignments for these two levels
(9/2% in Cn, '7/2+, 9/2" in Bn) are consistent.

Thus, we may conclude that the level structures of the two

mirror nuclei, cll and pll

, continue to be similar, up to 11 MeV
exc., in agreement with the prevailing assumption of the charge

independence of the nuclear force.

B, Comparison with the Shell and the Collective Model

We have seen that the level structure of C11 and B11 are

similar, within experimental uncertainty, up to EeXC' = 11 MeV,
This gives us confidence that nuclear models assuming isotopic

spin projection invariance should apply fairly well to the A = 11
system, and should reproduce the observed level structure. Indeed,

onc of the earliest attempts to account quantitatively for the level
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scheme, by Inglis(34) , showed that intermediate-coupling wave
functions did predict the ground states to be 3/ 2', rather ambigu-
ously.
(81) . (35)
Kurath and more recently Boiarkina have computed
exhaustive level sequences for the negative parity levels in the
1-p shell, using intermediate-coupling assumptions. A typical

predicted sequence is

EeXCMeV 0 1.9 5. 2 5.7 6.9 12,2

g, T 3/27,1/2 1/27,1/2 5/27,1/2 71/27,1/2 3/27,1/2 1/27,1/2

(V-2)

The first five levels fail qualitatively to reproduce the observed
sequence, in only one respect: the upper 3/2 and the 7/2  should
be inverted. Kurath pointed out that one should expect that levels
more than about 8 MeV above the lowest level with the same T can
involve the 2s-1d shell, so that predictions hased exclusively on the
1-p shell might be erroneous at higher excitation. This effect would
possibly explain the discrepancy in the ordering of the two levels
mentioned above,

To obtain negative parity levels at higher energy, one should
certainly consider the excitation of a pair of nucleons to the 2s-1d
shell, However, the positive parity levels, formed by exciting one
nucleon to the 2s-1d shell, are predicted to lie at too high an
excitation energy, as compared with experiment. The shell model,
at least és applied up to the present, appears to be unable to deal
with highly excited configurations. Fortunately, it was shown by
Ellintt(36) that the rotational model and the shell model lead to
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similar predictions for lowlying states, at least in the 2s-1d shell.
This raised hopes that the treatment of nuclear energy spectra
within the framework of the rotational model might account better
for the highly excited states, while retaining the successes of the

(37)

that Elliott's generating procedure also works successfully in the

()

calculations and obtained the following predicted level seguence for

the ground state band of B11.

shell model for the low-lying states. Kurath and PiCman showed

p-shell, More recently, Clegg ™’ carried out detailed numerical

E MeV 0 2.19 4.54 4.98 6.75 13.3 17.1
exc (V" 3)

J" 3/2" 1/2° 3/2° 5/2° /27 5/27 7/2

The 3/2° that was too high in (V-2) is now too low; the experimental
result lies in between (V-2) and (V-3)!

We have calculated the total energy for 11 particles in a
deformed axially-symmetric oscillator potential, for various
configurations, as a function of 7, the deformation parameter of
Nﬂsson(s). The results are shown i1(13§‘)igurc 24, We have used the
al.

small deformation the parameter 7 is approximately equal o the

same value of % as Litherland et , namely #= 0,08, For
ratio €/#, where ¢ is proportional to the deformation and »
measures the strength of the spin-orbit coupling, The strength m‘bo
of the undistorted oscillator potential was chosen to be 18,4 MeV,
as calculated from Nilsson's formula

ad = 41, AC1/3.
0]
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We may note the following interesting features of this

diagram:

i) The X = 1/2”(1%3%2%) and the ¥ = 3/2”(1%2%3%) vands
have a small energy separation for negative n(AE =1.5 MeV) and
the 3/2  band has the lower energy. This situation was the starting

point of Clegg's calculation (however, his fit, given in (V-3) uses
AE =, 88 MeV),

ii) A second K= 1/2 band with positive 1 should begin near
Eexc = 4,0 MeV. There is no experimental evidence for such a
band at such a low excitation energy (see Figure 25).

iii) AK=1/ 2" band should begin near Eexc = 8,0 MeV with
n = 6,0. From Figure 25, we presume that the 6. 81 MeV level is
the first member of that band.

iv) The configuration 1434“63 has not yet reached a minimum at
n = 10,0, and as we shall see, we find no definite evidence for a
band with such a large deformation at low energy,

434‘23 configuration seems to have two minima, one

v) The 1
at n = -6.0, and the other at 1 = +3,0. Which value of n represents

the equilibrium deformation?

Before we attempt to identify the observed highly excited states
of the A = 11 system with a band generated from Figure 24, let us
consider in some more detail two difficulties associated with the
rotator model for light nuclei.

The first problem is that of spurious states. Physically,
spurious states arise because we are using too many degrees of
freedom, namely, 11 for Figure 24 and 3 more for the rotator
degrees of freedom giving rise to the bands. Mathematically, the
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problem is analogous to that of the spurious states in the spherically
symmetric shell model, arising from translational non-invariance

of the Hartree-Fock potential used in shell model theory(40). The

analogy has been exploited by Ba.ym(41). However, an additional

difficulty arises in the case of rotational states, One knows that
A

b

the C. M, coordinate is R= 1/A Z r;, to which there corresponds
A 1=1

P=1/A Z{ R; - Given a wave function qu('l;i)’ one can perform a
i= '

linear transformation

r. - R and Ej =,1;J.—B, j=1,...10, for A= 11,

and reexpress the wave function as 4!1{ (13,, Ej)' The Schroedinger
equation is separable in these new variables for certain assumed
potentials so that we have

) = 2 EJe®) .

K ®(R) is not in its ground state then we know we have a spurious
state. Tor angular momentum, the relevant coordinate whose

A

degree of freedom must be removed is J = The conjugate

ri i "
I=1
variables corresponding to J are the Euler angles 61, 92, 83, of the
whole system. The change of variables from the r i's to GX, §j is
no longer linear, and Schroedinger's equation does not separate,
Baym does not give an explicit solution to the problem, so that

one is reduced to investigating each case separately. We outline how
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such an invcstigation proceeds. Wec suppose that we have a state

8y with a given m, in the intrinsic (body-fixed) coordinate system.

A state in the space-fixed (laboratory) system is a linear combination

of such states with different orientations of the body axis, but with

the same value of n. Thus, the laboratory state contains the state
in

Gy = e L g g (M - (V-4)

For an infinitesimal rotation, we have

G, = (L+iefi-Dg (n) . (V-5)

In particular, Gk contains the state GIS

0 g = Al -

Now we consider all the states gk‘('r]) of the Nilsson diagram (say

Figure 24), for that value of m, and the matrix elements

(g '| Gk° > (V-"7)

Whenever the matrix element (V-7) is near 1. for some fi and 8y »
the state gk' must be considered redundant, since it will appear as a
member_ of a rotational band based on 8 Given J in the intrinsic
coordinate system and the expansion of &) in the form given by

(8)

which point it is possible lo decide the maximum size of the matrix

Nilsson'’, one can express (V-7) as an explicit function of fi, at
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element. The possibility of spurious states will be kept in mind
when we proceed to seek excited bands. |

The second problem we wish to discuss is that there may be
lower energy configurations than those given in Figure 24, if we
do not assume the potential to be spheroidal (axially symmetric),
but instead consider a general ellipsoidal harmonic oscillator

potential of the form

V = hwo (a2x2 + bzy2 + c?"zz), a<b<c , (V-8)

where X, y,z are the coordinates of a particle. Following

(42)

van Winter , we may define an "asymmetry" parameter

_(2b-a-c¢

2=, -1sxs1 . (V-9)

X

When |x| 4 1, there exists no unit vector fi such that [fi- L, V1= 0,

This means that K is no longer a good quantum number. However,

if we take
2 2 2 2
A - b - a. C - b
n“WO = (i ’—2"'_ » 0, ’ ) 9 ’ (V-10)
¢ - a ¢ - a

and go to a new coordinate system r', obtained by rotating through

a fixed time- independent angle about the y axis so that n points
along the z' axis, we may rewrite (V-8) as
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2, .2 2 2 2 .2 .2
V=VO+V1,VO=th(b(x' +y7)+ @%+c”-b%z'%)
(V-11)

5

V., =-2x7" 4 (b2 - a2)(c? - b?) .

1

It is from the term V1 (proportional to one of the quadrupole moment

operators) in (V-11) that we will get band mixing, XKurath and

(6)

particle coupling term, used by Clegg in his calculation of the ground

Piéman‘"’ claim that for Bll, the effect of V1 imitates the rotation-
state band mixing. We notice that equation (V-11) implies simply
that the effect of an ellipsoidal distortion is completely equivalent to
including a quadrupole interaction, in the single particle hamiltonian,
a practice often used but usually introduced ad hoc. The calculation
presented in Figure 24 was done taking ¥ =+1. From the above
considerations we expect that for some other value of X, a new and
deeper minimum will occur where the ground state band will not have
a double minimum, and the band mixing will be prescribed. Further
numerical calculations are planned, using (V-11)., Of course, the
rotational energy levels for an ellipsoidal band are no longer
proportional to J(J + 1), but according to van Winter we have

E_ =aJJ+1)+B8E(x, J) , (V-12)

where « and B are related to the moments of inertia of the core and
E(x=1, J) = 0. The function E(x, J) must be evaluated numerically
as a root of a fifth order polynomial., Equation (V-11) has been used

(43)

by Davydov and Sardaryan , In an approximate form, to describe

odd- A heavy nuclei having rotational-vibrational spectra. It is



52

intuitively plausible that a P2 (second order Legendre polynomial)
vibration of the nuclear surface might make the nucleus look like
a non axially symmetric rotator. Clegg points out, apparently
with some astonishment, that his best calculated spectrum for
B11 has somewhat the character of a vibrational spectrum. In
the light of Davydov's result and our previous comments, this
result becomes more easily understood. This second problem,
then, should again be kept in mind in the next paragraphs where
we discuss the excited band structure of B11 and comment on the
general situation in the light nuclei (A < 20).

The ground state band can be fairly well represented as the
mixed band resulting from the configurations 143324 and 143423,

taken at n = -4.0. The next state in Bll, at 6.81 MeV exc. is

y with J = 1/2 or 3/2 (Figure 25). Since the

¥y o L u’.

J
34‘2261 occurs at about 6-8 MeV above the ground

configuration 1
state configuration, we may consider it as a candidate to generate
the first excited band. We take the equilibrium deformation to be

n = +6.0. Using the eigenfunctions of Nilsson for this value of n,

we calculate the so-called decoupling parameter to be a = 2.0,

We must next decide how many states can be formed if we remain

in the 1p and 2s-1d shell. We may couple the two particles in

orbit 2 (K =3/27) to form K= 0 or 3. According to Elliott(%), if

we put one particle in the 2s-1d shell, the only possible states have
L=0,1,2, Thus, if K =0, K= 1/2, the band has the three states:
J=1/2, 3/2, 5/2. Using the value a = 2, 0, the level ordering is
1/2, 5/2, 3/2. Using h2/21 = ,344 MeV we get the level sequence:
6.81 (1/2%), 8.16 (5/2%), 9.87 (3/27). The closest level to 8, 16 MeV
is observed at 7, 99 MeV in Bll. However, if we assign 5/2+ to this
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level the allowed decay of Be11 to the 7. 99 MeV state would lead to
an assignment of J = 3/27 for Bell, a possibility which although
unlikely cannot be completely discounted, Another possibility is
to allow K1 = 3 and 0 in the formation of a band. The symmetrical
part of the new wave functions obtained, has J = 7/27, 9/27, 11/2%,
Taking a = 2, 30 and h2/21 =, 311 MeV we find the level sequence

E _ MeV 6. 81 7.80  9.76 11,23 14,74
exc
il 1/2" 5/2%  3/2" 9/2* 7/2"
(v-13
11
E_ (B )obs. 6.81 7.99 9,88 11. 27 14. 67
JMobs.  (1/2,3/2F - /2t (/2,972 -

This assignment appears to be consistent with the presently available
data, but it leaves open the following question: how does one account
for the 7. 30 MeV level in Bll? If it is of positive parity, its spin
must then be higher than 5/2 to prevent an allowed decay from Be11
(assumed to be 3/27). Also, whatever its spin is, a new band must
begin at this energy.

We may compare the value of the moments of inertia assumed
for the two bands mentioned above with the values that would obtain

1/3

for a rigid body. Assuming Ro = 1.4 A” ", the radius of B11 is then

about 3, 1 fermis., For a uniform spherical mass distribution we
have

2/5 MR %= 42.8 t* a.m.u.
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This gives #2/91 = 0, 488 MeV

This formula is not very sensitive to small deformations. The
values 0. 311 and 0. 344 MeV used above represent about 70% of

the rigid body value. We may compare this with the results of

@7 who tind that the value 42/21 = 0, 50 MeV
yields level sequences in fair agreement with experiment, The

rigid body value for Li7, calculated as above, is 1,04 MeV., The
experimental value is thus about 50% of our rigid body value for

Li7. Another comparison may be made with the rotational

structure of A12°, Litherland et al. find that the rotational

structure of A’l25 is well reproduced using exactly the rigid

Chesterfield and Spicer

body value for the moment of inertia. Our present result for
B11 lies in between.,

Still another possibility is to assign J" = 5/ 9" to the 7.30 MeV
level, and J m =1/ 2" to Bell. However, to get the correct spacing
for the 6.81, 7.30, 9.87 MeV levels, one requires a decoupling
parameter a = 3.0, which would demand a very large value of the
equilibrium deformation. The orbit 14‘34453 of Figure 24 would
presumably be a better candidate to generate this band, The situ-
ation appears complex and it is probable that many more states
actually contribute to the band structure than those we have con-
sidered. It is to be hoped that simplifications will occur when one
considers ellipsoidal deformations, since this effect will tend to
lift the existing energy degeneracies for the complex axially
symmetric configurations we are dealing with here,

If one studies the level scheme for the odd A light nuclei, vne

finds recurring evidence for low lying 1/ Zf and 5/ 2" states. It is

+ +

possible in several cases to identify triplets with: 1/ 2+, 5/2°, 3/27,
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a decoupling parameter of order 2,0 - 4.0, and a moment of inertia
in the range of a few hundred keV. Because of the experimental
difficulties involved in detecting high spin states, it is difficult to
reach a conclusion about the failure to detect the predicted, low-
lying, 9/ ot states required for the band extensions in these nuclei.

To summarize the situation we must admit that applying the
rotational model to the A = 11 system, especially to the highly
excited states, is still in the nature of a conjecture, The tentative
band structures, proposed in the preceeding paragraphs, do seem
to indicate that the rotational model can account for some of the
features of the highly excited states of Bll, but it is clear that more
refined calculations are necessary to determine the exact structure
of the excited bands, or indeed, to determine whether or not this

model has any value in describing the A = 11 system.
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APPENDIX I

The One-Level Two-Channel Resonance Formula

In the main text we have outlined briefly the struecture of the
scattering amplitude expansion for the present reactions. Here we
present detailed expressions for the single-level expansion, using
the techniques of R-matrix theory. We write the expansion in
Legendre polynomials for both the elastic and inelastic channels,
The numerical values of the relevant coefficients are given in
Table Il, First we present our definition of the Coulomb amplitude.
This is necessary because different authors often use different
conventions.

In the center-of-mass system for two non-identical particles
of mass m, m', scattering non-relativistically, we let:

Z, 7 be their charge (positive for protons), in units of le I,
where, in our hybrid system of units, we take e2 = 1,44

MeV-fermis,

E = the energy in the C, M. system = n?. kz/ 24, with:

ﬁz = 41,6 MeV—fz-a. m, U, ,

k =- the relative wave-number in f'l,

M = the reduced mass -(% ina.m.u.,

P = k- r the dimensionless distance between the two particles,
r = .their separation in fermis,

n c = the dimensionless strength of the Coulomb force in channel

=._C 2_ 1,51 .
c —ZEC Z7'e = T for the present reactions,

Cc
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b4 = The cosine of the C, M. scattering angle.
Gordon(21) has shown that there exists a solution ¢ of the

Schroedinger equation, for the particles interacting via the Coulomb

potential, which has the properties:

) o g - DT P nlp(1- g T 1P 2%,
(AI-1)

; io. F_(p)
b) ®= ) (2L+1i% T
L=0

. PL(X) . (AI-2)

c) FL is regular at the origin and has the asymptotic expansion

. Lm
FL(p) — sin (p - nlog2p- -5 + OL) . (AI-3)
o, = arg (1 +in) . (AI-4)
o 1
- -1m _
oy = 00+nZ1 tan 2= O+ Wy, L>1. (AI-5)

These definitions agree with those currently in use in this laboratory
for numerical calculations, and with the conventions of Lane and

Thomas(lg).

There are, of course, many ways of defining the
Coulomb wave-functions but all three properties a), b), ¢) must be
given self-consistently. Using the choice of phases which is standard

here, we write the scattering amplitude and cross section as
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. . 2
K20 = lfrlz, f =N, ginlogsin®8/2

(AI-6)

T asine/2
I there is, in addition, some spin independent background scattering
resulting from a finite range scalar potential discontinuity, producing
a phase shiff - P just outside its range, we modify (AI-6) to read

kzob = Hr"'fp \2, fp = _LZ 2L+ 1)621wL JLCPLsin Py, PL(X) .
0 (AI-T)
Tor example, a square well discontinuity yields a "'potential” phase
shift -%p, finite for all L's. The background cross section resulting
from the discontinuity is a smooth function of energy and angle, The
background terms may then be considered as a modification to the
Coulomb cross section. We can also add to the amplitude a single
resonance with total spin J, parity m, and decaying with orbital
angular momenta L,, L,, in the elastic channel (see Table I). From
R-matrix theory we find that, neglecting the level shift, we may

write the resonant amplitude as

y = L, c) |L', ¢

T J LT
<J ,L', C'IF lJ ,L’C E)\.—E—ir/z . (AI-8)
i(wL - CPL)
|IL,c? = e . ./PL(r) Y, el , (AI-9)

c

where P, = the penetration factor in channel ¢, for r = L

L

YL, o= the reduced width for the decay of the resonant state in

2
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channel |L, ¢?., We add (AI-8) to f =1 + fp, and take the absolute
, and F will contain

since the background we use is

value squared, The interference term between f
J

L, L, E’
elastic and diagonal in the L representation (spin independent), After

only terms of the form F

carrying out the C, G, algebra we find

ZoE(x) = kch(X) + 2Re { Iz;ofg(x)FI{’ LE PL(X) 2J + 1} LW (X)

ZSEI

' (AI-10)
2o = W)
W) = & > 5 P @, <= @ -E)?+ r? (AI-11)
c 2 feg Lyct LY T T AT T "
L even
I\Z
_2J+1 E _ A2
Po,E "8, +1" 2 PLE” ‘L E (AI-12)
- T
_20+1 EI _ .
Bo 1725 +1 2 ¢ P "LE” L1 - (A1-13)

SE is the spin in the elastic channel and so is 3/2 here. By orbital

parity conservation, only a few YL's are non-zero in (AI-9). Given
the reduced widths in the parity-helicity basis, one then consults
Table I to find which YL'S are non-zero. There remains to find

2+ Interms of the 7 coefficients of LT and the definition (AI-9)

bJ
we get
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Q = ) <L2,clL1,c>Z(L1,J,L J, 8, L). (AI-14)

2’

|L, ¢’ is not real, according to (AI-9), but the imaginary parts of
the matrix elements cancel out in (AI-14), since QL c is symmetrical
b

in L1 and L2. Thus, we may write

Q. = a PP v, v, cos(uw, -w -0 +0@_ ) .
1o Lg "Ly Ly Ly Ly Ly "Ly 'Ly "Ly rer,

2 (AI-15)
The a's are real. We have calculated them, with the help of a

1 Lo, L, J, M uptod = 9/2. The
non-zero ones are presented in Table I, The values for L= o

computer program, for all L
are also given, although QO is simple, if only to indicate when an
angular distribution is isotropic.

We do an example to illustrate the use of Table II. Consider
a state with J = 3/2" and Coulomb scattering only. Put

sn = s.in2 6/2, ¢ = nlog(sn) .

Equation (AI-10) becomes, after consulting Table Iand I

2iw

’ P3Y§P3("> ] E

L2 i€ / 2iw
kzo' (x)'= n__n. Re ‘:S__(e 1131~Y§P1(2s:)+e:

+ WE3/2(X) .
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P1 and P3 are the penetration factors in the elastic channel, Y4 and

Yg are the reduced widths for the decay of the resonance with L = 1
and 3 in the elastic channel,

2
T,
3/2,y . 1 |'E .2
Wy ") o2 [‘4“* QZ,EPZ(X)] ’

_ 2 2
QZ R 0.8(\(1 P1 - Vg P3) +1.2 /PlP3 Y1Ys cos(w1 - w3) ,

b

The formulae derived in this appendix made no assumption
about the number of open channels; they are thus valid above the
neutron threshold and indeed at any non-relativistic energy, Of
course, we must then assign I, I‘I, I' separately since they
would no longer he related by the unitarity condition T =T Wt T,
above the neutron threshold. This is one reason for presenting
Table II: it solves the problem of elastic and inelastic single-
resonance angular distribution, for our reaction, upto J = 9/2
and at all energies. The table was also found useful to check the
main multilevel program, described in Appendix II, in its single
level limit,

The main program uses the units and definitions introduced in
this appendix or their immediate generalization when necessary.
Thus, we have here a good illustration of the structure of this more
complex program., The equations of many-channel R-matrix theory
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are familiar and would only add bulk if they were reproduced
here, For this reason only the use of the model-program is
discussed in detail in Appendix II,
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APPENDIX II

A Two-Channel Ten-Level Model-Program

This program essentially represents Fortran coding for
equations 1, 6b, 1.5, 2.6 of LT(18).
equations and corrected some obvious typographical errors

We have rederived these

contained there, The definitions of the Coulomb wave functions
used in this program are those of Appendix I. We first present

a list of the binary decks required, along with a short description
of their function:

Deck Name Function
YRCRT6  Main program, selects options, controls input-output,
(listed here).

YRCBON Selects the boundary condition to make the level shift
vanish at the given (input) energies.

YRCCOF Calls YRCCOU to tabulate penetration factors.
BAZPLC Computes Legendre polynomials.
YRCCOU Computes Coulomb wave-functions (listed here).

YRCSCA  Main subroutine, coding for equations 1.6b, 1.5, 2.8,
(listed here),

YRCFPL  Plots model angular distributions.
YRCGPO Calls YRCFPL, bookkeeping.

YRCWID Computes reduced widths from given (input) total width,

and mixing angle (defined below).
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Deck Name Function

YRCCOA Calls YRCCOU to tabulate all Coulomb parameters.
YRCAND Computes angular dependence.

YRCDMD Double precision matrix division,

YRCINI Initial tabulation of often-used C. G. coefficients,
MJMTRA Awvxiliary output, a trace subroutine for debugging.
YRCTAC Reads tables of C. G. coefficients.

YRC3JS Computes Wigner's 3-J symbols.

YRCDEL Called by YRC3JS, triangle condition,

YRCFAC BLOCK COMMON table of factorials.

YRCFDB Double precision table of factorials.

A deck is submitted according to the standard Caltech format,
IBJOB, containing all the binary decks listed above and a $DATA
section, under the IBJOB option NOSOURCE. An N-level ""model"
consists of N + 3 data cards. The first card contains the number
of levels, the first C. M. energy in MeV at which an angular distri-
bution is to be obtained, the energy step size, the number of steps,
the radius at which the elastic penetration factor is to be evéluated,
the inelastic penetration radius, the potential radius. The second
card contains printout control integers. The third card contains the
ten values of the energies at which the level shift must vanish, for
each J"(1/2 < J < 9/2). Each of the succeeding N cards contains
the level parameters for one resonance, which may be specified as:

~1 L + 2
L

® = tan the mixing angle in radians between the two L
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values in the elastic channel (compare Table I), I‘,Cot al in MeV,
I‘I/I‘E , M=+ L0, E, (which is equal to E_ if the level shift
vanishes at E)\), J=N.5, N=1-4. The format of these data
cards is specified in the listing of YRCRTS.

The model-program first evaluates the boundary condition,
Then the reduced widths are selected to give the specified values
of I‘T , 1‘1/1‘E and ., Next all the necessary Coulomb and potential
parameters are computed, These numbers are used as input to the
main subroutine YRCSCA which computes the R-matrix, the L
matrix, inverts (I - RL'), computes the scattering amplitude EJ
according to the formula F? = a(+ P/%. (1~ RL)'R- P¥2 2100,
evaluates the coefficients of the Legendre polynomials for the -
interference, nuclear elastic and nuclear inelastic series. Control
is then returned to the main program which calls subroutines to
evaluate the Legendre polynomials series at various angles and
print the answers. We provide here listings of the main program,
the main subroutine, and the subroutine which computes Coulomb
wave-functions. This last listing is presented here because it
represents a departure from the current practice of evaluating the
irregular wave-function with an asymptotic series. Both wave-
functions are evaluated using power series. This, plus the use of
a double-precision recursion relation, allows us to compute all
the Coulomb parameters for L = 0-6 in 200 ms, on the 7094, thus
saving nearly a factor of 5, in time, over the routines currently
in use in this laboratory.
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88

77

83
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79
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IBFTC RT6 DECK

THIS VERSION DOES NOT TAKE A VARIABLE BACKGROUND
NTET=1 NO WIDTH

COMMON /WIDT/X(3)sAMP(14) sGAME s GAMI

COMMON /HETO/ HETOL{63+5+14)

COMMON /BCEC/ BCE(14+5)

DIMENSION TE(3)sCBE(46)sSER(10)9IZT(7+8)4FIPV(10)

COMMON /SCAT/ BlLIUT)sB2LUT)sCLE(I0}sCLI(1Q)SsITEST(5}

1 9SIGT(696)9SIGTR(696)sAIMT(6)

COMMON /ANDIR/ CYETsCYITSCBET

COMMON /COULB/ PLE(1495)e5COULI14)9OMEGI1495)sPHI(14)sSLE(14+5)
COMPLEX SCOUL sOMEGsCAP '

COMMON /COULP/PLEA(14)sSCOULA(L4)20MEGA(14) sPHA(L4)9SLEALLSL)
COMPLEX SCOULA»OMEGA

COMMON /R2L/ R2LMLI(TIsUTL(149596)1sUCL(695+6)

DIMENSION CYE(46)sCYI(46)

DIMENSTION RMATPA(10s8)sRMATL (10916

DATA PI+TERI/3e141592654406635/

DATA TE /145713277543 01416/

INITIALISE

CALL INITIA

BLYE= .01
BLYI= .001
READ DATA

READ(5377) NRsSTARTEsDELEsNENsRADESRADI s STATESDETEToNTET
1 STAFI+DEFI+NFIsRADP

FORMAT (I1202FTabo1204FTat91292FTatisl29F7e4)
IF{NR<EQe0D) STOP

READ(5483) IZTsVsINPsJP

FORMAT (561194XF10e697XI1912)

READ(5481) SER

FORMAT (10F84e4)

READ(5479) ((RMATPA(I»J)s J= 148)y I= 1sNR)
FORMAT (8F7e4)

ASSIGN 13 TO NG

IF(RADE+EQ«RADP) ASSIGN 15 TO NG
WRITE(69903) RADEs RADIsRADP

903 FORMAT (16H ELASTIC RADIUS=s F7e4s 1THINELASTIC RADIUS= o FT7elbs

1 17HPOTENTIAL RADIUS= F7.4)
CALL BOUND(SER sRADE)

FIP= STAFI

DO 10 IFI= 1sNFI

E= STARTE

DO 1 K= 1sNR

ER= RMATPA(Ks7)
= RMATPA(Ks8)+ o5

JPA= RMATPA(Ks6)

GAMT= RMATPA(K»3)

JQ =={{(JPA+1)/2)%3

X(1)= RMATPA(Ks1)

X(2)= RMATPA(K2)

RICE= RMATPA(K+5)
IF(X(1)eNEa20e) GO TO 19
IF(IFIeEQel) FIPV(KI= X(2)
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9
7
501

17

11
13

15

959
961

963

965

967

969
305
951

953
955

957

67

FIP= FIPV(K}

CALL WIDTH(ERsGAMTsFIPsRIOCEs JsJPASRADESRADEO)
GO T0 17

X{3)= RMATPA{K14)

DO 7 L = 1s 14

AM = Q0.

DO 9 1 =1y 3

IPA = 1 + JQ+ 3

AM = AM + HETOL(IPAsJsL)%X(1)

AMP(L) = AM

WRITE(65501) KsXsAMP

FORMAT(24HX AND AMP VECTORS FOR K= 12/1P3(2XEl2.5)/
1 7T{2XE12e5)/7 (2X E12e5))

RMATL{(Ks16)= RMATPA(Ks8)

FIPVIK)Y= FIPVI(K)+ DEFI

RMATL(Ks15)= RMATPA(Ks7)

DO 3 L= 1414

RMATL(KsL )= AMP(L)

CONTINUE

DO 12 IEN= 1sNEN

IPOT= 1

1P= 0

IF{JPeLTe5) GO TO 11

Ip= 1

GO TO NGs (13515)

CALL COULPA(EsRADPsRADPsIPsPHISIPOT)
IPOT= 0O

CALL COULFA(E+RADESsRADIsIPsPHASIPOT4BCE)
CALL SCATCO(EsNRsRMATL sPLESOMEGsSLEsJP)
IF(JPelLTe4) GO TO 5

WRITE(6+959)

FORMAT (/15HBOUNDARY MATRIX /)
WRITE(6+961) BCE

FORMAT (1P7(3XEl2e5))

WRITE(6+963)

FORMAT (/18HPENETRATION MATRIX /)
WRITE(6+961) PLE

WRITE(6+965)

FORMAT (/12HSHIFT MATRIX /)
WRITE(6+961) SLE

WRITE(69+967}

FORMAT (/12HRMATL MATRIX/)

WRITE(6+969) RMATL

FORMAT (1P10(1XE1245))

A3= 1.

WRITE(64905) EsA3.ITESTsB1LsB2LsCLESCLI
FORMAT (1HOF10e% ¢4XF1Qebs 4X511/7F10e4/7F10e44/10F10e¢4/10F10e4)
IF(JPeLTel) GO TO 85

WRITE(69951)

FORMAT (11HAIMT VECTOR )}
WRITE{63955) AIMT

WRITE(6+953)

FORMAT (12HSIGTR MATRIX 1}

WRITE(6+955) SIGTR

FORMAT((6({2XE1245)))

WRITE(6+957)

FORMAT (11HSIGT MATRIX )

WRITE(6+955) SIGT

PREPARE PLOTTING TABLE
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WRITE(6+505)
505 FORMAT (/12HSCOUL VECTOR/)
WRITE(6+507) SCOUL
507 FORMAT ((1H/7(2F845+1H/ 1))}
85 AL= 1451/SQRT(E)

PH= 1l
DO 701 IT= 1,3
TER= TEI(IT)

CALL ANDI (AL »SCOUL+TERsB1L9B2LsCLE+CL19PH)
CYE(IT)= CYET
CYI(IT)= CYIT
CBE(IT)= CBET
7¢1 TER= TER+ TERI
707 FORMAT (1H1)
WRITE(63709) Es(CBE(N)»CYEIN) »CYI(N)sN= 1+3)
709 FORMAT {31HELASTIC AND INELASTIC YIELD ARE /1P10(1XE1245))
CALL GPLOTIE »SCOUL »B1L sB2LsCLEsCL1+PHsINP) ‘
12 E= E+ DELE
10 FIP= FIP+ DEFI
GO TO 88
END
$IBFTC SCA DECK _
SUBROUTINE SCATCO(E sNReRMATL sPLE sOMEGE s SLE s IP)

C BiL IS THE COEF OF THE COS INT TERM
C B2L IS THE COEF OF THE SIN INTERF TERM
C CLE IS THE ELASTIC NUCLEAR PART
C CLI IS THE INELASTIC NUCLEAR PART
C RMATL CONTAINS THE R MATe PARe IN L REPe
C NR IS THE NUMBER OF LEVELS
C SUBRe INITIA MUST BE CALLED FIRST IN MAIN TO FILL TABLES
C OF UTT AND R2tMle UTT IS A FCN PROG.
DIMENSION R(636)sTS(6+6)+sOMEGE (1495) sPLE(1435)sSLE(1495)sRR(6)
DIMENSION T(5+6+6)9RMATL(10s16)9PLCI6)s0MCI6)sSLLCIE )
COMMON /SCAT/ BIL(T)sB2L(TI9CLE(1Q)sCLIC1I0)IITESTI(S)
1 sSIGT(696)3SIGTR(E696)sAIMTI(6) |
COMMON /R2L/ R2LMI(T7) UTL(143596)sUCL(695+96)
COMPLEX TSsOMP T sOMEGE s CBP +OMC
COMPLEX W(646)
DOUBLE PRECISION RD{(6+6)19TSD(696)9DTeDTTHEA(646) 1ARD(646)
C
C GENERATE THE R MATRIX FOR J= 25 TO 4.5
C THE R MAT. PARe« ARE IN L REP.
C

DO 289 M= 146

AIMTIM)= 0.

DO 289 N= 146

SIGT(MeN)= Qe
289 SIGTR(MsNI= Oe

DO 66 J= 19 5

F2Jd= 2%J

EPS= 14E-10

JIN= MAXQ(1esd-1) -1

J2= U+ 2

JT= U+ 7

J8= J+ 8

DO 209 L = 16

DO 209 LP= 146
209 R(LsLPY= Qs

IS= 0
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[aNaNa)

291

" R{LPsL)= R(LsLP)
RD(LsLP)= R(LsLP)

207
230

293

295

501

503

299

297

283
211

DO 230 K=

1sNR

69

IF(RMATL({Ke16)«NE«(FLOAT(J)= #5))GO TO 230

1s= 1
NOw COMPUT

DO 291 M=
LC= JIN+ M

RR(M)= RMATL (KsLC)
RR{S)= RMATLI(KsJT)
RR(6)= RMATL(K»J8B)

ER

14

ENDENI= le/(RMATL(Ks15)~ E)

DO 207 L=
DO 207 LP=

1+6
1sL

R{LsLP)= R(LsLP}+ RR(LI*RR{LP)*ENDENI

ARD(LsLP)= RD(LLP)

RDILP«LY= RDIL+LP)

ARD(LPsL)= ARD(LsLP)

CONTINUE
CONTINUE
IF(IS«EQeO
DO 293 M=
LC= JIN+ M

PLC(M)= PLE(LCsJ)

)y GO TO 271

le4

OMC{(M)= OMEGE(LCeJ)

SLC(M)= SLE(LCsJ}

CONTINUE
DO 295 M=
LC= J2+ M

PLCIM)= PLE(LCsJ)

596

OMC(M)= OMEGE(LCsJ)

SLC(M)= SLE(LCsJ)

CONTINUE

IF(IPeLTal) GO TO 299

WRITE(6+50

FORMAT (8HR MATRIX

1)

WRITE(6+503) R
FORMAT ({1P(6(2XE1245)))

)

GENERATE 1- RLO AND INVERT IT

DO 297 L=

OL= SLC(L)
DO 297 LP=
DT= Qe

IF(LeEQeLP) DT= 1.

146

1le6

TSDULP,L)= DT- RD(LP.L)*0OL
EA(LPsL)= TSD(LPoL)
CALL DOMDIVITSDsARDs6+DETESEPSSITE)

EPS= leE-1
DO 211 L=

DO 211 LP=
DTT= Qe

DO 283 k=

0
le0
1le6

146

DTT= DTT+ RD(LsK)*¥PLC(K)*ARD(KsLP ) *¥PLC(LP}
TSD(LsLP)= DTT+ EA(LsLP)
CALL DOMDIV(TSDIRDs6

ITEST(J)=

ITE+]

sDETESEPSHITE)
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285

287

215

505

507

509

301

223
21

219
217

511
271

273

66

275

70

IF(ITE«NE«Q) RETURN

DO 287 L= 146

DO 287 LP= 1L

TOS= Q.

DO 285 K= 116

TOS= TOS+ SNGL(RD(L+K)}I¥PLC{K)*SNGL(ARD(KsLP))
WlLsLP)= CMPLX(SNGL(RD(LsLP)]12TOS)

WiLPsL)= W(LsLP)

IN R THERE IS NOW (1- RLO)INV*R= W
CONSTRUCT OMEG*W*OMEG+ I#SJ= T

DO 215 L= 146

DO 215 LP= 1lsL

TS(LsLP)I= OMC (L)®W(LoLPI*OMC (LP)
TS(LPsl.)= TS{LsLP)

IF(IPeLTe2) GO TO 301

"WRITE(6+505)

FORMAT (8HW MATRIX )
WRITE(6+507) W

FORMAT ((1H/6(2FBeSs1H/)))
WRITE{6+509)

FORMAT (9HTS MATRIX )
WRITE(6+507) TS

NOW CONVERT BACK TO THE HELe REPe USING UTL MATRIX

DO 217 M= 146

DO 219 N= 1M

OMP= (0e90s)

DO 221 L= 16

DO 223 LP= 146

OMP= QOMP+ UCL(LsJoM)I*TSILSLPI*¥UCLILPsJaN)
CONTINUE

CONTINUE

T(JeMsN)= OMP

T(JeNaM)= OMP

SIGTR{MsN)= SIGTR{MsN)+ F2U*(REAL(OMP)*%2+ AIMAGIOMP)*%2)
SIGTR(NsM)= SIGTR(MsN)

IF{MeNEN) GO TO 219

AIMT(M)= AIMT{M)+ F2J*AIMAG(OMP)

CONTINUE

CONT INUE

IF(IP«LT«3) GO TO 66

WRITE(64511) Js ((TLJeMaNle M= 146)s N= 146}
FORMAT (16HT MATRIX FOR J = 12/ (6(2F104691H/}))
GO TO 66

DO 273 M= 146

DO 273 N= 116

T(JsMeN}= (Oes0s)

ITEST(J)= 3

THE NEXT CONTINUE 1S THE END OF THE J LOQP
CONTINUE

CALCULATE THE COEFFICIENTS OF THE LEGENDRE POLYNOMIALS

JMAX= 0

DO 275 J= 145
IFCITEST(J)eEQel) UMAX= J
CONT INUE
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LIM= JUMAX+ 2 71

LNM= 2% JMAX
CALCULATE THE INTERFERENCE COEFFICIENTS
DO 36 L= 1sLIM
CBP= (Qes0s)
DO 35 J= 14>
IF(ITEST{J)«EQe3) GO TO 35
DO 34 M= 144
DO 33 N= 1sM
DE= 2e
IF{MeEQeN) DE= 1le
OMP= T(JeMsN}
CBP= CBP+ +5%UTT{Ly2+JesMsN)}*DE*OMP

33 CONTINUE

34 CONTINUE

35 CONTINUE
CBP= (FLOATI{L)~ «S)*e5%CBP
BilL(L)= REAL(CBP)
B2L(L)= AIMAG(CBP)

36 CONTINUE
IF(LIMeEQe7) GO TO 279
LIM= LIM+1
DO 277 L= LIMe?7
BlL(L)= Qe

277 B2L{L)= 0D

CALCULATE THE INELASYIC NUCLEAR PART
CALCULATE THE ELASTIC NUCLEAR PART
279 DO 46 L= 1sLNM

CLP= 0.
CLEP= Qe
CLIP= Qe

DO 45 JP= 145
IFCITEST(UP)«EQe3) GO TO 45
DO 44 U= 1+4P
IF(ITEST(JU)IeEQe3) GO TO 44
DEJ= 2
IF{UPEQeJ) DEJ= 1,
DO 43 M= 1+4
DO 42 N= 1M
DEN= 2.
IF{MeEQsN) DEN= 1,
CBP= T{JaMeN)
OMP= T(JPsMsN)
CLP= UTT(LsJPsJsMeN) *(REALICBP)I*REAL(OMP )+ AIMAG{CBP)*AIMAG(OMP
1 ) )1*DEY
CLEP= CLEP+ DENX*CLP
IF(LeNEs1l) GO TO 42
SIGTI(MgN)= SIGT(MyN)+ CLP
42 CONTINUE
DO 52 N= 546
CBP= T{(JsMsN)
OMP= T{JP4MsN)
CLP= UTT(LsJPsJsMsN-3 )X (REALI(CBPYX*REAL(OMP )+ AIMAGICBP)*AIMAG(OMP
1 )1 )*DEY
CLIP= CLIP+ CLP
IF{LeNEs1l) GO TO 52
SIGT(MsN)= SIGT(MsNI+ CLP
52 CONTINUE
43 CONTINUE
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CONTINUE
CONTINUE
CLE(L)= (FLOAT(L)= #5)%CLEP
CLI(L)= (FLOAT(L)— «5)*CLIP
CONTINUE
IF{LNM.EQ«10) RETURN
LNM= LNM+ 1
DO 281 L= LNMs10
CLE(L)= 0s
CLI(L)= O.
RETURN
END

$1BFTC COU DECK

aXaNaka

[aNa¥a)

[a¥a A

203

1201

«05

SUBROUTINE COUL(ETA+RO)

TO CALCULATE AND STORE IN COMMON/COU/ THE COULOMB WAVE FUNC-
TIONS FROM L=0 TO L= 6

REFe He DER PHYSIK P408 FOR L= 0 PART

AND LANE AND THOMAS P350 FOR RECURSION RELATIONS

COMMON /COU/ FsFP3sGsGPsPHI »sASsP S sCPSIC-IPRINT

DIMENSION F(T)sFPIT)sG(T)sGP{T)sPHI(T)sAS(T)sP(T)eS{T)sCPIT)eZM(6)
DOUBLE PRECISION PIsPLOsPL1sSLOsSL1IsPHIOPHI1»AL+BLsRODSETADSDLS
1 ZMsA2sRN2sRNIREMIRNT

DATAP1/3e141592653589793D0/s(ZM(K)eK= 196)/e5772156649 01532 861
1 «20205 69031 59594 2854 #36927 75514 33699 263D~1»

2 83492 77381 92282 683D=24+2%0e/

CALCULATE S PART

CN= SQRT(2+*ETA*SNGL(PI )/ {SNGL(DEXP(2+DO*PI*DBLE(ETA})-1D0)))
BLO= O

BL1= 1.

BSO= 1.

BS1= Qe

TOETAR= 2.%ETA*RO

ROSQR= RO#*RO

FI= 1le

FIP= Qe

PSI= 1le

IC= 0

DO 201 J= 24400

CJ= FLOAT(J*(J=-1})

BL2= (TOETAR*¥BL1- ROSQR*BLO)/CJ

BS2= (TOETAR*{BSl- FLOAT({2%J-1)#%BL2}~ ROSQR*BS0)/CJ
IF((FI+ BL2)eNESFI) GO TO 203
IF((FIP+FLOAT(J=1)#BL2)eNEFIP) GO TO 203
IF{(PSI+ BS2)eNE«PSI) GO TO 203

GO TO 205

FI= FI+ BL2

Flp= FIP+ FLOAT(J-1)*BL2

PSl= PSI+ BS2

8L0= BL1

BL1= BL2

850= BS1

BS1= BS2

IC= 1

THE 3 POWER SERIES HAVE BEEN EVALUATED
NOW CALCULATE FLl{ETA)

A2= ETA%*ETA
REM= Oe



ann

[aNaXal

207

101

221

DO 207 N= 2.100 73

RN= N

RNZ2= RN#*RN

RN7= RN2#®#RN2*RNZ*RN

REM= REM+ 1/(RN7*#(RN2+ A2))
CONT INUE

D0 101 I= 143

II= 5~ 1

REM= ZM{I1 )= A2*REM

FETA= ZM{1)= 1le/{1le+ AZ2)+ A2*REM

COMPUTE THE PARAMS FOR L= 0 AND INITIALISE THE RECURSION REL.

F(1)= CN#RO*F]

FP(1)= CN*(FIl+ FIP)

G(1)= (PSI+ 2+%ETA®{ALOG(Z2+%RO)+ FETA)*RO*¥FI)/CN
GP({1l)= (FP(1)*G(1)- 14)/F(1)
PHI(1)= ATAN2(F(1)sG(1))
AS(1)=F(1)%%24 G(1)¥*%2

P{1)= RO/AS(1) :

St1)= (FL1)*FP{1)+ GIL1)*GP(1))*P{1)
CP(1)= Oe

PLO= DBLE(P(1))

S5LO0= DBLE(S(1})}

PHIO= DBLE(PHI(1})

ROD= DBLE (RO}

ETAD= DBLE(ETA}

THE RECURSION RELATION IS DONE IN DOUBLE PRECISION

DO 211 L= 247

DL= DBLE(FLOAT(L~-1))

AL= ROD*%2%(14D0+ (ETAD/DL)*%2)

BL= DL+ ROD*ETAD/DL

PL1= AL#PLO/((BL~. SLO)%#2+ PLO*¥%*2)
P{L)= SNGL{(PL1)

SL1=~BL+AL*(BL~ SLO)/((BL- SLO)*#24+ PLO*%*2)
S(L)= SNGL(SL1)

PHI1= PHIO— DATAN2(PLO»{BL- SLO))
TSIN= SIN(SNGL(PHI1))

TCOS= COS(SNGL(PHI1))

AS(L)= RO/SNGL(PL1)

TSQR= SQRT(AS(L))

F(L)= TSQR*TSIN

GiL)= TSQR#*TCOS

FP{L)= (SNGL(SL1)*TSIN+ SNGL(PL1)*TCOS)/SQRT(RO*SNGL (PL1))
GP(L)= (FP{L)*G(L)~ 1e)/F (L)

CP{L)= CP(L-1)+ ATANZ(ETASFLOATI(L-1})
PHI(L)= SNGL(PHI1)

PLO= PL!

SLO= SL1

PHIO= PHI1

THE TABLE 15 COMPLETE, PRINT AND/OR RETURN

IF(IPRINTAEGQGeO) RETURN

WRITE(69221) ROSETASFsFPsGeGP+PHI sASsPsSsCP4IC

FORMAT (/10X26HCOULOMB PARAMETERS FOR RO= 1PE12e512X8HAND ETA=
El2e5/ 5H L = 12X1HO 19X1H115X1HZ215X1H315X1H419X1IHS15K1H6/7
SH F  =3XT7(4XE12e5)/7 5H FP =3XT7(4XE12e¢5)/ 5H G =3XT7(4XE12+45)/
SH GP =3X7(4XE12¢5)/ S5H PHI=3XT7(4XE125)/ 5H AS =3XT(4XE12451)/
5H P =3XT(4XE12e5)/ S5H S =3XT(4XE1Z245)/ 5H CP =3XT(4XE1245)/
SH IC = 11)

RETURN

END

[o B VRS I
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TABLE I

It has been found convenient, in the text, to characterize
a resonance in the channel Li7 + a by its value of J T and its
decay amplitude for a given value of |\| the absolute value of
the spin projection along the direction of motion. This parity-
helicity representation is, however, not suitable outside the
nucleus where Coulomb effects are dominant, This table does

the conversion from one representation to the other. For
m

+ . .
a resonance with J = 5/2° mav decavw in the elactic
2 regonance with J o0/ 4 may deca the elagric

v in th
channel with a spin projection of 3/2 or 1/2. According to the
table, the decay with spin projection 8/2 has an amplitude of
0.632 for being L = 1 and 0, 774 for being L = 3,
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TABLE 1

Matrix Elements for Conversion from Helicity to

Orbital Angular Momentum Representation

JTI'

= 0

RANe

Elastic channel

1 2

3

4

1/2"
1/2°
3/2
3/2
5/2"
5/2
7/2"
/2"
9/2"

9/2

3/2, E
1/2,E
1/2,

3/2,E
1/2, E
1/2,1

3/2, E
1/2,E
1/2,1

3/2,E 0.707
1/2,E 0.707
1/2, 1

3/2,E
1/2, E
1/2,1

3/2,E
1/2, E
1/2,1

3/2,E
1/2, E
1/2,1

3/2,E
1/2, E
1/9,1

3/2,E
1/2, E
1/2,1

3/2, E

1/2,E
1?2,1

-1.

1.0

-0, 948
-0, 316

0,707
-0, 707

0.632
0, 7174

-0. 925
-0, 377

0. 597
0. 801

-0.316
0. 948

0. 774
-0, 632

-0, 912
-0, 408

0.577
0.816

-0.377
+0. 925

0.801
-0.597

-0. 904
-0.426

-0, 408
+0, 912

0.816
-0, 577

-0. 426
+0. 904
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TABLE I (continued)

For the decay of a resonance in B11 into the channel
L:'trﬁ< (. 48) + o', the situation is much simpler because Li7*(. 48)
has J" = 1/27, thus, only one L value for each J" is allowed,
and the matrix elements are + 1,0, The phase is relevant in
the case where there is another inelastic amplitude which has
the same J'.

See text page 22,
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TABLE 1 (continued)

Inelastic channel
= 0 1 2 3 4

i
,C

I

1/27 3/2,E
1/2, E

1/2,1 -1.0

1/2° 3/2,E
1/2,E
1/2,1 1.0

3/2" 3/2,E
1/2 E
1/2,1 1.0

3/27 3/2,E
1/2,E
1/2,1 1,0

5/27 3/2,E
1/2,E
1/2,1 1.0

5/2° 3/2,E
1/2, E
1/2,1 1.0

3/2,E
1/2,E
1/2,1 +1,0

7/2" 3/2,E
1/2,E
1/2,1 _100

9/2% 3/2,E
1/2, E
1/2,1
9/2" 3/2,E
1/2,E
1/2,1 +1.0

/2
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TABLE II-a

This table is to be used in conjunction with Appendix I,
The nuclear part of the angular distribution due to an isolated
resonance in B11 may be expanded in Legendre polynomials.
The coefficients of PL(cos 6) contain sums of products of decay
amplitudes for various L1 and L2 values, each multiplied by a
number related to a Racah coefficient. The exact expressions
are defined in equations (AI-10-15). We tabulate here these
relevant coefficients for the elastic angular distributions,
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T ABLE II-a

Coefficients for Elastic Angular Distribution from

the Reaction Li' + a - B11(J , T~ Li’ + o
Jm L L, L, a J,m L L, L, a
1 72 °L,L, 1 2 L,L,
1270 2 2 0.707 12 0 1 1 o0.707
3/220 0 0 1.0 /27 0 1 1 1.0
0 2 2 1.0 0 3 3 1.0
2 0 2 2.0 2 1 1 0.8
2 1 3 1.2
2 3 3 -0.8
5/2 0 2 2 1,224 5/20 0 1 1 1,225
0 4 4 1,224 0 3 3 1, 225
2 2 2 -0.468 2 1 1 -0,916
2 2 4 0.687 2 1 3 0. 962
2 4 4 -1.169 2 3 3  -0.720
4 2 2 -1.296 4 1 3  -2.7M
4 2 4 -1,984 4 3 3 -0,567
4 4 4 0,729
/270 2 2 1,414 72 0 3 3 1,414
0 4 4 1.414 0 5 5 1. 414
2 2 2 -1.322 2 3 3 -1,029
2 2 4 0.591 2 3 5 0,460
2 4 4 -1.146 2 5 5 -1,440
4 2 2 0.760 4 3 3 -0.181
4 2 4 -1.853 4 3 5 -1.441
4 4 4 0,207 4 5 5 1,128
6 2 4 3,303 6 3 3 1. 641
6 4 4 0.985 8 3 5 2. 569
6 5 5 -0,656
9/2~ 0 4 4 1,581 9/2" 0 3 3 1. 581
0 6 6 1.581 0 5 5 1. 581
2 4 4 -1,385 2 3 3 -1,506
2 4 6 0,336 2 3 5 0,410
2 6 6 -1.662 2 5 5 -1,451
4 4 4 0.535 4 3 3 1.215
4 4 8 -1.082 4 3 5 -1,322
4 6 6 1.428 4 5 5  0.748
6 4 4 0.872 8 3 3 -0.649
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TABLE II-a (continued)

Jm L L, L, a

1 72 fLg,L, 1 2 L, Ly
9/2~ 6 4 6 2. 102 9/2" 6 3 5 2. 569
6 6 6 -1,062 8 5 5 0. 259
8 4 4 -1,903 8 3 5) -3,702
8 4 6 -3.020 8 5 5 -1.309
8 6 6 0. 595
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TABLE II-b

This table is similar to Table II-a although simpler
because of the reduced channel spin (1/27) in the inelastic
channel. We tabulate here the coefficients defined in
Appendix I for the inelastic single-resonance angular distri-

butions.
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TABLE II-b

Coefficients for Inelastic Angular Distributions from

*
the Reaction: Li' + o - Bn(J ,T) = Li' (.48) + o

LyLy

172t 0 1 1 0. 707 /220 0 0 0. 707

372t 0 1 1 1.0 3/22 0 2 2 1.0
2 1 1 1.0 2 2 2 1.0
5/21 0 3 3 1,225 5/2 0 2 2 1. 225
2 3 3 -1.309 2 2 9  -1.309
4 3 3 1. 134 4 2 2 1.134
772t 0 3 3 1. 414 /2 0 4 4 1. 414
2 3 3  -1.543 2 4 4  -1,543
4 3 3 1. 450 4 4 4 1. 450
6 3 3  -1.230 6 4 4 -1,230
9/2t 0 4 4 1.581 9/2~ 0 5 5 1. 581
2 4 4 -1.741 2 5 5  -1,741
4 4 4 1. 683 4 5 5 1. 683
8 4 4 -1. 557 8 5 5 -1, 557
8 4 4 1.309 8 5 5 1. 309
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TABLE III

We present here a list of all the scattering anomalies
observed in one phase of another of this experiment. The
first six anomalies were studied in detail, The information
obtained about their spin and parity is given. A single bracket
indicates a probable assignment while a double bracket
indicates a possible assignment which is not in contradiction
with any presently available data.

See text page 24.
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TABLE III

Scattering Anomalies Observed in the Reactions
Li'(e, @Li’ , Li'(a, a')Li (0. 46)

Identlirf;cation EXBH I'p o ilz.rks
* MeV keV '
C. M.,
1 9. 88 130. 0 (3/2%)
2 10, 26 160. 0 weak, ((3/2))
3 10, 32 70, 0 (=5/2)"
4 10, 60 70.0 7/2"
5 10, 96 950. 0 ((5/2))
6 11, 27 160. 0 (7/2%, 9/2%)
7 11. 486 (60. 0) B:"O + n Threshold
8 11. 60 160. 0 ((5/2", 1/2%)
9 11. 91 140, 0 )
10 12. 04 900. 0
11 12. 18 (60. 0) 81%0.72) + n Th.
12 12. 55 145.0 (C)
13 13.06 290, 0 (=)
14 13. 25 (60. 0) B10(1,74) + n Th.
15 13, 63 (440, 0) 810(2.18) + n Th.
16 14. 00 450.0 Shoulder to 15
17 14, 67 250, 0
18 15. 03 (480. 0) 810(3,58) + n Th.
19 15,73 160.0 weak
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TABLE IV

This table lists the parameters which were used in the
model-program described in the text to compute the cross
sections shown in Figures 21-23. EXC. M. is the energy at
which the R-matrix has a pole; it coincides with the resonance
energy E r at which the scattering amplitude has a maximum
in all cases except for the level marked E)\C. M = 2. 90 MeV,

Thig ie due to the fact that I the enerov at which the lavel

AT ARV weisvu —.—B, vaal AT R ) AL WWAILALAL LAl

shift vanishes, is 1. 656 MeV in the channel J" = 5/27, The
-1 YL+ 2

L
between the L and L + 2 amplitudes in the elastic channel.

angle v = tan , in radians, specilies the mixture

See text page 63.
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TABLE IV
List of Resonance Parameters
for a T-level fit to the observed cross section for the

*
reactions Li7(cn, oc)Li7 and Li7(oc, oc')Li7 (. 48), below

the B10 + n threshold at EaL = 4,38 MeV.

E J7 T r/T. o E

C. M. tot, U E B Y3/2,E Y1/2,E '1/2,I

1.209 3/2° 0.15 4.0 0,0 1.209 0.159 0.053 0.820
1.590 3/2° 0.2 0.05 1.4 1.590 -0.251 0.356 0,188
1.656 5/2° 0.1 0.00011.1 1.656 0.052 0.624 0,005
1,940 7/2° 0.075 1,0 0,0 1,941 0,238 0.106 0.468
2. 90 5/2° 8.0 2.0 1.1 1.656 0.076 0.907 0.886
2.50 1/27 4.0 1.0 0.0 1.0 0.0 0.713 0.822
2.61  17/27 0.075 0.00010,0 1.941 0.209 0,093 0.003

+-
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Figure 1: Energy Level Diagram of Bl (39)

This figure shows the various thresholds for the reactions
involving Bll. The present experiment is concerned with the
levels of B11 that can be seen in the reactions
Li'(q, oa)Li7(Etr = 8,666 MeV) and Li'(q, o)Li" (. 48)(E,_=9. 144

MeV). The deexcitation y-ray occurring in the inelastic scatter-

ing indicates four levels between 9.8 and 11,4 MeV exc, in Bll.

Mo 10 90 AX-T 1ons

i~ Taernl r
110C 1V, va WICY 1CVCL

_ R Y S .
eV exc. (not shown

-]

. [N . XY, Y -
< iCw Ol dl 11, 4

=

1d a
in this figure) can be seen in the elastic scattering, This figure
may be compared with Figure 25,

See text page 1.
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Figure 2

We show here a schematic view of the experimental
arrangement used on the 3-MeV E, S, G. to collect the data
presented here below E oL = 3.22 MeV. A similar ar-
rangement was used at the tandem laboratory with the same
cold trap extension and counter collimator.

See text pages 7 and 11.
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Figure 3

Thig figure was obtained by measuring the deexcitation
y-ray yield curve for the reaction Li7(a, oc')Li7* (. 48). The
normalization is that of Li and Sherr 4 . The error bars on
the data indicate the statistical counting and background sub-

traction errors. The Li7F target used was approximately

40 keV thick for 3 MeV alpha particles.

See text pages 16 and 34.
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Figure 4

In this calculation we have taken the values of the energy
loss for protons in H, Li7, Clz, O16 from the tables of
Whaling(sq) . From these values we have calculated the energy
loss of alpha particles in the compounds shown, using the
formulae (I-1) and (II-2) given in the text. The value of the
specific energy loss or stopping cross section in keV- cm2 x10 18
has the same units as the ordinate of the graph. The dotted lines
for the lower energy portion of the graph indicate that the calcu-
lation, there, may be uncertain due to possible errors in our
estimate of ZZ. A measurement at 700 keV indicates a higher
value for AE, in a Li7OH target, than that predicted by the

calculation.

See text page 9.
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Figure 5

We present here a spectrum showing the various con-
taminants in our targets, due mostly to the release agent used
in the fabrication of the target foils (Duponol C). One may
also notice the low energy rising background. This background
was shown to be due to low energy ionizing particles (alphas or
carbon recoils) and puts a lower limit to the energy of the alpha
particles that can be detected. The small peak labelled Li7 may
be due to a residual lithium contamination of the apparatus used
in the fabrication of the foil, since this apparatus was also used
to make lithium-bearing foils. No lithium or lithium salts were

evaporated on this foil,

See text page 10.
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Figure 6

This profile was obtained to exhibit more clearly the

energy distribution of the particles scattered from a thin foil

at low energy. The front edge of the profile can be well under-
stood from the known properties of the magnetic spectrometer,
The back edge is broadened by the straggling effect and the non
uniformity of the target thickness, The value of the stopping
cross section deduced from this profile, agrees, within experi-
mental uncertainties, with the calculated value.

See text page 11.
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Figure 7

This profile was obtained under conditions similar to
those used in obtaining the profile shown in Figure 6. The
small number of counts shows the effect of a higher 3E/38
and dE/dx in this case, as compared with Figure 8. The
energy width of this profile is about 180 keV.

See text page 11.



COUNTS

40

30

20

104

PROFILE OF ELASTIC ALPHAST FROM L?
AT 90° LAB. E,=2.748

TARGET: L] OH ON C FOIL, 45°,
REFLECTION, C FIRST

O
I A T IS N S N N l\

.500

480 460 440 420 400
FLUXMETER VOLTS

Fieurs 7

380




105

Figure 8

We illustrate here the target deterioration which takes
place after about 1000 microcoulombs of bombardment on the
same spot, when the target is not protected with a cold trap
extension as shown in Figure 2. The energy loss of alphas
traversing the Li7OH plus contaminants is 96 keV. Of this
energy loss, about 36 keV is contributed by the incident beam
and the rest by the lower energy scattered beam,

See text page 11.
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Figure 9

Assuming that a plot of the specific energy loss of the
incident beam of particles in the target vs the distance inside
the farget has a rectangular shape, we have computed the
vield from such a target, as the incident energy is varied
over a resonance. We have assumed that, in the limit where
the target thickness is zero, the yield curve has a Breit-
Wigner shape. By simply changing the target angle with
respect to the beam, one changes the target thickness,
Curves 2 and 3 were found to be consistent with the observed

yield over the 10, 60 MeV resonance in Bll.

See text page 12,
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Figure 10

We see here a good spectrum of alpha particles from
which useable data was extracted. The spectrum shown here
was used to obtain the points shown in Figures 14 and 18, at
o, M. = 90° and E_; = 2,97 MeV. At backward and forward
angles, the alpha groups from Li7 were not so well isolated
and the background subtraction was not quite so obvious.

See text pages 13 and 15.
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Figure 11

Elastic Differential Cross Section Times the C. M. Wave Number
Squared, for Alphas on Li7

This yield curve represents a smoothed average of
several measurements, taken with various energy steps,
sometimes as small as 20 keV, The scatter of the points,
from which this curve was drawn, was less than 5%. The
numbered energies correspond to entries in Table III where
we have listed all the scattering anomalies observed in
this experiment. Some of the listed anomalies are not
visible in this graph, They have been observed in other
yield curves as explained in the text.

See text pages 16 and 24,
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Figure 12

Inelastic Differential Cross Section of Alphas on Li7’ Times
k2, the C, M, Wave Number Squared

This yield curve was obtained in the same way as
Figure 11, Here, only anomalies number 3, 8, 10, 11, 14
are not visible, The quantity k20 is plotted here again to
make the units dimensionless and to remove some of the
kinematical energy dependence,

See text pages 16 and 24,
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Figure 13

The solid line shown here was taken from Figure 3. The
experimental inelastic angular distributions (some of which are
shown in Figure 14) were analyzed in series of Legendre poly-
nomials, The overall normalization coefficient of all of these
angular distributions was adjusted to make the coefficients of
the PO term agree as well as possible with the solid curve.
This adjustment provided us with the absolute normalization
for the entire experiment, The error bars in the figure repre-
sent the fluctuations of the coefficient of PO as the number of
fitting polynomials was increased from one to seven,

See text page 17,
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Figure 14

Dimensionless Inelastic Differential Cross Section for
%
Li'7(a, @)L (. 48)

We show here several typical inelastic angular distri-
butions. To provide an estimate of the accuracy with which
such data were obtained, two distributions were taken at
E oL = 6. 40 MeV and analysed independently. The results
are shown in the figure. Above EaL = 4,39 MeV, all the
inelastic angular distributions show more or less pronounced
minima near GC. M = 60 and 120°. This might be due to a

direct interaction contribution to the inelastic cross section,

See text page 37.
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Figure 15

The penetration factor plotted here is dimensionless.
For a narrow resonance involving one L value, the width is

given by

2
T'= 2PL Y1,
2 ﬁz 2
L=—"—=3 %,
MR
h2 2
where 5 = 0.451 MeV in this case. 6“ is dimensionless

MR
(o)

and equal to one for a square well. The energy scale is given
for the elastic channel, One must subtract 0. 752 MeV from
the energy in the elastic channel to find the energy in the in-
elastic channel at which the inelastic penetration factor is to
be evaluated.

See text pages 16 and 28.
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Figure 16

Measured Dimensionless Differential Elastic Cross Section
at 0 3y = 159°

This figure gives the elastic cross section at the largest
C. M. angle for which reliable data could be obtained, for all
energies down to Ec,L = 1.6 MeV., The values of the cross
section were obtained from the smoothed elastic angular distri-
butions shown in Figures 17-19. The curve was completed by
doing an excitation function at this angle, in steps of 40 keV.
The first six anomalies were fitted using a multilevel R-matrix
model-program, The seventh occurs near the threshold for

B10 + n and was not fitted for this reason.

See text page 24.



122

v ¢ @
| |

V1 03 sa ,661=" 1v W[0-,0]

;1 (0'D) 17 804 NOILD3S SSOMD 211SVT3

|




123

Figure 17
Elastic Differential Cross Sections for Li7(a, oc)Li7, for

Various Laboratory Energies

These angular distributions were obtained by measuring
the cross section at intervals of 10° in the laboratory system,
starting at forward angles and going towards backward angles.
The process was then reversed, but this time the selected
angles were taken between the previous ones, to check on target
depletion, The solid lines are the resulis of a least squares fit
to the data using Legendre polynomials up to P6' Although the
fits are good, the numerical values of the coefficients were not
meaningful, being sometimes too large by a factor of 105. The
excellent fit seen here is thus the result of taking the difference
(which should be of order 1) of functions which are very large.

See text page 14.
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Figure 18

Flastic Differential Cross Sections for L17 (a, cx,)Li7

The comments made for Figure 17 also apply to all the
angular distributions presented in this work, In addition, we may
draw attention to the pronounced anomaly at backward angles,
centered at 3,03 MeV. At 8, ,, =140, 8°, a zero of P3(cos 2)1,
the anomaly vanishes, thus indicating an L = 3 resonance in B™",

The assignment JM=7 / 9" is proposed in the text for this level.

See text pages 14 and 33.
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Figure 19

Elastic Differential Cross Sections for Li7 (c, oc)Li7

In the energy range covered by this figure, the angular
distributions undergo rapid fluctuations both as a function of
energy and angle. No analysis was undertaken above

E
ol
of the scattering process and because of the paucity of reliable

= 4, 39 MeV largely because of the apparent complexity

nuclear reaction data, at these energies.

See text pages 14 and 38.
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Figure 20

Elastic Differential Cross Sections for Li7(cu, oc)Li'7

All the angular distributions shown in this figure show
pronounced backward peaking, This may be an indication
that non-resonant triton exchange scattering contributes

sizeably to the nuclear cross section, at these energies.

See text pages 14 and 38.



130

ELASTIC CROSS SECTION
730 Mev FOR Li(a,a)L|
2
[k "]cm VS E, iab AND 9cm°
- —+ 1
VO MeV
‘ - —1
vo ) |
-+ 1
7.00 MeV X
7.50 MeV
-+ —1
6.90 MeV
7.40 MeV
-+ 1
wso )
[ ! ! | l l | | L 1 i | [ | [
20 40 60 80 00 120 140 60 O 20 40 60 80 100 120 140 160 180
Hcm" 9cm°

Figure 20



131

Figure 21
Dimensionless Calculated Total Inelastic Cross Sections

The solid curve represents a calculation of the total in-
elastic cross section for the reaction Li7(on, a')Li7*(. 48), using
the model-program described in the text. The experimental
points show the measured cross section and were taken from
Figure 3. Levels number 3 and 6 contribute litfle to this cross
section since they have a small inelastic width, There is good
qualitative agreement between the computed and the measured
cross section. This graph is typical of the fits that we have
obtained.

See text pages 26-36.
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Figure 22

This represents a calculation of the elastic cross section

at 0. pr = 159° for the scattering Li7(0t, G)Li7, using the

model-program discussed in the text. The corresponding

mcasured cross section is given in Figure 16. The C, M,

«C. M.~ 0.636 B

The parameters given in the figure were used in the model-

energy is related to the laboratory energy by E

program. A complete list of the level parameters is given in
Table IV,

See text pages 26-386.
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Figure 23

This figure is similar to Figure 22 but at eC. M, = 900.
The experimental data is given in Figure 11. The agreement
with the data is poorer here, for levels 2 and 3, We believe
this is due to our failure to find the proper background. Such
a failure becomes more obvious at forward angles because of
the increased interference with the Coulomb amplitude., How-
ever, this difficulty should not invalidate our conclusions
which are not very sensitive to the background at backward

angles and for the inelastic cross section.

See text pages 26-36.
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Figure 24

This graph represents the sum of the single particle
energies in an axially-symmetric potential. The symbols
used are those of Nilsson 8 . Yor example, 14 indicates
that four particles are placed in the Nilsson orbit number one.
These orbits may be characterized, in the limit n=0, by
giving the L value, the j value and |k|, the projection of j
along the axis of symmetry. We then have the correspondence

Nilsson's number L]., Ix|™
1 81 /9 1/2*
9 P, o0 3/2"
3 P, /2 1/2
4 Py /2 1/2°
6 Dy /o 1/2%

Kmin is then the smallest value of K that can be obtained with
the given configuration,

See text page 46,
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Figure 25

Comparison of the Level Diagrams of B11 and Cl1

We now present, at the conclusion of this work, a

detailed comparison of the energy levels of B11 and Cll,

below E__ - = 11.3 MeV in B11. The various references
consulted in drawing this diagram are given in the text. The
results of the present work concern the levels between 9, 88

and 11, 27 MeV exc. in B11. Our assignments are consistent
with those for the analogue levels in C11 for the cases where
they are known in both nuclei. The nearly identical level
spacing for the two nuclei, which has previously been observed
at lower energy, continues up to the maximum excitation energy

studied in detail in this experiment,

See text page 42,
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