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ABSTRACT

This thesis is a theoretical investigation of pulsed neutron
experiments in thermal, non-multiplying, polycrystalline fnoderatOrs.
A transport approximation is used to model the spatial dependence of
the neutron distribution function.

The first part is concerned with the initial value problem for
the Boltzmann equation describing the decay of thermal neutrons in
a finite, polycrystalline system., The scattering kernel employed
contains an isotropic, square-integrable component describing in-

V,Z 2

clastic scattering and a term of the form vEel(v)S( -v") that models

elastic scattering. Laplace transform methods are applied to the
Boltzmann equation which lead to an unsuspe'cted structure in the
transform variable plane. Discrete eigenvalue existence theorems
are re-examined and the role of new continuum terms in the total
solution are considered. The variation of the lowest eigenvalue with
system size, i.e., the dispersion law, is thoroughly investigated. An
alternate representation of the dispersion law is developed which aids
in explaining experimental results.

In the second part of this thesis, a simplified model of the
inelastic scattering kernel is used to investigate and expand the ideas
in the first part and to examine the role of various continuum contri-
butions to the total solution. The dispersion law is examined in some
detail both analytically and numerically., Comparisons are made with

experimental data and multi-group calculations in beryllium and

graphite,
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The implication of results for experiment and multi-group
calculations are indicated throughout chapters II and III. Several
results of major significance are examined together with suggestions

for future work,
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I. INTRODUCTION

A, THE PULSED NEUTRON EXPERIMENT

A significant amount of both experimental and theoretical
work has been done on pulsed neutron experiments since the technique
was introduced by von Dardel1 2 in 1954, Initially, the purpose of
such experiments in non-multiplying media was to measure certain
physical parameters of interest to reaétor design such as the ab-
sorption rate and average diffusion coefficient. In recent years,
~motivation has been provided by a desire to better understand the
approach of the neutron field to equilibrium.

The experiment itself consists of introducing a burst of
neutrons into a system and measuring the resulting decay of the
neutron density caused by absorption and leakage. Simple analysis
leads one to believe that the asymptotic behavior in time is exponential.
It also predicts that by measuring the decay constant as a function of
system size, one can deduce the desired physical quantities. The
concept of a buckling, given by 'n'z/(characteristic dimension)z, is
introduced as a measure of the size of the system,

In non-polycrystalline moderators such as water, agreement
between experiment and theory is very good. A recent compre-
hensive work3 concludes that the agreement between observed and

. calculated time decay constants ior water implies that scattering
models incorporating the essential physical features of this scattering
system are sufficient for pulsed neutron calculations., It is further

concluded that once bucklings are assigned for various systems, it
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would be unnecessary to perform experiments to obtain pertinent
physical parameters since they could be calculated theoretically,
Results of work in polycrystalline moderators such as graphite
and beryllium produceAno such confidence. Agreement among experi-
menters is comparatively poor, and certain results appear to contra-
dict theory, As far backas 1962, Beckurts4 concluded that the
situation in graphite is "less favorable" than that in water and that
theorectical work would be necessary to show how these experiments

can be evaluated.

B. REVIEW OF THEORETICAL WORK
The first theoretical analysis of puléed neutron experiments

2

was included in von Dardel's original papers. He developed the
idea that the equilibrium spectrum in a finite moderator would be
diffusion cooled because of the preferential leakage of faster neutrons.,

Antonov et al. > derived an expansion of the fundamental eigenvalue as

a power series in the buckling, BZ,

A, = @, +D_B%-cB*+... (1-1)
using two group diffusion theory. Nelkiné, using perturbation theory,
subsequently developed a similar expansion irom the energy dependent
transport equation. Analytic expressions for Do and C clearly
indi;:ate their physical origin,

These initial theoretical efforts implicitly assumed that a

fundamental discrete eigenvalue existed for every system size,
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Lehner and Wing7 first attacked this question for the one-velocity
Boltzmann equation in slab geometry using the spectral theory of
operators. They found that a discrete eigenvalue always exists for
any slab thickness. However, the discrete spectrum consisting of

a finite, non-void set of real eigenvalues coexists with a continuous
spectrum occupying one half of the spectral plane., Van Norton8
examined the one-velocity Boltzmann equation for spherical geometry
and also found that a discrete mode exists for every sphere radius.

In fact, he found only discrete spectra which form an infinite sequence
of real numbers without an accumulation point in the finite plane,
J.c;rgens9 obtained similar results in spheres using the energy depend-
ent Boltzmann equation but bounding the minimum neutron speed away
from zero,

Corngold and Nelkin wcrc the first to approach this problem
using the full energy range. Corngoldio employed asymptotic reactor
theory to model the spatial dependence and a general, isotropic
scattering kernel. Under these assumptions ,' he found that the discrete
eigenvalues are bounded from above by the minimum value of the col-
lision frequency, VET(V) , generally denoted A Furthermore, there
exists a certain critical size with buckling BZ = B*'2 such that for
systems smaller than critical, no discrete eigenvalues' exist.

Neikin11 examined the velocity dependent Boltzmann equation in
| spherical geometry with exact boundary conditions but with a simple
one-term degenerate scattering kernel. He also found that the

discrete eigenvalues are bounded from above by N and that the
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discrete spectrum is empty when the sphere radius is smaller than
some critical value. Theorists studying sound propagation encountered

similar situations. For a recent discussion, see Sirovich and

Thurberlz.

More recently, Albertoni and I\/Iontagnini13 and Bednarzé5
were able to prove these same results for the exact energy dependent
Boltzmann equation in bounded geometry and a rather general isotropic
scattering kernel. Ukai14 and Mockell® provided the necessary proofs
for infinite slabs.

In all these anaiyses, the scattering kernel is assumed to be
compact and the total cross section to be a smooth, non-increasing
function of energy. Theory and experiment are in agreement where
such assumptions are justified, e.g., water. However, neither
assumption is true for polycrystalline systems. And it is hexe that
theory and experiment appear to disagree. Figure 1 illustrates this
disagreement. Experimenters apparently extract a discrete decay
constant in systems smaller than critica]if)—zo. Figure 1 illustrates
the situation for beryllium in which )\* = 3800 sec-i. A similar
situation exists for graphite and beryllium oxide. As well, multi-
group diffusion theory calculations employing the best scattering
kernels available yield multi-group eigenvalue curves for polycrystals
that differ markedly from those for water., This is demonstrated in
| figures 2 and 3 with the results of Ghatak and HOneck21 .

.22-24

Kothari has attempted to explain this condition by sug-

gesting the observed decay constants are the eigenvalues of an
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equation bounded in energy on the low energy side. This raises the
eigenvalue bound such that the experimental data in beryllium lie
below it. One should, however, be able to explain the discrepancy
without resorting to such an assumption. Indeed, if the Boltzmann
equation governs the experiment, we must explain the problem from
a more general viewpoint.

Most recently, Corngold and Durgun25 have approached the
problem with diffusion theory and a modified kernel first proposed
‘in general form by Corngold.26 which accounts for elastic scattering
in polycrystals. The structure of their time transform plane is
shown in figure 4 where overlapping branch cuts exist on the negative
real axis. Areas do not arise because transport effects are not
included. When discrete eigenvalues no loﬁger exist, they find a peak
in the integrand of the line integral about the cuts. The result is a
solution which appears to decay exponentially for typical measuring
times with a "pseudo-fundamental” decay constant. However, the
line integral contribution was not calculated.A They also develop an
extended >‘o VS, B2 curve which has a discontinuous slope at )‘o = )\*.
This effect appears to be peculiar to diffusion theory.

27

Borysiewicz and Mika™ ' have considered the energy dependent
Boltzmann equation including isotropic elastic scattering. They find
that including elastic scattering does not change any of the results
already obtained for square-integrable kernelsB. However, their

analysis implicitly assumes VET(V) has no upward discontinuities

such as those which exist for polycrystals. Including such
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discontinuities will alter the spectrum of the Boltzmann operator.
The works discussed here have recently been thoroughly

reviewed by Kugﬁerzswho includes a very complete bibliography.

C. MOTIVATION FOR THIS THESIS

The motivation, then, for this thesis is to gain a more thorough
understanding of pulsed neutron experiments in polycrystals and, as
well, a greater appreciation of the multi-group computer calculations
that have been performed.

The aim is to include transport effects with the asymptotic

reactor theory {or e 1-3-‘-1—') model of the spatial dependence. This

assumption has been of paramount importance to the field because of
the physical insights it has allowed. Also, particular attention is
placed on maintaining certain physical aspects of neutron scattering
in polycrystals. This includes a non-square-integrable kernel and a
discontinuous total cross section.

In recent years, it has become fashioﬁable to approach prob-
lems of this nature with the spectral theory of operators., However,
as posed, the initial value problem for the Boltzmann equation can
" be handled in a straightforward manner with integral transform
techniques. Therefore, rather than examine the Boltzmann operator
for various types of eigenvalue spectra, transforms are used and the
analyticity of the resulting transformed density is considered. How-
ever an attempt is made to suggest which parts of the transform plane

are in the spectrum of the operator. Hence, the thesis employs
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transform techniques and no proofs relating to the spectrum of the
‘operator are included.

| The role of discrete eigenvalues is of particular importance
and we will examine the questions of when and where they exist, and
how they vary with system size. Consideration is given to the con-
nection between certain physical parameters, the dispersion law,

N (BZ) » and the structure of multi-group computer results. The

o}
various continuum terms in the total solution are examined together
with their relationship to one another and to the discrete mode.
Chapter II is devoted to the analysis of the general problem
with a kernel that includes both inelastic and elastic scattering.
Chapter III employs a modified degenerate kernel model due to
Corngold to evaluate both the dispersion law and the continuum
contributions in the total solution. The importance of results for

experiment and computer analysis are scattered throughout the

thesis and, as well, in the summary and conclusions.
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II. GENERAL THEORY

A. FORMULATION OF THE PROBLEM
The basic equation describing the behavior of neutrons in a
homogeneous moderating system is the linearized Boltzmann

29

equation

('g%‘+ veV + VET(V)>n(_,X,t) = gv'E(v'”_\_r)n(_I:,X',t)d‘sv' + S(r,v,t).

(II-1)

n(r,v,t) is the neutron density or neutron distribution function and
depends on position r, velocity v, and time t. S(g_,x_r,t) is a source
distribution function, ET(V) is the macroscopic total cross section,
and v'Z(v'—~v) is the scattering kernel describing the rate of scatter-
ing from &>v' about v' to a3y about V.

We are interested in the solution of the initial value problem

for equation II-1 in a finite, polycrystalline moderator. This implies

a source term of the form

S( :X:t) = S(E,_Y)&(t) (II'Z)

where & 1is the Dirac delta function., As well, the system is assumed
to be in a vacuum implying particles escaping from the surface do not

return. This supplies the boundary condition for a convex body,

n(z_,v,t) =0, t>0 and &_-vy<0 (II-3)



-12-

A,
where e, 1s the outward normal at the surface point Iy

\

We now assume a solution of the form

nlr,v,0 = Pyt b, (BD) (11-4a)

where B is the wave vector and

Y (B, r)=eB’X

asy (II-5)

This solution is separable in space and energy and we assume that a
single spatial mode is @dequate Lo describe the neutron density. This
amounts to neglecting spatial transients near the boundary of the
system and eliminates the role of the boundary condition II-3. This
general approach is referred to as asymptotic reactor theoryzg, In
effect, we are replacing the problem of the decay of a thermalized
pulse in a finite, homogeneous system by a similar problem in an
infinite medium in which the neutron flux vanishes at an extrapolated

boundary of the system. The spatial function Lpasy(§ ,x) is the

fundamental solution of the wave equation

Voo (Box) + B, (B,x) = 0 (11-6)

subject to the boundary condition that \.pasy(_B_ ,r) vanish at the extra-
polated surface of the system, i.e., the distance from the boundary
where the analytic continuation of the asymptotic solution is zero.

For example, the buckling of an infinite slab of width 2d is
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-2
2= [omry | (=)

where z is the extrapolated endpoint.

The comparison of the infinite medium theory to be used in
this thesis with experimental results depends on the validity of the
procedure for assigning an equivalent infinite medium buckling to a
finite system. Several investigations (for a review, see chapter 5 of
reference 30) indicate it is likely that the usual interpretation of
cxperimental results in tcrms of infinite medium parameters will be
accurate if the extrapolation distance is carefully defined when
assigning bucklings to the systems considered,

An additional motivation for assuming the applicability of
asymptotic reactor theory is that it has led to important physical
consequences that were later confirmed for the Boltzmann equation
with the exact boundary conditions II-3. As an example, COrngOldiO
predicted, using asymptotic reactor theory, that there exists a
maximum BZ, denoted B*Z, such that for B‘2 > B*z, no discrete
time eigenvalues exist. This was later confirmed for the Boltzmann
equation with exact boundar& conditions by Albertoni and 1\/Ic)ntagnini13
and Bednarz 65. Thus, we take the approach that the assumption of
asymptotic reactor theory appears to retain enough transport charac-
ter to yield correct physical results while reducing the problem to

tractable form.

We also assume the source has the form

S(r,v,t) = Q(_Ié,:\_r)éi(t)ei—lé'E (II-4Db)
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67

and that, again, a single buckling mode is sufficient. Barnard et al.
‘have shown II-4b to be an acceptable approximation if we replace 6&(t)

by §&(t - ts) , where tg is the slowing down timec for neutrons with
A-1>2
A+l

and A is the atomic weight of the moderator. At the time, ts, the

final energies in the range ES to Es/a. Here, ES"‘ .3 ev, 0!:(

neutron population in the higher spatial modes is negligible compared

with the population in the fundamental mode. (Barnard et al. o7 show

that the ratio of fast non-leakage prcbabili’cies51 during slowing down,
-(B %-B )7 = 51

e , is of the order 10 . Here, 7T 1is the Fermi age” .)

Thus, shifting the time origin so that t, = 0, and substituting

equations Il-4a and ll-4b, the Boltzmann equation becomes

(‘% T vZo(v) +i_1§_'x_f‘) o(B,v,t) = S‘ v'z(z’~>_xg)qo(§,x_r',t)d3v' + Q(B,v)5(t)

(II-8)

B. THE SCATTERING KERNEL
The scattering kernel in this equation is of primary importance.

One of its basic general properties is the detailed balance coudit10n3o

v'Z(v'=vIM(v') = vZ(-v= -v') M(v) (I1-9)

where M(v) is the Maxwellian distribution. Kernels for the poly-
crystalline forms of graphité and beryllium are distinguished by the
preddminant amount of coherent elastic or Bragg scattering of
neutrons in the thermal energy range. Such scattering is represented

by 6-functions in energy and angle which causes the kernel to become
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non-square-integrable. Hence, it is natural to separate the kernel

into two partsv,
v'Z(v'—v) = V'Einel(_\:'-»x) +V'Eel(l/'~*x) (II-10)

where the first term describes all inelastic interactions and the
second all elastic scattering. The elastic kernel contains §-functions
and will be called the singular part of the kernel., The results of
].Dorf:rna.n31 and Kuséer and Corngold32 indicate that the inelastic term
V'Zinel(lr'ﬂlr) , or one of its iterates, is square-integrable provided
inelastic coherent scattering is neglected. Thus, the incoherent
apprOXimation33, in which one neglects all interference effects and

. . o ‘
replaces o‘;nc by O_}Dnc + 0‘; h, is used to construct kernels

inc coh

describing inelastic scattering in polycrystals. oy and op are

the bound atom incoherent and coherent cross sections, respectively.
We will further assume that all scattering is isotropic. This
assumption is generally made in such analyses and, hopefully, will
not alter the basic qualitative results.
Thus, we have generated a "super-incoherent,” isotropic

scattering kernel for slow neutron scattering in polycrystals given by

v, (v',v) vE (V)
v'B(v'—v) = 1n§jT + 4;?1 5(X'2’_YZ) (IT-11)

"

26

Kernels of this form have been discussed by Corngold™ .
An additional feature of polycrystalline systems 1s the existence
of a cutoff speed at the Bragg cutoff, Vg such that for v < Vg the

elastic, coherent scattering cross section is zero. To understand this
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feature, récall that the coherent scattering of neutrons results from
the periodic arrangement of nuclei in a lattice. The term coherent
implies neutron waves scattered from one lattice site interfere with
waves scattered at other sites. When the neutron wavelength becomes
greater than twice the lattice spacing, elastic coherent scattering can
no longer occur. The effect is to cause the total cross section to
exhibit a major discontinuity at the Bragg cutoff,

The expression34 for the elastic, coherent scattering kernel

in polycrystals is

2
= -T°"W
e ) = 1 coh e 2 ) .8
Zel,coh(x v) = §(E'- E) yip Z 7_2 ]FII 5(r ZkOSln 2)
¢ 7
(11-12)

where 7 1is the reciprocal lattice vectorés; Ve is the volume of the

unit cell; k is the momentum transfer vector; |k]| = 2k sin 5 o g is

2 )
the scattering angle; Ecoh is the zero energy bound atom coherent
cross section; F_ is the structure factor for scattering from a unit

cell; and
o= max f(w)
W= 'Z‘—’M—S‘O | dw COth ZkT . (II-13)
Details about W are given by Young and Koppel34. The term
polycrystal implies averaging over the various directions of 7. The

total coherent, elastic scattering cross section is obtained by inte-

grating the kernel II-12 over all scattering angles and over E' yielding



_’J:< 2mE
= (v) = T MZ i E:iY’F II-14
el,coh'”’ =~ “coh 8mkE T Th” (II-14)
T
;{1272

i
Thus, when E < —-—8-5—1—1—1—- , the sum over 7T does not exist and

Eel,coh(v> = 0, In this inequality, T min is the maximum interplanar

distance and

ﬁzT?nin
EB = ———t (11-15)

8m

yields the Bragg cutoff energy. Notice that other discontinuities appear
as the incident neutron energy increases., DBetlween discontinuities,
Eel,coh(v) varies as 1/E. Figure 5 illustrates this behavior in
graphite together with the results of theoretical calculations of various
cross sections35. The non-physical assumption that Zel(v) is con-

26,217 different from

tinuous and monotonic in v has led to conclusions
those of this thesis and emphasizes the importance of retaining the
major characteristics of the scattering cross sections of polycrystals.
The assumption of isotropic elastic scattering effectively
means that we expand the sum over 7 in Legendre polynomials and
retain only the PO component, Young and Koppel34 have calculated
the Po and P1 components of the elastic, coherent scattering kernel
for beryllium and found that for more than two reciprocal lattice
vectors in the sum II-12, the P1 component is small compared to
the Po part. Hence, over the bulk of the energy range, we expect

the isotropic elastic scattering assumption to be good. We could now

replace the sum over reciprocal lattice vectors by an integral and



-18-

8.0 T U i T T T T 7 T T T

(BARNS)

A oo MEASURED DATA
- ~ DUE TO WALTON

CROSS SECTIONS OF GRAPHITE

2.0~ ]
1.0~ TINELASTICT\
(GASKET) .
INELASTIC
- (SUMMIT) -
\
O I 1 Lo I 1 1 L1 l 1 { [
000I 00l 0.l 1.0

NEUTRON ENERGY (eV)

FIG. 5. Experimental and calculated cross sections for
graphite.



-19-

obtain the incoherent approximation to elastic, coherent scattering.
This approximation is used extensively in multi-group calcula’cionsz1 ’35.

Throughout most of this thesis, only the major discoﬁtinuity in
ET(V) at the Bragg cutoff Vh is included. The other minor discon-
tinuities have no major qualitative effect on the conclusions.

A final comment must be made about the total cross section
behavior below the Bragg cutoff (v < VB). There, we shall take ET(V)
proportional to 1/v. This is referred to as the "\-law" because it
implies the cross section is directly proportional to the neutron wave-
length., For neutrons below the cutoff, the main inelastic scattering
process is one where the neutrons absorb energy from the lattice and
thus gain energy. The scattered neutron being fast compared to the
incident neutron leads to the 1/v behavior. The "\-law" is illus-
trated in figure 6a for graphite. For beryllium, however, figure 6éb
shows that the cross section deviates slightly from 1/v just below

the cutoff because there remains a possibility of energy transfer from

the neutron to the lattice.

C. ANALYSIS OF BOLTZMANN EQUATION
The Doltzmann equation II-8 with the scattering kernel II-11

becomes
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(—a—+v>* () + 1B ) (B, v,p )
5t T VET Vi) 2AB v,
{ wnl
P 1 1 ! ! ] 1
= ZSO S\—i v Einel(v »V)e(B,v ,u',t) dv' dp

+

vEel(v) S\ 1

> ‘P(B:V:P":t) le'l +Q(V:P‘)6(t) (11_16)
-1

Bevw

where p = \ By ) This equation can be written in a more compact

form by defining the operators

1 0 ~1
= - 1 1 1 1 _
5, = ZS; 5_1 VB (v',v) av' du' (I1-17)
VZel(V) ~ 1
5= ——-2————*5_1 du' (II-18)
AmE - (VET(V) + iBv) (II-19)
A =S tS5_ tA (I1-20)
L e m

Then equation II-16 becoemes

%% = Ag + Q(v,p) 6(t) (IT-21)

At this point, one could proceéd in either of two ways. One
method is to use the spectral theory of operators and functional
analysis in an effort to solve II-21. Thus, we Laplace transform
in time, solve the resulting inhomogeneous equation using the resolvent

of A, and present the solution as the Bromwich inversion integral (see
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Ku‘ééerzs

B U i BV -1
e(B,v,p,t} = lim E}Tg e (M- A) TQ(v,p) AN (II-22)
Yoo a-iy

I is the identity operator and "a' lies to the right of the spectrum of
A. This approach requires that we consider the linear operator A
as defined on a Hilbert space ,Sf,z. One works in such a space pri-
marily for mathematical convenience (we know the theorems there).
As well, the detailed balance condition II-9 makes it possible to sym-
metize the scattering kernel in the Boltzmann equation II-1, In such
a space, we can associate with A an eigenvalue spectrum the comple-
ment of which is the resolvent set, A detailed discussion of this
‘approach is given in reference 28.

Alternatively, we can Laplace transform II-21 and examine the
analyticity of the resulting transformed density, This approach is more
straightforward and is employed throughout the remainder of the thesis.

Thus, define the Laplace transform of ¢@(R,v,p,t) as
~ Rt
@(B,v,p,A) = S e ¢(B,v,u,t) dt (II-23)
o)

and operate with it on equation II-21. The result is

-~

Ne(B,v, i, \) = Ap + Q(v,p) . (IT-24)

Define the transformed scalar density as

i

(B, v,\) Eg P(B,v,u,\) du . (1I-25)
-1
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Explicitly, equation II-24 is

(A + vEL(v) + iBv)e(B, v, \)

1

o vz (V)
:Ego Mg G (B, av! +_'—— LB,V ) Qv ,p)

(1I-26)

Assume M\ + VET(V) + iBvp # 0, divide by it and integrate over p to

obtain
T(B,v,N) [(®
U(B v,A\) = m LJ mel(v V) (B,v',\} dv' + 2Q(v, p)I(II 27)
where
_ 1 -1 B
T(B,v,\) = 5 tan m%_TT) (II-28)
T
and
Z . (v)
- el -1 By
Te(B SV, A = B ‘tan m . (I1-29)

Here, we employ the principal branch of the arctangent function.
Equation II-27 is an inhomogeneous Fredholm integral equation for the
anglé integrated transformed density Tp(B ,v,A). Examining this
equation will allow a determination of the analyticity properties of

Y(B,v,\) and, as well, detailed information concerning the associated

eigenvalue problem.
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D. STRUCTURE OF THE TRANSFORM PLANE

As a function of A\, :‘p(B »Vi.\) 1s not analytic at those values
of N for which the homogeneous form of equation II-27 has non-trivial
solutions. These values of N are the discrete eigenvalues of the
problem and correspond to the discrete spectrum of the operator A.
As well, Tp(B,v,)\) is nol analytic at the singular points of T(B,v,\)
and at the zeros of I"e(B,v,?\).

We can best examine the function T(B,v,\) by rewriting it as

it was defined, namely

1 .
4 dp ' _
The integral over p defines a function analytic in the N plane except

for the set defined by
At v2o(v) TiBvp = 0; v [0,00), pe_ [-1,1]. (II-31)

This reflects the assumption made to obtain equation II-27. Since the
inelastic kernel is compact, Si:’p(B,v,k) is analytic wherever E is.
Hence, we find '\L(B,v,)\) is not analytic wherever equation 1I-31 is
satisfied.

The presence of 1/I‘e(B,v,7\) in II-27 implies J is also not

analytic at those values of N\ satisfying
+
I"e(B,v,)\) =0 v E [VB ,0) . (II-32)

The range of v is restricted because Zel(v) =0 for v< Vg For



...25-

36

fixed v, II-32 is exactly the form of the one-velocity dispersion law
reflecting the one-velocity nature of elastically scattered neutrons.

- Solving II-32 for N\ vyields -

A=A (BY) = - v (Bpv) - RB ) (II-33)
tan (-}3—1‘(‘_’_))
e

It is readily shown that

min+ Ke(B,v) = )‘e(B’VB) = )\'el . (II-34)
v vy )

In other words, that point of the set defined by II-33 with least real
part occurs when ET(V) and Eel(v) are evaluated just above the Bragg
cutoff, Kel will play an important role in determining the shape of
the dispersion curve (the variation of the smallest discrete eigenvalue
with buckling, BZ).

The discrete eigenvalues, -)\O, are physically expected to have
negative real parts, i.e., Re ()\O) = 0. As well, in Appendix A, we
symmetize the kernel and prove that only real eigenvalues exist.

. . . i
Furthermore, there is numerical ev1dence21 241,43,44

that, at most,
one discrete eigenvalue exists with magnitude less than )\.* when the
kernel employed describes neutron scattering in the polycrystalline
forms of graphite and beryllium.,

Equations II-31 and II-32 together with the restrictions described
above imply the \-plane structure of figufe 7. This figure is drawn to
scale based upon parameters for graphite, It is general terminology

il

in the field to refer to the line cuts and area as continuum since such
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sets correspond to the continuous spectrum in spectral theory. The

vertical line cut at Re (\) = - A = - min (v Z‘T(v)) is a result of the
| vE [0, 00)

constant collision frequency below the Bragg cutoff. It is thus called

the "sub-Bragg" continuum, TSB" It is disjoint from the area

because ET(V) is discontinuous at v The area to the left of -\

B A

is the set defined by T1-15 for v > v_ and reflects the nature of ZT(V)

B
above the Bragg cutoff. This area can become fragmented if we
account for the other, smaller, discontinuities in ET(V) occurring
at v> vy and caused by higher order Bragg reflections. The set
eminating from the area is defined by II-31, depends critically on
Eel(v) , and thus is referred to as the elastic continuum, Teo

It is both interesting and instructive to compare this new A-
plane with those obtained in previous theoretical efforts., Figure 8
results from using asymptotic reactor theory and continuous, non-
increasing cross sectiOnsio. The area reflects a condition analogous
to II-15, As mentioned earlier, the separation of TSB and the area
in [igure 7 resulls [rom the discontinuily in ZT(V). Figure 8 cuntaias
no analogy to Te because there is no elastic scattering. The M\-plane
for diffusion theory with discontinuous cross section and elastic scatter-
ing was presented in figure 4.

The structure of the A-plane in figure 7 is based, in part, on
the assumption of constant collision frequency below the Bragg cutoff,
Figure 6a shows this to be an excellent assumption for graphite. How-

ever, we might well ask what effect deviations from this behavior, as

in figure 6b, have on the \-plane structure. The effect is to expand
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The \-plane which results with smooth cross sections

and asymptotic reactor theory.
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-

the line cut I SR into the narrow area in figure 9, The right side still
has Re{\) = -\ but the left is given by Re (A} = -VB(Ei(VB) + Za(vB) Yo
In addition, the edge of the elastic continuum, - Kel’ now equals

—VB(Ei(vB) + Za(vB)) at BZ = 0 instead of k*.

E. DISCRETE EIGENVALUES
If we recall the conditions on the discrete eigenvalues and
examine figure 7, we see it is possible for discrete eigenvalues to

exist between the origin and T and, in addition, in the gap on the

SB
negative real axis between TSB and I‘e. These latter eigenvalues
will have magnitude greater than )\* and be bounded from above, for
fixed BZ, by the edge of the elastic continuum. This is in contrast
with part of the "maximum BZ“ theorem of Corngold10 which states
that A is ;Ln upper bound to the magnitude of any discrete eigenvalue,
However, he implicitly assumed smooth, non-increasing cross sections
and did not explicitly account for elastic scattering. This illustrates
the importance of maintaining the physical néture of scattering in poly-
crystals. A maximum B? theorem can be proven but it yields a much

larger value for the critical buckling. The proof yields a method for

determining the large B2 behavior of the discrete eigenvalues.

. R 2 ek
Theorem: There exists a maximum B”Y, say B

2 w2 . . . . . .
B™">B » no discrete eigenvalues exist outside the continuum regions

,» such that for

of the MN-plane. In addition, all such eigenvalues are bounded in mag-

nitude from above by \,, the edge of the area continuum.

A!
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Proof: The implicit eigenvalue equation for -)‘o’)‘o = 0, is

T(B,v,~-A )
LlJH(B Vo k )— 1—' (B,v )\. ) g v 1nel(V ’VMH(B Vi A ) dv' (I1-35)
' 7o o

The proof follows the general outline given by COrngoldio. To obtain

a dispersion law, we assume the eigenfunction, LpH(B viA,), is nor-
~ 00
malizable, i.e. 5 in(V)LIJH(B,v,)\O) dv # 0. Multiply II-35 by in(V),

o}
integrate over v, and normalize the left-hand side to one. This gives

{S‘ ) tan~ ( ) de viZ lnel(v',v)TpH(B,v',ho) dv!

)\+)\

Z.(v) tan

) gm z ! (WQ

[o's) A
5

de’ viZ (v' ,v)LJJ (B,v' )\)d J

vy T (B,v,-\) o inel H

(II-36)

Ei(v) is the macroscopic inelastic cross section. The functional

A(x,B;@H) defined by

AN, By =

S-oo in(v)T(B sV, A)

O
fo! Te(B:V: KY dV S‘O V lnel(v V)LPH(B v ,-)\-) dV'

(I1-37)

is commonly called the dispersion function,

Equation II-36 can be re-written as

1 (% ~
1 = -ESL vE (VI (B, v, N) {gb(B,v,ho) +g (Byvi\) } dv (I1-38)
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where
VB =, (V ) By!
— !
gb(B ,V,)\.o) = o —m 1ne1(v v ) ta.n ( :—-)—\—-;-—}\— ) dv (11—39)
and -1 ,
[ © Zi(v') ' ( )\. +v E )>
_— 1
gu(B’v’)‘o) -S 2.(v) Emel(V V) T (Bv',-\) dv
VB 1 e H 2 o

(II-40)

Equation II-38 is a necessary condition for the existence of a non-trivial
solution of equation II-35, Our aim is to show that both gb(B’V’)"u)

2

and gu(B,v,)\o) can be bounded independent of B®, If lgb(B,v,)\.o)] <K

and igu(B,v,)\o)§<K2 for K; and K, independent of B2, then

00
1 ~
1= B go VEi(V)LPH(B,V,)\O) {gb(B,v,)\o) + gu(B,v,)\.o) } dv

(K1 + KZ) ~
= ———E—-—-——‘S‘ in(v)\L’H(B,V,KO) dv (II-41)
o .
(K, + K.)
= _.LB__.%_ . (II-42)

Therefore, for sufficiently large BZ, equation II-38 will not be
satisfied.
Corngold's original argumentslo remain applicable to

gb(B,v,ho) and yield
. B Ei( ) .
— [ — 1= —_—
gb(B ,V 7\0) = ]gb(B,v,)\o) I = 2\5; Ei(v) Einel(v’ viydv'=s 2‘gib(v) < Ki'

(IT-43)
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He has shown that Ki is independent of Bz. If gu(B,v,hn) did not
have the factor 1/Te(B,v,-)\O) in the integrand, his original proof

would remain unaltered. However, this factor implies gu(B,v, }\0)

cannot be bounded independent of B? unless B2>[ 'rrZ‘el(vB)/Z] 2.
To understand this condition, examine I‘e(B,v,-ho) in closer
detail. We know that its zeros, given by equation II-30, satisfy

N (B,¥) + vEL(v) >0 for fixed B, Furthermore, II-30 implies that
the inequality ——2—]-5;(-{’—) < —g must be satisfied. We know from equation
el

II-34 that min A (B.v) =) (B,vg) =1\
vE [v T, ) ¢
B
BZ. Therefore, any discrete eigenvalue on the real axis in the gap

p and I’e is bounded from above by }\el' As B? in-

where Xe depends on

el 1

between I‘s

2 T2 (vp)
creases, but with B™ < (—-—2—————> » the necessary condition II-38

can be satisfied by letting ()"el - ?\O) be as small as is necessary.
The function I“e(B,v,-?\o) decreases with decreasing )‘el_ Ag»
expecially near vge To satisfy equation II-38, for fixed BZ, we
decrease (?\el- 7\0) and thus increase gu(B,v, 7\0) until II-38 is
obeyed, This yields the large B2 behavior of }‘o’ namely, M\  tends

2

asymptotically to Ke with increasing B".

1
> (vg) 2 '
When B2> (———-—El——-ls—) » (2 (vy) = max Z (V) ), we
2 el'' B el
VE(VB:m)
replace I‘e(B,v,-)\o) by 1. Now only ?\A bounds )‘o and )\A is
2

independent of B”., Therefore, Corngold's original arguments allow
gu(B,v,ko) to be bounded by some KZ.’ independent of BZ. Thus,

T Eel(VB)‘ 2

given any B2 > ( -—-—-——Z———-) , there exists finite constants, K1 and
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KZ’ independent of BZ, such that ]gb(B,v,Ko)] < K1 and
lg (B.v.a )] < K, and

(K, + KZ)

B

o .
i ’ 1
'B'S‘O 'Vzi(V)LPH(BJV:)"O)(gb(B :V:)\O) + gu(B 2V, )\'O)> dv <

(II-44)
‘s . . 2 *K2 2 2
This implies there exists a B”, say B » such that for any B> B )

no discrete eigenvalues exist. This completes the proof.

Since }\O tends to Kel’ )\'el tends to )\A’ and B/Eel(vB) tends
to w/2 with increasing BZ, we expect [)\.O - )‘ell to be very small at
B = TrEel(vB)/Z. Taking (B**)2 equal to nEel(vB)/Z predicts poly-
crystalline system sizes of the ordei' of a mean free path. This is
what is obtained for a water system, Since }\,A depends only on neu-

trons above the Bragg cutoff, this is reasonable. If, in fact,\, werethe

minimum collision frequency, we would have a "water-like" systems.

F. PROPERTIES OF THE EDGE OF THE ELASTIC CONTINUUM

We have shown that )‘el bounds the discrete eigenvalues when

A, >\ . To obtain the behavior of A for small BZ, expand II-33

a.bOut BZ = Oo

Na1® VR { (Ei(vB) + Ea(VB)) * '3'2"1"{7"

( )BZ+O(B4)1 (I1-45)
el''B ’

When the "A-law" is satisfied for all v<v )‘el becomes

B’
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2
= 2+ YR o(s?
?\.el~ A — 1t 0O(B) {II-46)

3% ,(vp)

Thus, for small BZ, )\el is similar to the bound proposed by

Kothari22 using a bounded energy variable., Corngold and Durgunz5
also proposed a line similar to II-46 using the full energy range and
diffusion theory. We can obtain their bound by letting D(v) = 1/3 Zo(v)

where D(v) is a diffusion coefficient. Then II-46 becomes

p E(v)+2 (v

E B)
=N+ vBD(v 11 +

A + O(B ) (I1-47)
el l VB f

Since Ei(VB) + Ea(vB) << EerB) in polycrystals, we have the diffusion
theory result by setting the bracket coefficient of VBD(VB)BZ equal
tQ 1.

We have investigated the effects of anisotropic elastic scatter-
‘ing on Kel by expanding the elastic, coherent scattering kernel in
Legendre polynomials. In appendix D, we show, for any order
expansion N > 1 that, to order BZ, the elastic continuum outside the
area is given by

r
-3-;—2—;—5.—(‘75- 'Li‘i' 1(V)+2 1 :\B +O(B )
1

)\. (B, v)-—vE(V)+
(11-438)

Z)el(v)P is the P1 component of the elastic, coherent scattering
1 .

cross section. Thus, the edge of the elastic continuum including

anisotropic elastic scattering is



~36-

(vy)
el BR'P -
¢ 2 4
M1 =veEve) T 33 1( [1 -S> l(v 1B +oE% .
Py

(II-49)

G. THE ROLE OF A"

| We have, as yet, not considered the effect of A" on the dis~
persion curve, )\.O(BZ). Since TSB is a vertical cut in the \-plane
with real part equal to —?\*, XO(BZ) will not véry continuously through
?\*. T'he separation in 52 of )\.O(Bz) at )\* can be estimated as

follows: Consider the symmetrized eigenvalue problem

T(B,v, -
X(B,VJ\.O) = Te(B,v, -y )Sl k(v',v)x (B,v), o)dv' (I1-50)
where
Ue(B, 7o\ )
X(B,v,h) = (I1-51)
VM(v)
K(v',v) = v'Z,__ (v, V) ««/—-———MW’) (11-52)
! inel'’ ? v M(v) !
M(v) is the Maxwellian distribution function, and
k(v',v) = k{v,v') | (I1-53)

sk

by the detailed balance condition II-9., We know that VET(V) =\ and

I‘e(B,v,)\) =1 when v<v Also

B.
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lim {tan_'i(———B—Y—-—;:-‘)} = :F‘%T . {II-54)
* & -\ _tX\
AN o

o

Let )»o_(BZ) denote the fundamental eigenvalue and have magnitude

less than )\*. Let ko+(BZ) represent the segment of the dispersion
curve which is greater than )\*.- The function T(B,v,\) in equation
II-50 satisfies the inequalities T(B,v,—)\.oi(BZ) ) ; 0 when v < vye
Define B*Z as that buckling for which )\O-(BZ) = )\.* and B+2 as that

buckling for which >\0+(BZ) = A", We then have the two equations

TC(BT"V’ -)\-*)

" o o
x(B_‘_,v,}\‘):g K(v', V)X (B,,v' ") dv'  (1I-55)
T(B+,v,-)\.') o

and

T (B ,v,-2)

ata

kY £ @ £ sie
o e X(B‘l‘)vsx ) =5 k(Vl,V)X (B ,V',k ) d.’VI ° (11‘56)
T(B ,v,-\ ) o

Multiply II-55 by x(B*,v,k;ﬁ), II-56 by x(B_i‘_,v,)\*), integrate over all
v, subtract, and use 1I-53 to find
Te(B+,v,->\. ) I‘e(B 2 Ve =N ) \

© i B ke
S‘ X {B.*.:V’)\")X (B aV:)‘- ){ % - e o J’ dv = 0
° T(B,,v,-N) T(B ,v,-\")

(II~-57)
o T (By.v,-\)
to be close to B “, expand — about

T(B,,v,-\)

2

 Since we expect B,

B*z. Neglecting higher order terms yields
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Y
.2 B B B3 sk
;S‘ vy (B_{_,v,)\ (B ,v,\ ) dv
(B,-B") = >
@ 3% ES * 8 I‘e(B:V:'}\ )
(T we v @ v =25 { = [ kv
Vg 8B " T(B,v,-\N') °B=B
+omt- %2 . (TT-58)

The derivative with respect to B‘2 in II-58 is positive for all v. As
well, when )\O-(BZ) = k* is the fundamental eigenvalue, we have that
X (B*,v,)\*) is real and positive for all v. Physically, this follows
from the fact that x(B*,v, )\*) is the limit of functions which dominate
the solution at long times and are thus real and positive. Mathemati~-
cally, this results from the Perron-Frobenius theorem32‘. Therefore,
the sign of (B,- B*) is determined by the dependence of X (B+,v,)\*)
on Vv,

An estimate of the velocity dependence of ¥ (B_i_,v,)\.*) is ob-
tained by approximating the inelastic scattering kernel with a one-term
degenerate kernel (a kernel that is the product of a function of v and
a function of v'Ye In chapter III, we show that this approximation
implies X(B+,v,)\*) is positive for v > vy and negative for v < vge
Under these conditions, B+— B* is negative. This means that just
prior to the disappearance of the fundamental rhode at k*, another
eigenvalue appears with value 7\* and increases from there with
increasing BZ.

By combining these results with the large B2 hehavior pre-

dicted in the maximum buckling theorem, we obtain a dispersion curve
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of the form

o

(6% 52

The dashed line is 7\61 as a function of BZ.'

The expression for the jump (B+- B*) is proportional to the
ratio of an average square density of particles below to above the Bragg
cutoff and, as such, is expected to be smalléé.

In analyzing experimental data, it is conventional procedure to

fit the measured dispersion curve with a power series

A (B%) = (B%=0) + D_B? - cB* + FB® = ... (I1-58a)
By least square fitting, one attempts to arrive at values of the expan-
sion coefficients. Nelki.n6 demonstrated with transport theory that
such an expansion is derivable from perturbation theory by expanding
the fundamental eigenvalue in a Maclaurin series in Bz. The results of

the previous paragraphs show explicitly that Nelkin's derivation is
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invalid for )‘o beyond N . That is, even though discrete eigenvalues
. k

exist with magnitude greater than A in the primary \-plane, the

coefficients in the expansion II-58a have a physical interpretation

only when )‘o < )\*.

-H. PROPERTIES OF THE TOTAL SOLUTION
One may now ask whether the solution itself is a continuous
function of the buckling. The fact that the dispersion curve is dis~
continuous at 7\.* does not imply that the total solution is discontinu-
ous. In appendix E, the continuity of the solution in B® is shown
from direct examination of the Boltzmann equation. Furthermore
we do not expect, physically, that altering system size will lead to a
suddenly different response function. Certainly experimenters do not
appear to observe suéh a jump near )\* in, for example, beryllium.,
In chapter III, the continuity in B2 is shown by the alternate approach
of solving for the transformed density and inverting. In fact, we can
explicitly demonstrate here the technique which, in this alternate
approach, makes the conclusion manifest, It involves the analytic
continuation of the dispersion relation II-37 from the right to the left
of the sub-Bragg continuum. First, however, let us examine the
various contributions in the "physical" plane (common terminology
for the zeroth or primary Riemann sheet) to the total solution.
A representation of the solution in the physical plane can be
derived by deforming the Bromwich inversion contour for the Laplace

transform. The original inversion path lies to the right of all
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singularities of JJ(B,V,K) or ;(B,v,p,,}\).

-P
Those portions. of the A-plane for which A PLANE

} is not analytic are given by the solutions L

of II-31, II-33, and II-35, With this in-
formation, we can deform the contour as

shown in figure 10. Thus the total solu- _ A

tion will consist of continuum and discrete parts, i.e., line integrals
about the sub-Bragg, elastic, and area continuums and about the

discrete poles. Writing this solution out,

atid _

li(B:V:t) = lim ')}.: (‘ LP(B)V:)\-)eNt dA (I1-59a)

6—00 “"Ya-ig

N
(B t)—§~(B )—X1t+__1_‘rn+ +5 }N(B Ve an
U(B,v, __an ,v)e Z‘n‘iij WB,v,\e

i=1 8A 8" 8T

e "SB (1T~ 59b)

Corngold has shown that the integrands of the integrals about
FSB and the area exhibit the wave-like behavior that one expects

when going beyond simple diffusion theory. Note that parameterizing
’ Jo >:< :

the integrals about I‘SB by‘ A= -)\_>‘ = iBo implics e)\'t=e A teilBa“
S

That is, the damping factor e-k t appears in front of the contribution

from I‘S reflecting the constant collision frequency of the sub-

B
Bragg neutrons involved.

On the other hand, the contribution from Te cannot exhibit

wave-like behavior. This term is more transparent in the form
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-\

-~ A
1 At~ i ~ + ~ -
_2':1?;5 € LP(B:VeK)d)\z"z‘_"T‘;S‘ dpept{kli (B,V,P)'ql (B:V,P)}
T "Nl
e e

9 (11- 60)

We previously noted that the solutions of I‘e(B,v,)\) = 0, namely, the
set I"e, represent decay constants for neutrons behaving in a one-
velocity manner. These neulrons are singular in this velocity-
dependent formalism. Thus, we seé clearly that the continuum
contribution from Te concerns elastically scattered neutrons., The
coefficient of ept acts to couple the various singular modes through
inelastic scattering collisions.

Considering all the various contributions, the continuity of
:‘; with BZ involves the interplay of the discrete mode and sub-Bragg

continuum as the pole tends towards PSB' An alternate approach,

however, is available for the examination of this question.

I. ANALYTIC CONTINUATION OF THE DISPERSION LAW

We can alternatively attempt to find av representation in which
the continuity of the solution in B2 is manifest. Sucfi a representa-
tion is provided by contour deformation together with the analytic

continuation of :D(B,V,[J-,}\.) or E(B,v,}\) through T° Such a

SB°

contour is illustrated in figure 11 where one no longer has a cut that
3k

crosses the real axis at -A . Thus, we expect the eigenvalues to

vary continuously with Bz. The explicit construction of such a

continuation is performed in chapter III, However, because the

collision frequency is constant for v < Vg We can demonstrate the
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FIG, 11. The deformed contour employed with the analytic con-
tinuation of the solution.
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explicit analytic continuation of the dispersion relation 1I-37. This

allows the dispersion curve to be extended in a continuous manner
K

past X\ .

Define e(vz) as
m ~
gv) = ES‘O v'Zmel(v',v)LpH(B,v',x) dv' (II-61)

Then the dispersion relation II-37 becomes

A(x,Bidyy) = g 5 8“’ ) dv dp
1 NN +iBvu

g ‘S-' 2) dv du
T B v }\)(?\ vz (V) +iBwv)
=0 (I1-62)

Define

217 2
AN Bie) g g vielv? Jdvdy dg (I1-63)
Mo 2r(M N +iBvp) .

A more transparent form of A, is obtained by transforming to cylin-

drical coordinates.
B gi(z) dz
Al(K,B;g) = 5 —_— (1I-64)
-vy A+tA tiBz

gf‘

where

€(z) = (x%+2 ) r dr (I1-65)

and VZ = rZ + zz. The functional
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AL\, B;E) =50051 v2e(v?) dv ap LL-66
2B R ) ) T(B,v,N(A v (v) FiBv) (H1766)
B - e T

is analytic outside Te and the area of figure 7 and, in particular, for
NS TSB“ On the other hand, Ai(K,B; €), defined by a Cauchy integral,

is analytic in the N-plane cut by TSB' That is, it is a sectionally

holomorphic functiona137. Parameterizing N as \= -)\*- iBv yields

{ "B gi(z) dz

Ai(k(v),B;S) = ﬁj (I1-67)

z -V

B

Therefore, in the v-plane, Ai()\(V) ,B;€) is analytic except for the set
on the real axis, [—VB,VB] . We assume that 81(2) obeys a suitable
Holder c0ndition37 in z. The Plemelj formulas then allow an evaluation

of Al(?x(v),B;S) on either side of the cut, I'._. Thus, as v—»@i,

SB
L (—VB,VB}, we have

B g,(z) dz
AT(M;),B;S) = ;%g ”1;‘5"“* 5€,(0) (I1-68)
v |

B

The symbol g denotes the Cauchy principle value integral. From

this, we can construct the analytic continuation of Ai(}\,B; €) across

I‘SB. It is given by
v
B &,(z)dz y *
A, (A, B;€) =§ — S ¥ e, () (I1-69)
' A+N +iBz !
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Using the diagram on the right, —~ — —  NPLANE
7 ~
we can summarize the procedure 7 N i
/ N
as follows: Ai()\,B;S) is analytic \) 4
)
in the domain D1 and continuous i Da 0
e e e ~ 1
i . e e e o s
in Di U TSB' :Aic()\,B,g) is \/'
anaiy‘cic in the domain D, and | Ee
continuous in D, U I'... Further- \ / L
2 SB N
o) = . /
more, A, (X,B;€) = A (N, B;¢&) SN
for N € TSB" Therefore, AiC(K,B;S) is the analytic continuation

of Ai(k,B;E‘i) from D1 to D2 and vice versa38.

With this, the analytic continuation of the dispersion law is

AC(X,B;E‘,) =1 - Aic()\,B;S) - AJ(N,B;E) (IT-70)

2

Hence, we can extend the dispersion curve, )\O(BZ) , in a continuous

manner past A by using the eigenvalues of the analytically continued

dispersion law when BZ > B*Z.

One can conjecture that since experimenters observe no discon-
tinuity in their response function as 'B2 passes B*2 and report what
they feel are valid decay constants, the discrete eigenvalue measured
is the eigenvalue of the analytically continued dispersion law. This is
physically reasonable since the sub-Bragg continuum in either repre-
sentatidn is excited by sub-Bragg neutrons which are smaller in number
at eérly times. Hence, we expect it to be small compared with the
discrete mode., However, we must realize that in either representation,

*
when no eigenvalues exist with magnitude less than A , thereis always
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a continuum contribution to the right of the discrete poles that domi-
nates at very long times.

For the remainder of our analysis, we proceed to chapter III
in which a simple model of the inelastic scattering kernel is utilized
to find explicit solutions for ¢(B,v,u,\) and $(B,v,\). This will

allow a detailed investigation of the ideas in chapter II.
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III. ANALYSIS WITH A MODELED KERNEL

A. DISCUSSION OF THE MODELED KERNEL

In this chapter, a simplified model of the inelastic scattering
kernel is used to examine in greater detail the conclusions of chapter II.
As well, we will investigate the contributions from the various con-
tinuum parts of the total solution, Of particular interest is the buckling
range Bz > B*Z where the relation between theory and experiment has
not been clear.

The modeled kernel is called a one-term Or simple degenerate

kernel and is given by

1

(v',v) = V'Zi(v')vzi(v)M(v) (III-1)

1
inel =

where

_ oo
zZ = S‘ in(V)M(V) dv . (ITI-2)

o}

Mathematically, this approximation is the truncation after one
term of a degenerate kernel expansion of the inelastic scattering kernel.
Such an expansion is valid becausc Ku¥ler and Corngold have shown
that the symmetrized form of the inelastic, isotropic scattering kernel
for solids in the incoherent a.pprO:)cimation1 is square-integrable for
low and intermediate values of (v,v'). Since thé kernel must reduce to
the monatomic gas kernel at high (v,v') (where we know the kernel's

third iterate is square~integrab1631) they conclude that the symmetrized

iSolids in which inelastic coherent scattering is negligible.
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form of Si (defined by equation II-17) is completely continuous. But a
suitable definition of a completely continuous operatOré7 is one which
can be uniformly approximated by an expansion in projection operators,
i.e., an operator whose kernel can be represented by a sequence of
degenerate kernels.

Expansion of kernels as a sum of produqts separable in v' and
v are used by Tricomi40 who calls them Pincherle-Goursat kernels.
He shows that a Fredholm integral equation whose kernel is the sum of
n products separable as above can be reduced to an algebraic system
of n linear equations in n unknowns.

The approximate kernel III-1 preserves the total cross section
and obeys detailed balance. It also simplifies the mathematical prob-
lem by allowing a closed form solution to be obtained and tractable
expressions for the dispersion relation and continuum contributions.
As well, since the modeled kernel III-1 is square integrable, the
continuum regions of the \-plane obtained with III-1 will be identical
to those obtained with the general inelastic kernel of chapter II.

A disadvantage of such modeling is that higher moments of the
general inelastic kernel are not preserved. Furthermore, a synthetic
kernel can be regarded as a perfect thermalizer because a single col-
lision is sufficient to completely thermalize a neutron. Thus, one
expects dispersion curves to be less "diffusion cooled" than those
calculated with rﬁOre general kernels. Correspondingly. asymptotic
energy spectra calculated with this model will appear too Maxwellian

in leaky systems. A comprehensive study of degenerate kernels in
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1

-

neutron thermalization has been performed by Shapiro and Corngold4

For systems with no elastic scattering, the synthetic kernel
has been employed by many authors to gain insight into num erous
problems in neutron transport theory. As examples, Corngold et _8;_1_.39
used it to extract information about the spectrum of the space-indepen-
dent Boltzmann operator. Williarns42 was able to solve the energy-
dependent Milne problem using III-1 and the Weiner Hopf technique.
Nelkin11 examined the discrete time eigenvalue spectrum of the
Boltzmann operator in spherical geometry while Arkuszewskiégexam—
ined the effects of absorptionondiffusion lengths. Recently, Dorning3used
a synthetic kernel to derive information about the behavior of discrete
time eigenvalues for water assemblies. In addition, models of this
type, such as the Krook model, have found extensive use in the kinetic
theory of gases.

By including a model of elastic scattering, the approximation

III-1 implies a modified synthetic kernel given by

2y . (I1I-3)

V'E (v',v) = %V'Ei(v')in(v)M(v) +vE_(v)bly' -y
As mentioned previously. Corngold and Durgun25 used III-3 and diffusion
theory to investigate pulsed neutron experiments in polycrystals. How-
‘ever, because of the diffusion theory approximatiOﬁ, they were led to
consider "peaks" in the continuum integrand with corresponding "widths"
when B'2 > B*Z. We now know from chapter II that discrete eigenvalues

Sk
can exist for B’2 > B k2 s0 that there are no associated widths.



-51-

B. SOLUTION OF THE MODELED BOLTZMANN EQUATION

Subject to modeling with III-3, the Boltzmann equation becomes

8 .
(30 *vEL () +iBvpJe(B,v,p,1)

v M( v)
‘S\ S‘ 'Zi(v’)qa(B,v',p.',t) dv'! dp'

vZel(v) ~1
+———2——-—3 @(B,v,u',t) du'+Q(B,v)8(t) . (III-4)
LYt

By Laplace transforming III-4 and using the definitions II-20 and II-22

with
conl ~
i(N,B) =§ § V'Zi(v')<p(B,v',p',>\.) dv' dp’ (III-5)
ov-1
we obtain
- Z(MWIN,B)  vE(ME(B,v,N)
(: +VZT(V) +iBviyo(B,.v.u.\) = — T+ >
22
+ Q(B,v,u) (III-6)

Assume Nt VZT(V) + iBvu # 0, divide by it, and integrate over p to

find

Zi(v)M(V) S(B,v,\)

Te(B L, VoA

: "IJ(B,V,K) _ T(B,v,\)

T T_B.v.N fh,B) *

(I1I-7)

Here, we have implicitly assumed I’e(B,v,}\)¢ 0 and defined S(B,v,\)

by
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~1

S(B,v,\) =5 Q(
-1

B,v,u) du ‘ _
NtV (V) . (III-8)

T + iBvp

Now multiply III-7 by vE.l(v) , integrate over all v, and use III-5 to

obtain

2 2
o voE, (v) “M(v) © v (v)S(B,v,\) d
f()\,B){l _5‘ i T(B,v,k) d)\.} i)
o]

> I‘ (B,v,\) Te(B,v,)\.) *
(1II-9)
This last equation can be simplified by defining
~nco v (v)S(B,v,\)
S(\,B) =5O I‘ Evo— & (I11-10)
and
Al ) Soo vzziz(v)M(v) T(B,v,\) (T-11)
\W(N,B) =1 - — 2 Vs dv . -
fo) '5“_‘ re(B: :)\)
Thus, where A(MN,B) # 0, we find
_ S(\,B) _
f(\,B) = m o (I11-12)
We can use these results to construct the solutions for
;(B,v,p,)\) and :’p(B,v,M, They are
@(B N) = L {VZ {IMV) 50, B)
PLELVubs M = (NFvE(v) FiBvp) % W)
vZ (V)S(B,v,\) N
+ + Q(B,v,u) f (III-13)

2 Te(B,v,)\)
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and
~ Z (v)M(v)
_ 1 vy S(»,B)
4’(B:V:)\-) = I‘e{B,V,X) { - A()\.,B) T(B,V,K) + S(B,V,)ﬁ.) } o
(I1I-14)
When the source is isotropic, i.e.,
QB,v, ) = 9—‘(—%’—1)- (III-15)
the expressions III-13 and III-14 become
90( ,V,P-,)\.) - 2(\ +VZT(v) +tip)Te(B,v,K) { = A(}\_,B)
+ Q(B,v)} (ITI-16)
and
r vZ (vIM(v) \ ‘
~ _ T(B,v,N) [ V¥ S(n,B) .
HBv N =B el o T B = 17)

The solution, ¢(B,v,u,t), is given by the transform inversion
of ;(B,v,p,}\), namely,
{ atiy At~
¢(B,v,u,t) = lim —=— e @(B,v,k,\) d\ (1II-18)

Yy— @ 2mi a-iy

where "a'" lies to the right of all singularities of ¢. To interpret this
solution, we would like to use contour deformation,  This requires
that we know the features of the analytic continuation of ;(B sV, A)

in the left half plane.
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C. STRUCTURE OF THE TRANSFORM PLANE
An examination of the analyticity of ; or $ in A vyields the
same results as those obtained in chapter II. That is, ;(B,v,p,K) is

analytic in the entire A-plane with the exception of the sets defined by
N tvZo(v) +iBvp = 0 vE [0,0); w€ [-1,1] (III-19)

and

T (B,v,\) =0 vE [vB+,oo) ] (ITI- 20)

These, as expected, yield the same continuum regions as equations
II-31 and II-32. In addition, 'r; and JJ are not analytic at those values

of N for which

AN,B)=0 . (III-21)

The function A(\,B) is called the dispersion function and
equation III-21 the dispersion law. The roots of the dispersion law are
the discrete eigenvalues of the problem, and the dependence of the
fundamental eigenvalue, \_, on B2 is the dispersion curve.

| Thus, the \-plane structure is that of figure 7 except,

possibly, for the number and location of the discrete eigenvalues.

D. PROPERTIES OF THE DISPERSION LAW
The arguments in appendix A demonstrate that the dispersion
law has only real roots. Furthermore, the number of roots and their

sign can be determined by examining the derivative of A(\,B) with
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respect to real X\, i.e.,

2.2
~C0 v Z(viM(v) dv
BANN,B) _ 5 i > 0, (III-22)

o (T, (B,v, )2 (M HvB o)+ (B D)

Bo

of eigenvalues below A" in both

For fixed BZ, A(N,B) has, at most, one root on either side of TS
More detailed calculations?! %344
graphite and beryllium indicate there is only one such eigenvalue.

The sign of the root, or discrete eigenvalue, is determined by
- noting that at B% = O, the only solution of III-21 is N = 0 (neglecting

absorption). Since T(B,v,\) is non-increasing in B (denoted

T(B,v,\) € | in B), we have
A(0,B>0) > A(0,0) =0 . (I1I-23)

This combined with III-22 implies that any eigenvalue of III-21, for
%> 0 , lies to the left of the origin, i.e., is negative. One would
expect this conclusion on physical grounds.

The dispersion curve will exhibit the same general behavior as
predi.cte.d for the more general inelastic kernel in chapter II. Thus,

consider the behavior of A(A,B) when \ is near TSB’ As before,

define

VBt vOEZ(vIM(v) dv

A, (N, B) ='§ 3 — — (1II-24)
o Y-1 2Z(N+N +iBvp)

and
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V)M(v) dv du
A (?\ B) = S S\ . (I1I-25)
1 zzr (B, v, NN +vZ(v) +iBvp)

. 2 _ 2_ p%2
In the integrand of I1III-24, (vzi(v)) = {VZT(V) - vTZa(vT)} =3

b3

because VZT(V) = A and Z‘a(v) is proportional to 1i/v for all wv.

A more transparent form of Ai()\,B) is obtained by converting to

cylindrical coordinates, Thus,

2 2 2 2

%2 "B -z /VT -VB/VT
A (N, B) =-—E‘:_—7 S e —= = ) 4z (III-26)
2iBZv -v N EN
T B z - 1( B )

where Vo is the thermal speed, 2200 m/s. In this form, the integfal
is of the Cauchy type and the Plemel]j fOrmulas37 can be applied to
evaluate Ai(k,B) as N approachcs PSB from the right (+) or the
left (-). For AN=10¢, L & TSB’ we have

2 2
% VB Z VT -VB/VT
Aii(é B)=—E_—z‘{§ = = dz
2iBZv. -vg ” - 1:\ QI‘;}\ )
zmri{e - )J& (III-27)
B
and when §{ = -\ ,
%2 (v fv)©
A()\B :t——P———Ki-e B T). (I1I - 28)

2B2v

ta

Define, as before, Ba‘2 to be that buckling such that
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AT 8% =0. (ITI- 29)

- % B
Then A (- KS,B <) # 0 implying the dispersion curve does not extend
%
. 3 ) 3 E -
continuously past A . Since AZ(-Kf,B <) <1 and M '
Te(B’VJ -\ .)

in B, we can obtain a zero of
AT(-\",B) =0 (I11-30)

only by decreasing B. Hence, that B satisfying III-30, denoted B+,
X 5
is less than B , i.e., B - B < 0. This agrees with the result in

chapter II.

*
We can again estimate B_-B : by subtracting III-29 from
T(B+,V, “)\-#)

*

I‘e(B*_:V:-)\- )

'~

III-30 and expanding

%2
about B 2, This yields

~

%2 (v o) e
—T—T_%-—z(l-e B/

e Z ' st
B,-B" = T +0(B,- B2
*® VZZZ(V)M(V) LN '
j‘ i 0 (T(B,v,-?\ )> dv
v = 2 * »
B 8B° "T_(B,v,-\") 5_p*
(I1I-31)

As before, the derivative with respect to B® in III-31 is negative
confirming B+- B < 0.
The dispersion curve is also expected to have the same large

B% behavior as before. The role of A the edge of the elastic

el’?

continuum, is,quite naturally, unaffected by approximations of the

inelastic kernel. An examination of AZ()\,B) in III-25 shows that,
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indeed, KO tends to }\el with increasing ‘bu.ckl‘mg.1

E. NUMERICAL EVALUATION OF THE DISPERSION CURVE

With this information as a guide to the nature of the dispersion
curve, numerical calculations of J\.O(BZ) were performed for graphite
and beryllium. A Newton-Raphson technique was programmed for use
on the IBM-7090-7094 computer., The cross sections used are shown
in figures 12 and 13 while figure 14 presents the resulting dispersion
curve for graphite. As indicated, the total cross section is assumed
constant above the Bragg cutoff while the elastic cross section tends to
zar0 at high energies. The inelastic cross section is obtained by sub-
traction and Za(v) is proportional to 1/v. No discontinuities other
than that at vp were included. We did perform a calculation in which

the structure of the first Bragg peak was modeled and found the disper-

. 2 . .
sion curve to be somewhat cooler.” This results from enhancing

1By performing estimates valid for large B? (beyond the range of cur-
rent experimental interest) we find

2
7\ )\ N Z( ) sinz(-i—r-r—(%—gﬁ LZT(VB)—-B cot (—2——6-1—1?;7——13-)-) .}
JL eXp\ 7‘-*ZNI(VB)

The diffusion theory counterpart of this resu1t25 can be derived by ex-
panding the exponential in powers of B“ and retaining only terms of

order 32

2The maximum error made in computing \ (B ) with cross sections
that are constant above vy is 2% when cornpared with }\.O(BZ) calcu-
lated with the cross sections in figure 13. The error is less than 1%
in the range Ay < A", The maximum error made in computlng Ao(BS)
w1th a cross SBCthl‘l model that includes the first Bragg peak is
33 1% when compared with the A\ (B“) values that result with the cross
sectlora;s in figure 13. Again, the error is less than 1% in the range
Ao <A
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de Saussure's trapping effectés. However, the dispersion c .8
which result with the modified synthetic kernel are alwayr re
heated than results obtained with more detailed kernels/ .ecause
of the thermalizing power of the modeled inelastic kr +t. Thus,
while small quantitative differences exist in dispersivn curves with
various cross section models, they are relatively minor. Since our
modeled kernel is not expected to yield excellent quantitative agree-
ment with experiment, the cross section model of figure 13 is em-
ployed in all further calculations. Of course. all qualitative effects
remadin.,

The discontinuity in B shown in figure 12 is well described by
the expansion III-31. As expected, the discontinuity is small reflecting
its dependence on the relative sizes of the sub-Bragg and post-Bragg
neutron populations.

It again remains true, as it was in chapter II, that the conven-
tional expa.nsion6 of )\O(BZ) about BZ =0 1is notvalid when }\O is
greater than ?\.*. As fOr the interpretation of the expansion coeifficient,

the first two, 010 and Do in

2, _ 2 4
KO(B ) - ao + DOB - CB P (III—32)

involve only Za(v) and ZT(V), respectively. Thus, they are unaffected
by the scattering kernel employed and depend solely on the cross sec-
tion modeling. On the other hand, C, the diffusion cooling coefficient,
depends critically on the thermalizing power of the kernel. So again,

becé.use the synthetic part of the kernel is a perfect thermalizer, we
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cexpect C to differ considerably from other theoretical, and experi-
mental, predictions. This is, again, graphically illustrated by the
fact that dispersion curves with a modified synthetic kernel are less
diffusion cooled than results obtained with more detailed kernels. The
cooling that is present is a result of the effect of Te(B,v,}\). Including
a discontinuous cross section but neglecting elastic scattering (set

Eel(v) = 0) predicts C~ 0.

F, DEVELOPMENT OF THE TOTAL SOLUTION
The solution for the transformed density is given by equation

III-16 and can be divided into two parts,

P(B,v.pN) = @ (B,v,p,\) +9_(B,v,p,\) (ITI-33)

where
va (v)M(v)
~ 1 i S(\,B) 1
¢ (B,v,p,N) =5 — - (III-34)
c 2 El"e(B,v,K) A(N,B) ()\.+V2T(V) +iBwvy)

and

~ Vzel(V)S(B,V, >‘-) + Pe(B :V:}\)Q(B :V:]J-)

QDS(B sV, N) = I‘e(B,V,)\.)(?\ T VET(V) FiBvy) (I1I-35)

The original Bromwich inversion contour can be deformed using
‘Cauchy's Theorem38 to form the contours shown in figure 15, From
this, we write ¢(B,v,u,t) as

e(B,v,p,t) = ep  t ogy t e, T o, @

(Residue), (Sub-Bragg) ,{Elastic),{Area), (Source)
(III-36)
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The first four terms on the right are the inversion of ;C(B,v,p,}\.)
while the last term is the inversion of g~os. qu(B,v,p.,}\) has poles

where

1) AT vZ‘T(v) +iBvp = 0 (I1I-37a)
2) Fe(B,v,h) =0 (III-37b)
3) A(N,B)=0 : - (III-37¢)

On the other hand, ;S(B,v,p,h) has poles only where conditions 1)
and 2) are satisfied. This is a consequence of the fact that condition 3)
involves the multi-velocity collective mode while ;S describes only
neutrons which maintain their initial source speed.

We can readily interpret ¢S(B,v,p.,t) by considering each of
its two parts separately.: qosi(lj,v,p,t) results from inverting
Q(B,v,u) /(A +VZT(V) +iBvu) and equals

. -(VZT(V) +iBvu)t
P (Byvip,t) = Q(B,v,pe (I1I-38)

This, however, is just a solution of the first-flight Boltzmann equation

(eq‘+ vZr(v) HBV“) @(B,v,p,t) = Q(B,v,u)s(t) (III-39)

>

Therefore, gosl represents those neutrons that have not made a col-
lision following emission by the source.

The second part of ¢_, goSZ(B,v,p.,t), is obtained by inverting



-65-

v}:‘,el(v) S(B,v,\N/IT e(B VL NN VET(V) +iBvp)] and equals

-)\e(v)t
Vzel (V) S(B IV~ )\e (V;) €

(PSZ(B:V:P‘Dt) = Bfe(B,V:)\)
(=N (V) FvE L (v) +iBvp) ——

A=- Ke (v)

N Vzel(v){ ST (B,v,N, ST(B,v,\ \}e_(VET(V)ﬁBV“)t
2 TZ(B,V,)\) I (B,v,\) °

-vZn(v)+iBv
f T M VEalV) (s

+ = e .
2 -VET—ti (}\JFVET(V) Hibvi) il"

S
- — rd\
1-1- ]

o H 4+

(III-10)

We can understand this by con-
sidering the figure at the right.
The first and second terms

result from conditions III-37a

and II1I-37b. The third term is

)

“halV)

the integral about the cut.

We can interpret goSz(B,v,p,t)

— -

by recognizing that III-40 is the

solution of the "one-velocity" Boltzmann

equation
9 L vZ,,(v) ol , |
(-E_ﬁ:- +VET(V) + 1va.><p(B,v,p,t) = — § e(B,v,u,t) du

-1

+ Q(B,v,u)d(t) (III-41)
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The variable, v, is a free parameter in this equation. Thus
gaSZ(B,v,p,t) describes those neutrons which, prior to detection,
have made only elastic collisions,

The remaining four terms in equation III-36 result from
inverting ;C(B,v,p.,}\.)., Referring to figure 15, ch(B,v,p.,t) repre-
sents the contribution from the isolated pole caused by III-37c and
corresponds to the collective or discrete mode. For a discrete
eigenvalue, A < 7\*, the discrete mode dominates the solution

asymptotically in time and for all )\O is given by

-\t
vE, (VIM(v)S{-\_,B) e ©

¢R(B,v,p,’c) =

=gl

22(—)\_0+V2T(V) +iBvp) Te(B sV -)\O)

A=-d,

(I1I-42)

The contours in figure 15 indicate, however, that when )\o > )\.*,
the discrete mode will not dominate at long times because the sub-
Bragg continuum is less damped. The interplay of these two contri-
butions will be considered shortly.

The energy spectrum associated with the discrete mode is
proportional to

in(V)M(v)T(B »V, -?\.o)

X 5(B>vsN =TT T (B vioNy) (ITL-43)

and becomes cooler with increasing buckling. This is caused by the
preferential leakage of fast neutrons. Note that de Saussure's trapping

effect45 results from the presence of Te(B,v,—KO) in the denominator.
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As [N -% | decreases, so does T (B,vg,-\,) causing the spec-

B’
trum to rise most sharply at Vg. This effect is enhanced when ZT(v)
is peaked near vg but occurs dramatically even when ZT(V) is
constant for v > vp. Figure 16a illustrates this behavior for graphite
where the cross sections are those in figure 12 and )‘o < )\*. When
v < Ve and ko > )\*, XR(B,V,)\,) is negative as in figure 16b., Since
the total solution must be positive at all times, the sub-Bragg continuum
must counterbalance this effect in the sub-Bragg regime.

A closer examination of goR(B,v,p.,t) will help us interpret the’

large buckling behavior of the total solution. If we multiply ?R by

vZ)i(v) and integrate over p and v, we obtain

A0 A1 S(")\.O,B) "?\.ot
Ng (£) =5 S du av ¢ (B,v,p,t) = 3 e (ITI-44)
ov-1 S
OM y=-n

o)

For simplicity, assume the source spectrum is a &-function in energy
at some high v_> vgp. Then S(-KO,B) exhibits no singular behavior

for }\.o near 7\.* or Ke On the other hand, the derivative of the

10

dispersion law is

e S-oo (in(v))ZM(v) dv

L (I1I-45)

o ‘ire(B,v,x)z{(x TV (v) )2+ (Bv) %}

and its integrand has a pole of order two for Ko =\ Thus, for \j

el®

close to A BA/S)\. behaves like 1/()\61-?\.0), i.e. the amplitude of

el’

the discrete mode tends to zero as 7\.0' approaches kel' Since
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hel— )\O decreases with increasing ]32 (see footnote, page 58), the

discrete mode should play a decreasingly important role compared

with the continuum contributions. When this happens, the solution is

primarily the sum of the sub-Bragg and elastic continuum contribu-

tions., By examining the expression for S(—RO,B), one can readily

see that this conclusion is independent of the initial source distribution.
The remaining three terms in goC(B,v,p,t) are integrals

about T" Te’ and the area in figure 14 and can be written as:

SB’

1) for the sub-Bragg continuum contribution

b
-\ +iBv
_ vZ (V) M(v) B aneM s ,B) _ S"(\,B)
Py Do Voot =~ T (B,v,N o m
) N
SB 27 (2T) A*eiBvg AT(\,B)
{ H(VB-V) in(v)M(v)emx“te-iBWLJC
X L3 + B3
(MvZL(v) FiBvp) 2(2%) Te(B,v,-)\'-tip)
+ -
X {§L+~ + 5 } | (ITI-46)
AT A {x:—x -iBvp

Here 'S+(S-) and A" (A7) are the limits of these functions as \

approaches I‘SB from the right (left).

2) for the elastic continuum contribution

st s
- At _e-
- vEviME) o ta 9 A }
? (B;VpH,t)= ——:—_-————'—\S‘ e
e (2Z) 27 Ny (k+v2T(v)+1Bv1.L)I"e(B,v,7\)

(relation continued)
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+ -

s, S, “A (vt
Vzi(V)M(V) '{——_7_ -— e
A A
H(V-VB) e e )\:-Kp(v)
+ - (LII-47)
= oL (B,v,\)
2EE (A (VB () HiB ) e — {

A=- Ke(v)

- + - '
where S;- (Se) and Ae (-Ae) are the limits of S and A as \
approaches I‘e from above (below).

3) from the area,

vZ, (vIM(v) C
_VE , At S(\,B)
gD"uzx(B’V’WC)- (2Z){2mi) Jpatte {(KWET(VMBV“)Te(B’V”‘)A(x’B)}

(III-48)
The fact that each of these three terms is proportional to vE.l(v)M(v)
implies each is describing neutrons that have suffered inelastic col-
lisions. ¢ and P arise because of condition III-19. As such,

c
SB A -VZT(v)t

the integrands have the form e e"lBVHt

indicating free
streaming modes. These modes are connected by inelastic collisions
implying the coefficients of the exponential in the integrand act as
mode coupling coefficients. A neutron, on making an inelastic col-
lision, is shifted from one free streaming mode to another.
-\ (vt

On the other hand 2. (B,v,p,t) is proportionalto e °©
and an integral over this expinential. As such, ?. apparently
'describes neutrons behaving'in a One-velocity mannzr but with many
"characteristic" speeds. That is, a neutron in such a mode can suffer

an inelastic collision and be shifted to another "one-velocity mode"

with a different characteristic speed. Notice that all three terms
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involve "modes" from which neutrons are removed after a single

collision. This contrasts with the discrete or collective mode in

which neutrons are expected to suffer many collisions without being

removed.

Before continuing, it is worthwhile to develop a simplified

formula for a response function depending only on time.

The response

to a detector with cross section Ed(v) is obtained by multiplying III-7

by vZ)d(v) and integrating over v, namely

Ny B) = FRBly B + 50,3

where we have defined

@D vZ (VIVE (v)M(V)T(B,v,\) dv
X (A, B) =§ d_ 1

0 —fI‘e(B,v,k)

~ @
Nd(X,B) :S‘ de(v)'Vr(B,v,K)dv ,
o

and

) S-oo vzd(v)S(B,v,}\.) dv
s{\,B) =
o Te(B,v,)\)

(III-49)

(I1I-50)

(III-51)

(I1I-52)

By choosing Zd(v) = Z.l(v), the macroscopic inelastic cross section of

the system of interest, we obtain the further simplified expression,

NOWB) = FRE -

(I11-53)

We will later numerically invert III-53 to obtain a response function.
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III-53 contains all the pertinent physics and is somewhat easier to

use than III- 49.

G. ANALYTIC CONTINUATION OF THE DISPERSION LAW

In chapter II, we posed the question of whether the total solution
is a continuous function of ,BZ, pérticularly as B2 passes through
B*Z. For both the general and modeled kernels, the dispersion curve
is discontinuous at }\.*. The eigenvalues which comprise this curve
exist in the "physical plane" or primary Riemann sheet. On the other

hand, we found that anaiytically continuing the total solution past TSB

allows an alternate representation in which the continuity of ¢(B,v,u,t)

the deformed contour in the diagram

ok .
there is no cut at -\ passing \ i

through the real axis to cause a dis-

continuity in the total solution, or, ————-egi‘m:ma,—@—/?,

in .B‘2 is manifest. That is, with q

for that matter, in the dispersion

curve. In such a representation, / .
=

one would not even ask whether

S=D

pamir o)

|
|
L |
o(B,v,pn,t) is continuous in B".

It remains to be demonstrated that such a continuation exists.

"This is equivalent to proving, in the physical plane, that the solution

is continuous in BZ. The latter approach can be performed by em-
ploying the theory of boundary values of Cauchy type integrals37. The

former approach is presented here because it provides a method of
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smoothly extending the dispersion curve beyond N
The dispersion function A(N,B) can be written as

1 - Ai()\,B) - Az(k,B). In section III-D, we found, for ¢ € TSB’ that

)(v

A1) = 2iBT {S PR
VI Z*l(’é"ﬁ—‘)

(54 )

£ i (e T ) 1 (III- 54)

Knowing this, the analytic continuation of A(N,B) from the right to the

left of I‘SB is

5 (2
F 2 v
ST (B T7 -
A_(\,B) = A(\,B) ( ) (e e ) (ur-s3
for the following reasons: _
Referring to the figure at the e d N -
N P
( -
right, A(\,B) is analytic in N N
. .
D1 » A _(N,B) is analytic in ] /EB
c ' A [ D, D,
D, , the intersection, D, 1 D, L T m
2 1 2 P
is the empty set, ¢, and “ fe
— —_ . /
D1 N D2 = TSB' A(N,B) 1§ / // \
. . L P ~
continuous in D, U TSB and N - L.
AC(K,B) is continuous in DZU TSB' ~ -

Furthermore, A;(?; ,B) = A+(§, ,B)
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for L & TSB' Hence, we conclude38 that AC(K,B) is the analytic

continuation of A(N,B) from D1 to D2 and vice versa.

The same arguments allow the construction of the analytic
continuation of S(A,B) and T{(B,v,A). The function I‘e(B,v,k) is

analytic for N on TSB because Zel(v) =0 for v<vge Note that

in constructing the continuation of T(B,v,\), the speed v is a param-

SB if v>vB. For V<vB

. sk b
must be continued through a cut extending from -\ -iBv to -\ +iBv.

eter and T(B,v,\) is analytic on T , it

In pulsed necutron experiments, the source energy distribution
contains no neutrons with speed less than Vg In such a case, S(\,B)
is analytic for \ & Tep-

These results allow the construction of the analytic continua-

tion of @(B,v,,\), ¥(B,v,\), and N(A,B) through T Thus, it is

SB*
possible to deform the Bromwich inversion contour as in figure 11 of
chapter II and obtain an alternate representation of the total solution.

As well, this demonstration makes the continuity of the total solution

. 2 .
in B~ manifest.

H. PROPERTIES OF THE ANALYTICALLY CONTINUED DISPERSION
LAW

An examination of BAC/S)\. for real N\ as in equation III-22
‘shows that Ac(h,B) has, at most, one real root, However, it may
have additional complex roots occurring in conjugate pairs.

The real roots are contained in ()\¥,7\el) and, as before, A

]2

el

bounds any real eigenvalue from above. When [(-KO+ )f)/BvT << 1,
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we can simplify AC(K,B) by expanding the expOnential, namely

w2 ( _
AC(K,B)=A(A,B)-§T_§(€'—T>2(1-e YT ) o(( );3:)\ Z) (I1I- 56)

This expression, neglecting higher order terms, can be obtained by

simply replacing the arctangent function in A (}\,B) by its next deter-
Bv

AN
principal determination of the function. We have found that neglecting

mination, i.e., by Tan ( ) + 7, where Tan 1 denotes the

higher order terms in III-56 yields a dispersion curve that differs by’
less than one part in six thousand from the exact one for BZ as large
as lwice B*Z. Thus , lhis method of handling the arctangent function
should be useful in‘a multi-group ei"B'.']3 theory computer code in which
a more detailed inelastic scattering kernel is used.

The féct that complex roots must occur in conjugate pairs can
be used to bound the real part of such roots when BZ> B*Z. Thus,
Ac(ki,B) = 0 implies AC(X.I,B) = 0. Subtracting gives

Sz

CJ1 {e{ Bv ) BV )

A(X,B) ~AN,B) = = T b -s7)
where C ) . Letting )\i = x t iy allows us to rewrite '
III-57 as

OD(v2 (v)‘) M(v (xtvZ (v)) +(Bv +y)
5 — ) (lo 5 dv
ovE]I‘e(B ?\)! (xtvZ, (v))? + (Bv-y)
(x 1) -}:2
(Bvp)” LW
= 4C e T sin {—%E{—i’t—}-gf | (I11-58)

J

(Bve)
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For y >0, the L.H.S. is greater than zero implying the R.H.S. must
be positive for }‘i to be a root, But x + )\* <0 sothe R.H.S. is

positive only when

+ B3
nﬂSZ—Lz{—-—)\'—LéV-SZnTT; n=1,3,5,... (111-59)
(BVT)

Thus, the minimum value of y for which III-58 can possibly hold is

2
(Bv,)
L (I11- 60)

ool 5

Vo, =TT
min [x+7\>!|

For polycrystals like graphite, taking x = -A and B=B implies

el

Ynin = 0(106), This means asymptotically large y for the integrand
on the L.H.S. of III-58. The Maxwellian, M({(v), destroys any large
v contribution to the integral.

For large vy, the L.H.S. behaves like

®© (v Z.(v))*M(v) dv
i{s — }

b
vy \2 >
v/ Y
. T .
while the R.H.S. is O (e ) Thus, III-58 cannot be satisfied
by any xl < )“el" Indeed, we can infer from the numbers involved that

any such roots lie by a factor of two or more to the left of -X There-

el®
fore, any such zeros of AC(A,B) should not affect the total response
function in the alternate re‘presentatiOn for times of experimental
importance,

The energy spectrum associated with the analytically continued

discrete mode is presented in figure 17 for graphite. As before, when
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‘)\OAC approaéhes hel’ the spectrum peaks considerably at ViR~

again reflects the role of Te(B,v,-)\o ) in the denominator of the
AC

residue, III-42. For the cross section model in figure 12, all post-

This

Bragg neutrons have the same mean free path. The trapping at Vg
results from these neutrons having the smallest collision frequency
and leakage rate of all neutrons with speeds greater than vy
Multi-group calculations have found a sharp increase in the
sub-Bragg population with increasing tirﬁe. In our theory, this effect

is connected with the energy dependence of the sub-Bragg continuum

and is nowhere reflected in the discrete mode.

I. INTERPRETATION--COMPARISON OF THEORY AND EXPERIMENT
1) The Analytically Continued Dispersion Law
The numerical results for the analytically continued dispersion

law in beryllium are presented in figure 18 along with experimental
data and results of multi-group calculations. The results of Lee and
Daitch®® beyond A represents a ”pseudo-fﬁndamental" decay constant.
This concept was introduced because no discrete decay constants can
exist Beyorld A ¥ in diffusion theory. Both Lee and Daitch and Woocl46
employed rather sophisticated isotropic scattering kernels, Lee and
Daitch, for instance, used the Summit c:Ode47 which employs the
incoherent approximation and the frequency spectrum of Young and
Koppel> %, |

| Figure 19 is a similar plot for graphite on which the multi-

.group diffusion theory results of Ghatak and Honec:k21 are included.
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| 1 l |
] ————— ZEROS OF DISPERSION RELATION &
ITS ANALYTIC CONTINUATION
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They also use the Summit code together with the Parks’ mode148 for

scattering in graphite. Agreement between theories in graphite is not
as good as in beryllium and we shall elaborate on this point shortly.,
Note, however, that for both materials, calculations with the modified
synthetic kernel are not as "diffusion cooled" as other results.

In both figures 18 and 19, the edge of the elastic continuum,

A has been plotted as a function of BZ. For fixed BZ, the value of

el’
Kel bounds the discrete eigenvalue. In beryllium, for example, we
see that it bounds the "pseudo-fundamental" eigenvalue of Lee and
Daitch.

We must now investigate the total solution and the relation of

the analytically continued eigenvalues to it.

2) The Total Solution and Analytically Continued Eigenvalues

In section III-F, we developed expressions for the total angle,
energy, time dependent neutron distribution function together with a
simplified expression, III-53, for a transformed response function.
Basically, three contributions are important: 1) the residue from the
discrete pole, 2) the sub-Bragg coatinuum contribution, and 3) the
elastic continuum contribution. The area continuum contribution is
neglected because it decays much too rapidly to be of importance. To
illustrale this, note that for beryllium, }\* = 3800 sec—i whereas )\.A
is appfoximately 80,000 sec_1 .

We will be concerned with the inversion of KT(K,B) as given in
equation III-53, In performing this calculation, the source is taken to

be a §-function in énergy at 3 ev. This is based on the work of Wood44
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who found that the decay in time is insensitive to the source energy
spectrum. Also, in calculating the contribution from integrals along
Te’ we choose Eel(v) to be constant above the Bragg cutoff. This
greatly simplified the numerical work because it meant that with a
simple variable transformation, we could explicitly represent the
inlegrals along I"e as Cauchy integrals. Such an approximation intro-
duces only a small error, for example, in the eigenvalues of the prob-
lem. Eigenvalues with fixed Eel(v) were found to differ by, at most,
2% from those calculated with Zel(v) going to zero at high speeds.
When the buckling is such that the discrete eigenvalue is
further than 50 to 100 sec:—1 from )\el’ but greater than }\*, we find
that the contribution from Te can be safely neglected over measuring
times compared with the discrete mode and contribution from I‘SB'

In this regime of the dispersion curve (k'ﬁ < A’o << }\e , the sub-Bragg

)
continuum decays more slowly than the discrete mode. Its amplitude,
however, is only about 2% of the amplitude of the discrete mode in
beryllium and 3% in graphite. This is reasonable because the contri-
bution from TSB is initially excited by the low energy tail of the distri-
bution' of first collision neutrons. The percentage is higher in beryllium
because its Bragg cutoff is higher.

The result is to prqduce a decay which appears exponential for
a period of time with an effective decay constant somewhat lower than
the discrete eigenvalue. Just enough lower, in fact, that this effective

decay constant appears to extend the portion of the dispersion curve

below k* smoothly past this critical limit. Figures 20 through 23
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illustrate this behavior in beryllium and graphite.

In addition to this, we find that over times where the decay
appears exponential, the effective decay constant is well described by
the eigenvalue of the analytically continued dispersion law, Hence,
to evaluate the decay constant observed over experimental measuring
times, one need only compute the zero of the analytically continued
dispersion law.

This last result is not coincidence. The additional term in
Ac(k,B) is integrally connected with the sub-Bragg regime. It "cor-
rects" the eigenvalue in roughly the same manner as the sub-Bragg
continuum contribution "corrects" the ordinary discrete eigenvalue.
This, as well, ties in with the fact that the total solution is continuous
in B2 through B*Z.

We can conclude, then, that the "pseleo—fundamental" mode
of diffusion theory plays the same role as the discrete analytically
continued eigenvalue of this thesis. However, the role of the sub-Bragg
regime in determining decay rates is now mdre explicit.

As buckling increases, the curvature in the decay curve
caused by the sub-Bragg continuum sets in at earlier times. Figure 24
illustrates the va.riou.s contributions to the total solution at B% = 0.016
cm-zfor graphite. The sub-Bragg contribution is approximately 10%
at t=2.6 msec.

The attenuation of the sub-Bragg continuum is roughly expo-
nential over measuring times with an effective decay; constant close to

)\¥. For large times, t 2 10 msec, the sub-Bragg continuum behaves
*
-\ t/(

*
asymptotically as e A t)2 (see appendix B).
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At still higher bucklings, when A, 1is close to xel’ the

relationship
{effective decay constant ~ [eigenvalue of analytically}
(physical plane) T l continued dispersion law

SB
+ discrete pole

(III-61)

found to work earlier begins to break down. This is caused by the
increasing importance of the elastic continuum. We noted previously
“that when )\o is close to Kel’ the amplitude of the discrete mode
decreases while that associated with I"e increases. As well, for

these large BZ, the dispersion law relies more and more heavily on

the proximity of A, to Kel to maintain itself, The result is to
diminish the importance of the sub-Bragg terms in A(\,B) and AC()\,B)

causing >\0 to approach )‘o“
A. Co 2
Thus, in beryllium, the relation III-61 is useful for B” less

than about .054t0 056 cr % Ingraphite,llI-61 is valid for B2 less than

.018 cm'z, i.c., the relation is useful for B2 about as large as twice

(Bac)z. Beyond this, any deduced effective decay constant will be lower

than .XO . This agrees with the result of Ghatak and HOneck21

A.C.
which indicate a "pseudo-fundamental” eigenvalue is well defined to

. *2 7
about twice B 7,

3) Comparisons with Other Theoretical Calculations and Experi-
ments
The high buckling effects just discussed are illustrated in

figure 25 for beryllium. The results of this thesis are presented along
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with the experimental data of Fullwood et :a__l_.49 and the multi-group
diffusion theory calculation of Lee and Daitch®>. Notice that while an
effective decay constant is close to 7100 sec-i, A is 7400 sec'l.
Lee and Daitch attribute the disagreement betweenAt}nxgoory and experi-
ment to inadequacies in the scattering kerne147. While we also suffer
from such inadequacies, we see the differences also depend sensitively
on the location of }\el" And this is intimately related to Zi(vB) and
zel(VB}" Thus, results in this range of B2 are quite sensitive to the

elastic cross section modeling near v, and the validity of the A-law

B
at that speed.

At very high bucklings, the discrete mode contribution becomes
unimportant and the total solution is composed of the contributions from

2

I‘e and TSB“ For example, in beryllium at B~ = 0.12, we find both

theoretical decay curves illustrated in figure 26 do not exibit quasi-
exponential behavior. Both Lee and Daitch43 and Ghatak and HOneck21
have noted that far into the diffusion theory continuum (as at B=0.12cm’
for Be), no well-defined "pseudo-fundamental" eigenvalue exists. We
suggest this is caused by the loss of amplitude associated with their
"p-f" mode, much like the behavior of the discrete mode in this thesis.
This would leave only various continuum contributions or, in the ap-
proach of Corngold and Durgunzs, would imply wide peaks in the
diffusion theory continuum integrands.

The loss of amplitude of the discrete mode when compared
with the amplitude of the contribution from Te is illustrated in

figure 27 for graphite. These calculations were performed using

2
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b3 -1 <D, -2
N = 2600 sec °. The calculated value of B was 0.011 ecm “. The

corresponding dispersion curve is given in figure 19, from which one
can determine the proximity of 7\0 to Kel“ The amplitude of I'e
plotted in figure 27 was obtained by extrapolating, to t= 0.0, an
effective exponential fit of the actual decay from I"e over the time
range 0.6 to 3.4 msec,

During the "mode switching" process just described, the decay
constants deduced depend critically on the time range over which
measurements are made, However, when the discrete mode is no
longer important, reported decay constants will be higher than we
would expect if we had smoothly extrapolated the low B‘2 portion of
the dispersion curve, This effect results because the contribution from
Te (which is now dominant over measuring times) decays faster than
any combination of discrete mode and sub-Bragg continuum contribu-
tions. Thus, the reported dispersion curve should include decay con-
stants at large bucklings that are too high to be fitted smoothly to the
low B data with a concave curve
(see figure at right). An examination
of the data of Andrews and Zhezherun in
figure 1 illustrate this effect. In
general, reported decay constants in
graphite and beryllium are too large

2 2

> 2R when compared with the

for B

BE

lower buckling data.

In previous discussions, we have demonstrated the important
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2’>\
<

£ Y
Bzi(vB) =X (A-law), we must use the proper N if we are to make

role of A+ Since, as a function of B | €manates from
v
any headway at all. Thus, comparisons with the work of Lee and
Daitch are to their calculations with a BNL-325 kernel normalization.
In fact, their results with a bound-atom kernel normalization must
involve a K* > 3800 sec:_1 for Be because, at every BZ, the eigen-
value with this kernel is too high. This is just the effect of raising }"el"
We noted previously that the agreement between the results of
this thesis and Ghatak and Honeck21 for graphite is poorer than agree-
ment in beryllium. (see figure 19). We must realize, however, that
Ghatak and Honeck employ a scattering kernel which predicts a }\*
approximately half the generally accepted value30 of 2600 sec-1 for
graphite. Moreover, though they have four energy groups below the
Bragg cutoff where the \-law appears to be Obeyec’t61 , the values of
in(v) are not identical in each of these groups (see figure 28a or 28b).
An examination of their 50-group eigenvalue structure in figure 28a
shows that at Bz = 0, the values of \

through A; vary from 1000 to

1 5

1400 sec_i., )»5 represents the decay constant of the first group above

the Brlagg cutoff, This means that the bounding line analogous to )\el
E!

and, in diffusion theory, given by }\“ + VBD(VB)BZ, actually emanates

2

from A (B7=0) = 1400 sec—iq

5
Kk -
By using a value of A = 1400 sec 1, we can generate a bounding
line céluiva.lent to that which cxists for Ghatak and Honeck. The dis-

persion curve which results with A = 1400 sec-1 and the modified

synthetic kernel is shown in figure 29. We now find much improved
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agreement between theoretical results. Furthermore, the dispersion
curve of this thesis curves under Kel at the largest value of BZ for
which Ghatak and Honeck report a "pseudo-fundamental” eigenvalue.
Referring to earlier arguments, we expect this because the discrete
mode now begins to decrease in importance. Beyond this buckling,
the integrals about TSB and Te are the main contributions to the
total solution.

Additionally, had Ghatak and Honeck's kernel yielded )\* =

2 - .006t0.009

2600 sec"1 , their agreement with data in the range B
cxn_z would be somewhat poorer because their eigenvalues would be
higher.

Very recently, Ardente and Ro.ssiSO examined pulsed neutron
experiments in both graphite and beryllium using a phenomenological
description of the decay process based on an energy dependent mean
neutron life and diffusion theory. They achieve qualitatively the same
results as Lee and Daitch®® for beryllium and Ghatak and Honeck?! for
graphite, Ardente and Rossi used )\.* = 4060. sec_1 for beryllium and
)»* = 741 sec_1 for graphite.

" Since general agreement between theory and experiment in
graphite seems to require a value of )\* about half 2600 sec—1 , one
might ask how well established this value is. And indeed, on surveying
the literature, one finds 7\* = 2600 sec-1 not to be wéll founded either
experimentally or theoretically. Both I—Iu.ghes()1 and Baconé2 indicate

o. = 0.9 barns at A= 8A and Hughes indicates o; is proportional to
1

A\ (the neutron wavelength) from 7 A to 11 A. The value o, = 0.9 barns
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at 8 A implies )\* = 3600 sec_1 for graphite. On the other hand,
Egelstaff63 reports o, = 0. 6 barns at 8 A which implies N = 2400 sec
(this is apparently the Harwell data reported in BNL-325). In addition,
Kothari and Singwi33 report data due to Palevsky which indicates

o, = 0.28 barns at 8 A implying A" = 1200 sec™, Also, Palevsky's
data does not yield o, proportional to the neutron wavelength. It has
been sugges’ced63 that the high cross section measurements (greater
than 0.6 barns at 8 zgx) may be due t0 small-angle scattering. 'this,
however, does not account for the difference between the data of
Egelstaff, who accounted for small-angle scattering, and Palevsky.

A theoretical calculation has been performed by Khubchandani,

Kothari, and Singwi64 of the coherent, one-phonon absorption cross
section which indicates o, is proportional to the neutron wavelength
and gives )n* approximately equal to 1100 sec-i. However, their
"N-law" does not extrapolate to the origin, as it should, but to a negative
value on the o axis,

We see therefore that )\* = 2600 sec"1 for graphite is not well
established. Combining this with the results of this theoretical analyses
of pulsed neutron experiments in graphite shows that a careful re-
measurement of o-.l(v) below the Bragg cutoff is required.

Another polycrystalline material to which the results of the
thesis apply is beryllium oxide (BeO). Although we have not carried
out specific calculations, the recent results of Ritchie and Rainbowzo
can be readily interpreted. Their results are presented in figure 30.

Below the bounding line X\ they find well defined decay constants.

el’
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This agrees with the result that in this region, the discrete mode
amplitude is dominant and )\OA c should predict the correct decay
constant. Furthermore, decayacoonsta.nts higher than Kel are not

well defined indicating that the discrete mode is no longer dominant.
)\OA c no longer represents the decay constant and the solution is
comopoﬂsed mainly of contributions from TSB and I"e. In fact, this
interpretation emphasizes the value of the philosophy employed by
Ritchie and Rainbow. By finding the buckling beyond which a discrete
decay mode has lost amplitude and an effective decay constant is not
well defined, an experimenter should be able to locate Kel' Knowledge

Sk
would allow one to estimate N or v Zi(v This

B) B B)'

requires, however, that experimenters overcome other difficulties so

of Zel(v

that they agree among themselves about the behavior of neutron pulses.

This is not the situation in either graphite or beryllium oxide,

J. HIGHER MODES AND THE RCLE OF I"e

Not long ago, the thermalization time, T, defined as l/A.1
where }\1 is the first eigenvalue above the fundamental, was thought

to be a well defined quantity in polycrystals. Kuchle and Schweikert”!
obtained values of Ki as a function of B‘2 in graphite (see figure 31)
by effectively subtractving the fundamental mode from the total decay.

However, numerical calculations now indicate that no aiscrete eigen-

value other than the fundamental exists in graphite or beryllium.

Thus, subtracting the fundamental mode must leave only continuum

contributions,
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This thesis has shown that the sub-Bragg continuum and discrete
mode can be treated as one with an effective decay constant given by
the cigenvalue of thc analytically continued dispersion law. Allerna-
tively, the representation indicated by figure 11 implies the decay
following the pulse is primarily a discrete mode decay with eigenvalue
KOA c . Thus, by subtracting the "fundamental"” mode, one is prima-
rily.le;.t with the contribution from the elastic continuum.

In figure 32, the results of a calculation of the contribution from
Te as a function of B for graphite with )\.* = 2600 sec-1 are pre-
sented. The smaller buckling curves show significant curvature, and,
while these contributions are dependent on the source, we do not expect
their character to alter. In addition, the amplitude increases with
buckling as )\O approaches )‘el as previously discussed. Basically,
the presence of the pole excites the elastic continuum, Thus, experi-
mental results for ki should vary depending on where the spectrum is
assumed asymptotic. Indeed, this was found by Ghatak and Honeck.
Notice that Kilichle and Schweikert's results 'contain two values of
A, below A" = 2600 sec™*. The nominal agreement obtained by Ghatak
and Honeck with this experiment is due to their low value of N

Recently, Reed et al. 5_2 reported values of )\1 at large buckling
that agree with Kuchle and Schweike‘rt’s highest point but disagree in
character (see figure .31). We should note that the method of obtaining
A, is quite difficult and hopefully further experimental work will clarify

the picture. Suffice it to say that the contribution from I’e should be

the result of subtracting the effective fundamental or analytically
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continued mode from the total solution when only one discrete mode

exists.
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IV. CONCLUSIONS AND DISCUSSION

A, SUMMARY OF RESULTS

This thesis has been an attempt to understand the decay of a
thermalized pulse of neutrons in a homogeneous, polycrystalline
medium. Towards this end, we have included several features of
slow neutron scattering in polycrystals such as elastic scattering and
non~-monotonic (actually, discontinuous) cross sections., These features
have produced a number of interesting and unexpected results.

One of the most striking differences from previous theoretical
efforts is the structure of the transform plane. By including a non-
square-integrable kernel to describe elastic scattering, a new con-
tlavurma, I‘e » is produced which has a crucial effect on the behavior of
the dispersion curve. Furthermore, using discontinuous cross sections
results in the existence of discrete eigenvalues with magnitude greater

b3
than A\ .

The dispersion curve itself exhibits interesting and unusual
behavior., For example, we found that on the "physical plane™ or
primary Riemann sheet, the eigenvalue variation with buckling is dis-
continuous at 7\* and consists of two disjoint segments, On the other
hand, by searching for an alternate representation of the total solution,
we discovered that the dispersion curve could be smoothly extended
past ?\*, This required eigenvalues from a dispersion law that had
been analytically continued past FSB' However, the line cut at PSB
appears to invalidate the standard interpretation of the Nelkin expan-

g
sion coefficients when data beyond N is included.
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An examination of the total solution revealed that the contribu-
tions from the discrete pole and sub-Bragg continuum in the "physical®
plane has an effective decay constant over measuring times that is

represented by an analytically continued eigenvalue. Such a relationship

appears to hold for B2 as large as twice (B*)Z.

. 2
"maximum B“" theorem has been

Howcvecr, an altcrnative
proven which implies that discrete eigenvalues fail to exist for poly-
crystals of roughly a mean free path in size., This is the same order
of magnitude as the critical size for a substance like water. The
critical nature of }\* and (B*)2 is caused by sub-Bragg neutrons
having exceptionally long mean free paths. This makes normally
"large" systems appear small to neutrons in this energy range.

We were able to show that the amplitude of the discrete mode
drops when ?\O is close to Kel while that of the contribution from I‘e
increases. This mode switching may provide a technique for locating
}\el' Thus, while a discrete mode exists at very large buckling, it
plays no role in determining the response function.

In either of the two representations developed for the solution,
we found that when )‘o > }\.*, the sub~-Bragg continuum contribution
dominates the decay at long times. In fact, Fullwood _631_:9_1_.49 appear
t0 have seen the effects of TSB in their work on beryllium, However,

current measurement techniques are not capable of waiting long enough

to see the uncontaminated contribution from I'SB.
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B. IMPLICATIONS FOR EXPERIMENT

We can conclude from this work that nothing drastic happens to
the experimentally observed response function as BZ passes (B*)Z.
Additionally, a good exponential decay (with decay constant equal to the
analytically continued eigenvalue) is observable over early measuring

times,

As '\o approaches Xel’ it should be possible to observe

AQ CO
the mode switching between the contributions from the pole and I‘e'

In fact, a worthwhile proccdure is to plot, beforehand, )\el using the
best available values of Zi(vB) and Ze(vB), By knowing the shape of
the dispersion curve for Ay < )‘el’ it is possible to decide on roughly
the range of B% over which mode switching occurs,

For polycrystals like beryllium oxide, where )\* is not experi-
mentally known, an interesting combination of experiments is to employ

standard transmission techniques to measure o-i(v) for v<wv_ thus

B
obtaining )\.* and Zi(vB) and then to perform a pulsed neutron experi-
ment to investigate several of the results of this theoretical effort.

The same combination of experiments on graphite would, as
well, Be valuable since, as we have seen, the _value )\* = 2600 s.e:c—1 is
not well established either expérimentally or thecoretically. In fact,
for pulsed neutron experiments in graphite, agreement is significantly
improved between theory and experiment when ?\* is taken to be
approximately 1400 sec-i. Certainly if this is true, it gées a loag way
2

towards explaining the disagreement among experimenters for B

greater than approximately 0.009 cm_'2 for it implies decay constants
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deduced in this range will depend, for one, on the time over which the
decay was ass.umed exponential (see figure 29). At this time, there
exists notheoretical argument which can explain the disagreement
among experimenters indicated by figure 29 using }\* = 2600 sec-l.
In any of these polycrystalline solids, by waiting long enough

2 ~ 0,07 cm~2) one should

(e.g. t>0.8to 1.0 msec in beryllium at B
observe curvature in the decay caused by the contribution from the sub-
Bragg continuum when BZ > B*Z. As mentioned previously, this
appears to have been observed in beryllium49 and beryllium 0xide20.
This effect can be magnified by performing the pulsed experiments at

low temperatures 53 .

C. IMPLICATIONS FOR MULTI-GROUP COMPUTER CALCULATIONS
From the results herein, one expects a multi-group B, code
which includes elastic scattering and discontinuous cross sections (see

46)

Wood to yield eigenvalues independent of group structure with
magnitude greater than A". In such a calculation, the response

function should-exhibit the characteristic high B? behavior we have

described. One might also attempt multi-group calculations of )\,
2

AQC.
by extending the definition of the arctangent function when B® > B &

and v < Vge We have demonstrated with a modified synthetic kernel

that such an approximation causes negligible errors because neglected
-’\o + )\* 2
.ADC' )

BvT

Characteristic singular lines analogous to )«.e will exist and

1

terms are of order (

are given by
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B .
)= vz D) o= : ;
e '] VJ( T(v_]) B ) ’ Vj>VB
tan SN CTAY (v))
el'’]

or '2
v.B
—_
32 (v.)
el’ ")

4
A (v.) =v.a.(v.) + + O(B ; v.> vV o
ey 1] (B j- B
Here, vj is the speed corresponding to the jth energy group. For
multi-group calculations in which scveral Bragg peaks are included,

these lines can cross causing the multi~group eigenvalue structure to

appear similar to its diffusion theory counterpart (see figure 3).

D. SUGGESTIONS FOR FURTHER RESEARCH

The work in this thesis indicates several interesting areas for
further research., For example, we have indicated that certain physical
parameters, namely, k*, U‘i(VB), and o‘e(vB), play an important role
in understanding pulsed neutron experiments, Furthermore, the im-
portance of the sub-Bragg neutrons described by the contribution from
TSB demonstrates the necessity of treating this energy range carefully,
The sub-Bragg parameters like X' are incorrcotly prodicteds .’ 32 by
computer-oriented scattering kerr;els for polycrystals, e.g. the Summit
code47, because they use the incoherent approximation to describe
inelastic scattering for v < Vye We might note here that while the
Summit code underestimates )\* for graphite, it overestimates it for
beryllium. Since the scattering below the Bragg cutoff is inelastic,

coherent scattering, further work is required to correctly describe

very slow neutron scattering.
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Considerable work remains on the exact spatially dependent
transport theory analysis of pulsed neutron experiments in polycrystals.
Recently, Cercignamis4 has developed a method for solving boundary
value problems of the Boltzmann equation when a synthetic kernel is
used. Furthermore, full-range problems can be handled by this
method when a general square-integrable kernel is inclu.ded55° Thus,
the problem of pulsed experiments in infinite slabs of water with a
source at the center is amenable to exact solution. However, full and
half-range boundary value problems with a non-squarc-intcgrablc,
non-degenerate kernel remain unsolvable. Since the modified synthetic
kernel utilized in this thesis is non-degenerate and non-square-inte-
grable, a general method for solving the pulsed neutron problem in
polycrystals with correct boundary conditions does not exist at this
time,

If we could solve such problems exactly, we could then investi-
gate the range of validity of asymptotic reactor theory. Recently,
Williarns56 examined the pulse neutron problem in slabs using a syn-
thetic kernel and the end-point method. Thus, his results are not
directlﬁr applicable to polycrystals., However, he found that the buckling
concept is valid as long as a discrete time eigenvalue exists. As well,
he conjectured that when a "pseudo-fundamental” time eigenvalue exists
(as in diffusion theory), a "pseudo-fundamental’ buckling will exist as
well, We have found that in place of "pseudo" eigenvalues, real eigen-
values exist with magnitude greater than }\*o If we extend Williams'

conjecture, it implies that the buckling concept has validity where he
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suggests "pseudo" bucklings. However, the buckling concept might
break down at long times. Of course, all this is a subject for further
work,

Of somewhat more mathematical interest is the problem of
evaluating the total solution when only area continuum exists {or
discrete eigenvalues embedded in the area). Cercignani utilized the
theory of generalized analytic functions57 on problems of this kind.
Additionally, one can examine in a general way the dispersion law of

neutron transport as a function of two complex variables.,
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APPENDIX A

PROOF THAT THE DISCRETE EIGENVALUES ARE REAL

Begin by considering the eigenvalue problem analogous to

equation II-32 in chapter II

N (B ,v,\) oo
: = e 2 Y O ! ! 1 ! _
QJH(B,V,)\.) Te(B’V’)")S\O A\ ZL(V :V)\IIH(B:V s)\-) dv', (-A 1)

Since Ei(v',v) obeys detailed balance, we can rewrite A-1 as

X (B,v,\) = a’(B,v,k)g K{(v',v)x (B,v',\) dv' (A-2)
o}
wnere
Y. (B,v,\)
X (B:V’)") = '-'l—L'—"_—'_ » (A"?’)
M(v)
3
K(V]:V) = V'Zi(vl,v)(l\l\ﬁﬁz))) = K(V:V') » (A-4)
and
a(B,v,\) = prgteil (A-5)
e

If we complex conjugate A-2, we find

- pCco
X(B,v,\) =5(B,V-X)§ K(v',v)X(B,v',\) av'.  (A-6)
o]

Multiply A-2 by -)_(-(B,V, }\)/()((B,V,}\), A-6 by X(B:V:K)/&(B:V’K):

subtract and integrate over v to obtain
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§m7<<B',v,>\>x(B,v,>\)[ Lt Tav=o (a-7)
° “«Bv. N 35 -

By letting N = x * iy, we can rewrite the bracket term in A-7 as

2 2
E__q _ ' 1 1 log{(X+VZT(V)) +(BV'Y) }
j|“ el “|T (B,v,0 % 2B T v E () o4 (By +y)
(A-8)
Thus, A-7 can be written as
e Iy (B, v\ IZ (x+v2T(V))2+(BV-Y)Z
g RA= ¥ ) —— log 5 Z}dv=0
o !I‘e(B,v,?\)i la(B,v,\) | “v (x +vZ(v) )"+ (Bv ty)
(A-9)

However, the function

Ix (B,v,M |2

2 7~ >0
[T (B,v,N|"|aB,v.M |

for all v& [0,). As well, the log term is sign definite, i.e., for
y > 0, the log is < 0, or for y <0, the log is > 0. REither way, the

integrand of A-9 is sign definite. Therefore A-9 can hold only if

(x #vEq(v) )24 (Bv - v) 2
1o { 5 5 } =0
(x+vZT(V)) T{Bv +y)

for all v. But this is true for all v only if y =0 implying only real

eigenvalues can exist,
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APPENDIX B

ASYMPTOTIC EXPANSION OF THE SUB-BRAGG
CONTINUUM CONTRIBUTION

The expression

S(A,B)
A(x, B) (B-1)

N(\,B) -
defined by equation III-53 is the Laplace transform of a time response

2

*
function., Consider the case when B” > B 2 sO that the only zero of

A{N,B) = 0 occurs for )\0 > )\*. Then at long times, the solution will

be governed by the contribution from the integrals about TSB' This
contribution is given by
sk
-A +tiB
1 At 1 i )
Ngn(t,B) = 2T1§ d\e S()\,B){ T - i
‘ % A (N,B) A (\,B)
-\ —1BvB

(B-2)

where we have assumed the source contains no sub-Bragg neutrons,

Setting \ = - iBv,a vyields

B

1
1
F __ (B_3)

ax ¢ TsiM@),B) {2 - L )
-1 AT A

sk
_ .-\t

NSB(t,B) = ae 5

where "a" is a constant and T = Bvpl. We will use integration by

parts to obtain an asymptotic expansion, Define

A"(M@),B) - A (\M@),B) _ §(e,B)

z(a,B) =
ATAC ATAT

and
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3 y - 2
- 2 =lvg/vy)

'é(a,B)= (e  -e )

B_;V%

Integrating B-3 by parts once vields

Nt a(a B)

NSB(t,B) = ae S(\(a),B)——"~—

-1

1
1 e"'l’TOl 3 56 }da (B-4)

However, since 6(«,B)=0, we integrate by parts again and obtain

K . 1 .
N..(t,B) = ae_}\' tS()\,(oz)’B)e-l'Tce 96(a) |
35 TAATA o »
1 ] 2 .
1 \S‘ -iTa 8 S§ )
) | © da (B-5)

If we can integrate by parts one more time, we will have that

—xt' 2

+O(

term that may not be integrable is the principle value integral in both

N o(t,B) = } where a(t) is O(1). The only

t

A+(}\(a),B) and A (M«),B). That integral is contained in equation

ITI-27 and AS(M@),B) may be written as

A*(M@),B) = @ («,B) +£(,B) log el (B-6)



-119-
~(vg/vp)(a®-1)
where f(a,B) = b(e - 1) and b is a constant. By
examining the second derivative in equation B-5, we find that, when
written out, all the individual terms but two can be integrated by
parts again. The derivative of the remaining two terms contains a

single pole, Thus, we find

Lk . 1
N (6.B) = B S0, B)e ™M a6(a)
SB 72A+A' oo »
1 2 1
3% 8 8
ae MU (Y -ite [ 86 A*A‘>+ KAJ(A')“
T -1 A
Nt
e
+ o =5— ) (B-7)
A Y t-’ '
8%(— )
i -iTa ATAT
We can readily show that S ) dac Sé 5 exists and can
- o { .
(=)
: 85 A AT
be bounded independent of 7. On the other hand, 2S B2  Sa
containg a term proportional to 28 —g—g —g-g 10g. —1-—-:-’%) . The derivative
of such a term has a simple pole at o = 1, However, since log i -_rg
is an integrable function over a € [-1,1] , we have that
1
Lo lire 88 a(A“LA’)
g dae V% g2 2 g O(1) in T. Hence, the asymptotic
-1 oa  oa
- I :
form of l\SB(t,B) is
-X*t -X*t
N (t,B) = ° % a, ta g(t)} + O(E—;':—_— (B-—S)
SB ()\.t)z { 1 2 (O t)3)
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where g(t) is bounded in t. Xstimates indicate such an expansion

should hold for t greater than about 10 msec.
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APPENDIX C

OTHER THEORIES OF PULSED NEUTRON EXPERIMENTS

I. ONE-VELOCITY DIFFUSICN THEORY

The vne-velucity diffusion equation is

dd(r,t)

DV 4z, 1) + 2 4z, 1) = - L —

(C-1)

<

where the solution must satisfy the conditions

®R,t) =0, t>0; &x,0) =q(r)

and R represents the extrapolated size of the system. Solving by

-A_t
separation of variables yields the long time behavior ¢(R,t) ~ a_e °,
where the decay constant, )\O, is given by

A =vZ_+vDB? (C-2)
o a

The quantity BZ is the eigenvalue corresponding to the fundamental

spatial mode and, thus, is the buckling.

II. ONE-VELOCITY, ISOTROPIC, ASYMPTOTIC REACTOR THEORY
The one-velocity Boltzmann equation with isotropic scattering
and asymptotic reactor theory is

- . stpi 1 1 90
(gp Tvapt iBviple(B,p,t) ==~ o¢(B,p',t) dp’ +5-56(t) (C-3)

Y1

The Laplace transform of C-3 is



-122-

(A +vE +iBv)e(B,p,\) = Z—?—“f’ _11$<B,u',x> dp’ +%9 (C-4)
and the solution for E; is
~ 9 1 { B
¢(B.p. M) =T<A(x,5)>(x+v2T+tip) (C-5)
where
A(LB) =1 - % tan” ! T}’%‘%‘_T . (C-6)

Note that this function is the same as Te(B,V,X) defined by equation
II-26. The solution :o is analytic in the \-plane except for
i) theset I': MN+vE, +iBvp=0 pE [-1,1] (C-7)

ii) the set I‘d: AN,B)=0 (C-8)

where I'  and Td correspond to the continuous and discrete spec-
trum of the Boltzmann transport operator, The function A(N,B) is
the one-velocity dispersion function and its zeros generate the
?\;vs-Bz curve,

The sets I' and T
c d

1 A~PLANE |
imply the A-plane structure at k
the right. By deforming con- ﬂ O
tours, the total solution can be —lit}'
written as |
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~Nt g -(vZ,t+tiBvplt, .
QO(B:}L:t) =Z§0_)\ (B,p.)e ! +-Z-qe T {[ +1 + - 1 J\"
' TAT(N,B) AT(N,B)

i T At qD/Z [

1 1
-vZ,-iBv AtvZp+iBvp L ATOMB) AT(N,B) }

(C-9)

In a manner analogous to that used in chapters II and III, one can
deform the contour in an alternative form by using the analytic

continuation of ¢(B,u,\) past Tc. The analytic continuation of

A(N,B) is given by

_ -1/ Bv
A (\,B)=1 - (Ta YTV, +TF>

i,e., one obtains AC(?\.,B) by extending the definition of the arctan-
-gent. The symbol Tan-1 stands for the principle determination of
the arctangent,

The dispersion curve obtained by solving C-8 is

ho:vET - Bv COt(*S-)
S

or, expanding in powers of BZ,
N =vE + =i Bl+ 8%+ 0% ; () “ci? (co10)
o a 323 45 23 ; z;

Notice that the expansion is valid for BZ < Bf = anz, On the other

hand, B % (that value of B% for which A, = vEq is a solution of
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C-8) is Bz‘<2 = % B(Z:'. Thus, when B2< B>‘<2, C-10 converges to a zero

of A(\,B). However, when B2

2
<B < Bi‘, C-10 converges to a
zero of AC()\,B).

Since the cocfficients of B4 and higher order terms are

. 2 .
positive, the )\o-vs-B curve is convex,

III. SHIFTED TEMPERATURE MODEIL
Beckurts51 has developed a simple model that is applicable
to pulse neutron experiments. In the framework of diffusion theory,

the flux is given by

1 afp(}‘_:E:t) 2 [ CO
= (E)p = D(E)Va +5 ® (E'—E)o(zx,E',t) dE' (C-11)
v ot iy o s -

Assuming ¢(r,E,t) = ¢(E)x(r,t) and integrating C-11 over all E

gives

B (x,t) _ )
—5r— =-Z,x(x,t) +DVX(z,1) (C-12)

SN

where Z_ and D are the normal spectrum average quantities. An
. a

(o)
equation for the energy density ]—Z}"n(_l_'_,t) = S‘ —f;: (r,E,t) dE is
o

o= = —_ 2
5T = —ZaEX (r,t) + D-t'-:Dv X (x,t)

=
o o JPS o'9] N
+ X(_r_,t)g E*LS‘ Z_(E—E)$E') dE' - 2 _(E)$(E) f dE
o (o]

{C-13)
where
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f ED(E)$(E) dE
Ep = — (C-14)
[ D(E)$(E) dE
o]

Multiplying C-12 by E and subtracting from C-13 yields

2 00 HCO
D(E)%X-(ED~—E)=§ f (E'-E)E_(E'-E)$(E") dE' dE . (C-14)

(o] o]

When lii = 0 implying no diffusion (infinite medium), the flux is

—E/kTo
e (C-16)

(E) = M(E;T_) =

l.€., the Maxwellian.,

We now assume that the spectrum in a finite medium can Be
represented by a Maxwellian at a shifted temperature, namely,
M(E;T). Since we assume [T-TO|/T0 <<1, expand ¢(E) = M(E;T)
about T = TO to obtain

T-T

-, T-T 2
o({ E
oE) = M(ZT) + —— (g - 2) M(mTy) + O

TOO) (C-17)

From this, we have that

eyates
S‘ S (E‘-E)ZS(E'—"_'E)CP(E') dE' dE = —Z k(T -T )M N (C-18)
ovo

where N is the number of atOms'per cm3 and M2 is the second

energy moment of the microscopic scattering kernel, i.e.,

- 1 1y 2 1. -!__, 1 _
1\/1'.2 —mg S (E'-EY"M(E ,TO)O‘S(E E) dE' dE (C-19)
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Using these results in C-15 yields

Eilwl

., din
T TO:EVZX 1TZ'&T
T X NMZ

o]

(C-20)

For the pulsed neutron experiment, we assume Y (r,t) =

- At

Rixr)e » where R(r) is the lowest eigenfunction of VZR +BZR(£) =0

subject to R(r) vanishing at the extrapolated boundary of the system.

This means C-20 becomes

dln D
T-T 1+ 2=
—_Fr—'—_‘e = _BBZ '.\'n,?ln T (C‘Zi)

~N .LV.LZ

which implies T < To' Thie effect is callcd diffusion cooling and
results from the preferential leakage of fast neutrons from the system

during the decay of the pulse. From C-12, the decay constant is

given by
- 2 _
A= voEa(vo) +vDB (C-22)
Expanding vD about To
3D = &D)T ) +(T-T )LD (C-23)
o} o' 4T
T=T
o}
means that with Do = (\—r—ﬁ)(’I‘o) and
din D
—_— ) +p 82
czT—ﬁd(_vD)f (1 *Jin T
o daT T=T NM2

we oObtain



-127-

2 4

>"o =V, Za, (vo) + DoB - CB (C-24)

Since C is positive, equation C-24 implies a concave )»o--vs--B2
curve in contrast to the one-velocity transport result of appendix C-II.
However, the transport effect is generally less than 10% of the spectral

or energy effect and diffusion cooling is experimentally observed.

IV. COMPUTATIONAL APPROACHES

Much of the analysis of pulsed neutron experiments is per-
formed with multi-group or discrete ordinate (in energy) diffusion
theory computer codes which allow for a rather detailed description
of the scattering kernel. Both approaches begin with energy depen-

dent diffusion equation

d0(E,B%,1)

= 2 2
5 = -[ Z,(E) +D(E)B ]4(E, B, 1)

1
v

0
+5 = _(B'—~E)§(E',B%,¢) aE' + S(E)6(t)  (C-25)
(o]

where the spatial dependence is described by a single buckling, BZ.

The associated eigenvalue problem is
Py = \o (C-26)

where the operator P is defined by

> oo}
P= (VET(E) + vD(E)B") -SA VZS(E’_“E) dE' (C-27)
o} _
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If we define LIJ(E,BZ:t) = .‘/ NI\ZE) ¢(E: stt)

! N lMEI | !
KE,E) = v Gl & (8'~E) = K(E,E)  (C-28)

‘we obtain the eigenvalue problem Sy = M , where S is given by
> o0
S = (‘.’ZT(E) +vD(E)BR”) —S\ K(E',E) dE' . (C~29)
o

The corresponding multi-group or discrete ordinate eigenvalue prob-

lem is
N
2 =\, -
(ViET(Ei) +ViD(Ei)B )qu -Z dEjK(Ej,Ei)LIJj = )upj (C-30)
j=1
This symmetrized matrix eigenvalue problem is then solved by

diagonalization to obtain the eigenvalues )\j(BZ) and the total solution,

2 > -\t
@(E’B t) = Z AJ ¢J(E3B e J (C-31)
; .

. In the discrete Ordinates approach, the cross sections of
interest are evaluated at certain discrete energy points and are
assumed constant in the energy intervals between the points. In
conlrast, the usual mulli-group approach uses group averaged cross
sections and the number and spacing of the energy points is chosen
to give an adequate representation in the energy ranges where cross
scctions are rapidly changing.

A multi-group transport theory approach based on asymptotic
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reactor theory has been used hy Wood to calculate )\O—vs -B2 curves

for beryllium. We begin with the Boltzmann equation II-5 and con-

sider solutions of the form &(B,E,u,t) = ¢(B,E,H)3'Mei§'£

. Sub-
stituting into II-5 and assuming isotropic scattering yields
(- ——+2T(E) +iBp)@(B,E,p,\)
(11 Qo
:.j d].L'S‘ ZS(E'—*E)cb(B,E',p',)x) dE' , (C-32)
-1 o

D1V1de by (- —>5+ZT(E) +iBu), integrate over [, and use ¢ (B,E) =

5 ¢(B,E,p) dp to obtain

(e8]
¢ (B,E) = ’I‘(B,E,?\)Ss Z (E' E)¢ (B,E') dE' (C-33)
!
where T(B,E,\N) = i tan_1 By It is cquation C-332 which is
o B NFvEL(E} E
normally converted to a multi-group form and it is the equation con-
sidered by Wood. Notice that with a kernel of the form II-8 for poly-

crystals, it is convenient to rewrite (C-33 as

o
R - T(B’EJK) ' !
(B2 5) = oy (B T(B, B0 ), Tiner(E TEIG(EL B B
(C-34)
We can obtain a symmetrized kernel for C-34 by defining
-[ o (E)T(B,E, N 2
XO(B:L) (PO(B’ )L B,E,}\) M( ) (C"-?’S)

The kernel is
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K(E',E)

1
_ T(B,E,NT(B,E', N M(E') )2 i
" UT-=_[(E7T(B, B, N [1-2_(ENT(B, B 0] (& J Zinel® ™5

= K(E,E'), (C-36)

For polycrystals, \ > K* implies T(B,E,\) <0 for E< Ene In
this case, one can follow the suggestion in the text and extend the
definition of the arctangent to its next determination,

The following outlines the method employed by Wood to solve

0o
C-33, With the operator B =_5 KR(E',E) dE, we can rewrite the
o

eigenvalue problem as

We now replace the integral in B by the finitc sum
N

/ a.K(E.—~E)x (B,E.) where a., and K. are dependent on the
La ] J 10 J J J

JcT&adrature scheme., Thus, B becomes a matrix and we have

[BOM) - wMIlx, =0 (C-38)

With some manipulation, we can Obtain an expression for the rate of

wT 4B,
change of w(A) with X\, namely, %—-W)-\- = —0—,1-.(-1-2-\—-9— . An iteration
XoXo

scheme on M\ is now used until the value of w 1is sufficiently close to
1. Doing this for several BZ generates the ko—vs—BZ curve.
Rather sophisticated scattering kernels have been coded for

use with these multi-group theories., The most widelj used is the
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Summit code47 which uses the incoherent approximation to evaluate
the inelastic scattering cross sections. For graphite, a model due to
Parks is employed which assumes that all the information required
is contained in the phonon frequency spectrum. Since graphite is
highly anisotropic, it is assumed that the vibration of atoms in the
basal planes of the lattice are not coupled to vibrations perpendicular
to the planes. Thus, a frequency spectrum is Obtained for each type
of vibration. This model was used by Ghatak and HOneckz1 in their

graphite calculations., For beryllium, the Summit code is used with

3).

the frequency spectrum of Young and KoppelgéL (see Lee and Daitch4
The elastic scattering which occurs in polycrystals is modeled
separately and added on to obtain the total cross section. We should
note that all existing scattering codes neglect inelastic, coherent
scattering which is important in the sub-Bragg energy range, This

ES

probably accounts for the incorrect predictions of X\ .
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APPENDIX D

THE EFFECTS OF EXPANDING THE ELASTIC SCATTERING KERNEL
IN LEGENDRE POLYNOMIALS

This appendix examines the effects of anisotropic elastic scat-

tering on the structure of the A-plane. Begin with the Boltzmann

eguation
B x,v,8,1)
5 +v +Vo +v2,-T(v)¢ = Si‘P + Se"° + qo(_r_:X75(t) (D-1)
where
— ) 1 1 1 _
.B V inel V Vi QD(EJVJ’_@ :t) dV dQ (D 2)
V‘: 0‘
and
= V‘ COh(V'—’V Ql-—bka)go(r,v Ql t) dV dQ' (D_3)
v‘,Q‘

Assume that S.l is a completely continuous operator and thus does
not effect the continuum regions of the A-plane. Expand the elastic,
coherent scattering kernel in Legendre polynomials and assume that

the kernel depends only on the cosine of the scattering angle,

SN w2 2) = 2 v i)
(=M p_ .
= v - {2 P () - (E50 ) ) p, P10
. . (D-4)

or
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co
) 1_ <

Zo v i) = %‘ﬂz (22 +1)a, (VIP,(u,) . (D-5)
£=0

Here, P,(p,) is the £th Legendre polynomial and

a,(v) = (35770, (D-6)

is the P£ component of elastic coherent scattering kernel. The
addition theorem for Legendre polynomials can be written in terms of

the spherical harmonics, Ynm(p,<!>).

’
B Py = Z Y (Y (e ¢) (D-7)

Hence,

am rn*
Sqdv §(v'-v) Z Z 2, Y, (1, <P)5 S‘ Y, (' ez, vt
O .

£=0m=-1
o dptde! (D-8)

But o(x,v',n'.t} does not depend on o' so

2m m>:=
S‘ Y,Q (p",q)l) d¢' = (D_g)
[e]
Since Y (') = (2124; ) P,Q ('IJ-'), we have
= 1
N\ 20 +1° ' ‘ 1 |
Se? =/, 2 (")( z >P£(“) §_1 P,elz,v,1',t) du (D-10)
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Using this in the Boltzmann equation gives

(_a_t + v - +VET(V) )97(_£:V:|“"t)

Qo
= 1
20 +1 r
=S¢t Z 2~ 2P ) Pyle(x,v,p'st) dp' + q(z,v)8(t)
-1
=0

(D-11)

Laplace transform D-10 in t and use ei-g)-.E theory to find

(A +vEL(v) + 1Bvi)e(B, v, 1. \)

[o9]
= S+ \ -Zflfia()P()E(B N+ Q ) {D-12)
= lcp 2 ﬁv £H 9 2V, Vi

f=1 ’

where we define

?Pﬁ(B,v,k C P Yo(B,v,n',\) du' (D-13)

As before, those regions of the \-plane where ?\.+VZT(V) +iBv = 0

are excluded, We are interested in the effect on I

of the inclusion
o

of angle dependent terms in Z) (v —Vikg ). Assume >\.+VZT(V) +iBwvu

# 0, divide by it, multiply by Pj(p), and integrate over W,

ot Pj(p)siE<B,v BN d
J_ N +VET(V) +iBvp

1
oo

LTJJ.(B,V,?\) =

1 P, (H )P, () du
)\+vZJ (v)"lep.

2 (V) “[-’£ (B,v K)\S‘

Pj(P-) Q(v,p) dp :
+S‘_1 7\.+VZT(V) +iBvp (D-14)
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Let
N TvE (V)
. T
2= J-'( Bv )’
N EEYEE
by gv) = ( 2 >(—]§;) aﬁv)g
e Pj(u)(Siqo) dp
i 1 PJ(M)Q(V,M) du
qj(v)=Bv§_1 CAR
Then

~

Pj(u)Pﬂ (p) dp

z -

L(Bovn) - ) by 0T, (B,v.0 = ¢ (5) + g, (0
£=0

(D-15a)

{D~- 15Db)

{D-15¢)

(D-154d)

(D-16)

The standard approach is to assume that the sum over £ can

be truncated after n+ 1 terms and is called the Pn- approximation

to the kernel. If we do this, we find that, since S.1 is completely

continuous, E(B ,v,A) will not be analytic at those A for which the

determinant, Dn’

1-b -b

00 ol on
"bio 1“b11 2 0. 1n
D = .
n
-b -b o i-b
nn ni nn

(D-17)

1s zero, For n =0, we have the case of isotropic elastic scattering

considered in the thesis and we find
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.Le(B,v,M= i —boo (D-18)
For n=1, we have
Dy =@ =by )l -byy) -Dbighoy
. i
and, with £ = - T
a_ (v) _1 3::11 1
D1 = (1 - tan “&)(1 - gvtan £)
N SaU(v)a:Zl(v) 1:1 ) taz—ié ]2 . (D-19)
(Bv)
N .. 2 2 .
The limit of D1 as £~ 0 (oras B”“—0)is
, a_{v) : a,{(v) .
- - N U SRSAN S -
Dig:o - (1 )\.’*‘VZT(V)) ( L )\.+V2T(V)) =0 (D-20)
Recalling that a (v) = = COh(v) and a, (v) = (ZCOh(v)) the P
g o) el 1 el P,’ 1

1
component of the elastic scattering kernel, we find two solutions of

D-20,

7\.1(B=O,v) = - vE.l(v) v € (VB,UO) (D-21a)
and

Ao (B=0,v) = ~v(Ze(v) - (T S°Bv) )y ) vE (v, ®) (D-21D)

2V 7 T el Pi B’
_ coh . .. 34 . . C e

At v =vg, (Ze1 (VB) )Pi. is negative™ ~ implying )\2(0 ,VB) is in the
area described in figure 7. Since VBEi(VB) = )\'s, we have )\1(0 ,VB)=
\*, Thus, at BZ -0, A (B,vg) = - \_|. Calculations indicate
]ZCOh coh

ol (v) fP1< Zel (v) for all v which implies )\.Z(B=O,v) < ?\1 (B=0,v)
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for all wv.

To examine the behavior of Kl(B,v) and )\Z(B,V) for small

B'2 (small éz), expand the functions in D1 about B2 =0 (g"- = 0).

a 3a

_ _ _0.2 _ 1.2
a a
+ g L2 ot =0 (D-22)

A (B.v) - A, (B=0,%)| = O(%) and [\,(B,v)-\,(B=0,v)| = O£

because §2 << 1, Thus, near )\.1(B,V) we find

(zR(v))
BZ r el P1 4
A (B,v) = -vZ,(v) - Seeng, L SeRo . 1+ o4
el WV el WV P, e1 WV P,
(D-23)
At v = VB, we have
(=% v))
S e 2 - el B P N
A (B,vp) = -(x"‘+ S - R 11+ L }) + O(B%)
B HEqMp (Z_(vo))y -(Z Ry
o el ' B Po el B P1
which is equation TI-49 in the text. Analogously, we find
coh
, (Zel (V))Pi - 5
B =0 B e L,
el VWV Po el W Po
! _‘l + oY (D-25)

3 (=% e - (25" (p

Since )\Z(O,v) lies in the area in figure 7 and since
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2 .
)\Z(B,v) - )\Z(O,V) = 0(B”), this root remains in the area.

For an n term expansion, we find that

Mag(B=0,%) = -v(Z0(v) - ()L ), 1=0,1,... 01
1

(D-26)

because the off-diagonal terms of Dn in equation D-17 are zero at

B = 0. By examining the integrals in bij’ we find that 1 - bii is

@) .. . . O .
(1), b1,1+1 and b1+1,1 arc (B), bi+2,1 and bi,

etc. Thus, we find the elements of Dn behavior, for small £, as

2
{42 @re O(B"),

a o) N\
D_= \ o(1) \ (D-27)

To see this, consider the integral

.l Pow)P, () dp
_ i N 2
Ijz(z) = B—‘_"S_ 70 (D-28)

which forms the core of bjﬂ‘ We are interested in the large |z]|

(small B) behavior. Thus, rewrite I.ﬂ(z) as

- ~1 PJ-(M)P,Z(M) dp
ThEvEL(vio_ (1 - E)

Ijﬁ(z) (D-29)

and, for >

E’«i,
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Ijﬁ(z) mg p.)Pﬁ (p)> (E) dp (D-29a)

n=0

We can interchange the order of summation and integration because the
series converges uniformly. Use now the orthogonality of the Legrende

Legrendre poOlynomials,

i .
g Pj(H)P (p) dp = ﬁjﬁ (D-30a)

the recursion relation,

(2] +1)Pj(u) = +1)Pj+1( py JPJ g () (D-30b)
and the formula
1
§ HPJ-(H)PI(H) de=0 [j~1]>1 (D-30c)
Thus, for j#4, D-29a is
1 Pi B _&\ )
J 0(2) ‘m) P, (H)P P-)( +( ...)dp (D-31)

Relation D-30c implies that terms of order 1/z (O(B)) are non-zero

only if |i-j| =1, i.e., that By 41

is O(B%) or higher.

and bi+1 ; are O(B). Thus,

lj-£] > 1, bjjZ
To illustrate how one determines the order of these terms,

consider the coefficient of 1/22,

i (! 2
“Z,g oo Pj(p)Pﬁ (1) dp
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Using D-30b and D-30c, we find this coefficient is non-zero only if

lit1-j| = 0 or ¢ and |i-1-j] =0ord. Thus, by, ; and b; ..,

are O(BZ). If we write the coefficient of 1/z" as

\ 1 W P () 1P () dn

and use D-30b successively until D-30c applies, we find bi i4n and

bi-m ; are O(B™)., These order estimates imply that, for any order
2
Legendre expansion n, the edge of the elastic continuum is, to terms

of order BZ, given by equation D-24, This is the result presented in

the text.
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APPENDIX E

CONTINUITY OF THE SOLUTION IN BZ

To examine the question of the continuity of the neutron density

. 2 : . .
in B7, consider the Boltamann equation in the form

OX(B,yv,p .t 4

B (B.v X (B, v, 1)
= gwgi K(v', WX (B, v, p',t) dv' dut + -2 (E-1)
Yo vY-1q Zx/ﬁ(—v_)-
where
w(B,v,p) = vE (v} + iBvy (E-2)
k(v',v) = V‘ZS(V'.V) q@ = k(v,v). (E-3)

Integrating E-1 directly gives

X (B vty = 2 o WB, Vo)
2VM(v)

00 1 f
+§§ ‘S e_W(B:V:P')(t't )k(V',V)X(B,V',H',tl)
ovo vY-1

« dp' dv' at', (E-4)
It follows from integration over p that
a(B,v.t) = L g(B,v.1)
VM(v)
t ~cO
+g‘ ( K(B,v,t-tYk(v',v)n{B,v',t") dv' dt' (E-3)
% J

oY o
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where
1
n(B,v,t) =S X(B,v,p,t) du (E-6)
-1
~vZ . {v)t .
KB,v,0) = T By (B-7)

We will show that n(B,v,t) is jointly continuous in B and t for any
fixed v. We include isotropic, elastic scattering which implies that

ET(v) has a finite number of finite discontinuities, i.e., it is piece-

wise continuous in v,

Let

#(B,v,t) =2 giB,v,b) (E-8)

The following conditions hold:

1. {(B,v,t) is jointly continuous in B and t for any fixed v.
2, K(B,v,t) is jointly continuous in B and t for any fixed v.

3. For reasonable Q(v) (such as Q(v) = M(v)),

f(B,v,t)|= - e <N.
l VM(v)

-VZT(V)t
4, |K(B,v,t)]| =e =1.

o'
5. S kiv',v) dv' < M,
o .

The first four conditions are clear. The effect of elastic scattering on

condition 5 is as follows:
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S)Ook(v',v) dv' = gmk.(v',v) dv'’ +goov2 (v) = M(v') &§(v'-v) dv'
o o ! o el T Mv)
(E-9)
1eo) o
5 k(v',v) dv' =S ki(v',v) av' + vEel(v) . (E-10)
o )

vEel(v) is bounded for all v. The work of Ku¥&er and Corngold32

on the inelastic scattering kernel in solids indicates the integral of

k.l(v',v) is boundcd.

We now construct the solution to equation E~5 by iteration,

namely,

n(B,v,t) = goO(B,v,t) +¢1(B,v,t) +¢2(B,v,t) +es (E-11)

where

t ~C0
gon(B,V,t) :S C K(B,V,t—t')k(v',v)tpn_i(.B,v',t') dv'dt' (E-12)
o

Yo

Here, ¢O(B,v,t) = {(B,v,t) and is continuous, jointly, in B and t.
Since K(B,v,t-t') is jointly continuous in B, t and t', it follows that
all the gon(B,v,t) are jointly continuous in B and t.

' 38

We now show, using the Weierstrass M-test”™ , that the series

E£-11 converges uniformly in B and t, To do this, proceed as follows:

loo(B,v,t)| <N

. t m '-
‘goi(B,v,t)[ S‘S‘OS\O |K(B,v,t-t")} | |k(v',v) | ;<p0(B,v',t')| dv' dt'
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]qol(B,v,t)] < NMt

2
o, (B,v,10)| < NG
* n

o (B,v,t)] < NI

N and M are independent of B, v, and t. Thus, on any bounded
interval [0,b], the moduli of the terms in the series E-11 do not

exceed the positive numbers

(M) ™

which form a convergent series. Therefore, the series E-11 is
absolutely and uniformly convergent in [ 0,b]. Since each term in
the series E-11 is jointly continuous in B and t, it follows that the

sum, n(B,v,t), is a continuous function of B and t.
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