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ABSTRACT

The so-called Néel walls separating antiparallel
domains in very thin ferromagnetic films are found, on
the basis of accurate calculations, to have a shape differing
significantly from the linear rotation model suggested by
Néel, In this 180° rotation, three regions can be distinguished:
a central one where the magnetization 1\-/’1 rotates rapidly
{positive demagnetizing energy) and two adjacent regions ex-
tending in the neighboring domains where the rotation is very
rmuch slower, In these "tail"” portions of the curve, the direc-
tion of 13I is determined mostly by a balance between the aniso-
tropy torque and the torque due to the internal field. The calcula-~
tions have been performed for permalloy films with thicknesses
ranging from 0 to 200 8, The walls extend up to several
microns, in each of the adjacent domains {(of the order of 15u
at a thickness of 200 K),

As a continuation of the study of infinite Néel walls, the
case of double walls (360° rotation) and of cross-tie walls is
also analysed on a semiquantitative basis, The main characteris-
tics of these two configurations can be explained on the basis of
the new model found for the pure Néel walls.

In a second section, the internal demagnctizing fieid

H, is calculated as a function of the shape, the thickness and the



edge profile of the film, Along the edges perpendicular to
the easy direction, the growth of peaks of reverse magnetiza-
tion is studied when the external field varies. Also the de-
tailed configuration of fhe internal field at the edge is found to
depend strongly on the profile of the latter, By varying the slope
of a tapered edge, it is shown that (Hi)m.a,x can be reduced to
such a small value that nucleation will take place only at an
external field larger in absolute value than the normal coer-
cive force of the film, Thus the hysteresis curve along the
easy direction is néticeably alfered and very square,

In a third section, an instrument is presented for the
study of the magnetic anisotropy in the plane of the film, This
apparatus is particularly suitable for determining the anisotropy

field, the single domain state being preserved at all times,
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L.. INTRODUCTION

The principles of domain theory in ferromagnetism have
been established by Weiss (1) more than half a century ago. Later,
Bloch (2) showed ti_lat two adjacent domains are separated by a
region of finite thickness, called a wall, where the magnetization
must rotate continuously (actually, in small finite steps from one
lattice site to the next) from ité direction inside one domain to its
direction inside the other. Direct experimental ohservation, with
the Bitter technique (3) for instance, has been very difficult for bulk
material since phenomena could only be viewed at the surface.

Not only is the preparation of one sample long and delicate, but
surface rather than volume effects are observed, the former being
quite influenced by demagnetizing fields.

In 1955, however, Blois (4) reported the method he had
developed to prepare ferromagnetic thin films. Since then, at least
in these films, our understanding of detailed processes such as wall
motion, flux reversal, variations of dolrnain corafiguratioﬁ, and others

has greatly improved, principally because the shape and the surface
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of the sample are such that direct observation is very much facil-
itated. Such a contribution to our scientific knowledge is in itself
worth the work in{rested. Furthermore, Permalloy 80 exhibits par -
ticularly interesting properties and intensive research has been
conducted with the hope of reaching promising industrial applications.
The speed of magnetization reversal was found to be of the order of
a few nanoseconds (10_9 sec) with a drive field of only a few cersteds
(5,6). Such a switching time would permit the design of computer
memories and logical circuits significantly faster than those using
ferrite cores and requiring at the same time a moderate power to
drive the lines. Furthermore, the building of memory arrays made
of superimposed circuits would then be possible through successive
evaporations of conducting, insulating and ferromagnetic materials.
Such fabrication process could be highly automated. Compactness
and light weight would also be attained. Worldwide efforts, carried
out during these last eight years, have already produced commercial
and experimental memories made of ferromagnetic films.

Much experimental work has been accumulated, but, from
the scientific point of view, data still present appreciable scattering
so as to render difficult quantitative conclusions. This lack of repro-
ducibility is due to irrégularities in the physical, geometrical and

chemical structures of films. Sometimes it has not even been possible



3.

to rélate variations of a given property with one or several types of
clearly identified .imperfections. Fabrication of films with charac-
teristics that are uniform a,nd predetermined with precision has thus
not been easy so far. Imf;ortant parameters in the preparation of
films are either insufficiently controlled or improperly chosen, or
probably even unrecognized and therefore ignored.

Little theoretical work has been done to successfully explain
the accumulated data. A clearer under standing of events would cer-
tainly be useful in determining possible modifications to be brought
in the fabrication techniques. Small-scale investigations and calcula-
tions are promising, since variations of structure and changes in
magnetization direction occur over small distances of the order of a
few hundred Angstroms or so.

The fundamental property of polycrystalline Permalloy films
is the unlaxial magnetic anisotropy induced during deposition. The
component parallel to the substrate of a uniform field present during
evaporation determines the axis of preferred magnetization when the
incident beam of atoms is perpendicular to the plane of the layer. The
role of this external field is simply one of orientation: it aligns the

"easy axis'' parallel to the same direction everywhere. The origin
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of the anisotropy is. not understood yet and several theories have
been proposed (7). Magnetic anisotropies (;:rystalline, magneto -
elastic, étc. ), although their origins are not known with certainty,
depend upon the configuration and the deformation of the lattice and
are the result of an interaction between this lattice and the atomic
magnetic moment. Such an interaction is thought to be due to the
spiﬁ-orbit coupling inside one atom and the quenching of its electron
cloud by crystalline eleciric fields and overlapping with neighboring
clouds (8).

Supposing that the actual explanation of the uniaxial anisotropy
is indeed a spin-lattice inte_raction, which is likely to be the case,
it seems relevant to remark the following. In the case of thin films
deposited by evaporation or by electrolytic process (9), at all times
during the formation of.the sample, the magnetization oriented by
the external field points ir_l the same direction; thus, when an incident
atom attaches itself to the surface of the film, its magnetic moment
aligns with the neighboring spins along that direction; at that time,
the spin-lattice interaction, presumably responsibie for the aniéotropy,
becomes effective and the new atomn will pusition ilsell in the surface
'layer of the crystal in such a way as to minimize the spin-lattice
energy, whatever the latter is. Indeed, the incident atom, being for
a fraction of a second with neighbors on one side only, is free to

adjnst distances hetween it and the underlying atoms. The technique



of fabi'icating films is unique in the sense tha,t. atoms, being deposited
one at a time, have a chance to reach a higher order of arrangement
under the- influence of the magnetization M. That the direction towards
which the magnetic moments point during deposition represents a
minimum of energy and becomes an axis of preferred magnetization

is not ent:lrelir surprising.

As mentioned earlier, investigation of phenorngna at a small
scale is nece.ssars-r in further studies of film properties and Chapters
3, 4and 5 aré examples of the importance of studying internal field
configurations as rigorously as feasible. The detailed analysis of
such fields has always been neglected, thus leaving some problems
Ln;isunclersi;.ood or erroneously described quantitatively, Such is the
case of Neel walls studied in Chapter 3, whose actual shape, largely
determined by the internal field, is quite different from that deduced
from approximate calculations, which up to now was considered valid
by most workers. Internal fields also acconnt for the configuration
and dimensions of.the so~called cross-tie walls reviewed in Chapter
4. Finally, in Chapter 5, investigation of the field at the very edge
of the film suggests that its value, normally of the order of a few
hundred ocersteds in a 2000 A film, can be significantly decreased
to the point of altering the overall behavior of the magnetization of

the film in the presence of an external field.
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Chapter 6 de.scribes an instrument, _whose principle has been
thought of in the course of the work at this Institute, and which might
be helpful in the study of tﬁe anisotropy of films or, more generally,
of- thejr behavior in dc fields. In some instances, it could be used
instead of a torquemeter for determining the magnetic anisotropy of
a sample. Its most advantageous features are simplicity and low cost
of fébrication.

The literafure relative to Permalloy films is extensive and
also quite dispersed. Goo.denough and Srnith. (10} have published in
1959 a review on the matter and Middelhoek (11), in his thesis on
"Ferromagnetic Domains in Thin Ni-Fe Films" (1960), has also
dcscribed in great detail various aspects of thg statics of [ilins.
These two publications provide a convenient introduction to the
subject, as well as descriptions of various experimental techniques.

The method of preparation of the films reported in the
experimental sections of this work is essentially similar to that
described by Bloié. The deposition is performed in a vacuum of
107" mm Hg, measured before the actual evaporation starts. The
Permalloy slug, heated by induction, is briefly degassed in a pre-
liminary step. Glass, cleaned chemically and ultrasonically, is
used as a substrate and is heated to 300°C during deposition. This

simple fabrication procedure is satisfactory for the qualitative



examples presented in Chapters 4, 5 and 6. However, it should be
emphasized that, for a study of film structure or reproducibility of
results, more elaborate techniques should be used, such as thorough
degassing of the substrate as well as of the walls and materials
inside the vacuum chamber, annealing of the film after deposition.
These additional steps tend to eliminate structur_al abnormalities and
foreign chemicals that might contaminate the filim and appreciably
alter its charactei‘istics. On the. other hand, it does not ssem that

a higher vacuum is necessary.



2.. BASIC CONCEPTS AND FORMULAS

Unless otherwise indicated, the rationalized MKSA system

is used throughout.

2.1 Magnetization and Magnetie Pales

The magnetization IT/I, a vector of constant amplitude charac-
teristic of a ferromagnetic material, represents the total magnetic
moment per unit volume. It is treated as a continuous function
although, in fact, neighboring atoms are separated by finite distances.
Whenever the M field is not a uniform one, by analogy with electro-

statics, a volume density of magnetic poles may be defined as:

. BMX aMy EBMZ
p(x,y,2) = -divM = - = B-y p-ye (2.1-1)

This quantity p has no physical reality or meaning but is a convenient

mathematical device.

2.2 Exchange Energy and Torque

The alignment of neighboring magnetic moments in the ferro-
magnetic crystal, giving rise to a non-zero macroscopic magnet-

ization, is forced by the so-called exchange interaction of the electron

-8-
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clouds. With this iﬁteréction is as sociated_a potential energy which
is minimum when the moments are parallel to each other. This
'""exchange energy'' density will then be é function of the spatial
variations of the vector M . The three-dimensional expression

adopted by Landau and Lifshitz (12) to describe this energy is:

e =Al {(grad o{l)2 + (grad cgz)2 + (grad 013)2] .

(=54

1" 2 3

@, @, and w_ being the direction cosines of M. The cxchange
coefficient A is a constant for a given material. In the case of the

unidimensional problem shown in figure 2-1; it reduces to :

de |2
GeX—A(H;r—

(2.2-1)
where is the angle between M and the x axis (Fig. 2-1).
Whenever dé/dy itself varies with y, an '"exchange torque

—
per unit volumne is applied to the magnetization M. Itis obtained

by differentiating (2.2-1) with respect to 8 :

d 8
Tex = 2A — | (2.2-2)

dy

2.3 Internal Field and Magnetostatic Energy

The Inlernal field E_I,i originating in a ferromagnetic body
is easily deduced from the Maxwell equation governing the magnetic

induction. Indeed, with no external field applied, one has:
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B = Mo (Hi+M)
div B = po(divﬁi+div M) = 0
div f—I.: -divﬁ=_p(X»Y:Z)

Thus the formal analogy between magnetostatics and electrostatics

is complete if the electric displacement and charge deénsity are

replaced respectively by the magnetic field and pole density. The

following forrn.ulas will be needed in the remainder of this w.ork;

p, ¢ and i designate volume, surface and line densities of poles.
Field, at location y, due to an infinite line of pole density,

A, parallel to the x axis, and located aty":

H = —*  ith) =ody = pdyds (2.3-1)

Yooam(y-y)
Field, at vy, due to an infinite slice of poles of cross section

t dy' parallel to the x axis and located at y'(as indicated in Fig. 2-2):

2
q = Jt/ p cosep dy' d=
Y “tf2 Zmry
- ey —_—t
= T arc 1_:a.n|: 5657 :] (2.3-2)

Field, aty, due to an infinite line of dipoles along the x

axis, of strength m per unit length and parallel to the y axis:
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H = mz (2.3-3)
2y~

Field, at a distance r, due to a pole density ¢ at the origin:

B = w_dy_dz_ (2_3_4)
r 2
41 r

A m_agnetic_ potential V can be used to describe this field. Thus:

vy - pdxdydz (2.3-5)
47T r
dav
.th H — - = - —m——
wi r” grad V ar
The self-energy per unit volume of material is
T R—— . . 2.3-6
€ 3 M le { )

Because the field against which the work is done is of internal
origin, the usual factor of one-half is included.

The corresponding torque per unit volume is:
T =p M x H, (2.3-7)
- Whenever the total field at one point is the sum of a non-zero

— — .
exlerunal component and an internal one, II, , the energy and
ex 1

torque per unit volume are:

= - M . H + I‘—i 2. | 2" =
em p‘01\/1 (Hex i/ ) (2.3-8)
T =pMx(H +H,) (2.3-9)
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2.4 Anisotropy Energy and Torquc

Permalloy films deposited in vacuo under conditions such
as those repoi‘ted_ by Blois (4) are anisotropic. There exists an
'"easy direction'' in the plane (x,y) of the layer to which the magnet-
ization will be parallel if no torque is applied to the I-\M’/I vector. This
phenomenon i.s described by an anisotropy function or potential energy
density ¢ = £(8), where 8 is the angle between M and the easy axis
(x axis). In the case of single domain films, various experiments
can be used ( 13)(Chapter 6) to determine the anisotropy function.
Most often it is approximated quite well by the function which describes

the Stoner -Wohlfarth model (14):
2
¢ (8) =K sin"0 (2.4-1)

This function presents two identical minima at @ = 0 and 7 as
expected. An "anisotropy torque' per unit volume appears when

sin 8 differs from zero and one:

T_=-Ksin20 (2.4-2)

A high geometrical anisotropy exists perpendicular to the plane (x,y)
of the film. Indeed, the z component of the internal field is equal
to -M_ in a single domain. When a single domain in such a film is
under the influence of an external field gl, the equilibrium between
the magnetostatic and aﬁisotropy torques will determine the steady-

o
efate orientation of thc magnectization M .
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If such a field were applied along the =z direction, the

angle 9 between M and the casy axis would be determined by setting

-

Tm equal to zero in equation (2.3-9), neglecting the anisotropy

torques
ME -Msind) 8 =0
by { ” sin 0) cos
H,
or sin 8 = —
M

Thus, I—IZ being in all practical cases negligible compared to M,
the M vector will stay in the plane (x,y).

If the field is applied along the ""hard direction' {y axis)
in the plane of the layer as in Figure 2-3, formulas (2.3;-7) and

(2.4-2) give:
T +T =p MH cos 9 -Ksin29 =0
m a [¢) v

for H =

that is: sin 6 = Hy/Hk v H_ (2. 4-3)
sin 6= 1 forH > H
y k
where
ZK
- o 2.4-4
H, M ( )

The quantity H , characteristic of a particular film, is referred to

k
as the anisotropy field.

In the more general case where H makes an angle ¢ with the

easy axis, the equilibrium is expressed by the fbllowing relationship:
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Fig. 2-3

Variation of M with the field applied along the
hard axis ' '
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uOM H sin(»-8) = K sin 29 (2.4-5)

Figure 2.4 is a graphical interpretation of this equation which can

be rewritten:

h -h tan & = sin 8 where h =H/H
v X k

The curve € = constant in the plane (hX,hy) is a straight line whose
slope is tan 8, cutting the hY axis at 8in © and which is limited by a
critical curve, the boundary between the regions of stability and
instability. The mathematical expression of this curve {astroid) is
a well-known result (15), and it can be written as follows:

2/3

(m )% (hy)2/3 =1 (2. 4-6)

Inside the astroid, at point A for instance, two states of equilibrium

are possibles 61 and 9 Outside that region, one stable state only

X
exists.

The exact origin of the anisotropy in Permalloy filims has
not been determined yet with any certainty. However, it is presum-
ably a short-range interaction depending on the direction of the
magnetic moment at the site considered as well as its immediate
neighbors. Therefare, it may be assumed that expression (2.4-1),
true for single domains, is still a very good approximation when

6 (y) varies, provided the increment A8 from one lattice site to the

next is very small.
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Units of Physical Quantities and Constants

Quantity

Magnetization
Magnetic Field
Magnetic Induction
Pole density
Exchange Coefficient
Anistropy Coefficient

Permeability in vacuo

Symbol

M

H

MEKSA Unit

Amp. turn/meter

At/m (1/79.5 cersted)
2.

Weber/m (10,000 gauss)
At/m2
Joules/m
Jhn3

=7
4 m-10 Henry/m



3. SHAPE AND ENERGY OF NEEL WALLS

3.1 Néel, Bloch and Cross-tie Walls

The shape of a wall separaling (wo domains in a ferromagnelic
body, with no éxte'rnal field applied, is very much dependent on the
internal magnetostatic field configuration. Indeed, high concentrations
of magnetic poles inside or at the surface of the volume where the
rotation of magnetization occurs, can produce large fields that may
reach values approaching M itself. In many cases, a sizable, if not
a major,part of the total energy stored in the wall is magnetostatic.
Consequently, a gr eat deal of information can often be obtained by
analyzing that single term first. For instance, a simple inspection
of the internal magnetostatic energy permits the determination of
the general form of the wall in two trivial cases:

(1) bulk material where two domains, with their axes of
maguetization parallel and antiparalliel to some direction, say the x
axis, al;e separated by a wall situated in the plane (x, z);

(2) an infinitely thin layer (in the x,y plane) with two domains
with magnetization lying in the plane of the film and éeparated by

a wall parallel to the x axis.

~19-
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In the first example, F‘i'gu-r es 3-1a and b represent two possible
extreme situa.tion.s. Configuration (a) has no magnetic poles
(div M= 0), thus the internal field is zero throughout the material,
Wiierea.s configuration (b) .produces a field Hy = - My'

In the case of an infinitely thin film and tile arrangement of
Figure 3-2a, although the volume pole density, p = - div M » i8 not
zefo, the total amount of polgs,and therefore the field, are pro-
portional to the thickness t ; and thus tend towards zero with it.
However, in Figure 3-2b, the poles appear at the surfa,c.es only,
and are now independent of t; there the amplitude of the _internal
fieldis H = -M

Z Z

It can then be concluded immediately that the stable walls
are those of Figures 3-la and 3-2a, having a magnetostatic energy
density which is zero everywhere. These are called in the literature,
respectively, Bloch and Neel walls, and have been studied by Landau
and Lifshitz (12, 16), and by Néel (17).

By extension, a Neéel-type wall in a film is one where the M
. vector rotates in the plane (x,y) of the layer. In a Bloch-type wall,
I?/I goes out of that plane. Néel (17), who pointed out the existence of
both types of walls in thin films, established some very approximate
formulas for their respective energy content in the case of a 180°

rotation. He predicted a transition thickness tc, below which the

Néel walls would replace the Bloch walls. Due to his extreme
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Two possible configurations of a wall in an infinitely
thin film.
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sim.plification of the calc:ﬁ.lations, no accuracy can be claimed in
tbe determination of t.- Its order of magnitude is several hundred
Ang'strUnié. Figure 3-3 reproduces Néel'é original results.

A third unpredicted type of wall, called ''"cross-tie,' was
observed by Huber, Smith and Goodenough (18) in films of inter -
mediate thickness, approximately iﬁ the range where tC was expected
to fall. They proposed and Moon (19) demonstrated that these cross-
ties were in fact closely related to. Neel walls because, in their case
also,_ the magnetization rotates in the plane of the layer. Thus, the
critical thickness tc, introduced theoretically, is fictitious and has
no experimental counterpart, since actually two critical points exist

rather than one: t , , transition between the Neel and cross-tie

cl

configurations, and t, between the cross-tie and Bloch configur-

2

ations. Figure 3-4 explains the situation schematically and shows

that tc may be quite different from tc » although some authors have

2
tried to reconcile a calculated £t with an observed th'
C

3.2 The Ritz Method for Determining the Energy and Size

of Walls

A general expression for the rotation of M is chosen where
one parameter is left undetermined and, on that basis, the total energy
is evaluated and minimized with respect to that parameter. Evidently
the function describing the rotation through the wall must be reasonably

simple in order to make the analysis possible.



|
e r,
b
4
©
i ; . e
I = Conzi| L
T t
10 ' |
R
|
|
l
' i
! N
l ~~
| T
t—+0
|
|
0 10t S 20 30 -
Fig, 3-3
Néel's calculation of the energy of Bloch and Néel walls
in thin films
Al
e
t
Fig. 3-4

Comparative energy densities of Néel, Cross~tie and
Bloch walls



-24-

Several authors (2.0, 2.1) , after Neel, have worked out the
problem along this line, introducing some modification but without
obtaining results significantly new. A detailed presentation of Néel
and Bloch walls has been given by Middelhoek (11). His assump-
tions and findinge are the following in the case of the _Néel configur -
ation. Figure 3-5 indicates the assumed rotation of M between two
anti-parallel domains: the angle 8 is presumed to vary linearly from
180° aty = «a to 0° aty = a. The variable parameter is 2, the width
of the wall being 2a for a 180° rotation. The exchange and anisotropy
energies Eex and Ea. are then easily determined. The magnetostatic
energy Em is approximated by introducing an additional assumption:
Em is equivalent to the energy contained in a ferromagnetic elliptical
cylinder of half axes t/2 and a, magnetized along the y direction,

the amplitude of the uniform magnetization being M//2 . Thus:

Eo-to Lot .M
m 2

tt 22 2

By minimizing the sum E = Ea, +E +E |, the value of a
m r—

ex

is obtained which determines the energy E per unit length of wall
as well as the width for a given thickness. Figure 3-6 shows the

variations of the wall width 2a and surface energy density v = E/t,

1

as functions of t in a film where |.LOM = le/mZ, A =10 ! J/m,

3
and K = 100 J/m~. (These values are typical of an 80 Permalloy film

deposited by vacuum evaporation on a 300°C glass substrate.)
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Fig. 3-6

Width and energy density of Neel's walls according to the Néel
model of linear rotation {as calculated by Middelhosk)
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At t =0, the width ;ao i§, of'.'c'ourse, equal to the value found for
bulk material (Bloch wall of Fig. 3-la), since the internal magneto-
static energy is zero in both cases. Thereafter, for increasing
tﬁickness, it is found that the width of the wall decreases. The
eﬁergy density increases, of course, up to the critical thickness
tcl’ where cross-tie walls become more favorable.

The Ritz method is useful in determining the order of mag-
nitude of the total energy stored in a Neel wall, but as far as its
dimensions are concerned, it certainly proves to be unsatisfactory,
as will be shown in the remainder of this chapter. The function
describing the rotation of M is actually the solution of a differential
cquation, whercas the energy is the result of an integration. A
differentiation process is indeed more sensitive to errors made in
approximating the problem.

The case of 180° Néel walls,appearing in very thin films

between the thicknesses ¢ and tc (of the order of 200 A ), will he

i

analyzed in the present study. In this configuration (Fig. 3-7a),

the internal field in the plane z = 0 is directed along the y axis

and exgrts an appreciable torque on M compared to the anisotropy
torque. The cross-tie walls, because of their complex structure,
do not permit a simple yet accurate quantitative treatment leading

» They will be discussed in Chapter 4

to the prediction of tC and tc

1 2

in the light of the findings concerningthe strictly unidimensional Néel
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walls. As for the Bloch walls in thicker films, the demagnetizing
field outside the wall itself is -perpendicula.r to fhe plane (x,y_) and
has very little influence on the direction of magnetization because of
the geometrical anisotropy in the z direction (Fig. 3-7b). Their
chéracteristicé were determined rather satisfactorily by the Ritz

method.

3.3 Internal Field in a Néel Wall

Based on the model used by Neéel, on the one hand, and the
anisotropy property of the material on the other, a simple analysis
shows a grave inconsistency between t_he function 6(y), chosen to
represent the variation of the direction of M , and the internal_ field
f—i(y) due to the poles of density p = - div K/I, appearing. within the
interval -a to +a. Figures 3-8a, b and c show the functions 8(y), p(y)
and H(v) in the planc of the film. The wall is infinite along the x
axis. Away from the center of the wall, at a distance 2a and farther,
the field distribution is almost equivalent to that of an infinite line
of dipoles of approximate strength Mta per unit length. Thus, accord-
ing to the linear rotation hypothesis, H(y), in that region, would be

(from eq. 2.3-3):

Mta

H(y) ~ >

(3.3-1)
2Ty

The wall being parallel to the easy direction of the material, the v
axis represents the hard direction along which this field is applied.
In a film where the anisotropy energy function is K sin?‘e (eq. 2.4-1),

neglecting the exchange torque as a first approximation, the
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equilibrium direction & of the vector M under such a field is given

by the relationship 2.4-3, which becomes 8 = m/2 when H(y) > H, .
But, in the present model, sin 8 equals zefo wherever |y| = a;

this sine value is only compatible with a zero field in the y direction.
Quitc to the contrary, the calculated field reaches Ligh values. For
instance, at t = 100 A , the value of a is 6000 A (from Fig. 3-6),

and at a distance 2a from the x axis, H(y) would be equal to {from

eq. 3.3-1):
H(2a) ~ %%l = 530 At/m ;

whereas (from eq. 2.4-4):

M

H =

" = 200 At/m .

of |

Clearly, the function §y) and H(y), in the case of the Néel modecl,
are in contradiction; the linear rotation assumption is therefore quite
invalid.

This brief analysis of the internal field suggests, however, a
more realistic shape for the wall. FEwxcept in a limited central portion,
-HV and My are of identical signs; thatis, the field pulls the vector IT/I
away from the easy direction over large distances on both sides of
the x axis (Fig. 3-9). In that range of abscissae, the exchange torque,
proportional to dZG/dyz, has a small, if not negligible, value in view

of the slow ® variation. In these regions I and III, the actual field is
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Actual variations of sin 6, HY and p inside a Néel wall
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a.lrno'st equal to H, sin 8 (frorn'éq. 2.4-3), and.consequently less
than Hk at every po.int. ‘Region II is characterized by a positive
rx}agnetos'tatic energy: HY and MV are of opposite signs and the
rotation is fast 1n order té 1limit the volitme with which this positive
energy prevails.

If sin %b is the sine value limiting regions II and III, the
total amount of magnetic poles per unit length of wall between y=0 and
v =bis Mt {1 - sin eb) concentrated in the small interval 0 to b
(Fig. 3-9b), whereas an amount equal to Mt sin 9, is spread out from
b up. to large distances, such as y = ¢, where 8 &« 0. This pole
dis;ribution produces a field which does not exceed I—Ik sin © at any
point of region I or IlI, thus eliminating the inconsistently high values
of Hy calculated from the Néel model where all poles are concen-

trated in the interval 0 to a (Fig. 3-8).

3.4 Remark on the Energy Content of the Wall

The total energy as computed by Néel does not include any
magnetostatic term originating outside the limits y =t a, and so
might appear quite erroneous. However, in the new model of Figure
3-9, portions I and IIT of the curve do not contribute much energy.
Indeed, the exchange energy density A(da/dy)z (eq. 2.2-1), when

integrated over the range b to c, gives, presuming a linear rotation:
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c o ‘ 2

E' =A Jﬁ (ig)zdy=Aj P ge-a b0

ex dy dy c
b 8

b
This quantity tends to zero for large ¢c. Most of the exchange energy ,
therefore, is contained in the interval -b to b, and is approximately

(ﬂ/Z-Bb)Z

equal to 2ZAt —*:E""——*— .

Similarly, although sin 8 is different from
zero for ly| > Db, the sum of the anisatropyand magnetostatic energies
is close to zero. The positive anisotropy term K sinze is balanced

by the negative magnetostatic one - %9 MVHy (from eq. 2.3-6).

Neglecting the exchange torque as mentioned previously, the state of

equilibrium between M and H is given by equation(2.4-3):
sin 0 ~ Hy/Hk

Thus, the sum of the two cnergy densitics is:

"o

e +teg szinZB--—-— MH sin 8
a m 2 vy

=K sin 8 {sin 8 - Hy/Hk) =0

It is therefore to be expected that Neel's evaluation of the energy of
‘the wall is somewhat too high, since, in fact, only the center part of

the rotation contributes to the energy content.

3.5 Film of Thickness Tending Towards Zero

As a basis for the study of films of finite thickness, it is
necessary to first treat the theoretical casc t = 0. Furthecrmore,

an approximate analytical determination of the internal field is
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possible when t tends tt.)wards' zero and the results are most nseful
in understanding the concept of regions I, IT and IIT intr oduéed in
Section 3. 3.

When ¢ = 0, the internal field vanishes and only two terms
have to be considered: the exchange and anisotropy torques. Their

sum must be identical to zero everywhere. Thus, from equations

(2. z'-z) and(2.4-2),

2.
a%-
2a T8 _ K sin 20 (3.5-1)
2
dy

After multiplying both sides by d8/dy and integrating between y

.and infinity (8 = d6/dy = 0 aty = ), equation (3.5-1) becomes:

ds \2 .2
A('a;r— K s8in ©
or
: de
_— i 3.5-2
dy K sind (3.5-2)

The exchange and anisotropy energies are equal at every point.
The rotation of M is described by the following expression and is

reproduced on Figure 3-10:

-yzh\é ﬂnltan%] {3.5-3)

This function reduces to an expoaential decay at large y. If the

width 2a of the wall is defined as the distance separating the ordinates
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8 = 5° and 8 = 175°, then Zao = 6.24 JATK. If finitc thickncsscs are
considered, magnetic poles will be present and a field will exist.
However, if At is sufficiently small, in other words tending to zero,

the magnetostatic energy will be negligible,

Mo

2 vy a ex

and the field AH will not disturb the configuration of Figure 3-10a.
y .

Expression (2.3-1) will be used for the determination of .C\.Hy_. The

volume density of poles (Fig. 3~10b) is easily deduced from equations

(2.1-1) and (3.5-2):

oly) = - M JERIA sin 29 ,

d sinf _ 1\-_/_1
dy 2

and, for a thickness At, the field is

oo

s = At (T et
vy TT o - YZ— T]Z

Unless one uses numerical methods, there is no easy way to

. . 2 2 - .
integrate the function pTAy ~ T ) unless p(y) is reduced to a simpler
form. The analysis needs be but qualitative, so p{y) will be

approximated as shown on Figure 3-10b {(dashed line):
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with B = (A/K)Z.

o )

The condition I o (T dN = M is still valid for this approximating
[}

function. A straightforward integration is now possible.

Q. 2 B
pu, AE LMK P nfan 2 f‘ CRULLINY
. m & L a2 T e 22
0.58 4B
+7 1 v v+
=p|(-1+2m [ L2 - o(n+LimfP2R))
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B E PP :|
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1 1
- 77 (y + 4B) tn]y + 4B | +Tz(y-4B)ﬂniy-4B|J

A M
where D ='——t * —-~K
™ A

The field L\.Hy is drawn on Figure 3-10c. Far from the origin,

it becomes equivalent to the field of an infinite line of dipoles, thus
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decreasing with fhe square of the distance. Clearly, three regions
can be distinguish.ed: a central one "I'" where .vL\.HY and MY ai‘e of
opposite signs creating a positive magneto.static energy and two
adjacent regions "II'" and "IITI" where field and magnetization form
an angle less than m/2 with a negative energy associated with it.
Energy-wise,. it is advantageous to enlax;ge these portions of the wall
I and IIT and to reduce region II. Indeed, when At increases, under the
influence of Aﬁy. M will rotate at a faster rate fromy =0toy = b,
whereas for y > b, it will be pulled further away from the casy
direction over large distances. In particular, the point 8 = 5° will
be reached at a larger abscissa and the wall width will increase
accordingly. The preceding brief analysis supports the remarks of
Section 3.3 concerning the actual hehavior of the magnetization

inside a Néel wall.

3.6 Magnetization Rotation in Films of Finite Thickness

When t is appreciably greater than zero, the magnetostatic
enefgy is not negligible at all. On the one hand, a rigorous analytical
treatment of the problem is not.feasiblc and, on the other hand, the
Ritz method, even using a more sophisticated model than Neéel, is
not reliable if conclusive results are to be obtained. Evidently, the
only satisfactory s.olutiOn is a numerical one based on the correct

equations and performed on a computer.
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Some assumptioﬁs must be made. As already indicated,
only three types of energy are taken into account exchange,
anisotropy and magnetostatic. The functions expressing them are
(2.2-1), (2.3-6) and (2.4-1). The wall is parallel to the easy direc-
tion (x axis) and is infinitely long, The magnetization rotates in the
plane (x,y) through an angle of 180°. No external field is applied
to the sample. Furthermore, variations of M and I:ii {in particular
HY(Z) at a given y) aloug the z direclion, perpendicular to the plane
of the film, are neglected. Thus, the equations will be strictly
unidimensional and independent of x and =z.

The wall is represented in Figure 3-11 with the proper
boundary conditions. At any point the.volume energy density is

equal to:

b
: 2
e{y) = A(de/dy)z + K sin § - --29— M Hi sin 8 (3.6-1)

The total energy per unit length of wall is obtained by integration
+oo

E=t J e(y) dy
The function 8(y) is unknown, but is such that E is a minimum.
The condition 8E = 0 for any 68(y) determines 8(y). The calculus
of variations applied to this case will lead to a differential equation,
called the Euler equation, of the problem which , in fact,. is the torque
equation. The. sum of the three torques is zero at every point, and
this can be written down by inspection from equations (2.2-2), (2.3-7)

and (2.4-2):
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Z.A(dzeldyz) - K sin 26 + MOMHi(y) cos § =0

2 W M
A d g _ . 0 _
or 7 ;2- =cos 8 [sin g - 5K Hi(y) ] (3.6-2)

Recalling the definition of the anisotropy field H = ZK/uOM, and

k

introducing the dimensionless gquantities:

1
h = Hi/Hk and y* = y(K/A)® (3.6-3)

eqgua Lion (3.6-2) becomes:
2 2 )
d78/dy* - coe 8(sin & - hle(y*¥)]) (3.6-4)

This second order, transcendental equation containing a functional
hl:e(y*)], with conditions § =7/2 aty* =0, and 8§ = 0 at y* = - 0,
will lead to a particularly complex two-point boundary problem.

The internal field is not known a priori, since it depends
upon the configuration of thé wall. For this reason, h cannot be
expressed directly in terms of y¥, but rather will contain the func-
tion 8(y*) itself. The determination of this functional is straight-
forward, however. The magnctization is presumed to remain in the
plane (x,y) and not to vary with z; this assumption is valid because
of the high demagnetizing factor associated with a component Mz

(Sec. 2.4). The pole density is found by the usual formula:

d{sin B)

o=-divM = - M o
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Aty, the ficld is obtained by integration of equation (2. 3-2), that is;

) a

:%I TDarctan(

2(y -n)

and, takihg advantagé of the antisymmetry of the p distribution with

- respect to the origin:

i

Q0
M ' - ~1 t
H{y) = = J (= sm H-sin 8) \: tan -—-—-t—-— ) - tan  ( )] dn
J )
or, in_troducing the reduced units:

e d( -sin 0) -1 -1, .
nla{y*)] = C i 22 [ean (ryrmmy - on 7 G ) | <

where C = M/'rer and t¥ = t/(A/K)%—
If }.LOM =1 Wb/mz and Hk = 300 At/m, C = 845,

The method used to solve the system of equations(3.6-4) and
(3.6-5) on a 7090 IBM computer is now described. The solution
et(y*) being known for thickness t*, the solution 8 ia t(y'*), cor -
.responding to a higher thickness (t* + At*) is sought. The increment
At¥ being small, fit"rna,y be chosen as a first approximation to et+At'
Indeed, the integrodifferential equation obtained by replacing h[8{y*) ]
by its value (3.6-5) in equation (3.6-4) is impossible to solve as such.

The functional h[8(y*)] must be treated as a function of y* simply,

which is then introduced in equation (3.6-4), thus enabling it to be
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solved as a usual two-point boundary problem. A firstapproximation
ho(y*) is obtained by usiﬁg 90 = et(y*) for the computation of the field
at thickness (t + .A tk). A sgcénd approxirpation el(y*) is determined
by salving equation {3. 6-4) where h = ho, which in turn generates a
new field hl(y*). Successive cycles of this type should finally lead

to practically identical solutions GN and 4 if the process con-

N+1

verges at all. This scheme is summarized as follows:

hn(Y*) =h [en(y:k), (6% 1 At#)]

——3— =cos8 ., (sin 9n+1- hn(y*) )
(3.6-6)

1 kY = %k
with 8 (y*) =8 (y¥)

d finally 8 *) = %
and finally N(y ) et'l'At(y }

The starting thickness is obviously t*¥ = 0, since a rigorous analytical

solution is available for that case. Equation (3.5-3) can be rewritten:
8(y*) = 2 arc tan (ehy_r) for tk =0

From this point on, higher and higher thicknesses are considered.
Several very delicate problems arise in this step by step
operation, such as a proper selection of boundary conditions, con-
vergence or stability of successive iterations, choice of éuitable
division of the abscissa axis in discrele inltervals al which @ and h
are to be calculated. Thes_e questions are discussed in detail here-

after in order to clarify several peculiarities of the computer
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program in Appendix B, which would otherwise be incomprehensible.

3.6.1 Abscissa Axis

The range of ébscissae is limited betﬁeen y* = 0 and
yE = Yocb’ at which point @ should be sufficiently small as to be almost
equal to h. It has been shown in Section 3.3 that the rotation is
extremely slow at large y* and that sin @ is just slightly larger
than h(y*) in that region. Hence, the semi-infinite axis is replaced
by a finite section 0 to Yoo' In order to limit the use of the computer
to a practical length of time, it is imperative to maintain the number
of divisions of the y axis under a certain value. On the other hand,
‘the functions sin 8(y*) and h(y*) must be satisfactorily described up
to Yoo' Since the variation of sin ® with y* is rapid in the positive -
magnetostatic energy region (negative h} and slower thereafter,
a double me éh has been chosen which satisfies the above require-
ments: one hundred intervals are provided between 0 and Yl’ and

another hundred between Y. and Yoo’ with Y

<< Y , as indicated
1 fa's)

1
in Figure 3-12. The intervals (Ayl*) are small where sin § varies

rapidly, and larger (A yz*) for the remainder of the range. Thus,

the functions 9, sin 8, h, etc., appear as tables of 201 values.

3.6.2 Boundary Conditions

At y* = 0, sin § equals one and then decreases towards zero,

with h(y*), when y* tends to infinity. However, having‘ substituted
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Yoo. in place of infinity, the requirement sin 8 = 0 is no longer correct

at that limit. Instead, the condition
sin T[R(Y )] <8(Y )< 1.005 sin ' [R(Y )] (3. 6-7)

will be imposed. This boundary condition is not rigorously exact
since, in fact, sin 8 is somewhat larger than. b everywhere, but this
does not affect the accuracy of the function sin 8(y*) at lower
abscissae because, as numerical calculations show, an error of
even 10 % aty* = YQ0 would reflect an errof of a fraction of a
per cent only at y* = YOOIZ, for instance. The very tail of the wall
where 8 is of the order of 5° is of no practical interest anyhow,
due to variations of the easy direction at a microscope scale, as
observed by Fuller and Hale (22), who first detected the so-called
"ripple'’ of magnetization.

The function hn(y*) being known, a solution of the differential
_ equation (3. 6-4) exists for every slope 8(o) = d@/dy*‘]o chosen at
the origin. The correct value of §{o) will be determined by trial
and error in order to satisfy the condition (3.6-7). Figure 3-13
illustrates three cases where the slope at y* = 0 is larger, equal to
and smaller than the correct value. For too small 2 negative slope,
the function oscillates around the ordinate 8 =7 /2, and never crosses

the curve h(y*) {curve ''1"), whereas for too high a positive slope,

8(y*) tends towards minus infinity after its intersection with h(y*)
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(curve 2"}, Curve '"3;" which is the only acceptable solution
having any physical meaning, corresponds to the critical slope
é(o_')c:r '

In the first case, the error A =8 -—.sin—lh at Yoo will always
be positive; in the second case, it wil_l always be negative. Because
of the oscillatory nature of curve ''1,'" a smaller A does not nec-
essaﬁly indicé.te a better choice of 8(o). For this reason, a pro-
portional interpolation formula cannot be used f_pr the determination
of better and better approximations of é(o)cr- InStea;d, the following
rule shall be used: '"If |&(o) 1max is the maximum absolute value of
_ tJhe slope still leading to a positive error A at Yoo and |8(o) | min’

the minimum value still leading to a negative A , then the neoxt

trial will be:

18(a}|___+ [8(0)] X

min

(3.6-8)
2

This process will always work if two initial trials are performed,
'_the first one with too small a slope and the second with too high a
slope.

The value Y _ being too large, the number of significant figures
( eight) available on the computer for the choice of é(ol_will not
suffice to satisfy condition (3.6-7). Even the double precision method
will not be adequate. But, as found numerically and shown on Figure

3-14, the curve obtained by determining é(o)cr correctly up to the
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last decimal available, according to rule (3. 6-8), on the one hand,
and the exact solution, on the other hand, do not differ appreciably
along a sizable section of the abscissa axis 0 to Y'. The value of Y'!
depends evidently upon the discrepancy tolerated at that point (0.01
per cent in this work). At Y', the slopc 8(Y l)cr. is now corrcct up
to a few decimals only. The method used to determine é(o) and

the function 8(y*) with accuracy from 0 to Y' will be repeated
between Y' and Y”,- then Y'"' and Y™, etc., up tor Yoo' Thus, the
differential equation will be solved again starting this time at Y'

with 8 (Y') known and two trial values for the slope:

8(Y") = é(Y‘)Cr + 10%

32.6.3 Convergence of Successive Approzimations § (y%)
Il
It is assumed that et(y*) has been found for thickness t*.

(y*) should be reached

Starting with this function, the solution et+At

by successive steps, as indicated in the system of equations (3.6.6).
Although a physical solution exists, it is not certain that this process
will be a convergent one, even if At¥ is taken small.. A detailed study
of stability in such a complex problem is not feasible a priori. An
actual trial is faster and conclusive. It was found that, above a
certain thickness t¥ o 0.002, the successive approximations diverge.
In other words, if the exact functions 8(y*) and h(y*) were known,

and a perturbation 80 were introduced at a certain point intentionally,
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ithe new perturbed functiop 8'=9+468 1 would lead to a perturbed
field h' = h + 6h, which itself, being introduced in equation (3.6-4),
would produce a new curvg ' =86 + 682 w.ith |682[ > léell .

Some portiqns of the curve are more unstable than others,
notably regions I and IIi, where sin § and h are nearly equal.

The following analysis, although schematic, explains this
observed unstable behavior and suggests a remedy for it. The
correct sin & function is represented in Figure 3-15a, together with
the correct field h{y*). The corresponding distribution of magnetic
poles p{y*) appears in Figure 3-15b. The perturbation introduced at
c¥® is-indicated on Figure 3-15b, and for the sake of the calculation

has been given a simple form:
sp = M /K7A& el"'(y* - c%)

between c¢®*-d* and c¥*+d#*,
The function sin 8 itself is barely affected by this change in
its first derivative. The additional field &6h due to dp is evaluated

using equafion (2.3-1):

ck+d* ¢ 1"-‘ (M -c3)

=om X —_— %
ShEET o j v - T% an

el ds
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Perturbation ép introduced in the pole distribution
and resulting variation &6h of the field
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§h = - c'ta:e . % g
- c |

with C = M/r H,

In this example, the point c* has been chosen in region III where

the following approximations are permissible:

cos O ~1,sin8 =6, p =-M/RTA _3_9_* o ¥ :_d(ée)
y

and

2.
d%8/dy** ~ sin § - h
!

Therefore, assuming that sin & has not changed at ¢*, the

fiext iteration will give:

2
a“(s6,)
e’g = - > | = 6h
: dy ok c
and finally: e*z = - Ct¥ g% e*l (3.6-9)

Thus, the initial perturbation e*l of the second derivative
2. 2 . . . .
d 8/dy*” results in a perturbation 9*2 and the successive approxima-
tions will be divergent if © t* d* > 1, This analysis, although quali-
tative, shows clearly that, as such, the iteration scheme (3.6-6)
fails above a certain thickness. Since in this study C = 845 and
ax = Ay* = 0.4, this critical thickness should be of the order of

min 2

0,003. In fact, instability was observed around t¥ = 0.002..
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Because of this instability, th,e proposed method must be modified.
The modification to be introduced_is simple and was found to eliminate
all instability. Its disadvantage is a slow ¢onvergence in certain
pc;rtions of the y-axis, which makes it necessary to go through quite

a number of approximation cycles. Nevertheless, the process can

be accelerated as explained below. The important fact is to note that

a*z and e*l are of opposite signs. Therefore, starting with the

erroneous function 8_ and obtaining the function 8 » @s in equalion
n

n+l

(3.6-6), the next approximation, rather than 6 itself, will now

+1

be a combination of both 8 and 8 :
n n+i

(1 -~ m) sin en + m sin @ (3.6-10)

+1 n
The errors 3*2 and e*l will tend to compensate each other. Indeed,

ifle*_ = -k eg¥_, the convergence will be insured if:
2 1 &

‘(l—m)c*z-l-me*l‘(«‘e*

|

or, ]-—k+m(1+k)l<]l| ;
that is:
k-1
< -
T <m< 1 (3.6-11)

For a given k, the convergence will be fastest when:

- % ¥ o=
(1 -m)e , tmeXx =0

or m =

(3.6-12)
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As t¥ increases, so does k , and it will be necessary to increase
m correspondingly.

This study of the stabiliﬁ of the curve in regions I and III
is Inot valid in the central iaortion II. There, actual calculations
show a greater stability. Furthermore, the value of m (3.6-12),
selected in order to optimize the convergence of the tail of the sin 8
function, is found to céuse the central part to converge comparatively
slowly. Ip order to limit the total number of cycles and still reach
the proper function sin § for small abscissae, after every few iter-
ations a lower value of m will be used which will accelerate the
stabilization of regioﬁ I1.

In Appendix A, a possible alternate method is fropoged for
the solution of the system of equation (3.6-6). It has, however, not

been tested for convergence.

3.6.4 Example of the Determination of 8(y*) for a Given

Thickness
The computer program is reprinted and explained in Appendix
B. In the present section, the transition from thickness t¥ = 0. 04
to t* + At¥ = 0.05 is reproduced in detail.
The y;“ axis extends from 0 to Yoo = 84. The change of mesh
occurs at Yl =4, so thgt Ay*l = 0.04 and Ay*z = 0.8. In the case
t* = 0.04, at y* = 4, sin ® equals 0.35 and thereafter, together with

h(y*), decreases slowly to 0.045 at y* = 84; one hundred intervals
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are adequate to describe these functions bet%zvegn 4 and 84. As
indicated in Section 3. 6. 2, the axi.s is divided into se%reral intervals,
according‘ to the tolerance criterion established in that section:
0toY', Y'to Y, etc., with ¥' =8, Y =Y' + 12 = 20,

Y" =Y"+ 12 = 32, etc. Figure 3-16a represents the correct solution
sin et and the corresponding internal field for thickness t* = 0. 04.
The field ho(y*) obtained from the function sin eo = sin Bt, used as
the first approximé.tion for thickness 0.05, is repfoduced on Figure
3-16b (dashed ‘curvx-:j)\. The fields ho and ht are approximately pro-
portional; strict proportionality is not to be expected because of the
arctan functions in equation (3. 6-5).

The next step is to determine the solution (sin el)' of the
differential equation with h = h_(y%). The initial slopes 6(0),
neceésary to start the process expressed in the rule (3.6-8), are
~12 and ;4, respectively, below and above the critical value é(o)Cr
still unknown. Twenty -nine trials are needed before exhausting all

decimals, the result being

. %
8(c) = -7.80204E (*)
Cr

For this value of the slope, the discrepancy between 8 and sin  h

at YOO is still A = 2.54, and the boundary condition (3.6-7) is far

(*)

The symbol E stands for existing but unprinted decimals.
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from being satisfied. The curve is correct only in the lower range
of the y* axis; this first section is limited to Y' = 8. At that point,

two new initial slopes are chosen:
8(8) = 8 + 10%
3(8) = b(8)__ + 10%

and the same process occurs. This time, after 27 trials, all the
decimals of é(s)cr are known, but the error at y* = 84is 2.51. A
new section of the curve, however, between Y' = 8 and Y'"' =20, has
been determined. The function (sin 8 1)' has actually been computed
in seven steps: 0 to 8, 8 to 20, 20 to 32, 32 to 44, 44 to 56, 56 to 68,
and 68 to 84; it is reproduced on Figure 3-16b also, and it shows a
large oscillation around y* = 1.

This series of computations represents but the first cycle
of scheme (3.6-6). The second approximation will then be (from

3.6-10):

sin 91 =0.05 + {sin el)' + 0.95 - ain BO. The coefficient m
has been given the value 0.95, which insures the stability of the

calculations in region III. In this instance, from equation(3. 6-9),

where d¥* ~ Ay*z = 0.8,

k=C t*¥d* = 845+ 0.05 - 0.8 = 34,

The convergence inequality (3.6-11) gives:

0.94<m< 1 ,
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and, according to equaﬁon (3.6-12), the optimum value of m is:
m = 34/35 = 0.97 .

The new function sin 91 can then be used to compute another approx-
imation of the field hl(y*), which is in turn introduced in the dif-
ferential equation to obtain {sin 92)‘.' The successive approximations

will. be given hy farmula (3.6-10):

. =' - . . \ . .
gin Bn 1 (1 - m) (sin 6n+1) + m sin en

"
The number of such cycles in this example is 24. The value of m

is 0.95, except for n = 10 and n = 19, where it is 0.5, this last

valm_;.e_ in order to accelerate the convergence in region II, as explained
in Section 3.6.3. Table 3-1, as well as Figures 3-17 and 3-18,
represent the values o..f hn(O), hn{84), sin en(a&) and sin e‘n_l_l(f}) for
the successive cycles of approximation, n varying from 0 to 24.

The abscissa y* = 4, at which h(y*) and sin 8(y¥*) start converging
towards each other (Fig. 3-16a), has been chosen to characterize '

sin ® at an iﬁtermediate point. The quantity h(84) o sin 8 (84) con-
verges rapidly,as can be seen on the preceding table (h(84) is
practically stabilized atn = 9). The field h{0) tends much slowecr
towards its final value: -132.4. Figure 3-18 shows how a reduction
of m somewhat accelerates the process. The first change in the

m value could have been introduced earlier, such as atn =5, for

instance, where it would have been more efficient. Aty* = 4, sin 8
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Table 3-1

Successive Cycles Represented by the System of Equations (3. 6-6)

n m | ‘sin en(r.i) sin er'1+1(4) hn(O) hn(84)
0 0.95 0.3493 0.4197 -119,99 0.0591
1 0.95 0.3528 0.3259 ~127.02  0.0599
YA 0.95 0.3515 0.3815 ~12.7.90l 0.0604
3 0.95 0.3530 0.3587 -128.99 0.0607
4 0.95 0.3532 0.3695 ~129,58  0.0609
5 0.95 0.3541 0.3639  -130.10  0.0611
6 0.95 0.3546 0.3660 -130.47  0.0615
7 0.95 0.3551 0.3645 ~130.78 0.0617
8 0.95 0.3556 0.3648 -131.03 0.0619"
9 d.95 0.3561 0.3643 -131.24 0.0620

10 0.50 0.3602 0.3634 -133.00  0.0620

11 0.95 0.3603 0.3617 -132.92  0.0621

12 0.95 0.3604 0.3628 -132.85  0.0621

13 0.95 0.3605 0.3624 -132.79  0.0622

14 0.95 0.3606 0.3628 -132.74  0.0622

15 0.95 0.3607 0.3627 -132.70  0.0621

16 0.95 0.3608 0.3628 ~132.67 0.0620

17 0.95 0.3609 0.3628 -132.64  0.0620

18 0.95 0.3610 0.3629 -132.61 0.0620

19 0.50 0.3619 0.3631 -132.39 0. 0616

20 0.95 0.3620  0.3631 -132.39  0.0617

21 0.95 0.3621 0.3631 -132.39  0.0618

22 0.95 - 0.3621 0.3631 -132.38  0.0617

23 0.95 0.3622 0.3631 ~132.38 0.0617

24 0.95 0.3622 -—- -132.38  0.0617



-6l

Convergence of by (t* = 0.05)
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Shape of the wall for t¥ = 0.04 and t* = 0.05 {enlarged)
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clearly tends towards sin 8' {4), but it is not necessary'to achieve

sin 8 = s5in 8", Indeed, the function sin 8', , rather than sin 92

24 4’

will be taken as the final solution for thickness 0.05. Figures

3-19a and b show the shape of the wall for t* + At¥ = 0.05, compared

to the shape at t¥ = 0.04. In the lower range of abscissae, the

- curves are very similar. At y¥* = 84, the ratio sin et—_l-At/Sin Bt: 0.0619/

0.0479 = 1.295 is close to 0.05/0.04 = 1.25.

3.6.5 Results for the Range of Reduced Thicknesses

0 to 0.08

Recalling the factor C = M/n Hk used in the numerical com-

2
putations (eq. 3.6-5), it is clear that the ratio M /K is predetermined.

: 172
The quantity (A/K) / , however, can be chosen freely. Typical

2
constants for 80 Permalloy films are uDM =1 Wb/m or

o) -1
M=8:10 At/m, K =150 J/lrn3 or Hk =300 At/m, and A =10 1J/m.

z -6

The factor (A/K)? is then equal to 0.258 - 10"~ m = 2580 A , and

ol

1
the reduced units t* = t/(A/K)®, v* = y/(A/K)® can be expressed
in terms of Angstrdms. Thickness t¥ = 0.08 would in this case be

rapproximately equal to 200 A , which is close to the observed

. between Néel walls and cross.-tie walls in

transition thickness tcl

filma of such compésition (20).
The passage from t¥ = 0 to 0.08 has been accomplished in
steps of about 25% , except for the first few values. Time and cost

of computation, as well as the appearance of cross-ties above 200 A,



-h5-

were the reasons to limit the ré.nge to this value.

Figures 3-20a and b represent the rotation of M in a Néel
wall for t_}ie case tk = 0, 0.00_84 (21 &), 0.02 (50 &), 0.04 (100 &),
| 0.06 (150 A), and 0.08 {200 ﬁ). The corresponding pole densities
¢ (y*) appear in Figure 3-21 for t* = 0.02, 0.04 and 0.08. Finally,
the internal fields h(y*) are reproduced in Figure 3-22, where a
reduced field of ong is equal to Hk' It is seen how region II (positive
magnetostatic energy) diminishes in length and h(0) reaches large
negative values when t¥ increases (Fig. 3-23}. The maximum
positive field h+max varies little, since itis subject to the condition
h(y“a‘) < sin 8(y*), but region III spreads farther and farther to the
right.

In Figure 3-20a, the fast and slow rotation portions of the
curves are clearly distinguishable, and it is interesting to notice
that for all thicknesses considered, the angle 8 goes through 30° at
an abscissa varying very little around 1.35. The width of the wall,
if it is determined by the limits 8 = 5° and 175°, increases consider-
ably with t* (Fig. 3-24). It was mentioned previously that an angle
of 5° was of the order of the random variations in the direction of
the local easy axis. Therefore, a width 2a, cofrcsponding to a
total variation of 170°, has little physical meaning, but may never-
theless serve for a compidrison with Néel's resu,lté_. Figure 3-25

shows, as a function of thickness, the distance y between the center
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of the wall and the point where & = 10°, 20°, 30° and 45°; the values
adopted for M, K and A are those mentioned at the beginning of this
seclivn. Ten dégrees is cerlainly a meaﬁingful angle, and it can be
seen how a Neel wall widens with increasing thickness, although a
first portion of the rotation, from 90° to 30°, occurs over a distance
of the order of 4000 A , this figure being approximately the same for
all valnes of t Figure 3-25 should be compared to Figure 3-6, |
where Middelhoek's results, based on the Néel model, shows a 8YS -
tematic decrease of the ""total width' (60% from 0 & to 200 A ). The
important feature of these walls is their exceptionally long ''tail.*
Wall widths are generally thought of in terms of thousands of Ang-
stroms, whereas, in this case, 2a Is evaluated in terms of microns.
A direct experimental observation of the presence of a fast and a
slow rotation region was apparently obtained by Fuchs {(22) by study-
ing films with the electron-microscope method developed by Hale,
Fuller and Rubinstein (22}. A quantitative measurement through such
an experiment was only possible for the central portion of the wall and
its total width could not he determined. bne of the filmsa studied hy
Fuchs was 270 A thick and made of 81-Permalloy. Figure 3-26 repro-
duces the experimental curve §{y) in the neighborhood of the origin,
and it'is seen that a total rotation of 90° occurs over a distance of
1450 & , and that the knee of the curve appears at ® = 30° approx-

*
imately. These results are compared with the curve t = 0.08
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.(210 A ) in Figure 3-.20b.. The agreement is rather satisfactory
considering, for instance, that the exchange constant A is not known
with accuracy (experimental values vary by more than 100%) and
that the calibration of Fuchfs method might not be precise.

An indirect demonstration of the large width of the Neel
configuration possibly exists since 1958, when Huber, Smith and
Goodenough (18) discovered cross-tie patterns and identified them
as juxtaposed segments of Neéel walls with alternating clockwise

and anti-clockwise rotations (Chapter 4).

o L\

b
/7‘

A\ - calg ulgce:i curve ( Hh(: 300 At/m)

T«

0 2000 4000 6000 A

Fig. 3-26 i )
- Experimental curve 6{y) obtained by Fuchs compared to

theoretical curve . ( The exchange constant A, the ani-

sotropy field H, are unknown ).
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3.7  Energy Stored Inside a Néel Wall

The sum of the three energy terms corresponding to the three
torques ai)pearing in equation (3.6-4) consﬁtutes the tétal energy
deﬁsity stored inside the wall if phenomena such as magnetoelasticity
or microscopic crystalline anisotropy are neglected, as was done in
the determination of the shape of the wall., Thus, at any point in the
1aye;|:', the volume energy density will be, from equations(2.2-1),

(2.3-6) and (2.4-1):

ely) ::A(de/dy)a + K sin"p --—23 MHY sin § (3.7-1)

where the first, second and third terms represent, respectively, the
éXChange. anisotropy and internal magnetostatic energies. This
energy density varies along the y axis perpendicular to the wall,
since the direction of magnetization has been assumed constant
throughout the thickness of the film (z axis). Recalling the reduced
units y#* = y/(A/K)% and h = H/HK =p M H/2K, e(y) can be rewritten
a8 follows:

de .2 2
e(y*) = K[ (a;*) + sin 8 - h(y*) sin © j|

2 2
=K [ (d8/dy*)° + tan 8+ (d%0/dy*) ] (3.7-2)
2
s . 1 d 8 . .
since sin § - hiy*) = *+ —— , as derived from equation
cos B dY*Z

(3. 6-4).

The total energy per unit length of wall is therefore:
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oo 1 oo _
t f e(y)dy = 2t(A/K)® J e{y*)dy*

-y &

=
1

1

- 5 02, 2 2 2.
2t(AK) J" [ (d8/dy*)” + tan 6(d“6/dy*“) Jay*  (3.7-3)
o '
Usually the literature refers to the surface energy density of the
1
wall v = E/t. The reduced unit v* = v/(AK)® will be used hereafter.
From y* = 0 to infinity, 0 varies from 90° to 0° and, for large
y*, tan O ~ 6. The limits of integration can therefore be slightly
modified. Indeed, noticing that:

o

[ te%y®) + ey 8y ay»
Y. *
= 8(y%) 8(y%) |® = - o(vx) d(v¥)
v

the integra.l (3.7-3) becomes:

vre—Eo o[ T2 4H - am e)ayr - o(vs) 6(v9]

(3.7-4)

where Y* is chosen sufficiently large so that the assumption tan 6~ 8

is valid.
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The preceding infggral (3.7-4) is expregsed eolely in terme
of 8(y*), whereas the initial expression (3.7-1) contained the field
hiy#*) explicitly. The integrand is readily calculable, the function
siﬁ 8(y*) h_aving been determined numerically for given thicknesses
(Section 3.6) and stored on perforated cards ‘(A._ppendix B). At
y¥* = 0, tan 8 and dzeldy* become, respectively, infinite and zero;

however, their product has a finite value:
2 2
tan & - (d78/dy*") |, =1+ {h(o} |

as found from the torgue equation (3. 6-4), where sin (o) = 1.
.The field h(0) has been previously calculated when determining the
shape of the wall {Fig. 3-23).

When t* tends toward zero, the torque equation becomes
8§ - sin & cos 8, or, after multiplying both sides by 8 yintegrating
between y* and.infinity (8 =6 =0 at y* = o), and taking the minus

sign for the square root of sinze:
d9/dy* = -sin 8

From equation (3.7-1), it is seen that v* itself tends to

o0
vy 2 JI (07 + sin"B)dy*
t=0 o}

-4 J‘ sin 8 d6 = 4
/2
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The. shape of the wall, tha.i:. is the function sin e(y*), is known for
several reduced thicknesses between t* = 0 and 0.08. These. func -
tions are stored as fables of values for disé-rete positiv.e abscissae
y*, sin 8 x}arying from one to zero. The energy constant of the wall
waé determined by numerical integ%ation using the trapezoidal rule

over finite intervals Ay¥*. Thus:

i .
e =z[ \zg L(88/ay9) % + tan 8(a%8/ay%2) Jay* - G(W)G(TY*)]
(3.7-5)

Appendix C gives details concerning the numerical method, the

change of interval at y* = Y1 from Ay*_ to Ay*_, as well as the

1 2

Fortran program.

As an indication of the precision of the numerical formulas
used, the energy density '\(*0 at t* = 0 has first been computed and
found to be 3.86 as compared to 4, which is the value determined
analytilcaliy above. The calculated value is 3. 5% below the expected
figure. For increasing thicknesses, the general shape of the wall
(Fig. 3-19a) is preserved, but the rotation occurs over a much larger
distance. Thus, for cases where t¥ > 0, the function dé/dy* varies
more smoothly over the major portion of the abscissa axis and
the systematic error accumulated during the integration process will
at most be of the order of that one found in the test case t’i‘ =0. The

present study of the energy content of the wall does not call for more
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elaborate numerical analysis in order to increase the absolute accur-
acy of v¥ . 1In fact, only relative values are meaningful. Indeed,
the analytical expression (2.2-1) used for the exchange energy is
app_roxi‘mate. Furthermore, no satisfactory method is available to
determine the exchange cénétant A with certainty; measurements
differ by up to 50%.

| Figure 3-271is a graph of the reduced energy density v¥ as
a function bf the reduced thickness t* up to 0.08 for the case
C=M/n Hk = 845. On Figure 3-28, three sets of results are com~
pared: those obtained in this section for the usual values A = 10_11 J/m,
p.,oM =1 Wb/mz, and K = 150' J/m3, and those found by Néel (17} for
the same values of the constants (see Fig. 3-3). Middelhoek's cal-
culations are also reported, although they correspond to a slightly
different value of K (100 J/ma). It is seen that the figures of this
thesis are systematically less than the previous ones; this is due to
the fact that in regions I and III, that is for quite a sizable portion

of the rotation, the energy density is very small (Section 3.4).
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4. DOUBLE WALLS AND CROSS-TIE WALLS

4.1 Double Walls

The so-called double wall configuration was first obscrved
in very thin films by Williams and Shei'wood (24). r.]f‘herea,fter, it
was recognized that two Néel walls, parallel to cach other and of
opposite folarities, would lead to such a pattern (25). If this inter-
prctation was correct, the total rotation of magnetization wonld be
360° occurring in two separate stages of 180° each. Therefore, one
obvious method of studying this problem is to consider the interaction
of two Néel walls, thus taking advantage of the results of Chapter 3.
Using the Bitter technique (3} as a tool of experimental investigation,
the pé,rallel traces whi‘ch locate the axes of the nearby walls (at
8 = 90° and 270°) are found to be separated by a distance of the order
of a few microns in the absence of an external field. The purpose of
the present section is to reconcile the magnitude of this spacing with
the width of a 180° wall as found from the previous study of Neel walls,
The thickness at which 360° walls are best observed is approx-
imately 100 A \%;hen there is s5till enough material left to create a con-

tinuous trace of colloid. Above that value of thickness, the pattern

L
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appar.ently becomes unstable and is not observed. Several authors
{11, 26) have obs eajved double walls as well as their behavior in the
presence of an external field. Feldtkeller and Liesk (27), using the
Lorentz microscopy technique with the electron microscope (22),
have directly confi;med the presence qf 360° walls in films of such
thickness, It will simply be assumed here that such a wall is formed
by bringing together two Neel walls under the influence of a field
along the easy direction and of appropriate sign. If three domains
of alternating dircctions are scparatcd by two parallel walls, as in
Figure 4-1, and a field Hex, of the order of the coercive force, is
applied favoring domains "1" and ''3," the central portion "2" will
shrink, and the two walls will interact.

The study of Néel walls in Chapter 3 has shown how far the
internal field Hi extends along the y axis. The shape, as well as the
internal field, of a 180° wall in a 100 A film (t* = 0.04) was shown in
Figure 3-16a. Evidently two cases may occur: either walls "1" and
"2 have identical polariﬁes (Figure 4-2a) or opposite ones {Figure
4-2b). In the first case, they will attract each other, whereas in the
sec.ond, they will repel. In other words, it will be shown that the
interaction energy will respectively decrease or increase if the dis-
tance 2d, separating """ and ""2,'" decreases.

The total energy of the system, made up of the domains and
the walls under the influence of an external field, is diff.iéuit to

determine. In fact, the shape of each wall will be altered not only by
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~ their mutual interaction, but also by the field -H'ex’ whose amplitude

is comparable to fhe anisotropy field Hk’ and which therefore should
play a role not at all negligible in determining the direction of M in

t1:1e slow rotation regions l(i'egionS I and III of Section 3.3)}. No study,
except a rigorous one, similar to that of Section 3.6, would produce
accurate results. Furthermore, siﬁce in this case wall motion occurs,
the.propagation field H or coercive force (see Section 5. 2.1) has to
be taken into account as well.

Considering the case of Figure 4-2b, and basing the reasoning
on the knowledge of the internal field in a single Neel wall, the situ-
ation can be represented approximately as in Figure 4-3. When the
two walls are sufficienlly far aparl, they do not interact, which will
be the case when 2d is larger than 2a, the width of one wall. The
width 2a is equal to 17 | for t = 100 A (Figufe 3-24). Supposing that
the distance 2d decreases, the walls then start interacting. The
enerpgy density at every point can be ohtained from equations (2.2-1),

(2.3-8) and (2.4-1) (see Fig. 4-4).

2 2 |
= 1 e - i -
e(y) = A(d8/dy) + K sin oM Hi s$in B - | MHe cos B

2
The corresponding torque equation is:

2

q .
Z.A—-P— ~-Ksin28 +p MH cos® -p MH sin @ =0

dyz o i o ex

(4.1-1)
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with the following boundary conditions for the direction of M:

aty =0, 9 = 180° and at y = oo, & = 360°

and

I\FA J d(-;%n ) arc tan[ z(;-’n) ] a1

The‘function sin B is antisymmetrical with respect to y = 0, the center
point between the ;ﬁralls. A numerical solution, analogous to that of
Section 3.6 in the case of a single Neel wall, could probably be
obtained, but such a problem, although still unidimensional, would

be more complicated yet.

When d decreases but is still large enough so that the shape
of each wall is not excessively disturbed (Figure 4-3), an approximate
treatment will yield the order of ma;gnitude of the interaction energy.
Excluding any term due to an external field, the energy of the 360°

wall is:
E=Ea+Eb+2Eab(d)

where Ea = K, 1s the energy of one wall when d is infinite and 2 Eaéd)

b
the additional term representing the interactiox; as a function of d.
Recalling the remark of Section 3.4, it may be assumed that in the
slow rotation régions, the energy density is approximately zero,
provided the influence of the external field is neglected. The central

regions around y = + d are not appreciably disturbed by the presence

of the neighboring wall. It can therefore be concluded that the
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interaction is mainly magnetostatic and is described by:

3_1.0 ~d+8
= ow — 1 AH_ si
Eab > Mt J' ; 8in & dy
-d-8

where 28 is the extent of the region in wall "'1" where sin 8 and h(y)
depart from eacﬁ other (fast rotation). The quantity A Hi in the
central region (-d-8) to {~d+8) is the difference between the field of
a single 180° wall. and the field due to the pole distribution of a
double wall as represented schematically in Figure 4-5. For cal-
culating the field at one wall, the p diagram of the other wall can be
thought of as made of a dipole of strength Mt (1 - sin 8,) and two
triangular distributions with centroids at Gl.and GZ'

Assuming a uniform value of AHi over the interval 28, Ea

b

becomes:

B = -

a3
ab 2

Mt . AH . 28 (sin 8) (4. 1-2)
i av
An approximate value can be derived for AH:
i

- sin & 8{l-sin &) sin @
1
-AH,-‘=--—|:("'“'"-—"L)Sin9+ 6.]. 6 - § J
d/3 a/3 § 5d/3 4d2' 2d+a/3

(4.1-3)

The first term accounts for the deformation of the slow rotation

region of wall '"1" and the other terms for the presence of wall "'2."
In the presence of an external field parallel to the easy direc-

tion, assuming that the energies Ea and E . are unchanged, the

ab
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equilibrium distance between the two walls will be given by the

following equation, expressing the static equilibrium condition:

3A B

+ 2 -— %
* by Mt Hex * a(2d)

aE 3(2 Eab)

éTza.) = -—-———-———a(zd) = 0 (4. 1-4:)

In. this equation, 2 b Mt H’eX 3(2d) represents the variation in
external magnetostatic energy in the domain configuration of Figure
4-1.due to a wall displacemént, and AEW is the random variation of
energy which is the origin of the bropagation field HW of a wall

(Section 5.2.1). From equation (5.2.2)

JAE
H = ! 2l
w - Zp MY ' v |
o max
Equation (4. 1-4) becomes:
BEab
2 + = - 4,1-5
Yo Mt(HeX—HW) 3d (4. 1-5)

The positive sign corresponds to a decreasing field and the ne.gative
sign to an increasing one. For the case t = 100 A, the following

numerical values may be introduced in equations (4. 1-2), (4.1-3)

and (4. 1-5):
M= 8 10%At/m, 6 =0.4-10 m, sin @ = 0.5, (ssne)av= 0.75,

a=28.5 ?10-61’1’] (from Section 3. 6).

Thus, expressing d in microns:
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3.6 Lo . 0.1 1

= - 2.2 .0.35+ - —

AH, 640[ d 5 2 2d+2.8]
-6

E, =-0,3.10 "y MtAH,
ab : Kl i
H +H =%[3"26 .+o.3z - & > ]:F(d) (4.1-6)
ex— W d d (2d + 2.8)

Figure.4—6 represents the function F(d). If H-w is measured
experimentally, e.quation (4. 1—6).gives an approxirﬁate relationship
between 2d and Hex' This variation is reﬁresented in Figure 4-7,
and is obtained by translating the curve of Figure 4-6 by an amount
equal to + Hw' which is equal to 1 coe in t-he example of Photograph

‘.D -1 (Appendix D).

For decreasing Hex’ one point is particularly easy to observe
experimentally. It is the distance Zdo to which the walls will repel
each olher when Hex is brought back to a zero value. The value Zdo,
predicted on the basis of this graph, is about 4u. When the field
increases, 2d does not tend asymptotically towards zero, but rather

7 ﬁhe double wall vanishes as soon as Hex reaches the critical value
He, ‘the erasure field, This quantity He is not determinable on the
basis of the present study. Indeed, as can be seen from Figure 4-2b,
untwisting of thé wall can only occur if M goes out of the plane of

the layer.

Experimental observations have been made with the Bitter

technique. The transparent film was illuminated from below and the
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colloid pattern observed wit,h a i:phase conirast microscope. FPhoto-
graph D-la (A.ppenaix D) shows a double wall in a zero field é,nd
Photograph D-1b represents the same con_fi.guration in a field of

13 oe almost equal to the erasure field I-Ie. In the latter case, the
two traces are not separable with the colloid technique. When the
external field is zero, the separation _Zdo is approximately equal to
3w in this film. The thickness of the film could not be determined
accurately, but is within 20% of 100 A , this value being obtained
from the saturation flux of the hysteresis curve.

Although .double walls have not been studied in detail in this
section, the relationship between them and single Néel walls has
been clearly described. In particular, the experimental value Zdo
was compared with its theoretical equivalent, calculated approxim-
ately, and the agfeement was satisfactory or even accidentally too
good in view of the lack of accuracy of the analytical formulas. In
any case, this section confirms the conclusions of Chapier 3, narnely
that Neel walls extend into the domains for distances of several

microns.

4.2 Cross=-tic Walls

4,2.1 General
Cross-tie walls were first observed by Huber, Smith and

Goodenough {18) in films of intermediate thickness (200 & to 1000 £ )
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and, since then, by numerous other workers (20,11,28). The colloid
patterns obtained with the Bitter technique appear as in Figure 4-8.
No satisfacfory explanation‘ of the origin or even a proper description
of cross-ties has been proposed yet. The scope of this section is to
relate this two-dimensional pattern to the configuration of infinite
‘Néel walls and to, therefore, account for the creation of transverse
walls, their width 2 £ , the distance 2 L separating them, and the var-
iation of M in between. |

The interpretation previously given to Lhese culloid traces (18) is
reproduced in Figure 4-9, where the local direction of magpetization
i§ indicated. It has been correctly recognized that a succession of
Néel wall gegments alternately clockwise and anticlockwise is the
'"hackhone! of the cross-tie configuration. Two different situations
occur, depending on the polarities_of the two adjacent Néel walls
compared to the domain orientations.. At a site such as "A,™ a sudden
break in the magnetization direction appears accompanied by a trans-
verse wall,whereas at "B," the lines of magnetization describe a
flux closure pattern, and no cross-tie is observed there. Perhaps
the most convincing demonstration of the pres énce of such alternating
Néel segments has been furnished by Moon (19) ﬁsing the Bitter
technique. He applied a field of 50 oe perpendicular to the plane of
the film and ther.eby. modified the field distribution along the segments

BA, AB', etc., that way creating a shift of the colloid traces, as in
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Figuré 4-10. Methfes seir, Middelhoek and Thomas (20) observed
the changes of the wall character with decreasing film thickness
showing that the length 2 £ of a transverse wall reaches values over
10 microns. Middelhoek (11), using the model of Figure 4-9,
attempted to compuie Llhe energy content of such walls in order to
show that, above a certain thickness (Fig: 3-4), cross-ties become
more favorable than pure Néel walls.

There always has been an apparent contradiction which prob-
ably was the recason why cross-ties have remained rather misunder -
stood: how could Neel walls, thought to have a width in the range of
a thousand Angstrtms, interact with each other and produce patterns
as wide as ten microns (dimension 2 £ of Fig. 4-8)? Chapter 3 has
shown that the first part of this statement is not correct, since Neel
walls were found to extend up to several microns in width.

A transverse wall can thus be thought of as resulting from
the juxtaposition of two semi-infinite Neel walls of opposite polarities
such that the field along the y axis is opposed to the magnetization
vector inside the domains (Fig. 4-1la). On the other hand, if the
signs of IT/I and the field are the same, no cross-tie will be created
(Fig.., 4-11b). The considerable width of cross-tie walls, that is the
length 2 ¢ of the transverse walls, is thus accounted for by the dimen-
sions of pure Necel walls themselves. Although, in the preceding

chapter, calculations have not been pursued above the thickness of
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200 A, infinite Néel ﬁallé, if théy existed above that value of t,
would extend farther yet into the neighboring domains. This is evi-
dent from Figures 3-24 and 3-25, as well as from the behavior of
the reduced field h when t increases (eq. 3.6-5).

More realistic maps of the-f/.l field are those of Figures 4-12a,
b and ¢, representing an "A'' site, a ""B" site, and a succession of
these. They are based on the known behavior of the magnetization
inside an infinite Neel wall from which they logically follow. They
differ appreciably from Kigure 4-9, where-, the Neel walls being
imagined much narrower, the appearance of a considerably wider
cross-wall was in fact unexplainable and even illogical. Electron
rx;icroscope observations by Liesk (29), showing clearly the ripple

—p
structure perpendicular to M, are in full support of Figure 4-12.

4.2.2 Torque Equation of the Problem

If the problem were to be treated rigorously, a torquc cquation
analogous to equations (3. 6-4) and (4. 1-1) should be solved. Two
independent variables must now be introduced, x as well as y. The

sum of the torques is zero everywhere. Thus:
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T +T +T =0
ex a m

2 2 2
. or ZA[392+52+39(%?_,%§_+%%,%§)]
ax Ay C A AY

-—

-K sin ze+uoi}£ xH, =0 (4.2-1)
The boundary conditions would be:

8(x, =) =m; B(x, tw) =0

8(x,, o) =+m/2: G(X_, o) =F mn/2

+
The point{0, 0) introduces a difficulty: there the magnetization must
obviously. point out of the plane. Rather than bringing a third dimen-
sion into the problem, a small circle of radius r could "isolate"
mathematically this singular point at a "B'' site, and the boundary
condition would be that M be tangent to that circle . At an "A" site,
the circle would be replaced by a diamond-shaped boundary (Fig. 4-13).
The field I—Ii(x,y) could be expressed by an integral such as (from

eq. 2.3-4):

H.(x,y) = plx',yl) dx'dy'
A J.Jq 4n[(x--.x')2 N (y_y,)a]

oM, oM
with  p(x,y) = - 527 - 3y



=G5

A

'¢F-1-.-

N
* ' '{‘"J y E
— ﬂf——*?fv—"iw
N

~ S A

nHt gite BAMN zife

Boundary conditions proposed for the singular points
on the x axis at "A" and "BY sites

by

Fig., 4- 14 Fictitious field H due to|two semiinfinite lines of jipoles




~06.

Such calculations wo_uld be coﬁ:plex and lengthy. The range of

ordinates of y to be taken into account would be of the same order
as that used in the Neel wall problem. For large x, the solution
would tend towards t_he unidimensional one obtained in Chapter 3,
which could therefore be used as a boundary condition per mitting

one to limit the extent of the x axis.

S 4.2.3 Magnetostatic Origin of "A'" and "B'" Sites

In this section it will be shown qualitatix;ely how "A'" and '"'B"
sites originate and what energy variations they produce. The internal
field in an infinite Néel wall has been determined accurately; it is
‘produced by magnetic poles not only concentrated at the center of the
wall, but also spread out in the slow rotation regions (Section 3. 2).
When two semi-infinite walls of opposite polarities are juxtaposed,
the field at large x is not mbdified, but for small x, a component
HX appears. The difficulty in calculating ﬁi in that region is that
the pole distribution p (x,y) is not known. In order to nevertheless
obtain an approximate evaluation of the field and magnetization con~
figurations, a fictitious field H* will be considered which is created
by two lines of dipoles of strength + L centered upon the x axis,
as indicated on Figure 4-14. It is calculated as follows.

The field due t6 a unit dipole, silualed al the origin and directed
along the y axis, is given by the following formulas in polar co-

ordinates (from 2.3-5)



) 1
Ve —{(—)=
ay  4mr 41Tr2
and H:_-%!zz_ﬂ%l_g_,l_le:_%ez_cos;
¥ S 41y T 47Tr
Thus:
H =H cos® -H sinp = =200 058
X T 8 3
4Tty

2 -3 cosze

3

H =H sino+H_cosd =
T 8
4y

y

In the configuration of Figure 4-15a, the field at P is:

| x . 2
H=_T_TLJ‘ 2-3cos® , _

) dx

m
= -—-—J.(Z.s 3;{2

cos 8% (1 | siuze* )

2
2y

In the configuration of Figure 4-15b, the field at P is:

- . m 1‘X 3sinecosed __ X3xy
< 2m 3 * = 2n I 5
T T
-00 -co

dx

. 2-2)
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In F'i.gure 4-14, at P,. the .y and x components of the field H* are
those of Figure 4~15a and b, respectively. Thus, the field distri-
bution due to the juxtaposition of the two seﬁli—-infinite iines of dipoles
is given by: |

H* =+ sin39

= —Zny

2

3

H* = cos & (1 + sinze)

y

-+

e

2ny

The upper sign is valid for a "B' site and the lower one for an "A"
site (see Fig. 4-11). The field lines appear in Figure 4-16. In
particular, along the y axis, IIY = 0, and the field is parallel to
the easy direction of the material.

When 1_:he rnagi;letization distributioﬁ, valid for a Néel wall,
is superimposed onto Figure 4-16, the two cases that lead to sites
"A'" and "B'" are clearly distinguishable. Either the orientation of
the domains, separated by the wall, coincides with the direction of
the field along the y axis or it is opposed to it.

P o o
In the fir st case, the magnetostatic energy - "2',9‘ M- H; is

i
negative everywhere except evidently in the central portions of the
» —
Neel walls. Under the influence of the field H¥, some rearrangement
will take place in the M distribution, so that at every point an equi-

librium is reached between the anisotropy and the magnetostatic

torque. Just as in the case of the unidimensional Neel wall, the
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exchange Lorqgue is ne_ligible as.a first approximation. In Section
2.4, the diagram of Figure 2-4 shows the direction of the IT/I vector
for any fie.ld applied. Unlike the case of Chapter 3, where ﬁi was
parallel to the hard axis and therefore systematically less than Hk’
ﬁi can now reach high values, and M will simply tend to point in

the same direction. It is therefore possible to obtain a sizable reduc-
tion of énergy by replacing an infinite Néel wall by two semi-infinite

ones having the proper polarities. Indeed, the energy density is

equal to (from eqs. 2.3-6 and 2.4-1)
: l 2 p’o
e(6) =K sin 6 - = HiM cos (o-8) (4.2-4)

For any value of [ozl smaller than 90°, the energy ¢ is
negative, and this can be seen easily in Figure 4-17: the angle & being
constant, if |g| = 90°, then H, = Hk sin 9, and ¢ = 0 {sece Section 3.4),
but for any smaller value of |« ], Hi increases as well as cos {o - 98),
which tends towards unity. Therefore, from (4.2-4), it is clear
that ¢ is negative whenever - m/2 < o < /2, which is the case every-
where at a ""B'' site, except, of course, in the very center of the wall,
on the axis. The gain of energy AEb (negative value) can thus be
appreciable, since there is no theoretical limit a priori for the value
of Hi' This study does not permit the evaluation of AEb.

ay —y
The second case where M and H¥ are opposed along the y

axis is evidently much more complex. Here it is found that the angle
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| QJ l is larger than ©/2. .Us.ing Figure 4-17 apgain, it can be seen that
the energy would now be positive. Furthermore, and most.important,
the value of I—Ii is limited by the critical cﬁrve (HX/Hk')%-f (Hy/Hk)% =1
(éq. 2.4-6). For larger x;ra.lues of Hi, no equilibrium between the
anisotropy and magnetostatic torques is possible unless the magnet-
ization switches to the stable direction (point B on Fig. 4-17), but the
lattér is not compatible with the boundary condition. Thus, under

the influence of the field H* of two semi-infinite lines of dipoles, the
configuration not enly presents a high positive magnetostatic energy
but is also unstable. But actually, along the y axis, a transverse
wall is created. This cross-tie is of the Néel type, that is to say M
rotates in the plane of the film; the total angle of rotation is less than
180° and decreases for increasing y. The internal :Eiéld is very
different from the configuration of Figure 4-16; it must now be thought
of as the superimposition of ﬁ*l due to the main wall, and ﬁ*z due

to the transverse wall (Fig. 14-18). For instance, at a point such as

A situated on the diagonal, close to the center 0, the magnetization
and the field now point almost in the same direction. The field ﬁ*z

is difficult to evaluate, being created by two finite lines of dipoles of
decreasing strength m (y). The Stfength NWE (v) will be such as to
minimize the m_agnetbstatic and anisotropy energies in the large area

outside the central portions of the longitudinal and transverse walls.
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it is .likely that again the‘é..ngle]cxf!between the field and the x axis

is smaller than n/2 everywhere. This _wduld insure that the energy
in the slow rotation regioh is negative also, as in the ;:ase of a "B"
si.te. The central portion of the transverse wall is, of course, a
region of high positive cnergy density, but its area is limited. It
does not seem.possible to decide a priori whether, on the whole, an
"A" site represents a gain or a loss of energy AEa with respect to an

infinite wall.

4.2.4 | Length and Frequency of Repetition of Crosswalls

A.s to the length 220 of such a transverse wall, in other words,
the length of the corresponding Bitter trace, it is determined by the
fictitious field H*I(o,y).. When H¥, reaches the threshold value H_
at a distance EO from the x axis, the break in the magnetization
direction becomes so small that the trace disa?pears. It is not possible
to determine I—IO, nor even to know when the colloid stops being sensitive
to the change in direction of the M vector.

It has been shown that a "B'' site is accompanied by a decrease
AEb in the total energy of the wall. The influence of the reversal of
polarity at x = 0 is felt up to a certain distance along the x axis of
the brder of the width of the Neel wall. Therefore, several '""B'" sites
will occur along the length of the wall, each one correspondin;g to an
energy variation -|AEb ‘ . Evidently, two sites "B'" imply the presence

of an ""A' site separating them. Thus, for each pair of "A'" and ""B"
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sites, the energy variation is .ﬁEa + AE , a negative quantity above

_ b
the thickness t ; (seé Fig. 3-4).. The frequency with which cross-tie
walls appéar along the longitudinal wall is determined by minimizing
the total energy. If n and n, are the numbers of "A' and "B" sites
per unit length of wall and E  the energy per unit length in a pure

Néel wall (calculated in Section 3. 7}, the energy E of the cross-tie

Wall will be
B, = F, ~n AE 4+ AR =E -n AFE 4,2=5
n a bl n i I ( : )

where n =na =n and AE = AEa + AR

b b’

Actually, when n hecomes large, neighboring sites "A' and

. This

"B' start interacting, which reduces the energy balance |AE
quantity ]AE] is a function of n as represented in Figures 4-19a

and 4-19b. The minimum of energy corresponds to the value. n_
although, in practice, the number of cross walls will be less because
local energy minima exist for smaller values of n due to imper-
fections in the film along the wall. This fact can be demonstraied

by applying a small ac [ield perpendicular to the cross-tie wall,
that is, along the hard direction. By "shaking' the wall, an increase
in density of transverse walls is observed.,

The length Zﬂo of a transverse wall produced by two semi-
infinite Néel walls is directly connected to the width 2a of an infinite
Néel wall, since the fictitious fields H¥* along the y axis for an
infinite or two semi-infinite Neel walls are equal in amplitﬁde, that

is to savy:
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v
2Ty

H(o. y) = - H¥(oo, y)

Actually, the rgduced field h* = H*/Hk is the determining
factor. It follows immediately that an increasc in H, rosults in o
decrease in h*, and therefore in 4. This phenomenon has been
observed by Middelhoek (11), who, by bending a magnetostrictive
film, artificially increased the anisotropy field. He found that ¢ is

almost inversely proportional to H, which, as a firet approximation,

k
follows from equations{3.6-4) and (3. 6-5).

Cross-tie walls appear along thé main wall with such a fre-
quency that their interaction not only provokes a decrease in the
energy variation|AE|(Fig. 4-19a) but also a decrease in their length
24. This variation of 2f with 2L, = 1/n can be expressed semiquanti-
tatively as follows. Considering Figure 4-20, where the succession

of dipole lines represents the main longitudinal wall, excluding the

cross-ties, the field at a point such as Q is equal to (from 4.2-2):

_ *
H*Qz mz [(l—sin3el)—(sin39 1-5111392)+(s=m3eZ-s;'m?’e,j). .o
21y
. : 2. 2. 20%
with sin Bn =y/{y" +n L%
Thus H*Q = mz - f (y/L) (4.2-6)
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The functlion [(y/L) is shown in Figure 4-21. If L is infinite,
the length of a cross-tie is 22 , determined by the threshold field
2 :
HO =M /Zﬂf.o introduced earlier. When L decreases (its optimum

value equals 1/n_ as in Figure 4-19b), this fictitious field is modi-

0
fied according to equation (4.2-6). Tt is logical to assume that the
length 24 is determined by the same critical value Ho below which

no trace is apparent on the Bitter pattern. Thus the value of ¢

should be related to L by an equation such as follows {Fig. 4-22):

= H = f(2 /L)
TT.QZ @ Zme)
(o]
L=t (£ /L)

In order to obtain meaningful quantitative results, the rigorous
equation (4.2-1) should be solved along the lines of Chapter 3, but
in two dimensions. The present limited study explains clearly, it

is hoped, the various characteristics of cross-~tie walls.
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5. INTERNAL FIELDS AND REVERSAL OF MAGNETIZATION

5.1 Internal Field in Thin Magnetic Films

The nature of the magnetic flux reversal in a film has been
found to depend upon the value of the applied field (6). Actually, the
switching phenomenon is sensitive to the total effective field, which
varies in rﬁagnitude and direction over the plane (x,y) of the layer.
This field I?I is the sum of the external field H and H Ax=,v),

eff ex i
‘the internal field due to the magnetic poles appearing principally at
the film edges or, more generally, wherever div M is not zero

{eq. 2.1-1). A detailed understanding of flux reversal must involve

a correct knowledge of the internal field.

5.1.1 F'icld in the Interior of the Film

Although the existence of the internal field originating in the

- poles at the edges has always been recognized, it is usually assumed
to be negligible except in the thicker films. In such films, for
instance, the hysteresis loop in the easy direction (presumed square
for a thinner sample) will appear distorted, as in Figure 5-1. 1f

the shape of the sample is approximated by an ellipsoid {(30) or an
elliptical cylinder (11), in t1_1e cases of circular and rectangular

-110-
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films, respectlively, and if T,he state of magnetization is represented
at every moment during a cycle through a hysteresis loop by an
average vector It/l of constant direction pa.rrallel to the easy axis
but varying smoothly from +M to -M, then a linear distortion of the
loop can readily be calculated. The effect of this linear distortion
‘can be seen in Figure 5-1. The computed and measured values of Hd
are in reasonable agreement, as can be seen in Figure 5-2. However,
such an analysis does not predict any fundamental modification of the
M wversus H curve, and the apparent distortion is due to the fact

that Hex rather than He is represented in the abscisgsa.

ff
Since an ellipsoid is the only case leading to a uniform demag-
netizing field, and since films, in fact, do not have suci1 a slimple
geometry, it is interesting to study the variations of the field ﬁi in
the plane of the layer when the film is uniformly magnetized, this
state being the starting point of the flux reversal. The magnetization
M is assumed everywhere parallel to the same direction, which is
actually the case when a saturating field is applied. The film is con-
sidered of uniform thicknese t, and the presence of imperfections
such as holes is ignored. FPoles will therefore appear at the edges
only and, viewed from some distance, their distribution is equivalent
to lines of pole density A. Figure 5-3 represents different shapes for

which the field H_ at the center of the film can be calculated. (The

forimulas are analogous to those of eleclrosiatics as mentlioned in
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Section 2.3). For example, 1n a circular film made of Permalloy
8.()—20 with a 3000-A thickness and a 5-mm diameter, the demagnet-
izing field at the center W(?Uld be Hm = 0.3 oe.

However, Hi.increases away from the center along the easy
direction. Figure 5-4 shows the relative values of the demagnetizing
field along the symmetry axis of a square film. Except close to the

edges (Section 5. 1.2), this field is given by

. w( sin @, . s:.ncpz)
i 2t e L -=x

and, at the center

3
N Lt
m T L
5.1.2 Field at the Edge of the Film

In the immediate neighborhood of the edge, which is assumed
perpendicular to the easy axis, the one-dimensional line charge is
no longer an acceptable approximation, since it would predict an
linfinite value at the edge. In a geometrically perfect layer, i.e.,

a layer whose edge struclure is an abrupl step (Fig. 5-5), Hi would
reach the maximum value M/2 at x = 0 (from eq. 2.3-3). In reality,
the profile of the film around x = 0 is by no means abrupt, and the

thickness §{(x) varies continuously from t to 0 over a distance 2D,

which is considerably larger than t(Fig. 5-6). A quantitative
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ahalysis of the function H_L(x) is of special interes.;’c at the edge, since
it.is there that the internal field is the l_ﬁghest and that nucleation of
reverse domains is therefpre likely to occur first, Magnetic poles
appear'at the surface of the film over the distance 2D. Their surface
density is ox) = Md$ /dx. A mathematical expression o(x), which

is reasonably close to reality and permits an analytical treatment

of the problem, has been chosen in the interval (-D, +D) to be:

2
o(x) =A(1'-3-2 ) (5.1-1)
D
where
3 Mt
AT D
so that
+D
o{=) dx = Mt .
-D

The corresponding expression for the thickness is:

(5.1-2)

o
o
X

11
ot
—
fav |

-+
£

T

1

B
b
le W

In the case of a purpusely tapered edge, 2D is several orders of
magnitude larger than t, and the fact that these charges are on a
sloped surface can be neglected. The internal field Hi(x)\in the plane

of the film is, from equation (2.3-1):
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+D
_ od g
_Hi(x) - I 27 (%-F)
-D
or, by symmetry,
H (x) = ED %o dE _x . 3 Mt D (1 - gz/DZ)dg
A 2 2. 4D 2 .2
b0 =Ty T C x -

i}

2 . D
s [ 1R 5 -3 EED ]

e | 2x x-E 2 Mk
8]
Mt 3 1, % x+D
e e b — _)_( + = i :'J ia
2 2D|:D_ > (1 Dg)fn =5 | (5.1-3)

Atlarge x, of course, this expression reduces to
_ M
! 21mx
Figure 5-7 represents the configuration of this internal field, _

which rcaches its maximum positive value Hi ma atx™ 0,75D.
For the shape assumed in this analysis, H, = k(Mt/2nmD), with
ke 1.8. The coefficient k will vary with the shape chosen for the
tapered profile. If, for instance, o(x) = (Mt/D)(1 - Ix‘/D) in place
of equation (5.1-1) (dashed line of Fig. 5-6), the-new calculated

value of k is 1.76 {at x>~ 0.68D). This field Hi S is proportional

to t and inversely proportional to D. Table 5-1 demonstrates that
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Tabls 5-1
Maxirmura internal {ieid H, _lin osrateds) at mas U, 75D
. ' 1 mc?nm{
Thickness D= 0 D= 0,0lmm D= 0.1lmm D= lmm
t

100 & 5000 | 2.9 0.29 0,03

1000 & 5000 29, 2.9 0. 29

2000 & | 5000 58 5.8 0. 53

3000 & 5000 145 14.5 | 1,45

1 0s = 79,58 amp-turns/m
. 5
80-20 Pesrmalloy : M= 8. 10° amp-turns/m
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possibl i 1 £ . by givi
it is possible to obtain very low values for Hi max Y giving a
sufficient slope to the edge profile. Such a control on the demagnet-
izing field could be highly desirable. The magnetostatic energy

associated with the internal field

“,O -
E =-= I H ° Mdv
: v

is similarly drastically reduced when the edges are tapered.

5.2 Formation, Growth and Propagation of Walls

5.2.1 General

Any static domain observed in a film under the influence of
a4 given field corresponds to a minimum of energy. However, this
energy value does not necessarily correspond to the lowest energy
state of the film, but most often to a local minimum. Such is the
gituation, for instance, when a negative field, less than the coercive
force, is applied along the easy axis of the film and the magnetization
8till points in the positive direction. Similarly, in the absence of an
external field, the state of equilibrium will depend upon the previous
field history and many states between a fully magnetized (1) and fully
demagnetized (3) sample may be reached (Fig. 5-8).

The evaluation of the total energy stored in the film is feasible
only for very simple doméin and external field configurations. There-

fore, in most instances, the shape of a hysteresis loop in the easy
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direction cannot be pr edicted quantita.tively, but it is possible to
understand schematically all its features.

Any domain configuration other than uniform magnetization
(single domain) impiies tl';te presence of domain walls with which
energy is associated. A variation in stored energy corresponds to
a variation in shape or position. Two phenomena can be distinguished:

1. The formation of a nucleus of reverse magnetization

and its subsequent growth, where the wall length
and configuration change.

2. The lateral propagation of a wall, where only its

position is modified.

"Nucleation' occurring in a uniformly magnetized hody is
the phenomenon by which an elementary volume of material of
reverse magnetization is created and grows under the influence of
a field favoring its expansion. The details of the nucleation mechan-
ism are not known yet. It may simply be assumed that whenever
the effective field reaches a given value Hn, the nucleation field, a
nucleus 1s created.

"Wall propagation' refers to the lateral translation of a wall,
the shape of which is otherwise unaltered. As in the preceding case,
it is first necessary to establish the graph of EW, wall energy per
unit length, as a function of the translation x. In an ideal film, E{vv

would be a constant (EW = EWO). However, small-scale imperfections



-123~

always occur in the geometrical and physical properties of the layer:
thickness variations, polycrystalline structure, amplitude and
directional dispersion of the anisotropy, etc. The actual function
E =E +AE will therefore oscillate probably with an average
w WO w

wavelength of the order of the crystallite dimension (a few hundred
Angstrtms).

In a zero field, the wall will stabilize itself at a minimum

energy location (1,2,3 on Fig. 5-Y). When a field is applied favoring

domain Ml’ the variation of magnetostatic energy per unit length is:
dE = 2p_MH t dx = -k H dx (5.2-1)

Again the position of the wall will be determined by the equation

dE dAEw

dx dx

-kH=0

For small positive and negative fields, the wall will not move

appreciably, but rather oscillate reversibly around position 1, fox
dAE
=)

dx

instance. However, as soon as H equals -}l{( (Fig. 5-10),
ex

max
the wall will jump irreversibly from A to B with a loss of energy

ultimately dissipated as heat:

EA -—EB = EWA-EWB-I-kHAX

The propagation field at location 1 is defined as follows:

dAR
)

1
H "E(

- (5.2-2)

dx
max
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It Vafies throughout a.. given film and, in some very non-uniform
films, "islands' of high pz;opagation field are present which switch
last, at larger fields.

It is important to reﬁognize that, even when the field H is
greater than HW, it does not necessarily follow that switching will
‘occur. Indeed the wall must first be created before propagation
can take place at all. The creation of a wall implies the formation
of a nucleus _at some location in the film, which itself requires a

minimum field Hn as previously stated..

5.2.2 Magnetic Flux Reversal by Wall Motion

Figure 5-11 represents the hysteresis curve along the easy
axis of a rectangular film, 2500 A thick and 1 c¢m long, with normal
edges (mask in contact with substratc during deposition). When
magnetization reversal is observed by means of the Kerr optical
effect, ''peaks'' of reverse magnetization appear at the edges while
the external field Hex is still negative (point "A'" on the hysteresis
loop}. When the field reaches a zero value (''B"), these peaks have
ihcreased in length and, finally, at some positive field (*C'), char-
acterizing the knee of the M-H loop, some of them join with others
from the opposite edge. From there on, the film proceeds to switch
largely by lateral wall motion. The coercive force Hc(at "D'"), which

should be equal to Hw (wall propagation), corresponds to a half
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sv_vitched film. A1"E," areas remain where the magnetization is

not reversed yet and the situation is very similar to that of Figure 5=
11C. The hysteresis curve exhibits a slope between points "'C" and
"E," whose origin, as mentioned previously, is due to the average
demagnetizing field inside the layer. Thus, the thinner the film, the
squarer the M-H loop, at least if the wall propagation field Hw is
uniférm over the whole sample. Witfl increasing positive field, the
unswitched ”wedgeé” diminish in size and, finally, at "F,'" become
undetectable with the Kerr effect,

This sequence of events is easily understood qualitatively:
close to the edges a sizable demagnetizing field Hi is superimposed
on the external field. Nuclei of reverse magnelizalion appear at a
point such as "A," where |Hex + Hi\ equals Hn’ the nucleation field
(Section 5.2.1)." At'B," the effective field in the neighborhood of
the edges is positive rather than zero, so as to favor the growth of
the nuclei. Between "E" and "F,'"" the internal field is now negative
and tends to maintain the presence of unswitched areas along the
edges.

A semiquantitative analysis is given here which describes the
variation of size of such a wedge as in cases "A," "B," and "E"
under the influence of an external field. The resistance to propagation
of the walls is taken into account. Simplifying hypotheses are made.

Onc reverse domain only is considered, that is, the interaction between
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neighboring domains is neglected. The shape of the ﬁvcdgc is supposcd
to remain similar to itself and it will therefore be uniquely determined
by its leﬁgth "£.'" A nucleus is supposed fo exist initially, and its
cfeation.is not examined, .for it is a process which takes place at

the very edge of the film. The dimension ''#' is taken to be much
larger than 2D (see Section 5.1.2) and this study is iﬁdependen't of

the Profile of the edge. The configuration pf Figure 5-12a is equivalent
to that of 5-12b and ¢. The total energy is E = Em + Ei + Ew’ where
Em represents the magnetostatic energy associated with the external
field Hex’ Ei the internal magnetostatic energy, and Ew the wall
energy. The anisotropy and exchange energies are zero outside the

walls themselves. Thus:

or, on the basis of Figures 5-12b and ¢, S being the area of the wedge,

E = -4 J" H Mdv+2p MH St
.om 0 v ex [e] ex

The internal magnetostatic energy can be written in the same way:

C . B
(o] = .t o]
-? IVM(X,Y) * Hi dv = -

F3

1}

E

i

fv M-(H 4 H ) dv

b n "
o O ol de . O M. 1
_TIVMHildv-TjSZMHiI,dv 5 [y M H, dv
u

o - 22 22
== [ MH _dv-aM + pMt"e
5 v v meMTEe oM
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The first term is a constanl for a given film, the other two are

: . _
obtained as follows: The field Hiz’ for instance, due to the pole
distribution of Figure 5-12¢, can be written in general:

= M
H o= XL

(X
i £ (.E

o
St

for a given shape of the reverse domain. Indeed, a field due to line
charges is inversely proportional to distauces. Therefore:

Mo o o - b el
- — M - dv = = e -
p) fv H,&vV=-3

M-£ (7.5 E)

22 7 p‘o f/I.—* = Vo
Mo [ -2 foar Ta(Facd) ]

z2 2
BM t ¢

As far as the wall energy is concerned, it is assumed to be composed
of three terms. The first one, proportional to the perimeter of the
wedge, is written £8(t). A constant term E__ accounts for the
additional energy stored at the corners 1, 2, and 3 (Fig. 5-12¢).
Furthermore, a variable term AEW must be added, although its
-average over space is mcro., It represents the variation of energy
giving rise to a non-zero propagation field H_ for the translation of

the wall., Thus:

E =E  +AE + 25(t)
w wWC w

By definition of the propagation field, the following relationship exists

between H and AL (eq: 5.2-1 and 2):
W W
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d(A F:W) :

|
| -
= | 20 MtH_

max
where A_Ew is expressed in terms of S, the surface area of the wedge.
The total energy E = Em + Ei + Ew assumes a minimum for every

value of the external field He + The equilibriuvin is given by the
‘ .4

) .
equation: 5T - 0 or 35 = 0. BSince the reverse domain remains

similar to itself, itis equivalent to describe its size by its length
or area: S = Af where A is a constant depending on the exact shape

of the wedge.

MAE )

W
+ + —— =0
5(t) + 2AL %

3k 22

22
— = 4Ap MtH ¢ -~-oM 't +BMt
o ex -

o/

This equation gives for continuously increasing (- sign) or decreasing

+ si ields H =
{+ sign) fields ox

anp M (H_ +H ) =M% (o - 8) - 8le)
(0] ex “ W v
Therefore,
2

ME% o - R) - 8(1)  _ BtE - a(y)
4A uOMt(H L TH ) T CH{H iHW)

(5. 2-3)
e
where o, B and A are geometrical factors depending upon the detailed
shape of the domain.
Figure 5-13 represents the variations of f with the external
field. The propagation field Hw, i.e., the coercive force, is indicated

on the abscissa axis. When H decreases toward -H , the formula
ex w
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indicates that £ tends to iIlfiILiLy'; in facl, peaks from opposite edges
grow toward each other and join to form longitudinal wallsparallel to
the easy axis. If. the variation of Hex is réversed, the peaks dis~
appear, but with some hysteresis represented by the horizontal line
BC. This too is predicted by the formula ohtained.

It is observed experimentally. that such reverse domains appear
sponfaneously only above a minimum film thickness. Equation (5.2-3)
also predicts this, since the numerator of the expression given for 2
becomes zero when Btz = 6(t). Thus, above a critical thickness
tc =Vﬁ_(fgl , peaks of reverse magnetization will be present. A

B
calculation of coefficients B and C, as well as the energy density 6(t).
in the walls, would be rather meaningless because of the inaccuracy
of the numerical results due to the simplified model considered and
the necessarily approximate computations. The preceding semi-
quantitative analysis explains, however, the observed growth and

‘disappearance of these edge domains.

5.3 Hysteresis Curves of Films with Tapered Edges

5.3.1 Tapering of Kdges.

Ineide the vacuum chamber where the deposition takes place,
the Permalloy source is a slug 2 cm in diameter and placed 13 cm
below the substrate. If the mask determining the shape of the film

is not in contact with the glass, the edges of the sample will be tapered
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over the rcgion situated in the penumbra of the mask, as shown in
Figure 5-14. For instance, if the spacing & between substrate and
‘mask is 1 ém, the width 2D = §£/L should be of the order of 1 mm.
The profile of such an edge ‘is easily observed with an interferometer.
The shape ofrthe interference lines is a replica of the edge itself.
Figure 5-15 reproduces the interferen;:e pattern of a 2500 A film.

It is ﬁot possible to choosé a mathematical expression that would
describe such a profile rigorously.. Because of reflections inside the
vacuum jar, not all atoms reaching the glass follow a straight tra-
jectory between slug and substrate; also, the slug is circular and

the contribution to the evaporation of slices "A," "B," and "C' of
different sizes will vary (Fig. 5-14). Thus, such factors as bouncing
of atoms against the equipment inside the deposition chamber and the
shape of the.alloy source, account for the fact that the tapered edge
presents rounded extremities rather than a constant slope. The
function 5(x) = t{% + 3x;‘f4d - x3!4n3) has been chosen in Section 5.1.2

to describe this profile (Fig. 5-6).

5.3.2. Hysteresis Curves

Several experimentalists (31, 32) have produced layers with
edges tapered or otherwise treated. Methfessel et al. {32) have, for
inastance, obeerved in such films magnetic characteristics somewhat

similar to those reported here. Never, however, was the internal
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field distribution (Section 5. 1.2) taken into c0nsideratioﬁ in order
to explain the results.

If tile tapering is sufficiently pronounced, the M-H curve along
the easy direction will be drastically altered. Figure 5-16 shows
two loops obtained with the same film (of the order of 2000 A). Curve
"a," a perfectly square loop, is ch_aract_eristic of an afbrupt switching;
curve '"'b'" 1s the figure normally observed for a film of such thickness.
In the first case, 'a," all edge domains have been erased by an
external field: nucleation of a reverse domain occurs at a negative
field -—HI, and propagation across the entire film follows immediately;
if the alternating drive field exceeds a given minimum value, at each
alternation the film will be forced back into a single domain including
the edges. For the second case, ''b,'' the drive is reduced so that
even when the flux apparently reaches saturation, nuclei of reverse
magnetization such as those described in Section 5.2.2 are still
present along the edges (point B on the curve). Thus, growth of these
domains and propagation of the walls will readily follow the variations
of the external field. Of course, if the tapered edges are elched
.away, a type "1 hysteresis loop will be obtained at high as well as
at low drives.

Observations with the Kerr apparatus confirm the absence of
any poaks of reverse magnetization in case "a! for decreasing fields

between points A and C. The switching occurs suddenly when the
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field reaches a critical value —Hl, and it is impossible to observe

any intermediate state of magnetization between points C and D.
AtD, some .smal'l areas along the edges aré still unswitched, and
are erased by the application of a larger negative field.

For a smaller drive corresponding to the hysteresis loop "b,"
the situation is that pictured in Figure 5-11, where the movement of
the wﬁlis can be obser';red continuously.

An explanation of the type ""a'! hysteresis loop is that, if
nucleation is inhibited, propagation--that is, reversal--cannot take
place. Creation of a nucleus, as stated previously, is governed by

the equation (the fields H and Hi being parallel to the easy direction):
. ex

H +H =-H
ex 1 n

The nucleation field Hn is an intrinsic property of the film (Section
5.2.1). If H is assumed uniform over the film, the maximun
n
lH_(X,y)I will determine the critical field H1 at which the film will
|

switch abruptly:

H =-H -H, (5.3-1)
11 max

Little, if anything, is known about the mechanism by which a _
nucleus of reverse magnetization is formed. Experimental observation
indicates that nuclei appear gencrally at the cdges perpendicular to

the easy direction where the internal field Hi reaches a maximum



V'aiue (Sectilon 5.1.2). Tlils field could also reach high values
aCcidentaliy at inclusions or scratches and irregularities aiong the
lateral sides of the film, parallel to the easy direction (Fig. 5-17), |
aﬁd nuclei are, at times, lobserved at such locations,

The magnetization rotation of 180°, occurring at the site
where a nucleus is for.med, will most likely take place within the
plane (x,y) of the layer rather than outside it, where the demagnetizing
field would reach high values of the order of —Mz. This phenomenon
is probably controlled by the planar anisotropy 6, = K sin?‘e , among
other factors such as the demagnetization and the wall energies
assoclated with the rotation. If the average anisotropy energy were
the only term to be considered, in this local magnetization rotation,
the nucleation field would theoretically be H_ (Section 2.4). The
value of the anisotropy K as well as the easy direction, however,
vary from one point to the other, so reve‘rsal will occur where Hk
is the smallest and the angular dispersion of the easy axis maximum,
or, more correctly, where the combination of these two factors is
- most favorable (Fig. 5-18). Contributing also to the phenomenon of
nucleation are the demagnetization and exchange energies due to the
interaction of the nucleus with the surrounding domain. The nucleation
field Hn will actually be higher than the value determined on the basis

of the local anisotropy only. An accurate prediction of the field Hn
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docs not seem feasible, and itis assuhued thatH =n I—Ik » with n
n

probably of the order of unity.

The effective field exerting an action on the magnetization
vector is the sum of the externally applied field ﬁex and the internal
. — — .
fiald I-Ii - Thus, a map of I—Ii ig also a necessgary item of information.
The direction and amplitude of the field ﬁeff varies from one location

to the next. The preceding discussion of the nucleation field Hn was

relative to the easy direction and applies only when ﬁe is parallel

ff
to the x axis. Actually, a different nucleation field exists for every
possibie direction of the effective field and, therefore, _I:In should be
represented by a polar diagram. A nucleus of reverse magnetization
would then appear whenever the vector ﬁeff(x,y) falls outside the
diagram of ﬁn(u) (Fig. 5-19). The '"reversal' of the M vector is
defined in the most general way as occurring when the direction of
M changes quadrant.

The field ﬁi(x, v) has been investigated at regular points in the
interior of the film (Section 5. 1. 1} and at the edges perpendicular to

-the easy axis (Section 5.1.2) where it is highest. Thus, from equation

(5.3-1):

where n and k are both of the order of unity. If the edge has not

been purposely tapered, Hi masx is extremely large (eee Table 5-I)
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I—Il mI—I:,l maX; nuclei éystematiéally appear und.cr positive external
fields. On the other hand, for small enough ratios t/D, H, becomes
negative and tends toward - Hno It is when |H1] becomes larger than
1:h.'=‘-w propagation field HW tﬁat the M-H loop takes the very square
shape of curve ''a"' in Figure 5-16. For films of identical thickness
but varying profiles, ‘HI‘ should increase with increasing D, as
shoﬁn in Figure 5-20.

As far as tile nucleation field Hn is concerned, the understanding
of. it cannot even be considered to have reached the qualitative level
and numerical data are scarce {33). Thus, the reproducibility of Hn
is not insured from one series of films to another fabricated under
seemingly Ildentical conditions. Because of the present lack of
knowledge about the formation of nuclei, the only meaningful experi-
mental results will be those obtained when comparing films deposited
during the same evaporation and of identical thickness. In that case,
it is logical to assume that Hn varies within narrow limits. The
propagation field itself is very dependent on thickness {Fig. 5-21),
Nucleation being as complex, if not more so, than propagation,
appreciable variation with thickness is very probable.

In an experiment four films (80% Ni) are evaporated onto a
common substrate in order to avoid imhomogeneity in the glass. The
four thicknesses are equal {1800 A ). A different spacing between

glass and mask is chosen for each film: mask 1 is in contact with the
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sibstrate so as to create the usual sharp edgess masks 2, 3 and 4
are away from it with increasing spacing and therefore increasing
width 2D of the edge (Fig. 5-22).

Observation with thé Kerr apparatus and hysteresis loop along
the easy direction confirm the theorv. In fil.rn 1 (shar_p edge), the
reversal occurs by slow wall motion: reverse peaks of magnetization
grovxlf towards the center. Films 2, 3 and 4 will switch abruptly and
in succession, since Hi decreases (Table 5-I) and Hl increases
(Table 5-II and Photographs D-2, 3, 4, 5 in Appendix D). Of course,
if the thickness were large enough, the demagnetizing field Hi would
be sufficient in films 2, 3 and fiﬁally 4, to create nuclei before wall
propagation can take place; in this case, normal magnetic character -

istics would be obtained.

Table 5-1I1
Film Hk(oe)* Hw(oe)* H 1(oe)* D Hi(oe) ok Hn(oe)***
#1 8.5. .z - ~ 0 -— ———
#2 8.5 1.2 -3.2 ~0.15mm -3.5 6.7
#3 8.5 1.2 3.7 ~0.30mm ~1.8 5.5
44 8.5 1.4 4.7 ~0.45mm  -1.2 5.9

* measured on hysteresis loop
#% theoretical value

ESCAREN
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Some films, othe'rwise.ﬁor 1na1; present "soft" spots where
nucleation occurs earlier. Such has often been the case in rectangular
films where the nucleation expected at the edges pe‘rpendicular to
the easy direction is r_na_skéd by earlier nucleation along the sides
parallel to it. As indicated previously, the creation of a nucleus
along the side involves less wall energy, and irregularities, such as
a Sefrated edge (Fig. 5-17) create appreciable demagnetization where
none would appear ‘if the sides were perfeclly straight. In order Lo
do away with such a difficulty, the films in the previous experiment
were circular with a tapered edge all around.

The usefulness of such magnetic characteristics as those of
Photographs D-3,4, and 5 along the easy direction is evident:

1) There is no dremagnetization effect in a zero field: The
remanent rnagnetizationMr is equal to the saturation value MS.

The squareness ratio Mr/Ms is one. This allows working with much
highér thicknesses and therefore higher signals. For instance, if
one observes a 4000 A film with a normal edge in the Kerr apparatus
with no field applied, it appears in a substantially demagnetized
state. On the other hand, if the edge is sufficiently tapered, the film
appears as a single domain.

2) The switching threshold H, is clearly defined: below it,
no change in magnetizatldn occurs at all; above it, the whole film

switches at once. In this way, ill-defined switching fields due to
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inhomogeneities of the pr_opag&tion fieid over the sample disappear.
As far as the mode of reversal of the film is concerned, itis
still by Wéll motion for low fields, the miﬁimum velocity of the walls
being detex_'minéd by the effective drive f:'Leld(H1 - H\-&)r (34). T‘h.ere' is
no apparent reason why switching at high fields, in regions II and III
as defined by Humphrey and Gyorgy (6), should be affected unless
demagnetiziﬁg effectshave sofne influence on the mode of switching

in the intermediate region II; this, however, has not been shown.



6. PRINCIPLE OF AN ANISOTROPY RECORDER

6.1 General

In Section 2.4, the uniaxial anisotropy, induced in a Permalloy
film during vacuum deposition in the presence of an external field
parallel to the plane of the substrate, was characterized by an
energy e:a(@), a function of the direction of the magnetization in the
plane {x,y) of the film. If ea(e) is identical at all points in the film,
and if the external field is uniform, the IT/I vector is everywhere
parallel to the same direction and the state of magnetization of the
film is then determined by a single parameier 8, the angle between
M and the easy axis of the sample. The function K sinze is usually
chosen to approximate the anisotropy energy densitysa(e) » in which
case the equilibrium state of the film is given by equation (2. 4-5)
with its graphical interpretation in Figure 2-4. Tn particular, this
function accounts for the almost linear M-H curve found.in most
films when the drive fiéld is applied along the hard axis.

Even if the anisotropy is in fact of the form K sinZB at all
points, the amplitude K, as well as the local direction of f:he easy

axis, might well vary from one point to the next. Such dispersion

-148-
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h’as'T-Jeen observed iﬁ actual films (35). These variations result in
changes of direction of M throughout the film. Rounded corners
and opening of the hysteresis loop in the hé,rd direction can be
explained by dispersion of, respectively, the coefficient K and the
direction of the easy axis. The concept of a film with uniform
direction of magnetization is therefore a somewhat simplified picture.
Thus, when studying a sample with such instruments as a hysteresis
loop tracer, a torciuerneter or the apparatus to be described in this
section, it should be kept in mind that the guantities measured
represanit in some sense average values over the whole of the film.,
In a single domain under the influence of a uniform field H,
the energy density is given by the following equation (from Sections

2.3 and 2.4)
e(9) = ea(e) -1 _ HM cos (o -8) | (6.1~1)

where &8 and & determine the directions of M and H in the plane
(%,y) of the film (Fig. 6-1). At equilibrium, this energy is minimal
and the torques are equal and opposite. (In a circular film, oriented
as a single dormain, the derﬁagneﬁzing field is divectly opposed to M )

and does not produce any torque.}

ae
a
. T e——— - i -8y =0 . 1-
v L.LOHM sin (o -9) (6.1-2)
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The main featurcs of diagram 2-4 arc reproduced in Figure 6-2.
Similar graphs woﬁld be obtained for more complicated anisotropy
epergies. The general property of interes.t is that the%e will always
be. a minimum field Ha (Ha = ZK/MOM if e = K sinze) above which,
regardless of the valﬁe of o, the directior of magnetization is uniquely
determined (only one value of § corresponds to a stable equilibriur};’]).

At present, the anisotropy energy, or rather its first deriv-
ative, can be detefrnined by sever.al methodé. The M versus H curve
along the hard direction of the material gives complete information
provided the single domain state is preserved. Indeed, the. vertical
ordinate of the M-H curve is M cos(w-8), and the quantity {«-8) is
all that is needed to compute aea/BG, H being known. However, in
the majority of cases, in which the sample does not behave as a
single domain, this prdcedure is inapplicable. Rossing and Stolen (36),
in studying thin films, have used a procedure where the angle (v-8) is
measured point by point for all directions o of the field, preserving
at all times a single domain state.

Another method for analyzing the anisotropy uses a torque-
meter {37). Penoyer (38) has proposed an automatic version of such
an instrument, recording aea/ae directly , while H is rotated by 2m,
Boyd (39) improved the sensitivity by supporting the sample with a
fiber instead of a bearing, and by using damping oil baths against

lateral vibration. Humphrey and Johnston (13) have recéntly constructed



-152-

an automatic torque b.alanc.e using a fused-silica torsion fiber. The
quality of design of this ai)paratus .iS such that they were ablé i:o
reach a sensitivity of 10-6 dyn-cm, a value._very well adapted to the
study of ferromagnetic filrﬁs and several orders of magnitude better
than previous instruments of the same type.

The torsion pendulum method {41) and other indirect experi-
mental procédures such as measurement of ferromagnetic resonance,
permit study of the regional behavior of the anisotropy around the
state of equilibrium (e.g., .study of stiffness 8261882).

The new method presented here for the measurement of
aea/ae is particularly suitable for thin ferromagnetic films. It offers
simplicity of design and is not affected by vibrations. Its sensitivity
is as high as that of a hysteresis loop tracer, to which it is somewhat

related.

6.2 Principle of the Method

Equation (6. 1-2) may be written:

1 aea

w M Palé]

(9]

= H sin {o-8) | - (6.2-1)

The quantity sin(¢-8) is proportional in Figure 6-1 to the segment OP,

or physically to the flux in the direction perpendicular to H.

The magnetic film of circular form is rotated around its center

at a constant speed w. A fixed dc field H is applied to the rotating
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sampie. A coil, at right anglcé to the field, is located above the
film. The flux 3 through this coil is proportional to the component

of IT/I which is perpendicular to I_-i . Becau.se the sample is circular,
rotates around its center, ;Lnd is a single domain, the proportionality
befween sin(e-8) and & is insured. Indeed, if these three conditions
are fulfilled, the geometrical factor between sample and coil remains
constant for any orientation of M. Hence, it is permissible to rotate
the film rather thaﬁ the field.

If the field is greater than Hd, as defined in Section 6.1, the
movement of M will be an oscillation around H of period m/w . In
Figure 6-2, the points on the circle of radius h = H/I—Ia determine
the variation of I:)/[ . The angle (;i'_-@) decreases when h increases
and the maximum sensitivity will be achieved when H = Ha.

When the sample is saturated along its easy direction, and
then rotated in the absence of a field, a sine wave_l}&.f - 8in wt appears
on the oscilloscope, displaying the integrated sign;'ll (c = ~-d&/dt)
from the pickup coil.

Finally, it should be noted that M sin(o-8) appears on the
oscilloscope as a function of ¢ = wt, the angle between the field and
the easy direction 8 = 0 in the film. The value of sin(v-8) is obtained
by dividing M sin{®-8) {curve b of Fig. 6-3) by the maximum amplitude
of M sin wt (curve a). The values of o and sin(e-6) being known, 8 is

then obtained by a straightforward calculation:
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B =o - arc slnCSln(a—Q)) (6.2-2)

A graphical method mayv be used to determine 8. It is rapid but
lacks accuracy. Figure 6-3 shows the simple steps involved:

o = OA and _Sin(o:—@) = AB = CD; thus, (¢-8) = OD and, finally, & = DA,

6.3 Apparatus

A schematic of the instrument is given in Figure 6-4. A
uniform dc field H is produced at the center of a pair of Helmholtz
coils. The current passing through that circuit is supplied by a set
of batteries. In normal operating conditions, the axis of the pickup
cbil is perpendicular to the field; this is easily accomplished by
searching for a zero reading.in an ac field. In order to cancel
most of the ambient 60 cycle field, the coil is composed of two
identical parts. The flux through the lower part of the coil is com-
posed of the flux of the rotating film as well as the 60 cps magnetic
noise. The upper part wound in the opposite direction balances the
noise (within approximately 1%) without reducing appreciably the
useful signal. This ""figure 8' coil is connected to a preamplifier
(gain: 1000, bandwidth: 2 to 40,000 cycles), followed by an RC
integrator (time constant: 0.1 sec ). The circular film, one c¢cm in
diameter, is fixed on a platform parallel to the field I_jI . The axis
of rotation should coincide with the center of the film. An extremely

simple air turbine equipped with air bearings and built cut of Lucite
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eliminates the presence of magiletic rna.terials__and of an cleetric motor.
The turbine is ope.rated at 200 cps (non-critical) either clockwise or
anti-clockwise. Its speed is regulated with a fine adjustment valve.
A.light source, a mirror fixed to the shaft of the turbine ,and a
photocell provide a triggering signal for the oscilloscope. The unit
containing the light sourée and photocell can be rotated manually around
the éxis of the turbine so as to permit triggering at any time during

a cycle. The eartil‘s field is canceled, as required when working

with very soft ferromagnetics.

6.4 Accuracy and Sensitivity

The accuracy depends on the exactness of the readings on
the photograph. If rthef linearity of the oscilloscope is not satisfactory,
the instrument can be calibrated. Only relative values of the deflec-
tions are meaningful; the vertical signal is calibrated by the maxi-
mum amplitude of the sine wave (Fig. 6-3, curve a) and the horizontal
one by the distance corresponding to half a period of rotation displayed
on almost the entire width of the screen. Itis poséible to read
distances on the photograph within 0.25 mm. If 180° corresponds to
8 ¢m horizontally and the amplitude of the curve M sin @t is cof the
order of 3 cm I(optirnum values), then o and sinf{e -8) can be measured
within, respectively, 10.75 degree and + 0.01. The computed angle

9 can thus be determined within 1 to 2 degrees. If the vertical signal
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is too small when displaying sin {(o-8), which is thc casc when H
is much greater tﬁan Ha, the gain can be increased using the
calibrated attenuator of the vertical amplifier of the oscilloscope
(alccura,cy 1%), unless, of course, the noise becomes appreciable.

The bandwidih  of the amplifier ig limited to 4b kc: the
integrator further reduces the high frequency noise. It is the 60 cps
maénetic flux through the sensing coil and the low frequency flicker-
ing of the preampiifier which 1limit the signal-to-noise ratio. This
particular instrument is able to detect 10_11 Wb in terms of magnetic
flux inside the sample; at this value, corresponding to a 10 ﬁ, 80% Ni
film, one cm in diameter, the useful signal is comparable to the
amplitude of the 60 cycle noise. Photograph D-6 (Appendix D) is
an example of a 150 A film (70% Ni). The range of thicknesses over
which this instrument can operate extends from about 100 .& to
several thousands {the thicker films should have tapered edges to
prevent demagnetization).

If extremely small or thin samples were to be studied acur-
ately, the following modifications might improve the sensitivity of
the instrument. The number of turns in the pickup coil should be
increased in order to obtain a signal sufficiently larger than the
intrinsic noise of the preamplifier. In an attempt to reduce the
ambient 60 cycle field, a Mumetal shield could be used to protect the

anisotropy recorder. As a further improvement, the lower part of
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the pickup coil could tightly surround the sample, thus increasing
the useful flux together with decr.easing the 60 cps noise. BSuch an
arrangement would very much complicate the design of the apparatus

if one keeps in mind that the film should rotate inside the coil.

6.5 Utilization and Examples

On the screen of the oscilloscope (Appendix D, Photograph
D-7), M sin{o-8) = (QOH)“I(aea/ae) is displayed as a function of o.
The sine wave is obtained by saturating the film along the easy axis
and then rotating it in a zero field. Lts maximum amplitude egual in
fact to the remanent magnetization Mr, rather than the saturation

~magnetization Ms’ provides a calibration of the vertical deflection.
In the thinner films or those with tapered edges (Section 5.3.2 and
Photographs D-3, 4 and 5), the ratio M_/M_, as deduced from the
hysteresis loop along the eé,sy direction, is very close to one. A
correction should be introduced if it is otherwise. The easy axis
corresponding Lo the point & =o = 0 is most easily deterrn_ined on
the sine curve M sin wt.

As already mentioned, the pickup coil can be oriented with its
axis parallel to the field. This arrangement permits use of the
inetrument as a hysteresis loop tracer, which :.ma.y be usaful when
comparison is being made between the anisotr opy function and
hysteresis curves at different angles. In this case, o is constant,
i.e., the sample is at rest, and the dc field is repla.c.ed by an

alternating one. The pickup coil, wound as a 'figure 8," insures
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attenuation down to 1% of the unwanted signal due to the uniformn
sinusoidal field. Complete compensation for this signal caﬁ easily
be obtainéd with a small auxiliary bucking coil. In Sufnrnary, the
transformation from an anisotropy recorder to an M-H curve tracer
igs accomplished by rotating the pickup coil by 90° and é.pplying an ac
field to the Helmholtz coils. The pi;:kup coil circuit remains
essentially unmodified.

As an example, a 60% Ni film (obtained from a slug containing
70% Ni) will be considered. Its thickness is 2500 A and its edges
are tapered. This film features usual hysteresis loops along the
easy and hard axes. -The anisotropy field Hk (eq. 2.4-4), measured
on the hysteresis curve of the film along the hard direction, is about
6 ce. The dc field H, used to trace th.e s:‘m(oz-_e) curve is equal to
7.4 oe. Table 6-I reproduces the data measured on the recording
obtained with the anisotropy recorder (Appendix D, Photograph D-T).
The value of 0 is computed for each o according to equalion (6. 2-2).
The experimental function sin(e-9) = (u.o MH)ul (aea/aﬁ) is represented
in Figure 6-5 as a function of 8, and within the limits of precision
of the method is a sine wave.

if ea =K s.‘inze, and if equilibrium is established, then,
from equation {6.1-2):

1
h M

%1 m%"
!

= H = H sin(og-e)
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and H = 2H[ sin(o-9] at.Q = 45°. The value of H being
k max :

known, H

x is deduced extremely easily from Photograph D-;T where

[sin(w-8)] max C2T be measured without calculating 6.

Table 6-I

o sin{e ~0) Q';B - 8

0° 0.00 0 ) 0

10 | - 0.08 | 4°,6 5°.4
20 0.15 8 .6 11°.4
30 0.22 12 .7 17°.3
40 0.28 16 .2 23°.8
50 0.33 19 .1 30°.9
60 0.37 21 .7 38°.3
70 0.385 22 .6 47°. 4
80 0.305 17 .8 62°.2
85 0.183 10..5 74°.5
90 0 0 90°

. The product ZH[Sin(a—G);naX should in principle be a constant. This
product (Table 6-II) is reproduced on Figure 6-6 as a function of H,
showing a variation of about 5% which could result from dispersion

in either K or the local easy axis throughout the sample, With the
increasing external field being applied, the dispersion of M becomes
less and less pronounced. Photograph D-8 in Appendix D is the

domain pattern of the demagnetized film; a slight dispersion of the
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easy axis is noticeable, at least if one assumes that the direction of
the walls isr-parallel to the easy axis at every point.

Figures 6-7 (Table 6-IIf) and 6-8 (Table 6-IV) represent
the case of two other films ;:Qntaining, respectively, 53% Ni and 60%
Ni. The sin(o-8) curves (53% Ni film), corresponding to various
values of H, appear on Photograph D-9 (Appendix D). .Dispersicl)n
seemls to be ‘present in most films, and especially when departing

from the 8§0-20 composition.

Table 6-II (60% Ni)

ii sin(ot-e)max H__k___
7.4 oe - 0.385 5.7 oe
8.3 0.346 5.8
9.5 0.318 6.05
9.9 0.305 6.06
11.9 | 0.255 6.08

Hk deduced from B-H loop: 6 oe
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Table 6-TI1 (53% Ni)

I:I ' sin,(c:r~6)maX Hk

10 oe Ol.395 7.9 oe
11.9 0.352 .8.40
15.9 0.278 8.85
19.9 0.226 9

Hk deduced from B-H loop: 8.5 oe

e e e M A e e e e = e o e mm e om m e e e B A e e e e e o A e me o Em A e M e e

Table 6-IV (60% Ni)

ii sin(0-8) H,

7.6 oe 0.457 7.10 oe
11.6 0.305 7.10
16.2 0.220 .15
18. 0.200 | 7.2
z2. U.166 7.3

Hk deduced from B-H loop: 7.2 oce
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6.0 Conclusion

The method presented here is only applicable to the study
of films under small fields, since the amplitude of the signal tends
toward zero for incrgasing H. Investigation at large fields requires
thé use of a torguemeter, For values of H of the order of the an-
isotropy field , the present instrument permits a rapid analysis of

the anisotropy over the 360°range., The simplicity and small cost of

this apparatus are evidently its a.t.tr?..tctive features, It is somewhat
more complicated to build than an hysteresis loop tracer, but cer-
tainly simpler than a torquemeter,

| The value of Hy (and its variation with H ) determined
with this recorder to an accuracy of about 2% reflects probably more
nearly the anisoiropy of the film than the hysteresis loop tracer,

since the measurement is made in the single domain state.
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APPENDIX A

Alternate Procedure for Solving the Torque Equation (3. 6-4)

The method sketched hereafter has actually not been u.sed,
the first one proposed having proved to be successful. Therefore,
it is not certain that the process as such would lead to convergent
approximations of the function 8(y). Just as in Section 3.6, it might
be necessary to introduce some modifications to insure stability and
therefore convergence. This alternate method would have the advan-
tage of not necessitating several trials in order to satisfy the boundary
condition at infinity.

The equation to be solved is of the type:

8(y) = gly)
with g{y) = cos 8(y) - [sin 8(y) - h(y) ], tending to zero when y tends
towards infinity [ (o) = 8(w) =0 ]. The boundary conditions are:
8(0) =-‘% and 8(c) = 0. Tt can easily be checked, by two successive

differentiations, that the solution of this two-point boundary problem

is o_f the form;
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y .
o{y) = A + By + J_(Y - M) g(M) 4n

6]

. y
S(y) =B+ [ g(man

8 (y) = gly)

The boundary condition 8(0) :1;; will be satisfied by letting A =-T21 .
Vel

Also B = - I g(M dn since 9(00) = 0, which automatically insures that
o

8(w) = 0. Therefore:

O

y
oy) =3 - v [ eman+ [y - Dglnan

[+]

The function g(y) appearing inside the integrands is not known a priori,
but a previous approximation of 8(y) may be used to compute an
approximate g(y). The following formulas could thus be the base for

the determination of 9(y) at a given thickness by successive interations:

g, () = cos 8 (y) [sin 8 (y) - b _(y) ]

and

) =3-y [ g Man+ [ (y-1) g (Dan

[o]

en-l-l

‘with h{y) derived from en(y) as in equation (3. 6~5). |

The integrals could be computed stép by step for increasing vy
by the Simpson's rule. For the purpose of limiting the abscissa
axis, a finite value YOD must be substituted to infinity, a.nd‘this might

introduce difficulties in matching €(y) and h(y) at that point .
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APPENDIX B

Numerical Solution of the Torgue Equation of a Neel Wall

The functions sin 8(y*) and h(y*) are represented by tables
of 201 values, as indicated in Section 3.6.1. The field given by

equation (3. 6-5) is calculated as follows:

100 1 t= 1 ¥
h, = C Z * |:tan~ ——-—:,—'*% - tan S L :| AT
i s P 2(y % %) 2(v %5 ) 1
j=1
200 "
' -1 t -1 %
+c>’ *_[tan — ————_]A*
Lo P i 2y -Tix) an 2Ly %4 Mk i 2
5=101
sin 8, - sin 8.+1
where p*j, = T J (defined at midpoints)

T = (5 < 2) A or 100AT + (5 - 100 -3 BT

However, due to the change of interval size aty* =Y _, a

13

deformation appears in the h curve at that abscissa because of the

-1
abrupt change in the summation terms from tan (t%/Ay* 1) to

-1

tan (t*/y*a). It is corrected by dividing the interval Y, toY + Ay*,

into p subintervals Ay* and assuming for these additional points a

1

linear variation of p¥. Figure B-1 indicates the subdivision of Ay*z
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as described above. In the new summation, negative and positive
terms around y¥ = Y | compensate each other to produce a smooth

variation of h(y*). Thus, for y* < YI only, thatis, n < 101, h will

be given by
‘100 P 200 :
h, = { % aee % 4+ z % oaoe w4 z % ens * ]
I e L R T O
. j=1 Jj=1 j=102

with, in the interwval Yl to Yl + AT]Z

™ 2(p

% =% 00 | *1017 P*100) T jamx
j 100 & 07 | JamH,

AR, FAT®
AT]IA’I]Z

Another deflurmation appears at Yoo because ‘Lhe integration
of p*(y*) terminates at that abscissa. There, the curve h(y*) goes
anomalously upwards, and this is corrected by substituting extrapol-
ated values to the last ten hi's calculated by' integratijon. This
extrapolation above 1 = 191 is of the forrn_ Af(y*- B), where A and B
are chosen so that h{y*) and its first derivative are continuous at
i =191 (Fig. B-2). The boundary condition (3.6~7) is tilus hased on

an exti-apolated value h The tail of the curve being of no physical

201°
significance, such a procedure is acceptable and does not introduce
detectable errors at lower abscissae.

In solving the differential equation (3.6-4), the procédure

followed in order Lo satisfy Lthe boundary conditions Is as explained
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‘Seclion 3.6. The actual solution of the cquation for a given h(y*)
and a given slope 8(0) at the origin is obtained with the help of a
standard subroutine using the Runge-thfa-Gill method to start the
integration process and fhe Adams-Moulton predictor-corrector
formulas for each integration step thLereafter. The integration steps,
smaller than AT¥, are selected automatically so as to limit the
trﬁncation error to a predetermined maximum value. In between
two consecutive values of the table defining the function h(y#*), the
field is assumed to vary linearly.
The iteration process starts at a zero thickness. A table of
1201 values of sin 9 is first computed according to formula (3. 5-3)
, .

valid for t'= 0;

. %
sin@i=sin[2tan1(ey)'|

For t¥ < 0.02, the interval sizes are Ay*l = 0.05 and Ay*a =0.4,

with Y1 = 5 and Y00 = 45. For t% > 0.02, the intervals are 0.04 and

0.8, with Y1 = 4 and Yoo = 84. The transition at t¥ = 0,02, from the

first set of intcrvals to the sccond, is done with the help of simple

interpolation formulas and an extrapolation of the .type sin @ = A/(y*-B)

between y* = 45 and 84, the function énd its fi:st derivative being

continuous at v* = 45. An auxiliary program performs these operations.
The successive thicknesses chosen are, at the start,

£k = 0; 0.0008; 0.0013; 0.0024; 0.0036 and, thereafter‘, increasing in

steps of 25%.
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The correlation between the quantitics appearing in Section 3.6

and their Fortran homologues is as follows:

hizHﬁ) ﬂn9i=COSTH(D
sin €' = PHO(I) p*i = STHTA (I)
t%/2 = HALFT . y¥ =T
Ay, -DETA Ay* ,  =DELETA
Y =A Y =B
1 a
N = ETA

THETA (1) and THETA (2): First two trial values of slope at origin.
JOY ig the Index used in numbering the successive trials of initial
slopes aty* =0, or Y', Y, etc.

JUY is the index used in dividing the abscissa axis in segments
OtoY'(JUY =0), Y'toY" (JUY = 1); Y" to Y™ (JUY = 2), etc.
(Section 3.6.2)

JAY is the index used in numbering each whole cycle expressed by

the system of equations(3. 6-6}

'FORTRAN PROGRAM FOR THE IBM 7090 COMPUTER




500
501

10
502

510

511

312,
LATIVE, 21H ZND DERIVATIVE, 18H
2158 HEY}/ /)

%13

514

515

_ WRITE QUTPUT TAPE 64 5104 Ny Cy Ay By HALFT,

1000
100

25

26

35

37

-173-
CIMENSION H(lOQl}y ANGLE({ 1001}

CIMENSION PHUNEF{SO},DELNEG(50},PHGPOS(SG),DELPGS(ﬁOl

DIMENSION G(1001)s Y[2),y YDATI{2), PHOPRM (50), DELTALS0),
1 PHO[LIOOL) ,SUMIB)sTHETAIZ) ySTHTA{L1O00L),COSTHI100L)
2. TEMPY {2} ,5THTB(100)

FORMAT 15y FlO.6y 5F10.4)

fFCRMAT | 2F12.8)

READ INPUT TAPE 5, 500, iy HALFT , A, B, C,
READ INPUT TAPES5,501,TEMPY

FORMAT{ 211C )

READ INPUT TAPE 5,502, KARO,LARD

FCRMAT {25KH]1 NUMBER OF INTERVALS = [5, TH

17TH A = FIlUD.Z2y TH B = F10.21 9H «5T =
2EL13.6/7)

FORMAT {25K INITIAL VALUES OF THETA//)

ALPHA, BETA

C.= FlG.2,

FORMATY {//78H Ye LTH _ THETAy25H

FORMAT (F10.44 5C20.8)

FORMAT (5E20.6) ‘

FORMAT (23H THETAPRIME(O) = E13.6)
JAY = 0

EPSLON=0.005

ChN = N

DELYA AJCN
BELYB {B-A}/CN
CETA = DELYA
DELETA = DELYB

i

ETA = DETA=,5

MN = N+1

JACK = 2#N

LM = MN+]

ETA = 0.

JOKE = JACK + 1
JULES = 1C

SINITHETA),

EPSLON

READ INPUT TAPE 5, 5222, (COSTHII) 5 I=1, JOKE}

JHWRITE QUTPUT TAPE 6,518

O 1000 IJ = 1,J0kKE,5
NR = JJ+4

WRITE OUTPUT TAPE 6,5160,1Jy{COSTH{1},1=1J,NR)

CCNTINUE

JT = N+l
NTHO=JOKE~JULES
CJULES=JULES
CONE=B

DO 25 1 = 24 MN

CSTHTA{I-1) = —(COSYHII}-COSTH{I-1))/DETA

CONTINUE

IF (BETA}Y 37,37,26

CENTINUE

DG 35 F = LM§ JCKE

STETA{I-1} = ~{COSTHUI)Y~COSTHI{I~-1))/DELETA
CONTINUE

CONTINUE

WRITE QUTPUT TAPE &4+ 517

E13.6y 13H EPSILON =

IST DERIV
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517 FORMAT {//30H VALUES OF D(-SINJ)/DETA )
oo 100% Id4 = 1136KE)5
NR = IJ+4
_ WRITE QUTPUT TAPE 645160s1d [STHTA{L)s]1 = T1JseNR}
1GC5 CONTINUE
5160 FURMAT (11G,5E20.8)
O0Y = DETA
_ T =0.0
5C0 FORMAT (4E?0 81}
DO 140G I = 1y JEKE
SUM (1) G.0
SUrM (2] G.Q
SUMI3)=0.
SUMI&)=0.
ETA = DEYA=0,.5
N 120 KAY = 14 N ' . -
‘115 GIKAY) = STHTA{KAY) = [ATANF{HALFT/{T—ETA)})-ATANF{HALFT/(T+ETA})}
116 ETA = ETA+DETA
SUM{L) = SUMIL) + G{KAY)
120 CONTINUE
SUM{l) = SUM{L1l) = DETA
5:11 FORMAT (1H 110,2E20,.8)
KO=DELETA/DETA
SPRIME=2.#{STHTA(N+1)-STHTA{N))/{DELETA+DETA)
DOl22 KAY=1,KOD
CKAY=KAY o _ _
STHTB{KAY)=STHTA{N)+SPRIME+CKAY=DETA
122 CONTIMUE
DG 121 KAY=14KO
GlKAY )= STHTB(KAY)*IATANF{HALFT/(T“ETA))—ATANF{HALFTI{T+ETA)))
ETA=ETA+DETA
SUMI3)}=SUM{3)+G{KAY)
121 CONTYINUE
SUMI3)=SUMI3)1+DETA .
150 ETA = ETA+IDELETA-DETA} *= (.5
DO 160 KAY=LM,JACK
GIKAY)}=STHTA(KAY)#{ ATANF{HALFT/{T-ETA))~ ATANF(HALFT/ET+ETA)))
ETA=ETA+DELETA
SUM{2)=SUMI2)+G{KAY )
160 CONTINUE
SUMIZ)¥=5SUM{Z21=#DELETA
ETA=A+DELETA®,.5
SUML 4 ) =STHTA(N+L)#{ ATANFIHALFT/{T-ETA)})-ATANF(HALFT/{T+ETA}))
SUM{4)=5UM{4}+DELETA
IF(I-MN) 141,142,143
E41 HIT)={SUMIL1)+SUM{2)+SUMI3))=C
T=T+DETA
G0 1O 140
142 HID)=[SUM{L1}Y+SUMI2)+SUM(3) }«C
T=T+DELETA
0 0 140
143 HETY=ISUM(L)+#3UMLI2) +SUML4} ) #C
T=T+DELETA
GO 70 143
F40: CONTINUE
DTWO=B~CJULES#DELETA

In
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HTWO=HINTWO ) *DELETA/ (HINTHO)Y-HINTWO-1) )
GTWO=HTIWC+DTHO .
FTHWO=—=HTWO*HINTWT)
T=DTWO
OO 600 1=NTWO, JOKE
HIL)=FTHO/(T-GTWD)
T=T+DELETA.
600 CONTINUE _
CWRITE QUTPUT TAPE 6,519
519 FORMAT (// 15H VALUES OF H/}
DO 1010 IJ = 1,JCKE,5
NR = 1J+4 )
WRITE QUTPUT TAPE 6,5160,1Jy(HII)41 = IJsNR)
1010 CCNTINUE
IF({JAY~8) 50,50,10
50 CCNTINUE
Juy=0
TIUY=0.0
DELJUY=DETA
KARJUY=0 ‘
YJUY=1.5707963
THETA{L)=TEMPY (L]
THETA{2)=TEMPY{2).
52 J0Y=1 _
DELJOY=0.0
DELTOY=0.
KAT=0
MAT=0
Y{2)=THETAL 1)
PHOTWO=THETAL1)
51 T=TJuy
Y{l)=YJuy
KAR=KARJUY
DELT=DELJUY
520 FORMATI(//3E15.6)
53 CALL DEQ{K, 24 T, Y, YDOT, DELT, 0.0001}
GO TO (200, 300, 300, 400), K
200 YDOTI1) = Y(2)
IF{tT-A} 201,201,202
201 AT=T/DETA+l1.0
G0 TO 203
202 AT=CN+1.0+(T—A)/DELETA
GO0 TO 203
203 [T1=AT
CIT ET
CAT AT-CIT
HY = {H{IT+1)}-H{IT}} = CAT + HIIT)
SINEY = SINF(Y{1}}
220 YBAT(Z2) = COSFIY{1) )#{SINEY=~HY)
CONTINUE
CALL DEQ2
300 IF{JOY-30) 306,306,299 _ _
299 WRITE QUTPUY TAPE &, 513, T, Y(1), Y{2), YDOT{2), SINEY, HY
306 KAR = KAR +1
PHOIKAR)=SINEY
310 IFI{DELT~DELETA) 311,326.326

1 H



311
325

326
320

330
521
522

1440

666
667

1200

301
302

340

350
1350

1355

1360

1370

1380
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[FLABSF(T-A)-0.0005) 325,325,326
DELT=DELETA

KAR=N

GO IO 53

IFE{T+.00005)-CONE) 320G.330,330
CALL DEQI

G40 70 310

DELTWO=Y(1]-1.005#ASINF{HY)

FORMAT (BE15.6)

FORMAT (/12H JOyYl = 11Q})
IF{ABSF{{DELTWC-DELJOY)Y/DELTWO)~0.000001) 1440,301,3C1
JARD=KARO+JUY #LARD

WRITE QUTPUT TAPE 6, 522, JOY

WRITE QUTPUT TAPE 6, 666, {(PHONEG(I}, DELNEG{I}, I
WRITE QUTPUT TAPE 6, 667, {PHOPQOSII), DELPOSII), 1
FORMAT| 2E18.6)

FORMAT (2E20.6)

DO 1200 1J=1,J0KE,5

NR=IJ+4

WRITE OUTPUT TAPE 63,5160, [Jy0 PHO{I), I=1J,NR)
CONTINUE

CJARD=JARD

TJUY=A+({CJARD-CN~-1. J#DELETA

KARJUY=JARO~1

YJUY=ASINF{PHO(JARD) }

YPRIME=[{ASINF(PHG{JARD+1) }-ASINF{PHO{JARD-L) )}/ (2.#DELETA)
THRETA(L)}=YPRIME+CQ,12ABSF(YPRIME)
THFETA{2)}=YPRIMF=0.1%ABSF{YPRIMF)

JUY=JUY+1

DEL JUY=DELETA

IFITJUY-CONEY 52,10,10
IFIABSF{{DELTWO-DELTOY}/DELTWOD)-0.000001) 1440, 302,302
GSIN=ASINF(HY)

DELTOY=DELJOY

DELJOY=DELTHO

CONST = ABSF{DELTWO/GSIN)

IFICONST-EPSLCN]) 340, 350, 350

JAY = JAY + 1

GO TO 410

IF{DELTWO)} 1350, 1350, 1380

KAT = KAT + 1

PHONEG{KAT) = PHOTWO

DELNEGIKAT) = DELTWO

IFLJ40Y-2) 360, 1355, 1355

PHOMAX = 0.

PO 1370 1 = 1y MAT

IF(ABSE{PHOPOS{I))—-ABSF{PHOMAX) ) 1370, 1360, 1360
PHOMAX = PHOPOSII)

DELMAX = DELPOSLI)

CONT i NUE

PHOONE = PHOMAX

DELONE = DELMAX

GO0 TO 38C

1y KATY)
1, MAT)

ot

MAT = MAT+]
PHOPCS{MAT) = PHOTWO
DELPOSIMAT) = DELTWO
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PHCONE = PHOTWG

DELONE = DELTWO L
IF {1Ov-2) 3450, 1385,1385
1385 PHOMIN = PHONEGIL)
DO 1400 | = 1, KAT . |
IFLABSF{PHONEGI £}3~ABSF{PHOMIN]) 1390, 1390, 1400
1390 PHOMIN = PHONEG(I) . s
DELMIN = DELNEG{I)
1400 CCNTINUE
PHOTWO = PHOMIN
GELTWO = DELMIN
60 TO 380
360 40Y = JOY + 1
Y{2) = THETA[2)

Hon

DELONE = DELTWO
PHOONE = PHOTWO
PHGTWO = THETA{Z2)

361 CCONTINUE .
[FIJ0Y-40151,451,10
38C¢ THETA{Z2) = {PHCCONE+PHQTW(O)#,5
523 FORMAT [I10, 2E18.6)
390 CCNTINUE . .
IFITHETA(2)) 360,391 ,360
391 YHETA(Z2) = -1.0
JOYy = 1
... G0 70 360 .
400 WRITE OUTPUT TAPE 6, 516
516 FORMATI{/31H _ CERROR RETURN FROM DEQ)
GO 1O 10
410 CONTINUE o .
518 FORMAT{/25H VALUES OF SINITHETA)/)
0D 1015 1J = 1,JOKE,.5
NR = 1J+4
. WRITE OQUTPUT TAPE 6,5160,14,{PHO(I)Y,I=1J,NR)
1015 CONTINUE
5222 FORMAT (4E15.,8)
00 420 I=1,J0KE
.. TFLJAY=5) 419,418,419 .
418 COSTHUEY = (COSTHUI }+PHO(I)) /2.
G0 TO 420
419 COSTHII)=(13.sCOSTHI{I)+PHOII))/14.
420 CCNTINVE .
ED 1016 1J=21,J0KE.5
NR=LJ+4 L
WRITE OUTPUT TAPE 64516041 J,ICOSTHL{I )+ I=1d,NR)
1016 CCNTINBE
CO 425 1 = 1
PHONEGITT )
PELNEGEL)
425 CCNTIMNUE
B0 430 I = 1, MAT
PHOPOS{IY = Q.
DELPOS (1) = 0.
430 CONTINUE _ _ _
450 WRITE OUTPUT TAPE T7,52224(COSTHIL),1 = 1,J0OKE]}
GO T 10U
END{LyGe03050+050G40:0:1405G,0:1,50)

y KAT
Q.
O.

WoH
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APPENDIX C

Computation of the Energy Density in a Neel Wall

The function sin 8(y*) representing the shape of the wall is
defined by a table of 201 values corresponding to 201 abscissae y¥%

in the ranges 0 to Y-l’ divided in 100 intervals Ay*l, and Y1 to Yoo
divided in 100 intervals Ay*z. Maximum numerical accuracy being
unnece.ssa.ry, as indicated in section 3.7, the trapezoidal rule is
-used for the integration process. The integrand I (y*) = (82+8 tan 8}

is calculated at midpoints inside the intervals using simple inter-

polation formulas as those below:

5 - nt1” %
nts Ay

5 = en-l-% B enu%
n Ay

with Ay* = hyk for 1< n < 100 and Ay* = Ay*, for 101 = n = 201.

.. % 18 *
Aty* =Y (n=101), 6 = 8 Loo BYF Lt B Y
® -
Ay 1+ by 2
and finally, defining o =8 tan 8 :
. n n jod
2 an+an+1

,In+%- =0 7 2
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A8 determined previocusly in Section 3.7, ul =1+ lh(())‘ , value
completiing the table of ¢'s at y* = 0, and which is derived from the
internal field calculation of Section 3. 6.5 (Fig. 3-23).

The inlegration is pursued up to y*

= 100 Ay* &
171 Ay I+7O Ay 2

where tar 8 ~ 8 < 0.1 for all thicknesses considered here. Thus:

100 170

/2 = . # 4 . - . g

VEZ =) T a ST ) T byd, -0t
n=1 n=101

Table C-I summarizes the input éata and results.

Table C-I

ik * Y Ay &

t Y by*) o U v
0.0 5 0.05 45 0.4 1 3. 86
0.0084 & 0.05 45 Q.4 132,25 10 24
0.020 5 0.05 45 0.4 38.8 17. 61
0.040 4 0.04 84 0.8 99.5 27.92
0. 060 4 0.04 84 .8 i69.5 36.58
0.080 4 0.04 84 0.8  242.5 43. 65

The correlation between the quantities appearing in the preceding

formulas and their Fortran homologucs is as follows:

sin &_ = STHETA (I) g = THE TWO (1) Ay% = DELETA
6 = THETA(I) a, = ALPHA (1) y#/, = SUM
% ., =THEONE(I) Ay*, - DETA I i %=aG(KAY)

nts i n



-180-

FORTRAN PROGRAM FOR THE IBM 7090 COMPUTER

DIMENSION STHETA(300), THETA{300), THEONE{300), THETWO(300),

100

200

1000

1001

1002

1003

1004

1005

1006

1007

1 ALPHA(300), G(300)

ALPHA(1)=1.0

DETA=0.05

DELETA=0.4

FORMAT(4E15. 8)

READ INPUT TAPE 3, 100, (STHETA(I),1=1, 201)

FORMAT(I10, 5E20. 8)

DO 1000 1J=1,201,5

NR =1J+4

WRITE OUTPUT TAPE 6, 200,17, (STHETA(I), I=IJ, NR)

CONTINUE

DO 1001 1=1, 201

THE TA(I)=ASINF(STHETA(I))

CONTINUL

DO 1002 1=2, 101

THEONE(I=1)=(THETA(I)-THETA(I-1))/DETA

CONTINUE

DO 1003 1=192, 201

THEONE (I-1)={THETA(I)-THETA(I-1))/DELETA

CONTINUE

DG 1004 1=2, 100

THE TWO (I)=(THEONE(I) -THEONE(I-1))/DETA

CONTINUE

DO 1005 1=102, 200

THE TWO(I) =5{ THEONK(I) -1 HEONE(I- 1)) /DELETA

CONTINUE

THE TWO(101)=(DELETA*THETWO(100)+DETA* THETWO(102)}/
DETA+DELETA)

DO 1006 1=2, 200

ALPHA(T) =THE TWO(I)* TANF(THETA(I)

CONTINUE

SUM = 0.0

DO 1007 KAY =1, 100

G{KAY)=THEONE(KAY }*THEONE(KAY)HALPHA{KAY+1)+
ALPHA{KAY))/2.

SUM=SUM+G(KAY)*DETA

CONTINUE

DO 1008 KAY =101, 170

G(KAY)=THEONE(KAY }*THEONE(KAY)+ALPHA(KAY+1)+
ALPHA(KAY))/2.

SUM=SUMIG(KAY)*DELETA
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1008 CONTINUE

5UM=SUM-THETA(171)%( THEONE( 170)+ THEONE(17 1})/ 2.
300 FORMAT (10X6HSUM =E15. 8)

WRITE CUTFUT TAPE 6,300,5UM

CALL EXIT

END(1,0,0,0,0,0,0,0,0,1,0,0,0, 1,0)
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