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ABSTRACT

NONLINEAR EFFECTS IN TRAVELING WAVE. LASER AMPLLKLERS

Using semiclassical radistion theory, a formalism similar to
that used by Lemb in his "Theory of an Opbical Maser" is developed for
gtudying the amplification of vector traveling waveg in a lager-type
medium. The effect of the medium on the waves i1s given in terms of
space (or time) dependent field ampiitudes and phases and a nonlinear
index of refraction. With particular emphasis on typical gaseous media,
the effects of Doppler broadening are treated in detail for arbitrary
ratios of natural to Doppler linewidths. DPolarization and propagation
vectors in various directions are congidered, and the nonlinear effects
are found to make an Isotropic medium effectively anisotropic.

Lowest order nonlinear effects (due to a polarization cublc in
the field amplitudes) are studied extensively, and the frequency de-
pendence of several of these procegses 1s presented in graphical form.
In particular, the introduction of fields at new freguencies and polar-
ization effects are considered. The characteristics of these nonlinear
processes pecullar Lo Doppler broadened lines are discussed, and lhe
processes are interpreted in ftermsg of saturation and.coherent modu-
lation of the population inversion density.

Strong nonlinear effects arc congidered in a morc approximate.
way and are found to consist of saturation of the various linear and
nonlinear processes previously considered. Thege strong nonlinear ef-

feeta should ocenr at low enough intengities to he easily obgerved in
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practice on a CW basis. With the present formalism, the analytical re-
sults of Gordon, White-and Rigden regarding gein saturatlon in laser
amplifiers are obtained, and the extension is made to include frequen-
cies away from line center and the effects of multiple spectral com-
ponents. Again, the introduction of fields at new frequencies is con-
gidered in detail. These resulfs are algo discussed in terms of satu-

ration and coherent modulation of the populations and "hole burning".
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CHAPTER ONE

INTRODUCTTON

In the following chapters we shall study the amplification of
traveling electromagnetic waves by a laser medium, i.e., a medium with
an inverted population with respect to some two levels (1). We are
particularly interested in studying the characteristics of typical
gaseous media (2), where the atoms have a disbtribulion ul velovibles.

It is well-known that the inverited population of a laser medium
leads to '"inverted sbsorption" or gain, so that an incident wave with
spectral components within the transition linewidth ie amplified ex-
ponentially with distence., 8Since this amplification is brought about
by induced transitions of the sboms, the average number of atoms in
the laser levels will change when a field is applied. It is this satu-
ration and other nonlineaf processes in which we are primarily inter-
ested, although we shall also obtain the linear amplification for com-
parison. Our purpose is to find what nonlinear processes are typically
present, and to study and understand their characteristics and how they
affect the linear result.

To study these effects, we shall use semiélassical radiation
theory, as formulated by Kramers (3). This involves calculating the
dipule mument induced in each atom by the fileld and using the expected
value of this dipole moment in Maxwell's equations to find the reaction
of the atoms on the field; This procedure provideg & fundamentsal basig

for the theory, and allows us to calculate explicitly the amplitude and



frequency dependence of the various processes, in terms of basic atomic
paraneters. Baﬁe equatrions are ot adequabe lfor our pyrposes, since
they cannot predict coherent, field-dependent effects. Our results are
derived in terms of space or time dependent field amplitudes and phasses,
and field-dependent gain per unit length and index of refraction
functions. There is no external cavity or other assumed means of mode
suppréssion,or-disérimination, g0 that we are able to study the effect
of closely spaced spectral components in the presence of dissipation
processes,

Armstrong, Bloembergen,. Ducuing and Pershan (L) treated the
nontinear interaction of traveling waves in dielectric media using a
similar formulation and the method of sgelecting particular Fourier com-
ponents of the response. Digsipation in the atoms and Doppler broaden-
ing were not considered, so that the theory applied to parametric ef-
fezcte in stationary atoms. Although vector waves were used, no poleri-
zation effects were studied.

In exftensive calculations on varieous nenlinear processes,
Bloembergen and Shen (5) included the effects of atomic dissipabtion and
considered the reaction of the medium on cavity modes. Only stationary
_ étams were studied, and polarization effects were not considered.

Schulz-DuBois and others have made detalled calculations on
traveling wave masers (6), including saturation and some cohereﬁt ef-
Tects (7-9). In particular, with waves incident at frequencies ., and

1

Wy, B0 output at abl - w2 and amg - &ﬁ 18 predicted. In the case

of microwave masers, this effect was found to be quite small and



obzervable only under ecxtreme conditions (9); and the same conclusion
was exbrapolated to thé optical range. In the following, we shall find
that this and even higher order effects should be observable under CW
operating conditions in typical gaseous laser amplifiers.

In coneidering the effects of saturation on gaseous absorpbion,
Tang and Statz studied some polarization effects and noted that the
atomié populations would be modulated (10). However, they did not con-
gider any effects at freguencies other than those of the incident
fields. Different relaxation rates of the upper and lower laser levels
were not congidered, nor were higher order perturbations on the cavity
modes. Their simple treatment of Doppler broadening is not sufficient
for ocur purpoges.

Lamb has used the semiclassical radiation theory to make a de-
tailed study of some characteristics of laser oscillators, including
nonlinear effects (11,12). Since scalar cavity mode fields were used,
polarization effects could not be studied. The treatment of Doppler
broadening ig limited to Doppler widthe very large compared to the
natural linewidth, and frequency spacings small compared to the Doppler
-width. Strong saturation fs considered briefly, although not with re-
épect to higher order nonlinear effects.

Haken and Sauermann (13,1L4) have considered similar effects,
using similar techniques. TIn addition, they consider the polarizstion
dependence of the lowest order saturation process.

Uging a different approach, based on the Kramers-Kronig re-
lations as well as semiclassical radiation theory, Bennett has studied

some effects of saturation in laser oscillators (2,15). Doppler



broadening was considered only to the extent that it resulted in an
inhomogeneously broadened gain curve., Bennett's ideas of "hole burning"
ére‘very useful in the physicai analysis of nonliﬂear processes in
gaseous laser devices, and we shall extend and use them in our work.

Gordon, White and Rigden (16), using a method based on rate
squations, have studied stroang saturation effects in laser amplifiers
and found good agreement with their experimental results. Onily a single
wave at line center 1s treated, although the extension to the case of a
gingle wave at other frequencies is straightforward using the same ap-
proach. Using the method to be outlined in the fellowlng chapters, we
shiall obtain {he same analylical resulls and exlend them (o cover more
complicated situations, with multiple waves.

There are several other references which dezl with related
ideas and calculations, primerily in applications of the semiclassical
radiation theory to various problems, including nonlinear effects. We
gshall refer to some of these during the discussion of our work. TFor a
more complete listing and discussion of work pertaining to lasers, the
review book by Birnbaum (1) is available.

The following work uses an approach which is generally similar
to that taken by Tamo (12). The equations of motion for the atoms and
vector flelds are derived in Chapter 2. The technique and form of so-
lutions of these equations is presented in Chapter 3. In Chapter 4 the
Tormalism is applied to linear emplification. Lowest order nonlinear
effects are studied in detail in Chapter 5, featuring the freguency de-

pendence of several nonlinear effects including Doppler broadening.



These results, which are strictly good only for relatively small field
strengths, are extended in Chapter 6, where some gtrong nonlinear ef-
fects are gtudied and related to the pertui‘b&tion expansion solutions.
Finally, in Chapter T, we discuss the results, and applications and ex-
tensions of the theory.

Except for some brief discussion on effects of amplification
of spontaneous emission, noise properties of laser amplifiers are not
considered in the following work. Also, we do not treat the effects of

colligiong, harmonic generation or boundary conditions.



CHAPTER TWO

HQUATTONS OF MOTITON FOR THE ATCMS AND FIRLDS

2.1 Introduction

The purpose ol bhis chapler is to introduce the gquantltles
used to represent the medium and fields, and to find the equations of
motion for the atom-field gystem. For sufficiently slowly varying
fields, we can effectively deal with two ccoparatc syobome, oboms and
fields, and obtain the solution for the complete system by requiring
that the separate sclutions be consistent. The atoms are treated in

gsection 2.2, the fields in section 2.3.

2,2 Microscopic Equationg of Motion for the Atoms

In this section we derive the equations governing the behavior
of each of the atoms comprising the medium. The characteristics of the
atomg and their interaction with the electromagnetic field are dis-
cussed in 2.2.1, and the egquations of motion for a single atom are de-
rived in 2.2.2.

2.2.1 Description of the Atoms

Taking the electronic charge to be -e, the Hamiltonian for
an electron in the atom in the presence of an electromegnetic fieid is,

in the Coulomb gage (17)
Sl 2 ‘
H-m5 (p+eb)”+7V , £.,0,1-1

whare V ig the potentisl energy of the electron in the absence of an



applied field, . A 1s the vector potential of the applied field, 2 is
the momentum operator for the eléctron and m is the electronic mass.
Since V * A = 0 in the Coulomb gage, p = -ifv commutes with A snd

2.2.1-1 can be expanded as

o

I}
2l
B ..I.. .

<

+

+

2.2.1-2

The part of H independent of A determines the eigenstates of the

atomic system in the abgence of an electromagnetic fiseld. We designate

this part
E =E£ +v 2.2,1-3

The remainder represents the interaction betwsen the field and atomic
system and is designated as
<R é egAQ

H' = + . 2,2,1-k
m 2m

The time-independent eigenstates of the noninteracting atom are the so-

lutions of the Schrodinger egustion

i /g) = B/F) 2.2.155

where E  is the energy eigenvalue. For the problems we will consider,
we need consider explicitly only two of these eigenstates, namely those
two which have a transition frequency which is resonant with the fre-
quencies of the electromagnetic field. Let us call these two ortho-

normal solutions of 2.2.1-5 la) and |b) with energy elgenvalues

Ea = hwa > Eb = ﬁmb :



|a) and |b) will ordinarily both represent excited sbtates of the atom
snd are assumed to have well-defined, opposite parity, i.e., one is an
even and the other is an odd function. The time dependent eigenstates,

which are solutions of the time dependent Schrodinger equation

aﬁa b
. ,b _
if 7= = Ho‘l’a,b 2.2.1-6
are then

—imat

¢, = la) e and 2.2.1-Ta
~im b

b, = {v) e " 2,2,1-Tb

For our purposes, all other solutions of 2.2.1-5 are of importance only
in establishing the unperturbed decay rates Ya’Yb of the states ]a)

and |b) , such that for an atom in state }a) at time 0, the

t o=
Tk
probability of being in state |a) at time t >0 is e = . Ideally,
these decay rates are determined by the "zero-point" interaction of the
atom with electromagnetic fields (18), but for practical purposes
the effective decay rates are also dependent on the atom's surroundings,
for example on pressure and radiation trapping effects (2). The decay
rates are here introduced phenomenclogically into the atomic equations
of motion, in order to account for dissipation effects.

4t is well known that the effects of the term in H' pro-
portional to A2 are very small comparsd to the effects due to the

term proportional to A . To see this, let us consider matrix elements

of Lhese terms between the states |a) and |b) . 1n order to deal



easily with the first term, we neeéd to express the operator p differ-

ently. Using the operator commutation relatfion Eri,pj] = XDy = PyTy =
iﬁﬁij , we easily show that (assuming T  commutes with V)
m
p=15rE] . 2.2.1-8
Thus we have
ep " 4 eA »
—= =33 - [E’Ho] . 2.2.1-9

Since la) and |b) are assumed to have opposite parity, only off-

diagonal matrix elements of 2.2.1-9 exist, and we have

p - A oA
(a) — |} = (s 3 (r E - Ho§)|b)
2.2,1-10
= dew A7 = -iw A+ P ,
o—  —ab o—- ~0
where o = -o and P = -e(alz|b) is the matrix element of the

dipole moment operator between the states |a) and [b) , and is ag-
sumed for convenience to be real. For an electric field E = - 0A/dt
sinusoidally varying with frequéency @, and of magnitude lO2 v/m ,

and assuming P_ - 10729 ks s we have

ep A 7

| (a u—ﬁ—: |B)] = 1072 joule.

The term e2A2/2m clearly has only diagonal matrix elements,

2.2 2.2 o2
(a| egﬁ la) = eefj‘l = eLﬂEg o= lO_3L¥ joule
: 2mn
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for the above Tield at a frequency mo = 1015 s corresponding to about

1 ev pholons. Thus the matrix elements, and therefore the eftfects, of
the quadratic term are negligible compared to those of the linear term,
even for fields several orders of magntidue larger than lO2 v/m. In
the following we will gscc that fields of the order of megnitude 10° v/m
can cause strong saturation effects in many systems. Thus we need not

A

consider the Ad term further, and we can redefine

ep « A A
T = — = = — ° s ol =
0= -+—===.[rE] , 2.2,1-11
with
H, = (a|H'|p) - i AP 2.2,1-12

2.2.2 The Atomic Equationeg of Motion

We now proceed to derive the equations of motion for atoms
subjected to an electric field. We need the solution of the time-

dependent Schrodinger equation

iﬁ'g% = H§ . 2.2.2-1

We use the technique of fime-dependent perturbation theory (19), and

expand § as

§ o= Ae) b+ B(E) ¥y, 2.2,0-2

where ¢a and ¢b are given by eguations 2.2.1-7. As mentioned pre-
viously, 2.2.2-2 is not a complete expansion, and ]Alg + |B‘2 may be
less than unity; however, the only importance of other states for this

Problem will be included by the phenomenological introduction below of
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effective decay rates Ya and Tb

Substituting 2.2.2-2 1ntc 2.2.2-1, we have

_mgbt

et . i b , -im t ,
a MJb = AH ‘8.,) e & + '?-I_h{ Ib) =1 ) 2:2.2"3

ia) e + B|b) e &

Forming matrix elements from the left with |a) and |b), we find

succegsively
o= b -im t
Ae 2 =B o o and o.2.2-4
if Tab
a -iCL)bt —iﬂ.) t
A s )
Be = 37 Hab e . 2.2.2-5

In order to explicitly introduce the decay rates it is con-

veneient to define new wvariables & and b by

—ﬂbat -ﬂnbt

a=Ae , b=Be , 2.2.2-6

sc that

=
1l

ala) + blb) . 2.2.2-7

With this transformation, equations 2.2.2-L and 5 become

bH‘b
&= -im 8+ —e and 2,2,2-8
a 1A
aH’%
s, a
b = —Wm_bb + T 2.2.2-9

Decay rates are now explicitly introduced by having the frequencies ma

and @ of the eigenstates l2) and |b) become complex:



12

= -3 , -
wa,b wa,b i =3 _ 2.2 10

Bquations 2.2.2-8 and 9 now become

PRy Ta
4 = -iw & + — - — & and 2.2.2-11
a iA 2
aff ' % T
° . ab b
= - + - e =
b unbb 5 5 b, 2.2.2-12

which give the proper decay rates for the unperturbed atomic states.

It should be noted that we have not included the natural decay from

|a) to |b) . Thus we neglect any processes which arise due to these
transitions. In a careful study of these processes, Buczek (20) has
gshown that this is valid provided Ty, > T, - Thus our results will
hold gtrictly only for this case, which is also one of the requirements
for a large population inversion betweern laser states and thus of much
practicael interest.

The equations of motion for the electric field, derived from
Mexwcll's equations in section 2.3, reguire the macroscopic polarization
produced by the atoms in response to the incident field. Tor this
quentity, we take the sum over all atoms per unit volume of the micro-
scopic dipole moment, defined as the exvected wvalue of the dipole

moment, operator, -er , in the state

P= | -er|y) . 2.2,2-13

Substituting from equetion 2.2.2-7, we Find
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BP=-er (a*b + b¥a) = go(a*b + ab¥%) 2,2.2-14

where the orthonormality of the states la) and |b) has been used.
Thus the quantity required from a solution of the atomic eguations of
motion is the gquadratic combination ab¥* , and we are led to consider

the equations of motion for the quadratic combinations

K =
ab Dab
aa¥ = Pon 2.2.2-15
* = .
bl pbb
Ueging equations 2.2.2-10 and 11, we have
A = ap¥* 3
Pt ab* + alby
Héb 2.2.2-16
= (v + i - - —
(or+iw) ey - (o - P 53 2
where we have used the definitions 2.2.2-15 and defined
v. tr
T Tt 2.2.,2-17
Similarly we find
S ST I A
. ab ab ab ab
= - + - e
Paa VaPas if i ? 2.2,2-18
and
p¥* H! p, L H¥
. _ abab ab ab
Peb T TpPrp T S 2.2.2-19

Finally, using 2.2.1-12, the atomic equations of motion become



1k

och * E,

0 = - ! - S A 2.2,0-0

Pab (Y+ 1mo)pa'b.l- @aa %m) A ¢
uaoé @ Po

5 = - _ * ) =2 -

Pas, VsPan (pab * F_Jab A e.2.2-21
0 *

A = + + * — s 0=

Brp = TpPpn * (g * 0%y 7 e.2.2-22

Different solutions of these equations will be considered in Chapter 3,
af'ter the equationsg of motion for the electric field have been derived

in the next section.

2.3 Bguationg of Motlon for the klectromagnetic Fleld

2.3,1 Introduction, Description of the Field

In this section we derive the equations of moticn for the
electromegnetic Fleld, using Maxwell's equallons and assumlng modes
varying harmonically in Time and space with a "slow'" spatial variation
of amplitude. We consider first a "dilute” medium, in the sense that
the deviation of the index of refraction from unity is small. Media
where this is not true will then be considered briefly.

For considéring the behavior of waves in a dispersive medium,
we need to use characteristic modes. For traveling waves, this of
course means a Fourler decomposition of the field, which has to be put
in a form sultable for congidering nonlinear effects. If we define the
incident field as that field which would be present in the absence of
any material medium, the incident field is very generally expressed as

a four-dimensienal Fourier transform:
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[#2]
B(r,0) = | 4 [ @ p(ge) o1z -0t 23011
o]

where

E(E:w) ?_ESE J d3r f dt Eﬁ{:t) e_i(E . mt)‘ 2.3.1-2
2n o

The integrals are asstmed to exist, including the possibility of gener-
alized functions (21), especially the Dirac delta function. The field
must obey some equations of motion, in our case these are the coupled
Maxwell's equabtions and equations of motion for the atoms. In any cage,
these equations furnish a "dispersion relation" i.e., a relation be-
tween Xk and w , and then the integral 2.3.1-1 becomes an integral
over « oOr over k space, dépending on the order in which the inte-
grals are taken. As written in 2.3.1-1, the @ integral is first. and

the dispersion relation is written as
w = wk) , 2.3.1-3

which we agsume to be a single-valued function, go that the « integral
Just results in replacing ® by w(g) .  Tor our purposes, however, we
would like to invert tThe order of integration from that in 2.3.1-1, and

write the dispersion relation ag
k = k(w) , 2,3,1-4
leaving an integral over modes with well-defined frequency. The dis-

advantage of course is that the relation 2.3.1-L4 is in general not

single-valued., As an example, for free space we have

w = w(k) = ke , 2.3.1-5
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where ¢ 1g the free gpace velocity of light, so that for a given w ,
only the magnilude of k 1s fixed. TFor this approach, we mighli express

the field in the form
0]

E(zt) = [ @ ) HE It 23106

where k = E(m) and we assume that the k integral over all k's as-
gocliated with the given @ has been carried out.

There are fwo difficulties with this way of expressing the
field, when we wigh to study nonlinear effects. First, we need to ex-
pregs the field in terms of real modes; and second, this form is at the
very leagt difficult to work with when superposition fails with the ap-
pearance of nonlinegrities. The effect of superpogition is that any
combination of input frequencies results in the same output frequencies,
and there is nc interaction between fields at different frequencies.
Noniinearities produce some transformation of the input spectrum inte
an output spectrum which in general ig not one to one. Tn addition, it
will become evident later that the medium is in a sense made anisotropic
by the nonlinearity. For example, the introduction of a field at a
third frequency due to the nonlinesr interaction of fields at two other
frequencies depends on the directions of propagation of the twe original
fields. ZRather than attempt any general discussion of such effects, we
will usually assume that the ineident field is composed of a number of
plané waves, and treat each case explicitly. With this assumption,

2.3.1-6 becomas



1y

E(r,t) =ZE, GilErx-wt) 2.3.1-7

o write this incident field in terms of real modes, we use the fact

that E(r,t) is real to write

1 ik cr-ot) |, -i(k - r - owt)]
E(r,t) = 3 E[gw e +EX e 2,3.1-7
. w
If we write Ea) =&, B, =8, lEﬁ)‘ e »  2.3.1-7 becomes
E(r,t) = a:)}_em ]Ew‘ cos(k » r -wbt +q) . 2.3.1-8
We can generalize 2.3.1-8 slightly by redefining
E, = lE&‘, P, = @, ifp<n ,
Ea) E—[Ew\, cpmE @, - ifpopzmr 2.3.1-9
E =e E ,
= W o

so that we can have positive or negative fields, with O < p.<w .

With these definitions the incident field becomes
_E_:(_I_f‘__,t) = %—E-m cos(k * r - wt + cpm) 5 2.3,1-1C

where k = k(w) , and in general two polarizations and more than one
k may be present for a given w .

The form 2.3.1-10 for the incident field could have been
written down immediately, as is usually done. The purpose of the above
discussion is to clarify t.he difficulties encountered when dealing with

more general incident fields.
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2.3.2 The Field Egquations of Motion for a Dilute Medium

We wish to find the equations obeyed by a field (in the medium)

which we assume to have the form
E(r,t) = Egn(g’_) cos(k * r - ot + me) , 2,3.2-1
where, in general

k= xlwx) and g =g¢(x) . 2.3.2-2

Assuming the medium to be nommagnetic and to have no free charge, we can

write Maxwell's esquations in the form

3B(x,t)
v X E(E;t) = -3 2.3.2-3
2 3D(x,t) QE(r,t)  9OP(x,t) ;
€.CV x B(r,t) = ST % e i 2.3,2-4
v e E(xt) = - =7 - Bzt 2.3.2-5
Q
v+ B(x,t) = 0 2.3.2-6

Taking the curl of 2.3,2-3 and substituting in 2.3.2-4, we have

1 ) L P

v xv xE(r,t)=- - . 2.3.2-7
o 32 e of 3%
0
Upon using the vector identity
2, .

TXxVXE=~-v K+ k) 2.3.2-8

and 2.3.2-5, 2.3.2-7 hecomes
2
> L E() L 3R(xt)
=V B(r.t) + -5 ———= = 9{v . Plr,t) - — - 2.3.2-0
— = 2 o e 2 2
c ot € €.C ot



19

Using the f'orm 2.3.2-1 for the field, we find

2 2 2
FE(t) - 2P 5 - vy B T cosr  z -0t + g

+ [- v qu + {k + qu)j sink « r - wt + %D)} ,
2.3.2.10

where J = X,¥,2 . BSpace derivatives of k have been neglected as
being small. This assumption is justified below. We also use the ag-

gumpbion of slow spablal variation to neglect the terms

2 2 )
VB (vo, ), VE L V9 Ty

in 2.3.2-10. Yor this to be wvalid, we must have, for example,

V2 E <<k *VE ,=ke «9E ., . 2.3.2-11
W] = W] - W]

We will show later that for a plane wave provagabting in the =z di-

C . ) B az ) o ®
rection in a linear medium, me(z) = %DX(O) e . Using k®=_,
2,3.2-11 becomes

a <2 100 metert £2,3.2-12

for optical frequencies, which is very strongly satisfied by observed
Q's , which are of order unity. Thus to a very good approximstion we
can neglect higher order zpatial derivatives.

Using the form

B(zt) = BB, (x) cos(k « r - wt + q) + B (2) sin(x - z-ot+ )]

P
—0s

2.3.2-13
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for the polarization and carrying out the indicated derivatives, we
see that the lowest order terms in —é-l— 7(v + P) are terms like
o)
1

- = [E(v . %C)] cos(k + v - wt + cpm) + [(1_1 . v)l?wc] sin(k + » -a)t-l-cpm)

i . - + + - o - +
+ [l{_ x (v x -I-)wc)] sin(k « r - wt cpw) k(k Ecuc) cos(k - r - wb Cpa;)
2.3.2-14
Since for transverse plane waves k ¢ P - 0O to at least first order,

2]l of these terms are of hi'gher than firet order and one thus neg-

lected, With these approximations, we can write 2.3.2-9 in the form

2
T2 W
- — ° - -
% [(k X 2k th(b) Emj cos(k » r - wt + cpm)

+ @ 1 ° -
2v Emj k sin(k + r - ot + cpm)

2
®
- e T - + +
2 (chj cos(k - r - wt cpm) Pmsj
O

sin(k . r - mt-i-cpw))} =0 ,

2.3.2-15
for j=xy,2 .
For 2.3.2-15 to be satisfied in general, we must have the coefficients
of the sine and cosine functions separately squal to zerc, for each .

Thus we have

2 mg m2
- — o ] = -
[k = 2k chm] ij 5 chj 2.3.2-16
c e C
0
and
mE
E . VEmj = = Pmsj P 2.3.,2-17
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0lg

for J = X%,¥,2 . In free space, 2.3.2-16 gives k=—, so that k
can be dependent on space only in a first ofder correction term, and
the neglect of space derivativeg of k in obtaining 2.3,2-10 is Jjusti-
fied. Since 2.3.2-16 and 17 are meant to include only first order

terms, we should replace k by % = and

by . 2% (k - %) . Defining an index of refraction by

k(w) = n{w) % , £,3.2-18
we have
o 2
K* - L5 = 2 Inw) - 1] 2,3.2-19
C C

to first order.

Then 2.3.2~16 and 17 become

¢ 1
sV + = . == 2.3.2-
(n(w) - 1 e, Vq&] %nj e, Rncj 3.2-20
and
e *VE . =—_17p _ |, 2,3.2-21
-0 wj 2600 ws
for j = x,y,2 . These are the final equations of motion for the field

2.3.2-1 in thc dilubte medium, and along with the atomic equalions of
motion 2.2.2-20 through 22 form the basis of our treatment of the
field-matter interaction.

Equations 2.3.2.20 and 21 show the well known result thsk an



22

‘n-phase component of the induced polarization reacts on the field to
change its propagstion constant (phase), while an sut-of-phase com-
ponent of the polarization changes the amplitude of the wave. If
there is no induced polarization, we of course find that the amplitude

of the wave is constant, and its propagation vector has the magnitude

cle

The use of the external field in the atomic equations of
motion and the assumption of slow variation regquire that |n0w)— l\ << 1,
i.e., that we have a "dilute" medium. In section 2.3.4 this restriction
is modified to allow a linear interaction with the medium in addition
to the effects of the transition under consideration.

2.3.3 0On the Difference Between Traveling Wave and Cavity Modes

It is interesting to derive 2.3.2-20 and 21 by assuming modes
whose amplitudes are varying slowly in time (compared to the frequencies

& ), i.e., a field in the medium of the form
1 = i s - + v Se 3=
E(rt) = ZE (t) cos(k - z -t + ) , 2.3.3-1

where in general k = k(w,t) and P, = %b(t) . The polarization is
given by a gimilar expression with sine ag well as cogine terms. Ap-
proximations exactly similar to those made in deriving equations

2.3.2-20 and 21 are made, and 2.3.2-9 leads to the equations of motion

[n(m) -1+ d—i%ﬂ By = -2—36"—0- Poc | 2.3.3-2

and
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aEmj ©
3% T2 wej #e2e3m

We can gel spuce-dependent mode amplitudes by using the fact that ¢
and z/c are basically equivalent for a plane wave propagating in the

z direction, i.e., by making the change

3 o)

¢ ss 2.3.3-k
in the equations of motion 2.3.3-2 and 3. We could alternatively sub-
stitute Z/c for t 1in the solutions for the mode amplitudes as a

function of time. If the change 2.3.3-U4 is made in the equations of

motion, the latter become

¢ o’ 1 e
() - 1+ o 87 Boj = % ey £e3:3=5
and
aEmj © .
= . 2.3.3-
z 2600 Rmsj 3-3

We can allow for more general directions of propagation by noting that
a/az ig the gradient in the direction of propagation. In general,
then, we should replace o/dz in 2.3.3-5 and 6 by e, ' 7, vaich
glves the previousg eguations oif motion 2.3.2-20 and 21.

The assumption of modes whose amplitudes depend on time is
similar to treating the wave interactions as a cavity problem, where
the "ecavity" is all of opace. However, in a true cavity the magnitude

of 'k is fixed by boundary conditions and the effect of a phase shift
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due to the medium appears ag a change in the eigenfrequency of the
cavity. MAlso, the cavity modes are standing waves rather than travel-
ing waves. It might appear possible to congtruct proper cavity modes
by using a superposition of two of the modes 2.3.3-1 with oppositely-
directed k's to give a standing wave, and changing « so that %n(w)
equals the value of k required by boundary conditions¥. Lamb (12)
has indicated that a difficulty of this approach is that the non-
linearities associated with a standing wave mode are in general differ-
ent from those for a traveling wave mode, and that The behavior of a
lager oscillator should therefore be studied using cavity modes. Al-
though it is certainly true that the nonlinear interactions are in
general different for a standing wave mode and a itraveling wave mode,
it is also true that they are different for one traveling wave mode and
two traveling wave modesg, as indicated in section 2.3.1. The following
theory should show that the behavior of any field which can be formed
as & superposition of traveling wave modes can be correctly studied
using those modes. It follows that cavity modes (at least those ex-
pressable as a superposition of the traveling wave modes of 2.3.3-1)
can in principle be studied using traveling wave modes, but the reverse

is not true. In this sense the traveling wave mode approach is more

fundamental.

®* This is essentially the technigue used by Bennett to study hole
burning effects in a laser oscillator (15), except his mode ampli-
tudes were space dependent rather than time dependent.
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2.3.4 The Field Equations of Mction for Interaction with a
"Tinear" Medium

In this section we derive the equations obeyed by the field in
a medium whose polarization can be divided into two paris: a part
linear in the field and a part due to the transition of interest, con-
taining in general linear and nonlinear contributions, and assumed

small. For such a medium, the displacement vector may be written as

E(-‘E’t) = eé E(ﬁ’l’) * El(f’t) + E(EJt) P 2.3, b4-1

where _El(z,“t) ig the lincar polarization. In the absence of ) El
gives rise to an effective e for the medium. For a dispersive medium

we can write

D(zst) = e, E(z0) + B(mt) = [ o(r) Bzt - v)ar 2.3.4-1
Q

where we have assumed an isotropic, homogeneous medium. TIn the pre-

gence of 21 » the Maxwell's equation 2.3.2-4 thus becomes
s 5 3B (x,%) .
¢,cv x B(z,t) = 57 f e(t) E(r,t - 7)at + — - £.3.4-2

o]
Introduring *the forms 2.3.2-1 for the field and 2,2.2-13 for P, wc

ﬁroceed as bhefore to find

2
E[(k + 2k - chw) Ecnj cos(l_\: r - whb me)

+ . .oai o - -+
2k vﬁwa gin(k - r - ot @D)]
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[
Q/
Mo

u
ey
h

i
g

L e(r)E cos(k - r - w(t - T) + o )dr
e C at‘£ T T w

L2 N
+ -[Pﬁacj cos(k + x - ot + CP(D) - Eoos.j gin(k - » - ot + pr)] )

o3 ka3
Teking the Time derivatives inside the integral, the first ferm in the

curly Tbrackets becomes
- f e(r) E cos(k » r —w(t - 7) + @ )dr
=w = = w
8}
— 2 ' . ]
=0 ¢'(w) E cos(k - r - wb + cpm) 2.3, -k

! <D2 e {w) _ZF:}(D sin(k - = - wt | cpm) s

where we have ce¥panded the cosine in the integral and defined

[2+]

e'(w) = j‘ E:(T) cos wr dT

0

o 2030h—5
e"(w) = I e{7) sin wr dr

o}

Thus we obtain the eguations of motion as

5 was‘(w) e
K™ - ————+ 2k - Up |E . = P
2 - W | w] 2 we]j

e, € C

2,3.4-6
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2 2
2k - VE . - 9LE—Q§l . Lsep
J e ¢ d g o= ®SJ
e} Q
For chj ='Pcusj = 0 we find
(.02 2({1))
NCRR et(w) _ %
- 2 2
€ ¢ c
Q0
For B ., B . # 0, we deline the index of refraction by
wej’ Twsj
e 2
N w Jw
- 2
¢
and write n(w) = no(w)u(w) Assuming |u(w) - 1] << 1,

a8 before and find the Tinal eguations of motion

1
(u -1+ g e +Vp ) E = —e .
noicoico W W’ Twj geoni(w) wed

1
e .« JE | = e (w)
=D [iYy 2e cn (W)
o 0O

o

E .+ .

W] Zn (W)€ c Pcus,]
G 0

'If we define L{w) by

we"(w) 1
e cn {w) ~ Llw) 7

2.3.4-11 vecomes

a = - (D'j + w
CE 2L(w) * Zn_(w)e_c Fosj

2.3.4-7

2.3.4-8

2,3.4-9

we proceed

2,3.4-10

2.3.)1-11

2.3.k-12

2,3.4h-13



28

For the time varying modes of section 2.3.3, the corresponding

equations are

1 %% B L 2.3. 41k
u -1+ . = e—— . 3o H-
nbfwiw 9t ) wj Esoni(m) we
a%bj w3 w
= < - 2Qm(°°) + gno(w)eo Pcosj s 2.3.4-15

where the "materiszl Q" is defined as

eono(m)
QTH({D) = - W . 2.3.}4'-16

If cavity losses need to be included. the "cavity Q", Qc , may be

introduced, and Qm(w) in 2.3.4-15 replaced by the total @Q, Uy 5

where

1

- 2 }
QE = 5@ + Qc ; 2,3, 4-17

m

In the following chapters, we will neglect any effects of re-
flection at the boundaries of finite media, although these can be
important if ., 18 appreciably different from unity. We will instead
be concerned with the interaction of the fields with the medium and with
egch other via the medium. I necessary, the effects of boundary con-
ditions can be included by using the techniques of Bloembergen and
Pershan (22). The assumption that the single transition of interest
causes only a smail change in the Jlinear index of refraction no(w)
could be removed_by usging the more general technigues indicated by

- Armstrong, et al (L), but this will not be attempted in the Ffollowing.
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The effects of no(w) and L(w) are to give stronger phase
matching conditions and thresholds for various processes to be ob-
served, respectively. These effects do not change the nature of the
processes involved. B8ince we are primarily interested in gaseous medis
where the etffects are small, they will generally be ignored. For other

media, they should be included, and this can be done quite easzily.
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CHAPTER THREE

SOLUTTIONS OF THE ATOMIC EQUATIONS OF MOTION

In this chapter we discuss how the equations of motion are
solved lfor studying the behavior of fields in a CW amplifying medium.
Excitation of the medium is introduced, and the effects of atomic
notion‘are studied. The treatment generally follows that of Lamb
(11,12), adapted for.fields composed of wvector traveling waves. The
basic assumptlon is that the fields perturbing the atom remain. ef-
Tectively constant in amplifude during the time required for the atom
to decay to lower levels. This means that these field amplitudes must
change slowly compared te the decay rates Ta’ Tb’ 8 requirement easily
met in practice.

In section 3.1 the atomic equations of motion are expressed in
terms of the field 2.3.2-1, and the field free soliution for a single
atom ig ghown. Excitation of the medium and steady-state solublons are
considered in section 3.2, and the form of the solutions is given in

section 3.3.

3;1 The Equationg for a Single Atom

Corresponding to the form 2.3.2-1 for the electric field, we

write the vector potential A(r,t) in the form
Alr,t) = a};gm(;) sin(k « r - oot + me) . 3.1-1

Using E = - 9A/3t , and comparing 3.1-1 to 2.3.2-1, we can write this
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as

étl:l

(r)
é(f:t) = (% m

sin{k « r - wt + ¢b) . 3.1-2

Inserting this form for A idinto the equations of motion 2.2.2-2C 1o

22, the latter become

. 0«0 =W : i
Paa = ~ TaPas - (pab o) R c%___—cn—_— sink * r - ob + CPCL))
391-3
% Lo - B
B = = VpPup * (Pgp * 0%p) T o sin(k - r - ot = q)
3.1-k
6, _E, - B(z)
Pab = ~ (r+ m}o) Pap ™ (paa B pbb) FE w sio(k - r -at + cpw) ’

3.1-5

The guantities ¢ and P, are functions of time and the

aa’ pbb’
atomic position r , and for given fields the solutions are defined
by the initial conditiong.

We are interested primarily in gaseous media, and so must take
into account the motion of the atoms. This can be done by noting that
an atom with o vclocity v , initially at x, at time to s  has the
;'_Dosition r=r, * v(t - to) at time t . The period (t - to) of
interest is of order l/‘ra or l/Tb , which is rather short for
states giving transitions at optical frequencies. Thig leads to two
- gimplifying assumptions, viz. that the velocity v of the atom does

not change during the timé required for the atom to decay, and that

the amplitude of the field perturbing the atom remains constant during
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this time. Thus we neglect the effects of collisions which change the
veloclty as well as those which perturb the states |a) and ‘b) .

The validity of these assumptions can be checked as follows; The time
between colligions is given roughly by the ratic of the mean free path
length to the average thermal velocity. For the He-le laser, these
quantities are about 5 x lO—hn1 and 6 x 102 m/sec, respectively, making
the ratio about 10-6 sec., compared to typical values for l/Ta, l/Tb
of smaller than about II_O_T sec., Thus the assumption of fixed velocity
ghould be fairly good. The distance traveled by a moving excited atom
before it decays 1s roughly the product of the average thermal velocity
times l/va, l/rb, or less than apout lO_L+ m. TFor a small signal gain
of 80 db/meter, this corresponds to about a 0.1% increase in the field
gtrength which can be Justifiably neglected. TFor stationary atoms the
above assumptiong are of course superfluous for our formulation of the
problem.

The simplest initial condition placed on & single atom is that
it is either in the state |a) or the state |b) at time t, » and
ne other pogsibilities will be congidered in the following. TFor the
initial conditions paa(t ) = 1, pbb(to) = 1 and with no fields pre-

o}

gent, 3.1-3 and 4 give the solutions for t > g
) e-ra(t - t.) ) E—Yb(t - %)
Pas 2 Ppp © ?

respectively. For the simplecet case of a ginglc, monochromatic field
and a stationary abom, equations 3.1-3 to 5 can be solved in the

standard way (20) by neglectihg the off-resonance exponential in the
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gine expansion, differentiating 3.1-3 and 4 again, using 3.1-5, and
golving the resulting second order equations for Paa and Ppp The
resulting solutions show The oscillation between the states |a) and

|o) » with

oo

Ty fe (8) at

t
o

being the probability that a photon is emitted by the stom due to

stimulated emission (15), if the initial condition is (£t y=1.

paa Q
In dealing with the coherent interactions of the fields and medium,
Lhils approach is not adeguate. The present approach in terms of

Maxwell's equations and the induced polarization is then a useful one,

where we solve 2.4.1-3 to 5 for Pub and thus the induced microscopic

dipole moment

— * o L=l
E"'PO (pab"'[)ab) 2 316

which, when summed over all atoms in a unit volume, is used with
2.3.2-20 and 21 (or more generally 2.3.4-10 and 13) to give the be-
havior of the fields. This process will be accomplished by summing the
results over the excitation times of the atoms and uging an assumption

of guasi-steady state conditions. This approach will be outlined in

Lhe next two sections.

3.2 Excitation and the Quasi-Steady State Solution

For a given incident. field, the motion of the atoms will reach
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a quasi-steady state 1f the excitation process is uniform. By a quasi-
steady state we mean arstate in which the populations of atoms in the
warious levels sre changing slowly enough so that the quantity Pt
(and thus the polarization) is essentially a sum of harmonicelly vary-
ing components, in the same sense as the field. As was the case for
the field, thig ig not a sgevere restriction at optical frequencies. In
fact, it will be seen later that the effects of any such repid popu-
lation variations are strongly "quenched".

The excitation process is conveniently defined by the number
of atoms excited to the states \a) and. lb) per unit time, per unit
volume, per unit veloclity inberval. This number is asasumed to bc a
function only of velocity and not of position or time. We further as-
sume that the velocity distribution of excited atoms is the same for

bhoth states la) and ‘b) . The excitation is thus defined by

oo Wlw) o, 3,2-1

a,‘b

where Ka b ig the totel number of atoms excited to \a) 5 ‘b) per
2
sec. per mB, and W{v) is the velocity distribution function, normal-

ized to unity by

ij W{v) dvxdvydvz =1 o 3.2-2

The quasi-steady-state solution at a time t 1is found by
integrating over all previous excitation times the solutions due to
individual excitabions of the states |a) and |b) . For example, if

we . denote the solution of 3.1-3 for abtoms excited to state \a) at
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time to and positionr T, with velocity v as

p;z)(_r_)taf;ro’tc}) 3 3.2=3

then we can only have contributions to the guasi-sleady slale golullion
Oaa(fzt;x) 2.2-0

for T, and ¥ such that r = r, + E(t - to) . Thus the contribition
of solutions 3.2-3 to 3.2-L is given by the integral

t

pii)(ﬁ:t;x) =, W) g dt pgz)(z =z o+t -t ) vEt)

o}

3.2-5
DE(LZ)(I‘;

where r,t,v) denotes the contribution to 3.2-4 of atoms excited
to stabte ‘a) ¢ This contribution has been oblained Ly sunming over all
atoms per unit volume at r, , glving the factor A W(v) , and then
integrating over the possible values of to which can contribute.

Similariy, we find

t
pég)(z,t,z) =, ¥(¥) f dt Oéd)(_ =x, (b - t), wtt)
3.2-6
and

( )(r,

I

t,v)

1y w(v)[dt p( )

[as)

EO + _V_(t - to)a E.’t:t.o) a

3.2-7

with similar equations for the contributions due to zatoms excited to
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the state |B) .

If we can calculate 302-5 toe 7 and the corresponding contri-
butions from excitation of the |2} states:,. we can caleculate pab(z,t)
and thus the polarization by integrating over the velocity distribution.
However, these equations in general cannot be solved exactly, and the
next section gives an approach leading to various approximate solutions.

For the special case of stationary atoms, where W(v) = 8(v) ,
the Three-dimensional Dirac delta function, the integration over ve-
locities ig trivial and can be carried out immediately by setting

v=0 and r = y  giving the result

T
=0

pé(l,:) p;:)(ﬂ;t:to) P) 3.2-8

t
(z,t) = Ay I ¢,

with similar equationg for the other quantities of interest. If we now

caleulate the time derivative of 3.2-8, we have

52?@:’6) =y I at, [égz)(z,t,to) * pgz)(z,to,to)} . 3.2-9

=0

Tsing 3.1-3 and the fact that p(a)(E,‘to,‘tO) = 1 by definition, this

2.8,
becomes
(2) :
« L& . (a)
Boc(zst) = h - Ya?\af at, 0.2 (x4, )
. -
- Raj' dto(pii)(z,t’to) + ogéa)(z,t,to)) 3.2-10

[s9)

E - P
X-ﬁggibT:gsin(g-g—mt+%) .

g
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Using 3.2-8 and the corresponding equation for ( )(r t) , 3.2.10 be-

comes

(3 (m,0) =0, - 10l - (e« 2P

paa - a a a8

2.2-11
% s T " 5
X 7%-53——75u—— sin(k « » - ot + %b)
Thug we have an squation of motion far the dquantity pgz)(_{,t) . By
changing subscripts and using
a b
p]gb)(r: Jt ) = ng)(bto,to) = pia)(_r,to;to)
3.2-11
b
= pe(l,b)(z’to’to) =03 péb)(z’to’to) =1 ,
and
a b
0., (Tst) = p( )_ + péa)(;,t) ’ 3.2-12

etc., the full set of equations of motion ig found directly to he:

Poalmt) =2, - v, (1,8) - (p o (zt) + % (2,8))

3.2-13

R
X D20 smn(s - x -t + )

Buplzst) = A - ey, (2,8) + (p (2,8) + p¥ (2,8))

3,2-1k

>

3o°

&4
ébd

= sin(x ro- Wbt @m) )
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and

bnlEr®) = = (rim ) p (8] + (0, (58 - oy (2,8))

3.2-15

o, B, B,
—_— - = gi . - + .
X 7 UZ; = sin(k + r - ot cpm)

These'equations are analogous to ones used earlier by Lamb as the basis
of a treatment of oiatical magers which neglected stomic motion (11).

It should be noted that the quantities paa(z,t) etc., in 3.2-13 to 15
have dimensions m_3 rather than being dimensionless as were Pos
etec., in 3.1-3 to 5. Thig is of course due to the fact that the former
represent summations of the latter over all atoms within the unit
volume.  Thus paa(g,t) and pbb(z,t) are the populations of the
states |a) and |b) vper unit volume at time + and position T,
and paa(z,t) - pbb(E’t) is the population inversion density for the

trongition between |a) and |b) . Correspondingly,
E(__T_:”C) = EO(Pab(_I‘_;t) + Pé‘b(ﬁ:t)) 3.2-16

igs the dipole momenf Per unit volume, and isg thug the macroscopic
polarization appearing in the equations of motion for the field,
2.3.2-20 and 21. The quantities of 3.2-13 to 15 are thoge which are
to satisfy the gquasi-steady state solution that was introduced at the
beginning of this section and which will be discussed in more detail
o the next section and following chapters.

If we atbtempt the same approach for the case of moving atoms,
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we get from 3.2-6 using 3.1-3,

T
5&:)(_11,1:,@ =\, W(v) JP at_ [_- Yaoii)@ =x o+ vt - b)), vyt )

(2)

o = (e - 8), we )+ R + v(E - b)), vtt,)

ab
© B "5
g Do sin(l -zt kv w(t - b)) -(.Dt+cp)]
3,0-17

Due to the presence of to in the sine factor of 3.2-17, we can nho
longer carry out the to integration to obtain differential equations
similar to 3.2-13 to 15. One alternative is to explicitly calculate,
in sowe approximallon, Lhe guantities like pgz)(E = £o+.2(t 'to)iﬂt’EJ
from 3.1-3 to 5, and then use 3.2-5, etc., to find paa(z,t,z), ete.
We would then integrate pab(E’t’E) over the velocity distribuftion to
obtain the macroscopic polarization 3.2-16. Lamb used this approach,
with a small-field assumption allowing a perturbation expansion of the
solutiong, in his theory of an optical maser (12). In the next section,
we derive an integral equation approach, from which the perturbation

and other useful approximations follow easily.

3.3_ The Form of Soclutions for the Medium

In this ‘section we derive an integral equation for the popu-
lation inversion density and relate the latter to the polarization in-
duced by the fields. We then briefly discuss the types of approximate

solutions obtainable from this formalism.
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The object here is to calculate the guantities paa(g,t,z) s
pbb(z,t,g) and pab(z,t,g) » which were defined in the last section.
For the Tield equations of motion we of course need only pab(g,t,x) s

pub 1t 1s convendient and physically interesting to express this in

Lerms of the quantity
paa‘(z:t,vz) - pbb(ﬁ;t:ﬁ) 2 3-3-1

which is interpreted as the population inversion density at 1,%t, of
gtoms with velocity v . When 3.3-1 is integrated over velocities, we
obtain the total population inversion density at r,t . Integrating
pab(g,t,x) over velocities gives us 3.2-16, the macroscopic polari-
zation induced bty The fields.

Fach of the above quantities will have contributions from
atoms excited to the state |a) and to the state |b) . These contri-
butions are calculated separately and then added. The notation of the
lagt section ig followed. To eimplify writing the equations, we will
not éxplicitly write some of the arguments of variqus functions. For
example, The contribution to paa(z,t,x) of an atom excited to state

|a) at z,» t, will be denoted by pgz)(t,to) rather than
p(a)

an (r = z, * v(t - to) s t,E,to) . This will meke the following

clearer as well ag simpler.

The quantities pgj)(t,to) sy ete., are solutions of the dif-
ferential equations 3.1-2 to 5. We consider first an atom exeited to
state 1&) al ro,bo, with velocily v . Then Lhe guantilies ol

interest are



I
o8 (e,5), ol 505 (et ),

with the initial conditionsr

e (tyrtg) = 1, o (s st0) = o t)=0 . 3.3-2

For added simplicity, we temporarily drop the superscript (a) ;

superscripts will be explicitly written later when identification of

each contribution is necessary. Tf we define pé,a(t’to)’ p‘éb(t’to)
H
and pa'b(t’to) by
r (b - %)
Paaltst, ) = pl (t,8.) e ’ 3.3-3
_Tb(JG - to) o
pbb(t,to) = p'b'b(LJ L’O) € ) .j'j_l{'
~ir e ) (e - )
pa'b(t}to) = pé,b(t’tO) e ] 3'3_5
and substitute thege expressions into 3.1-3 to 5, we find
(t - % ) W,
t = - * ——
paa(tJto) e (pa'b(t t + pab(t’to))ﬁ
P ° E 303-6
—O

'%D) sin(k rr ot ke v(t-t )-wt+ ) ,
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. Yb(t_to) “o
Py (tst ) = & (egp(tst ) + 0%, (£, ))5

EO . E{D 303_7
X:‘f;' —_— sin(g-_r_0+§-3(t_to)-wt+ )
. (y +10 )(t -t ) @
pé,b(t’to) = e (paa‘(tJto) - pbb(t,to)) hﬁ-

2, E)
Xz = sin(k -z +k » w{t-t )- wt+ o) .

3.3-8

with the same initial conditions as those for the unprimed guantities,

3.3-2. The differential equations 3.3-6 to 8 can be formally integrated

to give
. AL to) 5
Plaltoty) = 1 - fab' e (0 (858,00, (87,8.)) 32
o
5 B , .
XGZJ — sin(k - r otk - v(t —to)-cot )
3.3-9
© v (8 -1t) W
ol (tt,) = favr e (o (67,0,) + % (b',8)) 32
t
o
e lB T By
XE(-——CD—) sin(k - EO'*'I_{' E(t’—‘to)—mt' + ) ,

3.3-10
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{y + imo)(’b' - t,) _ ®_
(Daa(t1:to) - pbb(tI’tO)) _ﬁ-

sin(k - r ot k- E(t'wﬁo)-mt’ + )
3.3-11

Using 3-.3-3 to 5, we obtain the unprimed quentities by multiplying with

the appropriate exponential. Thus we have

T

4 (t-1t) v (t1-t) o
aa(trt) = e ® O - fav et T e ) e (e8,)) 3
T
)
5 L
Xg[ n sin(k -£O+E°z(t'-to)-cut‘ + op)
3.3-12
v (B - &) w
pyp(Ert,) = |at" e (0, (st ) + 0t (8,5 )) 5
tO
£ 1 5,
XZ (—03—-—— sin(k » r o+ k - w(t' -t )-wt' +q) ,
3-3_13
T s )b - t) o,
oap(ts,) = Jav e (o, (55,0 - o, (87,5.)) 5
tO
e B By
V(% ( o sin(E © X, + k- E(t' —to) -wt + o)
3.3-1h

In the following celculations we will often have occasion to

compere exXpressions like
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w

oo e ile, - o)1t T
ldt e and [d‘c e
o )

by + ile, + 0)Jt

For v << By O =W, these are of relative order wo/r , or about
1015/108 - lO+7 for optical transitions. We will therefore always
neglect "anti-resonant" terms like the second compared to "resonant”
terme like the first.

We can subbract 3.3-13 from 3.3-12 to obtain an expression for
paa(t,to) - pbb(t,to) in terms of pab(t',to) . Substituting
pab(t’,to) from 3.3-14 into thig expression gives an integrsl equation

for paa(t)to) - p"b'b(t)to) :

_Ya(t - to) (.00 2?. F ;
0,0 (Foto) = o lEst,) = e -lz5| javr jas
Lty g
R -9 [ en e e -tf>)
e + e e t e

X

P - E < R
(tu £ ) - p (,tn £ ) 7 —Q =l .Eo —'
Paa*” *% bbb’ 7o . ot W W'

' [i[@;- E) erotk (6o )oK w(E b )eo it o]
e

o]
3.3-15

where "e.c." indicates the complex conjugate, and anti-resonant terms
have been neglected. 3.3-15 is writfen for a position r abt time *

such that r = 1o + v(t - t5) . We can use this to write the final
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exponent in 3.3-15 as

"(E_ E‘.r) . —T-O+ k. E(ti _to)_ k' . E(.tn-_ to)-mt'+m‘t“+ cp-cp']

:[(.}i - l.i') - T _E . E(t_tr).,. ..li' . _\n‘_(t - t")-wt + @'+ CP""CP'] )
3.3-16
If we sum 3.3-15 over all atoms per unit volume &t r,» we obtain a

factor an(X) as previously discussed in section 3.2. By integrating

over all pessible excitation times to and using 3.2-5, we find

. A_W(v) ® 2
pgz)(_{:t:x) - pés)(g,t,z) =& - . )\aw(x) _é_%
t t o :
t'-t t!' -t s t”-- £t

X j‘d-to fdt! 5dt|' eYa( . )+ eY-b( )J(G(Y']' 1{]\)0).( ) .

.. to to (T - mo)(tlr . t,)\l

+ e : |

or®/ (e Bl pn Fo T BN E By

X péa)(t 7%o) - p‘t(:'b)(“t ’to))wﬁr( ww o )

‘. [iE(E-E’) I CRR D LS A CREU) B IER HAR -y }
>< e +c.c
303‘]_7

where the superscript (a) has been written again. By two inter-

changes of the order of integration,
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t t t! t t! £"
Idto Sdt'.Jdt" becomes .fdt' idt" jdto
- tO tO - ~C0 _.m

The to integration can be done by using 3.2-5 and 6 again, giving

finally
A W () w12 E t
T e ﬁ) Javr Javr
(T&(t'-t) Tb(t'-t))( (v +i<no)(t”-t') (r-imo)(t”-t’)J
Xle + e e + e
Ko iz, em,v) - oz B By - By
paa (E}t ’E) - Dbb (E)t JE) (J.)?D' o w'

XFA il - wlb-tr) ¢ x - v(b -t o(br- b)) + o (8- )] CJ
aCoe E)

3.3-18

where

bE(E-E) z-(o-0)itg-g . 3.3-19

In an exactly similar way we find the contribution due to excitation of

atoms to the state |b)



by

(b MW ()

o )
oéa)(z,t,z) - oy (2o t,3) = - -

x(@ra(t' -t} or (s - t))( (r + a0 ) (" - &) (r - i )(t" - t')}

+ o e +c

P - F
-0 W

w

X(sz)(i:t:i) - pég?(ﬁ)t:X)

z

Wy’

P - E,
ot
=

X[ﬁm al-k cx(e -8 ) + - vt - 7)) o(e - t) e (8- 8)], c‘c.}n

3.3-20

If we add 3.3-18 and 20 and define the new variables of integration

t, =t -1, t2 =1t' « t", we obtain

1
el 5) - oy (et = (o) (2] [, Jar,
o 0
- t - .t

. 1 b
X %z &Ly l)(paa(z’t - tl - tg’E) - pbb(z,t -t - tE’E)
Cp [ BB By [ e e - )

W' [4V] w’

Xe

T - H 1 . -
Iy - ](mo m' + k E)]tg }
+ c.c, B

3.3-21

where we have neglected antiresonant terms, defined



t:r-< |U‘PJ

3.3-22

=

I
%I -
o |

3

and assumed k - v << .

3.3-21 is an integral equation for the population inversion
density at r,t with velocity v . This is a physically interesting
quamtﬁﬁy, and some approximate golutions of 3.3-21 will be usged in
Chapter 6 for gbudying higher order nonlinear effects. We are more
directly interested in the quantity pab(z,t,x) and thus the macro-
scopic polarization. We can relate pab(g,t,x) to the population
inversion density by the same techniques uged to derive the integral
equation 3.3-21, and this will now be done. For our purposes it is
better to do this than to find an integral equation for pab(z,t,x) s
although the lafter could azlso be done.

For the contribubion o pab(z,t,z) from atoms excited to

state |a) , we must substitute 3.3-15 into 3.3-1L, giving

o

. t . t ¥
p(a)(t,t ) = :iﬂ Jdt' e(T + uﬁe)(t - %) e-Ta(t ~t0)
ab 0 2ih
to
By s By [ ox vk (s -6 )) -wbt 1)
Xz %1 |e - Cc.C.
4V}
2 ti ! n 1 "
o T (8 -8 (8 - )
Eﬁ Jd‘t" J‘dt'w e + e
t to
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(r+ 1w )(6" - t")
Q .
Xle _ + e

(r - )(8" - t">)

piz) (tm’ to)

(a) (t///’ to)

_ P, " E, ei(l:-.-zo‘ré-x(t'—to)—wt'+cp) .
- be - .

w

2
w

==Q —
a

B, By
X U.)”[ w'
s

(P " E ) Al - K" oxo vkt oem(ET - )= KT w(27 - 5 )]

CD?

3.3-23

A sgimilar contribution is obtained due to excitation of atoms o state
|b) , and the sum of these contributions gives pab(t,to) . We again
use r =1+ v(t - to) to get rid of t_ in the exponentisls, sum
each contribution over all atoms per unit volume, and integrate over
excitation times t, « The order of integration can be changed to make

Lhe to integretion rirst, and this integration can be carried out by

uging 3.2-5 to 7. With a change of wvariables to

tl:t_tr, t2=t1_tll,.t ___tn-tlﬂ s

ﬁe then have

o o -y + i )t P -« E
_ o T o’ L =0 W
Pap{Br®¥) = z37 10, e i) E( m )
0
. . 2w [+
i1 + i(w - & - _Y)tl o
e : - C.C. - %9 rdt [dt
. e~ 3

&} o]
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¥ e

ot ot ) -+ de )b
ae, . b 2)(9 . 0’73, o

-(r - iwb)t3)

X‘paa(ﬁ’t Tty - BT - {nt - b -y, - t3’E)J

P
-0
Jotomt o

W

X‘e

(40 + 4o - k" - )6+ ty) - 30" - KT - v)(by + bt b)) J
- 7+ c.e
)

3.3-2hL

where

Ll =k-r-wt+o 3.3-25
and

A= (k' -K") "r-(o-o"t+gp -
We see that 3.3-2U4 has the form

1i NL
Pap(T6w) = p 2, t,y) + p (2 ty) 3.3-26

where the superscripts I1in and NL indicate contributions to
pab(g,t,z) which are linear and nonlinear, respectively, in the fields.

Neglecting antiresonant terms in 3.3-24, we have

ei(E - r -0t + o) |
T + i((DO-CD“l'}_{ B E) 3 3'3"27

. o WW(v) P - R
plln(r,t,v _ _o© = —0 {0
ab M= - Qlﬁ D w
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-y t,
e 82, . b2

S = | Jor o, |
Pop (Lo 6Y) = (2ih at, Jab, jdbs
o (o] Q
leaa(i’t Sl - by -t - (Et -t -ty - ts’E)J

P B
-G —
w'

(EO * E}U)”) ei[l] - [T + i(CUO - w _}E . I)]tl
o"

[eiA + il - - (k' - k") - I](tl+ te) -[r- i(cno— W'+ k" 'E)]t3

+ c.c}

3.3-28

where [1] and A are given in 3.3-25.

3.3-27 and 28, along with 3.3-21, are the basic results we
require for our laber use. We will alsc Cilnd it useful to write
pab(E’t’E) in terms of paa(z,t,g) - pbb(g,t,x) starting from 3.3~14.

In an identical wey, we find

m (=]
Q
o (@ 5w) = 52 fat, (o (z,0 - 5,3) - o (2,8 - %))
O

i) - Iy v ie, ~o 1 k- ¥)T8)
e

Xz

o

s 3.3-29

where we have assumed the variation of paa(z,t,x) - pbb(z,t,x) to be
very much smaller than ® , and have neglected antiresonant terms.

Let us now examine briefly the kinds of approximate solutions
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obtainable from the above equations. With no field, we have

0oa (@) - (2,t,¥) = Wily) 3.3-30
and

Paalzst) - ppp(z,t) = W
withl

Pz to¥) = o, (x,8) =0 .

With fields, the simplest solution is to use the linear solution 3.3-27,
which corresponds to putting the zero-field solubion for

paa(E’t’E) - pbb(z,t,EL WW(v) , into 3.3-29. This case is considered
in Chapter 4. The lowest order nonlinear terms can be obtained either
by putting the zero-field solution for p&a(i,t,g) - pbb(g,t,y) into
the right hand side of 3.3-21 and substituting the resulting second
order expression for paa(E’t’E) - pbb(E’t’E) into 3.3-29, or by using
the zero-field solution for paa(z,t,g) - pbb(g,t,x) in the right hand
side of 3.3-28. Either method gives a third order expresgion for
pab(g,t,x) s and the labber method is used iu Chapter 5, where the
lowest order nonlinear effects are studied in detail. Higher order
terms in the perturbation expansions of paa(g,t,g) - pbb(g,t,x) and
pdb(g,t,j) in powers of the fields can be ohtained by continued
iteration of the sbove approach, which ig ideally suited for this
purpose. In this expansion, we see that successgive iterations for both

quantities are two orders higher in the field, and P =

Cab Oy

containing the fields to odd and even powers, respectiveLy. We note

that 044 - ppy WilL be slowly varying compared to the optical
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ffequencies @ , and that Pab will be essentially varying harmoni-
cally at these frequenéies, We will not explicitly consider these
higher order terms except briefly in the discussion of a more approxi-
mate method used in Chapter 6 for studying higher order effects. This
last method is gquite useful when the lfields are so large that the
perturbation expansion of the solutions becomes invalid. It involves
meking some assumptions on the character of paa(z,t,x) - pbb(E’t’I)
such that the integral equation 3.3-21 can he approximately solved.

It will become clear that the two methods of solution (i.e.,
the perturbation expansion and the approximate solution of 3.3-21)
complement each other to a Jarge extent; the former giving an accurate
picture of the processes involved as well as accurate expressions for
gquantilles ol interest, the latter giving a good picture ot high-field
effects and expressions which agree to first order with the perturbation
expansion. It will also be seen that the perturbation expansion indi-
cates qualitatively the corrections which must be made to the resulta
of the approximste method in cases whers the latter does not apply

directly.
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CHAPTER FOUR

LINEAR AMPLIFICATTION

4.1 Introduction

An applied field with a frequency ﬁithin the transition line-
width will cause transitions between and mixing of the levels \a) and
|b) and thus lead to nonlinear effects. For this chapter, we assume
that the population 'Lm}'ci-.slon deasiby, paa(i, l”l) - pbb(-'l-:’ Lf,l) s Te-
tains its zero-field value, NW(v) . In this case pab(z,t,i) reduces
to pi%n(z,t,i) 5 given by 3.3-27. The conditions under which it is
valid to neglect nonlinesr effects will be derived in Chapter 5, where
the lowest order nonlinear effects will be considered.

It is useful to consider thesge linesr effects, since they re-
late the present formalism to well-knownh results and their study forms
a basis for treabing the nonlinear effects, and for comparison. Also,
the magnitude, Ifreguency dependence, etc., 01 the nonlinear effects are
of course related to the parameterg characterizing linear amplification,
g0 that the latter are important.

In thisc chapter we congider two specific velocity distributions
of excited atoms. First, stationary atoms, for which W(x) = 6(X) 3

the three-dimensional Dirac delta function, are considered in section

4.2, Then a Maxwellian wvelocity distribution, i.e.

3
12 e_vz/ug

W(v) = 5

s ho1-1
3'[ .
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where o = 2kT/M (23), is considered in section 4.3.

h,2 stabivaary Aloms

With W(v) = &(v) , the integration over velocities is trivial

and gives from 3.3-27 the result

@ N

P *E ik * r - ot + )
o {r,t) = A PR \ <
ab‘— 21?1 0

w T + i(mo - W) ) ho2-1

Substituting 4.2-1 into 3.2.16, we find the macroscopic polarization

—0

2if o

Pw N (go-;:w [ei(l_i'z-mt+cp)

¥ o+ i(wo - W)

_P_(_I_'Jt) = ®

- coc.] ) L.o.2

which can be rewritten as

PN

E(Eﬁt) = —Oﬁo C%\

P - E
=0 =W
w

[T sin(k * r - wt + cp)—(a)o— m)cos(“lg-_r_—wtﬂp)‘{

~r2 N (%“m)z J

h.2-3
According to semiclassical radiation theory (3 ), we must

average over all possible directions of the wvector

P = (a] - ex|p) oY

-0
to determine the direction of the induced polarization. TFor all our
work we aggsume that there is nothing in the unperturbed system (zero-
fields) to establish any preferred direction, i.e., that the unperturbed
gysbem is isotropic. 'Then any direction of Eo iz equally likely, so

that the probability of Eo being within the incremental sclid angle
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dQ around the direction defined by the angles 6,0 relative to some

chosen axis is

P(6,0)d0 = drg' " —Lr——win gded ) L,2-L

For other cases, where some natural anisotropy exists, such as an ex-
ternal DC magnetiic field or anisobropir erystalline sites, the situ-
ation will be more complex and will depend on the particular character-
istics of the states |a) and |b) . Since we are interested in
gtudying any anisotropy induced by nonlinear effects, it is desirable
to begin with an igotropic unperturbed medium, which ig alse of course
the simplesl case.

The field equations of motion 2.3.2-20 and 21 require the com-
ponent of _P(Z,t) at frequency o along the direction of —E—w .
Taking the latter direction to he the 8 = 0 axis, we Tind the com-

ponent of Eo(go ° Em) along B = to be

—IIF Jﬂde jld(‘_p gind cos B = 3 o )—I-ug—5
(o] o

Similarly, the components of EO(EO . ghﬁ along the two directicns

perpendicular to | are
0y

2 T 2 -
EE

—ﬂéf 50056 sin28d9 jcosq)dm =0
o 0
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PEE T 21

—EEE jcose sinzede Xsin¢6q3 =0
a 0

Thus the induced polarization has only & component parzllel to the

field, and we have from 4.2-3 and 5

-
{w - w)o NPTE
(8] O O w

Pm = - 5 5 h.2.6
3rly” + (o, - 0)7]
TW IEPEE
P = °.o®w ) L,o-7
s

3y + (o - 0)7]

Taking Em to be along the z axis, 2.3.2-20 and 21 become, using

4.2-6 and 7,

- -o)o NPE
@] C [o )]

o

nlw) -1+l g - h.2.8
[ W gczg} L 660?3(1)[1‘2 + (UJO - w)2] 2

aEb . TmolwriEw b0

oz be chl 2 . (o m)gj 29

ooTLY o -
if we define
PSZNG%
Cto = E—T—eo—cﬁ L,2_10

(with dimensions length_l) and neglect dgp/d0z in 4.2-8, the latter and

%.2.9 become



. rlo, - ®) :
nlw) =1 - =« s h,2-11
w o 2
"+ (o - o)
e
OF 2
az““ - = LA aE . 4,2-12
(o, - w)® 00
4,0-12 gives
ao(m)z
%D(z) = %D(o) e 3 4.2-13

where Ew(z) = %D(o) at z = 0 and we have defined

2
a (w) =« Y . L,2-1k
O o] T2 T (UJO _ 03)2

4.2_14 and 11 are of course the well-known gain per unit length and
index of refraction characteristic of an inverted, nautrally broadened
line, where 2y 1s the total halfwidth of the Lorentzian curve of
ao(w) Versus o .
The neglect of aqyaz in 4.2-8 amounts to grouping it with

n{w) to give an effective index of refraction, and of course any linear
cﬁange of ©® with distance is equivalent to en index of refraction.
Since the field amplitude are slowly varying, we expeclt other changes in
¢ Lo be gulile small, and op/ds small epough Lo be neglected. In
fact, from 4.28 we see that ofz) could only have a linear dependence
en 2z, and this will be included in the index of refraction. With

nonlinear effects, we may have cases where we need to take dp/dz # O .
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4.3 Maxwellian Velocity Distribution

For stationary atoms we have seen that the amplitude of each
component, of the field increases exponentially with the distance it
has traveled in the medium. The same behavior will of courge be found
for the case of moving atoms, only with a different exponent and index
of refraction., With a Maxwellian veloeity digtribution, we will ob-
tain the Doppler gain curve and the corresponding index of refraction.

Putting 4.L-1 into 3.3-2(, we find

w N r - =
o o =w| i{k - r - at+ )
pab(r’t) D3 (% W ) €
.31
3 2,2
1 2 -V /U
X -5 _[dv 3
2 — v+ ilm -»+ k ¢ v)

where the integral is over all velocity space. With one of a set of
Cartesien exes along k , the integrations over velocities perpen-
dicular to thisg directicn can be easgily carried out leaving Tor the

gsecond line of 4,3-1

- /P

1 @
Jru Idv Y+ ilw - o+ kV) h3-2
o o}
where V is the velocity component along k. 4.3-2 is a standard

integral which arises in the theory of Doppler broadening and which

cannot be analytically evaluated {24). Defining

8=, X= — , 4.3-3



&0

4.3-2 can be expressed as

' 2<m+ix o
2 a + ix -t
= e( ) f dt e , I, 3.l
a+ix

a8 shown in Appendix I. k.3l can be expressed in terms of tabulatbed

functions, viz.,

5 b ix o :
(a1 ix) j dt e = wl-x+ is) = we(x + ia) , k.3-5

at ix

Al

where w{z) is the Brror Function for Complex Arguments (25), defined
by @
_22 _ZB -t2
w(z) = ¢ erfe(-iz) = 2 e J e at . L.3-6
A

For the interesting case v << ku (a << 1) , we have to first order in

g , Trom Appendix I,

. 5 ot+ix o 2
Jla + ix) J’ &t o=t E"g{- [e—x - 2_: (1 - QXF'(Y))]

at+ix
2 -ng
- l[f; F(x) - 2axe © | p . - L.3-7

From 4.3-7, we see that for a = O

2 21
X

wk{x + io0) = e - ji Flx) . 4.3-8

With the sbove definitions, Y4.3-1 becomes
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o Nara,
(8]

P +E | S
p¥ (_Om —cu) wk{x + ia) el(éE Tz et CP); L.3-9

Pab(f’t) T Toiky &

where X,a are defined by L.3-3. Putting 4.3-9 inso 3.2-16, we find

the polarization coefficients

mol\T:ﬁ?aPiE{D
ch o Im w¥{x + ia) , 1,3.10

cnol\T«ffa PiEw
PU.)S = W— Re W*(X + ia) . ]-i-.3-ll

where Re w¥(x + ia) and Im w*(x + ia) arc the resl end imoginery
parts of w¥(x + ia) and the previous results for the integration over
directions of Eo have been used. Putting H.3-10 and 11 into the
field equaticns of motion 2.3.2-20 and 21, and taking 1_{@ =k e and
dp/dz = 0 as before, we find the results

BE(D moma PoR
L Re wk(x + ia)

o Re w¥(x + ia) E(D ;

oz beocﬁT
L,3-12
o Wi PE .
n(m)=l+WﬁnW*(x+ia):l+5almﬁ(x+ ia) , 4.3-13
where
o= vria h.3~1L

and o is defined by 4.,2-10. For a << 1, H,3-1L and 15 become
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OF 2
3—2‘2' = [e_x - % (1 - QXF(X))] E = alw) B }.3-15
n(w) = 1 - & a[ﬁ% F(x) - 2axe_xg] . 4.3-16

a{w) as defined by 4.3-15 (for a << 1) ig of coursc the "Gaussion
with Torentzian wings” Iine shape familiar from the theory of Doppler
line brosadening (26). o{w) and n(w) are plotted in Figure 1 for

representative values of a, along with ao(m) and no(w) from the

case of gtationary atoms.

L.} 8caling Iaws and the Condition for Linearity

In Chapter 5 we will see that the condition for linearity,
i.e. that the lowest order nonlinear eflecls be small compared to the
linear effects, requires that the total field amplitude remain small

compared to a field Eo s where

YT fzz
E° - -2b bho1

In other words, the power per unit area must be small compared to
P = ¢ cES . b2
8 o "o

Since L and T, are Just the reciprocals of the iifetimes of the
states |a) and |b) , respectively, we can estimate values for P

using
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INDEX OF REFRACTION .
STATICNARY ATOMS DOPPLER BROADENED

FIGURE | LINEAR GAIN AND INDEX OF REFRACTION FOR STATIONARY AND
MOVING ATOMS, AS FUNCTIONS OF FREQUENCY
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and some calculated and experimental valies of lifetimes. For some

tines of interest, we have
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We have agsumed thet v for the uvper states of the .63 (3.39) and
L.18 rmicron lirzes are sboubt the samo, =zince essentially trhe same type

of state is involved. Wilh these values, we Tind from 4.L-1 and 2

T, 633 ™ 11 nfm-/'cm2
P, 1.15 =12 "
Po3.39 ™ 1.2 "

P 3,51 = 22 " .

Some experimentally chbserved values are

.9 mw/cmg (28)

F. 1.15 (otscrved) ™ 3
Ty 203 ) =1 ! (16)

T“hus there is at Zeast orcer ¢? magnitude agreemczt.

An glilternative assumption Zg That ra griges orky from the

transition betweer states la) and lt) « For this case, we can use the

resuls  (30)



ON
A |

T mg

a O

?. == —._—-’2 s L. J.|._3
P ire o”h

] 8]

which with 4.--1 and 2 gives

T % [}
=5 2 ,
& — 8 x 1077 mw/em” -l

wiere A ig the wavelangth expressed in microns. Using «.'-ll and the

gboove experimentel velues Tor P_, we caleulate

o1

Yy 3.39 %™ 7 x 107 sec

Y. .H33 = Y, TL15 e 108 sec-l L,
s N

ot

‘r,r 3,50 lOO sec .

Sirce T, 1.15 = 7, 633, we car use M -5 and B k-l to caleulate

PLO33 ™ 20 mw/en” . bt

b

-

these va_ues may be more accurate, since the computed valucs given by
derrigen, et al (27) do not take into sccount broadening due to col-
lisions ardé radiation irapping (2 ), end are less “aversble for es-
tablishing a large vopulabicn inversion ( £ ). We will rsturn later o
the vrovlem of deotermining Ya,rb ard othecr paramchters from various

cxperimertel data.

from The zbove, we see that

-
1
-1

! 3 '
[+ C
Ps LN e
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so tkat the saturation power will generally increase rapidly with Tre-
guency. Another cuantity of interest in the theory is the natural line-
width, defined by

Ya i Yb

(M) = ——5— . hoa-8

For v, > Y, s we see From H.0-7

P
(ar)y =5 T
wJ
Q
god b, l-s glves
(Af)N3339 ™ T Mec/aec,
(Ai‘)m633 e (Af)Nl'lS = 16 Me/sce. W, o190

Ir (Af)D is *the Dopplier lire totel halfwidtk ( 31), we have
(_ﬂ(Ai)D o
K = ———n b,g-n1
qulnD.
and fthercfore Tor o = v/ku = 835 (Af)rr/(ﬂf')_—) we Tind
N
£, .. = 26
3.39
4 g 0P8
b,4-12
- B
2 433 ™ O
et I



using calculeted values of (Af)D (31).

Fqualior 4.2-1C gives

.
P Yuw P
Q O @] a O

i
0 -
T‘d. TD

1, >, . Using L2 and 2, we ©ind

&
L =& E’:UTCOC-—QE .
a” T
o]

If we assume corstans Km and T, M.a4-1h
C

predicte

o  Tor the €33, 1.15, 3.39, 2,51 micror. lines
Z: 6 1160 hro,
while observed gains (32) give the relabive valuee

corresponding releative values of ao

The =k

some quantitics of Znterest,

ete,  These laws car ve of zome helr in evaluating the potartial of a

given Irargition once a few measurements have been nade.

and L el

L.hgk

relative values

are fprom 4.L-17,

ove discussiorn gives The approximste scaling laws {or

Most

ignoring any configuration” offects (33),
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expressions are irn Terms ¢f the saturation power, PS » since zhe
letter is probably ore of the easiest guantities o measzure.

The most interesting result herc is that cuite amall powers
cen cause strong noniinear effects for some transitions. We will now
continue to study these ncrlinear cffects, fer the case waere they are

smnall.
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CHAPTER FIVE

LOWEST CEDER NONLINEAR EFFECTS

When the field amplitudes remain small enough that we have
only a slight change from linear amplification, it is adequate to use a
perturbation expansion of the solutions (12) and keep only the lowest
order‘terms beyond the linear term. Ag discussed in Chapber 3, this
means a corresction to the population inverslon density which ls guad-
ratic in the field amplitudes, and a correction to the polarization
wihlch 1s cublc in the field amplitudes. The approach uged in Chapter 3
for solintion of the atomic equations of motion is idesal for obtaining
these terms, since it only requires putting paa(z,t,g) - pbb(z,t,y) =
NW(E) in 3.3-21 and 28. TIn this chapter we will be primarily inter-
ok

ested in the resulting )(g,t,g) and the corresponding third order

polarization and itsg effect on the behavior of the fields.

(»

bh ) (EJ t) :\i) ana

In section Y.L we calculate péz)(g;t,z) -0
g?)(z,t,i) . The latter quantity is used to study lowest order none
linear effects for stationary atoms in section 5.2 and for a Mexwellian

veloeity distribubion of cxcited sbome in scction 5.3. Secbion 5.4

gives a discusgion of the results.

5.1  The Towest Order Nonlinesr Solutions

From 3.3-21, with paa(z,t,z) - pbb(g,t,g) = WW(v) in the

right hand side, we have



7O

{ ‘ e 2 @
2 2 .
ooy - o - - [ me Ja Ja,
-0 o

Tty o ”thl)

&

EQ QIEJ_) EO ’ 'E':(D'
Wyw! )( 0! )

iA + ifw - - (B~ k") vt - [y -ifo <@ k- v)t
- - =1 o e
Xle + c.C,
5.1-1
Performing the integrations gives
) 2 P B ,\
. =0 =

) P ' -_E_w
Do - o - 3 o 3, (225

R R WL 1
A Y - ilB -o FE V) [‘f

+ S e s " + c,c,
v, - ile e - {k - k') E)] 5.1-2

Putting p, (rst,7) - p, (x,t,%) in the right hand side of

3.3-27 gives



T1

3 o o5 @
-t -1 b
(3) % I ‘[ Ta’o b2
pap (ZoB1) = (55g) W(y) jd&, jab, Idt3 © Te
o o o
2o Em SN (EO B} 11 - Ty i(mo_ - E)]tl
X . iﬂ X o o =" e
2 2
{ v+ ifor - " - (k' - k") E](tl+ tg)- Iy - i(mo-w" + k" -E)]t3
X e

5.1-3

where [l] and A are given by 3.3-25. Performing the integration

gives

(3) w 3 P +E E - E r[P « E
Poty (z,t,v) = &?%J mW(v) T (—o =W ( 0w )—o W
a, 1 (.D,UJ',(D” w w \ w

ei[(}_;_ + k' -K") cr-(wto -a")t ot o - @]
v+ il -o -ttt (Et kT -K")-v)

X

= 1
X[Ya —ilwt - " - @1 a E”) - Ej + Yb T i - ol - (E, En)—, 2)1

. 1 + 1
XT—I(O) —cu”+k"-v) T'i‘i(CD -CD"":K"V)
o = - o = -
5.1-4
Equations 5.1-4 is our basic starting point for this chapter.
From it we calculate the third order component of the polarization and

thereby the lowest order corrections to linesar amplification.
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5.2 Stationary Atoms

For stationary atoms 5.1-L gives immediately

3

(Dpy - [2o] ¢ 5 [ %
pab = h 21?2 OJ,CD',(D" o

Eo ' Em"
(,U"_

(P -k,
—0 —
CD‘

\(ei[(5+1_{' k") cr-{(ot+to -0t ot - 0]

v+ i(mo -w -+ a)

| 1 . 1 [ 1 . 1 J
X T, - ilw' - ) Ty - ifw' - w )y - i(wb -w") oy o+ i(ab - w')
5.2=1

In this section we treat wvarious cases covered by 5.2-1.

5.2.1 Single Input Frequency

For the case of a single input frequency, the triple summation

in 5.2-1 reduces to a gingle term:

(3) 2, (Eo'%gei(ﬁ'f"““m)
Per (E’t) = 121A & W r + i(mb - )
W 2L ey : 5.2.1-1

Taly 42+ (mo - m)2

In taking the average over all directions of P, , using L,oo-L, it is
evident that the only component of the polarization will be parallel to

. 3 .
E - We have for the component of EO(EO E%Q_ along B :
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PEES o L PDES;
-2 [ap fa0 cos's sine - e, 5.2.1-2
© o

with both perpendicular compenents averaging to zero as in the linear

case. Thus we find

343
(3) @ WP ES Y3
Fos 3.3 5 52 9:2.1-3
s ity v [y + (o - @)
a'b
i,
(3) © Nromi 72(030 - w)
Bl = o 5 5 5.0.1-4
sty v, [rT + (o) - )]
If we define Eo by
2 2 2
B, =h va«rb/PO , 5.2.1-5
5.2.1-3 and 4 become
323 .
(3) N PUES 2 p
%DS = - T % 5 572 s 5.2.1-
s hE S [yT 4 (o, - )]
3 %3 2
w’N P Y {w - w)
p(3) _ 07 ol o 5. 5.2.1-7

I [+ (o, - 9)7)

~Pubting 5.2.1-6 and 7 into the field equations 2.3.2-20 and 21 and



Th

taking kX to be in the %m direction, we find

3 c Ei TB(&b - )
5 n{w) = g OS5 572 5.2.1-8
E v + (o, - @)]
a%n 3 %i Tl\L
5 I s, 5,2,1-9
%, SO [T+ (o, - )]
0 o
where we have taken wi/wg =1 since o ™o . Comparing 5.2,1-8 and

9 . to the linear index of refrsction and gain per unit length 4.2.11

and 12, we find te third order:

5 B v
n{w) - 1 = [n(m) - 1] oL - == ,  5.2.1-10
lin 5 .2 2*_ . e
B vT+ (w, -o)
BEm aEm 3 Ef) r2
S ° 5o 1-2—=— . 5.2,1-11
% ol 1in > Ei Yg + (wo - w)g

-Thus for a single input frequency, the effect of the lowest order non-
linearity is to introduce intensity-dependent corrections to the index
of refraction and gain per unit length.

It is important to note that the amount of the nunllinewr
correction depends on the size of the field. relative to Eo and on
2

how far from resonance the frequency ® 1s. We see that if Ei << Eo

the correctior: will be small. . This condition was used in section 4. L
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to define the reglon of linear amplification; it is also the condition
which must be fulfilled if the lowest order correction is to be ade-
quate. As noted in section U.U, there are many practical cases when
this conditicn is strongly violated.

5.2.2 Two Input Frequencies

For two input frequencies, Wy ,0,,  we abtain from 5.2-1 the

gingle-Trequency corrections at o and W and in addition other

1 2’
terms which we will now consider. For convenience we write El for
Em" etec.
L
First, with o = w, and o' = w' = @, in 5.2-1 we obtain a
term in the polarization at wl. This gives corrections to n(ml) -1

and aEl/le which depend on the field strength at The magni-

b
tude of this correction will have the same form as the single-frequency

correction, except there will be a factor depending on the relative

polarization directions of El o

in 5,2.1-10 and 11. This different factor of course comes from the

and E. which will replace the 1/5

average of the component along El of

(B, " B,)° (2« E)

g T B

over all directions of Eou This average replaces the factor 1/5 by

on .
%; Ed$ fde 5ind cosob (c0529 cos® B, * sin8 cosz$ sin” 8 4
e o
+ 2 cosB 8ind cosep cos @, sin 512) 5.2.2-1
1+ 2 cos” @

12

15
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where @12 is the angle between El and E2 . Thus the correction

factor for n(wi) -1 and aEl/ézl becomes

2 e 2
.|.
) ﬁ.ﬁl YQ 1+ 2cos” @, fg
T 5 2 2 2 " 5 2 2 2
B v+ (o) - o) E_ Y +(a>-a>2)
5.2
Ancther contribution to the polarization at @, comes from
the term in 5.2-1 with o = " = x W' = W, - For this term we find
the complicated expressions
[OR 1+ 2 cos B E-
11 12 l 2
5(@]‘:) = - Oﬂo 5 E (A + A.b) s 5.2.2-3

2
+
- 1 2 cos ®12

o ml 5

where

T v/
[v® (o, - wl)elﬂri * (o) - w,)"]

a_

o 2 2 2

rrtre - o )Mo - o,)-(o -0, )7 LY v (0 -») +2Mcnl-w2)j(mo-wl)
2 2 2 2
T+ (o) - o) v (o, - w)

1

5.2.2-5



7

; T Y /h
&,

: [y" + (o, - wl)gl[ri + (o) - m2)2]

() -ox)lr * Yo (g -y ) (-0, . .ﬁwz“‘“z)trg‘ w, _wlﬁ-zwaf(wo - )
X 5 5 ‘ 5
7+ (o, -y )

5
o Tt (o, -

1

5.2.2-6
end A, B are obtained by replacing v, with T in 5.2.2-5 and 6,

respectively. IT

- -
@y Bp ™ D,

we find
-+ -
Aa Ab 1

(w - w, ) W, - o
o} 1 + 0 L 1 =

+ —_ -
Ba Bb T

as expected. The important characteristic of this term in the polari-

zation is that a factor l/‘ra + l/Tb has been replaced by

1 1
. . s
Y - 1(@1 - mp) Ty - 1(@1 - wp)

so thal this term decreases more rapidiy as lwl - W increasges.

|

The correcticns to the gain per unit length and index of re-

fraction at w, are obtained by exchanging indiceg 1 and 2 in the

expressions above for these quantities at Wy .
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" We have thus far dealt with the coﬁponént of the polarization,
al a glven freguency, along the field at that frequency, assuming this
field to be linearly polarized. In general there will also be com-
-ponentg of the polarization slong the two perpendicular directions,

i.e., along E, x k and k. . In Chapter 2 we argucd that there
=S =1 P

1

should be only a negligible field along X In gection 5.4 we will

1
show that this longitudinal field is of order ao c/m"vlo_b comparead
to the field in the direction B, % £, even though the polarizations
are of the same order of magnitude. Since even the field along

. X 51 will be quite small compared to El’ Tthe field along El

will be extremely small and will be neglected.
In order to calculate the averaged component of P along

El 3 El’ we need to define the various directions in Lhe coordinale

system usged for these calculations. We had chosen EQ to be along the

z-axis and El to be in the x-z plane, making an angle ®12 with

Een Thus Ep ig in the x-y plane, and can be defined by the angle
@2 mede with the x-axis. El lies in the plane containing the y-axis

and meking an angle ®12 with the x-axis. If we define a direction in

this plane by the direction of the projection of E, into it (or the

= 0), the k, direction is defined by the angle 3@

made wilh ULhis direction. IT &2 Ey’ g, are the unit vectors along

x-axis when ®12

1

e are the unit vectors along

the x,y,2z axes, respectively, 210 &

El"E2’ respectively, and Ei’ gé are the unit vectors along the di-

rections El k), Eg bid 52, regpeetbively, we find
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EE = _e_Z ?
&, =g, cos ®12 - e_ sin @12 s
= + i + i $
El kl e, cos @12 cos @l %lEySln @l 515Z31m ®12 cos 1

= 3+ i
k e cos ¢, k. e &in @2 s

-2 2 = 2 -y
el = -e_sin ¢, + e cos &, ,
T —_ * - . - )
El =2, oos 512 Sln'él gy cog §l+ g, ¢in @12 gin @l
5.2.2-7

With these definitions and 4.2-4, we find the average of the component
of

2
p-r (B - E)" (2 - E)

glong e; to be

1
gin2® . sin @
12 1 8
PQEEEL 15 s 5.2.2
and the averaged component along 51 to be
gin2 @, cos &
12 1
. c2.2-
POEEEl 15 : 2 ?

Thus we find for the component of P along Ei



o0

. . 2
w P‘(r t) o gin 2 @12 sin @l . EEEl

ESOC 1=’ 5 o _B

) )

x[sl sin(l{_l - r - a.)lt-l-cpl)-i- ¢y cos(El' z-ont ot cpl)] 5
5.2.2-10
where
N
3

- T -
17 [Yz - (o, - ai)a}[Te + (o, - mg)el tA YA, 5.2.2-11

3
=TT (o, - o)

= F T 2
[T 4 (mo - wl) YT+ (mo - W

55+ By + By, 5.2.2-12
2]

and A, ebc., are the same as in 5.2.2-3 and i,

Since there is initially no field along e, at frequency w

1 1’
the polarization Pi(E,t) will induce a Cleld Ei which 1s out of
phase. If we write Pi({,t) in the form

w gin 2 ® ain & FQF
P! (r,%) = - L Ly 21
Se ¢ i 5 o 2
E
o
5.2.2-13
1ol - + + on!
X 8] 3111(51 r-ot P cpl) 5
then
2
T = + h )
57 =48] * ¢
” ~ 5.2.2-1k
Vo= Lan Tt L
‘1 5 7
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and the field along Ei with frequency wl has the form

t . - ! -
By cos(ly * r w T+ ¥ o) 5.2.2-15

so thal the new field along Ei leads the original field along ElA by

a phase angle q& .
If we neglect the nonlinear corrections to the gain per unit

the amplitude Ei satiefies

length and index of refraction at s

OF; o e sin 2 @, sin & ESEl , ‘

3z - % 3 5 - 5 O —z Sp» 5.2.2-16
1 <+ (mo - ml) B

. _ 3 _ 3 -
with El =0 at Zl =0, If E2 = EQO and El = B at =z, = 0,

we can integrate 5.2.2-16 to give
& g

[Tz + (o - m2)2]

E'(z,) = - sin 2 @ _ gin & S
11 12 lOT2 cos o 1
o 5.2.2-17
L axo(we)zlcos o ao(ml)zl
X—“E—- -1 e 3t
E
o)
where
TE
0
O60((1)) -T2 2 °
Tt (o, - o)
o}
and « 1is the angle between El and 52 s lee.,
£ 5
== + gi i .
cos o T Ccos ®12 cos @l CcOg @2 gin §1l51n @2
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The corresponding field at @, is E. in the direction e}

The magnitude of thig fleld is obtained from 5.2.2-17 by interchanging
the . subscripts 1 and 2,

With w = w' = ®y w' = w, in 5.2-1, we obtain termg in the

1

-, =W

polarization at Ifrequency amg 1 o1 ° These will induce a ftield
at the same frequency with components EEI’ Eél in two directions
perpendicular to the direction of propagation, k and the treatment

=21
of thig effect closely follows that for the introduction of the field

-Ei » The difference arises from the dispersion of the medium, i.e.,

from the fact that in general

Eop 2k, -k . 5.2.2-18

Rather than give the complicated general expressions for the

unit vectors e and e'l perpendicular to k we calculate the

=21 =2 =21’

average projection of EO(EO : Eg)z (Eo . El) along an arbitrary unit

vector a , using L.2-4. This calculation ig carried out exactly as

before, and gives the result

Iy o L2
PERE Ra cos B -2 s5in 0 PER
o 21 z 12 X 12 o 21
3 : = == (¢F) , 5.2.2-19

where The quantity in parentheses is & "geometrical factor" which will
appear 1in the following eguations.

Pubbing o = w' = W, aad w' = w  In 5.2-1 glves

L

°
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3 , 2
(3)(e0) = o] o2 AN 1 . 1
pab‘ =’ 2ih o, ! @) J T, - ﬂmg- wl) e i(we— wl)

(2, - )t x - (@, - )b 2 ]
e

L 1
- - + -
T + 1(@0O - 2032 + ml) [r- 1((1)0- c.ol) T+ 1(030.. w, i

5.2.2-20

Using 5.2.2-19, we then find the corresponding polarization to be

“o1 EgEl
EE;E Pgl(g,t) = - (aF) o _EE_ 85, gﬂh[(?ka— 31)° 5"“21t+'2m2"¢1}
e}
+ ' - s - + _ [ .
0hy cos{ (B, - k) x - ot oy CP:L]
5.2.2-21
where
Se1 = Sp1a * Sopp
f —_ T b
Co T Co1a T Cop 2
Sr - Y&T-bT/LI-
2la [.2 2T 2 2
yo o+ (mo - m, + a,\l) ][Ta + (wg - ml) ]

Ya[TE R R ‘“1)] i W(“;z - "L’l)2
2

X 5
T +(mo_wl

Ta[rg - (o, - v, o Ho - mg)]+ Ty - o)) (& - 3w,+ o)
+ Y2 N (m T )2 3
o Te 5.0.6-22
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o v T v/
2la 2 2 .2 2
ST ey s, o)t vt (o, - o)
- .
./} (mg - (Dl) Ewa‘ + T + (mO - 2"02 + (-Dl)(wo - G‘)l)
Sy 2 2
v (o, - w))
: 2 , ,
. wp = o) 77 - (g, - Any v (o - wy) -y (20 -y, o))
2 2
4 -
T (wo w2) |
5.2.2=23
1 1 als - . . _
and SElb and CElb are 5.2.2-22 and 23 with Ya and Yb inter
changed.
The field induced by the polarization 5.2.2-21 will have the
form

Fo (z.) = F, coslk,, +x - Wyt o (2) - 5.2.2-24

As discussed before, the initial phase mal(o) must e such that the
polarization is initially ouf of phase with the field. Recause of
5.2.2-14 the polarization will not remain out of phase with the field,
bﬁt will have a component in phase with the Tield., This in-phase com-
ponent will induce phase fluctuations in the field, and these are of
cowrse slrongly correlated with the amplitude tluctuations due to the

changing out-of-phase component of the polarization.* We now proceed

¥ According to 2.3.2-20, the effect of an in-phase component of the
polarization can be interpreted as contributing to either [n(w) - 1]
or c/w dw/dz . Since the phase change due to the polarization now
being congidered will in general not increase smoothly with z, 1t is

preferable to study the actual phase rather than some equivalent
index of refractiocn.
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to calculate these effects. In the following calculations we will

drop The subscript 21 so that k means k Z means etc,

Zop 2 Zop 2

We will also use the notabion cos(k,kl) Lo mean Lhe coslune of the

angle between k and k

12 etc., i.e.,

12 »

b=

1
COS(k,k_l) = _—KK_ . 5.2.2-21—L
1
We definc
bk = k - (2, - k) , 5.2.2-25
so that
(k) =k - |2k, - X | cos(k, 2k, - k) . 5.2.2-26

In order to find the initial phase of the field, we rewrite

5.2.2-21 as a gine wave, i.c.,

2
o E_E. ;
= e —_— 1 - o - - + !
55,0 P(r,t) (GF) o 2z 8,1 51nL(252 gl) -t t 20 gt
o]
5.2.2-27
where
'2 QIQ
Spyp 4S5 Uy s
o 5.2.2-27
P = tan™t Egi .
21

Figure 2 shows a plot of 84,7 Cél’ and 85, as funclions of fre-

gquency.
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VY% Y
2) Yo =157, Y, =8 Y

FIGURE 2 |LOWEST ORDER INDUCEL POLARIZATION AND GAIN AT 2 w,-w,
DUE TO WAVES AT w, AND @,
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The argument of the sine can be written as
Eez-Akrz-otrag, -g +y

= kz - Ak Z - wt + 2¢b -9 ot o,

taking x =y = 0, which only affects the relative phase. Thus at

z = O we must have
p(0) = 20, - @ * @, 5.2.2-2(

We can now wrlle Llhe polarizalion in Lhe form

EE)

2? = P(z,t) = - (GF) G, 5 821 sin[kz -wt +o» - (Akzz + o - @(o))]
o] EO _
28,
-~ - (ar) @O ~£§— 321 sin{kz - wt + @)005(Ahzz + g -po))
&)

- cos(kz - wb + o) sin(AkZz + o - o)) 5

5.2.2-28
giving
P RLE |
%e ¢ (cx) % 22 Sgl COS(AKZZ + o - ofo)) , 5.2.2-28
o
WP EgEl
mee (GF) o, —5= 8, sin(Ak z + @ - (o)) . 5.2.2-29
Q

If we neglect the nonlinear corrections to the linear index of re-

fraction and gain per unit length, we can write the equations of motion
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for E and © , using 2.3.2-20 and 21, as.

dE . B5,
S5 = oao(w,'E - (Gr) o —}—32— 8., cos(AkZz + p(z) - plo)) , 5.2.,2-30
“o
9 Bk i ) ,
E 3% =+ (6r) o = 8., sin(ak z + o(z) - (o)) De2.2-31
o
where
a (w.) cos(k,k.)z
£,(z) ~ E,, e ore e s
20
Eo2=32
aofml) nog(k,kl)z 9+2.2-3
El(z) = ElO e

Equations 5.2.2-30 and 31 are a set of two coupled differential
equations. Their egolution ig found rcletively ecasily by & trans-

formation to the complex function

e(z) = B(z) 1¥(2) 5.2.2-33

We find directly

_ £ -i(ak_z+ o(z) - o))
2 1q)%% = g% + iR %% = ao(w)ﬂ ~ (Gr) & uégi By € z s
© 5.2,2.30
oxr
e EgEl -i(ak = - (o))
5 ozo(co) & - (GF) a, === 821 e . 5.2,2-35
. .

0
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From 5.2.2-33 we see that

2 2
B = |g
5.2.2-36
®(z) = arg €
Using 5.2.2-32, the solution of 5.2.2-35 with E(0) = ¢, is found in

a straightforward way to be

' 2) (K - iAk )=
o (w)z EFR . zZ
e(z) = - e °  (oF)q 29104 iwo) e -1
o E2 21 K - 1AkZ
0

5.2.2-37
where

K = alo&ng) cos(k,k. )} + ao(ai) cos(k,kl) - ao(@) . 5.2.2-38

5)

Using 5.2.2-37 and 5.2.2.36, we find

A Bio(w)z EgoElo 2 Py 1 -2 cos Ak z 7
- e [(GF) o ——75—-3211 . - ,
E K~ + (Ak )
0 z
5.2.2-39
and
1 Akz[eKZ COoS AkZZ - l] - K gin AkZz eKZ
9(2) = o) + ten - -
K{e cos Ak _z - l] + Ak_ sin Ak _z e
Z 2 pa
5.2.2-40

With Akz =0, =W and the appropriate geometrical factor, we

1

oblgin the previous result 5.2.2-17. I we have AKZZ << 1l , we
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find

. Akz[eKZ(l - Ke) - 1}

plz) = eplo) + tan” — 5.2.2-l
qe -]
If in addition we have Kz << 1, 5.2.2-41 gives
2(2) = (o) - Sz 5.2.2-42
while 1f Kz >> 1 , we hsve.
p(z) ™ plo) - Ak 7 . 5.2.2-43

It AKZ is large enough for cos Akz to go through several cycles in
the region of interest and applicability, we gee that the quantity in
curley brackets in 5.2.2-40 fluctuabes betiween positive and negative

infinity. B8etting the denominator equsl to zero gives

Ky Ak

cos Ak z - e ¥ + -2 ginAk z =0 . 5.2.2-
Z K Z

For Xz >> 1, this becomes

K

tan AKZZ = - m
7
which occcurs twice during each cyile of cos AkZZ . Thus we expect

that @(z) - (o} will increase uniformly with =z , at least for
Kz >> 1 . This behavior can be seen in Figure 3, where the relative
E°  and w(z) - plo) are plotted for some (small) values of Ak, .

For larger wvelucs of Al , we expect more fluctuations in olz) -oplo)
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Z FOR K=1 AND VARIOUS AMOUNTS OF MISMATCH
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near 2z = 0 .
From 5.2.2-39 we gee that for Kz > 1, the intensity Ea

depends on Akz as

—_ 1
K- + (Akz)g

?

g0 th&t the intensity will be a Lorentzian function of angle, with the
angular width depending on the gain characteristics of the medium and
the directions of propagation of the incident waves.

We will delay further discussion of these results until after
we have considered Tthe case of more than two input freguencies and
studied similar processes for moving astoms.

5.2.3 Three vr More Tnpubt Freguencies

With three or more input frequencies, 5.2-1 gives single-

Trequency terms for each frequency and two-frequency terms for each

pair of freqgquencies. In addition fthere are terms with wo,o',w" all
different, e.g., if o = ® 5 w' = Wy w'" = Wy, We have
® 3 [P+ E\P -E| 2 -E,
(2) O -0 ~1ll{=o0 =2l[=o =3
Pen (z,t) = 2iA N a W W
. L 2 3

X

T + 1(wo -® -, * m37

1 1 1 1
X[Ta- Ha,- o) Ty o, w3)} Lf— Hw,- ®,) T YT o - wg)}

5.2.3-1



93

giving a polarization and therefore a field at the frequency

wl + Wy - mS . The calculation of the field amplitude aznd phase at

this fregquency follows in all respects the similar calculation for the

field at the frequency 8&2 - w, given in the last secticn. Since

1.

there are no new physical resuits, we will not consider these terms

further.

5.3 Maxwellian Velocity Distrilbubion

With a Maxwellian velocity distribubtion of excited atoms, we
must integrate over the velocity spectrum to obtain pé.g)(z,t) . From

4.1-1 and 5.1-4, we have

e

P i
—Q —

E, Em”
d)”

(P < B,
-0 =

) w'

wJlEFE -K') rr-(0+o -ot+ o+ o - g

3 22
1 \§ : dv e M /u
X j. N f _ - T T T _ T .
LEU.EJ Yt L(UJO w-w tw +(Etk k") v)
1 + 1
X r, - i -o" - (k" - k) Y) oy - ilet e - (k- K]

1 . 1
XY-i(CDO—(D"*'}E”“E) Y+i(wo-w1+-}?_'°V) .

By inspection of 5.3-1, we see that the same froducncics will be
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present in the polarizatidn, and therefore in the fields, as were
present for the case of stationary atoms. The difference is that the
frequency denominators, which determine the magnitude of the response,
contain the effective "interaction" frequencies, e.g., ® -~k - v,
rather than the field frequencies, e.g., ® . The result of this is
 that for a large spread of velocities, so that ku >y , the response
will extend over a wider range of frequencies. FPhysically, the inter-
action frequencies are the (Doppler shif‘ted) freguencieg which the
atom "sees", and the Doppler shift can move a frequency effectively
within the atomic interaction linewidth (the natural linewidth, 2y ) .
Thus the results wili be qualitatively the same as for stationary
atoms, and the response will be weaker and "smeared out" over a wider
frequency band, the larger ku is.

There 1g one qualitative difference between the result 5.3-1
and the usual approach (34) to the treatment of atomic motion. In the
usual approach one calculates the response for a stationary atom and

then integrates this response over g distribution of center freguencies

(DO + E ’ E . 5°3_2

Since ku << w SACR in practice, thisg difference will usually not
have a large effect. However, when there are waves traveling in

opposite directiong, there will be a significant difference in the
result. TFor -example, for waves traveling in the same direction we

have
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while for waves traveling in oppogite directions we may have
E+x -E 3k,

le.e.y, & Doppler shift which is three times as large as otherwise pre-
dicted.

Without rather drastic approximaflions it is nobt possible to
- represent the velocity integrals in 5.3-1 for genersal Kk's in a
ugeable form. However, for the case where all k's are along one
direction, we can express these integralsg in terms of the single
Doppler broadening intcgral studied in Appendix I. This case includes
the possibility of waves traveling in opposite directions, amd, for
example, for the case of a polarization wave with w = 2n. - @ and

2 1

we may s8till fake 521 to be not parallel to 2k, - El

k= 2k, - K
Thus this restriction on the k's allows us to consider quantitatively
most cases of interest, and we expect that other cases will not differ
gualitatively.

With thé above restriction on k's, the integrals over the

Lwo perpendicular directions can be done immediately, and we are left

with the requirement of evaluabing integrals like

[s.2]

2
] dV'e“VQ/u

aF ~ Wwu 5 v + ilo, -v+K -y, - il - - (& -k - V)]

s o]

I

1
_i('mo -+ E” . lf) 4
Y
+i(mo - kW)

X 5.3-3



where

_ 5.3-L4
E=k+k -k,
and the notation K - V , etc., is used to preserve the fact that the

various k's may lie in opposite directions, i.e.,

k' - V=K'V .

Ib$ is the same as 5.3-3, with T, replaced by Ty From 5.3-1 we

gee bhat we regquire the integrals
[P —_ -
I(ama))—Ia_+Ib__+Ia++lb+ . 5.3-5

Expressions for these various integrals are given in Appendix IT in
terms of the tabulated Doppler broadening integrsal of Appendix I. The
results are often cumbersome in their general form, and in the follow-
ing we will often use limiting cases and graphical presentation to
emphasize their interesting characteristics. The "geometrical factors"
are of course identical to those encountered for statlonary atoms, and
therefore they will be carried over without comment.

5.3.1 Bingle Input Wave

Tor z single input wave, the sum in 5.3.1 reduces to a single

term, with © =o' =" , and we find from I.1
W 3 Ei
P =.g22—=Re{ ] , 5.3.1-1
Zeoc Ws 5 EEE
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3
w #_aré;E_‘?__Im[ 3 5,3.1-2
Eeoc we 5 2E§

where

f Y =1{al2/ n - 2(a+ ix)w*(x+-ia)]+~Re w(x+ia)}. 5.3.1-3

The realland lmeginary parts of 5.3.1-3 are plotted?® in Flgure L fror
a=.0L, .2, .5, along with the corresponding quantities for station-
ary atoms, from 5.2.1-8 and 9 for comparison. The most interesting
feature of The Doppler breadened curves ig that cven though the gain
gaturation is esgentially independent of a , and in fact is larger
for small a , the corresponding index correction is smaller for
sﬁaller g8 , &and negligible for a = .01l . Thisg i1g physically ex-
plained by the observation that for a << 1 the line is effectively

intomogenecously broadened, and the atoms responsible for the gain,

¥ The plots in Figure U and other fisures of this chapter are of
mPS,C/Eeoc, relative to

3 2
a{GF) Em/eEO .

The horizontal (relative frequency) coordinate is uniform in all
plots, and the vertical coordinate ig indicated in each plot.
Where the sign is significant, the plots give the corrections to
be subtracted from the linear gain and index of refraction., In
all cases a = y/kyu , A= ra/Ekou,, B = Tb/zkou., g0 that
a=A4A+8B . The curves were calculated by digital computer and
plotted automatically. The figures were traced from these curves
and untortunately sometimes contain small "wiggles™ due to the
plotter.



MOVING ATOMS STATTONARY ATOMS
a=.0i
-a=2
-0:=5 81
6t
44
21
i 1 ! 1 i
1 2 3 -2 -l o | 2 3
~ GAIN SATURATION Wy-w
Y
T T T T T T
4 al
2 g 5 2
L4 —
<=0l
2 +-2
4 T-4
Il | L | | | 1 1
-3 -2 -l o . 2 3 -2 -t O—w | pd 3
X INDEX CORRECTION “

e
FIGURE 4 LOWEST ORDER GAIN SATURATION AND INDEX CORRECTIONS,AS FUNCTIONS
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and therefore susceptible £o gaturation, do not appreciably contribuie
to the index of refraction (15). If we use I-18 and 19 to expand

5.3.1-1 and 2 fo first order in a , we find

w 3 Ei x2
& _p L.gdlex 5.3.1-h
2600 ws 5 2E2
o)
W 3 :Ei e
P =0 =— 2axe B 5.3.1-5
2€oc we 5 gEi

for a << 1, which clearly demonstrate the features discussed above.

5.3.2 Two Inpul Waves

For two input waves at frequencies ml and . , as in the
case of stationary atoms, 5.3-1 gives the single-wave corrections of
5.3.1, and in addition terms depending on both fields. We shall divide
the discussion into two parts, first considering two waves traveling
in the same directicn, and then two waves travellng in oppusite dl-

rections.

A. Two Waves in The Same Direction

In thig case the results of IT.1 are sufficient for s11

terms, gince we always have

Also, the effects of Doppler broadening are eguivalent to a distri-
bution of resonance freguencies, w, -
Ag in the case of gtationary atoms, there are three kinds of

termsg, viz., saturation at W, due to the wave at ml(w =w2,w'=w"::wl),
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modulation” at cnl(cu =" =0, o = col) , - and modulation &t

- 2w, ~_wl( o W' = ml) . Of course similar terms occur with

the indices 1 and 2 interchanged.

O =w =W

For the first case, with o = wg, W' =w' = w in 5.3-1, we

find using the geometrical factor 5.2.2-1,

2 2
+
w2P2s 1 2 cos ®12 E1E2
28 C = -0 5 = Re { ] » 5»3n?-l
0 2B
o
2
w P 1+ 2 cos @ EZE
o
2§—§9=_a 5 12 léIm{ 1, 5.3.0-2
o] 2EO

{ } ) a[w*‘(x_,a + ia) + W(Kl + ia) W*(Xl + ia) - W*(xg- + ia)‘j

. - - b)
2a - I(Xl - XZ) 1(Xl - xe) |
5.3.2-3
5.3.2-3 is plotted in Figure 5 as a function of X, for a = .01, .2,
.5, and x. = 0, 1. The behavior of the curves is determined prima-

1

rily ty the first term which has a denominator 2a + i(xl - x.) . Thus

o)

the curves are essentially Torentzian (more so for sms1l &) and have
a total half-width ba. The effects are strongest in the region

X, f‘xg , and for X, = 1 the weighting of the approximately

Gaussian "envelope" function is evident. The physical intervpretation

of thege resulis is as follows: The wave at Wy depletes the

population inversion of atoms with velocitiesg which allow them to
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FIGURE 5 LOWEST ORDER GAIN SATURATION AND INDEX CORRECTIONS AT wp DUE
TO WAVE AT w; FOR a=01,.2,5
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interact strongly, i.e., over a freguency width 2y . Since the wave.
at g also interacts with atoms over a frequency range 2y , the

total width of the gain reduction at a)2 is iy, or la in Figurc

5. This of course agrees with Bennett's reviged "hole burning" argu-
ments (2). The sign of the index correction shown in Figure 5 is cor-

rect, since for @, > Wy the atoms removed by the field at w would

have made a pogitive contribution to the index at w2 .
It is interesting to note that, from the form of 5.3.2-3,

Figure 5 also applies for the corrections at ) if the sign of the

index correction is reversed, and El and E. are interchanged.

2

For the second case, with w=o" =w, and o' =@ in

2 1

5.3=1, we have

2 2
w. F. 1+ 2 cos B._ B R
=== -a 5 2 LZre { }, 5,3.2-h
0 28
o]
2 2
wlPlc 1+ 2 cos ®19 ElE2 o .
el o4 : 5 I S 5.3.2-5
o} 2E
o]
where
1 1
L= 7% ’ % = %
43
A i 5 B+ 1 5

X

2/ - 2(a + ixl) w*(xl + ia) + 3

[ w*(xl + ia) + w(x2 + ia)]

3 -
2a 1(Xl X,

5.3.2-6
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For X =X, 5.3.2-6 and 3 are equal. However for Xy # Zy s
5.3.2-6 drops off considerably more repidly than 5.3.2-3, due to the
Lorentzian denominators with widthg 24 and 2B. This behavior can be
seen graphically by comparing Figure 5 to Figure 6, where 5.3.2-6 is
plotted. The sghape of these curves 1s again determined primarily by
the TLorentzian denominators.

We can interpret this process as follows: TFor o % o' in
5.3-1, we have #.w‘ ln 5.1-2, and therefore we see that this cor-
rection to the zero field pdpulation inversion density is a traveling
wave with frequency w - ' &nd propagation vector k - x'" . This
effect might he called a "ecoherent modulztion" of the population in-
version. This modulation gives rise to a modulation of the gain at
all frequencies, and Wiil generate "gidebands" for all waves present
in fhe medium. These sidebands will be separsted by =+ Aw from the

1

frequency of each wave, where Aw = @' -~ @" . For the present case,

Al = w, - w, , and, for example, the sidebands of the wave at ©

1 2 2

will be at ml and 8@2 - @ . The sideband at W, appears as

corrections to the gain and index at that freguency, given by 5.3.2-4

through 6. The sideband at awg - wl gives rise to a fleld introduced

at that frequency, and this is the remaining term which we have yet to
discuss. Of course this same interpretation applies for the corre-
sponding procesgses In the case of stationary atoms, treated in 5.2.

The term in the polarization atb amg -w, is given by

L

Ww=w = ®, and " = o in 5.3-1:
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R 1E§ |
== =F _ o (GF) —=Re { } , 5.3.2-7
Pe ¢ 2
o) 2R
O
o
w,.- P E:
21 21c
L2 o (eF) = m{ } . 5.3.2-8
O i
O
where
1 1
L Qs Xl'X2+ =%
A+ L S B+ 1 5

2 1 +
Pa + ?i(ya - YL) ilx

we(2x, - x + ia) - W(Xl+ ia) w*(Exg- x,+ ia) - w*(x2+ ia)
x <) s
L 2
5'302"‘9
and (GF) is the geometrical factor 5.2.2-19. As in the case of
stationary atoms, for the introduction of the new field we are inter-

ested only in the magnitude of the polarization,

2

W, P E.E

21213 12
o 5. g (aF) 2 I{ }l s 5.3.2-10

o] EEO

and the discussion given for that case regarding Ak , the phase
fluetvations, ete., holdg completely. The magnitude of 5.3.2-0 is

plotted in Figure 7 as a function of x for several cases, along

2 2

with S21 of 5,2,2-27, the comparable guantity for stationsry atoms.
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B. Two Waves in Opposite Directions

For this case,-we sometimes have k' - k" A, 2k' go that the
results of II.2 must be used. The processes involved are of course
the same ags in A , and it will be interesting to note the differ-
ences in the response caused by reversing the direction of one of the
waves.

We consider first the saturation effect of one wave on an-

obher. Tor w = w2 ,w' = w = w we find for the saturation effect

l 2

at W, due to a wave at wl traveling oppositely,

w,P 1+ 2 cog 6, EE
Zspi = - ; 12 12p Re §f 1 , 5,3.2-11
0 2B
0
2 2
W, P 1+ 2cos 8, EE
—%2—2- -« - 12 12my{ 3, 5.3.2-12
0 2R
o}
where
wh(x + ia) + w*(x.+ ia)  wix, + ia) - w¢(x_+ia)
{ } _ a 1 2 + 1 2 .
v = +
2a + 1(xl + Xe) 1(Xl xg)
5.3.2-13
It iz evident that 5.3.2-13 has its widest excursions near Ry = o= Xy
compared Lo Ky T X ror both waves in the same direction (5.3.2-3).

If in 5.3.2-13 either Xl - - xl , or XE = - Xy

gation, 5.3.2-13 and 3 are the same. Thus the Flgure 5 curves also

with complex conju-

apply for £.3.2-13 if we veflect tThe curves through the wvertical axis
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and change the sign of the Pc curves, for the same values of X .
This is the behavior we expect, since waves at + x and - x interact
~wilh (he same atoms.

An interesting limiting case for the saturation effect of two

oppositely traveling waves is when they have the same frequency. This

corregponds to a gingle cavity mode excited, and we find

mP . =3

3 F
22’2_-043——-2—%,_1111{ o, 5.3.2-1h

PE

O

with
B wh{x + ia) Im w(x + ia)

{ 1= a[ T - = - 5.3.2-15

where we have agssumed waves of equal amplitude and polarized in the
same direction. 5.3.2-15 is plotted in Figure & for several values of
a . Note that this process has a much narrower frequency width (es-
pecially for the smaller values of a) than the self-saturation
plotted in Figure L. Tt is this festure, along with the fact that the
two self-saturation processes affect the same atoms, which gives rise
to the well-known "Lamb dip" observed in laser oscillators (12,35).

With @ =" =w. and @' = in 5.3.1 we have the modu-

2 1
lation effect at ml » for which
2 2
. P 1+ 2 cos” B E R
L Lee _ g 2l m{ )}, 5.3.2.16
2¢ ¢ 5 2
Q =B

e}

L

where, from II.Z2,
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{ 1=

[ 2/97 - 2(a + ixl) w*(xl + ia)
AB |- A+ i(xl + xg)/E

W((x - X )/2 + iA) - w¥(x
(B + 1(xl + xg)/2

+
l ia)

X+X X o+ ¥,

1_(]3_11 )w*(x +1a)+(B+1'L2d)W(X2+ia)

+

i(xl+ Xz)w(fgé—fi + ) ((a+zA— i—=

Ze 1

Y(B-1i )(a + ix

3x. - Xy X+ x X~ X

- (atAt+i —é-—)(Bn %—2)(&- L)+ 16, + x ) (A%

X (2a + i(xl - 1«:2)) + same with A, B intercha,nged] .
5.3.2-17

5.3.2-17 is plotted in Figure 9 for several cases with X, = O, and

compared with the corresponding curves for two waves traveling in the
game direction. We see that the effect for waves in opposite directiong
is more than an order of magnitude legs than for waves in the same di-
rection, but extends over a wider freguency renge. Thus the effects of
Doppler broadcning sre considerably different for these two casss. In

Figure 10 we have plotted several cases of 5.3.2-17 for X = 1, and

one case for a range of =, values to demonstrabe the interesting

1

qualitative change in the curves with x, . This btehavior is also

L

different from that found for waves traveling in the same direction.
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5.3.2-9 ig replaced

For the medulation effect at 8&)2 - wl ;

by the complicated expréssion

AB . xl; X, Exg-.xl a x,.+ Xy
?{‘(B-i 2ol RS RS EEFSEEE S VO
e I ] g e T
X_(A—%-ix+x) (a-—lx)-l-(a+A-1%Xl;Xd)(B-1Xl;X2}
X(—%+12X-X) [_a+21X“32Xl] (-§a+ 21 Xlgxg)

X[A - 1%—%%}}"'%‘@ [- (B + i Xl; XQ) w*tEXE; x + i %}

x+x x+x

+l%-A+1———g—-—)w*(x —1—1&)+(—§-a+il3 ]W{X-XE”"iA”/

7x2~ 5xl X+ X Xl- 33:2)

[(%+A+17—-——](A—-—-1—*]—'—6—2](a+ ix2)+(a+A-i—2—

Xle s L5785 s S 4 (s s 2T
X[- -% 2 - i Xl-; XEHA - i Xl_gx }] + gzame with A, B, intercho,nge;i

5.3.2-18

The magnitude of 5.3.2-18 is plotted in Figure 11 for several casges.
These curves should be compared with Figure 7 for the case of two

waves in the gsame direction. We see that the effect for dppositcly
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directed waves i1s more than 50 times smaller and again has a consider-
ably larger frequency ﬁidth.

It is interesting to again consider the case of a cavity mode.
In this case both 5.3.2-17 and 18 give modulation effects at the mode
frequency. The dependence on fregquency is obtained by putting
x, = X, = x in 5.3.2-17 snd 18, and the resulting curves are shown in
Figure 12. Again we gee the relatively stronger interaction near the
origin.

We have not in the above discussion considered the perpendicu-
lar components of the pelarization, or the resulting components of the
fiald. These effects are treated exactly as for stationary atoms,
uging the proper geometrical factor and the magnitude of the response,
and need not be considered here.

5.3.3 More Than Two Input Waves

As in the case of stationary atoms, we will not consider ex-
plicitly cases where more than two waves are incident on the medium,
since no new physical resulte are to be expected. The results of
Appendix II can be immediately applied to study any particular term of
interest. We should note, however, that we will have the sams guali-
fative dependence on the directions of propagation as was found in

5.3.2 o

5.4 Discussion

In this chapter we have studied in detail the lowest order
nonlinear processes for both stationary atoms and atoms with a

Maxwellian velocity distribution at the time of excitation. The wvarious
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nonlinear processes encountered have been briefly interpreted in terms
of saturation and coherent modulation of the population inversion
density.

In summary, the presence of two or more strong fields induces
correciions to the gain and index of refraction for each field. In
addition there are in general new fields introduced, at the old fre-
quencies with perpendicular polarizations, and at new frequencies. The
fields at new [reguencies are limited Lo propagatlon directions close
to that of the inducing polarization, i.s., small Ak . This "phase
matching” condition and the existence of the perpendicularly polarized
fields congtituie an effective anisotropy of the medium, induced by the
nonlinear processes. For gaseous laser media the difference between
521 and 252 - El wiil be small, except in the caseg where, for
example, 2k, - kK, ~ 3k, . The latter cases were also cheracterized by
a particularly weak nonlinear response.

Several of the nonlinear processes which have been discugged
should be obsgervable in practical situations. TFor example, the perpen-
dicularly polarized wave couvld be observed with an appropriately ori-

cnted polarizer and beeating techniques. As anobher. example, the new

field at ang - 0 should be observable even under conditions where

1
the lowest order nonlinear corrections are sufficient, wviz.
2 2y 2 ' .
(El + EE)/EU <1 . If lwl - mg << T&,Tb, 5.%3.2-9 hecomes essential-

ly unity, and neglecting the nonlinear corrections to the phase-

independent gain and the geometrical factor, we have st line center
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2
E
aEEl:a.E gt .
oz 21 OEE_ : T
0
5.&—1 gives
2
E_E
10720 2z oz
EEI(Z) = - ""-‘—2— (e - l) c ’ 5.}4'-2
hEO

where ElO and EEO are the incident field strengths. Using the
values of Eg of Chapter h, and requiring Ei 2/2£§ < .1 we find:

J
for oL = 1 for the 3.4 micron transition in neon, we obtain .05 uwﬂm?

output at Bml -w and 2, - ® for L pchm2 input at o and

2 2 1 1
w2 3 for QL - .05 for the .633 neon transition, inputs of about
5 mw/cm2 give outputs of about .02 mw/cmg . Of courge larger inputs

are easily achievable, and we ghall return later to consider the
possible obsgervation of fthese effects., We shall continue now with
some more digcussion of the physical interpretation of the nonlinear
effects in 5.4.1, and of the longitudinal field in 5.4.2.

5.4,1 Physical Interpretation

The nonlinear response for moving atoms ig very dependent on
Lhe direcliocns ol propagation of the interactlng waves, in contrast
to the response for stationary atoms. As previously discussed these
effects cannot be adequately treated using a distribution of atomic
resonance freguencies. This makes the inhomogeneous Doppler.broadening
somewhat unigue from other forms of inhomogeneous broadening, charac-

terized by such distributions. The inhomogensous Doppler broadening
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is.charaéterized by nonlinesr interaction ffequehcy widths much smaller
than the width éharactérizing linear amplification.

We have pfeviously.interpreted gome of tThe nonlinear processes
in terms of a gain modulation asscclated with waves in the population

inverslon densily, p « For two lncldeal waves clusely spaced

aa ~ Pbb

in frequency, the atoms see a field with beats at the difference

frequency ml - Wy In fact, the beats move through the medium with

the propsgafiion eonstant Ak = k¥ - k., . For An << Yooy the time

between succegsgive field maxima for one atom is

__ beat wavelength
T group vclocity

Sﬁnce the velocity 1s essentially that of light in free space,

21 1 L 1
T B B e S , ——
a h f .
cA ) 'y T
where AL = &m/Qﬂ « Thug the peopulation inversion can capily follow

the beais in the field, for Aw << Ya’Yb » resulting in waveg in the
population inversion, traveling with the beats in the field.

The effact of these waves was previbusly discussed in terms
of a gain modulation which generated sidebands for all the waves
present in the medium. Another interesting viewpoint is that they
represent a moving diffraction grating, which scatters the incident
light into the sideband frequencies. This interpretstion also gives
the proper propagation direcbiowus [or Lhe sldeband waves.

Some further insight into ftThesge nonlinear processes can be
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obtained by thinking of them as traveling wave parametric processes
(36). Thus the waves in the population inversion density constitute a
~time-- and space-varying propagation medium. The parametyric effecte of
such a medium are well known (36), and result here in the "sideband"
waves, with thelr characteristic propagation directions.

5..2 Neglect of Longitudinal Field

In 5.2.2 we found a component of the polarization along the
direction of propagation at one freguency due to the field at znother
freguency. According to the equations of motion 2.3.2-20 and 21 for
the fields, this component of the polarization ghould induce a longi-
tudinal field. Actually, this longitudinel field will be much smaller
than predicted by 2.3.2-20 and 2], and this is because the latter
equations were derived by neglecting the (v - E) term in 2.3.2-8,
with the simultaneous assumption that the longitudinal field would be
of higher order, We ghall now show that this argument was indeed valid
and that the longitudinal field is of order aoc/m < 10—6 compared to
the other induced fields.

If we take the vector k +to be in the z direction, the term
vi{v - P)/a0 in 2.3.2-9 becumes

aPcz 2
- {2k Syt k PSZ) sin(kz - ot + p) +

5.4,2-1

+ (2k 5. - k Pcz) cos{kz - wt + ) ,

and including this term in. 2.3.2-15 gives the field equations for the

z component of the field:
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2 o2 OP 2
2 w W 2k sz  k
(k - —5);EZ - 2 Pcz I € Pcz ? 5.4.2-2
C e ¢ 0 o
zkaEZw“’QP E—KBPCZ-K—DP 5.4,2-3
5z 2 “sz & 0Oz € sz TreT
€.c o o

The eguationsg for EX and Ey are the same as 2,3.,2-20 and 21. With

the same approximations used in 2.3.2 we find for 5.L.2-3

OF
z (n - 1w 1 Cz
S5 = - sc PSZ - . S o 5.4,2-4

where n 1s the index of refraction. Using the linear n , 5.4.2-k
becomes

&k a T(mo - W) 1 BECZ
dz e P )2 Psz - E; oz : 5.h.2-5

or” + (mo -

From 5.3 we have

2
1 o 3 O BBy
e Fez<5 % —= - 5.4.2-6
0 0 E
o)
2
L P = 3 Eﬁg EeEl S.ho2-7
=2 ——— p) a Terl=
€, 5% 5 W Ei

where freguency-dependent factors of order unity or less have been

neglected. Substituting 5.4.2-6 and 7 into 5.4.2-5 and assuming linear
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amplification of the filelds E and E, , we find

2 1
3E o BoE (o - o)
Z~§ o 21 -0 _ D 5 4,08
5z =5 " 2 2 22 ’ TTeE
By + (mo - w)

Since the factor in square brackets is again of crder unity, we have

3 oo BoEm
z., o 21 L
oz < 2 ’ 5.%.2-9
EO

The corresponding nonlinear contribution to the transverse field ig,

from 5.2.2-16,

aEX EgEl
b zogo 2 5.4h.0-10
O

Comparing 5.4.2-9 and 10, we see that we will have

=z 10 s 5.h.2-11

tdl =
Wolm
2

where EX is the transverse component induced by the nonlinearity.
Since the latter is small, the longitudinal field EZ will be negli-

gible.
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CHAPTER SIX

STRCNG NONLINEAR EFFECTS

In Chapter 5 we have studied in detail the lowest order non-
linear effects by making a pertﬁrbatiqn expansion of the response and
keeping only the lowest order terms which were nonlinear in the field
strenéths. These terms were of order EE/Ei or less relative To the
linear response ot Chapter 4. Thus the lowest order solutions are
valid if E2 << Ei s and if the latter condition is not fulfilled,
these golutions will not be mathematically valid (the perturbation
golution will converge alowly or not at all). We have already seen
that this condition is strongly violated in several practical cases.

In this chapter we shall first examine two different ap-
proaches to the study of strong nonlinesr effects (gection 6.1). Then.
using an, approximate solution, we study several strong nonlinear ef-

fects in sections 6.2 through 6.4. The results are disgcussed in

section 6.5.

6.1 Two Approaches Lo the Study of Strong Nonlinear Effects

In this section we first examine the perturbation expansion
as a means of studying strong nonlinear effects, and then introduce an
approximate golution which will be used in later sections to study
some strong nonlinear effects.

6.1.1 The Perturbation Expansion

The integral equation formulation of the eguations of motion
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for the medium, given in Chabter 3, is convenient for obtaining the
perturbation expansion soiution for the response of the medium te inci-
dent fields. As previously indicated, equation 3.3-21 for the popu-
lation inversion density can be iterated, and the resulting series of
terms can be used 1n 3.3-29 to give an. expression for the response in
the form of an expansion in powers of the field strengths. The lowest
brder nénlinear terms in this expansion were used in Chapter 5. Even
though thie expansion will not bec mathematicelly wvalid for strong
nonlinear affects where E2 > Eg » We can reagonably expect That it
will give an indication of the higher order physical processes involved
Thug the next higher order terms beyond those considered in Chapter 5,
containing the fifth power of the field strengths, will include terms
in the response at freguencies 30, - 20., 20, + . - 20

1 2 1 2 3°?
20 ete. Just as some third

and so

on, as well as terms at 0,5 Oy n =Wy

corder terms at oy represented saturation of the response at

some of the fifth order terms at wl, 2»2 - mi s

l 2
ete., represent

saturation of the response at these frequencies. Similarly, other

fifth order terms at Bml - 2n ete., correspond to new, higher

2 >

order effects. In general, for two input fields =t and and

1 2

negiecting the fields induced at other frequencies, the terms contain-
ing the 2n + 1 th powers of the field strengths contribute to: the

+ n&b

higher order (mOdulation~induced) response at o 1

1 - @) and

m2 - n(mi - wg) s the first order saturation of the response at

w +(n~L)(a)l—m

1 and w, - (n - l)(wl - wz) , the second order

o)

saturation of the response at @, + {n - 2)(wl - wg) and
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Wy - (n - 2)(ml - mg) )+« «, and the nth order saturation of the
regpoenge at wl and we.

Thus the higher order terms of the expansion are ol Lwo
rather distinct types, viz., thosge which introduce higher order effects
and those which contribute to the saturation of a lower order effect.
Also, it is evident that the latter type includes essentially all of
the terms. These characteristics suggest that if wz could somehow
gum over all the saturation terms giving the response at some given
frequency, then the remaining terms would each represent the response
at a different frequency and would be convergent. The results obtained
in thils chapter verify this conclusion, although they are not obtained
by explicitly summing terms of the perturbation expansion.

We note that in general the summation would be very difficult
to actually carry out, espeecisally for the case of moving atoms, due to
the large number and complexity of the terms involved. In some simple,
limiting cases it might be feasible to perform the summation, but the
process would in any case be rather tedious. The approximate solution
which will now be introduced surmounts gome of these difficulties and

gives results valid in certain limiting cases.

6,1.2 An Approximate Solution

Our previous results have indicated that the source of the
nonlinear effects we have been sbudying is saturation and modulztion
of the population inversion density. Thus we are led to consider

again the integral equation 3.3-21 for this quantity:
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o o o
J%lgﬁz

G 0

) [iA]
paa(z,’c,z) - oy (ot ¥) = Nu(v) - (-é%)

vt -‘f‘ t
| 1 b1
X (e T )( Paalirl = by = To¥) - P (2% - o) - 350)

X T

!
w,w" 1

(Eo ) E‘“)(Eo ) E“D') [em tilo-ot - (E-k) -t

-[r - i(ub -w' ko X)]tg }
e + ¢c.c. B

6.1.2-1
where

A=(k -x") v r-(-w)t+o-o . 6.1.2-0

Examination of 6.1.2-1 shows that the solution is characterizad hy the
rate of variation of paa - Py compared to LIS and Ty ¢ rates

slow compared to Ya’rb will appear strongly, while rates very rapid
compared to T o1y will have very small amplitude. From the pertur-

bation sclution we know that Poa contains terms at frequencies

" Py
like n{w - w') , s0 Lhat 1f we restrict ourselves to frequencies
such that |o - o'| << T, T, or lo - wt] > ¥ s¥y, » then we can
predict fairly well what the results will be. In particular, if

' . .. R . )
](n - | > T Ty there will be negligible wvaristion in paa pbb
at © - ' ; while if |o - 0'| << T,sY, » ‘the variations in

Paa = Ppp will be so slow as to have no effect on the integral. 1In

the latter case, we can remove paa(g,t,z) - obb(gjt,z) from the
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integral and obtain

PealTsts¥) - oy, (x,6,v) = MW(v) -

W - t -7, T
0 al bl

i

iz (B BfE B e n et ok oy

W' w l @' ©
lr - ilo, -0 + k- v)]t,
X e : + c.c.

65.1.2-3

Performing the integration and collecting terms gives

Daa(zbt:E) - pbb(E’t’E) = NW(_\{)

(mo ¢ Eb ) Ew
X{l+ T |==
w,m'2h W

B, Bafeil(E-E) - x - (o -w)eie - gl
W' )[ T - 1(wb -0+ k' v)

-1
1 1
,>< (Ya_ i(w - - (5 - E’) '-E) T - i - o - (k X X ))+ c,cJ

6.1l.2-4

According to the above discussion, we should néglect terms in the
summation for which |w - '] > T oY, » and keep the terms for
which ]w - m'] << ra,rb . For intermediate frequency separsations,

6.1.2-4 will be only approximately wvalid.
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Ffom 6.1.2-4 we see that the population inversion density will
contain all harmoﬁics of each frequency difference, w - o' , for
~which the harmonic Trequency is small compared to Yo ¥y s and will
contain higher harmonics to a lesser degree than is indicated by
| 6.1.2-4, We will find below that the amplitude of succeeding harmonics
decreases rather rapidly even according to 6.1.2-k,

In order to calculate the polerization, we use 3.3-39:

[s]
w
Q
Pap(Zit¥) = 575 fdtl PoalZot - tu¥) - oy (2% - t,3)
o}

. i . - - + 3 - .
B, B ik - r -wt+ o) - [y 1(c0D o+ Xk _x:)]tl
X = e
- o
6.1,2-5
Since paa - Py will be varying slowly compared to Y , we may bake
paa - pbb out of the integral, giving
©s

Oy (L6, ¥) = 52 [Paa(z oY) - IRERND)

6.1.2-6
P . E ik - r - ot + o)
XZ|=—4 = — .
o iy Y + i(u)0 -tk ov)

Using 6,1.2-4 in 6.1.2-6 gives us an approximate solution, subject to
the above restrictions. Although this solution is good for arbitrary
_E vectors, it is simplest for waves traveling in the same direction,
so that k - k' &~ 0, and we will for simplicity consider iny this

case., I'or other cases we can use the gualltative result of Chapter 5,
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elong with the saturation characteristics to be derived below, to
obtain a good picture of the expected results. Furthermore, since the
interpretation over all dlrections of 30 would be very compilcated
end would mask the basic sabturation characteristics we want to study,
we will not attempt to study nonlinear polarization effects in this
chapter, but rather will rely on the results of Chapter 5. Here we
replace EO(EO . Em) in 6.1.2-6 by EDP§/3 in order to get the
correct linear result, and replace (EO . Ehg(fb . Ew’) in 6.1.2-4 by
2

Po%ﬁ%n' for simplicity. With these simplifications, 6.1.2-1 becomes

Poalmtsw) - o (2:8,3) = W(y)

2 3 T Ml . i i 1 Hi -1
1 PESES op I:elt(_lﬁk). r- {0 - Y- +CC}
(Dr,(.l)" u‘hg Ta,Tb -r - 1(('00 _ (D" + }_{” . E)
-1
T E E , iA
= MW(v) (1l + & ©_w - < + c.c{
6.1.2-7
whera
A - (E' - E") . 2 N ((D' _ (D”)t + CP' - Cp" . 6.1.«.2—8

Similarly, from 6.1.2-6 the polariration becomes
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Bz, t,v) =B (o4 (x,t,7) + ot (2,6, w)) >

w P° ik « r - ot + o)

z
(o] =13 S
= 77 (Pelotv) - o (xt,7) B2 B o s B

6.1.2-9
6.1.2—7 and 9 form the approximate solution which will now be used to

sbudy several slrong nonllnear effects.

6.2 Saturation with a Single Traveling Wave

With a single traveling wave £.1.7-7 gives

paa(E’t’y—) - Dbb(?—’t’x) =

el
M

1 +

I‘.=-:|||:-‘ZI
o n

Putting 6.2-1 into 6.1.2-9 gives the polarization components

@P a EW(y) r°
EE:SC -2 5 20 — 5 s 6.2-2
%5 vy (1 + ®E /’FEO)+ ((_no -m A+ ko)
-+ k -
P, o Odo E W(E) T ((,DO W k X)
2e,  Tw 2 2.5 5 6.2-3
fa) T(1+E/EO)+(GQO_@+E.X)

6.2.1 Stationsry Atoms

For stationary stoms, 6.2-2 and 3 along with 2.3.2-20 and 21
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immediately give

o Y
=0 B — £.2.1-1
gg Q T2(l + EE/EE) + ( _ a))a
(o] Q
and
o - o)
alw) =1 - S o o . 6.2.1-2
CO L B + (o, - @)

1T we put E2 = 0 in the denominator of 6.2.1-1 and 2, we find the
linear results %.2-11 and 12. IT we expand the denominalor Lo [irst
erder in EE/Ei » we oblain the lowest order nonlinear corrections,
5.2.1-8 and 9, except for the geometrical factor 3/5 which arcose from
the. average over directionsg of Eo » neglected in the present calon-
lation.

Writing the intensity as

I = & C E 6.7.1-3
and defining a relative intensity

I=1/I =E/E , 6.2.1-L

we can write £.2.1-1 =g

2
Zxor

£.2.1-5

H| =

oI _
D (-0

If o, =ow, 6.2,1-5 becomes
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which is equation 17 of Gordon, While and Rigden (16), with
=-ko/eJE . The latter authors obtained this result using a rate
equation type appreach.
6.2.1-6 can be integrated (P8) over an amplifying length L
to provide a relationship between the input and output relative in-

tensities, Iin and I out ? v1z.,

2o L = zn(Iout/Iin) S SV 6.2.1-7

Using 6.2.1-T, we can plot curves of the gain, defined by

- F 2.1-8
out/Iin ’ 6.2.1
as a function of Iin + The small signal or linear gain is
& L
o = e 9 . Examples of such curves for several values of Go are

shown in Figure 13.

6.2.2 Maxwellian Velocity Distribution

For a Maxwellilan distribution of excited atoms we use 4.1-1
and integrate over the velocity components perpendicular to k to

obtain from 6.2-2 and 3

R
5o P, o= o T I - © av 5 6.2.2-1
oo ® Vzu (1+E/E ¥ (o, - o+ V)
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2,2
) . L (©, -+ kV) e /% gy
== P = - =g Er— j . 6.2.2-2
o ¢ 00 g P+ B ED) 4 (o) - @+ k1)
- Defining

ve = v2(L + EE/Ei)/(kou)g , 6.2.2.3

6.2.2-1 and 2 become

® aE aEJE

5 o P = —5— Re w(x + ip) 6.2.2-4
c ¢ .

e - - o OtoE admt Tm W(X + lb) 3 6-2-2‘5

where x = @bo - m)/kou s &= Y/kou , W is the complex error function
as before, and the results of Appendix I have been used. Using
a =0 adT , 6.2.2-4 and 5 in 2.3.2-20 and 21 give

%% - of Re w(x + ib) , 6.0.0-6

2.2
(1 +E%/ED)
nlw) = 1 - % o Im w(x + ib) . 6.2.2-7

In Figure 14, (1 + EE/Eg)%/(aE) times 6.2.2-6 is plotted for several
values of a and compared to homogeneous saturation. For E << Eo s
£.2.2-6 and 7 reduce to the linear results 4h.3-14 and 15. Using II.3-k
to expand 6.2.2-6 and 7 to lowest order in .EE/Ei gives the lowest

order nonlinear corrections of 5.3, again without the 3/5 geometrical
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factor.

A

, .
For b= a(l + Ed/EO) << 1, we can use I-18 and 19 to

expand 6.2,2-6 and 7 to first order in b , obtaining

2
E g e* - = (1 -2xFx)]| 6.2.2-8
‘ (1+E /E Y

2 2 2% —XE
n(w) = 1 - (—% a|-= F(x) - 2a(1 + E7/E0) x e . 6.2.2-9

These should be compsred with 4.3-17 and 18 for the linear case.
6.2.2-8 and 9 are consistent with the "hole-burning" description of an
.inhomogeneously broadened line (2). Thus the gain comes primarily

from those atoms whose velocities allow them to interact strongly with
the field, while the phase shift {index of vefraction) arises primarily
due to atoms outside this region. Correspondingly, the primary gain
term is saburated, while the primary index term is not. Also, the
phase shift due To atoms within the hole increagses with the width of
the hole, while the contribution of atoms outside the hole to thes gain
igs to first order independent of the width of the hole.

Using 6.2.1-3 and 4, 6.2.2-8 becomes

S 2

1 oFf '

TS = oy ——_—é ( - 2xF(x)) . 6.2,0-10
+ oz l+ .Jg)

For x =0, 6,2.2-10 becomes
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1 3% x 2a, *
= = 1 -2 (1+ %) s 6.2,2-11
I 0z (l + I)% N

which is equation 16 of CGordon, White and Rigden (16), with a = ¢
and 2 = k_ . Equation 6.2.2-11 can also be integraded (16,28),

giving

ool = 2(1 + zout)% - o1+ zin)%

T
(1 + Iin)§ F@+E % -1
+ 4n 5 ‘ — 6.2.2-12
r 22 (z -I, +t4nI /I )
4 - out in out’ Tin
Again we can plot gain versus ;in . BSome of these curves are plotted
L

in Figure 15 for several values of the small signal gain GO = @
for a = 0 . We have algo plotted some experimental points, due to

Hotz (37), for the 3.39 micron line in neon. There is excellent agree-

ment.

6.3 Strong Nonlinear Effects with Two Traveling Waves
Por the case of two waves traveling in the same direcllomn,

6.1.2-7 gives, according to section 6.1,
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Pae (Tt ¥) - oy (2,t,¥) = NW(y)

-1
2 2
E] 2 E 2
X|1+3— 4 + = t
. 5+ — 5
E, v (o)~ +k - v)" B 7 o+ (o -w, t K, V)
603‘1
if |wl - 2] >> T, ¥y 5 and
PoalZitsx) - py (x,6,v) = WW(v)
2, .2 -1
ES + ED + ' -
Y lietl 2 ek By coshy, r°
7 2 ’
E- y" o, -0+ k)
6.3-2

if Iml - m2| < 7T, T, » where ® -

1= Do has been neglected compared

to v in 6.3-2 and
bip =y - k) »x- (o - me_)t T -9 6.3-3

6.3.1 |wl - aél > Ty

Substituting 6.3-1 into 6.1.2-9 gives
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w. P

171
= i . - - - . . - o+
e s ., W(v) T[Elr_31n(§l x wlt-¥ml) (mo ot k) E)COS(El r-wt qiﬂ

-1
(o]
5 Ei ES o+ (w -w + El ©v)T 5
XAr |1+ 5+ L +{w -tk o)
E2 E2 2 ¥ (o - @, + )2 o e
o} o] T 0 —2 -
6.3.1-1
for the polarization at ) The polarization at Wy 1s obtained
from 6.3.1-1 by exchanging subscripbts 1 and 2.
For stationary atoms, we find immediately
OE o YEE
L = o 1 6.3.1-2
oz 2 2 2 2l ?
E ES v+ (o - w,)
2 1 2 o] 1 2
LA - B - Ry 5| * (o, - o)
By B ¥ 7 (&o - mE)
o) o1 arfo, - ml)
L ®1 5 ° B2 ¢+ (© - o )2 .
L 2 o] 1 2
Yy il + =+ = + (o - w)
EE E2 2 + (w s )2 G L
0 fo! T 0 2
6.3.1-3
with corresponding expreasions at Wy Sinece for this case one or

both fields must be strongly off resonance, these results are not of
much practical interest. However they do show the effect at one

frequency of saturation due to a field at another frequency, and
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indicate that both fields interact with the game gtoms. With E2 =0,
we obtain the single—waﬁe results 6.2.1-1 and 2. Expanded to first
order in -Ei/Ei and Eg/Ei-, £.3.1-2 and 3 give the lowest order
corrections 5.2.2-2, but of course do not include a contribution due

to the modulation term 5.2.2-3. Again the geometrical factors are

absent.
For a Maxwellian velocity distribution, 6.3.1-1 gives
o 2
cal -
aE; - 1 _ = Y dy 6.3.1-4
oz T 2 2 2 2 ’ ot
B ES  EZ a” + (x, + ¥)
“@ 2 1 2 1 2
a” |1+ =+ = + (2. + y)
2 B o2t (x )2 1
0 o] 2
x _y2
o) o1 L I e (2 * y) ay
1 mln_m E2 E2 a2 +o(x + y)é
2 L 2 1 2
a 1+ —= + = S L C
EE E2 2 4 (X + )2 1L
0 o 2 7
6.3.1-5

Although 6.3.1-4 and 5 contain quite complicated integrals and will ncit
be evaluated here, we can make some qualitative sbabements about the
effect of the field E, for the case a(l + Ej/E. + E;/Eg)% <1,

For this case, the integral in 6.3.1-L is determined essentially by

the contribution near y = - x Defining a new varisble z = Xy + v,

1 -

£.3.1-% becomes
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dE. «aE. . ~(z '3"1)2
1 1J’ e ‘ dz 6.3.1.6
dz. T T q; 2 ] : T
B E 2 2
-= P 1 2 a + z 2
a1+ =+ -2 + oz
B B° 8% + (x. - x. + z)g
o} o} 2 1

Thus the integral is determined primarily by the contribution near

z = 0 . Limiting the integration to this range gives
2
) & -X
El.n- OéaEl =] 1 dz
s 6.3.1-7

0z Tt 2 2

& 2 El E2 a2 2

e Lot ==+ —= - s |tz

— —_ + _ [
E, E a (x2 Xl)

where we have put 2z = 0 except in the rapidiy-varying denominator.
We can now extend the limits of integration in 6.3.1-7 to = ® without

appreciably changing the value of the integral, and obbtain

BE‘_| oE. e )
57 - 3 6.3.,1-8

2

a® + (x2 - Xl)2

which reduces to thc dominant term of the single-wave resull, 6.2.2.-0,
for E2 = 0 . Thus the saturation due to the field E2 is

a%/(ag + (X2 - Xl)g) = TE/(YE + (w2 - @l)e) as strong as that due to
El . Bince lwg - wi‘ >> v , this is amall. This is in agreement

with the inhomogeneous character of the strongly Doppler broadened

lire, and is markedly different from the results for the homogeneously
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broadened line, 6.3.1-2,
The integral in 6.3.l-5 for the index of refraction is more
difficult, due to the facbor (xl + y) din the numerator which makes

the contribution cubtside the range v ~ - x. more important. By

1
comparing 6.3.1-5 with 6.2.2-2, we see thst the Tactor

(a2 + (Xl + y)e)/(a2 + (xE + y)g) in the denominator of 6.3.1-5 be-

comes very large near y ~ - x. and effectively removes the contri-

2

bution to the index of refraction which wouwld have come from that range

of integration. The width of this negation, relative to the width of

the integral is approximately aEQ/EO . The =saturation effect of EE

on the index at ml will therefore be small, since we have assuned
2 % _ .
a(l + El/Ei + Eg/Ei) << 1 3 and the index will be given essentially

by the single-wave value, 6.2.2-9, which is very nearly equal to the
linear index, 4.3-18. However, the effect of E2 in £.3.1-5 is in
general more pronounced than that of El » 8ince the latter comes from

the range of integration y~ - % where the integrand is nearly zero.

1

The above discussion has a simple physical interpretation in
terms of the "hole-burning” ideas introduced by Bermett (2,15). As

pointed out in the discussion following 6.2.2-9, Llue effect of E, on

the index atb 0y is small because the latter arises primarily due to

stoms outside the range of saturation of El . The effect of E2 on

the index at ¢, is small because for aEg/EO << 1 a relatively small
humber of atoms is affected by the E2 saturation. If aEQ/Eo be-
comes larger, the effect of E2 correspondingly increases because more

atomg are affected.
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Another interestingrcase which we shall mention only briefly
is the following: if we repeat the derivation of 6.3.1-U4 for the case

~of twe waves traveling in oppogite directions, we find

w 2
OE al -
1_ 1 I eV ay 6.3.1-9
oz Tt 2 22 2 ‘ e
-, E] Eja + (x *7v) -
a” |1+ =+ = +(x -I-y)
E2 EE a2 + (x. - )2 1
o] o] 2 4
The interesting case arises when Xy = = X, in which case 6.3.1-9
become s
2
JE, | el . -
LR p— e gy 6.3.1-10
oz T 2 2 ’ o
o 2 El EE 2
a” |1+ 5+ = |+ (x, +¥)
E E
o} o

We see that this is the same as the single-wave results, 6.2.2-4 or
6.2.2-8, except the saturation is determined by the sum of the intensi-
ties of the fields. Thisg is of course physically dus to the fact that
for this case the gain for the two waves is determined by the same
atoms, even ‘though laﬁ," ¢b| > v,

6.3.2 ]wl - mél <7, Stationary Aboms

b ?

Subsituting 6.3-2 into 6.1.2-9, we obtain for this case
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wP(r,t) @, v

2e ¢ - 2 2
o] 5 E:L + E2 + EEJ-_E2 cosAlg o
Y1+ + (o - o)
2 o
E
o]

X E]_ T Sln(,lij_ T r- mlt * Qpl) - El(mo - wl) COS(El R CDlt " Cpl)

-+ EQ T sin(£2 tro- met + CPE) - Eg(wo - a)2) cos(Eg T - cx)gt + cpg)} 5
6.3.2-1

where in the denominator we have neglected ©; = @O compared to 1 .

Because of the cosAl2 in the denominator, 6.3.2-1 contains the

frequencies o, * n(a)o - mg) and @, * n(cnl - aag) for integrsl n .

We can obtain the terms at each freguency by expanding 6.3.2-1 in a

Fourlier series. This 1s done in Appendix III and we obtain

wP(r,t) & -
_—230‘3 = -F- [El ks Sln(_lgl e T - (L)lt + cpl)— El((i)o— ml)cos(E . r _(Dlt +[pl)

+E, 7 sin(_lg2 C T -tk cpe) - B - u)g) cos(g2 S To- ot cpg)]

2 (wo

XZCcosm[(k—_ -E-(ml-mg)t+cpl_cp2],
6.3.0.0
where
5 m
_ 2 -5 [”l ~ %y T l] o
C,‘m = 3 6.3.2-3

1+ yg + (Ejg_ + E;)/Ei alg)l f\/l - ag
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2
2E.E, /B _
B 2 2. 2y2 6.3.2-h
14y + (B] + Ey)/E]
and
y= (o, -)/r . 6.3.8-5

By expanding 6.3.2-2, we find

wP(r,t) o, © -
e =5 B Cy (vEpsid (5 tmls - k) cx - (0% mo

26,C Bf g W - 0,))0

b (oy+ mloy - @) [+ v i (- ml, - 1))+ 1 - (0 - (o) -0, bre -nlo-)|
G wl)ElCOS[£§l+ (k- ko)) ez - (oot mlwy - w,))t + g+ me,- @2D}

- (y- )8 cos] (k- mlk; - k) - 2 - (- oy - 0,))t+ (2~ nlo- 9,)]

)

(same with subscripts 1 and 2 interchanged)}
6.3.8-6

Collecting terms in 6.3.2-6, we finally have, for the polarization

induced at wvarious frequencies by the fields E and E. ,

1 2
oP {o, £ nln, - o)) o
g 1 1 2 o
2e ¢ -3 [El Cm(l * aom) * E2 Cmfcl(l * 6o,mil)] ?
6.3.2-7
wP (. % m{w. -~ o,)) a (o - o)
[ 1 2 o' o
- - + .
% o oT [31 C{t+ 3 )+E, ¢ (1 So,mil]

- 6.3.2-8
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6.3.2-7 and 8 hold only as long as none of the fields induced at
frequencies other than ml,m2 become appreciable compared to E'o B
, _
and only for m's such that m, * m(m_L - mz) << v,s7, - TFor other
m's, the polarization will be smaller than indicated by 6.3.2-7 and
8, and will have a more complex frequency dependence., Thus 6.3.2-7
and 8 set an upper 1imit on the magnitude of the pelarization at g
1’ E2 )

As previously discussed, for frequencieg other than o

given frequency due to &

1°%%
we are interested only in the magnitude of the polarization due to El

and E, . From 6.3.2-7 and 8 this ig, for @ * m(ml - we) # 05U,

WP (o, £ mlew, -o,) o
s 1 B e -2 ’_1+y2(E10m+E o ],6,3.2-9

C 2 "m$1
0
In addition, the induced fields at freguencies other than W, or
will themselves induce a saturated polarization given by
is
e o= % C E 6.3.2-10
o}
WP o (o - o)
—= - == c.E , 6.3.2-11
=2e C T =]
o
where E is the field amplitude at the particular frequency.
Using the above results in 2.3.2-20 and 21, we find
oF E C
1 21
= + 8 e =
gg— OCO El CO 5 ) 3 6 3.2-12
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OF - E_C
2 171
S5 - O'!O (E2 CO + 5 ) ’ 6.3.2—13
o Tw - E_C
o] o] 1 21
n(wl) =1 - 5, - [CO + ol B 6.3.2-14
. (0 -w E.C -
0 o) 2 1 1 -
1’1((_02) -1 - o v [CO ! "—-'-Q—E— P 6-3.2—1)
2 ol
and for & tm = * m(mi - wé) # w, or W,
aEﬂm 2
_ ! 1+ y
5. =%, B, C t—m"— [(Elcm + Ezcmil)] s 6.3.2-16
o Aw -, )
_ o) o) +m 2 o
n(&am) = 1 = Y S— ¢, G.3.2-17

+m
where for 6.3.2-10 and 17 we have assumed Ak = O because
- 2 .
sl m2‘ S oYy
Some of the ccefficients Cm are plotted in Figure 16 for

E =&., and yv =0 . PFor El = B

1 > the polarization coefficients

o
6.3.2-7, 8 and 9 are generally determined by the sum of two successive
Cm y and we ncte that this sum 1s given by the vertical distance be-
tween the corresponding curves, teking into account the log scale.
Thus we can see directly from Figure 16 how the polarization at various
frequencies changes with increasing 1eld sbrengih,

If El/Eo and E2/Eo are small compared to one, we can find

the lowest order nonlinear corrections. From 6.3.2-3 and L we find
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2 2
ES+E
L+y™ + (Bl +EJ)/E, 1+vy E, L+ty
and
2E.E /E2
c, = 172/ 7o

2
(1 + y7]
where again y = (wo - »)/y . Then, for example, 6.3.2-12 becomes

2
O GF e - |
oz 1+ ye Ee 14 yz

s 6.2.2-19

which gives the same lowest order nonlinear corrections, including the
modulation contribution, as were obtained in 5.2.2, for

o) - ap| <vpm,

Another interesting limiting case is El = EE = E and
EE/Ei >> 1 . From 6.3.2-4 we have
a ™1 - Ei(l + yg)/QEE s 6.3.2-20

and from 6.3.2-3 we find

(1 - mB V1 + yg/E)

c =(2-8 )(-1"E 6.3.0-21
m om 9] OF fl + y2
Therefore,
2,2
2, + ¢ = EO/E s 6.3.2-22

and for m, m - 1 % o ,
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+ C

m_2,2 .
C. oy { - 1) EU/E . 6.3.2-23

The polarization dﬁe to El .and E2 at each frequency is therefore
equal in magritude at all frequencies, and is of order EE/EQ < 1,
compared to the linear polarization. This of course does not take into
account the frequency-dependent decrease in magnitude for m's such

- mgl > Yor¥y - Physically, this 1s & situation where the

tha? m ml

fields are so gtrong that they drive the upper and lower levels to

equal population, so that Oaa - = 0,

Pro

6.3.3 lml - w2] << Ya,rb; Maxwellian Velocity Distribution

Substituting 6.3-2 into 6.1.2-9 and using 4.1-1, we obtain for

a Maxwellian velocity distribution of exclted atoms

o o
CDP(Lt) o 7 et dy
2e,c A . Ei + Eg + 2B B cosh 5
a® |1+ + {x + y)
=
EO

)([Ela SLn(gl T ro-opt qi) - El(xl + y) cos(gl S qi)

+ Eaa 31n(52 "It mg) - EQ(xg + ) cos(g;_2 gERREOA wg)] R

6.3.3-1

where the two velocity integrations over velocities perpendicular to
k have been carried vul, and Lhe varlous quantities have their previous
meanings, i.e., a = Y/kou,, o =0aft, x= (wo - m)/kou , ¥ o= Via .

As wag the case with stationary atoms, the polarization 6.3.3-1 contains
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the frequencies w, * m(mi - me)

6.3.3-1 in terms of the complex error Tunctlieon discussed in Appendix I,

for integrzl m . We can write

but in general we counld not sepafate the various frequenecy contri-
butions. We shall ingtead work only with the interesting limiting
case

%
2, 5P

E >

l+
a (1 + 5
E
o)

<< 1, 6.3.3-2

corresponding to a sirongly irhomogeneously broadened line, for which
we can expand 0.3.3-1 Lo flrst order in a. Using the results of

Appendix I, we find for this case

3

2 2
oP(r,t) _x° E| + Ej + 2B F cosA.,
———— = {le 1+

26 ¢ P
0 Eo
28,

- (1 - 2xF(x)) E, sin(l_zl Tro-ot ot ('_pl)

. ) 2F(x)
* By sin(hy -t k)l - S
ES + E° + 0E_E_cosd ’ 2
- 1729550 -x
- 2a |1+ = X e
2

o

< [El cos(gl Cro-ot ¢i) + L, cos(g2 T ro-ot o+ qb)]l .

|

6.3.3-3

Since for the case 6.3.3-2 the cosine terms of 6.3.3-3 are not appreci-

ably changed by saturation, we ghall dedl only with the sine terms and
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shall assume that the index of refraction is given by its linear value,

a) =1 - 2 EE 6.3.3-4

where x = (mo - m)/kou as before. We shall also temporarily neglect
the unmodulated sine terms in 6.3.3-3, but will add them again later.
In order to evaluate the contribution of 6.32.2-3 to various

frequencies present in the polarization, we need the expansion
2

o _%
+ +
El E2 2E1E2c05A12 ® !
1+ 5 - —= - = ¢ cosmﬂsl2
Eo m=g

603“3_5

6.3.3-5 is congidered in Appendix ITI, and we find for the sine terms

of the polarization 6.3.3-3

o
WP(r,8) X 2
= ! i - ° - + -
Ze_c 7 2, O (Bast Oy +omlly - k) oz - Aoy +om(ey -0t

+ (o nlo - 0)) [+ B sin] (5 - m(k - k) - 2- (o - nlo,- @)t
+ (r;ol— m(cpl- cpg))J-l" (same with subgeripte 1,2 interchanged)) ,
6-3113-6
where
m ; d m-%
, (2 - aom)(m 1)" /8/a (de ) ta) at
Cl’n = o o % ) E 3 6.3.3-7
E + E e+ £7)
1 s) Q )
nil+ 5 '
E
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d s 6.3.3-8
0
, 2l - aég
oS — 2. 6.3.3-9
&
O
and
| °E B, /B
al = . 6.3.3-10

(8} (o] 3
L-+ — —
1+ (E] + Ej}/E

An alternative evaluation of the Cé » algo given in Appendix III,

gives an infinite series expressgion, viz.,

(2 -8 Y- a0 ar2\
ot = om o o ) (bp + 2m - 1)1 6.3.3-11
= T + Je )
m B2+ e B om0 16 p! {m + p)!
1+ 1 2
E2
o
vhere we define (lp + 2m - 1)!1! =1 for p=m= 0 .

Collecting terms in 6.3.3-6, we find for the polarization

amplitudes due the fields El and E2

2

-X
Ce . . -
5 [ElCm(l + aom) + Egcmii(l + 3

cnPS(cbl £ (o) - w,))

Qeoc o,mtl)]

G.3.3-12

For my, =o & m&nl - wg) # W) or @, ; we will find o polerizebion

due to the induced field
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(DPS(im) ) —X2 2al

+m
—_—L = E, ¢' . 1 - 2%F . 6.3.3-1
Qeoc e dm o e ( * (X)) 3-3-13

Using 6.3.3-12 and 13 in 2.3.2-21, and including the term

previously neglected in 6.3.3-3, we have

e (1 - QKF(K))} ;o 6.3.3-1k

SE [ 2 (E.CJ ) 2aF }
2 -X 11 . 2
s= =0 e 5=+ B,C! - = (1 - 2xF(x))| ,
JE 2 24k
'J:IH_ -X 1 r t - __ﬂ:rﬂ
S =a)e lEimCo + E.C! + BC l] = (1 - sz(x))} ,

6.3.3-15

where we have assumed AK = O for 6.3.3-15.

Some of the Ci coefficients are plotted in Figure 27 far
El = EE s> along with the corresponding Cm coefficients from Figure
16 for comparison. The relative amount of "epreading" can be pecn to
be very similar for the homogeneous and inhomogensous cases.

For El/Eo’ EE/EO << 1, Appendix ITII gives

Cé“‘l ST 6.3.3-16

and
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.0l
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FIGURE 17 THE FOURIER COEFFICIENTS FOR INHOMOGENEOUS

BROADENING, COMPARED TO THE HOMOGENEOUS
COEFFICIENTS.
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2
1 1
C; & - ao/E - ElEe/EO . 6.3.3-17

so that, for example, 6.3.3-1L becomes

2 2
oF 2 EC + 2F° i
BE; =B e 1 - & 5 g = (1 - 2xF(x))| , £.3.3-18
2k T
c

which is the linear gain with lowest order nonlinear corrections, for

hnL _(h2| <<y Y, -
As before, the above results held only for m ml - w2] << Yaﬂ%

and only as long as none of the induced fields become appreciable com-

pared to EO . We can obtain an estimate of the induced fields expected

by neglecting the saturation effect of the induced fields and fixing

the coefflclents at thelr 2z = O values. Thus for El % EE = E and

: 2E2/E§ =5, we find from Figure

Cé = .5 Ci W o_ L3, Cé =~ ., Cé = - .05, Ci ™03 .

If we take a moderate value of @ = 2 per meter and an amplifier one

half meter long, we find at line center, using 6.3.3-15,

E+l'v .2 E at Bbl - W5

B~ 055 at 3»1 - ab2 P 0.3.3-19

n v o0 V - 3
E+3 1E ab hml 3

For the 3.1 micron line in neon, thie means that for 3 mw/eme input at

Wy and W, , W might expect an cutput of roughly 0.1 mw./cm2 at
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and 0.1 pw/cmg at hml - 3w

o
aw, -, , 10 pw/em™  at 3@1-31)2 5 -

6.4 More Than Two Waves; Super-radiance

For more than two waves, the physical results of section 6.3
are generally unchanged but are more complicated in detail. For
example, for |mi - wj] >> Ya’ Tb so that modulaticn effects may be

neglected, 6.3.1-4 can be generalized to give

o 2
aEl _ aaEl S ™Y dy
9z s E° BEC a” + (x., + y)2
2 1 i 1 2
a J_+-§+E-=—2-—2 2+Xl+y)
E 341 E_a” + (Xi+y)

6. -1

For lwi - wj << 7T, Ty, We can generalize 6.3.3-1 to find the

polarization

2
wP(r,t) a2 eV dy{:E asin(k, « r -0, b+, )-E, (x,+y)cos(k. . r -~o t%-cpﬂ
L =gzj’ i e A SRS AN D e R S
2e ¢ T 1 o C o
o 5 E, Hob 5
a 1+E—-%+ 2 32 cost |+ (x, *y)
JEO 34k E J -

6,42

We see that 6.0-1 contains the saturation effects of all waves.
In addition to these saturation effects, A.4u2 contains the effecte of
medulation of the population inversion at all possible combinations of
the difference frequencies wi - mj . Bince no new physical effects are

involved, we will not attempt a treatment of these cases here.
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There is one interesting generalization of 6.4-2 which we will
discuss briefly. If we have a large number of waves within a freguency

range Yy which have random phases and approximately equal amplitudes,

the cosA_jk " sumation in 6.4-2 will give zero, and 6.4-2 will become
<0 _y2
wP(rt) g e dyEi[a 51n(5i- I-—wit+ wi)—(xi+yﬁcos(ki= E-—mit+-mi)]
T “n¥ Z 2.2 2
o Y a (L+ TE/ET) + (x, +¥)
- 3 J 0 1
6.4-3
Performing the integration gives
aﬂi ol
5T = 3 Re w(xi + ib) |, 6.4-4

ﬁl + % E?/E?)
g o4

where

3
2.2
v =all+ ? Ej/Eo) .

Since X, dces not change appreciably for the different fields, we can
replace all X by some average value x . Written in terms ol the

relative intenszities

2, 2
I, = Ii/IO = Ei/EO s
6.4-4 becomes

of, a E,
= = %'Re wix + ik) . 6.Ls

(1+>J.3zj)

Summing 6.4-5 over all i and using
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i gtal T JZ 50
we find
oF o I
total _ total Re w{x + ib) . (.46
9% (1 + I )%
total

In the limit b << 1 , 6.4-6 becomes

2
e P o I e
total total Lexa,
= < - (1 - 2xP(x)) 6.4-7
dz (l + T )-2' T ’

total

which is of the same form ag 6.2.2-10 for a single wave. For x = O

e

6.&57 looks exactly like 6.2.2-11, except I 1is replaced by % otal

The above discusslon glves us a meang of approximately de-
scribing the result of a broad, incoherent input. In particular, we
can describe the "super-radiant" emission of a high gain amplifier
(16), which arises due to the amplification of spontaneous emission.
We see from the above discussion and especially 6.4-7 that there can
be no modulation effects and that the amplification is frequency de-
pendent, so that the super-radiant output will have a narrower frequen-
cy width than the spontaneous emission line, as is well known.

It is interesting to note that the above results may explain
why Gordon, White and Rigden (16), who used a super-radiant source for
their experiments, were able to fit their data to a single-fregquency
saturation curve.

Another interesting implicstion of the above discussion is

that a high gain amplifier will be saturated by the super-radiant
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emisgion and for an inhomogeneously broadened line the center of the
line will be saturated more strongly than the wings. Thus if one at-
temptes to measure the emall signal gain of the amplificr, the gain linc
will be broadened so that the observed gain line width will be larger

than the spontaneous emiggion line width.

6.5 Discussion

In the preceding sections of this chapter we have discussed
some strong nonlinear effects, primarily gain saturation znd the be-
havior and saturation of some modulation effects. Although several as-
sumptions were made which 1imit the range of validity ol lhis dis-
cusgion, these assumptions simplified the discussion so that the physi-
cal processes involved were readily apparent. For example, The coherent
modulationg of the population invergion density were made very clesar.
Alsc, the loss of generality is mitigated by the availablility of the
detailed discussion of lowest order nonlinear effects in Chapter 5; in
particular the discussion of polarization effects, frequency dependence
of modulation effects, and cases with more general wave vectors largely
carries over Lo situations where the strong nonlinear ettfects are im-
portant.

We can qualitatively discuss several aspects of the theory
presented above; in particular we will discuss holchurning in 6.5.1,
frequency dependence of modulation effects in 6.5.2, and the high-field

limit for the inhomogenecusly broadened line in 6.5.3.
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6.5.1 Holeburning

It is inﬁerestiné to diegcusg gome of the above results for a
Doppler broadened line in terms of the holeburning ideas proposed by
Bennett (2,15). Since the total incremental gain, g = (1/E) 3E/dz ,
is determined by an integration over velocities, we can consider the
contribution due to those atoms with a velocity v . This contribution
is proportional to the population inversion density of atoms with that
veloclty, multiplied by a Irequency dependent ftactor,
2 k.
% Cp, (1) - pyy )

Y + (wo - wl + E . X)2

. 6.5.1-1

For a single wave, the population inversion density (PID) was

given by 6.2-1:

W(v) ¢
5 . H.l-2
»

P
-+
Yoo+ (wo w

paa " pbb =

N

+
= Im
c N

5 v

Thus the PID as a function of velocity has, relative to W(X) s a
Lorentzian-shaped dip or "hole" for velocities v such that the
interaction frequency, o - k+ v, is nearly equal to W o The

widlth ol Lhls hole in frequency units is

A - ¥) = er(y+ BO/ED) 6.5.1-3

and the depth, relative to unity, is
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2,2
____E.:_&.._._m 651_)4.
2 e T
:L+E/Eo

Let wus consider the situation where we have, in addition to
; E i

1 where 1 is so

small that it has no effect on the PID. Then the incremental gain at

the strong field E at w , a Tield El at

Wy ig found by substituting 6.5.1-2 into 6.5.1-1, giving

Z
v W(v)
S(E’“’l) e = =
2 g2 Tt o, -0+ k- v) >
Tl = =5 5 + (@ - otk V)
E v + (mo -+ k v) °
6.5.1-5
If we consider atoms with velocity v such that k = v = mi - wo 5

i.e., which are resonant with the field at we find, relative to

12
W(E) )

elo,) = . , 6.5.1-6

.
2 2
v+ (o) - )

n

—
+
I?a“t—l:l
joJA]

which implies a hole in the gain at @, as a function of freguency.

L

Since the field El interacts with atomg over a fregquency width 2y

{the natural line width), the total frequency width of the hole in the

incremental gain curve for El will be 2y plus the width of 6.5.1-6,
el

or 2¢[1+ (1 + EQ/E;)%] . This hole ig of course centered at o .

Tts depth will be essentially the depth of 6.5.1-6, or
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2,2
B
2,2 ’

1+E /ED

‘relative to unity.

For two waves with ]a)l i Bl SIPS SR the PID was given by

6.3-1:
NW(v)
Paa ™ Ppp = 5 5
E D E
1 , T P
- 2" 2 2
E v + (wo mw) ko v) ECy  + (o - w, * k- 7)

6.5,1-T

Thus for this case There are two holes in the PID, centered about
(k * v) = @ -0, and @, -, and sinmiler to the single hole for =
single wave.

For two waves with ‘ml - me‘ < Ya’Tb 3 the PID wag given by

6.3-2:
_ wW(v)
Paa = Pep = 2, g2, ’
Bl ot 2B B, cosh g e
1+ 7 5 2
- m A+ k.
E_ r© o+ &bc otk v)

6.5.1-8

Thug there is a single hole in the PID, whose width and dgepth vary

harmenically at a frequency ®y - Wyl . The maximum and minimum widths

are



165

3
2

r |1+ ————— and 2y |1+ ———5— , 6.5.1-9

it B

0 o]

respectively, and the corresponding depths are
(2. + 5.)°/8° (B. - E_)%/8°
1 2 O 1 2 O 6

55 and 55 0 +5.1-10

1+ (El + E2) /EO 1+ (El - Eg) /EO

relative to unity. This fluetuating hole clearly shows how the PID
follows the beating of the two incident fields, for iml - w2| YTy

6.5.2 TFrequency Dependence of Modulation Effects

The treatment of modulation effects due to two waves which was
glven in {his chapler did not allow us to gtudy how these effects
changed with the frequency separaticn of the two waveg. From Chapter 5
we know that the fregquency dependence is determined by Ya’Tb and
(Ta + Yb)/2 =71 . In particular, for the lowest order modulation
effect, Chapter 5 gives the detailed frequency dependence. The most
important frequency dependence is the Lorentzian variation with mi-cn2
which has two components with widths EYa and 2Yb and appears in the
results for both stationary snd moving atoms. In addition there is a
Lorentzian frequency dependence with a width 2y or U4 , which de-
pends on the frequency spacing relative to w, for stationary stoms,
and again on the frequency difference wl - w2 for moving atoms.

If we coneider the perturbation expansion of section 6.1, we

see that terms contributing to the saturation of a particular effect

are characlerized by fterms In the summation with equal frequencies, so
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that they do not contribute any further frequency dependence. Thus the
frequency dependence of arparticular modulation effect is determined by
‘the lowest order of the perturbation expansion which contributes to
that effect. Therefore the frequency dependence of the lowest order
modulation effect is tThat given in Chapter 5. Each higher order will
multiply the previous order's frequency dependence by two Lorentzian
factors, one depending on T 7y and the other on y . If the modu-
latioen term ie at wl + n(wl - wg) » for example, the frequency de-

pendence will be roughly

1 \% 1, L 1 . «
T + iAw Ya + iAo LEN I 1iAw ra + 12Aw Yy + 1i2Am
1 1
+ LR
il oo «p+inma)’ 6.5.2-1
a b
where
A = O - B,
It is evident that the higher order modulation effects will
decrease rapidly with increasing Aw . We should note here again that

the results of this chapter show that the modulation effects decrease
rapidly with increasing order, cven dlsregarding any dependence om AW .

6.5.3 The High-Field Limit For the Doppler Broadened Line

In 6.3.3 we made the assumption

2l

E

1
al|ll+——=| <1 , . 6.5,3-1
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which physically means thaﬁ the frequency widbth of the interaction be-
tween the field and excited atoms remains small compared to the Doppler
width, i.e., that the field always sees a étrongly inhomogeneously
broadened line. Of courge for a given system (fixed a) the condition
6.5.3-1 will eventually be violated as the field strength 1s increaged,
and it is interesting to discuss the nature of this high-field limit.
Physically, we expect that as the field strength increases,
thereby increasging the interaction width, the gain lines should appear
effectively homogeneously brﬁadened, as far as the interaction hetween
the gtrong field and excited atoms is concernad. Thus for
a(l + EE/EE)% > 1 , we expect the results to be independent of the
Doppler width. 1In order to see this, we consider the asymptotic form

of the complex error function for large arguments (38):

2

% 2 &% erfc z =1 - —£§ . £.5.3-2
2z
Using I-2, we have
wiz) == 7+ 5 6.5.3-3
T 223

for z = « ., Keeping only the first term of 6.5.3-3, we have

W(K'l‘ lb)g N%X—}zg . ' 6,5.3-L|-

For a szingle wave, 6.2.2-6 becomes, for b >> 1 R
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g% = E%E Re w(x + ib)
o 08B  b/J% G2 & .
b .2 2~ 2 2 +5:3-5
h™ + x X + D
2
- 3
rg(l + Eg/Eg) + (wo - m)2

which is just 6.2.1-1 for stationary atoms. Similarly, 6.2.2-7 becomes

n(w)=l—£oz Ir w(x + ib)

c Oéoa.x

] = 6.5.3-6
W b2 " XQ

1. ¢ Oi-:)v(mo - o)

= - H]
Oy B/ + (o, - 0)°

which is 6.2.1-2 for stationary atoms.
The same resulis of course are found for other cages of
Doppler broadening. For example, with two wavesg and le - wgl << Y, Wy

€.3.3-1 gives for one of the sine terms:

=

Ba e ¥ dy sin(k, « » - w t + o)
coP_laJ‘ e ! 6.5.5.7
26 ¢ m 2 2 ' st
o 5 E1 + EQ <+ 2E1Ep cosA12 o
o% |1+ > + (x + 1)
E

O
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For

1
E2-+ E2 + 2E_FE.. cosA c
a |1+ L 2 21 2 121 o 1, 6.5.3-8

E
o

this becomes, as above,

2
a Ev
wP 1
Boge ES + E- + ;E E A ’ 0:9:39
cos
N e - = 12+(“’o"°)2
E
[a]

which is the corresponding term of 6.3.2-1 for stationary atoms (homo-
geneoug broadening).
It is rather interesting to note that if a << 1 for the

latter case, and Elfv E2 s  wWe will have

2 %

a |l 4+ ——m——| > 1
EE
o}

for cosAlm + 1, and

iy

2
L - Ey)°

al-l*——T— << 1
E
O

(E. - E

for cosAlgfv - 1 . Therefeore the total field will in effect be
interacting alternately with a homogeneously broadened lline and an
inhomogeneously broadened line. Thisg type of effect iz not covered by
the above theory, which assume that a was small enough so that the

lire always appeared inhomogeneously broadened. For the 3.4 micron
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line in neon, a ~ .2 , so that for EB/Ei-x-lO ;, b~ .6, an

intermediate case.
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CHAPTER SEVEN

SUMMARY AND DISCUSSION

In this chapter we first give a brief summary in section 7T.l.
Section 7.2 discusses several applicabiong of the theory. The relation-
ship to other kinds of nonlinear processes which have been recently ob-
served is discussed in section 7.3. Possible experiments to test the
theory and use 1t to gain useful information are discussed in section

7.4, and extensions of the theory are discussed in section 7.5.

7.1 Summary

The results of the preceding calculations are contained prima-
rily in Chapters 5 and 6, where various nonlinear effects are studied
and compared to the well-known linear effects of Chapter 4. The non-
linear effects are studied in terms of the corrections they make to the
linear gain per unit length and index of refraction, and the gain in-
duced at different polarizations and new frequencies. The nonlinear
processes are compared for stationary atoms and for a Maxwellian ve-
locity distribution of excited atoms, with emphasis on the latter,
ﬁhich should apply to practical gaseous laser devices. The two most
important characteristics of the Doppler broadened nonlinear effects
are: first, the inhomogenecus nature of the broadening, and second,
the strong dependence on the relative propagation directions of the
interacting waves., The latter characteristic would not be expected of

& treatment of Doppler broadening in terms of a distribution of atomic



172

resonance frequencies, and is thus unique for Doppler broadening. One
interesting aspect of the inhomogeneous nature of the broadening is
that ag the interaction width increases with increasing field strength,
the interaction effectively becomes more homogeneous.

The lowest order nonlinear effects are studied in considerable
detail. Strong nonlinear effects are studied in a more approximate way
énd related to the perturbation expsnsion approach to studying non-
linear effects. It is found that the strong nonlinear effects may be
thought of as representing saturation of the various processes derived
from the perturbation technique. Some of these saturated processes are
conasidered in debail and found to be very similar for stationary atoms,
i.e.; homogeneous broadening, and for z wide enough veloclity digtri-
bution go that the broadening is strongly inhomogeneous, as long as the
interacting frequencies are within the natural linewidth. The only
large difference is in the magnitude of the effects, which are much
smaller for the inhomogeneously broadened line, as is the case for

linear amplification.

T.2 Applicallons of tThe Theory

| Aside from their use in calculating the frequeancy and ampiitude
dependence of wvarious processes in the nonlinear interaction of waves,
the above results could be utilized to study the characteristice of
several devices based on laser action. These applications would use
both the space dependent and time dependent field amplitudes of Chapter

2. SBeveral of these possible applications will now be listed. First,
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for the space-dependent amplitudes, some useful spplications would be:
(1) The most obvious application would be for studying traveling
wave lager smplifiers zs a component of a communications system opcr-
ating at optical frequencies. Such an amplifier would certainly be
used as a preamplifier at the receiver, but might well also be used as
a power amplifier at the transmitter. The study of nonlineayr effects
would of course be most useful in the laftter case, but some other
agpects of the theorj would apply to both. For example, we have briefly
discussed the effects of "superradiance” ia saturating and broadening
the small signal gain. Also, the fact that some nonlinear interactions
of woveas traveling in opposite directions are relatively weak would be
of interest in determining the effect of waves reflected back through
the amplifier.
(2) The modes of a laser oscillator with mirrors of Aifferent re-
flectivities wiil not be true cavity modes, but will have traveling
wave components. The above theory would be useful in studying the
effects of such a situation.

-Some cases where the time dependent field amplitudes would be
used are:
(3) A study of the effects of nonlinear interactions on the be-
havior of the ceavity modes of a laser oscillator (12) could be carried
out using the gbove theory. Although the theory is not very well
suited for such a study, the treatment in terms of traveling waves doesg
give some useful insight intc the problem. The cavity modes can be

broken down into traveling waves in different directions, and we have
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seen that some of the nonlinear processes are strongly dependert on
wave directions. Thus only the traveling wave components traveling in
- the same direction will interact strozgly. IL 1s interestling to study
the various processes affecting each wave for a given number of modes
excited, however, this will not be done here.

Other aspects of lager oscillators are also of finterest in
terms of the above theory: Laser oscillators are often observed to
oscillate in two perpendicularly polarized modes (39,40), and these
effects can be studied. Mode locking has been induced in laser oscil-
lators by proper modulation of the cavity medium (41). It is interest-
ing to note that such mode locking will Lend Lo occur naturally, due
to The polarizations induced at "combination frequencies™ like
2D2 - ml . For cases where the cavity mode spacing i1s not much larger
than the natural linewidth, thisg effect should hecome proncunced.

{4) The effects of nonlinear interactions on the operation of the
"ring laser rotation rate sensor" (42) would have to be studied in
terms of traveling waves, since this device ig characterized by
oppogitely-directed traveling waves. - Again, the fact that some non-
linear imteractlons for such waves are relallvely much weaker is

interesting.

7.3 Relationship to Other Nonlinear Effects

With the attainment of very high field strengths from pulsed
laser oscillators, many nonlinear effects have been observed (L3).

Regarding their relationship to the nonlinear effects discussed above,
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we are primarily interested in effects like Stimulated Raman Scettering
(LL-k6). In this effect, a strong field incident on a Raman active
medium results in the production of a field at the first Ftokes
freguency (47). The incident and Stokes fields then can coherently
interact to produce fields at other Stokes and Anti-Stokes frequencies.
These etfects have been extensively studied theoretically, nusing
perturbation expansion techniques (43,L48,49), i.e., in terme of a
polarization cubic in the field strengths, and experimentslly (43, L4,50)
using "glant pulse" ruby lasers (51). The experimental results in
general agree with theory, with some exceptions (52). One very inter-
esting experimental result which has alsgo been discussed theoretically
(53) ig the effect of two or more gpectral components in the input
field. 1In thies cese the various Stokeg and Anti-Stokes lines are ob-
served to consist of many componente or & relstively broad spectrum
(4h4,52).

The similarity between the theory of thege effects, as outlined
above, and the theory of the lowest order nonlinear effects of Chapter
5 1s immediately evident. The only essential difference is that the
effects of Chapfer 5 are more resonant than the effects of SRS, zo
that they should be observable at much lower intensities (see section
7.%). The analogy with the effects of multiple spectral components is
even more striking.

It is interesting to inquire as to whether some of the effects
observed in SRS could be associated with coherent waves in the popu-

lations ahd/nr higher order nonlinesr effects such as have been
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discussed in connection with the above theory. Tt would geem that
modulation of the'population would be especlally likely when multiple
spectral components are present in the input wave. Also, the field
attainéd with giant pulse ruby lasers are so intense (51) that higher
order effects may become importanﬁ even for These off-resonance

processes.

7.4 Some Posgihle Fxperiments

As indicatbed above, it should be gquite feasible to observe and
measure not only some lowest order nonlinear effects, but also some of
the higher order effects, Among possivle interesting observations, we
note the following:

(1) Polarization effects. With properly oriented polarizers and
adequate detection, it should be posgible to observe the perpendicularly
polarized field, and perhaps also the polarization dependence of satu-
ration and the waves at "combination" frequencies like 2n. - ®

2 L°

(2) The waves induced at new frequencies, e.g., 20 are

R
very interesting. As noted in Chapter 6, it should be posgsible to ob-
serve some higher order waves in addition To the waves due to lowest
Qrdér nonlinegr effects., The frequency snd amplitude dépendence of
these waves could be studied; in addition it might be possible to
make measurements on the linewidth of the induced waves and its de-
pendence on amplitude and medium gain.

(3) The shove theory could be used to measure some of the pa-

remeters characterizing the medium., From small sigral (linear) gain
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measurements we can determine & and a . From single frequency
. . 2 .
saturaticon measurements we can determine EO . Assuming the Doppler

width known, a gives a value for 2y = vt asud Ei gives a value

a Ty
for TaTb/Pg . Thus we can meagure the natural linewidth, and by as-
suming a value for Pi » get approximate values for Ta and Yb and
thus the lifetimes of the upper and lower levels of the laser tran-
gition. It should be noted that for T > Y, s the value of Tb
obtained in this way is essentially independent of the value chosen
for Pg » over a wide range. The values of T, and Ty obtained in
this way should contain any contribubions due to regonance trapping of
rediation or pressure broadening, i.e., they are the values arising
from the actual operating conditions cf the amplifier.

() Tt would be interesting to observe the characteristics of the
spontaneous mode locking which should ocecur in lescr oscillators (scee
section 7.2) and their dependence on the cavity mode spacing relative
to the natural Iinewidth.

(5) It would be very interesting to observe some of the effects
which are strongly analogous to the effects observed in stimulated
Raman scattering (see section 7.3). Of particular interest in this
regard are: index matching or momerntum conservation conditions; in-
tensity dependent index of refraction, linewldths and anguler widths
of new fields, relallve Lo laser linewidbhs and aﬁgular widths; ef-
fects of focusing; effects of multiple lager modes. It may also be
possible to infer what processes or combination of processes are re-

sponsible for the introduction of new fields in SRS.
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There are several advantages of gaseous lasers over pulsed
ruby lasers for doing work on nonlinear effects, particularly such as
those in (5) ebove. First, since the effects are resonant, they can
be observed at lower intensities than would otherwise be required.
'This in turn allows the experiments to be done on a CW rather than s
pulsed basis, so that there is less need for bandwidth in the detection
équipment, adjustment of the apparabtus and data recording are greatly
gimplified and beating techniques can casily be applied. Also, the use
of gaseous lasers results in & much higher degree of control over the
experimental conditions. It is relatively easy to obtain and contrel a
gsingle frequency and spatial mode, and linewidths are very narrow. A
very. important advantage is that due to the presence of gain there will
be no "thresholds" for observing ronlinear effects, and the various

regsponses will be strongly amplified to facilitate obgervation.

T.5 Dxbensions

It would be fairly easy to extend the above theory to deal
directly with cavity modes. This would constitute an extension of
Lamb's work (12) to wider applicability, covering more general situ-
atlong of polarization, frequency spacing and Doppler broadening.

A more fruitful extension would be to deal with an atomic
system where more than two levels are important. This would silow
direct treatment of Raman effects, along the lines of the calculabions
performed by Tang (U8). 'he informstion to be gained from such calcu-

lations would include: the frequency dependence of guch processes,
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the effect of multiple spectral components in the input, and knowledge
regarding the importance of population modulation and higher order
nonlinear effects.

| Another interesting extension would be to study the inter-
action of traveling waves with a medium which has an applied magnetic
field. BSome work has been done along these lines (54,55), but a de-
tailed analysis for many situations of practical interest ig not avail-
able. In particular, the etftects of Doppler broadening have not been
ascertalned.

A study should be made of the changes to the above theory due
to the effects of collisions. The latter will affcct the homogenecus
linewidth and, more importantly, make the line asymmetrical (56).
Probably the most important effect of collisions will be in introducing
a mechanism connecting various parts of the inhomogeneously broadened
line. Buch a mechanism would change the characteristics of "holeg"

burned into the line.
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APPENDIX T

THE DOPPLER BROADENING INTEGRAL

The purpose of this appendix is to express the integral k4.3-2,

1 E o7 /u
T Ay 4rt ilw - w+ kV) ?

in a convenient form for referral +to tabulated functions and for
approximation in the limiting case of interesgt. We first express I-1

in terms of the (tabulated) Error Function for Complex Arguments (25),

o

-22 22 ~t2
w(z) = e erfe(- iz) = e j e at I-2
7

il

and then evaluate I-1 to first order in a for a = y/ka << 1, the
limit of strong Doppler broadening.

Defining

sl , x-2_— | | I-3
I-1 becomes

P
I - j‘ dv e"VQ/UL Il
S 2 o et il + V)

and with y = V/u +this becomes

© P
I - j dy e I-5
Jr?kuooa""i(x"‘Yj )
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Using the fact that

R P 1
£dt e . TR T-6

we can write I-5 as

(o] co
2
_ 1 -y g -t'fa + i(x + y)]
I= JﬁKu_de—e at' e . I-7
..} o]

Exchanging the order of integration and perlorming Lhe y-integraltlon

gives

2 e
T - 1 at e-t’ - (a + ix)t ' 1.8
ku

Ot §

With a change of variable to t = t'/2 + (a + ix) , I-8 becomes

@+ix o

2

2 (a+ ix) g -t

I=1e dt e , I-9
a+ix

which is 4.3-4. Tn terms of the definition T-2, we have W.3-5:

Ji Loy _ AT .,
I -y w(- x + ia) = o wX{x + la) I-10

which 1s tabulated in reference 25 for the renge of values

0(.1) 3.9

b
I

0(.1) 3

m
il

For evaluation of I-9 in the interesting limit a << 1 ,
consider the integral

@+ix
2 '
Tr = jat et I-11

atix

we
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Figure 18 shows an integration contour € +whaich includes I' . The
theory of complex integration gives

2 | .
§ ate™ - 0=T +I +1
C

o F 13 I,

where the subscripts refer to the portions of C dindicated in Tigure

18. We gee immediately that I. = O and that

1
® .2
-tT B _,f_ﬁ
12——5.6 dt—-g . I-13
0]
Algo, we have
ix -te X tre
13 = jdt e =1 S dt' e . I-14
ol 0
The remaining portion of the contour isg
a+ix a
- 2 2 i
IJ—I- = Jdt e b = eX Idt' e (t *2ixt ) ] I-15
ix o
where t' =% « ix . To first order in a we have
2
1, % ae’ 1-16
and
. 2
o+ ix) o -x (1 + 2iax) . I-17

Using I-12 and the above results, we find to first order in a ,

2 .
/7 -X 2a
Re I = o [e - = (1 - BXF(X))J I-18

and
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Imaginary Axis {a)

a 13 Il
' T
— X~ ) Real Axig (x)
FIiGURE 18

The Contour of Integration for Calculating w(x + ia) for a << 1.
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2

e -X
Im I = - o [7§ F(x) - 2ax e ] 5 I-19
where
2 .2
F(x) = e j e dt . I-20
0

Reference 25 tabulates F(x) for
x = of.02) 2,
and x F(x) for

x % = .25 (-~ .005) ©
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APPENDTIX IT

EVALUATTON OF THIRD ORDER DOPPLER BROADENING INTEGRALS

The purpose of this appendix is to evaluate the integral
Ia,b:F of section 5.3 in terms of the Doppler broadening integral
which was studied in Appendiz I. This is done below for two cases.
In addition, we indicate the techniques to be used for studying limit-
ing cases.

As the bagic expression we wish to evaluate, we ftake

w®
.t 5 S av e-VE(u?
aT «’“ﬁu_m (r +ilo, -V + X Dr, - ile” -o" - (" -k") - V)]

1

XY:Fi(aJO-cD‘+k_‘ - vy 7

Ti-1

where for I _ we must replace ®' and k' in the last factor by

1t

o' and k" . The notation is that of section 5.3. To the sum of

Ia and Ia+ ag given by II-1, we must add the same expresgsions with
v, replaced oy Yy in order to get I(www") of 5.3-5.
The important parameter in this calculation 1is w/c , and we

typlcally have

u/e £ 10‘6 : TT-2

If we let each k have the magnitude
k_o = mo/c B

we obtain the interaction frequencies correct to order u/c , which is
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completely. adeguate for these problems.

II.1 k' ~k"

With k'~ k" , we have

and

where Ao = o' - ®" . This gives

v, - i@ - - (k- k") . Y) =, ~ il - g} ir.1-2

Since for all appreciable contribubion to the integral we have

0l

<== 10"6

olg

we can neglect the contribution of this term to the broadening and

replace IT.1-2 by
Ta - lAw .

For this case we then have
@ 2
_ 1 av e“Ve/u
a¥ (Ta - dAw)u ) Ty + i(mo - v+ kOV)]

P o]

I

IT.1-3
1

X Y ¥ iQDO -+ KV cos(k, k")) 7

where, in accordance with the above discussion, we have replaced the

l5|'s vy k, . The cos(k,k') is + 1 or -1, depending on
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whether k ~k' or ks~ k',

If we define

a = Y/kou
X = (r_DO -V )/kou
TI.1-4
L - 1
X! = (wb w )/kou
xX =

] (mo _ f.l)”)/kou ,

IT.1-3 can be written

w _ 2
T - 1 y dy eV
= v + M T 1 3
aF (Ya j i&w)JE'kqu_m la + i(X + y)Ia F i(x y cos(kk'))]
I1.1-5
where y = V/u . The denominator of the integral can be expanded in a
partial fraction expansion, giving
: 1
ta+ i(X + y)]la F i(x' + y cos(kk'))]
II.1-6
B 17 . Cor
Ta+ i(X+y) aF i{x' +y cos{kx'))
where
C,._= L IT.1-7
1F¥ ~ (a + cos{kk")a) ¥ i{x' - cos(xk")X) ° ’
1
o + Cos(kk ) II.lﬂS

oF = (a *+ cos(kk')a) F i(x' - cos(k,k')X)
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Using II1.1-6 in IT.1-5, we then find, using the results of Appendix I,

I = o 55 {c we(X + 1a) + 0. w(x" + 1af] ,  I1.1-9
. 1- O.
(Ta - 1MW) k u

T | = A% .. w*(X + ia) + C,., w*¥{x' + ia)] . II.1-10
at+ ] 22 1+ o4
(y - iAw) k u
& o}
TT.1~9 and 10 of course include the apecial cage m!' =" . Tf the

limit discussed in section II.3 is taken, they also include the case

IT.2 k'~ - E"

For thig case the Ta’Yb terms contribute to the Doppler

broadening as much as the 1 terms. We have to evaluste

® e

1 av e
e = T 5 Oy +ile, - v+ ®lr, - (Ao - 2k 7))

P ]

IT.2-1
1
. (.D"
v ¥ 1(a)0 - o F kOV)
where
X = (2 + cos(kx")) Ky o IT.2-2
With the definitiona
A = ra/akou
a' = v/Ku
IT.2-3
X' = (mb - v)/Ka
x = M/2kyu
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and IT.1-%, IT.2-1 becomes

> 2

= L I ay e ¥
oo Ke2u3 [af + i(X' + 7)IA - i(x - y) )= T i(x F 371 °’
o ~® _

I

I7.2-4

where for the upper sign, =x=' chould be replaced by =" . Although
the results are more cumbersome, the denominator of the integrand can

again be expanded with a partial fraction expansion of the form

Sk N Koy N Bor 17.2-5

a' +i(X"+y) aFilx" Fy) A< ilx -y) T
where

AK = (A-a)-ilxFx) , TT.2-6

A K, = (a* - A) + i(X" + x) , TI.2-7

ALK, = (a - a') - i(X" £x') , I1.2-8
and

A= [at + 4+ i(X" - x)J[4 - a' - i(X + x)1(a F ix')

-+

[a' +a+ (X" Fx)a’ - a+ i(X £x)]A - ix)

+

la+ A - i(x+x)la-a+ilxFx)](ar +iX') .
II.2-9

As before, x' should be replaced by =x" for the upper sign in these
expressions.

Using II.2-5 and the results of Appendix I, II.2-L becomes
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T = "?? Kl wR(X' 4+ dia') + K, w(x" + is) + K w(x-l-iA)] ;
a- 2.3 - o 3-
Kkgu
1T7.2-10
_ dx/2 v s C oL .
a+ " 23 [K1+ wk (X' + ia') + K, wk(x' + ia) + K3+ w(x + 1Ai] .
"o
IT.2-11
Ib:F are obtained by replacing A Dby
B = oo
rb/ekou II.2-12

in «ll the above equations.

IT.3 Limiting Cases

| The above analysis breaks down when two of the factors in the
denominator of the integrand become equal. TFor example, this happens
in IT.1 when cos{k,k'}) =1 and X =x' for I, ; and also when
cos{k,k") = -1 and X = -x" for I_ . These cases could be treated
separately, but it will be more useful here to treat them as limiting
cases of Lhe gbove results. It of coursge always happens that the
gingularity in the coefficients is balanced by cancellation of terms.
Then what is important is the limit as the special case is approached.

For the caseg mentioned sbove, this takes the form

Bx= 0 Sx T ox ?

lim <w*(x + BX * ia) - w¥(x + ia) adwr
x + la

I1.3-1

by the definition of the derivative. For the cases arising from II.Z2,
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we will find the same behavior with two of the coefficients, and the
third coefficient will be of order ®x , go that we again have a
definitc limit existing.

We can calculate the derivative as follows:

We have
o3y
Y- o
—2@ w(x + ia) = o+ ix) fdt e v II.3-2
a+ix

Taking the partial derivative with regpect to x gives

oo+1X
—@m—é-—aw(x P 28) _oi(a + ax) (2T )T fgy o
2 ox
atix
2 - 2 2
(e + 1x) R . -t
e 127 Jospem & aﬁx} I1.3-3
=4 ifa + ix) w¥(x + ia) - 1
Since
owk(x + i) _ . owk(x + ia)
da, P ’
we also have
+
“g é-w—*-(}i—:——@i J7 (a + ix) we(x + ia) - 1 IT.3-b
Similarly, for use when a << 1l , we fird
BF(;c) 21 - xF(x) II.3-5

where

=X
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For the two limiting cases of IT.l, we find

I, (X=x" cos(ik') =1) =1 (X=-x", cos(k,k") = - 1)

IT.3-6

_ LE 5 [; - 2(a + iX) wE(X + ia)} .

C(r, - ) (k)

For II.2, we see that we obtain equal factors when
cos(k,k') = -1 so that K = k and a' =a; with X' =x' for
I , and with X' = -x" for I+ . Evaluation of these cases is

rather tedious, with the result

T, (cos(k,k') = -1, X' = x') = I, (cos(k, k') = - 1L, X' = —-x")
o _
3 2T+ 2(a + iX') wH(X' + 1ia)
a 3 B+ 1(X' + x) IT.3-7
2(k0u)

L E(x + 1A) - w¥(X' + ia)

[B + 1(X' + x)]2

For cos(k,k') = 1 in II.2, we cannot obtain equal factors

because &' = a/3 . However, for a << 1l and X' = x' for I

4

X' = - x" for I we have approximately equal terms, and obtain,

3+ 7

to within terms of relative order a ,
I, (cos(k,x') =1, X' = x") = I, (cos(k,k') = 1, X' = -x') =

__Anfe jafm - 2(a + 1X') we(X' + ia)
30k 0)° A-a -1+

L w(x + 1A) - wH(X' + ia)
(A -a - i(X' + X)]2
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It should be noted that X' = (a)o - \))/3kou here, compared %o

LI
X' = (coo - v)/kou. sbove.
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APPENDIX ITT
THE FOURIER COEFFICIENTS

The purpose of this appendix is to derive expressions for the
Fourier coeflTicients used in section 6.3. We need the Fourier serieg

expansion in the form

o

flcos u) = I c cos mu TIT-1
== C
where
(2 -5 ) nw
om
C, = X f(cos u) cos mudu . ITI-2
0

In section III.1 we consider the homogeneous coefficients, Cm , and

in section IIT.2 the inhomogeneous coefficients, Cﬁ .

ITI.1 The Homogeneous Coefficients

For 6.3.2 we require the expansion

- o0
5 5 L = = Cm COS mu . ITI.1-1
+ + m=0
1 + El E2 2ElE2 cogu - ya
E2
0
From IIT-1 and 2, we have
(2 -8 )1

¢ = CLMN , III.1-2

m 2 2 2y o
n(1+y" + (B] + E5)/E))

where
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7t
cos mu du

1, = | S HEA-3

o o}

and
2
2E.E,/E

6 = 12 0 . TIT.1-L

1+ 5%+ (25 + E2)/E°

Although IIT.1-3 is & tabulated integral (57), we shall evaluate it
here because the same technigue will be used for evaluating the in-

homogenecus coefficients in ITT.2. With
V= e N III-1—5

we have y

1 cos mu du
m 241+ a_cos u
-

|
|

me- 1
_ 1 i dv
= ®e 57 ! o IT1.1-6
1+ 2—(v + 1/v)
m
- Re .l § . vooadv
lao v o+ 2v/a0 + 1
R L § v dy
ia (v - vl)(v - vg) ?

where
(L +41 - ai)
a.

Q
ITT.1-7
(r -J1 - ai) ‘
- =



196

and the integral is around the unit circle in the complex v-plane, as
indicated in Figure 19a. We note that the integrand has two first

order poles, at v owkside the unit cirele, and v ingide the

2 17’

unit cirele. Therefore,

I = Re 2ri (residue at v.)
m 1

m
T{ /l _ a‘i _ 1] I1T.1-8
a? ¥1 - ai

In the above we have implicitly used the fact that 2, < 1 , Therefore

we have

m
(2 -5 ) [A-e-1]
o = e 0 , TTT.1-9
(15 + ]+ 5)/E) a4 - o

as used in 6.3.2.

11T.2 The Inhomogeneous Coefficients

Tor A.3.3, we need the expansion

[=+]

= = % C' cos mu . TIT.2-1
2 2 L3 m=0 M
E-+ E-+ 2BE._ cos u
1+ 1 2 12
E2
o
We have
(2 -8 In) I
o= o n__ 3 TIT.2-2

n(lL + (Ef + Eg)/E§>
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where
i
d
Iév“ J cos mu du Y ITT.2-3
5 (1 + al zog 'u)
and
o EE/E
a' = . TTT.2-4

2
1+ (El + Eg)/EO
Introducing IIT.1-5, III.2-3 becomes

i'=Re I
m

I1T.2-5

i
=
1)

|

ji].j PR
(v - vl)% (v - VQS%

where tThe contour °y is the upper half unit cirele in the complex
v-plane. Note that we now have a cut in the v-plane, which we take
Jjoining vy and Vo along the real axis. To evaluate I , we form
the closed contour ¢ , shown in Figure 19b., Since ¢ conbains no

singularities, the integral around c must equal zero. Splitting the

contour up into workable intervals, we have
Vy-T

RO

c ¢, -l ey vyt

I1I.2-6

O H

where ¢, 1is the small semicircle of radius r around v, . For the

various contributions we have

Vl—I‘

- m+1 ) z v
[ [t

1 - (v - v,
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(2)

Im v
Re v
1

o F

FIGURE 19

Integration Contours for Calculating Fourier Coefficients

{a) Homogeneous (b) Inhomogeneous
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which is pure imaginary, since the integrand is real.

o~

ae ir ele vrf_é-

o
as r - 0 .

@]

+
Vi

Letting
t:(v-

IIT.2-7 becomes

where

(vl - vg)g r% .eie/2

Q

j'=(~1)m+l/a—3,_f (-
r © vl+r(v

_V2

o n-k
(- )" "27 { -v) dv
% v{ﬂ‘ (v - vl)?(v - v )%
Vl)% Y
d m—%
m((a° - 7))
('l)£(2+tg)§ o

= pure real .

IIT.2-7

I11.2-8
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III.2-9
1 2~ ’

Substituting TIT.2-8 into IIT.2-2 gives

(2 -8 )(-1)"B/2} ¢ (a2 te)m'é
o - [
m

dt . ITT.2-10
2 (c2 + te)%

n(1 + (E + E2)/ED)

For the small field limit, aé << 1l , we find
2

-} 1
b a0/2 ’

2
L] 1
C 2/&0

IIT.2-11
. 2 2 ,
Neglecting % compared te o , 1m becomes

T

m 1
I o(- 1) (;?) I (1 - za)m_%

dz IIT.2-12
where
a1
_ 0
L = 3 P
Thus (58)
Ié ™o,
aéﬂ
il S

and
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E2 - EQ
o1 e = ™. L2 IIT.2-13
o) 2 ERY 2
S + E : OF
1 2 -
1l + 5
E
o]
—a E.E
o} 12
c, = 5 TR = TIIL.2-1L
E] + E, E
o1 +
22

An alternative approach leads to an expression for Cé ag an

infinite series. Expanding

-%

(1 + a' cos u)
o
by the binomial theorem, we f'ind the coefficient of (cos u)" to be

(- 1)™ (m - 1) aém

— IIT.2-15
2 m!

This expansion converges for aé < 1l , which is always true for our
cagse. For m= 0 in III.2-1% and elsewhere in this derivation, the
double factorial is defined to be equal to unity. From Dwight (59),

the coefficient of cos(m - 2p)u in the expansion of cos . is

unless m is even and p = m/2 , when it is

m
Cm 3

1
1t
27 5

where the Cg are the binomial coefficients
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Thug the coefficient of cog mu in the cxpanasion

=]

(1L + a’ cos u)-é = T b ros mu _ IIT.2-16
o] m=o W
ie
a1 q [ |
b =(2-8_) % -( O] €2q = l)‘: , IIT.2-17
n om Y-2p=m Prid =P/

where q, p, m are positive or zero. From ITI.2-1, 16 and 17 we thus

have

b
) o n 2
¢ o= (2 8om)( ab/h) ; %o (bp + 2m - 7)1 4dll.2-18
m ES + B° % po | 16 p! (m+ p)! ’ -
1 2
1+ >
i
o)
where we define
(bp + 2m - 1)1 =1

for m=p =0 . The gerieg converges absolutely if aé <1 . The
convergence ig very slow for aé»w 1, however it is still useful and

was used To calculate the C& for Figure 17.
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