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ABSTRACT

We explore some exotic phenomena in charged black holes, arising from the sec-
ond quantization of matter fields or from the first quantization of fundamental
strings. Spherically symmetric magnetic black holes admit special modes of electri-
cally charged fermions, known as Callan-Rubakov modes, which can be quantized
efficiently. We find that the chargeless sector generates non-thermal quantum radia-
tions from extremal Reissner-Nordstrom black holes, thereby reducing the black hole
masses below the familiar classical bound in spite of the vanishing Hawking temper-
ature. On the other hand, the charged sector induces a vacuum energy distribution
and the gravitational backreaction thereof, which are particularly pronounced for
extremal dilatonic black holes. Implications of these quantum effects are studied in
great detail. Also considered is a string-inspired two-dimensional gravity with non-
singular charged black holes among its solutions. After a lengthy discussion on the
stability of these novel space-times, we speculate on the possibility and implications

of nonsingular black holes in full-blown string theories.



TABLE OF CONTENTS

1 Introduction and Summary ................ 0ot 1
References ...... ..o 4
2 Quantum Fluctuations and Black Holes ................................ 5
2.1 Black Holes and Penrose Diagrams ..............ccoooiiiiiiiiniiiiniiii... 6
2.2 Quantum Fields in Black Hole Backgrounds ................................ 9
2.3 String Theories and Black Hole Geometries .................covvvuvunin. ... 19
References ... 25
3 Quantum Radiation from Extremal Black Holes ...................... 28
3.1 Introduction to the Polyakov-Liouville Effective Action .................... 28
3.2 Quantum Radiation from a Zero-Temperature Black Hole .................. 32
3.3 Masses of Semiclassical Extremal Black Holes .............................. 37
3.4 DISCUSSION .\ttt 40
References ... ..o 42
4 Fermionic § Vacua and Long-Necked Remnants ...................... 44
4.1 Motivation ..........iuiuii i 44
4.2 The Cornucopion . ...........iuiiiiune i e 47
4.3 Callan-Rubakov Modes in a Magnetic Black Hole Background .............. 49
4.4 A Vacuum Energy Distribution and the Gravitational Backreaction ........ 53
4.5 Self-Consistent Geometries and the Fractional Charge ..................... 56
4.6 Conclusion ..........ouiiiiii 60
References ... ... i 62

5 Nonsingular Two-Dimensional Black Holes and Classical String
Backgrounds........ ... 64
3.1 Introduction ... . 64



vi

5.2 Compactified Black Strings as Geodesically Complete 2-D Spacetimes ... ... 67
5.3 Dynamics of a Collapsing Massless Shell .......... ... ... .. ... ... ... 72
5.4 Instability of the Cauchy Horizon ............... ... i i, 79
5.5 Discussion: Nonsingular Exact String Backgrounds ........................ 84
Appendix: Asymptotics of the Effective Theory ............................... 89

References ... ..ot 93



1 Introduction and Summary

Since the discovery of General Relativity by Einstein, perhaps no other aspects of
the theory captured the imagination of physicists more than the existence of black
holes [1], which gained a firm astrophysical footing as the final evolutionary stage of
very massive stars through the ground-breaking works of Chandrasekar [2]. While
there exists no confirmed observation of these extraordinary astrophysical objects,
many believe in their reality.

Yet, theoretical understanding of black holes is hardly complete after decades of
research. Aside from such exotic and possibly unstable features as Cauchy horizons
where initial value problems cease to exist, classical black holes possess two main
characteristic structures: event horizons and curvature singularities, each of which
is still a source of innumerable studies and debates.

The curvature singularities are, for instance, in direct contradiction with the
equivalence principle, the very foundation of General Relativity that in effect as-
sumes finite gravitational tidal forces everywhere. Efforts to deal with this incon-
sistency ultimately lead to celebrated singularity theorems, that singularities are
inevitable products of General Relativity and cannot be avoided within the classical
regime.

It is true that the classical description of gravity in terms of space-time geometry,
governed by a simple local field theory such as General Relativity, is expected to
be invalid under the extreme condition of infinite tidal forces, but we do not have a
clue as to how a consistent quantum gravity would resolve the singularities.

On the other hand, for large black holes, event horizons are located at relatively
small values of space-time curvature, where the low energy effective theory of gravity
makes perfect sense. Instead, the difficulties associated with event horizons originate
from quantization of matter fields around the black hole. Upon the quantization, a

generic black hole loses its mass through seemingly thermal radiations of non-local



origin, called Hawking radiation [3]. Essentially a one-loop effect, Hawking radiation
exhibits the thermal behaviour not because of any coarse graining one opts for, but
as an inevitable consequence of the non-trivial causal structure.

An apparent corollary proposed originally by Hawking [4] is that the process
of the black hole formation and its subsequent evaporation may destroy quantum
informations encoded in the initial state before the gravitational collapse. Going
one step further, one can envision virtual processes where small black holes are
spontaneously created and annihilated, just as any other particles, but destroying
quantum coherence in the process. Whether and how such violations of the unitarity
can be prevented are long-standing problems yet to be solved, often referred to as
“the Information Puzzle” or “Problem of Information Loss.”

Clearly we need to explore beyond the usual approximations in search of new
and interesting structures which might shed some light on the problems of classical
and semi-classical black holes. In this regard, arguably the two most important de-
velopments in recent years are the discovery of various stringy black hole solutions,!
and the emergence of two-dimensional toy-models? where gravitational backreaction
to the quantum radiation can be studied systematically.

While these new studies have not revealed a conclusive resolution of either the
singularity problem or the information puzzle, it is also fair to say that we gained
considerable insight to quantum aspects of black holes. For instance, the two-
dimensional models dispelled the old belief that the information puzzle is a mere
artifact of an adiabatic approximation that neglects the dynamics of gravitational
backreaction.

This dissertation is a collection of our modest attempts to understand aspects
of black holes better, beyond Einstein’s general relativity and Hawking’s thermal
radiation, in the contexts of these new approaches. Mostly, we will be concerned

with charged black holes of various origins.

1See chapter 2 and chapter 5.
2See chapter 2 and chapter 3.



In the second chapter, we review some well-known facts about black holes in
three different contexts. First, static and spherically symmetric black hole solutions
to Einstein’s general relativity and the Einstein-Maxwell theory are presented with
their Penrose diagrams. Secondly, we discuss how Hawking radiation arises as a
one-loop effect in the framework of the effective action approach. Also discussed
are the thermal description of late-time Hawking radiation, in canonical Hamilto-
nian approach, and its limitation. Finally, we discuss how string theories produce
nontrivial background geometries, and in particular black holes.

In the following chapter [5], we explore semi-classical properties of external mag-
netic Reissner-Nordstrom black holes. By restricting the matter sector to that of
chargeless Callan-Rubakov modes, we demonstrate that the thermal description of
the black hole indeed breaks down in the extremal limit and that the extremal black
holes with vanishing Hawking temperature do radiate away a finite amount of en-
ergy. Both analytic and numerical studies are presented as well as a discussion on
the implication on black hole bifurcation processes. The numerical portion of the
work was aided by Jaemo Park.

Chapter 4 [6] deals with a vacuum polarization of massive charged fermions in the
background of an exotic magnetic black hole, known as the cornucopion. Isolating
the charged sector of Callan-Rubakov modes, we study how the energetics of the
vacuum polarization are drastically changed when the background configuration is
modified from that of a monopole to the noncompact geometry of the cornucopion.
The gravitational backreaction to the phenomenon is studied in great detail, and
the generality of the conclusion is discussed at the end.

The final chapter [7] concerns even more exotic black hole solutions. In the con-
text of low-energy effective string theories, we find a family of two-dimensional space-
times with event horizons but without any curvature singularity. After a lengthy
discussion on the stability of such space-times, we speculate on the possibility of

nonsingular black holes in string theory. In particular, we show that the well-known



exact string background supporting the SL(2, R);/U(1) Wess-Zumino-Witten coset

model possesses the same nonsingular geometry as one of our low-energy solutions.
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2 Quantum Fluctuations and Black Holes

One of the more challenging problems to modern theoretical physicists is understand-
ing the quantum nature of gravity. While Einstein’s General Relativity continues to
be very successful in explaining a wide range of phenomena such as evolution of the
universe [1] and decaying orbits of binary pulsars [2][3], we are yet to understand
the microscopic behaviour of gravitational interactions.

Perhaps in no other system is this inability more frustrating than in black holes.
Not only do the generic curvature singularities involve infinitesimal length scale, the
realm of quantum gravity, but the apparent thermal behaviour of radiating black
holes is seemingly difficult to reconcile with the unitarity of quantum mechanics.
For sure, all the puzzles regarding black holes must be resolvable after a full un-
derstanding of quantum gravity is attained, but we are yet to have the luxury of a
consistent and manageable quantum gravity in our hand.

While the quantization of gravity itself has eluded us so far, the quantization
of matter degrees of freedom in the background of nontrivial geometry has been
carried out in isolated cases. For instance, the quantization of (free) matter fields
in black hole backgrounds leads to the celebrated Hawking radiation, while the
consistent quantization of fundamental strings is known to restrict acceptable space-
time geometries. Therefore, for us who wish to study quantum aspects of black holes,
it seems the logical starting point to explore quantum aspects of various matter
degrees of freedom in black hole backgrounds.

It is the purpose of this chapter to introduce some of the well-established ideas
and facts involving both quantum fluctuations and black holes. These somewhat
fractured portraits are not meant to be a complete survey, but rather to set an

undertone for the studies in the following chapters.



2.1 Black Holes and Penrose Diagrams

The simplest theory where black hole solutions are found is Einstein’s general rela-
tivity [4]. The corresponding Einstein-Hilbert action can be written succinctly with
the scalar curvature R = ¢"¥ R%_, associated with the Levi-Civita connection of the

Hov

metric ¢.3
1
SEinstein—Hilbert = T6m / dz*v/—g R — G, = R, —9uwR=0. (1)

The unique one-parameter family of static and spherically symmetric solutions can
be written in the Schwarzschild gauge in the following way,

g=—(1- %)dﬁ + (1 — -2—]%)-1 dr? +r*dQ*. (2)

T r

When the ADM mass [4] M is nonzero, the Riemann curvature tensor R%,, diverges
at r = 0 corresponding to a curvature singularity. Such curvature singularities in-
volve arbitrarily small length scale and cannot be described by a low-energy effective
theory such as General Relativity. It is a matter of great uncertainty whether such
singular structure will appear in consistent quantum gravity as well.

For the observers far away, however, the more interesting feature of these black
hole solutions is the event horizon at » = 2M > 0.* As is evident from the metric
coefficients above, the “radial” coordinate r becomes timelike inside the horizon, and
consequently the size of the transverse two-sphere 4772 changes monotonically along
the worldline of any observer trapped inside the horizon r < 2M. For those falling
into the black hole from outside, as a result, the singularity becomes unavoidable.?

Probably the most economical way of describing such nontrivial causal structure
is to use Penrose diagrams [5]. In figure 2.1, we present two Penrose diagrams of
the maximally extended space-times of the metric (2) for nonnegative M. These

diagrams depict most clearly the trajectories of null lines, i.e., the worldline of

3In this chapter, we use the geometrized unit ¢ = G = 1, while the signature of the metric is
taken to be (—1,1,1,1) in this chapter.

“Here, we will not consider cases of naked singularities.

5See figure 2.1.



massless particles which always travel at a 445 degree angle. Hence, the bold line
denoted by It is future null infinity where all the outgoing massless particles are
directed, while the intersection between the past and the future null infinities I

corresponds to r = oo with any finite ¢, namely space-like infinity..

Singularity

r=0

@ M=0 (b)y M>0

Figure 2.1: Penrose diagrams for (a) flat Minkowski space-time M = 0, and
for (b) Schwarzschild black hole M > 0. The wavy lines indicate the curvature
singularities at 7 = 0, while the bold lines correspond to null infinities. The

dotted lines are those of constant .

More complicated causal structures appear, if we consider Einstein’s equations

with a source term, i.e., energy-momentum tensor, on the right-hand-side,
Gy = 87T, (3)

A particularly interesting example is when the black hole acquires an electromagnetic

charges. Adding the Maxwell term to Einstein-Hilbert action,

1
SEinstein—-Ma.xwell = i‘é‘; / d.ZA\/—g {R — F2} — GMV — Sﬂ-Tllxljaxwell’ (4)



the static and spherically symmetric solutions of which are similarly given by a
unique two-parameter family of spacetimes, called Reissner-Nordstrom black holes,
g:——(1—g—%—l—Q;—)dtz—}—(l—%+Q—;)_ldr2+r2dﬂ2. (5)
T T T T
Note that the value of the Maxwell energy-momentum 7™2*vell i5 invariant under
the duality transformation exchanging the magnetic and the electric charge, and
this solution describes black holes of either magnetic or electric charge @) provided
that the singularity is not naked. Also note that this reduces to the Schwarzschild
solution (2) as @ — 0.

(a) Nonextremal (b) Extremal

Figure 2.2: Penrose diagrams for Reissner-Nordstrém black holes with time-

like singularities.

Again from the metric coefficients above, it is easy to see that the nature of r
coordinate changes between space-like and time-like, except that, in this case, the

transition can occur at two values of r = rp = M £+ /(M?—Q?) > 0. In the



extremal limit r, = r_, in particular, r is spacelike everywhere and the extremal
causal structure is different from that of nonextremal cases ry > r_ as depicted in
figure 2.2.

One interesting aspect of such causal structures with event horizons is that ob-
servers outside can see only part of the whole space-time. Whatever happens inside
the future event horizon will not affect us simply because its future light-cones are
confined to inside the event horizon at r = 2M in the Schwarzschild case or ry in
the Reissner-Nordstrom case.

An immediate consequence is that the worrisome curvature singularities and
whatever else is hidden by the event horizon are irrelevant for physics outside. Not
only can we continue to use the low-energy effective theory without worrying about
the microscopic nature of gravity, but, for some applications such as the stability
analysis [6], we can concentrate on fluctuations with support outside the horizon
and simply ignore those inside since they are effectively decoupled. In a sense, the
event horizon can be said to protect us from both the singularity and the resulting
nontrivial causal structure.

But the protection comes at a price. The diagrams in the figures above are
fictitious in that real black holes are expected to be created by gravitational collapse,
which cannot be a static process. Instead, the region below the past event horizon
is initially part of the smooth “outside” world as illustrated in figure 2.3 below.
Through the formation of the black hole, then, part of the evolving Cauchy surface,
contained in the regions denoted by III or IV, are engulfed by the future event
horizon, and thus lost to us. While harmless classically, this inaccessibility is at the

root of the so-called information puzzle associated with Hawking radiation of black

holes [7][8].

2.2 Quantum Fields in Black Hole Backgrounds

Now that we have classical black hole solutions, let us consider quantization of free

matter fields outside black holes. In addition to the classical part of the gravitat-



10

ing matter, there are always quantum fluctuations which necessarily carry energy-
momentum of their own. One of the most famous examples would be the Casimir
effect, where a vacuum bounded by two conducting plates develops a vacuum energy

density through spontaneous creations and annihilations of quanta.

ITI I

II

Figure 2.3: Penrose diagram for a collapsing massless shell. Region I is
outside of the shell as well as outside of the future event horizon, while regions
III and IV are trapped inside the horizon, thus inaccessible to observers in

region L.

For the purpose of choosing a physically sensible vacuum state, it is convenient
to consider an idealized gravitational collapse as depicted by figure 2.3, representing
a Schwarzschild black hole formed by a gravitational collapse of imploding massless
spherical shell of matter. Below the double line of the collapsing shell, or equivalently
inside of the collapsing shell, the geometry is that of flat Minkowski space-time, while
the outside geometry is that of a Schwarzshild black hole. To be consistent with
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this geometry, the classical energy-momentum must vanish completely except on the
shell. This solution is known as the Vaidya metric [9].

For a free matter field ¢, the matter action Smatter(10) is necessarily quadratic in
1, and the only interaction is through gravity. Using the path-integral quantization,
given an arbitrary background geometry, we can encode the gravitational effect of

the quantized matter fields in the effective action W (g),
e_iw(g) — /D¢ eismatter(d’)/h, (6)

which is just a sum of one-loop diagrams with arbitrary number of external graviton
lines. The one-loop energy-momentum tensor from the quantized matter is then
obtained by varying W with respect to the inverse metric, and the following equation

summarizes the resulting effect on the background geometry.

1
8T

oW
bg*

Guw = T2 +(Tw), (L) =2k (7)

By quantizing ¢ in a given classical background such as shown in figure 2.3., we are
effectively treating the second term, proportional to A, as a small perturbation.
Within this approximation, the first step is to evaluate the one-loop contribution
(T.,) in the given classical geometry. In general, W is a complicated non-local
functional of g [10] and this kind of straightfoward calculation is almost always
impossible. However, our purpose being to provide a convincing illustration rather
than a complete study of the phenomenon, we might as well introduce a toy-model
where such an explicit calculation is possible. For instance, we can regard the
Penrose diagram in figure 2.3 as depicting a solution to a two-dimensional dilatonic
gravity, obtained by integrating Einstein-Hilbert action over the angular coordinates,

and consider a conformal scalar 1) which propagates in such a two-dimensional world.

Smatter(¢) = "‘2—17;/‘1372\/ —g®@ (V¢)2 (8)

For the collapsing geometry of figure 2.3, the metric ¢(® is expressed most con-

veniently by introducing a light-cone coordinate v which grows indefinitely toward
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future null infinity.

2M 0(v — vo)

¢®=-Q )dv?® +2dv dr (9)

Obviously v = vy is the trajectory of the collapsing massless shell where T'¢tassical
must be nonzero. Qutside the shell v > vg, the coordinate v is related to Schwarzschild
timet by v =t + [dr/(1 —2M/r).

Integrating out 7, we obtain the famous Polyakov-Liouville action [11] as the
effective action W and the one-loop energy-momentum thereof, in closed forms [12].
The detailed calculations are carried out in sections 1 and 2 of chapter 3, for a more
general situation. Introducing another light-cone coordinate u in the region I of
figure 2.3, u = t — [dr/(1 — 2M/r), growing indefinitely toward the future event

horizon, we find the following outgoing energy flux in the region I.

(T} = =020 — (@) +tuw),  p =3 logl(l = ). (10)

The first piece on the right-hand-size is necessary to satisfy the energy-momentum
conservation in this curved space-time, while the second piece t,, is to be determined
by the initial condition on the initial Cauchy surface v = vy.

On the other hand, one natural initial condition is to require vanishing energy-
momentum on the initial Cauchy surface, except that of the collapsing shell, imply-
ing (Tyu) = 0 on the surface v = vo. In other words, there is no radiation emanating
from the surface of collapsing shell. Accordingly, ¢,,(u) must be chosen such that it
cancels the rest of the right-hand-side completely along v = wy.

But note that the two contributions propagate in different fashion. The first
piece, consisting of derivatives of p, propagates along constant r, while the second
piece t,,(u) propagates outward at speed of light. Hence, an asymptotic observer
at large fixed r will observe radiation t,, only and nothing else. This emergence of
outward radiation, apparently out of nothing, is clearly illustrated by figure 2.4. In

particular, the resulting outward radiation flux eventually settles down to a finite
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limiting value.

_h 1
rmoM 127 64M?

(11)

h
<Tuu>asymptotic = tuu(u — ‘+‘OO) = E (8up)

Figure 2.4: Propagation of one-loop energy-momentum. The broken lines
are those of constant r while the dotted ones are those of constant u. An
observer at large r, depicted by a thick broken line, detects outward radiation
as encoded in t,,, which becomes a constant as he approaches J*, time-like

future infinity.

From the derivation above, it is not difficult to notice that the crucial step is
the choice of the initial state, but it is also easy to see that, as far as the late-time
value of the flux ~ hi/M? is concerned, the initial condition of vanishing (Tyy) is
unnecessarily strict. The same flux would have been found if we had required only
that T, vanishes just near the horizon. But this condition is always satisfied, since
Ty near the future event horizon is roughly equal to (r — 2M)?o, where ¢ is the

energy density there as seen by freely falling observers and is necessarily finite.
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A clear implication is the universality of this late-time radiation. The details
of the gravitational collapse does not affect the late-time thermal radiation seen
above. What if the collapsing body itself were radiating? An asymptotic observer
would observe the energy content of this particular radiation diminishing rapidly,
because the relative time-dilation between the surface of the collapsing body and the
asymptotic observer, thus the red-shift factor, increases indefinitely as the collapsing
body crosses the future event horizon.

"This universality turns out to generalize to more realistic cases of four-dimensional
black holes, and was fully exploited by Hawking in his original derivation. Before
presenting Hawking’s general idea, it is instructive to note that the late-time flux
(11) is consistent with a steady thermal flux in two-dimensional space-time at tem-
perature Ty = h/8w M, the Hawking temperature of Schwarzschild black holes
713,

o« dp P T g h 1
— -T2 = 12
Tyy Jo 2wh er/Ten — 1~ 192k BH ™ 197 6aM? (12)

But is it possible for the final asymptotic state to be thermal when the initial state is

{ Thermal Flux}

chosen to be a pure quantum state? Recall the universality above allows all regular®
initial states including coherent ones.

The key-word above is “asymptotic.” Obviously, all the late-time asymptotic
observers propagate in region I of figure 2.3, which is only part of the whole space-
time, and are unable to see regions III and IV. Because some of the initial data,
distributed along v = vg but inside the future event horizon, are inaccessible, the
final “asymptotic” state is expressed in a reduced Hilbert space. Suppose that the
initial state is a pure state of the following form with pairwise correlations between

internal and external states.
|initial) = > " a, |n;in) ® |n;out) (13)

We denoted the basis of the internal and external reduced Hilbert spaces by |n;in)

and |n;out). In other words, after the collapse, the reduced Hilbert space of region

®That is, regular at the future event horizon as seen by inertial observers.
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I is spanned by |n;out) only, while the complete Hilbert space is spanned by both
|n;in) and |n;out). As seen by outside observers, then, the state is described by a

density matrix obtained by tracing over the internal basis.
Trin |initial)(initial| = Y |an|? |n; out)(n; out| (14)

This is a completely mixed state without any correlation whatsoever, even though
the complete state is a pure quantum state.

To explain the apparent thermal radiation from black holes, we need to estab-
lish two facts: First, almost complete pair-wise correlations between internal and
external states. Second, |a,|? ~ (eFn/Tsr — 1)~ where E, is the energy of the ex-
ternal eigenmodes |n;out) as measured by an asymptotic observer. Of course, this
cannot be true for arbitrary modes. Those modes with wavelength comparable to
the length scales of the collapsing body will be sensitive to the details of the history,
and cannot possibly produce such a universal result.

Rather, as we have seen above, the universal radiation is found only at late time,
near J7* in figure 2.4. The relevant modes are then easily shown to be those concen-
trated near future event horizon. Furthermore, as seen by freely infalling observers
these modes are of ultrahigh frequencies, owing to the huge relative blueshift factor,
encoded in the following relationship between two light-cone coordinates « and U,

suitable for asymptotic observers and for infalling inertial observers respectively.

1
U ~ —me_“/4M, near the horizon U = (. (15)

Therefore, the late-time thermal radiation from a black hole arises through the

following identity with |a,|?* ~ (eBn/Ta — 1)~1:
[O> =~ Zan/ |n/; 1n> & [n/; 0ut> +--, (16)

where |0) is any pure state smooth with respect to the local geodesic coordinate
U, and the eigenmodes |n’ : out) are those concentrated near U = 0 and of finite

positive frequency E,, with respect to the asymptotic coordinate u.
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Now we have a Hilbert space description of Hawking radiation, it is time that
we asked why. First of all, why are the coefficients a,’s nontrivial? For instance,
when |0) is the vacuum of the complete Hilbert space, the naive expectation would
be that |0) = |0;in) ® |0;out) with no radiation rather than the identity (16). The
insightful observation of Hawking was that the concept of particles, or equivalently,
the decomposition of a quantum field in terms of Fock space generators, depends on
the fourier eigenmodes used. In the case at hand, the appropriate eigenmodes for

+iw'U while those appropriate for the asymptotic

the infalling inertial observers are e
observers are e***. Using the transformation formula (15), it is not difficult to see
that the corresponding change of basis of the Hilbert space, often called a Bogolubov
Transformation, results in reshuffling of creation and annihilation operators. A state

~'U with ultrahigh w’, does have excitations of the form

|0}, devoid of excitations e
e™™* with finite w, hence a,’s are nontrivial. We will not attempt to rederive this
result, but simply state that the resulting distribution |a,|? is indeed thermal for
late-time observers [13][14].

Secondly, why are there the pair-wise correlations in (16)? A good way to illus-
trate the reason is to draw each mode |n'; out), |n’;in) and their tensor product. The
Bogolubov transformation is induced in the process of expressing e***'V in terms of
internal and external modes such as drawn in (a) and (b) above.

As a useful analogue, consider two possible choices of basis for a Hilbert space of
functions on a unit interval [—1, 1]: trigonometric functions e*™* and the Legendre

polynomials P,(z). Suppose we split the unit interval into [~1,0] and [0,1], and

create two reduced Hilbert spaces generated by “left” and “right” modes.

(@|P) = Pu(e)0(~2)

(z|Py) = Fulz)6(z) (17)
But this does not mean that |P.) and |P7) will enter the decomposition of "™ sep-

arately. Rather, we know P,(z)’s by themselves form a complete basis of the space,

and only the tensor products |P,) = |P!) ® |P7) will appear in the decomposition.
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U !
Inside Outside

Figure 2.5: Schematic drawings for (a) an external and (b) an internal
eigenmodes of same frequency, and (c) their tensor product. The oscillation at
U = 0 is infinitely dense owing to the infinite blue-shift, though the drawings

above show only a finite number of oscillations.

Similarly, as far as modes localized near horizon are concerned, the decompo-

sition of ¥V in terms of the internal and the external modes should result in a
decomposition in terms of their tensor products as drawn in (c) of figure 2.5., thus

the pair-wise correlations of (16) [15].

Implications of Hawking radiation are profound. First of all, the one-loop Ein-
stein equation (7) implies that black holes lose their mass continually through this
late-time thermal radiation, since the total ADM mass must be conserved. For the
case of Schwarzschild black holes, the result is particularly catastrophic since the
corresponding Hawking temperature blows up like ~ /M, as the evaporation pro-
gresses. For astrophysical black holes, formed from giant stars and accreting matters
continually, however, Hawking radiation is far too small to be of any consequence.

More fundamental issues arise from the fact that the asymptotic state of the

radiation appears thermal. We have seen how the emergence of a mixed state is
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explained in terms of the reduced Hilbert space. Superficially, this is similar to how
coarse-grained entropy arises from averaging over macroscopic scales, but there is a
sharp distinction that the latter is just a convenient tool of trade while the other is
forced upon asymptotic observers by the nontrivial causal structure. The resulting
puzzle of information loss is genuine in this sense [8]

While we will not delve into the matters of information puzzle or its possible
resolutions, it is worthwhile to examine the validity of Hawking’s thermal radiation.
The derivation above is based on a semiclassical approximation where the metric is
treated classically, which is well-justified as long as the lengthscale of the geometry

is much larger than Planck scale.
M2 > L%‘lanck = h (18)

On the other hand, we are also using an adiabatic approximation where Hawking
temperature change very slowly as the black hole evaporates. More precisely, in
order to justify the thermal description, emission of a quantum, carrying a typical

energy ~ Tpy, must not change the temperature drastically [16].

dM

Teu > |6Ty| ~ ' ‘TBH (19)

Of course, one realizes that this is, for Schwarzschild black holes, identical to the
previous condition.

For charged black holes, we find somewhat different stories. Generalizing the for-
mula (11) to arbitrary static black hole, we find the following simple prescription of
calculating the Hawking temperature from a metric coefficient in the Schwarzschild
gauge.
dr? A'(r)

A(T) + - BH 47 lhorizon

In particular, Hawking temperature of Reissner-Nordstrém black holes with two

g=—A(r)di® + (20)

horizons at r = r4 is given by

ry —r_
Tew =1T—= (21)
Reissner-Nordstrém 47I'T+
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which vanishes in the extremal limit r, — r_. In the extremal limit, toward which
the system is driven by the radiation, the necessary condition (19) is satisfied if and
only if
M? > ———-Ll%lﬂk———. (22)
N
Consequently, in the extremal limit, the thermal description of Hawking radiation
need not be valid, even if the black hole remains macroscopic in its size.

In such a situation, we need to resort to the effective action approach we started
with. While almost impossible to work with in four dimensions, the method has
been successfully applied to a series of two-dimensional models of black holes, for the
purpose of studying semiclassical properties, including gravitational backreaction,
more systematically [17]. One of the test cases in these efforts involved stringy two-
dimensional black holes associated with a Wess-Zumino-Witten coset model whose
semiclassical properties are similar to those of four-dimensional charged black holes
[18]. In the final section, we want to examine these classical space-times from the
viewpoint of string theories, as a way of understanding the relationship between

background geometries and fluctuating fundamental strings.

2.3 String Theories and Black Hole Geometries

Perhaps the most attractive feature of string theories [19] as opposed to conventional
field theories is that it provides a way of quantizing gravity consistently without
uncontrollable ultraviolet behaviour. Since some, if not all, of the puzzles associated
with black holes are closely tied with our ignorance of microscopic nature of gravity,
it is only natural to explore stringy features of black holes.

The quantization of fundamental strings is not only much more involved than
that of point-like fields, but exhibits many unexpected features. For one thing,
only after the first quantization, all the higher-loop Feynmann diagrams are natu-
rally built-in, owing to the summation over world-sheet topologies, without further

introduction of interaction vertices.
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Another surprising aspect is that the consistent quantization of fundamental
strings restricts the admissible ambient space-times in which strings propagate.
More specifically, the conformal invariance of the classical string theories survives
first quantization only for certain classes of space-time geometries.

In the limit where the inverse string tension o' is very small so that the typical
size of fundamental string is also very small, this constraint translates to classical
equations of motion for each and every background field [20]. An illuminating way
of seeing this is to consider the string theory as a two-dimensional sigma-model
with the space-time as the target manifold. Keeping the condensates of the bosonic

graviton multiplet only, the sigma-model is written below with the worldsheet metric

hrL],

1 3 .
S, = o /da2\/7z— {h”ail'aaj.’lﬁﬁgaﬂ + €70;2°0;2° Byg + a'¢RSfo)rld_sheet}. (23)

Evidently, all the background fields play the role of couplings which happen to
depend on the space-time position z° with 8 = 1,...,D. Since the conformal in-
variance implies vanishing renormalization group flow, beta-functions for each of
these couplings should also vanish on any acceptable background field. A pertur-
bative estimates of the beta-functions in o', then, provides field equations for each
coupling.

Organizing these field equations into an action principle, we finally obtain a low-
energy effective string field theory. With the Euclidean signature of the space-time,
we find the following action for the gravity multiplet, containing the dilaton ¢ and
the anti-symmetric 2-tensor B with its field strength 3-form H as well as the metric
g.

1
Seffective ~ — / d.TD\/‘—gv 8_2¢{2A -+ R + 4(V¢)2 + EHQ +-- } (24)

The cosmological constant A is proportional to 1/a’ (the string tension) and the
remaining terms of higher dimension are suppressed by positive powers of /. In

particular, the Maxwell term F? of dimension four appears with one factor of o/.
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Now, as an illustration, let us consider the simplest possible case where a black
hole geometry shows up as an admissible space-time geometry, namely when the
space-time dimension is two. Since the 3-form H is trivial on two-dimensional

manifolds, the action reduces to the following.

/ da?\[g® e—2¢{R(2) FA(VH)? + w} (25)

We dropped all the subleading terms and introduced A = 2A? as our two-dimensional
cosmological constant.

The dynamics are devoid of any local propagating degree of freedom and the
solutions are given by a unique one-parameter family [21]. With a Minkowskian

signature and a pair of Krustal coordinates (z*,z7),

g = —e¥dgtds, e 2 = % — Azte™, (26)

The number m is a integration constant and can be interpreted as a “mass” of the
solution. It is easy to see that the scalar curvature R(® is divergent where e=2¢
vanishes. The corresponding singularities at ¥z~ = m/A3 are space-like, provided
that the mass m is positive, and the solution represents a black hole with the event
horizons at ztz~ = 0.

To see that this is indeed a black hole solution, it is advantageous to introduce

a Schwarzschild-like coordinate system (t,z), valid for nonzero m.
+
m . x
Tz = BE sinh? z, = —e2M (27)
The resulting metric describes the geometry outside the horizon at z = 0, and is

independent of the mass m > 0 [18].

1
g? = g%,?,)itten =z dz® — tanh?® z dt?, e = % cosh® z (28)

It is only the value of the coupling e® at ¢ = 0 that determines the energy content of
the solution. In the extremal case of the massless solution, however, the geometry

is flat with two asymptotic regions at ¥ = 0 and at z* = +co.

ot = 2t o 4O = —dot do~ (29)

m=0



22

Note that Hawking temperature g of the black hole remains finite at A/2x, while
the flat extremal geometry of m = 0 corresponds to vanishing Tgy. The semiclassical
behaviour of this black hole resembles roughly that of the Reissner-Nordstrom black
holes, despite the superficial similarity to Schwarzschild black holes in terms of the

causal structure.

x+

Singularity

Horizon

Figure 2.6: Causal structure of the two-dimensional black hole in (z*,z")
coordinates. The space-like singularities are hidden behind the event horizons

along the axes z* = 0.

Now, this geometry is supposed to represent a part of a space-time manifold
which supports a consistent string theory, at least for certain values of \2. But,
since we employed a hypothesis that the string tension 1/« is sufficiently high to
justify ignoring large fluctuations of fundamental strings, the configuration is only
approximately correct. As the lengthscale of the space-time approaches v/, the

approximation eventually breaks down and the solutions such as (26) cannot be
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trusted near the singularities.

Finding configurations nonperturbative in ¢ is obviously impossible if we ap-
proach the problem from the field theory viewpoint as above, for we have no way
of summing up all the higher corrections into a manageable action principle. But
coming back to the string theories themselves, we realize that it is the conformal in-
variance that generated all the field equations in the small o’ limit and that the first
thing we need to do is to find a world-sheet conformal field theory whose background
configuration reduces to the known approximate one in the low-energy limit.

In some isolated cases with a larger worldsheet symmetry algebra, conformal
field theories on nontrivial background manifolds are known. One example would
be Wess-Zumino-Witten models [22] with Kac-Moody algebras [23], which are es-
sentially world-sheet sigma-models onto group manifolds. More interesting cases
are obtained by gauging a subgroup and thereby effectively reducing the space-time
dimension. Such models are known as Wess-Zumino-Witten coset models [24] whose
lagrangian formulation has been known for some time [25][26][27].

As it turned out, the black hole configuration (28) corresponds to one of these
coset models with the group manifold SL(2, R) gauged by a U(1) factor, as first
discovered by Witten [18]. The nonperturbative version of the metric has been
discovered by two independent groups [28][29] and the correction takes the following
form,

2
(2) ) 1 ., (k—2)tanh“z ,
IWitten Gezact A2 T k‘ —9 tanhg 7 )

where k = (2\%/)™' + 2 > 2 is a central charge of SL(2,R) affine Kac-Moody

(30)

algebra used to construct the conformal field theory. In the small ¢ limit, note that

(2)

this nonperturbative metric does reduce to gy/ien-
Again the geometry ggld possesses the event horizon at z = 0, for the metric co-
efficient of d¢? vanishes there, but the behaviour inside the horizon is quite different.

The proper analytic continuation of z inside the horizon is to follow the imaginary

axis z = 1y causing tanh®’ z = —tan?y to blow up at y = 7/2, thus the singularity
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of g%{-mn. With the nonperturbative correction, though, this divergence is canceled
between the denominator and the numerator, hinting that the nonperturbative ver-
sion is nonsingular” despite event horizons. The causal structure of this ezact and
nonsingular classical string background is presented in chapter 5.8

Here, let us remind ourselves that the discussion so far has been more or less
concentrated on the condensates of massless string excitations as seen by the string
center of mass. This means that the background fields are interpreted as seen by
point-like observers and that the extended nature of strings is not fully taken into
account. But near singularities, the sizes of the strings are never ignorable compared
to the length scale of the space-time.

For instance, consider an orbifold model, the background manifold of which
possesses conical singularities. While the background geometry is singular as seen
by point-like observers, the conformal theory itself shows no sign of distress near the
singularities. All that appear are extra winding modes associated with each singular
point citeString. Though black hole singularities are admittedly a lot worse than
conical ones, this simple example does illustrate the point that the conventional
notion of geometry, such as seen by the string center of mass, may not be suitable
in studying the singularity structure of black holes.

In conclusion, we observed how fluctuating strings shape the background geome-
tries and are capable of producing nonsingular black holes. But, it is also imperative
to understand better the interplay between fundamental strings and background ge-
ometries, in order to unravel the nature of black holes in the context of string

theories.

"String theories are non-local in that the higher order corrections to the effective action, in terms
of o/, possesses arbitrary numbers of derivatives, and the singularity theorems [31] of Hawking and
Penrose are not valid beyond the leading approximation. In this sense, there is no compelling
reason to expect singularities inside stringy black holes.

8The nonsingular causal structure of geyqe: is obtained by P.Y. and also independently by Perry
and Teo[30].
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3 Quantum Radiation from Extremal Black Holes

In connection with the physics of black hole evaporation, extremal black holes
with vanishing temperature provide interesting theoretical laboratories. Immune
to Hawking’s thermal radiation [1], they are the first clues as to what the final stage
of the evaporation process might be. But this does not mean we can consider the
classical extremal black holes as the final product of the process. For one thing,
the thermal behavior is already expected to break down for near extremal cases [2].
Zero Hawking temperature simply means the leading quantum effect disappears. To
obtain the next-to-leading quantum effect, one needs to find the celebrated Bogol-
ubov transforrﬁation more accurately. On the other hand, it is possible to bypass
this difficult problem by simplifying the matter sector to that of S-wave fermions,
or Callan-Rubakov modes. By integrating out the chargeless combinations of them
which behave as 2-D conformal scalars, we obtain a manageable one-loop effective
action for the metric field. In this chapter, we will consider the effect of quantiz-
ing these S-wave fermion in the background of extremally charged black holes of

Einstein-Maxwell theory.

3.1 Introduction to the Polyakov-Liouville Effective Action

While the physics behind the Hawking radiation is relatively well-understood, it is
often the case that more systematic treatments of the phenomenon in the frame-
work of perturbative quantum field theories are not available. For instance, the
energy-momentum expectation values at one-loop level are reliably known only for
late-time behaviour when the radiation from the black hole is thermal.

Keeping in mind that the Hawking radiation is at most a one-loop effect, one
might be puzzled by this. After all, we are not talking about quantization of gravity
at all, but rather quantization of matter fields in fixed background geometries. At

least conceptually, the mathematics involved should not be very different from, say,
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those of quantizing charged matter field in background electromagnetic fields.

In fact, such one-loop effects can be studied, in principle, by carrying out the
path integral of appropriate quadratic matter actions in arbitrary background fields,
typically with zeta-function regularization procedure. If the matter field is a bosonic
field 3 with the corresponding background-dependent kinetic operator @), we find
the induced effective action W of the background fields.

e W = / [di] e=¥9% = Det~1/2(). (31)

For example, to extract the renormalization contribution of ¢ to the electromagnetic
coupling, all we need to do is to isolate an operator of the form F? in W, where F'
is the electromagnetic field strength.

What sets the Hawking radiation apart is that the phenomenon is essentially of
non-local nature. Unless we keep track of the right vacuum state, we will end up with
an ambiguous answer. The practical upshot from this is that we need to maintain
explicitly non-local form of the effective action W. This is in sharp contrast with the
previous example where we necessarily perform an expansion of W in terms of the
naive scaling dimensions, which is also known as the Schwinger-DeWitt expansion.

Therefore, at least some of our technical problems in dealing with the Hawking
radiation stems from the inability to calculate W maintaining its non-local form.
While there is a known method of resumming the momentum part of the Schwinger-
DeWitt expansion for certain elliptic ) with spacetime dimension larger than two
[3], the resulting curvature expansion of W seems too complicated to be useful. In
particular, in four dimensions, we need to analyze the logarithms of the Green’s
function of @) with the correct boundary condition in an arbitrary black hole back-
ground.

On the other hand, there is an exceptional case where W is not only exactly
known, but also very much manageable. In two spacetime dimensions, any metric is
conformally flat and any functional of the metric is determined by its dependence on

the conformal factor only, up to possible topological terms. Therefore, W induced by
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integrating out a conformal scalar fields in two-dimension is completely determined
by the conformal anomaly, a well-known local quantity. The resulting effective action
W = Spr, is called Polyakov-Liouville action and can be derived easily as follows [4].

Consider the case of a conformal scalar in a Euclidean two-dimensional space.

1 1 5
W = log Det?/2Q = 5Trlog@, Q= 7 9:0/99" 0;. (32)

Using the zeta-function regularization scheme with an ultraviolet cut-off ¢, and ig-
noring possible zero-modes,

1 00
W=-—3 6 C—l;Tre_tQ. (33)

Now writing the metric ¢ in terms of the conformal mode p and a fixed flat metric

g, g = €*/§, we can take the variation of W with respect to p,

ow=-["a Tr{ép Qe-f‘?} = [Ta %Tr{&p e_tQ}. (34)

By an integration by part, §W is expressed in terms of the heat kernel at the
coincidence limit.
5W:—/dx2\/§6p{e_cq} :—/de\/gép{—+§Z—R+} (35)
coincidence T
The first term merely renormalizes a cosmological constant, while the terms denoted
by the ellipsis vanish as we remove the ultraviolet cut-off ¢ — 0. Integrating the

only remaining term over ép, we finally arrive at the following effective action

1 1
W= Spr= om / da?\/g) B =R, (36)

where we put the superscript (2) to emphasize that we are in two-dimensional world.
In general, integrating out conformal matters with total conformal anomaly N pro-
duces the effective action W = NSp;.

Once we know the explicit non-local form of W in terms of ¢(?), it is now a matter
of algebra to derive the one-loop expectation value of the energy-momentum.

oW
(T) =2h 2 (37)
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If we were in two-dimensional world, we would be able to study the semi-classical
properties of black holes complete with Hawking radiation and the gravitational
backreaction thereof, by adding this expression to the right hand side of Einstein
equations.

To find an application to real four-dimensional black holes, we need to find a
case where the dimensional reduction makes sense physically. A good starting point
would be spherically symmetric black holes. But the spherical symmetry of the
background geometry by no means restricts the quantum fluctuations to be in S-
wave sector, and, even if we managed to reduce the problem to S-wave sector, in
general, the resulting two-dimensional modes are not conformal fields.

On the other hand, there are so-called Callan-Rubakov modes [5] around magnet-
ically charged black hole, which appear to propagate freely along the radial direction.
After a careful consideration of the electromagnetic backreaction [6], it turned out
that the chargeless combinations of these lowest partial waves of massless fermions
do behave as genuine conformal matter fields in two dimensions.

For most quantum fluctuations around a black hole geometry and even for most
S-wave modes, there exists a potential barrier of some sort. In particular, some
of the outgoing quanta from the event horizon is reflected by such barriers back
to the black hole. The effect is especially very pronounced for low-energy quanta.
This means that, when we are interested in physics dictated by the fluctuations of
sufficient low energy fluctuation, we may be able to ignore most of these excitations.

Therefore, one hopes that there might be a situation where he can ignore ev-
erything but the effective two-dimensional conformal fields in the form of chargeless
Callan-Rubakov modes. A now classic example of this is the case of an extremally
charged dilatonic black hole, also known as the cornucopion. The generic potential
barrier in this case induces a mass gap, and both the geometry near the horizon
(which is asymptotically far away) and the low energy fluctuation there are dictated

by an effective two-dimensional action [7][8].
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A less dramatic case where this reduction to two dimensions might be useful is
the extremal limit of magnetic Reissner-Nordstrom black hole, Hawking temperature
of which is vanishingly small. The relevant energy scale decreases with decreasing
Hawking temperature, and typical quanta of the corresponding low energy will find
the potential barrier insurmountable. Then one may expect the leading radiation
from the event horizon to consist of the chargeless Callan-Rubakov modes.

Of course, it is not crystal clear whether the extremal limit is actually dictated
by low energy excitations only, for the thermal description based on the vanishing
Hawking temperature is known to break down near the extremal limit [2]. However,
we find the resulting two-dimensional system sufficiently interesting to study in-
depth without further justification.

In the following sections, we want to study the dimensionally reduced system
of Einstein-Maxwell theory coupled to N conformal scalars at one-loop level but

beyond the usual late-time approximation by Hawking.

3.2 Quantum Radiation from a Zero-Temperature Black Hole

Here, we want to concentrate on the case of the extremal Reissner-Nordstrom black
hole and to study how semiclassical effects modify one of the classical properties,
namely ADM mass M. The model we consider is dimensionally reduced Einstein-
Maxwell theory. By restricting to the spherically symmetric sector we obtain the

following 2-D action,”

1 -
Sy= [@oyf—g® e {Rm +2(Ve) + 267 — F?}, (38)
where the 4-D metric is split into 2-D metric ¢(® and the dilaton part
g = ¢@ 4 72 402, (39)

The finite mass solutions with regular horizons are the well-known Reissner-Nordstrom

solutions with mass M and charge @ satisfying the inequality M > |Q).

’G = ¢ = 1 in this chapter
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dr? 2M Q2
) _ _ 2, O 202 _q_ M
g F(r)dt +F(r)+r aQ*, F(r)=1 . 7"2 (40)

When the inequality is saturated, F(r) has a double zero at the horizon r =
M = |Q| and the corresponding extremal black hole has zero Hawking tempera-
ture, hence no thermal radiation emanates from the horizon a long time after the
black hole formation. This implies that the usual late time estimate of the Bogol-
ubov transformation[1] is not the leading quantum correction. It vanishes identically
and we need to study the next nonvanishing contribution, which may or may not
depend on the history of the collapse.

For this purpose, we can follow CGHS and couple N conformal scalars to the
above 2-D action. One can regard these 2-D scalars as chargeless combinations of
Callan-Rubakov modes, which are discussed in complete detail in a later chapter.
As shown in the previous section, one can integrate out these conformal matter
completely to produce the non-local Polyakov-Liouville action[4] with a particular

coefficient, which summarizes the effect of the quantized matter on gravity.®

1
— hSpp = ——/da: V=9® R RO (41)

Furthermore, this semi-classical effective action can be conveniently handled with

the introduction of a auxiliary scalar field 2z in the following manner[9],
AL / Pa\/—g® (V2)? - 2RD). (42)

Since the field equation for z reduces the second term to the original Polyakov-
Liouville action of central charge N, solving this theory at tree level is equivalent to
studying the semi-classical theory of 2-D gravity coupled to N scalars. These are
the leading terms in the large N expansion of the full 2-D quantum theory, when
N — oo but Nh is kept finite.

Notice that the scalar curvature R(® acts as an external source coupled to the

z field. This effectively induces the usual Hawking radiation in a classical black

®The extra minus sign, compared to the formula (35), is because the signature of the metric is
now (—1,1).
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hole geometry, i.e., a stationary point of S, only. Because the classical black holes
radiate, the theory does not have any static solution with finite mass and regular
horizon of finite temperature. The only static solutions of finite mass are those of
zero temperature, which were first studied by S. Trivedi[10].

But first let us consider the effect of quantizing the original N conformal scalars
in a classical background. For example, given a classical geometry, the expectation
value of the matter energy momentum tensor can be found simply by evaluating the
classical energy momentum tensor of z-field on that classical background. A family
of classical geometries known as the Vaidya metric[11] is particularly relevant to our

discussion.

g = —(1 -

2
2m(v) + ¢ (v)) dv? + 2dv dr + r* dQ* (43)

r r?
It represents a collapsing massless shell whose cumulative energy and charge at
retarded time v are m(v) and e(v). For smooth m and €?, the cosmic censorship is
achieved by requiring the positive energy condition for the shell[12].?

For our purposes, however, it is appropriate to choose
m(v) = MB(v — vo),  €*(v) = Q*0(v — vo), (44)

where 0 is the usual step function. The geometry is then that of an initial Minkowski
spacetime glued to a Reissner-Nordstrom black hole across an ingoing null shock
wave located at v = vo. In other words, this represents an idealized collapsing
solution where a Reissner-Nordstrém black hole is created by a collapse of thin shell
of massless charged matter. Introducing a new coordinate u = v — 2 [ F~1(r)dr

with F'(r) as in (39), (v, u) form a pair of light-cone coordinates above the shock,
g¥ = —F(r)dvdu, v> . (45)

In these coordinates, v — oo is the future null infinity, and ¥ — oo is the future

event horizon.

%0f course, we have introduced an external charged matter source to create the shell itself.
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Singularity

r=0

Figure 3.1: The Penrose diagram for the Vaidya solution with M = |Q]|.
The geometry outside the collapsing null shell is that of the extreme Reissner-

Nordstrom black hole, while the inside is given by the Minkowski space-time.

This family of solutions represents idealized form of gravitational collapses lead-
ing to spherically symmetric Reissner-Nordstrém black holes. Once we have an
explicit classical solution of gravitational collapse, the Unruh type boundary con-
dition appears quite naturally. Namely, we expect the region inside the collapsing
shell to behave regularly and the vacuum state before the collapse corresponds to
having vacuum expectation value of the energy-momentum trivial. Therefore, we
impose an initial condition on the N matter fields such that the expectation value
of the energy-momentum tensor vanishes in the Minkowskian region. Using energy-

momentum tensor conservation, this can be translated into

Tas ey = (GolOip = @pf) ey =0 (40
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b= (3logh),

where t,,, comes from the homogeneous part of the solution to z field equation. This

implies the following form of < T, > as we approach the future null infinity.

< T >y = taal8) = T3P0 = PO F 0D oy s (47
As u — oo, this clearly shows a steady flux proportional to the temperature squared
(F'(r — horizon) ~ ThHauwking). Also as expected, this asymptotically steady flux is
absent, if M is equal to |@Q)| so that F'(r — horizon) = 0. However, there is a finite
integrated flux; the total energy radiated is

oo oo !
—AM:/ < Tow >, du Nh/l F

k

where we used F'(r = |@|) = 0 for the M = |Q]| case. Since we ignored the
gravitational backreaction, this estimate is valid only for small £ = N&/(127Q?),
or equivalently for large black holes. Notice that —AM is positive for any F' > 0
with a double zero at the event horizon. In short, we have found one-loop quantum
radiation from the zero-temperature extremal Reissner-Nordstrom black holes in the
form of S-wave fermions.

—AM represents the energy radiated away by the quantized matter, and after
properly taking into account the gravitational backreaction, the Bondi Mass of the

system should approach as u — oo
k 2
QI — £+ 0()). (49)

One might assert that it is not clear whether the estimated loss depends on the
particular history of the collapse chosen. After all, the metric chosen can never be
realized, since one cannot assimilate the collapsing process by a smooth version of
the shock wave. As shown in [12], for smooth m(v) and e?(v) satisfying the positive
energy condition, the extremality can never be achieved in finite time. It might be

that a realistic collapse scenario produces different —AM. We will show that the
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above estimate of energy loss is robust by finding numerically the ADM mass of the
semi-classical analogue of the extremal black hole which must be the end stage of

the process described so far.

3.3 Masses of Semiclassical Extremal Black Holes

Semi-classical static solutions of (42) with extremal horizons have been studied near
the horizon[10]. The requirement of zero-temperature horizon specifies a unique ini-
tial condition at the horizon for a given total charge, and the resulting static solution
is known to be asymptotically flat. It is worth pointing out that, to have a static
semi-classical solution with regular event horizon, it is necessary to immerse the
black in a heat-bath, for the semiclassical effective action (42) simulates Hawking’s
thermal radiation automatically. As a result, the only case one can hope for a finite
ADM mass is when the semiclassical horizon is of zero temperature.

There is no known analytical form of the extremal solution, but it is, in principle,
possible to carry out numerical integration. However, before going into details of the
simulations performed, it is helpful to discuss other static solutions of finite mass,
all of which have naked singularities.

Those with smaller masses, to be called supercritical, are qualitatively similar
to the classical ones with M < |@|. The radius e™® monotonically decreases as we
approach the naked singularity at near origin. On the other hand, solutions with
larger masses, to be called subcritical, are quite different from classical analogues
M > |Q|, which have curvature singularity at the center e = 0 hidden by two
layers of nonextremal horizons, since we assume no heat bath to support nonextremal
horizons. (Heat bath makes ADM mass infinite.) More specifically, a semi-classical
subcritical solution has a lower bound on the value of the radius e™® near would-be
horizon. One can distinguish the two species by observing whether the simulation
stops in the middle or continues all the way to the critical value of the radius
e=ber = \/ROP.

Coming back to the actual simulation, it turns out that static field equations can
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be decoupled to produce a single first-order differential equation with the following

gauge choice.

g? = A4 + B2Q¥dr?, e = Q2. (50)

In this gauge we can extract two independent first-order differential equations.

k(%,)2+2r(%,)+(1—32+%2—) =0
=BG - D S B 1) = 0 (1)

Solving for A’/A in terms of B produces a first-order differential equation for 1/ B2

We performed two independent simulations. First, we started from the asymp-
totic region with the initial condition determined by M/|Q|, and searched for the
range of M/|Q| producing an extremal horizon (a double zero of 1/B?). This in-
volves a lot of trial and error. As mentioned above, the form of solution, in particular
the metric coefficient B?, exhibits qualitatively different behaviours for subcritical
and supercritical cases. By narrowing the range of M/|Q| where the transition from
the subcritical to the supercritical occurs, one can easily find the approximate value
of the mass of the semiclassical extremal black holes.

Secondly, we integrate outward from the known behavior near the extremal hori-
zon and extract the ADM mass by fitting the curve in the asymptotic region. This
second method turned out to be much more accurate and reliable.

Since the initial points are near, but not quite at the horizon or r = oo, we needed
to calculate accurate initial conditions. Symbolic expansions of 1/B? in appropriate
coordinates, solving the equation above approximately, are used for this purpose.
Fortunately, the nonanalytic behavior of the metric near the horizon emphasized
in [10] does not occur for 1/B? as a function of r. We used MATHEMATICA
for all numerical and symbolic calculations as well as preparation of the plot. As
we improved the accuracy of the numerical calculation by supplying more accurate

initial data, and also by increasing the intrinsic accuracy of the program used, the
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results from each simulation converge to each other. The data for M/|Q)| obtained

by the two methods coincide to an accuracy of 1075,

Figure 3.2: Plot of M/|Q| versus k = NA/(12rQ?). The straight line shows
the leading behaviour M/|Q| = 1 — k/6. The dots are the actual numerical
results from the two independent simulations. Data points are at k = n/10

forn =1,...,19 as well as & = 0.001.

The simulation is carried out only for & < 2 because the extremal horizon dis-
appears beyond k = 2, when the horizon radius is equal to the critical value of the
dilaton e% = \/kQ?. The plot of M/|Q| as a function of ¥ = Ni/(127Q?) (Figure
3.1) clearly shows the initial slope of —1/6 as predicted in the previous section.

Furthermore, up to k = 2, the ratio continues to drop as we increase N or decrease
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the charge |@].

3.4 Discussion

What can we learn from this little demonstration? The first and foremost fact is that
higher order corrections to Hawking’s calculation must be taken account into even
for such a crude operation as mass measurement. One should expect that a similar
mechanism works for four-dimensional black holes and the classical bound M > |Q]
is modified, unless some unbroken extended supersymmetry protects it. But the
model we used gives few clues as to what the modification might be. While 2-D
conformal scalars can be interpreted as the S-wave modes of 4-D massless fermions,
we cannot regard our model as a quantitative approximation to the full 4-D physics.
There is no generic mass gap present to separate S-wave fermions out from the rest.

Nevertheless this doesn’t prevent us from speculating on the effect of such a
modified mass-charge relation in 4-D. In particular, suppose the same monotonic
decreasing behavior is realized for the four-dimensionally extremal black holes.
The possibility has been contemplated by J. Preskill with emphasis on charge
renormalization[l14]. The most immediate consequence would be to lift the well-
known degeneracy for multi-extremal black hole configurations. Classically, a fam-
ily of solutions known as the Papapetrou-Majumdar space-time[13], describes many
extremal black holes at rest relative to one another. The total ADM mass of such a

solution is the sum of the individual masses,

M =31Qi. (52)

This can easily be seen by imagining each hole separated from one another far away,
so that whatever potential energy there might be becomes negligible. In fact, there
is no potential between individual black holes, and the total mass is given by (51)
for any finite separations. Therefore two different multi-black hole configurations in
equilibrium have the same energy provided that the sum of absolute value of the

charges are equal. But, with the modified M/|Q| which decreases as Q? decreases,
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the same reasoning shows that it is energetically favorable to split one big black hole
into many smaller ones. The classical degeneracy is lifted.

Classical physics forbids such a bifurcation process, since it violates the second
law of black hole thermodynamics. However, there has been suggestions of possible
finite action instantons mediating bifurcation of the extremal Reissner-Nordstrom
black holes. In fact, D. Brill found an instanton of finite action interpolating be-
tween two Bertotti-Robinson metrics with different numbers of necks[15]. It is well
known that a Bertotti-Robinson metric with a single neck approximates an extremal
Reissner-Nordstrom black hole near the horizon. If the initial and the final states
are of the same energy, the instanton will take infinite Euclidean time to make the
transition, and the stationary state would be a linear combination of the two classi-
cal configurations. With the modified M/|Q| relation however, a relevant Euclidean
solution is a bounce solution and a big extremal Reissner-Nordstrom black would
decay to many extremal black holes of smaller charges distantly separated.!®

So far, we have completely ignored the possible presence of charged matter fields.
Suppose there is an elementary charged particle of mass m and charge e and consider
an extremal black hole of mass M and charge ). For m << |e|, the Schwinger pair
production near the horizon is always dominant over a possible bifurcation process
and the black hole charge will eventually be wiped out. But for sufficiently large
mM > My, 1t Will be kinematically impossible for an extremal black hole to lose its
charge by emitting these charged particles[14]. For a large black hole M > m in
particular, we have m,,/|e| ~ M/|Q|. Therefore the model we considered should
be regarded as a possible scenario for magnetically charged extremal black holes in a
world where the magnetic monopole comes with mass comparable to, or even larger
than, its charge in Planck units.

In summary we have found that the classical inequality M > |Q| can be modi-

fied through semi-classical effects. In the S-wave approximation, the corresponding

10A similar observation has been made in the context of classical dilatonic black holes with
massive dilaton field[16].
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modification is found to be such that bifurcations of a large extremally charged black

hole to smaller ones, if possible, are energetically favorable.
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4 Fermionic § Vacua and Long-Necked Remnants

In this chapter, we study another application of Callan-Rubakov modes to magnetic
black holes. In the previous chapters, the chargeless combinations of Callan-Rubakov
modes were used to study S-wave sector matter coupled to spherically symmetric
black holes to one-loop level, for they can be integrated out completely, leaving a
well-known effective action for the metric. On the other hand, there are other inter-
esting physics associated with Callan-Rubakov modes on any magnetically charged
object. One such example is the vacuum polarization effect of these S-wave fermions
around magnetic monopoles when there exists a C'P nonconserving vacuum angle 6.
Studies of this vacuum polarization for various monopoles in flat spacetime has been
carried out in detail, and one can expect that the qualitative features of these studies
will carry over to some magnetically charged black holes which also have compact
cores. However, in addition to the usual complications due to event horizons, there
are cases where the geometry near the event horizon is literally noncompact, and
naive expectations based on compact core structures breakdown. Here, we want
to study charged Callan-Rubakov mode around such black holes and the resulting

vacuum polarization effects on the black hole geometry itself.

4.1 Motivation

It is well-known that a magnetic monopole carries fractional electric charge [1][2] in
the presence of a C'P nonconserving angle 6 [3]. For a spontaneously broken Yang-
Mills theory (with monopoles as solitons), this angle parametrizes a continuum of
vacua, known as § vacua, the effect of which is naturally incorporated by including
the Pontryagin density multiplied by 6 in the Lagrangian. With such a setup, the
origin of the fractional charge becomes quite clear. The Pontryagin density is essen-
tially a product of electric and magnetic fields, through which a classical magnetic

field acts as a source to the fluctuating electric field. As a result a monopole carries
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a long range electric field proportional to its magnetic field, and the corresponding
electric charge must be proportional to 8. Allowing higher excitations, we arrive at

the following Witten’s quantization rule for unit magnetic monopoles.
0 . .
g=N— 5 N is any integer. (53)
s

As usual, the quantization rule tells us nothing about how the electric charge should
be realized in such dyons, which must depend on many details of the theory. One
example where we can address this question of dyon core structure is a monopole
coupled to charged fermions [4][5][6]. The lowest partial waves of such fermions,
known to experience no potential barrier, can be used to study the static dyonic
core structure.

As demonstrated by Callan [4], the vacuum fluctuation of the charged fermion
field tries to shield the core from the radial electric field and, as a result, the fractional
electric charge is effectively realized as a vacuum polarization cloud of size ~ 1/my,
around the monopole, where my, is the mass of the fermion. In particular, for small
fermion mass, the electric charge distribution is concentrated on a thick and large
shell of radius ~ 1/m, and the small magnetic core, being shielded from the extra
radial electric field, is found to be essentially intact.

Witten’s charge quantization is a topological statement, and the same fractional
charge must appear also for magnetic black holes. On the other hand, when the
magnetic black hole is much smaller than the fermion lengthscale ~ 1/m,;,, we may
also expect to find similar dilute clouds of vacuum polarization shielding the black
hole from the extra radial electric field so that its geometry near the horizon is that
of the pure magnetic black hole.

As far as light fermions are concerned, the leading effect in such a background
is from the long-range magnetic field, and once the “core” region is shielded by the
resulting dilute cloud, one may argue, there is little to which gravity reacts. While
the horizon can affect the dynamics of the fermion fields nearby, this seems to matter

only when the fermion fields are massive enough for the charged cloud to approach
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the event horizon.

However, there is a curious species of extremal magnetic black holes, known as
cornucopia, whose “size” is both small and infinite simultaneously. Instead of a
compact core, the cornucopion has an infinitely long neck with the transverse radius
proportional to the total magnetic flux, as illustrated in Figure 4.1. It takes literally
infinite proper time just to reach the event horizon at the bottom of the neck, let

alone to cross it, while the transverse size of the neck can be arbitrarily small.

(a) (b)

Figure 4.1: Schematic diagrams for (a) a magnetic monopole in a flat
space-time, and for (b) a cornucopion in an asymptotically flat space-time.
Magnetic flux emanating from the central region is denoted by the arrows.
A cornucopion, which is an extremally charged dilatonic black hole, has an

infinitely long neck of fixed transverse radius threaded by the magnetic flux.

Then we may ask how the vacuum polarization behaves in such an exotic back-

ground. Should one expect to find the narrow and infinite neck surrounded by a
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large and dilute charged cloud of vacuum fluctuation, provided that the fermion
mass is small enough? After all, far away from the black hole, there is little indica-
tion as to the existence of the infinite neck. In this chapter, we want to address this
specific question, by studying a bosonized effective action for the S-wave charged
fermions coupled to the dilaton gravity.

In section 2, we briefly discuss the dilatonic magnetic black holes as solutions to
a dilatonic gravity in four dimensions, and also the cornucopion as their extremal
limit. After the derivation of the effective action for a general spherically symmetric
background in section 3, we shall return to the specific case of the cornucopion. The
surprising result of section 4 is that the energy cost of the vacuum polarization, which
should be balanced against the gain in the electrostatic energy, is actually divergent
in such a noncompact background. The inevitable conclusion thereof is that the
gravitational backreaction to this vacuum polarization process is never negligible
and, for whatever my # 0 is, must have the characteristic long neck terminated, by
creating an extremal horizon at finite physical distance.

In section 5, we study the effective action of S-wave fermions combined with the
dilaton gravity in four dimension to investigate the self-consistent geometries with
finite ADM masses. We find a useful and practical way of studying the solutions
near the extremal horizon formed by the gravitational backreaction, and, using this
method, we clarify the different roles the fractional electric charge plays in large
and small fermion mass limit. In particular, we find the expected behaviour in the
large fermion mass limit, where most of the fractional charge must be trapped by
the black hole’s gravitational pull. We conclude by discussing the generality of these

results.

4.2 The Cornucopion

The magnetic black hole we are interested in is a solution to the following classical

field theory of the metric, a U(1) gauge field and a scalar degree of freedom ¢ called
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dilaton.!
- 16711‘—52 / dz*\/—g 6_2¢{R +4(Vg) + /£2F2} (54)
From the form of the action, it is easy to see that the field e® plays the role of
the universal coupling. This action can be regarded as a low-energy effective string
theory in four dimension, but we will not make any connection to the string theory.
Similarly to the Einstein-Maxwell theory, this theory possesses a family of charged
black hole solutions, of which those with the spherical symmetry is well-known. The
solutions have been obtained with the following ansatz for the metric [7].
dr?
F*(r)

The new metric ¢ is sometimes called the Einstein metric because the action above

jg=eg=f(r)dr’ - — p*(r) dQ? (55)

reduces to the Einstein-Hilbert action in terms of § plus matter fields with uncon-
ventional couplings.
For magnetically charged cases, we can easily extract the behaviour of the field

strength 2-form F for objects with magnetic charge Q/x.
_9
F=—=sin0d0dyp (56)
K

The static and radial field equations can be integrated exactly, and we find the
spherically symmetric magnetic black holes with a regular event horizon. In terms
of the ADM mass M/x? and the asymptotic value of the coupling e®>,
2M 2M N1 2e=2000
§= (1 - -—) dr? — (1 - ——) dr? — 2 (1 - Qe——> anz. (57)
T r Mr

The corresponding coupling e? grows like r/p and is actually infinite at p = 0.

2,—~2d00
6—2¢ = e_2¢°° (1 — Qjﬁ) (58)

The curvature singularity at the vanishing p is spacelike and hidden behind a regular
horizon at r = 2M, provided that v/2 M > Qe %<. But, in the extremal limit
V2 M — Qe %= the singularity becomes null and naked.

"'In this chapter, £~ is the gravitational constant, while ¢ = k = 1. The signature of the metric
is taken to be (1,-1,-1,-1).
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Converted back to the original variable ¢ = 24§, however, the geometry looks
quite different in the extremal limit. The vanishing behaviour of §,, = f? and
Gee = —p?, at the naked singularity r = v/2 Qe~ %>, is completely canceled by the
divergent coupling squared €?%, and the resulting geometry is geodesically complete.
Through a couple of coordinate redefinitions, we find the following metric for the

extremal geometry.

Geo = dt* —d2® — R(2)dD%,  Rew(2) = *Dp(r) |oremal

t = eb=r
z = ¢“/dr< \/_Qe_¢oo>_ (59)

Note that, as we approach p = 0, corresponding to a horizon infinitely far away, the
transverse radius R., approaches a constant v/2 Q.

The geometry possesses two asymptotic regions: the first is the usual asymptot-
ically Minkowskian region at z, R., — oo, while the second at z — —oo looks like
an infinitely long neck of the fixed transverse radius v/2 Q, threaded by the uniform
magnetic flux 47Q)/, as depicted in Figure 4.1. This extremal magnetic solution has
been dubbed “the cornucopion” and is considered as a possible remnant candidate,
because of its characteristic infinite-neck structure.

In the following sections, we want to explore the stability of this unusual geome-
try in the presence of a vacuum polarization effect associated with massive charged

fermions.

4.3 Callan-Rubakov Modes in a Magnetic Black Hole Back-
ground

To be definite, let us consider a static dilatonic black hole solution with magnetic

charge [7], written down in terms of the tortoise coordinate z.
g = A(2)dt? — \*(2) d2* — R*(2) dQ?, e72 = ¢724(3), (60)

Asymptotically R ~ z — oo, while the event horizon is at z = —oco where the

geometry is largely determined by the behaviour of A. For a cornucopion which is
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a purely magnetic black hole, we can take A = 1. For black holes with an extremal
horizon at finite physical distance, such as those with both electric and magnetic
charges inside the event horizon [8], A> ~ 1/2% as we approach the horizon. Finally
4 is the dilaton field and e? plays the role of the coupling. Since we want to couple
the matter system to gravity later on, we shall keep A, R and ¢ unspecified for a
while. As long as the solution is static and spherically symmetric, the detailed form
of it does not enter the derivation in this section.

Now depending on the origin of the magnetic charge, we can introduce different
kinds of charged fermions. The simplest case would be a Dirac fermion coupled to the
U(1) gauge field. However, we found it advantageous to work with a spontaneously
broken SU(2) theory so that the fermions are in the fundamental representation of
SU(2) and that the magnetic charge is realized as a topological quantum number
of solitons. The background gauge field outside the horizon is still Abelian except
that the Abelian U(1) generator ) is expressed in terms of the SU(2) generators T,
[9].

Q =T,n", 7i is the unit radial vector field.

With this choice, the derivation of the effective matter action is quite similar to
that of Callan [4], up to the conventions regarding the spinor and the modifications
due to the nontrivial geometry. We shall compare our results to those of Callan

whenever appropriate.

Consider a SU(2) doublet Dirac fermion ¢ with nonzero mass m.,. As mentioned
in the previous section, it is sufficient to focus on the lowest partial waves of the
fermion, called Callan-Rubakov modes, which do not see any potential barrier of
the geometry or of the spherically symmetric gauge field [4][10]. To isolate such
modes, we use the following ansatz for 14, positive and negative chiral eigenstates
of ¢ written in terms of Weyl 2-spinors.

1 1 .
by = \/meqt(t’Z)a Y = JinR X-(t, 2). (61)
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The upper (lower) component of the two spinor x_ (x4) has charge 1/2 while the
other has —1/2, with respect to the unbroken U(1) generator ). We chose v = o,
and y* = ¢, as our two-dimensional Dirac matrices. With this ansatz, the fermion

action can be reduced to the following two-dimensional form.

S = [ didz (5,700 + XA Ox- + M9 (Xax- + Xoxs))
+ / dtdz 47 \2R2 (aiJh + a.J5), (62)

where @ is the fluctuating part of the radial U(1) gauge field. We can set a; equal
to zero using the gauge degree of freedom and then the radial electric field in (%, 2)

coordinates is simply £ = 0;a,. The relevant currents are,

Jh = 87r)\1—2R2(Ji —J2),  Ji= éﬁlﬁﬁ(—ﬂ +J0), (63)
where Jy are the two-dimensional vector currents of xi. The effective action S,
above is incomplete since we neglected the action for the fluctuating electric field £
so far. By isolating it from the full Yang-Mills action and integrating the angular

part, we find

R2
2)\2e2¢
The 6 term is from the Pontryagin density and can be deduced from the fact that a

Sp = [ dtdz %E + E?). (64)
unit magnetic monopole carries total magnetic flux 4.

This effective action S 4 Sg is different from that of Callan [4] in two respects.
First, the effective couplings are changed due to the nontrivial geometry and the
nonuniform coupling e?. In particular, the fermion mass term acquires a factor of .
Second, the radial coordinate z extends from oo to all the way to —oo. Because of
this, we no longer need to impose a boundary condition at the origin. In fact, it is
effectively a theory of fermions in flat 1+1 Minkowski space-time, coupled to a U(1)

field through an axial current, but with position-dependent mass and coupling.

Since the U(1) field is coupled to a two-dimensional azial current,'? we can

bosonize xi, through the following fundamental relationships between currents

12The two spinors y+ are of opposite charges, so that the U(1) gauge symmetry is not anomalous.
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[4]{11] which preserve the U(1) current automatically,

J; = —Lgfi, with respect to the flat metric dt? — dz2. (65)

VT
Furthermore, to separate the charged and the uncharged sectors, it is convenient to

perform a canonical transformation generated from

f=(e=fNVE m=n(-00)+ [ (F+ fIV2 (66)

Once this is done, we can simply eliminate the electric field strength F through its
equation of motion and express the effective action completely in terms of bosonic
fields f and 5. If we define u to be the geometric mean of the normal ordering scales

ps and p, for each field, the effective action S, + Sg is transformed into

62¢)\2

0
/dtdz {%(aff + %(877)2 TR (f— \/2_71-)2 + emyp) cos V2r f cos \/2_7”7} (67)

The constant ¢ is a number of order 1 and shall be kept unspecified. The electric
charge density of fermions is now simply proportional to the spatial derivative of f

and we find the total charge inside a radial coordinate z to be

1 0
z)= [ dz (4w AR* J}) = —(f — —=)I., 68
a(2) = [ 4z (1R J) = (/= )] (68)
where we fixed the integration constant by inspecting the electric energy term in the
effective action above. Similarly, the fermion number inside z is, up to an additive

constant, given by 71/2/7 evaluated at z.

Coupling to gravity requires further considerations. First, the effective action
above is not manifestly covariant. The actual two-dimensional metric g(? = \? (dt?—
dz?) has a conformal factor A? and the only way to reconcile this with the present
form of the action is to choose the normal ordering scales to be proportional to A.
On the other hand, the only two physical mass parameters of the effective theory
are e?A/R and myA\, both of which are proportional to A. Hence it is appropriate

to replace u by Az, where the specific choice of i should not in principle affect the
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physics. But in practice, we will study the effective action at tree level only, which

requires a judicious choice of the ordering scales. For example, we can take
p? = Nt = mpm,, my, m, are masses of f and 7, in the (¢, z) coordinate,

automatically ensuring the covariance of the effective action. Secondly, there is the
matter of zero-point energy, which is irrelevant before gravity is turned on. To
ensure the existence of the cornucopion for trivial values of the vacuum angle 0, it is
necessary to have vanishing vacuum energy density, whenever cos § = 1, both at the
asymptotic infinity and at the other asymptotic region deep inside the cornucopion.
This can be achieved by adjusting the fermion mass term to have minimum at zero
rather than at —myuA. The resulting effective action Seg in an arbitrary coordinate

system 1s

62¢
] et =g {57 15 (0 (== Ve (1—cos VEr T cos V) .
(69)

4.4 A Vacuum Energy Distribution and the Gravitational
Backreaction

To recover the charge quantization rule, it is sufficient to study the effective potential
at spatial infinity. In the asymptotic region, the potential is dominated by the
fermionic mass term, whose minima occur at f = N4/7/2 with N even or odd

depending on the asymptotic value of 5. Therefore,

N 0
Gtotal = ¢(z = 00) = 5 T 9o N is any integer. (70)

Obviously the dynamical fermion # is responsible for the new half-integral part, and

odd N must correspond to an odd number of fermions.'® It is not surprising to find

13The fermion number ny is not conserved in the presence of a black hole. However, the odd
and the even fermion numbers require different charge quantizations, and ny modulo-two is a good

quantum number. It is easy to see that the fermion number ny modulo-two is given by 7/2/7
evaluated at spatial infinity.
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the same results as Callan did [4], since the asymptotic form of the effective theory

is insensitive to whether the gravity is turned on or not.

However, the vacuum polarization effect as we approach the black hole can be
very different from the case of a nonsingular monopole in a flat space-time. Specif-
ically, we want to concentrate on the fermionic ground state in the background of
the cornucopion, a purely magnetic extremal black hole. Suppose we want to find
a parameter region where the noncompact core geometry of the cornucopion serves
as the zero-th order approximation. Such a configuration would correspond to a
narrow and infinite neck of cornucopion surrounded by harmless and dilute charged
cloud of the vacuum polarization, just as the nonsingular monopole core is, accord-
ing to Callan [4], surrounded by a harmless and dilute charged cloud of the vacuum
polarization.

A quick look at the effective potential convinces us that this is not possible unless
the fermion mass is actually zero. Deep inside the neck, the electric energy term
is dominant so that /27 f approaches 0, and as a result the ground state energy
density behaves like

Vinin =~ emyfi(1 — |cos 8]) > 0.

Since the total vacuum energy inside the throat region is given by integrating Vi,
along the infinite neck, the ground state built on this background comes with infinite
vacuum energy distributed along the infinite neck.!

Actually a similar phenomenon occurs for monopoles in a flat space-time, con-
tributing a vacuum energy which scales like mZ}LC, where L, is the distance between
the charged shell and the monopole center. On the other hand, the resulting electric
charge distribution carries electrostatic energy which scales like 1/R,, where 47 R?

is the area of the charged shell. In a flat space-time, L. ~ R, and the balance

1“While it is conceivable that some other f-dependent effects may cancel Vpn, such a can-
cellation, if possible, could occur only for very special values of parameters in the theory. The
0-independent part is fixed in the previous section by assuming that the purely magnetic configu-
ration is given by the cornucopion.
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between the two contributions fixes the order of magnitude of L, ~ R, at 1/my, as
mentioned earlier.

In a curved black hole geometry, however, L, is now some measure of the physical
distance between the charged shell and the event horizon, which needs not be pro-
portional to R. (the linear size of the charged shell) any more. With a cornucopion,
in particular, L. — oo while R, remains finite. It is not possible to achieve a balance
between the two, and it is necessary to consider the gravitational backreaction to

the vacuum polarization, to understand the true nature of the fermionic -vacua.

To understand the gravitational backreaction, let us digress a little bit and recall
the energetics of the pure cornucopion solution. The infinite neck of a cornucopion
is threaded by a constant flux of classical magnetic fields. While one would normally
expect a uniform magnetostatic energy density associated with the flux, the energy
density actually vanishes exponentially deep down the neck. The reason is simply
that the electric coupling e?, inverse square of which appears in the megnetostatic
energy density, is exponentially growing. Note that, in Einstein-Maxwell theory
where the coupling is really a constant, an extremal horizon forms, hiding whatever
divergent behaviour the energy-momentum may have.

In a sense, the purely magnetic cornucopion of finite ADM mass exists precisely
because the divergent coupling prevents the magnetic energy-momentum from ac-
cumulating divergently. However, once we turn on the Callan-Rubakov modes with
a generic 0, the energy-momentum given by V,.;, eventually dominates and does
accumulate divergently deep inside the neck. On the other hand, since the energy-
momentum far outside is completely determined by the total magnetic charge and
the fractional electric charge, the ADM mass must be finite regardless of the vacuum
polarization.

Now it is clear what must happen. The gravitational backreaction to the accumu-
lated effect of V,,;, must eventually create a horizon somewhere down the would-be

cornucopion, rendering L., thus the vacuum energy contribution to the ADM mass,
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finite. Hence, the infinite neck must be terminated by a zero-temperature horizon
at finite physical distance. In such a self-consistent background, one should be able
to find the true vacuum state of the fermion sea.

In fact, one can explicitly check this for small m,. In this limit, the geome-
try near the throat region remains unchanged since the energy-momentum there
is dominated by the magnetic flux, and the long-neck structure survives until the
point where V,,;, is comparable to the magnetostatic energy density. Then as we
travel down the would-be cornucopion, the dynamics effectively reduce to that of
a 2-D dilatonic gravity [13]. The relevant 2-D action can be easily obtained by

dimensionally reducing the complete action (70) to appear in the next section.

1
/dxﬂ, [—g@ {e—2¢ (—=R® —4(V¢)? + 57) 2me}

For reasonable choices of 7, the static solutions of this action can be easily shown
to possess two horizons generically, and the extremal limit thereof corresponds to a

zero-temperature horizon at finite physical distance terminating the long neck.

4.5 Self-Consistent Geometries and the Fractional Charge

We concluded above that, for generic 8, the gravitational backreaction to the vacuum
energy distribution is always important and that there exists an extremal horizon
stopping indefinite growth of the would-be cornucopion.

In the discussion above however, the fractional electric charge itself does not seem
to play a role as far as the core geometry is concerned. After all, not only is the
charge cloud too large to approach even the throat region, but it is known that any
electric charge faces an exponentially divergent potential barrier as it travels down a
cornucopion, owing to the electromagnetic backreaction [12]. The electric flux tube
attached to the charge costs more and more energy, proportional to the exponentially
divergent coupling squared ¢, and this tends to push away any electric charge.

On the other hand, the gravitational backreaction renders this potential barrier

finite, since the coupling cannot be infinite at the regular extremal horizon, and
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at least part of the fractional charge should be expected to be trapped inside the
horizon. This last observation raises a question whether one can explain the newly-
formed extremal horizon entirely in terms of this trapped electric charge.

There are known clean dyonic black hole solutions of the dilaton gravity coupled
to Maxwell fields [8], and their extremal limit comes with an extremal horizon.®
Maybe, the vacuum energy density found above seemed so prominent only because
we were using a wrong background. It is a logical possibility that the self-consistent
geometry near the extremal horizon is dictated by the charges.

In fact, this is precisely what must happen in the large my limit. As m,, increase,
the density of the charge cloud as well as V,,;, must increase accordingly. The
gravitational backreaction to V,,;, creates the horizon more and more close to the
fractional charge cloud which by now is itself dense enough to distort the geometry.
With the increasingly weak potential barrier, the increasingly massive lump of the
fractional charge will eventually fall into the black hole and the effect of V,,;, will
disappear behind the horizon. Once this happens, an observer outside would be
completely oblivious of the vacuum energy distribution and attribute the termination
of the would-be cornucopion to the fact that the extremal horizon hides both electric
and magnetic charges.

In this section we would like to investigate this possibility in both the small and
large fermion mass limits, with the latter serving as a consistency check. The total

action dictating the self-consistent geometry is given by the following.

1
S = Sur = 7o [ da"\/—g® e (R + 4(V4) + £7F?). (71)

For the purpose of studying the properties of static and spherically symmetric so-
lutions at the extremal horizon, which will turn out to be very informative, we
can reduce the field equations to a set of algebraic ones involving various physical

quantities at the horizon. The key to this simplification is the regularity of the

'®In ref [8], electric and magnetic charges belong to different U(1)’s, but as far as the static
and spherically symmetric geometry is concerned, it does not matter. One should be careful to
distinguish these solutions from another known family of solutions with an axionic field [15].
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horizon.®

If a function of the radial coordinate only is finite and differentiable at an ex-
tremal horizon with respect to a local geodesic coordinate, some of its covariant
derivatives vanishes there just because A vanish at the horizon. If we denote the

evaluation at the extremal event horizon by the subscript A,
(V2Hn=(VFi =0, the same for ¢, R, and 7.

As a result, only terms without any derivative of f, n, ¢, R survive the evaluation
of the static field equations at the extremal horizon. For instance, combining the
dilaton equation and an angular Einstein equation, we can easily deduce that RB? =
2k?%, showing that the transverse size of the neck remains unchanged. On the other
hand, the equation for 7 tells us cosv/2xn;, = +1. From some of the remaining

equations, we find two algebraic equations for e#* and fj,.

2¢n 0
467”{2 (frn— \/5_) + V2remyp, sinV2xf, = 0 (72)
T
62¢h 0 - 8_2¢h
8ﬂ_7(fh - E)z + emypy (1 F cosV2rfy) = 1 (73)

Now let us consider two limiting cases as promised, to unravel the role of the frac-

tional electric charge in the formation of the extremal horizon.

When &my >> 1, the first equation (71) tells us that the value (sin+/27 f3)
is very small and that, for the lowest energy configuration, the left-hand-side of
(72) is dominated by the electric energy term ~ (fy — 8/+/27)%. Then, we find the
following relation between the coupling and the trapped charge ¢, except for integral
0/, when the argument above breaks down.

1 7 1
~4¢n _ - )2 —_— Y=g ...
¢ or (£ \/27r) + O(CFCZm?/}) %t (74)

This is a nontrivial and significant piece of information, in that this is exactly what

one would expect to be true if the horizon geometry is completely determined by

1%In fact, possible mild singularities at the extremal horizon such as observed by Trivedi[14] in
semiclassical extremal black holes do not interfere with this derivation.
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the electromagnetic charges trapped inside. It is a matter of straightforward algebra
to show that the clean dyonic black holes of [8] satisfies (¢/p)? = e~**» with electric
and magnetic charges given by ¢ and p. Furthermore, small (sin+/27 f3) implies
that most of the fractional charge is inside the black hole, confirming the assertions

earlier in this section.

Finally, coming to the small fermion mass limit kmy, << 1, we can easily see
that the first equation (71) now predicts very small g, ~ (f, — 8/+/27). Because of
this, the left-hand-side of (72) is now dominated by the fermion mass term ~ myi,
and this in turn implies the following characteristic of the self-consistent geometry

in the small fermion mass limit.
lgn| ~ e™*%»,  rather than ¢? ~ e~ % (75)

The implication is clear when compared to (73). Now the leading energy-momentum
contribution closing off the infinite neck of the would-be cornucopion (making e=2¢
nonzero) is generated by V.., rather than by the trapped electric charge. Very
small amounts of electric charge g, ~ e74%* (not ~ e~2%») are trapped by the newly-
formed extremal horizon only as a secondary effect. The presence of the vacuum

energy distribution V,,;, is very real unlike the previous case of large fermion limit.

A couple of remarks are in order. The key formulae (73) and (74) are derived
without detailed knowledge of 7. All we needed was rough characteristics of it
in each limit, such as 7, /my << €** for small my and @ ~ my for large my.
This is an important point because physics should not depend on the choice of
the normal ordering scale, and indeed we managed to isolate such a p-independent
characterization of the self-consistent geometry in the form of these key formulae.
Another fact we want to mention is the equations (71) and (72) above show the
expected behaviour as m.,, — 0. Though the precise behaviour does depend on 7, the
value e~2%» can be shown to vanish rapidly as kmy, approaches zero, corresponding

to a longer and longer neck. Eventually when my is identically zero, the limiting
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self-consistent geometry is that of a cornucopion, as it should be.

4.6 Conclusion

To summarize, we found that fermionic # vacua tends to terminate the infinite neck
of the cornucopion. This fact, by itself, should not be surprising, since a nontrivial
¢ implies the existence of the (fractional) electric charge which, if swallowed by
the black hole, produces a clean dyonic black hole with an extremal horizon. In
fact, this is exactly what happens when /7 is non-integral and the fermion mass is
sufficiently large. On the other hand, somewhat unexpected is the behaviour for a
small fermion mass. In this case, the dilute charged clouds hovering far away from
the throat region are shown to exist at the cost of a vacuum energy distribution
inside. The energy-momentum associated with this energy density induces a strong
gravitational backreaction, and the result is again the formation of an extremal
horizon at finite distance. Unlike the case of large fermion mass, however, we found

that the charge penetration to the black hole is at most of secondary effect.

One advantage of using the bosonic form of the matter is, among others, the
exchange of the roles played by the coupling and the mass. The effective matter
action (68) is such that the quantum fluctuation of the bosons f and 7 are increas-
ingly costly deep down the would-be cornucopion, and our tree-level estimates of the
energy-momentum are reliable in spite of, or we should say, because of the strong
coupling which is inevitable for small my. Even though such a strong coupling may
induce large gravitational fluctuations near the extremal horizon in small m,, limit,
this should not disrupt our qualitative results. At most we expect a quantitative

modification of the estimate (74).

While we worked with the case of a SU(2) doublet fermion on a unit-charged
would-be cornucopion, similar results should hold for some different models. The

vacuum energy distribution trailing the fractionally charged cloud is a generic prop-
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erty of the screening and should exist regardless of the model. What makes this
vacuum energy distribution dangerous enough to destabilize the core geometry is
the noncompact nature of the unperturbed core structure, as emphasized in sec-
tion 3. Therefore one should expect a similar destabilization to occur whenever he
quantizes massive charged fermion field, in the background of § and an infinite-neck
geometry threaded by constant magnetic flux.

For instance, if we consider a single fermion coupled to U(1) rather than SU(2),
the resulting bosonized matter action must be similar to our own but involve the
charged sector only (corresponding to the f field above, with 5 frozen out). Sinceit is
the effective potential associated with f which induces the screening and the vacuum
energy distribution thereof, an analogue of V,,;, will appear in the background of a
unit-charged cornucopion. Again the resulting gravitational backreaction will close
off the would-be cornucopion, just as we observed above.

Another interesting case to consider is that of cornucopia of larger transverse
sizes. Since the transverse size is proportional to the magnetic flux threading the
infinite neck, these are highly charged magnetic black holes. In such a background,
one finds analogues of the Callan-Rubakov modes in the form of zero-modes on the
transverse two-spheres. Since the number of these zero-modes is proportional to the
total magnetic flux threading the two-sphere, we need to deal with not just a pair
of two-spinors x+ but complicated multiplets of the generalized angular momentum
[9]. Nevertheless, the separation of variables and the dimensional reduction must
be possible, and upon a bosonization trick we expect to find only two kinds of
bosonic fields: f, an analogue of f which keeps track of the electric charge and
the vacuum energy distributions, and 7,’s, the rest of them. There are again two
effective potentials: the electric energy term which is minimized for vanishing local
electric fields and the fermionic mass term which is not. The upshot is again that

the would-be cornucopion develops an extremal horizon at finite physical distance.



62

References

[1] E. Witten, Phys. Lett. 86B (1979) 283.

2] F. Wilczek, Phys. Rev. Lett. 48 (1982) 1146.

[3] S. Coleman, Aspects of Symmetry, Cambridge University Press, 1985.
[4] C. G. Callan, Phys. Rev. D26 (1982) 2058; D25 (1982) 2141.

[5] V. A. Rubakov, Nuc. Phys. B203 (1982) 311.

(6] H. Yamagishi, Phys. Rev. D27 (1983) 2383.

[7] D. Garfinkle, G. T. Horowitz and A. Strominger, Phys. Rev. D43 (1991) 3140;
G. W. Gibbons and K. Maeda, Nuc. Phys. B298 (1988) 741.

[8] R. Kallosh, A. Linde, T. Ortin, A. Peet and A. van Proeyen, Phys. Rev. D46
(1992) 5278.

[9] J. Preskill, in Architecture of Fundamental Interactions at Short Distances, Les
Houches, 1985, Edited by P. Ramond and R. Stora, Elsevier Science Publishers
B.V., 1987;

S. Coleman, in The Unity of Fundamental Interactions, Edited by A. Zichichi,
Plenum Press, 1983.

[10] C. F. E. Holzhey and F. Wilczek, Nuc. Phys. B380 (1992) 447.

[11] S. Mandelstam, Phys. Rev. D11 (1975) 3026; M. B. Halpern, ibid. 12 (1975)
1684.

[12] M. G. Alford and A. Strominger, Phys. Rev. Lett. 69 (1992) 563.

[13] S. B. Giddings and A. Strominger, Phys. Rev. D46 (1992) 627;
T. Banks, A. Dabholkar, M. R. Douglas and M. O’Loughlin, ibid. 45 (1992)
3607.



63

[14] S. Trivedi, Phys. Rev. D47 (1993) 4233.

[15] A. Shapere, S. Trivedi and F. Wilczek, Mod. Phys. Lett. A6 (1991) 2677.



64

5 Nonsingular Two-Dimensional Black Holes and
Classical String Backgrounds

In this final chapter, we study a string-inspired classical 2-D effective field theory
with nonsingular black holes as well as Witten’s black hole among its static solutions.
By a dimensional reduction, the static solutions are related to the (SL(2, R)r ®
U(1))/U(1) coset model, or more precisely its O((a/)°) approximation known as the
3-D charged black string. The 2-D effective action possesses a propagating degree
of freedom, and the dynamics are highly nontrivial. A collapsing shell is shown to
bounce into another universe without creating a curvature singularity on its path,
and the potential instability of the Cauchy horizon is found to be irrelevant in
that some of the infalling observers never approach the Cauchy horizon. Finally a
SL(2,R)r/U(1) nonperturbative coset metric, found and advocated by R. Dijkgraaf
et al., is shown to be nonsingular and to coincide with one of the charged spacetimes
found above. Implications of all these geometries are discussed in connection with

black hole evaporation.

5.1 Introduction

The longstanding problem of black hole evaporation has been recently revitalized in
the context of 2-D dilaton gravity [1], either on its own or as an effective S-wave sec-
tor theory of the 4-D black holes [2]. In 2-D, the coupling to conformal matter, hence
the Hawking radiation, can be conveniently represented by the Polyakov-Liouville
action of appropriate coefficient, enabling a systematic study of the gravitational
backreaction [1)[3]. But most of these studies are again plagued by curvature sin-
gularities, hidden or naked, and the inability to handle the singularities properly
clouds any conclusion concerning the fate of the black holes [3][4].

The question arises, then, whether the singularity is an essential feature of black

hole physics. For example the Hawking radiation is, strictly speaking, a property
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of event horizons, and singularities appear only as a result of the gravitational field
equation. Is there a physically sensible theory, solutions of which are nonsingular
spacetimes but with horizons? The answer is yes. In this chapter, we present such
an 2-D effective field theory, static solutions of which are related to certain WZW
coset models.

While WZW coset models provide us with string theories with interesting target
spacetimes, it is often very difficult to study the dynamics since we have to solve the
full string theory around nontrivial backgrounds. An easy way out is to abandon
the exact model for an effective (approximate) local field theory by using the o
expansion of the sigma model [5]. Higher order corrections can be controlled by
introducing extended supersymmetry in some cases, but not always. In particular,
the o/ expansion is also an expansion in the curvature of the target metric and
a curvature singularity can be a signal of big higher order and nonperturbative
corrections.

Apparently this is exactly what happens with Witten’s black hole as an O((/)°)
approximation to the SL(2, R)r/U(1) coset model. So far, two independent at-
tempts to find a nonperturbative ezact geometry have yielded an identical static
metric [6][7], and, quite surprisingly, this new metric has the causal structure of a
nonsingular multi-universe spacetime with horizons, as will be shown in the final
section of this chapter.

Furthermore we have found a string inspired local field theory in 2-D, whose
charged static solutions are mostly of the same causal structure as this ezact coset
metric. The action is obtained by a dimensional reduction of the 3-D string effective
action of the gravity multiplet and the static solutions are dimensionally reduced
versions of the 3-D black strings of Horne et al. [8]. (These 3-D black strings are
O((«')°) approximations to the (SL(2, R)y @ U(1))/U(1) coset model.)

In short, we have not only an exact classical string background whose metric

is a nonsingular black hole but also a local field theory, with essentially same type
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of static solutions, which can serve as a dynamical toy model. The form of the
field theoretical solutions is identical to that of the SL(2,R);/U(1) ezact coset
background up to an additive shift of one parameter. Not only the causal structures
but the behaviour of the dilatons are the same. This presents us with a unique
opportunity as well as a motivation to study these new kind of black holes. In this
chapter we study the classical properties of the 2-D effective field theory for the
most part and detailed discussions on the ezact background is postponed until at
the end.

In section 2, we introduce the 2-D effective field theory and the much advertised
nonsingular 2-D spacetimes. We start with a compactified charged black string. The
geodesic equation of motion is studied for radial motion, and the Penrose diagrams
of the 2-D part of the metric are shown. After the calculation of the Hawking
temperature, we elaborate on the relationship of these new spacetimes to Witten’s
black hole, with emphasis on the duality transformation used for the construction
of the black string from Witten’s black hole.

We devote the next two sections to the dynamics of the 2-D effective theory, in
particular, the stability of the static solutions under the process of a gravitational
collapse. In section 3, we investigate the response of the geometry to a collapsing
shell of massless matter. Even though we are unable to solve the full partial differ-
ential equations governing the process, the massless nature of the gravitating source
allows us to obtain useful information such as the difference of the curvature across
the shell. Crucial to the calculation here is the asymptotic behaviour of the grav-
itational perturbation. We added an appendix at the end of the chapter to derive
the necessary information. In section 4, we examine the instability of the Cauchy
horizon and the consequences.

Section 5 is devoted to some of the unresolved issues of the gravitational collapse
as well as implications of the results we obtained in the earlier sections. In partic-

ular, the ezact metric of the SL(2, R);/U(1), found in [6] and recently rediscovered



67

in an entirely different approach by A.A. Tseytlin [7], is shown to have the same ge-
ometry as one of the nonextremal (hence nonsingular) solutions. Also discussed are
nonperturbative black string solutions. Based on this new set of charged spacetimes,

we speculate on the real nature of the 2-D black holes.

5.2 Compactified Black Strings as Geodesically Complete
2-D Spacetimes

We start with the charged black string solution by Horne et al.[8],

5 — /d$3, [—g(3) ¢=2¢ {R(3) +4(V@)? + 422 — %2—1{2}, (76)
1
422 (r —m)(r — q)

0 = —(1-Zyar+ art+ (1= Dyataer, (1)
Tr

e = % (78)
and consider the case § periodic with period 2x. Then a is the asymptotic ra-
dius of the internal circle. We define ¢ = Q?/m where @ is the axionic charge
associated with the antisymmetric 2-tensor. This solution is actually O((«/)°) ap-
proximation to the coset model (SL(2, R),®U(1))/U(1) and ¢ = 0 limit corresponds
to (SL(2,R)x/U(1)) ® S, the Witten’s coset model multiplied by a circle of fixed
radius. For m > ¢ > 0, the metric describes singularities at r = 0 hidden inside
two distinct sets of horizons at r = m, ¢. The leading divergence of the curvature
near r = 0 is ~ —(1/r?). The causal structure is somewhat similar to that of the
Reissner-Nordstrom black holes in that a countable number of asymptotically flat
universes are connected through compact regions of inner and outer horizons as well
as timelike singularities (for more detail, see reference [8]), but the analogy should
not be taken too seriously since the nature of the inner horizons is very different.
The Penrose diagram of (refeq:metth) cannot be accurately drawn in the r-t plane.

For small a, a big mass gap of order 1/a develops for the internal degrees of

freedom and all the low energy states have circularly symmetric wave functions. For
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the most of this chapter we will consider the case of @ comparable to the Planck
length so that the only available internal state is the ground state. In other words, we
will consider the circularly symmetric sector of the theory. In terms of the classical
physics of the low energy observers, it means the only relevant worldlines are those
without any angular momentum. In this section we want to explore the static
geometry above as seen by such observers. To begin with, consider all geodesics
of vanishing angular momenta. This is consistent with the geodesic equations of
motion since 6 is a Killing coordinate. With the help of two Killing vector fields,
the geodesic equations of motion can be reduced to the following form for the r-

coordinate as a function of an affine parameter 7 [8].

T 2 9\, 2 m
— ) =(1-= 1——)).
() = (1= 9@ +a =T (79)
¢ is the covariant t-component of the 3-velocity and « = —1,0,1 for timelike, null

and spacelike geodesics. Immediately one finds a few revealing properties of r(7).
For generic values of the energy €, r bounces at ¢ quadratically, so that an initial
inequality r > ¢ is maintained throughout the history of the worldline. The only
exception occurs for spacelike geodesics with 1 + €2 = m/q, in which case it takes
infinite amount of time 7 for 7(7) to reach ¢. Another important fact is that, for
a # 1, r = ¢ is the unique extremal value inside r = m. In other words, the
time coordinate r is monotonically increasing toward both future and past of r = ¢,
while r < m. Obviously, no radial geodesics can penetrate the inner horizon and
see the curvature singularity at r = 0 and the way it works out for timelike or
null worldlines is that all radial observers bounce at the inner horizon into the next
asymptotic region. In any case, one can conclude the restricted region defined by
r > ¢ is by itself geodesically complete as far as radial geodesics are concerned. The
singular structure is completely hidden inside a barrier at r = ¢. Therefore, the
radial part of the metric (76) describes a nonsingular 2-D manifold with a countable

number of universes as illustrated in figure 5.1.
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Figure 5.1: Penrose diagrams of g(® for various parameter ranges. The bold
lines indicate asymptotically far regions with vanishing effective coupling eX.
eX = oo at r = ¢. I* and I~ are the future and the past null infinities of a

particular universe.

This unusual behaviour can be partially traced to the fact § becomes a time

coordinate inside the inner horizon, where a radially moving observer, freely falling
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or accelerated, can never satisfy the on-shell condition. Once we understand the
peculiar nature of the inner horizons at r = ¢, it is not difficult to draw the Penrose
diagram of the 2-D metric, or (76) without the d6? term, on the r-t plane. The
nonextremal case is similar to that of the Reissner-Nordstrom geometry [9] with
parts of it containing the inner horizons and the singularities cut out and the re-
maining pieces glued along spacelike hypersurfaces. For this case, the inner horizons
at 7 = ¢ become spacelike lines, to be also called the critical lines from now on, con-
tained in the compact region surrounded by outer horizons r = m. In figure 5.2, the
dotted lines of the case m > ¢ > 0 are these critical lines. For m = ¢ = 0 they are
null lines infinitely far away. In the extremal limit ¢ — m > 0, half of the universes
are decoupled and each remaining universe is successively attached to the next by
the outer horizons at 7 = m. On the other hand the charge-zero limit can be easily
shown to be Witten’s black hole with the spacelike singularities forming along the
critical lines (or the inner horizons) at r = ¢. The change of variable, r/\ = ¢***, is
necessary to go back to a more familiar coordinate in which the dilaton ¢ is linear.

The action and the field equations governing the dynamics of these 2-D space-
times are obtained by a dimensional reduction of 3-D effective string field theory.
Choosing a convenient set of 2-D fields and splitting the metric to ¢(® plus the

internal part we obtain the following effective action.

S® = / V—g@ e X(RO) 4 4(Vy)? + 402 — (Vf)? — 2 K2, (80)
g® = ¢@® 4 =22 402,
e = 7S
1

2 2a 4

Here K is an exterior derivative of a 1-form, hence a U(1) gauge field strength.

Y

The field equations are, after appending charged source on the right-hand sides, the

following: @) is the total charge inside the given value of r and is locally constant in

the source-free region.
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RO 44V — 4(Vx)? + 402 — (V)2 +2Q%* = 0, (81)
V(e_ZXVf) + 2Q264¢_2X = 0’ (82)
_V,-Vje—zx + gijv2e—-2x 4.0 = Tg&atter. (83)

The 3-D field ¢ = x — f/2 is kept for later conveniences and - - - of (82) indicates
terms of lower derivatives. The Bianchi identity of the left-hand side of (82) implies
the energy momentum conservation of 77" It is not too difficult to see that the
static solutions of finite mass are all given by the 2-parameter family above. For
g > 0 we can define a new coordinate y by r = g cosh? Ay, which shall be useful later

on.

@ — _(1 - a2 1 2 P g Ly 4
g e VI cqipen s L4 + 5y, (84)
m
F=(1-——m—-

( qcoshzx\y)’
e‘QXZE 1—2:2c0sh)\ysinh)\y, el = 1—g:tanh)\y,
A roA r

R® = 4 me?® — 6mqe®.

Notice the inequality e72¢ = e=2*f > ¢/). Even though the effective coupling eX
is unbounded, the string coupling e is bounded for charged cases. In the charge-
zero limit, f = 0, and x = ¢ becomes the usual dilaton of [1]. The Hawking
temperature [10] can be easily computed by requiring the Euclidean version of ¢g(?)
to be nonsingular at the horizon r = m. The periodicity of the Fuclidean time

coordinate is the inverse temperature.

A _
THawking = T 'u (85)

2m m
This reduces to the expected value A/(27) [1] as ¢ — 0.

To illustrate the relationship between these new spacetimes and Witten’s, recall

the construction of the charged black strings [8]. A neutral black string is a simple
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product of a Witten’s black hole with a line. After a Lorentz boost along the line,
one can make a duality transformation [11] to get a new classical solution to the
effective string field theory with torsion, or charge as we call it in this chapter.
We wrote the solution in (76) for a circle instead of a line. Without any boost
(¢/m = 0), the duality transformation is trivial and ¢(® is the original Witten’s
black hole. The maximal boost corresponds to the extremal case ¢/m = 1. If the
Witten’s black hole we started with were an exact string background, the duality
symmetry of string theory would imply all nonextremal solutions of (83) support
one and the same string theory. But as we shall see in the final section this is not
the case.

Simple counting reveals that this gravity system possesses one local degree of
freedom. Classically, this means that there are numerous time dependent matter
free solutions. This poses an essential difficulty in studying the dynamics and the
question of stability becomes quite nontrivial. In particular, one needs to solve the
full partial differential equations to study the process of gravitational collapses. For
a system devoid of a local degree of freedom, such as the S-wave sector of Einstein-
Maxwell theory or the dilaton gravity of [1], the solutions are locally static wherever
the matter is absent and for thin shells of collapsing matter we can simply glue
different static geometries across the history of the shell [9]. This statement is usually
referred to as Birkhoff’s theorem in general relativity. But given a local degree of
freedom, the geometry will be fluctuating even after the matter part dies out and
can be found only by explicitly integrating the nonlinear dynamical equations. For
this reason we will investigate the gravitational collapse in a piecewise manner and

try to come up with a physically reasonable scenario in sections 3 and 4.

5.3 Dynamics of a Collapsing Massless Shell

Discussions above raise an important question. Does the gravitational collapse of
charged matter leave behind a nonsingular spacetime similar to the charged static

solutions? A related question is whether the inflow of charged matter to a Witten’s
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black hole will lift the curvature singularity just as the inflow of neutral matter in
the linear dilaton vacuum creates a singularity. An even more immediate problem
is whether the nonsingular nature of the charged spacetime is stable against extra
(charged or neutral) matter inflow. A gravitational collapse can be divided into the
following three stages.

(1) The immediate response of the geometry to the matter.

(2) The residual gravitational fluctuation for (¢ + f F~'dy) < co.

(3) The residual gravitational fluctuation as (¢ + [ F~'dy) — oo.

While the general treatment of even small gravitational perturbation is a fairly
complex problem, the physics of (3) is relatively well understood and is the subject
of the next section. Such an asymptotic tail of the gravitational fluctuation is known
to be responsible for the instability of the Cauchy horizon in the case of charged
black holes of the Finstein gravity.

One needs to analyze the effect of (2) to investigate the stability of the event
horizons, along the lines of Chandrasekar’s analysis of the Kerr black holes[12].
But knowing that the 2-parameter family of solution (83) is the only finite mass
static solution of the theory and that the ADM mass and the charge are conserved
quantities, it is difficult to imagine a possible cause of instability that could change
the structure outside the event horizons. Our static spacetime, however, has another
source of instability under (2), namely the infinite effective coupling at the critical
lines, which are the inner horizons of the 3-D metric. We will not pursue the matter
here other than what is needed in this section concerning certain gravitational shock
waves. The difficulty lies in reducing the linearized equations (3 dynamical and 2
constraint) to a single unconstrained dynamical equation in the region of interest.
In other words we were not able to solve the constraint equations.

For part (1), consider a thin shell of conformal matter 7™ collapsing in an
initially static spacetime specified by the two numbers (ms,gs). (It is important

to assume that the spacetime is static initially in that we will need the explicit
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solution before the collapse.) In the limit of infinitesimal thickness, that is for a shock
wave, the matter will induce discontinuous changes in normall” derivatives of various
fields across the shock. Furthermore one can obtain a set of first order differential
equations obeyed by these jumps from the set of the nonlinear field equations of
section 2. All one has to do is to take the discontinuities of the homogeneous (source
free) equations and to integrate the inhomogeneous equations across the shock.
Since we are dealing with massless matter, it is convenient to introduce a light-

cone coordinate in the conformal gauge.
¢? = —e? datde (86)

Then R® = 8¢270,0_p and V? = —4e7%9,0_. Let ~ = —oo on past null infin-
ity, to be concrete. Let the shock be centered at z* = zF. The only nonvanishing
component of the matter energy momentum tensor is T]%***", which has an infinites-
imally thin support. Then we can assume that y and f are continuous across the
shock while the derivatives along x+ may not be. Furthermore we assume the con-
tinuity of p as well, the consistency of which needs to be checked. First of all the
effect of T¢"*" is felt by the dilaton x through the 6g** equation of (82). If we
define o as the total flux, we have the equation

x3+5

o(e”) = lim [ Tpetedst = lim / VL Ve 4= —[0e ] (87)

Here, we introduced the notation [A] for the difference of A across the shock. Next,
the evolution of o is governed by 6¢g*~ equation, whose difference across the shock
is

2
0-0 = —0_[0ye™™] = —e4¢°+2p°-2><o[%]. (88)

Here x, denotes x restricted to z+ = z} and similar for the other fields. Note that

we already know values of these x,,---. They are simply the corresponding static

17Unlike the case of timelike shell, normalhere does not mean orthogonal. Using a null coordinate
pair (z%,z7), the normal derivative is 8, for a shock propagating along a fixed value of zt.
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values owing to the continuity. Naturally all the quantities above are functions of

2z~ only. On the other hand the energy momentum conservation of T™%¢" implies
d_o = =T = 0. (89)

Obviously the procedure is inconsistent for a charged shell ([Q?] # 0). The assump-
tion of continuous p, needed when we derived (86) ignoring the connection piece
I't, 04e7?X, is apparently too strong. A priori, there is no reason that p, a coordi-
nate dependent function, should be continuous. However for the case of massless
and neutral shell ([Q? = 0), we shall find no further inconsistency below. For this
reason we will consider neutral conformal matter only, so that ¢ is constant.

We can also take the discontinuity of the equations (81) and (80) and the result

can be written in the form (after substituting o for —[d;e~2X])

0_[04f] — 0 xo[04 f] —

2
e~ 2Xo+2p0 —2Xo0

TR = 00_xo + 5—0-1[0:1) = 0. (91)

Ua-fo = 0, (90)

Reduced to the usual dilaton gravity (f = 0,¢) = 0), with the Kruskal coordinate

in which e = ¢7%° = m/X\ — A2zFz~, these equations have the solution
[RP] = 4oz} e, (92)

e?X> = ¢2% is unbounded and shows a curvature singularity forming at infinite
effective coupling eX = oo. It is easy to see the result reproduce what we would
find by actually solving the full equations as done in [1]. In this particular case
there is no gravitational fluctuation afterwards and the solution outside the shock
is completely determined by this jump. All we have to do is to find the right static
solution to match. It is worthwhile to notice that, in spite of the singular behaviour,
o is constant and therefore e™?X is continuous even at the singularity, a necessary

behaviour for the self-consistency.
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Now what happens if we start with a charged spacetime? Then we have to solve
for [0; f] first. Again for the sake of consistency we will consider a shock of neutral

matter in an initially charged spacetime. Solving (89),
[0 f] = (C+2 / " exd_f, dz7). (93)

Since the matter shock is neutral o is independent of 7. C is an integration
constant. The lower bound of the integral is past null infinity where the shock wave
originates.

Consider the effect of C' on the jump of the curvature. Near the critical line
e=?X = 0 (or y = 0 in the coordinate of (83)), the corresponding jump scales like
~ C/+/y® and is infinite at y = 0. This is rather strange in that not only the
strength of the curvature singularity but also its sign are completely independent
of the matter you are throwing in. (As to be shown later, the contribution from
o is finite at the critical line.) Even more disturbing is the jump of the internal
part of the Ricci tensor Rgy = —e/V2e~/. Asymptotically it is ~ e~*, whereas the
static value is ~ e=2*. This seems to suggest that the gravitational fluctuation with
nonzero C would cost an infinite amount of energy. It turns out that the problem
is closely related to the asymptotic nature of the gravitational perturbation.

As demonstrated in the appendix, the gravitational perturbation around a static

solution is asymptotically described by the following massive Klein-Gordon equation

with U = e™%(f — f;).

VA — 220 =0, (94)

Xs and f; are the static values of x and f. Across any null line 2% =z, [0,0] = C
is allowed by (93). But it is quite deceptive since the behaviour of field as we move
away from the null line is profoundly affected by the massive nature of the evolution
equation. After all, we do not expect a massive field to propagate along a null
line. As shown in the appendix, the bump of ¥ itself owing to the discontinuous

derivative tends to diminish rapidly with time and becomes completely undetectible
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after an infinite amount of time. In other words, if we incorporate such a jump to
the initial condition on past null infinity, the field configuration of ¥ in finite region
does not show any sign of discontinuous derivatives. (In terms of the homogeneous
solution presented in the appendix, this case corresponds to u, — —oo before taking
the normal derivative.) On the other hand, if we insist that the field configuration
show such a jump away from past null infinity, the required initial condition on
past null infinity has divergent W, and the energy content of the initial flux of the
associated gravitational radiation is infinite. It is simply impossible to produce
nonzero effective C in the finite region with a finite amount of energy.!® C should
be dropped.

While we discussed the problem in the context of a gravitational collapse of
massless matter fields, the conclusion must hold in other contexts. After all, C
represents a homogeneous solution to the gravitational field equations. We should
not think of it as being generated by the matter shock. If C' # 0 were allowed,
it would imply the instability of the critical line under gravitational perturbation
automatically, for example. In this sense we have eliminated one possible way for
the infinite self-coupling to cause instability.

Rewriting (92),

(0111 = Ze(I(e7) = I(=00)) = ZexI(a7). (95)

I is the indefinite integral of A(z~) = eX°0_f, over z~ and invariant under coordi-
nate transformations £™ — 27 (27). One can ask whether the massive nature of the
graviton affects this inhomogeneous part of the solution. The answer is no. It turns
out that the asymptotic behaviour of the source term A is such that a separation
of variables occurs. The form of ¥ near the shock is given by a product of two
factors each of which is function of one of the null coordinates only. As a result, the

estimate (94) is reliable even though we derived (89) without taking into account

18Gee appendix for detailed discussion on the asymptotics of the gravitational perturbation.
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the massive nature of the gravitational perturbation. Inserting (94) to (90),

[R®)] = 20¢72%(20_ e — Xd_J,I). (96)

No infinite jump is possible except maybe at the critical point eX° = co. But even
at this point the leading terms of two parts cancel each other and the true leading
term is a constant. For an initially nonextremal spacetime, an easy way to see this
is to make a coordinate transformation 2~ = y(z},2~) where y is the coordinate

0?7

used in (83) and recall that X = qy + O(y®), =% = y + O(3®).

—00 < R? <00 near zt =z} (97)

o

The conclusion holds for all initially charged cases including the extremal case.
Therefore the history of a collapsing shell of neutral conformal matter is qualitatively
similar to that of a massless observer. It just bounces into the next universe. It is
quite a surprising behaviour when compared to what happens in the usual dilaton
gravity [1].

To conclude this section consider the case of an initially neutral spacetime. Will
the singularity be lifted by the inflow of some charged matter? Can we open up a
curvature singularity by a completely classical process? As we have seen earlier, we
should be more careful in dealing with charged matter. In principle, one may proceed
by considering two conformal factors inside and outside the shock, each of which
is smooth but assumes values different from the other along the shock. However,
we will postpone this problem of the gravitational collapse of charged matter in
a neutral spacetime to a future project for the following reason. A neutral static
spacetime has e™/ =1, while the charged case has e~?/ = tanh? \y ranging from 1
to 0. In the framework we are using, e~/ is a scalar and should be continuous across
the shock. Then the resulting immediate response of the initially neutral solution to
the collapsing shell of charged matter must have constant e=2/ and hardly resembles
a static charged spacetime. Even though it might be that the solution settles down

to a nonsingular spacetime with varying e~/ after a while, we can not detect that
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with this type of local analysis. At the singularity the scalar field can actually
jump discontinuously to the desired value, but such a behaviour could imply an
inconsistency. The same argument applies to the original 3-D dilaton field e~%¢. In
this sense the shock wave analysis seems less promising for initially neutral cases.
Even if we carried out similar calculations for the case of a charged shell, we would be
unable to decide whether the spacelike singularity was lifted. Probably we need to
go beyond the immediate neighborhood of the shock to probe the geometry outside
the shock.

A different way of tackling this problem is to try to establish the stability of
the critical lines, which would certainly imply time dependent charged solutions
without a spacelike singularity. In this regard, the results above on the neutral
matter shock in an initially charged spacetime are quite encouraging. We found
that, as a consequence of the full nonlinear dynamics, no singularity met the shock.
If the critical lines are unstable, it is difficult to imagine where the resulting spacelike

singularity along the critical line might start. It has to start somewhere away from

the shock.

5.4 Instability of the Cauchy Horizon

In section 3, we found that a collapsing shell in an initially charged static spacetime
does not encounter a curvature singularity and bounces into the next universe. But,
any gravitational collapse is followed by residual gravitational fluctuations and so
far we have not addressed the effect of them on the subsequent evolution of the ge-
ometry. In principle these fluctuations could grow indefinitely to produce curvature
singularities.

The most obvious place to look for the singularity is the Cauchy horizons, which
are generically unstable because of the infinite blue shift of the asymptotic residual
fluctuation entering the future event horizon at arbitrary late times. However, unlike
the more familiar case of Reissner-Nordstrom black holes the Cauchy horizons of our

geometry coincide with the outer horizons rather than the inner horizons. The inner
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horizons of the nonextremal geometry, also called the critical lines, are effectively
spacelike for any radial observer and cannot be the Cauchy horizons. While the
behaviour of the critical lines under the gravitational perturbation (as opposed to
the matter inflow) still needs to be studied, we will first concentrate on the more

obvious potential source of instability.

Figure 5.2: A collapsing shell of neutral conformal matter in a nonextremal
spacetime. The shell simply bounces into the nezt universe. The wiggly
arrows indicate the residual gravitational fluctuations, some of which enter
the future event horizon (EH) at arbitrarily late times and propagate parallel
to the Cauchy horizon (CH). Again, the dotted line is the critical line of

infinite effective coupling.
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A convenient way to analyze the instabilty of the Cauchy horizon is to consider
ingoing null flux of energy stretched all the way to the infinite future [13]. Assuming

an initially static geometry, choose a new set of coordinates (v, u).

9 = —F(y) dt* + ——dy* = —F(y) dvdu, (98)

F(y)
dv=dt+dy/F, du=dt—dy/F.

With this coordinate system the Cauchy horizon of our universe is at v = 400 inside
the future event horizon. In figure 5.2, we labeled the Cauchy horizon by CH and
the future event horizon by EH. Outside EH, v = 400 corresponds to future null
infinity /™ and we are interested in asymptotic inflow of the radiation stretched all
the way to IT.

For simplicity, suppose that the energy inflow is due to matter rather than grav-
itational radiation.!® This simplification is well justified by the universal nature
of the instability. By the energy-momentum conservation, the energy-momentum

tensor of a massless pure inflow is of the form
T4 = pu(v) dvdv. (99)

As v — oo (future null infinity if outside the event horizon) a typical u(v) shows
an inverse powerlike behaviour [14] with finite total energy and has little effect
on the geometry outside the event horizon. But inside the event horizon, v = oo
corresponds to CH at finite physical distance and the energy density measured by a
freely falling observer could be infinite at CH. To be definite let us choose Kruskal
type coordinates (V, U), to be defined later, good for both CH and EH. In addition,
let V=0 at CH,

g(z) p -—62p dVdU (V - V(U)a U — U(U)),
Tmatter — lL(U) dvdy = /L(’U) (d’l)/dV)2 dVdV = TVV dvdvV. (100)

19We are indebted to E. Poisson for suggesting this approach.
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Notice that once the flux crosses future event horizon (EH), it looks more like a
thin shell of massless matter, even though p(v) has an infinite span outside. The
energy density measured by a timelike observer crossing CH is roughly ~ Tyy which
diverges unless the fall-off of u(v) is fast enough to overcome the infinite blueshift
factor (dv/dV)? — oo.

A better estimate can be made using the machinery of the previous section.
Since only the large v behaviour is important, let y be nonzero only for v > v,
with sufficiently big v.nin , so that near CH the flux is that of an arbitrarily thin
shell. Then certainly the formalism of section 3 is applicable inside EH. Using the
definition (86), after identifying the corresponding null coordinates z+ = V and

x~ =U,
0 fele}

o= Tvy dV = p(v) (dv/dV) dv. (101)

V('Umin) YUmin
As long as o is finite, we can estimate the jump of the curvature on CH induced by

the neutral inflow using (90). For initially static spacetimes,
[R(2)]V=0 =0.

The reason is simply that the dilatons x, and f; are uniform along CH and dyy, =
Ouf, = 0. This is a somewhat fictitious situation since we have assumed that before
the on-set of the asymptotic inflow at v = v,,;, the geometry is strictly static. For
a realistic model, the asymptotic inflow originates from the collapsing matter and
the geometry is non-static even for v < vi,. In particular CH does not necessarily
coincide with an apparent horizon, the dilatons y, f are no longer uniform along CH,
and as a result the curvature jump is generically nonzero and finite, proportional to

g,

[R®)y—o ~ o up to some finite factor as a function of U.

A similar mechanism must work for infinite o, even though the formalism of section

3 does not apply in this case. After taking into account other residual fluctuations,
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an infinite o would most probably generate a null singularity along CH. The role of
the extra radiation flowing into the Cauchy horizon rather than parallel to it has
been first studied in [13] and found crucial for the instability to manifest itself.

For the particular case of the compactified charged black strings we are studying,

we can choose the following Kruskal coordinates

1 m —
Vnonext'remal = _’Be—ﬁv ﬂ =) _—;'7;_(]7
)\2
‘/ea:tremal - "—? (102)

(Obviously, this choice is not unique, but the same conclusion holds for any other
coordinate regular on CH.) For any powerlike p(v), Gnonestremar is infinite, and the
Cauchy horizon is inherently unstable. Unless the asymptotic residual fluctuation
turns out to be exponentially small (~ e=** for example), a null curvature singularity

"™ with n > 3, Geptremar could be

will form along CH. But provided that u(v) ~ v~
finite. Whether a finite 0eptremar indicates a stable Cauchy horizon of an initially
extremal solution is unclear. The extremal geometry can always be changed to a
nonextremal one by an infinitesimal increase of the mass, and once that happens we
must use the nonextremal estimate of o.

(However, this classical picture might undergo a drastic modification once we
include the semiclassical effect of Hawking radiation. Since the temperature is posi-
tive except for the extremal spacetime, the geometry outside the event horizon must
approach the extremal geometry in the infinite future (v — oo). If the same is true
for the geometry inside the event horizon, we must use the extremal estimate of o
and the Cauchy horizon might as well be stable for any initially charged geometry.)

What are the consequences of the null singularity along CH? Note that the
Cauchy horizon of our universe (CH) meets the future event horizon of the next

universe. But all the infalling observers escape to the next universe through its past

horizon (EH’). That is, none of the observers from our universe, entering EH before
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the on-set of the asymptotic inflow , cross CH between EH and EH’. The singularity
on CH hardly interferes with the observers entering the next universe. While some
massive observers without sufficient momenta would be attracted to the singularity,
the rest will probably continue to the asymptotic region away from it. This should be
compared to what happens in case of 4-D Reissner-Nordstrom (nonextremal) black
holes. For these 4-D black holes the phenomenon is well known as mass inflation [13].
The static geometries of nonextremal Reissner-Nordstrom black holes allow timelike
observers (entering the future event horizon) to escape to the next universe, the
static singularity being timelike. Once we include generic perturbations, however,
the Cauchy horizon becomes singular all the way to the point where it meets the
original timelike singularity and even the timelike observers eventually experience
infinite tidal force.?®

Of course, the past event horizon of the next universe (EH’) overlaps the Cauchy
horizon of another universe which is spacelikely separated from our universe. An
asymptotic inflow from that universe can destabilize EH’. But if we suppose the
charged spacetime is made by a gravitational collapse in our universe, the extended
static structure before the collapse is fictitious just as the past event horizon of the
Schwarzschild geometry is fictitious for a collapsing star. Then EH’, the past event

horizon of the next universe, would be as stable as EH.

5.5 Discussion: Nonsingular Exact String Backgrounds

The most curious feature of the charged black string is probably the way the inner
horizons conceal the curvature singularities from the radial observers. The resulting

2-D geometry is geodesically complete and the scalar curvature is finite everywhere.
— /\22_m < R® <\
q 39

In particular, as ¢ — m, the absolute value of the curvature is bounded by 2A2.

22m

(103)

On the other hand, for Witten’s black hole seen as the dimensional reduction of

2OHowever, it has been shown the total impulse from the tidal force is finite and the would-be
Cauchy horizon is traversable [15].
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the 4-D dilatonic black hole, A™! corresponds to the total magnetic charge[2], or
the radius of the long necked extremal solution called the cornucopion [16]. If we
take this parameter A much less than the Planck mass, then, as the black hole
evaporation progresses m — ¢, the geometry is of macroscopic scale everywhere
including inside the event horizons. Furthermore the string coupling e is bounded
by \//V; It is possible that the quantum fluctuation of geometry does not change
the causal structure qualitatively. Taken seriously, this last statement has a profound
ramification in the black hole physics: Whatever the real answer is to the information
puzzle?![18], it has little to do with the details of the Planck scale physics. Either the
information is completely recovered before the collapsing matter enters the future
event horizon, or some will be lost forever to the next universe.

Any remnant scenario is likely to assume some nonsingular objects as the final
products of the evaporation process. They are assumed to be able to carry macro-
scopic amounts of the information yet interact very little with the surroundings. All
these assumptions may or may not be realized depending on the details of the Planck
scale physics. Even in the case of the cornucopions we still need to explain how the
information inside the horizon, far down at the tip of the long neck, propagates out
to occupy the whole length of the cornucopions, which could happen only near the
end of the process where the singular structure inside the horizon must be resolved
somehow. The static extremal solution above could obviate all these details.

But we are hardly in a position to take these static solutions seriously. The
Reissner-Nordstrom nonextremal solution, which is also known to allow some of the
infalling observers (massive ones) to escape to the next universe, is dynamically
unstable and the resulting generic geometry has a curvature singularity blocking
the passage though perhaps not completely [13][15]. In the present case of the
compactified black strings, while the instability of the Cauchy horizon due to the
asymptotic inflow from our universe does not block the passage, there is a possibility

that the critical lines of the infinite effective coupling become singular under the

*1For a recent review see the reference [17].
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generic gravitational perturbation. As mentioned at the end of section 3, the fact
that a collapsing shell does not encounter a singularity even at the critical line seems
to suggest no singularity whatsoever along the entire span of the critical line, but
this might be an artifact of the initially static geometry.

Another difficulty concerns the creation of the charged spacetimes from vacua.
If the linear dilaton background is the true vacuum, it is very difficult to imagine
how the extended structures of the charged spacetime could be made from the
gravitational collapse of thin shells without any singularity at the infinite effective
coupling. More specifically, it is rather difficult to draw a sensible Penrose diagram
describing the process. Even a qualitative understanding in this regard would be an
important step.

At this point one can easily see that all the unanswered questions are in one way
or another associated with the true nature of the critical lines (the inner horizons
as seen by 3-D observers), which become curvature singularities under the duality
transformation (see section 2). The ultimate question is then, between the two
geometrical pictures dual to each other, namely the Witten’s causal structure and our
nonsingular version, which one of them resembles the reality more closely [11][8].

Of course the effective field theory (75) we started with is correct only up to
O(1) in the o expansion of the sigma-model [5]. That is, the extended nature of
the fundamental string is not properly taken into account. In particular, the static
solutions we have found are related to the coset models (SL(2, R), ® U(1))/U(1) for
m > ¢ >0,o0r (SL(2,R)x/U(1))® S* for ¢ = 0, with (k—2) = (20/A?)71. kis larger
than 2 provided that the total dimension of the spacetime, compact or not, is less
than the critical dimension. A few months after Witten’s derivation of the 2-D black
hole geometry from SL(2, R);/U(1) coset model, R. Dijkgraaf et al., attempted to
find the exact geometry of the coset model by investigating the tachyon spectrum of
the theory [6] with the assumption that the string on-shell condition Lo = 1 should
be interpreted as the tachyon field equation V?T = 0. Recently, A.A. Tseytlin
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rediscovered the same metric in a functional integral approach where he replaced
the classical effective action of the coset WZW model by a quantum effective action,
which involved modifying the coeflicients of the action from & to k + ¢ /2 [7]. The
change of metric can be easily written in the following form, in a gauge similar to

those used in [19][6][7].

(2) 2) ld , (1—2/k)tanh®z

1, 2 1.2
GWitten = 02" —tanh z dt®  — oo = e 1 —(2/k)tanh®z

v dt* (104)

In the gauge of (76), this can be rewritten

1
402 (r —m)(r — (2/k)m)

9 = —(1 - _r"l) dt? + dr?. (105)

Amazingly, this looks exactly like a nonextremal metric, (83) with ¢/m — 1 >
2/k > 0. The SL(2,R)r/U(1) coset metric has the causal structure of the Penrose
diagram labeled by m > ¢ > 0 instead of the singular one (m > ¢ = 0) in figure 5.1.
Furthermore the dilaton part is, according to Tseytlin’s estimate,

6_2Xezact — 1 1 — (2/k)m
A T

. (106)

Again, it is identical to that of the nonextremal solution (83) with ¢/m = 2/k. The
implication is very remarkable. The reality seems to be better described, at least
classically, by the nonsingular causal structures we have found than by Witten’s.
Another encouraging evidence for these nonsingular solutions comes from the
duality symmetry of the string theory. The (SL(2, R)r ® U(1))/U(1) coset model
has been considered by I. Bars and K. Sfetsos [20],%% also nonperturbatively. The
resulting metric is singular, unfortunately, and the causal structure is again that
of timelike singularities hidden behind inner and outer horizons. However, if we

consider the 2-D part of the metric as we did in section 2,

m. ., 1
L= D)+ e m)(r —gq— (2/k)(m — q))

22We thank G. Horowitz for drawing our attention to this work.

gk = —( dr?,  (107)
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after an appropriate redefinition of the parameters in [20]. This metric is identical to
the O(1) approximation (83) except that ¢ > 0 is replaced by ¢+ (2/k)(m —¢) > 0.
The case of ¢ = 0 coincides with gg?wt as it should, and the extremal limit is
achieved by letting ¢ — m. (We need to perform a coordinate rescaling on the
metric presented in [20] to achieve this limit.) Now since the O(1) approximations
to ggizct and g](,?g are related to each other by a duality transformation, it is not
unreasonable to expect these nonperturbative versions are dual to each other.

Unlike the O(1) approximations, the 2-D part gg; of the nonperturbative black
string metric is qualitatively self-dual. The causal structure of the 2-D part does
not change upon ggg — (1/gsg), -+, with the exception of the extremal case. We
no longer have to choose between two entirely different causal structures dual to
each other. It is true that there are many examples of different geometries (or even
different topologies) supporting the same string theory, and a fundamental string
must have a unique classical history independent of the particular geometry chosen.
But here, instead of the horrendous task of figuring out the actual behaviour of
test strings inside the event horizon, we are presented with a unique nonsingular
causal structure invariant under the duality transformation. The naive expectations
based on the behaviour of test particles are unambiguous and might as well indicate
the actual behaviour of test strings. A radially moving classical fundamental string
propagating into the future event horizon does not see a curvature singularity and
simply propagates to another universe.

As for the exceptional case of the extremal solution, we can easily see that it is

dual to the linear dilaton background. The relationship between masses of a pair of

dual solutions is given by (according to the O(1) estimate)

2
Mafter = Mbefore cosh «, (108)

where « is the Lorentz boost parameter; « is infinite for the maximal boost [8].
Obviously a finite mass extremal solution is obtained by the duality transformation

on a maximally boosted zero mass limit of SL(2, R)x/U(1) ® S!, the linear dilaton
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background up to a trivial internal part. The positive mass of the extremal solution
must be an artifact of the effective field theory estimate. While this ambiguity pre-
vents us from viewing either of them as the true ground state, it is quite interesting
in that we have an alternative description for the end stage of the black holes, which
has an event horizon at finite physical distance and another universe beyond it.

Of course we overlooked two important facts in the arguments above. First of

all, the effective coupling is again unbounded.

9

2oms _ T \/1 _@/k)(m—q)

A r
e—2XBs — Z‘—\/l _9q + (2/k)(m — q)
A r ’

which we deduced from [20]. The effective coupling eX is infinite at r = ¢+ (2/k)(m—
q). In section 3, we have seen this infinity was not strong enough to create a
curvature singularity out of a collapsing shell of matter. But we have not been able
to address the problem of gravitational perturbation completely, let alone quantum
fluctuations. Secondly, the 3-D metrics of the compactified charged black strings
(m > g > 0), perturbative or nonperturbative, possess not only timelike singularities
but also closed timelike worldlines inside inner horizons. While it is reassuring that
the corresponding regions are completely inaccessible to 2-D observers and that they
are causally disconnected from us by event horizons, it is quite unclear whether such
a background is physically acceptable. It might be that we should be content with
the effective field theory (79) rather than try to interpret the 2-D solution as a part

of a classical string background.

Appendix: Asymptotics of the Effective Theory

To study the asymptotic behaviour of the gravitational perturbation, it is convenient
to start with the ADM mass formula, obtained using the canonical formalism [23]

on (79). A denotes the deviation from the linear dilaton vacuum.
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_ X
MADMZQNQ ZXA(———) s
Vi

9 le—oo

9(2):N2dt2+g(da:+Ldt)2 N,g—1,L -0 as T — 00,

Xvacuum = —Az fvacuum =0. (109)

Readers should be warned that (108) is derived with certain assumption on the
allowed phase space [23]. More explicitly we need to restrict the phase space to
Axs ~ AJgs ~ Afs ~ e~ at most, which is sensible for the static solutions.
Applied to (83), we obtain Mapy = m.

Now consider a time-dependent solution. The requirement of finite mass restricts
the possible asymptotic behaviours. Obviously the same asymptotic restrictions
apply to oy, ép, the corresponding deviations from a static solution. To be definite,
write a time dependent solution in the following form.

1
mdyz)
X = Xs+6x, f=f+8f, (110)

g0 = H(—F(y)di* +

(6" + A6p) ~ e, at most.

Notice that § f could be much larger than the static part f, ~ e7?*. Expanding the
constraint equations §5(®/8¢°* = 0 and 65/§¢% = 0 in e=?*Y, and collecting the

leading terms,

26X+ X6p) = = 8(f'f), (111)

5(Ff + 11). (112)

N

(8x' + A8p)' + 2A(6X' + A6p) =

If 6f ~ e then (6x’ + A8p) ~ e, If 6f is exponentially smaller than e=¥,
the leading part of (8x’ 4+ A6p) ~ e~?M is static and the subleading time-dependent
part of it is again exponentially smaller that § f . Finally, the possibility of § f much

larger than ~ e~ is excluded since it, combined with (110), will lead to infinite
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ADM mass. After redefining the unperturbed fields to include the static parts of

5X7 )
(6x" 4+ A6p) ~ e ™Ef  at most. (113)

Therefore it is quite reasonable to expect éx 6 f < 6 f as far as the time-dependent
perturbations are concerned. The field equation for f can be expanded in the same

fashion and up to the leading order é f is easily shown to be decoupled from the rest.
V2(8f) —2Vx,V(6f) =0 (114)

After a field redefinition ¥ = e™X<§ f, this becomes,
ViU — \20 = 0. (115)

The gravitational perturbation is asymptotically described by a massive Klein-
Gordon equation.

Now consider solutions to this equation with the following characteristic data,

in a flat? light-cone coordinate, ¢(? = —dvdu.
¥ =0 (116)
4 = ¢p=(0 for v<uw, Clv—wv,) for v, <v <)

Since the geometry is flat, we can integrate the equation explicitly using the following

recursive solution

A2 pu oo
U(v,u) = -Z—/uo /UO U(v', ') dv'du’ + (v). (117)

This uniquely determines ¥ up to v < v, in terms of a Bessel function.

LY =0 v<u, (118)
Y = Clh(u—u)v—0,)) v,<v<u,

23The asymptotic geometry is flat within the same approximation
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Notice [0,¥],, = C. However the massive nature of the field becomes important as
we move away from v, toward v,. In the future direction (u > u,), ¥ is attenuated
and spread in a powerlike manner and as u — oo it would take an infinite resolution
to see the ever so tiny bump of ¥ owing to the discontinuous derivative. Because of
this tendency to spread the initial signal, if we had started with a smooth version of
the jump C at u = u,, it would have disappeared without trace for A (u — u,) > 1.
The more striking feature is the behaviour in the past (v < u,). Then the square
root is pure imaginary and

U ~ e}\ (wo—u){v—vo) (119)

up to some powerlike prefactor. On the past null infinity u = —oo, W is infinite in
the interval (v,, v,,).

In the asymptotically far region, the f field effectively decouples and the action
(79) can be considered as the usual dilaton gravity coupled nonlinearly to matter
fields f and K. Then the corresponding Einstein equation of the metric can be
written with energy-momentum tensor of these matter fields on the right-hand side.
0g”" equation is given by the following. We did not write down the left-hand side
explicitly.

65’g7‘av
6gvv
gorav = / V=@ e X(RO 4 4(Vy)? + 4)2).

But the leading contribution to the right-hand side is proportional to the square of

= e X0, fO,f + - -, (120)

(117) which is infinite on past null infinity in the finite interval (v,,v,). Physically
this means an infinite amount of energy is sent in from null past infinity and subse-
quently the Bondi mass must be also infinite in the same interval.?* (The reason the
right-hand side of (119) is finite for u > —oo in spite of the initially infinite value can

be understood again by considering the dispersive effect of the massive dynamical

24Unfortunately we were not able to derive the mass formula appropriate for the asymptotic
behaviour of §f ~ e~*Y. But if we naively extrapolate (108) to this case and evaluate on the past
null infinity, the constraint equations (110,111) imply infinite Bondi mass.
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equation. After a sufficient amount of time the initial flux of infinite density and
infinite total energy becomes a flux of infinite energy yet of finite density spread all
the way to infinite future.)

We can conclude that solutions of the type (117) should be excluded energetically
since it involves an infinite amount of energy. Furthermore the same conclusion
holds if we drop the assumption of initially static spacetime. Since the perturbation
equation is linear asymptotically, we can subtract a smooth part from ¥ to reduce

the problem to that of an initially static spacetime (i.e., ¥ = 0 before the shock).
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