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"Beware if you expect truth from astronomy lest you leave this

field a greater fool than when you entered.”

--A. Osiander, in Foreword to On the Revolutions of the
Heavenly Spheres, N. Copernicus (1543). (From O. Gingerich,

Scientific American 247, 132 (1982).)

"...there is no such thing as relativistic degeneracy! ... If one
takes the mathematical derivation of the relativistic degeneracy
formula as given in astronomical papers, no fault is to be found.

One has to look deeper into its physical foundations, and these
are not above suspicion. The formula is based on a combination of
relativity mechanics and non-relativity quantum theory, and 1 do

not regard the offspring of such a union as born in lawful wedlock."”

--A.S. Eddington, The Observatory, 58, 38(1935).
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ABSTRACT

The interaction of the magnetic field with the heat flux in neutron stars is

investigated.

It is proposed that the magnetic field develops as a result of thermal
processes in the liquid and solid phases of neutron star envelopes. Necessary
conditions for the growth to occur are derived and it is shown that surface fields
comparable to those observed would result. The magnetization of neutron stars
in binary systems (which have magnetic properties differing substantially from
those of isolated pulsars) can be explained by thermal processes associated with

‘accretion flows.

In order to study magnetic effects on neutron star cooling a number of sub-

sidiary issues are considered.

The thermal structure of unmagnetized neutron star envelopes is examined
using approximate analytical models. From the results it is possible to justify a
number of simplifying assumptions and extend them to the magnetized case.
For example, it is shown that an accurate treatment of photon transport is not
required in order to determine the relation between the heat flux and the core

temperature of neutron stars.

The effect of the field on the magnetic properties of the electron gas in neu-
tron star crusts is considered. It is shown that the gas is unstable to the forma-
tion of domains of alternating magnetization. It is further argued that the
domain structure will have a negligible influence on the heat flux because of the

small free energy associated with the domains.

The influence of the field on the electron transport properties of neutron

star envelopes is examined in detail. Accurate expressions are derived for all
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components of the relevant transport tensors, taking into account quantum
mechanical and relativistic effects. In addition, allowance is made for arbitrary

degree of degeneracy and scattering mechanism.

Finally, these results are used to study the thermal structure of magnet-
ized neutron star envelopes. It is shown that the enhancement in the heat flux
due to quantum effects is almost completely canceled by the suppression of the
heat flux due to geometrical effects. Thus the magnetic fileld is expected to play

only a minor role in neutron star cooling, contrary to earlier claims.
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Intreduction.
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Introduction

Fifty years have passed since Baade and Zwicky (1934) first proposed that
dense stars comprised primarily of neutrons could be created as by-products of
supernova explosions. Initial skepticism to this hypothesis has long-since faded
and the importance of neutron stars to astrophysical phenomena is now well-
established. A variety of galactic objects (e.g., radio pulsars, binary pulsars,
pulsating x-ray sources, y-ray bursters, x-ray bursters, and SS433) are most
easily understood in terms of models which incorporate neutron stars. In addi-
tion, the study of neutron stars contributes significantly to our understanding of
stellar evolution, stellar structure, and physical processes under extreme condi-
tions. Inasmuch as the current investigation is concerned with the thermal and
magnetic properties of neutron stars, it is appropriate to review the prior effort

to unravel the mysteries of these fascinating stellar fossils.
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Structural Properties and Evidence for the Existence of Neutron Stars

The possible existence of neutron stars was first proposed informally by
Landau on the day of the discovery of the neutron in 1932 (Rosenfeld 1974) and
independently by Baade and Zwicky in 1934. Initial calculations of neutron star
structure were performed by Oppenheimer and Volkoff (1939) for a dense, free
neutron gas (for an excellent review, see the book by Shapiro and Teukolsky
1983; henceforth ST). Theoretical interest in the neutron star hypothesis
remained at a relatively low level until 1967 because of the apparent impossibil-
ity of directly observing neutron stars at optical wavelengths (ST). However,
refinements to the equation of state at high densities led to more detailed stel-

. lar models (e.g., Harrison, et al. 1958; Cameron 1959, Ambartsumyan and Saak-
yan 1960, Hamada and Salpeter 1961; Harrison, et al. 1965). In addition, pre-
liminary examinations of rotational (Hoyle, et al. 1964; Tsuruta and Cameron
1966a), magnetic (Woltjer 1964; Hoyle, ef al. 1964), and energetic (Wheeler
1966; Pacini 1967) properties of neutron stars were undertaken Finally, a
number of observations (e.g., Duyvendak 1942; Mayall and Oort 1942; Baade
1942; Minkowski 194R2) suggested the presence of a neutron star in the Crab

nebula, but a definitive conclusion was not yet possible (ST).

The situation was dramatically altered by the discovery of the first radio
pulsar in 1967 (Hewish, ef al. 1968). The interpretation of pulsars as rapidly
rotating, magnetized neutron stars was initially made by Gold {1968, 1969).
Detailed models of the conversion of rotational energy into radiation soon fol-
lowed (e.g., Pacini 1968; Gunn and Ostriker 1969, 1970; Goldreich and Julian
1969; Ostriker and Gunn 1969), as did the discovery of many more radio pulsars.
Approximately 350 are currently known, including three that are asséciated with
supernova remnants--the Crab (Staelin and Reifenstein 1968; Richards and

Comella 1969; Cocke, Disney, and Taylor 1969), Vela (Large, Vaughan, and Mills
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1968), and MSH 15-52 {(Seward and Harnden 1982; Manchester, et al. 1982). (For
a review of the status of the observational link between supernovae and compact

stellar remnants see Helfand and Backer 1984.)

The rotating neutron star model of radio pulsars is generally accepted
because it is the only one which can account for the range of pulsar periods, the
stability of pulsar periods, and the rate of increase of pulsar periods (for a
detailed argument see Ruderman 1972, Manchester and Taylor 1977 ST). The
detection of four radio pulsars in binary systems (Hulse and Taylor 1975; Man-
chester, et al. 1980; Damashek, ef al. 1982, Boriakofl, Buccheri, and Fauci
1983) has made it possible to directly measure the masses of neutron stars
(Blandford and Teukolsky 1975, 1976; Brumberg, et al. 1975; Smarr and Bland-
ford 1976; Epstein 1977, Kelley and Rappaport 1981; Blandford and DeCampli
1981; Taylor and Weisberg 1982). The implied limits are consistent with current
theories. In addition, the observed glitches in the timing data of the Crab and
Vela pulsars (e.g., Boynton, ef al. 1972; Léhsen 1975; Manchester, et al. 1978;
Downs 1981) and the timing noise associated with most pulsars {Boynton, et al.
1972; Cordes and Helfand 1980) can be understood in terms of the properties of
neutron stars (e.g., Baym, et ol. 1969; Ruderman 1969; Baym and Pines 1971;
Pines, Shaham, and Ruderman 1972, 1974; Pines and Shaham 1974, Groth 1975;
Pandharipande, Pines, and Smith 1976; Pines 1980; Alpar, ef al. 1981; Cordes
and Greenstein 1981; Boynton 1981; Alpar, et al. 1984a,b). Finally, the discovery
of the millisecond pulsar (Backer, ef al. 1982) has provided further theoretical
constraints, but has not contradicted the neutron star model of pulsars (eg.,

Shapiro, Teukolsky, and Wasserman 1983).

The existence of neutron stars has been corroborated by x-ray and vy-ray
observations. The first pulsating x-ray sources (Cen X-3 and Her X-1) were

discovered by the UHURU satellite in 1971 (Schreier, ef al. 1972; Tananbaum,
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et al. 1972). Approximately 350 discrete x-ray sources have been identified,
including 19 which are periodic (Forman, et al. 1978; ST). The standard
interpretation of the peribdic sources invokes the accretion of matter from a
normal star onto a compact companion in order to account for the short time
variability of the emission and the confirmed presence of many of these sources
in binary systems (ST). In addition, such a scheme provides an efficient
mechanism for the conversion of gravitational energy into radiation. The
periodicity results from a misalignment of the rotational and magnetic axes of
the neutron star (for a detailed discussion see ST). Theories of x-ray emission
from a binary system containing a neutron star had actually been proposed
prior to the discovery of the pulsating x-ray sources (e.g., Shiklovskii 1967a,b;
Prendergast and Burbidge 1968). The current neutron star accretion models
can, in principle, account for the observed properties of x-ray pulsars {e.g.,
Pringle and Rees 1972; Davidson and Ostriker 1973; Lammb, Pethick, and Pines
1973; Lamb, et al. 1975; Arons and Lea 1976, 1980; Elsner and Lamb 1976, 1977,
Ghosh and Lamb 1978, 1979ab; Rappaport and Joss 1981; Burnard, Lea, and
Arons 1983). Finally, the implied limits on the masses of the neutron stars are

in agreement with stellar models (e.g., Bahcall 1978).

A more recent discovery has been the detection of aperiodic bursts of x-ray
(Grindlay, et al. 1976; Grindlay 1981) and -ray (Klebesadel, et al. 1973; Kle-
besadel, et al. 1982) radiation from discrete galactic sources. (A y-ray burst
source may also have been discovered in the Large Magellanic Cloud. See Cline
1982 and the relevant references therein.) Models of bursters assume accretion
onto a compact object in order to account for the short timescales associated
with the bursts and to provide an efficient mechanism for the conversion of
gravitational energy into radiation. Direct evidence for the binary nature of bur-

sters has been provided by recent observations which indicate a long-period
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modulation of the signal from several x-ray bursters (e.g., Walter, White, and
Swank 1981; White and Swank 1982; Walter, et al. 1982; McClintock and Petro
1981; Pedersen, et al. 1981). The identification of the compact objects as neu-
tron stars is somewhat tenuous because of the lack of pulsations which would
result from the interaction of the accreted matter with the magnetic field. How-
ever, it is possible in these sources that the magnetic field is either too weak to
influence the accretion flow (as a result of ochmic decay) or is aligned with the
rotation axis. The current accreting neutron star models of x-ray bursters (e.g.,
Joss 1977, 1980; Lamb and Lamb 1978; Lewin and Joss 1981; Taam 1982) and -
ray bursters (e.g., Ruderman 1975; Lamb 1982) can, in principle, account for the

_observed properties of these sources.

The accumulation of observational evidence to support the existence of
neutron stars has been accompanied by an intense theoretical effort to under-
stand the structural properties of these objects {see Baym and Pethick 1975,
1979). This has included investigations of the equation of state at low {e.g.,
Baym, Pethick, and Sutherland 1971) and high (e.g., Pandharipande 1971; Baym,
Bethe, and Pethick 1971; Walecka 1974; Bethe and Johnson 1974; Friedman and
Pandharipande 1971; Pandharipande and Smith 1975ab) densities; phase transi-
tions at high densities (e.g., superfluidity, pion condensation, free quarks or
hyperons, and neutron crystals); and detailed stellar models (ST). (Studies of

the thermal and magnetic properties of neutron stars will be discussed below.)

Although many uncertainties remain (primarily in the equation of state at
high densities), a consensus on the structural properties of neutron stars has
been achieved. Stellar models predict masses ~ 1 Mg, radii ~ 10km, central
densities ~ 10%gm cm™ and a density distribution which can be summarized as

follows (ST):
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1. The surface {depth £ a few meters, p < 10%gm cm™3); in which magnetic
effects may dominate the equation of state and the composition may deviate

from nuclear statistical equilibrium.

2. The envelope (depth <1 km, p < 4.3x10''gm cm™5); in which exotic nuclei are
stable and the electrons are degenerate and relativistic. A phase transition

from a liquid to a solid Coulomb lattice occurs within this zone.

8. The neutron drip regime {depth  several km, p £ 2x10%gm cm™); in which
free (possibly superfluid) neutrons appear, along with neutron rich nuclei, free

electrons, and free {possibly superfluid) protons.

4. The core region (p 2 2x10™gm cm™); in which the nuclei dissolve into a uni-
form sea of superfluid neutrons, normal electrons, and superfluid, supercon-
ducting (type II) protons. The state of the matter at the highest densities is
uncertain. Among the possibilities are the appearance of pions, hyperons,

quarks, and neutron crystals.

Thermal Properties and Evidence for the Thermal Radiation of Neutron Stars

Neutron stars are expected to be intense sources of thermal x-ray radia-
tion, releasing gravitational energy generated during the core collapse of the
progenitor. Because of the anticipated low level of optical emission, little
interest was shown in neutron star cooling calculations until the first non-solar
x-ray sources were observed in 1962 (Giacconi, et al. 1962, 1963; Bowyer, et al.

1964a). It was immediately suggested that the radiation could be from cooling
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neutron stars, initiating investigations of neutron star thermal structure (Chiu
1964; Chiu and Salpeter 1964; Tsuruta 1984; Bahcall and Wolf 1865abe; Tsuruta
and Cameron 1965, 1966b). However, it was soon shown that the sources were
either extended (e.g., Bowyer, et al. 1964b) or did not have blackbody spectra
(Clark 1985; Giacconi, Gursky, and Waters 1965; Chodil, et al. 1965) and, hence,
could not be isolated neutron stars. Nevertheless, prior to the discovery of the
first radio pulsar, it was assumed that neutron stars would first be detected

through their thermal x-ray radiation.

Recent cooling calculations have included studies of the physical properties
of the core (e.g., Tsuruta 1974, 1975; Malone 1974; Maxwell 1979; Glen and Suth-
‘erland 1980; Nomoto and Tsuruta 1981; Van Riper and Lamb 1981; Yakovlev and
Urpin 1981; Richardson, ef al. 1982) and of the envelope (Gudmundsson 1981;
Gudmundsson, Pethick, and Epstein 1982, 1983; Epstein, Gudmundsson, and
Pethick 1983). A consensus on the thermal evolution of neutron stars has yet to
be reached because of the uncertainties in the equation of state at high densi-
ties. Neutrino cooling rates are sensitive to assumptions about superfluidity,
pion condensation, and the appearance of free hyperons or quarks (e.g..
Iwamoto 1980; Burrows 1980). In addition, calculations of the opacity in the
envelope do not agree in detail and magnetic effects have been included only

superficially.

In spite of the uncertainties a general picture of neutron star cooling has
emerged. Immediately after forming, neutron stars have internal temperatures
~ 101! K. Neutrino cooling is extremely efficient and the temperature drops to
~ 10° K within a few days. The thermal structure is then determined by neu-
trino losses from the core until the internal temperature has fallen to ~ 108 K
(after ~ 10* years). Thereafter, photon surface emission becomes the dominant

energy drain and the cooling curves drop rapidly (e.g., Tsuruta 1979).
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In principle, the sensitivity of the predicted x-ray flux to the input physics
allows the internal structure of neutron stars to be probed. The recent success
of the Einstein X-Ray Observatory (HEAO-2) has made this possible. Because of
the presumed association of supernovae and the formation of neutron stars, a
survey was made of young galactic supernova remnants (e.g., Harnden, et al.
1979ab; Helfand, Chanan, and Novick 1980; Helfand 1981; Murray, et al. 1979;
Pye, et al. 1981; Tuohy and Garmire 1980, Helfand and Becker 1984). Evidence
for an unpulsed x-ray point source was found in only five remnants (Crab, Vela,
RCW103, 3C58, and CTBB0). The neutron star x-ray fluxes could not be deter-
mined unambiguously because of the lack of spectral data and the difficulty of
subtracting magnetospheric emission. The implied upper limits for the surface
iemperatures of the neutron stars are marginally consistent with standard cool-
ing calculations. However, it may be necessary to invoke rapid coolin.g; due to
uncertain phenomena in the core (e.g., pion condensation) if future observations
lower the derived surface temperatures. Furthermore, the possible discrepancy
between the supernova rate and the neutron star birth rate may widen unless

point sources are detected in a larger fraction of supernova remnants.

Magnetic Properties and Evidence for the Magnetization of Neutron Stars

The evidence to support the hypothesis that most neutron stars are
strongly magnetized (B ~ 10 G) is as compelling as the evidence in favor of the
existence of neutron stars. Prior to the discovery of the first radio pulsar it had
been suggested that neutron stars might be strongly magnetized {e.g., Woltjer
1964; Hoyle, et al. 1964; Pacini 1967). The first miodels of pulsars {e.g., Gold

1968; Pacini 196B) assumed the existence of strong magnetic fields for the
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conversion of rotational energy into radiation, as have all subsequent theories
(e.g.. Goldreich and Julian 1969; Gunn and Ostriker 1969, 1970; Ostriker and
Gunn 1969; Ruderman 1972; Ruderman and Sutherland 1975; Ruderman 1980).
The arguments in favor of the neutron star interpretation of pulsars, therefore,
support the existence of associated magnetic fields. Furthermore, timing obser-
vations of radio pulsars are well fit by a narrow distribution of field strengths

(x(PP)?) in the range 1-5x10'% G (e.g., Manchester 1981).

Models of pulsating x-ray sources rely on a misalignment of the spin and
magnetic axes in order to account for the periodicity of the emnission. In addi-
tion, fields ~ 10'® G are required to provide the necessary coupling between the
‘accreted matter and the neutron star to explain the secular decrease in the
periods of pulsating x-ray sources. Finally, cyclotron lines have been observed
in the x-ray spectra of the Crab pulsar (Manchanda, et al. 1982) and the pulsat-
ing x-ray sources Her X-1 (Trimper, et al. 1978), 4U0115+83 (Wheaton, et al.
1979), GX1+4 {(Maurer, et al. 1982), and 4U1626-67 (Pravdo, et al. 1979). Field
strengths ~1—5x10® G are implied if the lines originate from electron transi-
tions between the two lowest Landau levels (uncertainties ~ 50% result from
assumptions about the gravitational redshift of the radiation and the
identification of the features as absorption vs. emission lines, e.g., Basko and

Sunyaev 1975).

Cyclotron lines and possible red-shifted positren annihilation lines which
have been observed in the x-ray spectra of y-ray bursters (Mazets, ef al. 1981)
are consistent with fields ~ 102 G Furthermore, it has been suggested that x-
ray and y-ray bursters are differentiated by the absence or presence cf a strong

magnetic field (Woosley and Wallace 1982),

A consensus on the importance of the magnetic field to the internal physi-

cal processes of neutron stars has not been achieved. The origin of neutron star
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magnetic fields is uncertain, although it has generally been assumed that flelds
~ 10'% G would result from flux freezing during the core collapse of the progeni-
tor. In addition, previous attempts to include magnetic fields in thermal struc-
ture calculations (e.g., Tsuruta, et al. 1972; Tsuruta 1974, 1975, 1979, Glen and
Sutherland 1980; Van Riper and Lamb 1981; Yakovlev and Urpin 1981), in models
of burst sources (e.g., Joss and Li 1980), and in subsurface flows of accreted
matter (e.g., Blazildford. et al. 1979) have been rather idealized and must be

regarded as preliminary.

The effect of the magnetic field on structural properties of neutron stars
has been considered in detail. Unless the field in the core is ~ 10'® G the equa-
tion of state will be modified only in the surface layers (p < 10° gm cm™). It has
been suggested (e.g., Ruderman 1974; Chen, et al. 1974; Flowers, et al. 1977)
that in the presence of a magnetic field ~ 10'® ¢ the matter at low densities
would be arranged in long, linear chains of atoms, resulting in an abrupt termi-
nation of the density distribution at p ~ 10* gm cm™3. However, the most recent
calculations (Miller 1984) indicate that magnetic crystallization will not occur

for iron, which is the equilibrium nucleus at these densities.

The magnetic structure of the core has also been investigated (e.g., Easson
1976, 1979ab; Arons and Spencer 1978; Easson and Pethick 1979) and may be
relevant to models of glitching and to frictional heating of reutron stars le.g.,

Greenstein 1979ab).

Finally, a considerable amount of work has been done on the properties of
the magnetic field above the neutron star surface. Applications have included
pulsar emission mechanisms (e.g., Arons and Scharlemann 1979. Ruderman
1980; Arons 1981; Ruderman 1981), the structure of the magnetosphere le.g.,
Arons 1979; Mestel 1981; Michel 1982; Arons 1983), models of plerionic supernova

remnants (e.g., Ruderman 1972; Cheng 1983), and accretion onto magnetized
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neutron stars (e.g., Pringle and Rees 1972; Davidson and Ostriker 1973; Lamb,
Pethick, and Pines 1973; Lamb 1979, Arons and Lea 1976, 1980; Elsner and Lamb

1976, 1977, 1984; Ghosh and Lamb 1978, 1979ab).

Synopsis of Thesis

This thesis is composed of five distinct, self-contained papers, each of which
examines a topic relevant to the thermal and magnetic properties of neutron

stars. A brief summary of each paper now follows.

Paper 1 (Blandford and Hernquist 1982) examines the magnetization of the
electron gas in neutron star crusts in the presence of a strong, external mag-
netic field. The magnetic susceptibility is calculated for an appropriate range of
densities (p ~ 10°—10" gm cm™3) and field strengths (B ~10'?-10'"G). (At
lower densities the susceptibility is essentially zero.} Under these conditions
the electrons are relativistic, degenerate, and effectively free (electron-electron
interactions and lattice corrections have a negligible effect on the electron dis-
tribution function). In general the magnetization is much smaller than the mag-
netic field. However, due to the quantization of electron orbits, the susceptibil-
ity undergoes large de Haas- van Alphen oscillations when the temperature is
sufficiently low. (The requirement is that the thermal energy be smaller than
the spacing of the lLandau levels, or T 107K for p~107gmem™ and
B ~ 10 G.) As a result, it is energetically favorable for the electron gas to sus-
tain a phase transition in which domains of alternating magnetization are
fbrrned. 1t is é.rgued that the domain structure will have a negligible influence
on the heat transport and surface properties of neutron stars, but could be cou-

pled indirectly to observable effects. In addition, the associated anisotropic
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magnetostrictive stresses provide constraints on the strength of the magnetic

field that can be supported by the crust in equilibrium.

In paper 1I {Blandford, Applegate, and Hernquist 1983) a novel mechanism
for the origin of magnetic field in neutron stars is proposed. Substantial obser-
vational evidence exists (e.g., the narrow range of field strengths
B ~ 1-5%10" G derived from pulsar timing data, cyclotron lines in the spectra
of pulsating x-ray sources, and redshifted positron annihilation lines in the spec-
tra of y-ray bursters) to suggest that neutron star magnetic fields have a com-
mon physical origin. Additional observations indicate that the magnetization is
not permanent (e.g., the finite lifetime of radio pulsars) and furthermore may
»have been generated long after the neutron star was formed (e.g., the presence
of a pulsar with timing age ~ 1550 years embedded in supernova remnant MSH
15-52 estimated to be ~ 10% years old). Conventionally, it has been assumed that
the magnetic field results from flux freezing during the core collapse of the pro-
genitor. However, if ohmic dissipation is to be effective on the timescale of pul-
sar lifetimes then the magnetic fleld must be confined to densities
p £ 10" gm cm™. In this paper it is suggested that the magnetic field arises as
a result of thermal effects in the liquid and solid phases of neutron star
envelopes. If the instabilities develop, the subsurface field will grow to a satura-
tion value ~ 10" G, implying a field ~ 10'% G at the surface. The field is main-
tained for as long as heat flows through the crust. Thereafter, the dipole
moment will decay on a timescale comparable to pulsar lifetimes. This model is
capable of accounting for the observed properties of neutron star magnetization
in all contexts. For example, x-ray bursters are thought to be much older {~ 108
years) than isolated radio pulsars. The magnetization of these objects could be
explained by thermal processes associated with accretion rather than with the

initial cooling of the neutron star. Furthermore, binary radio pulsars are
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observed to have unusually weak but long-lived magnetic fields. It is possible
that these neutron stars became magnetized during a long x-ray binary phase
and that the magnetic field penetrated to a greater depth than in an isolated

pulsar, increasing the ohmic decay time.

The influence of a strong magnetic field on the thermodynamic and tran-
sport properties of the electron gas in neutron star envelopes is considered in
paper 1l (Hernquist 1984a). At the relevant densities and field strengths the
classical description of electron orbits is not valid and quantum effects must be
taken into account. The physical conditions will be influenced by the discrete
nature of the density of states factor. For example, the transition from the
non-degenerate to degenerate regimes will be shifted to higher densities by a
sufficiently strong magnetic field. Transport properties will additionally be
affected by the dependence of the collision time on the magnetic field. Previous
calculations of quantwm transport have generally been either unreliable or
incomplete. In particular, large errors can be introduced if the completely
degenerate limit (7 = 0) is assumed. Thermal effects smooth and damp the
oscillations of the transport coefficients. Furthermore, the Wiedemann-Franz
law no longer holds and it is not possible to compute the thermal conductivity
from the electrical conductivity. Finally, at the densities and field strengths of
interest a relativistic treatment is essential. In the present work, relativistic
effects are included by calculating transition rates from the exact solutions to
the Dirac equation, assuming elastic scattering. Expressions for all of the
independent components of the transport tensors (electrical conductivity, ther-
moelectric coefficient, and thermal conductivity) are derived for arbitrary
degree of degeneracy and scattering mechanism. The resulting formulae,
though compact in form, are difficult to evaluate. Cornputations of intermediate

functions containing most of the numerical complexity are performed and fits
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are provided which allow the transport coefficients to be more easily calculated.
Results are given for the scattering potentials of most importance to neutron
star envelopes (e-ion and e-phonon collisions). Finally, the necessary conditions
for the quantization to be important thermodynamically and the relevance of

the results to thermal structure calculations are discussed.

Paper IV (Hernquist and Applegate 1984) investigates the thermal structure
of unmagnetized neutron star envelopes using approximate analytical formulae.
In the degenerate regime the thermal structure equation is solved exactly for
electron-dominated heat transport. In the non-degenerate layers it is shown
that if the opacity is a power law function of density and temperature then the
T(p) profiles lie along curves of constant thermal conductivity. The two solu-
tions are matched at intermediate densities to give an approximate relation
between the heat flux and core temperature of the neutron star. The depen-
dence on various uncertain factors is found explicitly, allowing a detailed under-
standing of the physical processes that control the heat flux. In particular, it is
shown that for a given core temperature the heat flux is virtually independent of
effects at low densities, in the non-degenerate regime. Included are corrections
to the free-free photon opacity and to the free electron equation of state. In
addition, partial ionization is not important. At high densities, in the degenerate
layers, the results are insensitive to the slow variation in ionic composition and
uncertainties in the melting curve and the electron conductivity in the solid
phase. The flux- core temperature relation depends strongly only on the elec-
tron conductivity in the liquid phase. The significance of these results to mag-
netized cooling calculations is discussed. For example, it is argued that reliable
expressions for bound-bound and bound-free absorption in the presence of a
strong magnetic field are not necessary in order to compute the heat flow along

the field. Furthermore, the dominance of the electron thermal conductivity
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implies that meaningful cooling calculations are possible, using the results of

paper 111

The influence of a strong magnetic field (B ~ 10!°~10'*G) on the thermal
structure of neutron star envelopes is studied in paper V (Hernquist 1984b)
using the method of Gudmundsson, et al. (Gudmundsson 1981; Gudmundsson,
Pethick, and Epstein 1982,1983; Epstein, Gudmundsson, and Pethick 1983) and
the most recent calculations of radiative (Silant'ev and Yakovlev 1980) and elec-
tronic (paper III) thermal conductivities. It is shown that the temperature of
the core, T;, scales with flux and surface gravity in the ratio F/ g,, in agreement
with the unmagnetized case (e.g., paper IV; Gudmundsson, Pethick, and Epstein
1983). The effect of the magnetic field on the relation between the core tem-

| perature and F/ gs is considered for effective surface temperatures in the range
T, = 105°—-10%% K. For a purely vertical field geometry it is found that quantum
effects will enhance (relative to the zero field case) the heat flux, for a given
core temperature, by a factor £ 3. It is further argued that the anisotropic
nature of the electron transport in a magnetic field will suppress the heat flux
for a more realistic field geometry by a factor £ 3. Thus the magnetic field is
expected to have only a minor effect on neutron star cooling. This conclusion
differs substantially from those of earlier magnetized cooling calculations and a
detailed comparison is performed to isolate sources of discrepancy. (It is
argued that the disagreement results primarily from inaccurate approximations
to the electronic thermal conductivity used in past calculations.) The sensitivity
of the flux- core temperature relation to variations in the input physics is stu-
died in a manner analogous to Gudmundsson {1981). As in the zero field case it
is found that the flux- core temperature relation is highly sensitive to the ther-
mal conductivity only in a narrow strip in which e-ion scattering dominates, in

agreement with the expectations stated in paper IV. The results of the
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sensitivity analysis are further used to argue that disagreements among the
existing calculations of the conductivity will not alter the basic conclusion that
magnetic effects on the flux- core temperature relation are relatively unimpor-

tant.
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. Magnetic Susceptibility of a Neutron Star Crust
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ABSTRACT

The magnetic susceptibility of the degenerate free electrons in the
crust of a neutron star is computed for a range of densities, tem-
peratures, and fleld strengths. It is shown that when the tempera-
ture is low enough (typically less than 107K for densities

3 and 10'® Gauss fields), the susceptibility undergoes

~107gem™
large de Haas-van Alphen oscillations. The crust is then unstable
to the formation of layers of domains of alternating magnetization.
Associated with these domains are magnetic field fluctuations of a
few percent amplitude and anisotropic magnetostrictive stresses
which may be large enough to crumble the crust. It is argued that
these domains are unlikely to directly influence the surface prop-

erties of the neutron star but may possibly be coupled indirectly to

observable effects.
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1. Introduction

Observation of radio pulsars and pulsating X-ray sources indicate that many
neutron stars have surface flux densities B ~ 10'*G. The outer crusts of neutron
stars are believed to be in the form of a BCC ionic lattice supported against
gravitational collapse by the pressure of effectively free degenerate electrons
(e.g., Baym and Pethick 1975). At densities p 3 10°gem™, electron-electron
interactions and lattice corrections will have a negligible effect on the electron
distribution function. The electron Fermi temperature Tr increases with depth
z below the surface and becomes relativistic at a density p ~ 10%gem™ and
z ~ 10m for a standard 1.4Mp, 10 km neutron star. The equilibrium ions range
from %%Fe to "Fe as the density increases from 10°gem™ to 10''gem™. We
limit the discussion to densities p 2 10° g cmn™ since the susceptibility at field
strengths » 10 G is effectively zero at lower densities. Possible observational

consequences will be associated with effects at greater densities.

The magnetization of the crust is generally very small compared with the
magnetic field H. Nevertheless, when the electrons are sufficiently cool that
their thermal energy is smaller than the spacing of the Landau levels, the mag-
netization can undergo large de Haas-van Alphen oscillations with either chang-
ing field or changing Fermi energy. Under these conditions it sometimes
becomes energetically favorable for the electron gas to separate into two phases

containing different flux densities.

Earlier discussions of the magnetic susceptibility of neutron star crusts
(e.g.. Lee et al. 1969; O'Connell and Roussel 1972; Schmid-Burgk 1973) have con-
centrated upon the discussion of whether or not the observed field may result
from spontaneous magnetization. This almost certainly cannot occur because
the crust is insufficiently cool and, in any case, the magnetized state is at best

metastable. In this paper it is assumed that the field is supported by conduction
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currents frozen into the interior of the star. The possibility that the field is pro-
duced by currents in the surface layers is currently under investigation (Bland-

ford, Applegate, and Hernquist 1983).

In § 2 the calculation of free electron magnetic susceptibility is reviewed
and generalized. Domain structure and formation is discussed in § 3 and the
results are applied to neutron stars in § 4. In § 5 possible observational conse-

quences are considered.

2. Magnetic Susceptibility of a Free Electron Gas
21 Magnetizatioﬁ

Consider a gas of free electrons in a quantizing, homogeneous magnetic
field of lux density £. Unless explicitly stated, we set my = ¢ =k = 1 and meas-
ure B in units of the critical field B, = mZe3 ! = 4.41x103G and volume V
in units of e?#®m,3¢c™* For the simple geometry under consideration, the Dirac
equation can be solved exactly (e.g., Berestetskii, et al. 198R) to give the energy

spectrum
gr = (L +pf +2rB)Y?%, =012 (1)

The energy levels, which are known as Landau levels, are doubly degenerate for
7 # 0 and non-degenerate for r = 0. The quantity &, and hence the magnetiza-
tion, should be regarded as functions of B, and not H, because it is B that is
derived from the vector potential appearing in the Hamiltonian {e.g., Pippard

1980). This view has experimental support (e.g., Shoenberg 1962).

The magnetization M is conveniently calculated from the grand potential

which for small susceptibility is given by
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oo

0= 273 g [ dpyinit + explls = 2,/ T (2)

where o is the fine structure constant, V is the volume, g, = 2 ~ 8,5 is the degen-
eracy, and u is the chemical potential including rest mass (e.g., Lifshitz and
Pitaevskii 1980). The Fermi temperature Tp is defined to be the temperature
corresponding to the Fermi kinetic energy of the same density of electrons in

the absence of a magnetic field, i.e.,

cyo14 T2 201
Tp=p—-1+ 6 & w1 +0(T). (3)

Now, the magnetization M is given by

M=~

—1—[6“ (4)

V0B | v.r

and the susceptibility x = M/ H ~ M/ B for the small values of concern to us. In
addition, we will also be interested in the differential susceptibility, 7, which is
defined by

n= (aM/ BB)T,V,“. (5)

Although, in general, 4r|x| < 1 for a relativistic electron gas, in certain regimes
4rm|m| can exceed unity, indicative of the possibility of the existence of magnetic

domains.

The magnetization is easily computed under three separate approximations

which we now consider.

21.1. Weak field (B < uT << uTF)

When the thermal energy (~T) is large compared with the spacing of the

Landau levels {(~B/ u) but small compared with the Fermi temperature, we can
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replace the sum in equation (2) by using the Euler-MacLaurin sum formula (e.g.,

Lifshitz and Pitaevskii 1980),

#E ot (r) = [ 705385 - § Zre) (®)

where H;, are the Bernoulli numbers. The integral is independent of B and does

not contribute to the magnetization. Ignoring a constant,

S 14 dp)
7 e af ) empiteany T3e1] + 75D ()

Using equation (4) to compute M we obtain, after some manipulation,

7 )? T *
TFJ + O[TFJ + 0(B?) . (8)

- 2_q1y1zy _ ap(p—)E
= L _In[p + (ur-1)V?] -
X = gz ol + WE-)VE] - S e

This is the relativistic generalization of the standard non-relativistic susceptibil-
ity (e.g., Lifshitz and Pitaevskii 1980). The first term has been given previously
by Rukhadze and Silin (1960). Note that non-relativistically only 1/3 of the Pauli
paramagnetic spin susceptibility is canceled by the diamagnetic contribution
from the orbital motion, whereas in the extreme relativistic limit, the purely
paramagnetic part, xp = (a/ 47%)u(u?-1)"?, is almost completely canceled. The

magnetic susceptibility is always less than 1073 in the weak field limit.

2 1.2 Intermediate field (uT < B < uTp)

When the thermal energy is small compared with the Landau level spacing,
) develops an oscillatory part ). As a result, the differential susceptibility can
become large in magnitude. The computation of Qisa straightforward relativis-
tic generalization of the calculation in Lifshitz and Pitaevskii (1980). We obtain

aBYR2yT &= cos[2r{krmax—1/ 8)]
2 = k%Zsinh(k7/ T,)

0= (9)
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where 7Tpax = (4®—1)/2F is the Landau level of highest energy occupied and
T, = B/2n%u is the critical temperature for the appearance of oscillations. The

oscillatory part of the susceptibility is given by

_aT(u?-1) i sin[Rm(k7 n.x—1/ 8)]

X = T onpR i kY3%inh(kT/ T.) (10)

The non-oscillatory part is smaller than ¥ by ~0(rzl4?) and may be ignored.
The quantity ¥ is still always less than 1/47m In the low temperature limit

T « T;, X becomes

%= a  (P-1) i sin[2m(kr max—1/ 8)] '

= T LB & PR (11)
The sum is bounded above by {(3/2) = 2.61.
The oscillatory part of the differential susceptibility is
2_1)2 = k'2cos[2m{krmax—1/ 8

2B¥% = sinh(k7T/ T,)

This quantity, which is ~ 7. X, can exceed 1/ 4m,

2.1.3 Strong field (uT <K uTr < B)

When 7., the number of Landau levels occupied, becomes small, the sum
in equation (2) must be evaluated numerically. In the limit B - = all electrons

occupy the ground level and the differential susceptibility vanishes.

In Figure 1, we display the regions of validity of these three approximations.

2.2 Numerical evaluation

We have computed the free electron differential susceptibility for different

combinations of the temperature and Fermi temperature. Four cases are
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plotted in Figure 2. As the flux density is increased into the intermediate field
regime, de Haas-van Alphen oscillations set in and |%| soon reaches its max-
imum value before declining «B~3/? at greater flux density. In the strong field

region the period in 1/ B becomes comparable with 1/ B.

3. Domain Formation

For a bounded sample in a uniform field the magnetic field A is related to

the flux density B by the relation
H=PF ~4nr(1-n)M(B) (13)

‘Where n is the demagnetization coefficient which is fixed by the shape of the
sample. For our application to a thin neutron star crust, permeated by an
approximately vertical field, n ~ 0 and will henceforth be ignored. When the
differential susceptibility % exceeds 1/4m, (8H/8B), r becomes negative, and
the thermodynamic equilibrium becomes unstable (e.g., Lifshitz and Pitaevskii
1980). In fact, for the case n = 0, as discussed at length by Pippard (1963), Con-
don (19686), Azbel’ (1970), and Pippard (1980), the material will separate into two

phases corresponding to different {(usually anti-parallel) magnetizations.

In Figure 3 we show the region of the 7—T plane in which the electrons are
unstable to phase separation for different values of the flux density. We sze that
for low enough temperatures domain formation occurs over a density range lim-
ited at the low end by thermal effects and at the high end by the explicit depen-

dence of 7] upon the Fermi energy.

We may evaluate the change in magnetization across a demain interface
using the boundary conditions for B and H. If the fractional change in B is

small and the fleld makes an angle 8 with the interface, then
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Hy~H,

— P — 2
B,—F, tang (14)

where the subscripts 1 and 2 refer to the two domains. The field is deflected
through an angle

Bz-B,

B, tané (15)

08 ~

at the interface. Equation {14) shows that the field A must decrease as the flux

density B increase across the interface separating two domains.

A second relation between the flux density and the field strength is fur-

nished by the "equal area” rule

B.
J H(B)B = 3-(BeBL)(Hy+ o) (16)

where the integral is over the unstable portion of the H(B) curve. Thus, given
the angle 8, both B, and B, are fixed by equations (14) and (16) and the shape

of the magnetization curve. Note that there is a maximum allowed angle 8.

If the electron gas is to be regarded as a fluid in thermodynamic equili-
brium, i.e., there are no strains in the ionic lattice communicated to the elec-
tron gas by electric fields, then there is a third condition which must be
satisfied. The pressure, which is hydrostatic and is given by —{)/ V. must be the

same on either side of the domain interface. This implies that
P
! MdB =0 (17)
1

or

Bl+32=H1+H2 (18)



-37-

using equations (4) and (16). In this case equation (18) should apply and the
angle 8 will be fixed at some non-zero value.

In Figure 4 we show the H(B) relation for an electron gas at a temperature

T = 0,1keV for two different Fermi temperatures.

4. Neutron Star Crusts
4 1 Structure

As can be seen from Figure 3, domain formation should occur in the crust
of magnetized (B ~ 10'2G) neutron stars at densities p ~ 108gem™ below tem-
peratures T ~ 107K. According to cooling calculations (e.g., Tsuruta 1981), the
crust should become sufficiently cool after ~10*yr, a time much shorter than a
typical radio pulsar age (~3x10%yr).

The variation of the magnetic susceptibility is, however, crucially different
from the usual situation encountered in solid state physics in which oscillatory
magnetization appears as H is varied. In a neutron star crust, we expect that #
will be determined by currents which flow within a region ~10km in size and that
the field is locally constant. However, as the depth z below the surface
increases, the Fermi temperature Tz increases and it is this variation which is
responsible for the oscillatory magnetization.

The thickness of the crust is determined by the surface gravity

2

g = 10g,,cms™. It can be shown that for degenerate electron pressure sup-

port,

-1
= 1 dTr Tr ] -1 He_
Z_mpg-/- I —50[1MeVJgM 5 | ™ (19)

where u, is the mean molecular weight per electron which varies between ~2-3
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in the crust (e.g., Baym and Pethick 1975).

At the surface density p ~ 10*gem™ for a field B = 10'25 3G all the elec-
trons will be in the ground state Landau orbital. However, as the density
increases, the number of Landau orbitals 7.y ~ 20{(u*-1)B ! will also increase.

The spacing between layers associated with successive integral values of 7,y is

-1
Az = g. = RS 55g1-41[£‘_g_] L tBipem . (R0)

2

At non-relativistic Fermi temperatures, the spacing is constant. If the tempera-

ture is low enough for domains to form, then Az is the average vertical spacing

between dommain interfaces. In this case, the horizontal variation in the field will
. be

éB_ _ 2B
B (p-1)

~ 0.4B8,,(u?-1)"18 (21)

where 8 < 1 is the strength of the oscillation relative to the maximum allowed

oscillation. For T« T, f~ 1.

The actual size and shape of the domains is problematical. There seem to
be two possibilities. The first is that the domains have a horizontal scale ~Az
which is in general required if there is to be a balance in the electron pressures.
The second possibility is that the domains form a two-dimensional lattice of vert-
ical needles of thickness given roughly by the geometrical mean of the Larmor
radius and Az ~ 10™*cm. This second configuration minimizes the sum of mag-
netic and surface energy (e.g.. Pippard 1980). The choice between these two
pbssibilities is probably governed by the magnetization history and the ability of

the lattice to withstand stresses (see § 4.4 below).

In either case, unless there is some magnetization structure cn a length

scale comparable with the depth z, there should not be any influence on the
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surface field as the amplitude of the field perturbation will be smaller than that

given by equation (21) by a factor ~exp(—nz/ Az).

4.2 Collisional broadening

Electron scattering will broaden the Landau levels and may damp the de
Haas-van Alphen oscillations (Dingle and Schoenberg 1950; Springford 1980).
Collisional broadening is negligible when the collision frequency v, is much
smaller than the gyrofrequency eB/ u. An approximate non-relativistic calcula-
tion gives the result that the terms in the sum in equation (9) must each be mul-
tiplied by a factor exp[—knv./eBR] (Higgins and Lowndes 1980). The collision
frequency has been computed by Urpin and Yakovlev (1980a,b) and Yakovlev and
Urpin  (1980). For solid iron, neglecting impuring scattering,
v, ~3x10%(T/ 108K)pg“3Hz. By inspection of Figure 1, we see that electron

collisions should not affect the de Haas-van Alphen oscillations.

4.3 Eddy Currents

As the neutron star crust cools and regions of previously uniform magneti-
zation become unstable, internal conduction currents will grow and lead to the
creation of domains on the ohmic dissipation time, £;. Using the Yakovlev and

Urpin (1980) conductivity for a solid crust, we obtain
ty ~ 3x10%(w/ 1m)%0d/37¢ ' s (22)

where w is the horizontal length-scale for field variation. We have assumed that
the geometry is such as to allow the creation of a Hall field. Again, we have
ignored possible impurities and lattice defects. We can also use equation (22) to
verify that small scale conduction currents in the outer crust {p g :08gem™)

will probably have decayed. (See Blandford, Applegate, and Hernquist 2983, for
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an alternative viewpoint.)

4.4 Magnetostriction

As can be seen from Figures 1 and 3 the crust will be solid whenever domain
formation is possible. In general the formation or adjustment of domain strue-
ture involves anisotropic magnetostrictive stresses ~2mM* (see Appendix).
These will be balanced by elastic stresses in the lattice provided that they do not

exceed the yield stress for shear flow Y. From Ruderman (1972), we estimate
Y ~ Z%®(p/ Amy ) 3 ~ 4x10'8p4 % _g dyne em™ (23)

where & = 1073s_3 is the maximum allowed strain angle. Unless the crystal is
unusually pure, we expect that e_g~ 1. Using equation {11) we find that the

maximum flux density which the crystal lattice can withstand satisfles
Braxiz ~ (1 + 0.6p5" %)z g . (R4)

It B > Bmayx, the crust will crumble and the domains will adjust to a lower energy
state on the eddy current decay time given by equation (22). The domain strue-

ture will be constrained by electron pressure balance.

5. Discussion

Most old radio pulsars appear to have surface flux densities in the range
1-5%10"®G (e.g., Manchester 1981) and surface gravities ~2x10%cms™ (e.g.,
Bahcall 1978). We expect the outer crust to be isothermal with a temperature
T <108K (e.g., Arons 1981). Therefore domains will form below a depth

2 ~ 5—~10m with a vertical spacing Az ~ 20—50cm.
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0ld pulsars often show complex and stable pulse profiles. There is no well-
" accepted theory of pulsar radio emission, but it is widely believed that the pulse
structure has its origin in quasi-permanent magnetic or topographic features on
the neutron star surface. These features indicate the places where current is
preferentially drawn from the stellar surface {e.g., Ruderman 1981). It is intri-
guing to enquire if they could be connected in any way with sub-surface domain

structure.

This connection is unlikely to be direct unless the domains have horizontal
structure on a length-scale ~z, since structure on smaller scales will lead to
exponentially small surface effects. Further, the maximum free energy associ-
ated with the domains (~10?®ergs per domain) is very small by neutron star

. standards.

However, there are some possibilities for an indirect connection. The
current believed to be flowing through the polar cap of a pulsar with period
~0.3—3s is roughly /7 ~ 10'1-10'%4. If this current crosses the field at a depth d
then the associated magnetic perturbation is 68 ~ 10'%(// 10¥A){d/ 1m)™!G.
The depth to which the currents flow is determined by the surface potential vari-
ation and the time that has elapsed since the potential was established.
Presumably the currents flow over a region as large as the polar cap ~100m in
size. However, for the currents to penetrate to a depth ~100m requires
~108Tg! yr, using equation (22). If these currents flow at depths in the range
10—-100m then they may be responsible for establishing large-scale patterns of

magnetization.

Secondly, the fact that the maximum field given by equation {(24) is close to
the observed surface field suggests that the crustal regions are seismically
active. Any sudden readjustment of the domain structure will cause a local

departure from isostasy which will be relieved on the ohmic dissipation
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timescale. At the surface this time is of the order a few seconds, which is a

characteristic timescale for marching subpulses.

Finally, there will be small-scale fluctuations in the transport properties of
the crust because of the domains. If the domains are arranged regularly, then it

is possible that they cause thermal or potential patterns on the surface.

However, we have no more specific proposals for the possible observational
consequences of domain formation. It is most likely that their effects are negli-

gible.
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Appendix

Some confusion has arisen in the literature concerning the pressure of a
degenerate electron gas in a magnetic field (e.g., Canuto and Chiu 1971;
Schmid-Burgk 1973). From a thermodynamic point of view, the pressure can be

derived from the grand potential as
= - (A1)

This pressure is isotropic. However, the kinetic pressure of the electrons is
anisotropic. The components resolved parallel and perpendicular to the field

direction can be expressed as follows

Jan & 2802 foxp(e, )/ 74T

A

-V (AR)

r=J a2y SPED () TH1) (a3)

Ep

Now {pf) = 7B, averaging over the two spin states. Equation (A3) can be

related to equation (2) after an integration by parts by

- B} o_ - _0
Pf = ‘V—{a 5 (Q/B)}p,v.r =- M5B . (A4)

However, if we compress the electron gas perpendicular to B then must also do
work against the Lorentz force density involving the magnetization current den-
sity, (Vx#)xB. There is therefore an additional magnetic contribution to the
perpendicular pressure of magnitude M5 which cancels the second term in (A4).

The composite pressure tensor is therefore isotropic, in agreement with the
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thermodynamic result, equation (A1).

In a body of arbitrary shape, there will be additional anisotropic stresses
~2mM? associated with the demagnetization field. In a solid these will be bal-

anced by elastic stresses,
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Figure Captions

Figure 1.

Weak, intermediate, and strong field regions in the 7—Tp plane. For each
value of the flux density B the curved line separates the intermediate field
region where de Haas-van Alphen oscillations can occur from the weak field
region at higher temperature. Each line is terminated on the left by a vertical
line denoting the boundary of the strong field region. Also shown are the limit of
the degenerate region (dashed line) and the melting curve for neutron star
matter (e.g., Flowers and Itoh 1981; Slattery, Doolen, and De Witt 1980). The

. densities correspond to the lowest energy ionic lattice.

Figure 2.

Differential susceptibility 7 as a function of B for two values of both the
Fermi temperature 7 and the temperature 7. At low flux densities, where the
de Haas-van Alphen oscillation frequency becomes large, only the envelope of

the susceptibility is shown.

Figure 3.

Region of T—Tr plane in which 477 can exceed unity. When 7 is less than
the value indicated the electron gas is unstable to the formaticn of two phases of

different magnetization.

‘Figure 4,

H(RB) curve for T = 0.1keV and flux density B near 10*G for electron gases

of Fermi temperatures 0.3 and 1 MeV. The corresponding densities are
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p =3.9x10% 4.5x107gem™3, respectively. Also shown is the line (dashed)
representing B = H. Both curves are unstable and the phase diagram for

T = 0.3MeV is drawn, assuming an angle of 30° between the domain interface
and the field.
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-Thermal Origin of Neutron Star Magnetic Fields

R.D. Blandford, J.H. Applegate, and L. Hernguist

Theoretical Astrophysics, California Institute of Technology

ABSTRACT

It is proposed that magnetic field arises naturally in neutron stars
as a consequence of thermal effects occurring in their outer
crusts. The heat flux through the crust, which is carried mainly by
degenerate electrons, can give rise to a possible thermoelectric
instability in the solid crust which causes horizontal magnetic field
components to grow exponentially with time. However, in order for
the thermally driven growth to exceed ohmic decay, either the
electron collision time must exceed existing estimates by a factor
~3 or the surface layers comprise helium. A second instability is
possible if the liquid phase that lies above the solid crust also con-
tains a horizontal magnetic field. The heat flux will drive circula-
tion which should amplify the field strength provided that there is
a seed field in excess of ~108G.

If either of these two instabilities develops the field will quickly
grow to a strength of ~10'*G, where the instabilities become non-
linear. Further growth will saturate when either the magnetic
stress exceeds the lattice yield stress or the temperature pertur-
bations become non-linear, both of which occur at a subsurface

field strength of ~10'*G; the corresponding surface field strength
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is ~10®G. Further evolution of the magnetic field should lead to
long range order and yield neutron star magnetic dipole moments
~10%%Gem?, comparable with those observed.

Newly-formed neutron stars should be able to develop their
dipole moments in a hundred thousand years, and maintain them
for as long as heat flows through the crust. Thereafter, the dipole
moment should decay in several million years, as observed in the
case of most radio pulsars. Neutron stars that are formed spinning
rapidly, like that in the Crab Nebula, should be able to grow mag-
netic fields far more rapidly since their rotational energy can also
be tapped to drive thermoelectric currents. The interiors of neu-
tron stars in binary systems may be heated by the energy released
by accreting matter. The resulting heat flux may cause the pro-
duction of magnetic fields in these objects. Binary pulsars, with
their unusually low and persistent fields, have probably passed

through this phase.
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1. Introduction

Timing observations indicate that surface magnetic fields of radio pulsars
(x(PP)? where P is the period derivative) have values in the range 1-5x10'2G,
with surprisingly little scatter (e.g., Manchester 1981). This range of neutron
star surface field strengths has been corroborated by the direct observation of
cyclotron lines in Her X-1 (Tritmper et al. 1978), 4U0115+63 (Wheaton et al.
1979), GX1+4 (Maurer et al. 1982), 4U1626-67 (Pravdo et al. 1979), and the Crab
Pulsar (Manchanada et al. 1982). Analyses of period changes in pulsating X-ray
sources {e.g., Rappaport and Joss 1977; Ghosh and Lamb 1979) caused by mag-
netic coupling between the neutron star and the accreting plasma yield values
of neutron star magnetic moments consistent with surface fields ~10'*G. The
spectra of gamma ray bursts show features interpretable as cyclotron absorp-
tion lines, as well as possible positron annihilation features, indicating that the
burst sources are magnetized neutron stars with surface fields ~10'*G (Mazets

et al. 1981; but see Fenimore et al. 1982).

There are indications that the magnetization of neutron stars is not per-
manent. Radio pulsars have a scale height ~500pc above the galactic plane and
one-dimensional velocities ~100km/s away from the galactic plane, strongly
suggesting that they are active for no more than a few million years (e.g., Lyne
1981). Comparison of the kinetic ages (distance above the galactic
plane /velocity normal to the galactic plane) of pulsars with the timing ages,
P/ 2P, shows serious disagreement. The kinetic age, believed to be the true
age, is shorter than the timing age for pulsars older than a few million years
(e.g., Lyne 1981), a fact that may be concluded independently from the joint dis-
tribution of pulsars in P and P (e.g., Lyne 1981). One long-standing explanation
for these difficulties {e.g., Gunn and Ostriker 1970) is that the magnetic field

decays in a few million years, suppressing coherent radio emission and
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increasing the timing age (alternative explanations may be found in Goldreich
1970, Flowers and Ruderman 1977, Vivekanand and Radhakrishnan 1981).
Further evidence for a changing magnetization is supplied by galactic X-ray
sources, the majority of which show no evidence of pulsation and presumably
involve emission from an entire neutron star surface, rather than just a polar

cap (e.g., Joss 19880; but see Inoue et al. 1981).

The simplest mechanism for field decay is ohmic diffusion; however, apart
from the outermost crust, neutron stars cannot ohmically disspate a magnetic
field in a million years. The protons in the core of a neutron star are believed to
form a type II superconductor; any flux threading the core when the star cools
belcw the transition temperature will be trapped there, essentially forever. At
densities below nuclear, where there are no superconducting protons, the
electrical conductivity is far too high to allow ohmic dissipation in a million
years. Thus, if field decay is to occur, it appears essential that the surface flux
penetrate only to a depth 1km, where the electrical conductivity is low enough
to allow ohmic dissipation to operate on the requisite timescale. The subsurface
field would then be 210'3G, assuming 10'*G fields at the polar caps. A field of

this size will cause a substantial modification of the surface structure and trans-
port properties.

There is an additional reason for believing that neutron stars possess sub-
surface horizontal fields. In the pulsating X-ray sources, matter is believed to be
accreted at the magnetic poles of the neutron star. However, there rmust be a
continuous flow of matter from the poles to the equatorial regions in order for
the star to re-establish hydrostatic equilibrium. If the stellar field were just a
simple dipole, the matter would sink to a depth at which its pressure could over-
come the magnetic stres_ses. At this point the matter would spread sideways,

dragging the magnetic field lines with it, as ohmic dissipation is quite ineffective
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on a flow timescale (Blandford et al. 1979).

There is evidence that neutron stars become magnetized after they are
formed. Observations of the supernova remnant MSH 15-52 and its embedded
pulsar (Seward and Harnden 1982; Seward et al. 1983; Weisskopt, et al. 1983)
show a pulsar with a timing age of P/ 2P = 1550yr in a supernova remnant
estimated to be ~10*yr old. The apparent ages, discrepant if the pulsar field is a
stellar fossil, are reconciled if the neutron star is as old as the SNR, but became
a pulsar ~10%yr ago when its magnetic field grew to sufficient strength.
Vivekanand and Narayan (1981) have suggested on the basis of the distribution
of pulsars in P, P that the majority of neutron stars do not become pulsars
until long after being formed. Observations of the supernova remnant RCW103
(Tuohy and Garmire 1980) show a hot neutron star but no radio pulsar or
plerionic nebula, suggesting that the neutron star does not possess a magnetic
field. The X-ray source Her X-1 is estimated to be ~10%yr old (van den Heuvel
1977), and yet possesses a magnetic field of ~5X%10*G (Triumper et al. 1978).
The unusual longevity of the field, difficult to understand if the field is a fossil, is
explained if the field is a product of the accretion process that powers the X-ray

source.

Detailed cooling calculations (e.g., Tsuruta 1979; Glen and Sutherland 1980;
Nomoto and Tsuruta 1981; Van Riper and Lamb 1981; Richardson et al. 1982)
have shown that the interior temperature of a neutron star falls from >10°K to
~108K in the first 10° years of its life. At these early times the neutron star
cools predominantly by neutrino emission; however, there is still a heat flux
through the crust, decreasing from ~10%?erg/cm?®s to ~10'%erg/ cm?s, as the
star cools. This heat flux, insignificant in the total energetics, is quite important
observationally; it is the source of the thermal X-rays observed from neutron

stars (e.g., Helfand ef al. 1980). At densities above 10°g/cm® the heat
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transport is by electron conduction; at lower densities photon transport dom-
inates. The magnitude of the heat flux is largely determined by the electron
conduction opacity in the liquid (10%g/cm® < p < 10%g/ cm? for T ~ 108K) (Gud-
mundsson et al. 1982).

The principal effect leading to field generation can be understood as follows.
Suppose that there is a small horizontal component of magnetic field of strength
B. Hot electrons from below will be deflected horizontally by the field; cooler
electrons from above will be deflected slightly less in the opposite direction. The
net effect is to produce a horizontal heat flux, F| ~ (e 7/ u)Bx#, where e = |e |
is the magnitude of the electronic charge, 7 is the electron collision time, u is
the electron chemical potential, and F* is the vertical heat flux. (We use units in
whichc = kp =h = 1.) Fourier components of the magnetic field with horizontal
wavelength comparable with the depth z create horizontal temperature gra-
dients ~F|/ k, where x is the thermal conductivity. The pressure of a degen-
erate, relativistic free electron gas is P(n,.T) = P(n,,T=0) + (n/8)n, T%/ L.
Hence there is an additional pressure gradient ~n, 7V7T/ u, which must be bal-
anced by a thermoelectric field £ ~ TVT/ ue ~ BF/ un,. This field has a non-
vanishing curl and so -VxE = 8EF/8t =T',B, where Ty ~ F/ un,z. The growth
rate I'; is positive when the heat flows down the density gradient. If we substi-
tute characteristic values F = 10%%rg/ cm®s, u=4MeV, m, = 3x10%em™8,
z = 50m, then 'y ~300yr~!. It is clear from this estimate, which does not
depend directly upon the local transport coefficients, that there may be time for
the field to grow as the star cools. Note that the potential difference across the
crust associated with this electric field is only ~(B/ 108G)mV, far smaller than
‘the potential differences induced by gravity and rotation. The important point

is that this field alone has a non-vanishing curl.
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It is necessary for the growth rate ['y to exceed the ohmic decay rate I'_ if
the field is to grow. This may be estimated by I'_~ 1/4mo2z® Substituting
o~ 10%'s™! appropriate to these conditions yields a decay rate comparable to
the growth rate. A more detailed calculation is necessary to determine if neu-

tron star magnetic fields can have a thermal origin.

The idea of using thermoelectric currents to generate astrophysical fields is
not new. Biermann (1950) (cf. Mestel 1961; Roxburgh 1986) showed that
differential rotation in fluid stars can produce a misalignment of the iscbars and
the equipotentials, resulting in a battery effect. This idea, and its terrestrial
counterpart (e.g., Hibberd 1979), have generally not found favor because the
effect is quantitatively quite small and dynamo action induced by helical motion
in the fluid is thought to be far more effective (e.g.. Parker 1979; and in the neu-
tron star case see Ruderman and Sutherland 1973). Thermoelectric effects can

be far more important in a neutron star because standard dynamo action is
inoperative in the solid crust.

This mechanism does have a laboratory counterpart. Megagauss magnetic
fields are routinely produced in the coronal plasma surrounding laser fusion tar-
gets; however, the details of the mechanism are rather different because inzrtial
effects allow a departure from hydrostatic equilibrium in this case (e.g.,

Stamper et al. 1971).

Linear growth of the field is impossible in the liquid phase. However, when
the field exceeds ~10%G, magnetic perturbations to the heat flow will drive circu-
latory motion in the fluid with turnover times that are short compared with the
ohmic decay time. These motions will probably induce dynamo-like action and

can further enhance the field strength at the solid surface.

In the following section we summarize and extend the analysis of ther-

moelectric phenomena in degenerate stars due to Urpin and Yakoviev (1980b)
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and calculate necessary conditions for field generation. In §3, a linearized calcu-
lation of the growth of the field in the solid crust is given, which demonstrates
that small seed fields can grow exponentially for sufficiently large heat fluxes.
Non-linear growth of the field in the liquid is described in §4. If the field strength
can grow to ~10''G, the electron gyrofrequency will exceed the collision fre-
quency and the field growth in the solid will enter the non-linear phase. The Hall
effect will lead to rapid convection of magnetic flux and the creation of progres-
sively larger scale structure, perhaps resulting in the establishment of an
axisymmetric field geometry. In the absence of external heat sources, the inte-
rior of the star will cool and the field will decay. These issues are discussed in
§5. In §6 we outline some of the observational consequences of this theory for

pulsars, binary X-ray sources, X- and y-ray bursters, and white dwarfs.

2. Thermoelectric effects

We are concerned with the properties of the outer crust in the density
range 107g/ em® < p < 10 g/ em®, and for temperatures T ~ 10°K. Under these
conditions the electron gas is degenerate, and may be treated as ultrarelativis-
tic and free to an accuracy of better than a few percent. In the presence of
electric flelds and gradients of chemical potential and temperature the laws of

charge and heat transport are
F=868-XVT (2.1a)
and,
F=T\Ng-5VT (2.1b)

where the electrochemical field £ is the sum of the electric field and the
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chemical potential gradient £ = E+ ﬁ,u,/e (cf. Landau and Lifshitz 1960; Ash-
croft and Mermin 1976; Ziman 1972). In these expressions ; is the electrical
current, F is the heat current, and § is the electrical conductivity. The thermal

conductivity £ and thermopower é are related to the coefficients A and ¥ by
&= (5" (2.2a)
E=5-TKD. (2.2b)

The difference between £ and ¥ is of order (7/u)? for a free electron gas, and
will be neglected in this paper. Various thermogalvanomagnetic effects (Hall,
Nernst, Leduc-Righi, and Ettingshausen; ¢f. Landau and Lifshitz 1960) result
from electric currents driven by temperature gradients, heat currents driven by
electric fields, and the magnetic field dependence of the coefficients in (2.1a,b).
The magnetization of the crust is much smaller than the magnetic field (Bland-

ford and Hernquist 1982) and will be neglected.

Expressions for the transport coefficients &, & and X are derived from the

relativistic Boltzmann transport equation

TV, f —elk +9xB)V, f = f Wk ENF(F.E) - F(#FE)])  (23)

2)3

where f (7 ,E) is the electron distribution function and W(k k') is the scattering
rate. The scattering of electrons is by individual ions in the case of a liquid, and
by phonons in the case of a solid. The scattering in the liquid is always elastic
(ion mass > electron mass); the scattering by phonons is elastic if the tempera-
ture exceeds the Debye temperature. As these are the important scattering
mechanisms for the case of interest, elastic scattering is assumed, and the
energy-dependent relaxation time approximation used (cf. Yakovlev and Urpin

1980).
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The Boltzmann equation, {2.3), is solved by linearization in the standard
manner (cf. Ashcroft and Mermin 1976). The distribution function is split into a
Fermi-Dirac distribution, f ©, evaluated at the local values of T and u, and a
perturbation 6f responsible for transporting heat, charge, etc. The scattering

term in (2.3) is replaced by —6f / 7, where the relaxation time T is given by

~ o~

-k-k (2.4)

(g, ) ! —f (2:)'3 Wiey Je-kN[1

where g = (k® + m?)!2 is the single particle energy. The resulting momentum

space differential equation is integrated along unperturbed orbits to give

[ -1l
6F = [_%%ml]rﬁ.g-leﬁ+$u+ [f"—Tf—]VT] (2.5)
k

where the inverse of the tensor ¥ is
(X" Dij = 0i; + By X (2.6)

with X = (e 7/ p)5B.
Expressions for the transport coeflicients &, k, and X are obtained by substi-

tution of (2.5) into expressions for the currents

= e [ ZE_ @ )3 (2.72)

o~~~
)
-3
o

S’

- 3
F=2f (—g—ﬂ’;—sa(s,,—p)af .

The electrical current, (2.7a), is the current of electrons times the charge per
electron. The thermal current, (2.7b), is obtained by applying the first law of
thermodynamics to a fixed volume. The change in energy is g f gty )USS
where ¢ is the single particle potential. However, adding particles with energy

equal to the chemical potential adds no heat. To obtain the heat added
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—V-(ut+¢) fﬁdf must be subtracted from the energy added, where u is the
chemical potential of the system in the absence of the single particle potential.
Writing the heat added as the negative of a divergence gives (2.7b) for the heat

current. The transport coefficients obtained by substitution of (2.5) into

(2.7a,b) are
5=og= T2y (2.8)
m
£= k= Ty, (2.9)
and
%= -—";T -g% (2.10)

where n, is the density of electrons.

Equation {2.1a) can be written in the form of a fluid equation as follows. Use
the thermodynamic identity du = dP/n, — S dT, where 5, = 2T/ ppup is the
entropy per electron of the electrons, and multiply equation (2.1a) by the

inverse of the electrical conductivity tensor, (2.8), to obtain

cen B+ JxB —Up, + Bl _p 2/T) _g (2.11)
er du

where —& VT has been replaced by the heat flux F, which is accurate to order
(T/ )2 The direct influence of gravity upon the electrons has been neglected,

which is acceptable for u K m,.

The first two terms in (2.11) constitute the Lorentz force per unit volume
acting upon the electron gas. The third term is the electron pressure gradient.
The fourth and fifth terms are derived from the force density exerted by the lat-

tice upon the electrons, which may be written as



o A% By oul _pdur)
2f e 0 = e F T (2.12)

expanding in a Taylor series about & = u. In a nonrelativistic system with an
energy independent relaxation time the vanishing of the electrical current
implies the vanishing of the force density (2.12). This is not the case in a rela-
tivistic systemn because the ratio of momentum to velocity, k/v = g, is vari-
able; thus, the second term in (2.12) can coﬁtribute even if the first term van-

ishes and T is constant.
The equation of hydrostatic equilibrium for the crust as a whole is

-

VP, —pVp + 7B + ¥ =0 (2.13)

where ¢ is the gravitational potential, including centrifugal terms, and Y is the
force density given by the divergence of the lattice stress tensor. The total
charge density is negligible on length scales much larger than the Debye length.
In writing the centrifugal terms as the gradient of a potential we have assumed
that the crust is not differentially rotating. The equation of hydrostatic balance

for the ionic lattice is the difference of {2.13) and (2.11)

mE—p§¢—§J_;—+?+F’ﬂ§:L—7—-)—-=D. (2.14)

To calculate the growth rate of the field write (2.1a) as £ =517 + §-VT,

and take the curl, using Faraday's law to obtain

%f —Tx@ = Tx(VxB) - TQoxTT — Vxlv—x‘i} (2.15)
with

2VT din{u/ 1) 7

V
nep  dlng en,

(2.16)
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and where .

TfaT danCQ
3ep dlnu

Qo = (2.17)

is the thermopower of the unmagnetized electron gas (c¢f. Urpin and Yakovlev

1980b). The three terms in (2.15) are interpretable as:

i) A convection of the field at a velocity given by the sum of the thermal
diffusion velocity and the electron mobility. Note that at low field strength

(X <« 1) the thermal drift is in the direction of the temperature gradient.

ii) A battery term rxﬁnqx?T, which describes the creation of field by ther-
moelectric currents. If, as is usually the case, VT-BxF > 0, this term will
contain a part m(—ene-f')é leading to exponential field growth when the
heat flows down the density gradient. In a fluid the isotherms and equipo-
tentials will coincide with the constant density surfaces and this term will
vanish* (cf. eq. (2.13)).

iii) An ohmic decay term (third term in (2.15)).

*A rather different view has been expressed by Dolginov and Urpin (1980b; cf. also Dolginov
end Urpin 1980a). They consider the possibility of thermomagnetic instability within Auid
white dwarfs. They perform a lineerized perturbation analysis based on the induction and
energy equations (2.15) end (2.1b). However, they do not include hydrostatic equilitrium,
which should be achieved on timescgles far shorter than those associated with thermoelec-
tric effects. In particular, in a fluid VoXVT = 0, which implies that the r.h.s. of their equa-
tion (7b) vanishes, along with their growth rate.



-68 -

3. Growth of Magnetic Field in the Solid Crust

3.1 STRUCTURE OF CRUST

We are interested in the crust at densities high enough to solidify at tem-
peratures T ~ 108K, and low enough to be a poor enough electrical conductor to
allow ohmic decay in a million years. These requirements confine our attention
to the density range 107g/cm3 < p < 101 g/ cm3. Here the crust is supported by
degenerate relativistic electron pressure. The mean molecular weight per elec-
tron, u,, and the nuclear charge, Z, vary as a function of density through the
crust (e.g., Baym and Pethick 1975); we adopt the average values u, = 2.5 and

. Z = 3R and use these throughout the crust. For a thin crust the depth below the

surface is given as a function of density as
z, = 1.5p"% 1 (3.1)

where 10%*z,cm is the depth, 10%gg/ cm® is the density, and 10%g,,cm/ s? is the
effective surface gravity. For a non-rotating star of gravitational mass M and

surface area 4mR? the surface gravity is

_oul _2cu]*_1 4P (3.2)
77 F? R p dz (3.

Most models of 1.4Mg neutron stars have radii in the range 8—18km and surface
gravities .B5< g, < 4.2

The ions will form a Coulomb crystal when the plasma parameter T’
(I' = (Ze)?/ akg T, where a is the interionic spacing) exceeds F$15O {Pollack and
'Hansen 1973; Slattery, Doolen, and DeWitt 1980). Using the average values for Z

and u, given above, the melting curve is

Ty = 3.6p4/3 . (3.3a)
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Combining this with (3.1), we find that the ions will be crystalline below a depth
zys = .4Ta 9 1d (3.3b)

where 1087K is the temperature. At depths less than the melting depth, zy,

the ions form a liquid metal.

3.2 TRANSPORT COEFFICIENTS

We require transport coefficients for both the solid and liquid metal regimes
and consider two calculations: those of Flowers and Itoh (1976) and Yakovlev
and Urpin (1980). We include electron-phonon scattering above the Debye tem-
_perature in the solid and electron-ion scattering in the liquid. Impurity scatter-
ing and the electron-electron contribution to the thermal conductivity, which is
small for the large nuclear charges found in the cruét, are neglected {cf. Urpin
and Yakovlev 1980a). Quantizing effects of the magnetic field (Yakovlev 1960a,b;
Kaminker and Yakovlev 1980; Blandford and Hernquist 1982) are neglected.

Consider first the solid metal regime.

Electron-phonon scattering is elastic for temperatures well above the Debye
temperature; the electron-phonon relaxation time is calculated explicitly by

Yakovlev and Urpin (1980). They obtain
Tyy = B.1xX10718 T s (3.4)

independent of density. The relaxation time may be extracted from Table 3 of

Flowers and Itoh (1976) with the result that
T = B.2x1078 Tt s (3.5)

a factor of 2.7 larger than Tyy. Note that (3.4) and (3.5) scale the same way with

temperature and density. Yakovlev and Urpin (1980) argue that the discrepancy
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between the calculations is due to their use of the Monte-Carlo results of Pollack
and Hansen (1973) for the phonon spectrum of a Coulomb crystal, as opposed to
Flowers and Itoh's use of an approximate spectrum. In particular, Yakovlev and
Urpin (1980) use the Pollack and Hansen (1973) value of the moment of the pho-
non speetrum u_p = {0 %(k)/ wy;?) = 13, where w, is the ion plasma frequency.
The approximation used by Flowers and Itoh (1976) corresporids to u_g=4.4,
Flowers and Itoh (Itoh 1982, private communication) argue that their calculation
is more accurate due to their inclusion of electron screening (krr ~1/4qp
where k7r is the Thomas-Fermi wavevector, and gp is the Debye wavevector),
and its neglect (Pollack and Hansen assume a static neutralizing background of

electrons) by Yakovlev and Urpin (1980).

We shall, without prejudice, use the Flowers and Itoh (1978) value in our
numerical estimates, and consider the relaxation time for electron-phonon
scattering to be uncertain to a factor ~3. Using the relaxation time (3.5), the

coeflicients og and kg are
0p = 1.8x10%%p3/3T51 57} (3.8)
kg = 4.9x10'p8 3ergem™s1K ™!, (3.7)
Evaluating these at the melt surface, using (B;Ba), gives
o = 1.4x10% Tgs™! (3.8)
kg = 3.8x10'%T¢ ergem™!s™IK™! . (3.9)

These coefficients must be reduced by a factor of 2.7 if the relaxation time (3.4)
ié used
Transport coeflicients in the liquid metal are, if anything, less certain than

those in the solid. Comparison of the formulae for the thermal conductivity
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given by Yakovlev and Urpin (1980) and Flowers and Itoh (1981) yield a factor ~2
disagreement, with Flowers and Itoh giving the larger value. The disagreement
is due to different models for the ionic correlations and screening. Flowers and
Itoh (1976) screen the interaction using the Thomas-Fermi theory, and take the
ionic correlations into account explicitly by modeling the results of Brush, Sah-
lin, and Teller (1968) to obtain a liquid structure function (see Flowers and Itoh
1976 for details). Yakovlev and Urpin {1980) ignore electron screening, which is
a good approximation in the regime of interest (kpr/pp~.1), and cut the
interaction off at roughly the interionic distance. We shall again use the Flowers
and Itoh (1981) formula for the thermal conductivity due to electron-ion colli-
sions, which is a fit to the results of Flowers and Itoh (19786) for the thermal con-
ductivity of Baym, Pethick, and Sutherland (1971) matter. We omit the
electron-electron scattering contribution to the thermal conductivity. This

gives
k= 10Ypd 3Tgergem's7 1K1, (3.10)
The electron-ion relaxation time implied by (3.10) is

T = 4.5%107 185135 3.11)

3.3 STATIONARY TEMPERATURE DISTRIBUTION WITH HORIZONTAL FIELD

An important physical quantity in the problem is the ratio of the thermal

diffusion time to the ohmic diffusion time. Numerically, this quantity is

G

4TTKg0g

= 5%x10™* (3.12)

evaluated at the solid surface. The smallness of the ratio (3.12) means that the

heat flow equilibrates rapidly, reaching a steady flow pattern in the presence of
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a slowly changing magnetic field. This behavior is in contrast to that of labora-
tory metals; the ratio (3.12) for copper is ~10%. Thermally driven zrowth of mag-
netic fields will not occur in laboratory solids since any magnetic field present

will dissipate before significant temperature perturbations can be set up.

Due to the smallness of the ratio (3.12), which may be thought of as a mag-
netic Prandtl number, the temperature distribution may be calculated from the
steady state heat flow equation assuming a slowly changing magnetic field. In
particular, consider a constant, vertical heat flux, f‘"g = —xg\7T0. flowing through
a plane-parallel, unmagnetized, crust. {The scale height of the crust is much
less than the stellar radius so curvature effects may be ignored.) Impose a small

(X « 1) magnetic field
B{(z,2) = B(2)sin(kz)j (3.13)
aﬁd calculate the resulting temperature perturbation
6T(z,z) = 6T(2)cos(kz) . (3.14)

Only the horizontal component of the magnetic field affects the heat flow for

small fields, hence we have specialized to the case of a horizontal field.

The temperature distribution is given by the solution of the steady state

heat flow equation, which may be written (cf. Landau and Lifshitz 1960)
E=VE&IT)+7(8) L] -1 (VO =0 (3.15a)

where F' is the internal energy density, and a dot denotes a time derivative. If
the temperature perturbation and the magnetic field are treated as small per-

turbations to the heat flow, (3.15a) may be simplified to

E=V(&VT)=0 (3.15b)
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where the Joule heat term has been dropped because it is of second order in the
magnetic field, and the Thomson effect term has been dropped because it is of
order {7/ u)? times the terms kept. The divergence of the electrical current
has been set to zero. The divergence of the zeroth order heat flux is zero, so we

are left with
V-6F =0 (3.16)
where the perturbation in the heat flux is given by

dkg

o7 STVTg + kgXxXVTy . (3.17)

6}-‘:’ = "'ICQ%T -

The derivative dig/ dT includes both the explicit temperature dependence of
the thermal conductivity, which vanishes in our case, and the implicit tempera-
ture dependence due to the thermal expansion of the lattice. The thermal
expansion effect may be shown to be negligibly small, thus we set the derivative
drg/ dT = 0. Setting to zero the divergence of (3.17), we obtain an equation for

the temperature perturbation

d déT :
E{Kﬁ% — kgk26T — kX|Fg| = 0. (3.18)

We now scale the depth in units of the melting depth, z = zyx{, define 8 = kzy,

use (3.1) and (3.7) to write kg = kg £?, and write A = 4mecy 6T/ Ly to obtain

d {,2dA _ pRs2 _(XB=
T —LE 0 (3.19)
where
o= 47722711211‘170! _ |Foltu (3.20)

M Ny Zy
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is the diffusion velocity associated with the heat flux measured in units of the
melting depth and the ohmic diffusion timescale at the melt surface
ty = 4mogz®|y. In (3.20) ny is the electron density at the melt surface. As is
clear from (3.19), a describes the strength of the coupling between the mag-

netic field and the temperature perturbation.

Suitable boundary conditions for (3.19) are 6T = 0 at 2y and «. The former
seems reasonable because the thermal time greatly exceeds the dynamical time
in the liquid. The latter embodies our hypothesis that the field is confined to the
surface layers. Equation (3.19) may be solved by a Green's function if the small

variations of 7 through the crust are neglected. We find
4me?e = d¢ , ,
Ag) = =Ho7 = S 456 )B(6) (3.21)
1

where G(£.¢') is given by

G(£.¢) = sinhg(§-1)e PED 1 =g=g
G(£.¢) = sinhg(g—1)e P~ g =g, (3.22)

3.4 LINEAR GROWTH OF THE MAGNETIC FIELD

The evolution of the magnetic field is governed by the induction equation
(2.15), with the temperé.ture gradient computed from the heat flow equation,
(3.15a). For small fields the heat flow equation becomes (3.19). To linearize the
induction equation write the field convection velocity, (2.16), as V= -—F’n/ Mg M,
where the relaxation time has been taken independent of density. The linear-
ized induction equation is 3B/ 3t = —Vx42 where the perturbation in the electro-

chemical field is

6E=37/00+ QST + Vx5 . (3.23)
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The convection velocity is due to the perturbation of the thermopower caused by
the magnetic field, 60-VTo = VxB. If the perturbations (3.13) and (3.1£) are
used, along with the scalings leading to (3.19), the induction equation may be

written in the form

df1 dB| d|B|_fgB 24 |
d¢ | £2 Ez_g‘] “Eg{g 2 e w2 = AE. (3.24)

In deriving (3.24) the time dependence of the magnetic field has been assumed

to have the form
B(tt) = B(e)e™/ ¥ (3.25)

Equations {3.19) and (3.24) may be combined into a single fourth-order eigen-

value equation for the growth rate A. Eliminating A(£,¢) = 67 we find

4B o d°B . |6« _18aldB | [24a B
T Al ek e l elae e TP e )
Agz‘;;f + 65 5, (6 - 5252)13] (3.26)

The fourth order equation, (3.28), requires four boundary conditions. Two
are provided by the requirement that the temperature perturbation vanish at
the melt surface and at infinity. A third boundary condition is provided by the
requirement that the magnetic field vanish at infinity. The fourth boundary con-
dition is less certain. The rate of production of magnetic flux in the solid and
the rate at which flux is convected in from the liquid may be calculated using
Faraday’s law and (3.23) for the perturbation of the electrochemical field. The
fnagnetic field, (3.13), varies horizontally as sin(kz); to calculate the flux pro-
duction and convection integrate Faraday's law over the surface

z € [zy,=),z € [0,/ k] and use Stokes' theoremn to obtain, using (3.23) for 68
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where ¢ = fﬁ-df is the magnetic flux. Specializing to the case
B = B(£)sin(kz)7, V= V(£)5, and 6T = 6T(£)cos(kz) we see that the thermo-
power term Qg% T is the only term which represents the production of flux. The
convection and diffusion of flux through the melt surface is given by the integral
of the VxB and the (VxB)/ 470 terms along the melt. Evaluating these terms
and transforming to the dimensionless variables used above, the rate of flux flow

through the melt is found to be

dd _ Rz§ dB
[a—] = Fix |"‘B - a?} (3:29)

evaluated at the melt surface. Thus the condition d2/d¢ = oF represents all of
the flux production taking place in the solid. In §4 the possibility of flux produc-
tion in the liquid will be discussed, thus we shall discuss the eigenvalues A of

(3.26) corresponding to various values of the logarithmic derivative dInB/ d¢.

3.5 NUMERICAL SOLUTIONS

We have obtained numerical solutions to the fourth order eigenvalue equa-
tion (3.26) for a variety of boundary conditions. The solutions were obtained by
writing (3.26) in finite difference form using the variable s = ef. A grid of 75
equally spaced points on the interval s € [0,2.5] was employed. The boundary
conditions at infinity were applied at the rightmost point of the grid. We con-

sider two cases:



a)

b)
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The production of magnetic flux is confined to the solid. In this case the
proper boundary condition is dInB/d§ = o at the solid surface ¢ = 1. We
find that a growing mode exists for a = 5. In order for the growth rate to be
large enough to be of interest in neutron star crusts (A= 0.1, see §6) we
require a =22 (Fig. 1). If we examine the eigenfunctions (Fig. 2) we find
that the flux is concentrated well below the surface, near § = 3-4. The
explanation for this form of the eigenfunction can be seen from (3.24). For
1 < § <5 the convection term, (2.17), doﬁﬂnates ohmic loss and produces
the steep vertical gradient of horizontal field, as V ~ ¢™. For ¢ » 5 ohmic
loss dominates, and the field strength decreases exponentially with depth.
We find that the growth rates are maximized for 8 ~ 1 (Fig. 3). The horizon-

tal and vertical field gradients are comparable, as expected.

There is significant production of flux in the liquid. In this case flux will be
convected into the solid crust from the liquid; the proper boundary condi-
tion at the melt surface is dlnF/d¢ <. The amount by which the loga-
rithmic derivative is lowered from the case in which &all of the flux produc-
tion takes place in the solid depends on the rate of flux production in the
liquid. Efficient flux production in the liquid allows growing modes for
values of a much lower than those needed in case {(a). In particular, if we
have dInB/d¢ = 0.75a we obtain a growing mode with A~0.1for 1=a<5
(see Fig. 1). The fraction of the flux convected in from the liquid can be cal-
culated wusing the eigenfunctions and the boundary condition
dinB/d¢ = 0.75a. If we consider the mode with a = 5, then we find that
90% of the flux production takes place in the liquid. For the case B' =0 a

growing mode with A = 0.1 is obtained with o = 0.2 {see Figs. 1 and 2).
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3.6 COMPARISON WITH COOLING CALCULATIONS

A calculation of direct relevance to the subject of this paper has been per-
formed by Gudmundsson, Pethick, and Epstein (1982) (see also Gudmundsson
1981). These authors have studied the variation of the heat flux through the
outer crust assuming a fixed interior temperature, evaluated at p ~ 10 g/ cm®.
They used electron conductive opacities from Yakovlev and Urpin (1980) at high
density, and the radiative and conductive opacities of the Los Alamos group
(e.g., Hiubner et al. 1977) at lower densities. They find an empirical relation,
good to a few percent, that relates the heat flux to the interior temperature and
the surface gravity. Furthermore, they showed that the flux was almost com-
‘pletely controlled by the electron conduction opacity in the liquid at densities
108g/cm® < p < 10%g/ cm® for a central temperature 7 = 1085K. The control-

ling density range moves to lower density for lower central temperatures.

In common with earlier authors, Gudmundsson ef al. confined their atten-
tion to a crust in local nuclear statistical equilibrium (i.e., compocsed of %Fe for
densities p < 8x10%g/ cm®, Baym, Pethick, and Sutherland 1971). If we consider
the response of the flux to changes in the composition of the crust in the con-
trolling density range we find that the opacities scale as the nuclear charge, Z,
and, for a given internal temperature, the flux scales as 1/ Z, since the neutron
star envelope tends strongly to the radiative zero solution (e.g., Schwarzschild
1958). The surface composition of neutron stars has been discussed by Michel
(1975), and Rosen and Cameron {1972) with the conclusion that ~10%! g of helium
could survive on the surface of the star. The helium will compress to a density
given by AM = 4nR*® f pdz = 4x10%08"3g ! g. Thus a small amount of helium
can reach a high enough density to be the controlling factor in determining the
heat flux, lowering the effective Z in {3.29) and (3.30) to Z = 2 and substantially

increasing the heat flux for a given internal temperature.
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We have confirmed and generalized the Gudmundsson et al. relation, using

the opacities given by Flowers and Itoh (1981), and find, to adequate accuracy
19, 12823 ~2-1
F~7x10% 4 7 T5° ergem™s 035 7Tg<3. (3.29)

This flux is a factor ~2 larger than is obtained using the Yakovlev and Urpin

(1980) opacity. If we adopt this relation, then we find

26

> (3.30)

o= O.ST{,’-S[

independent of the surface gravity, and only weakly dependent on the interior

temperature.

The numerical value of a is sensitive to the collision time 7. As can be seen
from (3.20), a is proportional to the collision time at the melt surface. In addi-
tion, the héat flux Fy is proportional to the collision time in the liquid (Gud-
mundsson et al. 1982). Thus, the factor of 2.7 discrepancy between the collision
times of Flowers and Itoh (1978) and Yakovlev and Urpin (1980) leads to an
overall factor ~6 uncertainty in the value of a. This is in addition to the uncer-

tainty in a due to ignorance of the surface composition.

4. Growth of the Field in the Liquid Phase

As we showed in §2, the battery term which derives the linear growth of the
field in the solid is absent in the liquid phase because hydrostatic equilibrium
requires a vertical temperature gradient. However, this implies that a horizon-
tal component of magnetic field will produce a horizontal component to the heat

flux, given in the linear approximation by
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6F = XxFq + 0(X?) (4.1)

where f-‘!'o = —/coVTo is the vertical heat flux. For a general field geometry, this
perturbation will not be solenoidal and as a result temperature perturbations
will start to grow, thereby generating pressure perturbations and driving a cir-
culation of the fluid in a manner akin to the Eddington-Sweet process (e.g.,
Schwarzschild 1958). The circulation velocity adjusts itself to convect away the

local entropy production,

Tp(@-V)S + V-6F =0 (4.2)
where S is the entropy per unit mass and ¥ is the circulation velocity. We
rewrite equation (4.2) as

PUz =

FuxX _ e FoX
[ [T( ] (£3)

@S, az) - | |75, 42)
where Fy = |Fy|. Continuity of mass implies that V.p? = 0; thus, a solution for

the velocity field is

(4.4)

This is the only solution that vanishes in the absence of a field. Equation (4.4) is

valid for X « 1.

We are most interested in the circulation in the liquid close to the
solidification point. Under these conditions the entropy is dominated by the
ionic contribution, and the entropy gradient is dominated by the density gra-
dient (dT7/dz << T/ z near the melting depth). We may use the results of Pol-

lack and Hansen {1973) to obtain

(4.5)
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where n; is the density of ions. Equation (4.4) can then be re-written

QFQTMATTI? Zy = -
= - Vx{(B/ 4.6
where we have used the approximation
T(€) = Tu™ (4.7)

which is valid in the liquid (¢ < 1) (Yakovlev and Urpin 1980).

There is a competing effect that dominates in normal stars (e.g., Parker
1979). Magnetic pressure contributes to the total pressure in the fluid and so, if
there is to be static equilibrium, there must be associated temperature gra-

. dients. Individual magnetic filaments will rise or fall until they are at the same
density as their surroundings and stable to buoyancy forces. The main
difference in pressure between the inside and outside of a filament will be con-
tributed by the ions, and so the temperature difference will satisfy
(6T/ T) ~ (B?®/ 8nP,) where P; is the ion pressure. This will induce perturba-
tions to the heat flux of magnitude 6F ~ (B?/ BrP;)(kz)Fg, which are generally
small compared to the perturbations caused by the anisotropy, (4.1). Hence-

forth, we ignore this effect.

If the magnetic field is strong enough, it will be modified by the fluid motion
faster than ohmic decay and the thermoelectric effects described in §2 can act.
This requires that the circulation velocity be larger than the ohmic diffusion

velocity and the field convection velocity. Fluid motion dominates if
B> (T/e7)[min(l,a)]™! (4.8)
or

B 3 108T§[min(1.0)]7 . (4.9)
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When this inequality is strongly satisfied, the electric field will be given by

-» -» 4 K - - > - -
B=-txB= T2 ixp - K (BxbxB (£.10)
¢ ¢
where
eFgTyAm, 8 e
= P = 5 5%107%F 3 Tg%G™! 4.11
3-7P_H#_HT 1848 ( )

where Fg is the heat flux in units of 10%ergcm™s™!. The magnetic field will

then evolve according to 85/ 8t = —VxE.

These thermal effects may drive a non-linear dynamo mechanism. The first
term on the right hand side of equation (4.10) dominates in the short wavelength
limit, and describes the creation of horizontal field out of vertical fluid and vice
versa —a crucial ingredient of a dynamo process. However, this term alone does
not lead to enhancement of the magnetic energy density, as can be seen by not-
ing that it does not contribute to the rate of performance of mechanical work,
-—fE’ The second term on the right hand side of (4.10) also represents the
creation of perpendicular components of magnetic field, and can contribute to

an increase in the magnetic energy density.

If thermally driven circulation in the liquid does drive a non-linear dynamo
process the magnetic field in the liquid will grow to non-linear (X » 1) strength
in a time ¢, ~zy/ KB =80T/ Bgg4yr shorter than the timescale for fleld
growth or decay in the solid. In this case most of the flux is made in the liquid
and convected into the solid. The surface boundary condition in §3 will be deter-
mined by the rate of flux production in the liquid and the rate at which flux can
Be convected into the solid. This allows growing modes in the solid for values of
o much smaller than those required if all of the flux production is to take place

in the solid.
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5. Growth and Decay of the Magnetic Field

In the preceding two sections, we have described magnetic field generation
in both the solid and the liquid under the assumption that the fleld is weak.

Both calculations can break down for strong fields.

The magnetic stress in the liquid may become large enough to influence the
circulation. The circulation velocity, given by equation (4.4), is sub-Alfvénic;
hence, magnetic flux tubes will quickly adjust to hydromagnetic equilibrium.
This implies that there will be small temperature perturbations on the equipo-
tential surfaces of magnitude 67/ T ~ B%/ BnP, where P, is the ion pressure,
which is larger than the thermal component of the electron pressure. The circu-
lation velocity (4.4) should be a reasonable approximation for magnetic field
variations with kz ~ 1 as long as the perturbations to the heat flux ~ks67/ 2
associated with the temperature fluctuations are small compared to the pertur-

bations due to the magnetic field ~XFy. The condition for this to be true is that
B £ 1.5x10MF gl G (5.1)
or
B < 10RT33 G (5.2)

assuming the relation (3.29), as we shall henceforth. An equivalent condition
arises from the requirement that the magnetic stresses be smaller than the
thermally induced pressure fluctuations and should therefore be unable to

influence the circulation.

Secondly, the non-linear terms in equations (2.15) and (4.10) describing the
eﬁolution of the field in the solid and liquid respectively must be included when

X21lor

B 3 2x10'T8G. (5.3)
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Note that conditions {5.2) and {5.3) are similar for Tg ~ 1.

We expect that the end result of the evolution of the linear instability will be
to produce a disorganized array of horizontal magnetic loops of size ~z. How-
ever, when X 2 1, the horizontal temperature gradient should exceed the verti-
cal temperature gradient. The dominant contributions to the convective velo-
city (2.16) are now

R I (5.4)
Nl mge

The battery term in (2.15) is unchanged. There is an additional field convection
with the drift velocity of the conduction electrons. This term alone, like its
counterpart in the fluid circulation analysis, causes no change in the total mag-
netic energy. However, when X 2 1, it dominates the ohmic decay term and
leads to the production of vertical magnetic field out of horizontal fleld. The
vertical field will penetrate the lower density regions where the thermal resis-
tance is largest, and where X, and therefore the inhibition of the cross-field
thermal conductivity, is much larger. The vertical heat flux will therefore
increase locally in those parts of the solid where the field is vertical, increasing

the production rate of horizontal field.

Horizontal electrical current and heat flux can also transport the field hor-
izontally. Hence, magnetic field can be generated within one part of the stellar
surface where the heat flux is large and then transported to another region

where the field production is lower.

As a consequence of these effects, we believe that the rate of field growth in
the solid is enhanced in the non-linear phase. What probably happens under
conditions when field growth can occur is that magnetic flux is freely created in
the vicinity of the solid surface and is then convected downwards into the crust

with a speed V~F/un, x2z™* TFor ¢> 1 the ohmic diffusion term should
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dominate and in a time 10%j;yr, the flux should be able to diffuse down to a

depth
Zmax ~ 5X10%g M3/ 4T Y em | (5.5)

As long as heat continues to flow through the crust,(magnetic Aux will be
created and drawn downwards subject to two saturation effects. When the mag-
netic stress becomes comparable to the yield stress of the solid, the lattice will
become visco-elastic and magnetic buoyancy will oppose field amplification. The
shear modulus of the lattice is 4x10%p¢/3dyneem™ (Ruderman 1972). If the
lattice flows when the strain angle is ~107% then the saturation field strength
will be

(Blandford and Hernquist 1982).

Secondly, the temperature fluctuations induced by the magnetic field can
no longer be regarded as perturbations when XFf/xg 2 T/2z. This condition

yields
B mex 2 101%9,,T§°t8° G (5.7)

independent of depth. The field can probably not grow to values much larger
than this. This condition is similar to, but marginally weaker than, that given by
the yield stress. (Note that the heat flux used in equation (5.7) may be reduced
from the value appropriate to an unmagnetized crust. Note also that the field
strength is not limited to the critical value m2/e = 4.4x10'3G; Adler et al

1970.)

After the magnetic field has reached its saturation value, it can still be

moved around by the Hall currents. Adjacent loops of fleld will approach one
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another, establishing steep magnetic gradients which allow reconnection to
proceed through X-type neutral points located near the surface where the resis-
tivity is larger. We believe that there will be a steady progression towards larger
scale magnetic structure until the horizontal scale length approaches the stellar
radius. Thereafter, it seems that the only quasi-steady field geometry is one in
which the field is axisymmetric and poloidal. In this case, the electrical current

will be totally toroidal and the heat flux predominantly toroidal. 1f we estimate
the integral f Bdz bY BmexZmax and assume that this is constant over the sur-
°

face, then we can calculate the associated dipole moment. Flux conservation
implies that the radial component of the field is xcot & where & is the spherical
polar angle. (This prescription clearly needs meodification at the poles.) We can

then expand in spherical harmonics to compute the magnetic dipole moment, #

_ 3nR?
M = [ Bdz . (5.8)

At this point we should comment upon the efficiency of the mechanisms
that we have described. In the linear regime, a fraction
~B?/ Briun, ~ B%/8npgz of the vertical heat flux is converted into magnetic
energy density provided that ohmic losses are not dominant. As we have argued,
this is probably a conservative estimate in the non-linear phase. However, this
is always far below the maximum efficiency dictated by thermodynamics

~zVT/ T for a heat engine to do work against the magnetic stresses.

An axisymmetric magnetic structure can be maintained against ohmic loss
as long as heat continues to flow through the crust. After the interior cools, the
electrical conductivity will increase and the magnetic flux will diffuse away in a

time dictated by its new value.
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6. Astrophysical Applications

Up to this point we have tried to determine general conditions under which
magnetic field can grow in the outer crust of a neutron star. We now specialize
by considering in turn slow pulsars, fast pulsars, pulsating X-ray sources, X-ray

and 7-ray bursters, binary pulsars, and white dwarfs.

6.1 SLOW PULSARS

The majority of radio pulsars appear to have been formed spinning slowly
and to have dipole moments ~10%°Gcem3 which last ~3x10%yr. Under the
assumptions described in §III, we found that ¢ ~ 0.7, independent of the surface
gravity and weakly dependent on the temperature. Unless either the transport
coeflicients in both the liquid and the solid have been underestimated by factors
~3 or the surface layers are of helium composition, the linear instability
described in §III will not develop. However, if the neutron star retains a seed
field 310%G, then, as discussed in §IV, magnetic flux can be created in the liquid

and supplied to the solid.

The cooling of neutron stars has been a topic of considerable theoretical
discussion since the Einstein X-ray satellite failed to discover hot neutron stars
in most young supernova remnants. Cooling calculations have not agreed in
detail with each other in part because of uncertainties in the transport proper-
ties of the matter in the crust. At early times the cooling is dominated by neu-
trino processes and the interior temperature is independent of the surface pro-
perties. For an unmagnetized 1.4Mg neutron star with a superconducting inte-
rior and no pion condensate {e.g., Richardson et al. 1982; Nomoto and Tsuruta

1981), the interior temnperature is roughly

Ty~ 1.3t50%2 (6.1)
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where £510°yr is the age of the neutron star. This cooling law is valid until the
photon flux from the surface ~2x103374? ergs™ for M ~ 1.4Mp, is able to remove

the internal energy 9x10%°7T§ erg. The cooling time is therefore
tegor ~ 2X10%yT . (6.2)

This estimate of the cooling time will be increased if the magnetic inhibition of

the heat flux in the liquid is taken into account.

If the growth rate, A ~ 0.1 then a seed field of 10°G will grow to a strength
~10'2G in a time ¢t ~ 10fy/ A~ 10*yr. This estimate is uncertain due to the
dependence on the details of the non-linear evelution and the strength of the
seed field; however, it does admit the possibility that most supernova remnants
contain neutron stars in which the surface fields are sufliciently strong to
reduce the surface X-ray luminosity but still sufficiently weak and disordered to
have comparatively small dipole moments. (An investigation of the effects of
magnetic fields on neutron star cooling is currently in progress.) In this way the
theoretical expectation that type 1 supernova explosions generally produce neu-
tron stars can be reconciled with the failure to observe them as either X-ray
sources or radio pulsars. Recent searchs for pulsars associated with supernova
remnants in the Galaxy and in the Magellanic Clouds, which avoid selection
effects, have confirmed this discrepancy (Manchester, Tuchy, and D'Amico
1982).

The field will grow to the limiting value, (5.6) or (5.7), in ~10°%yr, and
penetrate the crust to a depth ~500m. If long range order has been established,
the dipole moment will be 2x10%¥Gcm?®, using (5.8), in agreement with pulsar
observations. Roughly 1073 of the heat flux is converted into magnetic energy.
No correlation between the magnetic and spin axes is expected, so most stars

should be able to pulse.
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After ~2x10°%yr, the interior of a pulsar should cool very rapidly. (The lumi-
nosity is usually larger than the rate of loss of spin energy.) A simple estimate
gives Ty = £55. At a depth ~500m, the Debye temperature is ~4x108K. Well
below the Debye temperature, the electron collision time and therefore the
ohmic decay time increases unless limited by the presence of impurities (Urpin
and Yakovlev 1980b). In order for the decay time to be lengthened to the
observed value of ~3x10%yr, the conductivity must be decreased by a factor

~20, which is certainly allowed but is by now rneans dictated by our theory.

6.2 FAST PULSARS

A subset of young pulsars, including those in the Crab, Vela and MSH 15-52
remnants are spinning comparatively rapidly and have inflated plerionic nebulae
around themselves. A large magnetic dipole moment seems to have formed very
quickly in these objects. It is possible that the spin energy ~10%P-2erg, is
powering the production of sub-surface field, perhaps through the dissipation of
currents flowing through the magnetosphere. Another possibility is that addi-
tional heat flux is generated by friction between the core and the crust (Green-

stein 1979a,b).

The deceleration parameter, n = — PP/ P? + 2, has been measured for the
Crab pulsar only, with the result n = 2.5, inconsistent with the simple elec-
tromagnetic pulsar theory {e.g., Manchester and Taylor 1977) which predicts
n = 3. The measured deceleration parameter can be reconciled with the simple
theory if the field is still growing, as expected on the basis of our theory.

Specifically, B = t/% givesn = 2.5.

The recent discovery of a 1.56 ms radio pulsar (Backer, et al. 1982) for
which P <107'%s™! (Backer 1982, private communication) is apparently incon-

sistent with this idea as the surface field strength is almost certainly <101°G. A
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possible explanation for this discrepancy is that the star is sufficiently massive
to allow the formation of a central pion condensate (e.g., Baym and Pethick
1975). The core and inner crust would then cool very quickly by neutrino emis-
sion. This would also be consistent with the absence of a detectable radio source

surrounding the pulsar.

6.3 PULSATING X-RAY SOURCES

it is thought that the pulsating X-ray sources in massive binary systems are
older than ~10%yr, and those systems with less massive primaries are even
older, ~108%yr in the case of Her X-1, since the binary does not become an X-ray
source until the primary evolves off the main sequence (e.g., van den Heuvel
| 1977). Therefore, it is natural to postulate that the magnetic field in these stars
is produced thermally as a result of accretion processes rather than the initial
cooling of the neutron star. As the X-ray luminosity of pulsating binary X-ray
sources is much greater than that of isolated, coocling neutron stars, the power

to generate magnetic fields is readily available.

If the accreted gas were deposited at a uniform rate over the entire surface
and the heat flow were radially inward, then the battery term in (2.15) would
lead to field destruction, and the field convection velocity, (2.16), would lead to
the expulsion of field from the star (see the discussion following {2.15)). How-
ever, it is far more probable that matter will be accreted over a small fraction of
the surface and that heat will flow from the hot regions to the remainder of the
surface via the interior since the thermal conductivity of the interior is much

greater than that of the surface layers. We may idealize the problem as follows.

Consider a highly thermally conducting sphere of temperature 7, and
radius R covered with a thin insulating layer. Let a fraction f of the surface be

maintained at a temperature 7T,. Further assume that there exists a
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relationship F(7) between the heat flux and the maximum temperature on
either side of the layer. The central temperature will satisfy the relation
JFF(T;) = (1—f)F(Ty), as the heat conducted inward must balance the heat con-
ducted outward for a steady state to exist. If we substitute equation (3.29) for

F(T), then we obtain

0.45

T2~ [(l—f) Tl' (63)

The time required to achieve equilibrium is roughly

U

Loy ~ m (6.4)

where U is the internal energy of the star.

For L ~ 108 ergs™ and f ~ 0.1 the interior temperature is ~107K and ther-
mal equilibrium will be established after ~3x10°yr. Using equation (5.8), the
magnetic moment is # ~ 4x10°% %% After ~3x10%yr the magnetic moment will
be equal to the typically observed value 3x10°°Gem®. Therefore, if a neutron
star accretes at roughly the Eddington rate for a typical mass transfer times-
cale (e.g., van den Heuvel 1976) it can generate its own magnetic field. Accre-
tion at a much slower rate is probably not able to power magnetic field genera-

tion. This may have occurred in the majority of cases, in particular in the bulge

sources with their low mass stellar companions (e.g., van den Heuvel 1977).

6.4 X-RAY AND y-RAY BURSTERS

It has been proposed that X-ray and y-ray bursters are differentiated by the
absence or presence of a strong magnetic field (Woosley and Wallace 1982). A
neutron star in a binary system that has in the past experienced a large enough

and long enough accretion rate will have generated a strong surface field and be
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susceptible to y-ray bursting. A star that has accreted less gas will be essen-

tially unmagnetized and observable as an X-ray burster.

6.5 BINARY PULSARS

Two of the three known binary pulsars (PSRs 1913+16 and 0655+64) have
anomalously small values of P (Damashek ef al. 1982). Recently P was meas-
ured for the third binary pulsar PSR 0820+02 {Manchester, et al. 1983).
Although the value obtained (P = 0.125x107'¥571) is not as small as for the
other two binary pulsars, it is nevertheless significantly less than the P for most
isolated radio pulsars. The inferred dipole moments are, therefore, small,
~10?® Gem™? (somewhat larger for PSR 0820+02, though still significantly smaller
‘tha.n values derived for isolated radio pulsars). It is also thought that these
objects are older than the typical radio pulsars. In both cases it has been sug-
gested that the observed pulsar was formed in a supernova explosion before the
companion completed its evolution (Smarr and Blandford 1978; Blandford and
DeCarnpli 1981; van den Heuvel 1981). It is possible that these neutron stars
became magnetized during a very long X-ray binary phase and that the mag-
netic field penetrated to a greater depth than in an isoiated pulsar, increasing

the ohmic dissipation time.

6.6 WHITE DWARFS

Some white dwarfs are magnetized with surface fields <108G. However,
none of the processes discussed in this paper are likely to be relevant for white
dwarfs. Crystallization does not occur until white dwarfs are very old and little
thermal energy remains. Thus, the processes described in §2 and §3 cannot lead
to efficient field production. In addition, the circulation velocity in the interior

of a white dwarf (cf. §4) is only V ~ FX/ P, ~3x10®Fgcm/s. The turnover time
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therefore exceeds the cooling time for all reasonable field strengths.

7. Conclusions

In this paper we have endeavored to present a complete and self-consistent
description of neutron star magnetization that is an alternative to the usual view
that the magnetic flux has been frozen into the collapsing core during the super-
nova explosion. We have argued on observational grounds that neutron star
magnetic fields are ephemeral, and on theoretical grounds that the field must

therefore be confined to the surface layers of the star.

We have extended the work of Urpin and Yakovlev (1980b) and suggested
two possible mechanisms for the generation of magnetic flux. We have shown
how small seed fields can grow exponentially within the solid crust, and specified
necessary conditions for this to occur. Our understanding of heat transport in
neutron stars is still sufficiently uncertain, as evidenced by the difficulties posed
by the X-ray observations of supernova remnants, that we do not know whether
or not this instability can be responsible for the production of neutron star mag-
netic fields. Secondly, we have demonstrated that the coexistence of heat flux
and magnetic field in the liquid will cause the fluid to circulate, which may lead
to effective dynamo action. If so, seed fields in excess of ~10%G will grow rapidly

and supply flux to the solid below.

Our treatment of the subsequent evolution of the field is far more conjec-
tural. We have sketched plausible mechanisms that may occur in the non-linear
phase of field growth and lead to saturation, explaining the striking clustering of
vneutron star field strengths around 10'®*G. Finally, we have considered the
consequences of the theory in the context of various types of neutron stars. The

theory seems to account for the principal observed properties of neutron star
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magnetic fields.

The first priority for an improved understanding of these processes is a
better description of the transport properties of the outer crust and the liquid
above it. This should be possible in the near future. However, it appears that it
will be far more difficult to solve for the non-linear and necessarily three-

dimensional growth of the field in any satisfactory quantitative manner.
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Figure Captions

Figure 1.

Maximum growth rate, Apg.,, with respect to g as a function of « for various
boundary conditions at ¢ = 1: (a) B' = aB, (b) B' = 0.75aR, (c) B' = 0.5aB, and
(d) B' = 0. For the boundary condition B' = 0 two different growing modes are
present. Mode 1 resembles the growing mode for B' = aB with all of the flux
being produced in the solid. In mode 2, all of the flux originates in the liquid and

is convected across the solid surface into the solid crust.

- Figure 2.

Figenfunctions of growing modes with Ap,g = 0.1 for three boundary condi-
tionsat £ = 1: (a) B' = aB, (b) B' = 0.75aB, and (¢) B' = 0. For B' = aB, all the
flux is produced in the solid and « = 22.5. For B' = 0.756aB 90 percent of the
flux is produced in the liquid and & = 5. For B' = 0, (mode 2 in Figure 1), all the

flux originates in the liquid and a = 0.2.

Figure 3.

Growth rate as a function of g for fixed a with Anax = 0.1 for the boundary

conditions (a)-(¢) of Figure 2.
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ABSTRACT

For sufficiently strong magnetic fields the classical description of
electron orbits is no longer valid and quantum effects must be
taken into account. Transport properties will be affected through
the influence of the discrete energy spectrumn on the density of
states and collision time. The physical conditions under which
quantization can have significant thermodynamic consequences
are analyzed, in connection with neutron star crusts. At the
relevant densities and field strengths a relativistic treatment is
essential. The transition rates between quantum states are
derived using the exact solutions to the Dirac equation, assuming
elastic scattering, Expressions for all of the independent corn-
ponents of the transport tensors (electrical conductivity, ther-
moelectric coefficient, and thermal conductivity) are derived for
arbitrary degree of degeneracy and scattering mechanism. The
resulting formulae, although compact in form, are difficult to
evaluate. Computations of intermediate functions containing most
of the numerical complexity are performed and fits are provided

which allow the transport coefficients to be more easily calculated.
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Results are given for the scattering potentials of most importance
to neutron star applications {e-ion and e-phonon collisions). The
fitting formulae are used to compute examples of transport
coeflicients for selected field strengths to demonstrate the value of

this approach.
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1. Introduction

The accurate determination of transport coefficients in a strong magnetic
field is of importance to several astrophysical processes associated with neutron
stars. Included are problems involving accretion flows (e.g., Blandford, DeCam-
pli, and Kénigl 1979), stellar cooling (e.g., Tsuruta 1979; Glen and Sutherland
1980; Nomoto and Tsuruta 1981; Van Riper and Lamb 1981; Richardson et al.
1982), and the possible link between thermal processes and magnetic field evo-
lution (Blandford, Applegate, and Hernquist 1983). Magnetic effects on electron
transport are straightforward to take into account if the quantization of elec-
tron orbits is neglected. In general, however, this is not strictly valid under con-
ditions of interest (field strengths range from ~10°¢ for the millisecond pulsar
fo ~101G for models which allow strong subsurface fields [Blandford, Applegate,

and Hernquist 1983]).

Full quantum treatments have been made by Canuto and Chiu (1969),
Canuto and Chiuderi (1970), Ventura (1973), Canuto and Ventura (1977),
Yakovlev (1980a,b, 1982), and Kaminker and Yakovlev (1981). Difficulties with
the earlier calculations have been noted by Yakovlev (1980a,b, 1982). In particu-
lar, large errors can be introduced if the completely degenerate limit (T =0)is
assumed. Thermal effects smooth and damp the quantum oscillations of the
transport coefficients. Furthermore, the Wiedemann-Franz law no longer holds
and it is not possible to compute the therﬁal conductivity from the electrical
conductivity, as had been done earlier. The work of Yakovlev (1980ab, 1982)
corrects these omissions but is valid only in the non-relativistic limit. Relativis-
tic transport perpendicular to the field has been considered by Kaminker and
Yakovlev (1981), but final numerical calculations have not been performed.
Because of the field strengths and densities relevant to neutron stars a relativis-

tic treatment is essential.
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The aim of this paper is to extend the work of Yakovlev (1980a,b, 1982) to
relativistic matter and to present results which can more easily be used in appli-
cations. Detailed derivations of all elements of the transport tensors are
presented in order to resolve the discrepancies between the existing calcula-

tions.

In § 11 the thermodynamic relations defining the transport coefficients are
summarized. The quantum description of a relativistic electron in a magnetic
field is given in § 11 . The necessary conditions for quantum effects to be impor-
tant thermodynamically are also discussed, in connection with neutron star
parameters. In § IV the possible effects of the magnetic field on the physical
conditions in a neutron star crust are considered. The scattering rates required
to determine the conductivities are derived in § V . Interaction potentials
rele;Tant to astrophysical processes are introduced in § VI . General expressions
for the transport coeflicients are derived in §§ VII, VIII, and IX. In § X computa-
tions of intermediate functions are given and technical issues are discussed.
Accurate ﬁts to these functions are presented and tabulated in the appendices.
These results are used to calculate examples of transport coefficients in § XI .

Finally, § XII states conclusions and considers remaining questions.

. Thermodynamic Relations

In the presence of a magnetic field the relativistic laws of charge and heat

transport are (e.g., Landau and Lifshitz 1960)
f=8-2~X VT (1)
F=TK-28-% VT (2)

The electrochemical field & = £ + Vu/ |e | accounts for electric fields as well as

chemical potential gradients (Einstein's relation). The appearance of X in both
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equations (1) and (2) is the result of an Onsager relation. Note that u includes
the electron rest mass mc? In the absence of an electric current G = 0), equa-
tions (1) and (2) can be combined to give ¥ = =& - VT where the thermal con-

ductivity £ is related to the tensor ¥ by
E=%-TX (8)'-X (3)
The thermoelectric coefficient X is related to the thermopower 5 by
=@ X (4)

For a degenerate gas the difference between & and ¥ is ~O{T/ Tr)? where the

Fermi temperature is
kTp = p—mc? + O(T?) (5)

(e.g., Blandford and Hernquist 1982). Relations (1)-{5) remain valid in a quantiz-

ing field.

If the quantizing nature of the magnetic field is neglected the Boltzmann
equation can be solved in the relaxation time approximation to give (Urpin and

Yakovlev 1980b)

Ogij 1 e? af
Moy | = =15 f 4% = le 1 (g0 — o)/ T) wxon (20) 5 (8)
oy (g0 — o)/ T

where - &£ =pfc?+ mPct, wo=pec?/e; is the electron  velocity,

fo=(1+ g0 "“’)/”)‘1 is the Fermi-Dirac distribution, and the tensor yg; is

TolE0) 1 —To{£0)00(£0) 0
Xoleo) = 2 2 Tol{20)o{€0) 1 0 (7)
1 + 0§(z0)78(20) 5/ N2/
0 0 1+ QQ \\EU)TO\SQ)

where 7p is the relaxation time and (g = |e|Bc/g is the relativistic
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gyrofrequency. (The subscript zero will be used throughout to denote a quantity
in the absence of a quantizing magnetic field.) For a strongly degenerate gas

(T < Tp,) the lowest order terms in the Sommerfeld expansions give

b = 'nee i 320(#0) (B)
_rPk?r 08

%o =~ Flel oo (8)

%o =ko =TT 5, (10)

The relation between Ky and 8y is the Wiedemann-Franz law, which is valid only to

lowest order in T/ Tr,

If the effects of a quantizing magnetic field are included much of the above
description needs to be modified. However, several of the symrmetries between
elements of the transport tensors will still hold. In particular, the conductivities
will obey the off-diagonal anti-symmetry of tensor (7) and have only three
independent components. These can be taken to be, for example, [y, Iz, and
.., where I denotes any of the transport coefficients and [}, is the positive
component (I = —I}z). In the limit of interest (Qr >> 1) it will also be true that
Xyy ~ 1/ T, Xyz Will be independent of 7, and xz; ~ 7. At this point the similarity
ends. In general the collision times will be different for each conductivity, will
not be the same for X, and X, and will furthermore depend on the magnetic

field as well as the energy.
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. Quantization of Electron Orbits

For sufficiently strong magnetic fields the classical description of the tra-
jectories of free electrons is no longer valid and quantum effects must be
included. Consider a uniform magnetic field B along the z-axis in the Landau
A = (-By.0,0).
Berestetskii, Lifshitz, and Pitaevskii 1982, Kaminker and Yakoviev 1981). The

gauge: The Dirac equation can be solved exactly (e.g..
positive energy states are labeled by the quantum numbers &, p;, p-, n, s where
£ is the electron energy, p, = mwpyp characterizes the y-coordinate of the
guiding center, p, is the electron momentum along the field, s = £1 is the heli-
city, and » = 0,1,2 - - © enumerates the Landau levels. Note that the quantity

wp, as used in this paper, is not the relativistic gyrofrequency (} = ie|Bc/z ,

but is

wg = |e|B/mc (11)
The positive energy levels are
g = (pfc? + m?%* + 2nhwgmc?)l/? (12)
and the spinors are
'mn—l(g)
i{pyz +P 2V | T
Yy = S 2 |SER0) (13)
VL, |sBAf,(8)
| -BBH(¢)
- N [t .t e
Xl —= VU1 tmc?i/e) 4 = + z
[ﬂ] Y(1tmc?/e) , [B] Fétl T ] (14)
mog Vi/4
¢ =~mwg/h(y —yp). Hu(f) = [ p— (Rrn!)"V2 exp(~£%/ R)H, (£) (15)

The H,(¢) are Hermite polynomials and the H,(¢) are normalized harmonic
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oscillator wave functions. The states ¥(7) are normalized to unity in the volume
L.L,L,. The states n # 0 are doubly degenerate in s{s = +£1). For the ground
state (n = 0), however, the only allowed value of s is the one opposite in sign to

p, (s = —signp;). (See Kaminker and Yakovlev 1981 for a detailed discussion.)

As is apparent from equation (12) the electron is free parallel to B, but the
motion perpendicular to B is quantized. Because the statistical properties of an
electron gas are determined, in part, by the available energy states, it is clear
that the transport coeflicients can be altered significantly. Several conditions
must be met for the quantization to be important thermodynamically. In a real
physical system the Landau levels will be thermally broadened. Quantum effects
will be non-negligible only if the levels are narrow in comparison to the spacings
between the levels. For a relativistic, degenerate gas this condition gives (e.g.,

Blandford and Hernquist 1982)
kT K RQ (16)

where Q0 = |e |Be/ .

Similarly, collisions between the electrons and various scatterers will give
rise to an uncertainty in the energies of the states and introduce a broadening
of the levels Az ~ %/ 7, where T is the collision time. The condition analogous to

relation (186) is
Qr>»1 (17)

Finally, quantum effects will generally be negligible unless the system as a
whole occupies only a small number of Landau levels. (The conductivities will
approach the classical limit as n » « when thermal effects are included. If the
completely degenerate forms (7 = 0) are assumed the classical limit is never

strictly achieved; however the deviations from the conductivities in the absence
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of a quantizing field are practically negligible.) If npay is the highest level popu-
lated this condition is, very roughly, for a degenerate gas (Blandford and Hern-

quist 1982)
Pmax = (U2 — mZ% %)/ 2mc?hug < 10 (1B)

The relevance of these conditions to neutron star crusts (10* ¢ p < 10!!) can
be investigated by using the expressions for u and 7 in the absence of a quantiz-

ing field. In general, yq is related to p through

k& = phc? + mPct (19)

Pr, = h(3r%)V/ 3nl/3 (20)
=Z P

™ (R1)

Equation (21) is valid only if a single ion species is present. Taking Z = 286,

A = 56 relations (16) and (1B) give
Ty < Bya(1 + .8p§75)"1/2 (22)
ps < 6B (23)

where T = 1087y, B = 1083, and p = 10%ps.

The relaxation time 7g for a relativistic, degenerate gas has been calculated
by Yakovlev and Urpin (1980). In the liquid phase elcctron-ion scattering dom-
inates while in the solid phase electron-phonon scattering is most important.
Flectron-electron scattering will generally be negligible in neutron star crusts

-unless low Z ions (Z g 10) are present {e.g., Lampe 1968; Urpin and Yakovlev

1980a). The collision times are

Pﬁovro

= T et r—y (e —ion) (R4)

To
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Rup,
e?kT(R — v /cPu 4

To = {e —phonon) (25)

where vp, = ppoca/ Lo is the electron velocity, Ay is the Coulomb logarithm, and

the parameter u ; is related to the mean square thermal displacement of the

ions, EE by
é 7"19;?‘ 2
2 .
w2 = anZ ezn1‘ 27)
¢ m;

where n; = n,/ Z is the ion number density.

For Ag; = 1 and iron, relation (17) gives in the liquid
1+ .6p8/3 K 408, (28)
and for u_p = 13 (Yakovlev and Urpin 1980) in the solid

1+ .308?2 Bz
P <55 To (R9)

The ions are non-relativistic and nondegenerate and the state of the matter

is determined by the parameter
['= Z%e?/kTa ; a =(3/4mm)V? (30)

The liquid-solid phase transition occurs at I' = I',, with the matter being liquid
for I' < I, and solid for I' > T, . Estimates for I}, are in the range ~150-170
(e.g., Pollock and Hansen 1973; Slattery, Doclen, and DeWitt 1980). Using the

average value [, = 160 gives, for iron

T, = 2.5p¢’3 (31)
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In Figure 1 &7 = h()p, oz = 10, (Qg7e = 1, and the melting curve are given for a
field strength B = 10¥G. Also shown is the sensitivity region from the work of
Gudmundsson, Pethick, and Epstein (1983). It is within this zone that the
unmagnetized cooling rates for a given central temperature depend most

strongly on the values of the thermal conductivity.

Several tentative conclusions can be drawn from Figure 1, assuming that
the location of the sensitivity region will not be greatly shifted when all magnetic
effects are accounted for. The approximation (Qg7p >> 1 is valid at all tempera-
tures and densities of interest. This is significant because the derivations of the
transport coeflicients are valid only in this limit. Secondly, the restrictions
B >> kT and 7 < 10 are stronger than (7o >> 1. Finally quantum effects
‘can be important throughout much of the sensitivity strip, and a detailed caleu-
lation is necessary to determine the transport properties and the self-

consistency of the above assumptions.

IV. Magnetic Effects on Physical Conditions

In addition to influencing the electron transport properties the magnetic
field can affect the physical conditions in a neutron star crust (Yakovlev 1980z,
1982). For example, the boundary between the non-relativistic and relativistic
limits will be shifted if the magnetic field is sufficiently strong. This arises
because the simple unmagnetized relation between the chemical potential, u,

and density, p, is no longer valid.

Following Yakovlev (1980a, 198R2), it is useful to define the following dimen-

sionless parameters

(‘:—L— Ho t—___lc_T_... hwp

fop " TRy T aTmer BT e (52)

Thus ¢ is a measure of the degree of degeneracy and £ is the magnetic field in
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units of 4.414x10'3G. As always u and ug include the electron rest mass. The

chemical potential and density are related by

_ MmWg y dp,
T = (Rmh)? ,Z:og" ‘_/,: 1 4 gln HV/KT (33)

where the £, are given by equation (12) and the factor g, includes the spin

degeneracy
Gn = g - 611.0 (34')

Equation (33) determines the chemical potential for given values of density,
temperature, and field strength and is responsible for quantumn oscillations in .
Tt is instructive to view equation (33) as a relation between the four parameters

in definition (32). l.e., in the £ - 0 limit, using equations (19)-(21)

/2

(35)

o 2/3
éo = L[[B_,g Y gV -1 - znﬁ] +1
. ﬁ R n =0

The upper limit in the sum is 7. = (8%¢* — 1)/28 . In contrast to the non-
relativistic limit (Yakovlev 1980a, 1982) this expression explicitly involves the

magnetic field strength through 8.

An example of the relation of ¢ to ¢p is shown in Figure 2 for B = 108¢G
(8 = .2268). The t = 0 limit was found from equation (35) and the ¢t = .05 case
required a numerical integration of equation (33). The kinks in the £ = 0 curve
reflect the appearance of a new Landau level in the sum in relation (35). Asis
obvious, even a small amount of thermal smoothing quickly damps out the devia-
tion between ¢ and ¢ Only in the limit ¢{-» 1/f8 is there a pronounced

difference.

Nevertheless, this effect can alter the physical conditions at low densities in

a degenerate neutron star crust. Consider the ¢t = 0 limit with only the ground
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state (n = 0) populated. From equation (35), for iron
Tp, ™ 6(~/1 + 208/ BE ~ 1) (36)

which is valid for 7,z = 0 or, roughly, B3 > 2683 In the absence of a quantiz-

ing field

T, ™ 6(N/1 + 608 = 1) (37)

Thus, at a given density, the following physical properties will be changed
(Yakovlev 1980a, 1982): degree of degeneracy, level of ionization, the ideality of
the gas, and the degree to which the matter is relativistic. From relations (36)
-and (37), for iron, including quantum effects (&) and neglecting quantum effects

(NQ)
Non-relativistic limit: B,z = 1.4p5 (@), pg=2 (N@) (38)
Degenerate limit: 7 = Tr (&), T =Tp, (NQ)
Ideal gas (Ze? = kTpa): B,z = 905/8 (@), pg=6.5x107* (NQ) (39)

where a is defined in equation {30). The limit of complete ionization is roughly
g N kTr. Neglecting quantum effects £; & 13.6Z%V. For strong fields the value
of £; is uncertain. A non-relativistic calculation (see Yakovlev 1980a, 1982) gives

g7 ~ 13.8 Z?In?(B/ 1.6x10%)eV for B > 1.6x10%®G. Using these values

Complete ionization: ps ~ Baln(.65 ;) (@), ps= 1.5 (N@) (40)

The limits (38)-(40) are indicated in the B—p plane in Figure 3. The degen-
eracy limit (T = 7r) is shown for the values Ty = 108, 107, It has been assumed
that the field has no influence on these properties if more than one Landau level

is populated. For weaker fields (x> 0) the N@ limits are shown.



-118-

Finally it will be assumed throughout that the magnetic field does not affect
the ions. This requires that wp = Z|e|B/mic K wp or By, K pg’? (Yakovlev
1980a, 1982). In this case the melting curve (31) still applies. For stronger
fields possible effects include changes in the phonon spectrum and a shift in the

melting curve (Yakovlev 1980a, 1982).

V. Scattering Rates

In order to derive expressions for the transport coefficients it is necessary
to determine the rates at which electrons are scattered through various interac-
tions. Electron-electron collisions are significant only for low Z (Z £ 10) metals
(Urpin and Yakovlev 1980a) and will be neglected. It is unlikely that these ele-
ments will be present at the densities where electron transport is dominant.
Electron-impurity scattering will also not be considered because of the uncer-
tainty in the detailed structure of the crystals. It is expected, however, that the
solid phase of a neutron star crust will have fewer imnperfections than terrestrial
metals. (In any case it is relatively easy to extend the analysis to include impur-
ities -- see Yakovlev 1980a, 1982 for details.)

Elastic scattering will be assumed throughout (for a discussion of recoil
effects see Pavlov and Yakoviev 1976; Langer 1981). In the liquid (e-ion) this
requires As ~ (kT/ m;)?2pr < kT. Neglecting quantum effects (pp = Pr,) this
implies (for iron) p << .02 T%? | which evaluated at the melt surface (31) gives
p < 8x10® | Quantization will chaﬁge pr signiticantly only in the limit n,s = 0.

In the ¢ = 0 limit, from relation (35)

2mehen,

pr{n =0) = “mon (41)

Then the above condition is pg &« .574/25 5. Evaluating at the melt surface (31)
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and for the minimum value of B for which equation (41) is valid (B3 = 2p§”3)

gives p << 10'3, Both limits are obviously true throughout the liquid crust.

In the solid (e-phonon) the scattering is elastic as long as T > © where 0 is
the Debye temperature

®=.45 Z"—wp

% on (42)

with o defined by relation (27). The condition T >® gives, for iron,

Tg > 1.8pd”? This can be violated at high densities. A quantizing magnetic field
is unlikely to play a role in inelastic electron-phonon scatiering. Quantum
effects will be small unless T € 10 which requires pg < 882 The field
strength will probably be limited to ~10'G, otherwise the magnetic stress will
exceed the lattice yield stress (Blandford, Applegate, and Hernquist 1983), giving
ps < Bx10%, At this density the collisions will be elastic if 7g > 40. The cooling
calculations of Gudmundsson, Pethick, and Epstein (1983) indicate that this will
always be true for temperature distributions of neutron stars with ages g10°
years. Only if magnetic effects radically alter the thermal structure will the
electron-phonon collisions become inelastic at densities where quantum effects

are non-negligible.

The scattering rate from initial state ¥; to final state ¥, is given by (e.g.,

Berestetskii, Lifshitz, and Pitaevskii 1982)
) ,
d'wﬁ = —71;—{ Uﬁlzd(af —8,'_)de (4—3)

The factor dv, is the density of final states, the é-function accounts for energy
conservation, and Up; is the matrix element of the scattering potential. The
matrix element is to be regarded as an ensemble average over the positions of

uncorrelated scattering centers (correlation effects are discussed in § VI ). lLe.,
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(Canuto and Ventura 1977)

I<riulid|®= ‘JZ; Y ANUFE = B) @D (B UG = By) |19 (F )% (44)

where # are the electron coordinates and fr‘_,-, ﬁ’j» are the scattering center coor-
dinates. Expanding U(# —ﬁ’,-) in a Fourier series (e.g., Pavlov and Yakovlev

1976)

UG - B) =Y U, e® 7R (45)

(It is assumed that the wave functions are normalized in the volume V = I L, L,
where [, I,, and [, are much greater than any physical length-scales in the
problem. Thus it will be possible to pass to the continuum limit with negligible

error in sums such as that in eq. (45), when convenient.) Then
KFIUIDIE= T G U (BT e THeT s 16971037 197 15>+ (26)
iq iy

The ensemble average over scattering centers gives (e.g., Canuto and Ventura

1977)

ens. Ry @By, _
avg, @;e Te™ "7} = Vni8 g (47)

where n; is the number density of scattering centers. Thus the matrix element

is

| Upi]? = Vmy %} | Ug 12 I<f €97 |i) |2 (47a)

Next, consider {f |e@7"|i) using the wave functions defined by relations

(13)-(15). The sums over z and z contribute the factors 6p —p_ng 6p,—p, ng,- For

the y-sum, pass to the continuum limit and assume elastic scattering (e = &',
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%=, B =§) This gives

¢ ]eia'?“) = dpz'—p,.nqzép,'—p,.hq, (ss 'ag+§2)[53 'ZX'[n‘—lnﬂ + Bﬁ'fn'n] (48)
Lyn = [ eV H ¢V Ha(6)dy (49)

where primes are now used to denote quantities after the collision. The

integrals (49) can be done (e.g., Kaminker and Yakoviev 1981) with Lhe result

In-n = ei(n-—n')e + i‘ly(yB + yB')I'an'n ('U.) (50)
where 8 = tan"'(g,/ q,) and
- _h 25 42
Ll el G (51)
Frg(u) = (1M P Fpp(u) = VRT7RT ult ™V 2 /2 [ (u) (52)

The functions L?™ () are Laguerre polynomials and the Fp., {u) are normal-
ized so that f FR.du =1. Note that the Fj,(u) defined in Kaminker and
()

Yakovlev (1981) are not the same as those defined in Yekovlev (1980a,b, 1982).

The matrix element becomes

IKFIULY 2= Ve 3 | Uy |2 [(ss'8® + %) [s8' AR Ly yn-1(w) + BB Ln(w)]1? (53)
Ty

Passing to the continuum limit, U; » Ug/ V, where U; now denotes a Fourier

transform, and ), - £—'”— dg,. The density of states factor is
P _r 4 %Y

mwp

dv, = 2B
vy = Lals (2mR)?

dyg' dp,’ (54)
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Combining, and using the definitions {14) of &, 8 4, and B the scattering rate is

nMmop , . mPc? N
dwy; = SorEs [1+ss + = (1-ss") :[!qulz,

VeZ —mPct g% — mzc‘*_l

Spz¢ +s'p;'c + SS'Psz'Czl

2
Y Tt T B —miee an'-m«x (u)
Zc? 2g? 2, @ /2
' pzc +p c p pz C 1
+ 2ss [1 T T2 —miot (2 — mPci)? Frn(w) Fpoin— ()t .
 6(e; — £y)dqydyp'dp,’ (55)

Simplifying, using the following recursion relation (Kaminker and Yakovlev 1981)
VNI Py inFpn =+ )( n-1n-1 ¥ an) _u( a-in T an 1) (56)

gives

: [
nmo
dwﬁz-gz-;é-;g—ll+ss+ 1—-ss)]f|U|2

_ 1 '
ﬂl + ss' 2 ;_%C__(pz —pz)Z] (Fr?'n(u) + F112’—1n~1 (u))

ss'uhwgme?
- (o) + Finoy ()

sp,c +s'p,'c C
- \;E?:'??ZZ (F'r?n(u) - Fr?‘—ln—l (u)) 6(8_{ - -i)dedyB dpz (57)
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In some applications (e.g., cross-field conductivity) it is necessary to have
the scattering rate summed over initial and final spins. Assuming spin-

independent interaction potentials

nymwp mac y _ = p.)?]
§d’u}f‘ = an 27’0,,3 E f | q |2ﬂ ngcg J(F‘r?'n(u) + F??'-—ln*l (’U.))
hwp 'y !
- (i F,%n_l)}d(s, ~ £:)dg, dyp'dp. (58)

In the non-relativistic limit this becomes

zdwﬁ i 17275.3 f | Uq Z(Fnzn(u) + FR_ina1 (u))d( "Ei)dedyB‘dpz' (59)

which agrees with results given earlier {Pavlov and Yakovlev 1978).

As a result of energy conservation p, and p,’ are determined up to a sign

for given £,n,n'. 1t is useful to define the factors n{=+1) and 7'(=x1) by

Pz = NPa (60)

= —-\/s —m~ct — 2nhwpme® (61)

and similarly for 7'. Then the d-function in the scattering rate can be written

ble —2)dps’ = —Eg (8P’ —Pr) + 6(p" ¥ Pu)) dps (62)
"

Finally, it should be noted that by adopting the Born approximation for the
scattering rate (43) it has been implicitly assumed that {7 > 1 (condition [17]).
That is, the Born approximation does not account for multiple scatterings. Thus
the dynamics of the electron must be dominated by the field and not the colli-

sions. For purposes of calculating quantum effects on electron transport this is
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not a serious lirnitation, in view of the discussion in § III. However, it should not
be surprising that this assumption can lead to difficulties in certain derivations

(see § VIII ) which must be corrected by non-rigorous methods.

VI. Interaction Potentials

In the liquid phase electron-ion collisions represent the dominant scatter-
ing mechanism. The standard procedure (e.g., Yakovlev and Urpin 1980) is to

use a screened Coulomb potential. The term |U,|? is then (Yakovlev 1980a,

2 2
;}n'Ze - (63)
g+ 7y ]

where 74 is the screening length. It is useful for the applications to follow to

1982)

|Ug |2 =

write this in terms of dimensionless quantities. Defining

v=g/hog (64)
ag =1/ 2moprd | (65)

and using relation (51) gives
U, 17 = 411'714200 ' 1 (66)

m?  (u + £(v.f)/ 2B + ag)?
where

E1A(v.B) = (MY —2n'8 — 1 —nViPF* —2ng — 1) (67)
0p = %225—4' (68)

The exact choice for 73 is somewhat problematical. Fortunately the transport
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coefficients do not depend sensitively on this factor and the most convenient

choice will be discussed in § X.

In the solid phase of the neutron star crust the electron kinetic energy is
much greater than the Coulomb interaction energy. The result of this is that,
unlike terrestrial metals, the scattering will be dominated by Umklapp
processes. The electrons will then interact with individual ions participating in
the collective motion. This will be true if the momentum transfer is sufliciently
large that the major contribution to the scattering comes from Brillouin zones
distant from the first one. This condition can be expressed as (Yakovlev and
Urpin 1980) Bpf/ 6m°n;RS >> 1. Neglecting quantum effects, this gives 47 >» 1,
which is always valid in neutron star crusts. If only the lowest Landau level is
occupied, pr is given by relation (41) and the requirement is roughly (for iron)
pe > .04B¥?. Equation (41) is valid only if n . = 0 or pg < .35F57%?. Thus it is
possible that this condition could be violated over a narrow range of densities.
However, the cooling calculations of Gudmundsson, Pethick, and Epstein (1983)
show that crystallization will not occur at these low densities during time-scales
of interest. Again, as with the condition for elastic scattering, this will not be a

problem unless the thermal structure is radically altered by magnetic effects.

If, in addition, T > © the scattering will be elastic and the electrons may be
thought of as interacting with the single particle potential
UR) = —Ze(|# — |7 =7~ V)~ ~Ze¥(# - §)/73 (Yakovlev and Urpin 1980). The
quantity E measures the deviation of an ion from equilibrium. Averaging over all
displacements and performing the Fourier transform gives (Yakovlev 1280a,

1982)

4nZe?)? |
gy 2= BRL L (69)

where £2 is related to u_p through equation (26). In terms of dimensionless
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quantities

4rhtag 1
U, |2 = . 70
| m?  u + £]0/28 (70)
2o 4
go= L Zem @ (71)

3 ww B

There is a great deal of uncertainty in the value of the quantity w_,. Estimates
range from ~4.4 (Flowers and Itoh 1976) to 13 (Yakovlev and Urpin 1980). In the
determination of transport coefficients u_, will appear only as an overall multi-
plicative factor. The tabulated results presented will not depend on u_,. The
examples in § XI will be calculated in such a form (transport coefficients in
terms of the zero field values) that they do not depend on u_5. In order to actu-
ally compute numerical values for the transport coefficients, however, a value
for u_, must be assumed and the uncertainty in this factor should be kept in

mind.

Equations {68) and (70) can be conveniently summarized as

R .
U 12 = T2 pantuing) (72)
mL
1 .
0 1018
. RV T A
hII(wiv.B) = ] (73)
(phonons)

u + £¢17/28

where og is given by equation (68) for e-ion scattering and by equation (71) for

e-phonon scattering.
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VI1. Traosport Parallel to B

The quantum theory of transport phenomena has been discussed by many
authors (e.g., Kohn and Luttinger 1957, Kubo, Yokota, and Nakajima 1957, Lut-
tinger 1964; Kubo, Miyake, and Hashitsume 1985; Stinchcombe 1974). In this
paper the method developed by Zyryanov (e.g., Zyryanov and Guseva 1989;
Zyryanov and Klinger 1976) will be used for compatibility with Yakoviev (1980a,b,
1982). As is well known, the quantum theory of electron conduction is formu-
lated in terms of the density matrix. It is often convenient to use the density
matrix to define the Wigner function, which is analogous to the distribution func-
tion of classical statistical physics (e.g., ter Haar 19681). It can be shown (e.g.,
Kahn and Frederikse 1959; Stinchcombe 1961; Zyryanov and Guseva 1969) that if
‘one considers small £, Vu, and VT parallel to B, then the Wigner function
evolves according to the Boltzmann equation Physically the justification for this
method lies in the fact that the electrons are free parallel to B. For transport

perpendicular to B this is not the case, and other methods must be used.

The relativistic Boltzmann equation is

0f rp,s _ 5fnp,s]
apz 2t Jcon

ar NPy s + af np,s

at v, —5, ——lelE

(74)

The function fnp s describes the population of electrons in the quantum state

labeled by n,s. Taking into account the exclusion principle the collision term

Ofnpys)
‘7_]0011 = ,Zf: Wit (fn'p,'s' - fnp,s) (75)

where the sum is over the quantum numbers n',s'p;' . ¥5’. Since the inhomo-

can be -written

geneities in the system (Vu,VT) are parallei to B, frp,s is independent of yp

(Zyryanov and Guseva 1969) and the scattering rate can be integrated over yp'
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immediately. Also, the sum over p;' in equation {75) can be performed, absorb-

ing the §-function in the scattering rate. Then

Ofn 23 l ;
6: coll = Z“ , W(npzs 2 n'n's’)(fﬂ"’)'s' - fnp,s) (76)

n's'ny
Where, from equation (57), the scattering rate W(np,s » n'n's’) is

mPc*
1+s5s'+

W(np,s »n'n's') =

T o (1 "SS')]

S Sy, lzﬂl +ss5' - é—g%‘fg—(npn —Ps) ](Fr?«n(u) + Ffoin-1 (1))

ss'uhwpme?

e (Fein(4) + Fian(u)
sp.c + s'N'p,C
- B (FEa(w) ~ Py ()] dgy A (77)

using dyy’' = hdg,/ mwg .
As an example of how the transport coefficients are derived, consider only
an electric fleld (other circumstances are a trivial generalization). In the steady

state

afnp,s , ,
—]9 IE ap = 2 W(npzs »n "7'5 )(fn"r)’s‘ - f@,s) (78)
z n's'n’

This can be solved by linearization. Assume fpp s = f®+ frp s where f0 is the

equilibrium (Fermi-Dirac) distribution function, which depends only on the

energy. Using 8f°%/ 8p, = (p,c%/ £)d8f %/ 8¢, equation (78) is to first order

c? 370
Y H(npes > nn's Wby = fibe) = —le |5 B2 ()
n's'n
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This is a system of equations for the perturbations f,}pzs from which the

currents are determined.

The electric and thermal currents are

z = —'Lei;LZ 'sznlp,s (80)
']f/"zl: (5 "'/J')v fr.p, (81)

where the sums are over n.,p.,s,yg. Since the summand is independent of yp,

Y, » V(muwp/ 4n®h?) i h f dp,. After algebra, using v, = p,c?/ &, equations

) n=0 g=t1 -=

(80) and (B1) become

. le|mwpgc? ... ® . ,
7= = 41RRR _os ﬂ{ —(Fng,s = Fr-pys) 3Pn (82)
mosc? = - p
Fz = 232 Z Z f & _#‘) L (fnpns fn—pns)dpn (83)
4R n=0s=x1 0

Interchanging the sum over n and the integral over p,. using dp, = sds/ Pnc?

gives

_le|mop

jz - 477727‘2 '/;2 nz—o n=«1 s;tl nfr}ns ae (84)
Fi= o f (-0 50 T T nfdede (85)

n=0 7=t} s=x1

The sum over n is limited by ey = (£° — m3c*)/2mc?hwp. In order to find the
transport coefficients it is useful to define a dimensionless scattering rate
a(nns » n'n's’) and a dimensionless perturbation to the distribution function

Pnns DY
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Winns »n'n's') =nlv,loga{nns - n'y's") (86)
elF
fnl'r}s =n l"};'&%‘ﬁnns (87)

where o; is defined by equation (68) for e-ion scattering and by equation (71) for

e-phonon scattering. Then relation (79) becomes a dimensionless system for

Pnns
n o)
Z (7?-"15 - ﬂ'n's'){wnns - prn'n‘s’} =1 (88)
n'=0 =+1 8'=11 n
for n = 0,12, - - " Nppae. 7 = +1, s = £1, The transport coefiicients are given by

equations (84), (85), (87) and the general definitions (1) and (2). A procedure
| analogous to the one outlined above, taking into account temperature gradients,

allows 7., to be found. The final result can be expressed in the form

Ozz _ 2mowp
x:: =~ B jg - —zp)?{T e(v.g)de (89)
WB) =23 L T ¢ans (90)

n=0 n=t1 s=*1

where B and v are defined in equations {32) and (64), respectively. Note that in
definition {90) the term with n=0 has only the cornbinations 7=1,s=—1 and
n=—1,s=1 (see § lIl ). Equations (B9) are the quantum analogs of relations (6)

along the field in the limit Q7 > 1 (see the discussion at the end of § V).

The non-relativistic limit of these expressions is

2
l(e [{s —E,A)/ T\ ynrde (91)

Taz _ ZTTLCJB f
- 47T27L20' 0Tk

a2z

It is possible to show that non-relativistically (e.g.,, Ventura 1973)
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Srn=-1s = —fnp=+1s (Where s now denotes spin, and not helicity) implying that

$nis = Pn-1s- 1HUS

wNR = E’ X ¢a (92)

where n = +1 has been used. Furthermore spin-flip transitions are not impor-
tant (Yakovlev 1980a,b, 1982) so that the system for g5 can be written as

(Ram + 3 (@i * 2 en = 2 (G — G )i =1 (93)

n'#n i n'#n

where o, = a(nn=1->n'n'=-1), g} =a(nn=1 »>n'n'=1). The results (91)-
(93) agree with those of Yakovlev (1980a, 1982).
The expressions (88)-(90) together with the relations defining
a{nns - n'n's'), equations (77) and (86), are completely general, as long as the
scattering is elastic. They are valid for arbitrary degree of degeneracy and
scattering mechanism of interest. For the special cases of | Uy |? given in § VI

the rates a(nnms - n'y's’) are explicitly (for other |U;|? see Kaminker and

Yakovlev 1981)

a(nns »n'y's) = i—qif-;Ln{1+ss + ﬁzue (1 —ss )}fh.,{”’u v.6) {l]. + s’

1 ' '
“E AT (M nqn)z}wfn(u)wn e ) = (R + Fa)

g4 g~
—Snj’é—%“’"’ (F2n(w) = Fiyns <u))} du (94)

where g, = (A8% ~2n8 — 1)¥/? . Thus, ¢(v;g) is independent of gy and, in partic-
ular, for the phonon case independent of ©_,. For electron-ion scattering ¢(v.8)

depends weakly on the screening lengths through the function AJ7{u v,f) (see
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eq. (73]).
. Two complications arise in the solution of the system of equations (88). The

[y '}

scattering rates a(nns - n'n's') satisty the two symmetry relations

a{nns »n'n's’) =a(n'n's' » nns) (95)

a{nns »n'n's') = a{n-n-s » n'-n'-s") (98)

The first follows from detailed balance and the second from time-reversal (these
can be demonstrated explicitly from [94]). It is possible to show that these two
conditions are sufficient to ensure that the system (B8) is singular. Further, if
the system is of dimension N the rank will be ¥—1. An additional relation
between the ¢,,s is required to close the system. This is provided by the
requirement that the perturbation to the distribution function not change the

number of particles in the system. In terms of g,,s this gives

Rax

Y Y Y N¢ags =0 (97)

n=0 n=t1 g=:1

Again only 7=1,s=—1 and n=-1,s=1 are allowed for n=0. In practice this rela-
tion can be substituted for any one of the equations in the system (88) and it will

no longer be singular.

The second potential problem involves the question of possible divergences
in the integrals defining a{nns »n'm's'). That is, if n =n' and 1 =7’ then
¢1(v.8) = 0; thus for phonons hJ7(u;v,8) = 1/u. Near the origin several of the
terms in the integrand of equation (94) are divergent. However, it is easy to
show that these difficulties do not enter into the solution of the system. To this

end, equation (88) can be written
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n

'

H_Sﬂn'n‘s'] +a{nns -» nn‘s)(ﬁpnﬂs - Sann—s)

2 2 a(nns i n"?'s') [‘Pn'r)s -
=1 8'=+1 n

n'=0 7'=*
n'#n

+ a(nns - n-ns)(gpnns + ‘ﬁn—ns) +afnns - n""r)"s)(gpn'r)s + fpn—n—a) =1 (98)

And, from relation (94) the coeflicients a(nns - n7—s) for phonon scattering

can be found analytically

a{nns > nn-s) = (n #0) (99)

52
(BAR = 1)(fAR ~Rnf — 1)

using the symmetry and normalization of the FZ,. Forn =n'=0, 7 =7'is not

allowed. Thus no divergent terms appear.
It is of interest to consider the completely degenerate limit (T - 0) of the

transport coefficients. Following the standard procedure the leading behavior of

the expressions (B9) is

2mwpe?
= oamanEE (6 + 0T (100)
K*T
hex = ~LE T ey + o(79 (101)
? kRT
Yaz = Kzz = Z'Té_—'e'é'—'a'zz (102)

where ¢'(¢.8) = d¢/dv], -; These are analogous to the components of expres-
sions (8)-(10) along the field in the Q7 > 1 limit. The Wiedemann-Franz law is
again recovered. Unfortunately these expansions are not as useful as the
expressions in the absence of a quantizing field. The higher order terms in equa-
tions (100)-(102) involve derivatives of ¢ which can be infinite due to jump
discontinuities in ¢ (see examples in § X ). Thus these expansions can be

strongly violated for certain values of ¢{.
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VIII. Transport Perpendicular to E’-Dissipative Currents

This section will be concerned with the diagonal components of the tran-
sport coeflicients, orthogonal to B. Symmetry requires that the zz and yy com-
ponents of the tensors be equal. As a result of the quantization of the electron
motion perpendicular to B it is not possible to use a Boltzmann equation to
derive the conductivities. The method of Zyryanov {(Zyryanov and Guseva 1969;
Zyryanov and Klinger 1976) is applicable. It relies on the continuity equations

for charge and thermal energy density

-a%- -{eln,)+V';7=O (103)
AW . o om
W +vF =0 (104)

As an example, consider chemical potential and temperature gradients
along the y-axis: Vu = V,u#,, VT = V, T¢,. The number density is given in terms

of the density matrix by
'n., = 2 ﬁ'aa‘ Paa (105)
aa’

where the sum is over all quantum numbers and the number density operator is
ﬁaa’ = \I’; ‘I’a 6au‘ (106)

Writing the spinors as ¥(7) = g Ps® * P ‘z)/n‘w(f)/ VIzL, and in the continuum

limit, ), = L; L, (mwg/ 4m°A%) ZIdpz fdyg gives

mowp

e = sor s ) SVOUO e Psyp)dP gy (107)

7S —w —=

The diagonal components of the density matrix paa = fns (pz.yp) serve as the
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distribution function and evolve, due to collisions, according to {Zyryanov and

Guseva 1969)

s (p,.y) = 5 Wil e Be'35') ~ Fra e 03)) (108)

where Wy is the scattering rate and the sum is over n',p,'.s".yp' . Thus

sr(~leln) = ':‘,:;Z’B lelmos 3 50 5 T T 90w s

ns n's’ p,yp' —o-®

(fns(Ps'¥p') = Frns(P2.yz)) 2P dYp (109)

Linearization is now performed by substituting the local equilibrium distribution
‘function for fps(P;'.¥5') and f.e (P, ¥p). It can be shown that this is given by

(Zyryanov and Guseva 1969)

- w(yz)

kT (ys) (110)

o= o

For sufficiently large magnetic fields ¥(£)¥(¢) will be non-zero only in a narrow
range of ¢ centered about £=0 and it is possible to ignore the distinction
between y and yz. Then, taking into account the normalization of ¥'(¢)¥(¢) and

expanding the result in a series of yg' — yp gives to lowest order

= (yg' — 2 o
; —Iefns)— aay lelmQB 2 Z 2 j" Y 2?/3) aafs

ns n's' py'yg —=

V, i+ E—}Ji-v”i Wﬂdp,] (111)

where f° is the equilibrium distribution function f°= (1 + exp{{¢ — ©)/ k7)),

depending only on energy. Then relations (103) and (111) imply
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= - |e4’mQB z Z 2 j‘ {ysp' yB) af°

Vi + E——T-‘“—VyT} Wydp, (112)

ns n's’ p,yB ol

The derivation for the thermal energy current is completely analogous and gives

Fv__::r:’:zzz ) f('yB ~ yp)? 6f (s - 1)

ns n's’ pyp —=

y#"" °—&V T}Wﬂdpz (113)

From equations (1) and (2) the transport coefficients are

e2
-gu,)/ T| dp; (114)

ml=-moayy y yErsw) oty )

vy ns n's' p'yg’ —=

In this expression only #; depends on s,s' and p;'. Integrating the scattering

rate (58) over p,' and using dyp' = hdg,/ mwp gives

z Wy = "1m c E j‘ | U, |2 {lm:c (n'Pr “Pz)z}

8, 4r2h2p,, E poe1 e 4m?2c?
Fie
(Fr?'n(u) + Fr?'—ln—l (u)) - ?i' mB (F,? ln(u) + Fr?n -1 (u))} dgzd%/ (115)

Interchanging the integral over p, and the sum over n in equation (114) (see

egs. [B0]-[85]) and using ¥’ ~ yp = hg;/ mwp

{
Ty 1 " Bfo e?
= - - —w)/ T
| = e L e [

Yy Y2 % wy de (116)
. L .

Finally, combining equations (115) and (116) and transforming the integral over

dg.dq, to one over du
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n

(5 3 5 - Tuigr

n=0 n'=0 =1 g'==1 PrPrn g

" 16n°nt 2. Oc

2 (n'pn —1pn)?]
mPc? 4m2c? |

o?
~le - T
(& lﬁsu)z‘;);

u hop
2 mc?

(Fr?'n + Fr?‘—ln-l)_ (Fr?'—ln + Fnz'n—l)

du]ds(ll?)

The sums over n and n' are limited by ng., = (62 — m2%c?)/2mc?hwg. This
agrees with the result given by Kaminker and Yako{rlev (1981) if we note that the
summand of 7 and 7' depends on 7% only in the combination
(N'Pa = 1Pa)? = (Pn- — 7M'Pr)?. (This is true of the scattering potentials given in

§Viaswell) Then ) 3, -2 3 andthe previous result is recovered.
n=tl =l (m)=1

The non-relativistic limit of relation (117) is

Oy mmiwp a7 e? ]{"m&x ™ ex 1
= - - -u) T
:: 16n°nt 5 B¢ I(eg‘—(-s;,l,)z‘;)T J nz-;o négo 'r);tl n:Zi:l PnPn
{u | Uy |2 (FEn + F,%_m_l)du}ds (118)

This agrees with the non-relativistic result of Yakovlev (1980b) if we replace the

sums over 77 and 7' with a single sum over the product of 7 and ' as above.

The expressions (117) are completely general as long as the scattering is
elastic. They are valid for any degree of degeneracy and scattering mechanism
of interest. For the special cases given in § VI (see Kaminker and Yakovlev 1981
for others) equation (117) can be written in a more useful form in terms of

dimensionless quantities. Let ), 3, - 2) where the plus sign denotes for-
n=t1 7'=+t1 ES

ward scattering (n =7') and the minus sign denotes backward scattering

(n =-n'). Then

Twy nog T af° e?
= - ~le |(c - )/ T| @iB)d 119
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Tmax ® max -

8) = 1 £ (o
Qwp) =8 g: ngo ? VA — 1 - 2npViVigt -1 - 2n' {uh"“w'u'ﬁ)

[(26% = Hin)(Fin(w) + Fioini (@) = BR(FE1n(w) + Ffny(u))]du (120)

1/ (u+éta/28 + 0g)* e—ion

hin(uv,p) = {1/ (u + Exn/ 28) e —phonon (121)

tr, = (VIPF -2n8 -1 F ViPgF -2nB - 1) (122)

The quantity o¢ is defined by relation (68) for e-ion‘ scattering and by relation
‘(71) for e-phonon scattering. Written in this form the function @(v8) is
independent of 6p. In particular it does not depend on u_; for e-phonon colli-
sions and is only a weak function of the screening parameter a4 for ¢-ion colli-
sions. The overall multiplicative factor of g8 in the definition of @(v.8) ensures
that @ is independent of 8 in the non-relativistic limit. Relations (119) are

analogous to the corresponding components of equation (6) in the limit Q7 > 1.

A complication arises in the evaluation of @(v;8) and the subsequent
integration over energy. In terms of v and 8, np.y = (V8% — 1)/ 28. Whenever v
is such that v = v/1+2n,,8/ 8 the terms in the sum over n,n' with n = n
and/or n' = N, will be singular. The terms with only n = n,; or n' = n, do
not cause difficulty because they are square-root type singularities and can be
integrated. The terms with m» = n’ = n,,;, however, cannot be handled and the
integral over ¢ diverges logarithmically. The origin of these divergences can be
understood as follows. The development has implicitly assumed that OQr > 1
(see end of § V ). In this limit the components of the transport tensors under

discussion ~1/ 7 (see § 1 ). The magnitude of the electron momentum along the

field is pp, = Ve? —mP%c* — 2nhwgmc?/c = mc ViAB° — 1 — 2nB. Electrons with
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energy such that 1282 — 1 —2n8 - 0 will have vanishingly small velocity along
the field and the collision time for these particles will go to zero. Physical quan-
tities ~1/ 7 are then divergent. This is not a problem for transport along the
field as these coefficients ~7 (see § II ). Thus the singularities are not physical

but are a direct result of the approximation Q7 > 1 breaking down.

The standard method for handling the divergences is to exclude the points

£ =¢t, = VmZc* + 2nhwpmc® from the integral (119) of the divergent terms

(Kaminker and Yakovlev 1981; Yakovlev 1980b). That is, the integral of the
o In+l
divergent terms is written in the form ngc . _[7 ()de. The parameters ¥,, which
cut off the integral and remove the singular behavior, are chosen on a physical
basis. Several mechanisms have been proposed (for a thorough discussion see
Kubo, Miyake, and Hashitsume 1965). For applications to neutron star matter
the two most important factors in determining the 7, are inelasticity of the
electron collisions and collisional broadening of the Landau levels (Yakovlev
1980b). The appropriate value of v, is given by the mechanism with the larger
cutoff energy (Kubo, Miyake, and Hashitsume 1965) and depends, in general, on

density and temperature. The transport coefficients will also, then, depend

weakly on the 7,.

If inelasticity is the dominant cutoff mechanism 7, is given by the mean

energy transfer in a collision. For e-ion scattering this is, roughly (Yakovlev

1/2
kT
n ~*[;;;i 2pr (123)

As noted in § V this factor is k7 in the liquid phase. To estimate the impor-

1980b)

tance of this factor, set pp = pp, and use the degenerate relation of pp, to den-

sity (eq. [R0]). Then, for iron
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Yn ~ 5.2x107Mpd/3T4/2 (1R4)
For electron-phonon collisions (Yakovlev 1980b)
In ~ Ry, (125)
where o, is defined by equation (27). Again, if Z = 26, A = 56
Yp ~ 5x107104/2 (128)

If collisional broadening of the Landau levels dominates, then 7, is given by

the standard expression in § IIl
Yo ~H/T (127)

As an estimate, the collision times (24), (25) can be used. In the liquid, assum-

ing ironand Ay = 1
Yo~ 4.Bx10710 /1 + 6p33 (128)
In the solid with Z = 26, A = 56, and ©_» = 13
Yn ~ 3.4x107pg V31 + .3p§/ (1 + .6p§/ %)V 2T, (129)

The approximate regions in the p—T plane where each mechanism is more
important are indicated in Figure 4, along with the melting curve {31).
Finally, it is again of interest to find the limiting (7 - 0) expressions for the

transport coefficients. The leading behavior of equation (119) is

X 2
Oy = 7;;:2; Q(¢:8) + O(T?) (130)

aole k2
Ay = “Mé’;i-g;’:—I'Q'(c‘:ﬁ) + 0(T%) (131)
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Oy (132)

where @'(¢:f) = d@/dv|,-¢ These correspond to the appropriate cross-field
components of equations (8)-(10) in the limit Q7> 1. The Wiedemann-Franz
(132) is recovered. Again these are not as useful as relations (8)-(10) because of
the singularities in @(v;f8). Only if thermal smoothing is included do the diver-
gences vanish. Note that in this limit the transport coefficients are independent

of the 7,.

IX. Transport Perpendicular to B-Non-Dissipative Currents

In the limit Qr > 1 the off-diagonal components of the transport tensors
are indepehdent of the scattering mechanism (see § 11 ) and hence are referred
to as non-dissipative. Furthermore, only one of these is independent and can be
taken to be the y—z (positive} component. As in § VIII a method relying on a
transport equation cannot be used. In addition, the effects of currents and heat
fluxes associated with magnetizaticn must be taken into account. Because these
are solenoidal a derivation based on the continuity equations {103), (104) is also
not possible. The method developed by Zyryanov (e.g., Zyryanov and Guseva

1969) for these components is applicable.

If scattering is neglected the density matrix is diagonal paq = faban’
(Zyryanov and Guseva 1969) where f, will play the role of a distribution func-
tion. In this approximation f, will depend only on the constants of motion ¢, p.,

and yp (Zyryanov and Guseva 1969).

As an example, consider chemical potential and temperature gradients
along the y-axis. Vu = Vyuéy, VT =V, Té,. The electric and thermal currents in

the z-direction are given in terms of f, by

.'7:: = —Ie i Z (fx)aafa (133)
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Z (e ) J:z)aafa (134)

where (J)as are the diagonal components of the probability current density

operator (e.g., Berestetskii, Lifshitz, and Pitaevskii 1982)

(ﬁ;)aa = C‘I’Z 707:: Yo . (135)

In the standard representation

0001
0 o;|] O10
s [a, o] =100 (136)
1000
From the definition of ¥ (eqs. [13]-[15]). relations (135) and (136) give
- V2nhwgme? o, o~
Gadea = = 17 o () Ha-(®) (137)

Equations (133) and (134) are linearized by using the local equilibrium distribu-

tion function (110) for f, For weak gradients in 4 and T this can be expanded
ar° | ~
fa=r°+(y -yp) -ésle,,” f—#‘—vyd o (138)

where f0 is the equilibrium distribution function f°= (1 + exp(s — )/ £T)7},
depending only on energy. The function f 0 causes the currents to vanish as is

easily verified by performing the integral over yp in equations (133) and (134).
Using 3 » (L L,/ 47*A%)mwp ZIdyB fdpz and the definitions (15) of ¢ and
@« ny ~w —0

Ha(8)
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~ _ |le|mecPhop €~ 1
7= = 4m?h? Zf £ Vyk * T VT ViR Y{n-1)!

f te " H, (6) Hnoy(£)dE dp, (139)

and similarly for ﬁ",. As always the term with n=0 has spin degeneracy 1 while
the other terms are doubly degenerate. The integral over £ can be done by
using the recursion relation for Hermite polynomials

¢H, (&) = BH, . (¢) + nH,_,(£), giving the factor nV2*~}(n—1)! . Thus

~ me nhwy 3f° & —
jz = 41,r2h2 ;:[. P 6]:: {Vy,u,+ T VyT]dp, (140)

~ nth af° £ — p
Fz = 4772712 2 f - “L) as [Vyﬂ’ + T Vy 71 dpz (141)

In order to relate these to the currents j, and F, defined by equations (1)
and (2) it is necessary to account for magnetization effects (Zyryanov and

Guseva 1969). The associated currents are

G = CVXH (142)
Fin = cOxL (143)

where M is the magnetization and I is defined analogously.

It can be shown that the appearance of magnetization currents is directly

attributable to slight inaccuracies in the treatment of the density of states fac-
tor 3 » (L, L,/ 47°R%)mwp 3, f dyp f dp,. That is, the spinors (13) are normal-
a ns ~w —n

ized in the finite volume L;L;L,, whose dimensions are assumed to be much
larger than any relevant physical dimensions in the system. Thus the integral

over yp in Z‘ can be extended to xo, with negligible error in most cases.
«
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However, Heuser and Hajdu {1974) have demonstrated in the non-relativistic
case that it is precisely this approximation which leads to the appearance of
surface effects in the calculation of transport coeflicients. Furthermore, they
have shown that é calculation correcting for magnetization currents (such as
that presented here) leads to results equivalent with an exact treatment of the

density of states factor.

The magnetization is most easily found from the thermodynamic relation
M, = —(1/ V)(8Q/ 8B),r where Q is the grand potential {e.g., Blandford and

Hernquist 1982)

kTVmuwg

Q=- 4n%he

b f In(1 + g B En)/ KTy dp, (144)
ns ~w

Using relation (12), after an integration by parts

oo 2
1P
M, = 4n2hég”2ffot—{"i "nt] dp, (145)
ns —=»
But
. aM, 8
(VxH), = Ef—«vyp + —5—7—3—VyT (148)

There is no corresponding contribution in the y-direction. Thus

are -
é—{vy p Ehy, 7'} dp, (147)

.y _ _ le|mc? T 1|pé
(Jm.)z ppucre 2:{:8 m

The thermal current is given similarly by

(8—#)—L—

(Fn)s = o) L) %(%——nﬁwe Vyp + S T]dpz (148)

These results must be subtracted from equations (140) and (141), respectively,



- 145 -

in order to extract the conduction currents (Zyryanov and Guseva 1969)

2 = 2 o
, | ) -
js = Zn;g Z,;[,El“ l—as Uy + ~&8T VyT]dpz (149)
me? 71 Pf oaf® -
Fo= = o L ;——,;L’f— e -n) [,,w %!‘—vyr]dpz (150)

The transport coeflicients can now be found from relations (1) and (2). After an

integration by parts

-

= = e? T 0
Ogy = —Oyz = —4‘11'272.2 Z’:;{f dp, (151)
Comparison with relation (33) gives

Oz 5 T (152)

This agrees with the non-relativistic result in Zyryanov and Guseva (1989).

The entropy per unit volume is given by S = (~1/V)}(8Q/8T),p . Using
equation (144), after an integration by parts -

_mop 7 pﬁcz £ ar°

S = 41r2h2 £ de

dp. (153)

From equation (149) it is deduced

S (154)

[4
Az 5

This agrees with the non-relativistic result in Zyryanov and Guseva {1969).

The final transport coefficient is, from equation (150)

_ _ mc? 1 P2 8f0% (& —p)?
T = 4mn? & 2 g m 8s T 9Ps (155)

—
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This can also be written in terms of thermodynamic quantities. The identity

(e—p? 8f° _ 8 ) %, . e-p 87° .
2 s "aTJpLd“ T as W T) (156)

along with definition {153) enables relation (155) to be written as

1 o)
Ve = T

"
o T 37 LS(u'.T)du' (157)

“

This agrees with the non-relativistic result in Zyryanov and Guseva (1989). For

computational purposes the form (155) is likely to be more useful.

In the 7 - 0 limit the leading behavior of equations (152), (154), and (157) is

Oy = ;;";; :i::gn\/g‘zﬁz —1-2ng + O(T?) (158)
2 n
A‘U’ = __|_e_|‘"_3k_z_ if’xg <- + O(Ts) (159)

eame® 7" VEE - 1-2n8
w®
Vo = K = gk T (160)

The Wiedemann-Franz law (160Q) is valid to lowest order in 7. These are not as

useful as relations (8)-(10) because the higher order terms involve derivatives of

VE*E — 1 — 2ng which can be singular.

X Computation of Intermediate Functions

The relative compactness of the relations defining the transport coefficients
(egs. [B9], [119], and associated expressions) tends to obscure the computa-
tional difficulty in actually evaluating them. In this case the major problem is

not so much in performing the integrals, but in evaluating the integrands, even

though numerical integration is required. For example, if longitudinal
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conductivities are desired (eq. [89]) it is necessary to solve a linear system, in
which the coefficient matrices themselves are defined in terms of integrals (egs.
e8], [94]). at each point that the integrand must be calculated. Only for the
non-dissipative transverse transport properties (egs. [152], [154], [157]) is this
not a problem. If accurate fits to the functions p(v;f) and Q(viB) {egs. [B9],
[119]) were available, the other components of the transport tensors would be of

the same degree of computational difficulty.

There are additional motivations for presenting results in the form of fits to
¢(v:f) and Q(v;B) rather than, say, fits to the transport coeflicients themselves. |
Once ¢(v;8) and @(v;8) were known any of the conductivities could be evaluated.
Secondly, the transport properties are, in general, functions of density, tem-
perature, and magnetic field strength. The functions ¢ and €, with carefully
chosen approximations, depend only on the electron energy ,v, and field ,8. For
most applications the dependence on B is more in the form of a parameter.
That is, most geometries assume a constant, uniform magnetic field. Thus it is
sufficient to give results on a coarse grid of B for values of interest. Conse-
quently, it is much easier to fit p and & accurately as functions of v for fixed g,
than it is to fit the dependence of the transport coeflicients on temperature and

density for fixed field.

Finally, many of the physical uncertainties present in the conductivities ,
such as the factor u_; in the solid, do not enter into these functions. Moreover,
¢ and @ are only weakly dependent upon those physical quantities that do enter
in, such as the screening lengths. Thus accurate fits (~10%) to ¢ and @ are
justified, in spite of uncertainties in other factors. This is highly desirable
because of the potential for numerical errors in evaluating ¢ and @. Several

technical issues that arose in making these calculations must now be addressed.
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a) Screening Lengths

From the relations defining ¢ and @ (eqs. [88], [90], [94]. and [120]) it is
seen that there is a dependence on the screening length parameter a4 through
the functions A7 and hf, (egs. [73] and [121]) for e-ion scattering. Because
this is a weak dependence, several simplifying approximations can be made.
(The weak nature of this dependence has been demonstrated explicitly by
Yakovlev 1980a,b, 1982.) For convenience the screening lengths in Yakovlev

(1980a, 1982) will be used. These are

T? =1 4 gt (181)
rf=7f +a%/6 (162)
- 0

7'32=4—1T2257L—ne(ﬂ) (163)

where 7; is the ion screening length, 7y is the electron screening length,
rp, = (kT/m)Y?/ wp, and a = (3/47mm;)%. Quantum effects are negligible for
r; but will induce oscillations in 7, in view of equation (33). As an estimate of
the relative importance of the two screening mechanisms, take u = g in rela-
tion (163). This gives , for iron, 742~ 4.9x10%pd/3(1 + .6p& %)%, The exact
expression for r; implies 7% & 7.6x10'%4/3/ (1 + 2/T"), where I' is given by equa-
tion (30). Thus it is valid to set 7y R 7; in the calculations of ¢ and @ because of

the weak dependence on this factor. Also I' > 1 at the relevant densities imply-
ing

2/3
3% 4rr 2/8
P n} (164)

@ = 37

In relating n, to chemical potential and magnetic field it is sufficient to use the

t =0 expression {eq. [35]). This gives
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n

2\/..6}2/3 Az 2/3
aq = {ﬁ"} ["=°gn\/(ﬂ2<2 -1)/28 -7 (185)

For Z = 28, (2V6/nZ)*/3~ .15,

Finally, one further approximation can be made. For degenerate gases,
which are of most interest, the major contributions to the integrals defining the
transport coefficients will be for values v~ ¢, because of the factor 8% as.

Thus, for iron

273
ag ™ .15?2 g V(W - 1)/%8 —n (166)

n=0

If this formn is used for ay then no additional dependences, such as temperature

" or density, will be introduced into either ¢ or &.

b) Cutoff Parameters

As discussed in § VIII , the transverse dissipative conductivities are weak
functions of the cutoff factors v,. (The weak nature of this dependence has been
demonstrated explicitly by Yakovlev 1980b.) Strictly speaking it is the integrals
themselves and not the integrands that depend on the y,. However, for pur-
poses of producing results that are relatively easy to use, it is most convenient
to absorb this dependence into @{v;f). This is accomplished by setting to zero
the contribution to @(v;8) from the divergent pieces (terms with 7 = n' = N pay)
in the interval & =&, = &, + yp, Where £, is given by V2 = (1 + 2np.8)/ A2
‘Although straightforward enough, this would seem to introduce additional
dependences into @(v;f). However, as with the screening lengths, it is possible

to take advantage of the weak nature of the dependence on the 7, and make
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several simplifying approximations. It should also be noted that a precise calcu-
lation of the 7, is not justified because of the crude way in which these quanti-

ties were derived.

As noted in § VIII , the 7, in neutron star crusts will be determined by either
inelasticity of collisions or collisional broadening of the Landau levels. Com-
parison of Figure 4 with the thermal structure calculations of Gudmundsson,
Pethick, and Epstein (1983), allows the following simplification. In the liquid
phase assume that 7, is determined exclusively by collisional broadening and in
the solid phase only by inelastic scattering. The advantage of this, as is seen
from relations (126) and (128), is that the dependence on temperature vanishes.

Then, in the liquid, using equations (20), (24), and (127)

In A eaa
g~ Bm 2 ZhAgi $o (187)

where o is the fine structure constant. This is not quite correct as the y, should
not include the rest mass. Thus, in equation (167) the replacement
¢o = ¢g — 1/ f should be made. It is sufficient to use the £=0 relation of {g to ¢
and 8 (eq. [35]). Furthermore, it can be assumed that { ® v as was the case for
the screening lengths, and that A;; Z can be set to a constant. For Z = 26 and

the typical value Ay; = 1 (see § XI ), subtracting the rest mass

ot n 128
7:::9 N 5-9"5*0 ﬂ[%ﬁgogk\/ﬂgyz -1- ZkﬁJ +1

/2
- 1} (168)

In the solid, using equations (20), (27), and (125)

In _
hop

VAZm o] 3y é—(ﬁzgg ~ 1)¥e (189)

Making the same approximations that led to expression (168)
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n /2
AN 1.1x10‘36“’2L2 g VEAA -1 -2k (170)
MB =0

Thus no additional dependences are introduced into @(v;8) .

¢) Computational Scheme

Some care must be taken in the computations because of the potential for
numerical difficulties. The function ¢{v:f) is calculated from equation (90)
where the individual terms ¢,,s are the solutions to the system of equations

(98), supplemented by condition (97). Naturally the system can only be solved
numerically. The coefficient matrix is given by linear combinations of the
scattering rate (94). In order to discuss the evaluation of a(nns » n'n's’) it is
convenient to define the following

f uP F2, (u)du

|~ +wy (171)

nn (w) =

Then the scattering rate can be written, with g, = Vi*g? —2ng — 1

[
a(nns »n'ny's’) = i—ﬁ—ll + ss' + 521,/

Onqn’ 2 (1 —SSl)]
rl+ss'—-—— ( 2. )2 (8 () + L2 (w)) - ==
l ) ﬂeVz N'qn = M9n n'n\Wy n'—1n~1 Wy ﬂzuz-—l

(B (wy) + Ly (w)) ~ s"f;‘ggi’l;__ﬁf"‘ (L% (i) 181y m»} (172)

where I = 1,2 for phonon and ion scattering, respectively and w, = mn/ 28,

wy = £07/ 28 + ag, with £77 given by relation (67).
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The function @(v;8) is given by the sum {(120) and relations (121), (122).
The sum can be simplified by noting that the terms are symmetric in n and n".

Using equation (171)

oup =gy S % 2

+ n=0 n'=0 ann

o o Lot

It i (wy)) - ;L(IEI m{wy) + L2, l(wl))} (173)

where ! = 1,2 for phonon and ion scattering, respectively, w; = £{3,/28,
wy = £5, /268 + a4, and the factor gnn =2 — Jdpn ensures that the terms with

n = n' are not double-counted.

The computation of the integrals /2, (w) for p =0,1,2 and I = 1,2 is

reduced through use of the recursion relations
I = 1 - wifh,
- ' 2 701
PZL=n+n'+1—-w+ w20}

I = ~9IClL / Bw , (174)

using .ofF,?:ndu =1 and {u_F,?,ndu =n +n'+ 1. Thus all relevant /B, can be

related to 7,9},

In principle the integrals [,24 can be done analytically by using the polyno-

mial representation for the Laguerre polynomials

) = 5 onf e (175)

meg m!
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However, the resulting expressions are not generally reliable. For large argu-
ment and large order the form (175) is not suitable for the calculation of
Laguerre polynomials. This is due to loss of precision as a result of large cancel-
lations between the terms in relation (175). In order to avoid such difficulties

the following was used to evaluate L?™™ (Abramovwitz and Stegun 1972)

2 (u) = [2)actu) (176)
where ag(u) is generated recursively according to

n'—m + 1
m(n —n'+m)

Oy (1) = 1 = Uy, (1) (177)

m=n'n'-1, - 21 gyplu)=1

This representation is valid for all © and all order.

The integrals /0% (w) were computed numerically for a grid of n, »', and w,
making use of the symmetry 5,0} (w) = I3 (w). The computations were per-
formed for 0=n <30, O<n'<n, and O=<sw=<=w,(nn'), where
(Winax)phonons = ((30-1)/% + (30-n) )2 ; (Whardions = (Wmax)phonons + (24 )max. 1f
v and B are restricted to values such that npy,, = 30 then, from equation {(166),
(ag)max$D.5. The grid in w was chosen to be sufficiently fine that numerical
interpolation of relatively low order (6th order Lagrangian) could be used to pro-

vide the desired accuracy (<1%) for all relevant values of w.

d) Computations of ¢(v,8) and Q(v.8)

The functions ¢(v:8) and @(v;8) were calculated as functions of v for values

of 8 of interest, with the approximations described in the previous pages for
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both e-ion and e-phonon scattering. All computations were performed to an
accuracy of <1% in order to ensure that numerical errors did not affect the solu-
tions. The functions were evaluated to allow up to 30 Landau levels to be popu-
lated. This should probably be sufficient for all conditions present in a neutron

star crust.

Examples of ¢ and @ are given in Figures 5-8 for both e-ion and e-phonon
scattering for a field strength B = 103G (8 = .2266). As can be seen from Fig-
ures 5 and 7 ¢ jumps discontinuously to zero at the points v, satisfying
V2% —2nB — 1 = 0. The function @ diverges at v,; however, due to the cutoff
factors these are integrable singularities. Fits have been made to both ¢ and &

using piecewise continuous functions. For ¢
10g10¢ = Con + C1n 10810(V = Vn) + Can(log1o{v = vn))? (178)

where n = 0,1,2, - - - R9. In each interval v, - v,4+; the fit is accurate to = 10%
for v, +.01(Vps1 = Vn) <V <VUpyy. In the range vp <v <y, +.01{(Vpyy —Un),
where ¢ is relatively small, the fit is not as good; however this is not a serious
limitation. For the relevant degrees of degeneracy the function 8f% 8¢ will be
sufficiently wide that the deminant contribution to the integrals (89) will never
come from this interval. Thus, errors in this range will have a negligible

influence («<10%) on the conductivities.

The fits to §@(v;f) are somewhat more complicated because this function is
divergent at v = v, and relatively large contributipns to the integrals (119) are
made for v ®y,. The following form, accurate to =~ 10% over each interval
Vn - Unsy explicitly demonstrates the integrable nature of the singularities,

when cutoffs are accounted for
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log1c®@ = don + dyp logio{v —va) vp Sv<vy
10g10Q = egn + €15 logio{v — V) + ezn(logiolv ~ vn))? Ut =V <vpyy (179)

Tabulations of the cip,dey, and e, are given in the appendices. The values
of v} are presented in the form v} = v, + fn (Vn+1—Vn), With the f, tabulated.

The corresponding field strengths are summarized in Table 1.

Table 1. Index to the Appendices
Ap. | B(G) g Ap. | B(G) f Ap. | B(G) i
A 1019 | 0002288 || D | 3x10'! | 008797 | G 1013 | 2288
B | 3x10!% | 0006787 || E 1012 | 02288 || H | 3x10!3 | 6797
C 10" | 002286 | F | 3x1012 | 08797 || I 10 | 2.266

Fits to ¢ and @ for both e-icn and e-phonon scattering are given in each appen-

dix.

XI. Calculation of Transport Properties

Given the results of § X, it is now relatively easy to generate accurate
values for the transport properties from equations (89) and (119). In order to
demonstrate the usefulness and validity of the fits to ¢ and @ several examples
of transport coeflficients have been computed. The results are expressed in a
form similar to that of Yakovlev (1980a,b, 1982). It is most instructive to
present the conductivities in terms of the corresponding quantities in the
absence of a quantizing magnetic field. For large quantum numbers these ratios
should tend to unity. Also this has the advantage of eliminating the dependence
on factors which are uncertain, such as u©._,. Of course, in an actual application
this problem persists and this, along with other similar considerations, will be

addressed in § XII .
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In all examples the gas is assumed to be degenerate because this is the
situation of most interest. The conductivities neglecting quantum effects are
given to lowest order by equations (8)-(10), with the tensor (7) in the limit
Qotg >> 1 (see § V). The relaxation times (24) and (25) are assumed and the
choice of what to use for A;; will be discussed later in this section. It is also use-
ful to express the ratios in terms of the dimensionless quantities defined by rela-
tion (32). It should be emphasized that the calculations presented in this sec-
tion are not intended to be used in applications. The form that they are given in
would make this impractical. The question of how to best use the resultsin § X

will be discussed in the conclusions.

In order to express the thermoelectric coeflicient, X. in terms of its limit in
the absence of a quantizing field, Xo. repeated use is made of 874/ 019 From

equations (24) and (25)

— = --ELE— (e —ion) (180)

61‘0 To 2 4 3“02 - m204
—m~c g —phonon 181
= +  (e—phonon) (181)

ug — mtc

assuming constant values for Z, 4, and A;.

Finally the cross-sections og appearing in the conductivities (89) and (119)

are given by equations (68) and (71).

a) Longitudinal Transport Coefficients

From equation (B9) and the definitions mentioned previously, after algebra,

for electron-ion scattering
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O _ BB A Lo(&.t )
(e £(8%F - 1)%(BE - 1)

Az _ 18¢86°%Ae: L1(¢.1.8)
(Aer  n2t(F25 + 2)(BC — 1°(6%E — 1)°

Yzz = lafgﬁaAeiLE((-t'ﬁ)
(r0)es  mRt3(6%E — 1)%(B¢ — 1)°

and for electron-phonon scattering

Ozz - Sﬂs(ﬁ%'g + 1)L0(¢-t'ﬂ)
(0odee  £(B%E — 1)%(BE - 1)

Xzz - gﬁs(ﬂztg + l)le(f,t,ﬁ)
(Ao)zz  RrRE3¢o(8R¢4 + B)(B%E - 1)(B¢ — 1)°

e _ OF(E + VL8t F)
e mot3(B¢ - D(6%E - 1)°

The dimensionless integrals L, (¢,t,8) are

_ - e (V)87 t(8¢-1) ‘
Ly(¢t.8) = 1'[3<V -&n 1+ g(V'C)ﬁ/‘(ﬁ(“l))z e{v:8) dv

In the limit £ » 0 for both scattering processes

Y zz = Ozz
(70)zz (Uo)zz

and for electron-ion collisions

0 _ 66%§Niv(EiB)
(Gc)zz ({gﬁa - 1)3

N _ BBy (EH)
e (75 ~ DAEEE + 2)

(182)

(183)

(184)

(185)

(1886)
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while for electron-phonon scattering

0z _ B3F(LER% + De(L:h)
(00)2s (¢8p% — 1)°

Az 3 (B¥E+ 1P (4H)
(Ao)zz - 2 fo(é'gﬁz - 1)(¢§ﬁz + 3) (187)

As noted in § VII the t=0 expressions are not as useful as the corresponding
quantities in the absence of a quantizing magnetic field. This assertion will be

demonstrated by comparing examples of relations {182)-(184) with relations

(185)-(187).

b) Transverse, Dissipative Transport Coefficients

Using equation (119) and the same procedure, for electron-ion collisions

Uyy = _3_ __1___ To((.t.ﬂ)
(ool B t BALCE(BE - 1)
Mvw 9 (8%8 - DT t.B)

Do)y B2 5 (B — 1)%Ag: Lo(B2CE - 2) (188)

Yy . _9 BT=(¢.t.B)
(Yodw  Brt? Auld(BC - 1)°

and for electron-phonon collisions

Oy __ 38 1 _ FTo¢ts)
(do)yy 4 t (B%d—1)(B¢-1)
Mo 9 Tutth)

(Aodyy 167268 (BE —~ 1)%8 (189)
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T _ 8 B Ta(¢.t.B)
(Yodiw  472t% (B¢ ~1)%(p*E - 1)

The dimensionless integrals T, (¢t .8) are

(v-0)8/t(8¢-1)
Ta(¢t.8) = l_//; (v=0O" a1 :e(v-()ﬂ/t(ﬁ{—-l))g Q(vif)dv (190)

In the limit £ - O for both scattering processes

Tw _
(70)1,1/ - (Uo)w (181)

and for electron-ion scattering

w3 1 Q(L8)
(Uo)yy 8 ﬂz g ‘
My o3 1 (B8 -1@(R) (192)
Modyy 8 BPA, ol5¢EB% - R)
while for electron-phonon scattering
S _ §__ﬂ Q(¢:8)
(Godyy 47 B%E-1
2w o3 L1 oep) (193)

Again, as noted in § VIII, the £ - O forms are not as useful as the corresponding
quantities if quantum effects are neglected. This will also be demonstrated by

comparing examples of relations (188)-(190) with relations (191)-(193).
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c) Transverse, Non-Dissipative Transport Coefficients
From equations {152), (154), and (155)

O = (Go)ys

Me _ 3 g NA(&.t.6)
Dol 2% £3 &o(eZB° — 1)V2(B¢ ~ 1)°

(194)

Yo _ 9 8 N2(¢.t .6)
(Yohwe 27 3 (%8 - 1)¥3(e - 1)°

where

= (187t (BC-1)
Mt = [ =¥ ey [ﬂi‘" gn VB — 1 - 2nfldv  (195)

/8 n=0

The first relation in equations (194) is a consequence of the fact that Oyz
depends on the chemical potential only through n, and hence does not suffer

quantum effects (treating density as the independent variable).

Inthe t -» 0limit 0,z = (0g)yz and

(AA:L = SR T &, O S - 1= 2np)

Y = (Yo)y= (196)

The second relation in equations (198) follows from relation {35) and the

Wiedemann-Franz law.
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d) Numerical Ezamples

The ratios defined in the preceding equations depend only on the three
dimensionless parameters ¢,8,t. The factor ¢ is related to {,8,¢ through
relation (33) in the general case, and relation (35) in the limit £ +0. For e-ion
scattering the ratios also depend on the Coulomb logarithm. A, which is a
slowly varying function of temperature and density. There is some uncertainty
in the form for Ay;. Recently Itoh, et al. (1983) have computed conductivities in
the liquid phase, neglecting magnetic effects. The results are expressed in a
form identical to that given by Yakovlev and Urpin (1980). Residual discrepan-
cies (~10—30% for iron) are absorbed in the Coulomb logarithm and are princi-
pally accounted for by the fact that Yakovlev and Urpin neglected electron
screening in their estimates. The expressions for Ay given in Yakovlev (1980a,b,
1982) include electron screening. However the values derived from these formu-
lae do not agree with those of Yakovlev and Urpin (1980) if only ion screening is

assumed.

As the results presented in this section are intended to be illustrative and
not definitive, it is not appropriate to discuss the relative merits of the calcula-
tions of Ay . Thus, in the computations of the ratios (182), (186), (188), and
(192), the constant value A;; = 1 has been assumed. This is representative of the
conditions in neutron star crusts {see Itoh ,ef al. 1983). In view of this approxi-
mation, which involves errors £ 30%, it should not be surprising that the ratios
for e-ion scattering do not precisely approach unity when a large number of Lan-

dau levels are populated.

For convenience, and in order to be able to compare these results to those
of Yakovlev (1980a,b, 1982), the ratios of the transport coefficients were com-
puted for fixed g and ¢ as functions of ¢. In this form the quantum oscillations

and thermal damping are most visible. The integrals (184) and (190) were
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performed numerically, breaking the interval of integration into a sum of subin-
tervals, defined by the discontinuities in ¢ and @. Because ¢ and & have been
tabulated only up to a finite value of v, the conductivities can be calculated only
out to a corresponding finite value of (. For degenerate gases {f « 1) the
remainder of the integrands of equations (184) and (190) is sharply peaked so

this should not be a serious limitation.

Results are given for the field strengths B = 10''G and B = 101G,
corresponding to § = .002266 and 8 = .22686, respectively. Comparisons between
the fully degenerate limit {t = 0) and the more general case are made for
t = .025, which is typical of neutron star crusts. The longitudinal properties are
given in Figures 9-12 for B = 10''G and Figures 13-18 for B =10'G. The
transverse, dissipative coefficients are shown in Figures 17-20 for B = 10''G and
Figures 21-24 for B = 10'3G. Finally, examples of the transverse, non-dissipative
conductivities are given in Figures 25 and 28. All calculations have been per-

formed using the fits to ¢{v;8) and @(v;B) given in the appendices.

e) Discussion

The results for B = 10! G (g = .002268) are in good agreement with the
non-relativistic calculations of Yakovlev (1980a,b, 1982). Small numerical
differences in the ratios 0.,/(00)sz » Y22/ (70)2z for e-ion scattering are
explained by the approximation A;; = 1 made in this paper. The convergence of
¢(v;8) was further checked by explicitly solving the non-relativistic system of
Yakovlev (1980a, 1982). For the field strength B =10'G, the relativistic and

non-relativistic calculations agreed to <27% .
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The tendency of the electrical and thermal conductivity ratios to approach
unity for large ¢ is a check on the numerical accuracy of the calculations of
¢(v:8) and @(v;8). Also, the approximations described in § X (screening lengths
and cutoff factors) are justified. Again, small deviations (~30%) from unity of

the ratios for e-ion scattering are due to the uncertainty in Ag;.

The behavior of the thermoelectric coefficient for large ¢ is somewhat
surprising. For e-phonon scattering the ratios converge rapidly to 1 (Figs.
12,16,20,24). However, for e-ion scattering the ratios appear to approach 1 only
asymptotically. The large deviations (g a factor of 10) cannot be attributed to
either the uncertainty in Ag; or numerical problems. The most likely explana-

_tion is that ¢{v;8) and @{v;f) have not been calculated for sufficiently large v to
ensure that the ratios have converged. However, further analysis may be
required to show that the expected limit is attained as the number of levels

populated becomes infinite.

The importance of thermal effects is clearly demonstrated by these calcula-
tions. For non-zero ¢t the oscillations are damped and the Wiedemann-Franz law
is not satisfied. Furthermore, it is not a good approximation to assume the £ =0
values for the conductivities, especially for transport perpendicular to B. The
divergences in the cross-field conductivities are removed when thermal smooth-

ing is included.

The oscillatiois in the y—z components of the transport tensors (Figs.
25,28) are relatively unimportant because these elements are independent of

the collision time. Again, the £ = 0 limit is not a good approximation
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XI1. Conclusions

A complete treatment of electron transport in a quantizing magnetic field
has been presented, with allowance for relativistic electrons and arbitrary
degree of degeneracy. The work of Yakoviev (1980a,b, 1982) has been extended
and generalized. The analytic results are valid for any scattering potential as
long as the collisions are elastic. Numerical results have been given for e-ion
and e-phonon collisions, which are the most important scattering mechanisms in
neutron star crusts. Electron-electron scattering will be unimportant unless low
Z ions (Z £ 10) are present. Impurity eflects are not likely to be significant
because the matter in the crust is believed to be rather pure (in any case, as
- mentioned earlier, it is easy to extend the present analysis to handle impurity
scattering). The numerical results are presented in a form which will allow the
transport coefficients to be more easily evaluated. The analytic expressions and
computations agree in detail with Yakovlev (1980a,b, 1982) in the non-relativistic
limit.

Although the fitting formulae for ¢(v;8) and @(v;8) reduce the difficulty of
evaluating the transport coefficients, several complications remain. The
integrals defining the conductivities must be done numerically. Because of the
discontinuities in the integrand this can be time-consuming. Also, in an actual
application it would be necessary to invert the relation between density and
chemical potential. A possible solution would be to calculate the transport
coefficients on a grid of values and then interpolate. Alternatively, because the
deviation of ¢ from ¢y is small, it should be a good approximation to use the
. unmagnetized relation of density to chemical potential for all but the lowest
densities (see Fig. 2). If cnly oﬁe Landau level is occupied the £ = 0 relation

between ¢ and ¢ is strongly satisfied and can easily be inverted.
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Finally, values must be assumed for the factors Ag; and ©_3 in order to com-
pute the transport tensors. The existing calculations of As; agree to within
£ 30%. This should not be critical as other uncertainties will almost certainly be
more significant. The estimates for u_;, cn the other hand, differ by factors ~3.
Thus the conductivities in the solid are subject to similar errors. Since the tran-
sport coeflicients scale simply with ©u_5 , hoﬁever, the present conclusions will

remain valid if further research leads to a definitive value for this factor.
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Appendix A

Coefficients in the fits to ¢(v;8) and @Q(v:8) (egs. [178] and [179]) for
B =10 G (8 = 2.266x107%) .

Table 2. lon Scattering

Con Cin Con don din €on €in €2n In
1.084 2.683 .2289 .0000 .0000 -3194 -1.342 -0318 .0001
1.689 2.268 8325 -3863 -4920 -0810 -1.120 -0110 .0004
2.066 1.723 .4676 -0930 -4901 .04B2 -7729 .0482 .0010
2.351 1.340 3888 -0839 -4B71 .1166 -B192 .0711 .0010
2564 1.086 2147 -.0499 -4B19 .1622 -5189 .0B73 .0020
2.760 .9278 .1761 -.0515 -4794 .1948 -4510 .0960 .0020
2.928 .8251 .1474 -0554 -4772 2183 -4010 .1017 .00R0
3.078 .7454 1253 -0419 -4699 2384 -3884 .1019 .0040
3.211 .BB18 .107B -0462 -.4B678 2508 -3377 .1037 .0040
3.332 .6293 0938 -D508 -4859 2829 -3122 1047 .0040
3.441 .5855 .0B19 -.0550 -4641 2732 -2909 .10581 .0040
3.543 .54B4 0720 -.0592 -4624 2823 -2725 .1052 .0040
3.8638 .5162 0836 -.0631 -4607 .2804 -25687 .1051 .0040
3.723 .4B81 .0583 -.03B0 -.4508 2937 -2712 .0851 .0080
3.805 .4635 .0499 -0406 -4490 .3003 -2593 .0845 .0080
3.881 .4418 0444 -.0430 -4473 .3063 -2488 .0B38 .0080
3.953 .4220 .0395 -.0453 -.4457 3116 -23% .0831 .00BO
4022 4043 0351 -.0475 -4440 3164 -2308 .0B24 .0080
4.086 .38B2 .0312 -0496 -4426 3209 -2230 .08168 .0080
4,148 .3736 .02786 -.0516 -.4411 .3249 -2161 .0B0OB .0080
4.207 .3803 0245 -0535 -4397 .3287 -2095 .0801 .0080
4,263 .3480 .0216 -.0553 -4383 .3323 -2032 .0794 .0080
4,317 .3387 0189 -0569 -4370 .3357 -1976 .0787Y .0080
4388 .3262 .0185 -0585 -.4357 .3388 -1924 .07B0 .008BO
4.418 .3184 .0142 -.0600 -4345 .3417 -1875 .0773 .008C
4.466 .3073 0122 -.0614 -4333 3443 -1829 .0787 .008O
4.512 .2988 .0103 -.0628 -4321 .3468 -1787 .0760 .00BO
4,556 2909 .0085 -.0641 -4310 .3493 -1747 .0753 .008C
4599 2833 .0089 -.0653 -4208 3515 -1709 .0746 .0080
4641 2763 0053 -0665 -4288 .3537 -.1675 0739 .0080

WU NDOVNDD NN D) - b s s b
mm«zmm»wmo—aocom.qmm,,;mmHocomﬂmcn.pmmHo:



TOTO IO D000 D000 D0 10 D 1 b= 13 1 b b b 1 b 1
RNy N B oot ranro@PENRO PO

Con
.3819
.8607
1.117
1.313
1.471
1.604
1.718
1.819
1.909
1.989
2.063
2.131
2.194
2.252
2.307
2.358
2.408
2.452
2.495
2.637
2.5678
2.613
2.649
2.684
_2.717
2.748
2.779
2.809
2.837
2.865

Cin
1.840
1,422
1.038
.B284

6947

.8038
.5383
4848

4429
.4088

.3808
.3564

.3355

.3173
.3013
.2870

2743
2827

.2523
2427

2341

2261

.2186

2117
.20563
1994
.1938
.1886
.1837

1791
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Table 3. Phonon Scattering

Cen
.1379
.2692
.1758
1237
.0911
.0688
.0527
.0408
.0309
.0232
0171
.0118
0074
.0037
.0005
-.0023
-.0048
-.0089
-.008¢
-.0106
~0121
-0134
-.0147
-.01568
-.0168
-.0178
-.0186
-.0194
-.0201
-.0208

don
.0000
1054
5766
7835

.9160

1.033
1.113
1.179
1.2386
1.285
1.329
1.369
1.405
1.438
1.489
1.497
1.524
1.549
1.873
1.595
1.616
1.637
1.858
1.674
1.692
1.709
1.726
1.741
1.757
1.771

din
.0000
-.4929
-.4B866
-.4808
-.4759
-.4657
-.4611
-.4571
-.4534
-.£500
-.4469
-.4440
-.4413
-.4387
-.4363
-.4339
-.4317
-.4296
-.4278
-.42587
-.4238
-.4220
-.4203
-.41B6
. ~.4170
-.41564
-.4139
-.4124
-4110
-.40986

€on
-.2364
.3682
.6938
.8021
1.053
1.189
1.265
1.346
1.416
1.477
1.831
1.681
1.625
1.660
1.698
1.734
1.767
1.798
1.827
1.854
1.880
1.905
1.928
1.950
1.972
1.992
2.012
2.030
2.049
2.068

€in
-1.162
-.9242
-7515
- 6411
-.5658
-.5320
-.4902
-.4564
-.4281
-.4058
-.3858
-.3685
-.3532
-.4548
-.4360
-.4190
-.4038
-.3900
-.3774
-.3659
-.35561
-.3453
-.3363
-.3278
-.3199
-.3125
-.3055
-.2989
-.2928
-.2869

€2n
-.0285
.0237
.0333
0431
.0493
.0299
.0317
.0330
.0336
0341
.0345
.0345
.0345
-.1423
-.1319
-.1228
-.1148
-.1077
-.1013
-.0855
-.0803
-.0855
-.0812
-.0773
-.0736
-.0702
-.0871
-.0642
-.0615
-.0589

Sn

.00=20
.0080
.0200
.0200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
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Appendix B

Coeflicients in the fits to ¢(v;8) and Q(v;8) (eqs. [178] and [179]) for
B =3x10'° G (8 = 6.797x107%) .

Table 4. lon Scattering

Con Cin Can don Ain €on €1n E2n In
1.084 2683 2290 .0000 .C0O0 -3192 -1.342 -0318 .0001
1.690 2.267 .68327 -3882 -.49 20 -0807 -1.120 -0109 .0004
2.087 1.72¢4 4678 -0927 ~-4901 .0488 -7725 .0483 .0010
2.351 1.401 3668 -0635 -4871 .1173 -6187 .0712 .0010
2.564 1.066 .2149 -.0494 -4819 .1631 -5183 .0874 .0020
2.760 .9286 .1763 -0509 -4794 .1960 -4503 .0961 .0020
2.929 8259 .147v8 -0546 -4771 2207 -4003 .1019 .0020
3.077 .7462 1255 -.0409 -48699 2380 -3878 1021 .0040
3.210 .6825 .1080 ~-0451 ~-4678 .2528 -3368 .1039 .0040
3.331 .B6302 .0938 -0493 -4659 .2650 -3113 .1049 .0040
3.440 5884 .0B21 -.0535 -4841 2755 -2B898 .1053 .0040
3.541 .5493 0722 -0576 -.4624 .2849 -2714 1055 .0040
3.634 .5171 .0638 -.0614 -4607 .2933 -R556 .1053 .0040
3.721 4890 0565 -.0360 -.4507 .2987 -R2700 .0854 .0080
3.803 4844 0502 -03B5 -.4489 .3036 -2581 .0847 .0080
3.879 4425 0446 -0407 -4473 3098 -2475 .0841 .0080
3.951 4229 0397 -.0429 -4456 .3153 -2381 .0834 .0080
4.019 4052 .0353 -.0449 -4440 .3204 -22395 .0827 .0080
4,083 .3891 .0314 -.0468B -4425 .3251 -2217 .0819 .0080
4145 3745 0279 -0488 -4410 3294 -2147 .0B11 .00BO
4203 .3612 0247 ~-.0504 -4396 .3334 -2081 .0BO4 .0080
4259 .34B9 .0218 -.0519 ~-4382 .3373 -2018 .0797 .0080
4313 .3376 .0191 -0534 -4389 .3408 -.1961 .0790 .0080
4.384 .3271 .0167 -.0548 -43568 3442 -.1909 .0783 .0080
4414 3173 .0145 -05662 -.4343 .3473 ~-1859 .0776 .0080
4461 .3082 .0124 -0574 -4331 .3502 -.1813 .0769 .008C
4507 .2997 .0105 -0586 -4320 .3530 -.1771 .0763 .0080
4551 .2918 .0088 ~-0598 -4308 .3558 -1730 .0756 .0080
4594 2842 .0071 ~-0608B -4297 .3582 -1693 .0749 .0080
4835 2772 .0056 -.0818 -4286 .3808 -.1658 .0742 .008O

NN NONODNDDN NN e = b b b
BRI RSN ML g sl e s R T =i RO X SR SRR S
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Con
.3820
.B60S
1.117
1.313
1.471
1.803
1.718
1.818
1.908
1.989
2.082
2.130
2.193
2.251
2.305
2.356
R.404
2.450
2.493
2.534
2.573
2.810
2.646
2.680
2.713
R.745
R.775
2.805
2.833
2.861

Cin
1.840
1.423
1.036
.B268

.6952

.8041
.5368
4851

4434
.4093

3811

.3569

.3381
3179

.3018
.2B76
.2748

.2633
.2528

2433

2347
2266

2181

2123
.2059

.1999

1944
.1891
.1842
1706
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Table 5. Phonon Scattering

Cen
.1380
2692
1757
1237
0912
.0689
.0628
.0407
.0310
.0233
0172
.0119
.0076
.0038
.0006
-.00:22
-.0047
-.0068
-.0087
-.0104
-.0119
-.0133
-.0146
-.0157
-.0187
-0177
-.0185
-.0193
-.0200
-.0=207

don
.0000
.1055
56786

7837

.9183
1.014
1.091
1.180
1.236
1.288
1.330
1.370
1.408
1.439
1.470
1.499
1.825
1.651
1.574
1.687
1.618
1.639
1.658
1.877
1.895
1.712
1.728
1.744
1.760
1.775

dln
.0000
-.4929
-.48983
-.4808
-.4759
-.4717
-.4680
-.4571
-.4534
-.4500
-.4469
-.4440
-.4412
-.4388
-.4362
-.4339
-.4317
-.4296
-.4275
-.4256
-.4237
-.4219
-.4202
-.4185
-.4169
-4153
-.4137
-.4123
-4108
-.4094

€on
-.2364
3684
69586
9028
1.054
1.172
1.268
1.347
1.417
1.478
1.833
1.582
1.627
1.688
1.706
1.742
1.775
1.8056
1.B29
1.857
1.883
1.908
1.931
1.954
1.975
1.998
2.0186
2.035
2.053
2.070

€1n
-1.163
-.9238
-.7388
-.6406
-.b651
-.5099
-.4675
-.4556
-.4283
-.4060
-.3848
-.3676
-.3523
-.3388
-.3267
-.3157
-.3057
-.2966
-.3774
-.3658
-.3651
-.3452
-.3362
-.3277
-.3198
-3123
-.3053
-.2088
-.2926
-.2867

-.0289
.0238
.0439
.0433
.0485
.0533
.0557
.0333
.0339
0344
.0348
.0348
.0348
.0348
.0347
.0348
.0345
.0342
-.1010
-.0952
-.0900
-.0852
-.0809
-.0770
-.0733
-.0899
-.0668
-.0839
-.0812
-.0687

.0010
.0080
.G080
.0200
.0200
.0200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
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Appendix C
Coefficients in the fits to ¢(v;8) and @(v;8) (eqs. [178] and [179]) for
B =101 G (B = 2.266x1079) .

Table 8. lon Scattering

Con Cin Con don din 2on €1n €2n In
1.085 2.684 2204 0000 .0000 -3185 -1.342 -.0317 .0001
1.691 2.269 .8333 -3858 -4920 -0799 -1.119 -0107 .0004
2.088 1.727 .4885 -.08919 -4901 .0503 -7712 .0486 .0010
2352 1.404 .3875 -.0622 -4B71 .1197 -6171 .0716 .0010
2587 1.07v9 2164 -0478 -4Bi9 .1683 -5163 .0879 .0020
2.759 .9313 .1768B -0486 -4794 2000 -.4480 .0968 .0020
2927 .B28B7 .14B2 -0518 -4771 2256 -3977 .1024 .0020
3.078 .7491 .i281 -0375 -.4698 2437 -3646 .1028 .0040
3208 .6854 .10868 -.0411 -4677 2591 -33368 .1047 .0040
3.327 .6332 .0945 -0449 -4857 2723 -3079 .1058 .0040
3.436 .5884 0827 -.0485 -4639 2837 -2863 .1060 .0040
3.538 .5523 .0729 -.0521 -4622 2939 -R2678 .1062 .0040
3.629 .5201 .0844 -0552 -.4605 .3031 -2518 .1061 .0040
3,715 .4920 .0572 -0292 -4505 .3071 -R2660 .0863 .0080
3.798 .4874 .0508 -0311 -4487 .3148 -2540 .0857 .0080
3.871 .4455 .0453 -0327 -4470 3218 -2433 .0850 .0080
3.942 4259 .0404 -0343 -4454 .3282 -2337 .0844 .0080
4010 .408B2 .0380 -0357 -4437 .3341 -2250 .0B36 .0080
4.073 .3922 .0321 -0372 -4422 3396 -2171 .0829 .0080
19 4.134 .3778 .02868 -03B4 -4407 .3446 -2100 .0820 .0080
20 4.192 .36842 .0254 -0395 -4393 .3495 -2033 .0813 .0080
21 4.247 .3519 .0225 -0405 -4379 .3542 -.1969 .0807 .0080
22 4300 .3408 .0199 -0415 -43868 .3585 -.1911 .0799 .0080
23 4935t .3301 .0174 -04R23 -4353 3627 -1858 .0792 .008O
24 47399 .3203 .0152 -0430 -4340 .3666 -.1808 .0786 .0080
25 4448 3112 .0132 -0437 -4327 .3703 -.1761 .0778 .008C
26 4.491 .3027 .0113 -0444 -4315 .3738 -1718 .0772 .0080
27 4.534 2947 .0095 -0449 -4304 3773 -1878 .0765 .0080
28 4.576 .2871 .0079 -0454 -4293 3806 -1638 .0758 .0080
29 46817 .2801 .0083 -0458B -4282 .3838 -1803 .0751 .0080

g gl et viagag Y- R X RN R SR



D010 00 00 00 00 D0 00 1O DO bt bt bbb bt 1 bt pt bbb
AV R RN R R g e S SR SR R R R R SRR

Con
.3B28
8617
1.118
1.313
1.470
1.603
1.716
1.816
1.805
1.986
2.059
2.128
2.188
2.248
2.299
2.350
2.397
2.442
2.485
2.525
2.584
2.600
2.638
2.669
2.702
2.733
2.762
2.791
2.819
2.846

Cin
1.B41
1.424
1.038
.B283
.6968
.B057
.53886
4869
4452
4112
.3830
.3588
.3379
.3198
.3037
.2B95
R787
.R652
2547
24562
.2365
.2285
K210
_141
2077
2017
1962
.1909

.18860

1814
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Table 7. Phonon Scattering

Czn
1382
.2695
1759
1240
.0915
.0693
05831
.0410
.0314
.0237
0175
0123
.0079
0042
.0010
-.0018
-.0043
-.0064
-.0084
-.0101
-.0116
-.0129
-.0142
-.01564
-.0164
-.0173
-.0182
-.0189
-.0197
-.0203

don
.0000
.1018
0682
7710
.9003
1.015
1.093
1.187
1.212
1.281
1.303
1.374
1.410
1.444
1.475
1.504
1.531
1.587
1.581
1.604
1.626
1.647
1.867
1.688
1.704
1.721
1,738
1.765
1.771
1.788

dln
.0000
-.4941
-.4893
-.4849
-.4811
-4717
-.4679
-.4646
-.4615
-.4586
-.4580
-.4438
-.4410
-.4384
-.4360
-.4336
-.4314
-.4293
-.4R272
-.4253
-.4234
-.4215
-.4198
-.4181
-.4164
-.4149
-.4133
-.4118
-4103
-.4089

€on
-.2357
.3686
.6968
.9082
1.058
1.174
1.271
1.353
1.423
1.485
1.540
1.588
1.834
1.676
1.714
1.750
1.783
1.815
1.844
1.872
1.899
1.924
1.948
1.971
1.993
2.009
2.029
2.049
2.0868
2.086

€1n
-1.182
-.9271
- 7371
-.6220
-.5439
-.8075
-.4649
-.4307
-.4030
-.3795
-.3593
-.3648
-.3492
-.3358
-.3234
-.3123
-.3023
-.2932
~.2848
- 2770
-.2698
-.2631
-.2569
-.R511
-.2458
-.3118
-.3048
-.2982
-.2920
-.2861

€2n
-.0287
0211
.0445
.0582
.0885
.0542
.05686
.0582
.0580
.0895
.0598
.0359
.0359
.0359
.0358
.0357
.0355
.0353
.0351
.0349
0347
.0345
.0342
.0340
.0337
-.0690
-.0658
-.0830
-.0803
-.0577

In

.0010
.0040
.0080
.0080
.0080
.0R00
.0200
.0200
.0200
.0200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
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Appendix D
Coefficients in the fits to ¢(v;8) and Q(v;8) (egs. [178] and [179]) for
B = 3x10!! G (B = 6.797x1079) .

Table B. Jon Scattering

Con Cin Can don 8in €on 2in Eon In
1.088 2887 2304 .0000 .0Q00 -3187 -1.340 -0314 .000!
1.686 R275 .8349 -3B46 -.4919 -0774 -1.117 -0102 .0004
2.072 1.735 4704 -0895 -4900 .0549 -7876 .0495 .0010
2.355 1.413 .3896 -0585 ~-4B70 .1264 -6127 .0726 .0010
2564 1078 2188 -0425 -.4B18 .1754¢ -51068 .0893 .0020
2.723 .8v89 .1553 -0421 -4792 2114 -4417 0980 .0020
2.924 .B385 1497 -0439 -4769 .2392 -3907 .1039 .00R20
3.070 7571 1277 -027v8B -4695 2597 -3565 .1047 .0040
3.201 .6934 .1103 -0300 -4674 .2v73 -3250 .1066 .0040
3.318 .B412 0982 -.0323 -4654 .2927 -2988 .1076 .0040
10 3.425 5975 0845 -0345 -4836 .3063 -.2787 .10B0 .0040
11 3.523 .5604 .0747 -0385 -4619 .3187 -2578 .1082 .0040
12 3.814 .5282 .0682 -.0098 -4519 .3254 -2691 .0B95 .0080
13 3.898 .5001 .0590 -.0102 -4500 .3358 -.2554 .0888 .0080
14 3.776 4755 0527 -.0108 -448B1 .3456 -2431 .0881 .0080
15 3.850 .4535 0471 -0107 -4484 .3547 -2321 .0875 .0080
16 3.919 .4339 0422 -0108 -.4447 .3632 -2223 .0888 .0080
17 3.984 4181 .0379 -.0107 -4430 .3711 -2134 .0860 .0080
18 4.046 .4000 .0340 -.0107 -4415 .3788 -2052 .0B52 .0080
19 4,105 .3854 .0304 -.0104 -4400 3857 -.1980 .0844 .008O
20 4.181 3719 0273 -0101 -4385 .3926 -.1911 .0837 .0080
21 4214 .3596 0244 -0096 -4371 .3993 -.1B44 .0830 .008O
22 4.265 .34B2 0217 -0090 -4357 .4056 -1785 .0B22 .008B0
23 4.314 .33768 .0193 -00B4 -4344 .4117 -1730 .0815 .00BC
24 4360 .3277 .0171 -0077 -4330 .4176 -.1879 .0808 .0080
25 4.405 .3185 .0150 -0070 -4318 .4232 ~-1630 .0B8C1 .00BO
268 4,448 3100 .0131 -0061 -4305 .4287 ~-.1586 .0794 .0080
27 4.490 .3019 .0113 -0053 -.4294 .4340 -1543 .0787 .0080
28 4.530 .2943 .0097 -0044 -42B2 .4392 -1503 .0780 .0080
29 4.569 .2871 .00B1 .0535 -4103 .4397 -1738 .0568 .0200

oL DN~ OI



o R o RN N W N AR SHE o I

.3B43
.8639
1.118
1.313
1.469
1.800
1.713
1.811
1.899
1.977
2.049
2.114
2.175
2.231
2.283
2.332
2.378
2.421
2.482
2.501
2.838
2.573
2.607
2.639
2.670
2.699
2.728
2.755
2.781
2.807

Cin
1.843
1.427
1.041
.8325
7012

8104

.6433

4918

4502
4181
.3880
.3638

.3430
.3248

.3088
2945
2817
2701

.2897
2601

R414
.2333
.2258
.2188
R124

.2084
.2007
.1954

.1905
.1858
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Table 9. Phonon Scattering

C2n
.1389
2701
1768
.1248
0923
.0701
0541
.0420
.0323
.0247
.0185
.0133
.0089
.0052
.0020
-.0008
-.0033
-.0054
-.0074
-.0091
-.0108
-.0120
-.0133
-.0144
-.0154
-.0184
-.0172
-.0180
-.0188
- 0194

don
.0000
.1029
58699
7736
.9037
.9994
1.098
1.184
1.220
1.269
1.313
1.353
1.389
1.422
1.489
1.520
1.548
1.875
1.800
1.624
1.647
1.669
1.690

1.710°

1.729
1.748
1.766
1.784
1.801
1.817

dha
.0000
-.4940
-.4893
-.4848
-.4810
- 4777
- 4677
-.4643
-.4612
-.4583
-.4556
-.4531
-.4507
-.4485
-.4354
-.4330
-.4307
-.4285
-.4284
-.4244
-.4225
-.4206
-.4188
-.4171
-.4154
-.4138
-.4122
-.41086
-.4001
-.4077

€on
-.2335
3710
7004
8111
1.0865
1.185
1.280
1.364
1.436
1.499
1.558
1.608
1.655
1.698
1.738
1.773
1.808
1.841
1.872
1.902
1.930
1.958
1.982
2.006
2.030
2.052
2.074
2.095
2.115
2.135

21n
-1.189
-.9237
-.7324
-.6166
-.5379
-.4B04
-.4578
- 4232
-.3961
-3714
-.3508
-.3333
-.3178
-.3040
-.3147
-.3035
-.2933
~.2841
-.2755
-.R2677
-.2603
-.2535
~.R473
-.2413
-.2358
~.2308
-.2256
-.2210
-.2166
-2124

€2n
-.0274
.0R22
.0462
.0600
.0684
.0738
.05680
.0606
0614
.0619
.0623
.0822
0621

-.08619

.0388
.0385
.0383
.0381
.0378
.0376
0374
.0372
.0368
.0368
.0383
.0381
.0358
.0355
.0353
.0350

In

.0004
.0040
.0080
.0oso
.0080
.0080
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
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Appendix E

Coefficients in the fits to ¢(v;8) and Q(v:f) (eqs. [178] and [179]) for
B =102 G (8 = .02268) .

Table 10. lon Scattering

Con Cin C2n don din €on €in €2n In
1.086 2.698 .2339 .0000 .0000 -3102 ~-1.335 -.0304 .0001
1.710 2297 .B404 -3B04 -4918 -0688 -1.110 -0084 .0004
2.085 1.783 .4765 -0B12 -4899 .0708 ~-7555 .0525 .0010
2.364 1.443 3762 -.0458 -4B68 .1493 -5983 .0758 .0010
2587 1.231 .3083 -.0250 -4B14 2080 -4925 .0935 .0020
2.752 96831 .1B30 -.0199 -4788 2492 -4216 .1024 .0020
2.912 .B809 .1545 .0010 -4713 .2B36 -3718 .1069 .0040
3.052 7815 .1328 .0043 -4688 3116 -331B .1102 .0040
3.176 7178 .1152 .0087 -4685 .3360 -.2990 .1121 .0040
3,288 .8853 .1010 .0090 -.4645 3579 -2717 .1131 .0040
3.380 .8213 .0B93 .0113 -4626 3779 -.24B7 .1134 .0040
3,481 .5839 .0795 .0138 -.4608 .3966 -2286 .1135 .0040
3.566 5513 .0710 .0461 -4505 4079 -2398 .0959 .0080
3.844 5228 06837 .0499 -.4485 4241 -2257 .0951 .0080
3.717 4977 .0574 .0538 -4488 .4396 -.2130 .0843 .0080
3.785 .4754 .0518B .0578 -.444B 4542 -2017 .0935 .0080
3.849 4553 0468 .0818 -.4431 4680 -.1917 .0927 .0080
3.909 .4371 .0424 0859 -.4413 .4B12 -.1825 .0918 .0080
3.966 .4208 .0384 .0700 -4397 .4938 -.1742 .0909 .0080
4.019 4055 .0349 .0741 -4381 5059 -.1667 .0899 .008O
4070 .3916 .0316 .07B2 -.4366 5178 -.1597 .0B90 .008O
4,119 .3788 0287 .0B24 -4351 .5290 -.1530 .0BB2 .00BO
4,185 3870 0259 .0868 -4337 .5400 -.1470 .0873 .0080
4208 .3580 .0234 .0908B -4323 .5506 -.1414 .0865 .0080
4251 .3457 .0211 .0950 -4309 .5609 -.1362 .0857 .0080
4,292 3381 .0160 .0982 -4296 .5708 -.1313 .0849 .0080
4,331 .3271 .0171 .1811 -411B .57Y32 -1572 .0840 .0200
4,388 .3188 .0152 .1860 -4103 .5825 -.15830 .0832 .0200
4.404 3108 .0135 .1709 -4089 5918 -.1482 .0825 .0200
4.438 3031 0119 .1759 -4076 .6004 -.1457 .0616 .0200

VNNV D) s s s s e
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Con
.3899
.B714
1.124
1.314
1.468
1.582
1.699
1.793
1.878
1.949
2.016
2.077
2.132
2.184
2.231
2.276
2.317
2.358
2.393
2.428
2.461
2.492
2.521
2.549
2.578
2.602
2.626
2.650
2.873
2.695

Cin
1.851
1.437
1.054

.8481
7158
8252
.5584
.8070
4855
4313
4031
.768
.35678
.3395
3232
.3087
2957
.2839
2731
.2633
.2543
2480
.2382
.2310
2242
2179
2120
.2085
2018
.1963

Table 11. Phonon Scattering
Con don din €on
.1412 .0000 .0000 -.2273
2723 .1030 -.4950 .3781
.1790 .5693 -.4910 .7138
1274 78RS -.4B46  .9283
.0950 .9167 -.4807 1.087
0730 1.018 -4772 1212
0570 1.094 -4742 13186
0449 1.160 -.4714 1.404
.0353 1.246 -4603 1.478
0276 1.299 -.4573 1.546
0215 1.348 -4545 1.608
0183 1.389 -.4519 1.685
0119 1,429 -.4485 1.717
0081 1.485 -.4471 1765
.0048 1.500 -.4449 1.809
0020 1.532 -.4427 1.851
-.0005 1.603 ~-.4288 1.887
-0027 1.633 -.4R65 1.924
-.0047 1.661 -4243 1.959
-.0064 1.689 -4222 1.993
-0079 1.716 -4202 R2.025
-.0094 1.740 -41B3 2.056
-0108 1.764 -.4164 2.085
-0119 1.787 -.41468 2.114
-0130 1.810 -.4128 2.141
-.0140 1.831 -.4111 2.167
-0149 1.B52 -.4094 2.192
-0158 1.873 -407Y8 2.217
-.0166 1.893 -4063 R2.241
-0173 1.912 -.4047 2.264

-175-

€1n
-1.152
-.9185
-.7107
-.5985
-.5181
-.4591
-.4136
-.3770
-.3705
-.3462
-.3251
-.3070
-.2911
-2770
-.2644
-.2530
-.2678
-.2585
-.2499
-.2420
-.2346
-.2279
-R217
-.21568
-.2103
-.2052
-.2003
-.1957
-.1914
-.1873

€2n
-.0258
.0221
.0557
.0659
0744
.0797
.0830
.0852
.0687
.0890
.0693
.0891
.0688
.0884
.0680
.0675
.0458
.0451
.0447
.0443
.0440
.0438
.0431
.0427
.0423
0419
0415
0411
.0408
.0404

Sn

.0004
.0020
.0040
.0080
.0080
.0080
.0080
.0080
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
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Appendix F
Coefficients in the fits to ¢(v;8) and Q(v;8) (egs. [178] and [179]) for
B = 3x102 G (8 = .08797) .

Table 12. Ion Scattering

Con Cin Con don din €on €in €2n Sn
1.119 2728 .2434 .0000 .0000 -2925 -1.320 -.0276 .0001
1.750 2.35¢ .8540 -3686 -.4915 -0456 -1.081 -.0038 .0004
2.119 1.831 4911 -.0B8B2 -4895 .1132 -7256 .0588 .0010
2.387 1.516 .3911 -0020 -4838 .2124 -5513 .0B95 .0020
2.596 1.305 .3229 0217 -4B06 .2835 -4513 .1025 .0020
2767 1.153 2740 .0378 -4778 3427 -3776 .1112 .0020
2.881 .9132 .1638 .0704 -.4700 3827 -3224 1173 .0040
3.008 .8320 .1416 .0838 -.4872 4343 -2813 .1202 .0040
3.119 .7665 .1239 .0958 -.4649 4714 -2475 .1218 .0040
3.217 .7121 1094 .1070 -4828 5052 -2196 .1222 .0040
3.306 .6661 .0973 .1178 -4808 5362 -.1963 .1221 .0040
3.388 .B6R270 .0872 .1589 -4505 5575 -2029 1071 .0080
3.462 5923 .0784 1705 -.448B3 5840 -.1878 .1056 .0080
3.530 .5621 .0708 .1815 -~-4463 8091 -1742 .1042 .0080
3.593 6353 .0642 .1923 -4443 6331 -.1621 .1029 .0080
3.652 5113 .0583 2029 -4425 .6557 -.1513 .1017 .008BO
3.708 .4897 .0531 2132 -4407 .6770 -1418 .1004 .008O
3.760 .4700 .0484 2233 -4389 .6973 -1332 .0992 .0080
3.808 .4531 .0442 2329 -4372 7167 -1254 .0879 .0080
3.855 .4357 .0404 .2425 -435668 .7352 ~-11B6 .0966 .0080
3.899 4204 0369 2518 -4341 .7530 -.1iR22 .0854 .0080
3.94C 4085 0338 .26809 -4326 .7702 -1060 .0943 .0080
3.980 .3934 .0309 .2698 -4312 .7868 -1006 .0931 .0080
4018 .3813 .0282 .3378 -4134 .7911 -.1308 .0725 .0200
4054 .3699 .0257 .3472 -.4118 .B061 -.1262 .0714 .0200
4.089 .3593 0235 .3565 -4103 .8207 -.1220 .0704 .0200
4,122 .3493 0213 .3855 -.40BB .8347 -1183 .0894 .0200
4.154 .3399 0194 3742 -4074 .B484 -1147 .0684 .0200
4,185 .3310 .0175 -.3829 -4060 .B816 -.1114 .0674 .0200
4215 3226 .0158 .3914 -.4047 .B743 -1087 .0663 .0200

FAVIR AV IR AN IS I AV I S I 0 IR A I S B (T e e e e e e e ol S
NN NN S oo N om0 P@IOr OO



oo~~~ OI

10

Con
4056
.8910
1.135
1.313
1.453
1.587
1.683
1.745
1.817
1.880
1.938
1.988
2.034
2.077
2.118
2.162
2.186
2.217
2.247
2.275
2.301
2.326
2.349
2.372
2.393
2.413
2.433
2.451
2.489
2.488

Cin
1.871
1.465
1.085

.B794

7494
.8589
5917

.5398

4972
4820

4328

4074
.3853
.3859
.3485
3330
.3190
.3062
2945

.2837
2739

.2847
2559
2479
.2404
.2333

12267

2204
2145
.2088

Table 13. Phonon Scattering

Czn
1477
2778
.1848
.1334
1012
0791
.0631
.0609
0412
.0334
0271
0217
0171
.0132
.0097
.0067
0041
.0017
-.0005
-.0024
-.0041
-.0057
-.0072
-.0085
-.0097
-.0108
-.0118
-.01%8
-.0137
-.0145

don
.0000
.1135
.5BeR
7978
.9498
1.057
1.144
1.219
1.3156
1.375
1.430
1.480
1.528
1.570
1.611
1.649
1.729
1.764
1.798
1.831
1.862
1.892
1.621
1.949
1.9786
2.002
2.027
2.051
2.075
2.098

-177-

dln
.0000
-.4949
-.4907
-.4869
-.4799
-.4763
-.4731
-.4701
-.4585
-.45b64
-.4525
-.4497
-.4471
-. 4447
-.4424
-.4402
-.4257
-.4233
-.4211
-.4189
-.4169
-.4149
-.4130
-.4111
-.4094
-.4076
-.40860
-.4043
-.40=7
-.4012

Eon
-.2100
4005
7483
9776
1.148
1.285
1.401
1.501
1.584
1.683
1.734
1.800
1.860
1.917
1.989
2.019
2.058
2.102
2.143
2.183
2.221
2.258
2.292
2.326
2.358
2.389
2.419
2.448
R.478
2.468

e1n
-1.133
-.8910
-.8748
-.5475
-.4705
-.4088
-.3631
-.3257
-.3187
-.2947
-.2739
-.2564
-.2410
-.2274
-.2155
-.2047
-.2238
-.2152
-.2074
-.2003
-.1937
-.1877
-.1823
- 1771
-.1723
-.1678
-.1636
-.1597
-.1560
-.2752

€2n
-.0213
.0299
.0680
.0837
.0B81
.0929
.0956
.0973
.0824
.0820
.0815
.0BO7
.0798
.0789
0779
0770
.0581
.0552
.0543
.0534
.0927
.0618
.0511
.0503
.0498
.0489
.0482
.0475
.0469
-.0447

.0002
.0020
.0040
.0040
.0080
.0080
.0080
.0080
.0200
.0200
.0200
.0200
.0200
.0200
.0=200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
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Appendix G

Coefficients in the fits to ¢(v;8) and Q(v;8) (eqs. [17B] and [179]) for

B =108 G (8 = .2268) .

Table 14. Ion Scattering

Con Cin C2n don din €on €1n e2n In
1.193 2.824 2725 .0000 0000 -2384 -1275 -0194 .0001
1.861 2.509 .6887 -3293 -4907 0237 -1.041 .0079 .0004
2.205 2.000 .5218 .0141 -.4885 2341 -6544 .0755 .0010
2.435 1.881 .4192 .1011 -4BRk3 .3763 -4684 .1068 .0020
2.607 1.459 3478 .1505 -47B9 .4798 -3685 .1178 .0020
2.744 1.297 .2962 .2081 -4709 5709 -2851 .1293 .0040
2.858 1.170 2563 .2427 -4677 .6438 -R2345 1321 .0040
2.900 .9203 .1537 .2728 -.4850 7056 -1950 .1335 .0040
2987 .B477 .1349 .2992 -4827 .7603 -.1629 .1337 .0040
3.085 .7886 .1193 .3542 -4524 .B013 -1579 .1233 .0080
3.135 .7347 .1084 .3779 -4501 .B442 -1404 .1205 .0080
3.199 89068 .0956 .3995 -.4480 .BB42 -.1251 .1179 .0080
3.257 .8511 .0860 .4203 -4458 .9209 -.1127 .1153 .0080
3.311 .B1866 .0778 .4396 -.4439 9555 -1015 .1131 .0080
3.362 .5859 .0706 .4580 -.4419 .988B0 -0915 .1110 .008BO
3.409 .5584 .0643 4755 -4401 1.018 -0828 .1081 .0080
3.454 .5335 .0586 .4922 -4384 1.047 -0751 .1072 .0080
3.495 .5110 .0536 .5081 -4368 1.074 -0681 .1055 .008B0O
3.535 .4803 .0480 5231 -4350 1.099 -0619 .1037 .00BO
3.573 .4715 0450 5376 -4335 1.123 -0566 .1020 .0080
3.608 .4539 .0412 5518 -4320 1.146 -0518 .1004 .0080
3.643 .4379 .0378 .6271 -4143 1.149 -0886 .07v99 .0200
3.875 .4228 .0346 .6411 -4127 1.170 -0847 .0785 .0200
3.707 .4088 .0317 .6546 -.4111 1.189 -0812 .0770 .0200
3.737 .3958 .0291 .B877 -4096 1.208 -0781 .0756 .0200
3.765 .3838 .0266 .68B03 -4081 1.228 -0750 .0744 .0200
3,793 .3721 .0244 6924 -4087 1.244 -0723 .0731 .0200
3.820 .3813 .0222 7042 -4053 126t ~-0697 .0719 .0200
3.848 .3510 .0202 .7157 -4040 1277 -0875 .0708 .0200
3.871 .3414 .0184 .7269 -.4027 1.292 -0657 .0695 .0200
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Con
.4566
.8442
1.155
1.289
1.407
1.491
1.561
1.620
1.671
1.716
1.755
1.790
1.822
1.852
1.879
1.904
1.928
1.950
1.970
1.990
2.009
2.026
2.042
2.058
2.074
<.088
2.102
R.115
<.128
2.141

Cin
1.936
1.639
1.184
.9585
.8225
TRT2
.6550
.5982
5514
5117
4787
4497
4243
4019
.3816
.3636
3472
3321
.3183
.3057
2942
.2833
.R729
.RB35
.R546
2463
.R385
2311
R241
L2175

Table 15. Phonon Scattering

Czn
1673
2912
.1976
.1458
.1130
.0901
.0733
.0804
.0501
0415
.0348
.02886
.0236
0182
.0153
0119
.0089
.0062
.0038
.0016
-.0003
-.0021
-.0038
-.0053
-.0067
-.0080
-.0082
-.0103
-.0118
-.0122

don
.0000
.1489
.6430
.8782
1.064
1.181
1.286
1.376
1.489
1.563
1.629
1.690
1.748
1.798
1.892
1.939
1.984
2.026
2.068
2.105
2.141
2.176
2.210
2.242
2.873
2.303
2.332
2.360
2.387
2.413

-179-

dn
.0000
-.4945
-.4898
-.4857
-.4781
- 4744
-.4710
-.4879
-.45586
-. 4525
- 4495
-.4468
-.4442
- 4417
- 4272
- 4247
-.4222
-.4200
-.4178
-.4157
-.4136
-4117
-.4008
-.4080
-.40863
-.4048
-.4030
-.4014
-.3999
-.3984

€on
-.1877
4734
.B575
1.119
1.320
1.483
1.620
1.739
1.836
1.929
2.014
2.091
2.162
2.228
R.276
2.334
2.387
2.438
2.486
R.531
R.575
2.6186
2.655
2.693
2.657
2.693
2.727
R.761
2.793
2.824

€1n
-1.083
-.B128
-.5812
-.4527
-.3668
-.3092
-.2860
-.2321
-.2287
-.2089
-.1917
-.1778
-.1656
-.1549
-.1788
-.1710
-.1641
-.1581
-.1625
-.1474
-.1425
-.1382
-.1345
-.1308
-.3132
-.3053
-.2979
-.2910
-.2844
-.2781

€2n
-.0108
.0507
.0903
.1056
.1138
1155
1157
.1151
1012
.0989
.0987
.0944
.0923
.0902
.0699
.0681
.0663
.0646
.0830
.0815
.0803
.0590
0577
.0585
-.0519
-.0493
-.0469
-.0447
-.0426
-.0406

In

.0002
.0020
.0040
.0040
.0080
.0080
.0080
.0080
.0200
.0200
.0200
.0200
.0200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
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Appendix H
Coeflicients in the fits to ¢(v;8) and Q(v:8) (eqgs. [178B] and [179]) for
B =3x10¥ G (B = .6797).

Table 168. lon Scattering

Con Cin Con don din @on €in €2n In
1.370 3.035 3329 .0000 .0000 -1235 ~-1.186 -.00368 .0001
2.066 R2.767 7259 -2343 -4B892 .1613 -9858 .0241 .0004
2.337 2239 .5502 .1653 -4B871 4519 -5805 .0927 .0010
2.497 1.B891 .4408 2927 -4B07 .6468 -3897 .1227 .0020
2.608 1.840 .3645 .3698 -4774 .7822 -2765 .1300 .0020
2.734 1.530 .3363 .4501 -4891 .9034 -.1803 .1413 .0040
2.773 1.308 2673 .5006 -4660 .9949 -1448 .1418 .0040
2.837 1.191 2339 .5432 -4834 1.072 -1092 .1417 .0040
2.808 .9248 .1401 .6119 -4531 1.132 -0948 1351 .0080
2.864 .B552 .1238 .6457 -.4508 1.188 -0788 .1307 .0080
2.915 .7963 .1102 6765 -4485 1238 -0654 .1268 .0080
2.964 7483 .0990 .7040 -4466 1.285 -0535 .1234 .0080
3.008 .7014 0889 .7301 -4445 1327 -0443 .1201 .0080
3.050 .8624 .0804 .7539 -.4426 1.3867 -0356 .1173 .0080
3.088 .8277 .0730 7763 -4408 1.404 -0279 .1147 .0080
3.126 .5966 .0664 7975 -4390 1.439 -0211 .1124 .00BO
3.161 .5686 .0606 .B173 -4373 1.471 -0152 .1103 .0080
3.195 .5433 .0554 .B362 -4356 1.501 -0098 .1082 .0080
3.227 .5200 .0507 .B539 -.4340 1.529 -0053 .1062 .0080C
3.258 .4989 .0484 .9350 -4168 1.528 -0501 .0856 .0R00
3.287 .4792 .0425 9523 -4149 15563 -0472 .0836 .0200
3.316 .4612 .0391 .9688 -4133 1.577 -0439 .0820 .0200
3.343 .4444 .0358 .9847 -4117 1599 -0410 .0804 .0200
3.369 .4288 .0328 1.000 -.4101 1621 -0387 .0788 .0200
3.395 .4143 .0301 1.015 -4088 1.841 -0387 .0773 .0200
3.419 .4007 .02v6 1.029 -4072 16861 -0345 .0760 .0200
3.443 .3879 .0252 1.043 -4058B 1.880 -0327 .0748 .0200
3.468 .3759 .0231 1.0568 -4044 1.698 -0310 .0733 .0200
3.488B .3645 0210 1.088 -4031 1715 -0296 .0720 .0200
3.510 .3539 .0i191 1.081 -4019 1732 -0287 .0707 .0200
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.5780
1.032
1.187
1.249
1.308
1.354
1.392
1.425
1.454
1.479
1.502
1.523
1.543
1.582
1.579
1.895
1.810
1.825
1.639
1.852
1.685
1.677
1.689
1.700
1.711
1.722
1.732
1.742
1.751
1.761

Cin
2.079
1.663
1.278
1.058
.8085
.B014
7191
.6540
.86003
.5543
5162
4827
.4535
4278
.4043
.3837
.3649
3477
.3320
3176
.3045
2922
.2B06
.2698
.2599
.2505
2417
2334
.2256
.2183

Table 17. Phonon Scattering

C2n
.2078
.3078
2114
1576
1230
.0987
.0808
.08867
.05656
.0463
.0388
.0324
.0289
L0222
.0180
0144
0112
.0083
.0057
.0033
.0013
-.00086
-.0024
-.0041
-.0055
-.00869
-.0082
-.0093
-.0104
-0114

don
.0000
.2368
L7730
1.058
1.249
1.387
1.519
1.659
1.752
1.835
1.909
2.021
2.085
2.144
2.200
2.251
2.300
2.346
2.389
2.431
2.470
2.508
2.544
2.578
2.611
2.643
2.874
2.703
2.732
2.760

-181 -

din
.0000
4937
.4B85
.4B0B
4783
4725
4692
4589
4535
.4504
-.4476
4335
.4308
4278
4202
4228
4205
4182
4161
4141
4121
-.4102
-.4084
-.4066
-.4049
-.4033
-.4017
-.4001
-.3986
-.3972

1

t

€on
-0411
.8369
1.079
1.388
1.615
1.799
1.953
2.076
2.191
2.293
2.385
R.452
2.528
2.598
2.863
2.724
2.781
2.835
2.888
2.934
2.850
2.898
2.940
2.983
3.023
3.062
3.099
3.135
3.170
3.204

€1n
- 9775
-.6763
-.4444
-.3086
-.R439
-.1984
-.1645
-.1590
- 1421
-.1286
-.1168
-. 1427
-.1358
- 1297
-.1245
-.1196
-.1152
-.1114
-.1079
-.1046
-.3658
-.3547
-.3447
-.3351
-.3262
-.3178
-.3089
-.3025
-.2955
-.2888

0112
.0B29
.1200
1382
1364
.1338
.1305
.1180
.1133
.1091
.1056
.0855
.0820
.0788
.0760
0735
0712
.0680
0870
.0652
-.0618
-.0583
-.0552
-.06%3
-.0496
-.0472
-.0449
-.0428
-.0409
-.0380

.0002
.0020
.0040
.0080
.0080
.0080
.0080
.0200
.0200
.0200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400



Appendix 1
Coefficients in the fits to ¢{v;8) and Q{v;8) (eqs. [178] and [179]) for
B =10"G (8 =2.268).

Table 18. Ilon Scattering

Con Cin Con don din Eon €1n 22n In
1.801 3.485 .4464 .0000 .0000 .1078 -1.023 .0229 .0001
2.388 3.078 .7318 -.0117 -.4B47 .4159 -8553 .0475 .0008B
2.504 2473 .5430 .4517 -.4B32 .8288 -40582 1242 .0020
2.557 R2.080 .4330 .68028 -4795 1.048 -2688% .1327 .0020
2591 1799 .3576 7208 -4712 1228 -1510 1478 .0040
2.624 1592 .3040 .7948B -4681 1.357 -.0947 1476 .0040
2.8653 1.428 2623 .B547 -.4651 1.482 -0539 .1468 .0040
2.433 .9681 .1302 9043 -4B626 1.550 -0218 .1457 .0040
2.576 .9870 .1370 .9810 -4522 1.617 -0103 .1392 .0080
2.610 .9105 .1211 1.019 -4500 1.878 .000B .1341 .0080
2.642 .B456 .1078 1.054 -.4478 1.733 .0104 .1297 .0080
2.675 7907 .0968 1.0B4 -.4459 1.784 0193 1259 .0080
2.704 7413 .0870 1.113 -4439 1.829 02568 .1222 .008Q
2.733 .6985 .0787 1.139 -.4420 1.872 0320 .1191 .0080
2781 6605 .0714 1.163 -4402 1.812 .0376 .1183 .0080
2.789 .6265 .0649 1.1B6 -.4385 1.949 .0425 .1138 .0080
2.815 .,5958 0592 1.208 -.4368 1.983 .0468 .1115 .0080
2.841 .5681 .0541 1.294 -4197 1976 -0048 .0913 .0200
2.866 .5431 .0495 1.315 -.4179 2.005 -0028 .0880 .0200
2.890 5197 .0453 1.334 -.4162 2.031 -0015 .08668 .0R00
2.913 .4981 0415 1.352 -.4145 2.057 .0000 .0B46 .0200
2.935 .4786 .0381 1.370 -4129 2.082 0022 .0B28 .C200
2.957 .46802 .0349 1.387 -.4113 2.108 .0039 .0812 .0200
2.978 4433 .0320 1.403 -.4098 2.128 .0052 .0795 .0200
2.999 4275 0203 1419 -4082 R2.150 .0082 .0780 .0200
3.019 .4127 .026B 1.434 -4068 2.170 .00v6 .0766 .0200
3.038 .3989 .0245 1.448 -.4054 2.189 .00B4 0752 .0200
3.058 .3859 .0224 1.462 -.4041 2208 .0083 .0738 .0200
3.077 .373¢ .0204 1.476 -4028 2226 .0089 . .0725 .0R00
3.095 .3619 .0185 1.489 -.40186 2243 .0100 .0711 .0200
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Con

.B729

1.154
1.149
1.142
1.140
1.141
1.145
1.150
1.1587
1.163
1.171
1.179
1.187
1.195
1.203
1.211
1.220
1.227
1.235
1.243
1.281
1.259
1.2686
1.273
1.280
1.287
1.294
1.301
1.308
1.318

Cin
2.383
1.819
1.397
1.148
.9829
.B821
7894
.89860
.8356
.5841
5415
5042
4715
4429
4170
.3942
.3735
.3545
.3373
3215
3072
.2937
.2810
.2693
.2585
.2483
.2388
.2298
2214
2134

Table 19. Phonon Scattering

Can
.2832
.3128
.2130
.1588
L1237
.0881
.0809
.0869
.0657
.04863
.0388
.0323
.0268
0221
0179
.0142
.0110
.0081
.0055
.0032
.0011
-.0008
-.0028
-.0042
-.0057
-.0071
-.0083
-.0095
-.0108
-.0116

don
.0000
.4389
1.0:9
1.350
1.563
1.759
1.B95
2.010
2.110
2.R42
2.323
R.397
2.465
2.527
2.585
2.639
2.690
2.737
2.783
2.828
2.866
2.905
2.943
2.978
3.012
3.045
3.077
3.107
3.137
3.168

- 183 -

dln
.0000
-.4928
-.4872
-.4792
-.4750
-.4633
-.4593
-.4557
-.4524
-.4387
-.4355
-.4324
-.4296
-.4269
-.4244
-.4220
-.4197
-.4175
-.4154
-.4134
-.4114
-.4096
-.4078
-.4060
-.4044
-.4027
-.4011
-.3996
-.3981
-.3967

20on
.1964
.9582
1.458
1.808
2.082
2.244
2.403
2.541
2.661
2.745
2.839
2.924
3.002
3.075
3.142
3.204
3.032
3.094
3.153
3.208
3.261
3.310
3.358
3.403
3.448
3.488
3.528
3.5686
3.603
3.639

€1n
-.8025
-.4955
-.2911
-.1856
-.1219
-.0984
-.0828
-.0702
-.0805
-.0800
-.0852
-.0826
-.0795
-.0766
-.0742
-.0718
-.4519
-.4348
-.4191
-.4047
-.3910
-.3787
-.3675
-.3569
-.3470
-.3376
-.3288
-.3207
-.3129
-.3055

.0404

1172

.1440

1582

.1504

.1408

.1322

.1253

1192

.0995

.0944

.0895

.0854
.0B19

.0786

.0758
-.0780
-.0730
-.0684
-.0643
-.0805
-.0571
-.0541
-.0513
-.0487
-.0463
-.0441
-.0421
-.0402
-.0383

.0001
.0020
.0040
.0080
.0080
.0200
.0200
.0200
.0200
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
.0400
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Figure Captions

Figure 1.

Approximate region (cross-hatched) in the p—T plane in which quantum
effects on electron transport can be significant, for a field strength of B =10!3G.
Also shown is the sensitivity strip of Gudmundsson, Pethick, and Epstein (1983)
(dotted region), in which the cooling calculations depend most strongly on the

thermal conductivity.

Figure 2.

The relation of the chemical potential (¢ = u/hwp) to the chemical poten-
tial in the absence of a gquantizing fleld (¢g = o/ hwp) for a fleld strength
B = 10'3G. Two degrees of degeneracy are shown: t = 0 (solid line) and ¢t = .05
(dashed line). The effects of thermal smoothing indicate that only in the limit of
one Landau level being occupied does u differ appreciably from ug Further-
more, the ¢ = 0 relation of ¢ to {g is strongly satisfied when only one level is

populated.

Figure 3.

At a given density the influence of the magnetic field on physical conditions
is indicated. Shown are the approximate boundaries at which the gas can be
considered to be ideal, completely ionized, non-relativistic, or degenerate. The
final condition is indicated for the temperatures T = 10%,107K. Also shown is the
ﬁmit in which only one Landau level is occupied (s = 0). Only in this limit are

the boundaries significantly shifted as a result of the deviation of u from pyg.
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Figure 4.

The regions in the p—7 plane in which the cutoff factors 7, are determined
by inelastic scattering of the electrons or by collisional broadening of the Lan-

dau levels.

Figure 5.

The function p{v;8) for e-ion scattering and B = 103G (8 = .2266).

Figure 6.

The function @(v;8) for e-ion scattering and B = 103G (8 = .2266).

Figure 7.

The function ¢{v:8) for e-phonon scattering and B = 10'3G (8 = .2266).

Figure B.

The function @(v.8) for e-phonon scattering and B = 103G (g = .2266).

Figure 9.

The ratios ¢,/ (0g),; (dashed line) and 7.,/ (Yo)z (dotted-dashed line) as
functions of ¢ for e-ion scattering, ¢ =.025, and B = 10!* G (8 = .002266). In the

t =0 limit (solid line) the two ratios are equal.

Figure 10.

The ratios 0;s/ (Co)zz (dashed line) and 7.,/ (¥5).- (dotted-dashed line) as
functions of ¢ for e-phonon scattering, ¢ =.025, and B =10" G (8 = .002268). In

the ¢ =0 limit (solid line) the two ratios are equal.
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Figure 11.

The ratio Azz/ (Ag)z (dashed line) as a function of ¢ for e-ion scattering,

t =.025, and B = 10'! G {8=.002266). The t =0 limit (solid line) is also indicated.

Figure 12.

The ratio A,z / (Ag)zz (dashed line) as a function of ¢ for e-phonon scattering,

t =.025, and B = 10! G (8=.002266). The ¢t =0 limit (solid line) is also indicated.

Figure 13.

The ratios 0,,/ (0g).; (dashed line) and ¥,,/ (70)z (dotted-dashed line) as
functions of ¢ for e-ion scattering, ¢ =.025, and B =10 G (§=.2266). In the

.t =0 limit (solid line) the two ratios are equal.

Figure 14.

The ratios 0,/ (0o)sz (dashed line) and 7.,/ (¥0)z (dotted-dashed line) as
functions of ¢ for e-phonon scattering, £ =.025, and B = 1013 G (B=.2266). Inthe

t =0 limit (solid line) the two ratios are equal.

Figure 15.

The ratio Ayz/ (ro)zz {dashed line) as a function of ¢ for e-ion scattering,

=.025, and B = 10" G (8=.2266). The t =0 limit (solid line) is also indicated.

Figure 186.

The ratio A,,/ (Ag)zz (dashed line) as a function of ¢ for e-phonon scattering,

t =.025, and B =103 G (8=.2266). The t =0 limit (solid line) is also indicated.
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Figure 17.

The ratios o,/ (0g)y, (dashed line) and ¥,/ (Yo)y (dotted-dashed line) as
functions of ¢ for e-ion scattering, ¢t =.025, and B = 10! G (g=.002266). In the

t =0 limit (solid line) the two ratios are equal.

Figure 18B.

The ratios o,/ (0g)yy (dashed line) and 7,/ (7o), (dotted-dashed line) as
functions of ¢ for e-phonon scattering, ¢ =.025, and B =10 G (8=.002266). In

the ¢ =0 limit (solid line) the two ratios are equal.

Figure 19.

The ratio X,/ (Xg)yy (dashed line) as a function of ¢ for e-ion scattering,

t =.025, and B =10 G (8=.002268). The t =0 limit (solid line) is also indicated.

Figure 20.

The ratio Ay, / (Ag)yy (dashed line) as a function of ¢ for e-phonon scattering,

t =.025, and B =10" G (f=.002268). The t =0 limit (solid line) is also indicated.

Figure 21.

The ratios 0,/ (0q)yy (dashed line) and ¥,/ (¥)y (dotted-dashed line) as
functions of ¢ for e-ion scattering, ¢ =.025, and B =10'3 G (8=.2266). In the

t =0 limit the two ratios are equal.

Figure 22.

The ratios g,/ (0g),, (dashed line) and 7,/ (¥),, (dotted-dashed line) as

functions of ¢ for e-phonon scattering, £ =.025, and B =10'% G (8=.2266). In the
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t =0 limit the two ratios are equal.

Figure 23.

The ratio Ay / (Ag)y, (dashed line) as a function of { for e-ion scattering,

t =.025, and B =108 G (8=.2266). The t =0 limit (solid line) is also indicated.

Figure 24.

The ratio Ay / (Ag)yy (dashed line) as a function of ¢ for e-phonon scattering,

t =.025, and B =108 G (8=.2268). The ¢t =0 limit (solid line) is also indicated.

Figure 25.

The ratios Ayz/ (Ag)yz (dashed line) and 7,z/ (Yo)y= (dotted-dashed line) as
functions of ¢ for £=.025 and B =10 G (8=.002266). The t=0 limit of

Myz/ (Ao)yz (solid line) is also indicated.

Figure 26.
The ratios A/ (No)y (dashed line) and 7,z/ (70)yz (dotted-dashed line) as
functions of ¢ for ¢ =.025 and B = 10'3 G {8 =.2266). The t =0 limit of Az / (Ag)yz

(solid line) is also indicated.
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Lars Herngquist and James H. Applegate
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ABSTRACT

The thermal structure of neutron star envelopes is investigated
using approximate analytical formulae. In the degenerate layers
the thermal structure equation is solved exactly for electron-
dominated heat transport. In the non-degenerate layers it is
shown that if the opacity is a power law function of density and
temperature, then the T(p) profiles lie along curves of constant
thermal conductivity. The two solutions are matched at intermedi-
ate densities to give an approximate relation between the heat flux
and the core temperature of the neutron star. The dependence on
various uncertain factors is found explicitly, allowing a detailed
understanding of the physical processes that control the heat flux.
The possible significance of the results to cooling calculations that

take into account strong magnetic fields is discussed.
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1. Introduction

The prospect of detecting thermal x-rays from the surfaces of young neu-
tron stars has motivated considerable interest in theoretical studies of neutron
star cooling. The link between observation and theory can provide insight into
the internal structure of the core, physical processes in the crust, and global
properties of the magnetic field. To date, the majority of cooling calculations
(e.g., Tsuruta 1974, 1975, 1979; Maxwell 1979; Glen and Sutherland 1980; Nomoto
and Tsuruta 1981; Van Riper and Lamb 1981; Richardson et al. 1982) have con-
centrated primarily on the sensitivity of the overall results to effects at high
densities ( p 2 10! gm cm™3). This is not surprising in view of the large uncer-
tainties in the physics of the core region. A consensus on the importance to
neutron star cooling of superfluidity, pion condensation, and the possible
appearance of free quarks has not yet been reached. In contrast, the relevant
physical processes in the crust are well-established, although numerical calcula-
tions (primarily of the opacity) do not agree in detail. Thus, it is of interest to
investigate the dependence of neutron star thermal structure on effects at low

(p < 10! gm cm™3) densities.

As has been emphasized in the recent work by Gudmundsson and co-
authors (Gudmundsson 1981; Gudmundsson, Pethick, and Epstein 1982, 1983;
Epstein, Gudmundsson, and Pethick 1983) the thermal structures of the crust
and core evolve essentially independently during the epoch of neutrine cooling.
This is expected to be true of neutron stars associated with galactic supernova
remnants (ages < 10% years). In this approximation the core is assumed to be
isothermal and to contain all of the star's mass and thermal energy. The tem-
beratu.re of the core is regulated by the loss of neutrinos which do not interact
with the crust. The surrounding crust acts as a thin insulating envelope with no

sources or sinks of energy and contains all of the temperature gradient. Thus,
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for a given core temperature, the heat flux through the crust is constant and
the effective surface temperature is determined entirely by processes within the
crust. This method was used by Gudmundssen in numerical calculations to
obtain accurate temperature-density profiles and to examine the sensitivity of
the F—T, relation to uncertainties in the physics of the crust. It was found that
this relation depends strongly on variations in the opacity only in a narrow strip

in the T—p plane (Fig. 1), which throttles the heat flux through the crust.

In this paper approximate analytical expressions are derived which relate
the flux to the core temperature. The dependence on various uncertain factors
is found explicitly, allowing a more detailed understanding of the sensitivity
strip found numerically by Gudmundsson. General arguments of this type.
though not intended to supplant more accurate numerical computations, which
they corroborate, provide constraints on future results if refinements are made

to existing opacity calculations.

More significantly, a physical understanding of the importance of the vari-
ous processes in the crust to the F-T, relation is extremely useful if the
influence of a strong magnetic field is taken into account. In §5 we argue that
the insensitivity of this relation to the photon thermal conductivity results from
the extreme sensitivity of the photon thermal conductivity to temperature and
density { < T%%07?) for a Kramers opacity, as compared to the relative insensi-
tivity of the electron thermal conductivity in the liquid metal phase to tempera-
ture and density ( x Tp for non-relativistic electrons and = Tp'3 for highly rela-
tivistic electrons ). Furthermore, we argue that the photon processes of
greatest importance are those of relevance near the point at which the photen
and electron thermal conductivities are equal; this means that free-free is more
important than bound-free or bound-bound opacity. Therefore, since the free-

free conductivity in a strong magnetic fleld behaves roughly as 7*% 72 (Silant’ev
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and Yakovlev 1980) we expect that the F—T7, relation for strongly magnetized
neutron stars will be insensitive to the photon thermal conductivity. Accurate
expressions for bound-bound and bound-free absorption (which, for non-zero
field, do not exist and will be difficult to obtain) are not required. On the other
hand, reliable calculations of free-free absorption {Silant'ev and Yakovlev 1980)
and electron thermal conductivity (Hernquist 1984a) are available; hence mean-

ingful cooling calculations with magnetic fields should be possible.

A similar analysis was performed by Urpin and Yakovlev (1980c) for the
degenerate layers of neutron star crusts. However, the influence of the photons
was not taken into account self-consistently and a sensitivity analysis was not
performed. As a result the subsequent cooling calculation (Yakovlev and Urpin
| 1981) improperly accounted for the effect of the magnetic field on the conduc-
tivities (see Hernquist 1984b and Applegate, Blandford, and Hernquist 1984 for a

discussion).

In the following section the thermal structure of the degenerate layers is
found for the region in which heat transport is dominated by electron conduc-
tion. In §3 general relations are derived for the temperature distribution in the
non-degenerate layers for a restricted form of the radiative opacity. The two
solutions are matched and a sensitivity analysis is presented in §4. A physical
interpretation of the results is discussed in §5, along with implications for future

calculations.

II. Degenerate Regime

Because the neutron star crust is assumed to be thin and to contain negligi-
ble mass and no sources or sinks of energy, the general relativistic equations of
stellar structure simplify enormously and can be conveniently summarized as

(Gudmundsson, Pethick, and Epstein 1983)
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a7

3 K F
dP 160 T8 gs (21)

where F' is the heat flux, gy is the surface gravity, and the opacity, ¥, is related

to the thermal conductivity, «, by

Vil | (2.2)

The relation of 7 to the general relativistic depth coordinate, z, is given by

(Gudmundsson, Pethick, and Epstein 1983)

ar _ 3 Ko
dz = 160 73 F (2:3)
‘In the following discussion it is convenient to use the electron chemical poten-
tial, u, as an independent variable. (Throughout x4 will include the electron rest
mass, mec? .) If the pressure is assumed to be given entirely by the electronic
contribution and the thermodynamic identities ng = (8P, / 0u)r,

Sg = (8P,/ 8T), are used, the thermal structure equations become

aT _F 7 1

1
- £ L 2.4
dy gy Amp k 1 —(FS,/gspK) (2.4)
du _ Amp _F S
dz Z gs [ gs pIC (25)

where Z is the number of conduction electrons per ion, A is the ion mass, and
S, is the entropy per unit volume of the electrons. In the degenerate layers the

thermal corrections are negligible and (2.4), (2.5) becomne

ar _ F 7 1 (2.6)

Gs (R.7)
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(Throughout the remainder of this paper it will be assumed that relations accu-

rate to ~ 10—-20% are desired, and approximations will be made accordingly.)

For a degenerate gas u is related to the electron number density by

1 2 243/2
Mo = GaEpScs W T™T (28)

For the case of fully ionized iron

(2.9)

o [1 + .61 Z/S]l’a
mz Pa

where pg is the density in units of 108 gm ecm™3 . The curve kT = p — mc?, which
gives, roughly, the transition between the degenerate and non-degenerate

regimes is shown in Fig. 1.

If A and Z are treated as constants, (2.7) can be integrated immediately.
The constant of integration can be evaluated by noting that in the limit 20, u

must tend to mc? in the degenerate approximation. Thus

. I 8 (2.10)

= z
me? mc? Z ¢

(See also Blandford and Hernquist 1982.) If A =56, Z = 28

z = 2.27x10%g, 7 [(1+ 61p¥ 92 - 1] cm (2.11)

where g, , is the surface gravity in units of 10'* cm sec™?,

In order to integrate the thermal structure equation, an expression for the
conductivity is required. For simplicity it will be assumed that electron conduc-
tion dominates at the densities for which the degenerate form (2.6) is a good
approximation. (See Fig. 1 and the relevant discussion in §4.) In the liquid

phase the dominant scattering mechanism is electron-ion scattering, while
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electron-phonon collisions are most important in the solid phase. Electron-
electron scattering will generally be negligible unless low Z ( <10 ) ions are
present (Urpin and Yakoviev 1980a). The thermal conductivity in the liquid
phase has been calculated by Flowers and Itoh (1978), Yakovlev and Urpin
(1980), Urpin and Yakovlev (1980b), and Itoh et al. (1983). The original calcula-
tions of Flowers and Itoh {1978) and Yakovlev and Urpin (1980) differed by fac-
tors ~3 with essentially the same density and temperature dependence (Bland-
ford, Applegate, and Hernquist, 1983). In the recent work of Itoh ef al. (1983)
the thermal conductivity is expressed in a form identical to that of Yakovlev and
Urpin (1980), with residual discrepancies ( ~ 10 -30% for iron) absorbed in the

Coulomb logarithm. Interms of the chemical potential

_ ﬂ.kzc (‘u‘z - m204L3/2
Ke —ion = Tlei 12e%A,.Z T P (2.12)

where A,; is the Coulomb legarithm and 7,; is a dimensioniess scale factor. Hen-
ceforth, due to the uncertainty in the Coulomb logarithm, the slow density
dependence of Ay will be neglected and the constant value Ay =1 will be

assumed.

Considerable disagreement (factors ~ 3 ) still exists between the calcula-
tions of the conductivity due to e-phonon scattering (Flowers and Itoh 1976;
Yakovlev and Urpin 1980). (For a critique see Blandford, Applegate, and .Hern-
quist 1983). As the Flowers and Itoh results are not given in an analytic form,
the Yakovlev and Urpin (1980) expression will be used. Interms of u

_ k 1 (#2 — mzc4)2
o —phonon = Tep ga2p u_, w2+ mBct

(2.13)

where 7, is a dimensionless scale factor and w.z = <w(k)/ wp'2> . In the

definition of u_; the brackets denote an average over the phonon spectrum of
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the solid and w, is the ion plasma frequency. Henceforth the value u_p =13

(Pollock and Hansen 1973) used by Yakovlev and Urpin (1980) will be assumed.

The melting curve is given by

_ Z%? 1

P S - . y1/3
T a ETL a = (3/4m; 1) (.14)

where T, is the melting temperature and n; 5, is the ion number density at the
melt surface. Estimates for the melting parameter, I, , range from ~ 150~170
{(Pollock and Hansen 1973; Slattery, Doolen, and DeWitt 1980). Unless otherwise
stated, the value I, = 160 will be used in numerical examples throughout. The

boundary between the liquid and solid phases is shown in Fig. 1 for [\, = 160. In

‘terms of )
/3
- 1.4 Z%3 e? 2 2,4)1/2
where u,, is the chemical potential at the melt.
The thermal siructure equation thus is
- a7 1Re* 1 Z¢ F 1 17
Liquid: = £ L o 2.16
qui du ﬂkzcm? Nei A gs T (,u,z _ m204)8/2 ( )
. dT _ 9ne® Z F 13  uP+m?*
Solidh —=——= —_—— 2.17
du  kmp A g Mep (uF - mPct)? (@17)

These can be integrated analytically if the slow density variations of A and Z are
neglected. Integrating (2.16) from an initial point (7;,u;) to an arbitrary point in

the liquid (7,u) gives
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T2 = T1',2 + 24—84 Zz ._[1_. _ ’LL/WLCZ

;E%mi —Z_ s [(p’/ mCZ)Z -1

J23 2y2 12

N i/ me?
[(/.z.,-/ me?)? — 1

]1,2 - ln[,«,(,i/n'f,c:2 + [(/J.i/mcz)2 - 1]1/2] (2.18)

A similar result was derived by Urpin and Yakovlev (1980c) for the density-
dependent form of A,; in Yakovlev and Urpin (1980). Integrating (2.17) from the

melt surface (T, .U, ) to an arbitrary point in the solid (7,u)

he®

Fo13 | u L
e (2.19)

- +
gs 7ep #2 — m204 “mz —_ mzc4

T = Tp +

Z
A

This agrees with the result of Urpin and Yakovlev {1980c¢). The relation of flux to
core temperature is found by evaluating (2.19) at the core boundary (T;.uc) .

Using (2.15)

() 2578 e? 2 2,4)1
= |- _— — /2
e = 8r] *T, Re m’e’)
Qhe® Z F 13 e Hm
g ope” 2 F 18 | ¥ 2.20
km, A gs Mep te® —mZct  ppn? - mict ] (2.20)

The factor u,, is found from the intersection of (2.15) and (2.18)

2/

8 giss g4 240472 1 F.f__ Hom / MC%

(1) 2 — 4n2na8) = 72
kgi—.mg #2c2 \Hm mc) Tt +

4
[9” mkfemp A Nei s l [(Mm/mcz)z—l]vz

pi/ mc?

+ In[/dt,,,,/n'z.c:2 + [(,um/mcz)2 - 1]1/2] + [ en

(;/ mc?)? — 1]1
- ln[u,,;/ me? + [(y,,;/ me?)? ~ 1]”2” | (2.21)

This is a non-linear equation which can be solved numerically to find u,, for
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given T;, i, and F/gs .

In the derivation of (2.20) and (2.21) Z and A have been treated as con-
stants. For the equilibrium nuclei present in the crust (Baym, Pethick, and
Sutherland 1971) this is not strictly true. However, although the analysis could
be extended to allow for variations in Z and A, it will be demonstrated in §4 that
these relations are dominated by effects in the liquid phase. At these densities
it is possible to treat Z and A as constants with negligible error in the flux- 7,

relation.

An explicit relation between F and 7, can now be found from (2.20), (2.21) if
several approximations are made. As the star is isothermal at densities
p>10'1% gm em™d for all but the highest surface temperatures of interest it is
possible to choose the core boundary such that p, > w,, and neglect the term
involving g, in (2.20). Next, of the two terms involving u; in (2.21), the loga-
rithmic term can generally be neglected because the electrons are non-
relativistic at the transition between photon-dominated and electron-dominated
heat transp‘or't. For example, if p; = 4x10* gm cm™3 (which is appropriate for
T, = 108 K —see §4) then from (2.9) wu;/ mc?®~ 1.035 and the two terms are in

the ratio 15:1 .

The relations can be further simplified by considering two separate
regimes. First, assume & >> m?c* . For T, =108 K, the density at the melt will
turn out to be p,, #9x107 gm cm ™3 implying m?/ m2c*x13 . The term involving
Um on the left hand side of (2.21) will be a factor ®5 larger than the 1,,- depen-
dent terms on the right hand side of (2.21), for T, =10°K . Neglecting the

smaller terras, (2.21) can be solved for pm

=6 ]l/ﬁ hc)ér»m F Vﬁ (m/mcz)uz
er | Z%3ARmy¥ne '/ (s | ((pu/ me®)PR - 1)V4

MY 3, Ti F/ gs12.22)
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where

M, T, F/rg) =1+ m_é_ T,® ((M/mCZ)Z_.l)l/z
A s

) .23
R24g% ' Z? Mei Frgs i/ mc? (2.23)
The core temperature is then
12 2 v2 / me?)V/2
T = 2 | = 72 1Z/2 11/2 E = 22) i | MY ¥ T F/ gs)
T k(mpc)V? AVE n, /% gy | ((w/mc?)R - 1)

+9

_g,__]"an gara 18%a_ ((pe/ me?)? — 1)V

o] 24 Nepl'm 1./ mc? MV T F/gs)|  (2.24)
op .

The second term in (R.24) is generally small compared with the first one. For
example, if 1;/mc? = 1.035 and T; = 5.5x108 K (appropriate for T, = 108K --see
§4) then the two terms are in the ratio 9:1 . The second term has been retained
in order to show the dependence on the melting parameter, [, , and the elec-

tron conductivity in the solid, which scales as 74,

The other limiting case for which (2.20), (2.21) can be solved explicitly is

Um Rmc? | Write
o = My + mc? (2.25)

with 7, << mc? . Relations (2.20), (2.21) become, to lowest order

1/8
_ (2123 e o, aveniz, 45Re? Z F 13 1
T, = {97;') kT 7o (Rrc®)VR " + kA Ga e T (2.26)
g |¥° 103 emet e, 246t 1 2% F [ [me?]?
9Trj kT2 WP t nkfcm, Me A gs Rlim
me?
#In(1 + (2Pors me?)V?) 4 — P (2.27)
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For a surface temperature T, =10%° | the melting density will turn out to be,

roughly, p,. =2%10°% gm cm™S,

corresponding to a chemical potential
Tim/ mc?=.1 . The term linear in f, in (2.27) will exceed the non-linear terms

by a factor ~4 . Thus the non-linear terms can be neglected and

- 2/3
o _fon)P12 w2 Tw® P m/meR
D = [.L} L n H{u T F/ 95) (226)

4 memy, AZ¥%, gs ((wi/ me?)E — 1)1/?

where M(w;. T, .F/ gs) is defined by (2.23). From (2.26) and (2.28)

' /2 1/2 2\1/2
4 2 Z 1 F ./ me
Nl o G /a0

- mpc)/? AV/Z g U2 gs 1/ mc?)R — 1)1/%

n (8 |/ mmpe¥2AAZYY 13ny; (s me?)? ~ DV
* 52 (2.29)

M YW T F
_m PR (F/gs)V? Mg (s Mc D (Wi T2 F/ gs)

Again the second term in (2.29) is generally small compared with the first one.
For example, if p/mc?=1.005 and T;=1.1x108K (appropriate for
T, = 10°5 K —see §4) then the two terms are in the ratio 12:1 . Thus (2.29) is
essentially the same solution as for the u,? > mfc* limit (2.24) with slightly

different dependences on the factors in the solid phase.

For a given heat flux (2.20) and (2.21) determine T¢, if y#; and 7; are known.
The quantities u; and 7; are determined by the solution to the thermal struc-
ture equation at low densities and an approximate method for estimating them
will be discussed in the following section. However, it is already possible to
make general statements about the sensitivity of the results to the physical
parameters in the degenerate layers which are independent of the uncertainties
in the determination of y; and T; . From (2.24), (2.29) it is obvious that T, for a
given F/gs, is much more sensitive to the conductivity in the iiquid phase
(~7e:;) than in the solid phase (~74p) . The dependence on ', is also weak, of

the same order as the conductivity in the solid. Finally, the results are rather
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insensitive to an exact determination of y;, 7; and it is apparent that the pho-
tons will be less important than the electrons in determining 7.. A more precise

demonstration of these assertions will be given in §4.

III. Non-Degenerate Regime

In order to estimate u; and T;, and examine the sensitivity of the results to
photon conduction we consider the non-degenerate layers in detail. (As is seen
in Fig. 1, photons dominate the heat transport in the non-degenerate regime.)
The thermal structure equation for neutron star envelopes is given by (2.1). In
terms of the thermal conductivity

F o1
gs pr

arT
4P (8.1)
This has been derived from the general relativistic equations of stellar structure
for neutron star envelopes (Gudmundsson, Pethick, and Epstein, 1983) but is
also valid for non-relativistic stellar atmospheres (from the equation of hydros-
tatic equilibrium with constant gravitational acceleration and the heat flux equa-

tion).

Consider a conductivity of power law form

8
€ = g e (3.2)

o]

This is often the situation of interest as any opacity of Kramers form, B xp/ T35,
will translate into a conductivity (3.2), with =65 and a=2 . For a non-

degenerate gas the electron pressure is

P=nkT = -2 —pkT (3.3)

Am,,

From (3.1), (3.2), and (3.3)



(3.4)

dP gs Ko Ta+f-t

ATTI? ]a-—l Pa—l

If the gradients in A and Z are neglected, (3.4) can be integrated. Furthermore,
because of the rapid convergence of the radiative zero solution to the exact
solution in the non-degenerate layers (Schwarzschild 1958) the constant of

integration can be set to zero. It then follows that

=a+ﬁ_.§‘_Zk
o gs Amy,

(3.5)

Thus we arrive at the rather remarkable conclusion that the T(p) solutions will
follow paths such that the conductivity is a constant. This is generally true for a
non-degenerate gas with a power law opacity as long as gradients in Z and A are
small and the radiation pressure is negligible. For the case of a Kramers opacity
T « p?/85 and the opacity along a solution is ¥xp™/13 . Thus the opacity is also
nearly a constant, being a very slowly decreasing function of the density. The

relation between T and p is given by (3.2) and (3.5)

/8
at+f F Zk 1 p*/F (3.8)

T =
o gs Amp Ko

The variation of 7 and p with the general relativistic depth coordinate, 2z,
can also be obtained. As the heat flux through the crust is assumed to be con-

stant, (3.5) and the heat flux equation

&3

£ (3.7)

imply that the temperature gradient is also constant along a solution. Thus,

from (3.5) and (3.7), neglecting gradients in A and Z

T=aiﬂg,’4;k"’z (3.8)
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where the radiative zero boundary conditions have been assumed.

2‘8/“

(3.9)

For further analysis it is useful to assume that the opacity is of Kramers

form; this leads to a thermal conductivity

5
K =7y kg ——ergem s K!
p

(3.10)

We choose kg to be that appropriate for free-free absorption, and allow for a

dimensionless scale factor, 77,. The non-degenerate, non-relativistic form of «g is

approximately (Cox and Giuli 1968)

_ 160 1985 = A*
Ko = T3 2459 P73

The solution (3.5) then implies

r - 4 257K |V 85 f_ve's___l____pz/e.s
iCOAynp gs 77r1/e'5

Numerically, for iron

fF /8.5 1
T = 2.75x105lgs } 765 p% 82

Similarly, if A =58, Z =286 then (3.8) and (3.9) give

T= 6.14’x105 g3.14 -4

1 -
p =136 Wgs'ms,zs 2%% gmem™3
8

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

A comparison with the Los Alamos radiative opacities { Huebner, et al.,

1977; Gudmundsson, 1981) indicates that the free-free opacity is not an
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accurate approximation to the total opacity throughout the non-degenerate
layers. However, as the gas becomes increasingly ionized, free-iree absorption
will become the dominant source of opacity and (3.10) should be a good approxi-
mation to the radiative opacity as the gas starts to become degenerate.
Because of the rapid convergence of the radiative zero solution to the correct
solution, errors in the total conductivity at low densities should be unimportant
to the T(p) curve at densities where free-free dominates. Thus it should be pos-
sible to approximate T; and gy using (3.12).

Finally, we note that the numerical calculations of T(p) made by Gud-
mundsson, Pethick, and Epstein (1983) are well fit by power laws T x p” in the
non-degenerate layers. The exponent is approximately y=0.31, appropriate for
a Kramers opacity. This is perhaps not too surprising since the important opa-
city mechanisms (bound-free, free-free) are individually of the Kramers form

R p/ T35,

IV. Sensitivity Analysis

In order to investigate the sensitivity of the flux- core temperature relation
to the uncertain facturs, it is necessary to match the degenerate and non-
degenerate solutions at some point. It is a reasonable approximation to do this
along the curve Kggctron = Kphoton - This curve lies within a region in which the
gas is mildly degenerate (Fig. 1). Thus some error will be introduced in using
the non-degenerate solution to find u; and 7; . However, since T; is relatively
insensitive to the exact numerical values assumed for u; 7; this procedure is
justified. Probably the major source of error introduced into the F—T7; relation
is the underestimate of the total conductivity in the transition zone between

photon-dominated and electron-dominated heat transport.
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Assuming a Kramers opacity, the radiative conductivity (3.10) is numeri-

cally, for iron

85
Krgg = . 727, 788-5—- ergem 25 1K™! (4.1)

In terms of density the thermal conductivity due to electron-ion scattering

(.12) is, for iron

Psg

- 13 —_—
Kglec = 4.19x10 Te’f]“' 1+ .61p32/8

ergcm *s™'K! (4.2)

Equating (4.1) and (4.2) {shown in Fig. 1)

/5.5 8/5.5
Tai Psg
7g=23.18 4.3
8 [777' I (1 + .B1pg/ 3)1/55 (4.3)

The non-degenerate solution will intersect this curve at the point given by equat-

ing (3.13) and {4.3). Identifying this with the point (;,T3)

118

| i
=85 (4.4)

F Nr
Gs J Net

Pi.6
(1 + -61/31'.,62/3)'785

= 7.63x10‘5[

For the purposes of producing approximate relations for p; and T; to be used in

-(2.24) and (2.29) it is sufficient to take

F ].647 ,nr,us

Pig = 7.BX 1078 [gs m‘.-785 (4.5)
The corresponding temperature is
353
- F 1
S e o

Thus it is seen that the extreme insensitivity of the core temperature to the

photon conductivity (scale factor n,) enters into this solution because of the
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large power of T in .4 and the cancellation of the terms involving 7, in (3.13)

and (4.3).

Using (4.5) and (4.8) the relations (2.24) and (2.29) become, respectively,

for iron
5 F],sgz 1 12
T, = 5.8x10 [gsJ - [M (Mei.nr '/ gs)
218
- 80 -
+ 8.7%x1073 [—15—-]77,"""?73{7"‘"’ [ﬁ—] M™Y3(ne e F/ gs) (4.7)
ep m s
.392
_ F) 1
T, = 5.8x10° [gs 7)@1"373777"02 [Ml/z(nai »nr»F/gs)
b 377y 87 160)* 7 MY (0 e F/ gs) (4.8)
S e (Tm | (F/gs)1™ T '

where

Nei 27
(F/gs)%"8n, 2

MNeimr Frgs) =1+.79 (4.9)

It is now possible to investigate the sensitivity of T, to variations in the con-
ductivities and the melting parameter. In order to compare these results with
the calculations of Gudmundsson (1981) relation (4.7) has been evaluated for
T, = 10%3,108%%, and 10° and relation (4.8) has been evaluated for 7; = 10°°. In
addition, the "exact' expressions (2.20), (2.21), (4.3), and (4.4) have been
evaluated for the same conditions to determine the numerical accuracy of the
approximate relations (4.7)-(4¢.9). The results are summarized in Tables 1-4 (see
Appendix) for various values of I',n, the radiative conductivity (x7,), the e-ion
conductivity (=7 ). and the e-phonon conductivity (x7e,) . The core tempera-

tures derived from the approximate expressions (4.7)-(4.9) (7.%) and thoseg
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derived from the "exact' relations (2.20), (2.21), (4.3), (4.4) (T.°) are given. The
ratios of the core temperatures (7.2 or T.*%) in each case to the core tempera-
tures ((7.%)¢ or (7.°)s) found with the "standard” values of the parameters
(Mmr =1, Mei =1, nep =1, and T, = 160) are also shown. In (2.20) and (2.21) the
core boundary has been taken to be p, =10'° gmem™ for compatibility with
Gudmundsson (1981). Finally, the T(p) profiles implied by (2.18), (2.19), and
(3.8) are indicated in Fig. 1 assuming A =56, Z=26 and the "standard" set of
parameters for 7, = 10%5,10%, and 10%° . All numerical calculations have used
gs =10,

A comparison can be made to the numerical calculations in Gudmundsson
(1981) for I'y, =158 and g, = 10 . The relevant results are reproduced in Table
5. The core temperature has been calculated for a standard set of the parame-
ters, a reduction of the radiative conductivity by a factor of 2, a reduction of the
electron conductivity by a factor of 2, and a reduction of both conductivities by
a factor of 2. These caﬁ be compared with cases 1,5,10, and 15, respectively, in
Tables 1-4. Furthermore, Gudmundsson {1981) indicates that T; varies by <27 if

I = 100 or 200 are assumed.

Several conclusions can be drawn from the results in the Appendix. First, it
is apparent that the approximate relations for 7., (2.24) and (2.29). are in good
agreement with the "exact” relations, (2.20) and (2.21). Significant differences
(<R0Z) are noted only for the largest surface temperatures (7, = 10%%). This is
not surprising because the terms that were neglected in (2.21) are not neces-
sarily small for T, =10%5 . In addition, the relative importance of variations in
I'n and the e-phonon conductivity are overestimated by (2.24) for high surface
temperatures. Again, this is to be expected since {2.24) assumes a core density
>>10'% gmern™ As is seen in Fig. 1 the T(p) solution corresponding to 7, = 1095

crosses the melting curve at p>10!% However, the sensitivity of (2.24) to the
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total electron conductivity (e-ion and e-phonon) is in good agreement with the

"exact” solution.

The agreement between the "exact” analytical results and the numerical
calculations of Gudmundsson (1981) is quite good. The core temperatures agree
to £5% for 7,210°% Only for the lowest surface temperatures {7 = 10%°) does the
analytical solution deviate significantly. The source of this discrepancy is not

difficult to trace and will be discussed in the following section.

In general, the flux- core temperature relation is strongly sensitive to the
electron conductivity in the liquid phase, much less sensitive to the electron
conductivity in the solid phase and the melting parameter I',,, and virtually
independent of the photon conductivity, in agreement with Gudmundsson

(1981).

Y. Conclusions

An approximate analytical method for investigating the sensitivity of the
flux- core temperature relation in neutron star crusts to variations in uncertain
factors has been presented. The results are in good agreement with the accu-
rate numerical calculations of Gudmundsson (1981) and Gudmundsson, Pethick,
and Epstein (1983). Although the formulae have used the specialized forms for
the electron conductivities of Yakovliev and Urpin (1980), it is clear that the
method could be applied to conductivities with sufficiently simple, yet arbitrary

temperature and density dependences.

Because of the good agreement between the results in Table 1 and the sen-
sitivity analysis of Gudmundsson (1981), it is now possible to understand the sen-
sitivity zone of Gudmundsson, Pethick, and Epstein (1983) in detail. The lack of
dependence on the photons will be maintained as long as the conductivity is

such a strong function of temperature (= 78%) . Physically this is realized
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through the rapid convergence of the radiative zero result to the correct solu-
tion. Because of the strong temperature dependence of the radiative conduc-
tivity the solution will converge to the correct T{p) curve, even if large errors
are made in «49 . Thus it is to be expected that the layers in which photon con-
duction dominates will always be unimportant in determining the heat flux for a
given core temperature. These expectations are confirmed by the sharp low-
density cutoff to the sensitivity zone of Gudmundsson, Pethick, and Epstein

(1983) along the curve where electron conduction begins to dominate (Fig. 1).

In the degenerate layers the conductivity in the solid phase and the melting
factor I, are relatively less important than the conductivity in the liquid. From
(4.7) and (4.8) it is seen that the terms involving 7, and I'y, are generally small.
‘Physically this is because the temperature gradient in the solid phase of the
erust is much smaller than in the liquid phase (except for the highest surface
temperatures). Thus, it is not surprising that the high-density cutoff to the sen-
sitivity zone of Gudmundsson, Pethick, and Epstein (1883) roughly follows the
melting curve {Fig. 1). Consequently, the thermal conductivity in the liquid
phase must dominate the flux- core temperature relation. The temperature gra-
dient is still relatively large and the e-ion conductivity is a relatively weak func-
tion of temperature (< T) . Thus, if large errors are made in &, 45 the solution
will not be as efficient in converging to the correct T{p) curve as in the non-
degenerate layers and the derived core temperature will be inaccurate. How-
ever, it should be noted that the insensitivity of the high 7, solutions to the e-
phonon conductivity is an artifact of the choice of pcore = 10'° gmem™ (Fig. 1).
If the core boundary had been at a much higher density the solution would have
had roughly the same sensitivity to the e-ion and e-phonon conductivities (see

Sec. 4).
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As discussed earlier the present work deviates significantly {~30% higher
core temperature) from the numerical calculations of Gudmundsson (1981) at
low surface temperatures, Ty =10%° . Our analytical model has assumed the
Yakovlev and Urpin e-ion conductivity (2.12) throughout the liquid phase. How-
ever, the results of Gudmundsson (1981) have used these conductivities only for
(u—mc®)/kT>10 . At low densities ({u—mc?)/kT <1) the electron thermal
conductivities of the Los Alamos group (Huebner, et al. 1977) were used. At
intermediate values of (u—mc®)/k7T, Gudmundsson (1981) found Ks_in by
linearly interpolating (on a log-log scale) between the Los Alamos and Yakovlev
and Urpin conductivities. This difference will affect the low T; solutions to a
greater extent as the boundary between photon-dominated and electron-
dominated heat transport and the degeneracy curve ((u—mc?)/kT = 1) con-
verge at low temperatures (Fig. 1). The Yakovlev and Urpin form (2.12) underes-
timates the thermal conductivity at low densities, relative to the expressions
used by Gudmundsson (1981). As a result, the local temperature gradient is
overestimated and the resulting core temperature is too high. For Ty = 1055 the
conductivity (2.12) is roughly a factor of 2 smaller than that of Gudmundsson,
averaged over the sensitivity strip. From Table 4, multiplying «£¢ s by & would
give T;, ® .17, roughly 8% higher than the Gudmundsson result. This is further
evidence that the F—~7, relation is dominated by the e-ion conductivity in the
liquid phase.

As a final note in this regard, it is not objectively clear that the interpola-
tion performed by Gudmundsson (1981) should give the most reliable results.
For p=10%%gmem™ and 7 =10"K (equal to p; and T;, respectively, for
T, = 10°% ) the e-ion opacity used by Gudmundsson (1981) is roughly 5.4 times
smaller than the e-ion opacity of Yakovlev and Urpin (1980). (This has assumed

the Yakovliev and Urpin form for A, .) At this density and temperature
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(Gudmundssor, 1981) partial ionization can account for only a few percent of the
discrepancy as the thermal conductivity in the liquid for non-relativistic elec-
trons depends only logarithmically on Z (see Yakoviev and Urpin 1980). We
believe that the Yakoviev and Urpin (1980) result is more accurate even though
the degeneracy parameter { (u — mc?)/ kT ) at this density and temperature is
only 2.8 . The Yakovlev and Urpin {(1980) e-ion opacity can be ccmpared with the
numerical calculations of Hubbard and Lampe (1969). These earlier computa-
tions, performed for arbitrary degree of degeneracy, are still thought to be reli-
able as long as the gas is non-relativistic and I' = Z%e?/kTa < 10 (where a is
defined in [2.14]). For p=103%gmem™ , T=107 X, and carbon composition,
corresponding to (u — mc?)/ kT = 2.74, the Yakovlev and Urpin {1980) and Hub-
bard and Lampe (1969) results agree to ~ 50%, with Yakoviev and Urpin giving
the higher value of the opacity. As the degeneracy is increased the two calcula-
tions agree more accurately until I'~ 10, when the Hubbard and Lampe resuits
are no longer reliable. Thus we conclude that the Gudmundsson (1981) e-ion
opacities underestimate the true e-ion opacity by a factor ~ 4 under these con-
ditions and that the resulting core temperatures for low 75 (~ 10°% K) are prob-
ably too small {by ~ 10--15%).

The detailed agreement between the analytical results and those of Gud-
mundsson, Pethick, and Epstein (1983) indicates that to ~10% accuracy the
F~T, relation is completely insensitive to effects at low densities. Corrections
to the free electron equation of state and to the radiative free-free opacity are
negligible. In addition, partial ionization is unimportant. Naturally, however,
the T(p) profiles will be inaccurate at low densities (as is seen by comparing Fig.
1 to the corresponding curves in Gudmundsson, Pethick, and Epstein (1983)). At

high densities the results are insensitive to the slow variation of A and Z.
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The preceding discussion has useful implications for cooling calculations
which take into account strong magnetic fields. The magnetized free-free pho-
ton conductivity has been calculated for a non-degenerate, non-relativistic gas
by Pavlov and Yakovlev (1977) and Silant'ev and Yakovlev (1980). For large
values of the parameter b =hw,/ TkTR2B,,T;"! . where 10'%5,; is the field
strength in Gauss, the conductivity is roughly isotropic and increases as b?. At
small values of b the cénductivity tends to its zero field value. Thus the extreme
temperature dependence of the photon conductivity is preserved and it seems
likely that the electron conductivity in the liquid phase will again be the dom-
inant factor (contrary to the assumption made by Yakovlev and Urpin 1981).
This is significant because the bound-bound and bound-free contributions to the
‘photon conductivity in a strong magnetic field have not been calculated, while
relatively accurate expressions for the magnetized electron conductivity (Hern-

quist 1984a) are available.

Finally, it should be emphasized that kg n is still the greatest remaining
uncertainty in the thermal structure of unmagnetized neutron star envelopes,
as noted by Gudmundsson, Pethick, and Epstein (1983). The relatively large
discrepancies in £, prenen (Yakovlev and Urpin 1980; Flowers and Itoh 1976) are
unimportant except, perhaps, at the highest surface temperatures of interest.
The agreement between the recent work of Itoh, et al., (1983) and Yakovlev and
Urpin (1980) on the calculation of k4 —,n indicates that a consensus on the ther-

mal structure of unmagnetized neutron star envelopes may soon be reached.
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Appendix .

The sensitivity of the flux- core temperature relation to variations in I', .
the radiative conductivity (x7,), the e-ion conductivity (<7,;), and the e-phonon
conductivity (=7e,) is summarized in Tables 1-4 for T, =10%%,10°%7,10% and

1055 . Similar results from the numerical computations of Gudmundsson (1981)

are given in Table 5.

Case 7
1 i
2 1
3 1
4 2
5 5
8 100
7 .01
8 1
2] 1
10 1
11 1
12 1
13 1
14 2
15 £

Case 7]1-
1 1
2 1
3 1
4 2
5 5
8 100
7 .03
8 1
g 1
10 1
11 1
12 1
13 1
14 2
15 5
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Table 1. 7, = 10%°

T
180
200
100
180
180
180
180
160
180
180
160
160
160
180
180

a
Cag

8.78
B8.42
9.89
8.88
8.92
8.14
10.0
10.3
7.79
11.7
8.62
10.8
6.99
6.51
11.8

Te®/ (Tc%)s
1.
98
113
98
1.02
83
1.14
117
89
1.33
75
1.21
80
74
1.3

Table 2. T, = 10%37

T
160
200
100
180
180
160
160
180
180
160
160
180
180
180
160

[+
Cg
5.38

T/ (Te)s

1.
87
1.1
.88
1.02
.81

(]

8

10.4
10.4
10.4
10.2
10.5

11.7
13.8

13.8
7.80
10.4
10.4

14.0

Tt/ (Te%)s
1
1.
1.01
98
1.02
82
1.13
1.33
78
1.33
75
1.
1
74
1.35
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log 7
8.375
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Table 5.

Teq
10.5
6.28
1.29
158
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Table 3. Ty = 10°

nep 1-‘m caa
1 160  1.29
1 200 1.27
1 100 135
1 160 1.28
1 160  1.32
1 160 1.13
1 160 1.58
1 180 159
1 160 1,07
5 1860  1.67
2 180  1.00
5 180  1.40
2 160 1.24
2 160 .68
5 180 171

Table 4.

Nep 1-‘m. ceu
1 180  .218
1 200 .210
1 100 .228
1 180  .207
1 180  .219
1 180  .183
1 160 .273
1 180  .265
1 180 .173
.5 180 .274
2 160  .167
5 180 .228
2 160  .208
2 160 .182
5 180  .280

T/ (Te%)s

1.
98
1.05
97
1.02
88
1.22
1.23
83
1.30
77
1.08
98
76
1.33

T, = 1055

Tca/ ( Tl:a)s
1.
29
1.08
07
1.03
88
1.28
1.24
81
1,29

Sensitivity Tests of Gudmundsson {1981)

Tc(-S’C?'ad)/ Te Tc(-5’CeLec)/ Te Tc(-S/Ctat)/ Tc

1.02
1.03
1.02

1.34
1.33
1.35

1.37
1.37
1.38
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Figure Captions

Figure 1.

Relevant physical conditions in neutron star envelopes. Shown are the
melting curve, approximate boundary between the non-degenerate and degen-
erate regimes, and the transition between photon-dominated and electron-
dominated heat transport. The sensitivity zone {dotted region) of Gudmundsson,
Pethick, and Epstein (1983) is also indicated. Superimposed are approximate

T{p) profiles for T, = 1085,108, and 1055,
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Thermal Structure of Magnetized Neutron Star Envelopes

Lars Hernguist

Theoretical Astrophysics, California Institute of Technology

ABSTRACT

The influence of a strong magnetic field (B ~ 10°-10!* G) on the
thermal structure of neutron star envelopes is investigated using
the most recent calculations of radiative and electronic thermal
conductivities. In particular, the relation between the core tem-
perature, T., and the heat flux, F, is considered for effective sur-
face temperatures in the range Ty = 10%°—10%% K. For a purely
vertical magnetic field it is found that quantum effects will
enhance (relative to the zero field case) the heat flux, for a fixed
core temperature, by a factor ¢ 3. It is further argued that the
anisotropic nature of electron transport in a magnetic field will
suppress the heat flux for a more realistic field geometry by a fac-
tor £ 3. Thus the magnetic field is expected to have only a minor
effect on neutron star cooling. This conclusion differs substantially
from those of earlier magnetized cooling calculations and a com-
parison is performed to isolate sources of discrepancy. (It is
argued that the disagreement results primarily from inaccurate
approximations to the electronic thermal conductivity used in past
calculations.) The sensitivity of the flux- core temperature relation

to variations in the input physics is studied in a manner analogous



- 252 -

to Gudmundsson, et al. The results of the sensitivity analysis are
used to argue that disagreements among the existing calculations
of the conductivity will not alter the basic conclusion that mag-
netic effects on the flux- core temperature relation are relatively

unimportant.
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1. Introduction

Substantial evidence exists to support the view that most observable neu-
tron stars have strong surface magnetic fields in the range B ~ 10°% to 10'3 @ (for
a summary see Blandford, Applegate, and Hernquist 1983). The standard models
of radio pulsars and pulsating x-ray sources incorporate magnetized neutron
stars in order to account for the periodicity of the emission and to provide
efficient mechanisms for the production of radiation. Timing observations of
most radio pulsars are well fit by a narrow distribution of field strengths
(x(PP)¥?) in the range 1 —5%x10'2 G (e.g., Manchester 1981). In addition, cyclo-
tron lines have been observed in the x-ray spectra of pulsating X-ray sources
‘and y-ray bursters. Fields ~ 1 —5x10' G are required if the features originate

from electron transitions between the two lowest Landau levels.

Neutron stars are expected to be intense sources of thermal x-ray radia-
tion. However, attempts to observe unpulsed point sources in young galactic
supernova remnants have largely been unsuccessful (for a recent review see Hel-
fand and Becker 1984). Furthermore, in those cases for which there is evidence
for a point source (the Crab, Vela, RCW103, 3C58, and CTBBO remnants) it is not
possible to determine the surface x-ray flux unambiguously. The implied upper
limits for the surface temperatures of the neutron stars are marginally con-
sistent with standard, unmagnetized cooling calculations (e.g., Nomoto and
Tsuruta 1981; Van Riper and Lamb 1981). However, a number of theoretical
issues are unsettled, and it may be necessary to invoke rapid cooling due to unc-
ertain phenomena in the core (e.g., pion condensation) if future observations

lower the derived surface temperatures.

Magnetic flelds of the strength associated with neutron stars can
significantly influence the physical conditions and transport properties in neu-

tron star envelopes (e.g., Hernquist 1984; Yakovlev 1984). Thus, it has been
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generally assumed that neutron star cooling could be similarly aﬁected, How-
ever, previous magnetized thermal structure calculations (Tsuruta, el al. 1972;
Tsuruta 1974,1975,1979; Glen and Sutherland 1980; Nomoto and Tsuruta 1981;
Van Riper and Lamb 1981; Yakovlev and Urpin 1981) have not been completely
satisfactory. The thermal conductivities which have been used are not accurate
and geometrical effects have not been included. In the present work it is argued
that the influence of the magnetic field on neutron star cooling has been greatly

overestimated and that magnetic effects are likely to be unimportant.

As has been emphasized in the recent work of Gudmundsson and co-authors
(Gudmundsson 1981; Gudmundsson, Pethick, and Epstein 1982,1983; Epstein,
Gudmundsson, and Pethick 1983) the thermal structures of the envelope and
core evolve independently during the epoch of neutrino cooling. In this approxi-
mation the core is assumed to be isothermal and to contain all of the star's
mass and thermal energy. The temperature of the core is regulated by the loss
of neutrinos which do not interact with the crust. The surrounding crust acts as
a thin insulating envelope with no sources or sinks of energy and contains all of
the temperature gradient. Thus, for a given core temperature, the heat flux
through the crust is constant and the effective surface temperature is deter-
mined entirely by processes within the crust. This is an ideal method with which
to study the effects of a magnetic field on neutron star thermal structure
because the dominant influence of the field is confined to the envelope.* (Indeed,
in some models, e.g., Blandford, Applegate, and Hernquist 1983, it is further
assumed that the field does not penetrate the core.) In addition, the relevant
equations are relatively simple and, most importantly, it is possible to deter-

inine the sensitivity of the results to each physical input (Gudmundsson,

*A possible effect of the magnetic field on the core could be to reduce the neutrino luminosi-
ties (e.g., Tsuruta 1979), although a rigorous calculation has yet to confirm this.



- 255 -

Pethick, and Epstein 1983; Hernquist and Applegate 1984).

In this paper the thermal structure of magnetized neutron star envelopes is
investigated using the method due to Gudmundsson, Pethick, and Epstein (1983)
and the most recent calculations of radiative and electronic thermal conductivi-
ties. A number of simplifying assumptions are made which allow the dominant
effects to be isolated. In the following section the effects of a quantizing mag-
netic field on the thermodynamic properties of the matter are discussed. Sec-
tion 3 contains a summary of the relevant calculations of the thermal conduc-
tivity. The form of the thermal structure equation which has been used is given
in Section 4. Numerical solutions are presented in Section § along with an
‘analysis of the sensitivity of the results to various physical inputs. In Section 6 a
comparison is made to previous calculations and possible sources of
discrepancy are discussed. Finally, conclusions and remaining uncertainties are

summarized in Section 7.

2. Thermodynamic Relations

2.1 QUANTIZATION OF ELECTRON ORBITS

For sufficiently strong magnetic fields the classical descrii)tion of electron
orbits is nc longer valid and quantum effects must be included. In order to
derive the lccal thermodynamic and transport properties it is suflicient to con-
sider a free electron gas in a uniform, homogeneous magnetic field £. The Dirac

equation can be solved exactly (e.g., Berestetskii, et al. 1982) to give the energy
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spectrum
£ =(pfc?+mic*+ ZnTwBﬁch Y2 (2.1)

where p) is the momentum along the field. The energy levels, which are known
as Landau levels, are doubly degenerate for n # 0 and non-degenerate for n = 0.
Note that the quantity wp is not the relativistic gyrofrequency (1 = |e i Bc /¢ but

is
wp = |e|B/me (2.2)

Quantum effects are generally significant only when the gas as a whole
occupies a small number of Landau levels. The highest level populated, sy, in

‘anon-degenerate gas is given roughly by
Temax = KT/ Pog (2.3)
and in a degenerate gas by (e.g., Blandford and Hernquist 1982)
Tpaz = ( 42 — m?c?)/2mce®hop (2.4)

where 4 is the electron chemical potential including rest mass. Note that (2.3)
and (2.4) yield the same result for 4 — mc? = kT, in the non-relativistic approxi-
mation (the gas is always non-relativistic in the non-degenerate regime). Thus
the number of Landau levels is continuously increasing through the crust. A
rough estimate of the relation of n,; to density can be obtained from the

unmagnetized, degenerate expression for chemical potential
pof = pplc? + mict (2.5)
Pry = A(3n%) 30, 13 (2.6)

ng = Zp/ Am, (2.7)
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where ng is the electron number density, 4 is the ion mass, Z is the number of
conduction electrons per ion, and m, is the proton mass. (Throughout, the sub-
script zero will be used to denote a quantity in the absence of a quantizing mag-
netic field.) Equation (2.7) is valid only if a single ion species is present, as will

always be assumed. From (2.5)-(2.7) for A =58, Z =28
Mmax = .74 Ts/ Bz  (non-degenerate) (2.8a)
Nmax = 1.3p6%3/ B3 (degenerate) (2.8b)

(The notation X, will be used to indicate a quantity in units of 10° and cgs units

are assumed throughout.)

2.2 THE CHEMICAL POTENTIAL

As a result of the quantization of the density of states the thermodynamic
properties of the electron gas are modified (e.g., Hernquist 1984; Yakovlev

1984). It is useful to define the dimensionless parameters
n = (u—mc?)/ kT (2.9)
g = hwg/ mc? (2.10)

Thus 7 is 2 measure of the degree of degeneracy and B is the field strength in
units of 4.414x10'® G. The magnetized relation of electron chemical potential to

density is

3

mwpg =, dpn
= i 2.1°
e T (2mn)? :‘;o In i 1 +exp((&, —u)/kT) (2.12)

where the &, are given by (2.1) and the factor g, = 2 — §,¢ accounts for spin

degeneracy. In the non-degenerate, non-relativistic limit (2.11) becomes
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p—me? —In _m;k_T_S/Z.l_E"f_i g s/ kT (2.12)
kT 2rR? | T = o
The relation corresponding to (2.11) in the absence of a quantizing field is
= 2
1 Po°dpo
= 2.13
™ = o] TFem((ee - w7 D) (2.13)

where g¢° = pgic? + m2c?t.

In the integration of the thermal structure equation (see Section 4) the par-
tial derivatives 8p/ 8u)rp and 8p/ 87T), p are required. From (2.11), transform-

ing to integrals over energy and interchanging the sums and integrals (e.g.,

Hernquist 1984)

A .
3p | - mwBAmp 7 meax In y -
aF"J TB ZTTZTI.ZCZ f Z:_._.: — m2c* — 2nhwpme 2)1/2 g (2.14a)

A n .
e - > Jn de(2.14b
8T Jun BﬂzhchZ f : ,u,) ,gg (e2 — m2c* — 2nhwpme?)/? =(2.14b)

where the sums are bounded by np. = (g% —m?c*)/2hwpme? and
f = (1 + exp(e — w)/ET)™" is the Fermi-Dirac function. In the non-degenerate,

non-relativistic limit, from (2.12)

172
_@EJ _ Amy [ il 1 Be"m3c? i‘ g g MWp/ kT (2.152)
oulry  Z |RmkT) 2m?hd 2T
) _ Amy | ok l/z,{ie”nﬁcz i -nthwgs/ kT nhop 1 2.15b)
3T}, 5 Z |\2mT 2nend =t T "kT 2 (2

The completely degenerate forms of (2.14a) and {2.14b) are not useful because
of the singularities (square root, integrable) in the integrands. Thus it is neces-
sary to use (2.14a) and (2.14b) when the gas is no longer non-degenerate. The

analogs of (2.14a) and (R.14b) in the absence of a quantizing field are
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Bp | _ _Amp i T 41/2 .Z
= - - d .
3 JT 7 853 fzsg\a m2c?) £ (2.16a)
8 __Amy 1 1 _ - ay1/2 .Z
37l = 7 EioaT fzso(so o) (80 — mPc?) deg (2.18b)

In the non-degenerate, non-relativistic limit (2.16a) and (2.16b) become

/2
dp | _ RAmp [mkT)|™"" g .
= 2.17
Buo),  ZkT |2nn?| © (2.172)
3/2
8 _Amp ImkT |77 1 . 7

and in the completely degenerate (T = 0) limit become

1
Z e o (g — mPc )2 (R.18a)

op) _ Amp k2T Rud® - mPct
aTJ%_ Z 3p3c3 (/_ch_mcﬂl/z (2.18b)

2.3 THE EQUATION OF STATE

Hernquist and Applegate (1984) have demonstrated that in the unmagnet-
ized case corrections to the free electron equation of state (ionic, radiative, and
electrostatic) have a negligible influence on the relation between the flux, ¥, and
the core temperature, T, of the neutron star. This follows from the rapid con-
vergence of the radiative zero solution when the heat conduction is by photons
and the prevailing conditions (i.e., ideal gas) at the transition between radiation
and electron dominated heat transport. Furthermore, partial ionization is also
negligible in determining the F'—7; relation because of the high degree of ioniza-

tion {e.g.. Gudmundsson 1981) at the transition. It will be assumed that the
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same approximation is valid in the presence of a quantizing magnetic field
(Hernquist and Applegate 1984). The validity of this assumption is confirmed by

the sensitivity analysis in Section 5.

In the presence of a magnetic field (Blandford and Hernquist 1982) the ther-

modynamic pressure is isotropic and is given by

-d had d

T e 2L Ten 1+ exp((en — w)/KT)

(Magnetization effects are negligible.) In the non-degenerate, non-relativistic

limit, using (2.12)
P =ngkT (2.20)

which is identical to the unmagnetized form.

The entropy per unit volume of the electrons, which is required in the
integration of the thermal structure equation, is given by the thermodynamic

identity S, =8P/ 8T), . Using (2.19)

— mwp £ — U a.fn 2 2,4 2\1/2
S, = ! m 2nho gm d 2.21
e e ':sz T e 12“911(5 ¢ Bme ) £ ( )

In the non-degenerate, non-relativistic limit (2.21) becomes

ka]a/z mc? = o “TMep/ kT §_+ nhwg — (,u,——mcz)]

2R | T Be” 2, gn 2 kT ] (222
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2.4 THE STATE OF THE MATTER

2.4.1 Surface conditions

It has been suggested (e.g., Ruderman 1974; Chen, et al. 1974, Flowers,
et al. 1977) that the physical structure of the neutron star surface could be
altered by the magnetic field, through the formation of linear chains of atoms.
However, the most recent calculations (Milller 1984) indicate that the chains are
not stable for iron, which is the equilibrium nuclear species at these densities
(Baym, Pethick, and Sutherland 1971). In this paper it is assumed that the sur-
face layers are composed of iron and that magnetic condensation does not
occur. As noted by Hernquist and Applegate (1984) surface effects should not
‘i_nﬁuence the flux- core temperature relation because of the rapid convergence
of the radiative zero solution in the photon dominated regime. The only excep-
tion would be if the density distribution was terminated by magnetic effects at a
point where the heat transport was by electron conduction. The results of
Miller (1984) {low binding energies for helium) indicate that this is unlikely to

occur even if the surface is composed of elements other than iron.

2.4.2 Crystallization

The ions are non-relativistic and non-degenerate and the state of the

matter is determined by the parameter
I'= Z%?%/kTa ca = (37 4mny)V3 (2.23)

where m; is the ion number density. The liquid-solid phase transition occurs at
' =T, with the matter being liquid for I' < ', and solid for I' > I';, . Estimates
for I',. neglecting magnetic effects, are in the range ~ 150170 (e.g., Pollock

and Hansen 1973; Slattery, Doolen, and DeWitt 1980). It will be assumed that the
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magnetic field does not affect the ions, in accordance with the calculations of
thermal conductivity (Hernquist 1984; Yakovlev 1984). This requires, roughly,
that wp = Zl|e|B/mic <wp = (4nZ%%n;/ my)/? or B <ps?* G (eg.
Yakovlev 1984; Usov, et al. 1980). Another restriction on the strength of the
field in the solid is provided by the condition that the magnetostrictive stresses
not exceed the yield stress of the lattice. This gives, roughly (Blandford and
Hernquist 1982) B3 < (1 + .6pg¥3)e_, . where £ =1072¢_ is the. maximum

allowed strain angle.

3. Thermal Conductivities

3.1 PHOTON CONDUCTION

At low densities heat is conducted almost entirely by photons. Several
authors have calculated photon conductivities for a non-degenerate, non-
relativistic plasma in the presence of a strong magnetic field (e g., Canuto 1970;
Canuto, et al. 1971; Lodenquai, ef al. 1974; Pavlov and Panov 1976; Pavlov and
Yakovlev 1977; Silant'ev and Yakovlev 1980). Difficulties with the earliest calcu-
lations have been noted by Silant’ev and Yakovlev (1980). In this paper, which
assumes a purely vertical field geometry, the tabulated results of Silant’'ev and
Yakovlev (1980) are used for both Thomson scattering and free-free absorption.
(Thomson scattering was found to be negligible at the relevant densities and
temperatures.) Other sources of opacity (bound-free and bound-bound absorp-
tion) are ignored. As noted by Hernquist and Applegate (1984) in the unmagnet-
ized case, corrections to the free-free thermal conductivity have a negligible
influence on the flux- core temperature relation. This results from the rapid

convergence of the radiative zero solution in the region where heat transport is
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by photons and the dominance of free-free absorption at the transition to
electron-dominated heat transport. These conditions should also hold in the
magnetized case (Hernquist and Applegate 1984) and the insensitivity of the
results to the photon conductivity is confirmed in Section 5. (The temperature
distributions are, however, not accurate at low densities where bound-free and

bound-bound absorption may be important.)

The magnetized conductivities in Silant'ev and Yakoviev (1980) are
presented in the form of zero fleld conductivities multiplied by a function of B
and temperature. The zero fleld free-free conductivity in Silant’'ev and Yakovlev
(1980) leads to an opacity which differs from the corresponding relation in Cox
and Giuli (1968) by a factor ® 3 . The discrepancy can be entirely attributed to

differences in the frequency-dependent Gaunt factors. Silant’ev and Yakovlev

1/2
(1980) assume the form g,, = 3 exp(hv/kT)Ko(hv/ kT) , where Ky(z) is a

I

modified Bessel function, which has been calculated in the Born approximation
using free electron wave functions (Pavlov and Kaminker 1975). A more exact
treatment (Karzas and Latter 1961) , taking into account Coulomb effects on the
electron wave functiions, shows that for iron at the relevant temperatures
grr ® 1, independent of frequency. When the two forms are averaged over fre-
quency a factor & 3 difference results. In this paper the approximation gy, =1
is made, although the sensitivity analysis presented in Section 5 indicates that
deviations in the photon conductivity of this magnitude have a negligible

influence on the flux- core temperature relation.

Finally, the conductivities of Silant'ev and Yakovlev (1980) are calculated
for b =hwg/kT ~ 1.38,3/ Tg <1000 . At higher values of & (near the surface)
the conductivity was found by extrapolation. Although this is undoubtedly not
accurate the flux-core temperature relation will not be affected because errors

in the conductivity at low densities are not relevant (Hernquist and Applegate
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1984).
3.2 ELECTRON CONDUCTION

3.2.1 Unmagnetized colculations

In the liquid phase the dominant scattering mechanism is electron-ion
scattering, while electron-phonon collisions are most important in the solid
phase. Electron-electron scattering will generally be negligible unless low-Z
ions (Z £10) are present (Urpin and Yakovlev 1980a). The thermal conductivity
of the degenerate electrons in the liquid phase has been calculated by Flowers
and Itoh (1976), Yakovlev and Urpin (1980), Urpin and Yakoviev (1980b), Itoh,
et al. (1983), and Nandkumar and Pethick (1984). The original calculations of
Flowers and Itoh (1976) and Yakovlev and Urpin (1980) differed by factors ~ 3
with essentially the same density and temperature dependence (Blandford,
Applegate, and Hernquist 1983). In the recent work of Itoh, ef al. (1983) and
Nandkumar and Pethick (1984) the thermal conductivity is expressed in a form
identical to that of Yakovlev and Urpin (1980), with residual discrepancies
(~ 10—30% for iron, with Itoh, et al. (1983) and Nandkumar and Pethick {1984)
giving the larger values of the thermal conductivity) absorbed in the Coulomb

logarithm. In terms of density and temperature

-1

2 2/3
HT'—ZZ p*/3 (3.1)
Amgp

where Aq; is the Coulomb logarithm. In this paper, when zero field conductivities

gt —en = —TRhES pT |, |
4e*mPm, Ahg me

are required, the approximation Ay = 1 is made and «¢® ™" is assumed to be

uncertain to ~ 30% .
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The thermal conductivity in the solid phase due to e-phonon scattering has
been calculated by Flowers and Itoh {1976), Yakovlev and Urpin (1980), Raikh
and Yakovlev (1982), and near the melting point by Itoh, et al. (1984). Consider-
able disagreement (factors ~ 3) still exists between the various calculations.
(For a critique see Blandford, Applegate, and Hernquist 1983.) For convenience
the analytical expression in Yakovlev and Urpin (1980) has been used and
Kko® PR ig assumed to be uncertain to a factor of 3 . (The sensitivity tests in
Section 5 demonstrate explicitly that this is not a serious consideration in
determining the flux-core temperature relation.) In terms of density and tem-

perature

-1
oo -monen = BrVomnk [ 2o 170N 1] Pfan22)™” el
o 6m2e?u_, |Am, | 2 |me| | Am, ‘

where the factor w_; is related to the mean square thermal displacement of the

ions, 5_2 , by
g= A, (3.3)
My Yp,
anZRe?n, .
wp,% = B (3.4)

Henceforth the value uz_p = 13 (Pollock and Hansen 1973) used by Yakovlev and

Urpin (1980) will be assumed.

3.2.2 Magnetized conductivities

The thermal conductivity due to relativistic electrons in a quantizing mag-
netic field has recently been calculated by Hernquist (1984) and Yakovlev (1984)

in the field-parallel case, and by Kaminker and Yakovlev (1981) and Hernquist
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(1984) in the field-perpendicular case. Difficulties with previous calculations
(e.g., Canuto and Chiu 1969; Canuto and Chiuderi 1970; Ventura 1973; Canuto
and Ventura 1977) have been noted by Yakovlev (1980ab,1982) in his treatment
of non-relativistic electron transport. In particular, large errors can be intro-
duced if the completely degenerate limit (T = 0) is assumed, because of the sen-
sitivity of the flux- core temperature relation to the electron thermal conduc-
tivity. Thermal effects smooth and damp the quantum oscillations and are
responsible for the breakdown of the Wiedemann-Franz law (Hernquist 1984;

Yakovlev 1984).

For the wvertical field geomelry assumed in this paper the transport

coefficients can be written as

gy ZmQB - afO e?
| ==/ —le|(c —p)/ T| ¢(e.B) de (3.5)
i & hiogny ;o2 de (e -~ W/ T

where oy = nZ%e*/ R%wp? for e-ion scattering and oq = me®kT u_p/ RAh%wpn; for

e-phonon scattering. The thermal conductivity k; is obtained from the relation
K =7 = TN/ 0y (3.6)

(e.g., Hernquist 1984; Yakovlev 1984). Fits to the function ¢(g,B) have been
given by Hernquist (1984) for selected field strengths and with allowance for up
to 30 Landau levels to be populated. Fits are provided for both e-ion and e-
phonon scattering. The results of Yakovlev (1984) are expressed in a form ident-
ical to {3.5) but with a factor of 28 absorbed in the normalization of ¢(¢,B)
rather than multiplying the integral in (3.5). That is, g{(H) = ¢(¥)/28. (The nor-
rhalization of ¢(¢,B) in Hernquist (1984) ensures that ¢ is independent of B in
the limit 5 - 0.) Values of ¢{¢,B) are tabulated by Yakovlev (1984) for selected

fleld strengths, both e-ion scattering and e-phonon scattering, and with
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allowance for up to 8 Landau levels to be populated. The two calculations in the
solid phase agree to within the accuracy of the fits in Hernquist (1984) and the
stated accuracy of the numerical results in Yakovlev (1984). The two calcula-
tions in the liquid phase agree away from the zerosl of ¢ (see Hernquist 1984).
Near the zeros of ¢ the calculations disagree by up to = 50%, with Hernquist
(1984) giving the larger values. This will lead to differences £ 30% in the conduc-
tivity when ¢ is used to calculate «,4n from (3.5). The numerical differences
are directly attributable to assumptions made about the screening length, 7y,
used in the calculations. The expression for 4 used by Hernquist (1984) differs
from that used by Yakovlev (1984) by a numerical factor of 1.64 (that is,
74(Y) = 1.6474(H)). The form of r; used in Hernquist (1984) was chosen for con-
sistency with the non-relativistic calculation of Yakovlev (1980ab,1982). As the
resulting conductivities are in substantial agreement (~ 30% difference in £5-wsn
at high densities) it is not appropriate to debate the relative merits of one
choice of 74 over the other. The Hernquist (1984) calculation of the conductivity
is used in this paper (because of the allowance for a greater number of Landau
levels) and kg - is assumed to be uncertain to ® 307% (entirely consistent with
the uncertainties in the unmagnetized case). The two calculations of &g —pronon
which are in complete agreement, will be assumed to be uncertain to a factor

~ 3, in accordance with the unmagnetized calculations.*

3.2.3 Magnetized conductivities af low densilies

The fits to ¢, _;n given by Hernquist (1984) and the tabulations of ¢g_jn

given by Yakoviev (1984) both assume forms for the screening length which are

*The linear systems in Hernquist (1884) and Yekovlev (1884) used to find ¢{g,B) differ by
virtue of a symmetry relation. For the scattering potentials of interest it is possible to show
thet $nps = $n—n—s (in the notation of Hernquist 1984). If this relation is apzlied to the
system in Hernquist (1984) it simplifies to the form of Yakovlev (1884). For more general
scatiering potentials, however, the system of Hernquist (1984) is necessary.
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valid only in the degenerate limit. Typically the transition from photon-
dominated to electron-dominated heat transport occurs when the gas is not
highly degenerate. At these densities ¢y, is Dot accurately represented by
the numerical calculations of Hernquist (1984) or Yakovlev (1984). However, it is
possible to avoid difficulties by noting that the gas in the non-degenerate regime
always occupies only the lowest Landau level whenever quantum effects have a
significant effect on the flux-core temperature relation. In this limit (R = 0)
it is possibie to find ¢ analytically (e.g., Yakovlev 1984). With ¢(e,B) normalized

according to Hernquist (1984) this gives

Po-phamon = = 5w (BV) |exp(w(8.) Bi(—w (6.)) | (3.7)
-1
Pomton = 5w (BV) |expw(BY) + 02 Bi(~w(B) ~ aa) + o] (88)

where v = g/ hwp, w(B V) = 2(f%® — 1)/ B, Ei is an exponential integral (Gradsh-
teyn and Ryzhik 1980), and the dimensionless screening length parameter a4 is
related to the screening length 74 by

me) 7T (3.9)
For compatibility with Hernquist (1984) the screening lengths of Yakovlev

(1980ab,198R) are used. The exact relations are

rq R =r R+, R (3.10a)
r2 = B (3.10b)

1 D‘ 6 :
T, % = 4me? —Q-—'n8 () (3.10c)

ou
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where 7p_is related to density and temperature by rp, = (k7/ 4nZ%e*n)VY? a is
defined by (2.23), and 8n,/8u)y is obtained from {2.14a). Relations (3.7) and
(3.8), along with (3.10a)-(3.10c), are used to calculate ¢ in the limit n,,, =0 in
order to avoid numerical problems. At higher densities (n., > 0) the fits given

in Hernquist (1984) are used to compute ¢ .

4. Thermal Structure Egquation

In general the problem of heat transport in a magnetic field is significantly
more difficuit than the unmagnetized case because the heat flux equation is a
vector equation and the conductivity is a tensor. If, however, the field is vertical
throughout the crust then VT || B and the familiar scalar equations can be used.
This assumption will be made in this paper and, consequently, the results will
represent the maximum amount by which the heat flux can be enhanced by
quantum effects. {Geometrical effects are discussed briefly in Section 5, and

more fully in Applegate, Blandford, and Hernquist 1984).

For a thin crust with negligible mass and no sources or sinks of energy the
general relativistic equations of stellar structure can be written as {(Gudmunds-
son, Pethick, and Epstein 1983)

ar _ F 1
dP  gs pi

(4.1)

where F is the heat flux, gy is the surface gravity, and « is related to the opacity,

K. by

r (4.2)
PR

For a field geometry in which V7 || B, (4.1) is valid and « - «; . However, (4.1) is
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not the most convenient form of the thermal structure equation if magnetic
effects are included. The transport coefficients (3.5) are expressed as functions
of w and 7. Thus, if (4.1) were used it would be necessary to numerically invert
(2.19) at each step in the numerical integration. In addition, it is desirable to
solve for the temperature distribution as a function of density directly, rather
than pressure. One possibility would be to write the thermal structure equation
as a total derivative of the temperature with respect to the electron chemical
potential (e.g., Hernquist and Applegate 1984) and then find the corresponding
density from (2.11). However, it is possible to show that in the non-degenerate
layers p does not always increase monotonically along a solution and, therefore,

is not suitable as the independent integration variable.

It is most convenient to use density as the independent variable and, furth-
ermore, to solve for the chemical potentié.l simultaneously rather than by
inverting (2.11). This is accomplished by writing the thermal structure equation
as two coupled differential equations for temperature and electron chemical
potential.  Using the identities dP =8P/du)rdu+dP/87),dT and

dp = dp/8u)r di + 8p/ 8T), AT, from (4.1)

Z F/gs n, | 0

:-QE_]QI_
BT“dp

where S, = 9P/ dT), is the entropy per unit volume of the electrons, the ther-

" Am'p K _ Se 8 -
' [ ] K T‘ 9

dy 1
dp  8p/0u)r

(4.4)

modynamic identity n, = 8P/ 0u)r has been used, and the right hand sides of

both {4.3) and (4.4) are expressed entirely as functions of x and 7 .

The thermal distribution is obtained by simultaneous numerical integration

of (¢.3) and (4.4) from an initial point (7 ,ps . s) to the core boundary. For a
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given effective surface temperature {i.e., a fixed heat flux F = ¢7;* ) the initial
density is found from the usual condition (e.g., Gudmundsson, Pethick, and

Epstein 1983)

P, =

W[
m?‘zlm“‘

(4.5)

The point (T, ps . 45 ) always lies in the non-degenerate layers where the opacity
is dominated by the photons. In this region the magnetized equation of state is
identical to the unmagnetized form (2.20). Furthermore, because the flux- core
temperature relation is comipletely insensitive to the surface boundary condi-
tion it is sufficient to use the free- free conductivity of Silant'ev and Yakovlev
(1980) in (4.5). (See the reievant discussion in Hernquist and Applegate 1984.)
Using the Cox and Giuli form of the unmagnetized free-free opacity, for fully ion-

ized iron
ps = 089,12 T, B¢ 2(hoop/ kT,) (4.6)

where ¢j(hwp/ kT) is the enhancement in the thermal conductivity when mag-
netic fields are included and is tabulated in Silant'ev and Yakovlev (1980). For
pure free-free absorption ¢ increases monotonically from unity at B =0 to
1.97x10° when hwp/ kT = 1000 . Thus the effective surface density lies at a
higher density than in the unmagnetized case because of the increased tran-

sparency of the surface layers.

The initial chemical potential, ug, is obtained from (2.12) in the magnetized

case and from the familiar corresponding relation in the unmagnetized case.

The numerical results confirm that the magnetized relation between the
flux and core temperature is cormpletely insensitive to the surface boundary

condition. As in the B = 0 case (e.g., Hernquist and Applegate 1984) this results
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from the rapid convergence of the radiative zero solution in the layers in which
photons dominate the heat transport. Thus, as is seen from (4.3) and (4.4) the
core temperature will depend on the surface gravity and effective surface tem-
perature only in the combination 73*/gs (in agreement with the B =0
calculation-- see Gudmundsson, Pethick, and Epstein 1983). Therefore it is

sufficient to vary only one of the two parameters in the numerical computations.

5. Numerical Calculations

5.1 PROCEDURE

The thermal structure equations (4.3) and (4.4) were integrated numeri-
cally, using a 5th and 6th order Runge-Kutta-Verner scheme, from the initial
point (T ,ps, is) to the core boundary (7T, ,p. . 4, ) . For compatibility with Gud-
mundsson, Pethick, and Epstein (1983) the core boundary was taken to be at a
density p, = 10'% gm em™3. Quantum effects were included up to the point at
which 30 Landau levels (np, = 29) were populated. At each step in the nurneri-
cal integration, the =lectron thermal conductivity was given by (3.6) and a
numerical integration of thé transport coefficients (3.5) for ., < 29, and by
(3.1) or (3.2) for n ., >29 . The photon radiative thermal conductivity of
Silant’ev and Yakovlev (1980) was used throughout. The functions 8p/87T), .
8p/ 8u)y , and S, { all functions of u and 7 ) were given by numerical integra-
tions of the appropriate magnetized and unmagnetized relations in Section 2. In
the nondegenerate regime the expansions for 8p/du)r , 8p/07T), ., and S, in
Section 2 were found to be adequate. In the degenerate regime the Sommerfeld
expansions for the unmagnetized forms were used {but not for the magnetized

relations--see Section 2). Finally, the local values of Z and A were assumed to
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be given by the equilibriumn composition (Baym, Pethick, and Sutherland 1971),
although it was found that it would have been sufficient to use Z = 26 and A = 56

throughout {see Hernquist and Applegate 1984).

5.2 RESULTS

The integration was performed for the field strengths for which the conduc-
tivities have been calculated (see Table 1) and for eleven different heat fluxes
(values of F corresponding to the effective surface temperatures
log T, =55-6.5, in increments of AlogT; = .1) . The range of values for T, was
chosen for compatibility with Gudmundsson, Pethick, and Epstein {1983). The
‘surface gravity g = 101 cm s was used in each calculation. However, in view
of the scaling relation of the F — T, relation with 7,*/ g, (see Section 4) this is

not a limitation.

5.2.1 Fluz —core temperature relation

The values of the core temperature, T;, are given in Table 1 (see Appendix)
for the fleld strength: and surface temperatures used in the calculation. In
Table 2 {see Appendix) the ratio of the zero field core temperature to 7, is given
for each set of 7y, and B. In each case the core temperature is lower than the
zero field value, but the maximum effect is only & 80% . The relation between
Is/9s, and T, is shown in Figure 1 for the field strengths
B =0, 10, 10'% and 10'* G . It is also seen that the effect of the field on the
flux- core temperature relation does not necessarily increase monotonically
with increasing field strength. This is due to the quantumn oscillations of the
electronic conductivity and can be understood in terms of the sensitivity of the

flux to gy, (see Section 5.4).
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5.2.2 Thermual structure

Temperature-density profiles are given in Figures 2, 3, and 4 for the surface
temperatures Ty = 10%°, 108 and 10%% | respectively. In each figure the T(p)
curves are given for the field strengths B = 0, 10'%, 10'3, and 10'* G . As noted in
Section 3 the temperature-density profiles are not accurate at very low densi-
ties where bound-bound and bound-free opacity are important. Thus the curves
in Figures 2, 3, and 4 have been terminated at p = 10° gm cm™ . In the non-
degenerate regime the relation of log T to log p is roughly linear, in agreement
with the analysis of Hernquist and Applegate (1984). The magnetized curves are,
of course, not precisely linear because the free-free opacity in this case is only

approximately a power law function of density and temperature.

5.2.3 FPhysical conditions

The approximate physical conditions along each solution plotted in Figures
2, 3, and 4 are given in Table 3. Tabulated are the densities corresponding to
the crystallization point (I" = 160), the approximate transition from photon-
dominated to electron-dominated heat transport (Kyg = Kgec ), and the approxi-
mate transition from the non-degenerate to degenerate regimes (u —mc?® = k7).

The density at which 30 Landau levels are occupied is given roughly by (2.8b)

With 7 pmay = 29.

5.2.4 Thermodynamic variables

An exarnple of the solution for the electron chemical potential {(in units of
mc?) is shown in Figure 5 for the surface temperature 7, = 108 and the field
strengths B = 0, 10'%, 10'3, and 10'* G. At low densities the chemical potential is
dominated by the rest mass contribution and the curves for the different field

strengths are indistinguishable. At much greater densities the curves are again
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indistinguishable as u is independent of T for a highly degenerate gas. The rip-
ples in the w(p) profiles for B = 10 and 10 G are due to the quantization of

the electron orbits.

In Figure 6 the entropy per electron (in units of k) is shown for the same
surface temperature and field strengths. Although the quantum oscillations are
rather large their influence on the thermal structure is not significant because
thermal correcticns are small in the degenerate regime. Small jumps in the
curves are due to the use of asymptotic expansions to calculate the entropy per
unit volume at low densities (in the non-degenerate regime) and the appearance
of new equilibrium nuclear species at high densities (Baym, Pethick, and Suther-

land 1971).

Finally, the partial derivatives 8p/ 8u)y and 8p/ 87T), (not plotted) also show
large amplitude quantum oscillations. This is especially true of dp/ 8T), which
has not converged to the zero field limit even when n,,, = 29 (oscillations about
the zero field value of amplitude ~ 10 times the zero field value are noted at the
largest fields and lowest temperatures). However, the neglect of quantum
effects for ., >29 does not affect the thermal structure because thermal

corrections (i.e., 8p/ 8T),) are not important in the degenerate regime.

5.2.5 Thermol conductivity

The total thermal conductivity (radiative + electronic) is given in Figures 7,
8, and 9 for the surface temperatures Ty = 1055, 108, and 10°%° , respectively. In
each figure «(p) is shown for B =0, 10'%, 103 and 10 G. At low densities the
conductivity is roughly constant along a solution. This follows from the magnet-
ized form of the equation of state in the non-degenerate phase (2.20) and the
simple theory presented in Hernquist and Applegate (1984). Furthermore, the

conductivity along a solution at low densities is independent of field strength, as
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expected. (According to Hernquist and Applegate (1984) the conductivity along
a solution depends only on the ratio F/gs ., even if magnetic effects are
included.) The conductivity is not precisely a constant because the opacity is
only approximately of power law form. At greater densities the quantum oscilla-
tions of the electronic conductivity are clearly visible although they are
significantly damped by thermal eflects along the high surface temperature

solutions.

The discontinuous jumps in the conductivity at the melting point and at the
cutoff points ng.y =29 in the liquid phase (for a discussion of the origin of the
discontinuities see Yakovlev 1984) do not represent a serious problem. In gen-
~eral the points at which 74, =R9 lie in the solid phase except for the high sur-
face temperature solutions (which are less sensitive to magnetic effects). (Note
that the points at which .. =29 are not given precisely by (2.8b) for the high
Ts solutions because of thermal effects.) In addition, the discontinuities usually
appear at such high densities that the flux- core temperature relation is not

affected (see Section 5.4).

5.3 GEOMETRICAL EFFECTS

The results thus far have assumed a completely vertical field geometry
(VT || B) . If the field has a horizontal component then the results will overesti-
mate the flux for a given core temperature. Although the radiative conductivity
is roughly isotropic (to within a faétor ~ 2-- see Silant'ev and Yakovlev 1980), the
electronic conductivity is highly anisotropic. Direct electron transport perpen-
dicular to B is reduced by ~ 0(1/(Qr)?) and Hall transport is reduced by
~ 0(1/(Qr1)), where Q is the relativistic gyrofrequency and 7 is the collision
time. As the electron conductivity is the factor which controls the heat flow

(Section 5.4) it is apparent that geometrical effects can significantly alter the
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heat flux. The product {27 can be estimated from zero fleld values. Using the

Yakoviev and Urpin (1980) form for Tg, in the liquid

QQTQ ~ 4—0512( 1+ .6/)52/5)——l

ety
[e]]
.

~

and in the solid
Q7o ~ 108,2Ts ' p6'/ (2 + .6p6*%)"! (5.2)

where Z2 =26, A=56, A4 =1, u_p=13, and the fully degenerate limit have
been assumed. Thus, for the relevant field strengths the cross-field heat flow is

much smaller than that along the field.

It is possible to obtain a rough estimate of the overall effect of the anisotro-
pic heat flow in the limit (7 » = . Consider a slab of material with a uniform
field inclined to the vertical axis by an angle o . The vertical heat flux in the

(7 -» o limit is then
F, = —x g—g—cosga (5.3)

where k) is the conductivity along the field. Thus the effect of a more realistic
field geometry on the heat flux can be estimated by averaging the factor cos?a
factor over a sphere. For a uniformly magnetized sphere <cos?a> = 1/3, while
for a pure dipole field <cos®a> = 1/ 3.8 {see Applegate, Blandford, and Hernquist
1984). Thus the net effect of the anisotropy of the heat flow is to reduce the flux
by a factor ~ 3—4 in the infinite field limit. This is clearly an upper limit as pho-
ton conduction will be effective, to some degree, at transporting heat across the
field. For small fields the anisotropy vanishes and the heat flux is unaffected by

geometrical considerations.

For a fixed core temperature and a vertical fleld the effect of the quantum

conductivities is to increase (relative to the zero field case) the heat flux by a
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factor £ 3. {The maximum effect is a factor of 3 at the highest field strengths
while the magnetic influence vanishes at low field strengths -- see Table 1.) Thus
it is concluded that the enhancement in the heat flux due to quanturn effects will
be canceled by the suppression of the heat flux due to the overall field
geometry. Indeed, it is likely that for moderate fields ~ 10'® G and high surface
temperatures 7, > 10% K the geometrical effect will be more important. The
result of this would be to reduce the flux relative to the zero field value and
extend the epoch of neutrino cooling. (See Applegate, Blandford, and Hernquist

1984 for a thorough discussion.)

5.4 SENSITIVITY TESTS

The sensitivity of the flux- core temperature relation to variations in the
radiative conductivity, electronic conductivity, and melting parameter was
investigated in a manner analogous to Gudmundsson (1981). It was found that
the sensitivily to the inputs in the magnetized case was almost the same as that
in the unmagnetized case, in agreement with the discussion in Hernquist and
Applegate (1984). In general the F — T, relation is most sensitive to variations in
Kq —ion . less sensitive Lo variations in K, pronen @nd the melting parameter I, and
virtually independent of variations in x4 . Thus the sensitivity zone of Gud-
mundsson, Pethick, and Epstein (1983) is generalized to the magnetic case. The
low-density boundary lies along the tramsition from photon-dominated to
electron-dominated heat transport while the high-density boundary results from
the conductivity being so large that the star is nearly isothermal (usually near
the melt surface). (See also Hernquist and Applegate 1984.) The edges of the
sensitivity zone are somewhat less precise than in the unmagnetized case
because of the quantum oscillations in the thermal conductivity., However,

resonant phenomena (examples are given below) will influence the neutron star
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only over a small portion of its thermal history and hence will have a negligible
influence on cooling. (An exception to the coincidence of the high-density edge
of the sensitivity zone with the melt surface occurred for the conditions
T, =10%5 B =10 In this case the density at the melt was lower than that of

the transition from photon-dominated to electron-dominated heat transport.)

The flux- core termperature relation was found to be highly insensitive to
large variations in the radiative conductivity, kg . in agreement with the dis-
cussion in Hernquist and Applegate (1984). Changes in kg by factors of 2
altered the core temperature, for a given surface temperature, by 2% . (An
exception was the case B = 10 G, T; = 10%° which had changes in T, of ® 10% .
At such low temperatures and high field strengths the transition from photon to
electron dominated heat transport occurs at densities approaching the high-
density cutoff to the sensitivity zone. Thus the photons should have a greater
influence.) A factor of 10 change in kg typically altered the core temperature

by < 10%.

Variations in the melting parameter, I, were also found to be relatively
insignificant. Thermal structure curves were generated for ' = 100 and 200 ,
along with the standard value I' = 160 . The core temperature was typically
affected by < 5% . Resonant effects are possible, however, because of the discon-
tinuity in the magnetized thermal conductivity across the meilt interface (see
Yakovlev 1984 for a discussion of the discontinuity). For example, at B = 1013G
and T, = 10%% the use of ' = 100 led to a core temperature 36% higher than that
using I' = 160 . However, it was typically found that resonant phenomena could
only reduce the overall effect of the magnetic field on the flux- core tempera-
ture relation because the melt occurred at such a high density (effectively at
the high-density edge of the sensitivity zone) with I' = 160. (The effect of the

magnetic field on the thermal conductivily in the liquid is more severe than in
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the solid. See Hernquist 1984 or Yakovlev 1984.)

Finally, it was found that the F' —7; relation depended most strongly on the
electronic thermal conductivity and, in particular, was most sensitive to ©4_ion -
Variations in k, 5, by factors of 2 typically changed T; by ~25% while identical
variations in «s pronon changed T, by ~5% . (As noted previously, the low surface
temperature (75 =10%%), high field (> 10'®) cases were exceptional because of

the location of the melting point and were most sensitive to «g —pronon )

It is now possible toc understand the result that the flux- core temperature
relation is not dramatically affected at the highest field strengths. In the limit
that the electron gas occupies only a fraction of the lowest Landau level, for a
~ degenerate gas, kg, is actually reduced relative to the zero field conductivity
(e.g., Hernquist 1984). Thus, although the amplitudes of the oscillations grow
with increasing field strength, the overall change in kg, averaged over the sen-
sitivity strip, is not severe. Indeed, the effect of the field on the F — T, relation
should not necessarily be monotonic because of the sensitivity of the results to

the oscillating conductivity.

It is also possible to use the sensitivity analysis to discuss the influence of
the uncertainties in the conductivities on the flux- core temperature relation.
As expected (Hernquist and Applegate 1984) it is a good approximation to
assume that the photon conductivity is given entirely by the free-free contribu-
tion. Because of the rapid convergence of the radiative zero solution in the
photon-dominated region the flux- core temperature relation is sensitive to the
photon conductivity only at densities near the transition to electron-dominated

heat transport. Even if k.qq were in error by a factor of 10 at this point (which is
unlikely at these high densities) the core temperature would be affected by

$107%.
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Disagreements among the calculations of the electronic thermal conduc-
tivity will not alter the conclusion that magnetic effects on neutron star cooling
are relatively unimportant. As noted in Section 3 the magnetized and unmag-
netized calculations of &g -ion and Kg —pronon are subject to the same uncertainty.
In addition, the response of the flux- core temperature relation to variations in
Ke—ion @04 Ks _pronon IS, in general, not strongly dependent on the field strength.
Thus, the uncertainty induced in the F —7; relation by disagreements in e
tends to cancel when magnetized and unmagnetized calculations are compared.
The maximum enhancement in the heat flux (relative to the zero field case) for a
purely vertical field geometry was always found to be a factor &3, even with
allowance for uncertainties in X, _ion @nd Kg —pronon 28 discussed in Section 3. This
enhancement is expected to be completely canceled by geometrical effects

(Section 5.3).

6. Comparison to Previous Calculations

6.1 ZERO FIELD RESULTS

The values of T, and the sensitivity of the flux- core temperature relation to
the various inputs are in good agreement with the simple analytical model of
Hernquist and Applegate (1984). The core temperatures are also in good agree-
ment (to a few percent) with the numerical calculations of Gudmundsson, Peth-
ick, and Epstein (195“3) for high surface temperatures (7, = 10% K) . At lower T,
the present results and those of Gudmundsson, Pethick, and Epstein (1983)
‘differ somewhat (at 7, = 1055 K the value of 7, = 2x107 K is roughly 25% higher
than the corresponding result in Gudmundsson, Pethick, and Epstein 1983). As

discussed in Hernquist and Applegate (1984) this can be attributed to
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differences in the assumed e-ion conductivity at low densities. The actual core
temperature probably lies between the two extremes. The sensitivity tests, how-
ever, are in good agreement with Gudmundsson, Pethick, and Epstein (1983) for

all surface temperatures.

8.2 MAGNETIZED CALCULATIONS

The effect of a strong magnetic field on neutron star cooling has been con-
sidered by a number of authors (Tsuruta, et al. 1972; Tsuruta 1974, 1975,1979;
Nomoto and Tsuruta 1981; Glen and Sutherland 1980; Van Riper and Lamb 1981;
Yakoviev and Urpin 1981). The present conclusion that the magnetic field will
; have a relatively minor influence on neutron star cooling differs considerably
from the previous belief that magnetic effects can be quite significant. It is not
possible to compare the results of Section 5 directly with all of the existing cool-
ing curves because of attemnpts to include magnetic effects in the core (e.g.,
Tsuruta, et al. 1972; Tsuruta 1974,1975,1979 suppress the URCA neutrino lumi-
nosity in the magnetic case). However, the relation of surface to core tempera-
ture, which isolates effects in the envelope, is given in Tsuruta (1979), Glen and
Sutherland {1980), Van Riper and Lamb (1981), and Yakovlev and Urpin (1981).

It is useful to consider these results in detail.

The calculations of Tsuruta (1979) are based on the earlier work of Tsuruta,
et al. (1972); Tsuruta (1974,1975). The relation of surface to core temperature
is given for a neutron star of mass .476 Mp and radius 10.9 km and the field
strengths B =0, 10%?% 4.4x10'%, and 4.4x10'® G . For the field strength 102 &
the predicted enhancement in the surface flux is a factor ~2 at T, = 10® and a
factor ~ 10 at T, = 2x107 . For B = 4.4x10'% ¢ the flux enhancements are ~ 10
at 7, =10° and ~ 50 at T, =2x107 K. At the same core temperatures the

enhancements are ~ 100 and ~ 300, respectively, for B = 4.4x10¥® G. From
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Figure 1 the predicted enhancement in the surface flux due to quantum effects
alone is at 7; =10 ~1.5 for B =10 ~23 for B =108 and ~27 for
B =10 G . At T, = 2x107 the enhancement is ~ 2.3, essentially independent of
B . (As mentioned previously it is further expected that the enhancement will

be completely canceled by geometrical effects.)

Glen and Sutherland (1980) give the surface- core temperature relation for
two equations of state (M = 1.25My, KR =8.13km and M = 1.25Mg, R = 16 km)
and the field strengths B =0 and 10'* G . At T, = 108 the flux enhancement is
~ 2 for both models and at 7, = 2x107 it is a factor ~ 10 for both models. {As
predicted by the theory in this paper the enhancement in the flux due to effects

“in the crust should be independent of the surface gravity.)

Van Riper and Lamb (1981) give the luminosity at infinity as a function of
core temperature for the field strengths B = 0 and 4.4x10'® G . The predicted
enhancements in the flux (which are the same as the luminosity enhancement)

are factors ~ 10 at T, = 10% and ~ 50 at T, = 2x107 for all stellar models tested.

Finally, the relation of surface to core temperature is given by Yakovlev and
Urpin (1981) for the model M = 1 My, K = 10km and the field strengths B =0

and 10" ¢. The flux enhancements are ~ 10 at 7, = 10% and ~ 100 at 7, = 2x107.

The discrepancy between the previous calculations and the present results
can be directly attributed to differences in assumptions about the input physics.
The calculations of Tsuruta (1979), Glen and Sutherland (1980), and Van Riper
and Lamb {1981) have relied on the method developed by Tsuruta, et al. (1972)
and Tsuruta (1974,1975). The influence of the magnetic field on the photon con-
ductivity was taken into account by applying a correction factor to the zero fleld
cross-sections of the form o,(B) = (w/ wg)? 6,{0) . where wg is given by (2.2) and
@ is the photon frequency. This approximation is based on the work of Canuto

(1970); Canuto, Lodenquai, and Ruderman (1970); and Lodenquai, et al. (1974).
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The Rosseland mean was then taken to give an opacity of the form
®r(B) = a, %.(0). (See Glen and Sutherland (1980) for an explicit form of a,.)
Silant’'ev and Yakovlev (1980) have shown that this results in a poor approxima-
tion to the free-free conductivity. Large discrepancies are noted for
b =hwp/kT >1 and the tensor nature of the photon transport has been
ignored. However, the results summarized in Section 5.4 show that the flux-
core temperature relation is highly insensitive to the photon conductivity and

errors in the radiative opacity are relatively unimportant.

Another effect that has been considered at low densities is the possible for-
mation of linear chains of atoms (see Section 2.4), which was included in Tsuruta
‘ (1975) and Van Riper and Lamb (1981). It is undoubtedly true that this contri-
butes to the discrepancies between the present work and that of Van Riper and
Lamb (1981). However, the fact that the predicted flux enhancements of
Tsuruta (1979) and Glen and Sutherland (1980) are in reasonably good agree-
ment with those of Van Riper and Lamb (1981) indicates that this is a minor

effect.

A more important issue, in view of the discussion in Section 5.4, is the effect
of the magnetic field on the electronic thermal conductivity. In the work of
Tsuruta, et al. (1972), and in all subsequent calculations {with the exception of
Yakovlev and Urpin 1981), magnetic effects have been taken into account by
applying a correction factor to the zero field conductive opacities of the form
K. (B) = a, K, (0) . The function a, was found from the calculation of Canuto and
Chiu {1969) for electron transport along the field. An average over the quantum
oscillations in the completely degenerate limit (7 = 0) was performed to give
the form of @, plotted in Tsuruta (1974). A number of objections can be raised
with regard to this procedure. Yakovlev (1980a,1982) has shown that the results

of Canuto and Chiu (1963) are not reliable. Furthermore, as emphasized by
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Hernquist {1984) and Yakovlev (1984) the completely degenerate limit (7 = Q) is
not a good approximation. Thermal effects smooth and damp the oscillations
and are responsible for the violation of the Wiedemann-Franz law (the
Wiedemann-Franz law was assumed in the calculation of Canuto and Chiu 1969).
In addition, the results of Canuto and Chiu (1969) are valid only for e-ion
~ scattering, which would tend to overestimate the effect of the magnetic field.
Finally, and most importantly, the average over the oscillations gives a form of
the conductivity which is seriously in error at low densities. In the limit that the
electrons occupy only a fraction of the lowest Landau level, for a degenerate gas,
the conductivity is actually reduced below the zero field result. Thus, as dis-

cussed in Section 5.4, the influence of the magnetic field of the flux- core tem-
perature relation does not necessarily increase monotonically with increasing
field strength. This is especially true at lower core temperatures when the sen-
sitivity zone lies at low densities. The form of a. given in Tsuruta (1974), how-
ever, decreases monotonically with decreasing density (i.e., a monotonically
increasing conductivity). Thus the previous results should differ from the
present calculation most strongly at high field strengths and low surface tem-
peratures, as is the case. (See also the relevant discussions in Hernquist 1984

and Hernquist and Applegate 1984.)

The calculation of Yakovlev and Urpin (1981) included magnetic fields by
assuming that the conductivity would be enhanced to such a degree as to isoth-
ermalize the neutron star at densities p < 3x10® gm em™ . At higher densities
magnetic eflects were neglected. This is obviously not a good approximation and
it is not surprising that the present results differ considerably from those of

Yakovlev and Urpin (1981).

None of the previous calculations have made a reasonable attempt to

include geometrical effects. Tsuruta (1974) tried to take into account the
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angular dependence of the photon opacity by applying the magnetic correction
factor over only a fraction of the stellar surface. However, the fact that Ko is
roughly isotropic (to within a factor of 2) and the insensitivity of the flux- core
temperature relation to the radiation implies that the anisotropy of the photon
transport is irrelevant. The dominant geometrical effect is associated with the
tensor nature of the electron transport and will reduce the surface flux by a fac-

tor £ 3 (see Applegate, Blandford, and Hernquist 1984).

Finally, the relative insensitivity of the results to variations in the B implies
that the possible dependence of the field strength on the depth (e.g., Tsuruta,
et al. 1972) is not important and will, in the worst case, lead to resonance

phenomena.

7. Conclusions

The thermal structure of magnetized neutron star envelopes has been
investigated using the method of Gudmundsson, et al. (Gudmundsson 1981; Gud-
mundsson, Pethick, and Epstein 1983) and the most recent calculations of radia-
tive and electronic thermal conductivities. Magnetic effects were found to be
substantially less important than in previous calculations. The maximum
enhancement in the flux, for a given core temperature, due to quantum effects
is a factor ~ 3. It has been further argued (see Applegate, Blandford, and Hern-
quist 1984 for a complete discussion) that the anisotropy in the electron tran-
sport will reduce the heat flux by a factor ~ 3. For a realistic geometry the two
effects will not cancel exactly but the flux probably will not differ much from the

zero fleld case.

Disagreements among the existing calculations of the thermal conductivity

do not affect the conclusion that the magnetic field will have only a minor
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influence on the heat flux. In general, the sensitivity of the flux- core tempera-
ture relation to variations in the conductivity does not depend strongly on the
magnetic field. Thus, the resulting uncertainty in the flux, for a given core tem-
perature, tends to cancel when magnetized and unmagnetized results are com-
pared. In addition, the sensitivity analysis confirms that large variations in the
radiative conductivity are not significant, justifying the approximations made in

the non-degenerate regime {neglecting bound-bound and bound-free opacity).

The state of the matter near the surface of a magnetized neutron star is
uncertain. Surface effects have been neglected in this calculation and are likely
to be unimportant unless the stellar surface is terminated at a density such that

- the electrenic heat transport dominates throughout the crust.

The magnetic field is thus expected to play only a minor role in the thermal
evolution of a neutron star. This has significant implications for attempts to
observe thermal x-rays from neutron stars and models of phenomena which rely
on enhanced cooling due to magnetic effects. For example, it may be necessary
to invoke pion condensation in order to account for the internal temperatures of
Vela and other pulsars predicted by the vortex creep theory of glitches (Alpar,
et al. 1984a,b; Alpar, Nandkumar, and Pines 1984). (See Applegate, Blandford,
and Hernquist 1984 for a discussion of the observational consequences of the

current results.)

Finally, it is worth noting that the role of the heat flux in the magnetic evo-
lution of a neutron star is not minor {Blandford, Applegate, and Hernquist 1983)

and may provide a crucial link in our attempt to understand these objects.
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Table 1. Values of the core temperature (in units of 107 K).

log T
B 5.5 5.8 5.7 5.8 5.9 8. 6.1 8.2 6.3 6.4 8.5
0 201 288 415 8608 892 133 199 300 456 681 103.8
1010 201 288 415 808 B892 133 199 300 456 691 103.8
3x10!° | 195 288 415 808 B892 133 189 300 456 69.1 1036
101! 177 265 395 583 688 133 199 300 456 69.1 103.6
3x10!! | 157 237 361 552 844 129 187 209 456 691 1038
1012 138 205 310 479 750 11.8 185 289 448 688 1035
8x10' | 140 200 289 428 648 102 164 263 41.8 657 1011
1013 149 202 280 419 613 921 141 224 361 582 914
3x10'% | 158 =214 291 418 608 898 134 202 313 502 79.0
10 135 211 297 403 580 B858 127 188 281 429 6586
Table 2. Ratio of the zero field core temperature to T,.
log T

B |55 56 57 58 585 6 61 62 63 64 65
0 : 1. L 1 1 1. 1. 1 L. L L L
1010 } 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
3x10'° | 103 101 1 1. 1. 1. 1. 1. 1. 1. 1.
10 | 114 109 105 102 1. 1. 1. 1. 1. 1. 1.
3x10M | 128 122 115 110 1.06 1.03 1.0 1. 1 1. 1.
101? ' 145 140 1.3¢ 127 119 1.13 108 1.04 1.0 1. 1.
3x10'% | 144 144 144 142 137 130 121 114 108 105 1.0
10'% | 135 143 143 145 146 144 141 134 126 119 113
3x10'% | 127 135 143 145 147 148 149 149 146 1.38 131
10 | 148 136 140 150 154 155 157 1.80 1.62 1.61 1.58
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Table 3. Physical conditions along selected solutions.

Ts B p(’crad = ’Celac) p(/“‘”mcz = kT) p(r‘ = 160)

1058 0 2.1x108 6.2x10° 4.3x10°
10%% 1012 B.4x10° 3.6x103 9.3x10%
1055 1018 4.8x108 3.7x10% 1.0x108
1055 1014 7.1x10% 3.9x10° < 102
108 0 2.0x10° 4.2x108 8.5%x107
108 101? 9.8x108 6.8x103 5.5%107
108 10" 4,5%10% 7.8x10% 2.0x107
108 104 2.9x10° B.8x10° 1.9x107
1085 0 1.4x108 4.1x10% > 1010
1085 102 1.3x108 4.0x10% > 1010
1085 1018 2.7x10° 1.5x10° > 1010

1085 1014 1.9%108 1.8x108 3.7x10°
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Figure Captions

Figure 1.
The relation of 7,/gs,,'/* to the core temperature for the magnetic field

strengths B = 0 (solid line), B = 10 G (dotted line), B = 10'3 G (dashed line),

and B = 10" G (dashed-dotted line).

Figure 2.

Temperature-density profiles for the surface temperature T, = 10°° and

the field strengths as in Figure 1.

Figure 3.

The same as Figure 2 for the surface temperature 7, = 108.

Figure 4.

The same as Figure 2 for the surface temperature Ty = 10%%.

Figure 5.

2

The electron chemical potential, in units of mc* , as a function of density

for the surface temperature T; = 10° and the field strengths as in Figure 1.

Figure 8.

The entropy per electron, in units of & , for the surface temperature
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T, = 10° and the field strengths as in Figure 1.

Figure 7.
Thermal conductivity as a function of density for the surface temperature

T, = 10°° and the field strengths as in Figure 1.

Figure B.

The same as Figure 7 for the surface temperature Ty = 10° .

Figure 9.

The same as Figure 7 for the surface temperature 7, = 1089,
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