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To see and accept the boundaries of the human mind without vain
rebellion, and in these severe limitations to work ceaselessly without
protest—this is where man’s first duty lies.

Build over the unsteady abyss, with manliness and austerity, the
fully round and luminous arena of the mind where you may thresh and
winnow the universe like a lord of the land.

Distinguish clearly these bitter yet fertile human truths, flesh of our
flesh, and admit them heroically: (a) the mind of man can perceive
appearances only, and never the essence of things; (b) and not all ap-
pearances but only the appearances of matter; (c) and more narrowly
still: not even these appearances of matter, but only relationships be-
tween them; (d) and these relationships are not real and independent of
man, for even these are his creations; (e) and they are not the only ones
humanly possible, but simply the most for his practical and perceptive
needs.

Within these limitations the mind is the legal and absolute monarch.
No other power reigns within its kingdom.

I recognize these limitations, I accept them with resignation, brav-
ery, and love, and I struggle at ease in their enclosure, as though I were
free.

I subdue matter and force it to become my mind’s good medium. I
rejoice in plants, in animals, in man and in gods, as though they were
my children. I feel all the universe nestling about me as though it were
my own body.

In sudden dreadful moments a thought flashes through me: “This
is all a cruel and futile game, without beginning, without end, without
meaning.” But again I yoke myself swiftly to the wheels of necessity,
and all the universe begins to revolve around me once more.

Discipline is the highest of all virtues. Only so may strength and
desire be counterbalanced and the endeavors of man bear fruit.

This is how, with clarity and austerity, you may determine the om-
nipotence of the mind amid appearances and the incapacity of the mind
beyond appearances-before you set out for salvation. You may not oth-
erwise be saved.

from “Spiritual Exercises”
by N. Kazantzakis
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Abstract

Two topics in classical general relativity are discussed: a) The clothing of
singularities by event horizons, and b) various issues in the evolution of coa-
lescing compact binaries, as sources of gravitational waves to be detected by the
LIGO/VIRGO/GEO ground-based detectors and/or the LISA space-based detec-
tor. More specifically:

We investigate a problem related to an important conjecture of classical rela-
tivity, namely the existence of a “cosmic censorship” that forbids the formation of
naked singularities, and always clothes them with event horizons that causally hide
them from the rest of the Universe. Under consideration is the role of rotation in
an infinite cylindrical shell consisting of collisionless dust particles, half of which
rotate clockwise and half counterclockwise. We show that, although such a shell
without any rotation is known to collapse into a line singularity, the presence of
an arbitrarily small amount of rotation is sufficient to halt the collapse. Such a
shell, starting from a non equilibrium configuration, will “breath” radially, emit-
ting gravitational waves, and will finally settle down to an equilibrium radius at
which gravity is balanced by centrifugal forces. This suggests the essential role
that rotation might play in halting the gravitational collapse of an elongated dis-
tribution of mass and preventing the formation of a naked singularity. However,
this is a highly idealized example, and it can, by no means, ensure the validity of
the “cosmic censorship” hypothesis.

On a separate topic, we explore the details of how gravitational radiation re-
action drives the evolution of a slightly eccentric orbit of a small body around
nonrotating supermassive black holes. A combination of analytic and numerical
results arise from the solution of the Teukolsky perturbation equation. It is shown
that in the fully relativistic situation, as in the Newtonian quadrupole approxima-
tion, there is a tendency for circularization of the orbit down to an orbital radius
ro ~ 6.6792GM/c?, where M is the mass of the black hole, and G and ¢ are New-
ton’s gravitation constant and the speed of light. It is further shown that for radii
smaller than r, the eccentricity increases.

Finally, an attempt is made to understand and construct analytic expressions
that, based on the laws of general relativity, approximately describe the simulta-
neous precession in rapidly spinning black hole and/or neutron star and inspiral
binaries with circular orbits. The precession is produced by general relativistic
spin-orbit and spin-spin coupling; the inspiral, by gravitational radiation reaction.

We derive the corresponding approximate waveforms to be received by the network
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of LIGO, VIRGO, and GEO earth-based grav.itational-wave detectors. We then
go on to investigate the adequateness of various “families of templates,” to detect
these spin-modulated waveforms by the method of “matching filters,” We intro-
duce a “fitting factor” FF as a measure of templates’ adequateness, and show
the complete inadequateness, for the task of detection, of the “Newtonian tem-
plate family” (the set of the waveforms derived from the Newtonian, quadrupole
approximation formalism). Another template family with an extra parameter is

suggested that performs much better.
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The body of this thesis consists of four chapters (2 through 5), each of which is
a paper that has been published in or submitted for publication to Physical Review
D. 1 have written Chapters 2, 3, and 4 in collaboration with other people, while
I am the sole author of chapter 5, and of a previously unpublished appendix to
chapter 4.

These four chapters deal with two topics in Classical General Relativity: the
“cosmic censorship conjecture,” which says that physical systems cannot turn into
“naked singularities” after gravitational collapse (chapter 2), and various theoret-
ical issues related with the formation and detection of gravitational waves from
compact merging binaries (chapters 3, 4, 5). These four chapters were written
largely for experts in the topics they cover. Scientists in other fields will find in
the present introductory chapter a schematic nontechnical description of all the

following chapters, together with some relevant background information.

1 CYLINDRICAL, RELATIVISTIC GRAVI-
TATIONAL COLLAPSE AND COSMIC
CENSORSHIP

A spherically symmetric gravitational collapse is well known [1], from analytic
analyses, to end up in a black hole — a region enclosing a spacetime singularity
that cannot causally communicate with the external universe (i.e., with “future
null infinity”). This is of great physical significance since it means that all the
super-high-curvature physics present in the vicinity of the singularity (a region of
volume ~ 10~%° cm?®), remains well hidden from the world outside, and cannot
affect it. In the singularity, classical general relativity is not adequate to describe
the structure of spacetime. The laws of quantum gravity must come into play,
though nobody knows yet exactly how. If a singularity could be “naked,” it would
influence the distant word in an unpredictable manner, and raise physicists’ hopes
of sometime observing phenomena due to Planckian scale physics.

Of course the assumption of absolute spherical symmetry is highly idealized.
But studies of perturbations from the Schwarzschild spherically symmetric solution
indicate that the produced singularity will still be “clothed” by an absolute event
horizon (the boundary of the space that can send signals to future null infinity).
Even Kerr black holes (rotating black holes), in numerical studies of strong vac-

uum perturbations [2] and of highly nonspherical rotating stellar collapse [3], have
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turned out to be stable configurations with the formed singularity hidden behind
an event horizon. All these indications, together with numerous failed attempts
to find examples where a “naked singularity” forms [4, 5, 6], have lent credence
to the so called cosmic censorship conjecture, first formulated by Roger Penrose in
1969 (7], namely, that there ezists a cosmic censor who forbids the appearance of
naked singularities, clothing each one in an absolute event horizon.

There are three apparent counterexamples to this conjecture. First the Uni-
verse itself, since the big bang singularity could in principle be observed. The
second one, less secure, has to do with the evaporation of tiny black holes (of the
order of a Planck length) and the formation of Planck-scale curvature at the late
stage of their evaporation. The third one comes from the work of Choptuik, Abra-
hams, and Evans [8], in which they show that suitably chosen scalar-field initial
data can evolve to form arbitrary high naked curvature, but with correspondingly
arbitrarily small total mass. But these have not harmed the validity of the cosmic
censorship hypothesis; they have just led to more precise formulations, e.g., taking
into consideration the initial state and the type of matter field involved in a real-
istic situation [9, 10]. The question of whether a physical initial mass distribution
much greater than a Planck mass could end up in a naked singularity remains
open.

There are well known unphysical configurations where matter collapses to a
singularity without any horizon ever forming. In the 1960s, Thorne showed that
an infinite cylindrical shell consisting of collisionless dust particles will collapse,
according to General Relativity, to form a naked line singularity along its axis [11].
Of course an infinitely cylindrical star is completely beyond imagination, but such
an example could provide us intuition on what happens in highly nonspherical situ-
ations. For example a prolate spheroid of non-colliding, non-rotating dust particles
in Newtonian gravity will eventually form a thin spindle (a phenomenon known as
the Lin-Mestel-Shu instability [12]). For such a configuration the approximation of
an infinite cylinder is quite accurate at least near the spindle’s waist. This example
suggests the formation of a naked singularity, in this aspherical case.

Several years ago, Stuart Shapiro and Saul Teukolsky explored numerically the
fully relativistic dynamical evolution of such dust-type spheroids, starting from
momentarily static configurations, with no pressure or rotation [13]. A thin spindle
formed, as in Newtonian gravity, if the initial shape was sufficiently elongated.
What was surprising was that the singularity showed up, not just inside the body
of the spindle but also at its ends (poles), extending outside the matter along
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the spindle axis, without any apparent horizon ever being detected. (When a
singularity shows up, the numerical code breaks down, and probing the spacetime
geometry arbitrarily far into the future, to definitely rule out the formation of an
event horizon, becomes technically impossible.) In such a situation, the concept
of “apparent horizon,” the boundary of the region of space where gravity makes
an outgoing beam of light contract, is a good but weaker candidate to replace the
absolute event horizon. Several people [14, 15] have pointed out the possibility that
the Shapiro-Teukolsky conclusion may be artificial due to their specific numerical
choice of time slicing. They may have reached only a small region of the final
spacetime, touching the formed singularity only at its extensions beyond the poles
before the code broke down; and both an apparent horizon and an absolute horizon
might form in the spacetime region they were unable to explore. On the other hand,
the singularities Shapiro and Teukolsky discovered may be truly naked and may
have a simple physical origin; namely, nonlinear vacuum gravity forces triggered
by the pointed spindle’s ends.

Since the examples of Shapiro and Teukolsky were pressureless and nonrotat-
ing, they were expected to form singularities (though only inside the matter and
inside a horizon) in the same manner as the infinite cylinder example. Now, Tsvi
Piran [16] had previously shown by numerical examples that a realistic pressure
in cylindrically symmetric configurations can halt the gravitational collapse. The
matter bounces, and eventually, after a few radial oscillations and the emission of
gravitational waves, it settles down into a nonsingular, equilibrium configuration.

But the role of rotation in cylindrically symmetric systems was unclear. Moti-
vated by this, by the numerical results of Shapiro and Teukolsky and by unpub-
lished analytical calculations done by Thorne in the early 1970s, Kip Thorne and
I embarked several years ago on an exploration of whether rotation, like realistic
pressure, can halt cylindrical collapse. Our study was concentrated on an ideal-
ized model that could be solved analytically and provide us with more insight into
realistic gravitationally collapsing objects: an infinitely long cylindrical shell of
collisionless dust particles, with rotation. To avoid frame dragging complications
without losing the new feature of rotation, we constructed our model with half the
dust particles moving rightwards with some net angular momentum per unit mass,
and half of them moving leftwards with the same net angular momentum.

Based on this model and Thorne’s concept of C-energy [11] (a cylindrical ana-
logue of the Schwarzschild mass function m(r) for spherically symmetric systems),

we showed that for any amount of the particles’ angular momentum, however
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small, there is always an equilibrium radius for the shell, where the centrifugal
forces keep it from collapse. This was already known from old (1970) unpub-
lished work of Thorne. If the combination of angular momentum and radius is not
the right one to provide a balance between centrifugal and gravitational forces,
the infinite cylindrical shell moves toward the equilibrium configuration (either
contracting or expanding radially), bouncing back and forth, and finally settling
down by emitting gravitational waves. However small the angular momentum of
the particles is, the shell will never be able to collapse and form a singularity. The
detailed dynamical evolution of such a system was investigated by me, building on
the formalism earlier used by Thorne.

If the singularity that Shapiro and Teukolsky discovered is just a continua-
tion of the infinite-cylinder-like singularity forming inside the body of the spindle,
then it seems suggestive that an arbitrarily small rotation will make the spindle
bounce without forming any naked singularity. If on the other hand their singu-
larity is connected to nonlinear vacuum gravity developing at the spindle’s ends,
then our simple example doesn’t look promising to assure the validity of Penrose’s
conjecture.

Thorne and I published our analysis and these conclusions in Phys. Rev. D 46,
2435 (1992); our paper appears as chapter 2 of this thesis. Since we completed our
paper, Shapiro and Teukolsky have numerically explored the gravitational collapse
of rotating prolate spheroids [17]. They constructed these spheroids from equal
numbers of corrotating and counterrotating particles in analogy with our model.
They found that for moderate and large rotation rates the spheroids end up in
black holes. For these cases our simple infinite cylindrical model looks like a good
analogue of the spheroid until its polar axis contracts to the same length as the
equatorial axis. Rotation impedes the contraction of the equatorial axis, helping
this way in the formation of a black hole. But for small amounts of rotation they
obtained exactly the same kind of singularities they discovered with their earlier
investigations of nonrotating spheroids [17]. In this low-rotating case it is not
clear if the rotation effects exceed the numerical errors, thus, leaving the cosmic
censorship conjecture yet open. Experts in the field remain sceptical about the
numerical results of Shapiro and Teukolsky since in their explorations they cannot
probe the spacetime geometry far enough to rule out the formation of an event

horizon.
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2 GRAVITATIONAL RADIATION AND CIR-

CULARIZATION OF ELLIPTICAL ORBITS

Chapters 3, 4, and 5 are devoted to gravitational waves from astrophysical sources
and their detection. Although the concept of gravitational waves, as linearized
perturbations of spacetime geometry traveling on a flat spacetime with the speed
of light, dates back to Einstein’s 1916 analysis [18], they are still a dream to be
detected. In addition to testing one more prediction of General Relativity, grav-
itational wave astronomy can open a new and valuable window in observational
astrophysics. This new window is likely to bring qualitatively new information,
since gravitational waves are produced by coherent bulk motions of highly com-
pacted matter and energy, whereas the electromagnetic waves, on which our present
knowledge of the Universe is based, are mainly created by incoherent emissions
from individual atoms, molecules, and charged particles [19]. Thus, detecting and
analyzing cosmic gravitational waves could greatly enhance our understanding of
the Universe.

Since the early 1960s, experimentalists have been trying to detect gravitational
waves directly by means of huge (a few tons) resonant solid bars [20]. Although
more and more sophisticated techniques have been used over the years to reduce
the amount of internal thermal noise, increase the sensitivity of the mechanical
to electrical transducers, and reach the sensitivity level appropriate for detection
(~ 10~2! in strain), no success has yet been scored, that has been widely accepted.
One of the great disadvantages of the bar detectors is the narrowness of their
frequency band of operation.

A new type of detector, based on laser interferometry, began to be developed
in the 1970s. Because of their great potential arm length L, and because their
sensitivity against most noise sources scales o 1/L, the interferometers have the
potential to become much more sensitivity than the bars; and, in fact, as of this
writing the Caltech prototype interferometer is estimated to have an rms noise level
of about half of that for any bar that has ever operated. Not only are these new
types of detectors potentially more sensitive, but they can also be much broader in
frequency than the bars, giving us the opportunity to observe a source’s detailed
evolution, through the waves’ changes in frequency.

Since the interferometric detectors are approaching the level of sensitivity needed
in order to “hear” the whisper of gravitational waves, there is a growing need for

theorists to construct models of the possible sources, to give realistic estimates of



7

their event rates, and to derive ways to extract information from observed waves.

In this spirit, in chapter 3, Eric Poisson, Daniel Kennefick and I have investi-
gated the gravitational-wave-induced evolution of eccentric orbits of binaries con-
sisting of small objects (of the order of 1Mg) orbiting around a large Schwarzschild
black hole. Our focus is on the influence of that orbital evolution on the waves,
which might be detected by the broad-band earth-based interferometric detectors
LIGO/VIRGO/GEO (all of which are under construction or in the final stage of
their design) and/or the future space-based detector LISA.

Compact merging binaries (binaries of neutron stars and/or black holes) are
considered the most promising sources for these detectors (a) because there are
expected to exist enough of them, within the range of the detectors, for several or
more to be seen each year [21], (b) their waves carry a large amount of information
about the binaries’ characteristics and geometry, and (c) mainly because they
are the best understood of all the suggested sources: they produce gravitational
signals that are very clean, throughout the sensitive band of the detectors, without
any complications related to the bodies’ internal structure. It will be especially
helpful, in searching for these binaries, that most of the (complex) features of their
gravitational waveforms can be computed analytically. The generic shape of these
waves, with all complicating factors (spins, eccentricities, etc.) removed, is the so
called “chirp” waveform, a sinusoidal signal that slowly grows in amplitude and
frequency (sweeping through the frequency band of the detectors in a time of a
few minutes for the LIGO/VIRGO/GEO detectors and a few months or longer for
LISA), as the two stars orbit around each other with relativistic velocities, and
move closer to each other by losing energy via gravitational radiation [22].

One of the relevant parameters, in gravitational wave emission from binaries, is
the eccentricity of the binary’s orbit. The dependence of the waves on eccentricity
is two-fold: (a) the magnitude of the eccentricity makes the waves asymmetric
(i-e., enriches their harmonic content), since in eccentric orbits the objects do not
travel with constant angular velocity around each other, and (b) the orientation
of the ellipticity is an extra degree of freedom in determining what combination
of the wave’s two polarizations is measured by each detector on Earth. Of course
the assumption of a circular orbit would substantially simplify the problem, and
this is what most people, investigating the detectability of the gravitational waves,
assume. As a matter of fact, this is often a well justified assumption since in
general gravitational radiation reaction tends to circularize the orbit.

My work with Poisson and Kennefick, which is presented in chapter 3 of this
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thesis, is focused on the radiation-reaction-induced evolution of slightly eccentric
orbits in a Schwarzschild black hole geometry. We examine the evolution not only
when the orbiting body is far from the black hole where the field is rather weak
and the motion is slow, but in the strong-field regime as well, i.e., near the black
hole. In 1964, Phillip Peters derived analytical expressions for the evolution of
the eccentricity of a binary, based on the simple Newtonian quadrupole formalism
for the orbital motion and wave generation [23]. According to his formulae, the
eccentricity continuously decreases during the inspiral.

Now, radiation reaction in general relativity is a very delicate issue. It encom-
passes both major conceptual and computational difficulties. Gravitational waves
are defined as ripples in the curvature of spacetime traveling with the speed of
light. As such, they have no meaning as a local field. Additionally they interfere
with the curved background where they propagate, they get scattered and they
may influence the future evolution of the radiating system; these backscattered
waves, in the process of emission, are often referred as tails (see [24]) and when
gravity is strong, they severely complicate the theory of gravitational radiation
reaction.

Fortunately, there is a great amount of literature on perturbative analyses of the
gravitational field around a black hole. Newman and Penrose [25] have developed
general mathematical tools for such an analysis in an arbitrary spacetime, and
Teukolsky [26] and others have specialized these tools to black-hole spacetimes
(Schwarzschild and Kerr). In the case of a binary with an extreme ratio of masses,
one may think of the small object as a perturbation on the big mass’s gravitational
field. The relevant differential equation describing the evolution of the gravitational
field is the so called Teukolsky equation [26]. In order to compute the gravitational
waves emitted from such a binary, one must solve the inhomogeneous Teukolsky
equation, with the stress energy tensor of the small object moving on a geodesic
orbit [27] as the source term. By imposing the right boundary conditions at infinity
and at the black hole’s horizon we can obtain the radial part of the perturbative
field (while the angular part is given by tensor spherical harmonics, thanks to
the spherical symmetry of the Schwarzschild black hole). Finally from the field
evolution, we can construct the waveform, and deduce the energy and angular
momentum radiated.

In the limit that the mass p of the inspiraling body is small compared to the
black hole’s mass M, all the delicate issues of radiation reaction and its sensitivity

to tails can be avoided in a simple way. The orbit evolves only a tiny bit during
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one orbital period, so radiation reaction effects can be averaged over a period.
This enables us to simply infer the evolution of the orbit’s semimajor axis and
eccentricity from the energy and angular momentum carried off by the waves.

Eric Poisson and I have worked out, independently, the analytic computations
involved in solving the Teukolsky equation for a slightly eccentric orbit, in the
weak-field, slow-motion approximation (in other words far from the black hole).
Our analysis involved a post-Newtonian expansion of the Teukolsky formalism,
i.e., an expansion in powers of (M/r)!/?, where M is the black hole’s mass and ry
is the orbit-averaged Schwarzschild radial coordinate of the small orbiting body.
From this fully analytic analysis, we obtained the following results: In zeroth
order we obtained the same evolution rate de/dt for the orbital eccentricity € as
Peters obtained by using just the Newtonian quadrupole formalism (see Ref. [23].)
We computed relativistic corrections to this rate up through post!-°>-Newtonian
order, (M/r¢)%/?. Daniel Kennefick then computed numerically, from Poisson’s
and my equations, the rate of evolution of the eccentricity everywhere, including
the fully relativistic region near the black hole. Far from the black hole, our analytic
solution was in full agreement with Kennefick’s numerical solution. Also Poisson
and I independently derived analytic expressions for the rate of evolution of the
eccentricity in the highly relativistic regime, when ry approaches 6 M. (When the
orbit falls below r = 6M, it becomes unstable, and the orbiting object plunges
towards the black hole.) Our analytic expressions were again in full agreement
with Kennefick’s numerical solution. Our results are presented in chapter 3 of this
thesis, which is identical to our paper in Phys. Rev. D 47, 5376 (1993). [Amos
Ori was added as an author of the paper after it was written, when we learned
that he had independently derived some of these same results.]

The general picture we gained from both our numerical and analytic solu-
tions is the following. Far away from the black hole, the eccentricity evolves in
a Newtonian, quadrupolar manner; more energy is radiated in the vicinity of pe-
riastron (close to the black hole) than near apastron, thereby making the orbit
become more circular. However, there is a critical radius very close to the black
hole (r. ~ 6.6792M) below which radiation reaction meshes with the black hole’s
strong-field geometry to drive the eccentricity up - though not by an enormous
amount.

Of course, one should keep in mind that our analysis is, restricted to small initial
eccentricities. After the completion of our paper, Poisson, Cutler, and Kennefick

[28] explored numerically the general problem of orbits with arbitrary eccentricity
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in a Schwarzschild geometry, and found the same qualitative behavior as in our
work. Eccentricity decreases with time, until the orbit reaches some minimum
periastron radius, very close to the final stable orbit; then it grows.

These conclusions make us feel safe that, whenever we deal with long lived
binaries like those produced by normal stellar evolution, with very unequal masses
(our regime of computation) and with initial radii far larger than r., we are free
to ignore the eccentricity of the orbit; radiation reaction is guaranteed to have
circularized the orbit before it reaches the strongly relativistic regime, where the
gravitational-wave observations will be made. (For example, the eccentricity de-
creases by almost a factor of 60 while the orbital radius shrinks from 100M down
to r.). This is thought to be the situation for most of the binaries that will be
seen by the earth-based LIGO, and presumably is true when the binaries have
comparable masses (and our calculations fail), as well as for very unequal masses.

By contrast, when a neutron star or small black hole gets captured into a tightly
bound orbit around a supermassive black hole in a dense galactic nucleus, the
captured object may not have enough time to lose its eccentricity before it enters
the frequency window of the gravity-wave detector [5], in this case the space-based
LISA; and it may even remain quite eccentric all the way into r. and onward to
r=6M.

3 SPIN-INDUCED MODULATION OF GRAV-
ITATIONAL WAVES FROM MERGING BI-
NARIES AND SEARCH TEMPLATES FOR
THEIR DETECTION

3.1 Motivation

In the previous section we referred to gravitational wave detectors only as a context
for our analysis of eccentric orbits, without considering the detectors’ noise spectra.
Chapters 4, and 5 are more closely related to the actual task of gravitational wave
detection, and thus are more closely tied to the detectors’ noise. Therefore, I will
start with a short description of these detectors and their internal noise, on which
the rest of this chapter will rely.

LIGO and VIRGO will be long (3 or 4 kilometers) L-shaped laser interferom-

eters, consisting of four massive (~ 10 kg) mirrors hung from vibration-isolated
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supports, that will eventually be able to detect strain amplitudes of the order of
10~%! or smaller. Of course this is such a difficult task that state-of-the-art op-
tics, vacuum systems, seismic isolation, etc. must be used. The first pair of these
detectors, by the name LIGO, is already under construction in the USA. Another
detector, the VIRGO (a French/Italian collaboration) will follow shortly. GEO
(a British/German collaboration), and a Japanese and/or an Australian analogue
may follow in the future. By ~ 2001, the 3-detector LIGO/VIRGO network is
expected to be in operation. As we have emphasized in the previous section, these
detectors, by contrast with the bar detectors, are broad band instruments with
a range of frequencies, 10 Hz < f < 500 Hz. The LIGO team has published an
estimate of the spectrum noise curve [30], as it might look with a few years of
improvements beyond the first generation of LIGO detectors. This so called “ad-
vanced detector” noise curve is used by theorists as a benchmark for investigations
connected to the detection of waves and/or the extraction of information from
gravitational wave signals (see for example [31]).

LISA is a proposed space-based gravitational wave antenna, which will consist
of a cluster of four spacecraft functioning in effect as an interferometer with a
few million kilometer arm length. LISA’s design is still in a preliminary stage.
Its estimated frequency band will be 0.1 mHz < f < 1 Hz. Last month LISA was
approved, by the European Space Agency, as the third of two or three Cornerstone
Missions for the ~2010 time frame. LISA’s fate in Europe will depend on whether
funds are available for three, or only for two Cornerstone Missions. If it does not
move forward in Europe, a vigorous attempt will be made to convince NASA to
fly it.

While experimentalists are striving to develop new techniques to build ground-
based detectors with super-high sensitivity, which is a major scientific and technical
task, a worldwide group of theorists is trying to estimate event rates of possible
detectable sources, as well as waveforms corresponding to these sources. The
predicted waveforms are essential for detecting the gravitational waves, especially
from compact merging binaries of neutron stars and/or black holes. The reason is
that the received signals are expected to be hidden behind the detectors’ internal
noise. In order to extract them from the noise, one must use the technique of
“matched filtering.” More specifically, the noisy output of each detector must
be cross-correlated with a family of previously designed templates, presumed to
describe accurately all the possible waveforms, with the cross-correlation weighted

by the sensitivity of the interferometer. If a signal is present, the cross-correlation
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will turn out high for some specific template. The more accurate the templates
are, the more promising this detection process will be.

In principle one could solve, with higher and higher accuracy, the general rela-
tivistic equations describing the motion of a binary and its emission of gravitational
waves, to get more and more realistic templates, and this has to be done to ob-
tain sufficiently accurate templates to extract all possible information from any
detected signal. But in searching for signals, because of restrictions on the com-
puters’ speed [32] (since the data analysis must keep up with the incoming data),
and the desire not to reduce the statistical significance of any signal discovered, one
should make sophisticated choices to reduce the total number of search templates.
Once the signal has been detected, the recorded data can then be cross-correlated
with the information extraction templates, to extract further details of the signal,
not included in the family of search templates.

The parameters determining a hypothetical realistic waveform from a binary
are the masses and spins of the two objects, the direction and distance to the
binary, its relative orientation with respect to the detector’s arms, and the time
and orbital phase of the bodies’ final coalescence. To span the whole range of
these parameters with perfect accuracy would require a huge number of templates.
Fortunately, some of them - such as the orientation of the binary (if the orbital
plane remains fixed), the distance to the binary, and the time of coalescence -
enter into the waveform in such a trivial way that we can construct the templates
without any reference to them.

A nice, pictorial way to get a feeling for the problem of constructing the tem-
plate family is the following. Imagine the multidimensional space of all possible
signal waveforms [31], with as many dimensions (~ 17) as the number of param-
eters they depend on. One then has to fill up the whole volume of interest (only
a part of the whole space is potentially detectable, since the signal’s frequency
must be within the detector’s window) with templates represented as points in
this space, in a clever way that covers all the possible corners but with a modest
template density. Then if a signal arrives, “located” in the vicinity of one of the
templates, its cross-correlation with the template will depend on their separation
(defined as the square root of the sensitivity-weighted cross-correlation of their
difference with itself). The signal/template cross-correlation will be maximum if
the separation is zero. If the template family used does not include the exact
waveforms of the true signals, then the templates and the signals populate disjoint

finite dimensional subspaces of the infinite dimensional space of all (sufficiently
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smooth) functions. This cannot be avoided, since the fully relativistic equations
have to be solved exactly to obtain perfect templates. But, at least, one can wisely
choose templates, located very close to the subspace of the true waveforms.

In the Newtonian quadrupolar approximation to general relativity, the wave-
forms from a circular binary, whose bodies do not spin, depend on just three
parameters: a specific combination of masses called the “chirp mass,” M =
[M3M3/(M; + M,)]'/5, the orbital phase ¢¢, and the time t¢ of final coalescence.
A perfect family of search templates in this case depends only on the two param-
eters M and ¢¢. The third parameter, the time of coalescence t¢, does not show
up in the templates; instead it is taken into account directly in the computing
process, while performing the cross-correlations via fast Fourier transforms [33].
Moreover for ¢c only two values are needed, conventionally chosen to be 0 and
7 /2 (see [33]); The cross-correlation with some signal, maximized over ¢¢, is the
square root of the sum of the squares of its values for ¢¢ = 0 and ¢¢ = 7 /2. Thus,
the templates depend nontrivially on only one parameter, the chirp mass M.

This set of templates is known by the name “Newtonian family” or “Newto-

> The members of this family have a characteristic “chirp” form, in

nian filter.
which both the amplitude and the frequency grow monotonically with time, at a
rate which is faster the larger is M. Near the end of chapter 5, I show that even
for binaries with zero spins, this Newtonian template family is NOT adequate
for gravitational wave searches, since the post-Newtonian corrections to the wave-
forms’ phase are quite large and differ in form from the Newtonian phase. (As we
will see later on, the evolving phase is the part of the template that must agree
most accurately with that of the signal.) If the binary’s objects are spinning, the

Newtonian template family is even more inadequate.

3.2 The binaries’ spin-induced precession and waveform

modulation

In order to check the adequateness of various search-template families, one needs to
know how much the true signals are affected by special features of the binaries, most
especially by the two bodies’ spins, which cause the binary to precess via general
relativistic spin-orbit and spin-spin coupling (the “dragging of inertial frames”).
In Chapter 4, Curt Cutler, Gerald Sussman, Kip Thorne and I develop the
equations describing the general relativistic spin-orbit and spin-spin coupling and

explore their consequences. These couplings arise first at post!®- and post2-
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Newtonian order respectively. For the sake of simplicity we have kept the Newto-
nian quadrupole approximation for the orbit, the inspiral rate, and the formation
of gravitational waves, and have used the post!>-Newtonian and post?-Newtonian
equations only to compute the orbital precession.

Thorne derived precession equations from his previous work with James Hartle
[34] on the motion and precession of black holes; and then Sussman did a first
quick set of numerical integrations to get a feeling for the precessional effects. For
the limiting but interesting case where one of the objects has negligible spin (e.g.,
a spinning black hole and a nonrotating neutron star), I then derived analytic
expressions for the evolution of the orbital plane and Cutler computed the corre-
sponding gravitational waveforms. I showed that, in this case, the total angular
momentum J (the vectorial sum of orbital angular momentum and spin) remains
almost fixed in direction and the orbital angular momentum precesses around this
almost fixed direction, as Thorne had guessed; and I derived the details of J’s tiny
failure to be fixed. The angle between the orbital angular momentum L and spin
S is constant. Therefore, as L shrinks with time, via radiation reaction, the cone
that L sweeps opens or closes, depending on the misalignment between L and S
and the relative magnitudes of L and S. To this behavior we gave the name simple
precession.

The situation is more complicated if L and S are almost anti-aligned. We
didn’t manage to derive any analytic expression describing the evolution of L for
this case, so I wrote a code to integrate numerically the corresponding differen-
tial equations. Based on these numerical explorations, I deduced the following
qualitative behavior. As long as L is much larger than S, the binary undergoes
simple precession around J = L + S, which is more or less fixed in direction, and
the precession cone gradually opens up. When the cone becomes nearly planar,
L is approximately the same as S, L and S almost cancel each other, the binary
loses its gyroscopic stability, the “simple precession” breaks down, and both L
and S “tumble” in space. Then, when L shrinks to become much smaller than
S, this “transitional precession” is followed by a simple precession around a new
fixed direction, the final direction of J = L+ S, with the precession cone gradually
closing.

The general case of arbitrary masses and spins is even more complicated, since
spin-spin interactions come into play. Being unable to solve the relevant differen-
tial equations, I numerically integrated them to produce diagrams depicting their

behavior. For a few combinations of masses and spin orientations, the diagrams
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show ragged precessional evolution for the orbital plane.

Even with the complications of the spin-spin interaction, there are two cases
which I was able to explore approximately analytically. (a) If one of the spins
is much smaller than the other, we can treat it as a perturbation of the simple
precession case. My solution of the corresponding equations leads to an epicyclic
motion on top of the precession. (b) If both masses and spins are equal (e.g., two
equally spinning neutron stars of 1.4Mg) then the differential equations for the
evolution of L and S, S,, up to leading orders in Sy 3/L, turn out to be solvable
by means of Jacobian elliptic integrals (see my addendum to chapter 4). The
expansion in terms of S;2/L is justified by the fact that for equal masses, the
spins are always much smaller than L: S; 5/L < 0.1 within the range of frequencies
where the detectors are sensitive.

Although these spin-orbit and spin-spin couplings are high order post-Newton-
ian effects, they are potentially in danger of creating a lot of trouble in detecting
signals from precessing binaries (and correspondingly can bring a lot of information
about a detected binary). The reason is the following. The few tens of precession
cycles of L and consequently of the orbital plane, during the epoch when the grav-
itational waves are sweeping through the detectors’ sensitive window, will induce
a modulation, both in amplitude and in phase, in the waveforms; and for some
binary orientations, this modulation can be very deep and can have a complicated
character that changes with time. In chapter 4 we present diagrammatic ways
(derived by Cutler and Thorne) to deduce and understand some of the details of
this modulation from the details of the precession.

3.3 Search templates

Chapter 5 (of which I am the sole author) is mainly devoted to exploratory in-
vestigations of the possible problems this modulation may produce in attempts
to detect signals from precessing merging binaries, using simpler nonmodulated
search templates.

I begin by defining a quantitative measure of how well a chosen family of
templates fits the shape of a hypothetical waveform. I call this measure the family’s
“Fitting Factor” and denote it F'F. Although this FF has been extensively used
in one or another form by other people (using simply the name “correlation”),
its significance has not previously been brought out. I avoided the generic name

“correlation” because the F'F is a very specialized type of correlation: it is a
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correlation of the normalized [35] signal and a normalized template, weighted by
the inverse of the detector’s noise spectrum, and maximized over all the templates
in the family. The value of F F' is between 0 and 1, and it measures the reduction in
signal to noise brought about by using a family that does not contain any template
identical to the waveform. (A F'F value equal to 1 corresponds to a family that
does contain a template precisely identical to the hypothetical waveform.) It should
be noted here, that it is mainly the evolving phase mismatch between template
and signal that can drive the F'F to low values, and not the amplitude differences.
The FF value, then, is a nice criterion for the adequateness of the family of search
templates.

Before I enter into the complications of the modulated signals, I would like to
explain the significance and the consequences of the numerical value of FF. A
FF of 0.9 means a reduction in signal to noise by 10%, which in turn means a
27% reduction in the event rate, since the event rate goes like the volume of the
Universe enclosed in a radius corresponding to the maximum distance that a signal
can be detected. On the other hand, this 10% reduction in the signal to noise ratio
is analogous to roughly a 10% reduction in length of the interferometers arms, and
speaking in real cost, something like 10 million dollars to build 10% longer arms
to compensate for this loss. Several people in the field [36, 37] seem not to realize
the high cost of such a reduction, and keep talking about “high detectability” for
FF values well below 0.9. For example, the Newtonian template family has been
considered adequate to detect signals described by the best approximate waveform
(without precession) available nowadays, which includes relativistic corrections up
through post!-*-Newtonian order, even though FF in this case is < 0.6.

Although there is numerical agreement between different people’s calculations
of their analogue to F'F, the interpretation varies. In chapter 5, I examine all
the possible combinations of unmodulated signals (with phases accurate up to
post®-Newtonian order) and templates (described by waveforms accurate up to
post’-Newtonian order with 1.5 > s > t). The FF values I obtain are rather
discouraging, well below 0.9, except for templates with the same accuracy as the
signal (¢ = s). This suggests a need to use templates of at least post!-*-Newtonian
accuracy.

If corrections higher than post!°-Newtonian are proven to be negligible (which

t5>-Newtonian order

seems very unlikely [38]), then templates accurate to pos
are needed and will be sufficient. This means the addition of just one more

parameter to the Newtonian family (the ratio of reduced mass to total mass,
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p/M), if precession-induced modulation is ignored. (The unmodulated post!-*-
Newtonian waveforms depend on a second new parameter, a combination of the
body’s spins; but this parameter does not produce qualitatively new effects and
thus does not reduce FF significantly.) Although corrections of higher order than
post!>-Newtonian are likely to be important, the consortium of researchers who
are computing them need several years to complete the calculations [9].

The principal purpose of chapter 5 is to carry out an initial exploratory study
of the effects of precession-induced signal modulation on the F F’s of unmodulated
template families. My conclusions will be a foundation for further research toward
the choice of search templates for LIGO.

When the binary’s spins are not parallel to the orbital angular momentum,
they and the resulting precession introduce a large number of new parameters into
the game. The precession of the orbital plane causes a time dependent mixture of
polarizations to be received by the ground- or space-based detectors. For the sake
of simplicity, in chapter 5 I restrict myself to “simple precession” situations, where
analytic expressions for the evolution of the orbital plane are available. Except for
the quite singular (and presumably rare) transitional precession, simple precession
is a good guide for the general two-spin case. In chapter 5 I show the following:
(a) The precession-induced amplitude modulation is not very harmful in reducing
the signal-to-noise, but the phase modulation can be harmful. (b) The larger the
misalignment between L and S is, the more open the cone of precession is, and
the deeper the modulation can be. (c) For some special orientations of the cone
of precession, the phase modulation can grow secularly with each precession cycle,
then abruptly switch over to nonsecular oscillations, or conversely. The geometries
that lead to this behavior during inspiral through the detectors’ frequency band
are potentially the worst cases, producing the lowest values of F'F' for unmodulated
Newtonian or post-Newtonian templates.

By exploring the effects of all the possible parameters connected with the pre-
cession phenomenon, I have arrived at the following general picture.

For the unmodulated Newtonian template family and a Newtonian
signal with precession: For neutron star/neutron star binaries with masses of
1.4Mg, and one of them rapidly rotating (assuming an extreme magnitude for
the spin, S; = M}?), the cone of precession is so narrow, that only for a very
small percentage (< 10%) of all possible geometries does the F'F' value drop below
0.9. By contrast, a binary consisting of a 10Mg rapidly spinning black hole and

a nonrotating 1.4 M neutron star, precesses on a much wider cone (because the
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ratio of spin to orbital angular momentum is much larger), leading to much lower
FF values; for an S, misalignment above 30° there is almost no possibility to
obtain a F'F above 0.9.

For the unmodulated post!>-Newtonian template family, with all
the spin parameters stripped off (see a few paragraphs above), and a full
post!*-Newtonian signal with precession (based, however on Newtonian or-
bits): Since an additional parameter is available with this new template family, one
should expect more flexibility to fit the modulated signals. This is what actually
happens, but it produces only a modest, not large, improvement of the F F’s: For
the same pair of neutron stars discussed above, the probability for some geometry
to give a F'F value below 0.9 is still less than 10% (slightly smaller than with the
Newtonian template family). For the same black hole/neutron star pair as before,
there is now a modestly larger probability to find a geometry with a F'F above
0.9. This probability is quite small for a large misalignment angle (~ 140°), but
increases substantially for small misalignment angles; for example, ~ 25% prob-
ability for FF > 0.9 when the misalignment angle is 30°. These results suggest
that it will be necessary to include at best one modulational parameter in LIGO’s
search templates.

Finally, in the Appendix of chapter 5 I extend my calculations for the F'F, to
the space-based detector LISA. This extension is straightforward since the shape
of LISA’s noise spectrum is about the same as LIGO’s, only shifted to much lower
frequencies (0.1 mHz - 1 Hz) [40]. Since the equations describing the precession
of the orbital plane depend only on the ratio of masses and the product of total
mass times frequency, M f, binaries with masses 5 orders of magnitude larger than
the masses of the binaries considered for the LIGO-type detectors should produce
almost the same F F’s, if the same types of templates are used. I have verified this
conjecture for the example of a maximally rotating 10 Mg black hole and a non
rotating 1.4 x 10° Mg black hole, with an S,L misalignment angle of 30°. This
binary produced almost the same FF’s (for all the possible geometries) as the
corresponding 1.4Mg — 10Mg BH/NS binary with the same misalignment angle,
and the Newtonian template family.

This work should be regarded as just the first step in a quantitative attempt
to define what standards an “adequate family of templates” should fulfill, and to
explore issues that are important for the ultimate choices of LIGO’s and LISA’s

search templates.
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Chapter 2

Rotation halts cylindrical, relativistic

gravitational collapse. [Co-authored
with Kip S. Thorne]

(Originally appeared in Phys. Rev. D 46, 2435 (1992).)
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Abstract

It is shown, in a simple analytic example, that an infinitesimal amount of rotation
can halt the general relativistic gravitational collapse of a pressure-free cylindrical
body. The example is a thin cylindrical shell (a shell with translation symmetry
and rotation symmetry), made of counter-rotating dust particles. Half of the
particles rotate about the symmetry axis in one direction with (conserved) angular
momentum per unit rest mass «, and the other half rotate in the opposite direction
with the same a. It is shown, using C-energy arguments, that the shell can never
collapse to a circumference smaller than C = 8maA, where A is the shell’s non-
conserved mass per unit proper length. Equivalently, if R = |0/9¢||0/0z| is the
product of the lengths of the rotational and translational Killing vectors at the
shell’s location and A is the shell’s conserved rest mass per unit Killing length z,
then the shell can never collapse smaller than R = 4a\. It is also shown that after
its centrifugally-induced bounce, the shell will oscillate radially and will radiate
gravitational waves as it oscillates, the waves will carry away C-energy, and this

loss of C-energy will force the shell to settle down to a static, equilibrium radius.
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1 INTRODUCTION AND SUMMARY

1.1 Motivation

A recent numerical solution of the Einstein field equations by Shapiro and Teukol-
sky[1] suggests that it may be possible for a naked singularity to form in the
gravitational collapse of a highly nonspherical body, in violation of Penrose’s[2]
cosmic censorship conjecture. The Shapiro-Teukolsky solution describes the col-
lapse of a prolate spheroid of dust particles, all of which initially are at rest. Near
the endpoint of their collapse, the dust particles form a thin spindle that is implod-
ing radially. If the spindle is so long that its poloidal circumference exceeds 4m M
(where M is its mass and we set Newton’s gravitation constant and the speed of
light to unity), then in accord with the hoop conjecture[3, 4] no apparent horizon
forms around the spindle at least up to the termination of the numerical solution;
and in apparent violation of cosmic censorship, naked singularities appear to be
forming in the vacuum just beyond the spindle’s two pointed ends. The growth of
these singularities forces the numerical integration to terminate.

It is not surprising that the collapse forms a singularity, since the dust spindle is
more or less a finite-length version of an infinitely long dust cylinder, and it has long
been known that collapsing infinite dust cylinders form naked singularities.{3, 5, 6]
What is a bit surprising is that the Shapiro-Teukolsky singularity appears to be
forming most rapidly in the vacuum just beyond the spindle’s end rather than
inside the spindle, where the dust resides. We shall discuss the significance of this
below.

The cosmic censorship conjecture (the impossibility of naked singularities) is
generally thought to be correct only for realistic gravitational collapse—collapse
with rotation and realistic amounts of pressure. It therefore is of interest to ask
whether the Shapiro-Teukolsky collapse would still produce a naked singularity if
the collapsing body were endowed with rotation and/or a realistically stiff equation
of state.

In this paper we investigate the effects of rotation in the idealized limit of
an infinitely long spindle, i.e., an infinite cylinder. We show analytically that
the centrifugal forces associated with an arbitrarily small amount of rotation, by
themselves, without the aid of any pressure, can halt the collapse and prevent a
singularity from forming[7). Elsewhere Piran[8] has shown in specific numerical
examples, that realistic pressure (pressure p such that v = dlnp/dinn > 1 where

n is the number density of conserved baryons) can also halt cylindrical collapse.
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These results make it seem likely that also in the Shapiro-Teukolsky case of
a finite-length spindle, an arbitrarily small amount of rotation and/or a realistic
pressure will halt the spindle’s radial collapse. If so, however, this by no means
would guarantee an absence of naked singularities. The reason is as follows:

The fact that the singularity appears to be forming most rapidly in the vacuum
just beyond the spindle’s end suggests that the vacuum part of the singularity
might be spacelike with respect to the singularity in the dust interior, or might
even precede it causally. If so, then a realistic but tiny rotation or pressure in the
spindle’s imploding matter would make itself felt too late to influence the vacuum
singularity. The imploding matter might bounce, but the vacuum singularity,
causally oblivious of the bounce, would still form in precisely the same manner as
if there were no rotation or pressure. The singularity presumably would be created
by nonlinear gravity that is triggered by the sharp spacetime curvature that occurs
near the bouncing spindle’s pointed ends.

We must emphasize that this scenario is pure speculation. The Shapiro-Teukol-
sky numerical solution is by no means accurate enough nor carried to late enough
times to reveal (i) whether the vacuum singularity is spacelike with respect to
the interior dust singularity, nor (ii) whether a horizon forms around the vacuum

singularity at late times.

1.2 Collapsing shell of counter-rotating dust

The system whose collapse is analyzed in this paper is a thin cylindrical shell made
of pressure-free counter-rotating dust. Half of the dust particles orbit around the
symmetry axis in a right-handed direction with angular momentum per unit rest
mass a, and the other half orbit in the opposite, left-handed direction with angular
momentum per unit rest mass —c, so there is vanishing total angular momentum.
This counter-rotation guarantees that there will be no dragging of inertial frames
and thereby simplifies the analysis. (It seems likely on intuitive grounds that,
as for our counter-rotating shell, so also for shells with net angular momentum,
an arbitrarily small amount of rotation will cause the collapsing shell to bounce.
However, we have not attempted to analyze shells with net angular momentum.)

In our analysis we describe the counter-rotating shell mathematically by Israel’s
thin-shell junction conditions[9] (Sec. 2.2). In the vacuum interior and exterior of

the shell, the Einstein-Rosen canonical cylindrical coordinates[10, 11] (¢,r, 2, ¢) are
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introduced and the line element takes the form
ds? = 207V (—dt? + dr?) + €?dz? + rPe”dg? . (2.1)

Here 1 = %(t,r) is a gravitational field whose static part is an analog of the
Newtonian potential and whose ripples represent gravitational waves; v = (¢, r)
is a metric function that will play an important role in the details of our analysis
(Secs. 2—4) but is irrelevant for our discussion of the results (Sec. 1); t is the
coordinate time; r is the coordinate radius; 8/0z and 0/0¢ are the Killing vector
generators of translational symmetry along the cylinder and rotational symmetry
around the symmetry axis; z is the Killing coordinate length with —oo < 2z < +400;
and ¢ is angle around the axis with 0 < ¢ < 27. Here and throughout we set
Newton’s gravitation constant and the speed of light to unity. Notice that r has
the geometric meaning r = |0/0z||0/0¢| = (product of lengths of the two Killing
vectors), and that the circumference around the symmetry axis is 2rre=¥.

We restrict attention to shells whose mass per unit length is small enough that,
at some initial moment of time they do not close space up around themselves
radially (Subsection 1.4). This implies (Appendix A) that they will never close
space up radially, and correspondingly r always increases monotonically as one
travels radially outward from the symmetry axis (r = 0) to the shell and then
onward; i.e., r varies over the range 0 < r < oo.

We shall use the following parameters to characterize the shell: (i) the an-
gular momentum per unit rest mass of its particles, £a; (i7) its coordinate ra-
dius R = (value of r on shell); (#ii) the value 1, of ¥ on the shell; (iv) R =
Re~** = (circumference of shell)/27; (v) v = a/R = v/v/1 — v? where +v is the
velocity of orbital motion of the dust particles as measured by an observer who
rides on the shell and orbits neither rightward nor leftward, and where £u is the
dust particles’ corresponding linear momentum per unit rest mass as measured
by these observers; A = dm/dz = (shell’s total rest mass per unit Killing length);
and A = Ae™¥* = (shell’s total rest mass per unit proper length).

Of these parameters, o, R, u, v, and A are unaffected by a rescaling of the
Killing coordinate length z [ i.e. by z — const x z; Eq. (2.15) below], and in
fact they are locally measurable with no ambiguity. By contrast, R and ) are
scale-dependent and thus are not locally measureable; however, their dynamical
changes (doublings, halvings, ...) are readily measureable locally. The parameters
a and A are conserved as the shell evolves and emits gravitational waves, but the

other parameters change.
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1.3 Nearly Newtonian shell

M If the shell’s rest mass per unit proper length A and linear momentum per unit
rest mass u are very small compared to one, A € 1 and u < 1 (in geometrized units
where the speed of light and Newton’s gravitation constant are equal to unity), and
if the gravitational waves initially are very weak, so (with an appropriate choice
of z-scaling) [¢/| <« 1 everywhere except at extremely large radii, then the shell
and its evolution will be very nearly Newtonian. More specifically, A >~ X will be
conserved as will be a; and the shell’s radius R ~ R will obey the rather obvious

equation of motion

A (dR\®
Here C is the shell’s conserved energy per unit length and
o?
Cms(R) = AW + A?InR + const (2.3)

is the energy the shell would have if it were radially momentarily static. (We
use the symbol C because these energies are the Newtonian limits of the shell’s
relativistic “C-energy”.) Note that Cms(R) plays the role of an effective potential
for the shell’s radial motion (Fig. 2.1).

From the shape of the effective potential, it should be clear that the shell
oscillates back and forth between a maximum radius Rpy.x and a minimum radius
Rmin, Whose values depend on its initial conditions. At Ryax, gravity overwhelms
the centrifugal force and pulls the shell inward; at Ruu,, the centrifugal force
overwhelms gravity and pushes it outward.

General relativity insists that these nearly Newtonian oscillations produce very
weak gravitational waves which carry off energy. As a result, R,u.x decreases a bit
from one oscillation to the next and R, increases a bit, until finally the shell
settles down into equilibrium at the minimum of its effective potential Cms(R).

The equilibrium radius is clearly
Req = a/VA . (2.4)

From this simple analysis it is obvious that (¢} if @ = 0 (no counter-rotation),
then the shell collapses to a Newtonian singularity, R = 0, but (i7) an arbitrarily
small amount of angular momentum per unit mass, o, causes any collapsing shell

to bounce and thereby prevents a singularity from forming.
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As we shall see, in full general relativity the shell behaves qualitatively the
same as this, though the quantitative details are different.

In our relativistic analysis we shall find it convenient to think about the equi-
librium configuration from a different viewpoint than Eq. (2.4). We shall ask the
question, “If the shell at some moment of time has a rotational linear momentum
per unit rest mass u = a/R, then how large must its rest mass per unit length A be
in order for its inward gravitational force to precisely counterbalance its outward

centrifugal force?” The answer is easily seen from Eq. (2.3) to be

Aeq = u? . (2.5)

1.4 Static and momentarily static, relativistic shell

Gravitational radiation causes severe complications in the theory of a fully rela-
tivistic cylindrical shell. A useful tool for cutting through those complications is
the concept of a momentarily static and radiation-free (MSRF) shell, i.e., a configu-
ration which, at some chosen moment of coordinate time ¢, (¢) has no gravitational
radiation (0t /0t = 0%)/dt* = 0 everywhere), and (i) has its shell momentarily
radially at rest (dR/dt = 0 and thus also dR/dt = 0 since R = Re™¥*).

As we shall see in Sec. 3, a MSRF shell is characterized fully (at the chosen time
t) by the scale-invariant parameters o = (angular momentum per unit rest mass),
A = (rest mass per unit proper length), and R = (circumference)/2r. From these
we can construct two dimensionless parameters, e.g., A and v = a/R = (linear
momentum per unit rest mass). In Fig. 2.2 we plot A upward and u rightward.

There are two special lines in this A-u plane. The upper line, Apax(u), is given by

1
Amax = e 2.6
4/1 + u? (26)
or equivalently A
max 1
(2.7)

Vi—of 4’
where +v is the speed of orbital motion of the shell’s particles as measured by
an observer at rest on the shell (cf. Subsection 1.2), so A/v/1— v? is their total
mass (rest mass plus kinetic energy) per unit proper length, as measured by that
observer. Any MSRF shell above this upper line, A > Apay(u), i.e., any MSRF
shell with total mass per unit proper length greater than 1/4, is so massive that
it closes space up around itself radially (see Appendix B for a proof). (In the
language of Appendix A, the spacetime has character D() outside the shell.)
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Figure 2.1: The energy per unit length C for a cylindrical, Newtonian shell of
counterrotating dust, plotted as a function of the shell’s radius R. For a dynamical
shell, C is conserved (dashed line) as the shell bounces back and forth between the

radii Rmin and Rmax. The effective potential Cms(R) in which it moves is given by
Eq. (2.3).



31

In this paper, we are seeking insight into the collapse of bodies around which
spacetime is asymptotically flat, not closed, so we constrain our analysis to MSRF
shells below the upper line of Fig. 2.2, A < Anax-

The lower line Aq (u) in Fig. 2.2 represents MSRF shells that are in equilibrium-—
i.e., shells that, when evolved to the future of the chosen initial time ¢, never change
their radii R or R and never develop any gravitational radiation and thus always
remain static. At small u this Aeq(u) has the Newtonian form (2.5), Aeq ~ u?. The

precise formula for A.q(u) is (Sec. 3)

u?y/1 + u?

b= Ty

(2.8)
At u < 0.8836, Aeq(u) increases with increasing u (cf. Fig. 2.2) because larger u
means larger centrifugal forces and requires larger mass to produce enough gravity
to hold the shell together. At u > 0.8836, Aeq(u) decreases with increasing u
because larger « means larger total mass per unit rest mass and thus less rest mass
is needed to produce enough total mass to hold the shell together.

It turns out (Sec. 3) that any MSRF shell with A < A.q(u) begins to expand
when released from its initial state, because its gravity is too weak to counterbal-
ance its centrifugal forces; and similarly any MSRF shell with A > Aeq(u) [but

A < Amax(u)] begins to contract when released.

1.5 Dynamical relativistic shell

In Secs. 3—7, we use the concept of C-energy to prove that a fully relativistic,
cylindrical shell evolves dynamically in the same qualitative manner as a nearly
Newtonian one. More specifically, we place the shell in an initial MSRF configu-
ration that is arbitrary (arbitrary values of R, u, A) except that A < Apax(u) so
it does not close up space radially around itself. We then select a radius rg that
is arbitrarily large and evaluate the total amount of C-energy Co inside ro. As the
shell evolves dynamically, emitting gravitational waves, this total C-energy Cp will
be conserved until the waves reach o (which means for an arbitrarily long time),
and then as the waves carry C-energy outwards through ro (Sec. 6), Co will begin
to decrease.

During the shell’s arbitrarily long evolution with fixed Cy, it conserves its values
of a, A, and 1o = (value of ¥ at rg), while 1(r,t) and R(t) evolve dynamically.

In Sec. 5 we prove that Cy at any moment of time ¢ consists of a positive contri-

bution associated with the shell’s radial velocity dR/dt and with the gravitational
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waves it has emitted, plus the contribution Cmsrr(R) that the configuration would
have if it were MSRF and had the the same shell radius R as it actually has:

Co = Cmsrr(R) + (positive kinetic and GW energy) . (2.9)

In Secs. 3 and 4 we derive the somewhat complicated functional form of Cysrr(R)
and show that it has the following properties: (i) Cusrr(R) has the same qual-
itative form as the Newtonian Cms(R) (Fig. 2.1): It has a single minimum at a
radius Req, and it increases monotonically as one moves away from that minimum
toward either decreasing or increasing shell radii R. (ii) In the Newtonian limit
Cmsrr(R) becomes Cus(R) [Eq. (2.3)]). (ii7) Cmsrr(R) reaches the largest value,
1/8, that any shell’s C-energy can have without closing the universe up radially,

as R approaches o from below and as it approaches
Rabs min = 4a (2.10)

from above.

These properties of Cusrr(R), together with relation (2.9) and the conservation
of Cp, imply the following dynamics for the shell: (i) Once released from its initial
MSREF radius, the shell must oscillate back and forth in R, emitting gravitational
waves, and finally settle down into an equilibrium state. (i) If the shell’s initial
radius R; is larger than the minimum point Re, of Cusrr(R), then the shell can
never oscillate out to a radius R larger than R;; and if R; < Ry, then it can never
oscillate to a smaller R than R;. (iii) No matter what the initial state may be,
so long as the shell initially does not close space up radially, the centrifugal force
always keeps its radius R larger than R,us min = 4@\, and correspondingly keeps

R = circumference/2r larger than
Rabs min = 4aA . (2.11)

(Recall that X and a are conserved during the evolution; A = Ae~¥+, however, will
generally vary.) From Egs. (2.10) and (2.11), it is clear that an arbitrarily small
angular momentum a prevents the shell from collapsing to a singularity[7].

1.6 Organization of this paper

In the body of this paper, we derive the results described above.
We lay foundations for our derivation in Sec. 2. In Sec. 2.1 and Appendix

A, we discuss the requirement that spacetime not be closed up radially, and then
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relying on that requirement, we introduce our spacetime coordinates ¢, r, z, ¢ and
corresponding metric coefficients ¢ and -, we write down the vacuum Einstein
field equations for the shell’s interior and exterior, and we introduce the concept
of C-energy. Then in Sec. 2.2 we introduce the parameters that describe the
shell and write down, in the form of thin-shell junction conditions, the Einstein
field equations that govern the shell’s coupling to the spacetime metric and its
dynamical evolution.

In Sec. 3, we analyze the structures of momentarily static and radiation free
(MSRF) configurations, and prove that among all MSRF configurations, the ones
in equilibrium are those that minimize the C-energy with respect to variations of
the shell’s radius R.

In Sec. 4, we show that the C-energy of MSRF configurations, as a function of
shell radius R, has the same qualitative form as in Newtonian theory (Fig. 2.2).

In Sec. 5, we show that the C-energy of a dynamical configuration is always
greater than that of a MSRF configuration that has the same shell radius R, i.e.
that the C-energy can be written in the form (2.9) used above in our discussion of
dynamical evolution.

In Sec. 6, we show that gravitational waves always carry C-energy away from
the shell, toward r = oo.

In Sec. 7, we recapitulate: The properties of the C-energy, as derived in Secs.
3—6, are precisely the underpinnings needed to validate the discussion of shell
dynamics given above, in Sec. 1.5. Therefore, it must be that the shell can neither
collapse to a line singularity nor explode to infinity, but instead must undergo

damped oscillations and end up in an equilibrium configuration of finite radius.

2 FOUNDATIONS FOR THE ANALYSIS

2.1 Radial non-closure, coordinates, metric, and vacuum

field equations

It is well known[10, 11] that in any cylindrically symmetric spacetime with vanish-
ing net momentum density along the Killing directions d/0z and 8/0¢, one can

introduce coordinates (i, 7, z, ) in which the line element takes the form

ds? = 207V (—dt? 4+ d7?) + e*¥d2? + BPe 2 dg* . (2.12)
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Here 7, v, and 8 are functions of ¢ and 7. In vacuum, but not generally inside
matter, the quantity 8 = |0/0z||0/0¢| obeys the Einstein field equation

Brr—Br=0, (2.13)

where commas denote partial derivatives. (This equation is the content of RZ +
Rﬁ = 0, where R, is the Ricci tensor.) In Appendix A it is shown that, if (as
we shall assume) space initially is not closed up radially by the shell’s mass, then
everywhere in the spacetime V4 is spacelike and is directed away from the sym-
metry axis. This together with Eq. (2.13) permits us, throughout the spacetime,
to perform a conformal transformation in the (Z,7) plane to new (¢,r) coordinates
such that g =r:

ds? = 20"V (—dt? + dr?) + e*¥d2? + rle Wdg? . (2.14)

These are the coordinates discussed in Sec. 1.2.

Because the Einstein equation takes the form (2.13) only in vacuum and not
on the shell itself, the conformal transformation turns out to be discontinuous
across the shell. More specifically, although z, ¢, r = |0/0z||0/04| and ¢ =
21n]8/0z| (being Killing-defined quantities) are continuous across the shell, the
time coordinate ¢t and the metric function v are discontinuous.

The Killing coordinate length z is defined only up to an arbitrary multiplicative
factor. It should be obvious that a rescaling of z produces the following changes

in other quantities:
z—etz, Ypop—p, T—oetr, t—o e ¥, (2.15)
where p is an arbitrary constant; and correspondingly,

A—e#X, R-oe*R. (2.16)

In the vacuum inside and outside the shell, the metric coefficients (¢, r) and
v(t,r) satisfy the Einstein field equations[10, 11]

b = ~(r)s =0, (217)
1 = @)+ W), (218)
Ve = 24, . (2.19)
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Smoothness of the spacetime geometry on the symmetry axis r = 0 requires that
~ = 0 and ® finite at r = 0. (2.20)

We shall sometimes refer to 1 as the gravitational-wave field since it satisfies the
wave equation (2.17) and it governs distortions of the geometry along the polar-
ization axes (2 and ¢ directions) in the usual “transverse-traceless” manner[13]
(a weak ripple é¢ in ¢ produces fractional metric perturbations 6g,,/g.. = 6%,
89ss/9ss = —61 that are confined to the transverse plane and are equal and op-
posite along the two transverse directions). ‘
The quantity o and the C-energy C are monotonic functions of each other,[11,
12]
C==(1-e?). (2.21)

2.2 Description of the shell

The evolution of the shell will be characterized by R(7), where R is the value of the
radial coordinate r at the shell’s location and 7 is the proper time of an observer
riding with the shell, but not rotating with the shell’s particles. We sometimes will
use R = Re ¥+ = circumference/2r to describe the shell’s location, instead of R;
here 1, is the value of 1 at the shell.

As an aid in analyzing the shell’s properties and motion, it will be helpful
to introduce the proper reference frame of an observer riding on the shell. This

frame’s orthonormal tetrad is the following:

€, = — =1 = 4-velocity of the shell
dr
0 0
= Xg—+4+V— .
iati + e (2.22)
e, = di = 11 = outward unit vector normal to shell
n
a 0
= XiE + VB_t; , (2.23)
1 4
& = 55 (2.24)
_ 1 0
6& = 7‘8_'1” 'a—¢ . (225)
Here
dR
V=— (2.26)
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and

_ds
o dr

The subscripts + and — are used to denote quantities evaluated on the outer and

X = \Je20u=40) 4 V2, (2.27)

inner faces of the shell. (Recall that ¢t and « are discontinuous across the shell.)
As was discussed in Sec. 1.2, the shell is made of counter-rotating particles with

conserved angular momenta per unit rest mass +a, and with linear velocities +v

as measured in the shell’s rest frame (2.22)-(2.25) and linear momenta per unit

rest mass

(64 [
tus e =dp =t

The shell’s conserved rest mass per unit Killing length z is A, and correspondingly

(2.28)

its total mass per unit proper area as measured in its own rest frame (2.22)—(2.25)

> = A 1 “/\\/1+u2
_27rR\/1—-v2- 2rR

By their orbital motion, the particles create a surface stress $% = T whose ratio

is

(2.29)

to their surface energy density S = o is
5o 8\’ 2

=2 _ () =Y (2.30)
ST p‘l’ 1 + u?

[where p? = =+u is a particle’s linear momentum per unit rest mass and p” =

SH i

1/V/1 =22 = V1 + u? is its total mass per unit rest mass as measured in the
shell’s rest frame]. By combining Egs. (2.29) and (2.30) we see that

/\ 2
T=—2% (2.31)

2rRV1 + u?

The shell’s full surface stress-energy tensor is

S=oi®i+Té®E;. (2.32)

Israel[9] has shown that the Einstein field equations for a thin shell reduce to
- 1
I{:ﬂ - I{aﬂ = 87‘-(5013 - ‘2'5::7&[3) 3 (233)

where KZ; is the extrinsic curvature of the shell’s outer (inner) face and yup is the

metric of its world sheet. For our thin shell, the 2z component of these junction
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conditions reduces to a jump condition on the normal derivative of the gravitational

wave field,
2

RvV1 + u? ;
the ¢¢ component, after use of Eq. (2.34), reduces to a jump condition for X =
dt/dr and therefore [cf. Eq. (2.27)] for the time coordinate ¢ and the metric function

v

1/)+,n - ¢—,n - - (234)

Xy —Xo = =421+ u?; (2.35)
and the 77 component reduces to an equation of motion for the shell

B _
A= o Vg - R+ (o) + X 1¢+ o

dr?
X_A X_X,u?
R T R (2.36)

(In deriving Eq. (2.36), the vacuum field equations (2.17)-(2.19) and the junction
conditions (2.34), (2.35) have been used.)

In summary, Eq. (2.36) governs the motion of the shell; Eqgs. (2.17)-(2.19) and
(2.20) govern the evolution of the metric functions v(r,t),%(r,t); and the junction
conditions (2.34), (2.35) match the metric functions across the shell. Among the
various functions that we use, r, z, ¢, 1, 9, are continuous and %, v, ¥ ,, X are

discontinuous across the shell.

3 MOMENTARILY STATIC AND
RADIATION-FREE CONFIGURATIONS

If the configuration, at some moment of time ¢, is momentarily static (V =
dR/dT = 0) and radiation-free (¢, = 9 = 0), i.e., MSRF, then it will have
the following properties: (i) In the vacuum outside the shell the vacuum field
equations (2.17)—(2.19) imply

Y = Y;—kln(r/R)atr >R, (2.37)
v = y4+&*In(r/R)atr > R, (2.38)
where k& and 1, are constants. This is the Levi-Civita line-mass solution to the

Einstein equations.[14] (it) In the vacuum interior, the field equations imply a

similar logarithmic form for ¥ and v, and the boundary conditions (2.20) at »r =0
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imply a vanishing value of x and correspondingly
Yv=v,, v=0 atr< R, (2.39)

which means that spacetime is flat and Minkowskiian inside the shell. (iii) The
jump condition (2.34) on the normal derivative of 1, together with Egs. (2.23),
(2.34), (2.35) and (2.39), implies that the value of the parameter & is

24
S TRy O pry S W gy (2.40)

(where A = Ae¥* is the rest mass per unit proper length; cf. Sec. 1.2). (iv) The
jump condition (2.35) on Xy, together with expressions (2.27) and (2.39), implies
that

v = —In(1 — 4AVI + u2) . (2.41)

In order that space not be closed radially by the shell’s mass, it must be that

AV1+u? < 1/4 (see Appendix B for a proof and Sec. 1.4 for discussion); cor-

respondingly, 74+ is real and positive, and & is positive. (v) The equation of mo-

tion (2.36) for the shell, when combined with V = 0, ¥_,, = 0, A = Ae™¥*, and
Egs. (2.27) and (2.41), takes the form

d’R ( positive

quantity) X [Acq(u) — A], (2.42)

where Aeg(u) = u?V1 + u?/(1 + 2u?)?; f. Eq. (2.8).
Therefore, if the rest mass per unit proper length A is greater than Aeq, then
the MSRF shell starts contracting, and if A is lower than A.q, it starts expanding.
In our analysis of dynamical shells (Sec. 1.5 above) a central role is played
by C-energy. For a MSRF configuration with shell radius R and with the Killing

coordinate z so normalized that

Yo = ¢(ro) = 0 (2.43)
[cf. Eq. (2.15)], the total C-energy inside some fixed radius ro > R is given by
1
Cumsrr(R) = g(l — ™M) (2.44)
[Eq. (2.21)], where
-2
" J , (2.45)

B 1- 4/\y"\/1 + (afro)?y=2"2%%
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y=R/ro <1, (2.46)
- 2My”
U= /1 (afro)y 1+ (afro)y 2
cf. Egs. (2.37)-(2.42) and (2.28).

A MSRF configuration will be nearly Newtonian if its mass per unit proper

K (2.47)

length A is small and its dust particles orbit around the axis with a small velocity,

A=de ¥ = <1, (2.48)
— a —_ _a_ e St
u=pg = 7‘Oy <1. (2.49)

If, in addition, the Newtonian potential difference between r = r5 and r = R is

small
Aln(re/r) < 1, (2.50)

then throughout the region r < ro the configuration’s gravity can be approximated
by Newtonian theory, and the relativistic equations (2.43)-(2.47) reduce to

k=2\, (2.51)
PV % R

Cumsrr = A+ 202 + 22 + A2ln (——) . (2.52)
2R2 To

Since, in this Newtonian situation, A >~ A and R ~ R, expression (2.52) for the
C-energy Carsrr(R) is the same as Eq. (2.3) for the Newtonian energy per unit
length Cars(R).

A relativistic MSRF configuration will be in permanent, static equilibrium if
and only if A = &?R/dr? =0, i.e., if and only if A = Aeq(u); cf. Egs. (2.42) and
(2.8), Fig. 2.2, and the discussion in Sec. 1.4.

An alternative, equivalent criterion for equilibrium involves C-energy: Choose
an arbitrary radius ro and for concreteness adjust the scale of z [Eq. (2.15)] so
that proper length and Killing length coincide at rg, i.e. so Eq. (2.43) is satisfied.
Then among all MSRF configurations with fized a and A and with R < ro, the ones
that are in equilibrium are those that extremize Cmsrr with respect to variations of
R. Moreover, every one of these extrema is a minimum of Cmsrr. (In Sec. 4 we
shall prove that for the situations of interest in this paper, there is precisely one
minimum.)

These properties of equilibria can be proved as follows:
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Since CMsrr = %(1 — e7?) is a monotonically increasing function of ~,, it
suffices to prove these properties for 4o instead of Cmsrr. Consider the first-order
change dvo of 7o caused by a change dR of R. Equation (2.38) implies that

dvo = dvy + 26 1In(ro/ R)ds — k*dR/R (2.53)
where by (2.37) and (2.43)
In(ro/R)dxk = kdR/R + dv, , (2.54)
and by (2.40), (2.41), with A = Xe™¥* and u = a/Re™¥",
dyy = —2kd, — 25u*dR/R . (2.55)
By combining Egs. (2.53), (2.54), (2.55) we obtain
dvo = k(k — 2u*)dR/R (2.56)

so 7o is extremized if and only if £ = 2u?. By virtue of Eq. (2.40) for , this is
equivalent to A = A¢q(u). Thus, the equilibria are the MSRF configurations that
extremize 7o, as claimed.

To show that these equilibria actually minimize 5, we compute the second order
change d?yo produced by dR when A = Acq(u), i.e., when k = 2u®. Equation (2.56)
implies that

2 dR
d’vyo = n?(dm —4udu) . (2.57)

By combining with Eqs. (2.54), (2.40), (2.8), A = Ae™¥*, and u = a/Re ¥ and

performing a series of manipulations, we bring this into the form

2 2
Py = 2u? (%) 1111(-:0—?11?,) [1 — [1 — 4u*In(ro/R)]
1 + 2u?In(ro/R)(1 + 2u?)

1 + 2u?In(ro/R)[1 + 4u? + u?/(1 + u?)]

The last fraction is obviously less than unity, and this implies that d®v, is positive

(2.58)

and thus 7o and hence Cysgr is minimized by the equilibrium configurations. QED.

4 QUALITATIVE FORM OF C-ENERGY FOR
MSRF CONFIGURATIONS

Of special interest for analyzing the dynamical evolution of a shell (Sec. 1.5) is the
form of yo(R) and thence Cmsrr(R), when the outer radius o is chosen arbitrarily
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large and the shell’s initial configuration is MSRF with some specific initial values
R; of R and A; of A. In this case the initial configuration has a mass per unit
Killing length A and a value «; of « given by [cf. Eqgs. (2.43), (2.37), (2.40), (2.28),
and A = de™¥*, R = Re™¥]

A = Ai(ro/Ry)s/0+m) (2.59)

28 (2.60)
(1—4An/1+a?/R?)\/1 +a2/R? '

Ki

Since ro/R; is arbitrarily large and «; is positive, A is also arbitrarily large. With A

g‘/ (1+K‘), it becomes fairly straightforward to deduce

being arbitrarily large and
the qualitative form of vo(R) and thence Cusrr(R):

These two functions of R are given explicitly by Eqs. (2.43)~(2.47). By exam-
ining these equations one can show[15] that the only places where v, — oo (for rg
arbitrarily large) are at R — ro and R — 4)\a. Since 7, is always positive and
the only extrema of 4o(R) are minima (cf. Sec. 3) , this implies that as R varies
from Raps min = 4Aa to ro, 40(R) decreases from oo to a single, unique minimum
at some R = Req, and then increases to oo at R = ro. Correspondingly, Cmsrr(R)
[Eq. (2.44)] decreases monotonically from its maximum allowed value of 1/8 at
R.bs min = 4Aa to a minimum at Rq and then increases monotonically back to 1/8
at R = rg. This is the qualitative behavior that we stated and used in discussing

the dynamics of a shell in Sec. 1.5.

5 C-ENERGY OF DYNAMICAL CONFIGU-
RATIONS

We are now ready to prove that the C-energy of a dynamical configuration is al-
ways greater than that of a MSRF configuration that has the same a, A\, R and
o = ¥(ro) = 0, but different V, ¥(r), and 4(r) [Eq. (2.9)]. Since Cp is a mono-
tonically increasing function of g, it suffices to prove that 4, has this property, or
equally well that e~ is always smaller for a dynamical configuration than for the
corresponding MSRF one. In our proof we shall denote ¢ = 1, and ¢’ = Y.

Proof: We proceed in two steps. First, we hold the dynamical configuration’s
(r) and (r) fixed and vary only its shell velocity V. From the junction condition
(2.35), Eq. (2.27), and A = Ae~¥», it follows that

e < e ~4AVI+u?, (2.61)
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with the equality holding if and only if V = 0. Combining this with the field

equation (2.18) and boundary condition (2.20), we learn that, when V is varied,
e~ takes on an absolute maximum value at V = 0. The value of that maximum

1s

ey = I = J(K — 4AVI ¥ @) (2.62)
where
R
K=e" =exp {—/0 r(p® + ¥'?) dr} , (2.63)
J = exp [- /R " r(d? + ¢'2)dr] : (2.64)

In our second step, we hold V = 0 and ask how e™ = I changes as we vary ¥(r)
and 9(r). It is straightforward to compute the first order change 61 of I around
any configuration [any ¥(r) and ¥(r)], with a, A, R, V = 0, 1o, 1o = P(ro) = 0,
and 1o = (o) = 0 held fixed, and with A = Ae=¥*, u = ae¥*/R and the junction
condition (2.34) imposed. The result is

§1 = ~21 /R ’ (rp6p — (r')'6) dr — 2K /0 ) (ripoep — (ro')é9p) dr,  (2.65)

which implies that I is extremal (61 = 0) if and only if ) = 0 and (r¢')’ = 0, i.e. if
and only if the configuration is MSRF. In fact, the extremum of I is a maximum,
as one can show by computing its second variation [using in the computation the
fact that the junction conditions (2.34), (2.35) must be satisfied by the perturbed

configuration as well as the MSRF one]:

T0 . R .
2r 2 12y g 2 ’2
1 = 21/R r(692 + 8'2) dr 2JK/0 r(89% + 64'%) dr

4AV/1 + u?
1 —4AV/1 + u?

—4J(8,)? 14 2u® + ] <0. (2.66)

To recapitulate, in our first step we found that, when V is varied with 1/)(7') and
¥(r) held fixed at any values one wishes, then e~ reaches an absolute maximum,
e™ = I, at V = 0. Then in the second step we found that when V is held equal to
zero and (r) and (r) are varied, e = I reaches an absolute maximum when
1/)(7') and (r) assume their MSRF values. Therefore, among all configurations
with fixed a, A, R, and ¢y = 0, the MSRF has the absolute maximum value of
e~ and the absolute minimum C-energy Co. QED.

This extremal property of the C-energy, together with the properties of Cysrr(R)
derived in Secs. 3 and 4, are all that we needed in Sec. 1.5 to infer the qualita-

tive, dynamical evolution of the shell—with one exception: We also needed the
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fact that the gravitational waves emitted by the shell’s oscillations carry away

C-energy. This we prove in the next section.

6 C-ENERGY OUTFLOW

The rate of change of the C-energy C = é(l — €77) inside a radius r is given by

1 1
C,t = —6—‘7’)’,t = *6_7’(/1,{(/),,- y (267)
8 4
cf. Eq. (2.19). We shall now show that at any radius r > R, 1, is negative
and thus C; < 0, which means that the waves carry away C-energy.

The general outgoing-wave solution of the wave equation (2.17) is
b=R / ” Aw)e HM (wr) dw | (2.68)
0

where R denotes the real part and H{}(z) is the Hankel function of the first kind.

Therefore,

Yy = §R/0°o —iwA(w)e “ H{) (wr) dw | (2.69)

and

b, =R / Y CwAW)e “ HY (wr) dw (2.70)
Using the limit HO(z) 223 (/2/7z exp[i(z — mn /2 — 7/4)], we see that
HO(wr) <2 —i B (wr) , (2.71)

which implies that the contributions from all frequencies w > 1/r satisfy 9; =
—1, and thence ¥, < 0 as was to be proved. But what about contributions
from w < 1/r? Because 1 is always finite and [§° m"Hél)(:c)d:v converges only for
n > —1, it is always the case that as w — 0, A(w) ~ w™ with n > —1. This implies
that the low-frequency, w < 1/r, contributions to 1, and %, are

Yiwgl/r)~ Y (wS1/r) ~ (2.72)

r2+n ’

which are negligible compared to the O(1/4/7) contributions from w > 1/r when r
is sufficiently large. Thus, for large r the waves necessarily carry C-energy outward

through radius r (C, = je"¥ b, < 0). QED.
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7 CONCLUSIONS

In Secs. 3—6 we have derived all the properties of the C-energy that were needed,
in Sec. 1, to infer the dynamical evolution of a thin, cylindrical shell of counter-
rotating dust: By giving the dust particles arbitrarily small amounts of angular
momentum per unit mass, we guarantee that centrifugal forces will convert the
shell’s collapse into a bounce, thereby preventing formation of a singularity. After
its bounce, the shell will oscillate radially, and then as gravitational waves carry

away C-energy, it will settle down into a static, equilibrium state.
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APPENDIX A: RADIAL NONCLOSURE OF
SPACE

In this appendix we show that, if the space around an initial, MSRF configuration is
not closed radially, then throughout the shell’s spacetime to the future of the initial
configuration, we can introduce coordinates (¢,r,2,¢) in which the line element
takes the canonical form (2.1) with 0 < r < 0.

The proof begins by introducing coordinates (i, 7, z, ¢) in which the line element
takes the form (2.12). Such coordinates are permitted throughout any cylindri-
cally symmetric spacetime with vanishing net momentum density along the Killing
directions.[10, 11]

Following Thorne[11], we define the character of spacetime at any event to be
D) if 6ﬂ is spacelike and points away from the symmetry axis, D() if V-}ﬂ is
spacelike and points toward the symmetry axis, D@ if V3 is timelike and points
toward the future, and D©V if V4 is timelike and points toward the past. [Recall
that 8 = |0/0z||0/9¢|; cf. Eq. (2.12).] The vacuum field equation Sz ~ B =
0 [Eq. (2.13)] implies that spacetime can change character only on radial null
surfaces, which Thorne[11] calls critical surfaces, or across the nonvacuum dust
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shell.

The nature of the character change across any critical surface is constrained
by the geometric optics focusing equation for radial null geodesics (Eq. (22.37)
of MTW([4]). This equation implies that § can never have a minimum along any
ingoing or outgoing radial null geodesic; and this, in turn, implies that the only
kinds of (vacuum) critical surfaces that can ever exist are these: An outgoing null
surface with spacetime character D(-) in the past and D)) in the future or with
D1 in the past and D) in the future, and an ingoing null surface with character
D™ in the past and D) in the future or with D" in the past and D(-) in the
future.

The nature of any character change across the dust shell is constrained by the
junction condition for the ¢¢ component of the extrinsic curvature [generalization
of Eq. (2.35) to the case where spacetime is not necessarily D*) on both sides of
the shell]. This junction condition says

Bim~PBon=—4MW1+u<0. (2.73)

Since f,, is continuous across the shell and 6,8 = B,:€;+ B .€, (Wwhere the notation
is that of Sec. 2.2, generalized to the case where the spacetime character is not
necessarily D(*) everywhere), Eq. (2.73) implies that, as one moves from the shell’s
interior to its exterior (its “—” side to its “+” side), the only allowed character
changes are D(*) to any other character, and D©") or DOV to D),

By hypothesis, there is an initial MSRF configuration in which space is not
radially closed. The fact that this configuration is momentarily static implies that
nowhere on its spacelike hypersurface can spacetime have character D©" or DY,
radial nonclosure means the character must be D) far outside the shell; and
smoothness of spacetime near the symmetry axis implies character D) there.
These constraints on character, together with the constraints on character change
listed in the preceding two paragraphs, imply that on the initial hypersurface the
character is everywhere D(1),

As the spacetime evolves forward off the initial hypersurface, the only way any
change of character could occur would be if a future directed, ingoing or outgoing
critical surface were to be created at some moment at the shell’s location. By
examining various hypothetical character changes across such a critical surface and
across the shell to its future, one discovers that there are no patterns of character
change that satisfy the above constraints. Therefore, the spacetime character must
remain D) throughout the future of the initial hypersurface . QED.
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APPENDIX B: RADIAL NONCLOSURE FOR

MSRF CONFIGURATIONS

Inside any MSRF configuration, spacetime is flat and therefore, in the notation of
Sec. 2.2 and Appendix A, B_, = e¥s. This, together with A = Ae~¥* and the

junction condition (2.73), implies that
eV Byn=1—4AV1+u?. (2.74)

In order for space to be radially non-closed outside the shell, the character must
be D) there rather than D(-) (these are the only possibilities for a MSRF con-
figuration, cf. Appendix A); this corresponds to the requirement that 84, must
be positive and not negative; and this, by virtue of Eq. (2.74), corresponds to
AV1 + u? < 1/4. Thus, for a MSRF configuration space will be radially nonclosed
(character D) everywhere) if Av/1+u? < 1/4, and radially closed (character
D) outside the shell) if AVT +u2 > 1/4.
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Abstract

We use the Teukolsky perturbation formalism to show that: (i) a particle in circular
motion around a nonrotating black hole remains on a circular orbit under the
influence of radiation reaction; and (ii) circular orbits are stable only if the orbital
radius is greater than a critical radius r. ~ 6.6792M, where M is the mass of
the black hole. A circular orbit is stable if, when slightly perturbed so that it
acquires a small eccentricity, radiation reaction decreases the eccentricity; a circular
orbit is unstable if radiation reaction increases the eccentricity. Our analysis is
restricted by four major assumptions: (i) the black hole is nonrotating, (ii) the
eccentricity is always small, (iii) the gravitational perturbations are linear, and (iv)
the adiabatic approximation (that radiation reaction takes place over a timescale
much larger than the orbital period) is valid. On the other hand, our analysis is
not limited to weak-field, slow-motion situations; it is valid for particle motion in

strong gravitational fields.
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1 INTRODUCTION AND SUMMARY

1.1 Motivation

A particle of mass g, which interacts with the gravitational field of an isolated
object of mass M, does not, in general, move on a spacetime geodesic. This is due
to the fact that the combined system emits gravitational waves; the problem of
radiation reaction—to determine the influence of this emission on the motion of
the particle—is a difficult one in general relativity.

Gravitational radiation reaction has a well-known electromagnetic analogue:
A charged particle, accelerated by an electric field, does not move according to
the Lorentz equations of the motion, because of the emission of electromagnetic
waves. There are difficult conceptual problems associated with radiation reaction
in electromagnetism [1]; however, these conceptual problems are not a serious
impediment to computations, at least when radiation reaction is a small effect. The
use of half retarded minus half advanced potentials, together with the rejection of
runaway solutions on physical grounds, provide a well-defined calculational basis
for most applications [2].

In contrast with the electromagnetic case, the problem of gravitational radiation
reaction is plagued with conceptual and calculational difficulties, which are mostly
due to the non-local character of the problem. Non-locality enters in essentially two
different ways: (i) As a consequence of the principle of equivalence, a gravitational
wave can be identified as such only in a region of spacetime larger than several
wavelengths [3], which precludes the construction of a local radiative field. And (ii)
due to the fact that gravitational waves are in general scattered by the curvature
of spacetime, waves emitted at one time may influence the motion of the particle
at some later time [4]; these tails in the waves can produce noticeable effects, most
especially if curvature is large.

In order to gain insight into the general problem of gravitational radiation re-
action, it is important to look at simple special cases for which the above problems
can be addressed. To study such a simple case is the main purpose of this paper.

The question of radiation reaction is most pressing in the context of the late
evolution of compact binary systems [5)], since the waves generated by such systems
are the most promising for detection by kilometer-size interferometric detectors [6].
Extraction of the information encoded in the waves will require an accurate cal-
culation of the expected waveforms [7]; these theoretical waveforms are used as

matched filters through which the detected signal is processed [8]. Radiation re-
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action governs the rate at which the wave frequency increases with time, as the
compact objects spiral together toward coalescence. During the last stages of evolu-
tion, when the waves are most interesting for detection, the wave frequency sweeps
from approximately 10 Hz to several hundred Hz in just a few minutes, during
which the waves oscillate about 10* times. It is therefore essential to incorporate
radiation reaction, to a fractional accuracy of at least 10~%, into the calculation of
the theoretical waveforms [7]. Thus, the practical importance of radiation reaction
in the evolution of compact binary systems provides more motivation for the work
presented here.

Also of interest are the last stages of evolution, under radiation reaction, of
a solar-mass compact object orbiting a galactic, supermassive black hole. Such
a binary system could be observed with an eventual space-based interferometric
detector, which would operate between 107* Hz and 10! Hz [9]. Because we
consider small mass ratios (see subsection 1.2 below), the results presented in this
paper are directly relevant to these sources.

Most of the work devoted so far to gravitational radiation reaction, in particular
for the two-body problem, has been restricted to weak-field, slow-motion situations
[3, 10, 11, 12, 13]. Lincoln and Will [12] have calculated, using post-Newtonian
theory, the orbital motion of a binary system at post®/2-Newtonian order, which
only incorporates radiation reaction at leading order. These calculations are not
accurate enough for the purpose of constructing matched filters for interferometric
detectors [7]. Higher-order corrections to the post-Newtonian, radiation-reaction
force have recently been calculated by Iyer and Will [13].

By comparison, very little has been done for strong-field situations. Gal’tsov
[14] has laid the foundations for strong-field radiation-reaction calculations in
the case of particle motion in the field of a Kerr black hole. His formalism is
based on the notion of a local, gauge-dependent radiation-reaction force. However,
Gal’tsov’s only explicit calculation of this force was also restricted to weak-field,
slow-motion situations. Finn, Ori, and Thorne [15] have studied the strong-field
transition between inspiral and plunge motion in Kerr; however, their analysis does
not require a detailed knowledge of radiation-reaction effects. In this paper, we

present concrete results on radiation reaction in strong-field situations.
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1.2 The problem, method of solution, and approxima-

tions

We study the effects of radiation reaction on the bound motion of a particle of mass
p in the geometry of a Schwarzschild black hole of mass M. Two quantities are of
fundamental interest: the orbit’s averaged radius rp, and the orbit’s eccentricity
¢. The radius ro denotes the averaged value of the orbit’s Schwarzschild radial
coordinate; the maximal value of the orbital radius defines the eccentricity: ryax =
ro(1 + £). More precise definitions of r¢ and € will be given in Sec. 2. We shall
suppose that both the eccentricity ¢ and the mass ratio u/M are much smaller
than unity. However, we do not suppose that the radius rg is large, so our analysis
includes strong-field situations.

We adopt the Teukolsky perturbation formalism [16], and consider the linear
gravitational perturbations associated with the motion of the particle. The per-
turbations are described in terms of the complex Weyl scalar W4, which becomes
radiative at large distances from the source. The rates of loss of orbital energy FE,
and orbital angular momentum L, due to gravitational radiation, can be calculated
by solving the Teukolsky equation.

The secular evolution (the evolution over timescales much larger than the or-
bital period) of ro and & can be determined from the knowledge of E and I,
where an overdot denotes time differentiation followed by an average over sev-
eral orbital periods. In particular, the following relations can be derived (Sec. 2):
o = 7o(ro, L), and € = (e, ro, E’, L) We shall use the perturbation formalism to
calculate the rates of loss of energy and angular momentum. These calculations
are performed (i) analytically, for the special case of weak fields and slow motions;
and (i1) numerically, for the general case.

Our calculations are restricted to small eccentricities, ¢ < 1. The work pre-
sented in this paper can therefore be interpreted as a stability analysis: A circular
orbit with radius r¢ is slightly perturbed and acquires a small eccentricity . The
orbit evolves because of radiation reaction; the sign of € determines whether the
perturbed orbit is driven more circular, or more eccentric. Circular orbits are thus
stable if € < 0, and are unstable if € > 0. Previous studies have shown that circu-
lar orbits are always stable in weak-field, slow-motion situations [11, 12]; our own
study confirms this, and also determines whether this remains true in strong-field
situations.

Recently, and independently of us, Tanaka et al. [17] numerically calculated
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the gravitational waveforms, and the fluxes of energy and angular momentum
at infinity, for orbits with arbitrary eccentricities. The differences between their
analysis and ours are significant. Tanaka et al. are mostly concerned with what
can be observed at infinity, and are not much concerned with radiation reaction.
In particular, they do not calculate the fluxes of energy and angular momentum
at the black-hole horizon, which we do here, and which is important for radiation
reaction. We have become aware of the work by Tanaka et al. very shortly before
submitting this paper for publication.

Our calculations are also restricted to small mass ratios. This condition comes
from two requirements: (i) that the gravitational perturbations be small enough
to be linear, which implies u/M < 1, and (ii) that the adiabatic approzimation be
valid. The adiabatic approximation supposes that radiation reaction takes place
over a timescale which is much larger than the orbital period. We shall show below
(Sec. 4.6) that this implies a restriction on pu/M; this restriction is not severe at
large distances, but becomes /M < (1 — 6M/rq)3/? for ry approaching 6M. The
adiabatic approximation must therefore break down at r¢ = 6M, where, even
without radiation reaction, circular orbits become unstable.

The adiabatic approximation is a fundamental feature of our analysis. It allows
us to suppose that, over timescales comparable to the orbital period, the motion
of the particle is, in fact, geodesic; non-geodesic behavior becomes noticeable only
over much larger timescales. Moreover, the motion is also strictly periodic, and,
consequently, the gravitational waves have a well-resolved frequency spectrum; the
waves’ frequencies change appreciably only over timescales much larger than the
orbital period. Our problem is therefore one for which we first determine the rates
of loss of energy and angular momentum for the slightly eccentric, geodesic motion
of a particle around a Schwarzschild black hole, and then use these rates to infer

the slow evolution of the orbit.

1.3 The results

Our analysis first allows us to prove that, if the particle’s orbit is strictly circular
(¢ = 0), then radiation reaction produces a strictly circular evolution. In other
words, circular orbits remain circular under radiation reaction. Previous proofs of
this statement were restricted to weak-field, slow-motion situations [11, 12]; our
proof is valid both for weak and strong fields.

If the eccentricity is small but not identically zero, our analysis shows that
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radiation reaction (i) decreases the eccentricity if ro is larger than a certain critical
value r., and (ii) increases the eccentricity if rg is smaller than r.. Thus circular
orbits are stable if ro > r., and unstable if ro < r.. The point ro = r. corresponds

to € changing sign; we have estimated numerically that
ro/M ~ 6.6792. (3.1)

Our results are most conveniently presented in terms of the dimensionless quan-

tity ¢(ro), defined as
To £ _ dlne

(3.2)

c(ro) = roe dlnrg’
and which can be interpreted as the ratio of the inspiral timescale ro/|ro| (the
timescale over which the orbital radius 7o changes appreciably) over the circular-
ization timescale €/|é| (the timescale over which the eccentricity changes apprecia-
bly). By virtue of the adiabatic approximation, both timescales are much larger
than the orbital period. A plot of ¢(ro), obtained numerically, is given in Fig. 1.
For large ro (weak-field, slow-motion), ¢(ro) can be calculated analytically

(Sec. 5.1), and takes the form

197, 3215 , 377 )
C(To) = E[l - m’v + 15—27”) + O(U )], (33)

where v = (M/ro)'/? <« 1 acts as a post-Newtonian expansion parameter. The
leading-order term of Eq. (3.3) corresponds to a Newtonian calculation of the
orbit, together with the use of the quadrupole formula to determine ry and £
[11]. The first-order correction (at post-Newtonian, v?, order) corresponds to post-
Newtonian corrections to the orbital motion. The second-order correction (at
post3/2-Newtonian, v3, order) corresponds to effects due to the propagation of the
gravitational waves in the field of the black hole—effects associated with the tails
of the waves.

For values of r¢ approaching 6 M (highly relativistic situation; Sec. 5.2), ¢(re)

behaves according to

1
c(ro — 6M) ~ _Z(l —6M/re)7, (3.4)
and therefore grows to arbitrarily large, negative values. This behavior is a con-
sequence of the fact that circular orbits, even without radiation reaction, become
unstable at ro = 6 M. We recall that the limit ro — 6 M must be taken with care,
in view of the adiabatic approximation; orbits arbitrarily close to r¢ = 6 M can be

considered at the price of taking p/M sufficiently small.
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Figure 3.1: A plot of ¢(ro), as defined in Eq. (3.2), as a function of log ro/M. Shown
is the range 10 < ro/M < 1000, in which ¢(ro) has the most interesting behavior.
For ro/M > 1000, ¢(ro) is well approximated by Eq. (3.3), and approaches the
value 19/12 ~ 1.5833 as ro tends to infinity. The function ¢(rg) changes sign at
ro = r. ~ 6.6792M, and approaches minus infinity when ro — 6M, in a way well
described by Eq. (3.4).
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Egs. (3.3) and (3.4) are derived analytically, and imply that ¢(rp) must change
sign at some radius ro = r.. We have therefore provided an analytical proof that
circular orbits are stable in the range ro > r. > 6 M only. However, a numerical
calculation is necessary to show that ¢(ry) changes sign only once, and to determine
the value of r, Eq. (1.1).

The complete evolution of the eccentricity, so long as it remains small, can
be obtained by integrating Eq. (3.2). It is most convenient to parametrize the
evolution with rg, and to express the eccentricity in terms of the function ~y(ro; r;),
defined as

¥(ro;ri) = In —= £(ro) = /r'ro c(rol)dro', (3.5)

e(r) ro’

where r; is some initial radius. If 7o and r; are both much larger than 6 M, then

Eqgs. (3.3), (3.5) imply
v(ro; i) = aro/M) — alri/M), (3.6)

Where , 3215 371
a(z) = [l +3795° ! — %ﬂ'z—:iﬂ] . (3.7)
If, on the other hand, rg is very close to 6 M, but r; > 6 M, then Egs. (3.4), (3.5)
imply
(roi i) ~ -i In(ro/6M — 1). (3.8)

The behavior of v(rp;r;), for r; arbitrarily fixed to 100M, is depicted in Fig. 2.
From this curve one can easily infer the corresponding v(ro; ;) for r; < 100M.

As one sees from Fig. 2, during the weak-field, slow-motion phase of the orbital
evolution, the eccentricity is reduced by many orders of magnitude—the orbit
becomes essentially circular. The eccentricity reaches a minimum value when ry =
r., and then starts increasing. Eventually, if the mass ratio u/M is arbitrarily
small and the adiabatic approximation holds, the orbit shrinks to a radius ro for
which the eccentricity becomes equal to its initial value; in general this occurs very
close to 6 M, as is indicated on the graph. For reasonable mass ratios, however, the
eccentricity has not increased by much by the time the adiabatic approximation
breaks down. As an example, consider a solar-mass object spiraling around a
108 Mg galactic black hole; this example is particularly relevant to space-based
gravitational-wave detectors [9]. For u/M = 107, the adiabatic approximation
becomes invalid in the vicinity of ro = ry, where r;/M = 6.002; our numerical
results then imply &(r1)/e(r;) =~ 4.0. For such binary systems, the inspiral time
from ro = r. to rg = r; is of the order of two years. For u/M = 1078, the ratio of

the eccentricities is only increased by a factor of two.
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Figure 3.2: A plot of ¥(ro,7;), as defined in Eq. (3.5), for r; = 100M, as a function
of logrg/M. The curve may be continued, both to the left and to the right, using
the analytical estimates (1.6) — (1.8). For example, v(1000M;100M) ~ 3.6392.
The function 7(ro;7;) has a minimum at ro = r, ~ 6.6792M, and grows to plus
infinity when ro — 6 M. Horizontal lines intersect the curve at two distinct points
(ro = m and o = r;) for which the eccentricity is equal, £(r;) = e(r2).
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1.4 Organization of the paper

The remainder of this paper is devoted to deriving the results quoted in the pre-
ceding subsection. We begin with a precise formulation of the problem in Sec. 2.
We first provide definitions for the quantities rg and €, and then derive the evolu-
tion equations o = 7o(ro, L), £ = é(g,ro, E, L) Two conditions which ensure that
¢ o € are imposed, and are justified in later sections. The first condition is that,
for circular motion, gravitational waves carry energy and angular momentum in
such a way that E/L = Q = (M/r¢®)"/?; the second condition is that corrections
to E and L, due to nonvanishing eccentricity, are second order in e. The fact that
€ o« € implies that circular orbits remain circular under radiation reaction; the
stability of circular orbits depends on the sign of the proportionality factor.

We present a brief summary of the Teukolsky perturbation formalism [16] in
Sec. 3. First, the inhomogeneous Teukolsky equation, and its formal solution, are
described in detail. Then we explain the method for extracting, from the solution,
the gravitational waveforms, and the rates at which the waves carry energy and
angular momentum. The section is concluded with a proof, valid for arbitrarily
strong fields, that £/L = Q for circular orbits.

The calculations relevant for slightly eccentric motion are presented in Sec. 4.
The first step consists of integrating the radial and azimuthal geodesic equations;
the integration is carried out to second order in the eccentricity. This calcula-
tion is presented in subsection 4.1, and subsection 4.2 offers an overview of the
remaining steps. The form of the results obtained for r(t) and ¢(t) allows us, in
subsection 4.3, to (i) identify the frequency spectrum of the gravitational waves,
(ii) witness important simplifications, and (iii) prove that corrections to E and
L are second order in the eccentricity. All of this may be achieved without per-
forming detailed calculations; instead, all computations are kept at a schematic
level. These schematic calculations are pushed even further, in subsection 4.4, to
derive expressions for ro and pé/e; this allows us to witness more cancellations,
which greatly simplify the problem. The detail of the remaining calculations are
presented in subsection 4.5. Conditions on x/M, which ensure the validity of the
adiabatic approximation, are formulated in subsection 4.6.

We present our analytical and numerical results in Sec. 5. We first consider
the weak-field, slow-motion (rg > 6M) limit of our formalism, and derive post-
Newtonian expansions for the quantities of interest. This analysis yields Eq. (3.3)
above. We then consider the highly relativistic (ro — 6 M) limit of the formalism,
which is also tractable analytically. This analysis yields Eq. (3.4) above. In sit-
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uations where rq is neither very large nor very close to 6 M, our equations must
be integrated numerically, which we describe next. Our numerical analysis yields
Eq. (3.1) above, as well as the graphs presented in the Figures.

We conclude in Sec. 6 with a recapitulation of our fundamental results, and a
discussion of our approximations.

Throughout the paper we use geometrized units in which the speed of light and
the gravitational constant are set equal to unity. Most of the paper is essentially
self-contained, except for Sec. 5, which relies heavily on previous papers in this
series. These previous papers are concerned with purely circular orbits; paper 1
[18] is devoted to analytical methods, while paper II [19] is devoted to numerical

methods. Both analytical and numerical methods are utilized in this paper.

2 FORMULATION OF THE PROBLEM

2.1 Definition of ry and ¢

Timelike geodesics in the Schwarzschild geometry obey the following equations:
dt/dr = E/f,
d¢/dr = L/r?, (3.9)
(dr/dr)? + V(L,r) = E?,
where 7 is the particle’s proper time; £ = E /p and L= L/p are, respectively,
the specific orbital energy and angular momentum. We have also introduced f =
1-2M/r, and V(Z, r) is the effective potential for radial motion,

V(L,r) = f(1 + L?/r?). (3.10)

We suppose that the motion takes place in the equatorial plane, § = 7/2, and
near a minimum of the potential V(L,r). We define the radius r = rq to be the

position of this minimum; since dV/0r|,=r, = 0, we have
L* = M1 - 30277, (3.11)
where v = (M/r)!/?. Radial motion corresponds to small oscillations about r = rg.
We define the eccentricity € so that r = ro(1+4¢) is a turning point of the radial

motion, at which £? = V(Zl,r). This equation can be expanded in powers of ¢,

which yields
(1—3v%)E? = (1 = 20%)% 4+ v%(1 — 6v%)e? — 20*(1 — Tv))e® + O(e*).  (3.12)
Eq. (3.11) implies 7o = ro(L), while Eq. (3.12) implies € = ¢(L, E).
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2.2 Radiation reaction—evolution of ry and ¢

The results of subsection 2.1 imply that the knowledge of the rates of loss of energy
and angular momentum, due to gravitational radiation, is sufficient to determine
the evolution of both ro and . We are interested in the secular evolution of
these quantities—the evolution over timescales much larger than the orbital period.
The secular evolution is well defined, and can be unambiguously calculated. In
contrast, the short-term evolution is not so well defined, due to the fact that
gravitational waves cannot be localized in a region of spacetime smaller than a
few wavelengths [3]. To perform a time averaging over several orbital periods is
therefore a fundamental feature of our calculations. We shall henceforth denote by
an overdot the operation of time differentiation followed by an average over several
orbital periods; thus 1 = (dy/dt), for any quantity .

An evolution equation for r¢ is obtained by using Eq. (3.11) to calculate urp =

(dro/dL)L, which yields

pro = 2(1 — 302 [v(1 - 602)) 7' L. (3.13)
Similarly, one may use Egs. (3.11) and (3.12) to calculate ué = (9¢/dE)E +
(9e/OL)L, which yields

11 =20%)(1 — 30?)'/2 v?3(1 — 6v?)
pe = ¢ v2(1 — 6v2) {[ 2(1 — 2v2)?

~[i- (11 - ;32”) (;“_1?;2)62 +o()ail, (3.14)

€'+ 0(e%)| E -

where Q = v/rg = (M/re®)V/2,
The rate of loss of orbital energy is equal to minus the rate at which gravita-
tional waves carry energy. We therefore write E= —E(GW), and expand EGW) jp

powers of the eccentricity:

ECW) = EO 4 cEM 4 2E@ 4 O(%); (3.15)
E© corresponds to circular motion. Similarly, we write L= —L(Gw), and
LOW) = [O 4 ] 4 21@ 4 O(ed). (3.16)

In Secs. 3.3 and 4.3 below, we will show that

E® =[O EO =[O (3.17)
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which implies that the lowest-order corrections to E(W) and L(GW) are second
order in the eccentricity.
Substitution of Egs. (3.16) and (3.17) into (3.13) implies

pro = —2M (1 = 3023 [v*(1 — 602 EO + O(£2); (3.18)

the evolution of rg is therefore dominated by the circular limit of Eq. (3.13), and
corrections due to the small eccentricity can be ignored.
Substitution of Egs. (3.15), (3.16), and (3.17) into (3.14) yields important can-

cellations, and the final answer is
pé = —(1—20%)(1-3v?) V2 [p?(1-602)) g(v) EO+ E® —QLP]+0(e?), (3.19)
where

(v) = 2 — 27v? + 72v* — 36v°
I = o0 —202)2(1 — 607)

(3.20)

Thus the calculation of ué requires the computation of £(W) and L(CW) accurately
to second order in the eccentricity. Due to the crucial relations (3.17), ué is itself
linear in the eccentricity.

Egs. (3.17) are therefore the key to the proof that circular orbits remain circular
under radiation reaction, since Eq. (3.19) implies €(¢ = 0) = 0. The problem of
determining the evolution of 79 and € is now equivalent to that of calculating E©),
and the pieces of E® and L® which do not cancel out when the combination
E® — QL® is constructed.

3 THE PERTURBATION FORMALISM

This section contains a brief summary of the relevant equations. More detail can

be found in paper I [18], and in the references quoted herein.

3.1 The Teukolsky equation

The stress-energy tensor associated with the motion of a particle perturbs the
gravitational field of a Schwarzschild black hole. The gravitational perturbations
are described by the Weyl scalar Wy = —Clp,sn®mPn¥m® where C,p,s is the Weyl
tensor, n* = 3(1,—-f,0,0), and m* = (0,0,1, —icsc 0)//2r; throughout we denote
complex conjugation with an overbar. At large distances, ¥, describes outgoing

gravitational waves; at the black-hole horizon, ¥, describes ingoing waves.
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The Weyl scalar can be decomposed into Fourier-harmonic components accord-
ing to

i, = /oo dw Y Rt (1) =2Yem (0, ¢)e ™, (3.21)

- m
where ,Y;,,(0, ¢) are spin-weighted spherical harmonics [20}; the sums over £ and
m are restricted to —¢ < m < £ and £ > 2. The radial function R,¢m(r) satisfies

the inhomogeneous Teukolsky equation [16],

[r? fd%- —2(r — M)d% + U(r)| Rutm(r) = =Tutm(r), (3.22)
with
U(r) = £ [(wr)? = diw(r — 3M)] = A, (3.23)

where A = (£ — 1)(£ + 2).

The source term in Eq. (3.22) is calculated from the particle’s stress-energy
tensor T°%(z) = p [ dr u*uP6@W[z — 2(7)], where z is the spacetime point, z(7) the
particle’s trajectory with tangent «® = dz*/dr, and 7 is the particle’s proper time.
The first step is to construct the projections o7 = Tapn®n?, _T = Tysn®m®, and
—oT = T,pm*mP. Then one calculates the Fourier-harmonic components , 7,4y (r)

according to 1
Tutm(r) = 5= [ dtd2 T Yem (0, $)e, (3.24)

where df2 is the element of solid angle. The source is

Tutn(r) = 2r{2[M(A + 2)]1/27'40ngm(r) + 2(2/\)1/2r2f,£ P 1 Toem () +
+rfLrt LT Tt (7))}, (3.25)

where £ = fd/dr + iw.
The inhomogeneous Teukolsky equation (3.22) can be integrated by means of

a Green’s function [21]. The solution at large radii is
Rotm(r = 00) ~ pw?Z8, rPer” (3.26)

where r* = r + 2M In(r/2M — 1), and the solution near the black-hole horizon is

Ruem(r = 2M) ~ pu®Z%, i fle=™r, (3.27)
The amplitudes Z2> are defined by
Heo _ 1 /°° Ryi™ (1) Tt (r)
Zukm. = 2ip W@, 2Md réf2 ’ (3.28)
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where the functions R¥,(r) and R%(r) are solutions of the homogeneous Teukol-

sky equation. RH,(r) is the solution with boundary conditions corresponding to

ingoing waves at the black-hole horizon, R¥,(r — 2M) ~ (wr)?f2e~“r"; RH,(r)

represents a superpostion of ingoing and outgoing waves at large radii, R Hir -
) ~ Qi (wr) e 4 Qo (wr)®e™™". R%(r) is the solution with boundary

conditions corresponding to outgoing waves at infinity, R (r — 00) ~ (wr)3e™’;
R%(r) represents a superposmon of ingoing and outgoing waves at the horizon.

The amplitudes Z2% satisfy the identities

Z wl—m = ( ) Zwlm. ’ (329)

which we now derive. We use the fact that «® = 0, which implies ,T = (-1)*,T;
substitution into Eq. (3.24), using ,Y,-m(8,¢) = (=1)**,Yem (8, 4), then yields
T tmm(r) = (=1)%Tutm(r). It follows from this and Eq. (3.25) that Twit-m(r) =
(—=1)*T,tm(r). The homogeneous Teukolsky equation is invariant under complex
conjugation followed by w — —w, so R_we(r) = R"°(r) and Q. = Q&
Eq. (3.29) finally follows from Eq. (3.28).

3.2 Waveforms; energy and angular momentum fluxes

At large distances, the two fundamental polarizations of the gravitational waves,

h, and hy, can be obtained from Egs. (3.21) and (3.26); they are

. 2# —twu
hy —ihx = LY Vim / dw ZH, e, (3.30)
fm
where u = t — r* represents retarded time. The transverse traceless gravitational-

wave tensor is

= (hy —thy)memp + (hy + thy )My, (3.31)

The rates at which gravitational waves carry energy and angular momentum
to infinity can be calculated from the Isaacson stress-energy tensor [22], which is
constructed from hLT. An alternative but equivalent method involves reading off
the multipole moments of the radiative field, as defined by Thorne [23], and using
the relevant equations of Ref. [23] to calculate E* and L. To present the results,
we now specialize to the case considered in this paper, in which the frequency
spectrum of the waves is characterized by a discrete set of distinct frequencies wy.

Then
wlm ZZZ k6(w W), (3.32)
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and
E* = Zw 2|z (3.33)
lmk
; H2 Hk|2
L>* = Z, .
e tmk k i 2 (3.34)

The rates at which the black hole absorbs energy and angular momentum
can be calculated along similar lines [24]. From W4(r — 2M) one recovers the
gravitational-wave tensor, from which the Isaacson stress-energy tensor is calcu-
lated. The calculation of the fluxes then reproduces the results of Teukolsky and

Press [25], which were derived in a completely different manner:

EH = M2 Za |22k )?, (3.35)
oo Z k| Z2ok|? (3.36)
47I'M2 Ik Wi ’
for
o = Z Z3%6(w — wy). (3.37)

We have introduced

ak 212[1 + 4(ka) ][1 + 16(ka)2]
¢ [AX + 2)]7 + 144(Muwy)?

(Mwy)®. (3.38)
The total rates of loss of energy and angular momentum are then E(GW) =
E> + EH, and LGW) = [ 4 [H

3.3 Proof that E® = QL©

For circular motion, the particle’s stress-energy tensor is proportional to §(¢ — t).
Eqs. (3.24) and (3.25) then imply T,em x 6(w — mQ)—the wave frequency w is a
harmonic of the orbital frequency . Eq. (3.28) further implies Z/;% o« §(w—mS),
so that we can write

ZHeo = Alh=g(, — mQ), (3.39)

wim

which is a special case of Egs. (3.32) and (3.37), with wx = m{. Egs. (3.33)-(3.36)

then yield \

E* =QL* = Zﬂ; 3 (mQ)*|AE 1, (3.40)

m
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and

2
EH =qif = L ad AZ |, (3.41
47 M? % ¢ )

where oy = of(wp = m®). Finally, Eqs. (3.40) and (3.41) imply E© = QLO).
Notice that the proof does not require the explicit calculation of Ag,;w. The key
to the proof is the observation that for a mode of given m and wy, E*H /[>H =

wi/m. This property is very general and holds for arbitrary fields; cf. Ref. [26].

4 GRAVITATIONAL WAVES FROM
SLIGHTLY ECCENTRIC MOTION

4.1 First step—slightly eccentric motion

The first step of the calculation consists of solving the geodesic equations for

slightly eccentric orbits. We begin with the radial equation. Egs. (3.9) imply
(dr/dt)* + U(E,L,r) =0, (3.42)

where
U(Ea Z’a 7') = (f/E)2[V([~’7 7‘) - E2] (343)
Our strategy is to expand r(t) according to

r(t) = roll + e€D(t) + 260(1) + O], (3.44)

and to similarly expand U(E, L, r), using Eqs. (3.11) and (3.12). Collecting terms
of equal order in ¢ yields (i) a differential equation for £(1)(t),

(deW/dt)? = Q,%(1 — ¢M?), (3.45)

where

Q, = Q1 - 6v%)1/2 (3.46)

is the radial frequency—the fundamental frequency of radial motion; and (ii) a

linear differential equation for £(3)(¢),

1 de® de@ 1—Tv? 207 1 —11v% 4 2604
A7 e £

Q.2 t (1 —202)(1 — 6v?)

Q.2 dt dt 1— 602 1= 202 £M3, (3.47)

Eq. (3.45) can be integrated to give

EM(t) = cos t, (3.48)
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where the time origin is chosen so that r(¢ = 0) = ro(1 + £). Substitution of
Eq. (3.48) into (3.47) then yields, after integration,

ED(t) = q1(v)(1 = cos Q) + g2(v)(1 = cos 20,1, (3.49)

where ¢ (v) = (1 — Tv?)(1 — 6v%)7!, and ¢2(v) = (1 — 11v? + 26v*)[2(1 — 20%)(1 -
6v?)]~1.
Integration of the azimuthal equation proceeds along similar lines. Egs. (3.9)
imply
dg/dt = (L/E)(f/7?), (3.50)
which may be expanded in powers of € using Eqs. (3.11), (3.12), (3.44), (3.48), and
(3.49). Integration then yields

é(t) = Qgt — ep1(v) sin Q. + €%py(v) sin Ot + £2p3(v) sin 2%, ¢ + O(e?),  (3.51)

where p; (v) = 2(1 — 3v?)[(1 — 2v?)(1 — 6v2)/?]71, pa(v) = 2(1 — 3v?)(1 — Tv?)[(1 -
202)(1 — 6v2)3/271, ps(v) = (5 — 64v? + 250v* — 3000°)[4(1 — 2v?)?(1 — 60v2)3/3);

and
3(1 — 3v?)(1 - 8v?) ,

2(1 — 202)(1 — 602)°

is the azimuthal frequency—the fundamental frequency of azimuthal motion. That

Q= |1-

(3.52)

0, # O, reflects the fact that eccentric orbits in Schwarzschild are not closed.

4.2 The remaining steps—an overview

The next steps of the calculation consist of (i) substituting the results of the

receding subsection into the expression for the particle’s stress-energy tensor
p g p gy s

T8 =

uB
26l — r(0)5(cos8)616 — $(1)]; (3.53)

2
(ii) constructing the projections ,T', and (iii) expanding to second order in the
eccentricity. In particular, we must expand r—r(t) about r—rq, thereby introducing
derivatives of the radial é-function; and expand ¢ — ¢(¢) about ¢ — Q4t, which
introduces derivatives of the azimuthal é-function.

The next task is to obtain the Fourier-harmonic components T, (r), using
Eq. (3.24). The integration over ¢ implies that the derivatives of 6(¢ — Q4t) are
integrated by parts, and the n-th derivative of §(¢ — €4t) is therefore equivalent
to (im)"6(¢ — Qyt).
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Once the source to the Teukolsky equation has been evaluated using Eq. (3.25),
we calculate Z2:% using Eq. (3.28). Since the source has support only at r = o,

the integral can be performed analytically, and involves several integrations by

parts. As a result, Z/5%°

wlm
RZ°(r) and their derivatives at r = ro, and (iii) the coefficient Qm,.

In weak-field, slow-motion situations (7o large), the analytical techniques devel-

can be expressed as a function of (i) ro, (ii) the functions

oped in paper I [18] may be used to calculate, approximately, RY,(r) and Q¥%,. The
result is an analytical expression for Z%, | valid for ro > 6 M. Since EH/E> and
LH / L are of order v® and hence very small [14, 27], the weak-field, slow-motion
calculation does not require the computation of 23, .

In a strong-field situation, RZ°(r) and Q™, must be obtained, for a given value

of ro, by numerically integrating the homogeneous Teukolsky equation. The result
ZH,OO

o, valid for that value of r.

is then a numerical expression for

Once Zfl’:,’f’ has been obtained, we observe that the continuous sum over w
reduces to a discrete sum, as in Egs. (3.32) and (3.37). We then calculate EGW)
and L(GW) with the help of Eqs. (3.33)~(3.36). Finally, Eqgs. (3.18) and (3.19) are

used to calculate rp and £/e.

4.3 Frequency spectrum, simplifications, and proof that
EOD=LO =9

Each step of the calculation, as outlined in the preceding subsection, would require
an extremely long and tedious computation if some remarkable simplifications did
not occur along the way. These simplifications arise because: (i) The gravitational
waves possess a frequency spectrum characterized by a discrete set of frequencies.
As in the circular case, the waves have frequencies equal to the harmonics of the
azimuthal frequency, w = m;. However, a small eccentricity also implies the
existence of side bands [28], at w = mQy £ Q,, and w = MmOy £ 2Q,. (ii) The
calculation of E(€W) and L(GSW) includes a time averaging, which causes a large
number of terms to vanish. In particular, all O(e) terms average out, as do most
O(e?) terms. And (iii) the calculation of é/¢ only requires the computation of
E® — QL® which also generates important cancellations.

We now look more closely into the nature of the waves’ frequency spectrum.
The calculation of ,T,em(r) was outlined in subsection 4.2. After the angular
integration has been performed, it is clear from Eqs. (3.48), (3.49), (3.51), and

(3.53) that the next step is to integrate over time terms which are proportional to:
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(1) e¥w=m)t; (i) et eiw-m)t; and (iij) e220rteilw-mDs)t [t is also clear that the
terms with dependence (i) are dominantly O(£°), while the terms with dependence
(i1) are dominantly O(e), and the terms with dependence (iii) are dominantly
O(e?). Correspondingly, time integration yields terms which are proportional to:
(i) 6(¢ —mfy), with magnitude O(°); (ii) 6(¢—mQy£Q,), with magnitude O(¢);
and (iii) 6(¢ —mQy £29Q,), with magnitude O(e?). Finally, Eqgs. (3.25), (3.28), and
(3.30) imply that the gravitational waves possess the frequency spectrum described
previously.

Our schematic considerations can be pushed further. It is indeed clear from
the results obtained thus far that Z > must have the following structure (we

momentarily remove the H, 0o subscrlpts for the sake of clarity):

Zotm = Amb(w—wn)— 1B, 6(w—w.)e— 3B} 6(w—w)e+
+ Comb(w — w)e® + Dy, 6(w — w_)e? + DE, §(w — wy)e® +
+ E;26(w — w_2)e? + EF?8(w — wya)e? + O(e?), (3.54)

where w,, = mQy, wy = MOy £Q,, and wiz = MmOy £20,. The various coeflicients
of the §-functions are expected to be complicated functions of (i) ro, (i) R (r)
and their derivatives at r = rg, and (iii) Q'%. All these coefficients can be calculated
with the help of the equations presented in this and the preceding section; however,

we shall now show that only a small number actually need be calculated.

Substitution of Eq. (3.54) into (3.33)—(3.36), using (3.32) and (3.37), yields

2
oo _ ﬁ_ 2,~H |2 W-\2 1 pH-2_2
E - 47 m[IAlm+€Clm| +(w )IzBlmle +

m
Wi 1 pH+12,.2
3.5
+(CH) Bl + 0], (3.55)
. 2 W —
QL* = &3 wn[|Al + SO0 + =3B +
£m
+z+|1 Ht2.2 4 0 )] (3.56)
, _
SHo K o 2,700 |2 a, co—|2.2
E = W;‘W“Atm'*'s Clml +El%Blm | e+
| 1Bt + 0(e%)], (3.57)

2
PH o _ [ 0o 2002 4 al “m 4y -12.2
Q¢L - AT M? %alhAem +e€ Clml Qp w l B ' e+

ae W

| |2 + 0(e%)], (3.58)



71

where ay = af(wy = wn) and of = of(wr = wy). These results teach us that the
coefficients D% and EH %2 are irrelevant to our calculation; their contributions
vanish after the time averaging has been carried out. More simplifications arise
below.

Egs. (3.55)—(3.58) imply that corrections to E(GW) and L(SW), due to nonvan-
ishing eccentricity, are second-order in €. Thus EM = [() = 0, as was first written
in Eq. (3.17). The proof that circular orbits remain circular under radiation reac-

tion is now complete.

4.4 Calculation of 7y and pé/e

The calculation of 7 is almost complete. Explicit expressions for Aff,;°° will be
given in subsection 4.5; these may be used together with Eqs. (3.40) and (3.41) to
calculate E(®, which is then substituted in Eq. (3.18).

The calculation of ué/e requires the computation of £ and E®) — QL®), In
Eqgs. (3.55)-(3.58), a number of terms are explicitly second-order in the eccentricity;
others are O(e?) only implicitly, by virtue of the fact that Q4 = Q(1 — AQe?),
where AQ can be read off from Eq. (3.52). To make all dependence on ¢ explicit,
we now adapt our notation so that wy = m€ + Q,, and write wy, 2|42 =
(mQ)2|AE=|2 4+ O(e?). It follows that the quantity E®) — QL® + AQE®© only
requires the calculation of the coefficients B{,’,;°°*. With the help of Eq. (3.19), we

finally obtain
R _ (1 - 2'02)(]. - 3'()2)1/2 (0)
péje = 221 — 60%) [T — h(v)E™), (3.59)

where I' = I'* + T with

I = 16 Q Z(w+|B”+2—w_|B;;-|2), (3.60)

where wy = m) + Q,; and

2 p—
rH = 16£M2Q’j‘:( |B°°+ 2 ilB}’;’; 2). (3.61)

We also have
1 — 1202 + 66v* — 108v°

h(v) = = =207y —607)

(3.62)

with v = (M/r0)1/2.
Egs. (3.59) — (3.62) imply that the calculation of ué/e is much simpler than the

individual computations, to second order in the eccentricity, of EGW) and LGW),
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Because of the occurrence of important cancellations, the calculation only requires
the computation of Bf,’,;°°*, and the leading-order part of Agfo. Computation of
all other coefficients, as well as the O(¢?) part of AZ,;°°, is superfluous.

Because of those various cancellations, the calculation of ué/e may now proceed
in complete ignorance of the O(¢?) corrections to the motion of the particle. The
only essential correction, the O(e?) part of {4, has already been incorporated into
Eq. (3.59). The computation of B;->* only requires a calculation accurate to first
order in the eccentricity.

4.5 Calculation of AZ,’:” and Bg,’,wi

The calculation follows the lines of subsection 4.2 above. We find

H,c0 n
A —
m — 2/)in
t (w'm TO) wmf

(0AM + 1 AR + 2 A1), (3.63)

where (we momentarily remove all unnecessary indices for the sake of clarity)

OA - Oaf0R7
_1A = _1af0[(2f0 -+ iwmro)R - fOTORI], (364)
_2A = -2afo[iwm'l'o(2 - 2’02 =+ iwmro)R -— 2(fo -+ z'wmro)forgR' + (foT'Q)zR”].

Here, wpm =m&, fo=1—-2M/ro =1~ 20}, R = Rfﬁ’(rg), and a prime denotes

differentiation with respect to r¢. Also

BH,OO:t — 7r2 = (OBH,OO:h + _IBH,Oo:h + _2BH,OO:‘:), (3.65)

m - . Im m m
t (wi To ) wgl
where

0Bt = octRy —oa(foroRy — 4v*Ry),
1BE = _1c*[(2 — 4v® + iwgro) Ry — foroRy] +
+ _1a[(4v? — 8v* + 6iMwy — twyrg) Ry —
— fo(1 + twxro)ro Ry + (foro)* Ry,
2B* = _sca[(foro)®RL — 2fo(1 — 20% + dwgro)roRY +
+ twiro(2 — 20% + dwyrg)Re] —
— _2a[(foro)*RY — 2iwsro(fore)’ Ry —
~ fo(2 — 8v* + 8v* — 10:Mwy + 2iwsro + wi’re®)ro Ry +
+ 2iwsrg(1 — 60° + 40 — diMwy + dwerg) Ry, (3.66)
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with wy =mQ +Q, and Ry = RH’°°(7'0). We have introduced

w4l

ottm = O+ 2)]"%0Yen(Z,0) [2(1 — 20?)(1 — 302V,
@ = N Yo (2,0) v](1 — 207)%(1 = 30%)V 7Y (3.67)
—2@em = ——2Yem(Z,0)07[2(1 — 20%)%(1 — 30%)/37Y,

where A = (£ — 1)(¢ + 2), and

O = s0em |2 — 5 = 23— s)o” £i(2 + s)v(1 - 6v%)/ £ 2m(1 — 30%)(1 — 607)71/2].

(3.68)
The previous equations imply the following symmetry properties: A;"% = (—1)°
A B = (=1)'Bpp*, and for m = 0, Bg™™ = Big™*.

fm v “Ah,—-m

4.6 The adiabatic approximation

We conclude this section by formulating the conditions under which the adiabatic
approximation holds. The results of this subsection were summarized in Sec. 1.2.
We require that the inspiral timescale ro/|ro| always be much smaller than the

orbital period 27 /§),. Using Eq. (3.18), this requirement becomes

5(1 — 6v?)*/? 1

v
M« — g
pIM < 4r (1 — 302232 (M/p)2E©

(3.69)

At large radii, ro > 6M, (M/p)?E® ~ 320'°/5 and the adiabatic condition
(3.69) becomes u/M < (5/1287)v=°. This is superseded by a wide margin by
the condition u/M < 1, which ensures that the gravitational perturbations are
linear. Near ro = 6M, we may use the numerical results of Sec. 5.3 and put
(M/p)?E® ~ 9 x 107, and Eq. (3.69) becomes u/M < 2.8(1 — 6v?)*/2. This

condition is far more restrictive than p/M < 1.

5 ANALYTICAL AND NUMERICAL RESULTS

5.1 Weak-field, slow-motion case

For ro > 6M and v = (M/ry)'/? < 1, the analytical techniques developed in pa-
per I may be used to calculate, approximately, R¥ ce(r) and Qi’,‘il. The expressions
for these quantities may then be substituted into the equations of Sec. 4.4 and

4.5, to obtain pé/e in the form of a post-Newtonian expansion. As was mentioned
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previously, there is no need to calculate £¥ and LH , because they contribute only
at order v® to the post-Newtonian expansion [27]. The calculations are straight-
forward and will be presented without much detail.

The calculation of pé/e up through order v® beyond Newtonian requires the
computation of Bf* for £ = 2 and £ = 3. We may use the symmetry properties of

Bf'* and only consider nonnegative values of m; for m = 0, only Bt,o is required.
We find

BE}Y = (n/5)Y*0?[—18 + 2Tv® — 54xv® + O(iv®, v?)),

Bi = (n/5)"* 2[6—}- 21 2+67rv + O(iv®,v?)),

BIF = (n/9)H{~1iv+ L2in® 4+ O(v")

B’fl_ = 0(v%)

B = (7/30) 0 [—4 + B8o? — 470® 4 O(iv®,v?)],

B} = (n/42)'*v 2’[6411}—!—0(1} )l

Biy = (n/42)'**[—24iv 4+ O(v*)),

B = (x/70)/*’[5iv + O(v%),

BiT = 0(x%), (3.70)
and B'E = O(v®) for m = {0,2}. In the above, the notation O(iv?) signifies that
those terms of order v, which are purely imaginary, do not contribute, at order
v3, to |BfI¥|?. That the coefficients By}~ are so small is due to the fact that, for
m=1,w. =0 -—Q1—60%)"? = 3v?2Q 4+ O(v*?); since w_ is suppressed by a factor
v? with respect to w,, the resulting Bffl‘ is much smaller than Bfﬁ.

We now substitute Egs. (3.70) into (3.60) and (3.59), and use the post-Newtonian

expansion

?

1247
336
derived in paper I [Ex = 32 (/M )*v'° is the leading-order, Newtonian expression);
this yields

E® = Ey [1 - v? +4m0® 4 O(v“)] (3.71)

6849 o2 985
é=énl- s15? T T + O ), (3.72)
where €y is the leading-order, Newtonian expression,
pénfe = = (u/M)*°. (3.73)

Throughout the post-Newtonian regime, v < 1, € is negative—radiation reaction
therefore reduces the eccentricity.

Substitution of Eq. (3.71) into (3.18), and use of Eqgs. (3.72) and (3.73) yields
Eq. (3.4).
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5.2 Highly relativistic case

Analytical calculations may also be carried out in the case where ro approaches
6M. Because h(v) diverges when v? — 1/6, cf. Eq. (3.62), and because both E(©)
and T have well-defined limits when ro — 6M, ué/e is dominated by the second
term on the right-hand side of Eq. (3.59).

Our claim that E© is well behaved in the vicinity of ro = 6M can be sub-
stantiated by (i) an inspection of the perturbation formalism, which shows no sign
of a singularity at ro = 6M; in particular, R%;®(r) and Q™% for Mw = mMQ =
6~3/2m, are well behaved. And (ii) with numerical calculations, which confirm the
proper behavior of E© in the vicinity of ro = 6M.

The proper behavior of I' can be established as follows. Writing § = (1 —
6M/r)'/? < 1, we first infer the various §-dependence of the relevant quantities.
Using the equations of Sec. 4.5, we find that the ;ae, are independent of §, while
s, = £m ,a0,67" + O(8°). Using the fact that Rwil (r) and Q. , are properly
behaved, Eq. (3.65) then implies BL, = k6~ 4+ ki, + O(6), where ks, and
kf are independent of . The fact that, at leading order in 8, B, and B, differ
only by a sign is an important aspect of this discussion. [The case m = 0 requires
special thought, since then wy = +6€, and Eq. (3.65) suggests that BZ‘O might be
more singular than O(67!). However, a careful study of the Teukolsky equation
reveals that this does not happen.] The final step is to substitute our result for Bfm
into Eq. (3.60), and notice a remarkable cancellation of the leading-order, O(672)
terms. Multiplication by {2, = 6§} then ensures that each term in the sum over ¢
and m is O(8°). That T has a well-defined limit follows from the fact that the sum
converges for every ro > 6M, which was verified numerically.

Having established that I and E®© have well-defined limits when ro approaches
6M, Eq. (3.59) reduces to

péfe ~ 5——\/—=E(0 |, ozens(1 = 6M/ro) 72, (3.74)

for ro — 6M.
Substitution of Eq. (3.74) and (3.18) into (3.2) yields Eq. (3.4).

5.3 General case—numerical integration

When rp is neither very large nor very close to 6 M, Rw .7 (r) and Qi’,‘tl must be

calculated numerically. By performing the integration for a wide range of orbital
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radii, we obtain ué/e as a function of rg. The numerical results may then be
checked against the limiting cases (3.72) and (3.74).

We have carried out the numerical integration using a straightforward gen-
eralization of the algorithm presented in paper II [19] (we shall not repeat the
discussion of paper 11 here). We have constructed our integrator upon the Bulirsh-
Stoer method, using fortran subroutines given in Ref. [29]; all operations were
performed with double precision. We have verified that our numerical results are
in agreement with the limiting cases of subsections 5.1 and 5.2; this agreement
gives us great confidence in our results, which are summarized in Fig. 1.

It is easy to obtain high numerical accuracy by adjusting the tolerance of our
integrator to a very small value; we have typically chosen a tolerance of 107.
Although it is hard to prove, we believe our numbers to be accurate to at least six
significant digits. Consequently, our estimate of the critical radius r. (at which &
changes sign) should be accurate to six significant digits; we have chosen to quote
only five digits in Eq. (3.1).

The accuracy of our numerical results is also subject to errors of non-numerical
origin, which are due to the fact that the infinite sum over ¢ must be truncated.
The magnitude of the error thus induced can be controlled by requiring that the
terms ignored contribute to a fractional error no greater than a certain value (.
Since a multipole of order £ contributes a fractional amount of order (M/ro)t2 to
Eand L [18], we arrive at the following criterion on the maximal value of £ which

needs be included in the sum,
lnax > 2 — log {/log(re/M). (3.75)

For example, choosing { = 107¢ yields £.x = 10 for ro/M = 6, and £y = 3 for
ro/M = 10°.

The graph of Fig. 2 was obtained by numerically integrating Eq. (3.5), in the
range between ro/M = 6 + 1078 and ro/M = 100. The integration was performed

using the extended trapezoidal rule, which is accurate enough for our purposes.

6 CONCLUSION

We have established in this paper that a particle in circular motion around a
nonrotating black hole remains on a circular orbit under the influence of radiation

reaction. Furthermore, we have shown that circular orbits are stable only if the
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orbital radius is greater than a critical radius r. ~ 6.6792M, where M is the mass
of the black hole.

Also, our analysis permits us to follow the evolution, under radiation reaction,
of an orbit’s eccentricity, so long as it remains small. We find that the eccentricity
is reduced by many orders of magnitude during the post-Newtonian phase of the
inspiral, but that it starts increasing once the orbit’s radius is smaller than r..
For reasonable values of u/M, the eccentricity increases by at most an order of
magnitude before the adiabatic approximation breaks down and the particle begins
its plunge toward the black hole.

Our analysis is restricted by four major assumptions: (i) the black hole is non-
rotating, (ii) the eccentricity is always small, (iii) the gravitational perturbations
are linear, and (iv) the adiabatic approximation is valid. On the other hand, our
analysis is not limited to weak-field, slow-motion situations; it is valid for particle
motion in strong gravitational fields.

We now examine whether any of our four assumptions could be relaxed, and
at what cost, in future work.

Assumption (i) could be removed without much effort, that is, our analysis
could be extended to the case of a rotating black hole, if and only if the orbit lies
in the hole’s equatorial plane. In the more general and more interesting situation of
non-equatorial orbits, the formulation of the problem of radiation reaction would
take a significantly different form. In such cases, the motion possesses a non-
vanishing value of the Carter constant, whose rate of change cannot be simply (if at
all) related to the rates of change of energy and (vectorial) angular momentum. The
general analysis would therefore require techniques more sophisticated than the
ones utilized here; for example, a numerical implementation of Gal’tsov’s formalism
[14].

Assumption (ii) is one of simplicity, and could be removed without introducing
additional conceptual difficulties. For example, a calculation valid to higher order
in the eccentricity could be carried out, at the price of a modest effort. A calcu-
lation valid to all orders in € could also be performed by numerical integration of
the geodesic equations; see Ref. [17].

Assumption (iii) cannot be removed easily. Strong-field analyses valid for ar-
bitrary mass ratios would require either the formulation of a higher-order pertur-
bation theory, or the complete numerical solution of Einstein’s equations for the
two-body problem. Both approaches are still a long way into the future. A recent
analysis by Kidder, Will, and Wiseman [30] suggests that the value of the critical
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radius r, should increase with the mass ratio p/M.

Assumption (iv) could be removed (at least partially) by incorporating, at the
very beginning, radiation-reaction effects into the motion of the particle. Thus the
motion would be non-geodesic to begin with, and higher-order radiation-reaction
effects could then be calculated. These higher-order effects would be quite small
at large orbital radii; but for a given mass ratio, there exists an orbital radius r¢ at
which the adiabatic approximation breaks down, and at which higher-order effects
would become important. The breakdown of the adiabatic approximation, and the

transition from slow inspiral to fast plunge, is discussed in Ref. [15].
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Abstract

Merging compact binaries are currently regarded as the most promising source of
gravitational waves for the planned Earth-based LIGO/VIRGO laser-interferometer
detector system, and will be an important source also for similar, lower-frequency
detectors that might be flown in space (e.g., the proposed LISA mission). During
the orbital inspiral, if one or both bodies are rapidly rotating, the general rela-
tivistic spin-orbit and spin-spin coupling (i.e., the “dragging of inertial frames”
by the bodies’ spins) cause the binary’s orbital plane to precess. In this paper
we analyze the resulting modulation of the inspiral gravitational waveform, us-
ing post?-Newtonian equations to describe the precession of the orbital plane, but
only the leading-order (Newtonian, quadrupole-moment approximation) equations
to describe the orbit, the radiation reaction, the inspiral, and the wave genera-
tion. We derive all the formulae one needs to readily compute the spin-modulated
gravitational waveform (within the post-Newtonian approximation and the approx-
imation that the precession frequency is much smaller than the orbital frequency).
We also develop intuition into what the modulated signals “look like,” by a vari-
ety of means. We provide approximate, analytical solutions for the precessional
motion and the modulated waveforms for two important special cases: the case
where the bodies have nearly equal masses and the case where one of the bodies
has negligible spin. For these cases, for almost all choices of binary parameters, the
motion is a simple precession of the orbital angular momentum around the nearly
fixed direction of the total angular momentum, with a few tens of precession peri-
ods as the waves sweep through the LIGO/VIRGO observational band. However,
when the spin and orbital angular momenta are approximately anti-aligned, there
is a transitional-precession epoch during which their near cancellation causes the
binary to “lose its gyroscopic bearings” and tumble in space, with a correspond-
ing peculiar sweep of the waveform modulation. We also explore numerically the
precessional behaviors that occur for general masses and spins; these typically ap-
pear quite similar to our special-case, simple-precession and transitional-precession
solutions. An Appendix develops several diagrammatic aids for understanding in-

tuitively the relation between the precessing orbit and the modulated waveform.
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1 INTRODUCTION

Merging compact binaries—i.e., neutron star/neutron star (NS-NS), neutron star/
black hole (NS-BH), and black hole/black hole (BH-BH) binaries—are currently
regarded as the most promising source of gravitational waves for the planned
LIGO/VIRGO laser-interferometer detector system [1, 2, 3]. LIGO/VIRGO will
have good sensitivity in the range ~ 10-500 Hz, and hence will observe the last
few minutes and last several thousand cycles of the inspiral waveforms.

To lowest order, the inspiral and the resulting waveform are described by the
“Newtonian” quadrupole formula. Cutler et. al. [3, 4, 5] have recently pointed out
that post-Newtonian corrections to the waveform, though small instantaneously,
produce large cumulative effects, which may permit fairly sensitive measurements
of certain combinations of the binary’s masses and spins. The cumulative effects
are of two types [3]: (i) Post-Newtonian corrections to the binary’s inspiral rate
result in a large, secular correction to the phase of the waveform. Details of this
accumulating phase correction have been computed by Lincoln and Will [6], Cutler
et. al. [3], Poisson [7], and Kidder, Wiseman, and Will [8], based in part on earlier
work of Wagoner and Will [9], and of Blanchet, Damour, and Iyer [10, 11}; and
the accuracy of the information that LIGO/VIRGO should be able to extract from
the accumulating phase correction has been computed by Cutler and Flanagan [4].
(i1) Post-Newtonian spin-orbit and spin-spin couplings cause the orbital plane to
precess tens of times as the waves sweep through the LIGO/VIRGO band, thereby
modulating the waves’ amplitude, phase, and polarization [3]. For large spins the
effects on the waveform can be quite dramatic, as one can see from a brief perusal
of Figs. 4.6 and 4.11-4.18 below.

In this paper we explore in detail the modulation of the waveform due to spin-
induced precession. This modulation is qualitatively different from other post-
Newtonian effects. Since our principal purpose in this paper is to explore this
“new” behavior, we will isolate it by neglecting other post-Newtonian corrections
to the waveforms. Most especially, we will neglect other effects of the bodies’ spins,
such as their direct wave emission and their contribution, via radiation reaction,
to the waves’ cumulative phase correction. These other spin effects have been
explored by Kidder, Wiseman, and Will [8], by Kidder [12], and by Cutler and
Flanagan [4].

The spin-induced modulation will be important not only for waves from normal-
mass compact binaries (M ~ 1 to 10°M), which lie in the LIGO/VIRGO fre-
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quency band, but also for waves emitted by supermassive black-hole binaries
(M ~ 10°Mg to 10" M) and by stars and small black holes spiraling into super-
massive black holes. These low-frequency waves are targets for laser-interferometer
detectors that might be flown in space in the early 21st century—e.g., the proposed
LISA (“Laser Interferometer Space Antenna”) mission [13], which is currently the
subject of a one-year study funded by the European Space Agency.

The rest of this paper is organized as follows. In Sec. 2 we briefly review
the “lowest-order” waveforms that one calculates from the binary’s time-varying
Newtonian quadrupole moment, neglecting spin effects. In Sec. 3.1 we write down
the post-Newtonian equations that describe the precession of the orbital plane. In
Sec. 3.2 we derive the equations that describe the corresponding modulation of the
gravitational waveform, and in Sec. 3.3 we give a simple expression for the Fourier
transform of the modulated waveform. In Sec. 4 we specialize to two important
special cases, for which the precession equations simplify greatly and in the same
manner: the case where the bodies have nearly equal masses and the case where
one of the bodies has negligible spin. In Sec. 4.1 we write down and discuss the
precession equations for these two cases, neglecting spin-spin coupling (which is
of post?-Newtonian order) but keeping spin-orbit coupling (which is of post!--
Newtonian order). The precession can take two forms: simple precession and
transitional precession. Simple precession, which is in some sense the norm, occurs
whenever the binary’s total angular momentum vector is not small compared to
the orbital or spin angular momenta—i.e., whenever the orbital and spin angular
momenta do not conspire to almost cancel each other. In that case, we shall show,
the direction of the binary’s total angular momentum vector remains nearly fixed
during the inspiral, and the orbital angular momentum vector (i.e., the normal to
the orbital plane) precesses about that direction. In Sec. 4.2 we construct analytic
expressions for simple precession and the resulting modulation of the gravitational
waves. In Sec. 4.3 we examine several explicit examples of simple precession and the
corresponding waveforms. In a forthcoming paper [12] he will present an analysis
similar to what we present in Secs. 4.1, 4.2, and 4.3; his work will differ from-
and improve upon-ours by incorporating all the post-Newtonian corrections to the
waveform through post®2?-Newtonian order (corrections which we have neglected
here for simplicity), in addition to the post®/?-Newtonian and post?-Newtonian
precessional effects.

In Sec. 4.4, we discuss the breakdown of simple precession due to near can-

cellation of the orbital and spin angular momenta, and we analyze the resulting
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transitional precession of the orbit (a loss of gyroscopic stability which causes the
binary to tumble in space) and the corresponding waveform modulation. In Sec. 5
we discuss the general case, where the bodies have arbitrary spins and masses.
The precession and waveforms in the general case are qualitatively quite similar
to the special cases considered in Sec. 4, as we illustrate with several numerical
examples. An appendix develops concepts and tools for understanding, intuitively,
the amplitude and phase modulation produced by any precession of the orbital
plane.

An important question not addressed in this paper is how well the modulation
can be measured, given realistic detector noise, and how accurately one can thereby
measure the bodies’ spins. We plan to address this issue in future work—in a
follow-up paper to Ref. [4].

Throughout we use units where G = ¢ = 1.

2 NONPRECESSING BINARIES: ORBITAL
INSPIRAL AND THE LOWEST-ORDER
WAVEFORM

We consider the gravity wave signal measured by a single L-shaped interferometric
detector at some location on Earth. We attach a Cartesian coordinate system to
the detector, with z and y axes along the detector’s arms and z axis in the vertical
direction as shown in Fig. 4.1. We denote unit vectors along these three axes by
Z, ¢, 2 and we denote by N the unit vector pointing towards the the source binary,
and by (6, ) the spherical polar coordinates of N with respect to our Cartesian
coordinates.

To further establish notation, let us review the lowest-order description of the
inspiral waveform measured by such a detector; i.e., the “Newtonian, quadrupole-
moment approximation” (as given in numerous references, e.g., [14]), which ne-
glects spins, higher multipoles, and other post-Newtonian corrections. We denote
by M; and M, the masses of the binary’s two bodies, and by 7(t) the vector
pointing from M; to M, at retarded time t. We assume the orbital eccentricity is
negligible (which will be true if the compact binary was born with orbital period
P >1 hour and the orbit has since decayed due to gravitational radiation reaction

[15]). Then the orbital angular momentum is given by

L =puMV?1 2], (4.1)
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View From
Detector

Horizontal Direction

Figure4.1: A Cartesian coordinate system (z, y, 2) attached to a gravitational-wave
detector, and the geometry of a coalescing binary relative to these coordinates.
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where M = M, + M, is the binary’s total mass, p = My M;/M is its reduced mass,
r = || is its orbital diameter, and L is the unit vector along L.

The binary’s circular orbit, when projected on the plane of the sky at the de-
tector’s location (i.e., projected orthogonal to the waves’ propagation direction),
looks elliptical; see inset in Fig. 4.1. The principal axis of this orbital ellipse, which
points along 4+ N x L, will be called the waves’ principal+ direction; an axis that
is rotated counterclockwise from it by 45° in the plane of the sky will be called the
waves’ principalx direction. We resolve the waves into two polarization states: the
principal+ state with polarization axes along and perpendicular to the principal+
direction, and the principalx state with polarization axes along and perpendicular
to the principal x direction. Any plane-fronted gravitational wave traveling in the
— N direction can be written as some linear combination h (t)x {principal+ polar-
ization tensor} plus hy (t)x {principalx polarizaton tensor}, where hy(t) and hy(t)
are positive, by convention, whenever the tidal deformations along the principal+
and principal x directions are stretches (as opposed to compressions).

With these conventions, in the Newtonian, quadrupole-moment approximation,

the gravitational-wave fields A4 (t) and hy(t) are given by

he(t) = -27{‘34 [1 +(L- N)?] cos 20(2) (4.2)
B (t) _2:%4 [—213 : N] 5in 20(t) . (4.3)

Here D is the distance to the source and ®(?) is the angle in the orbital plane from
the principal+ direction +N x L to the bodies’ separation vector 7; see Fig. 4.1.
The overall minus sign in Eqgs. (4.2), (4.3) results from the fact that the waves’
tidal distortion is a squeeze, not a stretch, along the transverse projection of the
stars’ retarded separation vector 7(¢); see the Appendix.

The strain h(t) that the waves produce in the interferometric detector is the

following linear combination of hy(t) and hy(t),

h(t) = Fi(0, 6, 9)hs(t) + Fx(8, 6,%)hx(1) (4.4)

where F, and Fy are “detector beam-pattern” coefficients that depend in the

following way on the source direction (8, ¢) and on a polarization angle 1:

F.(0,4,4) = -;—(1 + cos? 8) cos 2¢ cos 29
— cos fsin 2¢sin 29 | (4.5)

Fy(0,9,¢) = %(1+cos20)c052¢sin21/)
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+ cos0sin2¢cos 2y . (4.6)

The polarization angle ¥ (shown in the lower-right inset of Fig. 4.1) is the angle
from the principal+ direction, +N x L, clockwise in the plane of the sky to the
direction of constant azimuth, £ N x (N x 2) = +[—24+ N(N-2)]. (The + signs are »
included because v is defined only modulo 7.) In other words, up to an arbitrary

multiple of =,

L-é—(L-N)(é~N)). @

-
# =t R (Ix?
[Note: In Figs. 9.2, 9.8, and 9.9 of Ref. [14], 9 is shown with the wrong sign (i.e.,
opposite to the above). The error is confined to those figures; the equations in
Ref. [14] are all in accord with the sign convention used here.]
In the next section we shall divide the precession’s modulational effects into
an amplitude modulation and a phase modulation. To aid in this, we rewrite the

signal strain (4.4) in the conventional amplitude-and-phase form

h(t) = —A(t) cos[20(t) + ¢] , (4.8)
where A(t) and ¢ (not to be confused with the source’s direction angle @) are given
by

A = 25 (4 (L RYPR0,4,9)

a N 1/2
(L NPRA0,6,9)) (4.9)

o =t (LA RO )
[1+ (L. N)2F(8,¢,%))

We will refer to ¢ as the signal’s polarization phase. We have defined the amplitude-

(4.10)

and-phase decomposition (4.9), (4.10) with an overall minus sign to emphasize the
fact that the waves’ tidal distortion is a squeeze, not a stretch, along the transverse
projection of the stars’ separation vector 7; cf. the Appendix.

Equations (4.4)—(4.10) describe the waves in terms of the direction to the
source N [and its polar angles (6, ¢) relative to the detector’s Cartesian coordi-
nates], the vertical direction 2 at the detector, the normal L to the binary’s orbital
plane (and the associated polarization angle %), and the binary’s total mass M,
reduced mass p, orbital diameter r, orbital phase ®, and distance from Earth D.
When we ignore the orbital precession, then all of these quantities are constant in
time except the orbital diameter r(¢) and orbital phase ®(t). We obtain r(t) by
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integrating the inspiral rate dr/dt = (dE/dt)/(dE/dr), where we use the Newto-
nian expression for the energy, E = —1uM/r, and the energy-loss rate given by
the quadrupole formula, dE/dt = —222M3/r®. The (well-known) result is

1/4
r(t) = (?uw) (t. — t)/4, (4.11)

where . is the “collision time” at which (formally) r — 0.

In the absence of precession, ® = d®/dt is simply the angular velocity € of
the two bodies in the orbital plane. However since our definition of ¢ depends
explicitly on the direction L (cf. Fig. 4.1), & will not be equal to Q when L is
time-varying. To deal with this, whether the orbit is precessing or not we define

the carrier phase of the waveform by
do(t) = / O(t)dt. (4.12)

The term “carrier” is intended to recall the carrier signal used in radio transmission
—an analogy that we will make clear below, in Sec. 3.3.

We find it convenient to specify the constant of integration in Eq. (4.12) so that
¢ (i) = ®(t:), whether the orbit is precessing or not. Evaluating the integral in
Eq. (4.12) using Q = M'/2/r3/2 along with Eq. (4.11), we find that to lowest order
in M/r,

1 -1 5/8
bo(t) = B(t.) — [3 (M%) ™ (2, - t)] . (4.13)
To reiterate, if one ignores precession, then ®(t) is simply ®¢(t).

Spin-induced precession causes one other quantity besides r and ® to be time-
dependent in the waveform equations (4.4)—(4.10): the direction L of the orbital
angular momentum. In the next section we describe the motion of L and the

corresponding modulation of the waveform.

3 SPIN-INDUCED PRECESSION AND
WAVEFORM MODULATION

3.1 Equations describing orbital precession and inspiral

We now consider the binary’s spin-induced orbital precession. Let the bodies have
spin angular momenta gl and §2, respectively. For black holes, there is a strict

upper limit on the magnitude of the spins: |§,| < M. For neutron stars the upper
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limit is comparable, but depends somewhat on the (uncertain) nuclear equation
of state. Most candidate equations of state yield an upper limit of |§,| < 1 M7 for
uniformly rotating neutron stars [16]. To simplify the discussion, below we will
assume |§,| < M? for all bodies.

Approximate equations of precession for the binary’s spins and orbit have been
derived in a variety of ways by a number of researchers; see, e.g., Barker and
O’Connell [17] for a derivation that assumes gravity is weak throughout the binary,
and Hartle and Thorne [18] for a derivation that permits the bodies’ internal
gravity to be arbitrarily strong but requires their gravitational interaction to be
weak. After specializing to circular orbits and after averaging over one orbit, the
precession equations take the following form, accurate through post?-Newtonian

order:

1AMy 43My ;  AMy +3My 21 -
_7'3[ o, >t o SQ]XL

——;—[(§2 . I:)§1 + (51 . I:)S'}] X I:

202 /M 5/2
_32pe (—) i, (4.14)

-
4AM; + 3M,
r [ 2M1
+1 [15"2 - §(§2 : IZ)IZ] x 5 (4.15)
r3 12 2 ’ ’
4M; + 3M;
2M,

1[1s 3,2 s.:] =
Tt [55, -2 -L)L] x 5. (4.16)

-

(uMl/%l/?)i] x

Sz = —%[ (ﬂMl/z'I'ln)fJ] X gg

r

Here a "’ represents ‘d/dt’ and to this order of approximation, r(¢) is given by
Eq. (4.11) and L(¢) = p(Mr)*/? [Eq. (4.1)]. The first square bracketed terms in
Egs. (4.14)—(4.16), which involve just one spin S, are due to post!5-Newtonian-
order spin-orbit coupling, and the second square-bracketed terms, involving two
$'s, are due to post>-Newtonian-order spin-spin coupling. The last term in dL /dt
[Eq. (4.14)] is due to radiation reaction [cf. Eqs. (4.1) and (4.11)]; it is the only
term that changes the magnitude of any of the angular momenta. Note that the
change in the total vectorial angular momentum J = L + §; + 5, is entirely due
to this radiation-reaction term; Eqs. (4.14)—(4.16) imply that

-, slreact 2 5/2
Fo gl _ sl My (4.17)
S5r

r



92

In Sec. 4, we will derive approximate, analytic solutions for I:(t) for special
cases. Before doing so, however, we must deal with a few other issues:

In writing the angular-momentum evolution equations in the form (4.14)—
(4.16), we have used the fact that, to lowest order, radiation reaction causes [E | =
to decrease, but does not affect |5;| and |S|. Since this fact might not be obvious,
we now demonstrate it by computing the leading-order radiation-reaction torque on
the binary’s bodies. We restrict attention to the radiation reaction torque on body
1; the same argument will apply to body 2. Since our goal is an order of magnitude
estimate and not an exact equation, we shall simplify the calculation by treating
body 1 formally as a Newtonian-order star, and we shall set u ~ M; ~ My ~ M,
and let the radius of star 1 (which is actually a neutron star or black hole) be of
order its gravitational radius, Ry ~ M; ~ M, and let the star’s spin be of order
its maximum allowed value, S; ~ M;2 ~ M?. The gravitational radiation-reaction
potential inside the star is given by [19] :
1d° I]k jmk
5 dts ’

where I}y is the binary’s quadrupole-moment tensor, and in order of magnitude

g(react) _ (4.18)

4Ly [dt® ~ ur?Q° ~ M7/2p-1172 (4.19)

Inside star 1 we introduce coordinates #* = z* — z,*, where z;* is the star’s center
of mass. Then the radiation reaction acceleration —v®(react) produces a torque

7 on star 1 (about its center-of-mass), whose components are

2d°1
=t [(pziahani (4.20)

where p is the star’s density, and the integral is taken over star 1. Because tidal

Tt =—

distortions of the shape of the star are extremely small (see below), to high accuracy
the star is axisymmetric about its spin axis; this symmetry, together with our
assumptions that By ~ M; ~ M and that the star is rapidly rotating and thus
strongly centrifugally flattened, implies that

/ (03,5)dV; = M3(a6;' + b5, (4.21)
for some a and b that are dimensionless and of order unity. The term a 5j1 vanishes
when contracted into €/*d°Z},/dt®, so

: d°Ty
T 17k 3 l
o= 5b — M8,,5,

~ M2 (4.22)
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Here, in the second line, we have used Eq. (4.19). Notice the following: (i) In
order of magnitude, the radiation-reaction torque (4.22) is smaller by ~ (M/r)3,
i.e. by three full post-Newtonian orders, than the spin-orbit coupling torque (4.15),
and smaller by two full orders than the radiation-reaction-induced loss of orbital
angular momentum, dL/dt. (ii) The scalar product of the radiation-reaction torque
(4.22) with S, vanishes (by the antisymmetry of €¥), so at this leading order in
the radiation reaction, the magnitude of the body’s spin, S;, remains constant.
(iii) To produce a change in 51, the radiation-reaction acceleration must couple
to a nonaxially symmetric piece of [(pZ;z')dV4. The dominant deviation from
axisymmetry is due to tidal distortion by the gravity of the star’s companion, and it
is smaller by (M/r)? than the axisymmetric part of f(pZ;z')dVi. Correspondingly,
the Sj-changing piece of the radiation-reaction torque will be a full five post-
Newtonian orders smaller than dL/dt, and we can safely ignore it.

The spin-up of the bodies due to tidal interactions is also negligible for the
cases of interest to us, as shown by Bildsten and Cutler [20].

3.2 Equations describing the modulation of the waveform

In this section we describe the modulation of the waveform caused by the orbital
precession. A key point is that (as we show below), the orbital period is much
shorter than the timescale for L to change significantly; i.e., Lis roughly constant
over many gravity wave cycles. Therefore to a good approximation we can simply
take over the expressions (4.2)—(4.10) for the wave fields H,(t) and hy(t), and the
detector-measured waveform amplitude A(t) and polarization phase ¢(t), but plug
into those expressions the time-varying I:(t) obtained by solving the precession
equations (4.14)—(4.16). This approximation will be correct up to terms of order
the precession frequency over the gravity wave frequency.

Note that the expressions for h4(t), hx(t), A(t) and ¢(t) in Eqs (4.4)—(4.10)
depend on L(t) explicitly through the L - N terms and implicitly through . Thus,
to be completely explicit, our precession-modulated fields and gravitational wave-

form are
hi(t) = —ng [1 + (L(2) - N)2] cos 20(t) , (4.23)
hy(t) = —%ﬁf [—zz(t) : N] sin20(t) , (4.24)

h(t) = —A(t)cos|28(t) + o(2)] (4.25)
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where
AW = 2 (1+(Ew - FPFR0,650)
(k) SPF0,6.00)) (4.26)
_ panet (2L N F(0,4,9(1)
o= ([1+<i<t>-N)21F+<o,¢,¢<t)))‘ (421
and where R X ) )
(- R W)
(2) = tan ( RIS ) (4.28)

Intuitive, diagrammatric methods for visualizing the L(t)-induced modulation of
A and o, for the special cases where the source is directly underfoot or overhead,
are given in the Appendix.

In addition to the modulation of the polarization phase ¢ discussed above,
there is an additional modulation of the waveform phase due to an effect which
is akin to the Thomas precession of the electron’s spin in a semiclassical model of
the hydrogen atom. Recall that in Sec. 2 we introduced a distinction between the
carrier phase ®¢(t) defined as the integral [Qdt of the bodies’ angular velocity
in the orbital plane, and ®(t), defined as the angle between the orbital separation
vector 7 and the principal+ direction +[ x N. (The latter definition was required
in order for Eqs. (4.2), (4.3) for h4(t) and hy(t) to be valid.) We emphasize that
we are not presently concerned with corrections to the waveform phase ®(¢) that
are due to post-Newtonian corrections to (r) or §(r). Rather, we are calculating
that correction to ®(¢) which arises from the changing orientation of the orbital
plane, even if we take Q and Q to have their lowest-order, “Newtonian” values. We

define the precessional correction to the orbital phase §®(t) by
O(t) = do(t) + 69(), (4.29)

and we now proceed to find an expression for & in terms of L(t).

By definition, the unit orbital separation vector is
#=cos®(t){ +sin®(t) L x { (4.30)

where .
é LxN
1= (& Ry

is the principal+ direction. We also have

(4.31)

Lx#—(L-»E. (4.32)

=

=
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The first term on the right side of Eq. (4.32) rotates # about L, while the second
term insures that # remains orthogonal to L; the second term basically corresponds

to “Fermi-Walker transport” of 7# due to the precession of the orbital plane. From
Eq. (4.30) we have

cos®(t) = (-7 (4.33)
Taking d/dt of Eq. (4.33) and using Eqs. (4.30) and (4.32), we obtain
—bsin® = CoF4l-f
= (.7~ Qsind (4.34)
or [from Egs. (4.29) and (4.12)]
§6 = —( - #/sin @. (4.35)

Using the definition (4.31) of ¢ and expression (4.30) for #, a few lines of algebra
allow us to rewrite Eq. (4.35) as
. LN s Al d
00 = (—A—A——) (LxN)-L. (4.36)
l1—-(L-N)?
This equation must be integrated subject to the boundary condition that 6® = 0

at the endpoint of the coalescence [Eq. (4.13) and associated discussion]; therefore,

te L-N 2

50(t) = — / — == V(L xR)-Ldt. (4.37)
¢ \1-(L- Ny

This integral cannot be expressed in terms of N and the instantaneous value of L

at time t; it depends on the full time history of L between times ¢ and ¢, [as one

can readily verify by expressing the integrand as F - dL and then noting that the

curl of F (in L-space) is nonzero].

In summary, our precession-modulated waveform is
h(t) = —A(t) cos[2c(t) + 26B(t) + ()] . (4.38)

Here ®¢(t) is the integral of (t), which is given to lowest (Newtonian) order by
Eq. (4.13). To determine A(t), ¢(t), and §®(t) one solves Eqs. (4.14)—(4.16) for
L(t) and plugs the result into Egs. (4.26), (4.27), (4.28) and (4.37).

We note that §®(t) depends on L(t) and the location of the binary on the
sky, but is independent of the orientation of the detector arms. By contrast, A(t)
and ¢(t) do depend on the detector orientation, through the terms Fy and Fy in
Egs. (4.26)—(4.28).
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3.3 Fourier transform of the modulated signal

In this section we derive a simple expression for the Fourier transform of the
precession-modulated signal,

= T df 2T R(t) . (4.39)

[e o]

This is useful for the following reason. The process of searching for a merging-
binary waveform A(¢) in LIGO/VIRGO data will consist of beating the “Wiener-
filtered” version of the waveform, hw (), against the measured detector strain s(t);
i.e., taking the inner product
+o0
/ s(t)hw (1) dt. (4.40)

Here the Wiener-filtered waveform hw(t) is defined by the equation

hw(f) = h(f)/Su(f) (4.41)

where Si(f) is the spectral density of the detector noise. (We refer the reader to
Ref. [14] for the definition of S,(f) and for a discussion of noise sources in the
LIGO/VIRGO detectors, and to Ref. [1] for estimates of Sx(f) in the first LIGO
detectors and more advanced LIGO detectors).

Radio transmission provides a useful analogy for an intuitive understanding
of signal modulation. The unmodulated signal is like the radio station’s high-
frequency carrier signal, while the effect of precession on the gravity waveform is
like the modulation. [The analogy becomes better in the limit that the smaller
mass M, — 0, since then the inspiral rate also approaches zero and (the quadrupole
piece of) the unmodulated “carrier” waveform becomes truly monochromatic.] In
this spirit, let us define a complex “carrier” signal hc(t) by

he(t) = %e‘”%“) (4.42)
where ®¢(t) = [ Qdt is the carrier phase we defined in Eqs. (4.12) and (4.13). The
Fourier transform of the carrier signal can be calculated approximately using the

stationary phase method, which yields

MM, —1/2 il2nf1-28 (1))
- { ‘D‘lrﬁi‘(’df/dt) e cl for f >0 (4.43)

hal) ™1 g for <0,

where t = t(f) is the time at which the carrier frequency, dc/m = Q7 equals f.

The difference between expression (4.43) and the actual Fourier transform of h¢(t)
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is of order the ratio of orbital period to inspiral timescale, which is negligible for
cases of interest.
We next define a complex modulation factor
M] Mz -1 .
At) = [________] —i[269(t) + o(t)] .

=405 e (4.44)

Then A(t) = R {A(t) Bc(t)}, where “R” means “the real part of”. Since A(t) varies

much more slowly than 2®¢(t), we can again use the stationary phase method to

approximate A(f); the result is

- {‘A(())fz for f>0

o(f)
(1) hs(|f]) for f<0. (4.45)

The factor  in Eq. (4.45) arises because the real and imaginary parts of A(t) ho(t)
contribute equally to the Fourier transform, in the stationary phase approximation.

The stationary phase result given above [Eq. (4.45)] differs from the true A(f)
by terms of order the ratio of the orbital period to the precession period; i.e., the
stationary phase method computes k(f) less accurately than ho(f), because the
precession timescale is much shorter than the inspiral timescale. We can improve
our calculation of A(f) as follows. The stationary phase results quoted above can
be viewed as merely the lowest-order results in a power series expansion for the
true Fourier transform, where the expansion parameter is the ratio of the orbital
period to the precession period. We improve Eq. (4.45) by adding the next-order

term in the expansion; the result is

W) ~ 2 AWho() + 7 dhgjff )~ arithe( )| (4.46)

for positive f, and the complex conjugate of this for negative f. Here, again, t =
t(f) is the time at which the carrier frequency /7 is equal to f. The formula given
in Eq. (4.46) differs from the true h(f) by terms of order (orbital period/inspiral
timescale) and terms of order (orbital period/precession period)?.

In this paper, for simplicity, we use only the lowest-order version of the carrier
signal hg(t), and our derivation of A(t) is of similarly low order. However our
formula (4.46) has the virtue that it can be applied essentially without modification
to versions of hc(t) and A(t) that are correct to higher post-Newtonian order. One
just plugs the more accurate versions of ho(f) and A(t) into Eq. (4.46), while also
using an improved version of t(f). [Actually, the above statement applies only to

the dominant, mass-quadrupole piece of the waveform. If one includes the radiation
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due to the binary’s time-varying current-quadrupole and mass-octupole moments
(or other, higher-order moments) then the situation is somewhat more complicated,
since different moments emit gravitational radiation at different harmonics of the
orbital frequency, and their contributions to Ay and hy have different dependences

on L - N than those given in Egs. (4.2), (4.3).]

4 BINARIES WITH M; ~ M, OR S5; ~0

4.1 Orbital evolution equations, and approximate descrip-

tion of the evolution

In this section we construct approximate, analytic solutions of the inspiral and
precession equations (4.14)—(4.16) for two important special cases: 1) M; = M,
and 2) §2 = 0. Both cases are of interest. The prototypical example where
M, ~ M; would be an NS/NS merger, since measured neutron star masses all
cluster near 1.4Mg. The prototypical example where S, can be neglected would
be a neutron star spiraling into a much larger, rapidly rotating black hole. In that
case, the black-hole spin S, will dominate the orbital precession unless S, is nearly
parallel or antiparallel to L.

Our first approximation is that we neglect the spin-spin terms in the My, = M,
case. These neglected terms are of post?-Newtonian order and thus will typically
be small compared to the post®2-Newtonian spin-orbit terms, which we retain.
Given this approximation, the orbital evolution equations (4.14)—(4.16) imply

that §1 . S, is constant in time and therefore the total spin vector
S=5+05, (4.47)

has constant magnitude. Then, for both of our special cases, the inspiral and

precession equations (4.14)—(4.16) can be brought into the following simple form:

. -39 ,lt2 M 5/2
L= () (448)
S =0, (4.49)
; 3SM,\ J .
I = (2+2M1)§><L, (4.50)
- 3M2) J .

(2 oM, 7 XS (4.51)
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Here

J=L+§ (4.52)

is the binary’s total angular momentum and
$=15] and $=25/S (4.53)

are the magnitude and direction of the total spin.

Let us first describe qualitatively the solutions of the evolution equations (4.48)—
(4.51). The orbital evolution can be divided into two pieces: 1) a precession of the
plane containing I and §, and 2) the motion of these vectors in this plane. The
in-plane evolution is driven by the radiation-reaction-induced orbital shrinkage.
This shrinkage causes the length L of L to decrease, but leaves constant the length
S of § [Eq. (4.49)] and the angle arccos(L - §) between L and § [cf. Egs. (4.50),
(4.51)]. This evolution is depicted in Fig. 4.2. Note that the angle between L and
J must continually increase.

The precession of the plane containing L and S can take one of two qualitatively
different forms, which we shall call simple precession and transitional precession.
We shall devote four paragraphs to simple precession, and then shall describe
transitional precession.

In simple precession, S and L both precess around J with an angular velocity
3MyN J
2M, ) 3 (4.54)

r3

2= (2+

[cf. Eqgs. (4.50), (4.51)] that is fast compared to the orbital inspiral rate L/L.

Because L precesses around J, the value of
J=LL (4.55)

[cf. Egs. (4.48)—(4.51)], averaged over one precession, is nearly parallel to J, and
therefore to a reasonable approximation J changes in magnitude but not in direc-
tion; this approximation becomes exact in the limit that L/(Q,,J) — 0.

We can integrate Eq. (4.54) to obtain a back-of-the-envelope estimate of the
number of precessions in the observable inspiral, and to see how the precession rate
scales with the frequency of the emitted gravity waves. We define the precession

angle a by
da/dt =Q, . (4.56)

We consider two limiting cases: L > S and S > L. When L > S, J ~ L, so
da/dt < L/r® o« r=2%, Eq. (4.11) then implies that dr/dt o r~3, so dar/dr o r'/2,
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Figure 4.2: The in-plane evolution of the total spin angular momentum S , orbital
angular momentum L and total angular momentum J for binaries governed by
Eqgs. (4.48)—(4.51). When L and § are nearly oppositely directed as in drawing
(b), the precession initially is simple, then at times ¢ ~ ¢3 it becomes transitional,
then it returns to simple. In case (a), the precession is always simple.
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Since here we are only interested in the change in a, we set « = 0 when r = 0. Then
a(r) o« 32 or o(f) oc f~1, where f is the frequency of the emitted gravity waves
at orbital separation r. Thus, of all the precessions that occur in the “observable”
frequency range 10 — 1000 Hz, 90% of them occur in the range 10 — 100 Hz.
That is, most of the precessions occur at low frequencies. When S > L, J = §,
so da/dt o< S/r3. Hence da/dr is constant, so a(r) o« r and a(f) o« f~%/3.
Thus, when S > L, roughly 80% of the precessions in the observable frequency
range occur between 10 and 100Hz. Typical cases of simple precession will be
intermediate between these two limiting cases, so we can expect 80 — 90% of the
“observable” precessions to occur in the 10 — 100Hz frequency range.

Putting back the constant factors that we omitted in the above scaling analysis,

we find

alf) _ 11(1+%)%1‘)}h for L > S, (4.57)
0 190U+ 5 37w (570 99 for 5> L. '

Note that when L > S, the number of precessions is independent of S. This is
an important point: slowly spinning bodies produce roughly as many precessions
as rapidly spinning ones; however the cone of precession is narrow if S is small.

The “simple” precession of L and S around a nearly constant J , which we have
been discussing, can break down and be replaced by transitional precession under
just one circumstance: If Land § initially point in nearly opposite directions and
L is initially longer than § (as in Fig. 4.2b), then the orbital inspiral will bring
the binary into an epoch (time t ~ t; in Fig. 4.2b) where L~ —§, and hence J
and ), are small and the precession rate is no longer fast compared to the inspiral
rate. Before this small-J epoch, Land S undergo simple precession around J.
Then, during the small-J epoch, the precession becomes transitional: the binary
loses its “gyroscopic bearings” and tumbles in space, and that tumbling causes J
to swing around to a new direction, and causes Land § , locked onto each other,
to swing around with J. Then, after the small-J epoch, L and § resume their
simple precessional motion, but now around the new J direction. We shall explore
this transitional precession in Subsec. 4.4 below; but first, in Subsecs. 4.2 and 4.3,
we give a quantitative analysis of simple precession and present some concrete

examples.
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4.2 Simple precession

In this section we give a quantitative analysis of simple precession. For ease of

analysis, we introduce the notations
k=S5-L, ~@)=S/L). (4.58)

The evolution equations (4.48), (4.49) imply that & is a constant of the motion,
whereas (4.50), (4.51) imply that v grows with time: 4 > 0. Note, however, that
because S; < M;? and similarly for body 2, ¥(t) is bounded above by
2 2 1/2
75 % (—1:‘—4—) . (4.59)
The magnitude and direction of the total angular momentum can be expressed in
terms of «, y(t), L(t), and the directions L and § as

J = Ly/142ky+4+72, (4.60)

. L 3
= 5 (4.61)
N T

and correspondingly, the precessional angular velocity (4.54) can be written as

_ 3M; \/—_-;L
Q,,—(2+2M1) 1+2n7+7r3. (4.62)

We now solve for the motion of J. Differentiating Eq. (4.61) and using the

simple precessional equations (4.50), (4.51), we find

j=7FU+nﬂ—iM+7ﬂ

(1 + 21‘5’)’ + 72)3/2 (463)

Thus, at any instant, J moves on the unit sphere along the great-circle arc from L
towards 3; see Fig. 4.3. Because L and § are themselves precessing around J with
precessional angular velocity €, [Eq. (4.62)], this (tiny) motion of J must also be
a precession at the same angular velocity. We denote by jo the fixed direction
around which J and L both spiral.

The opening angle of the cone on which J’s precessional motion takes place is

given by

|jl . ( 1 AV1 — «?
= arcsin
Q, Q, (1 + 2k + ’72)

Ay = arcsin (— —

= arcsin %(M/r)s/z"/m
(14 3My/My)(1 + 26y +42)*?

(4.64)
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Figure 4.3: Simple precession: L, J , and S undergo tight-spiral motion on the
unit sphere, with precessional opening angles Ay < AL and with Ap gradually
increasing; cf. Fig. 4.2.

Similarly, the opening angle of the cone on which L precesses is

AL = arcsin 1L = arcsin ( A% Sl ) . (4.65)
Q, V14257472

Because of the gradual orbital inspiral, the values of the precessional opening

angles Ay and Ay gradually change; i.e., J and L undergo tight spirals on the unit
sphere rather than precise circular motions; see Fig. 4.3.

Because Ay, > 0 [cf. Fig. 4.2 or differentiate Eq. (4.65)], the spiral of Ay is
always outward from J. Note that for A\ < 7/2 this means that the cone on
which I spirals is opening up around +J, but for Ay, > 7/2 (as at times t > t3 in
Fig. 4.2b), the cone is closing down around —J. The tiny spiral of J is outward

when A < 7/2, and can be either outward or inward when A > 7/2, as one can
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see by differentiating Eq. (4.64) and comparing with the sign of cos Ay = L - J =
(1 + k7)/vVTF 267 + 72 [cf. Eq. (4.61)).

Note that if S >> L near the end of the inspiral (y > 1), then the value of cos Ay,
must approach & at late times, since then J & S. Thus, while J is roughly fixed, L
and § effectively “trade places” during the evolution from early to late times: At

! k radians away; at late

1

early times L is close to J, and S orbits them at angle cos™
times § and J are close, and L orbits them at an angle cos™" k away. a Finally, we
show how to put our description of simple precession on a more rigorous basis. In
so doing, we will isolate the sufficient condition for simple precession. We described
above how the approximate constancy of J arises when the precession timescale
Q, ! is much shorter the inspiral timescale L/L. Actually, even if the ratio of
timescales is small, J can still change significantly in one precession period if the
magnitude of J is much smaller than the magnitude of L (as can happen if Land §
are roughly anti-aligned and have roughly equal magnitude). These considerations
suggest defining a “small parameter” e = (L/J) x (ratio of precession timescale to
inspiral timescale), i.e., _
_LL/L |JJ
=JQ Q5

and solving the precession equations as an expansion in powers of e.

(4.66)

First we note that ¢ is indeed small for “typical” cases. From Egs. (4.54) and
(4.11), we have
(M/r)*?
(1+ Mz /My)(1 + 267 +97)
Thus, for example, £ > 0 = € < 1&(M/r)32, which is < 1 except near final

coalescence.

16

We can now jusify our assertion that, for small e, both J and L spiral around
a single fixed direction, J,. We do so by explicitly exhibiting Jo:

Jo=J—eJx 1. (4.68)

It is straightforward to check that Jo vanishes up to terms of order €2, Equivalently,

we may write
J=Jo+edo x L+ 0() . (4.69)

To the same order, Lis given by
i:ﬂpjoxﬁ+eﬂp(foxﬁ)xi, (4.70)

where the precession frequency 2, is given by Eq. (4.62).
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Finally, dividing Eq. (4.64) by Eq. (4.65), we find that

sin Ay

v €. (4.71)

Thus € being small implies that sin A; is small compared to sin Ay, as well as being

small compared to unity.

Algebraic solution to simple-precession equations

We now solve Eq. (4.70); this will provide us with an algebraic expression for l:(t)
which is accurate up to terms of O(€?). Referring to Fig. 4.4, let Jo point in the
(0, ¢') direction relative to the detector’s Cartesian coordinates (cf. Fig. 4.1); let
a be the instantaneous angular location of L in its precessional motion around Jo
with @ = 0 when L - 3 is maximum; and note that, by virtue of Eq. (4.69), the
opening angle Ay, of the cone on which L precesses can be regarded equally well as
the angle between L and Jo, or between L and J, aside from fractional errors of
order €.
Then the geometry of Fig. 4.4 dictates that

(2 — Jocosd)

L= jo cos Ay + ;
sin ¢’

sin Ap cos a

sin A\ sina . (4.72)

Of the quantities appearing in this equation, only Ap and « change with time

during simple precession. By Eq. (4.61), cos A, = L - J is given by

py/Mr(t) + 5 (4.73)
1/2 ° :
[(u\/M r(t) + S5p)* + Sﬁ]

Here S| = Sk is the component of the spin S along L, S = Sv1—&2 is the
length of its perpendicular component, and r(t) is given by Eq. (4.11). A similar

cos AL(t) =

algebraic expression for the angular position « of L can be obtained from its
differential equation

da/dt = Q,(t) (4.74)
[Eq. (4.70) dotted into Jo x L]. Changing the independent variable from ¢ to r
using (4.11), Eq. (4.74) becomes

do =571 4+3M,/M 1/2
g (__Tm_";_/_l) [(/L\/Mr +8) + Sﬁ] . (4.75)
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L

Figure 4.4: Geometry for a binary’s simple precession relative to the Earth-based
detector’s Cartesian axes; cf. Fig. 4.1.

This is easily integrated to give

=51+ 37 [ 372
e 9y /2 — 35 (/Mr + VY

“= 963 M3
vM
—35S.sinh™! (l—l—Sr——FS”)] + const , (4.76)
L
where
Y = p®Mr + 25V Mr + S2. (4.77)

This completes our solution for L(t) for our two special cases. As a check,

we have integrated the orbital evolution equations (4.48)—(4.51) numerically for
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a broad range of initial conditions and have found that, whenever the constraint

€ < 1 is satisfied, the evolution is in excellent accord with the “simple”-precession

behavior embodied in Egs. (4.69), (4.72), (4.73) and (4.76).

Algebraic expressions for simple-precession waveforms

The gravitational waveforms emitted by the binary are described by Egs. (4.23)—
(4.29), and (4.13), (4.37), (4.5), (4.6), in which hy(t), hx(t), A(t) and ¢(t) are
represented as simple algebraic functions of I:(t), and 6® is represented as an
integral of a simple algebraic function of L(t). In these formulae, I:(t) appears in
the combinations L - N, N - (L x 2) and L - . Straightforward algebra based on
Eq. (4.72) gives for these quantities

z.z‘v_-:jo.z*v[cosAL..

cos &' sin A cos a]

sin @’
cosfsinA\pcosa¢ » .+ .. sin)dpcosa
N —_— .
sin §’ + (Jo x 2) sin¢ ’ (4.78)
R (L x5) = - (Jo x 2)[oos hy = cosfsin ) =
sin ¢

. , o~ s.sinApsina
+(N -zcosl' — N - JQ)W (479)
L-%2=cos@ cos A +sinf'sinApcosa, (4.80)

where

Jo - N = cos 0 cos 8 + sin Osin 6’ cos(é — ¢') (4.81)
N - (Jo x 2) = sinfsin §'sin(¢ — ¢') , (4.82)

and Az and « are given by Eqs. (4.73) and (4.76). This completes the solution for
Ba(t), B (), A(t) and (). A

As was noted following Eq. (4.37), §®(¢) cannot be expressed as a function of N
and the instantaneous value of L; it depends on the full time history of L between
time t and the endpoint of coalescence, t.. However, the growth of this phase
shift over one precession period can be described by an approximate analytical
expression. That expression turns out to depend on whether the line containing N
lies outside or inside L’s cone of precession (i.e., on whether |J, - N| is greater or
less than |Jo - L|), but is otherwise independent of N. If we approximate cos A, as

constant over one precession period, then by changing variables from ¢ to « using
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da/dt = Q,, we find (with some effort) that
i 460 —2m cos AL |Jo- L] < |Jo - N|
/ —;lz—-daz om(—coshp+1)  Jo-L>|Jo-N| . (4.83)
0 A IR
2n(—cosAp —1)  Jo-L < —|Jy- N
We see from Eq. (4.83) that the “average value” of §& can be roughly as large as
the precessional frequency §,. Thus the term “26®” in Egs. (4.23)—(4.25) can
change the total number of cycles in the wave fields and the observed waveform
by roughly twice the total number of precessions—a sizeable correction.
This completes our analytic treatment of simple precessional waveforms for our

two special cases.

4.3 Examples of simple precession
1My Neutron star and maximally spinning 10Mg black hole

As an example of simple precession and the waveform modulation it produces,
consider a M; = 1My nonspinning neutron star spiraling into a M; = 10M,
maximally rotating black hole, so § = S; = M;%. (We also gave a brief discussion
of this example in Ref. [3].) We shall begin following the binary’s evolution at an
initial moment t. — t; = 204 s before the final collision when the orbital radius
is r; = 63.2M and the gravitational-wave frequency (twice the orbital frequency)
is f; = 11.7 Hz. This is roughly the time when the gravity wave signal enters
the frequency band accessible to the advanced LIGO/VIRGO detectors. We shall
follow the evolution up to £, — ¢y = 0.03 s, when the orbital radius is ry = 6.96 M
and the gravitational-wave frequency is f;y = 321 Hz. Because photon shot noise
in the broad band detectors rises sharply for f > 100 Hz, more than 99% of the
signal-to-noise has been accumulated by this point. Note that as the binary spirals
in from r; to ry, the parameter v = S/L increases from ; = 1.258 to v; = 3.79.
Thus, throughout the LIGO/VIRGO observational band, the hole’s spin angular
momentum is somewhat larger than the orbital angular momentum.

In our example the orbit has a modest inclination to the hole’s equatorial
plane, arccos(I: . S) = 11.3° (0.197 radians), so & = L - § = 0.9806. Then, as
the binary spirals in from r; = 63.2M to r; = 6.96M, the opening angle of L’s
precession cone increases from Ap; = 6.30° to ALy = 8.95°, and the parameter
€ = sin A\y/ sin A, that characterizes our simple-precession approximation increases
from ¢ = 1.17 x 1073 to ¢; = 7.11 x 1073, With € so small, our approximation is

excellent throughout the inspiral.
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In our example, the binary is directly underfoot as seen from the detector, so
N = —% + 6%, where § is an arbitrarily small angle (required because some of our
formulas, e.g. Eq. (4.7), become singular for sources that are precisely overhead
or underfoot). At the initial time ¢;, the orbit is precisely edge-on as seen from
Earth, with the orbital plane parallel to the detector’s & arm and the orbital angular
momentum along its § arm, so L; = 7; and the black hole’s spin is parallel to the
detector’s plane (perpendicular to our line of sight), so S = 0.9806y — 0.1960z.
These initial conditions are depicted in the upper left portion of Fig. 4.6. The
subsequent precessional motion of L is shown in Fig. 4.5. The initial position of
L in this figure is at the origin (since L; = §), which corresponds to an angular
location a; = /2 in the conventions of the previous subsection. The total number
of precessions during the inspiral from r; = 63.2M to ry = 6.96 M is (ay —a,-)/27r =
23.8. The opening up of the precession cone from Ap; = 6.30° to Ay = 8.95° i
evident in the figure. The center of the precession cone is at Jo = J = —0.10972 +
0.99407 (aside from fractional corrections of order ¢).

The gravitational-wave signals from this binary are depicted in Figs. 4.6 and
4.7, for two possible orientations of the detector. The first orientation, referred
to as +' in Figs. 4.6 and 4.7, is the one assumed until now in all of this paper’s
formulas and figures: arms along & and §, so h(t) = 3(AIT—AIT) = h,/ (where h][T
is the “transverse-traceless,” tensorial gravitational-wave field [14]). The second
orientation, referred to as x’ in the figures, is rotated 45° relative to the first, so
the arms are along (2 + §) and 1(—% + §), and A(t) = AL = hy.

The amplitudes A;/(t) and Ax/(t) of the signals h(¢) measured by these two
detectors are shown in Fig. 4.6. Each complete period of the orbit’s precession
produces one cycle of amplitude modulation; the 23.8 precessions in the LIGO
band produce 23.8 modulation periods.

Along the A,:(t) curve is marked the gravitational waves’ carrier frequency
f = Q/m. Because the radiation reaction grows stronger as the binary spirals
inward, the carrier frequency sweeps upward (“chirps”) at a gradually growing
rate. Also indicated along the A,/(t) curve is the number of carrier-frequency
oscillation cycles during one (or, early on, several) modulation periods. Early in the
LIGO/VIRGO band there are several hundred carrier cycles per modulation cycle;
late, there are several tens. The modulation shapes are explained in the appendix
using diagrammatic tools developed there to provide an intuitive understanding of

precession-induced modulation.



110

-0.15

Figure 4.5: The precession of L (and hence also of the orbital plane) for the binary
whose initial conditions are depicted in the upper left part of Fig. 4.6.

The fundamental modulation frequency [which is equal to the binary’s preces-
sion frequency ,/27% ~ (1/7)J/r3] remains finite in the limit that S and L are
parallel. By contrast, the depth AA of the modulation goes to zero in the limit of
parallel § and L, because the opening angle Az of the orbit’s precession cone goes
to zero.

Since in our example the precession cone is rather narrow, A; ~ 0.1 rad, it
should not be surprising that the modulation depth is modest for the +’-oriented
detector: AA. /A4 ~ Ap ~ 0.1. Remarkably, by contrast, for the x’ detector,
the modulation is very large: AAy//Ax ~ 1. The reason is that once each cycle,

the precession carries the binary near a special orientation L ~ g, which is half-
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Figure 4.6: Amplitude modulation of the gravitational-wave signals from a non-
spinning M, = 1 Mg neutron star spiraling into a maximally spinning M; = 10Mg
black hole. The binary is underfoot as seen from the detector of Fig. 4.1, with its
initial spin, orbital, and total angular momenta as shown in the upper left part
of this figure (where the direction N from Earth to the binary is into the paper).
The +' detector, whose measured wave amplitude A4+ is shown here as a function
of time t. — t to final collision, has arms oriented along the & and § directions
(as in Fig. 4.1), i.e., along the horizontal and vertical axes of the upper left part
of this figure. The x' detector, with measured wave amplitude A/, has its arms
rotated 45° to the +' detector, i.e., along 1(Z + §) and 1(—Z + §). The signals’
amplitude A and phase ¢ (Fig. 4.7) are defined by Eq. (4.8), where ®(t) is the
angular position of the binary in its orbit; cf. Fig. 4.1. The vertical scale in this
figure is arbitraary, but linear. This figure (and the accompanying Figs. 4.5, 4.7
and 4.8) are also correct for any other binary with the same geometry, same mass
ratio My/M; = 0.1, same S; = 0 and same maximal spin S1/M? =1, but different
Mj; the only change is an increase in the timescale by a factor M;/10Mg and a
decrease in all frequencies by the inverse factor 10Mg/M,. Setting M; = 10° Mg
gives an example relevant to proposed space-based interferometers; see Sec. 4.3.
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way between the x’ detector’s two arms; by symmetry, the x’ detector’s response
vanishes for this orientation. One might have expected that, because of the nar-
rowness of the precession cone, the binary would always be near this x’-suppressing
orientation, and therefore Ay: would remain always <ApAy ~ 0.144.. Not so.
Each cycle of precession carries L through an angle of Ay ~ 2\, ~ 0.2 rad in the
detector plane; and this drives the signal amplitude up to Ay =~ sin(2A¥)A, ~
4 Ay ~ 0.4A,. This explains how, despite the narrow precession cone, the x’
signal manages to have both a relatively large maximum amplitude Ayx/pmax ~ 1A,
and a very large depth of modulation, AA,s ~ Ay

Our example also illustrates a general rule of thumb for simple precession:
The maximum amplitude Aax of a detector’s signal during a modulation cycle is
generally in the range (0 to 1)Amax, Where Ainayx is the maximum amplitude of
the principal+ mode during the precession; and the depth AA of the modulation
is generally in the range (0 to 1)sin(4A;) A4 max (but of course AA < A).

Figure 4.7 shows the polarization phases ¢,/(t) and y«/(t) for the two detectors.
For the +' detector, the modulation of the polarization phase is modest: Ap,/ ~
0.1 to 0.2 rad. For the x’ detector, the polarization phase modulation is very large:
px+ grows secularly, though at a somewhat irregular rate, changing by —27 with
each cycle of orbital precession. As is discussed in detail in the appendix, this
secular growth of @y (t) is caused by the fact that each precession takes L once
around g, the bisector of the detector’s two arms (see Fig. 4.5). If the binary’s
orientation were shifted away from g (leftward in Fig. 4.5) by an additional 3°, then
L would still pass near the arms’ bisector § during each precession but would not go
around it; as a result, the polarization phase would have the finite-oscillation form
that is shown as a dotted line in Fig. 4.7. Although the solid and dotted curves
look radically different, the effects on the signal h(t) are only slightly different for
the two cases: the signal is not sensitive to 27 changes in ¢; and modulo 27, the
solid and dotted ¢y/(t) are essentially identical, except for the very short time
when the dotted curve is flying upward.

Finally, Fig. 4.8 shows the phase correction term 26® throughout the inspiral.
(We recall that this term is independent of the waves’ polarization and independent
of detector orientation, and that by convention it vanishes at the end of the inspi-
ral.) In this example, 26® accumulates slowly because N does not lie inside L’s
precession cone and cos Ay is close to 1; cf. Eq. (4.83). Moreover the accumulation

is very steady, since L never comes close to V.
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Figure 4.7: Polarization phase of the gravitational-wave signals for the binary and
detectors of Fig. 4.6. The phases ¢4 and ¢y are shown, modulo 27, as functions
of time to collision . — %.
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Figure 4.8: The phase correction term 26® for the for the binary of Fig. 4.6,
shown as a function of time to collision ¢, —t. This term is independent of detector
orientation.

10* M /10° M black-hole binary

Because the equations of orbital dynamics and waveform generation do not contain
any intrinsic, binary-independent length scale, the solutions are easily scaled from
one binary to another binary with the same values of all dimensionless quantities,
but different absolute masses and spins. For example, Figures 4.5-4.8 remain valid
if we increase the mass M; of the black hole by some arbitrary factor and increase
all times and decrease all frequencies by that same factor, while holding fixed the
dimensionless quantities My/M; = 0.1, 5; = 0, $;/M? =1, L-§=k= 0.9806,
and the keeping initial orientations as shown in the upper left of Fig. 4.6.

Most interestingly, if we increase M; by a factor 10*, we obtain an example rel-
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evant to space-based interferometric detectors such as the proposed LISA mission
[13]. The binary is made of a nonspinning 10* Mg black hole and a maximally spin-
ning 10° Mg black hole; instead of sweeping upward through the LIGO/VIRGO
band from f; = 11.7 Hz to f; = 321 Hz, the waves depicted in the figures sweep
through the band of space-based interferometers, from f; = 0.00117 Hz to 0.0321
Hz; and instead of lasting for t. — t; = 204 s, the depicted waves last for 2.04 x 10¢
s or about a month, which is a reasonable measurement time for a space-based
interferometer. (On the other hand, it is not at all obvious whether the event rate
for ~ 10*Mg/10° Mg black-hole/black-hole binaries will be interesting, even given

that the proposed detectors could see them out to cosmological distances.)

Neutron-star/neutron-star binaries

When the binary’s two bodies have equal masses, M; = M, their orbital angular
momentum L = puv/Mr = %M 2W is always somewhat larger than their maxi-
mum possible total spin, Smax >~ M} + M? = %Mz. As a result, the total angular
momentum J is always fairly close to L, which means that the opening angle A,
of the precession cone is always small.

For example, consider two equal mass neutron stars, My = M, = 1.4Mj,
each with maximal spin, and with S inclined at the same angle to L as in our
previous M;/M, = 10 examples: arccos(é‘ . L) = 11.3°. Then, as the waves’
carrier frequency sweeps through our previously chosen band of 11.7 Hz to 321
Hz, the precession cone grows from A ~ 1.5° to 3.6°. With precession so tight,
the modulation is typically quite weak: For the initial spin, orbit, and detectors
oriented as in our previous Fig. 4.6, the +' detector has amplitude and phase
modulations shaped very much like those of Figs. 4.6 and 4.7, but with modulation
amplitudes AA4 /Ay ~ Apyr ~ 0.01. As before, the very specially oriented x’
detector shows deep modulation like that in Figs. 4.6 and 4.7, but only at a price
of having an amplitude roughly 10 times smaller than that of the +’ detector:
Ay /Ay ~ 42 ~ 1/10.

As another example, let one of the 1.4Mg neutron stars be maximally spinning
(S1 = M?) and the other be nonspinning (S, = 0), and open up the angle between
S and L to 60° (so k = L -5 = 0.5). For variety, change the initial geometry
to that shown in Fig. 4.11 (which is presented in another context in Sec. 5.1):
The detector’s arms are along the & and § axis (as in all our formulae); the binary
instead of being underfoot is at a zenith angle of 45° along the same azimuth as the

& arm, i.e., N = (£ — #)/v/2; the total angular momentum (and hence the center



116

of the precession cone) points directly upward, J=3%and L and § initially are
oriented around J as shown. The resulting amplitude modulation of the detector’s
signal is shown in Fig. 4.11 below (where in the horizontal frequency scale we
must set M = 2.8Mgy. Although the modulation is modest, growing from roughly
15% to roughly 30% during the inspiral, the number of precessions is rather large:
Between 10 Hz and 1000 Hz there are 70 precession periods, with 90% of them
occurring between 10 Hz and 100 Hz [in good agreement with Eq. (4.57)].

4.4 'Transitional precession
General description

In this section we discuss transitional precession. Our understanding of this be-
havior is based largely on numerical integrations of our special-case precession
equations (4.48)—(4.51) for S; = 0 or M; = M,. We have not been able to de-
rive an approximate analytic solution for I:(t) during transitional precession, as we
could for simple precession, but the main qualitative features of the phenomenon
are clear:

Since L o /2 while S is constant during the inspiral, at sufficiently early times
L is always much larger than S, J~ L, e<1,and the binary undergoes simple
precession. However, if L and S are nearly anti-aligned, and if S > L by the end of
the inspiral, then the binary must pass through an intermediate stage when L and
S almost cancel and hence J is much smaller than L or S. In this intermediate
stage, € = L/(JQ,) = |J|/(JQ,) is large (2 1) for two reasons: L/J is large and
2,7' o« 73/J is large. Now, recall that the “simplicity” of simple precession was
due to the smallness of the parameter e. The simple precessional motion that we
described in Sec. 4.2 therefore breaks down, and (in numerical examples) L and S
appear to “tumble,” while locked in each others’ embrace. The tumbling continues
until the orbit has shrunk to the point that L is significantly smaller than S. At
that point J = S, and simple precession resumes. Because the tumbling stage
represents a short-lived “transition” between two stages of simple precession, we
call it transitional precession.

In the initial stage of simple precession, J moves on a tight outward spiral away
from some initial direction j,- = (jo);,mm, while L (which is approximately equal to
J ) moves on a looser outward spiral away from Ji. During transitional precession,
J “migrates” from the vicinity of J; towards a new, fixed location J = (jo)ﬁna]. In

the final stage of simple precession, J moves on a tight, inward spiral towards J 3
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Figure 4.9: An example of the path traced by I:(t) during the evolution from
simple precession to transitional precession and back to simple precession. In this
example, M; /M, = 10, arccos(k) = 179.3°, r/M decreases from ~ 330 to 6, and f
increases from 1(10Mg /M) Hz to 400(10My/M,) Hz.

while L points almost 180° away from J and spirals more loosely inwards towards
'—jf.

Figure 4.9 illustrates the evolution of L(t) before, during, and after transi-
tional precession. In the example shown, M;/M, = 10, S; = M,%, S, = 0,
cos™! k = 179.3°, and the epoch of evolution shown begins when r = 330M and
f=1(10Mg/M;) Hz, and ends when r = 6 and f = 400(10My/M,) Hz.

The entire sequence that we have just described—from simple to transitional
and then back to simple precession—will typically not take place during the time
that the binary is “visible” to LIGO/VIRGO (or, in the supermassive-binary case,

to LISA). It is easy to see why: To include the entire sequence, the binary must
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enter the observational band with L/S 2 2 and leave it with L/S < 2, which means
that L must change by a factor 4 or more in the observational band. Since f o
r~3/% & L=3, this means that f must change by 2 4% = 64. However, fmax/fmin ~
64 is the entire available observational band both for LIGO/VIRGO (with fui, ~
10 Hz and fiax ~ 500 Hz) and for LISA (with fiin ~ 1072 Hz and fax ~ 1071
Hz). Therefore, to include the entire sequence, one must carefully adjust M,
M, Si, and & = S - L so the spin and orbital angular momenta are nearly anti-
aligned, and so L/S ~ 2 when the binary is just entering the observational band,
and L/S ~ 1/2 when it is just leaving. Moreover, one must choose M; /M, large
enough that, when the binary begins its final coalescence (at r/M ~ 6), L/S has
gotten at least as small as 1/2.

Just how precisely anti-aligned must L and S be, i.e., how close to —1 must
k = L - 8§ be, to produce transitional precession? It is clear from the previous
discussion that transitional precession occurs when € becomes of order unity. Let

us define
b=k+1. (4.84)

Using Eq. (4.67) we find that, for small é, € reaches its maximum value when vy =
(1+426), which corresponds to an orbital separation rmax/M = (S/M; M;)?*(1 —46);

there € is . 32
8 3MaN\" M
Emax N R 61 (1 + ﬁ) <r ) (4.85)

for small §. [Eq. (4.85) assumes that € does in fact reach a maximum at some finite

r.] Thus, for transitional precession to occur (e 2 1/2) at rmax/M 2 20 (when there
is still a significant number of orbits to go before the binary’s final coalescence),
6 must be £0.04 so kK = —1 + § must lie between —1.0 and —0.96, which means
that the angle between L and § must exceed 164° . Thus, we see that transitional
precession will be observed for only a very narrow range of initial conditions.
Even if L and § are sufficiently anti-aligned to produce transitional precession,
the rest of the fine tuning will typically not be achieved in Nature. Either L/S
will be somewhat less than 2 when the binary enters the observational band, and
the initial period of simple precession will be lost in the detector’s low-frequency
noise; or else L/S will be somewhat greater than 1/2 when the binary leaves the
observational band, and the final period of simple precession will be lost in the
detector’s high-frequency noise, or will not occur at all because orbital plunge and

final coalescence intervene.
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Remarks on the final direction of J

When the full sequence of simple precession to transitional precession to simple
precession occurs, how does the final direction of the binary’s total angular mo-
mentum, jf = (j())ﬁna], depend on its initial direction, J; = (jo);n;t;al, and on the
binary’s masses and spins? We do not have a complete answer to this question,
but it is perhaps useful to include here some general remarks and an example. (In
this discussion, we ignore the possibility that the inspiral ends before S > L.)

For this discussion, it is convenient to introduce spherical coordinates (¢, ¢')
on the unit sphere, with J; at the north pole, & = 0. We choose the location of
the meridian ¢’ = 0 as follows. We choose some instant of time which is defined in
a dimensionless way, such as the moment when r/M = 100 or the moment when
L = S, and we let ¢’ = 0 correspond to the direction of J at that instant. It is
then clear by the scale invariance of the problem that the coordinates of J + can
depend only on the following dimensionless quantities: k, M,/M;, and S/M?.

We obtain qualitative information about the dependence of J ¢ on these quanti-
ties by considering two limiting cases. First consider the case where « is precisely
—1. Then J simply “flips” when L becomes smaller than S, so J = —J;. The
second, obvious limiting case is that J; — J; for £ > —1.

By continuity, we see that J ¢ must move from ¢’ = 7 to ' = 0 as we increase
k away from —1. Because typically all this motion occurs as & changes by only
~ 0.04, J; must be a rather sensitive function of .

Fig. 4.10 shows the path traced out by J; as the angle arccos(x) between L
and § is varied, for one particular choice of mass and spin ratios: My/M; = 0.2,
S = S; = M,%, and S; = 0. Each point on the curve is the end result of evolving the
precession equations (4.48)—(4.51) from very early to very late times to determine
J ¢. In each evolution, J; was taken to be at 6 = 0, and ¢' = 0 was defined
by the location of J at the moment that the gravity wave frequency f swept
through 10(M/10Mg) Hz. For the chosen mass and spin ratios, rmax/M =~ 25, so
from Eq. (4.85) we would expect transitional precession to “turn off” (e <1/2) for
k2 —0.978, when the angle between I and Sis roughly 168°. This is in reasonable

agreement with the numerical results shown in Fig. 4.10.
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Figure 4.10: The endpoint of transitional precession, i.e., the direction J ¢ of the
binary’s total angular momentum J at asymptotically late times, expressed as a
function of the initial direction J; of J (which is taken to be the north pole, §' = 0)
and of the angle arccos(x) between L and S. The mass and spin ratios are chosen
to be My/M; = 0.2, Sy/M* = 1, and S; = 0. Each point on the curve is the
result of evolving the precession equations (4.48)—(4.51) from early to late times
for that point’s value of k. One more piece of initial data, besides J;, is needed to
fully specify the evolution: the azimuthal direction of J at some early, but finite,
time. In this figure, J is chosen to point in the direction ¢’ = 0 at the moment
when the gravity wave frequency f equals 10(M/10Mg ) Hz.
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5 NUMERICAL SOLUTIONS FOR ARBI-

TRARY MASSES AND SPINS

5.1 Relation of the general case to our special cases

In this section we move beyond our two special cases, M; = M, and S; = 0, and
discuss binaries with arbitrary masses and spins (consistent with the requirement
that S; < M;z). In this general case we were unable to solve the precession equa-
tions (4.14)—(4.16) analytically, and so had to resort to numerical integrations.
One would expect, however, that, for “typical” inspirals, the precessional behavior
will qualitatively resemble the simple precession described in Sec. 4, if precession
is important to the dynamics at all. That expectation is based on the following ar-
gument, which begins by dividing binaries into two categories based on their mass
ratio: My/M; < 1 and My/M, = 1. If My/M; < 1, the amplitude of precession
will be very small unless S; > S,, since Sy/L(t) < (My/M)(M/r(t))V/? < 1.
If S; > S, the larger spin should dominate the precessional dynamics, and the
smaller spin can be treated as a perturbation on the special-case solutions of Sec. 4.
Similarly, if M; &~ M,, the mass difference can be treated as a perturbation to our
special case solutions for My = M.

The above argument is not very compelling, especially when applied to “in-
termediate” cases such as M;/M; = 1/2. One therefore seeks guidance from
numerically generated examples. Now, in principle one could systematically look
for qualitatively new types of solutions by integrating the precession equations
(4.14)—(4.16) for thousands of randomly chosen values of M;, M;, S, S;, and
initial directions S; and S,. This we have not attempted to do. However, we have
integrated equations (4.14)—(4.16) for a wide variety of initial conditions which
we “put in by hand”; the results seem to support the conclusion that most cases
give “somewhat ragged” versions of the simple precession described in Sec. 4.2.
That is, J is roughly fixed, and L(t) roughly traces an outward spiral from J.

To illustrate this, Figs. 4.11-4.18 display several examples of numerical solu-
tions to the precession equations (4.14)—(4.16), augmented by the signal-amplitude
equations (4.26) and (4.28). The drawing in each figure depicts the initial values of
the vectors L, Si, S,, and S at the moment that the gravity wave frequency sweeps
past 10(10My /M) Hz (corresponding to /M = 75). For ease of comparison, we
have chosen J = S + L to point initially along the 2-axis in all our examples; the

precise details of how the other initial vectors were chosen are spelled out in the
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Figure 4.11: This and the next seven figures (Figs. 4.11-4.18) depict the precession
of the orbital angular momentum direction £ and the resulting modulated signal
amplitude A(t) in the detector, as computed by numerical integrations of the
precession equations (4.14)—(4.16) together with Eqs. (4.26) and (4.28). In all
these figures the detector’s legs are along the z and y axes, the direction from the
detector to the binary is N = (3+2)/+/2, the total spin § = §1 +5, has magnitude
S = M2, the angle between the orbital angular momentum L and the total spin S
is 60° so & = L- S = 0.5 (except in Figs. 4.17 and 4.18, where that angle is 178° and
& = —0.99939), and at the beginning of the integration—when f = 10(10Mq /M)
Hz, r/M = 75, and L = \/__Mle—the total angular momentum J=L+§
points in the z direction, and L is in the z-z plane, on the +z side of the z-axis,
while § is in the z-z plane, on the —z side of the z-axis. When both bodies are
spinning (Figs. 4.12, 4.14, 4.16, and 4.18), their spins initially lie in the §-$ plane.
The figures differ from each other in their mass ratio M,/M,; and in the magnitudes
of the bodies’ spins. In this ﬁgure, the masses are equal, M2/M; = 1, body 1 is
maximally spinning, S; = M;?, and body 2 is nonspinning, S; = 0, so S=238 and
L have the initial values shown in the drawing. The subsequent motion of L is
shown as an outward-spiraling path on the sphere. The graph shows the amplitude
A(t) of the gravitational-wave signal measured by the detector.
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caption of Fig. 4.11. In each figure, the curve on the sphere is the time evolution of
L(t) from the initial moment, when f = 10(10Mg/M) Hz and r/M = 75 to a final
moment, when f = 440(10Mgy/M)Hz and r/M = 6. The curve plotted in each
figure is the amplitude A(t) of the gravity-wave signal that would be measured by
a detector whose arms lie along the Z and § axes, when the binary is in the direc-
tion N = (% + 2)//2. The signal amplitude A(t) is actually plotted against the
frequency f of the gravity wave signal at time ¢; that is, we plot A(f) = A(¢(f)).
(We emphasize that we are not plotting the Fourier transform of A(t).) The overall
normalization of A(f) is arbitrary.

We have arranged Figs. 4.11-4.18 in pairs: an example with just one body
spinning, S; = M;? and S, = 0 (for which the special-case theory of Sec. 4§ is
valid), is paired with a corresponding example having the same mass ratio and
same initial L and S, but with both bodies maximally spinning, so S; = M,?
and S; = M,?. We emphasize that when both bodies are spinning (Figs. 4.12,
4.14, 4.16, and 4.18) the precession and signal amplitude depicted are solutions of
the full post>-Newtonian precession equations (4.14)—(4.16), including the spin-
spin terms; the spin-spin terms either vanished identically or were ignored in our
analysis of special cases in Sec. 4.

The first pair of examples, Figs. 4.11 and 4.12, are for a mass ratio M/M; =
1.0 and for £ = 0.5 (so the angle between L and § is 60°). Because the two
masses are equal, the solutions for L(t) and A(t) shown in Figs. 4.11 and 4.12
would be identical, were it not for the spin-spin terms in Eqs. (4.14)—(4.16). We
see that the the spin-spin effects are noticeable, but do not change the basic,
qualitative behavior of the solution. Quantitatively, the S; = 0 case contains 0.5
fewer precessions in the observable range than the case where S; is maximal.

Figures 4.13 and 4.14 show an example where M,/M; = 0.3 and « = 0.5; while
Figs. 4.15 and 4.16 are for M,/M; = 0.1 and £ = 0.5. Again, the precessional
motion of L and the signal amplitude are nearly the same in the corresponding
cases, i.e., the effect of the second spin is small. This is to be expected, since
Sy/81 = My?*/M;? is 0.09 in Fig. 4.14 and 0.01 in Fig. 4.16.

Finally, in Figs. 4.17 and 4.18 we show an example containing transitional
precession. Here M;/M; = 0.13 and £ = —0.99939 (so the angle between L and
is 178°), and our integrations start [at f = 10(10Mg /M) Hz] when the transitional
precession is already underway: the figures show the end of transitional precession
and the resumption of simple precession. The two solutions for I:(t) are again

qualitatively similar, but, interestingly, the two-spin case (Fig. 4.18) displays a
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Figure 4.12: Same as Fig. 4.11, and with the same mass ratio M,/M; = 1 but with
both bodies maximaly spinning,S; = Mi?, S, = M,?, so the initial 51, 59, S, and
L are as shown.

large number of “epicycles” on top of the basic one-spin evolution (Fig. 4.17).
The epicycles are reflected in the many little wiggles visible in the waveform’s
amplitude.

We can understand these epicycles as follows: Since S;/S; = (0.13)% = 0.017,
we can treat the second spin as a perturbation. Actually, the formulation is slightly
simpler if we treat M;/M; = 0.13 as the expansion parameter rather than S;/5;,
while regarding M; and S»/M,? as fixed. Then S is second-order in the expansion
parameter, and S; is first order. [The term §, is of higher order than S, because
the epicyclic frequency diverges as M; — 0; see Eq. (4.16).] We define E(t) =
El(t) + L,(t), where L, (1) is the “background” solution and L,(t) represents the
perturbation in E(t) due to §2. The term Ez(t) is second-order, and Ez(t) is
first order. We now expand the precession equations (4.14)—(4.16) to first-order.
Adding Egs. (4.14) and (4.15), we find

I+% =0 (4.86)

We can absorb the constant of integration into the definition of L;; this leaves
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Figure 4.13: Same as Fig. 4.11, but with M/M; = 0.3, 5; = M;?> and S, =0, so
the initial S"l and I are as shown.

t L 4 e A I L
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Figure 4.14: Same as Fig. 4.11, but with Mg/Ml = 0.3 (as in Fig. 4.13) and
S =M%, S, = M,?, so the 1n1t1a1 Sl, Sz, S and L are as shown.
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Figure 4.15: Same as in Fig. 4.11, but with My/M; = 0.1, S} = M? and S, = 0,
so the initial S; and L are as shown.
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Figure 4.16: Same as in Fig. 4.11, but with M;/M; = 0.1 (as in Fig. 4.15) and
Sy = My%, S, = My?, so the initial S, Sy, S, and L are as shown.
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Figure 4.17: Same as in Fig. 4.11, but with L and § nearly antialigned (i.e.,
separated by an angle of 178° so k = —0.99939), and with My/M; = 0.13, S; = M;?
and S; = 0, so the initial §1 and L are as shown. The evolution illustrates
transitional precession and the subsequent return to simple precession.

1 L Ll 1 l L
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Figure 4.18: Same as in Fig. 4.11, but with the same near antialignment and mass
ratio as in Fig. 4.17 (angle 178° between L and §, k = —0.99939, MQ/M] = 0.13),
and with and S; = M2, S; = M,?%, so the initial Sl, 52, S and L are as shown.
The evolution is essentially the same as in Fig. 4.17, but with visible “epicycles”

due to the relatively rapid precession of S, around L.
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Ly = —8,. The first-order piece of Eq. (4.16) then becomes

= 1 M\ - =
L2 = (;:5) <2M2) L] X Sz. (487)

We see from Eq. (4.87) that L spirals around L, with an epicyclic frequency
Q. = 3M,/2M,) L/ (4.88)

that is larger than the precession frequency 2, by a factor (3M;/4M;)L/J. Using
Eq. (4.11) for dr/dt, the total number of epicycles between some large radius r
and the final plunge can be estimated to be ~ (1/80)(M;/M;)(r/M)3/?. This
corresponds to ~ 60 epicycles for the case shown in Fig. 4.18, in good agreement
with the numerical integration.

Since basically this same perturbation analysis can be applied to the situations
shown in Figs. 4.14 and 4.16, one might wonder why epicycles are not visible in
those figures. The reason is that in these cases the ratio of epicyclic frequency to
precession frequency is much closer to unity than is the case in Fig. 4.18, and also
the ratio |S; x L| to |S; x L| is much smaller. Therefore it is harder to pick out
the epicycles by eye.

In conclusion, it appears that the intuitive pictures that we have derived from
the study of special cases in Sec. 4 can be successfully applied to more general
values of the mass and spin parameters. The “extra wiggles” that arise in the

general case can be understood as perturbations on our special case solutions.
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6 APPENDIX: FOUNDATIONS FOR AN

INTUITIVE UNDERSTANDING OF
THE WAVEFORM MODULATION

In leading order (when one ignores orbital inspiral, precession, and post-Newtonian
effects), the gravitational waves from a circular binary are monochromatic, and
therefore have elliptical polarization. (We regard circular and linear polarizations
as special cases of elliptical). In this appendix we develop a set of diagrammatic
tools (Figs. 4.19, 4.20, 4.21, and 4.23) for describing such waves and the signals
they produce in a detector. These diagrammatic tools are especially useful when
the waves come from overhead or underfoot, i.e., when the plane of the detector is
orthogonal to the waves’ propagation direction. For obliquely inclined detectors,
one must apply the tools to each detector arm separately, and then combine the
signals.

In Secs. 6.1 and 6.2 of the appendix, we diagrammatically describe the waves
alone (without any detector); the culmination of this description is an elliptical
polarization diagram, which is simply related to the elliptical projection of the
binary’s orbital plane on the sky. In Sec. 6.3 we show, by examples, how to
use this polarization diagram (or, equivalently the orbit’s elliptical projection) to
deduce the precession-induced modulations of the signal in a detector. In Sec. 6.4
we derive some formulas that underlie another diagrammatic tool, the cell diagram,
by which one can deduce especially simply the signal’s polarization phase ¢. In
Sec. 6.5 we present the cell diagram and show how to use it. Sections 6.3, 6.4, and
6.5 are restricted to detectors orthogonal to the propagation direction. In Sec. 6.6

we comment on the application of our techniques to obliquely inclined detectors.

6.1 Elliptically polarized gravitational waves

In building our diagrammatic tools, we shall focus initially on an arbitrary, mono-
chromatic, elliptically polarized gravitational wave. Only later, in Sec. 6.2, will we
apply these tools to the waves from a circular binary.

For monochromatic waves, the dimensionless gravitational wave fields hy and

hy, as they pass through the laboratory, are given by
hy = Hy cos(wt), hy = +H, sin(wt) . (4.89)

Here the + sign corresponds to right-hand polarized waves and the — sign to left-
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Figure 4.19: Principal axes, instantaneous lines of force, and instantaneous polar-
ization axes for an elliptically polarized gravitational wave with right-hand polar-
ization and amplitude ratio Hy/H, = 0.5.

hand; H; and Hy are constants, the amplitudes of the two polarization states,
and we have omitted an arbitrary phase by our choice of the zero of time. By
convention we shall insist that both amplitudes be positive and that H, > H.
The waves will take the form (4.89), with its phase delay of precisely 7 /2 radians
between the two wave fields and with Hy > Hy, only for a special, unique choice
of the polarization axes with respect to which the “4” and “x” states are defined.
We shall call that unique choice the elliptical waves’ principal azes.

Figure 4.19 shows an example of principal axes for waves that are propagating
perpendicularly out of the paper. [To verify that any other (“primed”) choice of
axes will produce a nontn/2 phase shift between the two fields, one need only
insert Eq. (4.89) into the following standard expression [14] for the primed-axis
fields in terms of the principal-axis fields

hyr + by = (hy + ihy)e™ ¥ | (4.90)

and evaluate the resulting phases of hys and hys. In Eq. (4.90), 9 is the angle of

rotation to go from the principal axes to the primed axes.]
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Figure 4.20: (a) The rotating, oscillating stretch line which depicts the direction
and magnitude of maximum tidal stretch for the gravitational waves of Fig. 4.1.
(b) The elliptical polarization diagram for these same waves. (c) The polarization
diagram for these waves but with their handedness changed from right to left.

The instantaneous tidal accelerations exerted on matter by any gravitational
wave can be described by electrical-like “lines of force”; see, e.g., Ref. [14]. Figure
4.19 shows the evolution of these lines of force for the monochromatic, right-hand
elliptical waves of Eq. (4.89), with Hy/H, = 0.5.

Note that the lines of force rotate in a right-hand manner (recall that the waves
are propagating out of the paper), and as they rotate, the density of force lines
oscillates. Just as in electromagnetic theory, so also here, the density of force
lines is proportional to the magnitude of the wave-induced accelerations. The
accealerations are strongest at wt = 0, when only the “principal+” polarization is
active, and weakest at wt = 7 /2 when only the “principal x” polarization is active.
Note that the rotation of the force lines is very nonuniform: slow near wt = 0
when the large principal+ mode is active, and fast near wt = 7 /2 when the small
principal X mode is active.

Figure 4.20a is a simpler way of depicting the rotation and oscillation of the

instantaneous force lines. Here we are asked to remember that the shapes of the
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force lines are quadrupolar; and at each moment of time we show, via a double-
arrowed line, the direction of the instantaneous tidal stretch axis (the direction of
maximum tidal stretch), and the magnitude of the tidal acceleration along that
axis. As time passes, the stretch axis rotates and the magnitude of the acceleration
oscillates (big horizontal stretch at wt = 0, small 45-degree stretch at wt = 7/2,
big vertical stretch at wt = 7, etc.).

Figure 4.20b (which we shall call an elliptical polarization diagram or simply
polarization diagram) embodies the same information as Fig. 4.20a, but more sim-
ply. It shows just two tidal stretch lines, the long one at wt = 0, which points
along a principal+ stretch axis and has length proportional to H,; and the shorter
one at wt = 7/2, which points along the principal x axis and has length propor-
tional to Hyx. From this diagram, one can reconstruct both the rotating, oscillating
stretch line of Fig. 4.20a and the time-evolving force lines of Fig. 4.19. To do so,
one just needs to remember that (i) the quadrupolar-shaped lines of force rotate
from the longer stretch line toward the shorter one, (ii) the magnitude of the tidal
accelerations is maximum when one of the instantaneous polarization axes coin-
cides with the longer stretch line and then it is proportional to the stretch line’s
length, and similarly (iii) the magnitude of the accelerations is minimum when an
instantaneous polarization axis coincides with the shorter stretch line and then it
is proportional to that stretch line’s length.

Figure 4.20c is a polarization diagram for the same waves as we have been dis-
cussing, but with left-hand polarization rather than right: the lines of force rotate
clockwise from the long stretch line toward the short one, rather than counter-

clockwise as in Fig. 4.20b.

6.2 Specialization to waves from circular binaries

Turn, now, to the leading-order gravitational waves from a circular binary (with
inspiral, precession, and post-Newtonian effects ignored). Figure 4.21a depicts the
orbit of one of the binary’s stars (or black holes), projected onto the plane of
the Earth’s sky (i.e. projected perpendicular to the incoming waves’ propagation
direction). Because of the projection, the circular orbit looks elliptical, with a ratio

o of minor axis to major axis given by
a=|L-N|. (4.91)

In Sec. 2 we defined the principal+ direction to be the major axis of this orbital el-

lipse, and the principalx direction to be rotated 45° from it, in a counterclockwise
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Figure 4.21: (a) The orbit of one of the stars in a circularized binary, projected on
the plane of the sky. (b) The principal+ axes of the elliptically polarized waves
emitted by this binary; note that these axes coincide with the projected orbit’s
principal axes; the principal x axes will be rotated 45° to the orbit’s axes. (c) The
elliptical polarization diagram for the emitted waves.

direction. The binary emits elliptically polarized waves toward Earth. The waves’
principal+ axes coincide with the major and minor axes of the projected orbital el-
lipse as shown in Fig. 4.21b—i.e., one principal+ axis is along the principal+ direc-
tion and the other is perpendicular to it; and similarly for principal x. With respect
to these principal+ and principal X axes, the waves are described by Eq. (4.89),
with amplitudes [cf. Eq. (4.2), (4.3)]

_AMM, 1 4 (L - N)?] . _ MM,
~rD 2 X T D
Here, as in the body of this paper, M; and M; are the masses of the two bodies,
r is the orbital diameter, and D the distance of the binary from the Earth. The

factor —L - N in Hy guarantees that the waves’ handedness is the same as the

Hy |- NJ. (4.92)

motion of the stars around their projected orbit (left-hand in Fig. 4.21).
From the wave fields (4.2), (4.3), their amplitudes (4.92), and the principal+
axes of Fig. 4.21b, we infer that the elliptical polarization diagram has the form



134

shown in Fig. 4.21c. Notice the very simple relationship of this polarization di-
agram to the projection of the orbit on the sky: The longer stretch axis is per-
pendicular to the projected orbit’s major axis, i.e. perpendicular to the principal+
direction (as will always be the case); the shorter stretch axis is rotated 45° in
the direction of the orbital motion (as will always be the case), i.e. in this case of
left-hand polarized waves it is along the principal x direction while for right-hand
waves it would be perpendicular to principal x; the length of the shorter stretch is
proportional to o = |L - N| (the orbit’s axis ratio); and the length of the longer
stretch is proportional to %(1 + a?). At aretarded time when the stars’ separation
is along the principal+ direction (so one of the stars is at the location shown in
Fig. 4.21c), the instantaneous squeeze axis is along that principal+ direction, i.e.
along the direction from the center of the orbit to the star [cf. the minus sign in
Egs. (4.2), (4.3) and (4.8)], and the instantaneous stretch axis is perpendicular to
that direction, i.e., along the long stretch line of Fig. 4.21c. (It is this that dictates
our drawing the long stretch axis perpendicular to the principal+ direction rather
than along it.) An eighth of an orbit later, when the star in Fig.4.21c has moved
from the tail to the tip of the thin orbital arrow, the instantaneous squeeze axis is
along the direction to that star, and the instantaneous stretch axis is perpendicular

to that direction, i.e. along the short stretch line of Fig.4.21c.

6.3 Signal modulation for detectors orthogonal to the

waves’ propagation direction

Figure 4.21 provides a simple, intuitive understanding of how a binary’s precession
modulates its gravitational waves: As the binary precesses, the eccentricity and
orientation of its projected orbit (Fig. 4.21a) oscillate, and the polarization diagram
(Fig. 4.21c), which describes the waves, oscillates in the obvious, corresponding
manner.

It is fairly easy, from the oscillating polarization diagram, to understand the
modulation of the amplitude A(t) and polarization phase (¢) of the signal that the
wave induces in a detector. As an example, consider the neutron-star/black-hole
binary studied in Sec. 4.3, for which A(t) and ¢(t) were depicted in Figs. 4.6 and
4.7 assuming two different detector orientations, 4+’ and x’. Recall that in this
example the source is precisely underfoot; i.e., the detector arms are orthogonal
to the direction of wave propagation. In this section and the next two, we shall

restrict attention to cases where the detector is directly underfoot or overhead.
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1 0.3 0.1
time to collision, (M4/10Mg)sec

Figure 4.22: Figure used to explain the modulation of the signal amplitudes A4/(t)
and Ax/(t) for the binary and detectors of Figs 4.5, 4.6, and 4.7.
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Figure 4.22 reproduces a short segment of the amplitudes’ time evolution (Fig.
4.6). In the upper left is a schematic picture of the precessing orbital-angular-
momentum direction L (see also Fig. 4.5). The waves are traveling vertically out
of the paper, and the detectors’ arms are oriented as indicated by the +' and
x’ symbols. The time-evolving projection of the orbit on the plane of the sky
is depicted in the center of the figure. When the orbit is edge-on, we see only a
line. When L is tilted away from Earth, we see the orbit from below (shown as
a shaded ellipse); the stars move around the ellipse in a clockwise direction, and
the waves therefore are left-hand polarized. When L is tilted toward Earth, we see
the orbit from above (shown as a white ellipse); the stars move around the ellipse
counterclockwise, and the waves are right-hand polarized.

Consider the amplitude A4 measured by the +' detector, and mentally factor
out its steady, overall growth due to the steady orbital inspiral. At time ¢,, the
orbit is edge on, so the waves are concentrated entirely in the principal+ mode;
and because the edge-on orbit is almost parallel to one of the +' detector’s arms,
that detector feels the full force of the principal+ waves. At time t,, L has tilted
away from Earth a bit, thereby making the orbit appear somewhat elliptical and
giving a bit of added strength to the principal+ waves. [Recall that their strength
H, is proportional to 3(1 + a?), where a is the ratio of the minor to major axis
of the ellipse.] Because the orbit’s major axis is still nearly parallel to a detector
arm, the detector still “feels” solely the principal+ mode (even though Hy is no
longer zero), and it feels the mode’s full strength; hence, A4/ has gone up a bit.
At time t., the orbit has become edge-on again so Hy is again zero, but now
the orbit is tilted away from the detector’s arm by 2A;, ~ 17°, thereby reducing
somewhat the +' detector’s response to the principal+ mode; as a result, A, has
decreased significantly. At time ?4, the orbit is tilted toward Earth and has thus
become somewhat elliptical once again, thereby enhancing H, ; and again the orbit
is nearly parallel to the detector’s arm, so the detector feels nearly the full force of
the principal+ mode. As a result, A, has gone up again. At time ¢., the orbit’s
major axis is still nearly parallel to the detector arm. Hence the detector still feels
nearly the full force of the principal+ mode, but the orbit is now edge-on, so H,
has been reduced, and A,/ has gone down a bit, relative to the steady increase
caused by the shrinking orbit.

The evolution of Ay can be understood similarly: At time t,, the orbit is edge-
on, so Hy = 0; also the orbit is inclined almost 45° to the arms of the detector, so

the x’ detector hardly responds at all to H,. Thus, A« is very small. At time {,
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the orbit’s major axis is still almost 45° from the detector’s arms, so the detector
still responds almost solely to the principal x mode; but now the orbit has become
somewhat elliptical, thereby exciting the principal x mode somewhat and driving
Ay upward. At time t., the orbit is edge on, so Hy = 0, but now the orbit is
tilted to within 45° — 2Ap =~ 28° of the nearest detector arm, so the principal+
mode can drive the detector significantly, thereby pushing A,: up to its maximum
value. At time 4, the orbit has tilted back to nearly 45° from the arms so only the
principal X mode can couple to the detector, and because the orbit is only slightly
elliptical, that mode produces a weakened signal A,:. At t. the orbit is edge-on so
H, =0, and the orbit’s major axis is still about 45° from the arms, so principal+
mode couples hardly at all to the detector, and A/ has become very small.

We now consider the evolution of the polarization phase ((¢) in each of the two
detectors. To deduce ¢ at any moment ¢, one need only notice how strongly each
of the two wave modes (principal+ and principal x) is coupled to the detector, and
combine that coupling strength with a knowledge of the phase of the signal put
into the detector by each mode. In doing so, one must keep in mind the overall
minus signs in Egs. (4.2), (4.3) and (4.8). As one can verify from Eqs. (4.2)—(4.8)
(and as might be obvious),

i. The polarization phase of the principal+ signal is zero (i.e., the signal h(t)
goes as — cos[2®(t)]) if the orbit’s major axis (i.e. the waves’ principal+
direction) is nearer the detector’s “first” arm than its “second” arm, and
the phase is 7 (the signal goes as + cos[2®(#)]) if the principal+ direction
is nearer the second arm than the first. (The first arm is the one that, by
convention, gets stretched when k > 0 and squeezed when k < 0.)

ii. The polarization phase of the principalx signal is ~7/2, or 37/2 (so the
signal h(t) goes as —sin[2®(t)]) if the waves’ principal x direction is nearer
the first arm than the second, and the phase is +7/2 (the signal goes as
+ sin[2®(¢)]) if the principalx direction is nearer the second arm than the
first.

Consider, as an example, the polarization phase ¢y in the x’ detector. From
the orbital ellipses in Fig. 4.22 and the above phasing rules, we deduce the following:
At time ¢, the principal x mode is dominant; because the orbit is seen from below
and the principal4 and principalx axes are therefore like those of Fig. 4.20c,
the principalx direction is nearly along the detector’s second arm; therefore, the
polarization phase is ¢x ~ +7/2. At time ¢. only the principal+ mode is felt,
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and because the orbit’s major axis is near the detector’s first arm, the polarization
phase is ¢y ~ 0. At time ¢4 the principalx mode is dominant, and because the
orbit is now seen from above rather than from below, its phase contribution is
opposite to that at time t): @y ~ —7/2. At time t. only the principal+ mode
contributes, and although one cannot tell very clearly from the figure, the orbit’s
major axis is slightly nearer the second arm than the first, so ¢x = 7. Thus, as
time passes, the polarization phase grows secularly more negative, decreasing by

27 with each orbital precession—in accord with Fig. 4.7b.

6.4 Some useful formulas for detectors orthogonal to the

waves’ propagation direction

This procedure for deducing the polarization phase can be embodied in a simple
and powerful diagram. As a foundation for that diagram (and as an aid for readers
who might wish to explore the signal modulation more quantitatively), we shall
now specialize some of the equations of the text to detectors that are orthogonal
to the direction of the incoming waves. We shall deal with the same two detectors
+’ and %’ as above and as in Sec. 4.3 and Fig. 4.6, but we shall allow the binary to
be precessing in any manner it wishes, and not necessarily in the simple manner
of Secs. 4.2 and 4.3.

For the +' detector with its first arm along & and second along §, and for
our underfoot source direction N = —2 + 8% with 0 < § < 1 (corresponding to
0 = 7 — 16% and ¢ = 0), Eqs. (4.5), (4.6), and (4.7) reduce to

F, =cos2p, Fy=sin2y, v =arctan(l,/L,), (4.93)
and Eq. (4.4) then becomes
hyr = hycos2ip + hysin2y . (4.94)

This is just the real part of the standard law A4, +ihys = (hs +ihy)e™"2¥ by which
a gravitational-wave field appears to change when one rotates one’s basis axes in
the plane orthogonal to the propagation direction [14], i.e. in the plane of our
chosen detectors. From the imaginary part of that law, we obtain the expression
for the signal measured by our x’ detector [with its first arm along (& + §) and

second along 1(—% + §)]:

hyi = —hy sin2tp + hy cos 21 . (4.95)
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In these equations, h; and hy are the gravitational-wave fields (4.2), (4.3) de-
fined with respect to the binary’s principal+ and principalx axes. By inserting
Egs. (4.93) and L- N = —L, into the amplitude and phase form (4.9), (4.10) of the
measured signals, we obtain the following expressions for the precession-induced

modulation of the amplitude and phase:

—
2uM /(1 + L2)*(12 - L3)" +16L3 1517

Ay = :
+ TD 1 _ LZ 7 (4 96)
. 4L L0, (1.97)
+ = —arctan = = ; .
i (1+ £2)(Lz - Iz2)
P 2uM 41 + L2)? 1212 + 412(12 — [2)? 108
x! = rD l—iz ’ ( . )
L.(l? - I‘Jz
px+ = arctan A—”L—’—'————fz-)— . (4.99)
LoL,(1+ L2)

These expressions can be used to verify and quantify the discussion of the
previous section. More importantly, we shall now use the phase expressions to

construct a powerful diagram for deducing the polarization phase modulation:

6.5 The Cell Diagram for detectors orthogonal to the

propagation direction

The detector’s polarization phase ¢ assumes the special values of 0, 7/2, 7, and
37 /2 whenever the binary’s orbital angular momentum L is oriented in one of a
set of special directions relative to the detector’s arms. These special orientations
can be deduced equally well from Eq. (4.97) or Eq. (4.99); and they are depicted
in Fig. 4.23. Note that the special orientations comprise boundaries or “walls” in
orbital-angular-momentum space. Each wall in the figure is labeled by the value
that ¢ assumes when L lies in it. The walls with ¢ = 0 or 7 are shaded; those
with ¢ = 7/2 or 37 /2 are white.

We shall call Fig. 4.23 a cell diagram because its walls divide the orbital-angular-
momentum space into sixteen cells. The values of ¢ at orientations inside each cell
can be deduced, roughly, by interpolation from the values on its three walls.

From the precessional motion of L in this cell diagram, one can deduce directly
the evolution of the polarization phase . Here are a few examples: If the preces-

sional motion of L encloses the intersection line between a dark wall and a light
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2
3ﬂ/D gtector

Figure 4.23: The cell diagram, which exhibits the polarization phase ¢ of a de-
tector’s gravitational-wave signal as a function of the relative orientation of the
detector’s arms and the binary’s orbital angular momentum vector L.



141

one, then ¢ will grow secularly, gaining or losing 27 with each precessional period
(depending on the direction of precession). The ¢y of Fig. 4.7 is an example of
this. If the precessional motion almost but not quite encloses such a light/dark
intersection, then ¢ will evolve like the dotted modification of Fig. 4.7. If the
precession encloses the vertical direction, where two light and two dark walls in-
tersect, then ¢ will change secularly by £4n with each precessional period. If the
precession encloses an intersection of two dark walls, then ¢ will oscillate up and
down around zero, with two oscillations per precession period. The ¢,/ of Fig. 4.7
is an example of this in which the precession is barely encompassing the dark-wall
intersection, so one of the two oscillations is tiny while the other is large.

It is important to keep in mind that the total phase of the signal measured by
the detector is not ¢, but rather ¢ + 6@, and that 6®, like ¢, can grow secularly
with each precession. For simple precession, that growth is embodied in Eq. (4.83)
which, stated in words, says: For simple precession of L with opening angle Ap,
if the precession cone encloses the direction N to the binary, then 6® changes
secularly with each precession by Aé® = —27 cos Ap; if the precession cone does
not enclose NV, then Aé® = 2r(1—cosA) if cos Ay > 0 and Aé® = 2r(—1—cos A)
if cos Ay < 0.

6.6 Detectors not orthogonal to the propagation direc-
tion

In the last three sections we required that the detector be orthogonal to the waves’
propagation direction. By doing so, we guaranteed that each of the two arms
experienced precisely the same linear combination of principal+ and principal x
modes, and the net signal was just twice that for either arm by itself. If, instead,
the detector is inclined to the propagation direction (i.e., if the waves do not come
in from directly overhead or underfoot), then the signal in each arm is the same
as it would feel if it were projected into the orthogonal plane, and the net signal
is the sum of those from the two legs. The projection, unfortunately, changes the
lengths of the two legs by amounts that need not be the same and changes the
angle between them so it no longer need be 90°. Therefore, it is not trivial to
deduce, by the diagrammatic techniques of this appendix, the details of the net
signal modulation: One must construct the equivalent, projected interferometer,
then use the diagrams to deduce the signal in each leg, and then combine the

signals.
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Addendum to Chapter 4

7 ANALYTIC EXPRESSIONS FOR
THE INFLUENCE OF SPIN-SPIN
COUPLING ON BINARIES WITH
M; ~ My, AND 5]~ 5

7.1 The opening angle of L

(This addendum was written by me after the body of the chapter was published.)
As we mentioned in Sec. 4.1, the case of a binary with equal masses is an important
one, corresponding to 1.4Mg,1.4Mg NS/NS binaries. We present here a better,
than the one used in the main body of the paper, approximation to the equations
describing the evolution of the precession of such a binary with almost equal spins.
(If one of the spins is much smaller than the other, then the equations for simple
precession, as given in Sec. 4.2, describe quite accurately the precession of the
orbital plane.)

The assumption of precisely equal masses (M; = M;) and spins (|S1]| = [S2| =
S) makes it possible to solve Egs. (4.15), (4.16) analytically even if we keep the
next higher order terms representing the spin-spin interaction. Then the cosines
of the angles between the two spins, S1,S2 and the total angular momentum J

(which, as we have shown is almost constant in direction) evolve as follows:

d,: - 35 (S;-J) S2\1 s A A
Z({@-8) = ﬁ[z"_ﬁ‘“g(ﬁ }J-(Slxsz), (4.100)
d,s - 35 (8;-3) S2\1: & &
3-8y = _ﬁ[z— B +o(ﬁ ]J-(Slxsz), (4.101)
d o 3J [(S:-3—S;-J S2\1 s+ & oa
—=(51:8;) = 2—73[(‘ T3 2 )+o(ﬁ>]3-(slxsz). (4.102)

If we had taken into account the motion of J as described by Egs. (4.14), (4.15),

(4.16), it would have contributed to the O(S5?/L?) terms. Therefore the assumption
of fixed J is completely justified in our analysis.

Equations (4.101), (4.102), (4.102), have been derived from Egs. (4.15), (4.16)

by using the approximation L ~ J x (1 + O(S/L)) and then rearranging in terms

of successive orders of S¥/L*¥. (When M; ~ M, then S << L throughout the



145

inspiral; when M; >> M, this need not be so.) By introducing the notation

s oA . $;-§ . §,+8
x=5:1-S,, £€=17J- ‘2 2, n=J. 1252, (4.103)
Egs. (4.102) transform to
dp 3 S
priiw: [(9 (Z)] w(n,&x) , (4.104)
d¢ 38 S
priaiew [2 +0 (‘Z)] w(n, &, x) (4.105)
dx 35S S
X =5 ero(3)]wmex, (4.106)
with
w(n, & x) = \/1 ~x?~2(n*+ &%) 4+ 2x(n* - £€2) . (4.107)

By ignoring all the O(S/L) terms, Egs. (4.104), (4.105), (4.107) simplify to one
single differential equation for one of the 5, £, ¥ functions while the other two can

be expressed as functions of the first one:

n ~ n(0) = const , (4.108)
X = x(0) + (€ = £4(0)), (4.109)
@ 33 2+ Ted
— rs\/A+B§ + ¢4, (4.110)

with

A = [1-7%0)* - [n*(0) — x(0) + £2(0)/2)? ,
B = -2-3x(0)+7%(0) + 3¢%(0)/2,
I = —5/4, (4.111)

where ‘(0)’ means the initial value. Eq. (4.110) can be solved by means of Jacobian

Elliptic Integrals [1] leading to

1 35
£= —sd(clf—ﬁ-dt +co

C3

a) (4.112)

where

Il

co =sd Y (cz€(0)|ez), o = (B%*—4AT)/4,
e=(B+d)/238), a=al\Al, (4.113)
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and 35 . 15 10Hz\?/3  [10Hz\2/3
30 = 19% 2 o TR it
s A= @ [(f(O)) ( 7 ) } (4.114)
where 18,607
Q= (MM (4.115)

Here a is the spin parameter for the two stars (S; = aM?).

Having analytic expressions for all the angles between the spins and total an-
gular momentum, we can compute the opening angle A; of the orbital angular
momentum; i.e. the angle between L and J (recall that J is fixed to the level
of accuracy used, i.e., J plays the role of the Jo that we used in Sec. 4.2 when

analyzing simple precession):

~

AL = sin™! (\/(S1+52)2 _281 -J+S2-J)2) = sin~! (% /A+62> . (4.116)

where

A =2+ 2x(0) — 47%(0) — £%(0) . (4.117)
In Fig. 4.24 we have plotted the analytic expression (4.116) using the solution

(4.112) derived above, versus frequency, for a typical case. (The initial frequency
we used is f(0) = 10 Hz since this is approximately the frequency of the waves
when they enter the detectors’ window-band). To show how good our approximate
analytic solution is, we have plotted on top of it the corresponding numerical
solution of the exact differential equations (4.14), (4.15), (4.16) (dashed line). In
the range of frequencies where the detectors are most sensitive (10-200 Hz), the
approximate analytic solution is an excellent approximation to the true numerical
one. If we had dropped the spin-spin terms from the beginning, we would have
missed the £ term in Eq. (4.116) and hence the “wiggling” shape of Fig. 4.24.
This “wiggling” is due to the opening and closing of the spin-spin angle.

As we said earlier Fig. 4.24 corresponds to some set of parameters x(0), n(0),
£(0). We have tried several cases with different initial spin and orbital angular
momentum orientations, that produced either better or worse results. For the
sake of completeness, in Fig. 4.25 we have plotted the corresponding analytic and

numerical solutions for the worst case we have found.

7.2 The angular position of L

The analysis up to this point gives no information about the angular positions of

L and S; + S, in their precession around J. The angular velocity of precession



147

0.05 . - :
) 1.5 2 2.5 3

log(f/ 1 Hz)

Figure 4.24: Evolution of the opening angle Ay of L for two 1. 4Mg neutron stars
with equal spin magnitudes 0.5M? and initial orientations $:=#%8,=¢,J=2
The solid line represents the analytical solution given by Eq. (4. 116) and the dashed
one, the numerical solution. The approximation is almost perfect within the region
f < 300 Hz where the sensitivity of detectors is high.
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Figure 4.25: Same as Fig. 4.24 but with initial spin and total angular momentum
orientations S; = %, S, = 2, J = 2.
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can be derived from Egs. (4.14), (4.15), (4.16). Writing these equations in a more
suitable form, we get

L. 1d 1 .
— =—=—(S = — —-3%¥]xL .
dt Ldt( 1 + Sz) 27‘3 [7 J 3 ] X ) (4 118)
where S1(Sy - L) + S4(S; - L)
1(S2 - 2(S1 -
Y= I . (4.119)
This says that L precesses with instantaneous angular velocity
1
szgﬁ[7J-—32]. (4.120)

In section 4 in the analysis of simple precession, the X term was ignored, but now
we have to keep it. Although it is of order (S?/L?), its effects on the precession
angle will be of the same order as these produced by the (S/L) term in

S vol2 ) (4.121)

J=JL ( 29(0)~ =
J 1+ 77(O)L+(9(L2
More specifically, 3 expressed in terms of three non-coplanar vectors relevant to

the problem
b =ch+cLI:+clj x L (4.122)

contributes to the revolution of L around J only through ¢; (¢, produces the

change of the opening angle A, we found in the previous section, and ¢, produces
no precession at all). With some effort, from Eqs. (4.108), (4.109), (4.112), (4.119)

we find that A 4567 S
+
cs=8 [n(O) Are T O (Z)] . (4.123)
Therefore (2, is given by
L 11A - €2 /S 52
Q, = pwe X [7 + U(O)—A+€2 (Z) + O(ﬁ)] > (4.124)

and the angular position of L, by the time integral of (1,
35 4 10Hz 10Hz
o= 0@ () - ()
5a 10Hz\**  [10Hz\* S?
+-1—§§Q n(0) W ((f(())) R +0 I , (4.125)
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where W represents the average value of (11A —£?)/(A + ¢2). This quantity is fre-
quency dependent but has an oscillatory behavior which we choose to approximate

by its average value:

12A A+& .,
W=-1+ 7 In ( A > , (4.126)
where €2, can be derived by solving
A+ B, +Tth, =0 (4.127)

[cf. Eq. (4.110)]. In Fig. 4.26a we have plotted the analytic expression for a given
by Eq. (4.125), along with the corresponding numerical solution of Eqs. (4.14),
(4.15), (4.16) for the same typical case as in Fig. 4.24. The approximation is
so good that it looks like a single curve! In Fig. 4.26b we show the difference
between the numerical and analytical solutions. Other cases, with different set of

parameters used, have produced equivalently perfect results.
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Figure 4.26: (a) Evolution of the angular position « of L for the same neutron
stars and initial configuration as in Fig. 4.24. Again the solid line represents
the analytical solution given by Eq. (4.125) and the dashed one, the numerical
solution. The difference is so tiny that the two lines are hardly distinguishable.
(b) The difference of the numerical and the analytical solutions has been plotted
to give a feeling for how good the analytical approximation is.
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Abstract

In searching for gravitational waves in the output of the ground-based high-
frequency LIGO/VIRGO/GEOQ detectors, we need a family of “search templates”
with which to cross-correlate the noisy detectors’ output. This paper introduces
a fitting factor F'F, as a quantitative measure of how well the best template in a
family “fits” a hypothetical gravitational waveform, in the presence of a specific
detector noise spectrum. More precisely, F'F' is the reduction in signal-to-noise
ratio caused by using the chosen family of templates instead of a template that
perfectly matches the hypothetical waveform. It is shown that an FF < 0.9
corresponds to a 27% reduction in the event rate of the relevant signals; therefore
a family of templates that leads to F'F"’s below 0.9 should be considered inadequate.

The FF is used as a tool to explore the adequateness of several families as
search templates for gravitational waves from compact inspiraling binaries. The
binaries are taken to move in circular orbits, and the “advanced LIGO noise spec-
trum” is assumed for the detectors. Although the true waveforms depend on a
large number of parameters, we first study the acceptability of the simplest 3-
parameter template family, the so called “Newtonian family.” This family consists
of waveforms predicted by the Newtonian quadrupole formalism. From previous
studies by Finn, Krélak, Kokotas, Schafer, Dhurandar, and Balasubramanian, we
infer that post-Newtonian effects in the true waveforms of binaries with vanishing
spins cause the Newtonian family to have an unacceptable low F'F (~ 0.6 to 0.8).
We then focus attention on the influence of waveform modulations due to nonzero
spins; and we isolate the modulation effects from other post-Newtonian effects by
pretending that the true signals are pure Newtonian with modulation. Binaries
with many different geometrical and nongeometrical parameters are explored, and
intuition is developed into which of the binary’s parameters most strongly influ-
ence the FF. It is shown that the Newtonian template family works quite well
(FF > 0.9 for almost all the possible geometries) for the modulational effects of a
Newtonian signal from two 1.4Mj neutron stars (NS) with one of them maximally
spinning. By contrast, for a maximally spinning 10M black hole (BH) with a non-
rotating 1.4Mg NS, the Newtonian template family produces F'F < 0.9 for more
than half of all the binaries’ orientations, if the spin and orbital angular momenta
are misaligned by 30°, and FF' < 0.8 for almost all the possible orientations, if the
misalignment angle exceeds 60°.

We introduce a new four-parameter template family, which has the form of the
non-modulated post!-Newtonian signal from a zero-spin-binary. Although, there
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is a substantial improvement of the FF’s for a spin-modulated Newtonian sig-
nal, the F F’s for nonmodulated post!*-Newtonian waveforms are still very poor
(~ 0.5 — 0.8). Therefore we propose another four-parameter template family that
has the same form as a nonmodulated post!*-Newtonian signal with all the spin
related parameters stripped off. This template family works quite well, even for

t1->-Newtonian effects

signals with both the modulated and the nonmodulated pos
combined. For the NS/NS binary with one NS maximally spinning, this family
produces FF > 0.9 for almost all the possible geometries; but for the BH/NS
binary with the BH maximally spinning and the spin and orbit significantly mis-
aligned, it produces F'F > 0.9 only for some small, but not negligible, fraction of
all the possible geometries (e.g., for 20% of all the possible binary orientations with
a 60° misalignment angle). This suggests that, in a few years, when waveforms
have been computed up to post3-Newtonian order, a good template family will
be the 4-parameter post3-Newtonian waveforms for zero-spin binaries, augmented
by some appropriate modulations to deal with misaligned black-hole, neutron-star
systems.

Finally, we extend our investigations to the space-based low-frequency LISA
detector. Due to the similarity in shape of the ground- and space-based detectors’
noise spectra, the F'F values for the relevant signals and template families are

more or less the same as for the low-frequency detectors.
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1 INTRODUCTION

The facilities to house the ground-based LIGO/VIRGO laser-interferometer gravi-
tational-wave detectors are already under construction or in the final stage of their
design [1], and the GEO600 project for an intermediate scale interferometer has
good prospects for approval. At about the turn of the century LIGO/VIRGO/GEO
will probably be ready to start searching for gravitational waves coming from the
most promising sources: neutron star/neutron star (NS/NS), or neutron star/black
hole (NS/BH), or black hole/black hole (BH/BH) binaries.

The detectability of these binaries depends on the family of “search templates”
that will be used as matched filters to extract a possible signal buried in the detec-
tors’ noise. (For the method of “matched filters” see Ref. [2]). More specifically,
the output data stream of each detector will be cross-correlated with each tem-
plate T}, »,,... of the chosen family, weighted by the inverse of the detector’s noise
spectrum. If for some combination of the templates’ parameters A;, Az,... the
cross-correlation output is above some threshold level, then a signal will have been
detected with great confidence. Therefore, we should make sure that some mem-
ber of the family of templates used for detection matches very well each of the
hypothetical incoming waveforms.

The true general relativistic signals from inspiraling binaries (including post-
Newtonian and spin-induced effects) depend on a very large set of parameters (the
masses of the two stars, the eccentricity of their orbit, their spin, the relative
geometry of their orbit and the detector’s location and orientation, and the time
and phase of the waves at coalescence). This large set of parameters leads to a
huge variety of chirp-like waveform shapes and a corresponding requirement for a
huge number of templates in the search family. On the other hand, for two reasons
the number of templates should not be allowed to grow too large: (i) The task of
computing the cross-correlations can become excessive [2] and (ii) the probability
of a false detection can become excessive. Rough estimates [2, 3] suggest that
~ 10° — 10 discrete template shapes might be needed and would be acceptable.

Throughout our analysis and discussion, we assume that the binaries are or-
biting around each other in circular orbits when their waves enter the frequency
band of the LIGO/VIRGO/GEO detectors. This is justified since long-lived bi-
naries have sufficient time to circularize by radiation reaction, before they reach
the LIGO/VIRGO/GEO frequency bands [4] (by contrast with the type of bina-

ries formed by capture events in dense galactic nuclei which might be appropriate
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sources for the low-frequency space-based LISA detector [5]).

The most obvious, and perhaps adequate way, to construct a suitable template
family is to use approximate waveforms that depend on a small set of parameters
related to some special characteristics of the binaries. The simplest such family is
the Newtonian family, i.e., the family of waveforms predicted by Newtonian gravity
and the quadrupole-moment formalism. These templates (assuming circular orbits)
consist of three parameters altogether: the coalescence time t¢, the phase of the
waves at coalescence ¢¢ and a certain combination of the masses, called the chirp
mass: M = (MyM;)3/%/(M; + M;)'/5. The final coalescence time t¢ is a special
parameter that can be handled directly as an additive phase factor when computing
the cross-correlation in the frequency domain [2]. Fortunately only two values of
¢c need to be considered, since ¢¢ shows up only as a constant phase in the signal:
for convenience ¢c = 0 and ¢¢ = 7/2 (see [2]).

As a result, the Newtonian family has only one nontrivial shape parameter: the
chirp mass M. The Newtonian family can be handled easily, even with present-
day workstations, by spanning the whole range of M’s under consideration with
a density AM/M of 0.1% [6]. The question that arises is how adequate are
the Newtonian templates for identifying realistic waveforms in the noisy detector
output? As a tool for answering this question, we introduce the fitting factor FF
which is a measure of how well any chosen family of templates fits some chosen
hypothetical gravitational-wave signal. Several people have used a similar or even
the same quantity for the same purpose [7, 8]; but they have given it other names
and have discussed it from other viewpoints.

The noise spectrum of the detector plays a significant role in the FF, since a
good resemblance between the template and the incoming waveform is needed only
at frequencies where the noise is low. In this paper the “advanced-LIGO-detector”
noise spectrum will be used. This spectrum has been introduced by the LIGO
team [1] as a guess of what the noise might look like some years after LIGO goes
into operation.

As we will show later, the F'F is the reduction in signal-to-noise ratio that
comes from using some chosen inaccurate family of templates instead of a larger
family that includes the true signal. Since the event rate for the true signal scales
like the cube of the signal-to-noise ratio, the fractional reduction in event rate due
to using the chosen template family is 1 — FF3. A value of 0.9 for a family’s FF
thus means a 27% loss in the event rate. This loss could be recovered by increasing

the interferometers’ arm length by 10%, but the cost would be roughly 6 million
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dollars! It should be clear from the numbers that F'F values below ~ 0.9 mean
that the chosen template family is inadequate; and one might want to insist on
FF 20.95 or even 0.98 when designing a template family.

Several people [7, 8] have recently investigated the effectiveness of the New-
tonian template family in searches for the nonmodulated waveforms produced by
inspiraling binaries with vanishing spins and circular orbits. The numbers ob-
tained in these studies correspond F'F well below 0.9. I have confirmed these
numbers, and I present them together with the results of some additional compu-
tations (discussed later in this paper) in Table 1. The signals discussed in this table
are Newtonian, post!-Newtonian, or post!-*>-Newtonian approximations to the ex-
act, general relativistic waveforms. (The waveforms have not yet been computed
to higher than post!>-Newtonian order, though an ongoing effort [9] should ulti-
mately bring them up to and including post®>-Newtonian order — which is about
the accuracy required for LIGO/VIRGO/GEO [Ref. [10]].)

The main conclusion of Table 1 is that for the post!-*-Newtonian signal, with
vanishing modulation (because the spin and orbital angular momenta are aligned),
the Newtonian template family is completely inadequate. To achieve an acceptable
FF 2 0.9 requires the post!*-Newtonian family of templates (templates described
by the post!-*-Newtonian waveforms with zero spins).

In all previous template investigations, and in all entries in Table 1, the bi-
nary’s spin and orbital angular momenta are assumed aligned, or the spins are
assumed to vanish, so the binary does not precess and the waveforms are not mod-
ulated. The principal objective of this paper is to study the effects of spin-induced
precession and modulation on the acceptability of unmodulated template fami-
lies. In these modulational studies, as in most previous studies [7, 8] (but not all
[6]), the discreteness of the template families is ignored; i.e., the chirp mass M
and other parameters that determine the template waveforms are allowed to vary
continuously rather than taking on a discrete set of values.

In this continuum approximation, we begin by investigating the detectability of
a modulated waveform with the (unmodulated) Newtonian template family. The
resulting F'F' values are unacceptable low, not just because of post-Newtonian
effects, but also because of the modulational effects. To rectify this, we introduce
the spin-free, unmodulated post!*-Newtonian family described in the previous
paragraph, which has 4 parameters by contrast with 3 for the Newtonian family.
The extra parameter is related to the binary’s reduced mass. The new template

family fits better the modulated waveforms than the Newtonian one. From the
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Table 1: We present here the F' F' values for a Newtonian, a post!-Newtonian, and
a post!*-Newtonian signal with maximal spin (maximal 3; where 8 is given in
Eq. (5.46)) but no precession, being searched for by 3 families of templates: the
Newtonian family [Eq. (5.10)], the post’-Newtonian family [Eq. (5.41)], and the
post!-5-Newtonian family [Eq. (5.47)]. Note that the post!->-Newtonian templates
are assumed to have § = 0 in order to keep the number of parameters low. The
post!-*-Newtonian signals though are chosen to have the maximum possible 3 pa-
rameter by aligning the big object’s maximal spin with the angular momentum
of the binary (the small object is assumed to have no spin). For every case, two
FF values are given, corresponding to a 10Mg — 1.4M; BH/NS binary and a
1.4Mg — 1.4Mg NS/NS binary. Since modulational effects are absent (the spin
and angular momenta are aligned), the binary’s orientation does not affect the
FF values. The numbers quoted in this Table are discussed more extensively in
Sec. 7.

N signal P!-N signal P!5-N signal
(8 maximal)

N template: 1.000 (BH/NS) 0.559 (BH/NS) 0.692 (BH/NS)
1.000 (NS/NS)  0.465 (NS/NS) 0.594 (NS/NS)

P1-N template: 1.000 (BH/NS) 0.699 (BH/NS)
1.000 (NS/NS) 0.546 (NS/NS)

P!5-N template: 0.987 (BH/NS)
(8 = 0) 0.985 (NS/NS)
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sets of F'F values that we compute, we suspect that an adequate template family,
for almost, but not quite all binary signals (modulated and unmodulated) that
LIGO/VIRGO/GEO seek, will be the 4-parameter post®-Newtonian waveforms of
spin-free binaries — waveforms that will likely have been computed within the next
~ 3 years [9].

The rest of this paper is organized as follows. In Sec. 2 we briefly review the
equations for the spin-induced simple precession and its modulation of the relevant
waveforms, based on the stationary phase method, from the work of Apostolatos,
Cutler, Sussman, and Thorne [11]. More specifically, we express the waveforms as
Newtonian signals with amplitude and phase modulation. We assume for simplicity
that the precessing binaries consist of one spinning object and one nonspinning
object; this permits us to use the analytic forms derived in Ref. [11] for the simple
precession. This is not a very restrictive assumption since the general case with
two spins leads to similar precession trails for the orbital plane. We assume that
the spinning object is the more massive one; this maximizes the strength of the
precession.

In Sec. 3.1 we define the fitting factor (FF') and show its physical significance
as a measure of the reduction of the signal-to-noise ratio due to the use of an
inaccurate family of templates that cannot perfectly match the signal. In Sec. 3.2
we derive a simple formula for the F'/F when the template family is Newtonian
and the signal is Newtonian with precession. In Sec. 3.3 we discuss separately the
effects of amplitude modulation (AM) and phase modulation (PM) on the Fitting
Factor and show some analytic and numerical examples.

In Sec. 4.1 we briefly discuss the code we have used to compute the F'F, and
its numerical errors, as well as the difficulties underlying our search for the F F’s
maximum value over our template family. In Sec. 4.2 we begin our study of the F'F’
for the Newtonian template family and precessing Newtonian signal by exploring
the dependence of F'F on the binary’s location on the sky and the orientation of
the detector arms. We show that a knowledge of the FF for a binary directly
overhead (or underfoot) is adequate to determine the complete distribution of the
FF for all other directions to the source. In Sec. 4.3 we discuss the effect on the
FF of the direction of the binary’s total angular momentum J, around which the
orbital plane precesses. In Sec. 4.4 we show how the non-randomly distributed
parameters — the binary’s masses M;, M; and the opening angle LS between its
orbital and spin angular momenta — affect the F.F' .

In Sec. 5, for a few representative values of these non-randomly distributed pa-
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rameters, we compute the probability, over all the random parameters of Secs. 4.2,
4.3, 4.4, to achieve FF values above some critical level. We find that, for a
1.4Mgy,1.4My NS/NS binary, with one of the NS’s spinning near breakup, the
FF is pleasingly large (> 0.9) for most (2 90%) of the geometries. But for a
10Mg,1.4M,; BH/NS binary with the BH spinning at its maximal rate, the F'F
can be unpleasantly low and is very sensitive to the opening angle LS. For exam-
ple, for moderate and high values of LS (above 30°) the FF’s are well below 0.9
in more than half of the random geometries.

In Sec. 6 we suggest the addition of one more parameter to the Newtonian tem-
plate family, to improve its ability to detect precessing waveforms. This extra term
has the same form as arises from the non-precessional post!-Newtonian correction
to the waveform’s phase, and it turns out to improve substantially the F'F values
for precessionally modulated Newtonian signals. For the 1.4Mg, 1.4Mg NS/NS
binary, the F'F values remain above 0.9 for at least 90% of all the geometries.
By contrast, for the BH/NS binary, the FF values still depend strongly on the
misalignment angle LS, but now for a 30° angle, there is ~ 75% probability to get
an F'F value above 0.9 (an improvement from < 50%).

In Sec. 7 we review, in the language of our F'F', what other people have already
published for the detectability of post-Newtonian nonmodulated signals by various
template families. The Newtonian template family is completely inadequate (FF
generally well below 0.9). Far better F'F’s are achieved by a template family based
on the waveforms for non-spinning post!-*-Newtonian-order binaries.

In Sec. 8 we explore the fitting ability of these post!*-Newtonian templates
for post!>-Newtonian signals to which spin-induced modulation has been added.
The results were improved at least as much as in section 6, where spin-modulated
Newtonian signals and unmodulated post!-Newtonian templates were considered
(i.e., for the NS/NS binary F'F is above 0.9 for at least 90% of all the geometries,
and for the BH/NS binary there is a ~ 75% probability to get an F'F value above
0.9 if the misalignment angle is 30°).

Finally, in Sec. 9 we summarize our results and suggest future research direc-
tions on the issue of search templates for detecting inspiraling binaries.

All of this analysis assumes the noise spectrum of “advanced” high-frequency
ground-based LIGO detectors. In an Appendix, we extend the analysis to various
kinds of signals and templates in the context of the low-frequency, space-based
LISA gravitational-wave detector. The extrapolation to this type of detector and

its relevant binary sources (supermassive black holes with smaller-mass black holes
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or neutron stars) is straightforward, since the corresponding noise spectrum, has
the same shape as the LIGO noise spectrum, but shifted to much lower frequencies
(10~* — 1 Hz compared with 10 — 1000 Hz for LIGO). This similarity suggests
the use of the same kind of search templates for LISA as for the ground-based
detectors, but with parameters corresponding to much more massive objects.

Throughout we use units where G = ¢ = 1.

2 REVIEW OF FORMULAE FOR SIMPLE
PRECESSION AND ITS WAVEFORM
MODULATION

As was shown in the work of Apostolatos, Cutler, Sussman, and Thorne [11], a
binary consisting of a spinning object with mass M; and spin S, and a non-spinning
object M, orbiting around each other with angular momentum L will conserve the
angle LS between L and S through the whole inspiral phase. The binary’s orbital
plane will precess around the total angular momentum J = L 4+ S, which remains

almost fixed in direction. By using the notation

-

k=L-S, cosi,=L-J, (5.1)

the opening angle for the precession of L was shown to evolve due to radiation

reaction and hence shrinkage of L according to
VMr(t)+ S
cos AL(t) = s ®) + S 77 - (5.2)
2 2
[(#\/Mr(t) +5))" + 51 ]

Here hats denote unit vectors (e.g., L = L/|L|), M, i are the total and reduced

masses respectively, r(t) is the distance between the two stars, and S = S« and

S, = SV/1 — k? are the components of S parallel and perpendicular to the angular
momentum L respectively. The evolution of the angular position a of L (see

Fig. 5.1) around the constant J is given by

—5(1 + 32)

o= — [2Y3/2 - 35'”(/1\/% + Sll)\/}—/

96u3 M3
vM
—35,5,? sinh™ (“___é‘_i_sl'_)] + const , (5.3)
1
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Figure 5.1: The geometry for a binary’s simple precession relative to an Earth-
based detector’s Cartesian axes.
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where

Y = ®*Mr +2SuvVMr + S2. (5.4)

Because the computational search for the modulated signal will take place in the
frequency domain, it will be useful to know the dependence of the binary’s orbital

diameter on the frequency f of the gravitational waves:

r= (W%;,)lls. (5.5)

This completes the formulae needed to describe the simple precession of the

orbital plane of a binary when M, M,, S, k, and J are given. It should be noted,
however, that if the quantity

16 (M/r)*/

€= (5.6)
(where v = S/L) is not < 1 then all the above expressions for the simple precession
break down and instead the binary undergoes a different type of precession, called
transitional precession [11]. Fortunately (for this paper), this happens only for
a tiny, presumably rare range of parameters: L -S < — 0.94 (fS 2 160°) and a
rather restrictive combination of masses (see Fig. 10 of Ref. [11] ). In the following
examples we avoid any situation where transitional precession is involved, since no
analytic expressions exist then.

We now move on to present the equations that describe the modulation of the
waves due to simple precession. We write down directly the Fourier transform
h(f) of the modulated waveforms, since our calculations will be performed in the
frequency domain. As shown in Eq. (38) of Ref. [11], by following the stationary
phase method this A(f) is given by

M)~ SAWhe(f) + [d"g}f ) amithe(f) (5.7)

for positive f, and the complex conjugate of this for negative f. Whenever we

write ¢ we simply mean #(f), the time at which the carrier frequency is f, given by
t(f) =tc — 58nf)3PMS3 (5.8)

In Eq. (5.7), he(f) is the Fourier transform of the unmodulated “carrier” signal

2M1 M2 —21¢C(t)

holt) = 5 ote 00

(5.9)
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where ®¢(t) = [dt is the carrier phase and ) is the orbital angular velocity, and

D is the distance to the binary. This Fourier transform is
l~zc(f) = const X f_7/66i[2”ftc_¢c+%(S”Mf)_m], (5.10)

where the ‘const’ represents everything that does not depend on frequency, such
as the geometry, the masses etc.; ¢¢, not to be confused with @, stands for the
phase of the waveform at coalescence, t¢ for the time of coalescence, and M for
the chirp mass. A(t) in Eq. (5.7) is the modulation factor defined as

A(t) = AM x PM, (5.11)

where AM and PM are the following amplitude modulation factor and phase mod-

ulation factor

AM = (4[1; RPEF0, %) + [1 + (L - N2, (6, 6, ¢))1/2 , o (5.12)
PM = ~282(0+el] (5.13)
Here, as before, t = t(f), and
0= tan—l ( 2LA NAFX (07 ¢7 d)) ) , (514)
[1+ (L-N)FL(0, ¢, %)
iljinal f, . N ~ N .
§0(t) = — /L (1—_—@—N—)2) (L x N) - dL. . (5.15)

The two phases in Egs. (5.14), (5.15) represent phase modulations that have differ-
ent physical origins: ¢ arises from changes in the polarization axes due to preces-
sion of the orbital plane, and §® is something similar to the Thomas precession of
the electron’s spin in a semiclassical model of the hydrogen atom. The rest of the
parameters in Egs. (5.12)—(5.15) are connected to the orientation of the detector
and the direction to the binary. Thus N is the unit vector pointing to the source
and 0 and ¢ are its spherical polar coordinates (see Fig. 5.1), F, and Fy are the

detector’s “beam-pattern” coeflicients given by

F (8,4,9) = %(1 + cos® §) cos 2¢ cos 2 — cos Osin 2 sin 29 | (5.16)

Fy(0,6,9) = %(1 + cos? §) cos 2¢ sin 2¢) + cos ' sin 2¢ cos 29 | (5.17)
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and 3 is the polarization angle given up to an arbitrary multiple of = by

gt (LB = (N - N)
b=t ( ) ) (5.18)

where P is the normal to the detector plane.
By combining Eqs. (5.7), (5.10), (5.11), (5.13), (f) turns out to be

where a represents ‘d/dt’. Expressions for AM and PM can be read from
Egs. (5.12), (5.13). The quantity in the square bracket in Eq. (5.19) can be ap-
proximated by 1 since the remaining terms are corrections of order (orbital pe-
riod)/(precession period) ~ §, /7 f (see Eq.(42) of Ref. [11]), which is a very small

quantity except maybe at high frequencies near the final stages of inspiral, where

i A'M] (5.19)

lefA_M

[ S

the detectors are almost “deaf” due to large shot noise.

3 THE FITTING FACTOR (FF)

3.1 Definition and physical significance

Let us imagine a detector receiving a gravitational signal from a precessing binary
with a waveform represented by W(t). Then because of the detector’s noise n(t),
the output s(t) of the detector will be

s(t) = W(t) +n(t) . (5.20)

If we had used the exact waveform W () as our search template, then we would have

achieved the highest possible signal to noise ratio, given by Eq. (2.5) of Ref. [12]:

(%)m = (W | W), (5.21)

where the inner product of two waveforms (hy | k,) is defined by Eq. (2.3) of
Ref. [12]

Here S,(f) is the spectral den31ty of the detector’s noise. Henceforth we will assume
for S.(f) the following analytic fit to the “advanced” LIGO noise spectrum, which
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has been published by the LIGO team as an estimate of what might be achieved
some years after LIGO turns on: (see Refs. [1, 12])

00 for f < 10 Hz,
Sa(f) = {SO [(*tfg)4 +2 (1 + (-}%)2)] for f > 10 Hz (5.23)
where S = 0.6 x 10~*Hz~! and f; = 70Hz.

The signal-to-noise ratio will be reduced below (S/N )max whenever the template
is not the exact waveform but some other approximate one. In this paper we are
interested in searches performed with some family of templates T, ), .(¢) that
depend on a set of parameters Ay, A2,... Then by definition the signal-to-noise
achieved in the search will be

(—S;) = max (s | Dus...) . (5.24)

N/ = X tms (n | Ty, a,,.)

For an ensemble of realizations of the detector noise, the expectation values of (n |
T ,.) and (2| Ty a,,.) (0] Tagn,,..) are 0 and (T, a,,... | T 2s....) Tespectively.

Thus the ensemble-averaged signal-to-noise ratio turns out to be

(S) (W I Tr\w\z,---)
=) = max
N Az \/(TAI,AQ,... | Tayoxoe)

= | max (W | Ty, »,,..) S
= [Al,kz.... \/(T)\l,/\z,... , TA;,AZ,...)(W ! W)J (N)maz . (525)

We give the name Fitting Factor (FF) to the reduction in signal-to-noise that

results from using the chosen template family, rather than the true signal W, in

the search:
FF = max (T o | W)

Mz (T, g | Togog,n (W | W)

This F'F or its square root is a quantity that has already been used by various

. (5.26)

authors (see [7, 8])as a measure of the adequateness of a template family; but
previous discussions have not shown explicitly how this intuitively well formed
function is connected with detectability. Previously this F'F' has sometimes been
called the “correlation” — a name that is often used in so many different ways that
we prefer to avoid it. The new name we have adopted comes from the fact that,
by maximizing the quantity in Eq. (5.26), we essentially adjust the parameters of
the templates to best fit the true waveform.
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3.2 The form of FF for the Newtonian template family

searching for a precessionally modulated Newtonian
signal

In this section we will construct an explicit expression for the F'F when a “New-
tonian template family” is used to search for the modulated Newtonian waveforms
of Sec. 2.

The Newtonian template family has been introduced and studied previously
by a number of researchers [7, 8]. Each Newtonian template is the waveform
predicted in the Newtonian, quadrupole moment approximation, for some circular,
inspiraling binary; and it therefore has the same form k¢ (t) [or he(f)] as the carrier
signal (5.9). Of course the parameters const,tc,dc, and M of the Newtonian
template are not in general the same as these of the “true”, modulated signal’s
carrier. Rather, the template parameters must be adjusted to make the Newtonian
template resemble as well as possible the modulated waveform.

By using Eq. (5.19), the F'F for a Newtonian filter takes the following form

R[5> df L e OAM x PM]|

Fr= At Aqsmi)((M—sla) [_f:s(f) = ) (5.27)
o \/[fo den(f)] [fgo dfs,.(f)(AM)2]
where ‘R’ means “the real part of”,
V(1) = 2nfAto - Adc + F6r1) S EAME) (5.29

and Atc,A¢c, and A(M~%/3) are the differences in the parameters between a
chosen template and the modulated signal’s carrier. Note that all multiplicative
factors not depending on frequency, such as the distance to the binary, have been
cancelled out because of the specific form of the F'F', which automatically normal-
izes the template and the signal. Fortunately, one of the maximization parameters,
Adc, affects the F'F value trivially, and there is no need to fine-tune it. To maxi-
mize F'F over A¢c, one need only compute the values for F'F with Adc = 0 and
A¢c = m /2 and then add them in quadrature. Therefore Eq. (5.27) for the FF
simplifies to
[5° df e YO AM x PM|

= maXx
e i k] [ g amy

FF , (5.29)
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where W(f) is the same as in Eq. (5.28) but with A¢¢ eliminated

U(f) =2nfAte + Z—(Sw N RAMBY . (5.30)

This is the expression that we have used in a computer code, described later
in Section 4.1, to compute the F'F for various modulated signals. In addition to
the obvious parameters in the F'F, shown explicitly in Egs. (5.29), (5.30), there
are a few others hidden inside the AM, PM functions: the four angles 6, ¢, w, g
(see Fig. 5.3) defining the orientation and direction of the binary on the sky and
the direction of its total angular momentum, the angle cos™! k between the orbital
angular momentum and the spin, the masses M; and M, of the two objects, and

the magnitude S of the spin.

3.3 How do the amplitude and phase modulation affect
the FF?

Before we present the numerical results that we have obtained for the F'F in various
cases, it will be helpful to seek some intuition into the roles that AM and PM play
in the value of FF. We will begin with the effect of AM alone without any phase
modulation. For vanishing PM, the F'F takes a much simpler form than Egs. (3.2)

[ df L0 AM
FF= 2___Sh{) . (5.31)

Vs 5] [ kg (amy]

The €'¥() term has disappeared because, with PM=0, the F'F is maximized by
Ate = A(M™3/3) = 0. 1t is straightforward to see that if AM were also a constant
(no amplitude modulation), F'F would be 1, meaning no signal-to-noise reduction
at all. But what if the amplitude has a large depth of modulation like the A,/ in
Fig. 6 of Ref. [11]? For the sake of simplicity, we will assume that the form of AM
during one binary precession is approximately given by AM =|sin(kf) | for some
k, which very much resembles the plot of A, in Fig. 6 of Ref. [11]. Bearing then
in mind that f~7/3/5,(f) changes rather slowly during one precession (see Fig. 2
of Ref. [12]), one can infer that

PF [y sin(z) dz _ 2v/2
JUE dal 7 sin?(@yda] T

= 0.900 . (5.32)
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Of course this is a lower limit on the F'F' due to AM, since it corresponds to the
deepest possible modulation.

To get a feeling for realistic minimum values of F'F due to AM, consider a
binary with a maximally spinning 10Mg black hole and a non-spinning 1.4Mg
neutron star with an LS angle of 30° and choose its location and orientation to
produce the worst possible amplitude modulation. Then the FF with no PM
turns out to be 0.907 in very good agreement with our rough approximate value
of Eq. (5.32).

Turn, now, from AM with vanishing PM, to PM with vanishing AM. The
analysis in this case is somewhat more complicated, since the two parameters
Atc, A(M~5/3) have to be suitably tuned, to cancel out as well as possible the
effects of ¢, and §® given in Egs. (5.14), (5.15). It can be easily verified that
a perfect cancellation is not possible: the simple frequency dependence of ¥(f)
[Eq. (5.30)] cannot perfectly correct for the oscillating behaviors of ¢ and §®. If
the amplitude of phase modulation is high, then ¥(f) is totally unable to keep the
FF at high levels (> 0.9).

There is another effect (for some cases the main effect) that causes PM to
produce low values of the FF. As has been shown in Eq. (45) of Ref. [11], the
number of precessions for the two extreme cases L > S, S > L, can be inferred

from the following expression for the precession angle

of) 11 (1 + ——m) ——Qm]c;! 10}'{1, for L > S, (5.33)
T 2/3 .
20 7| 19 (14 ) Mus, (10Mo10m)* g g

Now, in the case of secular evolution of ¢ (see Fig. 7 of Ref. [11]), ¢ varies like
a(f) on top of the additional oscillation we talked about in the last paragraph.
But the frequency dependence of «(f) is very different (< f=2/3 to f~!) from that
of W(f). Therefore, ¥(f) cannot follow the evolution of ¢ +2A® for long frequency
intervals, and the F'F remains at low levels.

Finally, there is a third PM effect that can lead to low F'F values. If the PM
changes behavior, from oscillatory to secular or conversely, especially at a frequency
near ~ 50Hz where f~7/3/S5,(f) is maximal (see Fig. 2 of Ref. [12]), then ¥(f) can
only attempt to follow the PM evolution during one of the two evolution phases; it
will fail during the other. This leads to even lower values of the F'F. Later on, in
Section 4, we will check with realistic examples how important these three factors
are in lowering the F'F and what are the chances for each one of them to play an

important role.
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For the moment, we will give an example of the FF due to PM alone. For
the same BH/NS binary as we discussed a few paragraphs above, when we were
examining the effect of the AM on the F'F, the lowest value the F'F can take for
the worst kind of PM is 0.564. This is much lower than the worst F'F' for the AM
alone. It should be noted that the F'F values due to PM alone and AM alone
cannot be trivially combined to obtain the F'F value when both PM and AM are
present. For instance, for the above example, where PM alone gives F'F = 0.564,
if the AM alone had been used then the FF would have been 0.922, but with
both AM and PM on, the F'F would have been 0.653! Instead of driving FF to
lower values (below 0.564), the AM effect has reduced the bad behavior of the
PM effect by strongly suppressing some parts of deep PM modulation. But this is
not a general rule. Sometimes the AM combines with the PM constructively and

sometimes destructively.

4 NUMERICAL INVESTIGATIONS OF FF

4.1 The numerical code

The code written to compute the F'F' is based on Eqs. (5.29), (5.30). The in-
tegrands are numerically integrated from 10Hz up to the frequency of the final
stable orbit, 4383.45 (Mg /M) Hz. Actually this upper limit is rather unimportant
for binaries with small total mass (< 30Mg) because the detector’s high shot noise
Sn(f) at high frequencies strongly suppresses the integrand. The number of steps
used is such that the precession angle a does not change by more than 0.1 rad in
each step; this keeps the error in the calculated F'F smaller than 10~3 and therefore
negligible since we compute FF only to three significant digits.

We have also checked the error due to approximating the square bracket in
Eq. (5.19) by unity. As we expected, the extra factors next to the 1 change the
FF by a tiny amount (< 10~*) even for rapidly modulated phases and amplitudes.

The only difficulty in computing the F'F'is to guess the right pair of parameters
Ato, A(M~5/3) that produces the maximum in Egs. (5.29), (5.30). Of course,
the code is able to climb up at a maximum, but there is no guarantee that this
is the global mazimum. The form of the function to be maximized on the 2-
parameter Atg, A(M)~5/3 space is very complicated; see Fig. 5.2. We have roughly
guessed the region of the global maximum by computing the average value of
d(modulating phase)/df around 50 Hz and adjusting the parameters of d¥(f)/df
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Figure 5.2: This is an example of the complicated landscape of the F'F on the
parameter space of Atg, A(M~5/3) where many local maximums can be observed.
The geometry used here is the one that provided the overall lowest FF' value for
the case of a maximally spinning 10Mg black hole and a 1.4 Mg neutron star with
LS = 30°.
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so that the two slopes are almost opposite. Then, starting from this point the code
climbs up to the neighboring maximum. By searching a little bit around this peak
we can be quite sure that it is the highest peak.

This procedure becomes more complicated in cases like the one where the PM
changes behavior at some frequency. Then, there may be more than one candi-
date place for a global maximum. In the examples that follow we have carefully
examined all such candidate places.

It is worthwhile to note that the improved template families we introduced in
Sections 6 and 7 produce lower values of |Atc|, |A(M~%/3)| than the Newtonian
family because the extra parameter itself corrects for the PM and AM.

Throughout, we have used a grid on the 2-parameter space with a spacing of
1 msec for Atc and 2 x 10'5M(;5/3 for A(M~%/3). This choice is such that the
difference for two nearby grid points in the overall change of [d¥(f) , over the
band of low detector noise (10 - 100 Hz), is less than 1 rad. Hence the F'F changes

very smoothly from point to point.

4.2 Dependence of the FF on the direction to the binary

In order to study the dependence of the F'F on the binary’s direction we performed
the following search. We assumed that the merging compact binary is located
directly above the North Pole of the Earth (of course this choice is only a matter
of convention since any other point on Earth would be equivalent). We fixed the
direction of the binary’s total angular momentum J and let it precess. Then we
filled the whole Earth’s surface with identical detectors having the same noise
spectrum, described by Eq. (5.23), and computed the F'F for their outputs.
There are three angles related to the location of the detector: the standard 6’
and ¢’ spherical coordinates related to the geographic longitude and latitude of the
detector’s location (not to be confused with the angles 6 and ¢ used in Egs. (5.16),
(25.17)) and an angle w defining the orientation of its arms. In the following we
define w to be the angle that one has to rotate the detector on the Earth’s surface,
for the arms to coincide with the local parallel and meridian (see Fig. 5.3). Note
that w is only defined modulo 7 /2 due to the quadrupolar behavior of gravitational

waves.

“rotated” detector around the Earth, we

By keeping w fixed and moving the
notice the following features of the F'/F. (i) The FF has the same form, as a

function of longitude at any latitude, but with some shift 4 that depends on the
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'

Figure 5.3: This is the geometry that we have used to investigate the dependence
of FF on the various random angles, ¢', ¢, w, g.
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latitude and on the rotation angle w:
FF@,¢,w)= FF(# =0,¢' +7,w), (5.34)

where

v =70, w). (5.35)
This dependence is depicted in Fig. 5.4 for three different 6 values. It can be
explained by the following argument. If the detector’s plane is not perpendicular
to the waves’ propagation direction, then the signal is the same as if the two
arms were the projections of the original ones on the plane perpendicular to the
propagation direction. The equivalent arms, orthogonal to the direction of the
binary, are no longer equal to each other and they form some angle between 90°
and 180°. If we now lengthen the shorter arm to give them equal lengths and move
them by equal amounts toward the bisector to make them perpendicular, we will
change the linear combination of hy(t) and hy(t) (the two waveforms) that they
measure; but this change is not important because we could get all the different
combinations of polarizations, even with orthogonal detectors (detectors at the
North pole in our case) by rotating the detector in its plane. (ii) For the two
special cases of detectors at the North pole (and equivalently at the South pole)
and at the Equator it is easy to verify analytically that

FF(0,= 0,¢’1,w1 = 0) = FF(6,=O,¢I2 =O,w2 = ¢Il) s (536)

and

FF(0' =7/2,¢1,w;) = FF(0' = 0,¢],w;, = 0) . (5.37)
The former corresponds to the fact, easily seen in Fig. 5.4, that for 8/ = 0 the
detector’s orientation depends only on ¢’ + w and not separately on ¢’ and w. The
latter can be easily understood, since at the Equator a detector is equivalent to a

one-arm detector perpendicular to the incoming waves.
This dependence of the F'F on the location of the detector on Earth simplifies
our investigation of the F'F" a lot. Eq. (5.34) makes it possible to restrict ourselves
to detectors orthogonal to the propagation direction (detectors at the North pole)

without any loss of generality.

4.3 Dependence of FF on the direction of the binary’s

total angular momentum J

We assume, now, that the binary is overhead at the detector and we move the

total angular momentum J around to see how its direction J affects the FF.
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Figure 5.4: This is a series of 3 three-dimensional plots showing the F'F for a
binary of fixed orientation as one moves a detector on the Earth’s surface keeping
w fixed. (a) w = 0°, (b) w = 25°, (c) w = 40°. The plots verify Eqs (5.34), (5.35),
(5.36), (5.37).
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Recall that the modulational phase is the sum of two terms, PM = e~#262(t)+(?)]
[cf. Eq. (5.13)]. From Eq. (65) of Ref. [11] we know that during one precession §®
changes by

i 450 —27 cos AL if |Jo- L| < |Jo - N|
/(;E—da= om(—cosd +1) ifJo-L > |Jo-N] . (5.38)

2m(—cos Ay, — 1) if Jo- L < —|Jo- N|

As for ¢, its evolution can be deduced using an intuitive tool introduced in
Ref. [11], the cell diagram (which is reproduced in Fig. 5.5). There are six special
“singular” directions in the cell diagram: the six intersections of the black and
white cell walls. If the binary’s precession cone (the cone on which its orbital
angular momentum L precesses) encloses one of the singular directions, then ¢
evolves secularly; otherwise it oscillates. We expect ¢ to behave in the most
irregular way and thus cause the F'F to assume its lowest values for the cases
where L’s spiraling precession barely touches one of these singular directions at a
frequency near 50 Hz, where f~7/3/S,(f) is maximum (see Figs. 5.6).

Actually, for the two singular directions where ¢ changes by 47 with each
precession that encloses them, 2@ changes by —47 cos A, (which is ~ —4x if LS
is small) thus moderating the total phase modulation. Correspondingly, as we will
see later, these two directions produce fairly high values for the FF, when LS is
small.

By contrast, for the other four singular directions, around which ¢ changes by
27 with each precession, 26® changes only by 47(1 — cos AL), a small angle if the
opening angle LS is small. Thus these four directions will typically produce the
lowest values of the F'F.

It should be emphasized that it is not J itself that leads to low FF values
by pointing along these singular directions, but L. Thus, to produce low FF’s J
should find itself in ring-like areas around these singular points ; see Figs. 5.6.

The situation is much more complicated if the opening angle LS is big than
if it is small (but excluding the extreme value of =~ 180° which would lead to
transitional precession). In this case the cone of L can encompass more than one
singular direction, leading to multiple behavior of the phase evolution and low
values of the F'F.

In general in the parameter space [Atc, A(M~%/3)] there are at most as many
candidate regions, for expression (5.27) for the F'F to acquire its global maximum,

as the number of singular directions encompassed by the cone of L. This happens
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Figure 5.5: This cell diagram, reproduced from Ref. [11], is a useful tool for un-
derstanding how the phase ¢ evolves while L precesses, for a detector positioned
as shown in the diagram. Each wall in the diagram is labeled by the value that ¢
takes when L lies in that wall. The lines at which black and white walls intersect
are singular directions; when L passes near such a line, ¢ changes rapidly.
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because, when the evolving precession cone passes through each of the singular
directions, the behavior of the phase evolution changes. This information enables

us to initiate our numerical search for F'F for various geometries.

0° 30° 60° 90° 0° 30° 60° 90°
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w
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w Ls = 140° w

Figure 5.6: This is a series of density plot diagrams showing the F'F distribution
in grey-scale (black represents the lowest values) for a detector at the North pole
as one rotates its arms (variable w) and changes the inclination g of the binary’s
total angular momentum J to the z-axis (the Earth’s rotation axis) while keeping
J in the y — z plane (see Fig. 5.3). We have arranged the Figures in pairs. The left
column corresponds to a 1.4Mg, 1.4Mg NS/NS binary and the right column to a
10Mg, 1.4Mg BH/NS binary. For both types of binaries the more massive object
is maximally spinning (S; = M?). The ring with the low F'F around the singular
direction (g = 90°, w = 45°) can be easily recognized. Actually only one eighth of
the whole (g,w) space is displayed here since the same pattern is repeated.
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4.4 Dependence of FF on the masses and the LS angle

Up to this point, we have investigated the dependence of the F'F on all the ran-
domly distributed variables defining the geometry of the source-detector system.
These are the variables over which we must average to obtain a probabilistic picture
of the F'F. In the present section, we discuss the effect of the other, non-randomly
distributed, variables My, M,, S, and LS. In the following, as in Sec. 4.3, we assume

that the larger mass is maximally spinning,
S =M. (5.39)

As we showed in Sec. 4.3 the F'F value depends greatly on the opening angle A
of the precession cone, and the singular points it encompasses. The angle Ay, itself
is a function of the binary’s masses, the LS angle, and the gravity wave frequency
[cf. Egs. (5.2), (5.5)]. It is easy to show that

L M\ (M F\ P
5= 40.088 (E) (M_@E) . (5.40)
From Eq. (5.2) with L = v'/Mr we see that the opening angle Ay is larger if L/S
is lower, i.e., [Eq. (5.40)] if the total mass M is higher and the ratio of masses is
lower. Restricting ourselves to our two typical combinations of masses, one with a
10M black hole and a 1.4Mg neutron star and the other with two 1.4 M, neutron
stars, we can see that in the NS/NS case the Aj, opening angles are much smaller
than in the BH/NS case; cf. Figs. 5.7. Hence we expect, and it is true as we shall
see in examples in Sec. 5, that the NS/NS binaries produce overall higher values
of FF than NS/BH or BH/BH binaries with unequal masses.

Of course the LS angle plays also a crucial role. If LS is small the values of
FF stay at a high level for most of the various geometries, whatever the masses

may be.

5 DETECTABILITY OF PRECESSING
BINARIES

We have thoroughly analyzed how the various random variables, such as the posi-
tion on the sky and the orientation of the binary’s plane, affect the F'F values. We
have also checked how the non-random variables like the masses and the LS angle

affect the worsening or improvement of the F'F'. But ultimately what is important
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Figure 5.7: (a) This three-dimensional plot shows how the opening angle Ay, of L
changes with frequency (from 10 Hz up to the frequency of the last stable orbit)
for various LS angles, for two representative binaries: (a) a 1.4Mg, 1.4My NS/NS
binary with one of the stars maximally rotating, S; = M?; (b) a 10Mg, 1.4M,
BH/NS binary with the black hole maximally rotating.
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is the probability of detecting these modulating signals. In this spirit, for a number
of typical values of the nonrandom parameters, we have integrated all the random
variables to investigate what is the probability to have an F'F value above some
level and therefore to be able to detect the gravitational waves coming from (New-
tonian) precessing binaries using the nonprecessing Newtonian template family. In
Fig. 5.8, the probability P(FF < FFp) of getting an FF value below some level
FF, is depicted. Part (a) of the figure shows this probability for our standard
1.4Mg, 1.4Mg NS/NS binary for various LS angles. Things look very optimistic
in this case; only a very small portion of the geometries produce FF’s below 0.9
with a corresponding reduction in the event rate. In Figs. 5.8b by contrast, one
can see that for our standard 10Mg, 1.4 Mg BH/NS binary, if the LS angle is large
enough (> 30°) the F'F is below 0.9 for more than half of the various randomly

distributed geometries!

6 POST-NEWTONIAN TEMPLATE FAMILY

Of course an obvious way to improve the detectability is to use the full family of
modulated theoretical waveforms in the search for signals; then the FF would be
unity and we would obtain the maximum possible signal-to-noise. But this solu-
tion is rather undesirable since the modulated waveforms are a very large family
containing many parameters, and this would greatly increase the computational
task and seriously reduce the statistical significance of any discovered signal. What
we need is a variation of the Newtonian filter with only one or two extra param-
eters that can improve the F'F values by better matching the complicated phase
evolution of the signals.

As we have seen in Sec. 3.3, the main reason that a Newtonian template cannot
follow the evolution of the PM, is that the only frequency evolution of its phase
W(f) is (3/4)(8mMf)~%3 [cf. Eq. (5.30)], while a(f) (the precession angle; see
Eq. (5.33)) evolves &< f~%/3 or f~! depending on the relative sizes of L and S. A
simple way, then, to solve our problem is to add an extra term onto the phase
evolution of the Newtonian template, a term with a softer than f~%/3 dependence

on f; for example an A f~! term, where A is the new template parameter:
TPN(f) = const X f_7/sei‘pPN(f)’ (5.41)

with 3
Upn(f) =27 ftc — do + Z(&rM NP+ AfT, (5.42)
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Figure 5.8: By compiling the values of the F'F for all the cases shown in Figs. 5.6,
we obtain the probability over all the random variables for the F'F to stay below
some critical value F'Fy. The curves in this figure show that probability, for various

values of the opening angle LS. Plot (a) is for NS/NS binaries and (b) for BH/NS
binaries with the same masses and spins as in Fig. 5.7.
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Since this A f7! term is also exactly the correction to the phase that is required
to match the binary’s nonmodulated post!-Newtonian effects in the waveform
[12], this template family (henceforth, we shall call it the “post!-Newtonian tem-
plate family”) might well be the best one can construct with four parameters
(tc, o, M, A) altogether. Our code is able to handle the new parameter in the
maximization process to compute the F'F. We have attempted a few runs with the
extra term for the worst cases we presented in the previous section. It turns out
[see Fig. 5.9] that this extra term helps a lot in matching the modulated Newtonian
waveforms, but it still leaves the F'F' below 0.9 for most of the geometries of our
standard BH/NS binary when LS is greater than ~ 45°.

7 NONMODULATIONAL POST-NEWTONIAN
EFFECTS AND A POST!*.NEWTONIAN
FAMILY

Up to this point we have assumed modulated Newtonian waveforms as signals.
But what about the nonmodulational post-Newtonian effects? We neglected them
so as to explore the influence of precession-induced modulation on the FF in
isolation from other post-Newtonian effects. Now we are ready to consider these
other effects.

As we said in the Introduction, Kokotas, Krolak, and Schafer [7], and Bal-
asubramanian, and Dhurandhar [8] have investigated the importance of all the
higher nonmodulational post-Newtonian corrections currently available, namely
the post!- and post!*-Newtonian corrections in the signal, and have found that
the Newtonian template family produces rather low F F' values for such signals. We
have repeated their calculations and confirmed their results. In addition, we have
calculated the F'F values for all the possible combinations between Newtonian and
post-Newtonian nonmodulated signals and templates, and have incorporated the
effects of spins, with LS =0 (and thus no precession), into the calculations. Of
course, when we use signals and templates of the same post-Newtonian accuracy,
we get F'F values equal to 1.

Before we present our general results, let us write down the form of the most
accurate nonmodulated waveform currently available (see Refs. [12, 14]), with all

the post-Newtonian effects in the amplitude ignored:

hprsn(f) = const x f~7/0e¥pron(f) (5.43)
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Figure 5.9: The same kind of plots as in Fig. 5.8 but for the (unmodulated) post!-
Newtonian family of templates used to search for modulated Newtonian signals.
Again (a) is for NS/NS and (b) for BH/NS. Only a few (the worst) cases are shown
here, for comparison with the ones in Figs. 5.8.
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where

Upisn(f) = 2nfic — do+ mos(r M)

20 (743 11p o2
[l+ 9 (336+4M)"’ (16w — 4f) = ] , (5.44)
and
= (rMf)>*?, (5.45)
= 27, . | == S 113 | |
p=ML [( 12 + 4 M, ! 12 + 4M, S2 (5.46)

One can easily identify the O[z] post’-Newtonian correction in (5.45) as the A f~1

post!-Newtonian term that we introduced in the previous section as an improve-
ment to the Newtonian family.

Table 1 shows the results of our calculations. Here, by contrast with Secs. 4
and 5, the signal in each column is unique. The many signal parameters that
we faced in Secs. 4 and 5 (fS, detector orientation, direction of J , direction to
source) vanish from the signal in this section’s non-precessing limit, LS=0. From
Table 1, one can see that the F'F values for the post®/2-Newtonian signal (without
precession) and the Newtonian or the post!-Newtonian template family are much
too low for these families to be adequate for detection. These low FF’s can be
explained by the fact that the signal term z3/2 (which is left out of the templates)
is comparable with the z term (which the post!-Newtonian templates include),
and has the opposite sign.

Because the Newtonian and post!-Newtonian families are so inadequate, it
is necessary to include higher-order, nonmodulational effects in the waveforms.
This can (and should) be done up to the highest available post-Newtonian order,
without introducing any new parameters, in the case of vanishing spins. However
the waveforms are not yet known beyond post!-5-Newtonian order; so for now we
only go that high.

More specifically, we introduce a post!->-Newtonian template family whose form

is that of Eqs. (5.43)—(5.46) but with the new spin parameter 8 set to zero:

Tprsn(f) = const x f_7/eeiw;’1-5N(f), (5.47)
where
3 20 /743 1lu
1 = tc — — -5/3 [1 = <_ _) _ 3/2
prsn(f) =27ftc — ¢c + 128(71'Mf) + 5 336+4M z — 167z

(5.48)
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Again we ignore all the post-Newtonian effects in the amplitude. Note that the
O|z] correction is equivalent to the A f~! term of the post!-Newtonian template.

We have explored the adequacy of this 4-parameter (t¢, ¢, M, A) family in
searches for waves from non-precessing but maximally spinning (fS=O) post!-5-
Newtonian binaries. The resulting F'F' (0.987 for BH/NS, 0.985 for NS/NS; see
Table 1) is excellent. The unimportance of the spin effects (the g factor in the
signal), is due to the small value of # compared to 47 (see Eq. (5.43)). The
situation becomes worse (lower FF') for an extreme ratio of masses (F'F ~ 0.895
for My/M; = 0.05), since for a maximally rotating large black hole (with mass M)
and a small nonrotating black hole or neutron star (with mass M) 3 grows like the
ratio MZ/(M, + M;)?. [The FF values quoted in Table 1, for a post!-*-Newtonian
signal and template assume that only the more massive body is spinning with

S; = M?L; the more massive was chosen in order to obtain the maximum value

for A.]

8 MODULATED POST!>-NEWTONIAN
SIGNALS SEARCHED FOR WITH THE
POST!*-NEWTONIAN FAMILY

We now consider the suitability of this post!*-Newtonian family (5.47) for de-
tection of spin-modulated signals. For this purpose we have used as signals the
nonmodulated post!-*-Newtonian signals for our typical NS/NS and BH/NS bina-
ries and have modulated them according to the AM and PM introduced in Sec. 2:

h(f) = AM x PMhpisy(f) . (5.49)

Although the modulational effects are based on Newtonian orbits and quadrupole
wave generation, this artificial composition of signal will surely give us a more real-
istic kind of signals than just the nonmodulated post-Newtonian or the modulated
Newtonian signal.

t1-5-Newtonian tem-

The FF values we have obtained with our 4-parameter pos
plates and the modulated post’-*-Newtonian signals were at least as good as the
values we obtained in the previous section for unmodulated post!-Newtonian tem-
plates and modulated Newtonian signals; see Fig. 5.10. This was to be expected

since the two terms z3/2 and z in the templates’ phase [Eq. (5.48)] have the exact



188

frequency dependences that the precession follows for the two extreme cases of Eq.

(5.33).

9 CONCLUSIONS

This paper is an initial exploratory work on the issue of search templates which will
be used by the ground-based LIGO/VIRGO/GEO and space-based LISA detec-
tors, for detecting gravity wave signals from inspiraling black hole and/or neutron
star binaries. We have introduced a measure of adequateness of a template fam-
ily (the Fitting Factor) and have shown (in agreement with other people’s work)
that the Newtonian and the post!-Newtonian template family are inadequate to
detect non-modulated post!*-Newtonian signals. We have then suggested the use
of the post!>-Newtonian family with one more parameter than the Newtonian
family. The post!-*-Newtonian family produces higher F'F’s than the Newtonian
family not only for non-modulated post!-*-Newtonian signals but for precessionally
modulated signals too.

The understanding of F'F’s gained from our study suggests that for most bi-
naries, but not all, an adequate family of search templates will be the 4-parameter
family (¢c, tc, M, A), or equivalently (¢c, tc, M, p/M), based on the waveforms
for circular-orbit, zero-spin binaries at the highest post-Newtonian order n,, that
is available when the searches begin. This is likely to be post3-Newtonian order,
i.e., Nmax = 3. It may well be, however, that as at present (nma.x = 1.5), so also
then, binaries with moderately large mass ratios and moderately large LS, i.e.,
with large precessions, will have unacceptably low FF’s when this 4-parameter
family is used. In preparation for that possibility, an effort is needed now to ex-
pand the np., = 1.5, 4-parameter family to include some form of modulation that
raises F'F' above 0.9 in these large-precession cases. This also might be done for
the extreme mass-ratio u/M << 1, nyax = 8, 4-parameter template family based
on the Teukolsky-formalism waveforms of Sasaki and Tagoshi [15].

Throughout this paper we have restricted ourselves to template families with
continuously varying parameters. Now is the time to abandon that restriction and
focus on discrete template families. The goal must be, building on the continuous-
family insights of this paper and on Refs [7, 8] to device a discrete family with
as small a number of members as possible, which gives FF' > 0.9 (or some other
threshold) for all plausible binary waveforms. A first exploration of discrete tem-
plate families has been carried out by Sathyaprakash and Dhurhandhar [6].
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Figure 5.10: The same kind of plots as in Fig 5.9 but for the zero-spin post!--
Newtonian family of Eq. (5.47), and a signal in which the Newtonian-order preces-
sion effects are added on top of the more realistic post!*>-Newtonian signal. Again
(a) is for NS/NS and (b) for BH/NS. Only a few (the worst) cases are shown here,
for comparison with the ones in Figs. 5.8.
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APPENDIX: Extension of the results to low-

frequency space-based detectors

Preliminary designs for a space-based antenna (LISA) to detect gravitational waves
from supermassive black holes have been developed, and LISA has been proposed
for a future space mission(see Refs. [16]). The noise spectrum for such a detector
has been estimated to have roughly the following shape; this is an analytic fit to
Fig. 2 of Ref. [16]:

(f/1mHz)~* for f < 1 mHz,
Sn(f)=Sox (1 for 1 mHz < f < 0.1 Hz, (5.50)
107%(f/1mHz)? for f > 0.1 Hz

with Sp = 107*? Hz~!. Actually, there is one more branch of the noise spectrum
for frequencies below 10~° Hz, which grows with decreasing f even faster than
o f~*; but since the noise levels are already so high at these low frequencies, we
can ignore this branch and restrict ourselves to the above approximation when
computing the F'F for binary signals.

There is a great similarity between the shapes of the noise spectra of the ground-
based [Eq. (5.23)] and the space-based [Eq. (5.50)] detectors. There is a big dif-
ference, however, in the range of frequencies over which these detectors have high
sensitivity: 5 orders of magnitude. The equations describing the precession of a
binary and its waveforms depend only on the ratio of masses and the product fM
[see Egs. (5.2), (5.3), (5.40)). Therefore, if we use as examples binaries with masses
10° times larger than for the binaries considered for the ground-based detectors,

and keep the same mass ratios, we should get approximately the same F'F values
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as for the LIGO/VIRGO/GEOQ detectors. The only differences will come from the
modest differences in the shapes of the noise spectra (5.23) and (5.50); and since
the spectra are so similar, the F' F’s should be nearly the same.

We verify this in Fig. 5.11 for the case of a Newtonian template family and a
maximally rotating 10°Mg and a nonrotating 1.4 x 10°M; BH/BH binary, with
LS= 60° and a noise spectrum given by Eq. (5.50). The corresponding plot of the
F'F probability distribution over the random variables for a 10My, 1.4M, BH/NS
binary, with LS= 60° and a noise spectrum given by Eq. (5.23), is copied here from
Fig. 5.8 for comparison. The fairly good agreement is obvious. Thus, all the results
derived in this paper for LIGO/VIRGO/GEO search templates can be carried over
essentially without change to LISA; and this paper can be regarded as an initial
exploratory study of templates for LISA as well as for LIGO/VIRGO/GEO.
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Figure 5.11: The same kind of plot as in Fig. 5.8 but for a 10°Mg, 1.4 x 10°M,
BH/BH binary, with LS= 60° and a noise spectrum given by Eq. (5.50) (thick
line). The corresponding plot for a 10Mg, 1.4My BH/NS binary, with LS= 60°

and a noise spectrum given by Eq. (5.23) is copied here from Fig. 5.8 for comparison
(thin line).
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