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Abstract

This dissertation applies recent theoretical developments in control
to two practical examples. The first example is control of the primary cir-
cuit of a pressurized water nuclear reactor. This is an interesting example
because the plant is complex and its dynamics vary greatly over the oper-
ating range of interest. The second example is a thrust-vectored ducted
fan engine, a nonlinear flight control experiment at Caltech.

The main part of this dissertation is the application of linear para-
meter-dependent control techniques to the examples. The synthesis tech-
nique is based on the solution of linear matrix inequalities (LMIs) and
produces a controller which achieves specified performance against the
worst-case time variation of measurable parameters entering the plant in
a linear fractional manner. Thus the plant can have widely varying dy-
namics over the operating range, a quality possessed by both examples.
The controllers designed with these methods perform extremely well and
are compared to H ., gain-scheduled, and nonlinear controllers.

Additionally, an in-depth examination of the model of the ducted fan
is performed, including system identification. From this work, we pro-
ceed to apply various techniques to examine what they can tell us in the
context of a practical example. The primary technique is LMI-based model
validation.

The contribution this dissertation makes is to show that parameter-
dependent control techniques can be applied with great effectiveness to
practical applications. Moreover, the trade-off between modelling and
controller performance is examined in some detail. Finally, we demon-
strate the applicability of recent model validation techniques in practice,
and discuss stabilizability issues.
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Chapter 1

Introduction

Does the road wind up-hill all the way?
Yes, to the very end.
Will the day’s journey take the whole long day?
From more to night, my friend
—Christina Rosetti

As technology increases, control systems are being used on more complex
systems than ever before. Simultaneously, the control community has
worked to develop new theoretical machinery to apply to an increasing
range of systems. Unfortunately, in the last twenty years, there has been
extremely little fransition from a modern theoretical development to their
widespread use in industrial applications. In fact, almost all industrial
controllers are either switching or proportional-integral-derivative (PID).
Industry has shown itself eager to adopt new methodologies in control,
but only when the methodologies are made accessible to them. The few,
isolated examples where this transition occurs show that modern theoret-
ical developments find use in industry only when they are presented as a
set of reliable and accessible software tools. Moreover, the theory must
be applied at least to simple applications for industry to accept them.

The intent of this dissertation is to bridge the gap that exists between
theory and practice by evaluating several recent techniques for use in con-
trol system design. The evaluations are done by testing the techniques’
usefulness either on a real application, or a realistic simulator. Our goals
are to assess how well the techniques apply (are they straightforward to
apply as the theory is presented?), how good the techniques are (do they
provide a better control law or provide an insight not easily obtainable
otherwise?), and how computationally reliable the techniques are (can we
compute what the theory provides for us?). By addressing these issues,
we will provide useful information of two sorts: first, experimentalists
can compare our application of these techniques to their own problems
to determine if they are useful; second, theoreticians can examine the limi-
tations revealed by these techniques as a point to begin their development
of further theory.

The specific techniques we explore are a new method for gain-schedu-
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ling and a recent technique aiding in the evaluation of robust control
models. In all cases, this work represents the first application of these
techniques to a physical system. Our primary emphasis is on the gain-
scheduling technique.

All of the computational procedures discussed in this work involve
solving linear matrix inequalities (LMIs). The solution of an LMl is a convex
optimization problem and the solution of such problems is much studied
and well understood [15, 36]. All LMIs herein were solved via a software
package developed by Gahinet, Nemirovskii, Laub, and Chilali [22], which
employs what is probably the most efficient of the known algorithms for
solving LMIs — Nemirovskii's projective algorithm. The control commu-
nity has almost reached the state where it regards any problem that has
been reduced to an LMI as solved, but we shall caution against this. As we
shall see in Chapters 4 and 6, there is still work needed on numerical LMI
solvers.

1.1 Gain Scheduling

Gain scheduling is a venerable technique in control systems, since it has
long been recognized that linear control techniques are inadequate to han-
dle many systems of interest, and nonlinear techniques have not yet ad-
vanced to the stage where they can adequately control these systems. The
idea behind gain scheduling is that one can obtain linear controllers for
a variety of different operating points of the system, and then mix them
together in an ad hoc fashion so that a control law is fashioned over the
entire operating regime of the plant. The plant and controller are then
exhaustively simulated to determine if the non-local performance of the
system is adequate. The disadvantage of this technique is that there are no
known methods of scheduling such controllers which provide an a priori
guarantee on the stability or performance of the closed-loop system. Addi-
tionally, large and often unacceptable transients can occur when switching
between these controllers. To avoid this transient problem (the issue of
“bumpless transfer”) the gains of the controllers are usually interpolated.
As a result, it is more effort to schedule a set of LQG or H,, controllers,
since the controller must be put in an observer-based form for this to suc-
ceed. This problem has been investigated for #,, conirollers in [26, 38],
among others.

Shamma [45, 46] has studied gain scheduling by examining systems
called linear parameter-varying (LPV) systems. This is a system of the form

x(k +1)
v (k)

i

A0 (k))x(k) +B (0 (k) uk)
C(O(k))x(k) +D (6 (k))u(k)

I



where 0(k) represents a time-varying vector of parameters upon which the
entries of the state space matrices depend. For a general LPV system, the
values of (k) are not known a priori, but are assumed to be measurable.
If the time-variation of 8(k) is known for all k, the system becomes a
linear time-varying (LTV) system, while if 6(k) = 6y is constant for all k,
the resulting system is linear time-invariant (LTI) system.

Only sufficient conditions for the analysis or synthesis for this type
of system are known. Much work has been done on & generalization of
LPV systems where 6 is no longer a time-varying vector but is rather an
operator from, for example, £, to £». Clearly, conditions derived in the
operator framework are sufficient for the LPV framework, but are not nec-
essary. Unfortunately, the control literature is vague about the fact that
these are only sufficient conditions for the real systems of interest.

Both Shamma [44] and Megretskii [31] have derived necessary and
sufficient conditions for an LPV system in the operator framework to be
stable. Lu [30] later developed a theory of stabilization in this framework
when the LPV systems can be expressed as a linear fractional transforma-
tion (LFT) of a constant matrix and an operator set. That is, the system
has a transfer function equal to

D+CA(-AA)'B

where A is a member of a prescribed set of operators (as shown in Chap-
ter 2, anormal LTI system results when A is chosen to be the shift operator
z~1). He was able to derive necessary and sufficient conditions for the sta-
bilizability and detectability of such systems.

Building on these results, a major breakthrough came in [39] from
Packard, who developed machinery which showed that in the case of those
LPV systems which can be represented as an LFT the synthesis problem
is a convex optimization problem. Packard’s theory produces an optimal
parameter-dependent controller; i.e., the controller provides optimal per-
formance against the worst-case operator in the prescribed set. A similar
result in this area was obtained by Apkarian and Gahinet [1].

The advance this represents is that once a parameter-varying model is
obtained, the synthesis is a one step procedure, and provides theoretical
performance and stability guarantees. Also, the entire problem of bump-
less transfer is avoided implicitly. The disadvantage of this procedure
is that it is potentially quite conservative, since the worst-case operator
may have little relation to a parameter variation that can physically occur.
Nonetheless, these results do represent an upper bound on achievable
performance, and assessing how well this upper bound works on physical
examples is the goal of this work.



1.2 Model Validation

A robust control model is a model for a system which contains not only a
model of the system dynamics, but an uncertainty and noise description as
well. The models are used extensively in the H ., /u design framework [40].
The “model validation” problem was originally formulated by Smith and
Doyle [48] to provide a connection between a robust control model and
data measured from a physical system, and in this work we will use the
term in the sense that they define it. It seeks to answer the question “Does
the robust control model account for the measurements from the phys-
ical system?” A computational framework to apply the model validation
problem was developed by Newlin and Smith [37]. Although the way we
will apply the model validation problem in Chapter 6 is not exactly in the
context in which it was formulated, it is a straightforward corollary to the
standard framework. It represents the first application of these types of
model validation techniques to a physical system.

The problem of approximating a system by one of lower order is
another intensely studied problem in control (see [7] and the references
therein). For general LPV systems in an LFT framework systematic tech-
niques are quite recent. The techniques are essentially corollaries of the
gain scheduling machinery developed by Packard and mentioned previ-
ously [39]. The work presented here represents the first attempt at an
experimental application of these results.

1.3 Overview of the Dissertation

In Chapter 2 the theory needed to understand the LPV synthesis procedure
will be detailed. We will also review LFTs and stability, stabilizability, and
detectability for LPV systems. In addition, enough background is provided
to show how the parameter-varying model of a general system can be
constructed.

Chapter 3 introduces the first application — the primary circuit of a
nuclear power plant — and details the LPV design procedure for this ap-
plication. This application was selected because the dynamics of it vary
enough that a linear controller is inadequate to provide reasonable per-
formance over the operating range. An interesting point this application
possesses is that the construction of the parameter-varying model must
be done from identified, rather than first principles, models. We evalu-
ate the resulting LPV controller in terms of its performance on a realistic
nonlinear simulator.

Chapters 4 through 6 are devoted to the second application, a thrust-
vectored ducted fan engine. This application is a nonlinear flight control
experiment built at Caltech. In Chapter 4 the application and its model are
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described. Both an #H. and LPV controller are designed for it. The con-
struction of the parameter-varying model is from a first principles model.
Chapter 5 describes the trajectories the ducted fan is tested on, describes
the performance measures used to compare the performance of different
controllers, and presents an evaluation of the controllers based on these
measures. In Chapter 6 we explore the use of model validation when ap-
plied to the ducted fan, and additionally discuss stabilizability issues of
the model. As a precursor to this, a model of the ducted fan is identified
from input-output data.

Finally, we conclude with an evaluation of these techniques, and the
issues we feel merit more investigation. Our intent is to present the two
applications independently. Thus some repetition of material is unavoid-
able, although we attempt to hold it to a minimum.



Chapter 2

Review of Linear
Parameter-Varying Synthesis

Er that I ferther in the tale pace,

Me thinketh it acordaunt to resoun

To tell yow al the condicioun

Of each of hem, so as it semed to me
—Geoffrey Chaucer

In this chapter much of the theoretical machinery applied in this work
is reviewed. We assume the reader has some familiarity with the funda-
mentals of feedback system analysis. In particular, we assume knowledge
of the small-gain theorem and of memoryless operators. Willems [49] is
an excellent reference for such material. The basic concepts of p-analysis
and u-synthesis are also assumed; they can be found in Packard and
Doyle [40]. Complete and rigorous explanations of this work can be found
in [19, 40, 39].

The notation is standard. R and C denote the fields of real and com-
plex numbers, respectively. R¥ and C* denote the real and complex k-
dimensional vector spaces. R"*™ and C"*™ are the rings of real and com-
plex n X m matrices. If M € C""™  the maximum singular value of M is
denoted by o (M); both M* and M’ denote the complex conjugate trans-
pose. The Hilbert space of square summable sequences is denoted by ¥5;
L(¥>) represents the set of all linear time-varying operators on ¥». The
shift operator on ¥ is denoted by z~1.

2.1 Linear Fractional Transformations

The background machinery for almost all results in this work is that of
linear fractional transformations (LFTs). These were first introduced into
the control community by Redheffer [42], but did not gain wide acceptance
until the work of Safonov [43] and Doyle [18]. With LFTs, we can easily
describe sets of systems as an operation between an operator and a matrix.



Figure 2.1: Block diagram representing a general LFT.

Alllinear interconnections of systems and LFTs and more importantly, any
rational function, can be represented as an LFT [50, 15].
Our notation for LFTs will be as follows. Let A denote the set

{diag [611ny, ... , Ol Asits... , Asrr] 185 € L(B2), Ay, € L{L)m k]

For each A € A, consider the loop equations

z = P,owv+P,u
Y = PyyV+Pyu
v = Az

This set of equations is shown pictorially as a block diagram in Figure 2.1,

and we let
PZV qu
P= )
{Pyv Pyu]

Usually P will be considered as a matrix. It has interpretations as a system
and an operator too, though, and we will move between these interpreta-
tions without making an explicit mention of the transition. It should be
clear from the context what interpretation P has. For a general matrix P
with many elements, we may explicitly denote a partition of P instead of
writing what P, P;y, Py, and P,,, are; this partition will be denoted by

lines, for example,
p_| A BIC
| D E[F |

We can eliminate z and v from the loop equations, solving for y in
terms of P, A, and u, which gives us

¥ = (Pyu+ Py I = PyA) 7 Py u (2.1)
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subject to the condition, which we shall henceforth assume, that I - P,, A
is invertible. The LFT is said to be well-posed when this is the case. Equa-
tion 2.1 will be denoted as

Another common notation is v = F,, (A, P)u.

LFT examples

We will now present some very simple examples for constructing LFTs,
which form the basis of the parameter-varying models of Chapters 3 and 4.
As a first example, consider y = (ad + b)u. For this example A = § € C

<[ 3]

Suppose we have a two-dimensional 1y
| x(é)
Y=1 g |

x(6) = ad+c
B(6) = bd +d.

where

Then a representation for P is

(BN N B o
el FeNe)
QO

This representation of P is not “minimal” in the sense of having the small-
est size of A. A minimal representation is

011
P=}alc |.

b|d

Suppose y = (ad?+bé +c)u. Then A = 51, and a minimal representation

for P is
P = .

i

T —= O
Qoo
O[O =
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Finally, consider the transfer function G(z) = D + C(zI,, — A) 1B, for
a given state space representation A, B, C, and D with n states, p inputs,
and m outputs. Then y = G(z)u, and it can be represented as an LFT
with A = z71I,, and P given by

Al B
p- H_C } .
Notice that the poles of G are precisely the points where I,, — Az~ ! is not
invertible.

2.2 Stability, Stabilizability, and Detectability

A detailed discussion of the results in this section may be found in [30].
For a given set A, we want to address the problem of when the intercon-
nection A x P is stable. See [41] and the references therein for more detail.

Let
Ba={AeA:||A] <1}.

A * P is stable when (I — P,,A) is causally invertible as an operator on ¥,
for every A € Ba.
Assume now that one §; is the shift operator, and denote by 7 the

commuting matrix sub-algebra

T ={TeC™":det(T) # 0, TA = AT, VA € A}. (2.3)

-[242]

A x P is stable if and only if there exists X > 0, X € T, such that

For a given system

AXA* - X <0.

We say P is stabilizable if there exists F € C"*? such that (A +BF) is stable;
P is detectable if there exists L € C"™*" such that (A + LC) is stable. These
conditions are met, respectively, if and only if there exist X > 0, Y > 0,
with X,Y € T, such that

AXA*-X-BB* < 0 (2.4)
A*YA-Y-C*C < 0. (2.5)
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> K

Figure 2.2: Feedback interconnection of P and K.

2.3 H. Synthesis

In this section we assume all systems are LTI. P will refer to the general-
ized plant, that is, what is normally called the plant, plus any weighting
functions. Consider the standard feedback system shown in Figure 2.2.
The vector signal d of exogenous inputs contains all disturbances, noises,
and commands; e is the vector signal of quantities we wish to minimize;
u and yy are the controls and measurements, respectively.

Roughly speaking, our goal is to find a controller K which minimizes
the transfer function from d to e, denoted P x K, in the sense of making
the maximal energy captured by P x K small. This problem was elegantly
solved by Doyle et al. in the classic paper [19].

The actual synthesis procedure is sub-optimal in the sense that a con-
troller K is found such that

IP x Kl <y (2.6)

for some pre-specified y.

There exists some optimal y, such that for all y < y, no stabiliz-
ing controller can be found for which Equation 2.6 holds. Optimal %
controllers do not have many desirable qualities [25] and the standard
practice is to approximate the optimal controller with a sub-optimal one
for some desired tolerance. This procedure of minimizing the value of
y to a prescribed tolerance is known as y-iteration. We may refer to a
controller as being an # . optimal controller: what we really mean is a
sub-optimal controller to some tolerance.

Finally, note that in terminology robust performance terminology, .
synthesis is a one block technique, and this block is a performance block.
When there is uncertainty present in the model, we will still perform # .,
synthesis by collecting all the uncertainty blocks into a diagonal structure
with the performance block and covering this structure with one full block.
This approach is conservative.
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x(k +1)<— te——x (k)
e(k)e—rd P(k) pR—dk

Figure 2.3: Time-varying system.

2.4 LPV Synthesis

In this section a brief overview of the LPV synthesis theory is presented.
A complete and rigorous explanation of the synthesis technique can be
found in [39].

Consider the general time-varying system shown in Figure 2.3, where
x(k),e(k),yv(k),d(k), and u(k) are the state, error, measurement, distur-
bance and input vectors, respectively. We assume the time-variation of
the plant can be represented as an LFT of a parameter set and a constant
matrix. Thus P (k) is given by

P(k) = Py, + Py A(k) (I — Py1A(k)) " Py (2.7)

where

61 (k)Inl
A(k) = (2.8)
Om (k) In,,

with 6, € C, [|6i(k)]| < 1 for all k, and n; is the dimension of the iden-
tity matrix associated with 6;. We assume that each §; can be measured
on-line. Note that any system with rational time-varying entries can be
represented in this framework, and many others can be arbitrarily closely
approximated. This type of system is known as a parameter-dependent
LFT system. The representation of P as an LFT is shown in Figure 2.4.
The controller we will design for this plant will also be parameter-
dependent, depending on the same §;’s as the plant; these copies are col-
lectively denoted by A. K thus has the form shown in Figure 2.5. P can be
augmented to collect all the time-varying parameters and states together;
K can then be treated as a simple matrix. This is depicted in Figure 2.6,
where R is the augmented form of P, and K is a matrix. The problem then
appears as a robust control problem with a special structure on the plant
and parameters. The design objective is to find a controller K such that
the interconnection is stable and the ¥ — ¥» induced norm from d to
e is small for all allowable parameter variations A(k) (see Equation 2.8).
Combining the gain from d to e with the gain of R * K (that is, treating the



12

z 1,

A
€ ~+— P le——
Y — U

Figure 2.4: Parameter-dependent plant. The z~ I, term represents the
states of P, and the A represents the time variation of Equation 2.8.

U t— le——

K

Z—lfK

Figure 2.5: Parameter-dependent controller; z~1I,, represents the states
of the controller and A the time variations.

gain from d to e as a “performance block,” another block in the A struc-
ture) gives us a small-gain condition. Since the small-gain theorem can be
quite conservative, we can reduce the conservatism by introducing scal-
ing matrices from the set 7" which commutes with the set of parameter
variations.

The resulting condition is then the state-space upper bound (SSUB)
of [40]. This condition now becomes (compare Lemma 3.1 of [39] and
Theorem 10.4 of [40]):

Theorem 1 Let R be given as above, along with an uncertainty
structure A. If thereis a T € T and a stabilizing, finite-dimensional,
time-invariant K such that

o7 Jeenl 7]

then thereisay, 0 < y < 1, such that for all parameter sequences

<1 (2.9)

2]



13

z Uy,
. Z_IIK
A ~
A
et e
€ <—o R —— d
K

Figure 2.6: Parameter-dependent closed-loop system.

0i(k) with ||6ill» < 1, the system in Figure 2.6 is internally exponen-
tially stable, and for zero initial conditions, if d € ¥,, then |el||, <

yldll.

Pictorially, this theorem is shown in Figure 2.7. A natural question
arising from this theorem is when does such a K exist for any value of y,
not just y < 1? It is a simple corollary of results in [30] that such a K
will exist when R is stabilizable and detectable with respect to the block

structure ~
A = diag (27 In,, 27U, A, A) .

The important fact resulting from Theorem 1 is that the synthesis of
D and K to meet the objective can be cast as a computationally tractable
convex optimization problem involving 3 LMIs. These LMIs have the fol-

lowing form
X

Y O Y O
T T
X I
[ Iy ] =0,
where U,, V,, and E are obtained from the system realization, and X and

Y are structured positive definite matrices. Interested readers may find
the exact LMIs in Theorem 6.3 of Packard [39]. E, U, and V have a scaling y
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Figure 2.7: Diagram of Theorem 1.

=t

absorbed into them, thus the synthesis procedure is a y-iteration, as s
is. Once a desired y level has been reached, a controller K can be obtained
by linear algebraic operations on X and Y.

A few points are important in understanding the ramifications of em-
ploying the state-space upper bound (SSUB). Most importantly, this tech-
nique results in a controller optimal with respect to a time-varying per-
turbation with memory (the sequence A(k) of Equation 2.8, becomes a
time-varying operator with memory, rather than a sequence of complex
numbers). The relationship between such an operator and a parameter
useful in gain-scheduling is tenuous, at best. Depending on the problem,
this technique could conceivably yield controllers so conservative as to
have extremely poor performance. Nonetheless, if a controller with ac-
ceptable performance can be designed with this technique, then it will
have at least the same level of performance for all variations of the op-
erating point (the operating point is a fixed value of A). Additionally, a
time-varying operator with memory does not in general have a frequency
spectrum, so there is no way to “filter” it to achieve a closer relationship to
an operating parameter. Moreover, it is interesting to contrast this tech-
nique with p-synthesis where instead of the SSUB the frequency-domain
upper bound is usually employed; this difference reflects the different
assumptions about the type of perturbations.

If A is a constant value and is “wrapped into” the plant, the result-
ing model becomes a linear model around the operating point of the A.
Similarly, we can do this for controllers, and the LPV controller becomes a
linear controller. We will refer to the linear controller obtained by holding
A at a constant value as the LPV controller locked at the value of A. We are
interested in looking at controllers locked in various positions because by
comparing them with the full LPV controller we hope to gain better insight
into the nature of LPV control.
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Chapter 3

Application: Pressurized Water
Reactor

I_

really I can do little

as little now as then,

about the infernal fires—

I cannot blow out a match.
~—Robert Lowell

In this chapter we present one of the applications discussed in this disser-
tation — the primary circuit of a nuclear power plant. Our goal is control
of this system over the operating range from 50% to 100% of its output
power. We show the difficulties a linear controller encounters because of
the changing dynamics and how LPV control solves them. For the gen-
eral control designer, the main points of interest are the construction of
the parameter-varying model from identified rather than analytic, mod-
els, and the use of a design weight which varies as the operating point
changes.

In Section 3.1 the application and problem are motivated and intro-
duced. Section 3.2 is devoted to a precise description of the problem
statement. Section 3.3 describes the identification and modelling of the
plant. Section 3.4 presents the design of #,, controllers around two oper-
ating points. The main results of the chapter are presented in Sections 3.5
and 3.6 which describe the synthesis and evaluation of LPV controllers.

The material in this chapter arose from joint work with Pascale Ben-
dotti[10, 13]. In particular, she is responsible for the system identification
and #,, control design, presented in [11, 12, 10].

3.1 Introduction

Motivation

In France and certain other countries the major contribution to electricity
production is provided by nuclear power. When this is the case, the nu-
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clear power plant must provide electricity as it is needed and the plant be-
comes a time-varying system with dynamics changing slowly as the inter-
nal power changes. Nonetheless, large transients can cccur, for example,
when the plant shuts down. Most nuclear power plants are pressurized
water reactors (PWR). The dynamics of a PWR change enough over its op-
erating range that a linear controller cannot guarantee performance over
the entire range, especially when operating conditions change suddenly.

If a fixed linear controller is not capable of maintaining performance
over the entire operating range, then a possible approach to control a
PWR is to design a parameter-dependent controller with the output power
as the parameter. One advantage such a controller would have over a
standard gain-scheduled controller is that performance and stability could
be guaranteed over the operating range of the plant, and large transients
in switching are avoided. An additional advantage of LPV synthesis is that
the controller is designed in one step, rather than by designing several
controllers and then scheduling them. The potential drawback of LPV
synthesis is that the technique is conservative. This conservatism may be
so great that the controller has performs quite poorly.

3.2 Problem Statement

The main objective in controlling a PWR is to provide the commanded
power while respecting certain physical constraints. Consider the appli-
cation depicted in Figure 3.1. This is the primary circuit, and our goal is
to control this part of the reactor. The pressurized water in the primary
circuit transmits the heat generated by the nuclear reaction to the steam
generator. In the steam generator, water of the secondary circuit turns
into hot steam, which drives a turbo-alternator to generate electricity. The
rate of the reaction is regulated by the control rods. The rods capture neu-
trons, slowing down the nuclear reaction; withdrawing the rods increases
the reaction. The PWR has two independent sets of rods which are used
as controls.

The PWR has an inner control loop which holds the pressure in the
primary circuit constant. Thus for a steam flow increase in the secondary
circuit, the temperature in the primary circuit will decrease. From a con-
trol standpoint, the required power corresponds to a specific steam flow
that may be viewed as a measurable disturbance. Hence, one natural con-
trol objective is to track a temperature reference derived from the steam
flow. Because of the way in which the control rods enter the reactor, the
rate of reaction is always higher at the bottom of the reactor. The axial
offset is defined as the difference in power generated between the top
and bottom of the PWR. Safety specifications require minimizing the axial
offset; this also increases the lifetime of the fuel and reduces operating
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costs. To achieve such objectives two control inputs are available, the
rates of motion of the control rods, denoted 1, and u,. The positions of
the control rods are denoted v, and v;, respectively. The positions are,
of course, measurable. Due to the physics of the reactor, u, has more au-
thority than u; at low power and using it results in a smaller axial offset.
At high power, however, u, has almost no authority, so all control must
come from u;.

Due to the complexity of the physical plant, performance specifica-
tions cannot be uniquely or easily derived. Indeed, investigations into the
best performance specifications are currently underway at Electricité de
France (EDF). Below are the first attempts to automatically control the ax-
ial offset, a specification we will also use here. Nonetheless, we do not
have precise specifications the controllers must meet.

3.3 System Identification and Modelling

The first step of any design procedure is to obtain a model. Here we review
the identification process for the PWR. Our goal is to obtain a reasonably
low order model for the plant.

Identification Experiments

The identification experiments were carried out using a realistic nonlin-
ear simulator developed at EDF. The simulator is based on various finite
element models of the PWR.

The system possesses nonlinearities of two types. The first depends
on the operating condition and hence is strongly related to the commanded
power. No a priori knowledge can be used in the identification process for
this type of nonlinearity, so the experimental data are obtained around dif-
ferent operating points and the resulting model is a linearization at the
operating point. The second nonlinearity is on the input magnitude of v;.
This control becomes ineffective when the commanded power tends to its
maximum. This maximal value is usually referred to as the nominal power
of the plant, P,,. The static characteristic of the input effectiveness is ac-
tually known, so its inversion allows identification close to the nominal
power, where the nonlinear effect is maximal.

MIMO State-space Description

Consider the system depicted in Figure 3.2, where T,,, AO, P, d, vi and
v, are the temperature, the axial offset, the power, the steam flow and the
vertical positions of the rods, respectively.
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Figure 3.2: Input/Output diagram of the primary circuit.

The physical system is described by a linear time-invariant (LTI) sys-
tem around an operating point given by the following:

x(t+1) = Ax(t) + Bv(t) + I'd(t) (3.1)
ys(t) = Cx(t) + Dv(t) (3.2)
with
T (1)
ys(t) = | AO(t)
Pi(t)
and

vi(t)
v(t) = (Vz(t) >
where x(t), v;(t),v(t) and d(t) represent the state, the output, the input
and the disturbance at time t, respectively. The parameters of the state-
space realization consist of the elements of the A, B, C, D and I matrices.

Since the number of parameters rises quadratically with the state di-
mension, there are a large number of them in a state-space realization.
To meaningfully reduce them, specific realizations are used where some
parameters are fixed at either zero or one, for example, the well known
MIMO canonical forms. Unfortunately, these realizations still contain too
many parameters to be uniquely identified.

Re-parameterizing the realizations using physical considerations can
overcome this problem. Preliminary identification of several SISO and
MISO transfer functions are performed providing insight into an appropri-
ate re-parameterization (cf. references in [11]). Indeed, the primary tem-
perature and power are mainly related to the control inputs by a second
and first order system, respectively. Furthermore, the inputs affect the
plant dynamics in an identical manner, although the gains are different.
The axial offset is almost a linear combination of the inputs: thus no states
are needed for it. These insights provide an appropriate identification-
oriented state-space realization structure. Hence, only the temperature
and the power have dynamics. The effect of the disturbance has a larger
delay than the effect of the control and hence the dimension of the state
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must reflect this. More precisely, 3 delay values for each of tempera-
ture and power (instead of 2 and 1, respectively, in the disturbance-free
case) are required to appropriately predict the input-output behavior. This
leads to a sixth order state-space realization defined as follows:

0 1 o 0 0 0O

0 0 1 0 0 0
Ao al al' ai! 0 al* o
0 0 0 0 1 0
0 0 0 0 0 1
a2’ 0 0 a? a?¥* af
bl bl 0
0 O 0
0 O ] ¥3
0 0 T=17 (3.3)
0 O 0
0O O Y6
1 0 0 0 0O o 0
C=|0¢0c; 00|, D=|d; d5
0 01 00 diy dj

0
The state matrix A can be partitioned as follows:
Ayr An
A= ( Az Az )
where A;; and A, denote the third order systems for the temperature
and the power; A, and A;; represent the cross coupling matrices which
contain only one non-zero term, appropriately located. The input matrix
B accounts for the actual delayed effect of the control inputs on primary
temperature and power, so only the first row of B has non-zero elements.
Similarly, the delay between the control inputs and the disturbance can
be taken into account using only the third and sixth elements of the dis-
turbance input matrix I. The second row of the output matrix C adds
memory to the axial offset. Finally, the elements of D correspond to the
direct terms appearing in the axial offset and the power. This results in a

specific identification-oriented realization with 18 parameters, instead of
the 28 parameters in the standard canonical form.

MIMO Identification

Similarly, the overall system (3.1)-(3.2) can also be modeled by the transfer
function:

ys(t) = Gv(0,9)v(t) + Ga(0,q)d(t) (3.4)
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where g denotes the standard forward shift operator (the corresponding
z operator will be omitted for simplicity), and @ represents the vector of
free parameters to be identified.

Given a description (3.4) properly parameterized by the specific form
(3.3) and the input-output data v, v, and d, the prediction error ¢ is com-
puted as follows:

&(t) = y5(t) — G (0,q)v(t) — Ga(0,q)d(t).

The identification method consists in determining the parameter esti-
mates by minimizing the following quadratic criterion:

~ 1 Y
0 = arg min det | — > &(t)el (t)
e [NZ }

using an iterative Gauss-Newton algorithm [29]. See the discussion in Sec-
tion 6.1 for related details.

Confirmation and Results

Finally, we confirm the identified model is accurate by checking how well
it predicts the behavior of the physical system when simulated with a dif-
ferent data set to see how well it matches the actual output of the physical
system. This procedure was successful over a large operating range due
to the static inversion performed at the plant input. In particular, the
specific form used for the parameterization was verified.

The time-domain responses of the identified model obtained around
0.5P, (dashed) are plotted against the experimental data (solid) in Fig-
ure 3.3. The inputs used to generate this data — v, (solid), v, (dashed)
and d (dotted) — are plotted in the right lower diagram in Figure 3.3. The
step-responses of tl}e identified models obtained around 0.5%,, 0.9P,, and
0.99P,,, called @0, G, and @2, respectively, are shown in Figure 3.4.

Model Reduction

Since our design methods yield controllers with state dimension equal
to that of the open-loop interconnection structure, we often can reduce
the order of the controller by reducing the plant model before controller
synthesis. In the present case we are reducing the sixth order models. A
balanced realization technique [32], including specified model reduction
weightings, is used [21].

In particular, dynamic behavior at high frequencies can be considered
uncertainty. Therefore, the measurements are weighted with low-pass fil-
ters to attenuate the high frequency dynamics. Finally, the reduced order
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Figure 3.3: Experimental data versus time-domain responses of Go.

model is obtained by truncating weakly controllable and observable states.
The resulting MIMO reduced order plant model is first order, i.e., only the
dominant mode is retained.

The nominal reduced order plant model is the design model G, while
the nominal plant model is Go. Figure 3.4 shows the step-responses of Go
in solid lines against those corresponding to Go in dotted lines. For pur-
poses of comparison, those corresponding to G1 (dashed) and Gz (mixed)
are plotted on the same graphs.

Due to the lower order approximation, model inaccuracy is unavoid-
able. Since the high frequency dynamics are no longer modeled, there is a
significant difference between the identified model and the reduced order
model. Figure 3.5 shows the Bode plots correspondlng to the multlphc-
ative-errors relating the design model Gq to Go (solid), G1 (dotted) and G,
(dashed), respectively. Please note, the figure also contains weights which
will be explained later.

Parameter Dependence

Our model in the form of Equation 2.7 will be derived using the first-order
models of the previous section. To derive the parameter dependence, each
term of the three first-order models is compared; those which vary are
individually fitted with a rational function of 6, —1 < § < 1, using a least-
squares technique. For the PWR, first order LFTs of the form e + f6(1 —
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Figure 3.4: Step-responses of @0, Go, @1 and @2.

g06)~Lh fit the parameters extremely well, as shown in Figure 3.6. In this
figure, 0.5P,, corresponds to 6 = —1, 0.9P,, corresponds to 6 = 0.6, and
0.99P,, to & = 0.998 (these are the asterisks in the figure). The resulting
model with 6-dependence, P(6), becomes

ad) | b1 by (8)  by(5)

AlB | _ c1 di di> Arm,(0) (3.5)
C c di2 dzz Kby, (8) |- '

cao(0) | 0 dap,(8) ds;3

The inputs for this model are the steam disturbance d, v;, and v»; the out-
puts are the mean temperature T,,, the power P, and the axial offset AO,
respectively (see Figure 3.1). Placing this model in the form of Equation 2.7
results in a system shown in Figure 2.4, where ng = 1 and A = [81;].
From Figure 3.6, notice the system matrix a(é) is inversely propor-
tional to the operating power and the time constant changes by a factor of
2 over the operating range. Also, the variation of b,, and dp, differs only
by a constant, k, which is used to reduce the size of the final A-block. More
importantly, the effectiveness of 1, decreases as the power increases, and
is almost zero at full power. The gain in the axial offset channel increases
as power increases, making it more difficult to control at high power. In
particular, the effect of u; on the axial offset (d40,) increases, while the
effect of u, decreases. This makes it practically impossible to require any
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Figure 3.5: Uncertainty- performance weights and relative errors relating
Go to Go, Gl, Gz, respectively. Go is in solid lines, G, is in dotted lines, and
G» is in dashed lines. W,, is also shown in solid lines and Wr,, is mixed
lines.
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Figure 3.6: Parameter variations versus 6 for the model of Equation 3.5.
A “*’ shows an actual value, and the line shows the LFT fit.

performance on axial offset at high power.

3.4 . Controller Design

The first controllers are designed using an 3., methodology; this gives us
a first approximation for the weights used in LPV synthesis. Recall that
#H,, synthesis is aimed at disturbance rejection. A tracking problem such
as the PWR can be cast as disturbance rejection by rejecting the low fre-
quency components of the error between plant output and the reference.
As the synthesis is in continuous time, the weighting functions are spec-
ified in continuous time as well. Then the discrete time %, controller is
obtained using the bilinear transformation. The LPV design is carried out
in discrete-time.

Uncertainty Description

As the controllers must stabilize the actual plant, our design methodology
must account for the discrepancy between model and reality. We employ
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the standard approach of designing a controller stabilizing the nominal
model in the presence of modelling errors.

A multiplicative-error is used to provide a description of the plant
mismatch as well as a characterization of robust stability.

Consider the identified plant model (3.4) and rewrite it as follows:

yi(t) )\ _ [ Giv Gua v(t)
( ¥2(8) ) —».( G2y Gaa )J( d(t) ) (3.6)

v

Go

where y; denotes the controlled outputs and Y, is an auxiliary output:

it = ( e ) and y(t) = Py(t).

The plant model description corresponding to the identified model G, is
obtained by replacing G with G in (3.6).

Given a nominal model G;, as well as the weighting function W,,, the
multiplicative model set is defined as:

Z(Gl'v’Wm) = {GIV(I + Ame) 1 Am stable, “Am”oo < 1}

where |- |l = maxy T (-).
A typical robust stability test for multiplicative perturbations is to
find a stabilizing controller K which minimizes

Wi Tilleo (3.7)

where T; is the plant input complementary sensitivity function and W,, is
the multiplicative uncertainty weight specifying the amount of uncertainty
in the model as a function of frequency.

In the present case, the uncertainty weight is of the form W,, = w,, I,
where w,, is a stable minimum-phase scalar valued function and has a
large magnitude in the frequency range where the modelling error is too
large; w,, is chosen as follows:

¢ In the frequency range where known dynamics have been neglected,
Wil 2 IGT3(G1y = G2 (3.8)

where || - I, = 0 (-) denotes the maximum singular value of a matrix,
and G1, is the identified transfer function from v to y;.

¢ Outside the frequency range of the experiment, |w,,| is large to ac-
count for unmodelled dynamics.
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Figure 3.7: Synthesis structure for the PWR.

¢ In the frequency range where the model is accurate, |w,,| is chosen
to account for nonlinearities in the physical plant.

Figure 3.5 on page 24 shows Wy, (solid) and the relative modelling
errors (3.8) relating Gy to Go (solid), G; (dotted) and G» (dashed), respec-
tively.

Performance Specifications

The synthesis structure is shown in Figure 3.7. Recall from Section 2.3
that our two block problem is treated as an H, problem by covering the
uncertainty structure with one full block and not exploiting the structure
of the problem. This is conservative, and the diagram is drawn this way
(as an implicit two block problem) to remind us of that. The design model
includes the actuator dynamics, modeled by two integrators. Also, the
vertical positions of the control rods are measured. In this figure, d, n, 7,
u, and y refer to the disturbance, noise, reference, control, and measure-
ment signals, respectively.

To have nominal performance we attempt to find a K which minimizes

Wy Sollw (3.9)

where S, denotes the plant output sensitivity function and W, denotes
the diagonal weighting matrix reflecting the performance specifications.
W, is given as follows:

Wr,, (jw)
_ W,
Wy = Wio (3.10)

Wpos
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which weights the performance on temperature, power, axial offset, and
vertical position of the control rods. To insure low steady-state error in
tracking and to reject step disturbances, Wr,, resembles an integrator.
Figure 3.5 on page 24 shows the performance weight on Wr,, in mixed
lines. The weight on the power, Wp, is a constant. As a second objective,
the control strategy should minimize the effect of the control on the axial
offset. A constant weight W40 is introduced on the axial offset. This
causes the use of u, to be preferred over u; since it has more authority
at low power and results in lower axial offset. Because the system has
fewer degrees of freedom than performance measures, it is only possible
to minimize the axial offset, not to reject it.

To limit the magnitude of the positions of the control rods, a constant
weight Wy, is used. As an aside, it is interesting to note that if W, is
omitted, both the #,, and LPV methods will produce controllers which
give a dramatically lower axial offset. They do this by moving the control
rods in opposition to one another, which clearly will produce lower power
generation at the top and bottom of the vessel. Unfortunately, this type
of motion is not physically possible on this reactor. We eliminate it by
placing a penalty on the movement, which works since when the rods
move in opposition to one another, they must move more to achieve the
same affect on the temperature. Penalizing their movement causes them
to move together, at the expense of the axial offset.

Synthesis

Once the weights have been selected, the design process is simply an it-
eration on improving the weights to get a satisfactory controller, using
the process detailed in Section 2.3. Two controllers were designed, for
the operating points at 0.5P,, and 0.99P,,. The weights were different to
optimize the performance at the different operating conditions. These
controllers will be termed “H50” and “H99” in the sequel.

Robustness Analysis

The H,, design for H50 is analyzed with respect to structured uncertainty
using p [40]. The upper and lower bounds for u are calculated on the 7x7
closed-loop response of F;(P,K) using the following structure:

A
A:{ [ m Ap]:AmeCZXZ,APECSXS}

where A,, and A, are the uncertainty and performance blocks, respec-
tively.
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Figure 3.8: u bounds and maximum singular values for robust stability-
nominal performance. The upper and lower bounds for u are plotted in
solid lines, the closed-loop maximum singular value is shown in dotted
lines, and the maximum singular values for robust stability and nominal
performance are shown in dashed and mixed lines, respectively.

The bounds for u with respect to this block structure are plotted in
Figure 3.8 in solid lines (they lie on top of one another) along with the max-
imum singular value in dotted lines. Furthermore, the maximum singular
values for robust stability (dashed) and nominal performance (mixed) as
defined in (3.7) and (3.9) are shown in the same plot.

3.5 LPV Synthesis

Once the parameterized model P(5) is obtained, the controller design be-
comes similar to the H, design of the previous section. The synthesis
structure used is the same as for the #,, synthesis, shown in Figure 3.7,
with uncertainty and performance weights included. The values these
weights take for the LPV design is shown in Figure 3.9.

In general, for a system with widely varying dynamics, the same per-
formance requirements over the entire operating range may not be desir-
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Figure 3.9: Design weights for the PWR LPV controller. The solid line is
Wm; the dark shaded line, Wr,; the mixed line is a weight on the dis-
turbance input; the dashed lines correspond to Wy, Wp,, and Wy, in
decreasing order of magnitude.
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Figure 3.10: Performance weight on the axial offset as a function of &,
where P; = (6 + 3)/4. A " shows a value corresponding to 0.5%,,, 0.9P,,
or 0.997,,.

able or provide adequate performance. For LPV synthesis, the solution
to this problem is to incorporate parameter variations (depending on 6)
into the weights. This may be inadvisable, however, because including a
o-dependence in the weight increases the size of the time-varying pertur-
bation block, which may degrade performance. Thus the applicability of
this technique must be determined on a problem-by-problem basis.

For the PWR, the same performance requirements over the entire op-
erating range are not desirable.. Atlow power, the axial offset can be min-
imized much better than at high, as previously noted. Thus the weight on
the axial offset will contain a weight depending on &, which requires higher
performance at low power than at high power. This weight is shown, as a
function of §, in Figure 3.10

Two controllers were designed. The first is called “LPV #1” and is an
LPV controller with the weights of Figure 3.9. The second is called “LPV #2”
and uses the same weights as LPV #1, except W4, was allowed to depend
on the operating power, according to Figure 3.10.
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3.6 Evaluation

In this section we evaluate the LPV controllers by comparing them with
H50 and H99.

Figure 3.12 shows the step responses of the closed-loop systems con-
sisting of each of the controllers and a linearization of the plant at 0.992,,.
Step responses are shown because we are interested in the low frequency
rejection properties of the closed-loop system. In the first column of plots,
the dashed lines are the reference signals, the solid lines are the responses
with the first LPV controller, the light shaded lines are with the second LPV
controller, and the dark shaded lines are with H99. The second column of
plots shows 11 and u, for each of the controllers; u; is the solid line and
U, the shaded one. Figure 3.13 is identical to Figure 3.12 except that the
responses are with respect to a linearization of the plant at 0.5P,,.

Because the control rods are almost withdrawn from the reactor at
high power, the plant is more difficult to control. Referring to Figure 3.12,
the LPV controllers are almost identical in behavior. They perform equally
well, but are not as fast as H99, although they have no overshoot on the
temperature. The noticeable difference is that the LPV controllers have
less axial offset than H99. At this power, we consider LPV #2 the best of
these controllers.

Some of this behavior is preserved in Figure 3.13, but the model is
quite different here. Here H50 is slightly faster than the LPV controllers.
The major difference at this power is that u, has more control authority
at this power, so controllers do better to use it more than u,, since this
results in lower axial offset. H50 does use it more, and the axial offset
is considerably lower. At this operating point, we consider H50 the best
controller.

At low power, u; is the dominant control, but as the power increases
u; should be used more and more to better meet the control objectives.
The LPV controllers do not change strategy between these operating points.
Notice that the control plots for LPV #2 are almost identical, up to a scale
change in magnitude. This is probably a result of the worst-case nature of
LPV controllers. Since achieving worst-case performance does not require
a change of strategy, and may in fact forbid one, the controllers do not
change their use of the inputs.

Next, the behavior of the LPV controllers on a nonlinear simulator
of the PWR is shown. This simulator is not the simulator the synthesis
model was identified from, and has less accurate dynamics. We used this
simulator because EDF would not allow us to use the original simulator.
Nonetheless, the one used is reasonably accurate and provides a satisfac-
tory way to simulate the behavior of the closed loop system. The simulator
includes models for the pressurizer, steam generator, and turbine, but not



33

Tm Pl AO
0.3[
0.2 .......... ...........
0.1
0 200 400
0.05
-’/——-:_—-——‘_
\ : o
0 oy ),\" “‘ """
4 :
-0.05 :
0 200 400

0 200 400 0 200 400 0 200 400

Figure 3.11: Step-responses of models identified from the new nonlinear
simulator. The responses of the original model around 0.5% are shown in
solid lines, while the responses of the new model around 0.5% is shown
in dashed lines, and the responses of the new model around 0.99P are
shown in mixed lines.

the alternator. The largest underlying change between the simulator used
for identification and the simulator used for evaluation is that the former
simulator was used assuming the nuclear fuel was new, while the latter
is configured for nuclear fuel which is at half its expected lifetime. New
nuclear fuel is more active than older fuel, and thus the plant dynamics
are somewhat different.

To compare the new nonlinear simulator with the old, the same iden-
tification experiments that were done for the original simulator were re-
peated for the new simulator. Figure 3.11 shows the step responses of
these models and can be compared with the identified models of Fig-
ure 3.4. In Figure 3.11, the responses of the identified model around 0.5P
from the original simulator are shown in solid lines, while the responses
of the identified model around 0.5P from the new simulator are shown in
dashed lines, and the responses of the identified model around 0.99%P are
shown in mixed lines. The responses vary — sometimes dramatically —
and the performance of the LPV controllers under this simulator provides
an indication of the robustness of these designs.



34

Also, control systems for a PWR normally have dead-bands included
to prevent moving the control rods for small changes in operating condi-
tions. These, as well as saturations on the controls, have been removed
for the purposes of this study. Finally, the control system contains a static
nonlinearity on u, which reflects an a priori knowledge on its loss of ef-
fectiveness as the power increases. The nonlinearity proved necessary in
the identification of the models, and the control system simply inverts
it out. In particular, this will explain the larger magnitude of u, at high
power (the nonlinearity is unity at low power).

Figures 3.14 through 3.16 show the simulation results. In these fig-
ures, the response of LPV#1 is shown in shaded lines, the response of
LPV#2 is shown in solid lines, and the references are shown in dashed
lines. Also, u; is shown in shaded lines, and u, in solid lines. Figure 3.14
shows the response to a one percent step around 0.99%P,,. LPV#2 is faster,
and introduces less axial offset. This difference is even more noticeable in
Figure 3.15, which is a two percent step around 0.5P,. Comparing these
results to the linear simulations, we see that there is overshoot and the
response is slower. LPV#2 clearly outperforms LPV#1 in the nonlinear
simulations.

Finally, the response of the LPV controllers to a large transient is
shown in Figure 3.16. This is a ramp of —30%/minute from P,, to 0.5P,,.
There is not much difference in either LPV controller on this trajectory.
This is not surprising as stability for large transients is inherent in the
LPV methodology, provided that the synthesis model is accurate over the
operating range.

3.7 Summary

In this chapter, we have constructed an LPV controller for a nuclear power
plant which performs very well, although not ideally, over the plant’s op-
erating range. This involved the construction of a parameter-dependent
model from identified models, and the development of a parameter-depen-
dent weight on its performance. The LPV controller is able to do much
better over the entire operating range of the power plant than a single
linear design, but does not switch strategies in its use of the control rods
from low to high power, a behavior we would prefer.
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Chapter 4
Application: Ducted Fan

They make mad the roaring winds,
And with tempests play.
—William Blake

This chapter introduces the second application discussed in this disserta-
tion, a thrust-vectored ducted fan engine. The model for the ducted fan is
a nonlinear first principles model, which will be presented. We detail the
construction of the parameter-varying model from linearizations obtained
around different operating points, and describe the synthesis of ., and
LPV controllers. The next chapter will present a detailed evaluation of
these controllers in comparison with others. The general intent of this
chapter is to present control designs for a system with strongly nonlin-
ear behavior. Additionally, we demonstrate that first principles models,
which in some respects are limited, can be used quite effectively in con-
trol design. The work in this chapter arose from a collaborative effort with
Pascale Bendotti and Michael Kantner [27, 14].

In Section 4.1, the control problem is introduced and motivated. In
Section 4.2, we describe the configuration of the ducted fan and discuss its
dynamics. In Section 4.3, the derivation of the parameter-varying model
is presented. Sections 4.4 and 4.5 discuss the synthesis of the H,, and
LPV designs.

4.1 Introduction

Motivation

The construction of a flight control experiment at Caltech was motivated
by a desire to investigate the application of linear and nonlinear control
techniques to high-performance aircraft performing aggressive maneu-
vers. By focusing on a specific system, we hope both to generate new ideas
and to investigate new techniques in control for dealing with systems hav-
ing a strong nonlinear behavior. Very few design methods are available
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for building robust, nonlinear control laws for this class of systems. Ad-
ditionally, we want to evaluate how well currently available methods and
tools work on a real system with obvious nonlinearities. In this sense, the
ducted fan is a testbed to answer the question “What limits the applica-
bility of current methods of control design to this type of system?”

There is a large body of literature on vectored propulsion systems
which are gaining popularity as a method of improving the performance
capabilities of modern jet aircraft. The fundamental concepts in vectored
propulsion are described in the book by Gal-Or [24] (see also the survey
article [23]). Most of the existing literature and experiments concentrate
on control of full-scale jet engines and are primarily concerned with ex-
tending the flight envelope by extending existing (linear) control method-
ologies. An experiment similar to this ducted fan has been constructed
by Hauser at the University of Colorado, Boulder [28].

Although we are aware of LPV control being applied to examples and
simulations [4, 3, 2, 13], this is the first application of these techniques
to a real physical example. Our controller performance can be compared
with other linear, nonlinear, and gain scheduled controllers previously
designed for the ducted fan [27].

4.2 Description of the Fan Engine

Hardware

A picture of the experimental system, a thrust-vectored ducted fan engine,
is shown in Figure 4.1. It consists of a high-efficiency electric motor with
a 6-inch diameter blade, capable of generating up to 9 Newtons of thrust.
In Choi et al. [17], a detailed description of the performance of the fan was
given, including models for the thrust as a function of flap angle and fan
speed, as well as some discussion of ground effects.

Overall, the experimental setup consists of the ducted fan attached
to a three degree of freedom stand, as shown in Figure 4.2. The different
thrust modes available are shown in Figure 4.3. The intent of the design
was to have a simple ducted fan aircraft which could provide two dimen-
sional vectored and reverse thrust. The aircraft is bolted to a rotating
arm, which limits its motion to three degrees of freedom: one rotational
and two translational, approximately on the surface of a sphere defined
by the arm. With this geometry, the ducted fan is completely controllable
with just the vectored thrust. A detailed discussion of the components is
available elsewhere [17].

The aircraft is composed of a variable speed electric motor which
drives a four-blade propeller. The motor and propeller assembly are bolted
inside a wooden duct which has two flaps attached at the end. The pitch
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Figure 4.1: Ducted fan apparatus.
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Figure 4.2: Ducted fan attached to stand.
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Figure 4.3: Different thrust modes for the ducted fan.

stability of the fan is configurable and can be changed from stable to un-
stable. For these experiments, the ducted fan was in a stable configura-
tion. An optical encoder with an angular resolution of /1000 radians is
mounted on each axis.

Details of the software interface can be found in Appendix 4.B.

4.3 Modelling

All controllers are designed using a first principles model of the ducted
fan based on standard rigid body mechanics. The state consists of the
angles, «;, and their velocities, &;, i = 1, 2, 3. The equations of motion for
the system, derived from Lagrange’s equations, have the functional form

M(O()(X+ C(D(, O() +N((X) = Y(‘X’flny))

where o denotes the vector of angles, M(«) is the generalized inertia ma-
trix, C(«, &) is the Coriolis matrix, N () is the matrix of gravity terms, and
T(«x, F) is the matrix of applied joint torques. The ducted fan equations
of motion are derived in Appendix 4.A.

The model is accurate enough for control design, although it does
have limitations. Identification experiments show it is reasonably accu-
rate near hover (cf. Section 6.1). Initial step responses on single axes
compared favorably with experimental measurements, and a PID control
test gave expected results [17]. A decoupling controller, essentially a plant
inversion, worked well [27]. Nonetheless, the model omits many effects:
all actuator dynamics, sensor limitations, friction, and aerodynamic ef-
fects. Static friction about the «; axis is significant. Aerodynamic effects
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have been observed in the lab during forward flight. The model also omits
the gyroscopic terms that result from the angular momentum of the pro-
peller. This term, unfortunately, is significant.

The model also assumes that the commanded forces act at a fixed
point on the fan. Experiments have shown that the distance from the
fan’s center of mass to the point at which the force acts, r, varies as the
flap angle changes, by as much as 20%. Furthermore, motor speed and flap
angle, not forces, are commanded. An experimentally determined lookup
table maps desired forces to motor speed and flap angle. This table is
assumed to be constant, although the actual mapping varies according to
the operating conditions.

Perhaps the most significant nonlinear features of the ducted fan are
the effect of the pitch angle o3 on the direction of the input forces, and
the centrifugal forces. The centrifugal forces can be quite high when the
fan flies rapidly, and will tend to push «; to a particular value.

An examination of the nonlinear model reveals that the most signifi-
cant variations in parameters occur as a function of &3, &;, and «,. The
dependence on «; is complicated and for the trajectories we will consider
itis less than that of o3 and &;, so we neglect it. The fan is strictly proper
and thus the D matrix of the state space model is zero. Moreover, although
the rates are not measured, an inner loop in the real-time software con-
troller estimates them; hence in our models C = I. The A and B matrices
are the only matrices which have parameter variations. Their structure is

[4]2] -

i 0 0 0 0 ]
1 0 0 0
0 0

b1 (x3) bar(os) @.1)

bsi(x3) bsy(o3)
bei1(x3) ber(ax3)

asy(&1)  asz(as)

T
0
0 1 0
1
0
ag2(03, 1) aez(xz) 0

1
0
0
0 asp(az, &) agz(os)
0
0

O~ o OoONO
~OoOOoONOO

where T is the sampling rate.

Figures 4.4 and 4.5 show the parameter dependence of one term in
the A matrix and all terms in the B matrix, important for the simple con-
trol model we will be employing. The remaining variations are shown in
Appendix 4.C, in Figures 4.12 through 4.16. The dependence is obtained
by linearizing the nonlinear model at various equilibrium operating points
for different values of «3 and &;. Note the dependence of a4, and ag, on
both a3 and &;, while as, depends only on &;; a43, ass, ags and all terms
of the B matrix depend only on «3. In Figure 4.5, the actual values are
shown as asterisks, and the least-squares fit described below is the solid
line.
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To derive the parameter dependence and fit it into this framework,
each of the parameters mentioned above is fit with a rational function of
first or second order using a least-squares technique. Immediately some
approximations are made. The dependence of a4, and ag» on &; was
neglected, making them depend only on «3. The parameters a4, dgo, ba1,
bs», and bg; were approximated as lines, i.e., first-order LFTs. The rest
were approximated as second order LFTs. Assume in the following that
0o =2z"% 81 = &, and &, = 3, and let

A = {diag [501110, 611n1;621n2]} .

The resulting model with d-dependence, P(d), is shown in Figure 2.4,
where n, is the size of the block corresponding to d.

Having done all this, an even simpler model is used for synthesis. The
synthesis model considers only variations in the cross-coupling terms of
the B matrix, i.e., b4, bs2, and bg;, and the variation of as». The other
terms are assumed to be constant with the values they take at hover. Thus
Nno = 6, n; = 2, and ny = 2 (ny # 3 because the fact that all three are lines
can be exploited to reduce the size). Moreover, the range of o3 is assumed
to be from 0 radians to 1.5 radians, and the range of &; is assumed to be
from 0 rad/s to 1.5 rad/s. We refer to this model as the “simplified pitch-
velocity model,” denoted by the pair (Pges,Ages). It is the model used in
our control designs. The reasons for using this particular simplification
are based primarily on intuition regarding how the ducted fan works. We
will discuss these issues further in Section 6.3. There, we will see that
conservatism involved in moving into the operator LPV framework affects
us in an important way: we lose stabilizability in the model.

4.4 3., Controller Synthesis

Both LPV and # ., synthesis produce controllers which reject disturbances.
A tracking problem such as the ducted fan can be cast in this framework
by rejecting the low frequency components of the error between the plant
output and the reference. The tracking will become faster as higher fre-
quencies are rejected. A singular value Bode plot of the linearized model
is shown in dashed lines in Figure 4.6. The other lines are weights which
will be described later. The dashed lines show the frequency responses of
the primary gains of interest, u; — &, and u, — (&1, &3). The &> response
is the response with an undamped mode at approximately 0.9 rad/s. This
is the “pendulum mode” of the ducted fan caused by the bar connecting
counterweight and fan hanging slightly below the pivot point (see Ap-
pendix 4.A). The response of «; has double integrator slope at low fre-
quencies and a mode at 3.5 rad/s, the same frequency as the mode for os.
This mode is the “rocking mode” of the fan as it rotates about the «s axis.
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Figure 4.6: Performance and uncertainty weights for the #,, controller.
The solid black lines are the performance weights on «; and the multiplica-
tive uncertainty weight W,,,. The shaded lines are performance weights on
«; and ai3. The dashed lines are a Bode singular value plot of the linearized

model.
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Figure 4.7: Synthesis structure used for designing the #,, and LPV con-
trollers. See the text for an explanation of how this diagram fits into the

H . framework.

The synthesis structure used is shown in Figure 4.7, with uncertainty
and performance weights included; u, y, ¥, and n are the controls, the
measurements, the reference signals the controller must track, and sensor
noises, respectively. W, is a penalty on the control, and W, is multiplica-
tive actuator uncertainty. W, is a diagonal performance weight on the
signals o, &2, &3, and &;. As noted in Section 2.3, H. synthesis deals
with one full block. Implicitly, there are two blocks in Figure 4.7 — one for
the uncertainty at the input and one for the performance requirements.
The figure is shown the way it is because we understand that for #., syn-
thesis all individual blocks are collected into a diagonal structure and that
structure covered with one full block. Drawing the diagram the way we do
reminds us of this conservatism. Note that LPV synthesis is also a “one
block methodology.”

A multiplicative uncertainty structure is used at the input to the plant.
This has the effect of causing the controller to roll off at high frequency.
We shall see in Section 6.2 that in reality this uncertainty structure is inad-
equate to describe behavior the real system exhibits. W, is the frequency-
dependent weight on this uncertainty. It resembles a high pass filter and
is shown in solid lines in Figure 4.6. The weight is necessary when high
performance is required. That is, requiring high tracking performance
produces a controller which destabilizes the system unless a frequency
dependent weight is used. This adds two states to our controller.

Turning now to performance specifications, W,, is a penalty on the
control action. This is placed there to keep the control signals physically
realizable. Our specifications have no requirement on o3, but some small
performance weight on this output was found helpful. To provide some
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damping on the mode without sacrificing performance on «; or o, the
weight is set to a small constant value of 0.1. A constant weight is suffi-
cient on «; since it has high gain in the low frequency. A similar weight
was placed on &;. Notice that the gain of the «, channel is small. Then
our controllers must have a large gain on «» to give good performance,
and so an integral-like weight is used. This is shown in solid lines as a
low pass filter in Figure 4.6, and adds one state to the controller. This
performance weight seeks to make the closed loop dynamics of «; faster
than those of «;, in an effort to reduce the &, error caused when the fan
is tilted at an angle.

The performance of the controller synthesized using these weights
will be presented in Chapter 5.

4.5 LPV Controller Design

The LPV design process builds on the H., design of the previous section.
In particular, we use the synthesis structure shown in Figure 4.7. The basic
procedure is to iterate upon the weights obtained from the J{,, design
to refine the LPV design. Because of the different assumptions for the
underlying perturbations, our experience is that identical weights don’t
quite work. Nonetheless, they serve as a good starting point.

LTI weights were used; as we saw in Chapter 3, using weights depend-
ing on parts of the A-block can enhance performance [13], but were not
needed here. The weights for the LPV design are shown in Figure 4.8.
The dashed lines show the maximum singular values of the three main
channels in the linearized model. The solid black line resembling a low
pass filter is the performance weight on o>, while the solid black line re-
sembling a high pass filter is the multiplicative uncertainty weight W,,.
The shaded lines are performance weights on «; (large) and oz (small),
respectively.

Comparing these weights to the weights for the #,, design, they are
basically identical in shape, but the values are quite different. The pole in
W is at a higher frequency, so the controller is forced to roll off more. The
performance weight on o is not as large, but there is a higher performance
weight on «3. The performance weight on «; is not as large either. An
H. controller designed with these weights would be quite sluggish, but
the LPV synthesis technique produces more aggressive controllers for the
same weights.

A natural question arises as to why we employ the full LPV technique
to a state-feedback problem. Recall that we needed to add at least three
states to the open-loop interconnection structure for the #. control.
Once W,, has states, full information for the open-loop interconnection
is lost. By experimenting with different designs, we were not able to de-
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Figure 4.8: Bode plot of the ducted fan model linearized about hover
(dashed lines) with weights for LPV synthesis (solid and shaded lines).

sign an adequate controller using a constant weight for the multiplicative
uncertainty, so we are unable to exploit the measurements of the state in
the plant.

The performance of the LPV controller designed using this procedure
is presented in Chapter 5.

4.6 Summary

In this chapter, we presented the ducted fan, and derived a first princi-
ples model for use in control design. From this first principles model,
which is nonlinear, we constructed a parameter-varying model based on
linearizations of the nonlinear model around various operating points.
The parameter-varying model was then simplified to render it tractable.
Based on a linearization of the model around hover, the design of an H,
controller was presented. Using this as a starting point, the design of an
LPV controller proceeded by iterating upon the #{. weights as a starting
point.

It is important to keep in mind an overview of what this process in-
volves. A nonlinear model is taken, and an LPV model is constructed based
on real parameter variations of several linearizations. When this model
is applied to LPV routines, the underlying connection with the nonlinear
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model is essentially lost. What were real parameter variations now are
assumed to be time-varying operators with memory. Thus, the technique
is theoretically conservative.

Future work on LPV designs will involve improving the model to in-
clude more of the parameter variations than in the designs presented here.
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Figure 4.9: The ducted fan and stand model. The checkered circles repre-
sent the centers of mass of the bar and fan. The distance h the bar hangs
below the pivot point for «» is not shown.

4.A Appendix: Ducted Fan Equations of Motion

In this appendix, we present a derivation of the nonlinear model of the
ducted fan. While this is not exactly the model used for deriving the
parameter-varying model presented in this chapter, it is very close, and
captures all the details of that model. A Lagrangian analysis will be used
to derive the equations of motion. We will assume a basic knowledge of
kinematics. Background material for this appendix can be found in Chap-
ter 4 of [34].

The basic geometry of the fan is shown in Figure 4.9. The standard
angles «, 2, and «3 are used. Let 7, be the distance of the counterweight
and m,, the mass of the counterweight. The four-bar mechanism which
holds the axis of rotation for «3 parallel to the y-axis is modelled as a
slender bar with mass m,;, and distance to center of mass ;. The point of
rotation for the four-bar mechanism is not at the origin of the coordinate
system as is shown in the figure, but is on the z axis slightly below the
origin. We denote this distance by h. Let r¢ be the distance from the
stand’s vertical (z) axis to the point of rotation of o3 on the fan (E), and
let my be the mass of the fan. The distance from this point of rotation to
the center of the mass of the fan is denoted by [.

There are two external forces which act on the fan, denoted by f;
and f>. The force f; acts parallel to the main axis of the fan, and f>
perpendicular. The moment arm from the point of rotation of the fan to
the point at which f, acts is denoted by r.

Recall that the kinetic energy T of a rigid body can be expressed as
the sum of a translational and rotational component,

1

1
T ZmHvH + 2w Iw,
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Symbol Description Value
¥y distance of fan center of mass from «; axis | 143.5 | cm
T offset of center of mass of bar 30.0 | cm
Y distance of counterweight from o, axis -56.8 | cm
l fan center of mass offset 2.13 | cm
h bar offset from o, axis 4.14 | cm
'a nominal distance of flaps from fan pivot 26.0 | cm
my | mass of fan 2.22 | kg
mp mass of bar 2.87 | kg
My counterweight mass 6.43 | kg
1Y bar moment of inertia, &, axis 0.75 | kg m?
L. fan moment of inertia, «; axis 1.73 | kg m?
! fan moment of inertia, oz axis 0.05 | kg m?
g gravitational constant 9.8 | m/s?

Table 4.1: Physical Constants for the ducted fan.

where v is the velocity at the center of mass, w is the body angular ve-
locity, and 1 is the inertia tensor of the body. We will assume the inertia
tensor for the bar is diagonal and equal to

I3
I, = 1z,
0

We assume that I2, = Ib,, = I*. We further assume that the inertia tensor
for the fan is diagonal. The fan is not symmetric with respect to two axes,
so this is not true, but we assume the cross terms are negligible. Then the
inertia tensor for the fan is

f

xXx
Ir = I§y
f

zz

The values of all physical constants for the ducted fan with a descrip-
tion are shown in Table 4.1.

For our analysis, we will pick the angles o, o2, and «3 as our general-
ized coordinates. Let o denote the vector of these angles. The Lagrangian,
L, is defined as the difference between the kinetic and the potential energy
of the system. Letting T and V denote the kinetic and potential energies
of the system, respectively, we have

Lo, &) = T(ex, &) — V().
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Lagrange’s Theorem for the equations of motions is now given without
proof (see the references cited in [34] for a proof).

Theorem 2 The equations of motion for a mechanical system with
generalized coordinates x € R™ and Lagrangian L are given by

d oL oL
- =Y,
dt aO(i 50(1'
where i = 1,...,m and Y; is the external force acting on the ith

generalized coordinate.

Thus to determine the equations of motion for the system, we only
need to calculate the potential and kinetic energy of the fan in terms of «.
The potential energy of the system is the sum of the potential energies of
the counterweight, bar, and fan, as follows:

Vsystem = Vw + Vh + Vf
g (mpry, + my ¥y + myery) sin o —
g (mp +m,, + my) hcos oz — gl cos xs.

Likewise, the kinetic energy of the fan is
Tsystem = Tw + Tb + Tf.

In computing the kinetic energy terms, we will assume that the fan rotates
through the origin, i.e., h = 0. There are some kinetic energy affects asso-
ciated with h, but they are small and we have considered its major affect
— on the potential energy. Of these terms, Ty is the most complicated, so
we will present its derivation in detail. From above,

1 1
Ty = EWLf”'Vf”Z + -2~wTIfw.

The position of the point of rotation, pg, is given by

7 COS (X COS (X
pe(ey, ) = | ¥fCOS X sin oy
¥y sin o

Hence, the position of the center of mass of the fan, py, is
7'F COS (X2 COS X1 + Lsin o3 sin ot

prloy, &2, x3) = | ¥fCOSXpSin &y — Isin o3 cos o
rrsinop — lcos o
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Then v becomes

[ —éorysina; cos ) — &qrpcos o sineg +

&3lcos oz sin oy + &l sin &3 cos o
vi(x, &) = py=| —&¥fsino,sin o + &;7f COS X2 COS X —

&3l cos oz cos o + &l sin 3 sin oy
K2V FCOSX + L3 Sin o3

Because of the 4-bar mechanism, the fan has no angular component de-
pending on «,. Thus wjy is given by
&1
wyr = 0
&3

and so

wiipw = 62T + 3.

This represents all the terms in the kinetic energy of the fan.
The kinetic energy of the counterweight is simply

1 . .
T, = Emwrﬁ, (a% + &4 cos? 0(2> :

The kinetic energy of the bar is similar to this plus a rotational term. The
angular velocity vector for the bar is

— X7 Sin oy
wp =| & COS K
&1

and hence the kinetic energy for the bar becomes

1, 1.
T, = Eo(§ (mbrg + Ib) + Ea%mbrg cos? s.

Finally, the external forces enter into the equations of motion as a
function of «, fi, and f>. They are given as follows:

e COS O sinos —cos o3 £
Y(et, fi, o) =| 7 2\ cosas sinag [fl ]
0 r 2

We treat v as a constant, but experimental measurements show it can vary
by 20% during fan operation.
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Summing all the kinetic energy terms and subtracting from them the
potential energy terms gives us the Lagrangian. After a detailed calcu-
lation using Theorem 2 we obtain the equations of motions for the fan,
which we write in the form

M(o)& + C(x, &) + N(x) = Y(&, f1, f2).

M(«x) is called the generalized inertia matrix, C(«, &) is the matrix of
Coriolis terms, and N(«x) is the matrix of gravity terms. Letting

J =my s + mpry; + myry,
these matrices are:
M(x) =

Jcos? oy + Ly +
m¢l? sin’ o3

—-myrrlsin xp sinxs —mrel cos oz COS X3
Yy frf

—mgrylsin &, Sin o3 J+1° myrylcos o, sin a3

| —mysrrlcosazcosxp  msrylcos &g sin ot I, + my2

[ —2J 61 & cos &z Sin oy + 2m 12 6ty &3 O X3 sin g + |

myryl (é(§ — d(%) COS 7 sin o3

J 62 cos o sin oy + msr£163 cos &, cos o5 —

Cle, 60 = . ,
2m vyl &3 sin o cos o3
—ml? & sin oz cos oz — mprplé3 sin & sin o3 +
i 2mygreli & sin o cos o3 ]
and _
i 0
N(x)=| gcosc (Mpry + Mty + Mpry) +

hsin o, (my, + m,, + my)

gmylsin xz

Note that the inertia matrix is not constant. The inertia of the system
changes as a function of altitude and pitch angle, since the counterweight
and fan move with respect to the vertical axis as a function of these angles.

This model does not include the effect of a non-zero h term on the the
kinetic energy. Nor does it include the gyroscopic terms that result from
the angular momentum of the whirling fan blade. The fan blade spins at
approximately 10,000 rpm, so even though the blade itself is light, the
Coriolis forces it generates can be significant.
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4.B Appendix: Software Interface

The experiment is interfaced to an 80486 computer running an MS-DOS-
based real-time kernel called Sparrow [35]. Custom hardware is used to
read in joint angles via the encoders and generate PWM signals for radio
controlled (R/C) servos which control the flap angles. Note that the servos
are not controlled via radio, these are simply the type of servos common in
the R/C industry. Currently, the joint angles are read in at 200Hz and the
PWM signals are output at 50Hz, the standard update rate for R/C servos.
A voltage-to-current amplifier powers the fan engine, and consequently
controls the fan force.

Controllers are designed and simulated using MATLAB on Sun work-
stations. Sparrow loads linear, LPV, and some types of gain-scheduled
controllers directly from MATLAB data files. Once a controller is designed,
it can be tested immediately. Nonlinear controllers, implemented as MAT-
LAB S-functions, require a small amount of revision before they are linked
to Sparrow.

The LPV package of Sparrow supports arbitrary scaling and offsets
of the § parameters, and arbitrary A size. Thus, LPV controllers can be
designed for a variety of plant parameter ranges and model parameteriza-
tions without requiring any software modifications. The basic structure
for implementing LPV controllers is shown in Figure 4.10.

Since the LPV model is obtained by linearizing the nonlinear model
about several equilibrium points, the state is measured, and based on this
measurement the nominal forces required to maintain equilibrium at this
operating point are fed forward continuously into the plant. The nominal
offset forces were computed a priori and stored in a lookup table. The
nominal forces are shown in Figure 4.11; Sparrow actually implements a
flattened version of this which avoids saturating the motor at large values
of «s.

Since an LPV controller is an LFT on a A of measured parameters,
implementing it requires a real-time matrix inversion. To reduce compu-
tations, though, the LFT can be eliminated using past values of A. This
approximation allows faster sampling rates. As long as the d-values do
not change much between samples, the approximation is very accurate.
All experiments in this paper were run using this approximation.

The software for implementing LPV controllers holds any ¢ at O if it
becomes negative, and at 1.5 if it exceeds this.

4.C Appendix: Other Parameter Variations

In this appendix, the remaining parameter variations of the model of Equa-
tion 4.1 are shown in Figures 4.12 through 4.16.
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Figure 4.10: This block diagram shows how LPV controllers are imple-

mented under Sparrow.
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Figure 4.11: Nominal forces required to maintain equilibrium as a function
of 3. The solid line is the u; feedforward force and the shaded line the
u, feedforward force.
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Chapter 5

Evaluation of Ducted Fan
Controllers

Experiment escorts us last-
His pungent company
Will not allow an Axiom
An Opportunity.
—Emily Dickinson

In this chapter, the performance results on the controllers designed in
the previous chapter are presented and they are compared with other con-
trollers which have been designed for the ducted fan. The criteria by which
a controller is judged to perform well or not is an interesting area of in-
vestigation, and one method for evaluating the controllers is presented,
comprising many different performance measures. The selection and de-
velopment of these measures arose from joint work with Richard Murray,
Pascale Bendotti, Michael Kantner, Carolyn Beck, and Geir Dullerud, but
are presented here for the first time.

Section 5.1 describes the trajectories on which the controllers were
tested. Section 5.2 describes the performance measures by which the con-
trollers are evaluated. Section 5.3 presents the results of the controller
tests, along with representative plots for various controllers (complete
results may be found in Appendix 5.A).

5.1 Description of Trajectories

The controllers were tested on four trajectories. Two of the trajectories
are simple and command changes on only one axis. The third trajectory
is demanding and commands rapid changes to the «; and &, axes simul-
taneously. The fourth trajectory is similar to the third, but slower.

The first trajectory is a one radian change on the «; axis over 5 sec-
onds. The second is a 0.1 radian step change on «,. While these trajecto-
ries are not challenging, they should demonstrate the controllers’ abilities
to track each axis independently.
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The third trajectory is more complex and commands the fan to fly
rapidly in the positive «; direction. During forward flight, the fan achieves
&; of 0.628 rad/s, over three times greater than in the first trajectory.
While in forward flight, a sinusoidal variation is commanded in «», with a
magnitude of 0.2 radians, and a frequency of 1.26 rad/s. Thus, for every
complete revolution of the fan in the lateral direction, it will go up and
down twice. This trajectory is referred to as the first “rolling” trajectory.

The fourth trajectory is also a rolling trajectory. In this trajectory
the fan achieves &; of 0.314 rad/s, with a sinusoidal variation of x» of
magnitude 0.2 radians and a frequency of 0.943 rad/s. Thus the fan goes
up and down about 1.5 times for every revolution in the lateral direction.
This trajectory will be referred to as the second rolling trajectory.

5.2 Performance Measures

Giving a fair comparison of controllers on a real system, which have possi-
bly been designed with radically different techniques, is a non-trivial task.
A set of performance measures which attempts to give as fair an overview
of the controllers as possible is presented here. The controllers are quan-
titatively compared based on several figures of merit, some of which have
been used for other controller comparisons on the ducted fan [27]. These
results are summarized in Tables 5.1 through 5.4.

The 10-90% rise time is a standard figure of merit for step responses.
For the ramp in «; it provides a measure of how closely the ramp follows
the signal. A 90% delay factor is computed by measuring the difference, in
seconds, between when the commanded trajectory reaches 90% of its final
value and when the system reaches this same value. Steady state error is
computed by averaging the absolute value of the error over the last four
seconds of the trajectory. The percent (%) overshoot is self-explanatory.
In the tables, e; will denote the error in the ith channel, i.e., the difference
between ; commanded and «; measured. Several figures of merit involv-
ing the norms on the signal in either the «; channel or on the error are then
presented. These are signal norms and their meaning is self-explanatory.
The settling time for a signal is defined as the amount of time it takes
for the signal to be within € of the reference signal. Thus it only applies
to trajectories which end at an equilibrium position. The standard value
of € for a step response is 5%, and this value will be used for all calcula-
tions. The settling time is denoted by T, for the measurement on the ith
channel.

Note that |le;]|, is the RMS error. This is an important figure of merit
because it is what the #, and LPV controllers are attempting to minimize.
Also, controllers typically will not perform well if |3l exceeds 17/2,
since the action of the forces switches at this angle, i.e., for a3 = 11/2, u;
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Figure 5.1: An example of the ramp envelope specification, with the re-

sponse from the LPV controller. The shaded line is the desired response

and the dashed lines are the allowable error bounds. The solid line is the

actual response.

drives the fan laterally, and u, vertically.

Additionally, weighted £, norms are computed for some trajectories.
The weighting method uses a pre-specified envelope that the signal must
lie within over the duration of the trajectory. For the ramp trajectory,
the envelope consists of three parts: an overshoot limit at the beginning
and end of the ramp, an error limit during the ramp, and a maximum
steady state error at the end of the ramp. An example of this type of en-
velope, with an error signal from the LPV controller, is shown in Figure 5.1.
See [16] for further discussion of this type of performance specification.

Another envelope is a step envelope, which consists of a specification
on the allowed overshoot of a signal and the settling time of the signal.
The final envelope used for weighting the norm is an exponential enve-
lope. This envelope is one at time t = 0, and exponentially decreases at a
specified exponential decay until the signal should have settled, at which
time a 5% error is allowed until the end of the signal.

The weighted £ norms are denoted by € in the tables; C,. denotes
the weighted norm with the ramp envelope, T, with the step envelope,
and .. with the exponential envelope. If T is less than one, then the
signal stayed within the envelope throughout the test. A € greater than
one indicates the signal exceeded the envelope, and provides a measure
of how much it exceeded it by.

Finally, a performance measure is included which gives a measure for
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how much actuator bandwidth is being used by the controller. Ideally, a
controller should perform with as low a bandwidth on the actuators as
possible. The measure is computed by high-pass filtering the command
channels and measuring the energy of the resulting signal. A lower num-
ber is better. These measures are denoted by ||W * u;l||» for i = 1, 2.

In the table, a row ranking is computed for each measure, and the
rank of the controller in comparison to the others is shown in the upper
right hand corner. One way of determining how good each controller is
would then be to add up the ranks. The controller with the lowest sum is
the best. This method of evaluation has problems: it assigns equal weight
to all measures and doesn’t take into account how much better a con-
troller performed than another on a given measure. Additionally, some
performance measures are complementary, i.e., one can only be raised
at the expense of another. A simple example of this would be having a
large || &; || and small ||xs]|. If |z]| = O then &; = 0, so some tradeoff is
required. Nonetheless, this is reasonable, since often performance speci-
fications are complementary, and must be traded off. The rank total for
each controller is also presented. One important note about the rankings
is that each entry in the table is presented in finite precision, but the rank-
ings were computed from the actual data, and thus specifications which
appear tied really may not be.

The controllers presented in the tables are the ones discussed pre-
viously, namely the #{,,, LPV, and locked LPV controllers, in addition to
some new ones. The design of these new controllers can be found in [27],
and nothing beyond a few superficial remarks will be made here. The LQR
design is standard; an integrator is added to the controller on the &, chan-
nel. The gain scheduled controller is a combination of three LQR designs
around different equilibrium points of the fan’s forward flight and hover.
Bumpless transfer is ensured since the controllers all share one integrator,
and otherwise have no states.

The ducted fan is I/0 linearizable with respect to any pair of outputs
(x;, ;). The I/O decoupled controller is a nonlinear controller consist-
ing of an I/0 linearization stage followed by a “loop-at-a-time” heuristic
design. We note in passing that standard I/0 linearization designs use
pole-placement, which does not work well for the ducted fan.

5.3 Results and Evaluations

Table 5.1 shows the figures of merit for the ramp in «;, Table 5.2 shows
the results for the step in oy, Table 5.3 shows the results for the first
rolling trajectory, and Table 5.4 shows the results for the second rolling
trajectory. The LPV controller locked at hover is denoted “LPVy;” in the
tables and when locked in forward flight it is denoted “LPV;.”
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Criteria Controllers
LOR | H, |I/OD.| GainS| LPV LPVy | LPVy;
o rise time 3.343% 3424 3.685 3.24°% 3.04' 4.62°% 4.887
o1 90% delay 0.62% 1.16% 1.62° 0483 0.10' 1.80° 2127
o1 % ov'shoot | 7.242 3.15' 18.87°¢ 8.813 12.78% 15.61° 25.357
steady state e; | 0.03 3 0.02'| 0.07°% 0.02! 0.044 0.11% 0.237
lleill o 0.26 3 0.34°% 0417 0.257% 0.22' 0.34% 0.40°
lleill» 2.532 3964 6.095 235! 2.793% 5.18° 6.687
lle1llh 542 744 137° 491 673 126° 1697
ool 0.053 0.053 0.03' 0.07°% 0.042 0.06° 0.097
Heoll oo 0.053 0.053 0.03! 0.07% 0.04% 0.06° 0.097
llesll» 0.514 0.44?% 0.37' 0.68° 0453 0.72°% 1.21°7
lleall 1044 8.1! 8.82 14.9° 9.33 13.8% 26.37
131 oo 1.287 1.12% 0.803% 1.20° 1.20° 0.761' 0.78?
| &3l o 4.147) 2.29% 2.05?% 3.35° 2.66° 1.63! 2.07°
Cre 1.722 2953 4.14°% 1.69! 3.48° 3.36% 5.077
T, 6.702% 5.921 13.42% 9.00° 14.98°9 14.80° 14.987
Cee 1.074 0943 0.63' 1.32°% 0.752% 1.26°5 1.887
W % uill; 1.98°2 0.87' 4.887 3.76°6% 2.35° 1.983 2174
IW % uzll» 9.98° 0.891 13.837 10.20% 3.40° 4.59% 3.232
Rank total 593 49! 753 68 58?2 87°% 1087

Table 5.1: Performance data for the &; ramp. See the text for an explana-
tion of the controllers and measures.
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Criteria Controllers
LOR | H, | I/OD. | GainS | LPV LPVy | LPVy;
|11l o 0.01% 0.045 0.00! 0.02% 0.157 0.10° 0.03*
lle1ll oo 0.013 0.04% 0.00! 0.02° 0.157 0.10°% 0.03*
lle1ll> 0.187% 0.82°% 0.07' 0.233% 2.03°% 2.307 0.30*
leillr 487 22.3° 16! 593 494° 6547 7.34

X rise time 1.127/0.96° 0.64' 1.10° 0.763 0.74° 0.78*
2 90% delay | 1.907 1.72°% 1.02'Y 1.76° 1.342] 1.363 1.36*
oz % ov'shoot | 10.01Y 22.53% 25.6% 19.4% 47.7° 50.87| 44.5°
steady st. e, | 0.00° 0.00% 0.017 0.00°% 0.003% 0.00' 0.00°?

o2 1Too 0.117 0123 0134 0.1270.15¢ 0.157 0.14°
leall> 0.75% 0.74% 058 0.71% 0.72% 0.757 0.713
leallr 10.0°( 10.3% 9.8%] 86 10.0% 10.77] 9.8°
lot3] oo 0.092/0.21% 0.05' 0.09°% 0.637 0.21° 0.28°
&3] eo 0.35% 0.51° 0.28'] 0.41%1.037 0.36° 0455
Cse 0.401 0.45% 0.40' 0.401 0.95°¢ 1.027] 0.89°
Coe 0.92° 0907 0.747 0877 0.95° 1.027 0.89°
Ty, 1.32°9 1.22% 0.66' 1.2250.962 2327 1.00°

W % uyll2 2.27°6 1.21' 10977 1.963 2.20°5 2.16 % 1.902
W * u,ll, 4909 0.351 9.217 4.71°51.952 1.963] 2.23¢
Rank total 683 72° 421 582 878 967 704

Table 5.2: Performance data for the o, step. See the text for an explanation
of the controllers and measures.



68

Criteria Controllers
LQR | H., |[I/OD.[GainS| LPV | LPV | LPVy,
epatt =ty | 039° 0.60° 0.37% 0.18! 0.343 3.317] 0.30°2
o1 1] oo 13.74 2 13.53 % 13.76 3 13.95° 13.80% 17.437| 14.43°
lle1ll e 0.413 0.73°% 0.74% 0.26! 0.362] 3.317 0.68°
Te1ll2 11.893] 19.43°¢ 13.50°% 6.331] 6.492] 54.587| 12.17 ¢
el 4044 659° 441° 2132 1881 14727 382°
exatt =ty | 0.06° 0.043 0.167 0.05¢ 0.01' 0.037 0.09°
o2 oo 0.15Y 0.307] 0.30°% 0.233] 0264 0.18?% 0.27°
llealw 0.25% 0.14% 0.163 0.20% 0.13Y 0.287] 0.23°
lexll2 435°% 1.60' 2.63°% 2153 1642 5.007| 3.21°
lexll: 1235 432 72¢ 483 391 1417 85°
lxslloo 1.49¢ 1.42°5 1.04' 1.082] 1.847| 1.183% 1.27°¢
163 1] oo 2.035 3.007] 0987 1.494 2.45¢ 0631 1.26°
MW xull> | 2972 3.784 6.597 4.095] 5.546 3.383 2.52!
IW xusll, | 5405 0.871 8267 5.45°6¢ 3.383 3437 1.24°?
Rank Total 594 56° 69 6 442 437 717 61°

Table 5.3: Performance data for the first rolling trajectory. See the text
for an explanation of the controllers and measures.

Criteria Controllers
He LPV LPVy LPVy,;
eratt =ty 0.76 3 0.15! 1.33¢ 0.112
1] oo 6.30! 6.91° 8.401 6.953
lleill oo 0.763 0.33! 1.33¢ 0.56°2
lleyll» 19.61¢ 5.78' 14.703 11.39°2
llellh 658.46 4| 175.84 '] 369.28 3| 340.70 2
e;att =ty 0.01! 0.123 0.25¢ 0.05°2
1o ] o 0.29°? 0.32°3 0.28! 0.354
lle2]l oo 0.24! 0.273 0.27 2 0.29+¢
llez2]l» 2.131! 2.86 2 4114 3.243
lleally 47321 67.48° 104.86% 85.343
o3| oo 0.96! 1.58°3 1.01°2 1.594
&3] 0 1.05%3 2779 0.621 2223
W % uqllo 1.57! 3.34¢ 3.14°3 2.96 2
W x us|l» 0.18! 2.053 1.12°2 2.26 4
Rank total 261 332 41+* 373

Table 5.4: Performance data for the second rolling trajectory. See the text
for an explanation of the controllers and measures.



69

22-Apr-95
Pitch position
_ —_ 2 ; ; ;
g é : f :
: I S ANSWAN
3 5 VN
L i 7
0 5 10 15 20 0 5 10 15 20
Time (seconds) Time (seconds)
Y position and desired Commanded Forces
. 0.05 y X . -
g : /\ ; : &
! : : : E
= 0 — - /_/‘\u 2
@ : ' : =
= : \[\/ : 8
g : : : 8 : : :
-0.05
0 5 10 15 20 0 5 10 15 20
Time (seconds) Time (seconds)

Figure 5.2: Closed loop response of the LPV controller for an «; ramp.

A plot for each trajectory showing behavior of the #H,, LPV, and
locked LPV controllers is found in Appendix 5.A. Figures for the other
controllers may be found in [27]. These plots show the «;, &>, and &3
channels, with desired and actual values, in addition to the commanded
forces. Recall that the “X” direction is &1, the “Y” direction is «», and the
pitch is 3.

For the o trajectory data shown in Table 5.1, several results are ap-
parent. The LPV is the fastest controller, but has problems settling. This
is shown in Figure 5.2. Due to its problems settling, it does not perform
well on the ramp envelope. The #,, controller is slower than any of the
gain-scheduled, LPV, or LQR controllers, but has the lowest overshoot,
steady state error, and settling times. The I/O decoupling controller does
the best at holding the fan at a constant «; during the trajectory; this is
not surprising in view of its design. In terms of actuator bandwidth, both
the #., and LPV controllers are markedly lower than the I/0 decoupling,
LQR, and gain-scheduled controllers. The I/O decoupling controller is par-
ticularly bad, as is shown in Figure 5.3. Based on these results, it seems
fair to conclude that the #. controller is the best of the group if the low
errors are desired, while the LPV is best if speedy response at the expense
of some error is desired. All controllers are able to follow the ramp in ;.

The performance results for the step in & are shown in Table 5.2.
The I/0 decoupling controller is an extremely good controller on this tra-
jectory. This is somewhat surprising, since, given the nature of the trajec-
tory, no decoupling is required for it. The I/O decoupling controller has
the worst steady-state error of the group; this shows the lack of an inte-
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Figure 5.3: Closed loop response of the I/0 decouple‘d controller for an
(1 ramp.

grator on «>. The LOR and gain-scheduled controllers are quite similar,
which is not surprising either, since no scheduling occurs on the trajec-
tory. The H,, controller is rather slow. The LPV controller does not have
very good performance compared to the other controllers. It has a fast
rise-time, but a considerable amount of overshoot. Note, however, that it
settles very quickly and is within the step envelope specification.

The most surprising thing about the LPV controller is a rather bizarre
offset in the o; channel for this trajectory, shown in Figure 5.4. This
behavior is not fully understood at this time, but is not an artifact of
unmodelled dynamics since the full nonlinear simulation also shows this
behavior.

The results for the first rolling trajectory are tabulated in Table 5.3.
The gain-scheduled and LPV controllers are close in performance, as is
illustrated in Figures 5.5 and 5.6. The gain-scheduled controller is slightly
better on «; while the LPV controller is slightly better on «,. The LPV
controller is better overall on tracking «; and «», but is penalized by the
ranking scheme for tilting the fan more to do it. As evidenced by the 1-
norms, though, the LPV controller tracks the signal significantly better.
It is also interesting to note that this is the first example of a trajectory
where the linear and I/O decoupled controllers are unable to keep up.

When the trajectory is slowed down, the picture changes somewhat,
as evidenced in Table 5.4. Unfortunately, the full spectrum of ducted fan
controllers is unavailable for this trajectory. The LPV controller outper-
forms the #. controller significantly on the «; measures, but is slightly
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Figure 5.4: Closed loop response of the LPV controller for an «, step.
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Figure 5.6: Closed loop response of the LPV controller for the first rolling
trajectory.

edged in the o» measures. The LPV has more overshoot in ; than the
Hs. The LPV controller does a significantly better job of tracking the
references overall, though.

It is interesting to note how poorly the locked controllers do. They are
almost uniformly bad. This illustrates that the LPV controller is exploiting
the parameter variations and changes in feedforward forces.

Finally, since ranking is obviously not the best way of evaluating a con-
troller, we present an improved scheme for the rolling trajectory, shown
in Table 5.5 for the non-locked controllers. First, each row of the per-
formance measures is normalized by dividing by the worst performance
measures. To evaluate the controllers we then add up the respective num-
bers and present a sum. The better controller is the one with the lowest
sum. This type of evaluation will take into consideration how close various
controllers are in a fairer way than simple ranking.

The performance measures are also grouped into primary and sec-
ondary measures in Table 5.5. A primary performance measure is one in
which the open loop fan will not perform well, and a secondary measure
is one in which it will. For example, ||x3]| is clearly a secondary measure,
since the fan hovering will not change pitch, and thus this will be zero. The
RMS error in either channel is an example of a primary measure. The pri-
mary measures for the rolling trajectory are the norms of e;, and the final
error on e;. Because the rolling trajectory ends at the same height that it
started at, the final error in «; is not primary but as this is more an artifact
of our trajectory, we consider it with the primary performance measures



Criteria Controllers
LQR He |1/OD.]| GainS | LPV

ejatt =ty 0.65% 1.00% 0.623 0.31! 0.56°2
ol oo 0.992% 0.97' 0993 1.00°% 0.99*
lle1]] e 0.553 0.98¢ 1.00°| 0.35' 0.49°
llell» 0.613 1.00° 0.69% 0.33% 0.33°
lleqll1 0.613 1.00° 0.67°% 0.322 0.29!
eratt =1ty 0.384 0.252 1.00° 0.313 0.06!
oo || oo 0.49!' 1.00° 0.98% 0.74?% 0.86°
llea |l e 1.005 0.562 0.653 0.80% 0.52!
llez]l2 1.00° 0.37' 0.61°% 0.493 0.38°
lleallq 1.00% 0.35% 0.59°% 0.393 0.32!
o3l oo 0.814 0.773% 0.57' 0.59?% 1.00°
&3] o0 0.683 1.00° 0.33' 0.50?% 0.82*
[Waet * uill2 0.451 0.57?% 1.00° 0.623% 0.84*4
I Wact * U2ll2 0.653% 0.111' 1.00° 0.66°% 0.41°2
Rank Total 594 563 69 ¢ 44?2 431
Primary 5.43° 5.26% 4.83% 3.002% 2.89!
Primary II 5.804 5.513 5.83°% 3.31°? 2.95!
with |logll, i=1,2 | 7.283 7.48% 7.80° 5.05?% 4.80!
with [|W x u|| 8.394 8.163% 9.805 6.33? 6.05!
with || 3, &3l 9.873 9.93¢ 10.69° 7.41' 7.872

73

Table 5.5: Normalized performance data for the first rolling trajectory,
with primary and secondary performance measures.
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in the row labelled “Primary I.” We then start evaluating the controllers
as secondary measures are added: first including the co-norms on «; and
o, then the actuator bandwidth measures, and finally the co-norms on o3
and (5(3.

The most noticeable thing about these measures is the grouping: the
LPV and gain scheduled controllers are always quite close, usually within
10% of one another. All other controllers have much larger sums, and
the I/0 decoupling controller is usually the worst. On the primary perfor-
mance specifications the LPV controller is the clear winner, but is edged
out by the gain scheduled controller when the norms on «3 and &3 are
included.

5.4 Experimental Procedure

The previous results present single runs of controllers on a given tra-
jectory. All data was taken during the same experimental session, but
important questions are how repeatable are the results and how do the
performance measures vary from experiment to experiment.

Such an analysis is very time consuming, and we shall not do a com-
plete one, but rather give an indication of the results by analyzing one
particular controller, the H., controller, over ten different experiments.
We shall use very basic statistical analysis; see [9] for more detail.

Let n be the number of experiments we have, and let X denote the
mean value of the set, i.e.,

1 n
X = Ni:zlxi.

The standard deviation of the sample is

(}:?:1 x,?) - nx?

Assume the underlying distribution of the samples is Gaussian. The 95%
confidence interval is defined as the interval within which the true mean
value & of the population will lie with probability 0.95. The confidence
interval is given by

S ~ S
= <E<X+toos—=

Jn Jn
where tg9,5 is computed from the t-distribution and for ten samples is
2.228.

The confidence intervals for the performance measures on the rolling
trajectory with ten runs of the #,, controller are shown in Table 5.6. The

X — to.02s
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Criteria Controllers Within
Ho, Holb | Homn | Houb | LPV
epatt =ty 0.60 0.45 0.56 0.68 0.34 None
X1l oo 13.53 13.45 13.57 13.68 13.80 | None
el 0.73 0.73 0.79 0.84 0.36 I/0
eyl 19.42 17.70 18.87 20.04 6.49 None
lleylls 658.47 | 585.24 | 628.75 | 672.25 | 188.47 | None
eratt =ty 0.04 0.02 0.04 0.06 0.01 LQOR, GS
ool e 0.30 0.30 0.31 0.33 0.26 I/0
llea ]l e 0.14 0.13 0.15 0.17 0.13 I/0, LPV
lleallo 1.60 1.60 1.95 2.31 1.64 GS, LPV
lleallh 43.45 42.79 53.54 64.29 39.26 | GS
Il 3]l oo 1.42 1.44 1.52 1.60 1.84 LQR
[ &3] o 3.00 2.91 3.25 3.60 2.45 None
IWact * uill2 3.78 2.77 3.24 3.72 5.54 LOR
[ Wact * uzll2 0.87 0.89 1.01 1.14 3.38 None

Table 5.6: 95% confidence intervals for the performance measures of the
rolling trajectory for the ., controller.

first column shows the performance measures for the first experimental
run of the controller on the trajectory, which are also the results reported
in Table 5.3. The second column shows the lower bound of the confidence
interval for the performance measures and is is denoted by “#,, Ib;” the
third column shows the mean value of performance measures for the ten
experiments and is denoted by “#,, mn;” the fourth column shows the
upper bound of the confidence interval and is denoted by “#. ub.” The
fifth column shows the performance data for the LPV controller, which
is repeated for ease of reference. Finally, the last column describes what
other non-locked controllers from Table 5.3 have performance measures
within the confidence interval. We see that while some of the controllers
have performance measures which overlap, the data we have chosen to
present is a fair evaluation of the #, controller. Clearly, a complete anal-
ysis would have confidence intervals for all the other controllers as well.

5.5 Summary

In this chapter we have evaluated the performance of a set of controllers
for the ducted fan. For a given trajectory the best controller is difficult
to choose a priori but, based on its performance on complex trajecto-
ries and in the «; ramp, the LPV controller is the best controller overall.
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We demonstrated that a first principles model was adequate for design-
ing controllers which achieve good performance and that standard linear
techniques seem inadequate for good tracking performance. Future work
should include the investigation of more aggressive trajectories and the
improvement of the nonlinear model to include gyroscopic and friction
effects.
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Figure 5.7: Closed loop response of the #,, controller for an & ramp.

5.A Appendix: Plots of Controller Runs

In this appendix, plots of the controller experiments for the ., LPV,
and locked controllers are shown in Figures 5.7 through 5.22. They are
grouped by trajectory, for the ramp in «;, step in «,, and two rolling
trajectories. In the plots, reference signals are shown in shaded lines for
the o, &, and o3 directions (“X,” “Y,” and “Pitch” in the plots) while the
controllers’ responses are shown in solid lines. The commanded forces
u; and u; are shown as well, in solid and shaded lines respectively.
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Figure 5.8: Closed loop response of the LPV controller for an «; ramp.
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Figure 5.12: Closed loop response of the LPV controller for an «; step.
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Figure 5.18: Closed loop response of the LPV controller locked at hover
for the first rolling trajectory.

khu3
X position and desired
,m\lO
8 |
5 Sk'—)ﬂ,ﬂ .........
L
g o=
5_5 : . : :
0 5 10 15 20 25

Angle (radians)

Time (seconds)
Y position and desired

5 10 15 20 25

Time (seconds)

Angle (radians)
o
5

>

N

Force (Newtons)

[aw}
(=2

22-Apr-95
Pitch position

0 5 10 15 20 25
Time (seconds)
Commanded Forces

.E/ \\‘ A
| VN v
5 10 15 20 25

Time (seconds)

\\

Figure 5.19: Closed loop response of the #, controller for the second
rolling trajectory.



84

klpv7 22-Apr-95
X position and desired Pitch position
—_ - 2
.g g 1 Y .
E E A
2 L0 :
: : YAV
5 ; . : : 4 . : b :
0 5 10 15 20 25 0 5 10 15 20 25
Time (seconds) Time (seconds)
Y position and desired Commanded Forces
~ 05 ~ 10
2 =
8 £
i g °
= 0 Z
%o g OF
é : : : : g : : : :
-05 =5
5 10 15 20 25 0 5 10 15 20 25
Time (seconds) Time (seconds)

Figure 5.20: Closed loop response of the LPV controller for the second
rolling trajectory.
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Figure 5.21: Closed loop response of the LPV controller locked in forward
flight for the second rolling trajectory.
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Figure 5.22: Closed loop response of the LPV controller locked at hover
for the second rolling trajectory.
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Chapter 6

Special Topics

Knowledge the shade of a shade,
Yet must thou sail after knowledge,
Knowing less than drugged beasts. phtheggometha
thasson
POeyywuedo Oxooov
—Ezra Pound

This chapter explores several interesting issues associated with the ducted
fan. We present them here since presenting them earlier would have taken
us too far afield from our discussion of controller design. In Section 6.1,
identification experiments are performed on the fan to develop a linear
model for the fan near hover which is based on the actual system rather
than a first principles model. In Section 6.2, model validation techniques
are employed on both the identified and linearized model and prove an
excellent analysis tool for giving insight into the models. Finally, in Sec-
tion 6.3, we present the first application of newly developed model reduc-
tion techniques [5, 6] to the ducted fan.

We will assume the reader has some familiarity with the basic con-
cepts in these sections, as a detailed review of all the background material
involved would be too burdensome.

6.1 Identifying a Model for the Ducted Fan

In this section we attempt to infer a linear model of the ducted fan from
measured data. Based on this identification, we hope to construct a more
accurate model of the ducted fan than previously available. The identifi-
cation might, in turn, lead to an improved first principies model if we can
deduce, for example, the friction and drag coefficients. The material in
this section was a joint effort with Pascale Bendotti.

Review of the Identification Method

The identification method we will employ is a parameter estimation method.
A complete discussion of the method can be found in [29], but see the par-
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allel discussion in Section 3.3. Let £(f) denote the prediction-error, i.e.,
&(t) = y(t) — G(O,2)u(t) (6.1)

where 0 is a vector of parameters to be identified, y(t) is a measured
series of data from the system when an input u(t) is applied, and

G(0,z) = C(0)(zI - A(0))"'B(0) + D(0) (6.2)

is the transfer function obtained from state-space matrices A(@), B(0),
C(0) and D(0) which have entries depending on the parameter vector.
The optimal parameter estimate is then given by

N

0 = arg min det li—l—- > e(t)eT(t)} (6.3)
0D N t=1

where D is the set of allowed parameter vectors, N is the length of the data

record, and “arg min” means the minimizing argument of the function.

Note, there is no guarantee that 9 is unique. If it isn’t we obtain a set of

minimizing arguments.

Most of the effort in using this type of identification method is in
defining the structure of the state-space matrices and in providing good
initial values for the parameter vector. This is critical because the opti-
mization is non-convex and may contain many local minima.

The structure we will employ, obtained after much trial and error, is
one obtained using the first principles model linearized about hover as a
starting point. Unfortunately, we have been unable to satisfactorily obtain
an identified model using exactly the same structure (based on the ability
of the resulting model to predict the data set) and our final structure is

10 0 T 0 00 ;"
01 0 0TO|¢s 0
1o 0o 1 00T|0 ¢

[ABI=1 06 0 ¢, 1 0 0|0 s (6.4)
0 ¢s 0 01 0|y 0
|0 0 ¢ 00 0|0 o]

with C = Iy and D = 0. Note in particular that this model only provides «;,
o>, 03, and &; as outputs. We were unable to obtain good convergence
properties when &, and &3 were included while keeping C an identity
matrix. It may be possible to obtain results for these two signals if the
constraint that C = I is relaxed.

The data set used for the identification is shown in Figure 6.1. In this
figure the measured signals are shown in solid lines while filtered signals
are shown in shaded lines. Filtering is a practical necessity to aid the
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Figure 6.1: Filtered (shaded lines) and unfiltered (solid lines) signals for
model identification.

convergence of the estimation routine. The figure shows the inputs, u;
and u,, and the main outputs, «;, &y, and 3.

The difficulty in obtaining a good model able to predict the data when
using the structure of the linearized model is primarily associated with
bad prediction of the «; channel and — to a lesser extent — the &, channel.
In the linearized model both the channels have undamped modes, whereas
significant damping is present on the real system. Moreover, «; in the
undamped model is a double integrator (1/s%). When damping is added
this transfer function becomes 1/(s? + ks) which at low frequencies has
a slope closer to 1/s. Also, we are best able to identify the least damped
mode in the system, 3. We thus conclude that the linearized structure is
inappropriate as a structure for identification of the damped system.

Using the structure of Equation 6.4, the identification procedure pro-
duces a model which is able to predict this specific data set with great
accuracy, as shown in Figure 6.2. In this figure, the solid lines are the
outputs shown in Figure 6.1, while the outputs produced by simulating
the identified model with the same inputs shown previously are shown in
shaded lines. The match is almost perfect on «3, good on o, but not very
good on ;. As a comparison, a simulation with the linearized model is
shown in Figure 6.3, where it is seen that the prediction is quite terrible.
This is not unexpected, since the linearized model is undamped, but is
still quite striking.
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Figure 6.2: Prediction results by the identified model using the original
data set. The solid lines are the predictions and the shaded lines the
actual data.

5 : . . : |
g
= 0 e resrossmrme e s o
]
o
57 .
<
-10 L L ! i 1
0 10 20 30 40 50 <0
Time (s)
2
)
£
~
o
= 0
)
-1 ! 1 I 1 1
0 10 20 30 40 50 &0
Time (s)
1 T : , : I
=)
£
I
o
<=
=
©

Figure 6.3: Prediction results by the linearized model using the original
data. The solid lines are the predictions and the shaded lines the actual
data.
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Figure 6.4: The Bode singular value plot of the identified and linearized
models. The solid lines are the identified model and the shaded lines are
the linearized model.

As an additional comparison between the identified and linearized
models, Figure 6.4 shows the Bode singular value plot for «;, &, and «3
channels. The solid line is that of the identified model and the shaded line
that of the linearized. The identified model is damped, particularly the «»
channel, which is expected due to friction and other effects. Additionally,
the frequencies are shifted slightly between the linearized and identified
models. Since the values going into the linearized model were obtained
solely by measurement of physical parameters, this also is unsurprising.

To confirm that the identified model is reasonable when given another
data set, a different data set was simulated. The results are presented in
Figure 6.5. This figure shows the same general behavior as on the previ-
ous data set, and although not quite as good, the controller is still able to
predict the behavior of oy and o3 fairly well. Additionally, an #, con-
troller was designed for the ducted fan using this model and successfully
implemented.

Summary

In this section we have identified a superior linear model of the ducted fan.
We are able to identify a very good linear model of «3, and a reasonably
good model of ;. The model for the o; channel needs improvement.
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Figure 6.5: Prediction results for a different data set by the identified
model. The solid lines are the actual data and the shaded lines the pre-
diction.

In the next section, we will attempt to analyze this model further in the
context of determining whether a given uncertainty structure is adequate
to predict observed behavior.

6.2 An Application of Model Validation

In this section we discuss an application of model validation to the ducted
fan. We will see that model validation provides valuable information into
the refinement of both the linearized and identified models discussed pre-
viously. Based on this information, we propose a method to develop fu-
ture uncertainty models for the ducted fan and critique where both the
linearized and identified models should be improved. This work arose out
of a collaborative effort with John Morris and Matt Newlin.

Introduction to Model Validation

Model validation is concerned with determining whether a mathematical
model is consistent with (or covers) a collection of experimental data. The
constant matrix version of this problem has been formulated as a gener-
alization of the structured singular value p, in [37]. The main result is
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that when the norms of noise, disturbances and uncertainty are of size
less than or equal to 1/y the data and uncertain model are consistent if
Hg = Y. As is the case for u, p, cannot in general be exactly computed
and thus upper and lower bounds are employed. An upper bound for y,
using LMIs was developed in [37], and a general algorithm has been de-
veloped to compute this upper bound [33]. The upper bound is tight in
the sense that equality between the upper bound and p, is achieved for
certain classes of uncertainty [37]. In the following, we will denote this
upper bound of u, by y,,. Additionally, a modified power algorithm was
developed for a lower bound of p; which we will denote by yy,,.

To make use of the constant matrix results with experimental data
and a robust model involves two steps. Figure 6.6 shows the general in-
terconnection structure of a robust model for a model validation problem.
Here d is the exogenous disturbance, u is the control input, and = is the
noise input. A is an element of a prescribed uncertainty set A which is as-
sumed to consist of LTI perturbations. W, is a weight on the noise signal
.

A

P11 Pip Pi3

Py Py Po3fe—m— 44

<L
A
=“

W, 1< n

Figure 6.6: Block diagram for the model validation problem.

The best software currently available for solving this problem per-
forms a frequency domain analysis; thus, any time-domain data must be
transformed into the frequency domain. Then a sweep over frequency is
performed. At each frequency point the robust model and the frequency
domain data are reduced to a constant matrix problem. It is not necessary
to utilize all available data in the frequency sweep as a subset of the data
corresponding to the important frequency points can be used instead,
similar to p-analysis and u-synthesis, [20].

Given a plant P and frequency-domain input/output data, © and 1y,
the constant matrix bounds are computed over €, a subset of frequency
points in the FFT of u and . Define the following bounds across all
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frequencies:
Hg (P) = min iy (P(w)) (6.5)
Yip(P) = min y, (P(w)) (6.6)
Yup(P) = midyup (P(w)). (6.7)

Then the following is true:
Yip(P) < p; (P) <y, (P). (6.8)

The important result is that for all y < y;; the robust model and the
data are y-consistent on the frequency set Q. The following defines what
is meant by the statement “the robust model and the data are consistent,”
and particularly when they are consistent for a specific value of y.

Definition 1 A robust model and data are y-consistent if 3A € A,
Al < 17y, lldll < 1/y and ||In|l < 1/y such that y = Wyn + (A %
P)[d'w'], whereP,W,, d,n,u andy are as in Figure 6.6, with u and
v experimental data, d exogenous disturbance and n measurement
noise. A describes the set of structured uncertainty.

As an aside, note that in the synthesis of a robust controller the u-
analysis results for the same block structure as used in model validation
should be smaller than ;. When this occurs, the controller will be robust
to the disturbances, noises and uncertainties necessary for the model to
be consistent with the measured data. Simply put, if this is the case, then
the model is consistent with the data, and the controller is consistent with
the model.

Models and Generation of Signals

The current section concerns itself exclusively with linear models for the
ducted fan around hover. The “linearized model” is the nonlinear model of
the ducted fan presented in Chapter 4 and linearized about hover. Recall
that this is the model from which the # . controller was designed. In
particular, the uncertainty weight we will use for model validation is the
weight W, depicted in Figure 4.6. We will also use the identified model for
the ducted fan discussed in the previous section. Note that the uncertainty
weight was developed in conjunction with the linearized model and may
not be as well-suited for controller design with the identified model.
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To generate a data set to employ for model validation a zero mean
random signal was constructed around the equilibrium hover point caused
by a force pair of (2.65, 0)N. The input data set is shown in Figure 6.7. The
output from the ducted fan for the «;, o, and &3 channels is shown in
Figure 6.8.

Since we must perform the model validation tests in the frequency do-
main, we transform our finite length discrete time data to the frequency
domain with the discrete Fourier transform (DFT). Recall that an implicit
assumption in the use of the DFT is that the time domain data repeats
periodically forever. Thus, high quality frequency domain data requires
the use of time domain data that looks as though it could repeat periodi-
cally. Consequently, the test input signals end with a quiescent period, so
that the system might return to the initial rest state. This strategy works
well for the states associated with o, &3, and &;, but not with &y, which
exhibits a slow drift, caused by nonlinearities in the model.

As we aren’t concerned with the system behavior at very low frequen-
cies, this o; drift is of little concern except that it might corrupt the data
at other, more interesting, frequencies. This corruption is due to the fre-
quency content in the step transition from the end of the data record to
the beginning of the record as it repeats periodically.

To minimize this effect the o; data set is filtered with a fourth-order
acausal high-pass filter with a cut-off frequency of 0.25 rad/s. The filter
was chosen to cause minimal phase distortion over the frequency range
of interest while making the processed time history appear suitable for
the DFT. Note that the filtering corrupts the data below 0.25 rad/s.

Transfer Function Data

Model validation acts on frequency domain data. Representative plots of
the transfer function data are now presented. The particular example we
show is for the identified model. Shown are the transfer functions from
(u1,u2) — (0, %2, 3). The remaining transfer function data is shown
in the Appendix.

In Figures 6.9 through 6.14, the solid line shows the FFT of the mea-
sured output data divided by the FFT of the input data. An ‘X’ in the figure
shows a point at which model validation will be done. The shaded line
shows the FFT of the output data generated by simulating the identified
model with the input data used to generate the real output data.

Note that these plots are not sufficient to predict what model vali-
dation will calculate, since phase information is important to the model
validation process.
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Figure 6.15: Model validation bounds for the identified model on «j.

Model Validation Results

In this section, the results of model validation are presented. A very im-
portant point to note when interpreting the results below is that we are
not using the results to verify the robustness guarantees of a closed-loop
system. This is the standard way of considering model validation, so read-
ers familiar with the subject should be wary of falling into this habit of
thinking in this work. Instead, we are using model validation to determine
if a model and uncertainty description can capture the dynamic structure
of a true system.

Because H. synthesis, when posed as an output tracking problem,
makes no distinction between a command input and a noise input, we
have little empirical feel for the noise weight required by the validation
procedure. Preliminary model validation data was used to iterate on the
magnitude of Wy; the final choice for W,, was W/ = 0.05I. W,, was
unchanged. These preliminary results seemed to indicate that the problem
is not particularly sensitive to the choice of W,,, so it was set to a low value.

Figure 6.15 shows that the MISO transfer function, (u1,u;) — «,
is consistent for y ~ 0.5. Over most of the frequency range, the bounds
are much better, but they drop around 10 rad/s. This is interesting, as it
is after the mode shown in Figure 4.6. Figure 6.16 shows that the MIMO
transfer function (u;, u;) — (&2, x3) is consistent for y ~ 1.5.

The previous two results might lead us to believe that the complete
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MIMO model is y-consistent for y =~ 0.5. Figure 6.17 shows the bounds
for the MIMO transfer function (1, u2) — (o, &2, ®3) and demonstrates
clearly that this is not the case. In fact, the model and data only become
y-consistent at high frequency, where the uncertainty weight becomes
very large. This implies that either there are unmodelled dynamics in
the ducted fan that have a significant effect on the «; channel, or that
the specific uncertainty required to obtain model and data consistency is
different for the o; channel than the (o, «3) channels. We will address
this question further below.

Appendix 6.B presents additional model validation runs on sets of
different channels. These results are tabulated in Table 6.1. The “transfer
function” column shows the output channels which were selected for a
particular validation computation; the inputs were always (11, u>). The
second and third columns show the lower and upper bounds, y;;, and
Y.p» for the identified and linearized models, respectively. For the single
channel case, the value of u, can be computed and that result is given.

Finally, the fourth column shows model validation results where the
data y» was not obtained from an actual experiment but from applying the
input u shown in Figure 6.7 to a nonlinear simulation. Since the nonlinear
simulation is undamped, the resulting output was then windowed in the
time domain before being transformed into the frequency domain. Thus,
these results do not compare with the other columns. Examining them
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Figure 6.17: Model validation bounds for the identified model on «;, &>
and os.

shows that the results are very similar to the ones for the identified and lin-
earized model on real data, which allows us to conclude that the discrep-
ancy between the model validation results for (o, &3) and (1, &7, &3)
are not due to unmodelled dynamics (as there are none in the nonlinear
simulation), but that it must be due to the uncertainty structure not being
representative.

Conclusions

From the results shown in the previous section, it is clear that the present
uncertainty description, that of a lumped multiplicative uncertainty at the
input, is insufficient to account for the data in all three channels simulta-
neously. The problem channel appears to be «;, since a model validation
on o and o3 shows those channels work well together, but neither works
well with «;. Note, though, that a model validation on «; alone shows that
the model is reasonable. This is a striking example, in a practical applica-
tion, of why thinking about MIMO systems in a “loop-at-a-time” framework
is incorrect. To improve the model, a different uncertainty description is
needed to account for this difference.

A possible explanation for the difference between «; and the other
data is that «; is essentially an integral times a gain of «s. If this gain were
uncertain, or varied, then the resulting signal could be out of phase with
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Transfer | Identified Model | Linearized Model | Linearized Model,
simulated data
Function Yib | Y Yib | Yap Yio | Yup
o 0.4613 0.3269 0.2248
(a2, X3) 1.5011 | 1.5949 | 1.5009 | 1.5947 | 1.3592 1.3837
(e, X2, X3) 0 0.0625 0 0.0625 0 0.0547
1 1.5386 1.5374 1.4347
3 1.5361 1.5361 1.3765
x> 1.5271 1.5269 1.4025
(1, 03) 0 10.0625 0 [ 0.0625 0 [ 0.0625

Table 6.1: A table showing the results of various model validation results.
Where the upper and lower bounds are theoretically equal, the value of pg
is given.

o3. From the dynamics of the stand and from data taken from the force-
torque sensors for computing the force-lookup table of the fan, we know
that the parameter 7, which is the distance from the center of rotation
of the fan to the point at which the forces act, can vary by as much as
20% during normal operation, and that this indeed might cause the gain
variation. In any event, further investigation of these two facets of the
ducted fan model is needed.

In comparing the results for the identified and linearized models from
Appendix 6.B, we see that on every test, the identified model is better
than the linearized model. This coincides well with the prediction results
given in Section 6.1. This is particularly interesting since the uncertainty
structure was developed, by trial and error, to account for inaccuracies in
the linearized model.

For linear systems, the frequency domain provides a great simplifica-
tion of dynamical system representation in that convolution in the time
domain becomes multiplication in the frequency domain. Thus data which
is coupled across time is decoupled in frequency, and the associated ro-
bustness analysis and model validation problems are greatly simplified
by this decoupling. While the frequency domain is natural for continuous
time infinite horizon data, it is unnatural for discrete time finite horizon
data, where an implicit assumption in the transformation is that the time
domain data repeats periodically forever. Frequently, through careful ex-
periment design, one may collect data that appears fairly consistent with
this periodicity assumption, and the errors induced by going to the fre-
quency domain are reasonably small. Often, however, it is not possible
to collect data that seems suitable for transformation. In these cases, it
would be a great benefit to perform the model validation computation in
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the time domain. Although this is no harder conceptually, the coupling
of the problems from one time to the next makes the computation much
more expensive. Effective computation of such problems is an area of

current research.

In summary, the model validation has proven to be a capable tool for
indicating improvements in our models of the ducted fan which would
have been difficult to ascertain otherwise. In particular, better models
should incorporate either a different type of uncertainty — or more struc-
ture in the uncertainty.

6.3 Stabilizability Issues

In this section we discuss stabilizability issues associated with the ducted
fan model when we move into the operator LPV framework. This work
arose while investigating the applicability of model reduction methods [5]
to the ducted fan. The basic work on stabilizability of systems in the
operator framework was done by Lu [30].

Introduction
In this section, let A refer to the set
{dlag [51In1, - ,651115] . 51 E L(‘€2)} 5

and let P be the appropriately partitioned system realization matrix

~[¢44]

In Section 2.2 we defined when the system A x P was stable, stabilizable,
and detectable.

Parameter-Varying Models of the Ducted Fan

Recall from Chapter 4 that the basic parameter-varying model of the ducted
fan is

[AlB]=
C 1 0 0 T 0 O 0 0 7
0 1 0 0 T O 0 0
0 0 1 0 0T 0 0
0 asp(as,&1) as(az) 1 0 0| by(az) bayp(az) (6.9)
0 as2(&1) ass(xz) 0 1 0] bsi(x3) bsr(xz)
| 0 aee(0o3,61) aez(exz) 0 0 1| bgi(x3) ber(xz) |
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where T is the sampling rate. Associated with the model is a block struc-
ture, as the parameter variations are extracted into an LFT. Our block
structure contains g = z7!, 8, = 3, and 8, = &;, and has the form

A - {dlag [50[n0, 6lIn1,52.[n2]} .

The simplified model for design, (Pg.s,A4es) has ng = 6, n; = 2, and
N, = 2. Recall also that the parameter variations corresponded to a change
in o3 from 0O to 1.5 radians, and in ¢&;from O to 1.5 rad/s.

In the following discussion we will refer to a model as being unstable
or not stabilizable. As it turns out, all the models considered here are
detectable. The instability of a model is not difficult to determine, since
there are well-known conditions for it, both necessary and sufficient. To
say that a model is not stabilizable is a much more difficult assertion to
prove, since we must show that there does not exist a positive definite
matrix X satisfying Equations 2.4. In general for an LPV system, we don’t
know how to do this. Thus when we say that a model is not stabilizable,
we will mean that using the best numerical optimization routines available
to us, we were unable to find a feasible solution to the stabilizability LMI.
Recall that the LPV synthesis method requires the model to be stabilizable
to compute solutions to the LMIs.

If parameter-variations from (P.s, Ages) are allowed to correspond to
a full-range of operation for the ducted fan, for example from -1.5 to 1.5
radians for a3 and -1.5 to 1.5 radians/second for &;, then the model is
not stabilizable. Limiting the parameter variations from -0.2 to 0.2 radians
and radians/second does result in a stabilizable model. Since our trajec-
tories typically drive the fan such that 3 and &;are positive and since
the gyroscopic effects of the fan blade, which are completely neglected in
this model, become significant in the opposite direction, the reason for
our choice of parameter ranges is apparent.

Now consider parameter variations corresponding to a range of 0 to
1.5. If every parameter variation in Equation 6.9 is considered, the result-
ing A set has ng = 6, n; = 9, and n, = 2. This model is not stabilizable.
Restricting our parameter variations to asp, b4, bsp, and bg; results in
a stabilizable model, the simplified pitch-velocity model of Chapter 4. A
reason for choosing the variation of the cross-coupling terms instead of
the direct terms (b42, bs;, and bsy) is that the cross-coupling terms vary
from zero, whereas the direct terms are non-zero. It seemed intuitively
that something changing from zero to non-zero would be more important
than a certain percentage change in a parameter.

Conclusions

In the time-varying LPV framework, the ducted fan is completely control-
lable from the two inputs. When we move into the operator framework we
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lose this property of the model. This is a place where the conservatism
of the operator framework markedly appears. Currently, we would like to
determine how important the various parameter variations are and if, in
fact, some of them are unnecessary. If we are able to obtain a stabilizable
model with a large number of parameter variations, we will attempt model
reduction techniques to reduce the order of our models [5].

6.4 Summary

In this chapter we have presented several theoretical techniques and ap-
plied them to the ducted fan. Each gave a particular insight into the ducted
fan that we did not have before and justifies the relevance of the tech-
niques. In particular, the identification of a model and the consequent
application of model validation provides key information on the develop-
ment of a robust model for the fan. Also, we have demonstrated again
how the ducted fan serves as a testbed for the practical application of
new theoretical techniques.



106

6.A Appendix: Transfer Functions

This appendix shows the remaining the transfer function data for the lin-

earized model.
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Figure 6.18: Transfer function from u; to «; from measured data (solid
with an X’ at the actual data point) and simulated with linearized model

about hover (shaded).
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Figure 6.19: Transfer function from u; to &, from measured data (solid
with an ¥’ at the actual data point) and simulated with linearized model
about hover (shaded).
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Figure 6.20: Transfer function from u; to &3 from measured data (solid
with an X’ at the actual data point) and simulated with linearized model
about hover (shaded).
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Figure 6.21: Transfer function from u, to «; from measured data (solid
with an X’ at the actual data point) and simulated with linearized model

about hover (shaded).
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Figure 6.22: Transfer function from u, to o from measured data (solid
with an ‘X’ at the actual data point) and simulated with linearized model

about hover (shaded).
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Figure 6.23: Transfer function from u; to &z from measured data (solid
with an X’ at the actual data point) and simulated with linearized model

about hover (shaded).
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Figure 6.24: Transfer function from u, to ¢&; from measured data (solid
with an X’ at the actual data point) and simulated with linearized model

about hover (shaded).
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Figure 6.25: Transfer function from u, to &; from measured data (solid
with an ‘x’ at the actual data point and simulated with linearized model
about hover (shaded).
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6.B Appendix: Validation Results

This section shows the results of other validation runs, both for the iden-
tified and linearized models. An ‘0’ in a figure shows a the value of the
upper bound at that point, and an ‘x’ shows the lower bound.
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Figure 6.26: Model validation upper bound for the identified model on ;.



112

10 T T T T
3 A
10k i E
v §
e !
5 b PR
= - i —
&1 Y
s /
¢
10'F 4
0
10 .
107 107 10° 10' 10° 10°

Frequency (rad/s)

Figure 6.27: Model validation upper bound for the identified model on &;.
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Figure 6.28: Model validation bounds for the linearized model about hover
on «j.
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Figure 6.30: Model validation upper bound for the linearized model about
hover on &3, o>, and «s.
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Figure 6.31: Model validation upper bound for the linearized model about
hover on «;.
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Figure 6.32: Model validation upper bound for the linearized model about
hover on «3.
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Figure 6.33: Model validation bounds for the linearized model about hover
on «s.
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Figure 6.34: Model validation bounds for the linearized model with simu-
lated data for a.
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Figure 6.35: Model validation bounds for the linearized model with simu-
lated data for o; and a3 .
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Figure 6.36: Model validation upper bound for the linearized model with
simulated data for ¢y, o2 and 3.
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Figure 6.37: Model validation bounds for the linearized model with simu-
lated data for &;.
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Figure 6.38: Model validation bounds for the linearized model with simu-
lated data for «s.
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Figure 6.39: Model validation bounds for the linearized model with simu-
lated data for «.

10 T T T T
10° b 4
]
U
el
=
=
&
=
107k 4
10"2 . 1 " i i " i
107 107 10 10' 10’ 10°
Frequency (rad/s)

Figure 6.40: Model validation upper bound for the linearized model with
simulated data for «; and «s.
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Chapter 7
Conclusions and the Future

We are at the end of our enquiry, but as often happens in the search
after truth, if we have answered one question, we have raised many
more; if we have followed one track home, we have had to pass by
others that opened off it and led, or seemed to lead, to far other goals
than the sacred grove at Nemi. Some of these paths we have followed
a little way; others, if fortune should be kind, the writer and the reader

may one day pursue together.
—James George Frazer

7.1 Summary of Contributions

In this dissertation we have demonstrated, on two applications, that syn-
thesizing controllers to provide performance against worst-case time vari-
ations is not an inherently bad idea. The LPV technique produced a better
design for the nuclear power plant than standard linear techniques. Also,
the LPV techniques produced the best controller yet synthesized for the
ducted fan, on most trajectories. These represent the first two applica-
tions of this particular technique.

On neither of the applications were standard linear techniques able
to do as well as the scheduled ones. Note however, that the {,, design for
the ducted fan performs well; the performance is not quite as good as the
scheduled designs. An advantage of the LPV techniques over conventional
methods of gain scheduling is that they design a controller of fixed order
that works reasonably well for all plants in the operating regime.

For the PWR, the major drawback is that they do not switch control
strategy between low and high power. On the nonlinear simulation of the
PWR, the LPV controllers performed well even for small operating changes,
where the assumptions on the uncertainty are extremely conservative.

Additionally, we showed that parameter variations can be placed in
weights with beneficial effect. This is the first time such a design has been
attempted that does this, and it is important because for many systems,
one can expect dynamics to change so much that “frozen” time-invariant
specifications will not yield adequate performance. This is of concern even
in adaptive control.
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Model validation provided insights into the model for the ducted fan
which were not readily obtainable otherwise. It convincingly demonstrates
that our robust control model is inadequate to describe not only the phys-
ical system, but the full nonlinear model. This is particularly surprising
and is the subject of current investigation. Additionally, model validation
provided a useful and easy means of comparing the identified model and
the linearized model. We were able to determine that the identified model
is superior to the linearized model. This is not a surprising result, but
would be difficult to verify by other means.

Of perhaps more general interest than the specific applications, we
have presented a simple methodology useful for designing future con-
trollers which need to be gain scheduled. The closeness of linear H.,
synthesis and LPV design techniques lead us to attempt an H. design
first. This allows us to exploit our experience and intuition at weight se-
lection for linear plants. Once an #,, design has been synthesized, the
weights are iterated on in the context of the LPV synthesis.

We showed how to construct parameter-varying models from lineariza-
tions about equilibrium points and from models identified at various op-
erating points. This in itself is not a difficult task, but perhaps one under-
appreciated, since, as we saw in Chapter 4, the models constructed can of-
ten be unsuitable for use in design because of stabilizability or detectabil-
ity concerns.

A variety of performance measures were employed in evaluating the
controllers for the ducted fan. Rather than overwhelming the reader with
a barrage of statistics, our intent was to present a variety of measures and,
for a particular application, select those which seem important and evalu-
ate the controllers based on that. This should aid in comparing controllers
when there are no specific performance objectives.

Based on this body of experimental results with the ducted fan, it
seems that the performance specifications which coincide best with our
intuition about what constitutes good performance are the infinity and
one norms of the error signals. Unfortunately, none of our controllers are
optimized to perform on those particular specifications. Moreover, there
are some aspects of the ducted fan performance we have not been able
to capture in a specification yet. Most of these are related to contrasting
how the fan looks when under the control of a particular controller. For
example, most of the controllers generate fairly wild oscillations on «3.
A notable exception here is the I/O decoupled controller, which doesn’t
oscillate since it actually tracks 3. Thus the I/0 decoupled controller
appears much smoother on large motions than most of the others. Further
investigation of performance specifications in an effort to capture these
qualities seems warranted.

The conclusions of [27] have been reinforced. In particular, we have
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demonstrated that scheduled designs achieve better tracking performance
than linear designs. Thus, pure linear techniques seem inadequate to con-
trol the ducted fan. Additionally, we have demonstrated that very good
performance is achievable using a good first principles model. More im-
portantly, a clear advantage the LPV and gain scheduling techniques have
over nonlinear methods is that they allow the application of a variety of
knowledge and intuition derived from the linear setting. Most current non-
linear techniques rely at some point on the use of pole placement, which
has clearly understood drawbacks in the linear setting, and this puts them
at a disadvantage for ducted fan applications.

7.2 Future Work

A complete controller design for the primary circuit of the PWR was not
presented in this dissertation. A complete control system would, for ex-
ample, account for saturation nonlinearities in the input signals and usu-
ally has a dead-band built-in to minimize the movement of control rods
to small variations in operating conditions. Accounting for saturations to
prevent wind-up is certainly an essential component of any realistic de-
sign and should be considered in future efforts towards design of a com-
plete system. Another goal is to re-examine the temperature reference to
determine if a reference derived differently leads to better minimization
of the axial offset. Understanding why the LPV controller fails to switch
strategies should be made.

Another interesting avenue to explore would be to try the model re-
duction techniques of Beck [5] on the parameter-varying model for the
PWR. The PWR is stable so the theory is directly applicable, as it is not
for the ducted fan. Some preliminary steps in this direction have already
been made. One way of checking whether the plant is reducible in the size
of the A-block is to treat the state as an input and output, and the A-block
as the state, then look at the Hankel singular values of the system. For the
PWR they are: 2.5448, 0.1031, 0.0325, 0.0187, 0.0152, and 0.0035. This
indicates the size of the A-block could probably be reduced by at least
one.

Regarding the ducted fan, experimental goals are further study of
nonlinear robust control using this fan or a successor. Currently, a new
ducted fan with a more aerodynamic shape is being designed and mod-
elled using a wind tunnel at Caltech. This fan will be much more powerful
and maneuverable than the rather heavy model used currently. There are
also plans to add a wing to the ducted fan, so that aerodynamic effects
become more significant.

More work is needed to investigate aggressive trajectories, similar to
Herbst maneuvers [24], for the ducted fan. Currently work is being done
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on developing control strategies which couple with real-time trajectory
generation. It would be extremely interesting to compare such techniques
with the LPV techniques. As mentioned in the previous section, further
work on performance specifications should also be done.

The LPV models should be expanded to the limits of stabilizability,
to see how the achievable performance changes. Strictly from the point
of view of applying the LPV techniques to the ducted fan, there are many
more designs and experiments that can be done. Extending the parameter
range of interest, and comparing how the achievable performance varies as
the model becomes closer to not being stabilizable would be an extremely
interesting set of tests. Moreover, we should determine what parameters
and ranges have the most impact on stabilizability. Additionally, robust-
ness properties of the LPV controllers could be further investigated.

A major avenue to explore in the context of real physical systems is
to determine if, and by how much, practical performance can be improved
by using synthesis methods which are theoretically less conservative. The
area of reducing the theoretical conservatism of LPV techniques is an area
of study attracting a good deal of attention in the control community now,
but some assessment of its relevance seems in order. Additionally, most
of the methods involve contorting the model so that all the parameter
variations fall in specific places, usually not in the B, C, or D matrices of
a system, but in the A matrix [8, 2]. The process for doing this involves
application of a filter or some other method of expanding the size of the
problem, and its impact on the computability of the problem is not cur-
rently understood.

The nonlinear model of the ducted fan should be improved based
on data obtained from the identified model (parameters in the nonlinear
model can be backed out from the parameters of the identified model). Ad-
ditionally, the overall robust control model used for linear designs should
be redesigned based on the results of model validation and investigations
into any first principles’ sources of uncertainty pursued. When this is
done, the benefits of employing a synthesis methodology capable of ex-
ploiting the new model, such as u-synthesis, should be undertaken.

Additionally, further work on identification and modelling is needed.
The identified model presented here did not behave as accurately as we
would like on «;. Accounting for the variation of the distance from the
center of rotation of the fan to the point at which the forces act, #, should
be done in future robust control models of the ducted fan. Measurements
have shown that r can vary by as much as 20% during operation of the
fan. Dealing with this variation seems important.

Additionally, we have seen a need for better LMI solvers. The LPV syn-
thesis routines experienced various anomalies when attempting to solve
the LMIs. In the synthesis case, the LMI solver seemed very sensitive to
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the value of y being used, and would occasionally find feasible solutions
at lower levels of y than where it previously could not find feasible solu-
tions. This experience leads us to conclude that more work on developing
reliable tools for solving LMIs is still needed, and that simply reducing a
problem to an LMI is not yet equivalent to solving it.

The model validation problems we would like to solve are probably
better handled in the time-domain. This is a more difficult problem than
handling the data in the frequency domain, but handling the data in the
frequency domain implies that, for the ducted fan, at least, the data be
processed in some way. This signal processing usually involves making
it look like something nice in the time domain, so that the Fourier trans-
form has reasonable behavior. Unfortunately, the effect of this processing
on the model validation problem is not well understood. Additionally,
with time-domain techniques, the nature of the perturbation required,
e.g., time-varying or time-invariant, can be explored. Preliminary work by
Smith and Dullerud [47] has been done on this problem, but more work is
needed.
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