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CF CERTAIN STRUCTURES TO ASSUMED CGROUND

S
=
B
e
H
65}

In

3

artial fulfillment of the requirements for the
Degree of Doctor of Philosophy, California Institute

of Technology, Pasadens, Californis

v
3

1935



LS

o,

<
i

ct

e

e

jy

i
o
mww

4 em
]

£

fdm
RO WL )

31

=

S
4
»4
3]

sone

90

o3

A

Y

3y 8
oy
L

T

2]
£

nunosr




tributed as the weizght of the building and of the corder of five

or ten per cent of this weight. The proportion constant is called
the “Seismic'Factor“. In chapter three, Throop Hall (California
Institute of Technology) is investigated in this fashion for its

resistance to an earthquake in the East-West direction.

In chapter four, calculations are made showling the effect of
harmonic ground movements of different amplitude, frequency and
duration on symmetric structures with one flexible story. The
effect of critical damning is briefly considered. There is in-
cluded a copy of a discussion submitted to the "Froceedings of
the American Society of Civil Engineers™ written jointly by Paul

L. Xartzke and the writer,

Chapter five deals with the rocking of blocks on herd, flat

surfaces,

Chapter six contains a discussicn of the natural freguencies
of vibration of multi-story buildings which are either uniform
or have no more than two sections of different stiffness and nass.
T'orced vibrations of uniform buildings are briefly considered.
There is also a calculation of the amount of internal damping in
an actual building, computed from test-data. There is included a
calculation of natural frequencles of vibration of a uniform

cantilever beam in which both hending and shear deflections are important.

The writer desires to express his indebtedness to Professor
Martel, not only for advice and other material sssistance but for
the inspiration and interest without which what follows would not

have been written.
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In this case & 351_( 2,} g

Third assumption: tha

that hub

CHAPTER ONE

LUMNS AND GIRDERS

e consider the symmetric structure
here shown and compube the deflections of
the columns (or girders) under different

assumptions.

First assumption: ©That no deflection

occurs within the hub, then (if structure

ymetric)s

is no stiffer than the members.

that vertical (or

horizontal) members can bhe removed and replaced by the forces which
they exert on the hub.
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Fourth assumption: the same as preceding except that the
vertical wmembers are replaced by concentrated loads at their faces.
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ne that the actual movement of P iIs made up of

two pert {1} Dbending deflection of the cantilever beam whose
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Ve may now compare the results obtained from these five differ-
ent assumptions. This 1s readily done by determining the length of

-

an eculvalent idesl cantilever which would have the same deflection.
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Second case: hub no stiffer than members and receives no support
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Third case: that hub is as elastic as the rest of the structure
but that 1t receives support in the form of triangular loads from all

memhers,

Fourth case: same as preceding except that stiffening load

5

s

nstead of triangular 1s concentrated at outer edges of hub.
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Fifth case: considering deformations in hub resulting in
rotations of the hub faces, together with the cantilever bending of

the beam outside the hub.
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equivalent length =

practically identical results with assums
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CHAPTER TWO

STRESSES AND DEFIECTIONS LN SUPPCRTING WALL OF A REINFCRCED CONCRETE
DUILDING SUBJECTED TO LATERAL FORCES, AND RESTING uN AN ELAS-
0

UNDATTION.

The total horizonitsl lcad on this wall was teksn to be two
hundred kips (200,000 pounds) acting slong the upper edge of the
wall, in tre plane of the wall (100 kips on helf wall), This value
was given as part of the originsl data and supposedly is egquivalent
to the effect of a severe esrthquake., The wall 1s one foolt in thick-
ness and contains several windows. The footings are three feet in
width and are continuous along the wall. They were assumed to be in
seetlons and to add no stiffness to the lower porticn of the wall.
The soil constant was given as 3000# / square foot/.05 inches, or

720 ,000#/square foot/foot. The other dimensions wers scaled from

et
b

e originsl of the dlagrem opposite this page.

Because of the presence of windows and the elasticity of the
foundation this wall will not deform as a solid wall on a rigid
foundetion. An exact asnalytical anslysis would be impossible but
it was believed that an approximate analysis could be made which would

at least give the order of magnitude of the stresses and deflections.

£

This was done as follows.

The wall was replaced by an equivalent bent (system of colurms

end girders}. The large section at the end of the wall {a f)

=
0

8

taken as a single very stiff column. In computing its stiffness the
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fect of the hole was considered. The upper and iLower edges
of the wall became girders while the vertical strips between win-
dows became columns., To simplify the calculations the short

.
0

Lo]

horizontal strips between windows were assumed to act as
supports. That is, their effect in reducing side sway of the
bent as a whole would be small while they would prevent any
relative sideways movement of individuzi colurmms. Finally, the
continuous elastic foundation was repleced by individual elastic
supports under columns., The elestic constant of each supvort was
made equal to the soll constant multiplied by the area of the
corresponding section of footing. This eqguivelent bent has

seven degrees of freedom (considering half bent only). Each
support has its own deflection (5). Sidesway of the bent may
occur. The bent as a whole may rotate sbout the mid-point of

the base,

The seven conditions of equilibrium which correspond are:

in each panel (between columns) the internal shear Torces (due

to bending of th

@

girders) must balance the vertical externsl

£

losds on one side of the section (5): the tectal horizontal shear
in the columns must equal one hundred kips. The moment of the
support reactions about the center line must equal one hundred

kips nmultiplied by the height of the wall.

The Moment Distribution (Hardy Cross) Method was used to
find the shears and moments &t all points of the bent due to

separste unit displacements of t ¢ five surporits and to unit
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L the upper girder horizontelly with respect to the
Varicus methods (Least Work, Hardy Cross) were used to

-

find the stiffnesses and carry-over factors which are used in the
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Hardy Cross llethod of caslculation.

%

Having determired the moments and shears due to the indivi-
dual unit displacements, 1t was pcssible to write seven simultsneocus
equations from the conditlons outiined above. These equations

SO wcd D
contained the seven unknowns 8y, Ss. - ses. and 2« corresponding to the
vertical deflections of the five supvorts, to the horizontal side-

sway of the building and to the rotation of the whole building.
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footing pressures sre tasbulated below and shown on the diagrem
opposite. A negative footing pressure means a reduction in the

actual pressure due to dead loads,

nts in

}\.Ja

The next step was to calculete stresses at various po
the wall. Calcuiations were made for sections 1-8 (see disgram
opposite page 1). These are tabulated below. Several of these

stresses are quite high.

The results obteined, especially those which have to do with
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articularly
exect, They give an indication of what occurs but they may be
in considerable error. The effect of width of members wa
lgnored, or in the case of certain members was treated quite
casually by sarbitrarily taking some reduced value of length
instead of actual center to center or clear span length., The
loads on the footings were actually dlstributed instead of con-
centrated as assumed. Sheesr deflections and shear stresses were

lmportant but were not considered e xcent in one or two cases,

,A.J

-

nally, the assumption of linear vsristion of stress across the

section of a beam 1s quite inexact in such a case, because of the



ratio of length to

depth of most members and because of the

large number of c¢corners.
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CHAPTER THREE

EARTHQUAKE RESISTANCE OF THROOP HALL,

CALIFORNIA INSTITUTE OF TECHNOLOGY

Throop Hall was built in, or about, 1908, long before present
practice in regard to earthquaeke resistant design. It was suggested
by Professor Martel that an investigation of the earthquake resist-
ance of Throop Hall would be interesting and might be instructive.

Such an lnvestigation was carried out.

At present, a bullding is designed to be earthqueke resistant
by assuming the whole structure subjected to & constant horizontal
acceleration., Thet is, horizontasl forces are assumed acting on the
building, proportional to, and distributed as, the weight of the
building. The ratio assumed is usually of the order of five or
ten per cent and a calculetion is made for each principal axis of
the bullding. These horizontal forces are carried to the footings
by the frame or walls or both. It is usually assumed that esch
bent or bearing wall carries the horizontal force due to the weight
of adjacent portions of the building. Ordinarily, little or no
thought is given to the relative rigidities of different bents,
or of walls and bents. Actually, these horizontsl loads would be
distributed to the vertical bents in sccordance with their stiff-
nesses and in accordence with the stiffness of the herizontal
systems (of girders). In cese the horizontel systems are relative-
1y very rigid concrete floors extending throughout the building

all bents must deform with one another, and in case centers of



mass and centers of rigidity coincide (or, more correctly, lie on

the same vertical line) all bents will deflect equally. (Deflections
be

of floors willarelstively smell unless the building has very stiff

bearing walls).

Throop Hall is nearly symmetric and has concrete floors. The
walls (except in the basement) are of tile. Tile walls are very
stiff but also quite weak. Their assistance, in case of an earth-
guake, would be unrelisble, Except in the basement, all loads are
assumed taeken by the frame of the building. In the basenent
certain portions of each exterior wall appear to be of concrete
(from the Architect's Drawings). These sections are large enough
to withstand the horizontal forces assumed and stiff enough so
that the deflecticn of the first floor will be negligitle. How-

ever, this will not prevent bending in the basement columns.

Calculations were completed for forces in the East-West
direction (parallel to the short sides of the bullding). Calcu-
lations were started for loads parallel to the long axis of the
building but were not completed, since it was thought that the
results would not be worth the effort. These unfinished calcula-

tions (65 pages) are in Professor Martel's files.

The first step in the calculations was the determination of
-loads. (Pages 1-4 and 41 of calculetions) Weights were calculated
and at each floor level horizontal forces were assumed equal to

one-tenth the weight adjacent to that floor.
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The Loads (for the whole building) )

are shown at the right.

. 392,00“0
Referring to diegrem opposite

page 141t can be seen that bents 270,052
1 and 2 are much the stiffest of
the East-West bents. For this -

N N/
reason it was decided that the b4 X&

PN .
deflection of the building would S A

depend chiefly on these two bents
{and on their dupiicates in the other half of the building).

The deflections of the different floors were computed on this
basis (i.e. that bents 1 and 2 carry the whole horizontel lozd).
Pages 11-20 and 22-24 of calculations) Then the shears which
would result in all the other bents were determined (pp.25-34 of
~calculetions) and finally the already computed deflections were

reduced to meke the internal shears equal the external shears

{p.35 of calculations).

The deflections of bents 1 and 2 were found as follows.
Knowing that the roof and floors are relstively rigid concrete
slebs, that the first floor is held fast by stiff concrete basement
walls, that the dome (Professor Clapp's office) is 2 relestively
rigid reinforced concrete cylinder which is continuous with the
roof on either side of it and that girder 14-15 in bent 1 must
deflect with 12-13 in bent 2 since they are integral with a stair-
lemding sleb, we may see, referring to the diegram opposite this
page, that, with respect to horizontal deflections, these bents

have four degrees of freedom. In bent 1 the relative deflection

between points 14 and 16 is labeled A 4, that between 12 and 15
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is & 5, & 4 between 10 and 12 and ﬁég between 7 and 1C while in
pent 1 there are three deflections: & 4, &g, Qas.*ﬁzé as shown.

The actual deflection of the roof would be A g ia 4 185 +0 g

Using the Hardy Crogs method uvnit & 's were applied succesive-
ly at the different elevations in each bent and for each £ the shears
at all elevations between flcor 1 and floor 3 were calculsted.

{pp. 12~20 of calculations) Finally, four simulteneous eguations
were written with four unknowns (4s:-26) from the condition that
external shear must eéual internal shear st each elevaticon between

floors 1 and 3, (pp. 22-24 of calculations).

The £ 's obtaired from these equations were actually too lerge
éec&use in obtaining them the stiffnesses of all the other bents
werr neglected. To obtain corrected values for the deflections
these Jjust-determined values of the deflections were applied to all
other bents of'the building and the resulting sheers cslculated.

This process gave the following sheasrs in the different bents.

(p. 34)

Bent Vg S Vy Uy
1 141,000 83,400 80,000 109,200
2 192,600 256,800 128,200 128,200
z 49,800 49,800 23,700 23,700
4 27,800 - 27,800 33,000 33,000
5 42,300 42,300 53,700 53,700
B 27,800 27,800 33,000 33,000
7 27,800 27,800 33,000 33,000
8 30,000 30,000 30,000 30,000
¥ 539,000 546,000 435,000 444,000
257 1,078,000 1,092,000 870,000 868,000

fi”" ﬁd’i’éa/g zéu/fé‘///;-j
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But the shear between floors 2 and 3 must be 392,000 while
the shesr between 1 and 2 must be 660,000, Therefore, the deflect-

ions and moments already calculated must be decreased approximately

as follows: between flcoors 1 and 2 the ratic must be.féf - L6717
717070
between floors 2 and 3 the ratio must be?%i = . 45 ; while for the

girders in flicor 2 the ratio will be-?Q%f?;‘iﬁ. (P. 35)

While the values so obtained will not be exact, nevertheless,
the error introduced will not be large and the accuracy of the results
will be consistent with that of the sssumpticns and other calculations.

(see sheet 35 of computations)

Calculations of dead ioad effects were made for various members
which seemed critical. Because of the cumulaticn of dead load and
live load, stresses in members in the neighborhood of the first floor
are most likely to be dangerous. See computation sheets 36-41 for
calculations of dead load moments in columns and girders and dead
loed direct stresses in columns, In this connection use was made
of expressioné for moments on the edges of uniformly loaded flat
slabs, computed by H. M. Westergaard and published in "Standards

of Design for Concreté™ (U. 3. Navy Department).

A meximum allowable combined stress of 1,000 1bs/sq.in. was
used. In the cese of girders, moments to produce this stress were
calculeted, (pp. 8-9b), from these were subtrected the desd load
moments already found, the difference was available for earthquake
resistance., In the case of columns tentative calculations were
made by subtracting the dead loasd direct stress from 1,000 lbs/sq.in.
and multiplying this velue by the section modulus of the column,

giving a very approximate value for allowable earthquake moment.
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FTor those columns which this calculstion showed to be most critical,
further, more exact calculations were made neglecting the assistance
of concrete under tension, (Computation sheet 44-49). 1In most cases
dead load bending moments seem negligible but for several columns

these were also included.

FPinally (pp.40-41), knowing the moment which each member could
carry in addition to its dead load, and the moment which would be
induced in each member by horizontel forces egual to :Eb W we may
calculate for each member the coefficient of W which will give

limiting stress.

The results of these computations are tebulated on the following
two pages. On the first page are the calculations for girders. The
reader may refer to the diagrams opposite pages 14 and 16 for system
of designating members, In column 3, L is the girder length in feet;
in column 4, B is the panel width in feet; in column 5, q is the
coefficient in the formula My = quLg which 1s teken from Westergaard's
paper. My 1s the moment at the support, w the weight per square
foot on the slab, My (in inch kips) is given in the sixth column.

In column 7, W is the additional weight on the girder (lbs/ft) due
to partitions. In column 8, Mg (Mp = 1/12 WL®) 1is the moment at
the support due to W. Column 9 gives My Mg. 4 calculation of
dead load moments in bent 7 was made, using the Hardy Cross method.
The moments obtained are shown in brackets. Column 10 gives the
girder sections. Column 11 gives the ratio of slab thickness to
girder depth (calculations are made assuning that 30" of slab acts
as tee portion of tee-beam). Column 12 gives the coefficients

which must be multiplied by bd® to give allowable bending moment.

(b = width of tee section = 30"). These coefficients sre taken from



sconcrete Engineer's Handbook™ by Hool and Johnson. In column 13
are given allowable bending moments in inch kips. Column 14 is
obtained by subtracting values in column 9 from those in column 13,
giving the sllowable additional moment. Column 15 gives the

noments due to lateral forces equal to 1/10 the weight of the bulld-
ing. Column 15 gives ratios between values in column 14 and in
column 16 for the worst cases, multipiied by 10. These values,
multiplied by W (weight of building) give the lateral forces to

produce 1000 1bs/sq.in. stresses in the different members.

The second of these two sheets is slmost self-explanatory.
Coluwmn 4 gives the direct load P; column 5 the average unit stress
due to P; column 6 gives the difference between this stress and the
maximum sllowed; column 7 gives the section modulus (Z = b&gfﬁ)
which, multiplied by the maximum allowable unit stress gives the
allowable bending moment {(column 8); column 9 gives the moments
due to a lateral force of W/’;10; column 10 give8~£? x/O or the
value of the lateral force to produce the allowable stress in the
individual columns, The remaining five columns give the results
of more accurate calculations. Column 11 gives the kind and amount
of the steel reinforcement in each column; column 12 gives the size

of core; column 13 gives the allowable total moment for the parti-

cular value of P; column 14 gives the dead load moment {(when large);

. /:yfl‘f(“” /3}
/’\/, (col )
force to give 1000 1lbs/sq.in. stress.

column 15 gives the values of x(0 or the =amount of lateral
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SUMMARY OF RESULTS:

All girders considered have very high margins of safety.
For the weakest the lateral force factor was 15%%. of the_columns
considered, all but two had factors ranging from 7% to 16%. How-
ever, two columns seem to be very highly stressed by dead load only.
Their safety margin was zero. The dead loads on these columns
(¢ and V) were obtained from an analysis of bent 7. The same
designation is used on columns in other parts of the building but
it is believed that those in bent 7 have the highest stresses.
These columns lie between rooms 220 and 222 and between 207 and 207A.
In case of a rather severe earthquake these columns would presumably
be damaged., Complete failure would probably not oceur. The effect
of partial failure is to relieve the lqad on the column which fails
and to increase the loads on neighboring columns. Both these
critical columns are guite slight. Their help in resisting lateral
forces 1s not great and in case this help were lost the additionsl

loads to neighboring columns would not be important.

It appears, therefore, that a strong earthquake could be eXpected
to damage columns G and V in bent 7 among the first., Columns G and V
in other bents might also receive damage, especially if their dead
loads are large., (In case their dead loads are zero, the seismic

factor for column V is 42°,,,% equals 7.1%, for column G equals 10%).
596

With these exceptions all the columns of Throop Hall seem
capable of safely withstanding lateral forces of the order of at least

"% W, while the girders are safe for about twice as much.,



CHAPTER FOUR

This chapter deals with the effects produced on simple one-
story symmetric structures (such as elevated water tanks, one-
story buildings or tall buildings with a flexible first story)
by sinusoidal ground movements of limited duration. The effects
of variations in amplitude, frequency and duration of movement
(within 1limits) are shown in diagrams. A particular case of

damping (critical damping) is considered as well.

The choice of simple harmonic ground movements is for the
sake of simplicity and may be justified by the theory of Fourier
Seriesrand the fact that the differential equations governing the
motions of the struectures considered are linear and their solutions

additive.

In "The Engineering News Record" (published by the American
Society of Civii Engineers) for October 4, 1934 there sppesred an
article by A. L. Brown, Director of the Factory Mutuai Laboratories,
Boston, describing a series of experiments made at M. I. T. by
Arthur C., Ruge on this problem (with particular reference to
elevated tanks). Extracts from the results given in this article
are shown on the diagram opposite page 32. These tests were made
with a model on a shaking-table subjected to a cosine motion.

The experimental results obtained at M. I. T. may be compared with

the theoretical results shown on the following pages.
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e may consider the structure da]
shown. We let:
k = stiffness of columns (force L0 0 W T W i w e W A s v e e S
>
to cause 1" deflection) v

m = mass (W/g) carried by

columns

..e
sin
U = U, Z(cos AE ground displacement

x = deflection of columns} e X+U = displacement of m

xm-'-' maximum deflection of columns in interval

- frequency of ground movement

n = i\”;,r where T = duration of ground motion (seconds) and n = number

of half cycles of ground motion

= natural frequency of structure

From equil ibrium:
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when ¢ = 0 structure has no stiffness

XV@ , m has no movement and the deflection in the

[y

E i t
columns is sgual to the base movement.

when ¢ = ofy siructure hasg infinite rigidity

R .~ m moves with the base, nco deflectlion can oceour.
ids

s

when ¢ = 1 we have resonance, If we differentiate the numsrator
and denominator of (3) with respect to ¢ and iet ¢ -»1, we get:
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3 v
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For lzrge values of A« ReA 2 LoAL (At~nmw)

e 0
For small values of Aowe must equate (5&&0 0, which gives [,eps- A€

A i
Solutions:
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This process is repeated for various values of ¢ and A€,
The values obtained will be the maximum deflections occuring during
continued ground motion. If the ground motion stops after a certain
number of cycles the building will continue to oscillate and may
have greater deflection after the ground motion ceases than before.
The deflections occuring after the end of the ground motion, assum-
ing the ground motion to stop after a certain number (called ﬁ) of
complete half cycles, have been calculated as well (see pp. 33-36
of calculations). The results of both sets of computations are
shown in diagram 1 opposite this page. The two curves labeled n = 1,
give maximum deflections during and after ground motions when the
motion lasts for half a complete cycle. The other curves give
whichever of the two values is the greater. For comparison the

familiar resonance curve for established motion is slso shown.

Since a Fourier Series resolutions always requireds completed
cycles this is all right. However, it must be remembered that
the ground motion is quite irregular, The effect of a sudden break
in the motion would be given correctly enough by combining the
effects of several completed sine or cosine cycles, but it would be
much simpler to assume 2 single expression which need not complete
its cycle. In other words we may find at what time the total
energy (kinetic and potential) of the system is a maximum and
assume that the ground motion ceases at that instant. Then, at
some later time, all this energy will be potential, giving a maxi-
mum deflection. Since the ground motion may absorb energy these
values will generally be greater than those previously found for

continued motion.
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At time t (st which ground motion ceases)

%} X¢ _ i, éQ}ﬂ AC - C st CAE
[ o
: oS v -
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J@ &&éy t

If Xy = X4 after end of ground motlon
Xt, Xt are x and x at end of ground motion
Xt x M . —
ne Yo+ B (Xe )

if * dé Y ( cos At~ cos ch‘}
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'y Yn'© X
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To find what value of Xf'will give a maximum value to x,: call

this x,,
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The expressions Jjust found for Xon have been evaluated for
various values of ¢, and for different numbers of ground cycles.
The results are shown in upper limit curves on the opposite page.
These valueé give the deflections which correspond to the maximum
total energy possessed by the system at some instant during each
half cycle, The lower limit curves give the actual maeximum deflect-~
ions which occur during each half cycle (execept the curve n = 1
which is taken from diagram 1). The difference between these limits
is not great, Apparently, in general, there will be even less differ-
ence between results obtained from the maximum energy in each half
cycle and those found by stopping the ground motion at the end of
a given number of half cycles (as was done in finding the values

shown opposite page 25).

We may give these results in a different form:
If Jd=deflection produced by a constant acceleration equal to the

2,
maximum ground acceleration ( A e )

X m s

6 = uo A M —"(.‘ -~ __Ic‘-——:
X T ¢
= . ¢ ==
3 , e

s

The values of S shown opposite page 28 were obtained by multi-
plying the upper iimit values of *22 opposite this page, by c2,
That these values become very large as ¢ increases is unexpected but
can be explained by the fact that our boundary conditions are impossi-

ble for a very stiff building.
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We have required that at time t = O the building be at rest
even though the ground is moving. Furthermore we have allowed
the ground motion to stop suddenly at some instant. For flexible
structures neither of these inconsistencies is important. Actually,
the ground dispiacement curve must
always have a horizontal tangent
at the beginning and end of motion,
For a structure of very great stiff- -

ness it is apparent that the parti-

cular menner in which the motion
ceases will be important. \\\\_’,///

In case u = ug cos A€

'7 X +}7‘-)(= U.Abc_oaat'

b'¢ Bco:(?f"ﬁ)"‘{'{_‘rc:ﬂ/\f

oF +ime £ =o X= X=0
le=oo. B=—a°

-7

[

% -.-——C’:L;“(CO} Af-CODCAt)
X -2
U

et/

( 3;» A"'- C 3,},()'&)

If we consider the energy at any time %, and the deflection

X, which would correspond:

L t
Xn = Xg +

,’;» (‘).(e * dé)L
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The greph opposite page 29 gives the values of ¢, when &= e € A€

- The deflections with this kind of ground moticn are very much the

same as for U= o 3im At , especially in the néighborhbod of resonance.
Oonly two differences are noticeable. The first is that for cosine
motion maxima are in the region‘of flexibility, for sine motion in
the region of stiffness. The second difference is that for very
flexible structures the deflections due to a sine motion are equal

to uy, while for cosine motion they (or at least the first few) are
equal to 2u,. That this is
reasonable is obvious from v

the diagram on the right

which shows tlhe first cycle

of ground motion (cosine)

Y

and building motion for =

SBer 1'/01159
very flexible structure. AT o hior

When we multiply the values on the graph opposite page 29 by
X
)

would become very large for large values of c¢ could have been ex-

pected from the fact that they d4id so for %f‘in the case of sine

motion. That the values of %? (for ¢ large) are much smaller in

2

c® we get the graph for shown opposite. That the ordinates

the case of cosine ground motion than for sine motion may be due
to the faet that the initial (t = 0) conditions in this case are

more reascnable.

In order to mske the work more complete the writer made cal-

culations of%‘-’- and %l' for u = uy cos A'f‘, neglecting the ground
[-]

velocity in calculating the energy of the structure. In other

respects the procedure was exactly as before. If appeers
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that for a very flexible structure the results so found will be
erroneocus, while for a stiff building this‘assumption will be

more reasonable than the one previously made. That is, the in-
finite decelleration of the structure required by suddenly stop-
ping the ground motion will not &ffect our results if we neglect
the contribution of the ground motion to the total energy. These
results are shown on the graphs opposite this and the following
pages, together with the results obtained experimentally by Ruge
at M.I.T. and referred to earlier. It is seen that Ruge's curves
are very similear in shape to the writer's. There are rather large
differences in values, especislly in the neighborhood of rescnance.
The writer believes that Ruge's experiments were carried out for

a continuous ground motion, and therefore only the actual maxima

during the ground motion were recorded.

Considering the curvesfor cosine motion only (4, 5, 6, 7) it
seems that for low values of ¢ the first pair of graphs gives more
reasonable results while for high values of ¢ the second pair of

graphs should be used,

A consideration of these curves shows that the region of partial
resonance (where the megnification factor is large) is quite wide
and that in this region not many cycles are required to produce de-
flections several times as great as either the amplitude of the
ground motion or the deflection produced by & constant aceeleration
equal to the meximum ground acceleration. An exemination of diagram
1 will show that the critical region is much wider in this case of

transient vibrations than it is for the case of a steady motion

(shown by the inner broken lines). (Note that the left portions
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(¢21) of diegrams 1, 2, 3, are somewhat incorrect due to the ex-
- agerating effect of the boundary conditions assumed. This has been

discussed in connection with the later diagrams (pp. 31 and 32).)

These facts, instead of explaining why earthquake damsge is
as great as 1t is, make us wonder why it is no greater. In the
San Francisco Earthquske,Davison (A Manual of Seismology) states
that the amplitude (half the range of motion) was about two inches
with a periocd of one second, He does not say how long this motion
continued or where these measurements were taken (or how obtained).
In the Long Beach Earthquake (see Engineering News Record, April 6,
1933) records were obtained showing periods of ifz seconds associ-
ated with accelerations of .05 g (g = 32.2 ft/secg). If we assume
that duwring this letter motion there were four consecutive ground
cycles (n = 8) with the same periocd, buildings in the region of
close resonance (¢ = ,9 to 1,1) would be affected as by a constant
acceleration of (.05 x 12.0)=.6 g, while buildings for which .7<¢ <15
would be affected about half as much or as by a constant accelera-
tion of .3 g. As was mentioned previously, the usualL earthquske
resistant design assumes a2 constant horizontael acceleration of the

order of .1 g.

A reconciliation of earthquake records and earthqueke damage
with the results given above is difficult. Various explanations have
oceurred to the writer (or have been suggested to him by others}),

The structure considered in this discussion is quite unlike an actual
building, even a one-story building. In a tell, more or less uniform
building, it may be that é;égétime is required before large deflect-

ions can occur.
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Internal dsmping may . ° possibly be important. However, it
does not seem likely that the natursl damping of an ordinary bulld-
ing would have much effect on its first oscillations., Failure of
verious inessential elements of a building (walls and partitions)
would use up energy while the rubbing of fractured surfaces would
give ad@itional damping. If very high damping were present (as
great as critiqal damping, for example) the effect would be important.
Itrmight bg pqssible to artificially produce damping of this sort.

A short discussion of this particuler kind of damping follows after

the next paragraph.

Another explanation of the disecrepancy between earthquake records
and earthquake damage may be that the records are incorreect. Earth-
quake accelgrations aré measured by fast motion seismographs which
have fairfyzgamping. The response of one of these to the first
motion of an earthguake might be quite different from the actual
motion. Any change in ground motion might also give a distorted
record, The writer suggests that a complete series of sheking table

tests should be made to discover what effect change of motion would

have on the record of an accelerograph.
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EFFECT OF CRITICAL DANPING IN ONE-STORY BUILDING SUBJECTED TO SINMPLE

HARMONIC GROUND MOTICN

Let notation be the same =s before with

Let:
he addition of a damping constent £ such that

U= o sindt

X= (X+4)= o
af ¢=o then . )
1y % oradd mfx= oA ImAE

+’=§=(cvb

is the equation of motion.

Solving: and using boundary conditions:
X - SeAt (,‘%l‘ckf)+-31;°(/\f~"()]

— ,_/,c?- e [

o
where ug, = amplitude of ground motion
¢C - VY | £
RACEY
X = sin ! 2¢ s Co;I_C_f;L
ctys cCt/!

The maximum vslues of !D%Were found for a single cycle of ground
motion (n = 2), The steady state maxima (t—> e0) were also found,

These values are tabulated below.

0 .25 ,50 .70 .75 1.0 2.0 5.0 10,0 o

ci

X one 1.0 80 49 0
Us ‘.‘/‘/") ' * *

Xeo . 1.0 .84 .80 .67/ .64 .50 .20 .04 .01 0
Uo state)

Since the steady state values are the upper Limit of the deflect-~
X

ions they are plotted on the opposite page together with values of

for n = 1 from diagram 1.
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The fTollowing =rticle Dy Paul L. Kertzke and the writer

‘ngs of the American Soclety of Civil
Tt was written 28 a Disecussion of a

papar by Horman B, Green, Consulting Engineer of Sen Francisco,

The original paper advocated the use of flexible first-story
for sarthouakevegistegnce, That is: multi-story
buildings would be stiffened in the upper stories and made flexiltle

in the firet story. The advantages of the design would be: absence

of harmonic fregquencies and less probability of resonance with

This paper also suggeched the uvse of acceleration diagrams

{similar to the one on the Tollowing mages) which could be made

up gquite arbitrarily and represent = hypothetical earth-

quakes, The accelerstione from thils diagram could then be applied
to the bage of the building and the resultines building deflzctions
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years at varilous lsboratories in the United Ztates and in Japan,
there is still considershle +to be lesrned in regard to the affect

of earthquakes on structures. The suthor's assumptions that

selsmic acceleration 1s & iinear function ¢f time and that the

)

initial shock is sudden seem =28 reasonable as any others that
night be made for his analysis. Actually, the final results

will be practically independent of either assumption. However,
the evidence of an eye-witness of one of the Jepanese ecarthquakes
that copper coins in @& can were thrown out at the first shock is

not proof of a sudden initial acceleration unless

;
cr

he can happene

to be so connected to the ground as to follow the ground motion.
3
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The =suthor's use of vlus and minus signs 1s rather confusing.

His values of Y, 2nd V, at the end of each half-second period

(Table 1) nanrently are conglidered positive if in the direction
of the acceleraticn at the beginning of that period, and are

i«Jc

reversed 1n sign when they become initisl conditions (YO, VO)
he next period. It would seem more loglcal to give the olus

sign to deflectlons and velocities to the right, and the minus
t

o those to the left. Incidentally, if the second integral

£ a T oo : » e 2 o E - N
of the authort's sceelerstion curve is teken it will be found that
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the base of the building is displzced about 20 in. asssuminege it
ol v L)

Filgure 9 shows an acceleration diagram somewhat sinilsr to
Figure 3, except for the presence of a rather long periocd accelera-
tion (3% sec), in =2ddition to the shorter waves. This sccelsration

pattern was applied to Mr., Green's building. The computations,

based on the follow1ng equations,

Yn

o

(39 % * . 43351/0 . 203, 2. — 7o
ras
and,
Vi« ~1350Ya +. 6392 Ve *. 175 _ #3855

igure 10, The maximum deflection

vielded the deflections piotted in F
is about 1.2 £t, which is more than six times the deflection obtained

by Mr, Green. ZProbably the next swing would be still greater.

Objection may be taken to the writers' use of a long-period
accelsration, particularly in view of Lir. Green's reference to

period of

[¢]

Dr. Suyechiro's conelusion thet in all esrthouakes th

s

acceleration in a particular locality is confined to Very narrow
renge. An examination of the Long Beach, Vernon, and Los Angeles,

alif., records of the Long Beach earthquake of lierch, 1933, shows

Cr
the presence of waves of relatively lcng period. It is probable

that these

[¢]

au

(0

sed a great part of the damage to bulldings with a

long free period,

hg an Independent check on the foregoing resulits a caleul

o]

tion was mmde using a method of analysis developed by Dr. M. Biot.

o

This analysis was developed Tor ilding with =ny nuwber of

Tlexible stories, in which =11 the stories above the first have the



same flexibility. Very brilefly, thls method consists of consider-

2

st curve, @onlying apopropriate

(‘)

ing the actual ground dlsplacens
constants which depend on the characteristics of the building, and,
by using grephical integration, obtalining =n envelope (liniting
curve) which will give the limits of the actual displacement curve
of the flcoor for which calculations are made., TFor the flexible

irst-story bullding the equation of this envelope becomes:
2. k358
[/j[f)j/—n 27D £ a/é] +//3/fj Cos a)?')%fdé]

in which, g (t) is the ground displacement curve and QL, the fTunda-
mental frequency of the building. The results obtained are shown

€.

in igure 10, Dr, Biot's method of analysis has been checked by

comparison with actual deflsctlons of a model upon a shsking-table.

The agreement is quite satisfactory.

The deflections obtalned in this example are obviously excessive.

of an acceleration

o

Furthermore, it can be seen that a careful cholc
pattern will glve a similar result for any given structure. The

results obtained from MNr. Green's methed (or eny similar method) will
depend on the original cholce of acceleration pattern. If one could

'y

pe sure that @ll earthcuakes in =z given region would be alike, this

method would be very valuable. Unfortunately, this is not the case

and, hence, this method of amalysls, as it stands, may be misleading.



CHAPTER F1V&

ROCKING OF A BLOCK ON A HARD FLAT SURFACE

The overthrow by earthquakes of pillars, gravestones and
various kinds of blocks resting on flzt surfaces is a very
common occurrence, This fact is the basis of the "West For-
mula™ for the maximum ground acceleration during an earth-

quake, This formula is derived by equating the moment of W

b about point ¢ to the moment of the

inertia force about the same point,

h [———*-hgﬁ When an earthquake overthrows a block
w

of dimensions (b, h) it is concluded

C.
A AR AR
4_____.2\\\\\\\V\ that the maximum acceleration of the

W - Wg"ié'- ground during the earthquake motion
A= °9 was greater than A,
h
A = acceleration
of ground This is true, for obviously an
g = acceleration acceleration smaller than A would
of gravity

cause no rocking. It is also obvious

that a maximum acceleration just equal
to A could not cause overturn, while for any greater accelera-
tion the possibility of overturn will depend upon such factors

as degree of resonance and duration of motion.

In making the very simple experiment of allowing a block
to rock on a hard surface under the aetion of gravity only, two

facts are immediately obvious: the first, that the ampiitude of
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motion decreases very rapidly with time; the second, that the
period depends very considerably on amplitude, decreasing with

decrease in esmplitude.

In an earthqueke the initial motion has high fgquenoy and
high acceleration but small amplitude. This is followed by a
series of slower, longer waves, BExperiments with a block on
a2 support which may be moved by hsnd will show that this kind
of motion is ideal for overturning biocks. The high f%quency,
high acceleration initisl motion can cause rocking but may be

unable to cause overturn.

Once rocking starts however, the longer period waves have
better chance of resonance while their greater amplitudes trans-
fer more energy to the bvlock during each oscillation., In other
words, the initial high acceleration waves may be unable to do
more than cause the block to rock while overthrow is due to
later waves of greater amplitude and period but much less maximum
acceleration. However, without the early waves to cause rocking

the later waves could not cause overturning.
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ROCKING OF A BLOCK UNDER THE ACTION OF GRAVITY ONLY

Two facts in connection with the free rocking of a block
were mentioned on the previous page. The second of thess, that

period depends on amplitude, is readily explained mathematically.

W = weight of block $

X = angle of elevation of
center of gravity

about point of rotation: 4
= K.E.= % I, %%
Vv = P.E.2Wrsin x i‘\
\\\\\\\\2(1\\\\ N\

Laglirange's equation:

Lerfing Wor _ o *
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The chart facing this page shows the dependence of period
on amplitude. The values given are suitable for any shape of
block which rotates about a line perpendicular to the paper
through point ¢, On the figure: G is the center of gravity;

r the distance from G to axis of rotation; & is the angle of
elevation of G when block is in neutral position; x is the
angle of elevation of G at any time, o is the lower limit of

X, X, (not shown) is the upper iimit. T, is the semi-periocd

of oscillation of the block; that is, the time from one neutral
position to the next. a' %gf where W = the weight of the
block, and I, equals the moment of inertia of the mass of the
block about the axis of rotetion. For a rectangular block of

base b and height h, ax 322 |
4r

To use these curves, o¢ and a must first be computed. Then,
for any particular value of x, (meximum value of x) R can be

found. R, multiplied by ‘%‘- will give Tg.

Exeample: consider a block 1' x 1', Let x, be 75°, Then a

J 30522 sza L avc, R t¥, 75 2V E X e
equals 4c. 707 & ’ T84 °

The weight of the block is not needed.

On this chart the line R = 0 corresponds to x, = < while

the line R = e0corresponds to x, = 90°,



The other of the two phenomena mentioned in the first part
of this discussion, namely that decrease in ampiitude with time
is very rapid, is more difficult to analyse mathematicslly. A
solution is obtained, depending on a number of assumptions. The

writer believes these to be reasonable but realizes that a much

more exact method could be developed.

When a block oscillates tc and fro on its base it loses
energy rapidly. This loss is much too great to be caused by
alr resistence during the swing., Therefore it must occur during,
or in the neighborhood of the passage through the neutral position.
One of the first possibilities to suggest itself is that energy is
used up in compressing =nd squeezing out the air under the block,
especially Jjust before impact,
and in overcoming a slight
vacuum after impact. This
effect might be important

\

in the case of light blocks e e |

with long bases., However,

experiments with wooden blocks 33" x 33" x 16" (with the 16"
dimension vertical) rocking on flat surfaces and on two parallel
strips half an inch above a flat surface gave no noticeable
difference between these cases. (But since no quantitative
results were obtained, it is possible that this effect is measur-

ablec)

A continuation of these simple experiments indicated that
the relative energy leoss during a transition depended primarily

on the shape of the bloex, that the weight, material and size
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made little or no difference. The calculation which’follows

gives results which agree with these observations.

b 4
h Y h s
W W
Ha w, - _ Hs
A A
v % 3 “
Before Impact After Impact

First assumption: that reactions occur only at corners of block,

and that no slipping occurs,

If > h we know thet on impact the reaction at A will be
increased by the block attempting te rotate in a counter clock-
wise fashion about B, If b<<h the block %ill rotate about B
in a clockwise direction and the reaction at A will become zero.
Let us first find the limiting case, in which the reaction at

A becomes zero and the block stops completely.

Let the time required for completion of the transition from
one motion to the other be A t. During this time the reactions
at A will change from meximum values of the order of magnitude of
W ( weight of block) ~to zero, while the reactions at B increase
from zero to some maxima whose magnitudés are unknown. If the
block and support are quite rigid then At will be small and the

reactions at B will necessarily be large.
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It is also assumed that in writing momenta equations the
effect of the reactions at 4 and the weight W may be neglected
in comparison with the effect of the reactions at B., This requires
that the ratio % is not great enough tc cause any large increase

in the forces at A,

Consider that during impact
the angular velocity of the block U

changes from @, about A to a2

about B while the linear velocity o )
< t ! —a
of G changes from u; to up. y . \\§,¥
. 3
Hae ot s W ¥
j' o ‘?r[t“h~Cu3/ ‘%

‘f Ve « ¢ - %FY'O’u» * € wa)

S CeVacrg)ot = Zalew oy

Combining these to eliminate V and H

W~ 2

If redius of gyration about G = k; I_= —?Mﬁ K*

5} Loz ct+ k= e/
= — T
Lo, CI‘PIT"#?L

If «w.=0o (limiting case)

T

C +’(1=€</

For a rectangular block
=/ b e b kN L Yk + & -
ed"fﬁc—‘:“'f‘,z_(B-#‘,) L' h n

putting in these values

b= h Yo



w7 -

If b > hVzblock will not rotate about point B, and all
its initial energy will be lost (used up in rebounds). If e=<=©
" obviously there is no loss. ZFor intermediate shapes the loss

will depend on the shape. For rectangular blocks:

n 0 .1 .2 .3 4 .5 7 1.0 Yz
o 1 .S85 ,943% .876 ,793 ,700 .507 .250 0O
0

2.
~=-) 1.00 .970 .888 .768 .629 .490 .257  ,062 = Efficcency

For any other shape of bleck the efficiency may be easily

caleculated,

This section may be combined with the previous secticn tc

determine the motlon of a block rocking under the action of gravity.

Example: Consider a2 block 8" x 20" with 20" dimension
vertical. Its efficiency during the transition is .629 ; x= 6&§%/2°
Let x, = 80°.

Let us call E; the total energy (referred to neutral positicn of
the block) during the first swing (until the first passage through
the neutrel position); Ez the total energy during the second swing

(until the second passage through the neutral position); Eg, Eg* °

likewise,

Let us call Ty the time to correspond to El, To to E,, etc,

Then: [F,: F23: F3: Fa: ... = 10 . 629 .3%¢. .29F... ..-..
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Since E = W r (sin x; - sine) r= Semi-cr390na/
Xoy = §6° -~ 5L . _95£5—-.9285 =~ 0563
Wwr
_,é__l:. =.oyss(.g;¢y—,.03>'¢> - Sek Xozr 2. 0875 ¢ +£92 F5=.72432
Ho-r

Xozg = 7223 ¢

£ _ 2, .
VV:’ = .07€3(£2~7) =-0223 .. S'a Xog=-06223+.7287 =.%9r05p%
- r
)/03 ~ 7/° )'7'

E¢ - 3 .
Wor :-0563(615y 2. 0/%7 .. 3cw Xodzr.0s @ 3, % 2F

- Xo 4 = 70° 37°

3 3Ba.a2-/2, | -

a'&.; —_——— s & ow 3T IS

s - t0.77
From diagrem opposite page 43

/.79

N, = 17% e T,y = 3% dec
93

f:.= .9 T&’ / - 3¢ ”
s 28

;?az - T, - ac. 55) Y
5. 28

o Ao Te209Y o
s rEYT

As yet the analysis has no direct bearing on the problem
mentioned at the beginning of this chapter, namely the determination
of earthquake intensities (this word is used intentienally to in-
clude the effect of both acceleretion and amplitude as well as
duration of the ground motion) from data on the overthrow of blocks
of verious dimensions. Obviously no such determination 1s possible

because of the fact, previously stated, that acceleration, amplitude

and duration of the motion as well as the manner of varistion of

?PFag
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the kind of motion are all of fundamental importance, and, to a

considerable extent, independent and unpredictable,

However, it will be possible to calculate the motion of a
block whose base is subjected to a given displacement, For a given

earthquake the effect on a particular block may be determined.

Consider a block on a moving base
whose displacement is u. Other symbols
may be carried over from previous work.
The energy lost during each transition

will be the same as before. 'A

The velocity of G is given by: -

. L . - . -
U= (rx) s o*c20r¥smmx

- LT, Y+ W [ (rotr ¢ 2 4 .
Tir= e ¥ ;3.[( ) 2UYrX3ex]

T 2+ 7'(1_2.—& +:—_;f [C}L*"Z,‘)ri ;in,\jj
V=Wrsinzx
From La @range's equations:
Y Tex +Wir(ecox ;—g-:s'"n)y= o
If we assume that U is constant and equal to n-g.
Tx +Weor(ces x 2 ha;”yzo

Le?%}jx 7
’,,:"s=¢°>F };{—_—:—___:7_: z>l;'8

X B2 Y in sin(xel) = o

- r
[_(/7‘/»_7 ___yg._. }/,+”L = L Ore Y *r£ =)/

<

U >>+a*a:"n]:0
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MM//}/)’/;‘), /7/ ‘/ j Gw e /;: ‘Lefrav‘-'\»f:

*,
8/%~q‘éosr +C__°

/3 e ¥+ 1;= ‘x'zw, MNhew 7=,

8] l%: a&,—(6057_%,_y’+w,")i

Le¥ g-; 2O
Co:‘y= /‘2.3"“1‘@

2 o
J c‘[S’”tQ *w -.3:*3197'5- - d'é
4 4a‘-
Let >n g, ¢ 0" >~
Sftar * 8
g6
!/ o
= a B (1 smtg)i T 7€
ﬂ\
Ceose T . B>, . ’2..*",,;,;,9(,0/ proes:

T = 4 £
1) To-Te s ag[F(B«‘Q‘)‘F(é"é‘f)]
F ~ Frtr/p fie 13407"’/ of Fovst fing,

Cose I 3'<7

Let ) - Femiz 9"";"3 N
=32

-4 3
(=3 (/~ B"’;»"z,)?:

ot = ( 37 g4—&.q)

'x)  Tu-T77 - -;‘[F(Baé'i,)" F(B’e‘-)]

3'e ©
B c¢an not be less than abecause this would make the radical

imaginary.B=3'? corresponds to maximum displacemsnt of block.
g :

At this point‘g,%ao and the block prepares to reverse its direction.

These equations ere derived for constant ground scceleration.
In case the ground acceleration G
varies it will be necessary to

consider the acceleration as a

series of constant accelerations, uk

each acting for a short time.
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stecting Lrom res7

Example: consider same block previously used as an examples
(8" x 20m; A = 88°-12'; efficiency = .629) From the West Formula

the smallest acceleration that will start rocking is:

A : .%%2 = 0.4-9

Let an acceleration of -.5g act for .15 seconds and be followed by

an acceleration of -,3g.

/3F Jptervas/ . u L
- 59
_ - 3g
-7 _. 5 _
7T A P ,
&
@ 22 (rng)
* Zr ,
[~ 2 5:49 20"
“w, = o
o , W W W W W W S W W W Wl VL W W W S
)/, - O( :é?-,& ___5"9
o
Tz ¥ A B 18247

(-] 7 ‘
6. = x Y = 74 -23%
* = ~
/3 = 3’”19f ( stnce w,:aj

B -~ 999/

There are three possibilities to consider:
1) sin @ mey become equal te/B, in this case the motion
will be reversed.
2) The acceleration will cease.
3) The value of x will exceed 90° and the equations must

be rewritten for a block whose base is h and altitude b.

In this example case 1) is impossible because the lever arm

of W about the point of rotation decreases as X increases while the

Qcceleration

ground e is constant.
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Considering possibility 3)
X2 7o0° C72-= o’ s11g-3 5 &, = 103 %1y
/

7= 3-_47/F(6,/03-zy—/—“(/3,?;-935)7
dince F (ot 5078/ - 27 a,10)- F (. 920-8)

1}

7T L -
5‘.47[/—‘/.9?9/, §7-3262 )— F (. 797, 76_¢y]

= 77 (3.63¢6 ~5./363) = O. 2723 3ec.

Therefore acceleration ceases before x = 90° and possibility 2)

must be considered.
L. e? / o~ B~ j

/

Ta-~T: =”§";,<;.? [P(.c;?w,‘}r)~ ;_/?6’3_7 F‘/.???/,jj-_;z,?i‘?g
Y= 89.7% 6,=9537; = 190.6° xa=7%0°"

Lrnad ZTrntervel/:

n= —-.3 X, (Xa Frome preceding) = 74w
Im prececliiny ipFerves O o d_%z —q9rc (Co‘gu”w‘g:]a‘ + 9 o5
=
which escals W, 1 Aud JumAerpar.
B- cos =2 _ Leco_ a2’
//-07

4(),: Ke *B = 7 30°- qg, 6., Po-pr

a*= 22 /iy a: $£3o0
4 r
> (res)" R}
Pt e °e73 B teesy
Since B~ 1 we treat under case 1 (page 50).
T- = £ T [ . - —
2= 7 /6037 (530 ) Fl.99¢s, 9€) ﬁ(ﬁ97sa,é?§7

There are two possibilities:
1) The acceleration will cease.

2) The value of x will exceed 90°,

Investigating 2) X, = 7%-00 X. = 75 eo
?1106~41 B 10g- 22
f,.- So- ¢ —_—
<Yh [} 3 J'— . /96~ L
6’!’ 95"2/
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a)- F (- -
- - / [P[.9963,?&}/) (-99¢3, 90 >d7

5.3 2
Te s [ F(a s, 85ag) - F (3 T 2]

-

[ A 2 =, &% = . 322 Ddec,
7—__5.31(42, 24)

Therefore x will equal 90° at the end of .322 seconds if the

aceceleration continues.

There is no reason for continuing this example. The procedure
would be a repetition of the preceding. We must remember that the
energy and therefore ¢« is reduced at each transition. Careful
attention must be pald to algebraic signs, while a clear picture

of the motion must be kept in mind.

Obviously this process 1s quite cumbersome. A calculation of
the motion of a block during an earthquake of ordinary duration
would probably require several days. Curves for the values of
the elliptic function F(k,¢ ) would greatly facilitate this calcu-

lation.

The writer suggests that an experimental investigation of the
formulae developed in this chaepter would not be difficult. Such an
investigation could be carried out by a graduate student as a portion

of the research reguired of him for the Master of Science degree.

* Note: Numerical values of elliptic integrals are from ®ierce's

Tables", and because of interpolation are quite approximate,



CONCLUSIONS:

Formulas, Dbased on certain simplifying assumptions have been
derived for the motion of a block rocking on its base on a hard
surface which may be at rest or may move. For the block on a fixed
base the calculatlons are quite simple. If the base 1s accelerated
the calculations are somewhat complicated, chiefly because a variable
acceleration must be approximated by a series of constant acoeleratiousQ
For a particular base motion the motion of the block can be calculated.
However, data on the overthrow of blocks during an earthquake are not

sufficient to fix the intensity of the quake.



CHAPTER 3I

MULTI-STORY BUILDINGS

PART I: THE NATURAL FREQUENCIES OF VIBRATION OF A UNIFORM MULTI-
STORY BUILDING

L = number of floors
t K = stiffness of each story (force for unit
L~/ deflection)
. m = mass (W/g) of each floor
- V= displacement of nth floor
ot T = kinetic energy

W = potential energy (due to deformations)
’ ) T2 og g{;ﬁ; N

NN M VAV RNNNYNNOVENNNYNNNNAN

) Wa K gb 7t Je ) L (0em ) (R e
N

or y ws ---.. ,Y(y:"'yk. {yu—t kaoJ) o —I_Z-{ (7“"71"()

* Using La ¢range's equations:

U' +_§:(2:7"‘JL) = 0

Ir (290 = Gus~ Gur J= 0

Goor o (9 9] =0

fw

4/

Let (s7) Un,x An e

and

& (2wt
Substituting these in equation (4) we get the following homo-

geneous equations written as a determinant:
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Ay Ao Az . . . e e . . . A
e -1 0 0 0 0 0 0 = o0
-1 ¢ -1 0 o . 0 0 0O — 0
v 0 -1 c -1 o . 0 0 0= 0
e et e 4 e e e e . . o . . e .
0 o 0 0 o . -1 ¢ -1 = 0
0 0 0 0 o . 0 -1 (e-1)= 0
There are L homogeneous equations containing L unknown
coefficients (4. . . . AL). In order to have any solutions

(except Ay 2 A=, . .= 0) the determinant itself must equal
zero,which means that ¢ can have only certain definite values,
determined from this fact. Since ® depends onm ¢ (equation (6))
we see thalt there is a certain definite frequency for each c.

We expect L different values of ¢ and therefore of « ,

Using a method and & notation to be found in many texts on
Mechanics, we let:
Dp= value of a determinant consisting of the first n rows and
columns of our Lth order determinant.
D; _; = value of all but last row and last column of our deter-
minant.
8 D;= (c-1) Dp_; - Dy .z = value of our determineant.
9 D;_1= ©Dp.p - Dp_s (by expanding in terms of the minors of
the last row and last column)
From the tfigonometric relation:
D sin (o#8 )} #D sin (&8 ) = 2D sina cosf@

letting Dy_ 1= Dsin np and trying ¢ = 2 cos @&
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we may rewrite (8) as: Do= (c-1) D 5wl e —-D Sim (L6

Yyhen L=/ Drsma2e = Cx 2 co> S
- —~ ——-L—-————— c-uc,(
"B - Scw O
jl‘y) L O 3']4 (L~l') 6
o mw i e it
IJ :DL = (ZC°3é~l s e S n &
ButDL=Q
It can be shown that equation 10 becomes:
'y Sin (4+d§= 3w LA
lLar) 6 4 L6 =T g QT
é o C - _ v 2l n-= 4. » --
J 3 Ml w’")'(’“g”c'a):uw
., Mmoo :l.(;-cos _;._)::_I_sz 4—‘3:}:2'_2‘_{7_:/7!‘
DL+ o Lt
O..
2, 5 ; 2h-7 z 2= 4. > - - - L
1/ O, = 1}/;1 Sk P by
If L =1 (one story building)
K
oo = )/;‘Tq
w" - S h-v 7
/_3j oy = 2 3- 2L 4 2,
If L is large compared to n we getb:
/ I~ 7. - yau

! 4+ On - A
/ o0 _.(.2"3 ‘ Y
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Vibration of uniform cantilever which deflects only in shear.

A building of moderate height may be so represented.

Let m = mass per unit length
1 = length
k = shear stiffness (force

which will cause unit
deflection in unit length)

y = deflection of any point

NN N VNSV XTNEXTRNTR

x = distance from base v+av
" - i‘_l,i_L 4 = .Cil.:z. "
:‘j ol x> LEJ o t” rmdxy
2 Fyr =@ R
. dv .o v
,9 Ay_ma’xy_o or a(x—m‘a

From definition of k
-~ Kk 9y
174 oix

Combining these:

’n

Y mgt= 4" R
Let y = X sin wt where X is a function of x only.
xﬂz—_m_.bo’-x

I
X= > J'k’(co/(%?d(—~¢i)
Boundary conditions:
Y X=0atx=0
a) ¥ a0atx=1

)( )/ s/p u)/ x
7 . ba/y7k x> 00:‘1)}//-«x

-

Y = Y. sh o ) 4 ﬁ?;y sip wit
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From condition 2)

W Yy 5 . a7 .
x L= (2n-1) 5 N~ 4. 2.3 . .
'®) o, = //’% i prlccl Gyrees ittt  (1%)
"

Iy 47-_. e 3’;'(7"‘9 Z_?i ;c.n o,

PART II: FORCED VIBRATION COF UNIFORM SHEAR PANEL

Use same nomeclature as before and let
u (t) be displacement of base.

The acceleration of any point (x) will
now be: A+ CL

By analogy with equation (16)
2o/ AYs W (4 +id)

 The solution of this equation will be the sum of a partlcular
solution plus the solution of the homogeneous equation which we have

already found (equation 19).

’wLet /1-“-279:'3:"[77-)( RS

2 3 3
-~ 2) 1’)’;: i
S = S . mim LT
then « =&77¢ > £2&
and “a ‘.7— . o) ‘:_.’.Q
meni—

If base [ displace& " u,the velocity of any point

in building

t

L2+Z7?.£ 5'.'3‘_‘_)_7’-,2‘

wry —



Kinetic Energy

-B0 -

»'.J[‘)‘.J 26.’8’?( *2:_[

=

T: M/ N 54 G/
+~ 3 X -
(o 2 5 = , e
Potential Energy
»
s ~ . . T 7-2' .
7;{:._._ 7 er 7 ‘zv.
! z./f fzvf; Peeon __3) IR Z7 2.

23 g ek

Letting u = u,

4‘3—

¢~

sindt

equation for any coordinate %

284
o7
and solving:

P = Q¢'$ru(lé—{—d)* zln_

+
W

o
ot

buil

H

dai

ng has no defl

/ .
2(_5 7ret /\")) >m At

M_‘l»
ection and no veloclty.

2al4
,4;’ - 2llan’
Y/ ¢ 7
; =C A

4 7/"(5" =

et t=o /t}-.- Z’(/‘)(CA)-/- ‘2‘[(03/ D (T X
Y -

Velocity at any point x o+ t=o0

/uks— ()"‘%: C/o*"‘Z’(GICC/\"' 'T/‘(C‘cl

multliolying

by siné%ﬁaQand integr

D¢ = — A e LC
(et
2 lte

2y 7¢ =

—MQ_L ) bf.y; T x
s,)

I — [5"’)‘6--L(‘_3¢ AR
¢7(C“// - ,)
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Actually, even though the ground motion has the same frequency
as one of the natural modes of vibration of the building, any sudden-
1y beginning ground motion will cause vibration in all the other

modes, That is: from equation 20a and 24

. . ¥ T
26 :2—19'3;" (¥ 194 z (5l-n)€"-‘l:c-3"" Lthﬁs'" trx
J /7 ¢ -'—; = R OZ :‘ﬂ'(dlc"- /) v

In case of resonance with fundamental mode ¢ = 2 and we have,

combining (25) with (26)

~ L o Srn 77“')’
= ZUQ[['—'Dlh)f 77_)64‘ )A-é] o

. Y .1
+ ] 4 ¥ ~ L 3emYAE] 20—
/1277'””’”7: a7 7 2 e
27 3t TITY
J + A )I.h ,"6- - L )Ilﬂ 0(‘6] ";"_';j‘
60]7" r2 17"

:j= ZUO{[—S:hIG—-Aécot/\‘&] Sth

Sthmaat]dm 20X

-P[.09333&Aé~.1f 2
ly ~
p m SAY Yy TIT X
+[.olb*1 3tm,\{— - 0T 3D sm ST A J “ e
+ - . - - - <. o o

e

At the end of any number of completgigycles of ground motion
all terms will be zero except the one containing cos)At, so that our
conclusions regarding the value of 9. at timeAt=nTare equally
good for:p“,at that time,in the case of resonance with the fundamen-

tal frequency.



In the case of resonance with any higher mode (say the second,
c = 3/3) it is clear that our equation corresponding to (28) will
contain terms of the form.f3’“-%§ which will not equal zero when

At=nT" (ynless n is divisible by 3).

We have seen that the deflection of a uniform building (in case
of resonance with the fundamental frequency of the building) is
wsxn Yo yhen AdenT™  Por g one-story building (in case of resonance)
‘}w=g:9°@ In each case the stress in any column will depend on the
deflection of that column. For the one-story structure the deflect-
ion is obviously Efnlfe « For a multi-story building the deflection
will be approximately equal to the slope of the tangent at the base

T e
3

multiplied by the story height. If s = number of stories: d.=

The preceding calculations are valid only for nulti-story
buildings of several stories (more than five perhaps). In the case
of fewer stories we cannot consider the structure as continuous but
must use the equations developed at the first of this chapter.

If s =6, = EF”QQWhich, for the same uy,, is only 1/3 the deflection

in 2 one-story structure at resonsznce,
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PART III: THE EFFECT ON FREQUENCIES OF CHANGING THE STIFFNESS OF

THE FIRST STORY

Using the same notation as before with the addition that the
stiffness of the first story divided by the stiffness of any other

story is 4, we may write as before, the expressions for Energy.

(g g9l )
ly W= ——'}[c/g," +(~;)¢-3Q‘ v (e 3"")‘]

Writing Laggrange's Equations:
Aj' +.§(Cd¥d'y/—’gz_)zo

Gu #E (=7 T 2ge = Ya)=o

We may let Yun = A cos(wit-et)
and replace(z-°°kﬁ9by ¢, giving us the following equations written
as a determinant: |

Al Ag AB ® & e & & 6 e o o " * e e ‘1 . A.L

(c-1+d) -1 0 0 0 0 0 . o o0 0 =0
-1 c -1 0 0 0 0 . 0O 0 0 =o0
0 0 0 0 0 0 0 o =1 J -1 =°
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Agein we have L homogeneous equations with L unknowns (the
coefficients A;. . . Ap). 1In order to have a solution the value
of the determinant itself must be zero, which means that only
certain values of ¢ are possible,

If D7 = velue of the determinant without the last row and
colummn.,

D' = value of the determinant without the first row and
column

D} = value of the determinant without first and last rows
and colunns

D,, DL, D", DZ, etec. are similsrly defined;
we can write: *

D (value of whole a’??‘c’lfm’ha"/jz (c-2) D~ Du

p, - (cv+a) D/ =D

r”

Do = (c~v 40’) D:r,“D"
Where D 1is a symmetric determinant with L - 4 rows and columns.
By algebraic manipulation we finally obtain, after replecing
L by t+2:
D+ =[CC~2~ *d)("dJDt ~[ec-2+a] Dy,
But Dp.c Dy, - Dyoy (see es 9)

Kncwing that:

Sin (Gﬁb)—/— Sr-h(a—b)ll,jl;—;q_ cos b

we let /Dé . b aem (ﬁ-'-l) e

6 = &

a s + ©
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panltr1)e= 2 cos0p3mLo —~ posst-Jo

:D_é = C ® D'&‘i — Dé-z_,
then e =~ 2, €056
If ‘. =7 D{: P/:.C_ :Lco)é\_pjf’” e
- ’
P Srr ©
’D_é = MQ
Derw o
and i
>k (trJe 3kt o
3_9 D{:*L:[(C—z"‘aj‘"c/] —;;:T — (c-2 -LC/) W

and must equal zero.

By trigonometric manipulation i IR - ovtein:

3% 5w (t4 08 - I3m 8 +Cay)Bi Lo~ 35 (L6 )0
In case 4 = 1 we obbtain:

Sin(L¥)B - 320 =0
which 1s eguation 11.

For any given values of L and 4 we may solve equation (33) for & ,
from & we determined ¢ and finally&., This has been done for a few
3 = = e .
values of 4 if L = 2, 1In case L = 1 we get &, which was found

in Chapter Four. For L = 2 there are two normal frequencies, call

these“y (fundamental), and ¢o, (harmonic).

d ver}f .l .2 Q5 .8 l.o 2.0 4;0 l0.0 ol

smell
“ 2 a/z .049 ,095 .218 .324 .382 .586 764 ,900 1.00
w:'!(_" 2.00 2.051 2,105 2,228 2.476 2.618 3.414 5,236 9.100

If L is larger than 2 the process of finding frequencies 1s quite

tedious.



wfiGem

e
Al i

o

P

bRy vy
L

oy
e I

=1
2

Fo g
b e

Ty

».

LRITIGL

S

ey
A et L

KA

‘o

NN SN N NN N STNUTN NN

AN

),/-J-»'nwé“

J

=

¥

i

Y
o bt aay

ne,
)

'3
3
b

hig

o 3
394

o

Wi £ B 3cm

e
/Ca

04)/\/

(5]

Lo x 3. 7’:“’

r#te
e

C

g

tresses Occurrin

{

o

by
b i

®




-67-

at free end 7 = O
oo B4 L] - ‘ - y
at discontinuity _ 7= _ & where & . 1=
; 7y )
.
- ¢ - K ’Y:.
7" - /<a 2,

This is equivalent to saying that at the free
end the shear equals zero, and that the shear in
the first story is constant and equal to the
sheer just above the first story. OQur structure
now consists of a uniform shear-flexible cantilever supnorted on a

one-story bvent.

If we place ocur origin at free end we must write our condition

equations at the discontinulty: o ' Ko Y
2 =7 T,

f

Letting 4~ Y% (w3 »wt and using our first boundary conditions we get:

Yo A cm’//;h Lo x
4P
Using the second boundary equation and letting 23~Lﬂ=‘amm have
the frequency eqguation:

. I, 2,
Y Atends L L (See Biot's paper)

In case of a building with a discontinuity at any point we may

L LQY ¢
36) Jmor . te=)
nn i, Leow ) %‘ o o
to find the fundamental and harmonic freguencies of the structure.

use equation (36):




.35

y4a

-~ /

_ s7e|im P /C/
K/'/ %84‘/, N \ov/
N \

N ® Ay N

‘Cet tUA ‘3/9/)74 //a’oo( & ‘9’01

Period, Seconds



-88-

PART IV: INTERNAL DAMPING

The curves shown on the opposite page represent tests made on
the Palo Alto Transfer and Storage Co. Building,in Palo Alto, to find
its natural frecquency. These tests were made with a device known as
a "Shaking Machine” which consists essentially, of three unbalanced
flywheels beside each other rotating at the same speed, The two
outer flywheels (which are identical) turn in the same direction
and their centers of gravity coincide. The inner wheel, whose
unbalanced moment equals the sum of the other two, turns in the
ovposite direction. %hen all three centers of mass coincide the
centrifugal forces add, when the phase difference is 180° a1l
centrifugal forces cancel, In this way a sinusoidal force can be
applied to a structure at any point where the machine can be set up.
The direction of this force can be varied but would ordinarily be
horizontal., The vibrations set up by this machine in the structure

are easily recorded.

In obtaining the curves on the opposite page the machine was
given a high initial angular velocity and was then allowed to come
to rest graduslly. The curves show the varistion of the trace
amplitude of & recording seismograph as the speed of rotation changed.
The different curves are for different values of unbalenced moment

(presumably the totsl unbalanced moment).

The building on which these tests were made is 40' x 75! in
plan and about 50' high, The shaking machine acted in the direction

of the iong walls. Only one of these walls was shown in the photographs



loaned to the writer. This wall was solid except for a large door
and a lerge window near the ground, each about 10' x 20', and a small
window., The walls are reinforced concrete and must furnish most of

the stiffness of the building.

It occurred to the writer that data obtained from tests of this
kind could be used.to find the amount of internal damping in an
actual building. Unfortunately, the information available was not
sufficient, so the results obtained are necessarily incomplete.

In addition to the information already given either in this dis-
cussicn or on the greph opposite page 68, it would be necessary

to know: the characteristics (mzgnification and degfee of damping)
of the recording seismograph; the Location (height) of the shaking
machine and of the recording seismograph in the bﬂilding; and the
dimensions of the building. It would also be very helpful to have
a curve showing the relation between time and either amplitude of

motion or frequency of the shsking machine.

Yie state our problem as follows: A shear
panel, whose base is at rest is subjected to
a pericdic force P acting a2t a height c¢-1
cefe—L0Y above the base., Ve assume 2 distributed

friction force vnroportional to ¥ (the rate

of change of displacement) because this

N NV N N NSNNNVNTR™NY

assumption gives by far the simplest solutions.
e also assume that the rete of change of the speed of the shaking

machine 1s small enough so that the buillding motion may be considered
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steady.

We write
V‘L
7 = L Arm e s -
Z z Xinetic Energy

x REY
W TE(9) A% porontial Energy

N .fl = . ] 2
F-):’-zj V ax Damping Function

Letting « = 27 9. 3em ‘__:_'3.'

where: m = mass per unit length

. 245 4 - height
35 W _/t__W_‘lf P k = stiffne.?s (i.‘orce‘to cause unit
+~ 2z deflection in unit height)
F - éﬁy,}" f = a constant (damping coefficient)

g = L 2riVC
= r»m L
_ 2
; 7 \% _5+_ natural frequency of
"fy,‘ (24) - - undamped building

If P = Py sinit

Due to a change JS7. of the ith coordinate the work done by P =
PJ'Y(‘ = pJ?' S/m EWC = J”ofk

Gi= Pam éme = [ 3 cmc m A E
37)
where §j is a gemeralized force which corresponds to P.

La grange's Equation for any coordinate qs:

At 74 33, 25, Qe
40 Go + L g 2 iTp s Rap At

Since the motion is steady we need find only the particular

solution to this equation, which is:
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<

AN (L P M

w,,\e]

If we let:
£ A
™ Scm O
/chvt*(4wvtaj:7z
GFoay
gt~ AT
- Cc o3 O,

(2) % (seema) ]
we obtein
ﬂ 7o0= r
[ (L)% (seret 2 )=

Sih (At -x)

2, Po Sem CWC Sep &7 x 5,") (/\'6 - oy
4y 7= =

m-é[/_rf;" ;/4w‘¢“-dj7é

If our record is taken close to the shaking machine: x = ¢ 1
and ¥y = Vgo
2 Po SI.nz"LIITC.

muc(/\ Fr A (—_;w(_ /6 Lo c)

#3) ¢ s

Where-7g’ is the amplitude of the ith mode of vibratiocn at the
point x = ¢ 1.
As A varies;i will be a maximum when:
4

R
L 5 -
, = L() —_

2

09 A% ewti—ES L gt

2 m"

Z PQ b:nl't:_/TC

£ ( 4-1,«3‘("‘-—4,.;[.”1) =

4‘y —’7_::' =



-9~

In the present case P, is not constant but depends on the speed

of the shsking machine, If M is the unbalanced moment of the machine:

In this case we must rewrite equation (43) to read:
2M st e7c

26 s
2 Ve i ,
7

2 (%:' w6 ‘::ﬁi'“]::
. L 3

For a maximum value of A
0" Msintrme

IFL (G £ Y, =
trm®

y "3 .2 =
47/ /\ = 32 W L4 . 7’1’1",] {45} 7‘¢. -
St~ L

rn*

If £ is small

[ %

“462) %= gt it A,

am

w
L 8
wor-F
a2 rmtv

42) If 1 = % (fundamental mode) A, =

Ordinarily damping would make A < % (w= undamped frequency),
However, in this case A >“ Dbecause the magnitude of P (force applied)

is proportional to AL. If P were proportional to A , A=« would give

maximum anpiitude. 4
- . W Personcnce Wirh Suncla neepnFfal
Then: +# A= Ar® i =~ (+ ( 4
2"
= 2wt N a2<
‘;ﬂ R o (fundamental maximum)
3+l (cot- A+ L
( 4—m'~) *

SLov = 3/‘ but dame ) o> bvfere.

(first harmonic maximum)

4 ame

—g—c.% = = ® ~ L
SR CRTRE- NS A
etc. m
Letting £ _ , W - Iy eese 6F rés’3omrancé with Yuuwcdameptal
() ?
5 n=0  n small n =% n=1 n =VZ
52) (no damping) (aperiodic)




From equation 42

will be vroduced in

it =2vpears that the kind of wmotion -

o

shaking machine. The point where the force is =nplied can not be
hode, therefore, all modes of vibration having modes at this point
must be absent. If ¢ = 3/5 the first harmonic will not be present
( =% ¢me 230 2 7 F =0 ), TFurthermore, it can be sesn thst the
relative amplitudes of vibrations in different nodes will depend
on the position of the mechine a2s well as on its frecuency

In case ¢ = 1/

ecuation D2:

n 0

no damoing

’3

and we

n small n=% n=1 n =/2
eritical dsmning

3.5 <073

2.
v



It appears that if ¢ = 1/z (the shaking machine 1s placed
one-third of the way from the base to the top of the bullding)
and if the damping coefficient is large, vibrations heving ke
frequency of the fundamental will cause oscillations of the
structure in the first hermonic mode (but with frequency A1 )
which are comparesble in amplitude to the oscillationg of the

fundamental modse.,

If ¢ = 1 {(machine at roof) the relative amplitudes of the
fundamental and first harmonic modes when A= A {(for maximum
amplitude of fundamental) are easily found from (52) by making
3fnzi%§= 305'3%f= /.Since, in an ordinary building, n will be
small, the inaccuracy in calculation due to neglecting'the first
harmonic (i = 3/p) mode will 2lso be small if we place the machine
at the roof. Higher harmonics will also be present but they will
be small compared to the first {unless ¢ = 2/3 or £ is very large

indeed).

If desired the shaking machine may be placed at the height

‘j " 3 » b4
¢ = #f/z which will not decrease the amplitude of the fundamental
mode greatly ( 3mT60:.75) but will completely eliminate the first

harmonic.

We can make a very approximate calculation of the value of

f (damping coefficient

If we consider the second curve on the diagram opposite page 68.
M = 192 inch pounds

leximun trace amplitude = 3.9 mm,



“7lm

Period at maximum amplitude = ,/¥ seconds.
From the period we calculate X to be 35.0.
The weight of the building may be taken as about 12 pounds/cu.ft.

The magnification of the recorder (a seismograph) was about 200.
\ X o
Assume that ¢ = 2/g,
Then: N
3'? "

s —L 1 cee76%
‘jc 2oo0e (2-7¢)

Bquation (50) may be written:
U Y 4
2wt N It SE

5y '5—‘% it Jml/—i‘wk* I -t
»rt

& =

Eguations (53) and (49) may be solved for the unknovns, £ and «,

Giving: £ 207 A

rm
o = .78 A

£ . .
If 5, is small we may write equation (53):

== 2, w sipt LS . .
54/ 4= i e which gives £ . .20« A
r» £+ =
gL ()
Since A = -0
i s 7. 07
[zl
7.01(’2) “o-v5
—‘f J ~ €40 "~ 2c<
/1(3:.y Ll

We may calculate the energy which the structure will absord
from the shaking machine per cycle,. Hy is the generalized damp-
ing force. In a displacement dg; work 1s done gy gpis force

Atsa

equal to Iij dqi. In a cycle the work done is //Hi dqs .

But Hy= 25 e
A
2F 25 o L
e [ 25 Ao - = fe
. 55, 7 27, ¢



=75

. L FL 57 5T . .
Since F= g} 2" P , F is a homogeneous function of the second

order in the gy's. By Euler's Theorem:

57 5. 25 = 2 F
?C a;{

T W farae

, AMA"
Ve may also write (56) W = // P ay :’/r 5 64

It can be shown that (55) and (56) are egual.

If Dy = amplitude of motion at ¢, due to fundamental mode

(but for any freguency A ):

Fe-t = D sk (’76"’()
e

N\\

~ 1is defined by equation (40z)

?-{,:’ -~ /‘_D' C oS ("‘6"0()
S DS

k=

For a complete cycle At= 27

k™
We - ££€ 3D, T per cycle
‘:S;" 2 Sl-h" ‘,_r_f

2 mode

If Dy = amplitude of motion at ¢ in first harmonic ~(any

frequency A ):

X
Y, A Dy

We = ££ T
k.

i K ad 3 =

From equation (52): If we have resonance with fundamental
mode the ratio of rates of dissipation of energy due to fundamental

and first harmonic modes is:

n—0 n small n=,5 n =1 n =12
We
Py _ 5 4.2 2ora 1. o
n
14
A 4
where n = £ L
m. Lo
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If a curve showing the relation between ampliitude of motion
~and time (or, equivalent, a curve of energy absorption against
ampiitude and frequency) were given, a second method of obtaining

f would be available.

The value of f obtained from the amplitude at resonance may
be checked by choosing any other point on any of the curves in the
amplitude-frequency diagram, or vice versa. In fact, it would be
very 1llogical not to use the remainder of each curve. Eguation
(46) would be used for these calculations. Probably the portion
of each curve for a frequency lower than the resonant freguency
of the fundamental would be preferable, because the harmonic modes

would have less effect.

If desired, ratios between ordinates on each curve could be
used. From equation (46) it can be seen that this would eliminste
all factors except A, and %&. If we can obtain A;(for maximum
emplitudes) from the curves, by using egquation (49) we have an
additional relation between é; and w2, Taking any three points
on a curve we have two ratios of amplitudes from which we can

obtain ieand’ug.
m
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Let yy deflection due to bending only.
»

Let ygq deflection due to shear only,.

Then: y = ¥y, + Vg

gl
o

ot
(o]
H

dynamic load due to vibration.

p = -my, where m = mass per unit length.

o}
|

3 2
EI‘/"," =-—’<d7§

o)
B

A x ¢ dxlv.

. L ]
v g2y LA
e x F ET T arp

K olrierd™ 1 ot

Let v = Yy sin(wé+a)oiving a Y Yo

,

<2y

tresr I *rr
y hd - MM Y o 2 LY =
c ET

e
-2 Y = ¥ eas {”»%i["(’*,mw),] x §
S B FEL D))

A LerE L S )Y

Boundary Conditions: S :.Hk{ C - *("‘E%;jiji*j

1) At x =0,y =0

DA A - / - = . L

.-af i‘!.t . O, Erb" 0 &’S - f\g - /r /d de
44 ve

3) At x =1, y,= 0 ;,rs=-7rﬁ
s e

4) At x = 1, vy = 0 7s - el

5 X ofx



Let: M Lt
=2 /o
=L 4
&z

Using lst boundary condition: Yo + ¥y = 0, giving:

) YL Y, cos e Vetrx + Y, 3cna Vs x + Ya dale alVel

— VYV, eos d e e~ A

Using 2nd boundary condition:

Ao s  — /  clx . 2z .
< o Since p T mwY sin (tot+ «)

< \ -
%J Ao = 2.&.[ l/c_’—-l-/ Sre el Veyr + Y. (t~ca> aeVe +4)‘ T s kas e
Ye+- vo o
-~ Ve o ¥
(I~Co>l‘. e L sl)_] - V - )
— Ve ,x(g) affcs: Yo +)Ve, Y

Using 3rd boundary condition:
y-—a[(c,f.d()/cna_(‘ *""y""' °‘qu)*(f“l/(>/c.>4_a.¢}’_'(

-~ ‘ [ - .
Yo rmi Ve /= — 22 [ Y cos et VEE w3t 0k aarc.
— VY, eeslk a ey, +){“_::»L4.C)/;:?/
Using 4th boundary condition:

5) _43[((*,)3/:_/-}73:-.6—4}/::.1+><¢.5d-( res,)
4Cen ) B V3Tt 0l VT - Vacas i e DY
= —2a3/ r3, (= Y2 waetesrr )7 oo, a_e Fex,)
+ Jer (= Yedaw 4 oepTT, + Ve cosl aerel,)]

i
[0])
ot
Y

Siw a . Yc+ = A
co> o £ I/c:?rz >
Dc‘ul.«.,o.erc—:=e)
Coslo 6 AT T «
QA Tc+= E alrl: @

a V-

"

"

Q.;‘tsl ~ r:
<

(E.Z"m'z w'j"‘ )

= 4
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We may rewrite ecuations 6, 7, 8 as follows:

<
s e Rt s
/::",: 22 -R)- ~2a po-F o
- REYDF“2a*(B-n/ - AEr22" R cFtr2a"C = o
BELCcF2 2a"(RE+CFE) - PE >+ 2 BEa br?+aDFa® - o
For solutions of ¥V, Yg, Y5 # 0 the determinant of
their coefficients = 0., Naking the determinant = 0 gives
the following freguency eguation. See calculatlon sheets
for procedure.
kS
2) BD(/r2ad~ RE€Es + 2.0 =0
One limiting case occcurs when & = 0. This means that
EI is very large and that only shear deflection occure,
If£ & = 0, we haves
B-D =0 ~ cos alles/z 0 or cogfwl = 0, which
was Tound earlier in this chapter.
The other Limit occurs when d—ee, In this case we have
only bending deflection,.
Then:
B-D+1 =0
Cos & £ Yeys, Cosle a-t Ve, +/ =0 & )
#235 o—+ o A —a 0, c—> 0 betars—» TEC?-
’ drw.w‘ N .
T e o3 - A oeaste "—‘1':,,& + 7/ = o
Er ET
Which may be found elsewhere for the natural frecuencies
of a uniform cantilever beam (bending only).




A = Area of cross-section
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is used because the shesr gstress scrogs a

section 1s not uniferm (Vol. I, Timoshenko's

€ = mass of bullding (or beam) per unit volume of
wall (of beam).

h = depth of wall (beam)

zZ = a l

Ea)

- &
I°= z_i\xhﬂj

n-.¢E 7.0 5 £
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1z (ER 2 L)Y o b
- % }/f
a = —f@;»l.EBS w [

d-a-l = 1,414 4

03: 1+ édg

From (2) we get:

Cg{coaz,y?II¢°>h-LV7§]Cc¥1)-[$3~1787'ﬂlhnzY?Q7V§23 +cty = o
¢ and 2 both depend on a, which is proporticonal to w ,

By solving (10) for corresponding values of ¢ and z we

nay obtain the ¢ 'g,

Solving for fundamental «O's,

If we let & = 0 (pure shear) we find:

? 7}/?
1/ « 70

= = L1t/ O = -
z )z a ~




d = £
z:= 7 057 £ a4t . 3LBJ)E &k /L;‘
a =1
> 2.1y co= IER)e 5o,k )FE
Z,= -5 ™ =T 72
d = 2 X
z=-793 2. 43> o LITNE | Sa & ifé
. £ :
h > RYE
d =5
Ky & L -
C st co = VE . ss5k yE
wE h 2 ~ o P
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in such 2 case follows from a considerstion of the

relative shear and bhending deflections under uniform /ceo

Let:@= frequency due to bending only (for rectangular

beam = 1,0158 )£,
= AN o

w = frequency corrected for effect of chear de:

1 = lenzth.
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kel 2 4 sc' *
For 2 cantilever cq = 3
o,
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ite show the varistion of ¢

i}

¢

The full curves oppo:

£

with the reatio l/h. Both curves are the ssme but give <

in terms of different factors. The broken line gives the
results of the aprroximate sclutlion just deseribed.
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SUMMARY

CHAPTER I: Effect of Hubs on Deflections of Columns and Girders.
If hub and loads are symmetric,effective length of each member
is approximately the average of the clear span and the center-
to-center length. However, the effective length depends on the

ratio of depth to length of members.

CHAPTER II:“Stresses and Deflections in a2 Reinforced Concrete
Building Wall‘containing openings and resting on an elastic
materiasl, due to a horizontal force aiong the upper edge.
Rather large stresses were obtained. The method of calculation
was very approximate, however, and therefore the numerical

results are not particularly exact,

CHAPTER III: ZEarthquake Analysls of Throop Hall for forces in the
East-West direction. All columns except four seem able to with-
stand horizontal loads of the order of 7% the weight of the
building acting on the building in the East-West direction.

The four exceptions are highly stressed by dead loads and
although slender, might fall if large lateral loads came on

the building. Partial failure of these coiumns would not cause
great damage to the structure., All girders seem capable of with-

standing lateral loads of the order of 14% of W,
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CHAPTER IV: Transient Vibrations of One-Story Structures.
The region of large magnification is wider than for steady-
state vibrations. Near resonance the magnification factor
depends very nmuch on the number of cycles of impressed force,
At exact resonance the magnification factor is equai to “77

where n is the number of half-cycles of ground motion.

CHAPTER V: "Rocking of a Block on a Hard, Flat Surface, Calcula-
tions are made for the loss of energy suffered by a2 block rock-
ing on a relatively unyielding surface. A method of calculating
the motion of a such block u;a given in case the base on which
the block rocks is at rest or moving with uniform acceleration.
The effect of a variable acceleration of the base may be approx-
imated by considering constant accelerations acting for short

periods.

CHAPTER VI: Natural frenquencies of vibration of multi-story build-
ings with no more than two regions of different weight/stiffness
ratio. Torced vibration of a wniform building. In this case

less

resonance ls somewhat~dangerous than for a one-story structure.

A method of determining the amount of internal damping in a

building from tests made with a shsking machine. Natural frequency of

vibration of a tall building in which shear and bending deflect-

ions are comparable.



