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ABSTRACT

Kinematic and dynamic wave characteristics in bubbly two-phase
flows are investigated. Using the same set of basic equations, kinematic
and dynamic wave characteristics in a one-dimensional flow system were
simultaneously obtained. A simple linear model was used so that the
response of the flow to oscillatory perturbations of frequency Q was
studied. Explicit asymptotic solutions for the wave speeds and attenua-
tions in various relative velocity and frequency regimes were obtained.
Numerical analyses were carried out to investigate intermediate or tran-
sitional values of the parameters. The regimes of validity for a number
of conventional wave propagation models (drift-flux model and acoustic
wave analysis) were exp]bred by using the present results. It was
observed that for most engineering bubbly two-phase flows of concern,
the inertial effééts, which are commonly neglected in many existing
models, should be included for better accuracy in prediction of wave

characteristics.
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NOMENCLATURE

Acoustic velocity in stationary bubbly two-phase mixture =

kPo/ag (T - egle 4

Drag coefficient
Wave propagation speed

Gas to liquid density ratio

-V
VGo \Lo

C

‘Relative velocity parameter =
' 0

Relative velocity between phases to liquid velocity ratio =

(VGo - VLo)/VLo = G/M

Gravity
an
Polytropic thermal constant
VLo
Mach numbeyr of Tiquid = T
)

Number of bubble per unit volume
Pressure

Bubble radius

: (V... =V, IR,
Relative motion Reynolds number = Go - Lo’ o
L
Location
Time .
Gas bubble velocity
Liquid velocity
Q VLo
Wave characteristic parameter = (= - 1)
NLS Co

Void fraction

Perturbation terms
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NOMENCLATURE (continued)

n Wave number
A Wave-length
L Liquid viscosity
oG Gas density

oL Liguid density

T Bubble volume
Q Oscillatory frequency
Q Nondimensional frequency at low relative motion Reynolds number =
Ry
I,
2 Nondimensional frequency at high relative motion Reynolds number =
eR
Co
Subscripts:
G Gas
I Imaginary part of a quantity
i 1, 2, 3 or 4
L Liquid
0 Mean values
R Real part of a quantity
Operators:
% s,y 2
DGJr ot G os
bL s 3



I. INTRODUCTION

Oscillatory behavior is commonly encountered in two-phase flow
systems such as boiling-water reactors, steam generators, chemical-
process  reboilers, cryogenic systems, etc. Continuous oscillatory
propagation phenomena can occur due to two basic types of waves in multi-
phase flows, namely, kinematic waves and dynamic waves.

A kinematic wave (also known as a continuity wave) is a quasi-steady-
state phenomenon and occurs whenever there is a relationship between flow
rate and concentration of flow substances. One steady-state value simply
propagates into another and the dynamic effects of inertia or momentum
are negligible. The idea of kinematic waves was first 1ntroduced by
Lighthill and Whitham [8; 9] and Kinch [10]. It has been extenéive]y used
to describe the propagation speed of the void fraction in a two—phase flow
regime by Zuber [11], Wallis [12] and others. On the other hand, the
existence of dynamic waves depends on forces which will accelerate the
material through the wave as a result of a concentration gradient.
Analyses of dynamic wave characteristics can be found in papers by Gouse
and Evans [13] and by Moody [14]. _

Flow oscillation is dangerous in two-phase flow systems. Sustained
flow oscillations may trigger numerous forms of flow instability as
described and classified by Bouré [15] and Yadigaroglu [16]. These flow
1nstab111ties lead to change in local flow regimes and may cause problems
such as boiling crisis (burn-out and dry-out) etc. [6].

In this paper, dynamic and kinematic wave characteristics are

simultaneously evaluated from a general model for bubbly two-phase flows.
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The wave characteristics are studied in detail in different relative

velocity and frequency regimes.
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IT. BASIC EQUATIONS AND ANALYSIS

The analysis which follows determines the wave propagation speeds‘
in a one-dimensional bubbly two-phase flow system. The model used in
the analysis is non-homogeneous with the.two phases having differenf
properties and different velocities. It is assumed that the system is
comprised of non-condensible compressible gas bubbles in an incompress-
ible 1liquid.

The equations of continuity governing plane wave propagation in the

direction s are

oL [5"’; (1 - a) + 5@5— [(1 - o)V 11 = 0 (1)

) d - 2
'a'-'t‘ (pGu) + E_S. (QGOLVG) =0 ( )
for the gas and liquid flows respectively.

In addition to zero mass transfer between phases, it is also
assumed that there is no creation or destruction of bubbles in the flow.

The continuity of bubble number is thus given by:
Jr(vy)=0 (3)

Such that o = nt and PgT = constant

The global momentum-equation in one-dimensional form is given by

: 2
2 o (1= )V, pgal ]+ 2 Lo (1 - )V, + pga ]
| (4)
= - %§'+ [pL(l - a) t pGa]g
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Note that the frictional terms in the momentum equation have been

neglected; hence, a one-dimensional uniform flow regime is assumed and

the friction with any containing walls is neglected. -
The equation of relative motion between a bubble and the incom-

pressible liquid is assumed to be that derived by Symington [1]:

DLV D DV

1 %% 1 ' 3 L
-y TR - (V- Va) - 5ot - 19
2 "Dgt T Z ML e Dt T2 »DLt
6mv, (V, - Vo)R . (51)
—-‘\,_ -‘ . .
5 ( L _VG){VL JGIWR (5i1)

Physically, the four terms on the left hand side of equation (5)
represent the effects of added mass of spherical bubble due to bubble
acceleration, force due to bubble growth, the effect of liquid accel-
eration and the buoyancy force respectively. These are derived from .
potential flow analysis. They are rather arbitrarily equated to a drag
force whose form depends on whether the relative motion is in a low or
high Reynolds number regime. The viscous drag expression in equation
(51) is obtained from Stoke's law for the resistance to a moving sphere,
It has been observed that Stoke's law for the drag is tolerably accurate
for bubbles when the relative motion Reynolds number (Re) is small
compared to unity [2]. For Reynolds numbers much larger than unity, the
drag coefficient (CD) becomes quite independent of relative motion
Reynolds number. For relative motion Reynolds number within the

3 5

magnitude of 10~ to 107, the drag coefficient becomes approximately

constant at 0.5 [3]. For most engineering bubbly two-phase flows,
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when relative velocity between phases fs of the order of 1 ft/sec, the
bubble radius is of the order of %—inch and dynamic viscosity of the

6 ftz/sec, the relative motion Reynolds

incompressible Tiquid is about 10~
number is about 104. Hence, a constant CD is usually pertinent to
such engineering flows.

Since equation (5) is obtained from a potential flow analysis,
another. viscous effect, namely, the Basset Force [3] which is a function
of the entire previous history of the bubble motion has been omitted.

For a bubble moving with arbitrary speed in straight line, Landau and

Lifshitz [4] obtained the result that Basset force equals

N =
o
LY
<
1
-

.t - )
6o, R S/ | (t-t) % (—8 Lyt~
Lo L t
0

For the typical time TO which is equal to %— for a sinusoidal fluc-
tuation the Basset force is of the order of magnitude of
2
PR (Vg -
2, 2 ' . .
vaLRO(VGO - VLO) and pL(VGo - VLo) R,~ for low and high relative

VLO)VSEE' while the steady drag forces are of the order of

motion Reynolds number respectively. Comparing the Basset force and
steady drag, it can be seen that the Basset force is negligible if the
frequency of fluctuation is much less than vL/RO2 fof Tow re1ative
motion Reynolds number and (VGD - VLO)Z/“L for high retative motion
Reynolds number. For the typical engineering bubbly two phase flow
systems mentioned above (high relative motion Reynolds number), the
Basset force is negligible when the frequency of fluctuation is much
Tower than 105 Hz. This is much higher than the frequency range

considered in most engineering problems (up to 103 Hz).
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From equation (5), it can be seen that at low relative motion

Reynolds number, the relative velocity (V is given by

R 2 Go VLo)
g .
% vo while at high relative motion Reynolds number, (VGO_— VLO)
L 1/2
R o

8 o
equals " (x =—
3 G

The response of the gas inside the bubble is assumed to be governed
by a polytropic thermal relationship and the surface tension effects are
neglected so that the gas pressure is identical to the liquid pressure.

.Therefore, the equation of state for compressible gas inside the bubbles

is given by

oG = (constant)P]/k (6)

In order to investigate the propagation rate of infinitesimal fluctua-
tions, a simple linear model will be constructed. The linear dynamics
of the system will be studied by considering its response to oscillatory
perturbations of frequency . Therefore, any quantity, Q, (such as

pressure, void fraction, gas density, velocity, etc.) is decomposed into

-~

Q = Q, + Re{Qe’™)

where Qo is the steady part and Re{éejﬂt} is the fluctuating part

of the quantity and 5 is an exponential function of position s:
Q = (constant) Exp (ns)

The quantity n = np * jnI will, in general, be a complex number such
that Q/nI = C 1is the wave propagation speed of the fluctuation and "R

is the attenuation of fluctuation.
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Other quantities of flow are denoted by

Pr=Fp Re{ﬁejgt} - g Anenns
T s LI Re{fejgt} ;=] Tnenns
n

RO=R* Re{ﬁejﬂt} LR o= g Rnenns
o =g *F RE{&eth} - _ % Dnenns
no=ng ¥ Re{ﬁejﬂt}. R = g . enns
L7 PLo

"6 7 P60 * Re{%ejm} 5 PG T ,Z] Bnenns
Lo Re{VLeth} oV = g VnennS
to- Y+ elig ™) 5 T, - 70,

The fluctuating parts of all quantities are considered to bé small in
order for the linear perturbation analysis to be valid. The summation
functions for the fluctuating parts denote the linear superposition of
multiple solutions corresponding to multiple waves obtained.

By eliminating all quantities except P and o from equation (1)

to (6), the following relation is obtained:

-2
o D [Ynn + oo t gl

——'—'A =
kP, 1 (1 -

%) {enn2 + g+ 6]

Such that at relative motion Reynolds number small compared to unity:
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Y = - gty Vg 21 - ag) + 3V 2 ]

r = -EWVLR v, o + V (1 - ao)] - jTOQ[V

oVio% - o ) + 3V %o 1

Go(]
B = ;Tbﬂ {1 - a ) + 3@ ] - JGﬂvLR Q[a + (1 - ao)] ’
: (71)

6 = ?ﬂToVGo[ZVGo - VLo]

_ | ]
b= zvaRo(4VGo " Vo) -9t 7 ToU3Vgo = Vig)
1 2

§ = - 7 Tl + j6ﬂvLQRO

while at relative motion Reynolds number much larger than unity:

] | 2
vy = 2 TO[VGO (1 - uo) + 3VLO ao]
_ 2 .
= CymR, (VLO = Vo V) o * Vol = ag)l = etV (1 -a0)+3vL0a0]
8= 21 001 - o) + 301 - §CoaR2(V. -V, )ala. + (1 - )]
7 o % % JhpT Go Lo’ % %
] (791)
b= ?‘TOVGO(2VGO B VLo)
Cy .2 1
L 7?'ﬂRo (VGo - VLO)(4VGO - VLo) - Tt ?'TOQ(BVGO - VLo)
1 2 2 |
§ = ~ 7 Tt JCDWRO Q(VGO - VLO)

Finally, a quartic dispersion relation is obtained for a modified wave
paramater, X. This is a function of frequency and wave number obtained
from a Lagrangian frame of reference travelling with the steady velocity

of 1iquid such that

Lo
- - (8)
NI Co



The quantity CO is the acoustic velocity in the stationary two-phase

mixture and is equal to VkP /o (T = o )e, [51, and

&+ i5"-)2 e 2
e _Cc _atw! "% (9)
ot Yo, KRy

A
X
My

2 2 2 »
X X

where G = (VGO - VLO)/CO and M = VLO/CO. The quartic dispersion

- relations for X then becomes

(a) At Tow relative motion Reynolds number

3 .

X 9 5 M 9.2

(g){'3'*§i£§*iﬂ + (&%) §}+
2. 1+ 20 o 2

X . 0,91 3.,5M 9y 1 M.}

@ {2 7 tatz 2t PR betel” (1)
1.1 -a 1 -4 2 2

X 0, 93 . o _3M, M RN L I }

@ {2 7 el Tz et 3t @ 3tz 2"

(b) At high relative motion Reynolds number
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G 20,
Xy 6 13 w87 ~
@ {3+ i qr -t ) 4 (12)
(x)z{ T+2ay 306 4 g gy 367 5 gy,
5o - P - 2 Bl 0 - 2 T
G 2 Z. 2 r e T lm ) bt
2

1 1 -a - 3CLG 1 -« 3C.G 2
X ¢ 1 o 3M, M 5 M, 1M
& {2 +j G-— 2 R+t () bty gt
6 2 . 7"z "wet 3T bzety 2

2

0, 1-o  3C.G 3,6 2
X f 1H_ M D 5 M
G- —2rimg - Lo G - 5%al=o0
6 2 . 26 3 0 2, " 2 Gz}

It should be noted that gas density terms are omitted from
equations (11) and (12) bg;ause of the fact that the ratio of gas
density to Tiquid density is generally so small that the ratio
pGO/pLO can be neglected.

Solving equations (11) and (12) will provide information on the
propagation rétés of f1uctUatidns and their correspondihg rates of
attenuation as presented in the following section. Although the quartic
equations for X are too complicated for explicit solutions, it can
be observed that explicit asymptotic solutions can be obtained for
various asymptotic choices of the frequency (9* or QC/CDG), the
relative motion parameter, G = (VGO - VLO)/CO and Mach number,

M=V /Co
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ITI. PRESENTATION OF ANALYTICAL RESULTS

In the previous section, it was shown that equations (8) and (9)“
provide various asymptotic solutions for X depending on the magnitudes
of the frequency parameter o* or QC/CDG. Hence, the wave speeds may
be different in different relative motion Reynolds number and oscillatory
frequency régimes. In addition, the wave speeds are strong functions of
the relative velocity between the phases and the material velocity (i.e.,
G and M). In the following analysis, attention is focused on flow
regimes for which M 1is of the order of one or less. But, both cases
for G<<1 and G >> 1 will be investigated. Since relative velocity
is generally of the order of 1 ft/sec when acoustic velocity is of the
order of 102 ft/sec,, the case, G >> 1, 1is considered highly
hypothetical. It only pro;ides the reader with a background to better
understand how the wave speeds would change with relative velocity
between the phases.

Examine first the low relative motion Reynolds number flow regime.

The first particular case 0f interest is the case when gravity equals

2 ‘
zero. Since relative velocity, (VGO - VLo) =9 VL-, e relative
velocity parameter G equals zero at zero gravity. Hence, equation an

becomes
U IS BT RERIDEAPE SR RERCE

3.1. MWaves for Zero Mean Relative Velocity

3.1.1. Zero Mean Relative Velocity and High Frequency

The high frequency case refers to the frequency parameter q*



-12-

much Tlarger than unity. In the 1imit as o* tends to infinity, the

governing equation (from equation (13)) becomes

- X201+ 20.) = 0 (14)

Note that the X values obtained from equation (13) are complex numbers
though the Tlowest order terms from (14) are purely real. Therefore, by
Tinearization method, let X = X + e, such that from equation (14), the

Towest order terms are:

X1,2=0

(13)

><1
1

3,4 = +/1 + 2a0

And the first perturbatfon terms e are obtained from linearization of

equation (13) such that

() (K2 = (1 + 20N+ el38 - (1 + 20)1 + 2L (R + M) (1 - %2) +
(16)
Ze(1 - 3x% - 2%m) = 0
Since Xi =0, /1 + 20, from expression (15), first term of equation

(16) vanishes, hence,

9j (Xiz - ]) (Xj + M)

£; % = (17)
i QF L5 2
3Xi - (] + 2@0)
That is
oi (X5 = 1) (% +w)
Xy = X5 + Qi 1 (18)
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Expressions (15) and (18) are substituted into equations (9) and
(10), neglecting the first order perturbation when summation of the
fundamental and perturbation terms is made. Wave speeds and their
corresponding attenuations can be obtained as illustrated in Table 1.

From the expressions in Table 1, it can be seen that two kinematic
waves and two dynamic waves can be observed when a bubbly two phase flow
system is subjected to oscillation. At -zero relative velocity and high
frequency, the wave speeds travel at the liquid velocity. The first
kinematic wave as presented in Table 1 is of constant amplitude while the
second kinematic wave is an attenuated wave. It can be shown that this
wave ldses half its amplitude over a distance of (Q/ZanR)]n(]/Z)
wave-lengths. For the typical engineering bubbly two phase flow dis-
cussed previously, the second kinematic wave will travel approximately
103 wave lengths before fifty percent of the wave amplitude is lost when

2 ft. Therefore, in a small scale

the wave length is of the order of 10~
laboratory experimental setup, the attenuated wave should be observable.
But in a large scale flow system such as a pipe-line, it would become
insignificant. Unlike the kinematic waves, both of which travel down-
stream for all 1liquid velocities, one of the dynamic waves travels
upstream when Mach number, M, is smaller than /T + 2a  and travels
downstream otherwise. Both dynamic waves are attenuated waves and they

would travel approximately 105 wave-lengths before they are attenuated

by fifty percent of their amplitudes.

3.1.2. Zero Mean Relative Velocity and Low Frequency

The Tow frequency case refers to a frequency parameter Q* much

less than unity, such that governing equation from equation (13) which
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dominates the zero gravity flow at low frequency of oscillation is given

by:

w3 - x2 oM =0 (19)

Again, by linearization method, it can be shown that:

Ry =0
X2 = -M (20)
X3, = &1
CAnd
g (X)) (KF - (1 + 2a)) |
C'I - 9J s 2 s 2 i=1,2,3,4 (2])
(1 - 3%.° - 3%,M%)

This Tinearization procedure works well for Xi’ X3 and X4 but a problem
exists in the derivation of X2' By substituting expressiohs (20) and
(21) into equation (9), a zero value is obtained in the denominator for
expression of C2' Therefore, a second order perturbation must be
carried out to obtain a real part of X2. Let €5 = €py + Jegos and
substitute Xz = -M into equation (13). It can be shown that

9J

?Z;géﬂ - €

24 2eM = ME) # (e - M)[(P - 2eM + MP) - (1 + 20)] =0

Such that

Do M0+ 20 = M2) 4 e(-1 - 20 + 3M°)]
e, = j —=—
(1 - M)

(22)



-15-

By Taylor's Expansion, expression (22) becomes

M(1 + 20, -~ M) - e(1 + 20, - 32)] 11 - W

2

- 2eM]

€ = J
2 9
(1 - M)

Hence, the real and 1méginary parts

o (Qigz M(1 + 2@0 - w2y (Mt o+ 207 - aO)MZ -1+ 20 )
R? g >3
(1 - M%)
s (23)
. g MU+ 20, - M?)
270 T D )

Substituting expressions (20), (21) and (23) into equations (9) and
(10), the wave propagation characteristics are jllustrated in Table 2.

It can be seen from the expressions presented in Table 2 that at
asymptotically small Mach number, the kinematic wave characteristics at
Tow frequency are basically identical to those in the high frequency
regime. However, as the Mach number tends to unity, the second kinematic
wave speed tends to zero. In the Tow frequency regime when the frequency

3 4z (% ~ 10_1), the attenuated kinematic wave,

is of the order of 10~
which has a wavelength of the order of 103 ft, vanishes in a distance
less than one wave length (10"2 A).

The dynamic wave characteristics at low frequency are similar to
those at high frequency except for their attenuations. At low frequency,
the attenuation of the dynamic waves is proportional to the square of

the frequency parameter, while at high frequency attenuation is inde-

pendent of frequency.
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Wave #1 (kinematic wave)
El....:.._v_.l:p..:o . J_Rl,.__:o
Yio VL
A (—)
VLoRo
Wave #2 (kinematic wave)
2 " Yo _ "2 _ 9
VLO (VL_) ]"‘20’,0
v, R?
loo
Wave #3 (dynamic wave)
c, -V n 9a
e A RI = 0
0 (‘L) (1+20) (VT+ 2, +M)
2
CoRo '
Wave #4 (dynamic wave)
cC, -V, . . n 9a
_.i._c.._.lzgz_‘/]q.zuo' H \)R4 - 0
) (L) (1+20¢0) (/1+2aO—M)
2
CoRo
Table 1. Waves in zero gravity; hence zero relative velocity

(6 = 0) and high frequency (o* >> 1).
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Wave #1 (kinematic wave)

Cp -V . "R
"'—T"—”—"'O ’ M\')’—”_—"’O
Lo L
( 5)
VLoRo

Wave #2 (kinematic wave)

, |
Vo fa M C "Rz =9(1 - M%)
Yo MY - 201 - w2 ¢ (1 + 20) L (1+2u_-M2)
: 0 0 () 0
VLoRo

Wave #3 (dynamic wave)

‘3 " Yo _ "3 @kl %
2
CoRo
Wave #4 (dynamic wave)
Cp - Vo 3L g %
L v "9 3
o) ( L ) (T ~M
2
CRs

Table 2. Waves in zero gravity; hence, zero relative velocity (G= 0)
and Tow frequency (o* << 1). -
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3.2. Waves with Mean Relative Velocity at Low Reynolds Number

For most engineering bubbly two-phase flows, the relative velocity
between the phases generally exists due to buoyancy and the relative -
velocity parameter is no longer equal to zero. The following analyses
will investigate the effect of relative velocity between phases on

the wave characteristics.

3.2.1. Waves for Small Relative Velocity (G << 1) and High _

Frequency (* >> 1)

When the reduced frequency, %, 1is much larger than unity,

equation (11)'becomes

> (24)

For the kinematic waves, it is expected that the parameter (é& is
of the order of unity. Then for the small relative velocity case

(G << 1), the dominant terms of equation (24) yield

2
® 0+ 20) - B {20 -} + (1 -ay) =0 (25)
Hence
I T G L i=1,2
G ]+20Lo J 1+2a0 ’ ?
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and
’ G
Ci -V 1+ 2 ,
i ; Lo _ % (-I _ 0‘0) [ % M ] i=1,2 (26)
Lo (1 - aO) vt (1 + Zuo)
"R P+ Q% % }/30LO(] - oao)
—RL_ = (1) 5 ;i =1,2 (27)
L G G
(- (1+2a)+2 & (1-0)+ (&) (1-0)
Loo

Expression (26) shows that as G tends to zero, C] and ‘C2 both
tend to VLO and therefore these wave speeds correspond to kinematic
waves. However, it should also be noted that as G tends to zero, the
attenuation of the second kinematic wave, MRy presented in expression
(27) is different from that presented in Table 1. It is understandable
that as relative velocity between phases equals zero, the inertial
effect dominates the flow. However, for non-zero relative velocity
(i.e., G # 0), the drag force terms become significant so rapidly

that the leading terms, X4 3

and X° term in equation (11) becomes
negligible resulting in different results for the two cases. Further-
more, when the parameter I%{ is of the order of unity, the expression
of NRo as presented in expression (27) is proportional to the frequency
parameter, *. For @* much larger than unity, expression (27)
corresponds to a lower order term compared to that in Table 1.

The dynamic waves in this same asymptotic case (o* >> 1, G << 1)
will have values of [é1 much Targer than unity and under these

conditions
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3 2

4
(& 13 & 12 @)

1 + 2o 2 1-o 1-oa
l-—z—z——ﬂ(é—) | > 2 ——2 ()] > |- GZOI

and hence the dominant terms in equation (24) yield

4 2 1+ 2a
X X Oy .
@ - @ o (28)
Therefore,
X vl + 20
S L . I . i = 3.4
G G i i ?

and linearization of equation (11) yields

) 1+ 8040 93 aO(M + /1 + ?_oad) (1 - 16&0) M+ /1 + Zono) ‘
Ty Ter e ) e
0 0 12(1 + 2@0) 1+ 2a0
(29)
i= 3,4
Hence
C. -V T + 8o
1 Lo _ 0 . .
mwﬁtg__—-_ VT4 200t 5y 2a0) G : i= 3,4 (30)
1 - ]6@0
-9 [uo + ———— (]
nR] ]2 V] + 20(.0
= s i=3,4 (31)
( LZ) (1 + zao)(M + /1 + zao)

CoR
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A summary of the above analysis is provided in Table 3.

In this small velocity and high frequency regime (G << 1 -and
Q* >> 1), the more interesting wave is the first kinematic wave as
presented in Table 3 because it increases in amplitude. As an example

of a typical low relative motion Reynolds number flow, we will use a

2

highly viscous o0il with dynamic viscosity of the order of 10~ ftz/sec,

a bubble radius of the order %—in. and liquid velocity of the order of

1 ft/sec. 0

g
The relative velocity which is equal to %- vo would then be of
L
the order of 0.1 ft/sec leading to a relative motion Reynolds number of

approximately 0.1. The distance the growing kinematic wave would travel
before doubling its amplitude is equivalent to approximately one wave-
length for a wave-length o% the order of ]03 to 1 ft as frequency is of

! to 102 Hz. Therefore, a kinematic shock would be

the order of 10~
expected as the continuous kinematic wave intensifies and steepens
downstream. Oﬁ the other hand, the second kinematic wave which is an
attenuated wave would decline at the same rate with which the first
kinematic wave intensifies and would therefore disappear rapidly.
Using the same high viscous ]iquid/gas mixture as an example, the
dynamic wave would decline to fifty percent of its amplitude in a

distance equivalent to approximately 10 wave lengths for a wavelength

of the order of 1 ft.

3.2.2. Waves for Large Relative Velocity (G >> 1) and High

Frequency (o* >> 1)

In this asymptotic limit both G and @* are much larger than
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unity and the dominant terms in equation (24) yield

4 3

X X X -
@ + @ {-3)+ (@2} =0 (32)
Such that:
X, =G+ )
T 1
X, =26+¢e, | (33)
X3,4 =0+ ez 4
J
linearization of equation (11) yields
3a h
o 93 4, 4M
9= "o G tgal
(34)
>
1+ 1o .
- 0,9 ;20 ,10M
€ e +Q*[6+6G]G)

However, for X3 4= 0, €34 become the fundamental terms. Taking

2
®3,4 terms into consideration in the linearization process yields

7 _ 3 . . ,
o 0 93j 2
3,4 "z N7z T g U NI M (35)

G

Substitution of expressions (34) and (35) into equations (9) and
(10) provides the wave characteristics for high relative velocity and
high frequency as presented in Table 4.

It can be seen that one kinematic wave and one dynamic wave
intensify as they propagate downstream. This relative motion and
frequency regime is the only case whén both kinematic and dynamic shocks

can be expected to develop.
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Wave #1 (kinematic wave)

9% 6 &+ M ]
VLO M o’ "G(1 —ao)+M(1 +2a0)
w MG/ 3 (T~ ag)

L ) M1 - 2a,) + 2MG(1 - o) + 62(1 - o)
VLoRo

Wave #2 (kinematic wave)

2" Yo 6 g, 6+ M
VLO M o/ G(1 - ao) + M(T + 2ao)
NR2 ) —Q*MG/30L0“ - oy ]
7
(L g (1+ 2a,) + 2M6(1 - o) + (1 - ay)
VLoRo

Wave #3 (dynamic wave)

C3 - VLO 1+ 80Lo
c, R T
1 - 16a
- 9, + T‘-Z——-———Q Gl
np3 ) JT+ 2(1_0
YL (1 + 20 )(/T + 20+ M)
( 2) 0 [o]
CoRy

Wave #4 (dynamic wave)

C4~VL0 1+80¢0
IR e T
1 - 16a
+ 9la, + 15 ——2 6
nR4 - V]+2UO
N -
(“Li? a+ ZuO)(/T * 20, - M)
CoRs _

Waves at small relative velocity (G << 1) and
high frequency (o* >> 1) for the low Reynolds
number flow regime.
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Wave #1 (kinematic wave)

G -V .G
Vio M
I _ &M
v M+ G)
( 5)
VLoRo

Wave #2 (kinematic wave)

2 Lo _ 26
i, M
RI 15M
v (M + 26)
( 5)
VLoRo

Wave #3 (dynamic wave)

C3-Vig_ [T
¢, 2
"R3_ 96
Y]
( Lz) /2(1 - ad) (v2(1 - ao) + 2M)
CORO

Wave #4 (dynamic wave)

C4 - VLO - I - Cto
Co 2
"R4_ +96G
( \’Lz) fZ(] - CtOT (\[2(] - Cto) - 2M)
CORO

Table 4. Waves at high relative velocity
(6 >> 1) and high frequency (o*>>1)
for the low Reynolds number flow
regime. :
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3.2.3. MWaves for Small Relative Velocity and Low Frequency

G << Q* << 1}

For flow corresponding to low frequency of oscillation such that
the reduced frequency * 1is much less than unity, the dominant terms

in equation (11) yield

3 2 1-a
X, M X 5 /X 1 X 0
Gral- @ 8@ @0
(36)
9 (X ¢ My (1 Xy 1.0
A E D@ -gf =0
In the.domain in which the relative velocity is so small that G is
much Tess than %, equation (36) becomes
M | |
BB - (-e)l=0 (37)
Hence
Xq A ‘
T - (I -0g) e
> (38)
X
2. M
G 6T )
where
9j .1 ] M, .2 39
SRRE UIRRERE LR -L )
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2
* *

m
[AS]
!

ME(M + G)(M + 26) - (1 - o )(M + 6)% - 30 ]

A =
[- M3 %GMZ

+ M+ G(] - oco)]
' (40)
‘L(w+5mw+mm+zm-a&m+e)+mm}x

{-M3 - %GMZ M+ G(T - uo)} - {3M2 - 1} X

{MZ(M+ BY(M + 26) - (1 - o) (M + G) - SaOMZ}

4~

5
5
{-M3 -2 e M G(1 - ao)}

The wave information obtained is summarized in Table 5. Note that
the waves obtained from the analysis above are kinematic waves only.
The dynamic wave information is lost due to the loss of leading terms
of equation (36) in the linearization process. The same situation is
true for the following analysis for the case where * << 1 and

o* << G,

3.2.4. Waves for Relative Velocity and Low Frequency Such That

QF << 1 and Q* << G

For waves with Tow frequency such that o* << 1 -and a relative
velocity parameter larger than the reduced frequency (o* << G), the
dominant terms of equation (36) yield

&+ Iyl

@G-8 0 (41)
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and
X N
1.1
T3t
' (42)
X
2 n [
T OTete
where | )
o (-56° + 6 - 9a )
e, = J & (43)
1 9 TG(36 + oM
2
x *
e, = - (§) AB -3 A
M+ 2 an? - - 36+ 60 - 6(1 - o)
AT = T 7
2+ 2a? - M+ 3 6%+ 6 - G(1 - o) [- 5 6]

—[-SMZ-%GM+T—%GZI [%GM+%62]
5

1 1 .2
[- > GM - & G]

Table 6 presents the kinematic wave characteristics for the flow regime,
Q* << 1 and @* << G.

From Tables 5 and 6, it can be seen that in the low frequency regime,
the second kinematic wave characteristics are vefy complicated functions
of M and G. The significance of this wave differs in different
regimes of liquid velocity and relative velocity and it can be better

observed from the numerical data as shown later in Figures 9 and 10.
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Wave #1 (kinematic wave)
EL.Y.‘:Q.: (1 - o) &
VLO o’ M
n ~3(2 - 3a_)MGZ
R1 - ’ o’ "
v 2+ (1 - aO)G)
(—t—)
VLORo
Wave #2 (kinematic wave)
2" Vo A+
VLo MB
2, oM
v A
(——)
VLoRo

ME(M + G)(M + 26) - (1 - o )(M + G)? - 3a M°]
A:
[- M3 - 26M° + M+ G(1 - ay)]
3 2 v . '
- am® - 9M%G - aMGZ - 2(1 - o) (M + G) + GaM} X
3 5 2 2 5
{~ - g+ 6l - ao)} - {3M + 2 MG - 1} X
{MZ(M + 6)(M + 26) - (1 - ay)(M+ 6)% - 3&0M2}
B:
7
{-M3 - 262+ M+ (1 - ao)]
Table 5. Kinematic waves for small relative velocity and Tow

frequency such that G << @* << 1]
number flow regime.

for the Tow Reynolds




-29-

Wave #1 (kinematic wave)
G-V _ 6
VLO 3M
R - 30+ (- 567 + 6 - 9 )M
Ly (M + )3
v, RZ
Lo'o
Wave #2 (kinematic wave)
2 Vo A+
VLO MB
n
RZ__ L oM
v A~
(—E—)
VLOR
M3+ 26M2 - M+ 2 6%M+ 6 - 61 - o)
- 6 2 0
e (- Lom - L)
2 6
1
[M3+%GM2—M+-§-GZM+G3-G(1—ao)][-—z—e]
R B VLNV B Y TR X
B” = >
[- % GM - ¢ 62
Table 6. Kinematic waves with relative velocity and lTow frequency
such that o* << 1 and @* << G for the low Reynolds

number flow regime.
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3.3. Waves with Mean Relative Velocity at High Reynolds Number

The high relative motion Reynolds number flow regime is perhaps of
greater interest because most engineering bubbly two-phase flows fall -
into this category. Note, however, the similarity between the equations

(11) and (12). At high relative motion Reynolds number flow, the

: Q
frequency parameter Q* is replaced by the parameter EJ%- which
D

contains the fatio of the frequency parameter 2. and relative velocity
parameter G. Other than this there are only minor changes in a few
numerical coefficients. Hence the asymptotic solutions are very similar
to those for Tow relative motion Reynolds number except that the zero
gravity, or zero relative velocity case does not exist for high relative
motion Reynolds number flows.

Tables 7 and 10 present the results of the asymptotic analyses for
the high relative motion Reynolds number case in different relative
velocity and frequency regimes. Now comparing the resul+ts presented in
Tables 3’to 6 with those in Tables 7 to 10 for wave characteristics in
low and high relative motion Reynolds number flows fespective]y, it
can be seen that for both Reynolds number regimes, the wave speeds are
identical for the corresponding relative motion and frequency regime
except in the corresponding cases when o* << 1 and o* << G (for
low relative motion Reynolds number) corresponding to QC/CDG << 1 and
QC/CD << 62 (for high relative motion Reynolds number). In both cases,
the wave speeds contain the same functions of relative velocity G and
liquid velocity M. However, some of the numerical coefficients in the
functions are different due to the different order of dependence of drag

force or relative velocity and bubble radius (see equation (5)).
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The main difference in the wave characteristics between low and
high relative motion Reynolds number is exhibited in the wave atténuation,
Np- Since the drag force at high relative Reynolds number is propor-
tional to the square of relative velocity and bubble radius while low
relative motion Reynolds number drag is linearly proportional to relative
velocity and bubb]e velocity, the wave attenuation in the high relative
motion Reynolds number regime is subjected to one order higher dependence
on G and R _than that of the low relative motion Reynolds number
regime.

In all of the above data, the wave information for the case G << 1
and Qé/CDG >> 1 (as presented in Téb1e 7) presents the case which
usually occurs. This is due to the fact that G 1is usually of the

4 1

order of 107° and o, =R /C, is of the order of 107" to 107! when

frequency regime of most engineering concern is of the order of 0.1 to
100 Hz; the bubble radius is of the order of %-in. and the Tliguid
velocity is of the order of 1 ft/sec. Then the parameter QC/CDG is

1 2

of the order of 107" to 10°.
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Wave #1 (kinematic wave)

Cy -V

1" Yo L6 L0y g G+ M .
VL0 M o/ 'G(1 - ao) M(T + Zao)’
Ry ) QCMGV3aOi1 - “0;
Co « M2(1 + 20 ) + 2M6(1 - o) + G2(1 - )
(V R ) 0 ) o
Lo’

Wave #2 (kinematic wave)

2" Yo e gLy G +

V. M o) e =) (1+2a)
R2 - o MG/3a (l - o )

Co M(1+2a)+2MG(1—u)+GZ(1~a)
—x) °
Loo

Wave #3 (dynamic wave)

€3 - Vio e Tl T+ 8a .
T TR T )
(1 + 38ao)G
T p—
gy _ g8 /T 2a
&) 21+ 20) (T Zag + M)

o]

Wave #4 (dynamic wave)

C3 - VL0 1+ 8a

ST T gy

(1 + 38a0)G
[o, - ———1
3CDG 24/T + Zao

N 20,) (VT ¥ Zag - M)

=+

c?ﬂ}ﬂjé

Table 7.

Waves for small relative velocity (G << 1)
and high frequency (9c/CpG >> 1) for the
high Reynolds number f]ow reg1me. '
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Wave #1 (kinematic wave)
G -V _G
VLO M
T
C 4 M+ G
Lo
Wave #2 (kinematic wave)
C2 - Yo _ 26
VLO M
"o _ %% gm
( CO ) 4 (M + 26)
VLORO

Wave #3 (dynamic wave)

C3 - VLO ) 1 - oy
CO 2
R3 (3CD 62
7 : ,
(ﬁg R I G a) (V2(T = ag) - 2M)
‘Wave #4 (dynamic wave)
C4 - VLO _ -I - OLO
Co 2
1 4
(§2 2(T =0 )(V2(T =) - 2M)

Table 8.

Waves for high relative velocity
frequency (QC/CDG >> 1)
number flow réegime.

(6 >> 1) and high

for the high Reynolds
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Wave #1 (kinematic wave)

_C-l_VLO::..G_(]_O‘)
VLO M 0
3
nR] —CD (] - 6OLO)G M
o, T WE
VLoRo

Wave #2 (kinematic wave)

C2- Vo _ A+uB
T VB
I 3CD61M
C > R
o]

()

Lo'o

ME(M -+ ) (M + 26) - (1 - o) (M + 6)% - 3a M
- 3 13 .7 |
i? - e o+ (1 - o)

S I+ G)(M + 26) + (1 - S+ G)F 2 30 1P

32 +16§—Ma-n+[ aM —9MZG amGe -
2(1 - o,)(M + G) + Ga Ml x [-M -B M2 + M+ G(] - )]
B = i '
5
3 13 .2
[-M ]ZGM +M+G(1-a0)]

Table 9. Kinematic waves for small relative velocity and low frequency
such that (G << QC/CDG << 1) for the high Reynolds number
flow regime.
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Wave #1 (kinematic wave)

“9 Y _ 56
V., 6 M
2 2
el m9 (-76°+ 24 - 144ag )i
Co Cp (6M + 56)° &
=)
Loo :

Wave #2 (kinematic wave)

- Vo a s

VLO MB

MR2 =3CDGM_

C 2 A
()

Loo

3 13 2 3 .2 1 .3

- M=+ TE—GM - M+ E"G M+ E-G - G6(1 - ao)

e - Lam - 2 62
4 24
3,13 2 3 A2 1 .2 ]
- [M "‘TZ-GM -M'I‘ZI'GM"'—Z—G - G(1 -OLO)] [ZI_"G]
2,13 321 L 5 2

2
1 5 2
[- 7 M - o7 G°]

Table 10. Kinematic waves for relative velocity and low frequency such
that 0c/Cp6 << 1 and g /Cy << G2 for the high Reynolds
number flow regime. ¢
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1V. PRESENTATION OF NUMERICAL DATA

In this section, numerical data of wave characteristics are
presented in graphical form. The purpose of this is to illustrate the
nature of the transitional results in between the asymptotic regimes

described in detail in the preceding sections.

4.1. Wave Characteristics for Zero Mean Relative Velocity

Wave characteristics for the zero gravity, zero mean relative
velocity flow regime are plotted agafnst reduced frequency q* in
Figures 1 to 6. Results for a few selected values of Mach numbers (M)
and void fractions (uo) are shown. It can be seen that the numerical
results at their asymptotic frequency regimes match well with the
analytic solutions as presented in Tables 1 and 2. The transitional
results Tie in the reduced frequency domain ¢* = 0.6 ~ 20 for

kinematic waves and 1 - 100 for dynamic waves approximately.

4.2. MWave Characteristics for Mean Relative Velocity at Low Reynolds

Number
Wave characteristics for Tow relative motion Reynolds number flow

regime are plotted against reduced frequency o* 1in Figures 7 to 14.

. : ) C -V
For kinematic waves, the nondimensional wave speed —~v~—L9
Lo

attenuation nR/(vL/vLORO); for some typical relative velocity to

and

liquid velocity ratios (G*) are shown. However, for dynamic waves,

cC -V
the nondimensional wave speed —~E——£9- and the attenuation
0

nR/(vL/CORO) for liquid Mach number M = 0 and selected G values

are shown instead.
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The change of parameter used in characterizing different waves is
due to the fact that kinematic wave characteristics are well defined
functions of G* while the dynamic wave characteristics are functions ~
of both G and M. (See Tables 3 to 6).

From Figures 7 to 14, it can be seen that the transition frequencies
between asymptotic solutions change considerably with the values of G*
or G selected. In order to provide better understanding of wave
characteriétics in different frequency regimes, each wave system is now
considered in more detail.

For kinematic waves, the transition frequency domain lies Within
ox = 10—3 ~ 1 when G* is sma]]; however as G* becomes'larger, the
'transitfon frequency changes considerably. The first kinematic wave
travels downstream at all frequencies (see Figure 7) yet the wave is
amplified at high frequency and attenuated at low frequency (see |
Figure 8). Selecting the case G* = 1 and ay = 0.1 as an example,
the data of Figure 8 show that when reduced frequency * 1is larger
than 2, the first kinematic wave is amplified as it travels downstream
and for o* smaller than 2, the wave is attenuated. The second
kinematic wave has different directions of travel in different frequency
regimes with the sign of its attenuation unchanged (see Figures 9 and 10).
For small G*, when ©* 1is larger than 10'], the second kinematic wave
is attenuated as it travels downstream. But, when o* is smaller than

—], the wave travels upstream and is amplified as it proceeds.

10
For dynamic waves, since the wave speed in the low frequency regime
is obtained from second order perturbation values, numerically computed

data for dynamic wave speeds in this frequency regime are not dependable
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and therefore, not presented in.Figures 11 and 13. However, it still
can be observed that the high frequency asymptotic results for dynamic
waves (as presented in Tables 3 and 4) become valid at reduced
frequencies @* Tlarger than G, Restricting the discussion to
the high frequency regime, both dynamic waves are attenuated in their’
directions of travel.

It should be noted that in Figures 7 to 14, the wave characteristics
are plotted against reduced frequency with a selected void fraction
ay = 0.1 only. From the tables of the previous section which illus-
trate the asymptotic wave characteristics, it can be seen that the

magnitude of the void fraction has an important effect on the wave

characteristics. For example (see Tables 5 and 6)

(1 - o) g~_ at G << Q% << 1
o’ M

1 Lo _
VLo G
M at ¥ << 1 and Q* << G
(32 - 30, MG
*
20T+ (1 - ag)6) at G oesar <]
-
R1 _
L ) 2 2
(—=) | -30*°(~56"+ 6 - 9a )M
VLoR 3 at o* << 1 and @0* << G
(3M + @)

.

It can be observed that when the void fraction is larger than a
certain value, the amplitude of the kinematic wave will grow as the wave
travels downstream. Hence a kinematic shock will tend to develop in

these low frequency regimes.
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4.3. Wave Characteristics for Mean Relative Velocity at High Réyno]ds

Number

Wave characteristics for high relative motion Reynolds number flow

9
regime are plotted against reduced frequency Ei%-in Figures 15 to 22.
D

Similarity between’asymptotic wave characteristics (see Tables 3 to 10)
and numerical data (see Figures 7 to 22) can be observed for high and
low relative motion Reynolds number flow regimes. Therefore, a similar
discussion as given in section 4.3 can be applied here. However, it
should be noted that due to the high order dependence on relative
velocity, and hence G, for high relative motion Reynolds number drag,

R

the wave characteristic parameters become different. That is
(72
VLoRO

for kinematic wave attenuation and nR/[(VGO - VLo)/CoRd] for dynamic

wave attenuation.
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Figure 4. Non-dimensional attenuation of downstream

dynamic wave as a function of reduced
in the zero gravity, zero

frequency %
relative velocity flow regime.
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V. CONCLUDING REMARKS

In this paper, both kinematic and dynamic wave characteristics
in various relative velocity and frequency regimes were studied
simultaneously by using one simple non-homogeneous model such that the
“interacting of the waves corresponding to oscillatory perturbations
of frequency Q¢ can be observed. We shall now explore the regimes of
validity for a number of wave propagation models which have been
extensively used in the past.

Concentrating first on kinematic wave propagation, we shall examine
the Timits of validity of the drift-flux model (5]. In the drift-flux
model, which is basically a kinematic wave model, attention is focused
on the relative motion between phases. It is particularly useful if
the relative motion is independent of flow rate of each phase. From
the continuity equations, the drift-flux model is based on flow

properties defined as:

volumetric flux = j = (1 - aO)VLO toagV)
drift flux = j, = ao(1 - “O)VGL::“O(] - ao)(VGO - VLO)
- . Mg
and kinematic wave speed C = J + 5o
0

Hence

v
Lo GL
—2 = (1 - o )=
° VLo

i}

(1 - uO)G*
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Comparing expression (45) from drift-fiux model with the expressions
for kinematic wave speeds presented in Tables 5 and 9, it can be seen
that the drift-flux model result is limited to the low relative velocity

and low frequency regime (G << @* << 1) for Tow relative motion Reynolds

Q
number and . (G << EJ%-<< 1) for high relative motion Reynolds number
_ 0 |

flow. It cén be observed from equation (7) that the drag force is
dominant over the added mass'(inertia) effect for the above low relative
velocity and frequency regimes. The assumption that the relative motion
is dominant 1is thérefore satisfied in these regimes and one would expect
the arift-flow model to be valid. On the other hand, when the frequency
parameter Q* or QC/CDG is much Targer than unity and the relative
motion parameter G 1is much smaller than unity, the kinematic wave

speed is given by: (see Table 3 and 7)

C -V
Lo 1
P e 1 ] + *)
T, N =

] (46)

The drift-flux model result has been modified by the expression in
the square brackets, hence it only yields the correct wave speed in this
flow and frequency regime in the 1imit as oy ~ 0 and/or G* = 3.

Obviously, at a_. = 0, the result is of Tittle significance. And from

0
equation (46), it can be seen that at G* = 3, the relative motion and
inertia effects cancel each other and the last term of expression (46)
then disappears, yielding the same result as the drift-flux model.
Turning now to the dynamic wave propagation, let us examine the

1imits of validity of the conventional homogeneous acoustic model for

the propagation of dynamic waves [6]. In this analysis, continuity and
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momentum equations are taken into consideration. The relative motion
equation is neglected. Based on the zero mass transfer and zero
relative velocity assumptions, the acoustic wave model would result in .

dynamic wave speeds given by

\/ kP,
C=1V =+
Lo — ao(l - GO)DLO (47)

Since this corresponds to the zero relative velocity case (i.e., G =0),
the solution presented in equation (47) is restricted to zero relative
motion Reynolds number regime. Examining Table 2, expression (47) for
the dynamic wave speeds is valid only at a frequency of oscillation such
that @* 1is much smaller than unity.

On the other hand, at high frequency and zero relative motion, it

was shown from Table 1 that the dynamic wave speeds become

\/kPOU + 20,) :
= +
¢ VLO - uo(] - ao)pLo (48)

The factor /T"?‘?&;‘ originates in the inertial effect which dohinates
the flow at high frequency. This result for the dynamic wave speeds was
found by Crespo (1969) (see also Van Wijngaarden [7]1) who considered the
case where relative motion is not restricted by friction. The conéen-
tration of bubbles is then locally less than it is when the bubbles

move with the fluid. This gives the mixture a greater stiffness and

consequently an acoustic speed Targer than C = /kPO/aO(] - ao)pLo.
In the high frequency regime, when relative velocity exists

(G # 0), the magnitude of dynamic wave speed is directly proportional
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to relative velocity parameter G (see Tables 3 and 7). But as G
becomes much larger than unity, the dynamic wave speeds approach values

which are solely functions of the void fraction and liquid velocity:

They are, in fact, independent of relative velocity.

As mentioned before, since the frequency parameter 'QC/CDG is
usually of the order of 102 for most engineering bubbly two-phase flow
of concern, application of drift-flux and acoustic wave models must be
applied with caution. Inertial effects should be included in some
cases in order to achieve better accuracy in the prediction of the wave

characteristics.
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