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ABSTRACT

A diffusion flame, supported by a one-step chemical reaction, is initiated
along the horizontal axis between a fuel occupying the upper half-plane and an
oxidizer below. Simultaneously, a vortex of circulation I' is established at the
origin. As time progresses the flame is extended and '"wound up" by the vortex
flow field. The effect of distortion of the flame is locally described by the time-
dependent straining of a one-dimensional flame. The rate of chemical reaction
is represented by the characteristic chemical reaction time, tg, of the system.
The combustion field then consists of a totally reacted core region and an
external flame region consisting of a pair of spiral arms extending off at large

radii toward their original positions.

The presence of the vortex increases the rate of fuel consumption of the

flame. For large values of %, the augmentation of fuel consumption due to the

2 L
vortex is proportional to pI'3 D3, and is a function of

which approaches a
tch

constant value as £ » =, The growth of the fuel consumption rate from zero to
its steady value for lafge times is governed by the time scale £,. If the products
of combustion occupy more volume than the original reactants, then the spiral
flame will appear as an unsteady volume dilitation for times on the order of the
chemical time. An unsteady volume dilitation acts as an acoustic source, so the
interaction of a vortex and a diffusion flame is shown to result in the generatic;n

of a pressure pulse; the peak pressure occurring after a delay proportional to

2 1
the chemical time, and the strength of the pulse proportional to I'®D?% and

inversely proportional to f,.

These results are valid for hypergolic reaction systems in which the

reactant temperature does not significantly effect the rates of the chemical
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reactions. For systems described as having 'large activation energy”, the rates
are strongly temperature dependent and another description is appropriate.
For these systems, a vortex established on an already ignited flame exhibits, in
addition to the features described above, an extinct core of unburned reactants

if the circulation of the vortex is large.

The results provide the fundamental structure for the mechanism of

combustion instability proposed by Rogers and Marble in 19586.
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i. INTRODUCTION

The study of combustion, or of chemically reacting flows, may be
conceptually divided into two parts: if the reactants are mixed before burning
the process is referred to as a premixed flame, and if the reactants are initially
separated and are transported to the reaction zone by molecular diffusion the
process is referred to as a diffusion flame. This analysis is primarily concerned

with diffusion flames.

Diffusion flames occur naturally in such primitive devices as candles,
kerosene lamps, and wood fires. Technologically, diffusion flames constitute the
main combustion mechanism in natural gas combustors, diesel engines, liquid

spray combustion, and many types of chemical lasers.

Chemical reaction can occur only in regions where the reactants are
intimately mixed on a molecular level, thus reaction in a laminar diffusion flame
depends on simultaneous processes of interdiffusion and chemical reaction.
Turbulence should increase the rate of reaction, because turbulent mixing
augments the process of molecular diffusion. It has frequently been suggested
(Damkohler (1939,1940), Shelkin (1943), Karlovitz ef al. (1951), Scurlock and
Grover (195R), and Marble and Broadwell (1977)) that some turbulent
combustion processes may be described as a collection of laminar flame
structures, which retain their identity but are distorted by the turbulence. This
description is particularly suitable for at least the early phases of turbulent

diffusion flames.

If one applies this idea to the problem of a single vortex interacting with an
initially flat fuel-oxidizer interface, the velocity field will increase the total
surface area of the flame. Thus, an increase in the total reaction rate would be

expected, based on the increased area of the interface between the fuel and the
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oxidizer. However, the increase in total surface area is the result of locally
stretching each individual piece of the flame. This stretching may be expressed
in terms of the strain rate, the proportional rate of increase of flame surface, a
stretching of the flame sheet along the direction of the sheet which results in an
inflow normal to the flame sheet. This velocity normal to the flame surface
serves to augment the process of molecular diffusion, usually increasing the
rate of reactant consumption per unit flame area. Thus, the velocity field will
act to increase the overall reaction rate in two ways: by increasing the surface
area of the flame, and by increasing the rate of reaction per unit area of flame

surface.

To complicate matters, one finds that increasing the strain rate does not
always increase the reactant consumption per unit flame area. Especially with
strongly exothermic reactions with a chemical reaction rate which depends
strongly on temperature, increasing the strain rate above a critical value causes
the flame to go out. Even for reactions which do not show this abrupt extinction
behavior, increasing the strain rate causes an increase in reactant consumption
only to a certain point, with further increases in the strain rate causing a

reduction in the reactant consumption rate per unit flame area.

Furthermore, creation of flame surface cannot continue without limit.
Each flame surface really has a finite thickness, and if the flame surface area
per unit volume were to increase indefinitely, then after a while the mean
spacing between flame sheets would be less than the mean thickness of each
sheet. Thus, one must include some mechanism to account for the influence of
neighboring flames. This effect can be viewed another way, by noting that a
given material volume contains only so much of each reactant. As the straining
increases the flame area within this volume, and as these flames consume the

reactants, eventually one reactant will be depleted. The rate of reaction must go
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to zero when either reactant is depleted. Possibilities include: a flame
shortening mechanism, which would offset the creation of flame surface due to
straining with a flame destruction term, or an attenuation mechanism, which
would express the diminution of the reactant consumption rate of each flame as
a function of either closeness to its neighbors or the local depletion of

reactants.

These three ideas: the increase in flame surface area due to straining, the
effect of local straining on the rate of reactant consumption per unit flame area,
and the reduction in reactant consumption per unit flame surface area as a
function of increasing flame density (or of local depletion of reactants) are the

basis of the analysis to follow.

In- many technological circumstances, including chemical lasers and
conventional gas burners, it is important to increase the rate at which chemical
reaction takes place. In the latter this is done to reduce the volume which must
be devoted to combustion; in the former, rapid combustion is essential to
preserve the non-equilibrium molecular states required for lasing. On the basis
of the turbulent flame model described earlier, one may encourage rapid
combustion through extension of the active interfacial area between fuel and
oxidizer. This may be accomplished by the introduction of vortex structures
into the flowing gas, by means of vortex generators or otherwise, so aligned as to

stretch the interface.

Marble (1982) has solved the problem of an initially flat flame sheet on
which a vortex has been established. The viscosity of the fluid was included, and
the chemical reactions were assumed to be infinitely fast, so the reaction rate
was controlled by diffusion. The solution consisted of a burned out core,
containing hot combustion products, where all available reactants had been

consumed. Outside of the core, the flame sheet formed spiral arms which
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wrapped around the core at smaller radii and remained in their original
positions at larger radii. The solution showed similarity, the radius of the core
increasing like VE. Marble also found that the presence of the vortex increased
the reactant consumption rate of the flame above what it would have been if the
vortex had not been present. This augmentation of the reactant consumption

rate was found to be constant, independent of time.

Marble found that if the circulation of the vortex were large, in particular if

ReNSc > 50 1.1
where the Reynolds number Re = 21:” and the Schmidt number Sc = -Z— T

being the vortex circulation, v the kinematic viscosity, and D the molecular
diffusivity, then the increase in the reactant consumption rate was proportional

2 1L 2

to T'3D? and the core radius was proportional to [['8D

%] L

1
t]z Thus, for large

Reynolds number vortices, the solution is independent of v and depends not on

2

L
D and I' separately, but rather on the combined transport coefficient '3 D3.

In addition, Karagozian (1982) has extended Marble’s analysis to include
the effect of axially straining the vortex in the third dimension. Karagozian has

also considered the density change due to the heat release of the reaction and

its effect on the fuel consumption rate.

In this work the assumption of infinitely fast chemistry will be relaxed. In
addition, the case where the vortex is displaced from the flame by a finite
distance will be considered. To simplify the analysis, instead of the viscous

vortex of Marble, for this analysis a potential vortex shall be assumed.
Additionally, numerical results will be given for the limit %—rw; these

assumptions will correspond to the large Re limit investigated by Marble.
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The extinction of flames by straining will be briefly discussed, but the
calculations will be limited by an inability to describe the ignition process.
Finally, the generation of an acoustic pulse by a flame rolled up by a vortex will

be described, with possible applications to combustion generated noise and

certain types of combustion instability.



2. FLAME KINEMATICS
2.1 Introduction

The problem is to describe the interaction of a vortex and a diffusion flame
in two dimensions. The vortex lies at the origin of the coordinate system.
Viscosity will be neglected, so the velocity field will be taken from the potential
flow solution for an isolated vortex in a medium at rest. The flame will be
represented by a line; initially a straight line which passes within a distance a of
the vortex. Locally, the flame will be convected with the fluid, so each point on
the line moves with the local fluid velocity. As a result, the initially flat flame
will be wound into a spiral; increasing the flame surface area and locally

straining the flame.

Th'e analysis is based on two fundamental assumptions. The first is that the
flame may be treated as a material surface which is convected by the velocity
field, each piece of the flame moving with the local fluid velocity. This
assumption is satisfied for diffusion flames with a stoichiometry of unity. The
second is that the reactant consumption rate of the flame per unit surface area
is given by the results of a one dimensional analysis of strained laminar
diffusion flames, which will be given in the next chapter. Since the analysis will
be based on one dimensional strained flames, the radius of curvature of the
flame must be large compared to its thickness, and concentration and
temperature gradients along the flame must be small compared to gradients
normal to the flamme. The validity of these assumptions, as well as the
importance of viscosity, will be examined in chapter six. In this chapter, the
winding up of an initially flat flame by a potential vortex will be traced, and the
increase in flame area and the local flame straining which result will be

calculated.
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For convenience, the two reactants will often be referred to as 'fuel” and
"oxidizer". It is understood that the problem is in two dimensions, therefore one
may refer to the length of the line representing the flame as the "flame area”,
and areas in the plane may be called 'volumes” To obtain a true area or
volume, one must multiply the results by a length in the direction normal to the

plane.

The initially flat flame, distorted by the vortex, will be wound into a spiral.
Figure 2.1 shows the resulting spiral when the offset distance a is zero. Thus,
the surface area of the flame will be increased with time. One objective of this
chapter is to calculate this increase. Furthermore, as shown in the figure, this
increase in total flame area is accomplished by locally stretching each
infinitesimal piece of the flame. In later chapters, the rate of local stretching
will be related to the fuel consumption rate per unit area of flame, so another

objective is to calculate the rate of local straining of the flame surface.

In order to examine a tiny piece of the flame in detail, consider a
coordinate system attached to the piece of flame, translating and rotating as
the flame moves. Let the coordinate system translate such that the same piece
of flame is always at the origin, and rotate such that the z axis is always tangent
to the flame at the origin. The y axis will always be perpendicular to the flame
at the origin. (Figure 2.2) Locally expand the velocity field about the origin in

the (z,y) coordinate system. The z velocity component is,

ou ou
u(z,y)~ 'U»]o.o‘*"‘—‘ T+ — y+ oo 2.1a
: 70z Jon) Y oo
and the y component is,
ov ov
vizy)~ v](o'0+——-— T+ — y+ o 2.1b
"oz o W oo

Since the coordinate system has been chosen such that the origin moves with
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the local fluid velocity, u|(g0) = 0 and '”](0.0) = 0. The coordinate system rotates

such that the z axis is tangent to the flame, so LA = 0. The z component of

oz ’ (0.0)

the velocity is unimportant because of the assumption that the flame is locally
one dimensional. Only the ¥y velocity component is of interest. The remaining

du

ov
term -—
er .

from the continuity equation.
(0.0)

is equal to the negative of
(0.0)

Now, consider two points on the flame. Let one be at the origin and the
other on the z axis a small distance 6l from the origin. Since each point moves
at the local fluid velocity, the separation distance 4l will increase with time

according to

2.2

Here, £ is the strain rate of the flame, defined as the rate of increase of flame
length per unit length. Thus, the creation of flame surface by stretching the

flame along the z axis can be related to the velocity component perpendicular

to the flame surface, since v(z,y) ~ v

oy

duL

y=—¢cy. If ¢is
(0,0) 8z

(0,0

the rate of strain of the flame surface, then the velocity component

perpendicular to the flame isv = —gy.

The velocity field about a piece of flame has been approximated with the
lowest order terms in a local expansion, which is valid only over a short
distance. Karagozian (1982) has noted that this expansion of the velocity field
about the flame is similar to the boundary layer approximation, and is valid if
the flame is thin compared to the scale of variations within the flow field. In
addition, the flame has been taken to be locally flat; the curvature of the flame
has been neglected and the flame is assumed to lie along the z axis, rather than

merely being tangent to it at the origin. This is allowable only if the radius of
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curvature of the flame is large compared to the flame thickness. Finally, if the
gradients of concentration and temperature in the z direction are small
compared to those in the y direction, one can neglect convection and diffusion
in z and approximate each piece of flame as if it were a one dimensional
(concentrations and temperatures are functions of y and the time ¢),
transiently strained (with a normal velocity component v equal to —&(t)y)
diffusion flame. Furthermore, the function &(¢) may be found by computing a
purely geometrical quantity, the local rate of extension of the line representing

the flame, expressed as the rate of change of length per unit length.

In this chapter, the creation of flame surface area and the transient local
strain rate & will be calculated. Chapters three and four will address the
problem of predicting the fuel consumption rate per unit flame area of a one-
dimensional, transiently strained diffusion flame. If one approximates each
piece of the flame as a one-dimensional strained flame, these results can be
combined to yield a description of the fuel consumption rate due to the

interaction of the vortex and the flame.
2.2 Flame Surface Area and Strain Rate

In order to examine the convection of the flame in the velocity field
surrounding a potential vortex, introduce polar coordinates with the potential
vortex at the origin. Use the Lagrangian coordinate A to label each piece of the
flame as it is convected by the vortex field. (See figure 2.3.) The position of the
flame (r,6) is then a function of A and the time ¢. Since each piece of flame is

transported with the local fluid velocity,

or

% =u,. =0 2.3a

8 _%e _ T

at r B 2777'2
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2.3b

If the initial position of the flame at £ =0 is denoted by (7g(A),6;(A)), the

solution to equations 2.3 is,

r(ME) = ro(N) 2.4a
ONE) = 80(N) + g 2.4

At any time, the distance along the flame separating two points designated A;

and A; is
1
Ay Ag L e 36 %]z
= 2 2 2 = or, 2| 86
j;ldl—ﬁl(dr + 72d 6°) -fM “ax +r[a dA 2.5
If 6A = Az = A, is small,
then its length is given by
o=l zraezé—a 2.6
= “5—- +r lb—' A .
From equation 2.2,
Nar P l50lFZ
B qorl, ai0e7|?
ot HBA lax
£ = e o~ 2.7
”_6_1 +1.2r_a_q. 2
a o]
substituting from equations 2.4,
Tz[ I't drg __‘1‘590qr T drg]
°[m~§ X dA [mg dX
£ = [, 3 - 2.8
drg +7_2r 't drg _dec
[dx ° lm-g AN dA

So far, the initial shape of the flame, given by 7¢(A\) and 6¢()), has not been

specified. The initial flame is a straight line displaced from the origin by a
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distance a, and let A be measured as shown in figure 2.3. Then,

1"0()\) = Va? + )\? 2.9a
_ A
6(A) = a'rctan(;-) 2.9b

Substituting equations 2.9, equation 2.5 for flame surface area becomes,

[ 1
b Rl
dl— 2| 2]’ +r2—-—-—ri-" dA 2.10
Ml r mrér
and equation 2.8 becomes,
Mre | _a]lf 1t |2
1 “1\'7‘2 r r “m’a r 511
£= — .
NN
EEEEE
r wr r T

The effect of the offset distance a is of interest. However, most of the
analysis to follow will deal with the special case where o = 0. When the offset

distance a is zero, equation 2.10 becomes

T2 [ I‘t 2 ;—
=2 [l + l dr B 2.12
Ty
[ Ire Ple
So the annulus (r,r+dr) contains flame area 2[1+ py dr. Again taking the
special case a = 0, equation 2.11 becomes
e |2
L -————l mr? 2.13
g= = '
t [ 2
1+[ﬂz—
nr

Now that the strain rate ¢ is known as a function of time, and the surface
area of the flame is known, the objectives of this chapter have been reached.

However, flame kinematics contains some more information which will be of use
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later.
2.3 Flame Density and Spacing

The flame surface density £ is defined as the surface area of flame per unit
volume. Equivalently, in two dimensions the flame density is flame length per
unit area. Flame density has units of reciprocal length. From the previous

section, for the special case ¢ =0 an annulus (r,r+dr) contains flame area

1

[T dE
2[1 +17—1¥2—- dr. The volume of this annulus is 27rrdr, so the flame density £ is
[T e Pz
l1+l—————P ta ?
T
L= —_ 2.14
nr

Note that at any fixed radius r, the flame density increases with time.
Eventually, as the flame becomes tightly wrapped around the origin, the flame
surfaces will resemble concentric circles about the origin. When the flame
structure consists of uniformly spaced parallel flames, the distance between

flames A will be the reciprocal of the flame density.

EENE

For the outer arms of the flame, equation 2.15 does not have any meaning.
2.4 Flame Curvature

Another quantity which will be of interest later is the curvature of the flame
surface. First, an equation for the flame surface is found. Taking the special

case a = 0, equations 2.9 may be substituted into equations 2.4 with 7o = A and

6 = + g— to yield an expression for 6 as a function of r and ¢.
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I't

- m
= St + > 2.16

The curvature « of the line is found from elementary calculus, and the radius of

curvature of the line is Tlc_

o

re ?
r
il

‘....__
] [and

+
et }

R.17

t
r? |
t 2

r

[y
i
o ey

2.5 Similarity
The repeated occurrence of the dimensionless —P-tz— suggests the existence
nr

of a similarity variable proportional to indicating that the shape of the

< _
VIT'
spiral is independent of time, the only effect of increasing time being to increase
the size of the spiral. The characteristic radius of the spiral may be defined as

the radius at which the flame sheet has been rotated ninety degrees from its

original position. Denoting the characteristic radius by 7 m,s, and choosing the
upper arm of the spiral (6 = -g—), Terms 1S the radius where 8 = . From equation

2.18,

T,
arms  _ 1 218
m

==
Later developments will show that the region of interest in this analysis is the

region 7 << Tymys, Wwhere most of the additional flame surface is being generated.

In this region, equation 2.13 for the strain rate is approximately,

g~ L 2.19

and equation 2.14 for the flame spacing becomes
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2.3
T
A T 2.20
Equation 2.17 for the flame radius of curvature becomes
Lo 2.21
K

The flame in this innermost region is tightly wrapped around the origin, so much

so that the flame surfaces are nearly concentric circles.

In contrast, at large radii 7>> 7y, the flame arms are unstrained and lie
near their original positions. This region will not be of interest in the analysis to

follow.
2.6 Summary

The flame is a line which is transported at the local fluid velocity. Assuming
the velocity field to be that of a potential vortex, an increase in flame surface
area and a resultant local straining of the flame sheet were found. In the

absence of viscosity, the distorted flame contour is similar at all times, such

(s

/3

that is constant.
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3. STRAINED LAMINAR DIFFUSION FLAMES
3.1 Introduction

Each piece of the complex flame structure shall be analysed as a one
dimensional laminar diffusion flame which is strained at the rate £. The strain
rate will be a function of time, and the objective is to find m, the time
dependent reactant consumption rate per unit flame area. Fortunately,
strained laminar diffusion flames have received a great deal of attention, and

methods are already available. For a review of the subject, see Williams (1971).
3.2 Governing Equations

For chemically reacting flows, in addition to the usual equations of mass,
momentum, and energy conservation, one obtains a conservation equation for
each chemical species present (for more detail, see Williams (1965)). In two

dimensional flow, the conservation equation for the i** species is

0py . dpiuy N Bpiv;
ot oz By

=w; 3.1

Here p; is the concentration (mass per unit volume) of the if”' chemical species.
If ¥; is the mass fraction of species i1, then p; = ¥; p. The velocity of species 1
consists of the bulk fluid velocity plus the relative flux of species i due to
diffusion. This is a one dimensional problem; concentrations and temperatures
are taken to be independent of x. Therefore, u; = u and v; = v + vp;; no diffusion
occurs in the z direction. The source term w; represents the creation and

destruction of species i due to chemical reactions. Clearly, ) ¥; =1 and
i

Z'w,; =0,

i

The momentum equation could be included at this point; however, the

velocity field is already specified and the pressure is nearly constant across the
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flame. Therefore, take the velocity to be u = &(t) z. To simplify further, assume

8Y;
diffusion obeys Fick's law, Y; vp; = - D —éy—" To account for the variation of the

diffusion coefficient and density with temperature, assume that p*D = p§Dy,

where the zero subscript refers to a constant reference value, and use a

y [
Howarth transformation ¢ = fo 3%1—2- dy' to yield (see Marble (1979))
0 ‘

oY,

8Y; Y,  wy
ot -

-D 3.
€ 0 pg?

—&(t) ¢

where all species have been assumed to have equal densities and diffusivities.
The energy equation may be treated similiarly, with the result that if the specific
heats of the species are constant and equal, the product of the density and the
thermal conductivity is constant, the Lewis number is unity, and the viscous
dissipation term is neglected, the temperature obeys the same equation as do

the species mass fractions.

For boundary conditions, consider a diffusion flame which separates semi-
inﬁnite regions of reactants. Calling one reactant "fuel” and the other "oxidizer",
the approprigte boundary conditions are ¥; = ¥, ¥, =0, T = T, as ¥y~ += and
Y, =0, Y =Y, T=T, as y»—=. Here Y;. and Y,. are the constant mass
fractions of fuel and oxidizer found at plus and minus infinity, respectively. The
fuel and oxidizer streams have been taken to have the same temperatures, given

by Tw.

The initial conditions which will be used most often in the analysis are, at
t =0 Y=Y Y=0 T=T,forally>0and Yy =0, ¥; = You, T = T for all
y < 0. At times, these initial conditions will not be sufficient to "ignite" the flame.
In those cases, a region of elevated temperature must be specified in the initial

conditions to ensure a vigorously burning flame.
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The situation described is that of a semi-infinite reservoir (y> 0) of fuel of
constant composition and temperature separated from a similar region of
oxidizer (y < 0) by an impermeable plate for £<0. At ¢ =0, the plate vanishes

and the two reactants diffuse into one another and react.
3.3 Experimental Configurations

Although the previous formulation allows the strain rate &£ to be an
arbitrary function of time, the laminar diffusion flames commonly produced in
laboratories fall into one of two classes: the unstrained transient flame or the

steady state strained flame.

In the unstrained transient flame configuration, fuel and oxidizer streams
are flowing in the z direction with constant, equal velocities w. The reactants
are keét from mixing by a splitter plate which ends at z = 0. Subsequently, for
z> 0, the reactants interdiffuse and react. The boundary layer approximation,

ignoring diffusion in the z direction compared to diffusion in the y direction,
and the substitution ¢ = i— leads directly to equation 3.2 with &(¢) = 0. The
experiments by Melvin et al. (1971) and by Phillips (1964) are of this type.

The other case, the steady state strained flame, is found analytically by
setting the strain rate £(t) equal to a constant and examining the steady
solutions which occur as f{-=, In the laboratory, this case may be

approximated in several ways.

The "opposed jet diffusion flame" is produced by impinging two jets, one of
fuel and the other of oxidizer, which are flowing in opposite directions. Ignoring
viscosity, if ¥ is the coordinate axis along the axes of the two jets, then v = —gy
in the region between the two jets. The strain rate may be varied by changing
the jet velocities or by changing the gap between the two jet exits. A flat, one

dimensional flame may be produced where the two streams come together.
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A detailed account of the production of one-dimensional strained laminar
diffusion flames in the laboratory is found in the work of Hahn and Wendt
(1981a,1981b) and Hahn (1979). Detailed measurements of temperature and
species concentrations are given, and the results are compared to numerical
calculations for methane-air lames. Hahn and Wendt also discuss the effect of
the heat release of the flame on the velocity distribution; one result is that the
flame acts as a source of vorticity. The experiment of Potter ef al. {1960) is

also based on the opposed jet diffusion flame.

The potential flow solution for two impinging jets is the same as that for a
jet impinging on a wall at ¥ = 0, and also for the flow in the neighborhood of the
forward stagnation point of a blunt body. Therefore, a constant strain flame
may be produced by blowing a jet of air against the surface of a liquid or
gaseous fuel, as was done by Kent and Williams (1974), Krishnamurthy (1975),
and Seshadri (1978). In addition, Tsuji and Yamaoka (1968) investigated the
flame in the forward stagnation point region of a cylinder, with fuel injected
through the porous wall of the cylinder. These configurations differ slightly
from the previous analytical treatment. First, if viscosity is included, a
boundary layer will form on the wall. Some investigators include viscosity and
others do not. However, numerical calculations by Jain and Mukunda (1968)
both including and neglecting the effects of viscosity do not show a significant
effect on the combustion process. Secondly, the boundary conditions differ. For
an oxidizer jet impinging on a surface of solid or liquid fuel, the boundary
condition on the fuel side is applied at the wall instead at infinity, and includes
the vaporization of the fuel at the wall surface. For injection of fuel through a

porous wall, the flux of fuel at the wall is specified.
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3.4 Limiting Cases

w
In general, the reactant consumption or production term -;i- is a function

of species concentrations and the temperature. Most reactions of physical
interest are the aggregate of many individual reactions involving intermediate
reaction products. These complicated reaction systems are often approximated

(see Williams (1971)) as a single step second order reaction,

Juel + oxidizer -» products

Since both reactants have been assumed to be of equal density, the appropriate

rates of consumption of fuel and oxidizer are;

W, Wf
—_— etz - Y, Y, 3.3
p P °°s

Here k is the second order reaction rate constant, with units of reciprocal time,

Clearly, a characteristic chemical reaction time f; may be defined which is

proportional to %—

Friedlander and Keller (1963) considered the case of a steady unstrained

diffusion flame of fixed thickness I, governed by the equations,

Dy Zj:; =kY, Y, 3.4a
Dy dzif =kY,Y; 3.4b
dy
with boundary conditions Y, = Y% and ¥, =0 at y = -;— and Y, =0 and
Y, =Y,uaty =- —;— Using the characteristic length I to make y dimensionless

2

results in the appearance of the dimensionless number %—— Known as the
0

Damkohler number, this group represents the ratio of the characteristic time
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2

required (proportional to !D_-) for the reactants to diffuse together to that
0

required for already mixed reactants to react (proportional to i—).

Thus two separate limiting cases may be distinguished; that where the
chemical reaction term is negligible to lowest order (small Damkdhler number),
and that where the reaction is considered to be instantaneous and the rate of
diffusion controls the rate of fuel consumption (large Damkohler number). In
each case, perturbation methods may be used to find solutions for the rate of
fuel consumption per unit flame area. These ideas have been applied to the

stagnation point problem by Fendell (1965).
3.4.1 Fast Chemistry Solution

The solution for the case of a fast chemical reaction was first given by
Burke and Schumann {(1928). An infinitely fast chemical reaction rate implies
chemical equilibrium everywhere. The reaction is taken to be just the forward
reaction, thus fuel and oxidizer cannot coexist. The chemical reaction is
confined to an infinitely thin flame sheet. On one side of the flame sheet, fuel
diffuses toward the flame and on the other side oxidizer diffuses toward the
flame. No oxidizer is found on the fuel side of the flame sheet, and no fuel is
found on the oxidizer side. At the flame sheet itself, both the fuel concentration
and the oxidizer concentration vanish. The flame sheet serves as a sink for both

fuel and oxidizer. The rate of fuel consumption per unit area is equal to the

07,
rate of diffusion of fuel inte the flame sheet, which is pgDq -é—s‘!—- evaluated at the

flame sheet on the fuel side, £ = £*4pme. Likewise, the oxidizer consumption is

dY,
given by pelo —a—g— at € = £ yiame. Obviously, the ratio of fuel consumption to

oxidizer consumption must be in stoichiometric proportions, and this

determines the flame position £zgme.
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Assume, for convenience only, that Y;. = ¥,. =1, that fuel and oxidizer
have equal diffusivities, and that they react in 1:1 proportions. The flame will

then be symmetric about £ = 0 and equation 3.2 becomes for £ > 0

Y, Y, 8%y, _
T —-g(t) £ ae Do Yo =0 3.5a
Y =0 3.5b
and for £ <0
Y, =0 3.86a
8Y, 8Y, %Y, _
T —g(t) ¢ T - Dy o =0 . 3.6b

with boundary conditions Y;(+=) = ¥,(~=) = 1 and initial conditions at £ = 0 of

Yy =lforé>0and ¥, =1 for £ <0.

Following Carrier et al. (1975), use the coordinate transformations

¢
£ = ('2"/‘; e(t") de” 3.7
and
¢
%}=ezj; e(t") dt 38

Equation 3.8 may be integrated to yield T as a function of time, if the correct
initial condition, 7{0) is known. Regardless of what value is chosen, the
substitutions 3.7 and 3.8 eliminate the convection term and thus equations 3.5a

and 3.6b become

Y, 621/}

AT - Dy 6(’2 =0 3.9a
8 8?

Yo - Dy Yo =0 3.9b
oT il

Together with the boundary and initial conditions these equations yield the
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following solution

Y, =0 for ¢>0 3.10a

_ [ ¢
Yf~erflm

[
y,,:-erfl—‘f—- Y, =0 for ¢<0 3.10b

V4D0'f

Thus the fuel consumption rate per unit flame area may be found.

[ Dq

E=0+—po 1_1';:

, a7y,
m = po Do =

L .
2 [ et atn
T e-o 3.11

From equations 3.10, the width of the diffusion zone is proportional to vDy7in ¢

i
coordinates, or to VDT e-'{s(t') * in ¢ coordiates. (¢ differs from the physical

coordinate ¥ by only a Howarth transformation.)

2 j: &(t") dt"

The grouping Te will occur often so give it the symbol 7.

¢
T = Te—zj;sa')d‘ 3.12
Rewrite equation 3.11 as
, [ Do 17
™ = po l"? 3.13
ks

and the characteristic thickness of the flame ¢ may be defined as
o= V.Do? 3.14

2
The characteristic diffusion time is proportional to %— which is equal to T
0

Therefore, one may expect this solution to be valid as long as 7 is large

compared to the characteristic chemical time.

Returning to the question of the proper initial condition for finding 7, note
that the flame will be of zero thickness at £ =0 if 7(0) = 0. Therefore, if the

diffusion flame were initiated (by removing a partition between the reactants) at
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t =0, then Tshould be zero at £ = 0. Note that if v = 0, then ¥ = 0 also.
3.4.2 Extensions of the Burke-Schumann Solution

The previous analysis is completely independent of the chemical reactions
which occur at the flame sheet, with one exception. The stoichiometry of the
overall reaction specifies the ratio of fuel to oxidizer diffusing into the flame
sheet, Marble (1979) has given the solution for an arbitrary fuel-oxidizer ratio,
in addition to allowing for Y,. and Y. not equal to one and for different
diffusion coeflicients for fuel and oxidizer. The nature of the scolution is
unchanged. For the unstrained case, one still obtains a similarity solution in

which flame thickness is proportional to V¥, and thus the fuel consumption rate

is proportional to —1—. In the case of an arbitrary strain rate, the same

Vi

dependence of fuel consumption and flame thickness on 7 will be found, only the

constants will be changed.

In the previous analysis, the chemical reaction was considered to be
infinitely fast and to proceed only in the forward direction. One may ask how
allowing reversible reactions and finite rate reactions changes the solutions, and

whether the Burke-Schumann selution is recoverable in the limit.

If the equilibrium constant K (the ratio of the forward to the backward
reaction 'rates) is included and the asymptotic limit X >>1 is examined, the
previous solution is recovered as the lowest order outer solution, and the
reaction zone expands from a flame sheet of zero thickness to a thin boundary
layer which may be analysed using singular perturbation analysis (see Fendell
(1967) and Chung and Blankenship (1966)). Clarke (1968) and Clarke and Moss
(1969) have analysed a system of four reactions which describe the hydrogen-
oxygen diffusion flame, and discuss the effect of the reverse reactions on the

flame structure.
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If the requirement that the reaction be infinitely fast is relaxed, and the
limit £>> 1 is examined (more accurately the limit of a large Damkdhler .
number), again the Burke-Schumann solution is recovered as the lowest order
outer solution. An inner solution describing the detailed structure of the

reaction zone is also obtained. Fendell (1965) analysed a constant strain single

step, second order reaction (% =kY,Y;), and a more general overall reaction

(1:% = kY Yff) has been considered by Carrier et al. (1975). A system of four

reactions for the hydrogen-oxygen diffusion flame has been solved by Clarke

(1969).

Thus, the Burke-Schumann solution is valid in the limit of a negligible
backward reaction and a fast forward reaction. The elimination of the explicit
time dependence of the strain rate in favor of the parameter 7 is valid only to
lowest order in the limit of a large Damkohler number (see Carrier et al.

(1975)).
3.4.3 The Slow Chemistry Limit

As an aid to understanding the behavior of a flame over the entire range of
Damkohler numbers, the opposite limit may be explored; the small Damkdhler
number limit (see Fendell (1965) and Friedlander and Keller (1963)). The
chemical reaction terms are neglected to lowest order, and concentration
profiles of fuel and oxidizer are found. Then, the rate of conversion of fuel and

oxidizer into product is calculated as a perturbation.
Ignoring the chemical production terms, equation 3.2 becomes

0Y; 0% 7Y, _
ot o) E g Do 5 =0 519

with the same boundary and initial conditions as before. Once again the

coordinate transformations given by equations 3.7 and 3.B are used, and
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similarity solutions for the fuel and oxidizer concentrations are found. They are

N R Y
Y, = 5 + 5 erf b 3.16a

erf | ——Se— 3.16b

Y,
? \/4DQ‘T

If the chemical reaction is a single step, second order reaction, then -E’— =kY, Y.

The fuel consumption per unit flame area is just w integrated across the

thickness of the flame, or
4o
m = J: L way 3.17
which becomes

mos [oels Lol bl s

Since the chemical reaction is weak, then to lowest order T = T, across the
flame. Thus p and k£ are to be evaluated at 7.. Transforming the variable of
integration yields

+0 1

- oo senar (0L 1yl 1y
m = po k(Tw) VDoTe o f_ﬂ[2+zerf2][z 2e'rf2]d7 3.19

which gives the result

po k(To) V2Dt e-—j: £(¢”) de”

.20
V- 3.2

Interestingly, the parameter 7 has appeared once again, for equation 3.20 may

be rewritten as

po k (Tw) NDo7 3.21

This result is more general than it first seems, since examination of

equations 3.18 and 3.19 reveal that the proportionality of m to V7 is a result of
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the similarity solutions for Y, and Y,. The reaction term w could be any
arbitrary function of ¥; and Y,, and the result would be the same; the overlap
between the fuel and oxidizer profiles would be proportional to \/5}' and m
would be proporticnal to the flame width. Just as before, the flame width § may

be defined as

and the appropriate diffusion time is proportional to , which is equal to 7

Do

tairy
t ch

The requirement that the Damkohler number be small is equivalent to

requiring that ;— be small.
ch

3.5 The Proposed Model
In the limits as 7 >> {,, and as 7 << iy the fuel consumption rate per unit

flamme area has been found to depend only on the parameter 7, regardless of

what function the strain rate ¢ is of time. To lowest order,

(517
th ~ pg k(T.) [% VDot for T << ty 3.23a
RE
m ~ pg l——f— ° tor F>> ten 3.23b
T

It must be stressed that the dependence exclusively on the parameter T is true

only to lowest order, and is not true at all for ?T—- of order one. Nevertheless,
ch

one requires a method of estimating the fuel consumption m for intermediate
values of 7. One notes that equation 3.23a is an increasing function of 7 and

that equation 3.23b is a decreasing function of 7. The two equations yield the

1

m. Recalling that the characteristic chemical

same value for m if F=



-27 -

. . . 1 . 1
t f th t t l to -, defi bep = ———— bl
ime o e system is proportional to o= defining Zc B (1) enables
equations 3.23 to be written as
. po | Do7 3 Dy z| T
m o~ ——[---— =pg | =" |=—| for T<< ty 3.24a
ben | T T Lon
[ Do |7
™ ~ pg [-—“— for T>> to 3.24b
T

The chemical time ., has been chosen such that if 7 < f;, the value of m from
equation 3.24a is less than that from 3.24b, therefore the reaction may be
thought of as being reaction limited. For T > t;,, the term diffusion limited is
appropriate, since equation 3.24b predicts a lower value for m than does

equation 3.24a. At # = £, the two equations agree.

The formulation which will be used for the bulk of this work is the following:
Given ¢ as a function of time, calculate 7 as a function of time using equations

I

3.8 and 3.12. Then, for values of 7
ch

less than one, calculate m using equation

3.24a. If tj; is greater than one, use equation 3.24b to find m.. The accuracy of
ch :

this method will be discussed in chapter four.
3.6 The Effects of Activation Energy

The previous discussion presumes that a continuous transition exists
between the small Damkchler number and the large Damkdhler number
regimes. In some cases this is true; see Williams (1971) and chapter four of this
thesis. In other cases it is not. If the reaction is strongly exothermic and the
reaction rate depends strongly on temperature, more than one solution may

exist at a given Damkohler number (see Williams (1971)).

Before proceeding further, it is necessary to mention results for the flame
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temperature profile. For small Damkohler numbers, to lowest order the
reaction is neglected, so T = T, across the flame. Higher order terms show that
the maximum temperature which occurs in the middle of the flame increases as
the Damkohler number increases (Fendell (1965)). In the large Damkohler
number limit, the Burke-Schumann solution yields a temperature profile which
reaches a sharp peak at the flame sheet. If the Lewis number is equal to unity,
then the maximum temperature is equal to the adiabatic flame temperature Ty,
the temperature which would be obtained if fuel and oxidizer were mixed in
‘stoichiometrically correct proportions in an adiabatic reservoir (Marble (1979)).
As one might expect, higher order terms show that 7T,,,, decreases as the

Damkohler number decreases.
3.6.1 Steady State Solutions

The case usually considered is the steady state strained flame,

L

oe .) The

characterized by a constant value of the strain rate £. (In this case 7 =

characteristic time of the flow field is thus proportional to %— The definition of
a characteristic chemical time is more difficult. The previous definition, that £

is proportional to %— only makes sense if k£ is nearly constant. The reaction rate

k is usually a function of temperature, most often a function of the Arrhenius

form,

Ta
-

3.25

[ Br-1
k =k° l"]"_‘T—' e

where kg, up, and T, are constants. Obviously, kg has units of reciprocal time, so

usually the Damkdhler number is defined (see Friedlander and Keller (1963), for

ko
example) as -
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This choice of a chemical time is convenient, since kq and &£ are known
quantities, but it is not necessarily the best choice. As pointed out by Williams
(1971), the reaction rate is of greatest importance in the region of highest
temperature, therefore the reaction rate ¥ evaluated at T = Ty,., should be
used as the characteristic chemical time of the system. This introduces a

complication, since T, is not known a priori.
maz

The existence of multiply valued solutions can be argued intuitively. For
instance, let the strain rate & be some intermediate value. If one guesses that
the large Damkohler number solution were valid, then Ty,,,~ T;. The reaction
rate k should then be evaluated at 7. On the other hand, had one guessed that
the Damkohler number would be small, then Tpe~ Tw, and k& should be
evaluated at T.. This gives rise to multiply valued solutions if k(Tf) is much

larger than x(7T.). In such a case, a value of & could be chosen such that

k(T
—(——!—)—>> 1, which would justify the assumption that Ty,,N Ty, while at the

£
k(T.)
£

same time << 1, which would justify setting TygN Tw.

3.6.1.1 Ignition and Extinction

Fendell (1965) analysed the stagnation flow problem, using asymptotic
analyses for both large and small Damkohler numbers as well as numerical
solutions for intermediate values. He found that a graph of Tmer Versus the
Damkohler number based on kg forms an S shape. The lower branch of the S is
described by the small Damkodhler number (or "slow chemistry” or "frozen flow")
solution and the upper branch is described by the large Damkdhler number (or
"fast chemistry” or "equilibrium flow” or 'Burke-Schumann') solution. The most
interesting feature of Fendell's solution is the existence of three solutions for

certain choices of the strain rate ¢.



-30 -

As a consequence, if a flame is burning well on the upper branch of the 5,
and the strain rate is slowly increased, eventually a critical value of the strain
rate is reached. If the strain is increased further, the lower branch of the S is
the only. possible steady solution. This deflnes an extinction condition.
Similiarly, one can define an ignition condition, a critical Damkchler number

where the system will jump from the lower branch to the upper.

Zeldovitch (1951) analysed the thin reaction zone imbedded in the Burke-
Schumann flame by means of order of magnitude estimates. Reasoning that the
reaction zone must increase in thickness if the fuel consumption rate is to
increase, Zeldovitch saw that this would also lower the flame temperature in the
reaction zone. If the reaction rate were a strong function of temperature, the
fuel consumption rate as a function of reaction zone thickness would increase
at first, reach a maximum, and then decrease. Therefore, the capacity of the
reaction zone to consume fuel is limited. Later, Lina'n (1963) more accurately
analyzed the inner reaction zone. He too fovund indications that the inner

reaction zone has a limited capacity to consume fuel.

These results of Zeldovitch and Lina'n can be used to intuitively explain the
extinction process. For a constant strain flame, the Burke-Schumann solution
predicts that m should increase as Ve as ¢ is increased. The Burke-Schumann
calculation of m is just the rate at which the outer diffusion zones convect and
diffuse reactants into the inner reaction zone. If the strain rate & were too
large, and the outer regions of the flame pump fuel and oxidizer into the inner
reaction zone beyond the capacity of the inner zone to consume these increased

fluxes, the temperature of the flame would fall and the flame would go out.
3.6.1.2 Stability

Williams (1971) reports that most investigators believe the middle branch
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to be unstable. This is intuitively plausible, since a small increase in flame
temperature will increase the rate of fuel consumption and thereby increase the
rate of heat release by the flame. Similiarly, a decrease in flame temperature
should cause a decrease in the heat release rate of the flame. Stability analyses
by Kirkby and Schmitz (1966) and by Schmitz (1967) suggest that the middle
branch is unstable as also are adjacent regions of the upper and lower branches
(i.e. the instability boundaries do not precisely correspond to points of vertical
tangency on the S curve). The boundary conditions used in these analyses do
not correspond to either the stagnation point problem or to the opposed jet
diffusion flame. Consequently, for the cases of interest the question of stability

has not been definitely answered.
3.6.1.3 Activation Energy Asymptotics

If one wants analytical expressions for the critical ignition and extinction
Damkdhler numbers, the asymptotic limits of large and small Damkchler
numbers are clearly inappropriate, since the multivaluedness occurs at
intermediate values of the Daﬁkéhler number. In addition, the asymptotic
formulas fail completely in near the ignition and extinction points (Fendell
(1965)). Williams (1971) suggested the limit of large activation energy (T,- =).
The analysis was carried out by Lifian (1974). In Lifa'n's analysis, all

temperatures were nondimensicnalized by the heat released by the reaction,

%—E-. resulting in the dimensionless ambient temperature ... the dimensionless
D

activation energy @,,. and the dimensionless flame temperature @f =0, + -;—

o~

0) -
The limit -(5)%— -» o= was taken. lLina'n found that if the Damkohler number were

oo

k
defined as 8—0. then the critical value required for ignition is
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Lina'n performed the analysis allowing the two reactants to be at different
temperatures and in different concentrations, but his results have been
simplified here for the case of both reactants initially at 7. and with initial

mass fractions of unity.

The analysis was performed by Lifia'n for the opposed jet geometry, but it
has been extended to the stagnation flow problem by Krishnamurthy et al

(1978).
3.6.1.4 Numerical Results

In addition to the numerical results by Fendell (1965) and by Jain and
Mukunda (1968) exhibiting the S shaped curve for single step reactions, Marathe
et al. (1977) have numerically studied a system of four reactions for the
reaction of hydrogen and oxygen. Their results show that the upper branch
ceases to exist for too large a strain rate. In addition, a single step reaction is
found which duplicates the extinction criteria found for the system of four

reactions.
3.6.1.5 Experimental Results

The extinction of laminar diffusion flames by increasing the strain rate has
been observed. In an early experiment, Potter ef al. (1960) established
opposed jet diffusion flames using air and several gaseous fuels. They found

that a nearly one dimensional flame could be established between the two jets
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for low flow rates, but the center of the flame sheet would disappear if the flow
rate were increased too much. An explanation was attempted based on the
"apparent flame strength” theory of Spalding (1954). Their actual numerical
results are not of interest here (the experiments were done using parabolic exit
velocity profiles for the jets since uniform profiles produced results which were
dependent on the distance between the two jets), yet the results are of
qualitative interest, since they show that extinction may result from increasing

flow rates.

Tsuji and Yamaoka (1968) performed experiments by blowing air over a
cylinder with porous walls through which fuel (either methane or propane) was
injected. The velocity gradient in the forward stagnation point region is
increased by increasing the freestream velocity. The results show extinction of

the flame in this region as the strain rate is increased.

Many experiments have been done demonstrating extinction in the
stagnation point flow obtained by impinging an air (often diluted with nitrogen)
jet on the surface of a liquid or gaseous fuel. Increasing the air jet velocity
increases the velocity gradients (and hence the strain rates) in the stagnation
point flow above the fuel. The adiabatic flame temperature may be controlled by
varying the the dilution of air by nitrogen. (see Seshadri (197B), Kent and
Williams (1974), and Krishnamurthy (1975)) The results of Tien et al. (1978)
show the burning rate of a solid fuel (polymethyl methacrylate) increases as Ve

with increasing strain rate £ until suddenly the flame goes out.

Experimental evidence for the existence of the ignition point is absent. The
ignition mechanism (see Lifna'n and Crespo (1976)) depends on the small
reaction rate at T = T, slowly reacting the fuel and oxidizer, causing heat to be
released, which slowly increases the temperature in the "flame". Eventually, if

the strain rate is small enough, a temperature runaway occurs, causing the
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flame to jump from the lower to the upper branch. The problem with the
ignition mechanism is that it depends on the reaction rate of the fuel and
oxidizer at 7.. The reaction rate of hydrocarbon fuels at ordinary room
temperatures is certainly very small, but Arrhenius expressions which
accurately express reaction rates at typical flame temperatures cannot be
accurately extrapolated down to room temperatures. On this basis, and in view
of the lack of experimental confirmation, the ignition point will be ignored in
this analysis. The flame behavior will consist of a strongly burning branch
where fuel consumption is given by equation 3.23b, and which ceases to exist
below a critical Damkdhler number. The lower branch of the solution will be
taken to be a '"flame" where fuel and oxidizer interdiffuse, but do not react to

any appreciable degree.
3.6.2 The Transient Case

The simplest time dependent case is the unstrained mixing layer. Two
streams, one consisting of fuel and the other of oxidizer, flow in same direction
with equal velocities ©. For z< 0 they are separated by a splitter plate. Atz =0
the plate ends with a sharp edge and for z> 0 the two streams diffuse into one
another and react. Using the boundary layer approximation, allowing diffusion
in v only, and noting that u is constant, results is a transformation from a two

dimensional problem in £ and ¥ to a transient one dimensicnal problem in ¢

and y, if onesets{ = %

If the activation energy were unimportant, equations 3.23a and 3.23b could

be used, with the result (since 7=+t in this case) that the fuel consumption

would increase as Vz at first, until z = ufg,, and then decrease as —\}.—: If the

activation energy is important, the problem is much harder.
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For large activation energies, the case of interest is the upper branch of the
steady solutions. For the transient case, one is likewise interested in strongly
burning solutions. The problem is, how do they become established? For this
unstrained flame, the Damkohler number is proportional to the distance from
the edge of the splitter plate. (Carrier ef al. (1975) and Lifia'n (1963)) If the
strongly burning solution is valid only above a certain critical Damkohler
number, then clearly the flame cannot extend all the way upstream to the edge

of the splitter plate since the Damkohler number goes to zero there.

Lifla'n and Crespo’s (1976) solution to the transient ignition problem,
discussed earlier, consisits of three regions. First, immediately downstream of
‘the trailing edge, the fuel and oxidizer diffuse into one another. The reaction
proceeds slowly. The temperature slowly rises, until a runaway occurs. The area
where fuel and oxidizer have mixed is swept by a premixed flame. Downstream,
the flame is hot and is described by the Burke-Schumann solution. As discussed
before, this solution relies on the reaction of fuel and oxidizer at 7., and in
addition the flow velocity © must be large compared to the premixed laminar

flame speed to avoid violating the boundary layer assumptions.

Lifla'n and Crespo’s solution suggests another possibility consisting of an
upstream region of diffusion with no reaction and a downstream region of
vigorous reaction corresponding to the Burke-Schumann solution. If the flow
velocity u is less than the premixed laminar flame speed, then the transition
between the two regions consists of a premixed flame propagating upstream.
The overlap between the fuel and oxidizer profiles, created by diffusion, serves
as a layer of flammable mixture which grows thinner as the flame approaches
the splitter plate. Thus the speed of the premixed flame will decrease as its
curvature is increased, and it will reach a steady position downstream of the

trailing edge.
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This ignition mechanism has been noticed experimentally. Melvin ef al.
(1971) have observed that hydrogen-oxygen diffusion flames 'lift off" the edge of
the splitter plate under some conditions. In particular, the mechanism has

been explored in some detail by Phillips (1984).

No theoretical discussion of this problem can be found. The problem is
complicated by the fact that propagation of the premixed flame is governed by
heat conduction and concentration diffusion in the upstream direction. Since
these were ignored in the boundary layer approximation, it is of no use in
describing the transition region. In addition, such an ignition mechanism would
be difficult to incorporate into this analysis, since it rests on treating each piece
of a complicated, distorted flame surface as a one dimensional transient
strained flame. For this analysis to be valid, conduction and diffusion normal to
the flame surface must dominate that parallel to the flame surface. Large
gradients parallel to the flame surface would violate this fundamental

assumption. Thus, another mechanism to ignite the flame is required.

One solution to the ignition problem which is consistent with this method of
analysis is provided by. Clarke (1969). Instead of a sharp edged splitter plate,
Clarke formulated the mixing layer problem for a parabolic splitter plate. He
found that the requirement of a sufficiently large Damkdchler number to sustain
the vigorously burning solution translated into a requirement that the radius of

curvature of the trailing edge be sufficiently large.

Therefore, instead of solving the problem of how a flame with an initial
Damkohler number of zero ever becomes lit, instead assume a flame with a
nonzero Damkohler number as an initial condition. This is equivalent to saying
that the flame has been in existence for a time f, when the vortex is imposed at

i =0
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3.6.3 How Large Does the Activation Energy Have To Be?

The behavior of a laminar diffusion flame depends on whether the reaction
rate changes significantly when evaluated at the supply temperature and at the
adiabatic flame temperature. Unfortunately, one cannot say exactly what is
meant by 'significantly”, only that for hydrocarbon fuels the difference
apparently is significant enough. This may not always be the case. Numerical
computations by Liu and Libby (1970) for an air jet impinging on a wall through
which hydrogen is blown do not show any multivalued solutions. Liu and Libby
used a system of eight reversible reactions, and took the hydrogen supply
temperature to be 1000 X and the air supply temperature to be 2000 K and
2500 K. The results indicate a continuous transition from frozen flow to
equilibrium flow as the strain rate is changed. This is probably due to the high

initial temperatures of the reactants.
3.7 Summary

For reaction systems in which the rate change due to temperature rise is
not important, calculate the fuel consumption rate per unit flame area using
equations 3.24. When the change is important, an already established flame will
be assumed, and equation 3.24b will be used to calculate the fuel consumption,
provided the Damkochler number does not fall below the critical value for

extinction.
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4. NUHERICAL RESULTS FOR THE HYDROGEN-FLUORINE FLAME
4.1 Introduction

In chapter two, the strain rate ¢ for a vortex flame was found as a function
of r,I', and £. Since I' is a property of the vortex, and 7 is a constant for a given
piece of the flame, then equation 2.13 defines the strain rate as a function of
time. Therefore, one would like to use the results of chapter three (specifically,
equations 3.24) to find the time dependent fuel consumption rate, for the known

time dependent strain rate.

The assumptions of chapter three are rather restrictive. Few actual
chemical reactions are single step, although sometimes a single step may
control the overall reaction rate. In addition, real chemical reaction rates are

temperature dependent, and this has been overlooked in equations 3.24. Most

importantly, equations 3.24 are strictly valid only if ?E— is very large or very
ch

small. One would like to know how accurate they are for values of near ocne.

tch,

The purpose of this chapter is to determine how accurately the
approximate equations 3.24 describe the behavior of a realistic kinetic system.

Of specific interest is the case where £(¢) is given by equation 2.13, for different

values of the parameter —r-z—
nr

4.2 The Hydrogen-Fluorine Reaction System

Equations 3.24 will be useful only for reaction systems which do not exhibit
the ignition-extinction behavior typical of 'large activation energy' systems.
This requirement excludes hydrocarbon fuels, at least near room temperatures.
As the result of previous experience {Marble ef al. (1979)) the reaction
Ha+ F » HF + H was chosen. The kinetic data are readily available, for a

recent compilation see Cohen (1977). Cummings et al. (1977) have reported
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that the chosen kinetic scheme agrees well with experimental results. The
system is of practical interest for its potential use in chemical lasers, see

Emanuel et al. (1973).

Hydrogen and fluorine react vigorously when combined, thus one does not
have to specify some ignition mechanism to start the reaction. Although the
reaction rates are temperature dependent, intuitively, the temperature

dependence should not be strong enough to produce a bifurcated solution.

For the solutions to be presented, both reactants were at 300 K and at
5 torr. The fuel was composed of R.87x107% gram maoles/cm?® of hydrogen
diluted with 2.47x1077 gram moles/cm3 of helium. The oxidizer was
R.67x107® gram moles/cm® of monatomic fluorine, again diluted with

2.47%x 1077 gram maoles /em? of helium.

The viscosities and specific heats were allowed to differ for the different
species and were allowed to be functions of temperature as well. For
convenience, the thermal conductivities and diffusivities for each species were

calculated assuming constant Prandtl and Lewis numbers of unity.

The reabtion scheme for the hydrogen-fluorine system consists of over one
hundred reactions. For the given conditions of temperature and concentration,
it was decided that the eighteen reactions given in table 4.1 adequately describe
the problem. The first three reactions describe the '"pumping" reactions
Hy + F » HF(j) + H; where j is the vibrational quantum number. By collisions
with H, H,, F and HF itself (the symbol M represents HF in any state), the
excited states are deactivated (reactions four through eighteen). The
coefficients Fy, F'; and F, describe the temperature dependent forward reaction

rate
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-1000 Fy

ky=FoT'% T 4.1

and the coefficients Gg, G, and Gy describe the backward reaction rate
-1000 G,

k, = GoT % 7 4.2
of each reaction. The units of these coefficients are such that if temperatures
are measured in degrees Kelvin, and concentrations in gram moles per cubic
centimeter, then the resulting reaction rate has units of gram moles per cubic

centimeter per second.

Thus, the system involves many separate individual reactions, with
temperature dependent reaction rates. Specific heats and viscosities (and thus
thermal conductivities and diffusion coefficients, calculated from the Prandtl
and Lewis numbers) are different for the different species, and are functions of
temperature as well. Thus, the reaction system described has many

complications not included in the derivation of equations 3.24.
4.3 The Numerical Solution

To numerically solve the concentration and energy equations describing the
Hp + F reaction, the BLOTTNER boundary layer computer code was used.
Originally written to solve chemically reacting boundary layer problems which
arise in reentry situations (the program is described in Blottner (1970) and
Blottner et al. (1971)), the program has been modified by the TRW Space and
Defense Systems Group to solve the laminar mixing layer problem instead. To
start the solution, initial velocity, concentration, and temperature profiles are
specified at an initial station z = 0. Downstream (for z > 0), edge conditions
(velocity, concentration, and temperature at y = += and at y = —=) are input
as functions of z. The BLOTTNER program then solves the boundary layer

equations for velocity, concentration, and temperature by the finite difference
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method; marching downstream from the initial profile. The ¥ as well as the z
coordinates are broken into discrete intervals; in these calculations the ¥ mesh

consists of 49 points. The value of y at the n* node will be denoted yj,.

In a numerical calculation of this type, one cannot actually apply boundary
conditions at ¥y = +» and y = ==, The ¥ mesh of 49 points extends only over a
finite domain, the width of this domain is y,9 —¥,;. So, the program equates the
velocity, concentration, and temperature at ¥4, and at y, to the boundary
values specified by the user. The width of the domain is controllable by the
user, so the objective is to specify a domain thick enough that the flame is not
influenced by the boundaries. Effectively, one wants to place y; and y4¢ far
enough from the flame that the boundary conditions applied at these points are
effectively boundary conditions at infinity. When this is done, the solutions for a

finite domain are applicable to the infinite domain of interest.

BLOTTNER solves the boundary layer equationé for a laminar mixing layer,;
the problem of interest is a one dimensional flame which is strained as a
function of time. This problem may be solved using BLOTTNER in the following
manner: Consider the degenerate mixing layer wherein the velocities of the
upper and lower streams are equal. If the initial velocity profile is uniform, and
the specified boundary or edge velocities are equal to each other (the upper
stream velocity equal to the lower) and constant (the velocities of both streams
are constant as one moves downstream, in the z direction), then the problem of
solving for the velocity is trivial, with the solution that u(z,y) = Us. Since the
boundary layer equations allow diffusion and heat conduction in the ¥ direction
only, the equations solved by BLOTTNER for concentration and temperature as

functions of x and y are the same as the equations for a one dimensional

transient flame as functions of £ and y, with the substitution f = %—. Thus the
c
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boundary layer program BLOTTNER can be used to solve the problem of a

transient, unstrained, one-dimensional diffusion flame.

Similarly, for a transiently strained flame, with a time dependent strain
rate £(t), then let the initial velocity profile be uniform, and specify that the
upper and lower streams have equal velocities (i.e., u (z) = uy(z) = U(z)).
Note that the upper and lower streams have equal velocities at ba given value of
z, but that the velocity of each stream is a function of z. This increase in the

edge velocities as a function of z produces the straining. If the desired strain

history &(¢) is given, then %2 g(t) and %?— = U, Solving these two equations

yields the edge conditions U(z) which must be input into BLOTTNER to produce
the desired strain rate together with a relation between z and ¢ which relates
the downstream distance of a piece of the flame to the time it has existed since

being born at z = 0.

This use of the BLOTTNER program, relating distance downstream in the
boundary layer problem to elapsed time in the transient problem, requires that
the velocity profile be uniform as one traverses the mixing layer. However, the
velocities at the edges‘are being increased as the flame travels downstream. One
must somehow ensure that the velocities in the middle of the layer do not lag
behind the acceleration of the edges. A pressure gradient may be used to
accelerate the middle of the mixing layer so it keeps up with the edges, but this
approach suffers two disadvantages. First, the density is not constant across
the layer, so a given pressure gradient will accelerate the flow unevenly. Second,
for the one dimensional transient flame the pressure should be constant in
time, but this will not be true if the pressure in the analogous mixing layer flow

decreases in the downstream direction.

To guarantee velocity profiles which are uniform in the y direction, note
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that the viscosity does not enter into the equations for the concentrations or
temperature (ignoring viscous dissipation). The viscosity matters only in the
momentum equation for finding the velocity w. Therefore, specify an artificially
large value for the viscosity to ensure that the fluid in the middle of the layer is

dragged along with the edges with essentially no slip.

The artifice just described relies on the fact that the boundary conditions
are really applied at y; and at y,, and not at —~ and +=. For a Prandtl
number of 10% y,9— ¥, may be chosen so that the mixing layer is thin as far as
the momentum equation is concerned, thus even the middle of the layer
responds rapidly to increasing edge velocities, yet be thick as far as the species
and energy equations are concerned, thus preserving the effective concentration

and temperature conditions at infinity.

In this way the BLOTTNER program, originally written for chemically
reacting boundary layers, can be used to solve the problem of a one dimensional
flame which is strained according to an arbitrary strain history £(¢). In this
section the initial temperature profile was assumed to be uniform, T = 300 X
across the layer. For initial concentration profiles, for all ¥y < 0 the mixture was
taken to consist of F' and He in the proportions given previously. Similiarly, for

4 > 0 the mixture was specified to be H; plus He.
4.4 Previous Results

In previous work (Marble, Broadwell, Norton and Subbaiah (1979)), it was
found that for the A, + F system the time dependent unstrained flame and the
steady state strained flame yield approximately the same results for fuel

consumption rate and for surface density of HF in the different vibrational
states if ¢t = —21;- This was true for strain rates of 102 sec™, 10*sec™!, and

10° sec!,
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The previous results are graphed in figures 4.1 and 4.2. In figure 4.1, the
rate of consumption of fuel per unit area of flame, which was denoted by m in
chapter three, is shown as a function of time for the transient unstrained flame
as a solid line. For a flame subjected to constant straining, the fuel
consumption rate m approaches a constant value as £ -» «=. For these
numerical computations, the program was allowed to run for a finite time and

the results were extrapolated to £ = = for the constant strain rate flames. The

resulting values of m are also plotted in figure 4.1, with £ = -215- In figure 4.2,

the surface density (mass of product per unit per unit area of flame) is plotted

for each vibrational state of HF'.

These results show, first, that the Hz + F flame obeys the general form of

equations 3.24, consisting of a region ;—t—- << 1 where m is proportional to VI,
ch

>> 1 where m is proportional to —-1—. For intermediate values

d a region
and a regi Y

tch

of tt , a smooth transition is found from one region to the other. One may
ch
interpret the result as consisting of a reaction limited regime for small tt , and
. ch

£ . For values of

t .
of approximately one,
tch. tch.

a diffusion limited regime for large

both limitations are apparently effective, thus the fuel consumption rate is less

than predicted by either equation 3.24a or equation 3.24b.

Another result is the correspondence between m(f) for the unstrained
flame and m(1/R¢) for steadily strained flames at large times. This result is

consistent with the analysis of chapter three. For a transient unstrained flame,

7 =1, and for the steadily strained flame, 7 » —21? as £ » ., Thus, if the fuel

consumption rate were a function only of 7, one would expect m for transient

unstrained flames to be equal to m for steadily strained flames at large times,
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L

when £ for the unstrained flame equals >

for the steady strained flame.

In either limit, for small or large f—-—-. this correspondence is expected,
ch

since equations 3.24a and 3.24b are valid in these limits, and these equations

show that m will be a function of only of ¥ However, the numerical evidence

indicates that this correspondence may be approximately valid even if ;I-- is of
ch

order one.
4.5 Curvefitting

The system that has been numerically analyzed does not fit the
requirements of the simple model treated theoretically in chapter three.
Nevertheless, the existence of a region where m ~ V7 for small T and a region

where m ~ for large values of 7 suggests that equations 3.24 usefully

S

approximate the behavior of the system, provided that suitable values of pg, Dy,
and f; can be found. Consider these values as empirical constants, to be
determined so that equations 3.24 approximate the BLOTTNER numerical results

as closely as possible.

Examine the numerical results for the unstrained transient flame, with the

resulting fuel consumption rate graphed as a solid line in figure 4.1. Turning

first to the region where f—— is small, 7 is proportional to V. Such a relation
ch

will appear as a straight line in log-log coordinates, as shown by the dashed line

in figure 4.1. The equation of this dashed line is

L
2

m & 7.08x1072 gram moles /cmPsec3” ¢ 4.3

likewise the fuel consumption rate for large times is proportional to _\}t: and

the numerical results in this case are approximated by
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-L
m N 2,11x1077 gram moles /cmPsec'? ¢ ? 4.4

which is also plotted as a dashed line in figure 4.1.

Since the concentration of each reactant at infinity is equal to
2.87x10"8gram moles /cm?3, it seems appropriate to choose this value for pg.
The values of Dg and {;; which, when substituted into equations 3.24a and 3.24b,

produce equations 4.3 and 4.4 are

Do~ 196 45

cm?
se
and

t, N 2.98x1078sec 4.6

Thus, with these values of pg, Dy, and £z, equations 3.24 are represented by the
dashed lines in figure 4.1, which approximate the true fuel consumption rate,

shown as the solid line.

Even though equation 3.24a is strictly valid only asymptotically for small
times, and equation 3.24b for large times, the agreement is reasonable even for
t & ty. If equation 3.24a were used for all times less than {,, and equation
3.24b for all times larger than t., the maximum error would occur for times
near f;. As seen in figure 4.1, this formulation would be have a slope
discontinuity at ¢ = £, and it would overestimate the fuel consumption rate by

less than a factor of two.
4.6 Time Varying Strain Rate

The ultimate aim is to determine whether equations 3.24 may be used to
find the fuel consumption rate as a function of time for a flame which is
strained as a function of time. The results so far are encouraging, but the

previous discussion was based on numerical results for unstrained transient
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flames and the steady flames found at large times with a constant strain rate.
For the problem of a diffusion flame wound up by a vortex, the straining will be

a function of time, which was given by equation 2.13.

’I‘t
l

2.13

If a piece of the flame is followed as it is convected by the vortex, the

parameter ;I;_—'-é- will be a constant. Thus, equation 2.13 may be considered as

specifying the strain rate as a function of time for a given piece of the flame.

Therefore, choose a value for ;1"'_2_ compute a time varying strain rate from

equation R.13, and use the BLOTTNER program to solve for the fuel consumption
rate as a function of time for this flame. To encompass the flames lying at

different radii from the center of the vortex, this process should be repeated for

. The BLOTTNER computer program was run for L
re )

several values of

values of 10* sec™, 10°% sec™!, 108 sec™!, and 107 sec™!. These values were chosen

to span the range from 1"2 << L to L >> -—1--. As before, the reactant

nr ten re tep

consumption rate and the surface densities of the different vibrational states of

HF are graphed as functions of time in figures 4.3 through 4.10.

Consider the fuel consumption rate as a function of time for

I . 107 sec™!. The graph (figure 4.3) closely resembles the graph in figure 4.1

mre

(for the wunstrained case) except for an inflection near ¢ = 1077 sec.

Suggestively, the inflection occurs a

This inflection may be explained in terms of the proposed model. To do so,

one first needs an expression for 7 for this transiently strained flame. Since
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equation 2.13 gives the strain rate as a function of time, the parameter T may be
found as a function of time from equations 3.8 and 3.12, together with the initial

condition that #F=0 att = 0. The result is

4.7

™
1]
X

=
3

Equation 4.7 may be analysed in the separate limits of -1-5% << 1 and % >> 1,

with the results

T~ for __l:'_t?<< 1 4.8a
r
e b ofor i sy g | 4.8b
3 r?

First, one understands why all our plots of fuel consumption versus time for
these strained flames resemble the unstrained case so much. For the
unstrained case, T = {, and for the strainings found in spiral flames, equations

4.8 show that 7 is stﬂl closely related to the time. The inflection occurs when

I"t

7T'I'

A 1, so one should explore the transition from equation 4.8a and equation

4.8b. The inflection occurs at a time much less than the chemical time, thus,
from equations 4.8 T will be small compared to {; in the neighborhood of the
inflection. The proposed model states that the fuel consumption rate is given by
equation 3.24a when 7 << {;, so substituting equations 4.8 for 7 into equation

3.24a results in

1
Dot |2
m ~ Po | Job for Ptz << 1 4.9a
ch | T nr
-D t-.l_
. Po ol |2 T't
~N——f — for —_— > ]
m Lep | 3 re
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4.9b

Figure 4.3 shows the fuel consumption rate m plotted as a function of the
time t in log —log coordinates. Since both equations 4.9a and 4.9b show the fuel
consumption rate to be proportional to VI, if they were plotted in log—log
coordinates each equation would result in a straight line with a slope of one
half. However, equations 4.9 differ by a factor of V3, which means that their
graphs in log —log coordinates would be parallel lines, of the same slope but with

intercepts which differ by a factor of log(V3).

Thus, the inflection in figure 4.3 may be explained. It is found where

:Ef—z— A 1, where the transition from equation 4.9a to equation 4.9b will occur.

As the time passes through this value, the graph of m in log-log coordinates will
move from one straight line down to another parallel line. Examination of the
inflection in figure 4.3 indicates that the BLOTTNER result is consistent with the

theoretical explanation.

of 10%* sec™!, shows an inflection which is

Figure 4.9, for a value of =
T

apparently a shift upwards to a parallel line with a greater intercept. This result
is consistent with the theory, since this inflection occurs in a region where
equation 3.24b should be valid. Using equation 3.24b, and repeating the

previous argument yields a result which is consistent with the numerical results.

In this case, m is proportional to . so decreasing T by a factor of three will

£
Vr
cause m to increase by a factor of V3. Thus, the upward shift occurs when

I't

—_—n ],
rr?

Figures 4.5 and 4.7 show the fuel consumption rate when 1"2 is equal to
nr

10% sec™! and 10%°sec™!. Since these values are nearly the reciprocal of the
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chemical time of the system, neither equation 3.24a or 3.24b is accurate when

the transition inflection occurs.

The final test is to plot the fuel consumption rate m as a function of 7
rather than of time. As shown in figures 4.11 through 4.14, the inflections are
removed. One sees that the fuel consumption rate may be expressed as a
function only of 7 with accuracy when 7 is large or small compared to the
chemical time, and approximately even if 7~ £, . In addition, equations 3.24a

and 3.24b are shown as dashed lines, with the values of Dy and £, determined

empirically from the transient unstrained flame. (equations 4.5 and 4.6)
4.7 Summary

Thg theoretical predictions of chapter three have been verified for a
genuine chemical reaction system of practical interest. The example chosen
does not necessarily represent all practical reaction systems; indeed, the H; + F
reaction was selected because the reactants ignite spontaneously when allowed
to mix, and no special initial conditions need be introduced to ensure a
vigorously burning sclution. This same characteristic avoids the question of
extinction at too 1argé strain rates, found in systems characterised by high

activation energies.

On the basis of numerical calculations for transiently strained H; + F
flames, the asymptotic equations 3.24 may be used for this more complicated

system if one considers Dy and £, to be empirical constants. For the H; + F

and

2
reaction described in this section, the appropriate values are Dy ® 196 {;m

t., N 2.98x1078sec.

T is of order one, the fuel

If equations 3.24 are used to predict m even if 7
ch

consumption rate will be overestimated by approximately a factor of two. In
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addition, the slope discontinuity built into this flame model at ¢ = {;,, where
equations 3.24a and 3.24b patch together, will introduce a slope discontinuity

into later results.
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5. THE CALCULATION OF SPIRAL FLAME PROPERTIES
5.1 Introduction

The aim of this chapter is to compute the increase in fuel consumption due
to the presence of a vortex. In chapter two, the increase in flame area and the
flame straining due to the vortex were calculated. Chapter three described the
approximations which allow the prediction of fuel consumption rate per unit of
flame area, given an arbitrary strain rate as a function of time. For systems
where the reaction rate is essentially constant, these results are summarized by
equations 3.24, which incorporate the effect of an unsteady strain rate into the
parameter 7. Chapter four compared these approximate formulae to results of
numerical calculations for the H; + F reaction system, strained as it would be in
a spiral flame. Now the various pieces of the model are assembled to calculate
the properties of a spiral flame. For simplicity, initially consider the case where

a, the distance from the flame to the vortex, is equal to zero.
5.2 The Burned Out Core

As shown in the second chapter, at any given radius the flame density
increases indefinitely f'md thus the spacing between adjacent flames becomes
smaller and smaller. This is important for two reasons. First, if the radial
diffusion of reactants and products is ignored, the amount of each reactant
present at a given radius is finite. Eventually, the lame must consume all of the
available fuel or oxidizer. The reaction must cease, and the further increase of
flame surface at that radius cannot result in the consumption of additional fuel

or oxidizer.

Secondly, the theoretical analysis of chapter three and the numerical
analysis of chapter four assumed a one dimensional flame located on the z axis.

The upper half plane contained fuel and the lower half plane contained oxidizer.
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Thus the flame had infinite reservoirs of fuel and oxidizer to draw on and could
grow in thickness indefinitely. In the tightly wrapped center of a spiral flame,
the flame surfaces are nearly circles, and if one started at one flame surface

and travelled normal to that surface, one would soon encounter another flame.

Thus, rather than a single flame located on the z axis, a more appropriate
local analysis would consist of alternate layers of fuel and oxidizer, with many
flame surfaces parallel to the z axis. Clearly, each flame may be considered as
independent of its neighbors only as long as the spacing between flames is
greater than the thickness of an individual flame. When the flame thickness is
comparable to the spacing between flames, the results of chapters three and
four are not accurate. The interaction of adjacent flames must eventually cause

the fuel consumption rate to go to zero.
5.2.1 Approximation

More complicated models describing the interaction of adjacent flame
surfaces will be developed in chapter six; a simpler model used by Marble (1982)
will be employed here. Pick a fixed radius r, and consider the circular annulus
(r v +dr). In chapter t;wo (see equation 2.12), an expression for the increasing
flame area within this annulus was derived. In addition, using equations 3.24,
the rate of fuel consumption per unit flame area is known. Forming the
product, one then knows the rate at which fuel (and also oxidizer) within this
annulus is being consumed. This result is valid only as long as there is are
available fuel and oxidizer to be burned, or until each piece of flame feels the

influence of its neighbors.

As an approximation, suppose that the fuel consumption rate in the
annulus is given accurately by the product of the flame area and the result of

equations 3.24 until all the available fuel is consumed, and at that point the



- 54 -

consumption of fuel abruptly stops. Thus, one can define a burnout time ¢¥%,

and find m from equations 3.24iff < t* andsetm =0if ¢t > ¢*

To find the burnout time t* note that the annulus (r,r+dr) initially
contains a finite supply of both fuel and oxidizer. (In the current problem, the
initial concentrations of fuel and oxidizer are equal, and the stoichiometry of
the reaction consumes them in 1:1 proportions. Thus, exhaustion of fuel and
oxidizer will occur simultaneously. For brevity, burnout will be referred to as
due to exhaustion of fuel.) The velocity field of the vortex is purely tangential, so
no radial convection will occur, If radial diffusion is neglected, (this assumption
will be examined in chapter six), then the quantity of fuel within the annulus at
any time is equal to the amount initially present minus the amount consumed
since £ = 0. Thus, the burnout time £* may be found as the time required for

the flames within the annulus to consume all the fuel originally present.
5.2.2 Calculations

Chapter two gives the flame surface within an annulus (r,r+dr) as

1

[ iy
2 [1+[1TL-;- ° ar. The mass of fuel originally within that annulus is easily found

to be pgnrr dr. Approximate the fuel consumption rate per unit flame area by

equations 3.24

| o]
h ~ f’il——"f- for  T< to 3.24a
ch ™
[ Do %
m ~ pg l‘——' for T> ten 3.24b
o™

In keeping with the proposed flame model, equation 3.24a has been written so it
applies for all 7 less than £, and equation 3.24b will be used for all T greater

than tch .
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The parameter T was found in chapter four,

7T _

e e
wr? R ‘

lre ] 1 (e
l + 5—[177'2

[ Tt |
7.2

1+l

=1

The calculation will be complicated by the fact that different expressions
are used for m depending on the value of 7. Equation 4.7 indicates that Tis a
monotonically increasing function of ¢, so denote the time at which 7= £y by

the symbol t'. Thus,

rer 1l P
+ a—
Tty _ mr? 3 lm'e
—-= ETE 5.1
1 +[ 2
nr

Therefore, if £ < t' then 7< Iy and m is found from equation 3.24a; if £ > £’

then 7 > {, and m is found from equation 3.24b.

So, if the burnout time £* is less than £', then equation 3.24a is valid from
t =0 until burnout, and the burnout time {* is found by setting the fuel

consumed from ¢ = 0 until £ = £* equal to the fuel originally present.

L 21L
te Pg DQT 2 [ Tt 2 _
‘/; }-c-h— [ - 2 [l+lﬂ'1‘2 ] dt = porr 5.2
. . . . _ It . TE* _ .
Making the variable of integration p = p—ry and calling e Pp* and

substituting for 7 from equation 4.7, equation 5.2 becomes,

[
dp = 7—;-[1—]2 5.3

If £* is greater than £', then first integrate from:t =0 to £ ={' using

equation 3.24a, and then integrate from ¢ =¢' to { = t* using equation 3.24b.

Lt . p', the result is

Calling 5 =
T



1 1
ARl I pe__14p?  _mlrle
tchp*j:[p+3—p] dp+fp, é_dp-zlpo 5.4

To put the problem entirely in terms of the new variable p, equation 5.1 for £’

may be rewritten as

Pon = —5 = 5.5

#
Equations 5.3, 5.4, and 5.5 determine the dimensionless burnout time i:z as a

c: and the ratio of the vortex circulation to the diffusivity,

I
functi f -
unction o e

The equations 5.3, 5.4 and 5.5 could be solved numerically, but closed form

solutions can be found by examining the limit EP_ + oo,
0

The limit is most easily taken by first rescaling the variables. Marble (1982)

L 1L L
found that the radius of his burned out core was proportional to '8 D®¢? in the

large Re limit. This suggests a scaled variable of the form

2 1 l' 1
_ T3pft _Ipg ]s

= _— 5.6
C [ r
Similiarly, define
-D _1_
- [
g'= || P 5.7
1L
g* = -?:"— " pr 5.8
[ p. 15
HRE
Qer = T Pen 5.9

Substituting the new variables, equations 5.5, 5.3 and 5.4 become



1 rD 'g'
I | _l ]
39 * r] 7
qch" 2 5.10
'2+r_2°_a
q [1"
and
1 _re°ll s, 1Z0f8 = * '
aJo |3 +lr]q dg =35 for g*<g 5.11
and forg* > gq’,
[ z |L
PP P
qmj‘;‘sq-f-[r g| dg 5.1R

The second integral in equation 5.12 can be evaluated in closed form, but the
integral in equation 5.11 and the first integral in equation 5.12 cannot. In

addition, equation 5.10 must be inverted to find ¢’ as a function of g,;,.

: ' D
The solution for EF— - = js easily found by setting -f'-g- equal to zero in
0

equations 5.10, 5.11 and 5.12 and assuming that g*, q', and g., are all of order

one. Equation 5.10 becomes,

q'~ 39 or t'~ Bty 5.13
Thus for t* < 3ig,
[ e 1%
g%~ P’Tf _%_]3 5.14

and for t* > 3ty
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These results may be interpreted in another way. Rather than fixing r and
finding the time ¢ * required to exhaust the fuel, one may define r* as the radius

of the burned out core and rearrange equations 5.14 and 5.15 to find 7* as a

L

function of £. Denoting the scaled core radius n*, defined as * = "j_:rif"j_'" the
r8pft?
result is
[ 4 ¢]5 t
n* ~ [51“@ -t-c-;-] for Z-c-;< 3 | 5.18a
202 2lldl
n* ~ -TT'\—/_E'—-S—-E;— 5.16b

Assuming infinitely fast chemistry, Marble (1982) found that n* was a constant;

taking the finite chemistry into account, equations 5.16 indicate that it is a

(If the limit —g—-—» e had not been taken, #* would be a
0

function of
tch

function of -bl:'— as well.) The function is graphed in figure 5.1. As one might
0

expect, for times large compared to the chemical time, the core radius, scaled

L L
2

L
by '3 D8 t?, approaches a constant value.

5.2.3 The Rate of Growth of the Core

The structure of a spiral flame consists of a dead, burned out core, where
all fuel has been consumed, surrounded by the two spiral flame arms. For this
problem a 1:1 stoichiometry and equal concentrations of fuel and oxidizer have
been assumed; thus the core is composed solely of combustion products. Were

this not the case, the core would consist of a mixture of combustion products
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and whichever reactant was present in excess.

The radius of the core is r*, and the volume of the core is proportional to

mr*%, Denoting the core volume by C (really the core area‘in two dimensions),
the rate of increase of the product contained in the core is C= gt- (nr*®). From

equations 5.186,

2
oy 51 4 t]5 ¢
~ — for —< 3 5.17a
I’%DOBL 3 [571'\7'3 ten ten
) [ [ 1-?. £
c 2 12 t | 2
~ - 5.17b
2
repd [V | fen |
. s ]
12] ¢ ]
5 | ton ;
X |1+ . 3 for n >3
2 _12ft]= *
V- ltc,,

This function is graphed in figure 5.3. Compare these results and those of
Marble (1982) and Karagozian (1982), who assumed infinitely fast chemical

reactions. Marble and Karagozian found the rate of accumulation of products in

2
the core is constant and proportional to I'*D¢ . In this case, taking a finite

2
chemical reaction rate into account, the core radius, scaled by '3 D¢’ , rather

than being a constant, is a function of ?t— which approaches a constant value
ch

for times large compared to the chemical time.

5.3 The Flame Surface Area

The total surface area of the spiral lame is unbounded, since the original

flame was infinite in extent. However, the increase in flame surface area due to
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the vortex can be evaluated. A piece of flame at radius = of original length dr is

1

Ale

[ ¢

;;2— dr at time ¢.

[
extended by the vortex velocity field to a length of [1+

Therefore, the increase in length of this differential flame element is

&

active, due to exhaustion of fuel, the above quantity should be integrated from

L
2

2
;Tl-‘;tﬁ- — 1} dr. Since flame elements at radii less than r* are no longer

r*to «» to find the increase in flame surface area due to the vortex.

Letting o stand for the augmented surface area of the flame, or the
increase in flame area due to the presence of the vortex, and including both

flame arms yields

[ 1
[ Ny
[1+l% ]2 ~1|dr 5.18

U=2_f:

Transforming the variable of integration in equation 5.18 to 7, defined as

L
2

— mer lts i
n= T J_l_resutsm
rSpft?
[ z]L 1
1
_elrls g bt oo, |25 _[2]e
G'VE[DO]FD” » n"‘+[? [F dn 5.19

The reason for evaluating ¢ is to explore the method of taking the limit

-DI- -» =, The flame area itself is not of much interest, what is of interest is the

o

increase in the rate of fuel consumption along the flame arms due to the
presence of the vortex. To calculate the fuel consumption rate, multiply
together the fuel consumption rate per unit flame area and the flame area per
unit radius, and integrate this quantity from the edge of the core to infinity in 7.

The resulting integral will be the same as the integral for o but with an
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additional factor accounting for the fuel consumption per unit flame surface.

To take the limit as -Dz— - of equation 5.19, the obvious approach would
0

D
be to set — equal to zero. However, proceed more carefully by writing

r
o lpls:t L Ll =,

= | =—|"T3pft? —dn + 5.20

d VE[DOI I Do [fﬁvnz n+E

where the remainder term R is given by

[ 2]+ 1

= f a2 f T

_ 1 Dy s 1 Dgls
R-j;.ln4+lF] 772+[P] dn 5.21

L

[p
Introduction of a stretched variable 7, defined by n = [_

T 7 enables equation

5.21 for the remainder to be rewritten as

NIH

5.22

Ffie e

1
Dy e
The remainder is of order [—1_—,9-] ; if the integral in equation 5.22 is bounded.

Note that the integrand of equation 5.22 is always negative, so write

1 [
8

< (2] | e[

In spite of appearances, the integrand in equation 5.23 approaches one as 7

1
®ldn 5.23

approaches zero and goes like -lz— for large m. Thus, the integral is finite
n

(actually, the solution may be found in terms of elliptic functions, but the

actual value is unimportant), and the remainder term has been shown to be of

cn'-:

The increase in surface area of the flame due to the vortex is

[ p
Dy
order l T
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found to lowest order by neglecting the remainder term in equation 5.20.

Therefore,

5.24

large times, * is constant, and thus o goes like [7)1:—
0

surface area increases like VI, but it depends on the vortex strength to the -g—

power and the diffusivity to the ——é—- power.

The principal result is the conclusion that the asymptotic results for large

: D
-g—- could have been obtained with much less effort. For example, setting —Pg-
0

equal to zero in equation 5.19 would have directly resulted in equation 5.24.

D
However, if one had directly expanded equation 5.19 in powers of -I—,o—. the lowest

order term would yield equation 5.24, but the expansion would be in powers of

[

: ' D
, rather than in powers of [

L
3 0
T

L
8

D
{-Fq- , and, had the processes of integration

and limit-taking been interchanged, one would find that the supposedly higher

order terms involve integrals which do not converge.

However, this approach would correctly yield the lowest order result. Thus,

starting from the beginning, one could have noted that the flame surface per

R REE
2
unit radius is 2[1 + l Ptz . This may  be rewritten as
T
1
RN t
3| Dgt I'*Dgt
2|1 + L ]3 g I L is large but -—-———-g—— is of order one, the flame
DoJ nr Dy T
2 1
o [ |3 Iongt
area per unit radius becomes, to lowest order, ZlD ] —z The surface
0
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area of the flame is found by integrating this term from r* to infinity in 7, which

results in equation 5.24. Previously, equation 5.24 was proven to be the correct

T
answer, to lowest order as oo - oo,
0

2 3
r .. I'3pdt
As a result, one sees that as -5—— - o, the flame surface for which g is
()

of order one composes "all" of the flame, and the contributions from other parts

of the flame to the total flame area are negligible. Thus, the region where

2 1
r3pft

z— is of order one has been established as the region of primary interest in

nr

the analysis.

What is the flame structure like in this region? Note that % is equal to
1 2 L
f T ]FPaDgSt
2

[b—- . therefore, 7&%— will be large in the region of interest. Chapter
0

r
two discussed the structure of the spiral flame in the region where ;%— is large,
so one is referred to these previous results.

5.4 The Fuel ‘Consumption Rate

The calculation of the instantaneous fuel consumption rate of the spiral
flame is similar to the preceding calculation of the flame area. First, since the
flame is assumed to be put out once all available fuel has been exhausted, only
the flame outside the core radius r* is included. Fuel consumption per unit
flame area is multiplied by the flame surface area per unit radius, and the

result is integrated in 7 from r* to infinity.

Examination of equation 4.7 reveals that at any time ¢ the value of 7 lies in

the range -;—s 7<= t. Referring to equations 3.24, it is apparent that the fuel
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consumption rate per unit flame area will vary by at most a factor of V3 over
. g- 1_

. . . I'8pgt

the entire flame at a given time. Therefore, the region where e is of order

one will dominate the total fuel consumption as DL - o,
0

Finally, one realizes that just the increase in fuel consumption due to the
vortex should be computed. Just as in the flame surface area calculation, this

requirement is necessary to get a finite answer.

The various ingredients for calculating the fuel consumption rate are

already in hand, so approximate them in the limit as -g—-— - o, assuming that
: 0

2 L

répdt . . . .

————is of order one. As discussed in the previous section, the flame surface
Tre -

area per unit radius becomes

L
?ly rp]% rspdt
2

It
l lﬂ'rz lDo nr
Equation 4.7 for 7 becomes
o 2 L[
1+ 1 [ IR El Pspost
3 [Du nre | ¢
2l 2 1 3
1+ r T ]E FSDost
ngj 1T?'2

Thus the fuel consumption rate per unit flame area becomes, substituting

equation 5.26 into equations 3.24,

for —< 3 5.27a
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1
- 3D, ]2 .
Po[ ~ or

- 23 5.27b

tch

Using the results from equations 5.25, 5.26 and 5.27, and using the symbol

M to denote the augmented fuel consumption rate due to the vortex, then as

— -} 00,

2 L
~ [ L 3p3
Po Dot 2 ' |1 T Dot
H f; o [ - 2[130]3 " dr for & < 3ig 5.28a
2 1
= lap, ]z _| 3pd
0% T ]LP DQ t
M j;_.pgl m— B{DOJB —g—dr for &> 3t 3.28b

Transforming from r to 7 as the variable of integration, the equations may be

written
£ L g ¢ e ¢
M~ pgl'3D§ p— 't':[fn ;é—dn for = <3 5.29a
. 2 L3 0~ ¢
M~ pOPSDQS le;‘h—é-dn for '{;;") 3 529

Equations 5.29 suggest certain natural dimensionless groups. First, the

. 2 1L
augmented fuel consumption rate M is proportional to poI'3 D¢ . Secondly, time

appears only as a ratio of the time to the chemical time of the system.
Performing the indicated integrations, and substituting for #* from equations

5.18, results in

Y . B i5’“/§ 1 for <3 5.30a
PE-Dé— mV3 4 ten ten
Po 0

and
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H__ 23
2 1L
pol' 3 D¢

1
R
5 ten

Of course, had the limit -g—- - o« not been taken, then —?—Lwould depend on
o 2
pol’ 2 D§

the dimensionless ratio —g—— as well as on -f!— However, this result shows that
0 ch

for large —.bIl- the fuel consumption rate of the spiral flame does not depend on
0

the vortex strength I' or on the diffusivity Dy separately, but is proporticnal to

2
the combined transport coefficient I'® D¢ . Plotting equations 5.30, as shown in

figure 5.4, reveals that a finite chemical reaction rate affects the fuel
consumption rate of the spiral flame only for times which are smaller than and
of the same order as the chemical time. For large ?t--—, the fuel consumption

ch

rate approaches a constant.
5.5 The Case of a Vortex a Distance Away from the Flame

The previous calculations were done for the special case of the offset
distance a (distance from the flame to the vortex) equal to zero. Even for a
vortex a distance away from the flame, the velocity field will still increase the
flame surface area and cause local straining of the flame. Recalling the
necessary formulae from chapter two, from equation 2.10 one finds the flame

surface area dl at time ¢ in terms of its original areaat £ =0 as

dA 5.31

and the strain rate is given by equation 2.11 as
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Mot Ia _allf vt ]a

1 Hrrrz T T‘“nrzl'r
TE . TN _af i

EEE

For a given piece of flame, A, @ and 7 are constants, so equation 2.11 gives the
strain rate as a function of time. Thus equations 3.8 and 3.12 may be used with

equation 2.11 to find the parameter 7, with the result

fly_eafre] 1x2lmef
1 r 'l"’lﬂ"ra 3 r? lﬂ"r2
f—g@ ATt ATt
r 7"17}'7‘2 r? [71'1'2

As before, it will be the instantaneous value of ¥ which determines the
instantaneous fuel consumption per unit area of each infinitesimal piece of the

flame.
5.5.1 The Case of Infinitely Fast Chemistry

In the interest of simplicity, temporarily ignore the effects of finite
chemical reaction rates and assume that the rate of fuel consumption per unit

flame area is given by the solution for infinitely fast chemistry,

p
? 3.24b

2 3
SDdt

r
Next, let —P——* = as before, again assuming that ——5— is of order one. In
T

Dy
addition, some assumptions must be made about the magnitudes of the

dimensionless ratios % and 2\7;— The purpose of this calculation is to discover

the effect of the offset distance a, so a reasonable assumption is that -:— and %—

are both of order one. (Recall that a? + A\?® = r2)) With these assumptions, as

-DI:— -+ o= equation 5.31 becomes
o



Sk répdt
4~ | L1 - 267 A gy 5.33
ng nr r
and equation 5.32 becomes
i
T 5 5.34

The notion of the burned out core is applicable to this case as well, the only
difference being that the annulus (r,r +dr) no longer contains equal amounts of
fuel and oxidizer. (See figure 5.5.) If one still assumes that the initial
concentrations of fuel and oxidizer are equal, and that they react in 1:1
proportions, then whichever reactant lies on the same side of the flame as the
vortex will be present in excess, and the burnout time will depend on the

available supply of the other reactant. As is evident from the figure, the

annulus (r,r+dr) initially contains the quantity 2pq a,rctqn[%:— r dr of the

deficient reactant, and setting the total consumption of that reactant from
t =0 to £ =t* equal to the amount originally present results in the following

expression for the burnout time:

m[z\a

5.35

This equation gives the burnout time £* as a function of radius. (Keep in mind
that ¢ is constant and that A = Vr® —a?) From examination of figure 5.4, one

realizes that equation 5.35 is applicable only to radii such thatr > a.

The relationship may be presented another way, by considering a burnout

radius 7* to be a function of the time £, just as for the case a = 0. After a little

L
mer*

algebra, once again calling n* = , equation 5.35 becomes,

cal.-

L
2

1
r3pdt
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[ L

n* ~ [—\—;-_3—- a,';"t.'tu'rr.[-tt::'r)"‘2 - 1] ¢ 5.36

which implicitly defines the dimensionless burnout radius #* as a function of the
dimensionless time -E:: where the time scale f is defined

2
>~ wa
t =

> 5.37
2 1

I'3Dg
The augmented fuel consumption rate due to the vortex may be calculated as

before, with the result that as EF_ - o,
0

5.38

Equation 5.36 was solved numerically to find n* for certain values of %. which

g{ . The results are plotted in figures 5.5 and 5.6.
L

pel'3D§

was in turn used to find

These calculations for a finite offset distance a proceeded in much the

same way as did earlier calculations with @ = 0. The parameter 7, which one

uses to approximate the fuel consumption per unit flame area, was equal to Et;

in the large -g—- limit, just as it was for a = 0. (Equations 5.34 and 5.26 are
0

identical.) Likewise, if one notes that -i:— dA = dr, and that 7 extends from 0 to =

whereas A goes from —= to +, then equation 5.33 for the flame surface area is

the same as the right hand side of equation 5.25. Thus, after taking the limit

g—— -» =, one is left with the same expressions for fuel consumption rate per
0

unit flame area and for the surface area of flame per unit radius as for the

previous case o = 0,
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The annulus (r,r+dr) contains less of one reactant than the other; the
burnout time is determined by the availability of the reactant in shortest
supply. This is the only reason the burnout time for the case of nonzero offset
difference differs from the burnout time for the case a = 0. The augmented fuel
consumption rate depends on the offset distance a only because the lower limit

of integration is the burnout radius r*.

5.5.2 The Finite Chemistry Solution

In this section, the solution in the limit -g——’ o for a vortex flame
0

including the effects of both an offset distance o and a finite chemical time £ is
given. The same methods are used as were used previously, so details of the

algebra are not given here. As one might expect, the burned out core radius is
L 1 L

once again proportional to I'3Df¢?, so the dimensionless variable n* appears

again. Also, the increased fuel consumption rate due to the vortex is

2

= L
proportional to pgl'®Dg , so the dimensionless variable 2 1 reappears.

pol' 3 D¢
Since a finite offset distance and a finite chemical time are included in the
analysis, both time scales £ and t;, appear in the results. The dimensionless

core radius is found to be

[ . L
2 [ t
¥~ forr —< 3 5.39a
K 5v3 [ + ten
arcian l—tzn*a - 1]
[ X 3 |+
2 12l t]® ?
V3 5 | ten £
n* ~ [ : for o >3
= ch
wrctan[-izn*z - 1] °
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5.39b

Thus, if values of -Z:: and ?E— are specified, equations 5.39 can be solved to find
ch

n*.
The equations for the fuel consumption rate are found in terms of n* from

equations 5.39

M 2t 1 ¢
~ e for —_— 3 5.40a
P F%D é- V3 tep n* Len
¢} 0
M B L 4y Lt 5.40b
P I‘E-DBL T ben
] 0

As‘ before, there is a cylindrical core of radius r*, which grows as a function
of time. In the very center of the core, for r < a, only one reactant is present.
At larger radii but still within the core, 7*> 7 > a, a mixture of combustion
products and the excess reactant is found. At r =7* on the edge of the core,
the flame is consuming all of one reactant and going out; the radius of the core
is increasing with timel. Previously, for the case a = 0, the rate of growth of the

core is calculated. The quantity of combustion products in the core was
proportional to to C =nr*?, so (—;i}—(ﬂr*z) was proportional to the rate of
incorporation of combustion products into the core.

Examine figure 5.8. Although the rate of growth of the core volume is
proportional to -g—i—(nr*z) as before, the core is not composed exclusively of

combustion products. The amount of product inside the core when it has radius
T* is proportional to the amount of the scarcer reactant initially within a circle

of radius 7* at t = 0 (the area of the shaded region in figure 5.6). Denoting this
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area by the symbol C,
C =(6*r*2 —a)r*) 5.41

f *2 >
where A* = Vr*® —qa? and 6* = arctanlr-—é- ~1|%. So the rate of growth of the

a
volume of product within the core is € = %—?— After some algebra, € is found
from equations 5.41 and 5.39 to be
[ ¢ T [ ¢ T
=n*® - 1|" arctan|=n*® -1
¢ 2t 1 |f d 5.42
F.8 ™8 taon* g, z [+ 5 -
I'" Dg 3 l-t-*n*z —1 arctanl-t:n*a —1]° +1
for L <3
tch
and
r z r z
l%'f)*g -1|? u.rctan[%'r)*z - 1]2
zc = 2?;{? [ 1 { 1 5.42b
I'?Dg 3[%?7“2—1 ? a'rctanl-i:n*z—l i1
for t >3
tch

The two time variables t—t-— and % are useful for understanding the results,
ch

but for describing core growth and fuel consumption as functions of time only

ten
one time variable is permissible. For a given vortex, the ratio of —iz- is a

constant, and either £ or £ may be used to nondimensionalize the time. Define

the constant 8
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2
ten T3DFty
= = 5.43
d £ ra?
Thus 7n*, ] » and —3 may be expressed as functions of ?fi- and the
POPEDQB I'.S—DQB ch

parameter 8. These functions are graphed in figures 5.7, 5.8, and 5.9 for an

assortment of values of 8.

The results indicate that if g is less than one, then f is the most important
time scale, rather than £,,. Figure 5.10 contains the same information as figure

5.9, but the dimensionless augmented fuel consumption rate is shown as a

function of -::rather than of —t-t— The ratio of the two time scales, £, is again a
ch

parameter.
5.6 Summary

The spiral flame was analysed including the effects of both a finite chemical

reaction time and a vortex displaced from the original flame position, and

solutions were given for large —DI:- Just as in Marble’s results for a large
0

' L 1 L
Reynolds number, the burned out core radius was scaled by I'*Dft?, and the

2
increase in total fuel consumption was proportional to po'3Dg . In Marble's

analysis the scaled core radius and the increase in fuel consumption were
constants, but here they are functions of time. Two time scales were found, {;,
and £. For times that are large compared to both time scales, the solutions
approach constant values. The approach to the large ¢t solution is governed by

both time scales, the slowest one being the most important.

The time scale {;; could have easily been anticipated. The time f is more

ra?

2
'3 pg

. For a zero offset distance, the core radius

interesting. Recall that f=
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L 1 L
grows like I'SDF£?, Thus, the time required for the core to grow to a radius a
2 Il
would be proporticnal to 20' , which is proportional to £. Therefore, the time
I3 D§

scale may be interpreted as the time required for the influence of the vortex

to reach the flame sheet.

One of the interesting features of the results of Marble (1982) and
Karagozian (1982) was that in the limit of a large Reynolds number, the core

radius and fuel consumption rate depended on the combined transport

2
coefficient I'3D§ . The same result was found here; neither the diffusivity nor

2
the vortex circulation are individually important; only the combination I'3 Dg

appears in the results.
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6. THE EXAMINATION OF ASSUMPTIONS AND FURTHER REFINEMENTS
6.1 Introduction

The results of chapter five were derived after making many simplifying
assumptions. Some of these will be examined in this chapter and in some cases
new results will be calculated and compared to the previous results from
chapter five. Equations 3.24 will be replaced with a formulation which more
closely describes the numerical results of chapter four. The validity of assuming
that each piece of the flame is locally one dimensional will be examined. The
burned out core radius was calculated assuming that no fuel or oxidizer diffused
into or out of a given circular annulus. This assumption will be verified. The

effects of viscosity will be discussed.

Fiﬁally. chapters three and four assumed a single flame with infinite
reservoirs of fuel and oxidizer to draw upon. In a spiral flame, alternate bands
of fuel and oxidizer are separated by essentially parallel flames. Thus, each
individual piece of flame has finite fuel and oxidizer available. As each flame
grows thicker, consuming the available reactants, it will gradually go out. In
chapter five, this eﬁec.t was approximated by the burncut time, assuming that
each flame was independent of its neighbors until all available fuel or oxidizer
was consumned, then suddenly the fuel consumption rate was set equal to zero.
The gradual decrease in fuel consumption rate due to the interaction of a flame
with its neighbors, will be modelled, and the properties of a spiral flame will be

recalculated using the new formulae in place of the burned out core idea.

For simplicity, all calculations done in this chapter will be done for an offset

distance a of zero.



-76 -

6.2 Equations 3.24

Of the assumptions made in the previous analysis, one of the key ones was
that the fuel consumption rate per unit area of flame surface was given by

equations 3.24,

L
2

Nlo—n
N

0

- T << Ly 3.24a

‘!I

i_’r._

fD 1t
Mo~ opg |22|? for  T>> £, 3.24b

Although the equations were derived for the limiting cases of small -;—— for
ch

equation 3.24a and large tj; for equation 3.24b, in chapter five equation 3.24a
ch

less than one and equation 3.24b was used if

was used for all were

ten ten

greater than one. This approximation was compared to the behavior of a real
flame in chapter four, with the unsurprising result that equations 3.24 were
accurate for both small and large times, but overestimated the fuel

consumption rates for times approximately equal to the chemical time.

The results of chapter five for the fuel consumption rate of a spiral flame

(equations 5.30 and figure 5.3) exhibit a slope discontinuity at = 3. This

tch

discontinuity is the direct result of the slope discontinuity in equations 3.24 at

-

=1, since T~ L in the limit -r—-—» =, Here possible improvements on
ten 3 Dy

equations 3.24 will be investigated which provide bétter estimates of m in the

region & 1, and which have no discontinuities.

ch

One method, suggested by equations 3.24 as well as by the numerical

results of chapter four, is to consider m to be a function of the parameter 7



-77 -

This supposition is not strictly true; the dependence of a transiently strained

flame on the time varying strain rate cannot be reduced to a simple function of

the parameter 7 except to lowest order in the limits }I——a 0 and
ch ch

-2 oa,

Nevertheless, in figure 6.1 the instantaneous fuel consumption rate m is plotted
versus T for a transient unstrained flame, several steady strained flames, and
several transiently strained flames, strained as they would be in a vortex.
(These data were previously presented in chapter four, here they are simply
plotted together on the same sheet.) At least for the types of straining
considered here, the instantaneous value of m may be approximated as a

function of the instantaneous value of 7.

Therefore, one seeks a function m (7). One obvious requirement is that it

T << 1 and —

>> 1.
tch tch.

should have equations 3.24 as asymptotes in the limits

A second requirement is that the function make a smooth transition from one
asymptote to the other; that the function should have no discontinuities.
Finally, the function should fit the data presented in chapter four and graphed

in figure 6.1.

One simple function which fits these requirements is

.
[D ton
m<-f>=po[—-f— e 6.1
nT 1 + T
tch

l\)li-

This relationship, essentially the same used by Marble et al. (1979), has no

physical basis other than having the correct asymptotes (i.e., equations 3.24) in

the limits - 0 and ?I— -» =, Equation 6.1 provides a better approximation

ch ch

to the data of chapter four than equations 3.24.
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If the calculations of chapter five leading up to equations 5.16 for the core
radius, 5.17 for the rate of core growth, and 5.30 for the fuel consumption rate
(for a = 0) are redone using equation 6.1 in place of equations 3.24 for the local

fuel consumption rate per unit flame area, the result for the core radius is

-3

[
2 a.rctanl-:ls— —-—] 6.2

L
£ 3
tch

Nlm

t

ten

* o 4 _12‘/3 ten ?;_6__
K V3 T T T

The rate of core growth is found in terms of the previous result for n* as

[ 3 1
t [ —z [ T
> ~ N*R o+ 2_|12V3 L 54t ? arctan |+ -|* 6.3
PE-DS 3?’]* o t m tch 3 tch
0
ten
18 t
+
A NN
'3 L

and the fuel consumption rate of the vortex is found in terms of n* as

t
M 2 tch 1
~ — 8.4
E L V3 1 &t n*
SDOS 1+ 3 ——tm

p°T

Thus, n* can be found from equation 6.2, then the core growth rate and fuel

consumption rate can be found from equations 6.3 and 8.4. All these results

were found in the limit :g— - o, as before.
0

The solution is fundamentally unchanged. (See figures 6.2, 6.3, and 6.4.)

1L L
2

1
The core radius is still scaled by I'*Df ¢t?, and the fuel consumption is still

2 1L
proportional to pol'® D . Both the scaled core radius and the fuel consumption

t
tch

rate are functions of . As is evident from the figures 6.3 and 6.4, the slope
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discontinuity at -t—t— = 3 is now gone. The fuel consumption rate approaches the
ch

steady solution for large £ from below, rather than overshooting as before.
6.3 Flame One-Dimensionality

The first aspect of one-dimensionality to be considered is the assumption
that the curvature of the flame surface can be neglected. More strictly, one
wants to show that the radius of curvature of a piece of flame is large compared
to the thickness of that piece. In chapter two, it was shown that the radius of
curvature of the flame approaches the radius r as the flame is wound into a
spiral. In chapter three, the thickness of an assumed one-dimensional flame

element was found to be proportional to VDyT. Again, as the flame is wound

into a spiral, T is asymptotic to :—i- Therefore, one wants to determine the

Dot
g is small.

conditions under which

Clearly, this will not be true for small radii, but recall the burned out core.
For radii less than the core radius r*, the flame is no longer burning; therefore,
the calculated flamme curvature in this region is meaningless. What one really

Dot

wants to show is that - is small.
T
For large times, 7* is proportional to '3 Df £?. Substitution shows that the
[ Do ]5
ratio of flame thickness to flame curvature is proportional to [-—1:,-—- . Thus, for

D
spiral flames where —Pq- is small, the flame curvature can be safely neglected, at

least for large times.

For smaller times, equation 5.18a shows that the burned out core radius is

L 1L, é—
proportional to I'3Df ¢ ? l———-—

: . Substitution of this expression reveals that in
ch
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the limit -g— =< e, the curvature of any flame lying outside the core is small
0

D
compared to its thickness except at very small times, where -Eé-—is of order —ITO-.
ch

Another aspect of flame one-dimensionality to be explored is the
assumption that concentration and temperature gradients normal to the flame
surface (in the y direction) are large compared to those parallel to the flame

surface (in the z direction). Clearly, gradients in the normal direction are

proportional to 3‘5— since ¢ is the flame thickness. Therefore, if one lets I be a

measure of flame length, then one wants -%f— to be small. If it is, then the flame

is approximately one-dimensional.

1

. a1l
dé . 1 dé . a _ 1. Ttz
—_— —_ ) —_—= |1+ | =
Now, TR equal to T ar From equation 2.12, = ll ln‘rz
dr

(The factor of two has been omitted, since only one flame arm is being

considered.) Previously, § was found to be equal to VD¢T, and T is given by

equation 4.7. Substituting, after some algebra one finds

8.5

—

z

dd
d

Realizing again that radii which lie within the core are of no concern, then

2 1
8pi :
for large times, will be of order one in the limit as -g—- - o, In this

ﬂ"rz 0

R
limit, from equation 6.5 one finds that %—?— goes like l—F—O— a' Thus, the effect of

variation of flame thickness with flame length is of considerably less importance

in the limit than the effect of flame curvature, and will not be considered
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further.
6.4 Flame Thinness

This topic is treated by Karagozian (1982). Here, note that the velocity field
in the neighborhood of the flame was approximated by the first terms in a local
expansion. (The normal velocity was taken to be v = —gy in chapter two. Thus,
higher order terms, such as the y? term were ignored. See equations 2.1.) This
assumption is valid only as the flame is thin with respect to the scale of velocity

nonuniformity.

Examination of the velocity fleld for a potential vortex (equations 2.3),
reveals that the only possible characteristic length scale is the radius . Thus,
the degree of nonuniformity in the velocity field is proportional to the distance
one is f.rom the origin. As in the previcus discussion on the flame curvature, the
flame thickness is proportional to Dyl , so the local analysis of the velocity
field about the flame is valid only where r >> ~/Dyof . Once again, radii which lie
within the core are of no concern, so one seeks to show that 7* >> ~/Dyf . This
requirement is the same as found previously, in the discussion of the effects of

flame curvature. The rest of this discussion follows the previous one, and will

not be repeated. However, one should again note that large DL seems to be a
(¢

necessity rather than a convenience.
6.5 Viscosity

Marble (1982) included viscosity in his analysis and found that it had no
effect on the large Reynolds number limit. Viscosity has been ignored in this

formulation; one hopes that for large -g—— this will have no effect on the results.
0

This is indeed the case, as one may see by noting that a viscous vortex consists

of a core of radius Vif , where viscosity is important, surrounded by an outer
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region, where the velocity field is described by the inviscid equations used in this
analysis (equations 2.3). Thus, viscosity should not be important, and this

analysis is valid, at radii large compared to Vit .

Once again, once a flame is within the burned out core it is no longer of

interest. For times larger than the chemical time, the burned out core radius is

L 1 L

proportional to I'3DFt?. Thus, the radius of the viscous core of the vortex is

D

smaller than the radius of the burned out core by the ratio I—-E-

ml.-

L
8

T . Only

[
%

for small times, de., is the viscosity important. The

dimensionless ratio B— is the Schmidt number, which is roughly one for gases
o

but is 800 for water. Thus, one can safely neglect the viscosity provided that the

ratio L is large enough.
Dy

6.6 Neglect of Radial Diffusion

In calculating the formation of the burned out core, it was assumed that
the amount of each reéctant present in a given annulus is equal to the amount
of fuel originally present minus the amount consumed by the flame surface in
that annulus. This formulation ignores the effects of diffusion. Within the core,
at least one reactant is entirely absent. Outside the core, that reactant is

present. As order of magnitude estimates,
concentration difference between core and area outside core ~ pq
length scale for calculating concentration gradient ~ r*
diffusion coefficient ~ Dy

surface area available for diffusion ~ 2nrr*
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Therefore, the diffusive flux of fuel and oxidizer into the core and the flux
of products out of the core is approximately Dg gg— 2nr*. As an order of
magnitude estimate, this quantity goes like pgDy.

To estimate the importance of this term, consider that the rate of

2
incorporation of products into the core is proportional to po'3 D¢ (for large

@

t

D
——). As a result, the relative importance of radial diffusion goes like [__o_

tch.

T
t . Do
t L

Once again, the the radial diffusion is not negligible for small times,

6.7 Interaction of Adjacent Flames

One expects that the equations of chapter three and the numerical analysis
of chapter four provide an accurate description of flame behavior only as long
as the thickness of each individal flame is less than the spacing between flames.
From chapter two, the spacing between flames is given by equation 2.15, which

in the tightly wrapped spiral region of interest is approximated by equation 2.20

A~ mers

T 2.20

The thickness of an individual flame ¢ is proportional to VD7. Within the

tightly wrapped inner spiral, T is asymptotic to é— so as an order of magnitude

estimate, § ~ /Dyt .

Solving for the point at which the flame thickness and the flame spacing

are roughly equal, one finds that this occurs when

~Dof Tt
%.N _._____:3 ~ 1 8.6

Thus one concludes that each flame is essentially independent of its neighbors

1 1

for radii large compared to '3 Df £ ?, and that the interaction of adjacent flames
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L L
cannot be ignored for radii which are small compared to 'S DJ 2.

L
2

L 1
A critical radius has been found, proportional to I'SDf£?, where the

interaction of adjacent flames becomes important. From chapter five, for large

L L L
the burned out core radius was proportional to I'Spft?

These two
tch

criteria: for the interaction of neighboring flames and for the exhaustion of
available fuel, are the same. At least for times large compared to the chemical
time, the exhaustion of fuel and the interaction of adjacent flames are really the
same phenomenon, (see Marble (1982)) viewed in two different ways. Thus, the
idea of a burned out core is an approximate way to handle the interaction of

adjacent flames.

For times less than the chemical time, adjacent flames will grow and begin
to interact with each other before all available fuel has been consumed. In this
case, interaction of neighboring flames and the exhaustion of fuel are two

-different occurrences, which need to be dealt with separately.

In this section, a more refined method of describing the interaction
between two adjacent flames is sought. In the approximation previously used, a
burnout time was artificially introduced, and each piece of the flame was
assumed to burn independently of the others until the burnout time £* was

reached. Subsequently, the fuel consumption rate was set equal to zero, and the

£ , that the flame
tch.

flame was said to have burned out. One expects, for large

will slowly go out as the available fuel and oxidizer are consumed, rather than
suddenly as before. This gradual attenuation of the fuel consumption rate will
produce a core with blurred edges, rather than the sharply defined structure

previously found.
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6.7.1 Problem Formulation

1

2

In the region of interest, where is of order one, the two flame

1
r'spft

3
arms are tightly wrapped around the vortex. A radial line drawn outward from
the center will intersect the flame sheets many times, passing through
alternating layers of fuel and oxidizer. In the spiral flame, each flame sheet is
curved, nearly a circle about the origin, and the radial spacing of successive
flames grows tighter near the origin. It has been shown that the curvature is
negligible, so the problem can be replaced by a one dimensional one. In
addition, one expects that the greatest influence on an individual flame will be

from its nearest neighbors, so the nonuniformity of spacing will be neglected.

Therefore, consider the following problem:

The problem is one dimensional; concentrations and temperatures vary
with ¥ and not with z. A strain field ié imposed, constant in z and ¥y but allowed
to vary arbitrarily with £. The straining is along the z axis, with velocity
component u = g(t) z. So far, the problem is the same one discussed in chapter

three.

The difference is in the initial conditions. Rather than semi-infinite regions
of fuel and oxidizer separated by a single flame, separate the fuel and oxidizer
into alternating strips, each strip of width d. (See figure 6.5) These strips lie
parallel to the z axis, so the system includes an infinite number of flames, each
one parallel to the z axis. Each flame is initially separated from its nearest
neighbor by a distance d. A positive value of the strain & will stretch the flames
in the z direction, and cause them to move closer to one another in the y
direction. If the fluid is considered to be incompressible, then a straining along

the z axis with velocity w = &(¢) z causes a flow along the y axis v = —¢(f) y. If
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each flame is considered to move with the local fluid velocity, then denoting the
distance between adjacent flames by the variable A(t) yields the following

equation

b _

= —g(t) A 6.7

Since the initial flame spacing is d, the appropriate initial condition is A(Q) = d,

so the solution to 6.7 is

L ety ae
At) =d g o A 6.8

The equations of species conservation and energy conservation will be the
same as before, in chapter three. This problem differs from those discussed

previously only in the initial and boundary conditions.
8.7.2 Infinite Reaction Rate Solution

As discussed in chapter three, if the reaction is assumed to be fast, the two
reactants coexist only within an extremely thin reaction zone. Outside of this

zone, one finds one reactant or the other, but not both.

In the infinite reaction rate solution, the region where the reaction takes
place is approximated as a surface of zero thickness. On one side of the sheet,
fuel and products but no oxidizer are found. On the other side, oxidizer and
products exist but no fuel is found. At the flame surface, the concentration of
fuel and oxidizer both vanish, and the diffusion of fuel from one side and
oxidizer from the other occur in stoichiometric proportions and determine the

rate of consumption of fuel and oxidizer.

In chapter three, only one flame was considered, so the equations for fuel
and oxidizer concentrations were solved directly. Here the geometry is more
complex, so what is known as the "Schvab-Zeldovitch' formulation will be used.

(See Williams (1965).)
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Consider the variable ¢ = Y; —%,. Both concentration profiles can be
recovered from ¢. In regions where fuel is found, the oxidizer concentration is
zero, so Y, =¢. Likewise, where there is oxidizer there can be no fuel, so
Y, = - p. The reaction zone is found where ¢ = 0. An equation for ¢ can be
derived by subtracting the conservation equation for oxidizer from the equation

for conservation of fuel, with the result that the chemical reaction terms cancel

and leave
8y _ dyp - azg
3t e(t)fag = Dy 28 6.9

9
¢

will be continuous across the surface. The rate of consumption of fuel or

The stoichiometry condition at the reaction is automatically satisfied, since

oxidizer is then
0 = 9¢
m = pglyg o€ | 6.10

where the derivative is evaluated at the reaction surface, where ¢ = 0.

Before, separate equations for fuel and oxidizer concentrations on either
side of the reaction zone were solved. These concentrations had discontinuous
gradients across the reaction zone, and the flux of fuel from one side had to be
equal to the flux of oxidizer from the other. With the Schvab-Zeldovitch
formulation, there is only one equation for a variable ¢, which has no
discontinuities in slope. The flame is located where ¢ is equal to zero, and the

gradient of ¢ at that point determines the fuel consumption rate.

For the problem under consideration, at £ = 0 the initial condition for ¢ is a
square wave oscillating from —1 to +1 with a period of 2d. (The mass fraction of
fuel is initially one in the strips which contain fuel, and the same is true for

oxidizer.) Transforming the equation 6.9 from (£,£) coordinates to (7.¢)
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coordinates by means of equations 3.7 and 3.8 results in the diffusion equation

2
% _ p, e 6.11

or 0 el
The periodic initial condition in £ becomes a periedic initial condition in ¢, since
¢=¢att =0. Equation 6.11 is easily solved by separation of variables to yield a
periodic solution in ¢ times an exponential solution in 7. Incorporating the
initial conditions by expressing the square wave initial condition in terms of its

Fourier components 4,, yields

[ -‘nznaDD'r
# =) An sv:nl%f-] e & 6.12
n=1 ,

Fortuitous initial conditions have been chosen. The flames will remain at their
initial positions in the ¢ coordinate, so the task of finding the zeroes of 6.12 is
much easier than it otherwise would be. The flames are found at ¢ =0, (= +d,

¢=+2d, etc.

The equation for the reactant consumption rate 8.10, when transformed

according to 3.7 and 3.8, becomes

t
= poDoeo 4" 82 6.13
aé. p=0

Choosing the flame at ¢ =0, the fuel consumption rate is found by
differentiating equation 6.12 with respect to ¢ evaluating it at (=0, and

substituting into equation 6.13.

The result of interest is the reduction in fuel consumption due to the effect
of the nearby flames. If the flame at ¢ = 0 were the only one present and it had
infinite reservoirs of fuel and oxygen to draw on, the fuel consumption rate

would be given by equation 3.24b from chapter three
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M!n

D
m

o

3.24b

[
77"-0=Pol

3

Here the subscript zero on m indicates what the fuel consumption rate would be
predicted from equation 3.24b, neglecting the interaction of neighboring flames.

Thus, the degree to which neighboring flames affect the fuel consumption rate
may be expressed in terms of the ratio _7_"_"'_. which is found from equations

Mg

3.R4b, 6.12, and 6.13 as

6.14

; Dot
The ratio —T-'L is a function of the dimensionless group do . The answer has
Mg

been found, but what does it mean?

Recall that the flame thickness was defined to be VDy7. Equation 8.8 gave

t
j; £(t") dt”

the spacing between flames as d e Thus, the dimensionless group

VDQT
d

may be rewritten as

1
VDot _ NDgre h®® a4 o1
d de-j:a(t")dt" A A '

The result is intuitively appealing. The ratio of the actual fuel consumption rate
of a flame (including interactions with its neighbors) to the fuel consumption
rate calculated as if the other flames were not present is a function of the ratio
of the flame thickness 6 = \/J-J_Fr to the distance between flames A. For the
particular case taken here, equal concentrations of fuel and oxidizer and a one
to one stoichiometric ratio, the function is found by substituting for 4, A and

the Fourier coefficients 4, in equation 6.14 with the result
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o
Y, e 6.16

n=13,,5,...

. [
;n;.=4\/;;[_6_
mg A

Numerical summation of the series in equation 6.18 results in the values which

are graphed in figure 6.6. (The series does not converge at ..56— =0, but =—7,n—rnust
mo

approach one for small values of g—.)

6.7.3 Application to the Spiral Flame

The analysis of the previous section assumed an infinite chemical reaction
rate, thus it is applicable to the spiral flame for times which are large compared
to the chemical time. First use the result to see how sharp the boundary of the

burned out core really is.

L

wir .. T .
T 1 1 is of order one as the limit 3- - o is taken, the
r3pft? °

o

For radii where

[ Dot |7
flame thickness § is asymptotic to I._BL- and the distance between flames A is

s

I't

asymptotic to . Therefore,

f_z_l_g—
r3pgt

nr?

8.17

~i

l>|o.

1
V3m
A burned out core radius 7* was calculated previously, and it was assumed

that _n_:_:._ is equal to zero for r < r* and is equal to unity for r > r* Now,
Mg

calculate -T—"’— as a function of —TT and see how sharp the transition really is.
My

For times large compared to the chemical time, equation 5.16b shows that

Cﬂlt—o

. 4
”7“‘[;\75—

. Therefore, equation 6.17 may be put in terms of the ratio ;5— to




yield

6.18

From equation 6.18, —711'-- as a function of % is already known. One may now find
>

_'r'_n._ as a function of ;T:- from equations 6.16 and 6.18. This function is graphed
Mg

in figure 6.7.

From figure 6.7, the concept of the burned out core seems valid. At radii
only fifteen percent greater than the core radius calculated in chapter five, the
fuel consumption is still ninety percent of the full value. At radii ten percent
less than the core radius, the fuel consumption rate has dropped to only ten
percerﬁ of what it otherwise would have been. The transition from a fully
burning flame, unattenuated by the lack of fuel, to one which is almost
completely put out occurs rapidly. Tﬁerefore. the idea of letting a flame
consume fuel without any attenuation at all until all fuel has been consurmed,

and then setting the fuel consumption rate to zero is well justified.

If one redoes the calculation of the fuel consumption rate of the spiral
flame, including the attenuation function of equation 6.186, integrating in r from
zero to infinity rather than from r* to infinity as before, numerical integration

provides the result

M~ 1210 6.19
1L

pOPE_DOS
The previous result, equations 5.30, approach
— ¥~ 122 6.20
L
pol'® D¢

in the limit as is large. The difference is less than one percent.

tch
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Thus, at least for £ >> £, where the infinite reaction rate solutions are
valid, assuming a burned out core is an accurate (and far simpler) method of
accounting for the interference due to neighboring flames. In reality, the
transition from a strongly burning flame to one which has been put out due to
lack of fuel is continuous, and not a sudden jump, yet assuming an abrupt
cutoff provides an accurate description of the flame structure and predicts the

fuel consumption rate to within one percent.
6.7.4 The Weak Reaction Limit

Previously, in chapter five, the behavior of the spiral flame for ¢ < 3£, was
due to the behavior of a strained laminar diffusion flame for T < f45. The recipe
used for the fuel consumption rate per unit flame area in this case was given by

equation 3.24a

for T<< 3.24a

which was calculated (see chapter three) by neglecting the chemical reaction
terms, allowing the fuel and oxidizer to diffuse and convect into one another,
and calculating the c’onsumption of fuel and oxidizer by the reaction as a

perturbation.

Equation 3.24b has been modified in the previous section to account for the
effects of neighboring flames. Here, the analysis which produced equation 3.24a
is extended to account for neighboring flames, which will result in a new picture

of spiral flames for times small compared to the chemical time.

Equation 3.24a may be interpreted as saying that the fuel consumption rate
is proportional to the flame thickness, § = VDy7. One realizes that, if instead of
just one flame, one had a series of parallel flames, it would be unreasonable to

expect further increases in the fuel consumption rate after § has exceeded the
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flame spacing A. Once § is equal to A, the fuel and oxidizer are homogenously
mixed, and further diffusion will not increase the fuel consumption rate any

more.

In this section, the initial condition of alternate strips of fuel and oxidizer
is solved according to the method which led to equation 3.24a. To lowest order,
neglect the chemical reaction, and calculate fuel and oxidizer concentration
profiles resulting from convection and diffusion. As a result, fuel and oxidizer

profiles are found to be

5 _n®nfDyr
Yo:é— 1+2Ans'inm%——g-e a? 8.21a
n=1
r 'nanaDO'r
= nnéD -
Y= |- ¥ dysin| e & 6.21b

Where the Fourier coefficients 4, are the same as before. The objective is to
calculate the fuel consumption rate per unit of flame surface, which is equal to
po k(T,) Y, Yy integrated over one flame. (Recall that equations 6.21 describe

many flames, spaced at intervals of A along the y axis.) Choosing the flame

centered at ¥ = 0, integrate from —-g—- to +% in y. (A is given by equation 6.8.)

i
8(3 n) dat”

Making a change of variables to 9, where ¥ = ldf—e"j; , dividing by the

fuel consumption rate if only one flame were present, now given by equation

3.244a, and substituting for § and A results in

[ &
. |’ +T o —n2nRl_
K l%] F i+ Y dpsinny)e 6.22
‘E n=1

——

28

1= 3 4, sin(ny) T
n=1
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Already, one sees that -7-'-’1- will be a function of %. as before. Interchanging the
mg

summation and integration, performing the integration, and substituting for the

Fourier coefficients results in

[ 2, 28°
z

-2 F L7 6.23

™ T
> 2
T° p=135,.7

™y 8

o,|l>

Once again the series does not converge at -§-= 0, but again one expects

that -7—7-"— will be equal to one for small values of %- Numerical summation of
Mg

the series in equation 6.23 allows the evaluation ﬂ- as a function of % The
mo

function is graphed in figure 6.8.

Inspection of figure 6.8 reveals the existence of two distinct regions, where

equation 6.23 may be approximated as

1
" §  1lrn|z
—_ — | = 8.
e 1 for A < 4[2 24a
and
_t.h'___g Lrﬁ.é—.A_ for .§_> -1_[:"_‘;‘ 6.24b
o 4[2 g A 4[2 ‘

Recalling that m.g is proportional to 6, equations 6.24 may be interpreted as

meaning that m is proportional to § for small values of -Z— and is proportional

to A for large values of g— In fact, substituting for m from equation 3.24a into

equation 6.24b yields

Poh
Pt i 6.25
4t VR

1

by m allows equation 6.25 to be written as

Replacing £,
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~ pok(Tu) A

2 6.26

The fuel consumption rate per unit volume is equal to the product of the

fuel consumption rate per unit flame area times the flame area per unit volume,

or m Z. Recall that I is equal to L Thus, equation 6.26 means that the fuel

"A".
. . . po k(Tw) .
consumption rate per unit volume is constant, equal to T E— This is

exactly the same as one would find for a homogenous mix of half fuel and half

oxidizer.

N‘v—a

A 5| the flames

[
To summarize the findings, for values of s less than ;}:—lﬂ-

are independent of each other, and equation 3.24a should be used to find the

fuel consumption rate per unit flame area. For values of A greater than

L
2
, the separate regions of fuel and oxidizer have disappeared, replaced by

i
4 [ 2
a homogenous mixture of equal volumes of fuel and oxidizer. In this case, one
may either use equatiqn 8.25, wherein the fuel consumption rate per unit flame
area is propbrtional to A rather than 4, or else calculate the fuel consumption
rate on the basis of fuel consumption per unit volume rather than per unit

flame area.

One consequence of this result not yet explored is the issue of fuel
exhaustion. The weak reaction limit ignores (at least to lowest order) the fuel
and oxidizer which have been converted into product. The result is a constant
fuel consumption rate per unit volume, which will continue forever unless the
theory is modified. The correct way would be to consider a homogenously mixed
region containing fuel and oxidizer, write conservation equations for the fuel

and oxidizer concentrations as functions of time, and solve for the diminishing



-96 -

fuel consumption rate as the concentrations of fuel and oxidizer go to zero. For
this analysis, a simpler method will be used: the burnout time £* will be

introduced again.

Thus, for times small compared to the chemical time, use the following

prescription to calculate the fuel consumption rate: Initially, %— will be small, so

use equation 3.24a. As time passes, ¢ will grow and A will decrease, so eventually

[ 1F .
% will equal i—[-g— . Call the time when this occurs £. For times greater than
[ L
~ 2
t, -g—- exceeds i—[g— , So use equation 8.25, until all the fuel (or oxidizer) has

been consumed (this occurs at £ = £*). Thereafter, the fuel consumption rate is

zero.
Now, use this prescription to recalculate the behavior of a spiral flame for
times smaller than the characteristic chemical time. Repeating the analysis of

chapter five; taking the limit as _Dll- - o resultsin:
0

for ?

2 1
r3pft In
wre - l-ﬂr—\/g-

Thus the time £ required for the flames at a given radius r to merge into a

@[

8.27

homogenous reacting mixture of fuel and oxidizer is given by equation 6.27. One
may reinterpret 6.27 as representing the radius 7 of the homogenously mixed

region as a function of the time £. Thus one may also write,

L
3

~ [
~_ ¥ n /3
n= 1T 7T 14'\/2_] 6.28
]

Thus, there is a region of homogenously mixed fuel and oxidizer whose radius is
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growing as Vf .

Solving for the burnout time as before gives

2

2 1 2 1 2

I"SDoStal PaDgatch SiT —S-b

——— P et B B R _— .
re VR nr? 5|4 \/3 6.29

Here one sees a difference between 6.29 and the earlier result 5.16a. In the

less than 2V2.

present case, there is no burned out core at all for values of
ch

Solving for the burned out core radius r* as a function of ¢ gives

-1 L
N TV L WS

Finally, integrating to find the augmented fuel consumption rate for the

spiral flame,

| é—
IVEP L tor cevs 6.31a
1r 4 tep ten
PoPaDo
RN A I { PR W E I 1 L P ) o
z n‘laf 2|t 3m/§[4 2 [ t '
pol 2 D
¢
for > 2V2
tch

In contrast to the results for £ >> {,, one is left with a different picture of
the spiral flame than in chapter five. The center of the spiral consists of

homogenously mixed reactants, and the radius of this center is increasing like

~vf . There is no burned out core at all if z—t—- is less than 2V2.
ch

Some aspects of the results are reassuringly the same as before. The

vortex circulation ' and the molecular diffusivity Dy appear only in the
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4
combination I'SDg . The radius of the homogenously mixed core 7 and the
1 1 L
radius of the burned out core r*, both nondimensionalized by 'S D £?, are both
functions of ?E- Once again, the fuel consumption rate for the entire spiral M
ch

2

is proportional to ;001"5.003 and is again a function of t—t—
ch

Examine figure 6.9, a plot of '-—-—g-———- as a function of -t—t- Both the new
pol'® D¢ o
solution, equations 6.31, and the previous solution, equation 5.30a, are shown.
The figure shows surprisingly little change. The primary difference is that now
M
2
pol' 2 D¢’

5

The changes are understandable. No matter how efficiently the vortex and

is proportional to ?t- near ¢t = 0, whereas before it was proportional to
ch

2
3

diffusion mix the reactants, a finite time proportional to £, is required for them
to completely react. Therefore, one should not expect a burned out core to
appear until some multiple of the chemical time has passed. The radius of the
homogenous core is proportional to Vv, therefore its volume (including an
arbitrary span in the third dimension) will be proportional to t. The fuel
consumption rate per unit volume is constant in the core, so the total fuel

consumption rate will be proportional to the core volume, or £.

One more aspect of this new solution requires mention. The previous
solution for the total fuel consumption rate (equations 5.2Ba and 5.2B8b) was
continuous (the slope was discontinuous, but the value of M was continuous)
across the transition at ¢t = 3f,, because equations 3.24a and 3.24b were forced

to give the same value for m at the changeover point 7= f;. In treating the
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interaction of one flame with neighboring flames, the cases 7<< f, and
T >> i, were analyzed separately, resulting in equations 6.24 and 6.16, which

are analogous to to equations 3.24a and 3.24b. Indeed, one may consider 3.24a

and 3.24b to be special cases of 6.24 and 6.16 for -g— =0.

The current solution for M is not continuous at £ = 3ten; equations 6.31 and
6.19 differ by roughly twenty percent at the changeover point. The jump is not

physically real, of course. It is a result of equations 6.16 and 8.24 not yielding

the same value for m at the crossover 7 = {;, except for the special case -g— =0.

This point will not be pursued further. The discontinuity is not large in

numerical terms, and solving for the fuel consumption rate m of a strained

laminar flame for arbitrary —t—T—— and -g— would seem to be a quite difficult
ch

problem.
6.8 Summary

The validity of several assumptions of this analysis have been examined.
Equations 3.24a and 3.24b were replaced by a more accurate (according to the
numerical analysis of chapter four) formula for m» which had no slope
discontinuity at T=1;. As a result, the slope discontinuity in the total fuel
consumption rate M which was present at f =3f,; was removed, but the

improvement accomplished little else.

Several assumptions regarding the neglect of local flame curvature,
variation of flame thickness along the length of the flame, and diffusion of
reactants into the core were examined. The validity of the local approximation
to the velocity field about the flame was examined, and the effect of viscosity

was considered. The results showed that these factors were indeed negligible,

provided that -g— was large. This limit was taken in chapter five so that clesed
0
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form solutions could be found, rather than resorting to numerical integration.

The current results show that -11;;- must be large anyhow, to ensure the validity
0

of assumptions made from the start.

Finally, reduction in the fuel consumption rate of a flame due to its
neighbors was evaluated. For times large compared to the chemical time, where
the Burke-Schumann approximation is applicable, the idea of a burned out core
was found to be valid. The more complicated model made less than a one
percent difference in the total fuel consumption rate of the spiral. A larger

effect was found when the slow reaction rate approximation is applicable. For

small values of -E— the center of the vortex contains a region where fuel and
ch

oxidizer are completely mixed before burning. Fortunately, the dimensional
scalings were unchanged, and the total fuel consumption rate of the spiral was

roughly the same as before.
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7. ACOUSTIC EMISSION BY A SPIRAL FLAME
7.1 Introduction

One technological application of these results is to screeching instabilities
in ramjet combustors; in particular to the instability mechanism found by
Rogers and Marble (1956) (also see Rogers (1954) and Barker (1958)) in their
experiments. A diagram of the experiment is shown in figure 7.1. The setup was
two dimensional, and the flow passed from left to right in the figure. Premixed
fuel and oxidizer were burned by a premixed flame, which originated from the

sharp edge of the flameholder.

As the equivalence ratio was increased, the steady flow of figure 7.1 would
become unstable, and high frequency (roughly 3800 Hz) oscillations would
ensue. The unstable oscillations were transverse, from top to bottom in the
figure, and coincided with the lowest frequency transverse mode of the
combustor. As shown in figure 7.2, the screeching was accompanied by rows of
vortices shed by the edges of the flameholder. The vortices were shed at the
flame attachment point, and distorted the flame sheet as they were swept

downstream.

Rogers and Marble concluded that an acoustic wave passing a sharp edge
would generate a vortex, which would distort the flame sheet into a spiral. This
increase in flame surface area would, after a delay time characteristic of the
fuel oxidizer mixture, cause an increase in the burning rate. Since combustion
products typically occupy a larger volume than the original reactants, the

unsteady combustion would be a source of a pressure pulse.

Thus, the Rayleigh criterion for instability could be met provided the
ignition delay were suitably related to the other parameters of the system.

According to the theory proposed by Rogers and Marble, this delay is a
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characteristic of the particular chemical reaction system. Later experiments by
Barker (1958) reinforced this idea. Barker was able to change the equivalence
ratio at the onset of screech by using different fuel mixtures and different
mixture temperatures. Barker compared his results to ignition delay times
deduced from flame blowoff measurements. He concluded that, at the onset of
screech, the ignition delay was approximately constant, and equal to one peried

of oscillation.

Later work by Jarosin'ski and Wo'jcicki (1976) found a similar instability
mechanism. Vortices shed from the flameholder resulted in a delayed pressure
pulse, which, if the delay were right, would reinforce the original acoustic pulse.
In this way, self excited oscillations could arise. In this case, the oscillations
were longitudinal, and corresponded to the organ pipe frequency of the pipe

upstream of the flameholder.

The present analysis differs from these experiments in one important
respect; the experiments were done for premixed fuel and oxidizer and the
theoretical results were derived for a diffusion flame. Nevertheless, when a
vortex distorts a ﬁamé, an increase in burning rate after a delay characteristic
of the chemistry has been predicted, so the acoustic pressure pulse emitted by a

vortex created on a flame sheet will be calculated.

Although not strictly applicable, the results will bear an obvious similarity
to the instability mechanism of Marble and Rogers and Jarosin'ski and Wo'jcicki,
Furthermore, the results will provide a mechanism for explaining the generation
of acoustic noise by diffusion flames and a mechanism for generating

instabilities in diffusion flames.
7.2 Relationship between Burning Rate and Acoustic Pulse

For an acoustic pulse to be generated, the products must occupy a different
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(usually larger) volume than the original reactants. This is usually true because
the heat of the reaction creates products which are much hotter than the
reactants, thus occupying a larger volume when combustion occurs under
constant pressure. Therefore, assume a compact source; the vortex flame
occupies a small (compared to a wavelength) region of space, and take a control
volume which includes the vortex. The conversion of fuel and oxidizer into
products occupying a greater volume will cause the outflow of fluid from our

control volume.

The rate of fuel consumption of a vortex flame, M, has been previously
found. This is actually the fuel consumption per unit length of vortex, due to
the two dimensional nature of our problem. If a small piece of the vortex flame
of lengﬁh dz in the third dimension is considered, then fuel is being converted
into product at a rate M dz, and so is oxidizer. Since the fuel and oxidizer were
originally of density pg, and letting the density of the products be p;, then the

rate of volume outflow from the compact source is §(¢), given by

2(a — 1)M dz
Po

7.1

Q(t) =

where the parameter « is the expansion ratio (ratio of volume of products to

reactants, or %9-). The factor of two is present because M is the rate of
) ,

consumption of fuel, and oxidizer will be consumed at an equal rate.

Thus, the vortex flame, considered as a compact region, acts as a monopole
source of sound provided that a # 1. According to standard texts on acoustics
(e.g. Lighthill (1978)), if a compact region of three dimensional space contains
a volume source of strength @(¢), that is, fluid is pouring out of the volume at a
rate @, then the resulting pressure perturbation seen by an observer at a

distance 7 in a fluid of density po and sound speed ¢ is given by
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P—P0=p° __(_____th—'r/c 7.2

4inr

Note that equation 7.2 contains §, the derivative of @(¢). Thus steady
combustion corresponding to a constant value of & will not cause an acoustic
pulse. Therefore, the vortex will not create any noise for times large compared
to te,, because the fuel consumption rate M approaches a constant value for
large times.

2
Previous results showed a fuel consumption rate proportional to pel' 2 D¢’

which rose from zero to its steady value for large times on a time scale
proportional to £,,. Already one can see that a small piece of vortex flame will

act as a monopole source for times on the order of the chemical time whose

2 L
pol'® D¢

7 . Thus, as the chemical time is
ch

strength will be proportional to {a — 1)

decreased, the source strength becomes greater, although lasting for a shorter

time.
7.3 Assumed Fuel Consumption Rate

The numerical values calculated will depend on the form chosen for the fuel
consumption rate M(¢). Equation 7.2 shows that the derivative of M is the

quantity of importance. The result of chapter five, equation 5.30a for the fuel

m]m

: [
consumption rate for t—t—< 3, shows that M is proportional to ltt , thus
ch ch

having an infinite derivative at £ = 0. Such an infinite value for @ would predict

an infinite pressure pulse, thus the result of chapter six, equation 6.31a, is

especially welcome., The predicted time dependence proportional te causes

ch

no problems.

The one problem is patching equations 8.31 to the results for large times,
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since any artificial jumps in M will play havoc with its derivative. For this

chapter choose

—# -0 for <o 7.3a
2 L i,
pol' 3 D¢
i =V§{1‘—\/—5—% L for o< fo<2® 7.3b
o Pg_DéL ™ 14 2 tch tch, ’
0 ¢]
i zvﬁ[n\Jﬁ°% ¢ L
2 > h— > for tch>2 7.3¢c
pol'® D¢

Equation 7.3a was chosen so that the fuel consumption rate would be zero for
times less than zero. Equation 7.3b expresses the result of equation 6.31a, and

7.3c shows the constant fuel consumption rate appropriate for large times from

7
= 2% was selected to ensure continuity

equation 5.30b. The crossover point n
. ch

between equations 7.3b and 7.3c.

Taking M from equations 7.3, and substituting into equation 7.1 yields

Q(t)=0 for —t—< 0 7.4a
ten
ripd ol L 7
: 37T 3 t ry
t) =2(a = 0 NI~/ d L-< 28  7.4b
Q(t) =2(a —1) - [4'\/3 z for 0K ™ <
) ¢ L
@(t)Y=0 for —> 28 7.4c
ten

Thus, assuming that equations 7.3 are approximately accurate, a piece of a

spiral flame of length dz will act as a monopole source beginning at £ =0 and

7

lasting for Zé—tch. The  strength of the source will be
3| 38
2(a — 1) —— 2| T~ /217 g2,
(a ) tch. ™ l 4 -\/-2— z
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7.4 Calculation of Two Dimensional Pressure Pulse

One could now substitute equations 7.4 for ¢(¢) into equation 7.2 to find
the pressure éignal seen a distance r from a small piece of vortex flame of
length dz. However, the problem was originally stated in two dimensions, and
the experiment of Marble and Rogers was done for a two dimensional test
section. Additionally, a vortex line cannot end except at a boundary, so one
should find the pressure signal treating the spiral flame as a two dimensional

source.

The acoustic field for a two dimensional source can be found from the
acoustic field for a three dimensional source by placing a continuous
distribqtion of two dimensional sources along the 2 axis. The linearity of the
equations of acoustics enables one to superimpose solutions, thus the solution
for a two dimensional source can be obtained by integrating along the z axis

(see Lighthill)

+oo -
P_po=ﬂ3_ _(__.)_Qt r/c dz 7.5

The geometry is shown in figure 7.3. Since z is the distance of the observer
from the two dimensional source, then 7® = 2% + z?. The integrand is an even

function, so equation 7.5 may be written as

oo —
P-py=22rf Ut =rke) 4, 7.8

2 L
-]

Substituting equations 7.4 for Q into equation 7.6 and performing the
integration results in an expression for the pressure pulse seen by an observer a

distance z away from a infinitely long vortex. The solution is

P—-Py=0 for I -—< 0 7.7a



2 L 1
pl'3D¢ Bln 3
P~ Pyg= (o~ I)T }le\/-g- 7.7b
[ Ny 3
x log| &+ "zt “’} for 0<t—-‘:—<26tc,,
rind g )
Po 0 T 3
P—P'J:(a—l)T;T—é-z—\/-g—"] 7.7¢
[ N7y s ] z
x log - of # Mot = tor ¢ -Z> 28,
c(t —2%%5) + \/cz(t ~28¢,)? — 27|

Simpler forms may be found by noting that one is interested in the 'far

field" radiation. Usually, for periodic sources of frequency w, the far field is

found for large values of z, such that =z >> -E)—- In this case, equation 7.4 shows

that the radiation from a given piece of the vortex lasts for a time proportional

to g, so the far field will consist of distances such that = >> ct,,. Therefore,

x

simplify equations 7.7, assuming that is large. (Take the limit -+ o,
thh. thh
but keep in mind that 1oz is of order one.) The result is,
tch thh
P-Py=0 for LZZ/ g 7.8a
tch
L S ¢ VB
P - Pygn (= 1)pol'3 DG —_— 7.8b
ztep wP
‘n_\/gé-rt—*/cé- t —xz/c %‘
X |—\/= — ——< 2
l4 > [ = for  0< —=
¢ VB

Itch ;T—z—- 7.8c

2 1
P =Py ™ (& = 1)pel'3 D¢
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r'rr é I‘rt -z /C ; rt —-z/C z é t —z/c z
LA 2 — - | = 08 8
% [ 2 \/g l [ = l = 2 ] for ™ > 2

Equation 7.Ba shows that no pressure pulse is received until a time f— has ..

7
elapsed. The maximum pressure occurs at ¢t = % + 28¢,,, where equations 7.8b

and 7.8c join. The maximum pressure is given by

2
s _ ] ~ _ e 4
lP Py R (o= 1)pel'3 DF =~ /xt 7.9
\/Er‘n‘_\/ﬁé "‘12 x "Z
b A AR —_— o= =
11'2[4 5 2 at c + 2 tch

Equation 7.8c shows the 'tail" which is characteristic of acoustics in two
dimensions. A typical plot of pressure versus time is given in figure 7.4, showing

the shape of the pressure pulse.
7.5 Effects of Heat Release on the Fuel Consumption Rate

The release of heat by the combustion process will cause the products of
the reaction to occupy a greater volume than the original fuel and oxidizer.
This effect was responsible for the generation of an acoustic pulse as a vortex

wraps up a laminar diffusion flame.

However, the analysis which resulted in the equations 5.30b and 6.31a,
which were used to derive these results, only partially included the effects of the
heat release. The analysis of chapter three of a one dimensional strained flame
included the density change caused by heat release by using the Howarth
transformation. Likewise, the numerical calculations of chapter four allowed
the density to vary across the flame. But, in chapter two, when following a piece

of flame as it is convected by the fluid, and calculating the flame density per
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unit volume and the transient strain rate, the fluid was assumed to be of a
constant density. If the density change were included in an honest manner, the
creation of volume near the center of the spiral, due to the conversion of fuel
and oiidizer into products, would displace the outlying flames outward to larger
radii. Thus, the expressions for strain rate and flame surface density would

involve the fuel consumption rate.

This problem will not be solved here. Instead, refer to the results of
Karagozian (1982) for infinite reaction rate spiral flames, where the growth of
the core was allowed to displace the surrounding spiral flame arms outwards.
The results of the calculations show a surprisingly small effect of the density
change. Even for products which occupy six times the volume of the original
reactants, the total fuel consumption rate of the spiral is changed by a factor of
two. The effect is hardly negligible, but not as large as one might expect. In any
case, the present results seem to be good order of magnitude estimates of the
noise generation, and the dimensional form of the results is itself quite

interesting.
7.6 Summary

If the products occupy a greater volume than the reactants, a spiral flame
will serve as a monopole source of volume outflow. Acoustic theory provides
that a source of efflux will act as a monopole acoustic source, with the strength
of the pressure pulse proportional to the time derivative of the rate of volume
outflow. Therefore, a steady fuel consumption rate produces no acoustic
emission. The effect is due to the transient behavior of spiral flames at times
comparable to the chemical time, where the fuel consumption rate is increasing.
In keeping with the two dimensional nature of the analysis so far, the two

dimensional acoustic field was found for a vortex lying along the z axis. For an

. . ; . z
observer a distance z from the vortex, no pressure pulse is seen until a time =
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has elapsed. In the far field where is large, the peak pressure pulse occurs

thh

z 2 1 —
at t = -;'Z- + 2%, and its strength is proportional to p'3 D¢ (a — 1) -\/:::—: :
ch

Thus, the amplitude of the pressure pulse varies as -\-/1:_.-- and is proportional to
xr

—-1——. Again, note that the dependence of the acoustic source strength depends

Vi

2
on the combined transport coefficient '3 D¢’ .

When applied to the instability mechanism of Rogers and Marble, these
results are interesting for two principle reasons. First, the peak pressure pulse
occurs after a delay proportional to the characteristic chemical time of the
system. This would explain the dependence of screeching on the fuel type and
the eqﬁivalence ratio. Secondly, the strength of the pulse is proportional to the
circulation of the vortex raised to the two-thirds power. If the gas velocity past
the edge of the flameholder were U, then a length L of the resulting shear layer
would have a net circulation of UL. Therefore, if f,s is the period of the
oscillations, then the vorticity of shear layer would be lumped into vortices, each
vortex containing the vorticity from a length L = Uty of the shear layer, thus

each vortex would have a net circulation of I' = U?f,,. As a result, the strength

o

of the acoustic source would go like U®.
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8. LARGE ACTIVATION ENERGY FLAMES
8.1 Imtroduction

The results derived thus far have been applicable only to reaction systems
described as 'low activation energy” The distinction between low activation
energy systems and high activation energy systems was discussed in chapter
three. In short, low activation energy systems exhibit a smooth transition from
the small Damkodhler number to the large Damkohler number regimes, but high
activation energy systems may have more than one possible solution at a single
Damkochler number, and may undergo sudden jumps as the Damkchler number
is slowly varied. The large activation energy case is of great practical interest;
the combustion of many hydrocarbon fuels in air (initially at room

temperature) fall into this category.
8.2 The Transient Extinction Problem

As discussed in chapter three, most work on one dimensional diffusion
flames with a large activation energy has concentrated on steady flames. These
solutions, independent of time, are found when the strain rate £ is constant.
Whether the flame is burning according to the Burke-Schumann solution or is
extinct depends on the Damkohler number, the ratio of the flow time of the

system to a chemical time. For the constant strain case, the characteristic flow

time is usually taken to be -i— and the chemical time is customarily taken to be

%—. where kg is the preexponential constant in the reaction rate equation 3.25.
0

k
Thus the Damkohler number is defined as —E—o-.

One may argue that the parameter 7 divided by a characteristic chemical

time is the transient analogue of the steady state Damkchler number. First, the

flame thickness ¢ is proportional to VDg7, thus the characteristic time required
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to diffuse a distance § is %2‘;—, which is equal to T Secondly, the approximate
analyses by Zeldovitch (1951), Spalding (1954), and Lina'n (1963) of the inner
reaction zone suggest that the reaction zone has a limited capacity, and one
may construct an intuitive picture of the extinction process whereby extinction
occurs when the outer diffusion zone transports too much fuel and oxidizer into
the inner reaction zone. In chapter three (see equation 3.24b), it was
demonstrated that the fuel consumption rate for a transiently strained Burke-
Schumann flame depends on the parameter 7, with m increasing as 7 is
decreased. Thus, an extinction criterion which specifies a maximum fuel
consumption rate also sets a lower limit on 7. Extinction would cccur if T were

too small.

This suggests that in the transient case, the ratio EL- corresponds to the
ch

steady state Damkohler number. Indeed, if one sets ¢ constant, and calculates 7

from equations 3.8 and 3.1%, for large times 7 approaches a constant value of

51; Thus, (except for a factor of two) the ratio -t-T—- reduces to the usual
ch

Damkohler number for the special case of a constant strain rate. Perhaps the

parameter T is useful for predicting extinction for transiently strained flames.
8.3 Theory
Choose the single step, second order reaction

A+ B~ 2C

The factor of twoe is necessary; all species are to have identical properties.

The mass fraction Y of each species will vary from zero to one. YFor a Lewis

number of one, the temperature T will range from 7. to Ty, where

Ty =Te + —Z-A-fl— A dimensionless temperature ® may be introduced, defined by
P
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(T-Tw)

(T ~T.) 81

0=

so that @=0 corresponds to T' =7, and ® =1 corresponds to T = Ty. Starting
with equation 3.2, substitute for %— from equations 3.3 and 3.25. Let ur =1 for

convenience, especially since the strong variation of w with temperature is due
mostly to the exponential term. The results are

— Tﬂ

aa};,, — st aa? = Dy a;;,, — koY Ype O T T B.2a

Yz 8Yp 8*Yp '5'('7_’{-7%:?:

TR Ta L R L o2

8, 8y, 3?Y, 'eT('f":—';")T’z'—

3% - &t o = Dq oe? + RkoYyY¥Yge 7 ¢ 8.2¢c
-7,

%S;)——sé %(—?—zﬂo %%%—4— 2k ¥, Yge O 11 T= 8.2d

The temperature dependence of the reaction rate may be incorporated into two

T T
dimensionless ratios, such as -f'-f—- and -7—,“—
. oo _f

Note that if equation B.2b is subtracted from equation B.2a, the resulting
equation will contain no chemical reaction term. Thus one may simplify the

system by introducing Schvab-Zeldovitch variables.

=Yy~ TYp 8.3a
pe =Yg+ Yp + Yo 8.3b
¢3=Ye -0 8.3c
¢s= Yo 8.3d

The system still has four independent variables, but now equations 8.2 can be

written in the simpler form
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3¢, dp1 _ 9%,
TR TRy 8.4a
gz Bpz _ 0%,
at € 6€ —Do aé'z 8.4b
Bes dps _ . 8%ps
3% e 3¢ = Dy e B.4c
9 3 5 T
1 _ ®1 - P1 8(Ty ~T,)+T,
50 % g = Do G+ ka¥aYpe 8.4d

Note that the chemical reaction term has been eliminated from all equations
but one. One could express ¥, and Yp in terms of the ¢'s in equation 8.4d, but

this will be done later.

Now one may define a characteristic chemical time {g = -,%— and define a
' 0

system of dimensionless coordinates

b= 8.5a
tch
= £ B.5b
3 Dot .
«& = Elep B.5¢

Equations 8.4 may be written in these new coordinates, with the result

8¢y dp: _ 8%y
5.1 o &t 5.t 6,52 B.6a

092 dpz _ 8¢
R A, — B.Sb
a*t *8 *é *s 8*52

d 8 8?
3 _ o $3 _ 90: 8.6¢
8t 0.6 8,¢

-7

2 S NE—
094 O0ps _ 0%0s 27, Yye 0 T-)T= 8.6d

a*t #8 * a*é a*gz
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Equations 8.6 are dimensionless.

Before proceeding further, initial conditions are needed. The initial
conditions used in chapter three, when transformed into the Schvab-Zeldovitch

variables, become

at =0 for £<O0 B.7a
1= -1
@2 = +1
p3 =0
pa =0
at £ =0 for £>0 B.7b
1= +1
@z = +1
3 =0
s =0

Two trivial solutions are apparent. First, ¢; = 1 everywhere. This should
have been obvious at the beginning, since only three species are present and the
sum of the mass fractions must always equal one. Thus, ga=Ys + Yp+ Yo = 1.
Secondly, ¢3 = 0 everywhere, thus ® = Y. This should have been obvious too,
since the production of heat is proportional to the production of product C.

With the Lewis number equal to one then the temperature rise and the product
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will diffuse at the same rate. Since the dimensionless temperature ® has been
scaled so that it varies from zero to one, and with the initial conditions that

@ = Yo =0 for all ¢, then ® = Yp for all £ and f.

One is left with equations for ¢; and ¢,, and equation 8.6a for ¢, does not
involve the chemistry at all. Thus, first solve for ¢;. This equation was solved in
chapter three, so use the same method of solution. Previously, the convection
term was eliminated by the coordinate transformation (given by equations 3.7
and 3.8) from (£,t) to (¢,7) coordinates. Define an analogous transformation to
go from (.£,.,.t) to (,&,7) coordinates. One realizes that the previous (£.t)
coordinates of chapter three were not dimensionless, so the resulting (¢7)
coordinates were not dimensionless either. In the present case, the original
(£, 4t) coordinates are dimensionless, so the final (,¢{,,7) coordinates will be

dimensionless as well.

Equation 8.6a becomes

e o

The initial conditions g.iven by equations B.7 transform as
at ,7=0 for <0 ¢;=-1 B8.9a
at ,7=0 for &> 0 ¢;,=+1 8.9b

The solution to equation 8.8 with initial conditions given by equations 8.9 is

«

[
¢1=erf[2ﬂ B.10

cerf | —E—
lz DoT

In chapter three, the flame thickness 6 was identified as VDo7. This was done on
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the basis of asymptotic solutions for weak and strong chemical reactions.
Equation B.10 shows that if the flame thickness in £ coordinates is defined in
terms of the difference in fuel concentration and oxidizer concentration,

Y4 — Y5, then the flame thickness is always proportional to VD47 regardless of

how the strain rate varies with time.

Although the remaining equation for g, cannot be solved exactly, it is useful
to transform this equation as well. In the (,¢,,7) coordinate system, equation

B.6d becomes

-T,
a aa _ i " " ___—_G______
P _ 90s _ 2f et dt Y, Yy e 007 T=)"1m

— 8.11
3,,,7' 6#8

S;nce ®1. P2, and pg are known, Y, Yp, and @ can be written in terms of ¢,.
Previously, it was shown that ¢, = Yo = 0, so use @ as the dependent variable

rather than ¢,. The result of these substitutions is

2 o £ iy g |
08 _ 0% _ efjenattyy e K g 8.12
8,7 6*(‘2 T
¢ ST
. (T, ~T.)iT,
X |1 —e ¥ —B|e V =
AP ]

Yet another transformation, from the (,7.,¢) coordinates to the "similarity”

. ¢
coordinates (,T.,7), where ,y = —*—, yields
L L * \/:‘;_
220 _[5® 00 =2?r1+erf-"—'1—® 8.13
* 8,7 18*72 * Ay * 2

-T
[ PR N
X [1 —erf —'g — 0| e 8 Te)Te

— t L) "
In equation B8.13, ,7 has been defined as -tl— therefore ;7 = ,T o2y S "
ch
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As an aside, several properties of equation B.13 deserve mention. First,
rather than speaking of the strain rate as a function of time one could just as
well specify 7 as a function of the time £, or of the transformed time T
Secondly, in the completely dimensionless coordinates used here, the magnitude
of the chemical reaction term relative to the other terms of the equation is
determined by the value of ,7 Thus, one is justified in calling ,7 the Damkohler
number, and the limits considered in chapter three of weak chemistry and
strong chemistry may be found by letting ,7 approach zero and infinity,

respectively.

Looking back to chapter three, the lowest order solution for weak chemistry
was found by neglecting the reaction term. For strong chemistry, the reaction
was confined to a small region, thus outside this region the reaction term could
again be neglected. Examining the results, one finds that the concentration
profiles (equations 3.16 for slow chemistry and equations 3.10 for fast
chemistry) can be written as functions of only the similarity variable ,¥, and are
independent of ,7 and ,7 Thus, in the two limiting cases, the variable .y is a
true similarity variable. This is not true for intermediate values of ,7, but the
natural appearance of the similarity variable .,y in the weak and strong
chemistry limits, as well as in the solution for ¥, — ¥p suggests that the (,7.,7)
coordinates are the most convenient system. The transformation of the
equations of interest into (,7,,7) coordinates has resulted in equation 8.13,

where the parameter ,7 has spontaneously appeared.

If the strain rate were constant, then steady solutions could be found by

dropping the time derivative terms and solving the resulting equation

9%0 00 _ _f 7
5.,? + Y by Rl |1 +erf 5 e
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_TB
X |1 —erf '*21 - @} g 8y T T-
. Tf Ta . s .
The ratios T and T, are constants, therefore the solution to equation 8.14 is
= J

a function of the variable ,y and the parameter ,7. For this special case of

ko

constant strain steady solutions, ,7 = 5

., thus the behavior of equation 8.14

with respect to different values of the parameter ,7 has been discussed in

chapter three. The most important characteristic of this behavior is extinction

T T.
if ,7should drop below a critical value, which depends on the ratios —ff— and ‘TL
= S

Returning to the general case of equation 8.13, the dependence of the
strain rate on time will cause ,7 to be a function of time. Since the solutions to
equation B8.14 depend on ,7, the time dependence of ,7 will cause @ to be a
function of time as well as ,y. Thus, the time derivative term in equation 8.13

cannot be set equal to zero.

If ,7 were a slowly varying function of time, one could properly claim that
the time derivative terms are negligible. Thus, to find the solution of equation
8.13 at a given time, one could take the solution of equation 8.14 for the same

value of the parameter 7.

This approach suffers from two flaws. First, for a spiral flame the
parameter 7 is not slowly varying. Additionally, no matter how slowly one varies
«T, in the neighborhood of the extinction and ignition points an infinitesimal
change in ,7 will produce a large change in the solution @, so the time derivative

term cannot be ignored.

i , as the
tch

In summary, one can interpret the instantaneous value of 7, or

Damkohler number. If one attempts to relate extinction of a transient flame to



- 120 -

the instantaneous value of 7 one cannot do so rigorously. The best that can be
accomplished is a pseudo-steady approximation, whereby if 7 is below the
critical value one can assert that the flame is in the process of going out, but
cannot say how fast. The correlation between extinction and the instantaneous
value of T should be excellent if T is slowly changing, and poor if it is changing
rapidly. Therefore, one must return to BLOTTNER numerical computations to

see how well the proposed criterion performs.
8.4 Numerical Solution

To find a method of predicting extinction, numerical solutions are used for
comparison. Using the BLOTTNER program, described in chapter four, flames
were transiently strained as they would be in a spiral vortex. The rate of strain

¢ as a function of time was found in chapter two, and is given by equation 2.13.

[ e P
1 lwg 2.13
&= .
¢ [ 2
1+["1:'—t§-
nr

The chosen reaction system consists of two reactants, which react irreversibly

to form product according to the single step second order reaction

A+ B- 2C

The mass fractions of A and B at —< and +« are unity. All species have
identical physical properties; constant specific heats, Prandtl and Lewis
numbers of unity, and viscosities which are proportional to temperature.
(BLOTTNER assumes ideal gases, so density is inversely proportional to
temperature. Assuming u proportional to T makes pu a constant. Since Prandtl
and Lewis numbers are constant, p?D and the product of the density and the

thermal conductivity will be constant. This temperature dependence of the
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transport properties was assumed in deriving equation 8.1, and one would like
the conditions of the numerical solution to correspond to the theoretical

treatment as much as possible.)

The ambient temperature, heat release of the reaction, and activation

energy (in the Arrhenius expression for temperature dependence of the reaction

T: T
rate) were chosen such that ?a—- = 10 and -T-,L- = 4.5,
f 0

B8.4.1 Initial Conditions

A diffusion flame is initiated when a partition, separating two reactants, is
removed. At the instant of creation, the flame is of zero thickness, and an
unstrained flame grows in thickness as ~/Dof. The problem solved in the
previoﬁs eight chapters was that of a diffusion flame whose birth occurs
simultaneously with the establishment of a vortex. The initial conditions of
concentration and temperature for such a problem were introduced in chapter
three. Briefly, they consist of one reactant in one half plane, the other reactant
in the other half plane, no product present at all, and a uniform initial
temperature profile (‘T = T. for all y). This approach is appropriate for low
activation energy reaction systems; it causes difficulties when applied to high

activation energy systems.

For high activation energy systems the reaction rate is much slower at 7.
than at 7. (For the numerical values chosen here, the reaction rates differ by a
factor of ¢%.) As a consequence, if the same initial conditions are used for a
high activation energy system, the reactants simply diffuse into one another
with negligible reaction. Thus, the attempted numerical solution encounters a
problem: even without any straining a source of ignition must be provided.
Possible ignition mechanisms were discussed in the third chapter. The ignition

problem was not resolved in that chapter, and will not be resolved here either.
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Instead, initial conditions were specified (such as a region of elevated
temperatures) to ensure that the flame is established on the vigorously burning

branch of solutions.

The ultimate purpose of these calculations is to verify an extinction
criterion based on 7 If the pseudo-steady approximation were exact, at any
time the instantaneous value of 7 would determine the profiles of concentration
and temperature. Thus, one does not have complete freedom in specifying
initial conditions; if the pseudo-steady approximation is to work at all, the initial
concentration and temperature profiles must belong to the family of profiles-

parameterized by an initial choice of 7.

The initial profile selected should establish a flame which is vigorously
burning. The vigorously burning solutions are described by the Burke-
Schumann approximation. The concentration profiles were given in chapter
three, (equations 3.10) the temperature profile may be found similiarly (see

Marble (1979)) and the results are

I’A=erf[—2—-—§5—;— Yg =0 8.15a
0
O=erf|—i—| for £>0

[z Dot

B.15b

So, if one chooses an initial value of 7, equations 8.15 will specify an initial
conditicn to use for input to BLOTTNER. The value of T chosen will affect the

later solution, so denote it by the symbol f5. The resulting solution may be
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envisioned as corresponding to a diffusion flame which was ignited by an
unknown cause, allowed to develop without straining for a time f4, and then
strained according to equation 2.13. In other words, the flame has existed for a

time £q before the vortex is imposed at ¢ = 0.

With these initial conditions, formula 4.7 for 7 is no longer correct.
Equations 3.8 and 3.12 are still valid, but the initial condition =0 at £ =0 is
incorrect. If the instantaneous value of T is to characterize the solution, then

T =1g at f =0. With this new initial condition, the solution to equations 3.8 and

3.1% is
; Fpe ] 1l P
0+ 7| +'—'-'-—2-
I+ _ nr 3| nr
g - = 8.18
L+ | =%
Kits

Equation 8.16 will be used in place of equation 4.7 for the rest of this chapter.
B.4.2 Numerical Results

The results of the numerical calculations are given in dimensionless form.

1

For convenience, the characteristic chemical time has been taken as ————
V2 k (Ty)

rather than as ;1- The choice was appropriate, since one is interested in the
0

strongly burning solution where Ty N Tp.

With initial conditions given by equation 8.15, the spectrum of possible

initial conditions is determined by different choices of f3. Likewise, for a

transient strain rate given by equation 2.13, the parameter I‘2 determines the
mr

transient strain history of the flame. In dimensionless form, each transient

t I't
8 and —&

flame history one computes may be characterized by the ratios r -
ch
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tt , the quantities of interest are
ch

As functions of the dimensionless time
the dimensionless maximum flame temperature (at any time, the maximum

T
temperature found by traversing the flame in the y direction), @, = Tm“—

(which will lie between 1 and 4.5), the dimensionless fuel consumption rate,

2Tt |2
;—n*[ 5h , the instantaneous strain rate, &, , and the instantaneous value of
0| Yo
7"-
tch
tU Ptch )
For the first run, 7 = 10,000 and Tz 1. (Actually, equations B.15 do
ch s

not include an inner reaction zone. Consequently, if one numerically evaluates
equations B.15 and uses them as initial conditions for BLOTTNER, the reactant

consumption rate is zero at first. As a result, initial conditions were computed

from equations B8.15 for = 0,000, and the vortex straining according to

ten
equation 2.13 was not begun until an additional 1,000 chemical times had
elapsed. Thus, an inner reaction zone was allowed to develop, and the fuel
consumption rate predicted from equation 3.24b matched the BLOTTNER results
at the onset on straining. The results are corrected such that ¢ =0 still

corresponds to the onset of the straining.)

The results, graphed in figures 8.1, 8.2, B.3, and 8.4, show a flame which
almost immediately goes out. The extinction is characterized by a drop in the
fuel consumption rate accompanied by a drop in the maximum flame
temperature. The predicted Burke-Schumann fuel consumption rate, found
from equation 3.24b, is shown as a dashed line in figure B8.1. Note that the
actual fuel consumption rate decreases, rather than increases as the straining

is begun.
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One would like to find a flame which remains lit. Of the two parameters at

tch
mr?

ones disposal, decreasing will provide a gentler strain history for the flame,

and increasing will increase the initial Damkdhler number, and perhaps

tch.

I't
make the flame more resistant to being strained out. In the present work, cg
nr

was decreased.

Tten
nre

Using values of 0.1 and 0.01 produces flames which take longer to go

out, but still go out. {These results are also graphed in figures 8.1, 8.2, 8.3, and

t
cg = 0.01 are especially striking. After the straining
nr

B.4.) The results for
begins; the flame burns for hundreds of chemical times. The fuel consumption
rate is well approximated by equation 3.24b (compare the solid and dashed lines
in figure B.1). The maximum flame temperature is nearly the adiabatic flame
temperature, but is decreasing slowly with time. After a long time (so long that
one is never quite sure how long to let the program run), the maximum flame
temperature drops suddenly, and the reactant consumption rate no longer
follows equation 3.24b, but instead decreases by many orders of magnitude.

With little warning, the flame has suddenly gone out. Extinction has occurred

again.

Can extinction be explained in terms of the instantaneous value of the
strain rate? Can one say that extinction occurs if and when the strain rate
exceeds a critical value? The instantaneous value of the strain rate is graphed

in figure 8.3 as a function of time. Examination of these data (especially for

Tten
nre

= 0.01) shows that the strain rate has reached a maximum and begun to

decrease when extinction occurs. Indeed, the maximum strain rate occurs at

¢

rouke 100, whereas extinction does not occur until much later, at approximately
ch
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tt = 500. (There is some uncertainty in defining exactly when extinction takes
ch
place.)

One concludes that the instantaneous strain rate is not useful in predicting
extinction of these transiently strained flames. On the other hand, the
instantaneous value of 7, graphed in figure B.4, does a better job of predicting

extinction. For all three cases, extinction occurs before ¥ reaches a minimum,

I't
in the region where ¥ is decreasing. As one sees from the case ﬂ:;" = 0.01,

extinction occurs as 7 decreases below a critical value, approximately equal to

1000%,,.

I't
The data for ﬂ_ch =0.1 and

) = 1 support this view, but with some

ch
nre
qualification. The precise moment of extinction cannot be precisely determined.
Even when the criterion for extinction is satisfied, the theory of the previous
section says nothing about how long the process will take. Finally, the accuracy

of T as an extinction criterion is expected to suffer as 7 changes more rapidly

with time. These effects can all be seen by examining figures 8.1, B.2, and 8.4,

I't
To find a flame which does not go out, ———"1’-2‘- was decreased again to a value
nr

of 0.001. The results for this case are also graphed in figures 8.1, 8.2, 8.3, and
B.4. One sees that the maximum flame temperature slowly decreases for a long
while, but finally begins to increase again. One suspects that this flame will
never go out. Indeed, the parameter 7 has reached a minimum and begun to
grow. (One may verify from equation B8.15 that T will continue to increase as
t » =.) If extinction occurs when 7 drops below a critical value, Te; (where
Tezt ® 1000%.,), then this flame will never go out, since the minimum value of 7 is

greater than the estimated T,;.
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T't
£% = 0.001 is the accuracy

Another interesting feature of the solution for

of equation 3.24b. The solid line and the dashed line are barely distinguishable
in figure 8.1, indicating that the reactant consumption rate is almost exactly

predicted by the Burke-Schumann approximation.

Before using 7 as a criterion for extinction, one should compare the T,z
observed in our numerical computations with the extinction strain rate for
steady flames with a constant strain rate. Not only would the strain rate
required for extinction be easier to measure in a steady flame, but the use of 7
is the result of an analogy between transiently strained flames and steadily
strained flames. Thus, if the approximation is correct (recall that for a steady

L

strained flame, 7= 25)' then the value of 7,; found from transiently strained

flames should be approximately equal to , Where g4 is the constant strain

REgzt

rate where extinction occurs for steadily strained flames.

Lifa'n has derived an equation which gives the extinction strain rate for
steady strained flames, which was discussed in chapter three. Converting from

the current notation into Lifia’'n’s,

T L
[ 1 7 _e ¥ kg
= =—V2kge T = e B.17
ltch ezt _e v ° V2 [8 ezt

- k
lLina'n has defined his Damkdhler number as —;—. so equation 3.27 can be used

'1‘-

for the extinction Damkohler number to find l ] . In Lifam’s system of
ext

tch
dimensionless temperature, the values chosen for this numerical example are

0n = ,—j%- Af = %5—, and 6, = %5— Substituting these values into equation 3.27



- 128 -

[
l——"— =1.12x107 B.18
g ext

and substituting this result into equation 8.17 yields

‘7,"-
[ tch

This value is at least within an order of magnitude of the value of Ty ® 1000f,,

= 360 B.19
ext

found from the transiently strained flames.
8.4.3 Summary of Numerical Results

As a result of numerical BLOTTNER calculations, the instantaneous value of
T is proposed as an approximate extinction criterion. It was necessary to
assume that the flame had been ignited and allowed to develop for a time #g
before ‘the onset of straining. When the straining began at £ = 0, the parameter
T is equal to £y Thereafter, the parameter 7 is given by equation B.18, which
shows that 7 will decrease to a minimum and thereafter increase. If the
minimum value reached by 7 is greater than the critical extinction value gz, no
extinction will occur, and the fuel consumption rate follows equation 3.24b for
all time. On the other hand, if the transient value of 7 drops below T,

extinction will occur.

't
For a fixed value of g, a range of different values of ﬂcg were tried. If
T

Tt
2

- were sufficiently small, the flame never went out, and equation 3.24b

T't
accurately predicted the fuel consumption rate. At a larger value of ﬂ:g (for a

flame closer to the center of the vortex), the flame went out. For progressively

Tt
larger values of -7;5%- extinction occurred at earlier and earlier times, and the
T .

accuracy of the extinction criterion and prediction of the fuel consumption rate

became worse.
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These inaccuracies are not serious, because if one is interested in

Tten

= which
T

prediction of the extinct core radius, it is found from the value of

separates the extinction from the nonextinction cases. Since the extinction

I't
criterion worked fairly well for the value of °g which came closest to not going
r

out, one should be able to predict the maximum extinct core radius fairly well.

I't
The worst performance of the approximation came at larger values of °g
T

where extinction occurred quickly, and as long as one is not interested in

predicting the time delay until extinction, this defect is not important.

Thus, use the following model to describe flame behavior: Calculate 7 from
equatit_)n 8.18. Thus, 7 will be a function of time which decreases to a minimum
and then increases. For flames where the minimum value of ¥ is greater than
Tezt, the flame does not go out and the fuel consumption rate m is found from
equation 3.24b for all tifnes. If the value of 7 drops below 7, then the flame
will go out, leaving unburned fuel and oxidizer. If the time at which T = Fey is
denoted as £,;, then the flame will be out for all £ > £,,;. As an approximation
to the fuel consumptién rate, find m from equation 3.24b for f < f,;, and set
m =0 for £ > L. Note that reignition is not allowed; if 7 should fall below Tez
and then later rise to a value greater than 7, the fuel consumption rate
remains zero. (This is in deference to the S shaped curve discussed in chapter

three.)
8.5 Application of Model to a Spiral Flame

Now, apply the model of large activation energy, strained, laminar diffusion
flames to calculate the properties of a flame which is being strained by a vortex.

The first property to be computed is the extinct core radius.
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8.571 The Extinct Core and its Maximum Radius

According to the model, extinction occurs when the instantaneous value of
7 falls below T,;;. By examining equation 8.16 for 7, one sees that, since g and I
are constants for a given problem, then for a fixed radius r, 7 is a function of
time. As seen from the graphs of 7 versus time in figure 8.4, the function
reaches a minimum value and then increases. For larger radii, the minimum
value of T becomes larger, until eventually the minimum value of 7 is greater
than the value required for extinction, Tgz. Thus, a maximum radius for

extinction may be calculated.

To simplify the calculations, and to allow analytical results, again take the

large -bll— limit. This limit is taken in the same way as before; assuming that
/o

2

2 1
I'SD@t
—-7-\:;-%-— is of order one. Additionally, the magnitude of {4 is unknown, therefore

do not exclude any terms containing £,. Equation B.16 for T becomes

2
Fooy 1 [ P P 8 Dos t
T 3| Do || nr?
T~ = B.20
ol 2 1
[T |5|T3Dft
[ Do 7’T'l"2
From equation 8.20, the time where 7 reaches its minimum value is
Tt | Tto
ﬁ?vuls——% B.21
mwr nr
and the value of tau bar at this time is
T s [ Tt, P
mtn, 116——% 8.22
nr 21 mr

According to the model, no extinction will occur if Ty, > Teze. Thus, no

extinction will occur for radii larger than a critical radius, which one may call
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Tezt mazr 1h€ Value of 7oz max is found by substituting equation 8.22 for 7, into

the inequalily Ty, > Toze. The resultis

ﬂra%t maz _\/E_[ Tezt
2 1 4] tg

r3pdt,

L

B.R3

Thus, the extinction criterion will never be satisfied for large radii, such
that 7 > 7Tezt mazr On the other hand, for smaller radii, such that 7 < Tezt maz T
will decrease to a minimum value which is less than T.;, so the extinction
criterion will eventually be satisfied (at a time yet to be determined). Seemingly,
there will always be an extinguished core, for all possible choices of I', Dy, to, and
Tezt. One sees that 7ex mer represents the maximum radius of the extinguished

core.
B.5.2 The Extinct Core Radius as a Function of Time

For radii less than 7g mez eventually T will drop below the critical
extinction value T,:. The next objective is to calculate the time which elapses

from the initiation of the vortex until extinction.

Find f.z as the tfme when 7 equals Tz, If equation 8.20 were used for 7,
one would find a cubic equation to solve for f,;; one which would have two
positive roots; one root where 7 decreases below the critical extinction value 7oz,
and another larger root where T increases above T.;. (This is true, of course,
only for 7 < Tgz mar- Larger radii never experience extinction, because if we set

T equal to Tey, the resulting equation would have no real positive roots.)

Cubic equations can be solved in closed form, but instead, examine
equation B.20 and note that the numerator consists of two terms. As T descends

to its minimum value, the first term dominates the second, thus



-132-

t = to 8.24
T 5T P .
3 n— |
F D 71'7'24
[Dn ‘n"ra

Note that equation 8.24 approximates equation B.20 only during the time
when 7 is decreasing. From equation B.20, 7 reaches a minimum and then
increases; from equation B.24, 7 decreases indefinitely. Thus, if one uses
equation 8.24, one will find an extinction time for all radii. For radii greater

than ezt mez the result is meaningless and should be ignored.

Setting 7 from equation B.24 equal to T, yields the following formula for

the extinction time:

¢ 2
fogp N —— DI 8.25
Tezt r

Just as with the burned out core, equation B.25 (which gives the time required
for extinction as a function of radius) may be rewritten to yield an extinct core

radius as a function of time.

7—
rZ, %"l —:—:;‘— B.26

The result will be valid only for radii less that gzt mae-

If Tozt maz IS substituted into equation 8.25, the time required for the

maximum radius extinct core to form will be found. It is

Lozt maz N \/Z_g' V10T ezt B.R27

Thus, one may view extinction either as sitting at a fixed radius which is
less than 7gy mer and waiting for extinction, which occurs at £ (given by
equation B.25), or as an extinct core of unburned fuel and oxidizer, whose
radius rg; grows as the square root of time (given by equation 8.28) for times

less than fgy mezr When the time is equal to fg; jue. the extinet core radius is
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equal £0 Tgzt mae. This is the maximum radius of the extinct core, and it grows

no larger.
8.5.3 The Burned Out Core

The proposed model for large activation energy, strained, laminar diffusion
flames provides that the fuel consumption rate m is calculated from equation
3.24b until extinction occurs at f,;. Recall the results of chapter four, where
the flame at a fixed radius would consume all available fuel and go out at a time

i,

No work has been done assessing the mutual interaction of exhaustion of
fuel and extinction. For this reason, the phenomena will be considered
indepex}dently. The previously found f,; is valid only if the flame does not
exhaust its fuel supply first. Shortly, t* will be calculated, assuming that m is
given by equation 3.24b until the fuel is exhausted. This result will not be valid

if extinction occurs first, since equation 3.24b will no longer hold.

Thus, at a given radius, one will not observe both extinction and burnout,
but whichever one occurs first. If f,; < t{* no burned out core will be seen,
since the flame will be extinguished by high strain rates before the fuel is
exhausted. if tezs > t*, the fuel will be exhausted before the flame is strained

out.

The calculation of ¢* has been discussed previously and will not be
discussed in detail. The present calculation differs from that of chapter four in
three respects: equation 3.24b is used exclusively rather than equations 3.24a
and 3.24b; the value of 7 is found from equation B8.16 rather than from equation
4.7, and the flame has consumed some fuel during the time ¢4 it burned with no

straining. Repeating the previous calculation with these changes results in the

following equation for £*, valid in the limit as BP— - oo,
0
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2 1 [T 2

3 ﬂ.z [ p g' 3p

I B.2B
16 l ]

Equation 8.28 does not yield a real positive value for £* for certain radii. If
equation B.28 were interpreted as specifying a burned out core radius r* as a

function of time, one sees that 7* does not go to zere at ¢ = 0, but is equal to

£ tg —7—‘_9-. This is the effect allowing the flame to burn for a time f4 before

mw

starting the vortex, and explains why equation 8.28 does not yield a burnout

time for lesser radii.
B.5.4 Burnout or Extinction?

Compare t,,; from equation 8.25 and t{* from equation B.2B. Find the

smaller of the two. Rewrite equation B.25 as

2
- 1
3Dt to r]s
3 ~ — B.29
nr Tezt | Do
From equation B.28, one sees that
2 L 1
I"SDOSt# rBsz]g-
B.30
nr? > l 16 |

From equations B8.29 and B.30, one can guarantee that ¢* > fg; at all radii,

provided that

8.31

Therefore, if the condition expressed by equation 8.31 is met, extinction will
never be observed at any radius (even those less than e maz) because

exhaustion of fuel will occur before extinction does.

When this inequality is not satisfied, then t* occurs before £, for small
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radii, and £,; occurs before {* for larger radii. The limiting radius may be
found by setting t* from equation B.28 equal to f,; from equation 8.29. The

result is that for radii such that

[ p, 1%
.Dg 3
2 T
ks : 5 B.32
PEpb, m_ 1D
°* 18 37T |7,

burnout from exhaustion of fuel will occur before extinction. For large radii
which do not satisfy inequality 8.32, extinction will occur before burnout. (This

is true only for radii less than Tez¢ maz-)

Thus, just as equation B.23 for 7Tuz mer Specifies a maximum radius for the
burned out core, equation B.32 specifies a minimum radius. The result will be
an annular region in which the flame has been strained out. The inner core is
an artifact of the initial period to, when the flame burned with no straining.
Indeed, equation B.32 shows that the radius of this inner region will be of order

2
b

| - If one thinks to secure a more stringent limitation than equation 8.31

for the occurrence of extinction by requiring that the outer extinction radius
from equation 8.23 be larger than the inner radius from equation 8.32, one finds

that for the outer radius to be less than the inner radius, either the assumption

that -g—— is large must be viclated, or else the denominator of the right side of
0

equation B.32 must be nearly zero. Since these formulae have been derived

assuming large TDI; one cannot use these formulae otherwise. If the
0

denominator of the right side of equation B8.32 is set to zero, one recovers

equation B.31. Thus, the inner radius will be smaller than the outer radius.
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8.6 Summary

The calculation will be discontinued at this point, for reasons to be
explained. To summarize the results so far, a model of large activation energy,
strained, laminar diffusion flames has been proposed. According to the model,
until extinction the fuel consumption rate is calculated from the Burke-
Schumann seolution, equation 3.24b. The onset of extinction is predicted by the
transient Damkohler number, which is the parameter 7 divided by a

characteristic chemical time.

To verify the proposed model, numerical calculations were performed using
BLOTTNER. One important result was the necessity for appropriate initial
conditions. If one tries to solve the problem of a vortex initiated at the same
time as the reactants are brought together, then the initial conditions would be
those used in chapter four, a semi-infinite region of fuel in contact with a semi-
infinite region of oxidizer, with no product present or any region of elevated
temperature. For large activation energy reactions, both numerical
computation and practical experience show that the reactants simply diffuse
into one another with negligible reaction. (For a contrary view, see the paper by
Lina'n and Crespo (1978), and the discussion in chapter three.) Diffusion flames
are possible with hydrocarbon fuels and air, therefore there must be some

mechanism for establishing the flame on the strongly burning solution branch.

Various possibilities were discussed in chapter three. One suggestion was
the formation of a region of premixed fuel and oxidizer as the two diffused into
one another, which would then be burned by a premixed flame propagating
along the flame sheet from a region where ignition had already occurred. This
possiblity is attractive, but would violate the assumption that flames behave as
if they were one-dimensional. In addition, to explain scme observed phenomena

(discussed in chapter three), such as the lifting of a diffusion flame from a
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splitter plate, would require knowledge of how rapidly premixed flames

propagate in thin fuel-oxidzer layers.

Another possibility lies in the conditions at the trailing edge of the splitter
plate. If the diffusion flame does not have a zero thickness as it leaves the

trailing edge, but instead has a thickness dg, then the initial Damkdhler number
2
0
Dotch. ‘

would be Thus, the flame would be established on the strongly burning

branch of solutions. It is this situation which comes closest to the initial
condition actually used here for numerical calculations. Initial concentration
and velocity profiles were specified which correspond to a flame which was

already yignited and allowed to develop for a time f3. Thus, when the vortex

t
straining was imposed, the flame had an initial Damkohler number of t—°—.
ch

Unfortunately, the results were dependent on the value of £y chosen; a flame

with a larger initial value of £y would more resistant to straining out.

The first result was the maximum extinct core radius 7ez mezgiven by
equation B.23. This result showed that for every choice of the parameters £y,
Tezt, and T, ‘extinctiori would be observed. For radii less than 7.z mez the
transient Damkchler number 7 would eventually fall below the critical extinction

value Toz .

An approximate formula, equation B.25, was derived which predicted the
time required for extinction to occur. Interpreting the result as an extinct core,
growing in time, one sees that the radius of the extinct core would grow as the

square root of time, until the maximum radius T,z mq is reached.

Calculation of the burned out core radius, as in chapter four, modifies the
earlier conclusion that extinction would always be observed. If the time

required for extinction is compared to the time required for burnout, no
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extinction will be seen unless it occurs before burnout. Thus the more stringent

requirement, expressed by equation 8.31, that extinction will never be observed

L
3

at any radius as long as — -

to | Do
Tazt l. r

. 3n? |3 . .
is less than l—l—s— . When this requirement

is not met, extinction will be seen in an annulus whose outer radius is Tez gz
and whose inner radius is given by equation 8.32. (Note that the inner core of

combustion products is an artifact of the time fg the flame burned with no

2
]

2

straining, and in any case the radius of this inner core is small, of order

compared to the outer radius.) The time required for this structure to form is

ezt maz» aNnd is given by equation B.27.

Once the annulus of strained out flames has formed, the calculation cannot
be continued. Ignorance of the ignition process was circumvented by assuming
an initial flame which was already lit, but the question of the eventual reignition

of strained out flames cannot be avoided. The transient Damkdhler number 7

L

3 for large times.

decreases to a minimum and then increases, behaving like

Thus, flames which were strained out could become relit by contact with

adjacent flames which were not extinguished.

In addition, consider two adjacent flames. If they were strongly burning,
burnout due to exhaustion of fuel is equivalent to saying that the thickness of
an individual flame, 6, is comparable to the interflame distance A. If the flames
are extinct due to excessive strain rates, § will still eventually exceed A. In this
case, unburned fuel and oxidizer will still be present, and they will merge to
form a homogenous combustible mixture. So, not only would one have to deal
with the possible reignition of diffusion flames, but premixed flames are also a

possibility.
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The inclusion of either of these effects is beyond the present analysis.
Current knowledge of diffusion flames does not adequately describe the ignition
process. In addition, this analysis is based on treating each piece of the flame
independently as a one dimensional strained flame. Allowing one piece of flame
to be ignited by its neighbors, or for adjacent flames to merge, forming a
mixture capable of supporting premixed flames, would undermine the basic
assumptions of the analysis. Even if the physical processes could be adequately

modeled, they would be difficult to incorporate into the analysis.
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Figure 2.3 The vortex is located at the origin. An ini-

tially flat flame is displaced a distance a from
the vortex. A given piece of the flame is
identified by specifying a value of A.
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Figure 4.3 Specific fuel consumption rate m for a tran-

siently strained H, + F' flame as a function of
time. The transient strain rate is given by
equation  2.13. Here, the parameter
I/nr? =107 sec™t.
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Figure 4.5 Specific fuel consumption rate m for a tran-

siently strained Hy + F' flame as a function of

time. The transient strain rate is given by
equation  2.13. Here, the parameter
I/mr? =109 sec ™.
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Figure 4.6 Specific fuel consumption rate m for a tran-

siently strained Hy + F' flame as a function of
time. The transient strain rate is given by
equation  2.13. Here, the parameter
T/nr? = 10% sec™L.
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Figure 4.11 Specific fuel consumption rate m for a tran-

siently strained Hy + F flame as a function of
7. The transient strain rate is given by equa-

tion 2.13.

T/nr? =107 sec™L.
a function of time from equation 4.7.

Here, the

parameter
The variable 7 is found as
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Figure 4.12 Specific fuel consumption rate m for a tran-

siently strained Hy + F’ flame as a function of
7. The transient strain rate is given by equa-

tion 2.13.
T'/nr? = 10% sec™t.

Here, the

parameter
The variable T is found as
a function of time from equation 4.7.
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Figure 4.13 Specific fuel consumption rate m for a tran-

siently strained H,; + F' flame as a function of
7. The transient strain rate is given by equa-

tion 2.13.

T/nr? = 105 sec L.
a function of time from equation 4.7.

Here, the

parameter
The variable 7 is found as

1078
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Figure 4.14 Specific fuel consumption rate m for a tran-

siently strained H, + F' flame as a function of
7. The transient strain rate is given by equa-
tion 2.13. Here, the parameter
I'/mr? = 10% sec™!. The variable 7 is found as
a function of time from equation 4.7.
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Figure 5.1 The dimensionless core radius n* is shown as
a function of t/t.,. The results were obtained

from equation 5.16.
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The rate of growth of the core volume, C, is
made dimensionless by I'*/3D}”3 and shown

as a function of t/t,,. The results are from
equation 5.17.
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Here M, the augmented fuel consumption
rate of the flame due to the presence of the
vortex, is made dimensionless by po[*/3D¢”3

and shown as a function of £ /t,,.
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When the offset distance a is not zero, a cir-
cular annulus about the center of the vortex
will contain less of one reactant than the
other. Here, the vortex lies to the left of the
flame, so the supply of the reactant on the
right will control the burnout time, and thus
the radius of the burned out core. The supply
of this reactant available at a given radius r
is proportional to the area of the shaded
region.
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Figure 5.5 Temporarily ignoring the effects of finite

chemical reaction rates, the dimensionless
burned out core radius n* is found as a func-
tion of t/f in equation 5.36. The apparent
growth in the core radius as ¢ -» 0 is illusory,
because the dimensionless core radius n* con-
tains a factor of 1/Vt. Since the core radius
can never be less than a, and indeed 7* - a
ast » 0, n* behaves like a /vt for small t.
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When the chemical reaction is assumed to be
infinitely fast, a nonzero offset distance a
produces a time scale £, which governs the
evolution of the spiral flame. Here, the
results of equation 5.38 are plotted. The
dimensionless augmented fuel consumption
rate, M, made dimensionless by po['*3D{/3, is
shown as a function of ¢t /f.
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Figure 5.7

When the burned out core has a radius of 7%,
the combustion product in the core is propor-
tional to the volume of fuel originally con-
tained within a circle of radius r7* about the
vortex, or to the area of the shaded region in
the figure. Since a is known, the extent of
the core may be given as r*, A* or 6*
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Figure 5.8

Here the effects of both finite chemistry and a
nonzero offset distance a have been con-
sidered. Equation 5.39 has been graphed,
showing the dimensionless core radius n* as a
function of ¢/¢y. The parameter g = £/t
represents the ratio of the two characteristic
time scales. The apparent growth in the core
radius as ¢ - 0 is illusory, because the dimen-
sionless core radius n* contains a factor of
1/VE . Since the core radius can never be less
than a, and indeed r*> a as t » 0, n*
behaves like @ /Vf for small t.
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Figure 5.9 The rate of increase of combustion products

in the core, C, made dimensionless by
['%3D473, is evaluated from equations 5.42
and plotted against ¢ /£, for several values of
the parameter g.
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Figure 5.10 The augmented fuel consumption rate due to
the vortex, M, has been made dimensionless
by pol'?3D3$”3 and plotted as a function of
t/t.n for several values of the parameter B.
The data were obtained by evaluating equa-
tions 5.40.
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Figure 5.11 The data of the previous figure have been
replotted, with ¢ /£ as the time variable rather
than ¢/t;,. One sees that for large values of
B. ten is the controlling time scale, whereas
for small values of 8, £ governs the increase
of the fuel consumption rate to its constant
steady state value.
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Figure 6.2

The dimensionless core radius n* is plotted as
a function of £ /t.,. The data are from equa-
tion 6.2, which was derived using equation 6.1
for m rather than equations 3.24.
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Figure 6.3 The core growth rate, C, made dimensionless

by I'?3D§73, is found from equation 6.3 and
plotted as a function of ¢ /¢,,.
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Figure 6.4 The augmented fuel consumption rate, M,

made dimensionless by po['*°D¢/3, is found

from equation 6.4 and plotted as a function of
t/teh.
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Figure 6.5 Initial conditions for the problem of section
6.7. Fuel and oxidizer are separated into
strips of initial width d, creating an infinite
number of flames, parallel to the z axis and
initially a distance d apart. Straining along
the z axis creates an inflow in the y direc-
tion, convecting the flames closer together.
This decrease in the spacing between adjacent
flames, coupled with the increasing thickness
of each individual flame, causes the flames to
interact and eventually go out.
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Figure 6.6 If infinitely fast chemical reactions are

assumed, one obtains the solution to the
flame interaction problem as equation 6.186.
One may express the result in the form of an
attenuation ratio, the ratio of the actual fuel
consumption rate of an individual flame to
the fuel consumption rate as if its neighbors
were not present, m/m, The attenuation
ratio is a function of the ratio of the thick-
ness of an individual flame to the spacing
between flames, 6/A.
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Figure 6.7
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Applied to the spiral flame problem, the
analysis allows one to see how sharp the edges
of the burned out core really are. Here the
attenuation ratio is plotted as a function of
r/r* The data are from equations 6.16 and
6.18.
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Figure 6.8 Just as in the infinite reaction rate limit, one

also obtains an attenuation ratio m/mg, as a
function of 6/A in the weak reaction limit.
Here the solid line is obtained by evaluation
of equation 6.23, and the dashed lines are the
asymptotes of equations 6.24.
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Recalculating the augmented fuel consump-
tion rate, M, for times small compared to the
chemical time, and incorporating the new
description of the interaction of adjacent
flames results in equations 6.31. The result is
plotted here, along with the previous result
from equation 5.30a. Once again, M, is made
dimensionless by pgI'*/3D}”® and is a function
of t/t,,. The principal difference is the
behavior near the origin; the new solution
goes like (t/t.,), whereas the old goes like
(t /ten )27,
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Figure 7.1 An idealized representation of the experimen-
tal setup of Rogers and Marble (1956). A con-
dition of steady burning is shown here.
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The same configuration as the previous figure,
only under screeching conditions. The
unstable oscillations corresponded to the
transverse mode of the combustion chamber,
thus the acoustic oscillations are from top to
bottom in this figure. The flame sheets are
wound up by vortices alternately shed from
the top and bottom of the flameholder.



~184-

Figure 7.3
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To calculate the two-dimensional acoustic
field caused by the spiral flame, one imagines
the spiral flame occupying the z axis in a
three-dimensional region, and an observer at
O', a distance z from the spiral flame. The
pressure pulse at O’ can be obtained by
superimposing the pressure pulses from a
line of three- dimensional sources distributed
along the z axis.
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Figure 7.4 The pressure pulse seen at a distance z from

the vortex, when z is large enough to lie in
the far field, is given by equations 7.8. Here
the pressure rise, P — Py, made dimensionless
by (a — 1) poI'*3D}’3 \fc /(zt,,) is plotted as a
function of (¢ —z/c)/ty,.
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Figure 8.1

The fuel consumption rate per unit flame
area is a function of time for a flame which
has developed for a time t; and is then
strained according to equation 2.13. The
BLOTTNER results are shown as solid lines, in
dimensionless form, with m /oy, /Dy plot-
ted against ¢/t,, for several values of
(Tter)/(m7r?). The initial age of the flame, tg,
was equal to 10%t,, for all cases. The fuel
consumption rates predicted by equation
3.24b are shown as dashed lines.
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Figure 8.2 Here, the maximum temperature which

occurs in the middle of the flame is shown as
a function of time. If the Burke-Schumann
solution were exactly valid, then T,, would
be equal to the adiabatic flame temperature,
which is 4.5T, in this example.
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Figure 8.3

The dimensionless strain rate &t,;, from equa-
tion 2.13 is shown as a function of ¢ /¢.,. The
BLOTTNER solutions for the strain rates
shown here have been given in the previous
two figures.
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Figure 8.4

For the strain rates shown in the previous
figure, equation 8.16 was used to find T as a
function of time. Shown in dimensionless
form, 7/t., is a function of ¢ /¢,.




