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ABSTRACT

Geometrical optics and self-consistent field techniques are
used to determine the properties of multireflector optical resonators
in which the field distributions are multiply-reflected and travel in
clockwise and counter-clockwise directions in the cavity. Two types
of resonators are considered, a symmetric N-mirror resonator whose axis
is a regular N-sided polygon and s nonsymmetric four-mirror resonator
whose axis is a parallelogram.

The geometrical optics approach leads to sets of coupled non-
linear difference equations which describe the paths of optical rays in
the resonators. Approximate solutions to the equations are obtained
and a calculation of the first correction term is carried out in the
case of Lhe symmetric cavity. It is shown that the approximate analy-
gis may also be formulated in a chain matrix representation. Stability
conditions are obtained which determine the mirror curvatures and
spocings for high or low-loss multireflector resonators. The sel ol
difference equations may be reduced to recurrence relations which
enable the path of an optical ray in the cavity to be calculated ex-
actly unsing a digital computer.

Integral equations are obtained which determine the mode
distributions in the symmetric‘N-mirror and nonsymmetric four-mirror
cavities. The equations are not solved exactly except in the particu-
lar case of a "pseudo-confocal" symmetric resonator which has non-

spherical mirrors. Solutions to the general integral equations are



determined in the zero wavelength limit. Resonance conditions and de-
tailed descriptions of the field distributions are obtained for both
the symmetric and nonsymmetric resonators. For the particular cases
of the symmetric three and four-mirror resonstors the diffraction
losses are obtained by transforming the integral equaticns to a form
such that existing numerical solutions may be used.

Two-mirror cavities are treated as simplifications of the
multireflector theory. The results of other authors are obtained and
extended. The expressions for lhe resonance condition and minimum
mode volume for the symmetric nonconfocal resonator are found to differ
slightly from those previously derived. Amplitude and phase distri-
butions throughout the volume of a plane-parallel Fabry-Perot regonator

are calculated numerically on an IBM 7090 computer.
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CHAPTER I

INTRODUCTION

1.1 A Brief History of Laser Development

In 1958 Schawlow and Townes (1), Prokhorov (2), and Dicke (3)
independently proposed that maser concepts (4) could be extended to the
optical and infrared regions of the spectrum. They realized that at
these high frequencies the extremely monochromatic radiation and co-
herent amplification which are characteristic of atomic and molecular
oscillators and amplifiers would be great value in many areas of’ scien-
tific interest.

Two years later Maimen (5,6) announced laser action ("micro-
wave" is replaced by "light" in the acronym maser) in ruby at 6943 X,
This was followed by the He-Ne laser (1.153u) developed by Javan et al
(7) in 1961. The same year Snitzer (8) obtained laser action at 1.06p

+
in Nd3

- doped glass. The first semi-conductor laser (GaAs at SMOOR)
was announced almost simultaneously by three different groups in 1962
(9,10,11), a circumstance which clearly indicates the large amount ol
research being performed in the laser field.

The preceding examples represent the first optical masers in
four different classes of materials : single crystals, gases, amorphous
hosts, and semi-conductors. In each group the initial laser has been
joined by many others. The rate of development in this area is so

great that no attempt will be made here to list all known examples of

laser action. The interested reader is referred to the recent
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literature and to the many available rcview articles and bibliographies
[see, for example, (12,13,1M,15)2.

Research in the laser field has not been restricted solely to
the search for new "laser lines". Basic knowledge concerning the opti-
cal and infrared properties of matter has been obtained with the laser
as well as because of it. A new field of physics, that of non-linear
_optics, has been opened up and Raman spectroscopy has received new
interest. Gaseous lasers have made possible ultra-high resolution
spectroscopy in the infrared range and have been proposed as precise
measuring devices in gravitational and seismological experiments. The
development of the giant-pulse or Q-switched laser (16) has led to new
investigations of the interaction of high-energy light beams with
matter. Naturally the commercial aspects of lasers have not been neg-
lected. An extremely large portion of present research is devoted to
optical communication systems and high resolution radars, and high-
power pulsed lasers have been used in a variety of applications ranging
from micro-welding and machining to an investigation of the destruction
of cancer cells.

One could speculate indefinitely about the future of the
optical maser. As a tool for basic research it will definitely achieve
the status of the microwave and optical techniques which proceeded it.
However the rate of development has been so great that no one can pre-
dict with certainty which will be the most important applications nor

which will be of greatest commercial value.



1.2 A Survey of Previous Contributions to the Theory of Optical

Resonators

The basic model for a laser is one in which light is co-
herently amplified as it travels through an active medium. The gain
per unit length of such media is so small that in order to achieve
gppreciable amplification the path length would be prohibitively long.
To avoid this the laser material is placed in a resonant structure such
that the radiation passes through the same volume of material many
times, each time being amplified, before i1t escapes from the resonator.

The resonant frequency of a cavity is determined by the re-
quirement that characteristic dimensions of the cavity be of the order
of a half wavelength. 1In the microwave and even the millimeter-wave
regions the problems of constructing such a resonator are easily over-
come. However at optical and infrared frequencies the cavity dimensions
are of necessity very much greater than a wavelength and consequently
the resonance condition is satisfied for a wide range of frequencies.
Since the gain of the active medium is small it is necessary that the
loss of the cavity be minimized. The narrow cavity linewidths which
are associated with such low-loss or high-Q resonators are much less
than the linewidths of the atomic or molecular transitions involved in
the laser process. As a result it is possible for light at several
closely spaced frequencies to simultaneously satisfy the resonance con-
dition for the cavity and experience sufficilent amplification to sustain
oscillation. There may exist non-linearities which would allow the

most favored mode to suppress oscillation in those which are less



favored. However the spacing of the modes is sufficiently small that
very small changes in cavity dimensions or other characteristics may
cause the oscillation to shift from one mode to another with accompa-
nying changes.in frequency.

The first considerations of the multiresonant properties of
the electromagnetic fields in a closed resonator were made by Rayleigh
in 1900 and Jeans in 1905. They independently showed that the number
of modes of oscillation per unit volume in a wavelength interval dA is
given by §%%L. The derivation of Planck's black-bedy radiation law
follows directly from the representation of the electromagnetic field
inside a cavity as a number of independent harmonic oscillators cor-
responding to the various normal modes of oscillation of the cavity and
having the energy distribution determined by Planck in 1G01.

The original proposals for infrared and optical masers (1,2,3)
suggested the plane-parallel Fabry-Perot interferometer (17) as a reso-
nator. In their paper Schawlow and Townes presented the initial analy-
sis of such a multimode cavity and suggested methods of mode selection.
In 1961 self-consistent numerical celeculatione by Fox and Li (18) showed
that after light is reflected back and forth many times in the Fabry-
Perot interferometer a state is reached in which the relative field
distribution does not vary and the amplitude decays at an exponential
rate. Such steady-state field distributions are regarded as normal
modes of the resonator. It was found that the diffraction losses of
low order modes of this type are significantly less than those arrived

at by the Schawlow-Townes analysis.
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At the same time Boyd and Gordon (19) presented an analytic
description of an open resonator formed by two identical spherical re-~
flectors separated by a distance equal to the common radius of curva-
ture. - The use of two confocal mirrors as an interferometer had previ-
ously been described by Connes (20,21). In their paper Boyd and Gordon
alsco included a treatment of symmetric nonconfocal resonators.

The following year Boyd and Kogelnik (22) extended the analy-
sis of resonators with sphericsl reflectors to nonsymmetric cases.
Goubau and Schwering (23) had previocusly investigated the guided propa-
gation of electromagnetic wave beams and some of their results are ap-
plicable to the analysis of open cavities. The nonconfocal resonator
was also treated numerically by Fox and Li (24) and by Soohoo (25).

The self-consistent field analysis initiated by Fox and Li
(18) leads to integral equations which cannot be solved in general.
Tang (26) and Culshaw (27) attempted to apply variational techniques
to these equations, however it was later pointed out that their results
are inconclusive (28,29).

- Several other approaches to the analysis of Fabry-Perot reso-
nators have been followed. Kotik and Newstein (30) and Barone (31)
have investigated the problem by describing the cavity fields in terms
of plane-wave spectra (32). Vainshtein (33) has developed an analysis
for open resonators which is based on a rigorous theory of diffraction
al Llhe open end of a waveguide. Zimmerer (34) has shown that the spheri-
cal mirror Fabry-Perot resonator may be derived from an oblate sphe-

roidal resonator and Specht (35) has completed an analysis of spherical



mirror cavities in an oblate spheroidal coordinate system which is valid
at optical wavelengths.

For gas lasers the existing optical resonator theories have
been entirely adequate but with solid state lasers in which the reso-
nator is formed by depositing highly reflecting coatings on the plane
parallel ends of the crystal there has been little consistent agreement
between experimental observations of the field distributions and reso-
nant frequencies and the theoretical predictions. Recent experiments
by Evtuhov (36) provide an explanation for this discrepancy. He found
that ruby crystals with nominally plane parallel faces appear to have
curved surfaces when examined in a Twyman-Green interferometer. This
effective curvature arises Crom the spatlal variation of the refractive
index throughout the crystals. Reinterpretation of the solid state
resonator in terms of spherical rather than plane mirrors leads to

close agreement between experiment and theory.

1.3 Content of this Paper

This paper extends the analysis of optical resonators to
symmetric and nonsymmetric structures where the steady state field
distributions are formed Ly Lhe constructive interference of waves
which are multiply-reflected and travel in clockwise and counter-
clockwise directions in the cavity rather than back and forth between
two mirrors. Two approaches to the problem are presented, a geometri-
cal optics method and a self-consistent field analysis.

In Chapter II the methods of geometrical optics are used to



describe the palh of a ray in the resonator. This approach leads to a
set of coupled, non-linear difference equations which, with one valid
approximation, are easily linearized. This approximation also allows
the description of the resonator to be written in a chain matrix repre-
sentation. Relations among the resonator parameters which are neces-
sary for stable operation are obtained.

A derivation of the integral equation for the fields in a
symmetric multireflector resonator based on the vector Green's theorem
is presented in Chapter III. The analysis is also extended to non-
symmetric resonators. The integral equations are discussed and =o-
lutions are given.

Chapter IV contains analyses of symmetric N-mirror and non-
symmetric four-mirror cavities based on the notions of Chapter III and
valid for very small wavelengths. A complete description of the normal
modes and resonator fields is obtained as well as the resonance con-
ditions. The diffraction losses for symmetric three and four-mirror
cavities are computed from available numerical solutions of the integral
equations.

In Chapter V two-mirror resonators are treated as simplifi-
cations of the more complicated multireflector systems of Chapter IV.
The rcoults of Boyd and Gordon (19) and Boyd and Kogelnik (22) are
obtained and extended. The field distribution in the plane parallel
resonator which cannot be described analytically is compuced numerical-

1y on an IBM 7090 computer.
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CHAPTER II

THE GEOMETRICAL OPTICS OF MULTIREFLECTOR OPTICAL RESONATORS

2.1 The Symmetric N-Mirror Resonator

2.la Mirror-Lens Equivalence

Several sections of a resonant structure using N identical,
evenly-spaced, spherical reflectors are represented in Figure 2.1. The
center-to-center spacing of the mirrors is 4 and their common radius of
curvature is b. The axis of the resonator is the N-sided regular poly-
gon formed by a line joining the centers of consecutive mirrors. In
order that the polygon be closed it is necessary that the tilt angle a,
defined as the angle between the resonator axis and the normal to a

reflector at its center, satisfy the condition

o = — 7 (2.1)

For the usual situation in which the reflector separation is
much greater then the reflector diameter, a spherical reflector with
radius b and tilt angle @ can be replaced by an equivalent lens. The
distance to the point of intersectiaon of a focussed ray and the lens
axis is made equal to the distance to the point of intersection between
the corresponding reflected ray and the axis in the reflector system.
Distances are measured along the axes of the respective systems.

Figure 2.2 illustrates the geometry of the equivalent re-
flector and lens systems. Angles such that a ray must be rotated in a

clockwise manner to coincide with the axis are defined as positive.



Fig. 2.1 A portion of a symmetric N-mirror resonator.
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For paraxial rays the following relationships can easily be obtained

from Figure 2.2:

=7+ 8 (2.1a)

olo

(2.1v)

B= -y (2.1c)

These equations are easily solved to give

Tyt = = (2.2)

A closed system with N identical, evenly spaced, spherical
reflectors can now be represented as in Figure 2.3, where the oblique
lines correspond to the positions of the equivalent lenses. 4 is the

center-to-center spacing; r, and s, are the heights of the ray at the

n n

reflector or lens surfaces measured perpendicular to the axis, and r

and sﬂ are the slopes of the ray reflected from a mirror or emerging
from an equivalent lens measured relalive Lo the axlis of the system.

2.1b Difference Equation Formulation

For small angles tan Y=71 where tan vy is the slope of a ray
previously defined asg rﬁ or s/. Algo ¢ cos & = r, or g,. With the
substitution of these relations into 2.2 one obtains from Figure 2.3

the following set of difference equations which describe the path of a
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Fig. 2.2 Equivalent reflector and lens systems.
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Fig. 2.3 Equivalent lens representation of the symmetric resonator.
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ray in the cavity or through the edquivalent lens system:

s, - T, =Ty L& - (rn + sn) tan a] (2.32)
_-] [
- = ' + R

1 " Sn T S [& (rn+l + sn) tan aJ (2.3b)
28p

r)o- sy = —— 2 (2.3¢)

b cos @

2r

8! - p! . = —nDtl (2.3d)

+
n ntl b cos &

Exact analytical solutions to this set of simultaneous, non-

linear difference equations have not been obtained.

2.1c Approximate Solutions and Stability Conditions

Since 4 >> (rn + Sn) tan 0 a good approximation to the so-
lution of the difference equations may be obtained by neglecting these

terms in 2.3a and 2.3b:

s(o) - r(o) = r(o)' 2 (2.h4a)

n n n

(o) (o) (o) o

n+l ) Sn B Sn t : (L.ub)
. (0)

RO TN (- )

n n b cos ¢

(o) _ (o) ) (2.%)

n n+1 b cos O
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Elimination of three variables leads directly to a linear,

homogeneous difference equation for the approximate solution rio):

(o) r Loo\e (o) , (o)
- 212 - — - + = 0 2.

I‘n+2 I 1 b cos oz) l? "nt1 " Tn (2:5)

An identical equation for s(o) could also be written since omission of
n
the last terms in 2.3a and 2.3b removes the distinction betveen r(o)
n
and s(o).
n
Define
'{; 2 — Ty
2 (1L - —& ) -1=cos ® (2.6)
b cos ¢

then rio) will remain finite and have the form (37)

r(o) = c(o) cos nf + c(o) sin nd (2.7)

n 1 2
provided that

0<s(1-—_% )ys<q (2.8)

b cos ¢
If convex mirrors are excluded 2.8 becomes
o<t <~ (2.9)

t 1
The other quantities s(o), s(o) 3 r(o) can be obtained in
n n n



1k

terms of Sn

(o) r(o) + r(o)

S = n n+l (2010)
n 2 cos g
(o) Sgi% + (1-2 cos g) sgo) (2.11)
n 9
24 cos 5
0 (o) (o)
L) (2 cos 5 -1) s - s (2.12)
n
24 cos g

In order to complete the description of the ray path in the
resonator it is necessary to include two boundary conditions. For

example let rgo) = dq and séo) = dp. Then from 2.7 and 2.10

. . 1
r(o) _ d, sin n® - 4, sin (n - E) ] (2.13)
n sin,g
2
l .
Séo) _ d, sin (n+ E)6 - d, sin nd (2.14)
sin 9
2

Provided that the stability condition 2.9 is satisfied these
equations give the perpendicular distance of the ray from the axis as
it is incident for the nth time on two consecutive mirrors in the reso-

nator.
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2.1d Derivation of the Stability Condition from a Consideration

of Lens Astigmatism

The stability condition for the symmetric N-mirror resonator
may be obtained without setting up the difference equations which de-
scribe the path of a ray in the resonator. This is accomplished by
noting that an on-axis point in the resonator is an off-axis point for
each mirror (or lens). The resonator axis and a normal to the reflector
at its center correspond respectively tothe oblique principal ray and
the principal axis of the single lens.

The astigmatism of a lens (38) is specified relative to two
principal planes, the tangential or primary plane described by the
oblique principal ray and the principal axis and the sagittal or second-
ary plane which is perpendicular to the tangential plsne. When rays
from an off-axis point fall on the lens different amounts of convergence
are introduced in the tangential and sagittal planes. As a consequence
rays lying in the primary plane come to one focus and those lying in
the secondary plane come to another.

If the angle between the oblique principal ray and the princi-
pal axis is ¢, it can be shown that for off-axis points the lens is

characterized by two principal focal lengths:

tangential focal length fy = £ cos (2.15)

sagittal focal length £, = L (2.16)
cos o
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where £ is the focal length for on-axis object points.
Pierce (39) has shown that for stable propagation through a
series of parallel lenses of focal length f and spacing £ it is neces-

sary that
0<=<§ (2.17)

It is evident from Figure 2.3 that the stability of the
resonator will be determined by the behavior of a ray in the tan-
gential plene (i.e. the plane of the diagram). A spherical reflector
with radius of curvature b has a focal length of % for on-axis object

points, hence substitution of 2.15 into 2.17 glves

0s =t <o (2.9)
b cos ¢
This is the same condition derived earlier in Section 2.lc
from the requirement that solutions to the difference equations remain
finite.

2.le Matrix Formulation of the Approximate Solution

The linear equations 2.4a to 2.L4b which result when the non-

linear terms in 2.3a and 2.3b are neglected may be written in mabtrix

form,
/ \
/ré?) \ / 1 A 2 rgfi
( ) = ( | (2.18)
I'(o)' / - 2 1 - 24 ‘ r(o)';«,
v on |\ bcosa b cos 0 DY
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The transformation matrix appears as a squared matrix since
the linearizing approximations have removed the difference between rio)

(o)
n

and s

"input" and "output" parameters the trans-

Since it relsates
formation matrix corresponds to the chain matrix of linear circuit
theory (40) and displays similar properties. One of these properties
is that the chain matrix for a cascaded series of quadrupoles is equal

to the product of the chain matrices of the component quadrupoles,

hence from equation 2.18

r(O)‘ ,/f 1 L 2n /r(o) \
n / o

; I N R TS
RO U / \\r@) /
n b cos o b cos & o

A second characteristic of a chain matrix is that it is
unimodular, i.e. its determinant equals one. From the theory of metri-

ces (41), the Nth power of a unimodular matrix M is

m
11 N-1 N-2 12 N-1

My = (2.20)

(2) mp Uya(8) - Upp(®)

/m U (&) U (a) U (a)

where
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and UI\T are the Chebyshev Polynomials of the second kind

UN(a) _ sin L(N + l). cos—la]
e

Using 2.20 and the definition of © given by 2.6, equation

2,19 reduces to

(o) fin né - sin (n-%)e 2 sin nb /r(o)
n [ o
— l H
rﬁo) “l 7 (1-cos —g-) sin n® (2 cos g-l) sin n®- gin (n—%)?/ (()O)
(2.21)
If the 1Inltial conditions are given as réo) = dl and séo) = d,
) dn - d
it is evident from Figure 2.3 that r(o) = _2 1l and 2.21 becomes
: gure 2.3 o T
ISO)\‘\ sin nd - sin (n-%)e £ sin 0 %11 \
1 /
sin E a %L
(0)/ 2 0y . 8 1y ool 2
‘fn / -1 (l-cos--é-) sin n® (2 cos b—-l)mn nd-sin (n-g) -

(2.21')

2.1f Tterative Corrections to the Approximate Solutions

An iterative procedure can be used to calculate corrections

to the approximate solutions. This is done by substituting the approxi-

mate solutions into the terms in equations 2.3a and 2.3b which were
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.originally neglected. An inhomogeneous difference equation is obtained

which can be solved for rr(ll); Sr(ll)’ rlgl)’ and slgl)' can be expressed

in terma of r(l). (2)
n n

The procedure may be repeated to obtain r y and so

on. In general the (m + 1)th approximations to Thr Sy r;l and sr‘1 are

obtained from the following set of equations:

r(mﬂ‘)- 2 cos © rr(ll_gl)+r(§1+l)= (1-2 cos g) (A£T£+Bz(lm)) + A(zl) + B(m)

n+2 L
(2.224)
(m+1) 1 (m)
SI(:tm*'l)____ rn:I_ll + rlgm-'— ). Anm - Bflm) (2.22p)
5 0
cos 3
+1 - 8 1
rlgmﬂ)': rfj_ll ) + (1 -2 cos %) (rr(1m+ ) Ar(lm)) - B_lsm) (2.22¢)
2% cos 5
, cos 9) (x(m1) _ glm)y _ (w1) , ,(m)
r(1m+l)= - (l -2 é) (rn+l - Bnm ) - rl'l An (2.22(1)
2% cos g
e A o () o) s

tan &

il

5 _ ) () )

n n+l

The calculation of the first correction (m = o) is summarized

in Appendix I
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2.1g Exact Numerical Solution

An exact, point by point, numerical calculation of r, and s,
is possible. The elimination of rﬂ and sﬁ from the original set of
simultaneous, non-linear difference equations 2.3a to 2.3d leads to two
recurrence relations for r ., and sj,q:

28
4 (2s,-r,)-2rps, tan a - —— (L+sn tan.a)[L-(rn+sn) tan a]

rn+l - 2s +( )
£-28 tan & + et tan a E, r +s,)ban a]
*n b cos noon
(2.23a)
L (2r -8 M+2r . s tan o - WL (Ler_, tan @) 4+(r_,.+s, tana |
a1 ™S T Bptan @ - = T tan Q) AT, T8, |
8 = b cos o
n+l
2r
L+2r  _tan o - ntl <tan [&+(r +s )tan a]
nrl b cos & L. Tn
(2.23b)
With initial conditions Ty = dl and 8q = d, and repeated use

of 2,23a and 2.23b the path of a ray in the resonator can be calculated

exactly. BSuch a computation is easily made using a digital computer.

2.2 The Nonsymmetric Four-Mirror Resonator (L3)

2.28 Difference Equation Formulation

The four-mirror resonator has been chosen as an example in
which the symmetry of the resonator using identical, evenly spaced
mirrors is destroyed by using mirrors of different curvatures and dif-

ferent spacings (see Figure 2.4). However, for the example chosen, the
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symmetry obout cither of the diagonals allows the path of a ray in the

cavity to be described by a set of four rather than eight difference

equations:

- =1 - T s) - d ]
s, - T, =T, [42 r  tan (4 5) s, tan (u + 8) (2.2ua)

bis x .
-5 =g + LA + .- .

r 1 5.7 5 [Ll s tan (4 5) r ., ten (4 6)1 (2.24p)

2s
r! - sl = nn (2.2uc)

b, cos (E + 3)

2r‘
8! - 1!, = ntl (2.244)
n n+l 7

b, cos (E - )

T refers to the height of a ray at mirror 2 or 2' measured
perpendicular to the axis, and ré refers to the slope of the ray re-
flected from mirror 2 or 2' measured relative to the axis. ) and sﬁ
ref'er to the corresponding quantities measured at mirror 1 or 1'. The
axis of the system is defined as the line joining the centers of con-
secutive mirrors, and the standard sign conventions of geometrical
optics have been used. It should be noted that to describe a complete

circuit about the resonator the eguations must be applied twice.

2.2b Approximate Solutions and Stsbility Conditions

As was the case for the symmetrical cavity an approximale so-

lution is obtained by neglecting the small terms in equations 2.2ka and
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2.24b. The resulting equation for rgo) isg:

(O) ,t 1 4+ = 1 l 2
r - - L .
n+2 1 QE{L LE bl cos (ﬁ + 5) ] [ 52 b2 cos (T - S)J
I
11
=1\ (o) (o) _ -
&i + &,)} nil + rol =0 (2.25)

An identical equation for sgo) could also be written.

r(o) will remain finite and have the torm (3()

r(o) = &, cos ne + &, sin né (2.26)
wnere
-4 - -
a1t 2}_r1 1 > r.1 2 x
@ =cos™ 5|7+ +F - = +tF - -
e ;L&l L b, cos (% +8) LLl L5 " b, cos (% - o)J
y'l l t
- - + -—2 & (2-27)
e A5
1 2 |
provided that
o<l _ t1 ]r 1o ]
by cos (X +5)d & by cos (% - 5)
L 1
+[1 L ]-[1- 2 | <2 (2.28)
b, cos (E 3) by cos (ﬁ + 3)
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A graphical representation of the stability condition 2.28

can be easily obtained in two cases:

fad

(a) =1

For the rhomboidal resonator equation 2.28 reduces to:

osfi-—t -

1 cos (“ + 3)

1 (2.29)

by cos (ﬁ - 6)‘I

The stability condition for the rhomboidal resonator is illus-

trated in Figure 2.5a.
(b) By =D, and & =

For the rectangular resonator equation 2.28 reduces to:

(2.30)

r _J'%lw[ ﬂ;ﬂ

0<{l

Figure 2.5b illustrates the conditions for stable operation of
the rectangular cavity. Figures 2.5a and 2.5b the coordinates have been
chosen to facilitate comparison with the stability conditions Jor the
two mirror cavity investigated by Boyd and Kogelnik ().

(o)

If the initial conditions are chosen as LN

(o)

= dl and

(o)

n

(0)

= dy then the approximate solutions for Spn and r are

(o) _ . ,
r>"’ = a, cos né + a, sin nd (2.31)



b2 cos( 4 -3)

W/

LOSS

v,

HIGH

LOW

b, cos(-Z +8)
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o cos n9 cos n+l)6] sin ne sin (n+l)
( ) _ a3 \: + au l: ‘f/-'

(2.32)

where

a) = 4y
-d cose+Ll +d. 4, |2+ L 2
—_ - —_—+ =
B 1 2 27l L1 4o Dby cos (-E+ 3)
8 = -
sin 8
- a3
3% 7 1 5
I ' T
»f,l '{12 bl cos ( + 6)
a
a.)_‘_ = 2
l 1 2

+
'tl %2 by cos (7[ + 8)

2.2¢ Matrix Formulation of the Approximate Solutions

After equations 2.2La to 2.2kd are linearized by neglecting

small terms they are easily rewritten in matrix form,

//S fl o) \\\ / 1 {’2 \\ / /rflO) \'\\
- | (2.310)
sff’)/ \ 2 L e (o)

b1 cos (,E + 9) b1 cos (_E + 9)



O/ . (0)

n+l 1 n
|
! =v (2.31b)
1 \ 24,
) e L e
\ L b, cos (z - 3) b, cos (E - B), n
The equations may be combined in the form
(o) (o)
Tn \ /}n-l
i
i .
(o) (o)
n n-1,

where M is the product of the transformation matrices of equations
2.31a and Z2.31b.
Since M is unimodular it satisfies equation 2.20 and thus it

follows from 2.32 that

24,

[ (o) [ i 1

n ’ by cos (I +5)
1 | I

ROL I o 2 - e
';rn /,/ E’l coS (%+ 8) \‘bg cos (%_5))-_ bl cos (% +6))J sin n

\

sin n® - sin (n - 1)8

t

n
s
s
D
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2L 4, ) \
14,1 - 172 | sin nb /;go)
1, 1o  Djcos (i-+6)

/ |
-b—__(T——)cos E_B +(l T (n —'6 (l b o (11 +5) sinn6- sin(n-1)0 \o

2

(2.33)
where B8 1s defined by equation 2.27.

If the initials conditions are r(o)= d and s(o)= do, the

° 1 o 2
column matrix on the right-hand side of equation 2.33 becomes

2.2d First Order Iterative Corrections to the Approximate

Solutions

The first order corrections to the approximate solutions of
equations 2.24a to 2.24d may be obtained by following a procedure simi-

lar to that outlined in Section z.lT and Appendix 1 for the symmetric

N-mirror resonator.
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CHAPTER III

THE CONCEPT OF SELF-CONSISTENT FIELD ANALYSIS

3.1 Formulation of the Problem

3.1a Description oi the Fields in Terms of Travelling Waves

To investigate the field distributions existing in resonators
such as those illustrated by Figures 2.1 and 2.4 the method of analysis
is to treat the fields as waves circulating around the resonator. The
clockwise and counter-clockwise travelling waves may be considered
independently. Since the wavelength at optical and infrared frequen-
cies is much less than the mirror dimensions or spacings the travelling
waves will be very closely TEM (transverse electromagnetic). Except
for the reflectors the resonator is open, consequently it may be ex-
pected thal 1l modes are Lo exist in the resonator the transverse
spatial distribution of the travelling waves will be closely confined
about a line oining the centers of congecutive mirrors.

3.1 Boundary Conditions and Conaideration of an Arbitrarily

Polarized Field

At each reflector the incident, reflected and transmitied

i(x + + +
fields are defined as _}(_), E?(“) and EF(“). The superscripts (+) and
(-) desi; nate clockwise and counter-clockwise travelling waves re-
spectively. At each reflector the boundary conditions to be satisfied

by either the clockwise or the counter-clockwise circulating fields are

Et(i)

s
b
~

) =nx
(3.1a)
< o)

IX (Hi<i) + HT(i)) -

s
=]
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The electric vector of an arbitrarily polarized wave can be

resolved into two components, E,  perpendicular to the plane of inci-

1

dence and E parallel to the plane of incidence. A consequence of the

=1
assumption that the waves are very nearly TEM is that the electric and

magnetic fields satisfy the relation

1=
»
1=

H= (3.2)

£
T

Thus the magnetic vector §|| corresponding to EII is perpendicular to
the plane of incidence and equations 3.1la and 3.1b become
i(g)  r(x)  t(2)
E + K

B E =g (3-32)

i+ r{+ t(x)
H (£) +H (+) = H (3.30)
=1l =1l =1l

The correspondence between E and H in Maxwell's equations
(L4), the similarity between the boundary conditions 3.3a and 3.3b,
and the relation between Ell and Ell expressed by equation 3.2 imply

that it is necessary to consider only one component of the field, e.g.

For perfect reflection the boundary condition to be satisfied

i(+) r(+)
EL + El =0

(3.4)

and for mirrors which are slightly transparent
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gHE) () _ ) (3-5)
vhere
Iﬂ&) « [ |7

In the following analysis perfect reflection will always be
assumed.® Occasional references o the field at a reflector will mean
t(x ‘
Ei(*)’ however the presence of this small component will always be neg-

lected in determining the resonator field distributions.

.1e Vector Green's Theorem Derivation of an Integral Equation

for the Fields in a Symmetric Resonator

In Figure 3.la the mirrors of a symmetric resonator arc sche-
matically represented as part of an arbitrary surface:S=ﬁﬁfA2+A3+$rHE+S3
enclosing a volume V. The mirrors are assumed to be perfectly re-
flecting and so at each reflector the clockwise travelling filelds in

the resonator satisfy the condition

OO (5.6)

nx (E

It is assumed that the fields are sufficiently confined about the reso-
nator axis that they may be considered zero over the remainder of the

surface.

* In the laboratory it is possible with the use of multi-layer die-

lectric films to achieve mirror transmission of less than 1% so that
perfect reflection is a good approximation.
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The analogy between reilection by a mirror and transmission
chrough an aperture (similar to the mirror-lens equivalence discussed
in the geometrical optics analysis of Section 2.1b) indicates that the
situation illustrated schematically in Figure 3.la is identical with
that of Figure 3.1b. In this case the travelling waves are incident
on the apertures from outside the volume V and have the direction indi-
cated. Over the apertures Al,A2 and A3 the electric field has the

value Er(l) = -Eé(+)

—

and the fields are negligible on the perfectly
absorbing surfaces 31,32 and S3 which represent the open sides of the
resonator.

The fields at an interior point of a volume V may be expres-
sed in terms of the values of E and H over the enclosing surface S.
Appendix 2 outlines a derivation of this relation which is based on an
application of the vector Green's theorem to the field equations. TFor
a source-free volume V the electric field at an arbitrary interior

point P is

E(®)=-L ) as[son(axBe+ (axE) xv0+ (n- Bvg] (3.7)
S

e—jkr

where @ = and r is measured from the surface element dS to the

observation point P.
The assumption that the travelling waves are approximately
TEM implies that over the apertures Al,A2 and A3 the electric and mag-
netic vectors are related by equation 3.2 while on the perfectly
absorbing surfaces Sl,S

2

rectional properties of the aperture fields are such that the major

and S3 E and H are negligible. The di-
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contribution to the electric field at the point P shown in Figure 3.1b
r(+)
comes from the field E(1) in aperture Al. Thus equation 3.7 may be

rewritten as

(4 (py . £ [ g S £(+) r(+)
B (P) =iy dA Tr vi(@-K)EQ) -5 (n-EQ) )k

Al -

r(+) r(+) r(+) 1
+ [ (2, ) E() - (r-E(D) ) 0+ (2~ E(1) )zo](jk+;)}(3.8)

where I is a unit vector in the direction of r, n is an inwardly-
directed unit vector normal to Al, and k is the propagation vector of
the medium in resonator.

In Section 3.1b it was indicated that for an arbitrarily
polarized electric field it is sufficient to consider the component
parallel toc the plane of the resonator (i.e. the plane of incidence)
or the component perpendicular to the plane of the resonator. The
latter component (i.e. El ) is arbitrarily chosen for consideralion in

the subsequent analysis. Since the “ields are closely confined about

the axis and since the aperture dimensions << r, then n+«kan T xcos o
and equation 3.8 simplifies ta®

+ (+) 1 - r(+) o-jkr . 1
g( ) (P) = El (P) = I dAl Eﬁl) (2jk cos o + ;) (3.9)

A

Smythe (4) derives this equation by considering what form of cur-
rent distribution will give a tangential electric field over an area
A of an infinite plane and zero over the remainder.
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The first term on the right-hand side of equation 3.9 repre-
sents the field in the far zone of the aperture, the second term repre-
sents the near zone field. 8ince r is large, terms in-%é can be neg-

lected and equation 3.9 becomes

. -jk
s(F) - degeeal,, et (
A

1

The vector notation may now be omitted since E 2 g and Ei

have the same direction. When the observation point P is near the

i{+
aperture A2, Eit%) represents the field El§2g incident on aperture A2,

viz.
~Jkr
i +g jk cos o’ r§+§ e 12
EL§2 j A, E Trp (3.11)

A

where Tip is the distance from the source point on Al to the observation
point on Ag.

Re-inberprelalion of equalion 3.11 in bterms ol the electric
field incident on a mirror and the application of the boundary con-
dition for perfect reflection given by equation 3.4 lead to an equation
Tor the clectric ficld rcflected from mirror 2 in tecrms of that re-

flected from mirror 1, i.e.

—j Krlz
r$+) ik cos o r§+) e
B (2) =- oy da By (1 ) r i, (3.12)

l
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Tf normal mpdes or eigenfunctions are to exist in the reso-
r(+)
nator the gpatial distribution of EJE) must be egqual within a constant
r(+) r(+) r(+)
to that of ElCD . IfE is written as Eﬁu,v) where u and v are

coordinates describing the mirror surfaces, equation 3.12 becomes an
integral equation for the spatial distribution of the clockwise travel-

ling wave immediately following reflection {or preceding reflection
i(+) r(+)

since E; = -F ) from a mirror,
~-jkr
(+) r(+) jk cos @ ¥ r(+) e 12
1

(+)

The proportionality factor o will be generally complex.
As well as including the phase shift on reflection, the phase angle o"
G(+) gives the phase shift per transit which the field experiences in
addition to the geometrical phase shift. For resonance it is necessary
that the total phase shift in a round trip be an integer times 2n. The
fractional energy loss per reflection due to diffraction effects is
1 - JotME,

Since the clockwise and counter-clockwise travelling waves
mey be treated separately an integral equation similar to 3.13 could be

() ()

written for E, -E| .

r(+) r(-)
Once EJ_(u,v) and El(u,v) have been determined +the clockwise

and counter-clockwise travelling waves at any point in the resonator

may be calculated from equation 3.10. In a non-rotating resonator the
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total field at a point will be the sum of the contributions of the two
oppositely circulating fields.*

3.1d Integral Equation for the Fields in a Nonsymmetric Resonator

A nonsymmetric resonator with an arbitrary number of sides
M may be treated in a manner similar to the analysis of Section 3.lc.
The only requirement on the resonator geometry is that the optical ray
Jjoining the centers of consecutive mirrors and having its angle of
incidence equal to its angle of reflection must close on itgself after
completing a circuit of the resonator.

The problem is approached by replacing only one of the
mirrors by an aperture. On the remaining mirrors the total electric
field is zero (perfect reflection) and on the absorbing surfaces the
fields are negligible. A field E{£g) is considered to be incident on
the aperture in the direction of the optical ray joining the center of
the aperture to the center of the first mirror. The angle between a
normal to the mirror (or aperture) and the optical ray joining their
centers 1s defined as aj, where the subscript Jj refers to the number of
the mirror. Then the field reflected from mirror 2 may be calculated

from equation 3.12,

* TIf the resonator is rotabting the oppositely directed waves will
experience a time delay per circuit of (refer Appendix 3)

2wS cos 8

at = if'""€§_"“

where w is the angular rotation rate, 8 is the area enclosed by the
circuit, and & is the angle between a normal to S and the axis of

rotation.
The oppositely circulating modes will differ in frequency by

Lws cos©

AV = ch

where C is the perimeter o+ 8.



r(+) -3k cos ay r(+) e-jkr12
EJ_(z) = 5= [ A, El(l) -le—- (3.12)
Ay

The field after subsequent reflections may be calculated in

a similar manner, i.e.

r(+)  _jk cos a5 I " r(+) -dkTp3

E = E (2) &
.L(S) o ) o) j_( ) I‘23
2
r(+)  _jk cos r(+) 'Jkr31+
B (4) = 5 e, gl e =
en As r3)
r(+) -jk cos a r(+) _jkrM-l,M
e
B (M) = —— [ dhy_y Ey (M-1)
7 Ay.1 "M-1,M

r(+) -Jkr

i(+)  _jk cos a M,1

B (1) - M [ aa, = () e %
AM M, 1
r(+)
= -Ei(l)

If modes are to exist the fields must be equal within g
constant after completing a circuit of resonator. - The resulting inte-

r(+)
gral equation for EL$ul,vl) is

M

() r(+)

=k
(e} El(ui,'\fi) =

2%

cos O cos O e + e« + COS (O
1’ 2 M

J aa EL(ul,v ) Ky (uy,vy,u,vy) (3.13b)
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where the kernel of the integral equation is given by

e-jk (rl?+r93+. "rM,l)

« I

Ry (apovpsup,vy) = [Laa, oo [ any
A, M,1

r . Toqpe o
AM 12 723

3.2 Solulions of Lhe Inlegral Equablon

It will be seen in the following sections that the integral

equation 3.13a can always be reduced to the general form

. 2 2
L o° j (Yzl + vz + 2122)
o1 (z,) = Ef dz, £ (z)e (3.13¢)
-yC

This is a linegr, homogeneous, Fredholm equation of the
second kind. The kernel is complex and symmetric but non-Hermitian.
In general this type of integral equation does not possess some of the
familiar propertics of integral cquations with Hermitian kernels (29).
A difference of particular interest is that the usual extremal princi-
ple by which the eigenvalues of a Hermitian kernel may be estimated
uging the Rayleigh-Ritz procedure does not a?ply to integral equations
with'complex symmetric kernels. This means that the use of variational
techniques to estimate cm and hence the diffraction losses is invalid.

If distinct eigenvalues exist the corresponding eigen-

functions will be orthogonal in a non-Hermitian sense (43), i.e.



Lo
£
v dz fm(z) fn(z) =0 m#n (3.14)
¥e
This type of orthogonality relation is characteristic of lossy systens.
Solutions exist for several forms of the integral equation
3.13c;
(a) v=0

An equation of the form

L NG
o, Ty (22) = = dzq f,(z1) e
/c

! 2
Je1%2 (3.15)

is often referred to as a finite Fourier transform. Slepian and Pollak

(49) have shown solutions to be
£(2) = Sy (e5 <) (3.16a)
2 1
O =\/€§jm Rém) (c,1) m=0,1,2 . . . (3.160b)

where 8 -Z-g) and Ro(r::‘l) (c,1) are the angular and radlal wave

Oom (C’J‘

functicns in prolate spheroidal coordinates defined by Flammer (50).
(b) v#o0

Anslytical solutions to equation 3.13 with v # O and c¢ finite
have not been found. However some of the low order eigenfunctions have
been obtained by iterative numerical computations (18.2L,25}.

Equation 3.13c can be solved when ¢ = @ . The Xkernel may be

expanded as a sum of Grussian-Hermite polynomials. These functions are
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orthogonal over the interval -o < 2 £ w . Thus it follows that the
eigenfunctions fm(z) are Gaussian-Hermite functions. A detailed so-

lution is given in Appendix 4. The results are

_Bgzg
f(2) = He, (Bz) e (3.17a)
. T . 1 -1 2y
Jmz + § (mz) tan™ %
o = e 2 2 L (3.17b)

1
_ =hen I ,
where B = (1 - ¥°)7. The value v = 5 1s nol allowed. The signifi-

cance of this will be discussed in Section 5.ka.



Lo

CHAPIER IV

THE SELF-CONSISTENT FIELD ANALYSIS OF MULTIREFLECTOR OPTICAL RESONATORS

4.1 The Symmetric N-Mirror Resonator

4,1.1 PFormulation of the Problem

Two mirrors of a symmetric N-mirror oplical cavity are 1il-
lustrated in Figure L4.1. The perfectly reflecting mirrors are spherical
with radius of curvature b. They are rectangular in cross-section with
dimensions 2al perpendicular to the plane of thc rcsonator and 2a2 in
the plane of the resonator. The center-to-center separation is £ and
the tilt angle is O.

Figure 4.1 indicates that the component of the electric field
perpendicular to the plane of incidence corresponds to Ex' It is as~
sumed that the reflected or incident field may be written as the product
of a function of x and a function of y where x and y are the coordinates
describing the mirror surface, viz.

r(+) i(+) () (&)
Ex(x,y)= -E (x,¥) = £(x) grgy) (L.1)

The integral equation 3.13a for the electric field of the

clockwise travelling wave immediately following reflection becomes

-jkr

) (5 &) jkcosa 81 (#)  (#) e 12
o O (x)egly) = o ] & | dy, T (x) g0 T 1n

_8.1 -ae
(k.2)
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il
For b > a

1 a, the distance rl2 is given by

2

5 T 2 2 2 2, sin oz]2
r = (X -X + + cos o+ (x -x +y_-~
12 ( 1 2) L(yl ye) (1 %4 2) o
2 2 2 2, cos 2
+ 4+ (y.- i - (X +x_+y_+ .
[& (yl yg) sin o (xl Xy, ye) -~ (4.3)

Providing that terms in x and y higher than second order make

a negligible phase contribution they may be neglected (54). The neces-

sary conditions are

2
ay &2 ag &2
ST =<3
4 al LA a5

In the exponential r12 now becomes

(X,%X,-Y. ¥, cOs2Q)
- 12V 1v2 + _ . (%P (&cosoc—b
12 2 > (yl y2)51na X x2) ~—i

( 2+ 2) 2a {L-b cos O
- cos SRRE—
yl y2 {24b cos o

(b.k)

In the denominator of the integrand T, may be replaced by 4. It
should be noted that to the accuracy of these approximations spherical

and parabolic surfaces are indistinguishable.

With the substitutions

E
= x 7

y cos O \/

2]
|

=

c—.l.
]
el



hs

o =2k
1% 7
2 2 _k
c, = a5 cOS A F
5 _ 4 cos ¢-b
B 2b

4-b cos O

) B,
o = 2b cos

the integral equation 4.2 for the normal modes becomes

() () () () s
cjm Gn Fm(SE) Gn(te) 2n \[
VT
1
where
ORI
Fm(s) = fm(x)
(+) (+) -jky sinQ

6 (t) = g (y) e

e, (+) (+)
Jdt; F (s ) Gn(tl)
~¥%

g
eJlese tlt2+6(s

5)+6" (s34

(4.5)

The integral equation for the counter-clockwise travé]erlg

wave is identical to equation 4.5. However in this case

(-)

iy = +jky sinC
ag(t)=g (v)e
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Equation 4.5 is obviously separable into two equations, viz.

) (+) @) | 8(s2+ )+ 5.5, |
X‘+ mese) i 4_~,J ds + l) eg[ (sl+se-+§ls2_J (uf6a)
ey
+) (+) £, + {50 (42+42) - £t
xﬁ G (t,) = == J at G((gl) Jetrte)-t 1 (4.60)
'ﬁ%
with

(+) (+) . -3kt (+) (+)
o o = Je Xy %

4,1.2 Two Special Cases

Before proceeding to the general solutions of equations L.6a
and 4.6b it will be worthwhile to consider two special situations,
namely the case in which 4 >> b and the "pseudo-confocal" case.

L.,l1.2a 4 >> b

£
For the resonator in which ; is sufficiently large that
2 2
o] + >>
(s) + 85) >> 53,
2 2
dt (7 + ¢ >>
(£ + ) > 48,
I8, 85 -3t
and the exponentials e and e are close To unity for all

values of s; and t;, equation 4.5 becomes

-jKb 1o ( §2:+g2 Y+g 2,42
c,(+>6<+>F<(; )G% e k g”lds TR (S )ij?; )JE" 243)+p' (6543

m n
'ﬁl 2 (b.7)



where
4 cos ¢
P 2b
o = 2
2b cos o
It is obvious by inspection that the solution of equation 4.7
is
(+) (+)  j(ps®+p'i?)
F(s) G(t) = e (4.8)

Thus the electric field distribution of the clockwise travell-
ing wave just after reflection is

r(+) j% (px2+p'y2 cos® o + Ly sin Q)
E(x,y) =E_ e (4.9)

o]
The corresponding field for the counter-clockwise travelling wave is

Jjust

X :
r(-) i7 (px2+p'y2 -4y sina)
E (x,y) = E] e (4.10)

It is evident from equationsl.9 and 4.10 that an infinite
set of modes cannot exist in the cavity if 4 > b. In fact in a non-
rotating resonator in which the oppositely circulating fields have
equal amplitudes, the resulting intensity distribution.on a slightly

non-perfect reflector will have the form

sin2

I (xy) = __ o (ky sina) (4.11)
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This is the intensity distribution of a double-slit inter-
ference pattern. The two neighboring mirrors act as the two coherent-
ly illuminated slits oi the standard double-slit interference experi-
ment. Both sine and cosine distribution are allowable since the op-
positely circulating fields are entirely independent.

The eigenvalue corresponding Lo Lhe solulion 4.8 of the
integral equation 4.7 is

(+) . -kt

o = Je

\/3_5—61\ (/29'02
? n | ¥ T

where @(u) = C(u) + jS(u) is the complex Fresnel integral (55).

(4.12)

“Vop'

The energy loss per reflection due to 4iffraction at a mirror

is given by

1- |o

“

‘%cp {2& \/LOSb ) 0 (28. co:ba)! 2

I

(4.13)

The phase change between reflections is the phase angle of

(+)

o 7, viz.

- cOs8 a co s [0 cos a ‘cas O, |
C(2a V% )S(2a = )+C(2a J—350)s(2 35 )

cos O CQ COS oz
S(zal*’ xb =)s(2 8p ¥~ 3p )-C (2‘31 "o S)o(e ap J o )

k4 -
kg - E+tan
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For resonance the total phase shift around the resonator must

be an integral q times 2x, thus for the symmetric N-mirror resonator

-L}i—iq“‘l-?—tan_l C(eal jcosa jcos U)4c (2a, jCOS a)S(Z ay ’__—‘C—ors'—
» N T —
jcoi )8 (2a, 5 o )-C (28 )\b:)c(aa2 59

(%.14)

For largc values of its argument

and thus at very short wavelengths diffraction loss and resonance con-

ditions reduce to

op = 1 (5)° (4.15)

(4.16)

o
i
= o
>

Since £ >> b equation 4.15 indicates that on each reflection nearly all
of the incident energy is lost due to diffraction.

4.1.2b Pseudo-Confocal Resonator

Consider equations 4.6a and 4.6b once again. As noted in
decllion 3.2 Lhis bLype of integral equation has nol been solved for [inile

limits of integration. However solutions have been found when the
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quadratic terms do not appear in the exponential. Unfortunately with
spherical mirrors and non-zero & ® and &' cannot be set equal to zero
gimultaneously. In view of this the requirement is for a symmetric
N-mirror resonator in which each mirror has two radii of curvature, b

in the x-2z plane and b' in the y-z plane. The surface of the mirror is
defined by the condition that the line of intersection between the sur-
face and a plane containing the z-axis is a circular arc whose radius
of curvature vafies uniformly between b and b' as the plane rotates
about the z-axis between the x-z and y-z planes. Under these conditions

it is a simple matter to show that the distance r is given approxi-

12
mately by
. (xlx2 AL cos®ar)
r,=t- ’

+ (y,- ¥,) sina

_,2 o, [Lcosa-b 2 ) o [4-b'cosq
(xl + X2) ( 2Lb ) - (Yl + YQ)COSCY (2&b’cosoc

(L.17)

For the "pseuwdo-confocal" geometry in which

b =4~Lcosa
L
b'= o5&

Equations 4.6a and 4.6b reduce to



(+) (+) o (+) js,s
x F(s)= 723‘-; 1 as, 7 (s ) e 12 (L.18a)
-
-jt.t
X;“L)Gr(;(k%e) - Tlﬁ J(FQ aty Gl(;(r%l) o1 (L.15b)
T e

The eigenfunctions and eigenvalues for these equations are

(refer Section 3.2).

(+) S S
Fm (Cl; :Ei) o« SOm (cl, 7€i) (4.17a)
(+) t oy L t
Gn (Ce) "“\/.é—g) Son (02, —J-c_—é ) (h-lgb)
with Xél*) = \E%—l_ " R(()i) (c,»1) m=0,1,2 . . (4.20a)

0,1,2 . . (4.20p)

(+) _ 1B (_.yn g(1)

Xn = (-3) ROn (Cgrl) n
(1) . e

where SOm and RCM are the angular and radial wave functions in prolate

spheroidal coordinates (h9).

Therefore the electric field distribution of the clockwise

travelling wave just after reflection is

I‘("") +jky sina / x i 2 1
_ X 2 k y cosqa
E(xy) = E e Som l\—{ ’al) Son |\a2 cos & ¥y o (4.21)

In a non-rotating resonator the field distribution at a



slightly transmitting mirror resulting from the interference of two op-
positely travelling waves of equal amplitude is obtained by replacing
the exponential factor in 4.21 by the interference factor g%g (ky sin)
and E, by [E [<< [B,/.

Information regarding phase changes and diffractién losses is

obtained from the eigenvalues

ha_ a cosa . 22Xk
+ 12 min+l - kd 1) 1 2 2k
Gr(n+)cg’1)= LAY (-l)n Jm e (()m)('f, » 1) ROn (a? COSC s 1)
(4.22)

The phase change between two onsecutive reflections is given

()

n For resonance the total phase shifd

by the phase angle of c£1+)c
for a complete circuit of the resonator must be an intesral multiple oi

2nx. Thus
2rg = N | (m+ 3n+ 1)%-.1{4;] q=01,2 .. (k23)

With the suhstitintion af equation 2.1 the resonance condition
may be rewritten as

!
-}-\’f“- = (1-2) g + (m+ 30+ 1) (b.2k)
o

Equation 4.24 indicates that in general the resonator will
not be frequency degenerate. An exception is when @ = Q. the case of

the standard two-mirror confocal resonator which will be discussed in
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Section 5.2.

Following the practice of other authors (18,19) the modes of
the multi-mirror cavity will be designated as TEMmnq since at least for
small transverse wave numbers the axial electric and magnetic fields may
be neglected.

At each reflection the fractional energy loss due to dif-

fraction is

LLa.la2 cos o (1) a?_k (1) (.2 2,k ]2
[. Om (—Z_, 1) ROn (a2 cos“a F =,1) (4.25)

Values of the function Ré;)(u) are given by Slepian and Pollak (48) for
u > 5 and by Flammer for u =< 5.

4.,1.3 General Case

4.1.3a Modes of the Resonator

The solution of equation 4.6a and L.6b for the general case
in which d and 8' are not zero is only possible in the limit of zero
wavelength. With this approximation the limits of integration pass to
infinity and the eigenfunctions and corresponding eigenvalues are

(refer Section 3.2)

(+) _p22
R (5) cHe (Bs) e Epm (4.262)

1242
2

(+) _
Gn(t) aeHe, (B't) e (4.26b)



5k

with 5
(+)  , mr Sten™t =3
x, =ie P m=0,1,2 .. {(L.27a)
1. .1 28
(+) 35 dm+Fen 5
X, =3 e n=0,1,2.. (427b)
where 1
B = (1 - 12"
1
_ (2{. cos O 12 cos® oz)ﬁ
B b b°
1
8- (1 - Ry
1
S22 E

b cos b2 cos— o

Thus the electric field distribution just following reflection

from a mirror for a wave travelling in a clockwise manner is

r(+) PG+ T (B+1) sy sina - pp (B +825Pcos?a)
Ex(x,y) = EO e €
T(m+1)T(n+ 1)

./L

He [(%)5}0 He [(%‘)/LB' y cos oz] (4.28)

r(+)

The normalization has been chosen so that EX(O,O) =+ E5 for m and n
even. The observable interference field at a slightly imperfect re-

flector formed by two equal amplitude waves travelling in opposite
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directions in a non-rotating resonator is obtained by replacing
e~dXY SING yigh 510 (1y sin o) and E, with B, << E, in equation

L.28.

In order that the field distributbtion near the mirror decrease

in the x and y directions it is evident from equation 4.28 that

82 >0, B'2>0

The firsl condition leads to

og'f,cosa52

The second implies a more stringent requirement, i.e.

2

0 £ ——— <
b cos O

These are the same stebility conditions as obtained by the
simple geometrical optics treatment of Section 2.lc.

4.1.3b Resonance Conditions

In this approximate analysig the eigenvalues obtained are

purely imaginary, viz.

(+) (+) -] —1;4’, - (m+3n+]_)§_ - (m+-12- )tan'l?_g -(n+%)tan'l g(l;]
Gm O'n = @ . o ‘5_ B"_~



As expected the zero wavelength spproximation leads to an
absence of diffraction losses on reflection, however phase information
is still present. For resonance the phase shift during a complete

circuit of the resonator must be an integer g times 2x. Thus the phase

shift per section of the symmetric N-mirror resonstor is 2%5 and the
resonance condition is
4
2% g e (w3 1) 5 - meDtan ™ R (nadyant 21| (4.31)
N 2 2 2
Substituting equation 2.1 into k.31 leads to
5 . (12 4+ (ne3n+1)+ 2 (n+ Dtant 2242 (n+d)tan 225 (h.32)
A x s 2 ﬁe T 2 5'

It is evident from equation 4.32 that no frequency degener-

acy exists. The spectral range or mode separation is

1y _ 1 { 2a 2 -1 2% c -1 28! ]
&0 =gt (-7) 280+ (14 7 ten ﬁ)A +(3+ ban™" =5)An
(4.33)
As in Section L4.1.2b axial electric and magnetic fields are

considered negligible and the modes are given the standard TEMﬁnq desig-
nation.

4.1.3¢c Electric Field at an Arbitrary Point in the Resonator

The electric field traveling in a clockwise direction at an
arbitrary point in the resonator between mirrors 1 and 2 (refer Figure

4.1) is obtained by calculating the integral of equation 3.10 with
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r(+)

EX(X,y) given by 4.28. A lengthy integration leads Lo

(+) (3 +1)r(z+1) st |
E (X,Y,2)= E_—= 2 [A me ,/%;-kéx He -2% B YJ
X O M(m+1)T(n+1) 7Y m Y n
2 P
_E (9.2. 2+ B y?
. L Y T':E
(b myep [ose X, LT\ (o 1y - 26 -]
S R b 42 beosa g~ 2 2 PTG me
e
(k.34)
where
o 22
=T 1
o L
_ o _Lcoso (1 -= )‘Je
L b '
- A2\
T = > L -=)P
L b cos O
cos & ~
a2 -k gy
¢ = tan 5
g= (1 +=)
2 - 2 (L +=)
. -1 b_cos O =
@' = tan >
B (1 +=)
r(-)
A similar integration in which E.(x,y) is given by equation
L.28 with e+jky sin o replaced by em‘jk;Y sin gives the counter-

clockwise travelling-wave field at an arbitrary point in the resonator
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between mirrors 1 and 2,

- (& rE
E(())(Y z) = (1) E! ( +l)r( +1) [z He,
r(m+1)r(n+1) Yoy

b T2
e
kL cosa X° 1 Y2~ l,,x I
-il 7 (-2-xT% - T rFmrw yRE- @) (F-x)-3)E -x)
e
(b.35)
where 4 cos a
can-l 2- —— (1-3)
x = tan
B% (1-=)
r —L e
X' = tan T °~ b cos O (1-=)
8@ (1-=)

(+)
It is easily shown that the contributions to Ex(X,Y,Z) and

) 1§—

X,Y,Z) due to back-scattering of the incident fields Eyx l’yl) and
+
b'é

(_
Ex(
st

of equations 4.34 and 4.35 by the factor

27y0 at mirrors 1 and 2 respectively are reduced from the fields

_k (B'_tan )@
T T!

Since this analysis is based on a zero-wavelength approximation the
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hack-scattered term can be neglected as long as B! # 0.

In a non-rotating resonator the oppositely directed travell-
ing waves may be combined to give a resultant field distribution at
each point in the cavity. - Since each travelling wave independently
satisfies the boundary conditions at the mirrors there is no conditien
on whether the two fields add or subtract. If the waves have equal

amplitudes the total field at point (X,Y,2Z) is

Mz+Ur(z+1) /5 .

E (X,Y,2) = E
X F(m+1)T(n+1) "'~ m

2 2
k ! 2
‘z(%exz*fﬁ‘f)

e

> 2
cosg X 1 Y i Ly Ly
b 2 beosa 2~ (@2 - )-(n+3)G -]

sin [ k¢ o
o [ B

.<

(4.36)

The arbitrary constant E has a different form for the sine
and cosine distributions. In subsequent discussions the sine distri-
bution ia arbitrarily chosen Tfor discussion.

The variation in amplitude of [E_X(.X.;_Y_’_Z._) ] for the TEMOOq

mode in three and four-mirror resonators is illustrated in Figures

4.25 and 4.2b. The sine term has been suppressed.
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4,1.34 Nodal Surfaces

Nodal surfaces are defined as those surfaces on which the
total electric field is zero. From equation 4.36 it is evident that

this will be so when

i > .
M |20 L L L Bl (0d) G0 treh) Goo) = ox

(4.37)
where p is an integer.

It is easily shown from equation 4.37 that to a good ap-
proximation the nodal surfaces in the f'ar zone of the mirrors are
defined by the condition that the line of intersection between the
surfaces and a plane containing the Z-axis is a circular arc.

In the X-Z plane the radius of curvature of the curve is

o =3 ;72323—0‘ (4.30)
i
and in the Y-Z plane
2, o |
where Z_ (=, = E;E) is the point of intersection of the nodal surface

and the Z-axis and

1

[ 1 cos « (1-22)15
T, = L2- b .
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1
ro=le-2 (1-2) T2
o b cos @ -

The variation of @ and p' with ¥ 1is illustrated in Figure
4.3a for three and four-mirror resonators. The mirror spacing £ is
chosen equal to unity.

4.1.3e Mode Dimensions and Mode Volume

The rate at which the amplitude of the fleld decays as the
distance from the axis increases is determined by the exponential
factor in equation 4.36. The constant amplitude locus of the expo-
nential decay factor is an ellipse. Thus the field may be charac-
terized by two dimensions w and w' which are defined as the distances
along the X and Y-axes respectively at which the field amplitude de-

-1 . . R
creasgses to e of its value on the axis, viz.

w = /% % (1 hoa)
W' = /% 'E" (4. 40b)

Figure 4.3b illustrates the variation of w and w' withz for
a = 30° and 450 and several values of the rat10<%.
The incremental mode volume is defined as dZ times the cross-

sectional area enclosed by the curve slong which the amplitude has de-

-1 . .
creaged to e of its value on the axis, hence

dav T ww' d2

it

Lx R
5 ww' d=
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The total mode-volume between two-mirror is

1
V= %; j ww' d=

-1

h.oha
A (b.41)
= 266" o Yrv =

The integration of equation 4.41 cannot be performed analytically
except when @ = O (refer Sections 5.le and 5.3e).

4.1.3f Numerical Solutions

Numerical values for the diffraction losses and phase shifts
in multi-reflector resonstors may be obtained by making use of Lhe
computed results for standard two mirror cavities. A simple re-scaling
of these data transforms them into results applicable to geometriés
using more than two mirrors.

The data presented here are for resonators in which the mir-
rors are concave and rectangular in cross-section with dimensions 2a
perpendicular to the plane of the resonator and _Ec%?:c_i in the plane of
the resonat-r. In computing these results it was assumed that to a
good approximation the eigenvalues for finite mirrors could be expres-
sed as products of the eigenvalues of infinite strip mirrors.

Figures L4.lba and L.4b, 4.5a and 4.5b and L4.6a and L.6b illus-
trate the diffraction loss per side and per circuit for resonators with
two, three and four mirrors. The limiting values of‘% predicted by

the geometrical optics approach of Section 2.3 are indicated.

As the number of mirrors is increased the spacing for minimum
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diffraction lose in the TEMOOq and TEMllq modes ghifte =zlowly to valueg
of % < 1. PFor the TEM'lOq mode minimum loss occurs at % > 1, while
within the accuracy of the calculations the condition for minimum dif-
fraction loss in the TEMZOlq mode is % = cos (. As expected the total
energy loss 1ls weighted more heavily by diffraction at mirror edges
perpendicular to the plane of the resonator than parallel to it and
this effect increases rapidly with the degree of field variation in
the resonator plane. In fact the optimum ratio of % for the TEMOlq
mode corresponds to the '"pseudo-confocal” spacing in the resonator
plane discussed in Section 4.1.3b.

Figure 4.7 indicates how the power loss per circuit in the

TEM

00q mode increases as the number of reflectors.

Computed phase shifts for the TEMOO TE TEMOlq and

g’ ™Mo’
TEMllq modes in the three and four-mirror cavities are shown in Figures
4,82 and 4.8b, and 4.,9a and 4.9b. The dashed curves indicate the

values computed from equation L.31.

4,2 The NonSymmetric Four-Mirror Resonator

L.2a Modes of the Resonator

The coordinate sysbems on which the self-consistent field
analysis of the four-mirror or parrallelogram resonator is based are
illustrated in Figure 4.10. Mirrors 1 and 3 have radius of curvature
by, 2 and L4 have radius of curvature b,. The 1 to 2 and 3 to L center-
to-center spacing is Ll, the 2 to 3 and 4 to 1 spacing is L?. All the

reflectors are rectangular in cross-section with dimensions Eal
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perpendicular to 'th plane of the resonator and 2&2 in the plenc of
the resonator.

Due to the lack of complete symmetry in the cavity the
electric field distribution reflected from mirror 1 will not be
jdentical to that reflected from mirror 2. However the symmetry about
the resonator diagonals indicates that the fields reflected from mir-
rors 1 and 3 (or 2 and 4) will be equal within a constant if modes
exist in the resonator. It is assumed that the fields are linearly
polarized with the electric vector perpendicular to the plane of the
resonator and that the distributions can be written as the products of
functions of x and of y, i.e.

+) i(+) () ()
%y) = ~E(x,y) = £,(x) g,(y) (k.k2)

r(

E_(

Then it follows from equation 3.13b that the integral equation for the
electric field of the clockwise travelling wave immediately after re-

flection from mirrors 1 and 3 is

\2

() L (e

Oy On fmlxz) 8n(Y3) =

7 « 1P (¢) ()
cos (ﬂ+8)cos(E—6)J XmJ" dyy fm(xl) gn(yl)
"8 TR

2n

K(xl’yl ;X3, y3 )

(4.43)



where

re1 Jae
K (xl’yl’x3}y3) = 1 dx2 ) dy ,
~aq —aén 12 23

To the accuracy of the Fraunhofer approximation

. 1,33 n ar .73
1'12+r23 _.(L1+L2)-x2 {: + 1—;)+ Y, cos (-E +8) cos (-E - 6)({’1 + ZT’:‘-

7t

4, cos (++5)-b

. n . X 2 1 1
+y; sin (E+8)-y3 sin (K+6)—xl 57 E
171

| 7 \
Ao cos (T B)-Dby"

T
n 41-byoos (T+0)) 5.
3 |
| 2{,2 by

2 2
- cos 7 +0 -X

T
Qlelcos (TL +8

!

(& +) :
-y3cos L B)! XE' |

B x
2 2 n [45-by cos (f + 6)) [21’1%2 cos (}-3)-b, (4;+ {’2)‘\
i - i

\2L2bl cos (ﬂ + 5)} \ 2L1L2b 2 '

\
n
- P_Ll{,?-bz cos (L].—S) ({,l+ LQ)\

-y cos2 (E - 8) - ,
2 i 2(_ }
2{,1-{,21;2 cos (h -8)

(. bl

In the denomingtor of the integrand r may be replaced by &l&q.

12723
The integral equation L.43 cannot be solved with finite
limits o1" integration. With substitutions similar to those of Section

4.1.1 and in the limit of zero wavelength the liernel may be integrated

and L.43 reduces to
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(#) (£) () () 1 @ e (H) ()
Xy Xp Fn(85)0,(6)=57 88 jaby Fo(5,) G,(C;)

n
-0 -0

r2 2 2 2
I Ba% + 5085 * BLLy *+ 5050 Esly ';3]
[S

(4.45)

where
°§1+)01(1+) ) je-ak (£, +45) Xr(ﬂ+)X§l+)

N =

Kby

\ X

E - ~ Py 7T =\ - £ a 5 .1
> Ld{,lLQ cos \-LI -0)- 02 4y * 4,2}‘

7
b, cos (T - 3)

¢ = [ R y cos (Ir +3)
- - - LS
2t L, b, cos (Z - 8) (x,l + Lg)‘ N

-

b 7
28 - T+8)- - +b
5 - Ll{’z cos 2% (4Ll+!;2)b2 cos (L +3) 2-{,2bl cos (T -B) lb2

1
2blb2
28 - (L. + 4 T e
- L2, cos L Lt 2)b2 cos (h 8) -24E,lbl cos (Lr"*‘) +blb2
2b1b2

Tt 7t L
_ 24 4,- (‘f/l*' &g)be cos (T —6)—2&2blcos (L+3)+2 b b, cos 23

1 b_b_ cos 2B
12
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7 7 1
_ ELILQ-(LJ_‘*’LQ)‘DQ cos (}-8)-21,b; cos (+8)+ 5 byby cos 28

blb2 cos 28
with
(+) (+)
F(8) = £,(x)
and .
(+) (+) -jky sin (-E+5)

6, (€)= g (v) e

Equation 4.45 is obviously separable, i.e.

B 1
(+) (+) (+) jLB 2 + 5,82 - E.E_ |
Xy Falfs) =7 | @ E(&)e T T0 U7 (L)
-
Fo,.2 2 )
(+) (+) (+) iLejgy + 6éC3 - §l§3J
X, 6.2 = == [ o (C) e ol (L. 46b)
-3

The solutions of Appendix 4 apply to equations L.4ba and

L.46b. This is easlly seen by rewriting them as

(+)_(+g 1@ (+) jiﬁfﬂ%%§22 (g§+-g§)“ glgB’

1
[ —
[N
o
I,_l
s}
3
—~
o
}_J
g
[0

K Fm >3
(kob7a)

_(+)
Xn Gn((:?)) - \/23_‘( z_(D
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where

]

() 3P %) (4
TR e T = ()

(+)  -3(0] - 85) €€  (+) -jky sin (& +8)
G .(C) e = g, (y) e E

The integral equations for the counter~-clockwise travelling
wave are identical with equations 4.47a and 4.47b with the functions
given by

oy d(ey - 8y) & -
?i(g) e —“l—g—-g_ v

H]
L}
—~
b
p -

. 2
BEICHER S i
dih A

1
0

After some simplificastion the field distribution reflected

from mirrors 1 and 3 for clockwise travelling-wave modes is found to be

§+) T+ 1)r(E+1) - z
E, x,y)l 3= E13 He ,{-—- B., X
2 M'm+ 1)I(n+ 1) m 1“\‘1.*1‘5—2 13

/ \L -
k |2 _, x
(71?»;) Py v con (4 )

k 2 2 2 2 2.
- (P13 x” *+ B{3 ¥~ cos” (f +8))
o 2/t 713 13 I

. s 2, , 2 2.mx
Jk (y sin (f *+8) + pyg x° + py3 ¥ cas” (f +9))
e

(h.48)
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where

-

6 . - [ Jt2obs ‘l
137
2

Lngcos(Z~8 -b (l,+ )J

1
‘ Tt , 3¢ 2
e [Ll{,gcos 28 - (L,+4,)(by cos(f;-8)+1by cos (7;+a)]+blb2
P1p
n L
' \’ {alL2b2COS(H —6) 2
P13 = 2L 4 -b cos(ﬁ-a)(f, +4 )
12 2 4 1 2
1
1 2) L

‘ 7 b
led [2{,1{,2— (Ll+ (b cos(], +3) +bgcos<h ~6)) +2 b b,cos 28
1
i 5 blbecos 20

({,2_{,1) cos (% - 3)

13 o4 4 cos(r-8)-b (L +2 )
1727 M o' o

(Lg-f,

13 24 -1 (E Y (L. +4 )
1Yo Py costy -0}t + 4,

The usual gamma function normalization has been chosen g0

that EX(O]_O)]_J3 = % Ey3 for m and n even.
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The field distribution reflected in a counter-clockwise di-
rection from mirrors 1 and 3 is obtained by changing the sign of the
complex exponential in equation 4.48. 1In a non-rotating cavity the
field‘distribution observed at a slightly transmitting mirror would
have the form of equation 4.48 with the complex exponential replaced
by the sine or cosine of its argument. Both circular functions are
allowable since the two travelling waves are independent.

The electric field reflected from mirrors 2 and 4 for the
clockwise travelling-wave modes results from interchanging &l and Le,

b1 T
b, and b,, and (L +3) and (L -8) in equation 4.48. Hence

L
Eriﬂ ) E [Er(G+) e, | [z | -
X Xy 2,)-1- = 2)-1- F(m+l)1"(n+l) em /'f’l{’g) ﬁ2’+x

1 i
—k_\2 . T
Hen JZIEE By, ¥ cos (4-—6{
I x 2 2 22 2 g
-2 Tets (Bzux *Poyy cos (L -B)
e
z 2 z
Jk |y sin (§ -8) + p,), . oy ¥ cos” (4-6))

e

(4.49)
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where
T, b i
17271 2
ﬁ2)4‘ = )( x
,; Eablbgcos(u +3)- bl(Ll+{;2 )|
. 1
X x 21 g
) l_(:,lz,gcos 26 - (L;+4,) |b; cos(], - 8) + bcos(], +8)] + blsz g
b b
] 1% J
R 1
' " JA L bycos (‘E +93) Té
Poly = 3
LNE{,ILE— b, cos() + 5)({,1+L2)Jl
1
. B T 1 2L
i 2,2 ,- (4’.1+L2) (blcos(ﬂ +8)+ bycos(T - 5)) + 3 bybycos 28
_21. b,b,cos 25 J
T
(2o-41 )cos (T+0)
Py = -

T
2{,1%2(308(-); +3) - b2(£l+£2)

, (Lo-2q)
Poy = Z
24’,1&2— b, cos(br-r-S)(LlLe)
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The relation between the constants E13 and E,). is obtained

i+ r(+)
by calculating Exéxg, ¥o) from a knowledge of Exixl,yl) (refer equation

3.11). It is easily shown that

1
E 2eos(T-8) 2.4, cos(T 3 L L o).+ 1)
‘ 3] bzcos(ﬂ— ) 12cos(u+6)-bl(1+£2) 2L, 2-blcos(E )(Ll {Q)K
.2 B 7 T N
{EgLJ ‘blcos(z+8) 2l,lf&2cos(rIr -6)-b2(l;l+ 15) 24145~ bycos (-[,; - 8)(Ll+ Lg)‘
(k.50)
In order that the field distribution decay rapidly towards
the edges ol the mirrors it is necessary that
Y (\
613) bgh > J
B! , B >0
13" "2L

This second requirement leads to the stability condition derived by

geometrical optics (refer Section 2.2b),

R
o< 0 L-TTE T T T 1T T s
0= by cos(T+A) | 1 h?oos(% -5) | 1 bzcos('ﬁ -3)" 1 bleos(%+6)! 2

- IS R -

(2.28)

The relation resulting from the first requirement is less rigorous and

may be neglected.
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4.2b Resonance Conditions

The eigenvalues corresponding to the solutions of equation

4. L5 are purely imaginary, i.e.

1 (&5+5p) 1, -1 &y 82)
~3k(L 4, )+ 3 (m+5 ean ™ L2+ j(n+3)tan .
ooy (™™ ° P13 P13
(k.51)

For resonance the total phase shift around the resonator
must be an integral q times 2x. Thus from equation 4.51 the resonance

condition is

1. .1 (3+8) 1. 4 (BL+8p)
2qn = 2 k(Ll+{,2) - (m+n+1) '325'- (m+3%)tan 1 — % - (nt3)tan 1 7
B13 P13
(k.52)
or
b +2,) (3,+5,) (5148}
1 2" 2g + (m+n+1)+ 2 (m+}.)tan‘l L 2,2 (n+£)tan'l L 2
A bid 2 2 7 2 Xal
P13 P13
(k.53)

The phase shift between two mirrors separated by L] is
il+
obtained from the calculation of Exéx%,yg) from a knowledge of

20 v ). It is found to b
(X577 )- is found to be

7 1 1 1
Ly = k- (m+3n+1)3 - (m+%) 6 - (n+3) 6 (4.5L%)

’ 4 phase
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where

.
leLicos(f-L - 5)[&2cos(%+ &) - bl]- bo(4y+ {,2)[41(_\.03(% +8)- b, |

B.=tan

1 22
Ll 195 LLlf,gcou 28~ ({, +& )b cog(l -6)+b cos (m—&)}*—b b }T

2 : )
6._tan-124;1[42- by cos(% +6)] -becos(ﬁ -3) (Llﬂ’e)!l}l‘bl cos (% +5)J
1=

1
1l 22 L 7 1 —
L <4b b,cos 26-| 2L1£2—(&l+{,2)(blcos(‘[;+6)+b2cos('l:-6)]+—2’ti%c0528f}h

The change in phase corresponding to propagation between two
reflectors of spacing £, is

1 1y
1, = k&g—(m+3n+l)§-(m+§)62—(n+§)eg’ (4.55)

2

l O phase

where

-

2 X x ] X
1 2{,2cos(1++5)[&lcos(1+-6)- by |- bl({,l+f,2)[£gcos(u-6) - by |

0= ten - 5T T
22 X S
{,Z{blbe— ;__{,l)(,ecos 25 - (Lf{,2 )‘blcos ( L -8)+b cos( 1++5)) +b.b, | J> L

3 QLS[Ll-bgcos (%-8)} —blcos(% +3) (81 + 4o )({,2— bo cos(% -8) ]

G tan 'l 1
2D =
L(hb b cos 28-{2&1 ‘(4, +z, ‘b cos(u+8)+b cos(' 8)}+2b bcos28_|>h
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L.2¢ Electric Field at an Arbitrary Point in the Resonator

The electric field travelling in a clockwise direction at
some arbitrary point in the resonator between mirrors 1 and 2 is calcu-
lated from the distribution reflected from mirror 1 (refer equation
4.48) using the integral of equation 3.10. The result of the inte-

gration is

(+) rG+rOr(E+1) 3 [ ok \£ B3
B (X,,Y.,2.) = B - He 2 X
xU1TUL 13TM(n+1) M(n+1) Jr.y. m /4 4 / v, "1
1'1 V172 1
- _k 13 xi 13
[ 1 t + ——= v
2k (5 P L L 2 2 Tl
He_ kJL_LWQ —.—3-Yl e Vhto (7Y L
172/ 1

2,2 [ %2 2\
3 FL (1) x (XTHYT) o o (Ta¥T MY

= +
2 hl+z) Aito Y% Tie

e

1,,m , 1 .
Jm+ 3G +e)* 3(n+5)(5+ @)
e

(k.56)
where
4
P A
S RESAEN o
vy = 2 (ARG B ety
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oL e
— - ae |2
1 2 (l+’_“l)!---£ (’“2) E’13 My J

-

=4
1§

-1 21
LT g 2
DA
2
Q' tan-l —-—-2-]—-1Jl'—
1 G?JE B'E
2 13
:r 5
N - L1(Lo-1, )cos (T -3) . Lcos(T +3) 1
1 X_5)- T 1+
2ff,l£200s(E 5) b2(L1+{,2) 2bl 1+
2 (Lo-t7) L
' 1V2=v1 1 1
ﬂl = +

i B -~~~
2b, cos(T+8) 1+

2L,L,- b,cos (1 -8) (L +4,)
For the situation in which waves of equal amplitude are
propagating in both directions around a non-rotating cavity the trans-
verse standing wave existing along Ll in the far zone of the mirrors is
obtained by replacing the exponential phase function in 4.56 by the
corresponding sine or cosine function. As in Section 4.1.3c¢c a sine

distribution is assumed, viz.
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m n 1

' > =+ =
B (X,Y,%) = E rG+urGG+1) = He |(-2k_|5 P13 x
x 3 p(m+1)r{n+1) ¥ v,7) Tt v

. !__B'
( 2k )2 13 -
/A vl
12 Tl

I e (1453) (x3+x7) , 2k mxy | myf
sin == p
o 2 12
2 T (1 +.,J) \/Lle 15 I

(m+Z)(5+qy) - (n+3)(G+e))

(L.57)

This can be shown by calculating the travelling-wave dis-
tribution for a field moving counter-clockwise from mirror 2. Using
equations 4.50 and 4.54% the result of this calculation can be combined
with equation 4.56 to give the result of equation 4.57.

The corresponding transverse standing wave along 4, in the

2
far zone of the mirrors is

E (X ,Y
x(z’e

n
2y M3+ Vr(z+1) 3 2c | Bou
2t ek pmr)r(a+1) vy ™



2 ] |
- K (?EE xg + E%ﬁ Yg\
otz |18
Hen 2k 2?@&Y4e \ /
Whte| T
2 2 2 2
L He ok (Bf¥a) ok (TeXe TaYa)
sin /—= (1+,=,2)+— +
L (1+= 2) 5
1
-(m+2)(2+¢‘2) (n+§)(2+¢2)}
(%.58)
where
-
2 '{fg
s
_\/2 (1+°’) [H( ) 2)+ 'n2_|2
l
o = Ja (1+=,) [E ( )‘32)_}4“ T]2
-1 2Me2
p, = tan (Lg)% -
1 2L
Ll
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' - tan L 2n2
LI PR E
77]2 Poy
b1 I

. tolty-tp)eos(f+8) Lpcos(z-B) 1
2 2yt cos(T+8) - b (0 +L,) 2b,, 143,
. 2o(41-12) Lo 1
n, = -

T + x N
2L1L2-blcos(-z +3) (L1+L2) 2b, cos (-E -3 1+=

4.2d Nodal Surfaces

The requirement that the total electric field be zero at
points along Ll and along 42 leads to two sets of nodal surfaces. To a
good approximation these surfaces are defined by the condition that the
line of intersection between them and a plane containing the Zl or Z2—

axis be a circular arc.

Along Ll the radius of the curve of intersection is

(1 +%lo)

1+2/ = {’2 (1 +~(9

Py = (4.59a)

L
2

in the Xl- 1 plane, and
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, 4 (1+%40)
Py = '2}“ oY (4.59b)
1+2/?E 10 (l+’—“ )
*’2 10

in the YlaZl plane.

The corresponding radii along Lg are

L (1+=5)
2 20
92 = —2‘ M (1+,6Oa)
142 /IT? 20 ( (1+2,)
1 Yzo
and
. 2 1+
o, = ?2 ( 20) (4.60p)
1+2 [Z2 “22 (1+=,)
41 Y55

The nodsal surfaces intersect the Zl and Z2-axis at ZlO and

and =

Z.,., regpectively. The additional gubsecript C indicates that =, >

20
27 27
O ands Ry = 20 in the various pa.-
1 'LQ

have been replaced by =

10 T

rameters involwved.

L.,2e Mode Dimensions and Mode Volume

As in Section L.1.3c the mode dimensions are defined as those
distances along the axes at which the arguments of the exponential
factors in equations 4.57 and 4.58 become -1. Thus the nonsymmetric

four-mirror resonator is characterized by four mode dimensions. From
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equation h.ST the mode dimensions along Ll are

IS
17202 "1 in the X; direction
k 513

W+ =

L 1
172 2 Yl in the Y; direction

k| By

From equation 4.58 those along 1, are

1.4 Y
Wy = 1 2) _2 in the X, direction
k| PBoy

/

)
-
wé = L2l 2 in the Y, direction
k Bal

The corresponding mode volumes arc

L4

17 % 5 J ) 8
13713

between mirrors 1 and 2 or 3 and b

Liton ol )
Vo = ——— | yorp &5
2BoyPo, ©

between mirrors 2 and 3 or 1 and 4.

(L4.61a)

(4.61p)

(4.62a)

(k.62pb)

(4.63)

(4.6L)
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CHAPTER V

THE SELF-CONSISTENT FIELD ANALYSIS OF THE TWO-MIRROR RESONATOR

The properties of the standard two-mirror resonator will be
summarized in this chapter. In the casgse of the symmetric cavity these
mey be obtained by setting @ = O (N = 2) in the results of Section h.l.
The analysis of the nonsymmetric resonator is similar to that followed

in Section k4.2.

5.1 Symmetric, Nonconfocal Resgonator

5.1a Modes of the Resgonator

The symmetric, nonconfocal regonator is illustrated schematil-
cally in Figure 5.1. Unlike the multimirror resonators both mirrors
can be represented in the same coordinate system. The reflector spacing
is 4 and the mirror curvature b. Both mirrors are square in cross-
section with side dimension 2a.

Setting @ = O in equation 4.28 gives the distribution of the

reflected electric field for the normal modes of the resonator, viz.

, rG+)rG+1)
B (65Y) = By Tinr ) T(n+1) Hom

He,

Ful

£ g2(xP+y®) (5.1)

where
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Fig. 5.1 A symmetric, nonconfocal two-mirror resonator.
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From the expression for B 1t is evident that this approximate
analysis fails when £ = 2b.

5.1b Resonance Conditions and Diffraction Losses

The rcsonance condition for the symmctric, nonconfocal rcso-
nator does not follow directly from equation 4.31 with @ = O and N = 2.

This results from the fact that the modes are defined differently for
resonators in which a travelling wave reflects back on itself and reso~
nators in which the travelling wave circulates. It is easily shown that

n
this difference appears as a factor (-1) in the expression 4.3C for

(+) (+)

n

the elgenvalues o, O

. With this correction the resonance condition

becomes

-1 23

b
A B=.

r 2
= 2q + (mtn+1) |1+ tan (5.2)

where D = op

It is evident from equation 5.2 that no frequency degeneracy

exists. The spectral range or mode separation is
1 1 r..,2 -1 2%
A=) = Ag+ | 1+E .
A(K) iy {2 g+ |1+=tan 52 ]A (m+n)} (5.3)

The results given by ecquation 5.2 and 5.3 differ slightly
from those obtained using the concept of the equivalent confocal reso-
nator (19) namely

(1-%)

= 2q + (m+tn+l) El-—% tan™t “‘“Q’J (5.4)

—l_l.&.
A (1+3)
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Fig. 5.2 Difference in resonance conditions for the symmetric, non-
confocal resonator.



and
£
(%):i% 2Aq+[l-§tmfl(l—3qaimm) (5.5)

1
(1+d)

The difference in bthe lasl Lerms of eguations 5.2 and S.h is
illustrated in Figure 5.2 as a function of (%),

The properties of the integral equation for the modes of the
regsonator were discussed in Section 3.2 There it was indicated that
with a complex, symmetric but non-Hermitian kernel there 1s no guaran-
tee that variational techniques will give a result which approaches the
lowest order eigenvialue. However in Appendix 5 it is shown that at

optical wavelengths an approximation tothe lowest order eigenvalue is

‘Golg erf{/%ﬁa} (5.6)

The fractional energy loss per reflection due to diffraction

effects for an infinite cylindrical mirror, i.e.

OLD= l—erfg{\/% Ba} (5;7)

is shown in Figure 5.3. Also shown are the results obtained by Boyd
and Gordon {19) using their concept of the equivalent resonator and the
results obtained by Fox and Li (24) using numerical iteration.

5.1l¢ Electric Field at an Arbitrary Point in the Resonator

The transverse field travelling in the positive z-direction at

an arbitrary point in the resonator is obtained from equation 4.34 with
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Fig. 5.3 Diffraction loss for the TEMy,, mode 1n a symmetric two-mirror
resonator with infinite cyllndrlcal reflectors (ﬁh 0.5).



a = G, thus
() . . r(+1r(z+1) [z o% B
Exz g ) = E F(m+l)1"(n+l) Y (j— X)
-KED (x2+i2)
/ER__@_ \‘ 1?2
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T2 e E Sy - (wmil) (o) |

e

J
(5.8)

with

o ML=
L2" b

-
i

-1 2- %(l"" E)

p2(1+)

= tan

S
1

Similarly from equation 4.35 the negatively directed wave is

.

fE Gy |
E (X)Y: )"F F(m+1L)I'(n+1) ¥ Hem( t
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T2 -0-£62P) 3 @)@ -]
e

(5.9)

with

Equations 5.8 and 5.9 may also be conegidered as the travelling-
wave field distributions outside the resonator providing that the loss
on transmission through the mirrors is accounted for.

The tranaverse standing wave is equation 5.8 with the expon-
ential phase function replaced by the sine function. The variation in
amplitude of the 'I‘EMOOq mode is illustrated in Figure 5.4

5.1d Nodal Surfaces

The nodal surfaces are obtained from the condition that

L (1re)+E (AP B (1) (G- ) = px (5.10)

They intersect the axis at points z_ which satisty the re-

o

lation

kL s
2 (1+ - {(mtn+1) (2 - = <11
L (14 5,)- (wmi1)(E-9) = pr (5.12)
If the variation of ¢ with § is neglectcd as well as the
small error involved in replacing § by &, in YE, then equations 5,10

and 5.11 may be combinea to give
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2 2y
z -z = - B——F—-)-ﬁ (5.12)

(o]

Within these approximations 5.12 represents a spherical

surface with radius of curvature

2
b |7

The variation of p as a function of E, is plotted in Figure
5.5.4 is chosen equal to unity.

When the fields in the resonator are approached from the
travelling wave point of view the equiphase surfaces correspond to the
standing-wave nodal surfaces. At optical wavelengths the geometrical
wavefronts correspond to these surfaces and moreover it is easily shown
that the average Poynting vector is directed along a normal to the geo-
metrical wavefront (56). Since the radii of curvature of the equiphase
surfaces do not become zero for % < 2 it is clear that as a point in
the field distribution prapagates from one reflector to the other it
does not cross the axis of thc resonator. This does not agree with the
picture presented by ray-tracing techniques where the rays reflected
from the mirrors cross the resonator axis. However this latter treat-
ment is incorrect since it compietely neglects dif?ra¢tion effects
which occur when the dimensions concerned approach the order of a wave-
length. This would be the case if the radius of curvature of the wave-
front were to approach zero at some focal point in the resonator.

Although the radius of curvature of a nodal or equiphase
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Fig. 5.5 Variation of the nodal surface radius of curvature for the
symmetric, nonconfocal resonator.
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surface does not become zero for % <2 it is not generally a monoto-
nically increasing function of § (refer Figure 5.5). For some values
of % p passes through a minimum for O =< %gol =< 1. The minimum value of
p and the point where the corresponding surface intersects the reso-

nator axis are easily obtained by differentiating equation 5.13.

Pmin = Vé&b - %2 (5.1L)
(2), 4, = cmin (5.15)
o‘min 2

For equations 5.14 and 5.15 it appears that any symmetric
resonator is characterized by a pair of confocal equiphase (or nodal)
surfaces and that these surfaces are those at which the field distri-
bution 1s the most highly convergent.

Properties of the resonator may now be investigated by con-
sidering those of a confocal resonator whose mirror curvature and
spacing are given by 5.14. This is the concept of the equivalent con-
focal resonator arrived at by Boyd and Gordon (19) through a consider-
ation of equiphase surfaces in the confocal resonator.

5.1le Mode Dimensions and Mode Volume

Due to the rotational symmetry of the field distributions

apout the resonator axis the locus at which the field amplitude de-

1

creases to e of its value on the axis is a circle with radius of

k

o= /Q% (5.16)
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Fig. 5.6 Variation of the characteristic mode radius for Uhe symmetric,
nonconfocal resonator.
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The wvariation of the characteristic mode radius w ig shown in
Figure 5.6.
When & = O {or N = 2} equation 4.4l can be integrated. Hence

the mode volume for the symmetric, nonconfocal, two-mirror resonator is

CAL-1 @)
\/& Py (5.17)
2_..._
The mode volume is presented in Figure 5.7 as a function of
%, It is interesting to note that the minimum mode volume
2
Viin = 3

4
occurs for — = 1.5 and not 5= 1 as was previously indicated (19).

b
In a resonator with mirrors which are not perfectly reflecting
the Q@ due to reflection will increase with separation when the dif-

fraction losses are small. Soohoo (25) has shown that with a reflection

loss of l% the maximum Q occurs at a spacing of % = 1.5,

5.2 Confocal Resonator

5.2a Approximate Solution

The properties of the confocal resonator may be obtained by
placing £ = b in the results of Section 5.1.
The resonance condition 5.2 becomes

.L_;E-: 2q+ (m+n+]_) (5°l9)
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From equation 5.19 it is evident that unlike the nonconfocal
case the confocal cavity is resonant only for integral values of éﬁo
Considerable degeneracy exists since the resonance condition may be
satisfied by different combinations of m, n and q. Thus the modes of
the confocal resonator form a complete set of orthogonal functions but
due to their frequency degeneracy they are not unique. Unless the dif-
fraction losses of the various modes sre considered any linear com-
bination of degenerate eigenfunctions is still a mode of the resonator.

The radius of curvature of nodal surfaces in the confocal

resonator is

(5.20)

The concept of the equivalent confocal resonator (19) stems
from this equation. Since equation 5.20 describes nodal surfaces on
which the total electric field is zero it also describes surfaces on
which the boundary condition for perfect reflection is satisfied. Thus
the properties of a symmetric, nonconfocal resonator with mirror spacing
{ and mirror curvature b' may be approximately described by considering
a confocal resonator whose mirror separation and curvature b satisfies

the relation

be = 24b' - 42 (5.21)

As noted previously in Section 5.1b the equivalent confocal
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resonator concept gives a resonance condition for the symmetric, non-
confocal resonator which is very close to the correct result.

An approximation to the diffraction loss of a symmétric, non-
confocal resonator with square mirrors of dimension 2a' is obtained by
assuming that its loss is equal to that of its equivalent confocal reso-
nator with reflector dimensions scaled up by the ratio of their charac-
teristic mode radii at the mirrors. Thus the equivalent confocal reso-

nator has a reflector dimension

2a = 2a!

g |=

o T (.20

The important parameter in determining losses is the Fresnel

number

1 y
-E—E = i‘i—; 2% - %‘—2 (5.23)
Hence the diffraction losses for a nonconfocal resonator
characterized by £, b' and a' is approximately that of a confocal reso-
nator whose Fresnel number is given by equation 5.23. It will be seen
in Section 5.2b. that the diffraction loss for a finite aperture confocal

resonator may be found exactly.

5.2b Exact Solution (19)

The properties of the confocal resonator resulting from the
non-zero wavelength solution to the problem are arrived at by putting

Q = 0 in the equations of Section 4.1.2b.
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The normal mode field distributions reflected from the mir-

rors are

2 \ 2
T ak X [a%k y\
Eo(%,7) = By Sgp| =" ';‘) Son |75 2 @) ™R =02 .. (5.24)

where SOm is an angular prolate spheroidal wave iunction (50). The
realness of the eigenfunctions indicates that the reflectors are
surfaces of constant phase.

The fractional energy loss per reflection due to diffraction

effects is

\ ' }
ha® (1) (a2 | (1) [2Bx 12
%~ %% Bom 0N R’ 1B Y (5.25)

\

1
where ROm) is a radial prolate spheroidal wave function (50).

5.3 Nonsymmetric, Nonconfocal Resonator

5.3a Modes of the Resonator

The eigenfunctions of the nonsymmetric, nonconfocal two-
mirror resonator illustrated in Figure 5.8 do not follow directly from
the results of Section L.2. However they are determined in a similar
manner, that is to say by the solution of an integral equation similar
to 443,

The self-consistent fields found to be reflectel from mirror

1 are
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Fig. 5.8 A nonsymmetric, nonconfocal two-mirror resonator.
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m n k

r T(3+1) T(z+1) "5 BE(E+yR)
E (x , V.) = E 2 He JE'B x_| He /E By "1t

x 17 YL 1 {m+1) I'(n+1) =g 11 £ 171

where 1
20 £
(blu&) &(bl+ b, -4 | L

2
(bo-1) by

In addition the modes reflected from mirror 2 are

m n X a2 2
M(z+ 1) G+ 1) R ACARA

r X ‘
E (x = E He /: x,|He jE ] e
< ) = Ep T+ (arD) g 2 2) n( p P2
(5.27)
where
5 1
. (by-2) 40y +b,) -4 In
2 (b -2 2
1) 2
and
: 1
%l = bg(bl-{J 2
E, bl(be—&)
B
Examination of the quantities Bl and ﬁe and the ratio E—
2
reveals that the values of £, b, and b, may not vary indiscriminately.

1 2
The limiting condition is

A 4
¢ < (py-1) (by-1) <1 (5.29)
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This expression is the two-mirror analogue to cquation 2.28,
Tt was previously derived by Boyd and Kogelnik (22) from a geometrical
optics viewpoint based on the equivalence of the resonator and a peri-
odic sequence of parallel lenses.

5.3b Resonance Conditions

The eigenvalues corresponding to the eigenfunctions given by

equations 5.26 and 5.27 are

; ki -
-j<%k&-(m+n+l)[§- tan 1_28 —]}
g 0, = €

°n ,/1-462J

(5.30)

with

2
QL(bl+ b2) -2 - by b,

d =

2blb2

The round-trip phase shift equals the phase angle of %,%n and

for resonance must be an integer q times 2w, i.e.

]

o)
1-Ls2

T
onq = 2k&-(m4-n+l)L§~ tan™ (5.31)

or

Lp r, 2 -1 28 ]
o og+ - = —_—
. 2q (m+n+l)L1 ~ tan

J1-U432

The spectral range or mode separation is

A(%) = )Ilz{EAqﬂ-[l;% tan™ _ﬁ%ﬁ] N (m+n)} (5.32)
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5.3¢c Electric Field at an Arbitrary Point in the Resonator

The field distribution travelling in the positive z-direction
is computed directly from the electric field at mirror 1 (refer

equation 3.10), viz.

(+) T(z+1)T(5+1) |t
E (x,7,2) = E 2 2 2 He /Zlg_ﬁ_]___ x)
X Lrm+1)r(n+1) v1y 2V 4 7
oy -k Bl (Re?)
JER | T
He, V7 v; 9/ e 'L

2
123

‘..

i 1

J{% (140§ (G %‘%%xx%y’f)- (1) (5 + 9))
(5.31)

where

-1 2y
cpl = tan —é—
B3

4 1

In a similar manner the negatively-directed travelling wave is



(-) r(z+1)0(5+1) /3 5y Po
> 5 /_’_;_ 7 x

E (x,y,2) =B, T+ D) T(as1) T He

2
kP2 .2
. /_@ Bo T2 (x%+y°)
®n v L T2 I ©

{2 e E %)(x%f)- (1) E+ 9,))

g€
e
(5.32)
where ) 1
v, = V2 (-2« o2
2 T 2
2
P, = tan™t —%?
P35
Lt 1
o=, " I-E

The minus sign in equation 5.32 has been assigned arbitrarily
so that boundary condition for perfect reflection at the mirror will be
satisfied.

The transverse standing wave in the cavity is obtained by re-

placing the exponential phase function in 5.31 by the corresponding

+
EX(X,y,Z)
Ep

sine function. The variation in amplitude of

for the TEMOOq

mode is illustrated in Figure 5.9.
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Fig. 5.9 Variation in amplitude of the TEMOOq mode in the nonsymmetric,
nonconfocal resonator.
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5.3d Nodal Surfaces

From the requirement that the total electric field be zero
on the nodal surfaces it is easlly shown that these surfaces are ap-

proximately spherical with radius of curvature

A (1+%0) ( )
e J.+--,_.-41=_____2'n O(pl+go) 2+33
710

The surfaces intersect the axis at Zo and ﬂlo and T cor-
respond to Ty and y; with § replaced by E,. Figure 5.10 show the vari-
ation of p as a function of E.

From Figure 5.10 it is evident that the field does not
"cross" the axis in propagating from one reflector to the other. Dif-
ferentiation of equation 5.33 leads to the minimum values of p and the

points where the corresponding surfaces intersect the resonator axis,

viz.
b. b,  Db._ b, ba
(1-2)- 1-Dx 2 (- L)ya-2(L+2-1)
) : 1 ) )
Ppin = ¥ 5 (5.3%)

() . = -min (5.35)

In equation 5.34 the + and - signs are associated with the

rhase fronts leaving mirrors 1 and 2 respectively. Unlike the
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Fig. 5.10 Variastion of the nodal surface radius of curvature for the
nonsymmetric, nonconfocal resonator ( B’L_ = 1.5, 4 = 1).
2
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symmebric, nonconfocal cavity this resonalor is nobt characterized by a
single equivalent confocal configuration.

5.3e Mode Dimensions and Mode Volume

Following the usual definition the characteristic mode radius
for a two-mirror resonator with reflectors of different radii of curva-

ture is

Wz/&l@ _ 2 (5.36)
k By k By

In Figure 5.11 equation 5.36 is plotted as a function of
z
for E; = 1.5 and several values ofﬂgi. The ratio of the spot sizes at

the two mirrors is

2
W(g=-1) by(bo-t) E5
= == (5.37)
w2(E=+1)  by(b ) ES
The mode volume for this cavity is
2 L{(L4-b;)-(2L-3b 1-b
V = AN ( 1) ( ) l)( 2) (9.38)

L
{(%—bl)(%'bg)[ﬂ(bl+b2)_éej}2

With b2 and {4 fixed the mode volume is a minimum for

Ub2_5b b +24°
by = b ———— (5.39)
3pT-4b £+24
2" 2
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Varigtion of the characteristic mode radius for the non-
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The corresponding value of V is

1
2 2y
o o (305-3b,0+47)2
V=3 27 Ty (5.40)

5.4 Plane-Parallel and Concentric Resonators

5.hs Equivalence of the Plane-Parallel and Concentric Resonators

The variation of Bu as a function of b with 4 fixed is il-
lustrated in Figure 5.12. Al b = % (concentric) and b =oe (plane-
parallel) 6h = 0 and the description of the fields obtained in Section
5.1 collapses. In both situations the failure of the theory results
from a neglect of the effects which determine the characteristic radial
extent of the field distributions.

This approximate theory does not take into account diffraction
effects at the mirrors. This is the dominant mechanism producing finite
spot sizes when the mirror curvature becomes small with respect to the
spacing, i.e. bv<2%u In the planar case the zero wavelength or infinite
aperture spproximation fails to provide the resonator with any mechanism
for field confinement.

The fact that the difficulties involved in treating these two
resonators stem from the same basic problem indicates that a solution of
one configuration may lead to that of the other.

The integrai equation to be solved for the x-component of the

field reflected from a mirror in the concentric cavity is
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Ve J (S + )2
1782
mem(sg) = _%:. J dsy F(sq) e2 (5.41)
J2n e
The corrcsponding cquation for the plaonar cosc is
3 2
Je -= (s,-8,)
. 1 271 T2
XaFuloa) = o= [asy my(sy) e (5.42)
-Je
The Hermitian adjoint of equation 5.42 is
JG J (s,-8 )p
5 1 2 \PaT
¥k %

F'(s ) = — J ds. F'(s_ ) e .43
X, Fo(s5) JE?_’/Elm(l) (5.13)
This may be rewritten as

{c I (8,+8,)
*_% 1 r 5 V1 P2
+ mem(sg) = = 45y Fm(sl) e (5.544)
s

where + applies to even eigenfunctions and - to odd.

Comparing equations 5.41 and 5.44 it is evident that the
eigenfunctiones and eigenvaluee for the concentric resonator are the
complex conjugates of those in the plane-parallel configuration. This
equivalence has been demonstrated numerically by Fox and Li (24).

5.4 Electric Field in the Plane-Parallel Resonator

For a plane-parallel resonator in which the reflectors are

circular in cross-section the integral equation for the self-consistent
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electric field at a mirror is

e

ke a 21
Mo (Por®2) = opp %Dpldpl L)d@l fn(P19p)

g | PrPpeon(er-wp) |
(5.45)

This equation may be simplified by using the following

iderntity (57)

in(5 - 0,) b o o) 3
Jm E"' CPE /kp p ] ('271’ JZ PlPZC‘OS Cpl-cpz - Jm°P1
=2 =1 26
nl— T E ) e (5.46)

It is evident that

£ (o) = R (p) & 9™ (5.47)

where m is an integer and n is an index referring to the p-dependence
of the field.

The function R (p) satisfies the reduced integral equation

o+l -Jkb g kpqp
A R (p.)=d ke " P1P2
mry mn ' 2 £

L

(5.48)

k2, 2
-51,(Pl+92)
dp,p R (py) I

Yo
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RELATIVE AMPLITUDE

RELATIVE AMPLITUDE

Fig. 5.13 Variation in amplitude of the reflected field distribution
for the TEMyn, and TEMqu modes in the plane-parallel reso-
nator with circular mirrors (after Fox and Ii).
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Fig. 5.14 Relative phase of the reflected field distribution for the
and 'Tmloq modes in the plane-parallel resonator
withog‘ircular mirrors (after Fox and ILi).
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Equation 5.48 has been solved numerically for m = 0,1 by Fox
and Li (18). The amplitudes of the reflected fields for the TEMOOq and
TEMqu modes are shown in Figure 5.13. The dashed curves represent

normalized functions of the form

kP2
R (@ (er) i (Ep2) e T2 (5.49)
mn'" P n g P e ‘

mk 2 E
where Lﬂ(Zjﬁgr )is the associated Laguerre polynomial (58) and r = L.

The corresponding phase distributions are illustrated in
Figure 5.1k4.

The numerical results for the self-consistent flelds re-
flected from the mirrors may be used as a basis from which the travel-
ing-wave fields in the resonator may be calculated. In a cylindrical
coordinate system in which two flat mirrors of radius a are located at
Z = % % the positively directed field is computed from a knowl edge of

£
the distribution reflected from mirror at z = -5 For the TEMOOq

mode the resulting integral (refer equation 3.10) is

(+) -Jeg(1+8) 3% (P rB) i
E (r,€) = jye i driry e JO(YTTl) E (ry)  (5.50)
where
2z
§ =7
4
r= 3
2ka2

.<
'
&=
P
I._i
4
us
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Eﬁrl) is the complex rield reflected from the mirror at z = -%.
Its amplitude and phase are obtained from Figures 5.13 and 5.1k re-
spectively.

Equation 5.50 has been evaluated numerically on an IBM 7090
computer, The relative amplitude and phase distributions of the fieid
at € = 0,.25,.50,.75 are shown in Figures 5.15 and 5.16. - From the
amplitude curves 1t is evident that near the edges of the cavity volume
determined by the projected area of the mirrors the field varies smcoth-
ly and uniformly throughout the entire resenator. -For r < .Ut the
amplitude varies rapidly and randomly. Part of this variation may be
due to the nature of the numerical computation, however the curves are
sufficliently smooth to imply that some of the variance is characteristic

~of a regonator with plane-parallel mirrors.

- The plots of relative phase all exhibit a somewhat similar
behavior: smooth but rapid variatien near r = 1; rapid, random changes
near r = O3 a fairly smooth "average" value for .1 £ r £ .6. The phase
difference between the "average" and the value at r = 1 shows a definite
variation with €. Starting with a lag of about 45° at € = 1 it dips to
a minimum of approximately 35° at € = .5 and then increases nearly to

initial value at § = O.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

Detalled investigations of the field distributions in reso-~
nant structures with dimensions >>A and in which the fields are con-
fined solely by the use of highly reflecting mirrors were motivated
by the development of the opbical masecr. The initial analyses of Boyd
and Gordon (19) and Boyd and Kogelnik (22) are only applicable to reso-
nators formed by two mirrors in which the resultant field distribution
is due to the interference of travelling waves reflected back upon them-
selves. Thig paper treats a different and more general type of reso-
nator than that considered by previous authors. The cavity is formed
by more than two mirrors so tha£ the resultant field distribution is
due to two independent, oppositely circulating travelling waves. Two
resonators are examined in detail, a general symmetric N-mirror cavity
and a particular nonsymmetric four-mirror cavity.

Using the methods of geometrical optics sets of simultaneous
nonlinear dirfference equations are derived which describe the path of
sn optical ray in the symmetric and nonsymmetric resonators. Approximate
solutions to these equations lead to relationships among the resonator
parancters which must be satisfied if an opbticel ray is to remain
inside the limits of the cavity. 8Such stability relationships may be
interpreted as determining resonators with high and low energy loss.

A general integral equation for the mode distribution in a

symmetric resonator is obtained.  The same method of analysis is
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extended to give a integral equation for the self-consistent fields in
any arbitrary nonsymmetric resonator. - Solutions to the integral
equabions are discussed for non-zero and zero wavelengths.

The self-consistent field analysis leads to a complete de-
scription of the field distributions in a symmebtric N-mirror resonstor.
It is shown that when the mirror spacing is much greater than the mir-
ror curvabure only one field distribution rather than an infinite set
can exist in the cavity and that this mode is characterized by high
loss. Non-zero wavelength solutions are obtained for a symmetric
"pseudo-confocal"” resonator in which the mirrors are not spherical but
are defined by the condition that the line oi intersection between a
mirror and a plane containing the mirror normal be a circular arc whose
radius varies continuously between a maximum and minimum as the plane
rotates from a position parallel to the plane of the resonator to a
position perpendicular to the plane of the resonator. Unlike the two-
mirror confocal cavity the modes of the symmetric pseudo-confocal
multireflector resonator are not frequency degenerate. The mode distri-
tutiong and resonance conditiong for the symmetric N-mirror resonator
with arbitrary spacing are considered in the case of very short wave-
lengths.  The field distribution is described at any point in the reso-
~nator. It is shown that the oppositely circulating fields are entirely
independent but when the resonator is not rotating may combine to form
a standirg wave. The diffraction losses for three and four-mirror
resonators are calculated numerically. It is found that for minimum

: £
ditfraction loss the ratio of mirror spacing to mirror curvature (i.e,g)
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is not constant but varies from mode to mode. The phase shifts be-
tween reflections in three and four-mirror resonators are computed and
for O <2% < 2 cos & are found to agree closely with those predicted by
analytical solutions of the integral equations.

The self-consistent field analysis is applied to a particular
nonsymuetric four-mirror resonator. In the limit of very short wave-
length expressions are obtained for the resonance conditions and the
field distribution everywhere in the cavity. The requirement that the
fields be closely confined about the resonator axis leads to the sta-
bility relation among the resonator parameters previously obtained by
the geometrical optics approach.

The analysis of two-mirror resonators is presented as a
special case of the more general multireflector theory. The results
of other authors (19,22) are obtained and extended. In general there
is good agreement with previous work, however it is noted that the
results obtained in this paper for the resonance cordition and minimum
mode volume of & gymmetric nonconfocal cavity differ slightly from
those of Boyd and Gordon.

The amplitude and phase distributions throughout the volume
of a plare-parallel Fabry-Perot cavity are computed numerically for the
TEMOOq mode. Except for some variation in the amount of fluctuation
near the axis the amplitude curves are essentially identical at all
points along the axis of the resonator. The phase distributions have a
somewhat similar behavior except that the amount of phase lag between
the center and edge of the field distribution is not constant through-

out the resonator.
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APPENDIX 1

FIRST ORDER ITERATIVE CORRECTIONS TO THE APPROXIMATE SOLUTIONS OF THE

DIFFERENCE EQUATIONS GOVERNING THE PATH OF A RAY IN A SYMMETRIC

N-MIRROR RESONATOR

As shown in Sectior 2.lc the approximate solutiens to
equations 2.3a to 2.3d are given by

(o)

rr(10> = c§°) cos né + c5 ’ sin né (2.7)
as well as the relations expressed by equations 2.10, 2.11 and 2.12.

An inhomogeneous difference equation for rr(ll) is obtained by substi-

tuting these solutions into equation 2.22a with m = o

r§+g - 2 cos® rflﬂ)_"' rfll) _
tan o
T 22 cos—-[( Tnep ~ O) )1 - 2c0s7 )+2 51(1)1( g)+)2 (0))7

(A1.1)

The substitution of the approximate solution given by
equation 2.7 1nto Al.l1 results in
(1) . (1)

(1) .
o " 2 cos@r o +r "= Acos 2n8+ B sin 2nd (A1.2)
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where
(0f_ (0)?
L tan o | 8. |f1 ~-¢ _ (o) (o)
A= - Y sin® (cosb - cos2) > sin 28 - ¢; ‘cp ‘cos 28
(A1.3a)
(0 (o)
4 tan o 0 1 2 (o) (o)
B= - ) sin® (cos® - cogg) ) cos 26 - ¢ 'cp 'sin 28

The general solution of Al.2 consists of a complementary

function and a particular solution (42). The former is simply

rgl) = cgl) cos né + cgl) sin né (A1.4)

The particular solution is found by the method of unde-

termined coefficients.

The resulting general solution for rél) is
CONNNE _ i o
Tp = ¢y cos n0 + ) sin nQ 1 a; cos 2n0+ ap sin 2nd (Al.5)
where
a0 = AC - BD
1 C2 + D2
BC - AD
3.2 - CE + D2

¢ = cos 4B - 2 cos 28 cos8+ 1

D = gsin 486 - 2 sin 26 cog®
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gl) Tollows from

The first order general solution for s

eguation 2.22b, viz.

A1) L) tena (o) ()
;l) _ okl n T n+l n (A1.6)

0
2 cos 5

(o) .

vaere v, is ~iven by equatiorn 2.13.

The unlmovn mervemelers cil) and cél) are obtained by substi-

\ .
’,"(‘ L ) = Y'{\ © ) iz U
e "o 1

Tuoive v o Il o vodont and Sél> = Sgo) = d2 into

eguctsions AL.S cud AL
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APPENDIX 2

AN EXPRESSION FOR THE VECTORS E AND H AT AN INTERIOR POINT IN TERMS OF

THE VAIUES OF E AND H OVER AN ENCLOSING SURFACE (L5)

If f_ and gare two vector fields which are continuous and have
continuous first and second derivatives everywhere within a volume V
and on the bounding surface 8 they will satisfy a vector Green's

theorem, i.e.

r
1av (E VX Vx G -G VXVX E): JdS (gx\?x_]g‘_ - FxVx g_)-p_
v S
(A2.1)
In equation A2.1 replace F by the electric field E and G by
ap =8 g-akr where a is an arbitrary constant vector and r is the
T

distance from an arbitrary surface point to a fixed interior observation

point P. 1In a source-free volume

vxvx E=%"E and V- E = C.

With the vector identities

vxvx (ag)= akZg + v (a Vo)
E v(awvp)s= v [E (a 'vcp)}

equation A2.1 becomes



J-,dS [atprxE -ExVxag -E (a 'ch)] +n=0 (a2.2)
S

The additional relations

(a xvx E)

=
f

-jon a* (n x H)

(Exvxap) n=2a- (axE=xve)

allow AZ2.2 to be rewritten as

[asa-|son(uxE) + (axE) xvo+ (- E)ve|=o0 (42.3)
51

Since a is an arbitrary vector it may be dropped.

The validity of equation A2.3 is based on the assumption that
the fields are continuous and possess continuous first and second deri-
vatives. However a¢ has a singularity at r = o and consequently this
point must be excluded. A sphere of radius ry is circumscribed about
the point P, its normal dircetcd out of V and conscquently redially to-
ward the center.

e—jkr
vy = (; + jk) r Iy

and on the sphere n = r_. The area of the sphere vanishes with the

. 2
radius as Dﬂrl erd, since



138

the contribvution of the spherical surface to the integral of equation

A2.3 is b E (P). Thus the value of E and any interior point P of V is

E (P) = - L J’rdS Ejmu (nxH)o+ (nxE) xve+ (n ° E)V‘P_l, (A2.4)
Ly 3
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APPENDIX 3

PROPAGATION IN ROTATING sysTeEMS (L47)

The motion of a particle on the surface of the earth is af-
fected by two gravitational fields. The first of these is the static
gravity field whose origin is not completely understood. The effect of
this field on the solution of electromsgnetic theory problems is
generally neglected. The second gravitational field is due to the ro-
tation of the earth.  The second postulate of Einstein’'s general theory
of relativity, the principle of equivalence, asserts the equality of
gravitational and inertial mass. Thus the properties of motion in a
noninertial system are the same as those in an inertial system in the
presence of a gravitational field.

The consedquences of this latter gravitational field are not
completely negligible. Although the rotational effect is similar to
gravity in that they are both constant (i.e. it is possible to choose
a system of reference in which all components of the metric tensor are
independent of time) it is different in that it is not produced by a
body which is static but by one which is in motion.

Maxwell's equations in a uniformly rotating system may be

written the usual three-dimensional form, viz.

<
e
=
1
]
el I
|
(‘
|t
I
o

(A3.1)

<
»
o
I
o |-

c/|o/
ot 1T
<
1t

it

o
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However lhe conslilubive equabtlons are no longer llnear, i.e.

p-Zimxg
Y,

(A3.2)
B-=+gxE
Jn
vhere in cylindriéal coordingtes for example
2.2
wer
h = (Il S (A3.3)
[ o \
g = 2.2

= (a> e (A3.4)
\ ¢

\ %

w = rotation rate about the z-axis in radians per second.

Moreover the vector operations are performed in three-

dimensional space with the metric

/1 0 0
4L
2 W
Y = 0 r + th 0 (A3'5)
0 0 1

An additional property of the gravitational field due to uni-
form rotation is the difference in times in and opposite to the direction
of rotation. -A consequence of this property is that in travelling around

a closed path 2ight will experience a time delay per circuit of
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2w %;os 6 (A3.6)
c

6=t
where 8§ is the enclosed area of the circuit, 6 is the angle between the
normal to S and the axis of rotation, and + refer to propagation in and
opposite to the direction oi rotation.

-As far as multi-reflector resonators are concerned this time
delay will require that the oppositely circulating fields have slightly
different resonant frequencies. For mechanically stable structures
this frequency difference is observed by mixing the two waves on a
photosurface. With presently available gas lasers the beat frequency
will be less than 100 cycles per second.

In the analysis presented in this paper the effect of ro-

tation will be neglected in the description of the resonator fields.
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APPENDIX L

SOLUTICN OF THE GENERAL INTEGRAL EQUATION

The type of integral equation which arises in this approach
to the theory of optical resonators is homogeneous Fredholm equation of
the second kind, i.e.

SC j(y‘zg+ Yz§+ zzo>
j dz, £ (z5) e (Ak.1)

-

of(z) = L
2n

As noted in Section 3.2 little can be deduced about the so-
lutions of an integral eguation with a symmetric, complex but non-
Hermitian kernel. Each case must be solved individually.

The existence of self-consistent fields in the resonator as
shown by numerical iteration (18,24,25) implies that equation Ah.1 may
have several eigenfunctions and eigenvalues. Extrapolation of closed
resonator theory to open resonators suggests that modes, if they exist,
would be orthogonal. This indicates that an avenue to be explored in
attempting to solve AL.1 is the expansion of the kernel as a sum of
orthogonal functions. It is also intuitively obvious that the desired
solutions must all decrease rapidly for increasing arguments.

A plane wave in A-p space may be expanded as a sum of cy-
lindrical parabolic (or Weber) functions (51) i.e.

J(N coso+ p sin¢)2 J(\2+2) %%'.n
e = eg seccpﬁé;b QT-tananDn(XJ:EE)Dn (MJEE)
=0 ni

(AL.2)
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In order that a solution of the Ilelmholtz equation in para~
bolic coordinates be single-valued over the h- | plane it is necessary
that n be an integer (52). For integral values of n the cylindrical

parahalic functions are expressiinle as Hermite polynomials (51), viz.

_n _z2 z
Dp(z) = 22 e T Hep (J_'ﬁ-) (AL.3)

Hence the plane wave expansion becomes

j()ﬁ cos 2:9_“2 c0322¢P+p)\ sin 20)

o
J (KE ) n
= J > ——*E—Sln = Hep(Av=3)He, (1V7)
s cpn‘

(ak. L)

The kernel of integral equation AL.l may be rewritten in a

Porm similar to the left-hand side of equation Ak.lL,

vz +yz +zz )
e

R L2 v
J{[(”YE-I)E z| (2R -[—j(hrg-l))’?zo], @?Tl)%

= €

':'L' 1
u_ 2
J(Y 1) HYEl)}

(Ak4.5)
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Thus by comparison with Ak.4 the kernel in AL.l may be re-

placed by a sum of Hermite-Gaussian functions.

. & l)n 52+zav)g
T fa(z) = \/’:?.J 7o (= )Z 2t P (g2e E;nf)“iJE
2
- %_ (28 +2°)
He, (Bz,) He (pz) e
(A.k6)
where

1
2
B = (1-ky)F
The orthogonality relation for Hermite polynomials is {53)

2
e (2) He (z) e dz=35_ 2
J emZ enZe Zz =

n! vw (AL.7)
-0
Thus in the limit of ¢ = @ it is obvious from inspection that
the solutions of equation AL.6 are

-B 2
fn(z) a e 2

He  (pz) (A4.8)
The elgenvalues are ohtained hy substituting for fn(z
interchanging the order of integration and summation, and applying the

orthogonality relations for Hermite polynomials. The result is

. L -1 2y
j (n+3) tan™— &L
o, - (12 e : 82 (ak.9)
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APPENDTX 5

APPROXIMATION TO THE LOWEST ORDER EIGENVALUE FOR THE SYMMETRIC,

NONCONFOCAL TWO-MIRROR RESONATOR

It has been shown in Appendix U4 that a solution to the

general integral equation arising from the self-consistent field analy-

sis of optical resonators may be obtained in the limit of zero wave-

length. One intuitively feels that these same functions will be a good

approximation to the exact solution of the problem with A 71 0. Then

from equation AL.6

[a=)
m=0

(<]

@ m m
S (-1)7 (g5+2ir)7 |
m=0 2%m! (52"237)@;—

2
- -@-2- (Z2+Z§)
ey (P2) Tie, (pz,) ©

(a5.1)
For m and n = 0 equation A5.1 reduceg to
% tan™t 2¥
g = erf (pve) e pe (45.2)

The validity of equation A5.2 is based on the assumption that

1 2 Z
n J(m +_2_) tan_l % B - ‘—BZO
_1)2 pe ric _ 2 .
ﬁ_).gm e | dz, B He_ (Bz,) e (45.3)
m: .

~-vC
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may be neglected for m > o.

The first few terms of equation A5.3 are

-1 2% -1 2 9 127
1 &0 2 2 120 2z 1zl
~ Lan ) -p"c| J» tan o) Jo tan
erf (pJT) e2 PT . §§§ e {? 2 P —%-e e b= .
b
2 52 tan™t 2 |
(g¥e) -B%c | J2 Be
T 2hyw © © ‘
(A5.4)

In the following example it is evident that only the first

term of equation AS.4 need be retained.

c = E?- =1, O <1£ <2
| E ; —Bgc ) —520
% B é erf (BVT) i 2%% e g%%% e

1.75 0.82k é 0.961 : 0.06C 0.0107
1.50 0.930 ; 0.980 : 0.032 0.0073
1.25 ; 0.98k ; 0.986 ; 0.024 o.006O
1.00 1.000 | 0.988 i 0.022 é 0.0057
0.75 0.984 | 0.986 é 0.024 é 0.006
0.50 0.930 @ 0.980 | 0.032 é 0.0075
0.25 0.824 0.961 0.060 i 0.0107
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2 2
plc Be . (6R) b

The relative values of erf (BJ<), 57w © Y=

demonstrate clearly that equation A5.2 is a good approximation to the

lowest order eigenvalue of equation AlL.1 with finite limits.
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