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ABSTRACT

It is known that in the field theory description of the Compton
scattering of nucleons by vector mesons the nucleon lies on a Regge
trajectory. 1In this work it is found that the vector meson channel of
the same theory exhibits no such Regge-like behavior. However, in
electron-graviton scattering the spinor particle is again Reggeized.

The various problems that arise when zero mass mesons are
used in the scattering are discussed and it is shown that the Regge-
ization generally proceeds as in the massive case., A field theory of
massive gravitons is discussed.

‘The dynamical criterion of vanishing renormalization constants
is applied to Reggeized particles and it is shown that this criterion
successfully distinguishes an elementary Reggeized particle from a
true dynamical state. This provides a dynamical test which can re-
place the postulate that a "bootstrapped" theory is characterized by
the absence of Kronecker delta terms in all channels. We may thus
recover the one-to-one correspondence between dynamical particles
and certain moving poles in the partial wave amplitudes.

Appendices B and C review the generation of Regge trajectories
by iteration through unitarity and Mandelstam's treatment of Regge-

ization using the N/D equations.
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I. INTRODUCTION

One of the main distinctions between ordinary field theories
and S-matrix theory has been the treatment of '"elementary' parti-
cles. In a field theory elementary particles are introduced a priori
into the theory; their masses, coupling constants, and spins are
arbitrary except for renormalization corrections which may arise.
.In S-matrix theory, on the other hand, every particle is regarded as
a bound state of all the possible states of particles which have its
quantum numbers; the masses and couplings, and even the existence
of particles, are regarded as determined in a self-consistent (and
hopefully unique) way by their mutual interactions.

One of the ways in which the theories might be contrasted is
in the analytic structure of scattering amplitudes. For example, we
may consider scattering in a channel i‘xaving the quantum numbers of
an elementary particle A in a conventional field theory. In the lowest
order of perturbation theory (the ""Born approximation) there is a
fixed singularity of the form 4 Ta in tﬁe partial wave amplitude
(analytically continued in the angular momentum plane). However,
in an amplitude obtained using S-matrix theory one would expect to
find only moving poles in the angular momentum plane. (1) One of
these Regge poles would give rise to particle A at energy mAc2 by
passing through J = JA at that energy; but the analogy from non-
relativistic theory would suggest that the poles would all move with
energy. In principle, one could study experimental scattering ampli-

tudes to see whether the singularities moved or not, and thus hope
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to distinguish between the two approaches,

However, Gell-Mann and Goldberger(z)

suggested that when
higher order diagrams were included the field theory amplitude
might not exhibit fixed singularities. The effect of radiative cor-
rections might be to form a Regge trajectory instead of a Kronecker
delta in the partial wave amplitudes. * If this occurs, the effect of
the elementary particle on the entire scattering amplitude resembles
the effect of a composite particle, and the particle is said to be
"Reggeized. "

Compton scattering of vector me;sons (heavy '""photons'} by
spin 1/2 or spin 0 ''nucleons' was treated in a series of papers by
Gell-Mann, Goldberger, Low, Zachariasen, Singh, and Marx,(?" 34, 3)
using two different approaches. One method was to calculate directly
the scattering amplitude by means of perturbation theory, adding to-~
gether selected (hopefully dominant) terms in each order of the
coupling constant for large momentum transfer t, at fixed (energy)2
s. If the amplitude is dominated by a Regge pole it will have the

ta( 8)

asymptotic form at large t and the trajectory a(s) of the pole

can be determined.
The other approach was to iterate the Born approximation
through elastic unitarity in the s channel, examining the partial wave

amplitude near J = J for terms of the form SB(s)/ [JN- af s)] .

Nucleon

*In fact, in a theory with only scalar particles, the higher order
terms do add up to a Regge trajectory; however, it starts at J =-1
at small couplings and thus has no relation to the particles already
in the theory. See Reference 7, J.C. Polkinghorne, J. Math. Phys.
4, 503 (1963),
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They found two necessary conditions for Reggeizing the nucleon in
this manner: the existence of a ''nonsense' (unphysical) channel at
J = JN’ and factorization of the amplitudes near the pole. The
latter condition assures that only one Regge trajectory is generated
and that its residues factor. The former requirement makes the
sense-sense amplitude reduce to the 5J ‘TN given by the Born ap-~
proximation when the coupling constant is small, so that all of the
Kronecker delta term arises from the Regge pole. The two con-
ditions are not sufficient for the Reggeization, however, unless the
subtraction constants in the dispersion relations for the amplitudes
are known.

It did turn out, however, that the same form for a(s) could
be obtained in both treatments; the perturbation theory verifies the
correctness of the unitarity treatment. The spinor nucleon is
Reggeized but a scalar nucleon does not lie on the trajectory that is
generated.

(6)

Mandelstam' ™’ has used analyticity to study the exact partial
wave amplitudes in this problem, independent of the perturbation
expansion. He has shown that the exact amplitude contains a Regge
trajectory on which the spin 1/2 nucleon lies. He found that the
scalar nucleon does not have to be Reggeized and that it would lie on
a trajectory only by sheer accident. The previous work of Gell-Mann
et al. showed that indeed it did not lie on a trajectory.

This paper continues where the previous work leaves off. We

will find a conspicuous failure of Reggeization for the vector meson
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{in nucleon-antinucleon scattering) and an amazing success for the
spinor nucleon once again (in nucleon-graviton scattering).
Mandelstam's arguments will not serve to remove the miraculousness
of this success as they were able to do in the vector -spinor problem.
Finally, we will also make the important generalization to zero mass
photons and gravitons,

Our interpretation of these results will be that the absence
of fixed poles in a scattering amplitude gives no assurance that the
particles involved are dynamical. Particles which have been "Regge-
ized" are clearly still "elementary' in the intuitive sense; i.e., the
Reggeization occurs for all values of the particle's mass and coupling
constant, whereas these quantities should be calculable for a true
dynamical particle. We show that our notions of true "elementary"
are supported by some evidence regarding vanishing renormalization
constants.

Extended calculations and background material have been
Placed in the appendices to allow the main text to read as smoothly
as possible.

II. VECTOR MESONS

The common feature of the scattering processes considered
by Gell-Mann et al. was the existence of a nonsense channel; this
leads to a trajectory being generated when the Born approximation
is iterated through unitarity in the s channel. Howevef, it is also
possible that a particle could be Reggeized by the sum of more compli-
cated perturbation diagrams, not just the lowest order diagrams

iterated in the s channel. To study this possibility we will consider
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nucleon-antinucleon scattering, coupling the nucleon to vector mesons,
The intrinsic parity of the vector meson is -, so the amplitude
must be asymptotically antisymmetric under the interchange of t and u
if it is dominated by a vector meson Regge trajectory. This requires
that at large t the amplitude have the form ta(s) _ua( s) if this is the
dominant trajectory, where a(s) =1 when s equals the rest energy
squared of the vector particle. If we assume that a(s) =1 + y¢(s), with
v(s)-0 as g2—>0, the perturbation expansion of the scattering ampli-

tude should have the form

als) _als) _ {1 + y(s) Int+1 [y(s) In t)]z + }

(I1-1)
-u {1-1- ¥(s) 1nu+%[fy(s) lnu]2 +} .

Thus we see that if the scattering amplitude is to be dominated
by a Regge trajectory asymptotically,. the higher orders of perturba-
tion theory must provide amplitudes proportional to (tln t - u ln u),

(t lnzt -u 1n2u), and so on. We begin by looking for the asymptotic
form tlnt - u ln u in the lowest possible orders of perturbation theory.

The fourth order diagrams cannot provide such a form. Some
individual diagrams in this order have the form t In t, but they com-
bine in the form t In t + u In u and the total fourth order contribution
is asymptotically only of order t. Therefore, the fourth order dia-
grams change the residue at the vector meson singularity in higher
orders of the coupling constant, but do not contribute to the formation
of a Regge trajectory. The lowest nontrivial order in which the
form tlnt - u ln u could occur is therefore sixth order, which we

now examine.
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As we have seen, the sum of the sixth order scattering dia-
grams must have the asymptotic form tInt - u ln u at large t if
they are to contribute to Reggeizing the vector meson. One can easily
eliminate all sixth order diagrams except those of Figure 1 (and the
corresponding diagrams with t and u interchanged) as giving contri-
butions of lower asymptotic order. If one approximates these by
using two-particle unitarity in the t channel, however, it appears
that the leading terms at large t from these diagrams cancel each
other., This suspicious behavior makes it imperative to calculate
the exact amplitudes using field theory, which we will first carry
out using spinless nucleons.

The calculation is much simpler if the denominators are
combined in a particular order when parameterizing the integrals,
The nucleon propagators from the "top half" of each diagram are
first combined into a single denominator, then the other nucleon
propagators are combined similarly to form another denominator;
finally, these two terms are combined with the three vector propa-
gators to form a single denominator. (This procedure is useful for
similar ladder-type diagrams in higher orders.)

- The form of the Feynman amplitude found in each case for

the diagram of Fig. 1is



1
=1g j -
M E"—‘r , dxldxzdyldyzdzldzzdz3dz4d25 (5(x1 +x, -1)
(I1-2)

3

6(y1+y2-1) 6(z1+z2+z3+z4+z5-1) Zy Zgt C D_3 .

Here we have suppressed all factors in the numerator which
we do not contribute to the leading term at large t. The denominator
function D has the convenient form (because of our parameterizatio.n)

D=A+Bs+z4z5Ft; (II-3)

A, B, C, and F are certain polynomials in the X Vi Z.

In the case of diagram la, the function F is semidefinite and
we can directly apply Polkinghorne's method(7) to find the form of
Ma at large t. The result is

: 6 1
ig .
PENDREE Y - -
M, t w 32.% j(; dxldxzdyldyzdzldz2d23 6(x1+x2 1) 6(y1+y2 1)

(II-4)
-1 ,.-2
6(z1+z2+z3-1) Al (zlzzz3s - Al) fa. tlnt =g(s) tint,
where Al =212, tz,zgt Z 3%y (II-5)
and fa =z, t Z1X,¥, + Z 3% V] (1I-6)
(8)

This diagram was correctly calculated by Freund and Oehme !

The function g(s) may also be written

) -1
i -
g(s) = —'—gzr ,/0 dzldz2d23 (5(z1+z2+z3 1) (11-7)
1 (zl+z2)(z2+z3)
In )

%2

(ZIZZZBS - Al)
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ﬁiagra.ms 1b and lc give identical contributions. Finding the
asymptotic form of these amplitudes at large t is a difficult task,
which has been approached at several levels of sophistication. The
trouble comes from the fact that in this case F can vanish within the
region of integration; thus at large t there may be contributions to the
integral other than those near the boundaries, which are calculated
in Polkinghorne's method. The evaluation of the asymptotic form of
the amplitude for these diagrams is discussed in Appendix A.

The result is that the leading contribution from diagrams lb

and lc is again proportional to t In t, and it is8 of the form

My

t—w

+ M i-g(s) +2i 7 h s)] tint . (II-8)

The second term is the additional contribution caused by the contour

of integration being pinched by two poles in the asymptotic limit, as

(9

treated by Polkinghorne'’’, and is explicitly

. 6 1
h(s) = - ;Zﬁ% fo dzdz,dz, 8(z tz,ta,-1)(zz,2,5 - A)) -1
™
(II-9)

The crossed diagram obtained from diagram la by the exchange
of t and u, which we denote a', contributes of course

al Tow " g(s) ulnu. ' (II-10)

However, in finding the contribution to the diagrams b' and c!
obtained from lb and lc by crossing, we cannot simply replace t by

u and affix an overall negative éign. The problem is that the asymp-
totic limif t -+ o+ i€ implies that u >~ -~ i€ ; this has the effect of
changing the relative sign of the pinch contribution, as discussed in

Appendix A. The result is that
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My, + M, (T -ulnu {- g(s) - 2iw h(e) ] (II-11)

When all the sixth order graphs are summed, there are two
types of cancel lation occurring. The ''real" parts (from g(s.)) of dia-
grams lb and lc are canceled by diagram la; the '""real" parts of dia-
grams b' and c! are canceled by diagram a'. Secondly, the "imaginary"
parts (from h(s)) of diagrams b and c are canceled by the "imaginary"
parts of diagrams b' and c'.

Freund and Oehme(s) failed to notice the first cancellation;
Ahmed(lo) considered the pinch effect but failed to notice the second
cancellation.

The result is that asymptotically the sixth order amplitude is
of lower order than the t In t required for a Regge-like form. In fact,
an estimate of the total contribution of these diagrams using two-
particle unitarity in the t channel gives an asymptotic form of (In t)
or less, We are forced to conclude that the vector meson singularity
is not affected by sixth order corrections and that the vector me son

(11, 12) and Ahmed(13) agree

remains unReggeized in this order. Freund
with this conclusion.

The contributions from the eighth order perturbation theory
diagrams were calculated approximately using two-particle unitarity
in the t channel and found to give no asymptotic contributions of order
tlin t.

The next order of perturbation theory which might contribute
terms like t In t is thus the tenth order. Two particle unitarity in

both s and t channels was used to calculate the amplitudes approxi-

mately. The only possibilities are diagrams of the general type
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depicted in Figure 2.

The leading terms of diagrams 2a and 2b cancel in the ap-
proximation of two-particle unitarity in the t channel, and cannot
give a net contribution as large as t In t. Mandelstam studied these
diagrams with the better approximation of three particle unitarity in
the s channel and obtained the same result.

Although diagram 2c has the asymptotic form t In t, the net
contribution from the sum of diagrams 2c¢, 2d, 2e, and all similar
ones is again of lower order than t, in the approximation of two-
particle unitarity. It thus appears that exactly the same cancellation
occurs in tenth order as occurred in sixth order. However, although
diagram 2c has been computed exactly, diagrams 2d, 2e, etc. are
known only in the elastic approximation.

The attempt to Reggeize the vector meson in a theory with
scalar nucleons thus seems a total failure. Of course, it is true
that any one of these diagrams (for example, diagram la) could be
iterated in the s channel to form a Regge trajectory; this is objection-
able for two reasons.

For one thing, we are no longer taking the sum of the domi-
nant contributions to the amplitude in each order of perturbation
theory; we are merely selecting out specific terms from each order
(which are in fact canceled by other diagrams) and forming a Regge

trajectory from their sum.
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Secondly, we then find additional trajectories being started
in each order of perturbation theory in rapidly increasing numbers,
all passing through the point J = 1. For example, any of the tenth
order diagrams of Figure 2 could be iterated in the s channel to form
a Regge trajectory. The convergence of such a procedure is obvi-
ously suspect.

Giving the nucleons spin 1/2 does not appear to help either.
Freund(lz) finds that the same integrals occur in the sixth order
calculation of nucleon-antinucleon scattering and they cancel again
to leave the vector meson singularity unaffected. Mandelstam(6)
has used more general arguments but reaches the same conclusion.

The result is that when the vector meson is coupled to either
spin 0 or spin 1/2 "nucleons, ' its effect on the scattering amplitude
still has the form that we would ascribe to an elementary particle.
Thus, not only does the vector meson appear "elementary,' but its
pole actually gives the dominant asymptotic contribution to nucleon-
antinucleon scattering. Apparently no trajectory is even generated

in the vicinity of its pole, as occurred for the scalar nucleon in the

Compton scattering treated by Gell-Mann et al.

III. ZERO MASS PARTICLES
The spinless and spin 1/2 nucleon-antinucleon scattering
amplitudes just considered are examples of theories in which a two-~
particle nonsense state does not exist at the spin of the elementary
particle we are hoping to Reggeize, i.e., at J =1. Therefore, we

will now return to considering theories with twoparticle nonsense
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states available -- specifically, we will consider nucleon Regge-
ization in nucleon-vector meson Compton scattering. The reader
who is not familiar with the generation of Regge trajectories by
iteration through unitarity and the general arguments of Mandelstam
should at this point consult Appendices B and C, where the important
points are reviewed,

One important generalization that we wish to make at this
point is to the case of zero mass vector mesons. The work of

1. (2-3) and Mandelstam(é) assumed massive photons

Gell-Mann et a
to avoid certain difficulties, but clearly the zero mass case is signi-
ficant. In their works, a non-zero vector meson mass A was retained
while the limit t - » was taken to extract the Regge asymptotic form.
If one wishes to discusss real photons then one must take A = 0 before
taking the large t limit,

There are three difficulties that arise when the vector meson
mass is zero. One is the "infrared problem:" some diagrams now
diverge, and also in any experiment with finite energy resolution
infinitely many additional soft photons can be radiated undetected.

It is necessary not only to eliminate the infinities, but to take account
of any residual tefms which may be important in the asymptotic limit.

A second problem is that the vector me sons of zefo mass are
restricted to only two helicities, so that some of the helicity ampli-
tudes for the scattering vanish identically. Finally, the two- and

many-particle thresholds are no longer distinct and Mandelstam!'s

use of elastic unitarity must be re-examined.
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The Infrared Problem: In the case of photon-nucleon scatter-

ing, the infrared problem is best approached using the work of
Eriksson'>) and.Yennie, Frautschi, and Suura(lé). *

Eriksson shows that the observed differential cross sections
can be obtained from a nondivergent amplitude M. He points out
that as long as one remains in one Lorentz frame one may define
two different kinds of photons whose field operators commute and
hence which may be treated independently. Soft photons, which are

undetected experimentally, are defined as phbtons with wave vector

k;l satisfying

k

o €

IA

N : (III-1)
lk| < €, where ¢ is an arbitrarily chosen positive

energy. All others are called hard photons.

He then shows that for ¢ small compared with the masses of
the heavy particles in the theory (in our case, ¢ << mNucleon)’ one
may write

M = M exp (34 -3R). | (111-2)
In this expression, M is the scattering amplitude calculated from
all the diagrams involving only hard photons and is therefore not
infrared divergent. The factor 1A - —%:A: is a geometrical factor

depending only upon the external non-soft particle in the process.

It is a common factor for all perturbation theory diagrams and is

*Eriksson glosses over the proof of which diagrams are infrared
divergent, but this question is discussed in detail by Yennie,
Frautschi, and Suura.
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explicitly
4

N dk .
Mo s | S ep sfw (111- 3
R

The region of integration R is given by

|

o]

F ol

’ (III-4)

keRifandonlyif{! ;
€

INIA

If the initial and final nucleons have four-momenta P and P,

the function S'p(k) for our problem is

2ie Pl 4 P2y

3/2 2

s (k)= A
k +2k-p1 k -2.k'p2

(III-5
R (2m) )

We may thus explicitly calculate the contribution of infrared
effects.

The M defined above is of course finite; moreover, for
€ << My cleon it is independent of the.quantity «.

If we now specify that the experimenter is to determine M
from cross sections having an energy uncertainty A E, and require
that he take the limit AE -0 before t» «, then the remaining ampli-
tude is exactly given by the formula III-2. This is clearly an experi-
mentally accessible limit, and just requires making successively
more accurate meé.surements of the cross section at each value of t
until it is clear that the limit AE - 0 has been approached closely enough
to determine the limiting value‘for M. Of course, the physical cross

(15), but the vanishing factor can be

section vanishes as a power of AE
factored out to determine M, which is nonvanishing.

We will digress a moment on the implications of the experi-

mental limit which is here implied. It is clear that we expect a
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Reggeistic behavior to manifest itself in the amplitude only if we
define an amplitude which depends only upon s and t, and not upon
the detailed experimental technique. If Regge trajectories are an
intrinsic property of the amplitudes, we expect them to be independent
of the experimental setup.

This leaves us two choices: either to take the limit AE -0
first, then t » o, ; or we could take largé t at various fixed values of AE
and then last of all take AE - 0 for the asymptotic forms thus obtained.

We have chosen the former limit to define how we wish the
experiment to be performed, because then all the infrared terms
factor out in a simple way. However, it would be possible to also
study the other limiting procedure.

Unfortunately, the alternate limiting procedure has severe
drawbacks. Since AE is kept fixed until the end, to obtain finite
amplitudes we ﬁust make the separat.ion into hard and soft photons
carried out by Eriksson. However, this separation is not invariant
under a Lorentz transformation or under crossing symmetry; thus,
the amplitude obtained will not satisfy ﬁnitarity in the crossed channel,
at least before the limit AE -»0. The undesirability of working with
noninvariant amplitudes as well as the calculational difficulty of doing
the necessary four-dimensional integrals over the region R of equation
I111-4 for the hard photon diagrams together prompt us to reject this
alternate limiting procedure as unrealistic.

With the undersfanding that the limit AE -0 is to be taken
first experimentally, we may then proceed to find the effects of the

infrared factors upon a possibly Reggeistic amplitude.
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The infrared factor may be explicitly calculated from equations
III-3 and III-5. We must choose a specific Lorentz frame, and we
choose the CM system (for déﬁniteness, one may consider the polar
axis to be along Py but of course the separation into hard and soft

photons is invariant under pure spatial rotations so that it is not

necessary to specify this).

>~ _ 1 64 —432
A=z A= o ) 3
™ JR k (27)

We have

o=

[ STEe

2

N

——— t z (III-6)
(kx“+2k py)(k“-2k- py) (k”-2k- p,) (K +2k: p,)
Pi- Py P1"P;
ya z T3 Z
(k“+2k p)) (K 42k p,)  (k”-2k- py)(k" -2k p,)
E E
Let P = 0\, P, = | P sin © | | (III-7)
0 0
P p cos ©

Then we see by inspection that the integral of the first term depends
only upon E and e. The integral of the second term may be reduced
to the same form by a suitable rotation of coordinates and therefore
it depends only upon E and ¢ also. Finally, the change of variables
ke ~k converts the third term to the form of the fourth term, so

that they are also equal. At this point we thus have

ipA - 1A = g(¢, E) + h(e, E,z), . with z = cos B, (111-8)
The function h{e, E,i) érises from the third and fourth terms and

is explicitly
1 4e2

MR T T Gy
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4 Py Py
fR = L 5 (I11-9)
k (k42K py)(x* 42K p,)
1 4ez

= —— (EZ' —pz cos O)

(2w)
j d4k
R

2, 2 2
E - - -
K“(k"+2k E -2k p)(k“+2k E-2k p sin ©- Zk_p cos@ )

We now analytically continue this expression to (unphysically)
large z, i.e., we taket » » . This is justified by the convergence of

the resulting integral. The continuation is chosen so that sin 8 -+ 1iz.

We obtain
2 4
. 2e p d k-
h(e, E,z) —> i J’
7 - 5 4 2, 2 .
_ (2nm) R k™ (k +ZkoE-¢2kz p)(kz+ 1kx)
- 0 '
= h{¢,E)z . (III-10)

However, we may show that h (¢, E) is purely imaginary:

2 .4
Re B(¢,E) = 2e i j sz - k, . 2
(2) R k{k +2koE-szp)(kz + kx)
= 0. (III-11)

since the integrand changes sign under the change of variables
k. e -k but the region of integration does not change.

We thus find that h(e, E,z), which contains all the z dependence
of 3A - %X, is purely imaginary at large z and contributes only an
overall phase factor to the expression III-2.

We may express this feature of A - 1A by writing
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1A - —;—Kt—_;»wi fle,s 4) + wle, ) (III-12)
where f(¢,8,t) is a real function, and both f and w are proportional
to ez. In this particular problem, concerning photons, the t dependence
of f(e,s,t) is in fact the trivizl dependence to, as we gee from eq.
(I11-10).

This amazingly simple form allows us to dispose of the entire
infrared problem. At large t, all of the t dependence of the infrared
contribution appears merely as a phase factor in the expression III-2
for Mand does not affect the cross section. Moreover, the residual
term exp [w(e, s)li contributes only in higher orders of gz; thus, al-
though it changes the residue at the Regge pole in higher orders it
does not at all affect its position.

This convenient form for the infrared factor leads to a great
calculational simplification, as we sl?a.ll now demonstrate. We note
that if M is dominated by a Regge pole at large t, then increasing
powers of In t appear in each order of the perturbation expansion.
Since what we are doing is taking the dominant term in each order
of perturbation theory and adding them together, the dominant term
in each order of a Reggeistic amplitude is unaffected by the infrared
factors. It is true that there are terms in each order of perturbation
theory (proportional to fewer powers of In t) containing various powers
of the infrared correction w, but as long as the amplitude is dominated
by a Regge pole these will be of lower order. Since all the ihfrared
infinities were removed in the infrared factor, the leading terms iﬁ t
will all be finite.

Thus we have a very simple prescription; if increasing powers
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of Int oécur in each order of perturbation theory, as is necessary
to form a Regge trajectory, the correct amplitude, complete with
infrared corrections, is found by extracting the leading terms at
large t. Some of the terms discarded will be infrared divergent,
but these are canceled by the infrared factors anyway; the coefficients
of the leading powers of In t will always be finite. We therefore can
avoid doing four-dimensional integrals over the noninvar'-ia_.nt.r'egion R
of eq. III-4. This procedure gives the correct position of the Regge
pole but its residue is correct only to lowest order in gz; finding
the exact residue requires explicitly evaluating the infrared correc-

tions (and doing integrals over R). However, we may note that in
3,8, 11)

the previous work(z' 3,4 the residues were usually only treated
in lowest order anyway.

We have thus managed to reduce the massless photon case to
that of massive photons as far as Reggeization goes.

‘This entire argument may be carried out for gravitons instead

of photons., The only changes are that now the geometrical infrared

factor is
. d4k (I11-13)
1 _ _!__/\ - v - - 1 w -
A - 3R = f = h“’ () #7010 - 35,10 8K
R
where
. Py, P Py P
s (k) =7 13/7 e L (III-14)
Y (2m) k™2k-p;  k-2k-p,

1

In these expressions, the coupling constant ¢ is given by

& =321 G - (I11-15)

in terms of the gravitational constant G.
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These minor changes are irrelevant, however; when we do
the integrals we again find the form III-12 for fhe infrared factor,
except that now f(e, 8,t) is asymptotically proportional to t. Thus,
the same simple prescription for treating the massless spin 1 mesaon
works for the massless spin 2 meson and the infrared problem is
essentially disposed of.

Other Zero Mass Problems: Another difficulty with treating

zero mass mesons is that their helicities are restricted to only twa
values and therefore a number of the scattering amplitudes vanish
identically in the zero mass limit. For example, in the vector-spinof
problem there are only three amplitudes instead of six when the zero
helicity vector state is excluded.

The approach suggested by Gell-Mann et al.(4) is to take the
limit of zero mass in the nucleon-vector meson problem before taking
the asymptotic limit, but retaining the lowest order terms in the photon
mass instead of letting them vanish, by factoring out the vanishing
mass. The factoring of these amplitudes would Reggeize the nucleon.
QOur present view is that this procedure would be an interesting way
to study the relation between the massive and massless theories; how«
ever, the question of Reggeization in the zero mass 1limit cannot de-
pend upon having taken some limiting form from a massive theory.

What we are interested in is just a massless theory, regard-
less of whether it can be obtained from a massive theory in a proper
limit., The essential point is that if whatever amplitudes remain at
zero mass actually do factor, a trajectory is automatically generated

passing through the nucleon, in the sense that the asymptotic form of
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the scattering amplitude near the pole looks just like it would look if
dominated by such a trajectory. The unitarity equation, of course,
involves only thése surviving amplitudes.

If the factorization does not hold at finite mass, but only in the
zero mass limit, the Reggeization may still o;:cur. Our interpretation
would be as follows: for nonzero mass several Regge trajectories are
generated near £=0 (or J = 3). At zero mass those trajectories whose
residues don't vanish must merge into a single one, on which the nucleon
lies, or else the factoring at zero mass could not' occur. Again our argu-
ments must assume that possible subtraction constants do not affect the
generation of the trajectory by iteration through unitarity. This same
reasoning even applies to nucleon-graviton scattering, where all of the
amplitudes for zero mass gravitons are nonsense-nonsense.

"Thus, our viewpoint is that it is just by the "accident'" of zero
mass that some of the helicity amplitudes are not experimentally avail-

able. The amplitudes that can be examined still reveal the presence or

absence of a Regge trajectory, upon which the nucleon may or may not
lie.

We find therefore that the conditions for Reggei.zation using
zero mass mesons are not different because of the absence of some
of the helicity amplitudes. Apart from possible subtractions, we may
conclude that the nucleon Reggeizes when the amplitudes have the
correct asymptotic form and factor properly, as long as a reasonable

form is obtained for the Regge trajectory (i.e., it must pass throug-h

2
mNucleon

).

J=%ats=

However, the vanishing of some of the helicity amplitudes



-22-
causes more difficulty in Mandelstam's arguments. In nucleon-photon
scattering there is only one sense-sense amplitude instead of three,
and the number of threshold conditions that must be satisfied is corre-
spondingly reduced. The situation in nucleon-graviton scattering is
even worse; since there are no sense-sense amplitudes, one might say
that Mandelstam's entire argument '"vanishes."

The only recourse seems to be to assumre the existence of a
consistent field theory with ma ssive me.sons of which the zero mass
theory is the limit, in the sense that the amplitudes of the massive
theory smoothly approach the corresponding amplitudes of the mass-
less theory as the limit of zero mass is taken. We then must know that
the nonsense-nonsense amplitudes factor among themselves for nonzero
masgses as well as for zero mass in order for Mandelstam's arguments
to show that the nucleon is Reggeized, However, in the vector-spinor
problem, of course, this condition is trivially satisfied.

The final zero mass difficulty also affects Mandelstam's argu-
ments. Now that the two- and many-particle thresholds are not sepa-
rated in energy there is less reason to believé that two-particle unitarity
can be used. The best we can do to justify two-particle unitarity is to
speculate as follows. Eriksson's treatment of the infrared problem
shows that "'soft" photdns contribute only to the infrared factor in front
of the amplitude; the physically important amplitude M depends only
upon '"hard'' photons, except for a known geometrical factor. Thus, the
scattering amplitude ""just above!'' threshold might still be accurately
represented by the contribution from only two-particle intermediate

states, even though there is no longer a discrete separation in energy
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between the regions where the two-particle approximation can be used
and the region where it is invalid.

Our conclusions are that Mandelstam's arguments in their pre-
sent form are valuable in lending greater validity to the Reggeization
arguments (in that they are independent of perturbation theory); how-
ever, we can apply them to the zero mass case only by the unsatisfying
assumption that we can obtain this case by taking a limit in a massive
theory.

It might be possible to repair this difficulty in the spinor-
vector case by finding additional conditions to determine the amplitudes
in the zero mass limit; these would take the place of the threshold con-
ditions on the vanishing sense-sense amplitudes. However, it does
not seem at all possible to directly apply such arguments to cases of
higher spin massless mesons (such as the spinor-graviton problem)
because of the fact that all of the sense-sense amplitudes vanish. The
additional confidence provided by Mandelstam's arguments in nucleon-
vector meson scattering does not seem to be available to us in mass-
less problems involving higher spin mesons.

We will summarize the changes that occur when treating the
case of massless mesons. Infrared divergences can be removed by
properly defining the experimental technique, and they have no effect
upon the Reggeization ornon-Reggeization. However, Mandelstam's
arguments can be applied only as a limit froin a massive theory, which
we do not consider a realistic way to treat a true massless problem.
In massless meson problems we will therefore have to continue to as-

sume the absence of subtraction constants as was done in references 2-5.
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The general treatment of zero mass mesons that we have just
given does not keep us from encountering difficulties in particular
problems. Specifically, let us consicier what happens when we let the
vector meson mass approach zero in vector -spinor scattering. For

nonzero mass the trajectory in this problem is given by(4)

Ima = ¥° (E +m) (W-m)/ 87k W .

Doing the dispersion integral to determine o, we obtain
2 2 '
@ =y [(W-m)/81r ] [(W+m) I - Wll]

The quantity I1 is well behaved as the vector meson mass approaches

zero, becoming

L =-(1/s) In(l-s/m%.

However, I0 is given by
00 ds!

I0 = f 2 kK'W' (s'-8s)

(raxta)
= - (1/kW) 1In [(k W + EW - mz)/(-mx)] ,

which diverges logarithmically as the vector mass approac’hes Zero.
Thus the trajectory o is stretched off to infinity in the £ plane, becom-
ing singular in the limit.

It should be emphasized that this behavior is not an infrared
divergence, or even a general feature of zero mass problems; the
trajectories found in photon-scalar nucleon scattering and in graviton-
spinor scattering are finite. Thié singular behavior is apparently an
accidental feature of the vector -spinor problem, and it means that the

assumed Regge-like form is inconsistent with the form of the ampli-
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tude in the limit of zero mass. We do not understand why this peculiar
behavior occurs in this theory.

(23)

Otokozawa and Suura , noticing this divergence, have

treated the analogous spinless problem, and the y find not only tra-
jectories but also fixed single and double poles. Perhaps in the problem
with spin as well this singular behavior marks the formation of higher
order poles in the vicinity of £ = 0. This is a difficult problem and to
my knowledge no one has yet attempted to solve it. However, it is

still important for our purposes that in graviton scattering the zero

mass does not lead to any divergences, and that this difficulty is as

far as we know confined to the case of vector me son-spinor scattering.
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IV. GRAVITON-NUCLEON COMPTON SCATTERING

The failure of Reggeization to occur in theories without two-
particle nonsense states prompts us to concentrate on only those
theories possessing such states. Then we could expect Reggeization
to occur in the amplitude formed by iterating the Born approximation
in the s-Channel, as discussed in Appendix B.

A very interesting theory to study is the scattering of gravitons
by spin 3 or spin 0 nucleons. Besides the obvious universal presence
of gravity, this field theory has several interesting features. Since
massless gravitons have spin projections of £ 2 there are no sense
channels available; however, in scattering by spin 3 nucleons (or
electrons, if you wish) there are nonsense channels available at both

=%2and J =3/2. In general, therefore, we would expect a dynamical
trajector? to be generated near J = 3/'2, not corresponding to any
particle in the theory. Near J= 2 the work of Appendix B would lead
us to expect the generation of two Regge trajectories, one of which
might "accidentally'" pass through the nucleon.

Thus, not only do we not expect the nucleon to be Reggeized
in this theory, but we anticipate the generation of atrajectory near

= 3/2 which would dominate the scattering amplitudes at large t;
the effects of the trajectories near J =3 would have to be extracted
from the lower order terms in the large t limit.

In '1ight of these expectations the results that are obtained
are quite surprising.

The partial wave decomposit_:ions of reference 4 may be used

straightforwardly to obtain the effect on the scattering amplitudes
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of a Regge pole in the partial wave amplitudes. We first treat the
case of spin %nucleons; it is sufficient to take helicities of + %for
both initial and final nucleons. The MacDowell symmetry relates

+ and - parity amplitudes so that émplitudes of only one parity need
be considered, but we will explicitly state the asymptotic forms for
both parities. We suppress the nucleon helicity indices on the ampli-
tudes, and set4=J - %

We assume a Regge pole contribution to the partial wave

amplitudes of the form

E. = g(W) g (W) {z . o:(W)] -1 (IV-1)
where W is the total energy in the CM system; we have explicitly shown
the factorization of the residues. The indices range over the helicities
-2, -1, 0, +1, and + 2, so that there are 15 independent amplitudes in
the symmetric matrix Fz. We remove fixed branch points in £ from

the residues by defining quantities T'I*_L as follows:

gy,1 (W) = g (W) (IV-2)

1
B2, AW = N W 20 v |3 (Iv-3)

1 .
g_o(W) n_p(W) [(z 12 (2 +2) (g + 3)] 2, (IV-4)

The parity-conserving scattering amplitudes are given in
terms of the partial wave amplitude by

J=+
A

+ J+
By ™ ? 2(¢ + 1) [e}\,p, (z) F

J+ +eJ_

W Sy | av-s

(z) F

where z is the cosine of the scattering angle between the initial and final
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nucleons in the CM system and A'= A - 3, ,'= , -3. The e'sare
given in Appendix D and just involve derivatives of Legendre functions.
We now Reggeize in the usual manner as described in reference
4. We find that if the partial wave amplitudes are dominated by a
Regge pole near J -+ = a, the scattering amplitudes have the asymptotic

form.

£ -N, 1, N, (nfsinm ) o® (a-l)z (at1) (_Z)a-Z

2,2

f2,a o -N_ 1_, 1, (v/sinma) oZ(a-1) (@-1){a+1) (-z)%"2

. a-2
f-Z, L= -Na T_o nu(.n/s1nn‘a) a(a-lz)'(a+ 1) (-2) (V-6
. -1
fa,b ~ eba Na na nb (w/sinma) @ (atl) (-z)a
' - a-1
fa, yo €au N, 0, n, (w/sinma) ala t1) (-2)
‘ . a
fHV o~ -evaa nM ., (v /sinma) (atl) (-2)
at large t. In these equations,
a+1l ‘
N, = N2 T (@+3/2) 2 (IV-7)

NT T {at+2)

The subscripts a and b take the values -1 and 2; the subscripts p and v

take the values 0 and 1. All of the €'s are +1 except

=€O,1 =-1. (IV-S)

Zero Mass Gravitons: We first treat the physically interesting

case of massless gravitons. The graviton helicities are now restricted
to 2 and we give the nucleon and graviton + intrinsic parities to be
definite. We then explicitly calculate the Born approximation from the

lowest order diagrams in field theory, which appear in Figure 3.
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The calculation is performed using Feynman's field theory for
gravitons(l7’ 18); the details appear in Appendix E.

The results we obtain for the + parity amplitudes are

f;’ , — A (m?/w?) 271, (IV-9)
+ -2

f-2,,2 — A(-m/W) z ,

+ 2

f_z’ -2 — A z ’

at large z. The quantity A is given by

G 3 3
A= - W - . Iv-10
—ey (W -m) (1V-10)

A comparison with equations IV-6 shows that this is precisely
the form that would arise from a Regge trajectory near J = 4. This
result is doubly surprising; not only do the amplitudes properly factor
to Reggeize the spinor nucleon, but no dynamical trajectory is gener-
ated near J = 3/2 and the nucleon trajectory actually dominates the
amplitude at large t.

From Appendix B and equations IV-2, IV-3, and IV-4 we find
that the trajectory oa(W) is given by |

mals) = —&—— (W2 - m¥) (3W2 - m?) (IV-11)

64 W3
This bears a striking similarity to the trajectory obtained for the

nucleon in the spinor nucleon-vector meson problem:

2 (E4+m) (W-m)
BnpW

Im a(s) = v (IV-12)

Both expressions IV-ll and IV-12 vanish at W = m, as is necessary
if the nucleon is to lie on the trajectory obtained, and both are posi-

tive above that energy. Graviton-nucleon scattering thus Reggeizes
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the spinor nucleon in much the same way that vector meson-nucleon
scattering does.

A completely analogous calculation may be carried out for the
scattering of scalar nucleons by gravitons. In this problem there is
only one independent scattering amplitude and thus factorization is
automatically satisfied. The asymptotic forms of the parity-conserving

amplitudes are obtained in Appendix F', and are

f - RZ E z_z

2,2 167 (IV-13)
2

i - K (E2 + pz) z-2

2,2 32np

Iteration through unitarity clearly will produce trajectories
in this case in the amplitudes of both parities. The trajectories are
given by

Im o =(x%/87) (E®+p%) (IV-14)

and

Im o' =(x’/4m) Ep. (IV-15)

However, the trajectory in the + parity ampli;cudes, a'+, does
not pass through the scalar nucleon at W = m and thus, although
dynamical trajectories are generated in this case, the nucleon is not
Reggeized. A similar result occurred in the scalar nucleon-photon

problem {zero mass photons), wherel?)

Im o~ (72/4 TW) p (IV-16)

and

+

Im a (72/4 TW)E . (IV-17)

H

Note that no trajectory is generated near J = 3/2 in the spinor

nucleon scattering.
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We thus find that the Compton scattering of nucleons by gravitons
of zero mass behaves quite similarly to the Compton scattering of
nucleons by photons. In these theories a nucleon with spin 1/2 lies on
a Regge trajectory, which moreover dominates the asymptotic ampli-
tude. If the nucleon is spinless, trajectories are generated but the
nucleon remains unReggeized.

Massive Gravitons: We have seen that the Reggeization of the

nucleon occurs almost identically in scattering by gravitons and photons.
Let us therefore try to calculate the scattering of nucieons by massive
spin 2 particles to see whether the results resemble those obtained in
vector meson scattering. For example, it would be interesting to see
whether the scalar-massive graviton amplitudes fail to factor in lowest
order as the scalar-vector meson amplitudes did.

If gravitational quanta really have mass, of course, the mass
must be extremely small since we know gravitafional forces extend
over astronomical distances. If gravity is responsible for attractions

(19)

between members of clusters of galaxies , for example, the mass
of the graviton must be less than about 10—35 electron masses.

We will formulate a massive graviton theory by modifying
Feynman's theory. We will not go so far as to calculate any scatter-
ing amplitudes, because it will turn out that the simplest and most
natural theory we can write down has unique properties that make it
difficult to calculate even the simplest processes.

In the case of vector mesons interacting with scalar nucleons,

it turns out that one obtains a consistent field theory by using the same

vertex couplings for vector mesons as one would for photons, merely
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changing the photon propagator to allow for the nonzero mass. In
graviton theory this simple prescription doesn't work -- one obtains
amplitudes in which the gravitational current is not conserved.

It is therefore necessary to go back to the field equations of
Feynman's theory to see how to introduce a mass term. The tensor
notation is fairly standard and is given in Appendix G.

We make use of the fact that experimentally the metric tensor
of the known universe is very nearly pseudo-Euclidean, and therefore

write

g = B, TREDL (IV-18)

The gravitational coupling constant is k, presumed to be small, and
the gravitational field makes its effects felt as the correction h

Feynman's Lagrangian for the free gravitational field is
2

L = - -l;;—— R. '\/_"g » (IV-lg)
which may be expanded to lowest order in k to obtain
L=L2l+mL3 teoen (IV-20)
with
=1 -3h h -h h h h
LZ 2 hp.V,O'hp,V,O' 2 BpEs O VV,0 uOs 4 VO, V+ MVs b 00 Ve
(IV-21)
The equation for the free gravitational field is
&L 5L _
<5t s~ <0 - (Iv-22)
V% Vi

which yields in lowest order

h“-VQU-U- T -Euﬂ', Vo -.’E'VO', [Say + hpo—, po Suv = O ’ (IV"'Z3)
where
B = h -3 : (IV-24)
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The solutions of equation IV-23 in the gauge HHV , = 0 have the
form of plane waves:

- - ik-x
hpv—epv e ) (IV-25)

kk=0. (IV-26)

The analogous equations for the electromagnetic field in the

gauge Ap,p = 0 are Ag,o*cr = 0, (IV-27)

with solutions
eik- X (IV-28)

k'k =0. (IV-29)
When the photons are made massive, equation IV-27 is

modified by the addition of a term mzA“ to the left hand side. The

obvious change for gravity is therefore

—_ 2 — B ’ i
hpv,cm' T hpv = 0. . (IV-30)
This has solutions
T =3  F | (IV-31)
nv VY
2
kk =A%, (IV-32)

with A the mass of the graviton.
We therefore wish to modify the Lagrangian by adding to L,

a term of the form

-%Azh h +12%n n . (IV-33)
BV UV Mp VYV

S

The addition of this term changes the stress-energy tensor
and it will therefore be necessary to change L3 and higher order

terms in the Lagrangian for this tensor to remain divergenceless.
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That is, the addition of a mass term to the equation of the free
gravitational field requires that the three-graviton vertex appearing
in diagram d of.ﬁgure 3 must be changed if the gravitational current
is to be conserved.

The lowest order correction, that appearing in L3, should be
obtainable by adding all possible terms involving the product of three
h's with arbitrary coefficients. The coefficients are then adjusted
to make the stress-energy tensor divergenceless. A similar pro-

(17, 18)

cedure was used by Feynman to obtain L, originally.

3

If we confine ourselves to terms involving reasonable numbers
of derivatives (i.e., two, since L3 contains only terms with two
derivatives) this procedure fails to work. It is impossible to correct
L3 by such terms to obtain a conserved stress-energy tensor.

The reason is clear from Feynman's discussion of what terms
can be present in the Lagrangian if the stress-energy tensor is to be
exactly conserved, to all orders. He shows that the only terms which
can appear are scalar densities formed from the curvature tensor
Rabcd

derivatives of the metric tensor is the free gravitational field

and the metric tensor guv. The simplest such term involving

Lagrangian in equation IV-19.

To produce the mass term in equation IV-30, we want a term
in the Lagrangian involving no derivatives of the metric tensor, The
only such term leading to a conserved stress-energy tensor is N-g.
We thus find that the appropriate form of the Lagrangian yielding the

second-order terms of equations IV-21 and IV-33 is
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L'=--%r R N-g +57 Al g . (IV-34)
K K

Unfortunately, we cannot make a valid expansion like that of
equation IV-18 now. If we try to so expand the Lagrangian, we get not
only terms of second and higher order in hpv but also the lower order
terms
22% | af

— + — h . Iv-35
K K Hit ( )

The first of these yields no term in the field equation IV-22, but the
second gives a term which make s the field equation no longer homo-
geneous in hpv' In the Lagrangian, this term appears to create
gravitons out of nothing and is very troublesome.

Even this problem can be circumvented, however, by simply

making a more intelligent expansion of the metric tensor. We write

g, = &, fs h,, (IV-36)

where gﬁv is the solution of the exact gravitational field equation in
the limit of no interactions with other particles. For small A, gzv
should somehow resemble S“V.

Let us consider the interaction of gravitons with scalar
particles; the additional term needed in the Lagrangian is the covariant

form of the usual expression for scalar particles,

scalar (w,qu’ u‘ ) ngz)_ (IV-37)

[SIE

Our total Lagrangian is then

Liotal ?Ll L (IV-38)

where L' appears in equation IV-34 and



-34 -

L= 3 \eg (8" 9, -m%%) . (1V-39)

The equations IV-22 may be computed exactly and are

2 n 2% =1 2 afB _ 2420 1 2

gpvR 2 RHV A gpv 5 K gHV (g ¢,a¢,B m-¢7) -3 K ¢»U-¢: e
(IV-40)

The scalar field satisfies the equation

5 L 2

ST. = - (’\/__g gaB ¢sa)! B - '\/:g m ¢ =0 ’ (IV-41)

which may be written A

af 2 af 1 uv o _

g 0 g tm 0 rg g8t g, gg 0,0
(IV-42)

These equations appear to be the correct extension of. the
massless theory, as we notice that in the limit of no interactions -
= o _ ¢ ik-x .
(k=0), and zero mass (A = 0), gHV = Spv and § = ce are solutions
of equations IV-40 and IV-42 provided that k'k= 0.
We may now find the zero order metric tensor gﬁv which our
world possesses in the absence of gravity-matter interactions (k = 0).

Let R® denote R but computed using giv; then equation IV -40

abecd abced’
becorﬁes
(R® - A% giv = 2 wa . , (IV-43)
Multiplying by g”’® we get
R® = 2a%, (IV-44)

i.e.,, a space of constant curvature.

(20)

It is well known that the coordinates of such a space can

always be chosen so that the metric tensor assumes the Riemannian
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form: 4
2
o k 2 } -2

- A
85 = ¢ Py [1 tozm ka1 %k (X)) (IV-45)

In this expression, the e, are all either + 1 or -1, and gij denotes
the ordinary Euclidean Kronecker delta. There is no summation on
the index i.
This metric tensor is completely specified by requiring that
at small distances it reduces to the pseudo-Euclidean metric
1

(IV-46)

n
!
f—

Thus, we see that when the interaction of gravity with the
scalar field is "turned off,' the metric tensor of a space containing

massive gravitons assumes the form

o -
g, = 8

v o=(1+

(IV-47)

INERS

%8 <2 P2 | (IV-48)

INf -

It reduces to the usual pseudo-Euclideah metric at distances x<<1/A.

By making the coordinate transformation

Xy = f cosh o
% =f sinh acosf
(IV-49)
X, = f sinh « sin 8 cos ¥
Xy = f sinh o sin 3 sin %,
where
f=(2N6/A) tan (At/2N6 ), (IV-50)

we can write the line element in the form
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ds? = g0, x* " (IV-51)
= dt2 - R(t)2 [daz + sinh 2 o (de + sinZBd 'yz)] ;
with

R(t) = (N6/A) sin (At/NG ). (IV-52)

* The 3-space spanned by the coordinates «a, 8 and vy is the 3-dimension-
al analog of a two-dimensional (unbounded) space of constant negative
gaussian curvature. This universe is periodic in time.

Thus our space is curved even in the absence of anything
except the massive gravitons themselves. This is an interesting
feature of the massive gravity problem and might deserve further
study. Unfortunately, plane waves are no longer solutions of the free-
field equations for the scalar field; the solutions only look like plane
waves for distances small compared to 1/A.

We can exhibit how complicatéd these free-particle solutions

are. In the limit k = 0 equation IV-42 may be written

bo - 0 m® ¢ =0, (IV-53)

where our notation is the usual one:

¢,W = poB ¢,aB . (IV-54)

¢
$ 6 = B ¢’a¢

IV-55
T P ¥ ( )

B
The natural solutions one would try, exp (i k-x) or exp

(i k'X/LlJ),. do not satisfy equation IV-53., Its solutions are fairly

complicated;* the following expression satisfies the equation to order
“Plane waves in a spherical 4-space are treated by Schrodinger,
Reference 21. Such a space has a metric like that of equation (IV-51),
but with sinh o replaced by sin a.
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A.Z in the {small) graviton mass:
. 2 2 2
9 = c exp [1k'x+(1/72) A"/ M W -3 m % x+12 kex ke x
. 2 . 3
- 3ik x x-x m> + 2i [k- ] )] : (IV-56)

The field equations for gravity, whose solutions are gravitation-
al waves which look like equation IV-25 at small distances, are ob-
tained by substituting equation IV-36 into equation IV-40, using the
explicit fofm for g0 in equations IV-47 and IV-48, and extracting the
terms proportional to k. The result is just equation IV-23 with the
additional term + AZ Hpv on the left-hand side, plus terms of order
?\4 and higher.

Thus we have circumvented the problem caused by the addition-
al terms of equation IV-35 in the Lagrangian, but only at the expense
of having more complicated free—particlé states now.

The entire question of develop'ing rules for calculating diagrams
is more difficult now, since we can't simply Fourier transform every-
thing. It would be interesting to proceed from this point to calculate
scattering amplitudes, but I have not been able to devise a sufficiently
elegant approach to make the calculation practical. |

This discussion at least explains why the extension to massive
spin 2 particles is a problem of entirely a different sort than going
from massless to massive spin 1 particles. Since re#l gravitons
appear to be very nearly massless, further study of the massive gravity

theory does not seem necesséry at this time.
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V. REGGEIZED PARTICLES AND ELEMENTARITY

We have seen that the generation of Regge trajectories from
elementary particle poles is a phenomenon occurring in a number of
field theories, including zero mass theories of physical interest.
However, some particles conspicuously fail to Reggeize (the vector
meson and the scalar nucleon) and presumably contribute fixed
singularities to the exact, all-orders partial wave amplitudes.

Does this mean that even in field theories, certain "elementary"
particles are to be regarded as being dynamical in some sense? No.

It is true that we can no longer view Regge trajectories as being associ-
ated exclusively with dynamical states, but it appears that Reggeized
particles should still be regarded as ''elementary.”

There are two ways we can look at the problem of elementarity.
One is the intuitive one -- an elementary particle is one upon whose
mass and coupling constant there are no restraints. ¥ Since Regge-
ization occurs (when it works) for arbitrary values of the mass and
coupling constant of the particle, no such restraints are placed on them.
We feel that we should have some way of calculating these quantities
for a true dynamical particle, by some self-consistent argument perhaps.

Another way we could approach the problem of elementarity may
be more satisfying to the reader who enjoys seeing calculations. It has
been shown (see reference (22) and work there cited) that a useful
definition of a dynamaical particle in field theories is’ thaj: Z.1/Z3 =90,

where Z1 is the vertex renormalization associated with the coupling

%
My thanks to Professor ¥. Zachariasen for this helpful comment.
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of the particle and Z3 is its wave function renormalization. This
combination may be found from the high energy limit of the form
factor, which we will now proceed to compute.

We specifically consider the interesting case of spin 3 nucleons
interacting with spin 1 massless photons. The requirement of massless
photons simplifies our work by making only one intermediate state
contribute to the unitarity equation. Cases with lower spin are rather
easier to treat and we will mention the results obtained in those cases.

Our approach is depicted in figure 4. An initial nucleon of four-
momentum p and helicity h and a photon of four-momentum k and heli-
city A interact to produce a nucleon of four-momentum o¢. We take
0‘2 = s, not on the mass shell, of course. Because the photion is free
and massless the vertex function cannot contain terms of the form kii’

and the most general form for the vertex function is just

TM = F(o) v, = [A(s) + & B(s)} 7, (V-1)

Our principal approximation is the use of two-particle uni-
tarity. The Cutkosky prescription allows us to write down an expression
_for the discontinuity in s of the amplitude depicted in figure 4. What
we want to do is tb convert the expression to one involving helicities
rather than four-vectors and spinors, as much as possible. We can't
entirely avoid spinors, because one of the spinor particles is off the

mass shell, but we do the best we can and define

Ty A (B =T, lup'h) e(:‘) . (V-2)

Th A is a Dirac spinor and both T's are functions of s and £
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To avoid introducing spurious discontinuities in s from the

fermion spinors we are inserting, we need the special notation

1 1" = ()")
Tm T, " [Im TJ |up,h) e (V-3)

where the second "Im'" does not apply to the spinor | up h). Finally,

we let T (s, cos 8) be the scattering amplitude for nucleon-

h', A", h, A

photon scattering. Then we obtain for the unitarity equation

- 1 P T (o-q)
"Im T (p)" = = f dqq B — n', A!
h, A POy - h'=2 1 A=z 1

' (V-4)
sle
Th',?\‘,h,?\(s’ cos Bq)

We can express Th', A, b, A 28 87W fh', A', b, A and use the
formulas of reference 4 to further simplify. We choose the polar
axis along the direction of p in the CM system and explicitly insert

the necessary Dirac spinors. Eventually we get

0 2

-2p \H1/32n7)(p/W) 81W
0

i
-2

[Im F(cr)] 2”7 %( Etm)

2(E4m)/ + (V-5)
-2p sin 6 £, 1.1
1 L + 1sls -
F(o) 2 ~ (BEtm) 2 jdoj-2p ﬁlll " 2pcos 6 fll_l
2+ 2 + 2
2(E+m) sin 6 £

1311
+ 2+2
2(E +m) f1l1i+ 2(E+m) cos 6 £
212

Nj—
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We have avoided doing some obvio.us simplifying to‘ make it clear
where all the factors come from.

The angular integrals can be explicitly done with some help
from the partial wave expansions and their inversion formulas. The
result of the angular integration isto replace the spinor on the right -

hand side of the equation by
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(2/3) p (F - E)
0+
-2pF
FRN) Yo L (V-6)
- (2/3) (B+m) (Fy] - Fy)

0+
2 (E+m) Fy)

Apparently we can find a consistent solution only if we assume the
symmetry Fil- = F;)1+ in whatever expression we decide to put in for
the Compton scattering, but since we are interested only in the +
parity amplitudes anyway that seems to be acceptable. This difficulty
does not arise for spinless nucleons interacting with spin 0 or spin 1
photons. |

We can easily see that the equations for A(s) and B(s) are

uncoupled (for example, by choosing coordinates so that

T = (Ns , 0, 0, 0) ). They have the simple form
0+
Im A(s) = k Fll Als) , - {V-T7)
Im B(s) =k Fy B(s) . (V-8)

These equations can be explicitly solved by making the sub-

stitution A(s) = c exp [g(s)} . The result is

(V-9)
A(s) = ¢ exp { '_Z'I'-H ds' 1, [1 - 21 k(sY Fﬁ-l-(s‘j}

8'-8
and similarly for B(s). The arbitrary multiplicative constants are
determined by the condition that when s = mz, F(o) must simply
reduce to.the coupling constant e. Thus A(mz) = e, B(mz) = 0 and
as a result B(s) vanishes identically,

We may now find
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Als)  ——— e Z,/Z, (V-10)

- 0o
for any assumed form of the Compton scattering contribution F101+ (s).
To see what happens, suppose that the Compton scattering is

dominated by a single Regge pole contribution from a dynamical state.

From Appendix B we would expect the partial wave amplitude to have

the form

Ffl*" ~ Bls)/ [z-a(s)] , (V-1y
where

Im ofs) = k B(s) (V-12)
and

Im f(s) = 0. (V-13)

It is then clear that the integral in equation V-9 converges
for s = mz so that c is some finite nonzero number which we won't
need to find.

Now to be definite we will have to assume some form for f3 (s)
at 1arg§ s. We take

k B(s)y —— as® , (V-14)

5 5 ®
where n is an integer greater than or equal to -1. This form is
applicable to trajectories found in relativistic problems. Then «(s)

has the asymptotic form

a(s) S—"‘"" -{1/r)a s ins , (V-15).
so that
k FOT . -k B(s)/a(s) — +u/lns . (V-16)

1= 8 & w
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The algebraic sign of this asymptotic form is crucial. The + sign is
due specifically to the photon's having spin 1; it appears in the analogous
equation for scalar nucleon-photon scattering, but the corresponding.
expression in the scalar nucleon-scalar ''photon' case is —w/ln S.
We can now proceed to find the form of A(s) at large s from

equation V-9:
A(s) ~ c exp{- Tir-l_ fgc-ir“ii-s— 1n [1 -2i(n/ln s‘ﬂ}
ds

1
= cexp{-i- sf-s lns‘}
(V-17)
~ C exp [- In In s]

~ C(In s)"1

- 0
S - o

Thus Z1/Z3 = 0 and the "Z test' verifies that the Regge
trajectory represents a dynamical particle. The same result is
obtained for spin 0 nucleons interacting with photons. However, if
all the particles are spinless, the photon included, the form factor
F{(s) (corresponding to A(s)) .is asymptoltically ¢ In s; then lez3 = w0
in this approximation and the "Z test" doesn't work.

Now we proceed to apply this test to a true elementary
particle; for the Compton scattering we will just use that calculated
from the Born é,pproximation. The appropriate diagrams look like
a and b of figure 3 with gravitons replaced by photons. The result is
quoted in reference 4, and its asymptotic form is

0+ ——ey ezmz
.
kK Fyy o L. "~ TBrs (V-18)

In this case the numerical factor in front is irrelevant; the 1/s

dependence itself is enough to obtain
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A(s) c. (V-19)

8 45 =

Again the integral converges at s = mz so ¢ is finite and we have
Z1/Z3 = some constant. Hence the "Z test" says that the nucleon is
elementary, as it should. |

However, consider what happens when the form we assume for
Fﬂ_ is that appropriate for a Reggeized particle as obtained ip

Appendix B:

N | :
FY ~ Bls) als) /[s - als) (V-20)
1
with
Im B(s) = 0. (V-21)
The contribution to the vertex function comes only from the
point £ = 0, and a(s) disappears from sight. Specifically, if we take
the F_ * obtained in reference 4 for the Reggeized spin 3 nucleon, the

i1
asymptotic form of k F0+ is precisely that given by equation V-18 and

11
the Z test shows the Reggeized nucleon to be eleme‘ntary.

It is even plausible that a Reggeiz.ed particle always will appear
to be elementary by this test. The reason is that the form of equatibn
V-20 was originally conceived so that at small a(s) a 550 term would
be produced, retrieving the 612 0 term which must be present in the
Born approximation amplitude. In other words, the residues of the
Regge pole were postulated to be such that at precisely J = % the contri~
- bution to the scattering amplitude would be just that due to the original
elementafy particle.

However, the total spin of the intermediate state must always

be just the spin of the particle we are trying to Reggeize, which occurs
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off its mass shell in the final state; e. g. the spin of the intermediate
state is confined to J = 1 in the nucleon problem. Thus, the vertex
function is only able to '"observe' the Regge pole exactly at that spin
at which its contribution looks like that due to an elementary particle;
the vertex function cannot feel out the Reggeness of the particle in the
J-plane, and thus the Z test will always say that it is elementary.

It turns out that for scalar nucleons interacting with either
spin 0 or spin 1 photons these expectations are borne out; the Z test
verifies that the nucleon is elementary.

We conclude that Reggeized particles must still be regarded
. a8 elementary in any reasonable sense of the word and that therefore
moving poles in scattering amplitudes apparently are not necessarily

associated with dynamical states,

VI. CONCLUDING REMARKS

We will now summarize our results and discuss the conclusions
that may be drawn from them. We have encountered three different
types of asymptotic behavior in the scattering amplitudes that we have
studied. When spin  particle scatter vector mesons or gravitons the
scattering amplitudes are dominated asymptotically by a single Regge
trajectory, on which the spin i particle lies.

A second type of behavior occurs when scalar particles scatter
vector mesons or gravitons. In such processes the amplitude is
dominated asymptotically not only by a dynamically formed Regge
trajectory, but also by. a fixed singularity in the angular momentum

plane corresponding to the elementary scalar particles.
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The third type of asymptotic dependence appears in the vector
meson channel in a theory of vector mesons and "nucleons.'" In the
case of both spin 1 and spin 0 '"nucleons," the scattering amplitude is
dominated asymptotically just by the singularity corresponding to the
elementary vector meson; no Regge trajectory appears.

In all cases, however, the Z test éives results that are intui-
tively rsensible: the nucleon or vector meson in these field theqries
is still elementary, as defined by the Z test, whether or not it lies
on a Regge trajeqtory.

The most obvious conclusion that may be drawn is that moving
poles in the partial wave amplitudes do not necessarily correspond to
dynamical particles, but may instead be associated with elementary
particles. This result was certainly suggested by the previous work
on Compton scattering with vector me'sons (in references 2.7 but could
have been due to the special features of the nucleon-vector meson
problem. (IFor example, the existence of only one nonsense state in
this problem makes the required nonsense-nonsense factorization
trivial.) However, we have seen that elementary particles are Regge-
ized in other theories, and it seems likely that this may be a generally
valid feature of some field theories.

We should point out here that the stronger form of Chew and
Frautschi's dynamical criterion(l) may still be valid; that is, that a
truly dynamical theory should yield amplitudes containing only moving
poles, in all possible channels. Thus even though Regge poles in a
given channel need not correspond to dynamical particles, the occurrence

of only Regge poles in all channels might be a feature of a bootstrapped,
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self -consistent scattering amplitude. This stronger postulate would
disqualify the nucleon-vector me son theory as an example of a field
theory in which Regge poles correspond to elementary rather than
dynamical particles, since the vector meson fails to Reggeize in this

(7)

theory. This postulate was discussed ‘by Mandelstam and we will
refer to it as the CFM postulate.

Our present view is that the CFM postulate is not completely
satisfactory. The field theories we have studied discredit any one-to-
one correspondence between moving poles and dynamical particles;
when this esthetically pleasing one-to-oneness is destroyed it seems
artificial to try to use moving poles as dynamical criteria at all. We
would instead prefer a modified statement of the connection between
moving poles and elementary or dynamical particles, which we will
discuss in connection with the Z test. ’

However, if one does wish to retain the CFM postulate, that
the absence of Kronecker delta terms in all channels implies a dynamical
theory, it would be desirable to study a field theory in which all the
particles in the theory could be formed using two-particle nonsense
states. After all, t_he only Reggeization we have yet found occurs by
iterations of the Born approxime tion and requires the presence of non-
sense-nonsense émplitudes; so possibly it will turn out that this is the
only way that Reggeization can occur in field theories.

If we consider a theory with conserved particles A and mesons
B, with spins S and s, we can find the required spins of these particles
if two-particle nonsense states are to be available for each particle.

The process A + B 5 A —»A + Brequires S+ s -12> S for a two-particle
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nonsenée state, and the process A + A - B —A + A requires 2S -1 >
s . Thus the meson B must have spin 1, 2, 3,.... and the particle A
must have spin 1,. 3/2,2,..... Although there are difficulties in deal-
ing with particles of such high spins in field theories, one might at
least study factorization of the Born approximation. Such theories,
with nonsense channels for both particles, seem most likely to provide
a counter-example to the CFM postulate, if counter-examples indeed
exist in conventional field theories.

Probably a better test of elementarity or compositeness than
the CFM criterion, however, is the Z test. In our two-particle approxi-
mation this was capable of correctly distinguishing between a Reggeized
elementary particle and a true dynamical state. This test allows one
to retain the one-tc-one correspondence between certain moving poles
and dynamical particles; only those moving poles which pass the Z
test will be called "Regge poles."

More generally, the point we are making here is that the tra-
jectory corresponding to a Reggeized elementary particle has definite
features which distinguish it from a dynamically produced trajectory.
The specific feature that the Z test examines is the high energy be-
havior of the trajectory. However,' we could just as well have chosen
the condition Im f = 0 to distinguish a dynamical trajectory, since
the discussion of Appendix B makes it clear that this criterion would
serve to differentiate between a dynamical state and a Reggeized
particle. o

An alternative to the CFM postulate is then the postulate that

all amplitudes in a dynamical theory must satisfy the Z test. In fact,
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as far as we know, it would be sufficient to postulate that all moving
poles in a dynamical theory must have residues without discontinuities.
One of these postulates may prove to be a satisfactory way to charac-
terize a dynamical scattering theory.

Even if we have been able to resolve some of the confusion
about moving poles as related to elementarity, however, we would like
a better under stapding of why so many different kinds of asymptotic
behavior are found in field theories. Why the dynamics should choose
to "Reggeize'" some particles and not others and why dynamical tra-
jectories which dominate the amplitudes are only sometimes formed
are most interesting questions,

One possibility is that the asymptotic behaviors we have seen
are characteristic of the elementary pé,rt icle that can occur in the
intermediate state. The asymptotic amplitudes for a scalar in the
intermediate state contained both a dynamical trajectory and a fixed
sigularity. For a spin 3 particle the amplitudes contained only the
Reggeized trajectory, and for the spin 1 particle the amplitudes
contained only the fixed singularity., Although such a universal form
for the scattering amplitudes seems unlikely, it would be simple
enough to try it out on a few examples -- such as the reaction
7T+tN -» N - 7+ N,

Another, highly speculative, viewpoint to take with regard to
these varying asymptotic behaviors is that they provide a dynamical
criterion in certain processes. We would suppose that dominance by
a single fixed or moving sigularity is a general feature of theories

describing the real world, and constitutes a '"mormal" behavior for the
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asymptotic scattering amplitudes. Our results thus far might suggest
that in any process in which non-strongly interacting particles interact
by electromagnetic or gravitational forces, this normal behavior is
always obtained. For example, oﬁr previous work shows that this
'normal' behavior is exhibited in both the fermion and the photon
channel in a theory of photons interacting with electrons or muons, and
in the fermion channel when gravitons interact with electrons or muons.

The fact that all amplitudes are postulated to have this behavior
in the real world, however, provides a dynamical condition on some
wocesses, such as the pion channels in graviton-scalar or vector-scalar
scattering. Presumably these processes will always involve at least
one hadron (strongly interacting particle).

In principle at least the dynamical condition here implied can
easily be determined. The exact field theory amplitude is solved for
in the N/D equations (as they are used in Appendix C) and the dynamical
pole generated by the nonsense channel is analytically continued to the
positi_on of the elementary particle {at 4 = 0 for pions). The couplings
and mass of this state are adjusted relative to those of the elementary
particle until they coincide; thus, instead of saying as Mandelstam does
that these poles could only coincide by accident, we adjust the para-
meters of the theory until they do coincide. This provides the necessary
dynamical condition.

- The results obtained thus far suggest that dynamical conditions
may be obtained only in processes involving hadrons. Such a result
would be satisfying because it is only in such processes that we have

yet encountered practical difficulties in distinguishing between slemen-
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tary and composite particles (i.e., v, e, p, and v give no sign at all
of being composite). An obvious place to try out such a dynamical
condition is in pion-nucleon scattering, where it should yield the
mass ratio and the coupling constant,

Lest there be some confusion about obtaining this dynamical
condition, let us point out that it cannot be obtained directly from the
Born approximation of field theory. We are not proposing trying to
adjust the parameters available until the Born approximation factors
in the proper way. Not only would such attempts be fruitless for
determining the coupling constant, but they would be manifestly wrong.

We cannot use perturbation theory at all when we expect to
determine the coupling constant dynamically. One way to visualize
this is to recall that we took an asyrﬁptotic form in the field theory
amplitude, equated it to the asymptotic form expected from a Regge
pole, and then equated the coefficients of corresponding powers of the
coupling constant on each side of the equation. This equating of co-
efficients tacitly assumed that the equation was valid for a continuous
range of values of the coupling constant.

When we set a dynamical condition as we do now, however, we
recognize fhat the equation will be true only for some particular value
or values of the coupling constant, which we must then find. This
illustrates why we should not rely upon such principles as factorization
of the Born approximation as a simple means of obtaining the dynamical
conditions imposed by our postulate of "normal' behavior of the scatter-
ing amplitudes. We are still working in the framework of field theory

in that we use the N/D equations to study field theory amplitudes, but
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we can no longer simply apply a perturbation expansion.

The remarks we have just made concerning dynamical condi-
tions should be regarded as purely speculative, however.

Where do we go from here? Several possible problems to con-
sider have been referred to in the text: it would be desirable to apply
analyticity arguments such as Mandelstam's directly to the case of
zero mass without taking any limits from a massive theory. The
infrared problem could be treated at least approximately by taking
large t before letting the energy resolution go to zero, to see whether
the amplitudes exhibited the same asymptotic behavior. The massive
graviton field theory would be interesting to pursue in connection with
cosmology. It would also be appropriate to study Reggeization in a
field theory with two-particle nonsense states available to each of the
particles in the theory, in an attempt to learn more about how the CFS

hypothesis applies to field theories.

- END -
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APPENDIX A

Calculation of Sixth-Order Non-Planar Diagrams

This appendix is specifically concerned with determining the
asymptotic form of the scattering amplitude calculated from diagram
b of figure 1 and the corresponding crossed diagram b' . The theory
is vector mesons coupled to spin 0 nucleons.

The amplitude which is obtained when the denominators are
properly combined has the form given in equations II-2 and II-3. For
this diagram, the function F can vanish within the region of inte-
gration; this appears to be a general feature of nonplanar diagrams,
Thus at large t the dominant contributions to the integral come not

only from the region where z, and z. are small, but also from the

5.
region where F is small.

)

It was suggested by Ahmed(10 that at large t the vanishing of

F may cause the contour of integration to be pinched by two poles in

(9)

the manner that has been discussed by Polkinghorne and others.

The fact that a double pole is encountered on the path of integration if

one blindly applies Polkinghorne's method for planar graphs(7) to

calculate the asymptotic form suggests that this may indeed occur.
Ahmed has attempted to calculate these amplitudes including

(10)

the pinching effect » but it appears that some errors appear in his

work, some of which he has acknowledged(l3).

It is hoped that the
following discussion is completely accurate.
It is not easy to calculate the pinch contribution using the

conventional parameterization of the four -dimensional integrals, in

which all the propagators are combined into a single denominator



-54-

using a single delta function. The reason is this: When calculating
the pinch contribution, a few integrals must first be evaluated to
obtain logarithmic terms; these terms then yield the purely imaginary
pinch contribution when the integration contour is pulled across one of
the pinching poles(g). However, the ranges of integration depend upon
many of the parameters of integratioh and the pinch does not occur
except over certain parts of the range of the other integrations,

We may avoid this by parameterizing the integrals as discussed
in the text to obtain expressions of the form in equation II-2. The
additional contribution from the pinch can then be calculated by exactly
doing the X Xos Yy and y, integrals (it is sufficient to take zy and Zg
to be small in the functions A, B, C, and F if only the leading asymptotic
term in t is ultimately desired). One then obtains a number of terms

in the integrand; the only one that is affected by pulling the contour of

integration across a pole is the logarithmic term. It has the form

[d + z4z5tz2} [d + z4z5tz1] (A-1)

In [d - 24251:23] [dq: 2.42.5t(?1+zzTJ ’

where

d= 2,Z,% 38 - Al . {A-2)

When the limitt -+« +ie is taken, this yields a contribution
-iwm (rather than -2iw as occurred in the examples treated by

Polkinghorne( 9)) .

The total contribution of the pinch to the amplitude
for diagram lb is then asymptotically

+imh(s) tlnt , (A-3)
where h(é) is given by equation II-9,

We remark here that if the integral for this amplitude is

parameterized in the conventional way and the pinch contribution is
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calculated without proper attention to the limits of integration, the
result is (-2) times that quoted above, as obtained by Ahmed(lo).

The treatment of diagram b' is quite similar, with t replaced
by u, up to the point of calculating the pinch contribution arising from
the logarithmic term. This term is given by equation (A-1} with t
replaced by u., However, in the limitt -+ + «+ i €, the limit for u is u
= -2 -j¢ . The result of this difference is that the pinch contribution

from the logarithmic term is +i w for diagram b'. The net asymptotic

contribution of the pinch to diagram b' is thus

-(-im h(s) )ulnu (A-4)
as remarked in equation II-11,

What has happened is the following; although the scattering
amplitude from diagram b' is indeed equal to minus the amplitude from
diagram 1lb, but with t replaced by u, the asymptotic limit taken in the
variables t and u leads one to different sheets of the function in the
large t limit. Thus the real parts are indeed related by a simple
t «—u prescription but the imaginary contributions enter with opposite

relative signs.
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APPENDIX B

Generation of Trajectories by Iteration Through Unitarity

In this appendix we will summarize how the generation of Regge
trajectories can occur when the Born approximation amplitude is
iterated through the unitarity relation in the s channel. The discussion
follows the treatment in section 5 of reference 4 and contains essentially
no new work.

If we consider scattering of nucleons (either scalar or spinor)
by mesons of spin s, the work of reference 4 shows us how to analyze
the amplitudes in partial waves. The partial wave amplitudes for any
spin J will be denoted by E, a symmetric matrix of order 2s+l., The
unitarity equation is then given by

Im F =k +

Tl
W

(B-1)

where k is the momentum of either particle in the C. M, system. We
wish to examine the conditions under which the unitarity equation is
consistent with a Regge-like form for the amplitudes E.

Consider first the generation of é. dynamical trajectory. Since
the residues of Regge poles must factor, near the pole the amplitude

is expected to have the form

+ -1
F= n(s) (s [£-als) (B-2)
In this expression, 7 (s) is a 2s + 1 dimensional vector.

Then near the pole we have

(B-3)

' *® 4% -2
ImE -KE'E =[_n_ 7 Ima-xnn (f-g)]lz -al™”,
We see that this vanishes and so is consistent with unitarity provided

that
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"
[}

Im 1 (s) (B-4)

and

Im o (s)=kn (s) 1 (s). (B-5)

(The dot product is the ordinary Euclidean product of the two vectors.)

Thus we see that if the Born approximation yields a form like
the lowest order of equation (B-2) expanded in powers of the coupling
constant, a Regge trajectory is generated by the unitarity relation;
only a lack of knowledge about the possible subtraction constants in
the higher-order terms in I obtained by iterating through unitarity
keeps this condition from being rigorously sufficent.

However, a form for the amplitude like that given in equations
(B-2) and (B-4) cannot represent one of the elementary particles in
the theory, because for small coupling constant this sort of expression
does not reduce to the Kronecker delta term found in the Born approxi-
mation. That is, the Born approximation yields a Kronecker delta term
of the form 63.0 in the analytically continued partial wave amplitude,
and this can only generate more terms of the same form when iterated
through unitarity, rather than generating an expression like equation
(B-2).

If a theory has nonsense channels available at the spin of the
nucleon, however, there is a way out of this difficulty. Gell-Mann
et al. conjectured(4) that the correct Reggeistic expression for -_}f‘ that
is consistent with (B-2) but still reduces to the Kronecker delta at

small coupling constant is
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Fow = A4 Ay (9 [2 - ate)] 7 (5-6
ir -

Fys = An(8) Adle) 1%[ g-a ()] (B-7)

Fog = Agls) ;_\g(s) a(s)[z - a(S)] -1 (B-8)

Here the subscripts S and N denote sense and nonsense states at

J=1J If a(s) is proportional to gz, this clearly gives the

Nucleon®
Kronecker delta term in the lowest order expansion of the sense-sense
amplitudes in powers éf the coupling constant.

To sée how this is consistent with the unitarity equation, let
us look at the dominant terms near the pole, near £= 0. The unitarity

equation for the nonsense-nonsense amplitudes is then approximately

_ +
Im Fany = K Enn vy, (B-9)

because F N gives a more singular term near £ = 0 than F_ . does.

N = SN
The form given in equation (B-6) is consistent with this equation

provided that

Im éN( s) =0 (B-10)
and

Im afs) =k AL (s)- A (8) . | (B-11)

It is in this sense that we may say that a Regge trajectory is generated
by the nonsense channels as long as they factor and have the proper
form at small gz.

We digress to remark at this point that if the nonsense-nonsense
amplitudes do not factor, several Regge trajectories are generated, in
the sense that the amplitude has a form that éan be analyzed in terms

of several trajectories rather than one,
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In fact, in Compton scattering mesons of spin s by nucleons
of spin 0 or -;;, there are 2s+l independent states, of which only two
are '"'sense'"at J =J . Thus the symmetry of the __}?-matrix

Nucleon

implies that there are

2s-1
> i=s(2s -1) (B-12)
i=1

nonsense-nonsense amplitues at J= J Factorization means

Nucleon’
that only 2s-1 of the residues of a Regge pole will be independent; thus
in general s Regge trajectories are generated in such a problem. That
is, if the amplitude is assumed to be dominated by Regge poles, in the
absence of any particular factoring properties in the Born approximation
amplitudes, it is necessary to use s Regge poles to properly represent
the amplitude.

In a similar manner we may show that the forms given for F:NS

and F_. by equations {B-7) and (B-8) are consistent with unitarity.

=SS

The most singular term in the unitarity equation for ENS is the term
+ crs

k ENN ENS’ and we get the condition

ImAg(s) =0. (B-13)

Likewise, the most singular term in the unitarity equation for _E_‘SS

is the term k F

+ . . A .
Fsn ENS and the resulting equation is identically

satisfied.

Thus we see that when nonsense channels are available the
amplitude can contain a Regge trajectory on which the elementary
particle lies, in the sense that near the spin of the particle the partial

wave amplitudes yield the correct Kronecker delta terms found in the
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Born approximation amplitude. Since the approximation made does
not depend on whether g2 or £ is taken to be small first, this result

should also be rigorous at the pole except for possible subtractions.
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APPENDIX C

Mandelstam's Treatment of Reggeization

In this appendix we summarize the arguments Mandelstam
applies to the problem of Reggeizing the nucleon in Compton scattering
with vector mesons. His discussion appears in reference 6, but this
slightly different treatment may be helﬁful to the reader. We will
also indicate the slight changes which occur when the Compton scatter -
ing involves mesons of higher spins.

Mandelstam's approach is to assume the existence of a field
theory whose amplitudes have certain properties and then to study
these properties using unitarity and the N/D equations; discussions
of the N/D equations appear in many places, for example, reference
14. We follow Mandelstam by first specifically treating the interaction
of spin 1 nucleons with {massive) vectar mesons.

First, we consider the N/D equations for the partial wave
amplitudes F at large enough J that all the states are '"sense' states.
We consider the N/D equations as mereiy being a convenient exact
way to describe the analytic properties of the exact field theory ampli-
tudes to all orders; for the moment, we make the approximation of
elastic unitarity so that F is only a 3 by 3 matrix,

What analytic information do' we need about the exact amplitudes
to correctly write the N/D equations describing their properties? The
limits on the dispersion integrals are known from the field theory ampli-
tudes, at least in perturbation theory. We know that no explicit poles
of the CDD type are to be inserted in the expression for D, since in

general these add bound states to the solution and we could imagine
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studying the structure of the N/D equations in a region of the J plane
devoid of poles. (For example, for forces of finite range we need
only go to large enough real J and no bound states will occur, at least
in the analogous non-relativistic problem.) Possible subtractions in
D are eliminated by choosing D(s) - 1 at large s in the usual manner.

The only other quantities that must be specified to determine
the partial wave amplitudes are the possible subtraction constants in
N. The condition that the elements of F approach constants as s -
means that there are six such constants at large J (this property of the
F's can be seen from the lowest order diagrams in field theory, for
example).

We fix these quantities (constants in s but functions of J) by
requiring that the partial wave amplitudes have the proper threshold
behavior. There are 6 threshold conditions for the positive-parity
amplitudes which may be satisfied by fixing the 6 subtraction constants.
Since these conditions serve to completely determine that the F obtained
agrees with field theory in all orders, and since we assumed that a
field theory with the proper threshold behaviors existed, the 6 threshold

conditions on the negative-parity amplitudes are then automatically

satisfied. It is crucial that we have enough freedom to satisfy all these
conditions.

Our procedure will now be to analytically continue these partial
wave amplitudes, which agree with field theory for large enough J that
all the stafes are sensible, to the point J = 1; we will compare these
analytically continued amplitudes with those obtained at J = 3 directly

from the field theory. If we can identify the analytic continuation of
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one of the dynamical poles produced at higher values of J with the
elementary particle pole required by the field theoryat J = i, we
will have demonétrated that the elementary particle in question lies
on a Regge trajectory.

The treatment of Appendix B tells us that near J = % the single
nonsense state will generate a dynamical Regge trajectory in the partial
wave ampltudes; this trajectory is present in the amplitudes that are
becoming sensible, for all J in the vicinity of J = % Therefore, even
though the N/D equations and the unitarity equation for the sense-sense
amplitudes are uncoupled from the nonsense states precisely atJ= 3
this dynamically produced pole is still present in the analytically
continued sense-sense amplitudes,

Thus the analytically continued sense-sense amplitudes are now
known; we know that they have the correct threshold behaviors at J= 3
and in addition contain a pole with some particular positions and resi-
dues. We may now write down N/D equations describing these
analytically continued amplitudes, involving only the sensible ampli-
tudes. However, since the amplitudes we want to describe have this
known pole, we must insert a single CDD pole in the denominator,

In these N/D equations, there are three sense-sense ampli-
tudes and so there are six constants to determine: the three sub-
traction constants, the position of the CDD pole, and its couplings to
the two sense states. There are nine conditions the amplitudes must
satisfy: they must have the proper threshold conditions (three condi-
tions for the positive parity amplitudes and three conditions for the

negative parity amplitudes) and the pole in the amplitudes must have
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the proper position and proper couplings to the two sense states.

However, we can clearly fix the six constants to satisfy the
nine conditions. ' The reason is that as soon as we have fixed the six
constants to satisfy six of the conditions, we have just reconstructed
the amplitudes we obtained a minute ago by analytical continuation
from large .J; hence the last three conditions will then be automatically
satisfied. This is again a crucial point.

Now that we have obtained N/D-type equations describing the
analytically continued sense-sense amplitudes, let us instead consider
the amplitudes obtained directly from the perturbation theory at J = 1.

Since the sense-sense amplitudes couple only to themselves at
J = %, we may describe these amplitudes also by N/D equations involv-
ing only sense states. Now we have 6 threshold conditions to satisfy
(three for the amplitudes of each parity) but only 3 subtraction constants
available to fix them. It is not obvious that we can fix the three constants
to satisfy the six conditions, and the reason is clear: the presence of
an elementary particle in the theory tells us that there must be a pole
in the amplitude, and to ensure this analytic form for the amplitudes
we must introduce a CDD pole which now represents the nucleon. Its
position and couplings to the two sense states gives just three more
parameters available, and we can now fix all the subtraction constants
and CDD pole parameters to satisfy all the threshold conditions.

We have thus found that we may write similar N/D<ype equa-
tions for both the analytically continued amplitudes obtained from large
J and the field theory amplitudes calculated exactly at J = 1 with an

elementary nucleon present. Likewise, they satisfy the same unitarity
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equations and each have one CDD pole. However, all the subtraction
constants and CDD parameters are uniquely determined by the six
threshold conditions which both sets of amplitudes éatisfy. Thus the
equations are in fact identicél in every respect and the pole due to the
elementary nucleon is identical to the analytical continuation of the
dynamical Regge pole found in the amplitude at other values of J,

This ingenious argument due to Mandelstam demonstrates that
the nucleon has to be Reggeized in a theory in which it is coupled to
vector mesons. Since his arguments are independent of perturbation
theory, the main assumption at this point has been elastic unitarity.

We can even remove the restriction of elastic unitarity by
agreeing to consider the amplitudes at energies below the lowest three-
particle threshold. We then see that the scattering amplitude will
still contain a Regge trajectory on which the nucleon lies (even though
it might not dominate the amplitude) and it could in principle be picked
out by studying the amplitude with sufficient accuracy in the energy range
below the three-particle thresholds,

It is now easy to see why the spinless nucleon can fail to
Reggeize. The positive-parity amplitudes are no longer related to
the negative-parity amplitudes by the MacDowell symmetry as they
were in the spinor nucleon case.

At J = 0 there is only one sense-sense amplitude, which needs
to satisfy only one threshold condition. Thus when calculating the
amplitudes directly from the field theory at J = 0 there is no need to
introduce a CDD pole to satisfy all the threshold conditions; or, if one
is introduced, the equations will in general have solutions for all

values of its position and residue and we have no assurance that it
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will be iaentical to some trajectory appearing in the analytically con-
tinued amplitude. In fact, the work of Gell-Mann et al. in reference
5. showed that the elementary particle did not lie on the dynamically
produced trajectory.

We may also apply similar arguments to problems of higher
spin mesons. For example, suppose that we consider Compton scatter-
ing of spin 1 nucleons by mesons of integer spin s. There are now
nonsense states at J = s -+, s-3/2,...., . Infact, if nis an
integer, 1 En f_ s, atJ =8+ % - n there are 2n-1 nonsense states.
From the work of Appendix B we see that in general n trajectories are
generated near J = s + + - n by the nonsense channels,

In particular, at J = 3 we thus have s trajectories generated
except in the special case that the nonsense-nonsense amplitudes
factor at J =3 ; if that occurs, only one trajectory is generated.

Since s trajectories would require introducing 8 CDD poles to obtain
theanalytically continued sense-sense amplitudes from an N/D equation,
in general we would not be able to conclude that one of these had to be
identical to the nucleon pole in the field theory amplitudes.

Our conclusion is that only if the nonsense-nonsense amplitudes
factor among themselves does the nucleon have to be Reggeized in a
higher spin theory. (Of course, in the case of vector mesons there is
only one nonsense-nonsense amplitude at J = 1 and the factorization
is valid trivially.) If these amplitudes factor among themselves, then
all the amplitudes must factor and the nucleon lies on a Regge tra-
jectory.

If the factorization is nonexistent or incomplete, it seems
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unlikely that the dynamics of the problem would be just right to make
one of the dynamical poles coincide with the nucleon pole, especially
since we are comparing amplitudes obtained from N/D equations with
different numbers of explicit CDD poles. However, it E_glgii__occur,
and only further inspection of the field theory would be able to settle
that question.

When higher spin mesons interact with spin 0 nucleons the
results are very similar to the case of vector mesons; there are not
enough conditions to fix the position of the nucleon pole and again we
conclude that it couid coincide with the position of one of the dynamically
produced poles only by sheer chance.

The conclusion is that Mandelstam's arguments make it clear
that the nucleon with spin %Pﬂ to be Reggeized in Compton scattering
with vector mesons; that a spin  nucleon might be Reggeized in
Compton scattering with higher integral spin mesons (this occurs if
the nonsense-nonsense amplitudes factor); and that the spin 0 nucleon

appears unlikely to be Reggeized in any .Compton scattering.
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APPENDIX D

Coefficients in the Graviton-Nucleon Partial Wave Expansions
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The remaining functions required may be found from the

symmetries satisfied by these quantities:
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I+ L J#
e_p.’ Y (Z) = ehu (Z)
J A-p J& (

i - -
e“’}‘ (z) = (-1) exp' z)
J+ _ At+A J+
ey -y (2) = ()T m eyl (2)
where

Ay = max (A, |u).
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APPENDIX E

Calculation of Graviton-Nucleon Compton Scattering

This appendix presents the details of the calculation of the
lowest order scattering amplitudes when (massless) gravitons are
scattered by spin ; nucleons (or electrons). We use Feynman's

gravitational field theory(r?’ 18)

and must compute the amplitudes due
to the four perturbation theory diagrams of figure 3, which we will
represent by Ma’ Mb’ Mc, and Md'

Since all the amplitudes are nonsense-nonsense for massless

gravitons,

The other amplitudes can be simplified to the forms given below

after much labor:

"

K 1 _ 4
My = Sy §[2py, P2g% Py ~Paa %1 % Ply]

u-m

2
— © - -
e L { P20 76 P16 %

t3 iy Rt R) v - kK %)

_ 2 [ 2 '
My = gt |2 K1 OayPapPis "2 -m))(vg Prg 75 Pag)dy,
T4 Py Pag Py W T A, Ppg P Prp tisul 6, 535}41} .

In these expressions, the initial four-momenta of the nucleon
and graviton are 121 and kl’ and the final momenta are P, and kz. The

invariants s, t, and u are defined in the usual way:
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The coupling constant is k* = 321 G and m is the nucleon mass,
Current conservation has been verified.

These expressions are to be multiplied by the (traceless)
polarization tensors e;B and ejd for the initial and final gravitons,
and then sandwiched between final and initial spinors. The resulting
M's are related to the ordinary (non-parity-conserving) amplitudes
defined by Gell-Mann et al.(4) by M =81W f,

We will explicitly give the results for large t in terms of the
quantities z = cos © (the angle between 121 and P, in the CM system),
E (the nucleon energy in the CM system), and p (the momentum of
either particle in the CM system). We will let M (2a, h, 2b, 3)
denote the amplitude obtained when a graviton of helicity 2b scatters
from a nucleon of helicity + 1 to produce a graviton of helicity 2a and
a nucleon of helicity h.

The asymptotic form of the M's follows.

1 1, 2 N 1 2,1 E
Mb (2 a, = 3, Zb, 2) = R mp (1 -Z ) ( ‘g- z + 8 5 Z
1 E? 1 1 E 1 1 E
B PHB PR pteam e -ap S

1 1 E 11 1 1 1 -1
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It is necessary to keep terms to very low orders in z because
the leading two powers of z all cancel when the contributions fromn the
diagrams are added. The total contribution at large z is easily veri-

fied to be as follows:
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When we combine these to find the parity ~conserving helicity
amplitudes we make use of the simplifying relations
W=E+p
E-p= mzl w.

We then find at large t (= large 2z):
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APPENDIX F

Calculation of Graviton-Scalar Compton Scattering

In this appendix we present the essential .steps in computing the
scattering amplitudes for scattering massless gravitons by spin 0
""nucleons." In lowest order the four diagrams of figure 3 contribute
terms which we denote Ma’ Mb’ Mc’ and Md. The notation follows
that of Appendix E.

Again, all the amplitudes are nonsense-nonsense and Ma = 0.

The other amplitudes can be simplified to the form

2

K .-
My = ST P2q P2g Piy Pis

L.
n

2 .
Y . _ 2 -
c K [ 2(p * pp - mY) da"-y’ 666 60:7 P1s pZB]
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a= 7 { 6a‘y 635 [%tz+ :tls-m? + 3 (s-mz}ﬂ

2
®ay P2p P15 (st t-m)+2p,, Poppyy P [

g

2

Current conservation has been verified for these expressions.
If we let M (2a, 2b) denote the amplitude obtained for graviton
helicities of 2b initially and 2a finally, the form of the amplitudes at

large t is as follows:

2 E?
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d " T P P
E E? B E? -1
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Again the leading two powers of z cancel when the amplitudes

are added together. One obtains asymptotically

M - k2 3
(+2, +2) =M (-2, -2) - Bp (E + p)

k2 2
M (+2, -2y =M (-2, ¥2) - Fp— (E +p}(E -p) .

In this problem, there is only one independert parity-conserving

amplitude of each parity because of the relations

£ _ x O
2%, 27 Y, 25 £,

derivable from the equations analogous to equation IV-5 and the
symmetries listed in Appendix D. The leading terms at large t in

these amplitudes are

'i" Kz E -2

f2,2 2 164 2%

- Kz 2 & -2
fZ,Z - 32D (E° + p*) = .
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APPENDIX G

Definitions of Certain Tensors

The metric tensor is denoted gpv and its determinant is denoted
g. For the metric of special relativity this reduces to the Kronecker

delta

6 = -1
BV -1

which we use to define all direct products.

The curvature tensor is defined by

Rhea = G o - {va e
SRR

a _ 1 ad
{bc} =28  (8pc g T Bpa,c T 8cq, b

where

The commas denote partial derivatives. Finally,

T

R = R
pV -}),VT
— A
LVeT gph R, voT
R = g“v R

KV
The quantity R is called the scalar curvature. These definitions

have been chosen to agree with references 17 and 18,

If g}w = 6HV + epv, to lowest order in eP-V we have
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Finally, the following relations are useful for reference:
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