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Abstract

We characterige strongly independent sets in an arbitrary geo-
metric lattice in terms of propertles of minimal dependent sets of
points. The minimal dependent sets of points in partition lattices
are identified. It turns out that strongly independent sets in the
partition latiice on S correspond in a one -~ one fashion with systems
of subsets of S characterized by certain properties. Lattice pro-
perties of partitions are obtained through application of a careful
study of these subset systems., W; show, for example, that the com=-
plete sublattice of a partition latitice generated by the ideals
corresponding to a strongly independent set is isomorphiec to the
direet union of those idealas. Neceapary and sufficient conditions
are given for two ideals o/0 and 8/0 in a partition lattice to gen-
erate the entire ideal o U B/0. The problem dual to this one is also
solved. We characterize a large classz of complete sublattices of a
partition lattice, namely, those in which the union of all of the poinis
of the partition lattice contained in the sublattice is the unit parti-
tion. The characterization tekee the form of 2 eystem of subeets of g,
of the type mentioned above, together with a suitable equivalence
relation between the subsets comprising that system.
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INTRODUCTION

Whitman [6] and Jonsson {3] havé shown that every lattice is
isomorphic to a sublattice -of a partition lattice. They used trans-
finite methods which leave the following question unsettled: 1Is
every finite lattice isomorphic to a sublattice of a finilte partition
lattice? This question consitutes one of the mosi important un-
solved problems in lattice theory at the present time. Possibly a
otudy of sublattices of pertition lattices would contribute 4o w
solution. It is for this reason that the investigations leading to
this thesis were begun. However, sublatfices of partitiomn lattices
are of considerable interest in their own right.

Several of the properties of partition lattices which we shall
need may be proved in the more general case of geametric lattices.
These constitute the core of chapter I. Chapter IT translates the
principal result of Chapter I, the characterization of strongly inde-
pendent sets, into the context of partition lattices., This leads to
the derivation of a number of results of & combinatorial nature which
provide the foundation for the latter three chapters. In chapter III
we obtaln our basic results on sublattices of partition lattices. A
ch&acterizatim of a large class of sublattices is given in chapter
IV. PFinally, in chapter V we obiain several lattice theoretical
properties of the sublattices studied in chapter IV. Each chapter
containg an individuyal introduction. The theais as a whole is seif~

contained.



We now establish the notation that will be used and develop
certain fundamental background material. Lattices, and subsets of
lattices, are denoted by cepital Greek letiers. The partition lattice
on the arbitrary set S is dencted by . Small Greek letters represent
elements of lattices. When they exist, the unit element of a lattice
1s dencted by i and the zero element, by O, Lattice operations and
relations are indicated by the rounded symbols U, N, €, and 2, Capital
Roman letters denote subsets of S; small Roman letters denote elements
of S. Set operations and relstions are indicated by the enguler sym-
bols V, A, <, and >,

A partition, that is an element of II, is a decomposition of S
into disjoint subsels called plocks. A block of a partition is called
non~trivial if it containe moré than one element of S. A partition o
with exactly one non-trivial block A ls said to be gingular. 1In this
cagse we write

a = (A).

If the partition P has only a finite number of non-trivial blocks

B1,B2,...,Bk, we write
B = (8))(B,)e++(B)-
Sometimes we shall even include triviel blocks in parentheses, as in
g = {x){S-x).

If the non~trivial block of a singular partition Y contains just two

elemenis, say a snd b, of S, then we call Y a pulpnt and write

¥ = (a,b).



Let o and B be two partitions. We write

aCB

—

if every block of o i & subset of some bdlock of 8. For the partition
O whose blocks are all singletons, we have 0 S ¢ for every o € I. For
the partition 1 = (3), we have ¢ €1 for all ¢ € ll. Suppose now that

we are glven an arbitrary aubset
AZ .
Let x € S. Then each ¢ ¢ A has a block Bo_(x} which contains x. Set
c(x) = A[Bc_(x) 10 € A)

and let Y be the partition whose blocks are all sets of the form C{x).
Then clearly Y S o for all ¢ € A. Now let a be an arbitrary partition
guch thet « € o for all ¢ € A. Let A(x) be the block of a containing
%x. Then A(x) < Ba(x) for all 0 € A« Hence A(x) < C(x). It follows
that o < v. Hence the arbitrary subset A contains a unique greatesi
lower bound (A and ﬂA = Y. 'Since II has a unit element, we conclude
that II is a complete lattice.

Cleerly NI may alsc be regerded es the set of all equivalence

ge;_ ations on 8. We write
% = y(mod )

if there is a block of o containing both x and y. o © B if and only if
x € y(mod «). implies x = y{mod B)

for all x and y in S§. Suppose that for an erbiirary subset A of II wo
have



a = g1(mod 01),

g, ® gy{mod o),

g, = b (mod crn),

(1)

where {01,02,...,011] =< A. Since oy < Ua for each i, each equivalence
mod o, may be replaced by an equivalence mod UA. Since an equivalence

relation must be iransitive, we have
(2) a = b{mod Un).

On the other hand, if we put a ~ b whenever there is a finite chain as
in (1), then & ~ b ias slready an equivelence relation containing every
- equivalence relation in A. We conolude that (2) implies the existence
‘of a finite chain of type (1). It follows that (1) and (2) are equiv-

alent. Now (1) implies that

(a,b) € UA  if and only if
(a,b) € Ua' for some finite subset

Al of AL
We also deduce from (1) that

(a,b) < UA if and only if

there is a finite sequence of overlapping
blocks of partitiona in A

B, 0 B, § oee | B such that

atr.la1 andbeBn.



(We write By § By .1 to indicate that B, A rai+1 £ &)

In an arbitrery lattice I', we say that o covers 8 if o = P and if
a20 2B implies that 0 = @ or 0 = B. Elements covering the zera ele-
ment, if I has a zero element, are called points. (This is clearly
consistent with our definition of points in II.) If every element.of
is a union of points, then  is called a point lattice. If ¢ € I,
then

g = U(x,y) : (x,¥) €9

and so I is a point lattice.

An element o of the arblirary complete lattice p is called compact
if o © UA always implies that o € \JA' for some finite subset A' of A.
If every element of " is a union of a suitable ¢ollection of compact
elements, then [ is called compactly geperated. It iz showed above
that in II, the points (a,b) are compact. Since Il is a point lattice,
it is compactly generated. _ .

A compactly generated lattice I has the property that for any two
elements o and P in I, there is a maximal element K 2 o such that
MMNB=al B, To see this, let & be & chain (totally ordered set) of
elements ¢ such that o Soand o N B =alB. Let Y be a compact ele-
ment such thet Y € (Ug) N 8. Then Y € Us! where &' is & finite sub-
set of L. It follows that Yy is cqmained in the maximum element T of

', Hence YSTNB = B, Then by compact generation



(Uz) n 8 = Ugy : Y compact,y < (Uz) 0 g)

C o B.

But (Uz) N B2 a NP is trivial. Hence (UJr) N B = o N B. From
Zorn's lemma, it follows that there is a maximal element M 2 a such
that MNB=aNpB, This proves our assertion.

A subset A of the arbitrary lattice I with a zero element is
called independent if (UA1) n (UAQ) = 0 for all disjoint subsets
& and TA% of A. If A 1s not independent, it is called dependent.

We refurn to the case of the, partition lattice lI. Suppose that
(a,b) € . Then a and b occur in different blocks, sey A and B, of .

Among all of the blocks of (a,b) and a«, only three overlap,
Al (2,0} & B.
Hence o U (a,b) is obtained by joining the blocks A and B of o. It
follows that a U {a,b) covers a.
Suppose now that o covers a N B. The dual ideal i/ N B 1is
clearly a partition lattice containing o and B, « is a point in

i/e N B. By what we proved above, a U B covers B in i/a N B and

hence also in M. We therefore have showed that in I

a covers a N B always Implies that

a U B covers B.

Such a lattice is called gemi-mothilar.



CHAPTER I: GEOMETRIC LATTICES

Partition lattices are examples of a more general class of
lattices called geometric (or matroid) lattices. In this chapier we
introduce the concept of a cycle in a geometric lattice (definition 2).
It turns out that cycles are very effective tools in the analysis of
geometric lattices. Much of the chapter will be devoted to characteriz-
ing lattice properties of geometric lattices in terms of properties of
eycles. The result most crucial to the remainder of this thesis is the
characterization of strongly independent sets (definition 5 and theorem
3). This theorem, together with the especially simple nature of cycles
in partition lattices, providesa the foundation for nearly all of the
remainder of the thesisa. |

We give two further applications of the theory of cycles. In the
firet we cbtain the direct decomposition of geomeiric lattices which
was originally derived, by a different method, by Sasaki and Fujiwara
[5]. In the second we characterize geomeﬁric lattices which are modular;
Our methods give short proofs and considersble insight ':I.nto the neture
of these theorems. The apparently new results on cycies which we use
are lemma 5.2 and thecrem 6.

We first dofine gecmetric lettices.

Pefinition 1: A lattice I is called gegmetric if it is a compactly
generated semi-modular point latiice,

For campleteness we include a proof of the following well-known

theorem:



Thecrem 1: A geometric lattice © is relatively complemented.

Broof: Since any quotient ¢/T in a geometric lattice is clearly s
geometric lattice, we need only show that an arbitrary geametric
lattice r is complemented.

Let a e 1y Then' by compact generation there is a maximel element
B e I such .that aNB =0. We claim that « U P = i (the unit element
of I'). Suppose otherwise, that o UB < 1. Then there is a point o
such that c € a UB. Then 8 U ¢ > B. Then by the maximality of B we
have o N (BUg) © 0. Hence there is a point T contained in a N (BUo).
- Then T & « which implies T € B since a NP = 0. But TSP U 0. By
semi-modularity B U T =8 U ¢. But thena UB = (aUT) UB = o U (TUB)
=a U (dB) 2 g, a contradiction. Thus we must heve o U § = 1 whence

I is complemented completing the proof.

Suppoze that we are given a dependent set A of points. Then there
are disjoint subsets A, and A, of A such that (UA1) n (UAE) o 0.‘ Let
a be a point contained in (UA1) N (UA2)'. Since a is ccmpact, there
are finite subsets A and Aé of A and A, respectively ‘such that
« € (Ua)) n (UaL). Hence the set A! V AL is a finite dependent sub~
set of A. Thus every dependent set of points containg a finite de-
peﬁdent subset. It follows that every dependent set of points containa
a minimal dependent subset, and that every minimal dependent set is
finite. We state this as a lemma,

Lemma 2,1: Every dependent set of points contains & minimel dependent
subset, and every minimal dependent set is finite.



We are now prepared to define cycles.

Refinition 2: A minimal dependent set of points in a geometric lattice
will be called a cycle. |

We did not use semi-modularity in proving lemma 2.1. Semi-

modularity implies that cycles have a large amount of structure.

Lemma 2.2: Let I be a cycle. Then for each o ¢ © we have that

Proof: Let Z, and r, be disjoint subsets of T such that (Us,) N
(U}:.e) D0, Since & is a cyele it is clear that }:1V L, = L. Hence

@ 13 an element of, say, & We dlatinquish two cages.

)
ase I: o ¢Uz,.
Then {a} V I, is a dependent subset of L = L, VI,. Since I is a cycle,
we have (a) VI, - &; VE,. It follows that (a} = z, snd (=) = e
Then o € |J(z~a). |
ase II: a EUZE.
Then there is a point o conteined in (U ’31) N (Uza) and ¢ £ w. Since
L is e cycle we have that U(z1-a.) N U£2 = 0. Hence ¢ ‘_:_?US1 but
o & U(Z‘.1—a.). By semi-modularity ¢ U U(Z1-a.) =a U U(Z.I-m) = UZ1.
Heriee a Sgl U(E.‘-cr.). But ¢ C© U}le- Hence a & U(81—°'-) u Uzg

= |J(z~a) and this completes the proof.
A simple consequence is the following.

Lemma 2,3: Let o and B be distinct points in the cycle £. Then Ugz
= J(za}) = U(z-B). On the other hand o % J(z-a-B).
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Proof: By 2.2 ac U(zw) whence U(zw)c Uz =a U U(za)
= U{z=w). similariy U(z-8) = Uz.

L ~ B is independent since & is a minimal dependent set. Hence
a N U(zaB) = 0 and a ¢ U(z—a-B).

The next lemma shows the natural way in which cyeles arise in

geometric lattices.

Lemma 2,k4: Let a be a point such that a € {JA where A is a set of points
not containing «. Then there exists a minimal set of points A' < A such

that o C© UA'. Furthermore (a) V A' is a cycle.

Proof: Sinee a i1s compact, there is a finite subset A' of A such that
a < |Ja'. It is then clear that A' may be chosen minimally.

In any case, the set £ = {a} V A' 18 dependen‘b.' Hence it contains
a cycle &', Suppose L' £ A'. Then by 2.2 for eny B ¢ Z! we have
B < J(z'-B) c U{a'-B). Hence o S [JA' = B U {J(a'-B) = U(a'-B) con-
trary to the selection of A'. It follows that £' £ A' and that « € £/,
But by 2.2 we have o C | J(Z'~a) where =! - o < A'. Hence &! - q = A'

and £' = (a} VA' 18 a cycle, campleting the proof.
The first lattice property we characterize is modularity of pairs.

DPefinition 3: Let « and B belong to the lettime . We call « and B a
modular pair if for all ¢ Sa we have that o U (afB) = o N (dUB). We

also indicate this by writing (a,8)M.

Theorem 2: Suppose a1 B = 0. Then (a,B)M holds if and only if the



1

following condition holds: whenever £ is a cycle each point of which

is contained in a or in B, then either Uz Caor Uz c B,

Proof: (Necessity) Let L be a cycle violating the sbove condition.
Then % = &, V £, where o 2 U.‘v:.1 20eand B2z, 2 0. Let 0 e .
Then U}:1 2 U(f.‘.1-a) since I, 1s independent. But U(z<) = Uz
since T is a cycle. Hence U(E1-a) ue = (U )‘..1) UB. But then
a N (U(z,0)8] = a & ((Uz, 8] and, ueing (a,80, U(z,) = Uz,
a contradiction. Thus the stated condition must hold.

(Sufficiency) Suppose the condition holds. We must show that
g = (0B) Na for each 0 S a. Let x be a point such that x < (cUB) N a.
Suppose that n 6., Then n o UB and x Ca. nZP sincea NB = O,
Then there is a minimal set of points Z, V &, such that x & (U 21) U
(Uz,) where Uz, o Sa and U'zz cB., n¢ Uz'1 and x €z, since
n o and n € B. Hence Z #d, ):2;!;6, and_:rd:;1 V £,. Then {x} V
Z, V I, is a oycle by lemma 2.4, Msoa2nx UUE130andBEU22
> 0., Since o NP = 0, nelther u nor B conteins x U UE1 U Uz‘.a. Thus
‘the cycle (n} V z, v L, viclates the hypofhesis. Thus every point
contained in (gUB) Na is also conteined in ¢. Hence (UB) Na S o.

The opposite conbainment is trivial. Hence (¢UB) Na = ¢ and («,B)M

holds.
Corollary 2.5: In & geometric lattice (o,B)M and (B,a)M are egquivalent.

Proof: The condition of theorem 2 is symmetric in a and B, Hence 2.5
holds whenever a () B = O. But it is eanily shown that 1/48 is a geo-
metric lattice and that («,B)M holds in r if and only if («,B)M holds in

i/aNB. 2.5 is now apparent.
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In a finite dimensional. semi~-modular lattice a set A = [c:,1 ,a.e,...,uh}

is often defined to be independent if

(1) d(ﬂ-1lh2U---Ua.n) = d(u..[) + 8{ag) + oo 4 d(a.n)

where d is the rank function. This condition implies that A 1a an inde-
pendent set (by our definition) in which UA1 and U &, are & modular
pair for all disjoint subsets 51 and A, of A (see [2]). We shall need
en analog of condition (1) which is meaningful ini an infinite dimen-
sional geametric lattice. We gilve such a condition in theorem 3, but

firast we make some appropriate definitions.

Definition b: We say that the elements « and B are perpepdicular if
aN3 =0and o and B are a modular pair. We shall indicate perpen-

dleularity by writing («,B) L.

Definition S: A set A of non-zero slements in a lattice will be called

strongly ipdependent if |J A, and Uaa are perpendlcular for each pair
of disjoint subsets & and Ay of A

Thus a strongly independent set A is an independent set in which
UA1 and UA2 are a modular pair for all disjoint subsets A, and A, Of A.

Thecrem 3: Let A be a subset of & geometriec lattice. Then A is
strongly independent if and only if
(1) Oo£a
(i11) If « end P are distinot elements of A, thena N B = O,
(1i1) If = is a cycle such that o ¢ £ implies 0 € & for scme

& € A, then there is a T € A such that Uz 7.
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Proof: (Necessity) We need verify only property (iii). Ilet T be a
cyele violating property (i1ii); that is, suppose each element of % is
contained in some element of A but that Uzr ¢35 for all 5 € A. Let
aeZand let o CB eA. Set A = (B) and set A, = A - B. Then each
element of ¥ is contained in either UA, or UAZ' B\y assumption
Uz ¢ Ua, = B. By strong independence (UA1) n (UA2) = 0. But then
by theorenm 2 UA.I and UAE are not a modular peir contrary to the
strong independence of A. It follows that (iii) must hold, completing
the proof.

(Suffieiency) Suppose that conditions (1), (ii), and (41i) hold.
Let A, and A, be disjoint sets of A. We need only show that UA1 and
Ua,z are perpendicular.

Set (1

9]

ﬂ.l Y 02 where

H

1 {0 : ¢ is a point, cgsome&e%}and

]

My

In view of property (ii), A A B, = @ implies Q AQ = g. It is also
clear that Uﬂ1 = UA1 and U02 = UAE.

{0 : ¢ is a point, o C some B € Ay}

We prove the perpendicularity of (Ua, and Ua, in two in two parts.
D 8

et I: (Ua) n(Uay) =o.
Suppose that (UA1) N (UAE) > 0. Let a be a point such that
ac (Ua) N (UAa). Then there exiét minimal sets £, <0, and £, <0,
such that o c UE.I and o U):E- If o is an element of one of the seis
L, and Z,, then o i8 not an element of the other since 01 A 02 = g, We

therefore consider Just two cases:

gase f: w €I, butu.;éza.
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Let B € L,. Then a S o' for some a' € A, and B < 8! for some B! € Ao
Then o' ¢ B' since A) A A, = 4. [(a} V I, 18 a cycle contained in 0.
Hence there is & T € A such that a U UL, © 7 by property (iii). By

property (11) T = a!. Hence a U U81 Ca's But thena' NB'2B820

it

whence o' = B* by property (ii1). This is a contradiction. (The case

a £ Z, but a € I, 18 similar.)}

~
case B: u.ﬁ}:..landu.g’za.

I and L, are disjoint since 01 and 02 are disjoint. Let B € &,. Then,

1
since {a} V £, and (a) V £, are cycles, we have U(E.lVZa-E) 2 U}:2 2a
and U(E1Vz2—8) DSa U U(z.l—-B) =a U Uz1 2 8. Lot £ be a minimal sub-
set of L, V &, - B such that UZ 2 B. We know that (a} V %, is a cycle
and thet B € L,. Hence U(£1-B) = U([m]VZT~a-B) Z B by lemma 2.3.
Henee I contains at least one point in L. We may then show that the
cycle {B) V £ vioclates .condition (i11) by the argument used in case A.

We have therefore proved that (UA1) N (UA2) = O,

Pary II: Uﬂ.1 and UAE are a modular pair.
Suppose that UA1 and UAa do not form a modular pair. let £ =1, VI,
be a cycle, containing the smallest possible number of points not in 1,
such that 0 C UZ? cUa endoC Uz, €Ua,.  (Such a cycle exists
by theorem 2.)

We claim that £ <(l. For suppose the contrary, that some o € I,
sey o € L., but o £ Q. ThenUn1 = U;:;1 2o, Let B exn,. Set

g = (ga-B) V Q,.

Then Ug 2UN, 2 ¢ and Us 2 a U U(z=-8) = U(z-B) = Uz 2 B.
Let @' be a minimal subset of @ such that Ug' 2 B. Since & is a
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cycle we have U(E—u.-ﬁ} Z B. Hence @' contains at least cne point Y in
Q.. Thenyg UQ1 = UA1. Also B © UA2. Hence (B} V @' is a cycle of
the form (B} V @' = @, V @, where 0 < Ue, € Ua, ans 0 =Ja, S Ua,.
AMso (B) V g! € (E-a) V Q. Hence (B) V o' does not contain o. Hence
{B) V @' contains fewer points not in I than does %, and this contra-
dicte the selection of . Thus Z 21 as claimed.

The cycle I then violates condition (1ii) by the same argument as
that used above in case A. Hence UAI and UAQ form & modulexr palr.
This completes the proof.

It will be convenient to have the following result on strongly

independent sets.

Theorem 4: Let A = [a.p : p € P) be a strongly independent set. Let
I =[9,: P €P)Dbe such that o, Sa, for each p ¢ P, Then 2 nyUsc

= op for each p € P.
Proof: Using the fact that u.P and U(A—-a,p) are perpendicular, we have

o, UL = o, nloyu U(z—f:rp)]
S o Nlo U U(A—cnp)]

fa, N U(A_-mp)] Vo,

d

o

)

L
Y

But 1t is obvious thet o N Uz 20, Hence a N Ut = o for each

p €P.
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act ¢ gltion of Geometric Lattices

Suppose we are given an (unrestricted) direct decomposition of
the geomeiric lattice . The component lattices may be taken to be
ideals in I so that we may write

r=@ {(6/0: 5 ea).

It is clear that the set A determines an equivalence relstion on the
get {1 of all points in . We simply call the points o« and B equivalent
if they are contained in the same element of A. We make the following

definition.

Definition 6: An equivalence relation on the set (2 of all points of D

will be called direct 1f It corresponds to & direct decompositiom of .

It is natural to ask when two points are equivalent by every direct

equivalence, We have the following lemma.

Lemma 5.1: Let o and B belong to the cycle £. Then a and B are equiv-

alent by every direct equivalence.

Proof: Let the direct equivalence = correspond to the decomposition

r=® (8/0 : & €A}.

Suppose that o # B. Then there is a § € A such that o. € 5 but B & 5.
Then for the congruence relation on p defined by putting o congruent to
T Iif and oniy i£f o N & = T N 6, we have that f is congruent to O but a

is not congruent to O. This is impossible since /0 and B/0 have the



17

common transpose |UJz/\Nz-a~B)}. Thus we must have w = B for every

direct equivalence,

The somewhat surprising firuth is that the converse of lemma 5.t
holds. This is more troublesome because it is not obvious that the
property of belénging to the .same oyocle defines an equivalence rela-
tion. This result 1s contained in the following lemma, which is of
considerable interest in itself.

lemma 5.2: Let o and B be points in p. Suppose there exists a finite
sequence of eyeles %,,%,...,L, &uch that « €I, B e s Bnd
¥ ¢ for each 1. Then there is a single cycle & containing

2q‘:l. A zi+1

both o and B. Furthermore we may take L < 2, VE, Ve VI

Proof: Clearly we need consider only the case in which n = 2.

Hence suppose o € L, and B € I, where , A I, # #. We may also
suppose that 21 v Zy is minimal in the sense that if 21' and zé are
cycles such that £! V 5} < Z V £, where a € xf, B e 4, end = Azl
# &; then £} V £l = &, V L.

It will suffice to show that '2:1. v Z, contains a cycle containing'
both o and B, Suppose it does not., We will obtain a contradiction.
Since o and B are not contained in a cycle comtained in I, V I, we

havea.ez.‘-zzandﬁer?-21. Le‘tcrez.ll\):gandset

8=1I v & - {«,B,9}.
wWe distinguish two cases:

gase I: Us 2«.
Then Ue 2 U(z,=) = Uz, 20 aad Us 2 Ulg8) = Uz, 28, Now let
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8, and @, be minimal subsets of @ such that U91 2O g and Uz@gn2 2B,
We shall show that the cycles («) V &, and {f} V 8, violate the mini-
mality of L, V Z,. Clearly ({e) V 91) vV ({B)V 92) < 21 V %, since |
.o is not contained in the lefi{ member. Hence we need only show that
(e} V8,) A ((B} Ve, 4. e, £, since otherwise a & U(Z,~a-0)
confrary to fact that Zs is a cycle. Similarlya2 £ EE' Hence
8, A (e-z,) > 4 and 8, A (8-L,) > &.
Then {a} V @, and I, are overlapping cycles contained in L, V E,. By
the minimality of L, V I, we have:([m} Ve Vi, =z VI, whence
(@) V@, VI, > (8-5,). It follows thai ’
8, > (e-%,).

Hence ((a} V 8,) A ((B} Vey) 28, Aa,2 (8-5,) A e, > ¢ Thus the
cycles (a} V 9, and By v 8, overlap and contradict the minimality of
,21 v de

gage II: Ue 2 a.
Then 8 U Ua 2 U(g,o) = Uz, 20 and BUUg=8Ue UUs 2 U(z,=)
= U):,1 2 a. Now let @' be a minimal subset of (B} V @ such that
UJe' 2 a. Then B ¢ @' since Ug Z . But then {a} V @' i& a cyecle
containing both a and B. Furthermore (a} V o' < &, V L,.

Thus our assumption that_there is no cycle contained in Z, v Iy
which contains both o and B is untenable. This campletes the proof

of 5.2.

Definition 7: Let o and P be points. We write o ~ B or if there is a
cycle £ containing both o and B.
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emma_S.

The relation o ~ B is a direct equivalence on the set 1 of
all points in p.

Proof: The relation a ~ B 1s en equivelence relation by lemma 5.2.
Denote the collection of equivalence classes by [Ap 1 p € P} Let
“’p = U'Ap for each p € P. We must show that

rz@® [a.p/o : p 6P},
Since 1 is a point lattice and since each peint is contained in some
a.p, we see that for each o inp, 0 = |Jfo N a’p : p € P}). By theorem 3,
[c:.p : p € P} is strongly independent. Hence, by theorem L, the mapping
teking each element 0 of I into the element of § {a.p/O : p € P} whose
pm component is o 1l oy for each p ¢ P is one - one and onto. Since
this mapping is also order-preserving, it is an iscmorphism. This
campletes the proof.

We may summarige our results as follows.

Theorem 5: A geometric lattice has a unique representation as a direct
union of irreducible geometric lattices. The direct equivalence cor-
responding to this representation identifies precisely those pairs of

points which occur in a common cyecle.
The usual characterization of the direct equivalence follows.
Corollary 5.4 a ~ B if and only if o and B have a common complement.

Proof: Suppose o ~ B and a £ B. Then there is a oycle I containing

a and B. By relative complementation there is an element y such that
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yU Uz =1ana ynUz =« \N(z-a-B). Then a.-UY.E-T_’)’E-U Utza-g) = U(z:8)
=UJsand a Uy2yUUZ = 1 whence a U ¥ = 1. Alsomn\'g_(Uz}nY-
= U(fo-B) and a NYSa N U(s-a-8) = O whence o N ¥ = O, Thus Y
is a complement of o and, similerly, of B.

Conversely, suppose o and B have a common complement. Then, by
the argumeﬁ‘!; of lemma 5.1, o and B are equivalent by every direct

equivalence. In partiecular, a ~ B.

The transitivity of the relation given in 5.h is usuvally rather
troublesome to obtain. Using similar methods we shall easily derive the

transitivity of another relation in corollary 6.3.

Modularity in Geometric Lattices

We sghall obtain a characterization of those geometric lattices p
which are modular in terms of a property of the cyecles in . We re-

quire the following lemmas.
e »1: In any lattice (a,B)M and Y € o imply (a,BUy)M.

proof: Let ¢ € a. Applying («,B)M twice we obtain ¢ U [aN(BUY)]
=0 U [YU(BM)] = (oUy) U (BNa) = a N [(BUY)UW]. Thus (a,BUy)M holds.

Lemma 6.2: Iet I be & relatively complemented lattice with a zero
element. Then if (a,B)M holds for all B such that o N1 8 = 0, then
(x,0)M holds for all o. '
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Proof: Let 0 € P. Then there is an element T in [ such that (aW) U T
=0 and (o) N T =20, Then TS o whence a N TS al (o) = (i) N 7
-0and aNT=0. Then (x,T)M holds by hypothesis. By lemma 6.%,"’
(o, TU(c/ o) )M holds. But T YU (W) = 0 and so («,o)M holds as was to

be proved.

Theorem 6: A geometric lattice p is modular if and only if for every
cycle £ = &, V L, where L, # ¢ and %, # @, we have that (Uz1) n
(Uzy) = 0.

Proof: (Necessity) Suppose there is & cycle L = Z, V L, such that

£, #4, &, 4, and (Uz)) n (Ug,) = 0. Then, by theoren 2, U,

and U}:2 are not a modular pair. Hence [ is not a modular lattice.
(Sufficiency) The stated condition and theorem 2 imply that

(a,B)M holds for all o« and f such that «a N B = 0, By lemma 6.2,

(o,7)M holds for all ¢ and T in ['» But then the lattice I is modular.

This completes the proof.

The direet equivalence of theorem 5 tekes an interesting form

when the geometric lattice I is modular.

orol ¢ Let I be a modular geometric lattice. Then the
distinet points o and B are equivelent by the direct equivalence of

theorem 5 if and only if there is a third point ¥ such that Y S a UB.

Eroof: Suppose a ~ B. By theorem 5 there is a cycle Z, containing o
and B. Set £, = (a,B) and set I, = E - (xsB). Then by thecrem 6
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(Uz)) n (Uz,) 2 0. Let ¥ be a point such that Y C Uz n (Uzy).
Then Y € U;‘:1 =a U B, and Y {8 different from o and B since Y € U}:2
= U(z~a~B).

Conversely, if there is a third point Y such that Yy Sa U B; then
clearly the set (u,P,y) 18 a cycle. By theorem 5 we have a ~ B. This
completes the proof.
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CHAPTER II: CYCLES IN PARTITION LATTICES, STRUCTURES

I will always be understood to be the partition lattice on the
(possibly infinite) set S. We have already shown that N is a geo-
metric lattice. In this chapter we identify the cycles in 1. We
then find that the conditions of .theorem 3 define a sysiem of sub-
sets of § characterized by certein properties. Such systems we
call structures. The remainder of the thesis will depend heavily

on a careful study of struetures.

Lemma 7.3t Iet £ be a set of points in the partition lattice II.
Then % is a cycle if and only if % is of the form L = [(31,a2),
(aa,as),...,(ar_1,ar),(ar,a1)) where the a, are distinct elements

of S.

Proof: It is clear that a set of the given form must be a cyela.
Conversely, let T be a cycle and let (s,b) € £. Then £ - (a,b) is
a minimal set such that (a,b) € \UJ(z~(a,b))}. Hence there is & se-
quence of points (a,a1),(a,,ae),...,(an,b) in £ - (a,b). From these

we may select & subset y!' such that the a, are all distinct. Then

i
((a,b)} V £' is of the required form. But % is a minimal dependemt

set, and so ({a,b)} V £' = T completing the proof.

Suppose now that we are given a strongly independent set A in II.
In view of lemma 7.1, condition {iii) of theorem 3 takes the following

Ifarm:
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Let 8,58 500058, be distinet elements of S. Set a =8

Tr+1

If for each i there exists a T, € A such that (eaLi,ai_'_1

then there exists an o € A such that (a1,a2,...,ar) C .

JRSRY

It follows that the sel [a1,a2,...,ar] is contained in same block U
of a. Letting $ denote the set of all non-triviﬂ blocks of pertitions
in A, we may then write the conditions of theorem 3 in the following
form:

(i) Each set in ® contains at least two elements.

(1) IfT e and U eS whereT £ U, then TA U is at most a
gingleton.

(iii) Let 8,,855004,8, be distinet elements in S. Set a, = 8,

If for each i there exists some Ti € © such that [ai,aiﬂ] < Ti,' then

there exists a U ¢ » such that {a1,aa,...,ar} < U.

Definition B: A giructure on the set S is a collection ® of subsets

of S having the preceding properties (i), (i1i), and (iii).
An immediate consequence of theorem 3 is:

eorem {: Let A be a set of non-triviael partitions in II. Suppose no
two partitions in A have a cammon non-irivial block. Let % be the set
of all non-trivial blocks of partitions in A. Then A is strongly in-

dependent if and only if © is a structure on S.

Structures therefore have a great deal of lattice theoretical
significance in partition latiices. We shall devote the rest of this
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chapter to a study of structures.

We consider the empty set to be a strueture. Since, however,
all of our results become trivialities in this case, we shall
always assume that { is non~empty.

If a and b are distinet elements of S contained in some set T
in %, then a and b characterize T by property (ii). We therefore
may write T = F(a,b). Also as a consequence of (ii), the conclusion
of {i1i) may be strengthened to U = T, =Ty, = e =T.

We also mention that structures might well be called geometries,

but in our context thies is an unnecessary distraction.
We next introduce a property analogous to property (iii):

(111)*: Let TysTpssse,T, e distinet sets In $. Set T, =T, .. If

1 r+1
T, i T;,, for each i, then all of the intersections T, A T, ., &Te

equal.

The following theorem exhibits the interdependence between (iii)
and (1iii)#*:

Theorem 8: If (1) end (ii) hold, then (111) end (iii)* are equivalent.

Proof: We first show that (1ii) implies (iii)*. Suppose (iii) holds
but (1ii)* does not. Let T,5Tpsees,T, be a minimal sequence of dis-
tinet sets in % such that, after seiting T1 = Tr 42 ¥ have that no
Ti A T:l+1 is empty and that not all Ti A ‘1‘1 +1 e equal. Clearly

r > 2. By (ii) all intersectiona are of the form T, AT, = (8]
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Suppose 8, =&y 4. Then Ty ATy , =Ty ATy =Ty ATy, using

We shall show that a, ¢ a; , for each i,

(1i). Hence after dropping Ty, from the sequence T,,Ty,.««,T, ;.

adjJacent sets still overlap and still not all adjacent interssctions
are equal. This violates the minimality of the original sequence.
Thus a, £ 8, 4 for each 1. Now let a, be the first element in
8ysPnse s es8,, 4 Which equals a predecessor. Then By = some aJ where

J <Xk Then a,,m; ;ye-o,8 o are all distinet. Also 250 £ ay

since a, £a This sequence satisfies the hypothesis of (iii).

J+1°
Hence by (iii) and (i1) T

341 TJ+2 contrary to the assumed dfstinct-~

ness of T,,T,,...,T,. Thus (111) implies (iii)*.
Next suppose that (ili)* holds but (iii) does not. Let

8,585,008, be a minimal sequence of distinct elements In S such

that, after setting a, =8, ., we have that each {ai’aiﬂ] < some

T; €%, but that (a,,8,,...,8.) ZUforallUe®. LetT, = Trei

We shall show that T, £ Ty, for each i, Suppose T; = T; ,. Then
{ai,ai+2] S'Ti v Ti+1 = Ti' Hence after dropping 841 for the se~

quence &,,8,;,¢.4,8,, We still have a violation of {iii) comtrary to

2
the assumed minimality. Thus Ti g Ti+1 for each 1. Now let T, be

k
the first set in T1 ’Ta’“"Tr i which equals a predecessor. Then
Tk = some TJ where j < k. Then TJ’TJ+1"“’Tk-1 are all distinct.
Also Ty } T5e1 § e+ ¥ 7, § T,- Hence by property (iii)* we have
{a,jnj = T.i A TJ+1 = T_j.;.‘l A 'I‘J.._2 = {aJ+2) and 801 = 8440 contrary to

the assumed distinciness of 81585500058, This completes the proof.
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Definition 9: Let & and b be elements of S. We write s¥b if a = b

or if there is a set T in  which contains both a and b,

Given the structure % on the set S, a structure on the set &

arises In a very natural way:

Theorem 9: Let A be the set of those elements of S which belong to
more than one get in the struc'.ture . Far each a € A lat

$(a) = (T e% : aeT)., Then the set J = (0(a) : a e A} 15 a
structure on the set ®. Furthermore TIU if and only if T and U

overlap as subsets of S.

Proof: Property (i) follows from the selection of A. To verify (ii)
let ®(a) and %(b) be sets in J which share the distinct sets T and U
of ©. Then by property (ii) for ® we have {8) = T A U = {B) and

& = b, Thus ©(a) = &(b). Thus & satisfies property (ii). Property
(11i) for 3 1is simply property (iii)* for . Therefore ¥ is a
structure on %.

The final stetement is obvious.

Definition 10: We call the elements a and b of S related (with
respect to §) whenever there exists a finite sequence of elements

8,s855+00,8, in § such that abaf)aaﬁ---ﬁarbb.

Definition 11: We call the sets T and U in % related whenever they

are related with respect to fhe gtructure ¥ of theorem 9.

The sets T and U in & are clearly related precisely when there is
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& finite sequence of sets in % such that T { T, ¢ T, § «ee § T, i u.

Theorem 10: If a and b are related elemenis of S, then there exists

& unique minimel chain abg1$g2b---bgﬁ§b. The elements a, By1€pseeesB )P
are all distinet. If also dbd1$déb-o-ﬁdﬁhb, then there exists a
correspondence J - k{J) such that g, = di(”,ge = 61(2),...,gn = di(n)
and 1{1) < 1(2) < «s» < i(n).

Proof: Clearly the elements in a minimal chain are distinct. Also
note that the last statement is contained in the first since any chain
may be shortenad to a minimal chain in whieh the order of the elements
is preserved. Thus we need only prove the first statement. Suﬁpose
that it is false. Let

ag g R+ Hg Hb  and

afd 19625’2 .o -&dmﬁh
be distinet minimal chains. GSet a = gy = do and set b =g =d ..

n+1 m+1
Since the chains differ, we may choose k minimally so that By # Gy

Letlbeminimalsothatks_landgl=sbmd where k < J. Let 1!

J
be minimal so that ¥ < 1' and g = dl,. Either 1 or 1' 1is greater
then k eince g, £ dy» Without loss of generality suppose that X < 1,
Then

C1 8y BEy = 01,00y Ree Ry =gy

and the elements gk-i’gk""'gl’dl'-t""’d are distinet. Hence

k
(1i1) is appliceble and

By-198; ¢
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But k < 1 implies that k¥ + 1 <1, and this contradicts our assumption
that the first chain was minimal. Thus every two minimal chains must
be identical and this proves the theorem.

eorem 11: If A and B are related sets in £, then there exists a uni-

que minimal Requence of sets G, in H such that

i
AngnGgo"'nGnOB'

The sets A4,G,,0,,.+.,G,,B are distinct., If also A § D, ] D, feood D, i B
where the D, are in R, then there exists a correspondence J -+ 1(J) such

Proof: We apply thecrem 10 to the structure of theorem 9.

Thearem 12: If a and b are distinct related elements of S, then there
exists a unique minimal sequence of sets G1 ,Ga,...,Gn in & such that
aeC andbeCG and G §o §-ee G- The sets G; are distinct.
If also D, § D, § «ov § D, where the D; are in 9 and @ €D, and b € D,
then there exists a correspondence j - i(j) such that G, = 1(1) 18y

»

= 1(2)"”’011 = Di(n) and 1(1) < i(2) < »++ < i{(n).

Proof: Again 1%t is clear thal we need prove only the first statement.
Let

G, § Gy § eee ﬁc.n, ae@,beq and

D, EDE g - QDm, a €D, b.eDm
be minimal chains of sets in . The first chain is clearly minimal

between G, and Gn in the sense of the previous theorem. If 1 < §<n,
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then Gy # D, otherwiee & ¢ D, = Gy would violete the minimelity of the
first chain. Similarly G, #D,. Since a € G, AD, and D €G AD,
we have

6, ip, 4D, 4 - onmncn.
By theorem 11 and our cbservation that G, # D, and Gy £ D for
1< J<n, we have {G.?’GS""’Gnﬂ] < [DE’D3"”’Dm-1]' The opposite
containmeni follows similarly. Thus n = m. By the order preserving

correspondence of theorem 11 we see that
G2 = 2,03 = DB,...’GII"" = Dn_.i-

Now set G, A G, = {x) and D, A D, =y, Then Wy since (x,y} < G, V D,
= G,. Hence anfgda. If x ¥ y, then by (iii) (a,x,y) is contained
in some set in Q and this set must be (}2 gince G2 contains x and y.
But then a € (]r2 and this contradicts the minimality of the first chain.

Thus x = y and therefore ¢, and D.I ghare tha distinet elemenis a and x.

9

Therefore G1 =D, Gn = Dn gimilarly, and this completes the proof.

1

Definition 12: Let a0g,9g @+ +Rg %D be the minimel chain from a to b

in the sense of theorem 10. We set
G(a,p) = [3131382:“':gn:h}'

perinition 13: Let A | G, ¢ G, § o+ § G, § B ve the minimal chain

from A to B in the sense of theorem 11, We set

G(A,B) = (A,0,,00;+4+,0,,B])-
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Definition 1k4: ILet G, oca f --- eunbe the minimal chain from a to b

in the sense of thecrem 12. We set

G(a,b) = £G1 ,G’a,ooo,GnIG

Whenever we list the elements in a minimal chain, we shall list
them in the meaningful order. For example, if we write C(a,b)
= (a,z,p,q,b}, we mean that alzfHplqdb.

The preceding three theorems have the following formal comsSe-~
quences:

(1) For any related iriple a, b, end ¢ in S we have

c(a,c) < ¢(a,b) V ¢(b,c).
(2) For any related triple A, B, and C in  we have

&(A,c) < €(a,B) V &(B,0).

(3) For any related triple a, b, and ¢ in S we have
€(a,c) < €(a,b) V €(b,c).

The seta &(a,b) and C(a,b) are related in the obvious manner,

We shall prove this.

Theorem 13: Let a and b be related elements of S.
" (1) Let &(a,b) = (DysDyseeesDp}e Set Dy A D, o = (g;) for
each i <n, Set a=g,andb = g, Then c{a,b) = (Bg18qsees8,)e

(2) Let c{a,b) = {go,gl,...,gn]. Let D, be the sel in % con-

taining g;_; 8nd g, for each 1 > 0, Then €(a,b) = {D,,Dp5eee5D, )
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Proof of (1) [gi’giﬂ} < Di+1 for each 1 < n + 1. Hence
gobg19:---3:gn. we claim this set 1s minimal, for suppose it is not.
Then some gf)gk where J + 1 < k. If gJ = gp.» then DJ i Dyt since

g € DJ and gy =g € D,,;+ Hence D is superfluous in €(a,b), a

J+1
contradiction. Suppose now that g Rg, where g, £ g.. Let A be the
X J k

get in  containing gJ and 8* Then

Dlo".oDJEAqu'f.i!...iDn

isachainof n+ j + 1 - k sets where a 18 in the first and b is in
the last (either of which may be A). But n + j+ 1 - k <n sinece

Jj + 1 <Xk and this contradicts the minimality of &(a,b). Thus it is
not possible thet any g Jﬁgk where J + 1< k. Hence the chain

[go,g1,...,gn} is minimal and the theorem is proved.

(2): We are given that'goﬁgﬁa---hgn is the minimal chain from
a to be, Let Ai be the set in % containing the elements g;_1 and gy
for i = a,2,...,n. Then 4, § A, g --- @ A vwhere a ¢ A, and b €A .
This chain may be shortened to the unique minimal chain €(a,b) by
dropping out all superfiuoua sets (see theorem 12). Suppose €(a,b)
has m sets. Then by part (1), C(a,b) has m + 1 elements. But by
hypothesis C(a,b) has n + 1 elements. Hence €{a,b) must have m = n

sets, Hence none of the Ai are superfluocus, i.e. the chain

A1 b A2 § oo @ An is minimal. This completes the proof.

We .chall show that the elements in C(a,b) and the sets in &(a,b)}
are together linearly ordered in a natural way. Let C(a,b)
= (& = 8ys855+++28, = D}« Lot D; be the set in % containing g; and
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g4, for i = 1,2,...,n~1. Then by theorem 13, S(a,b) = (DysDgs 000D 430
We may then order the elements and sets according to position in the

saquence
g-‘ :D1 Jgaina)g31 s Jgn'
We write

gy Sgy if 154,

<
Di-D,j if 1<,
<
giﬂD'j if 15 J, and

< 4 < 4,
Di"gj if 1 +1<

The' ordered palr with respect to which we are ordering nmust always be

clearly understood. In the above we ordered relative to (a,b).
The next theorem will be needed in chapter IV.

. Theorem 14: Let A and B be an arbitrary peir of related sets in Q.

Then we may choose a ¢ A and b ¢ B so that A and B are in &(a,db).

Proof: Let &(A,B) = {TysTys++-,T, ) where, of course, A =T, and

B=Tn. GhooseaeT1 -T]ATEand choosebeTn-T

=1 A Tn which

is feasible since any sei in a strueture contains more than one ele-
ment. Since a € A and b ¢ B we have §(a,b) < §(A,B) by theorem 12.
Let U be the set in €(a,b} which contains a. Then U equals some T It

Since a belongs to both T1 and T, we have T1 i TJ' If §J > 2 then

J
T, 18 not needed in €(A,B), a contradiction. Thus j=2or j = 1.
If j =2 then & ¢ T, A T, contrary to the choice of a. Thus J = 1 and

A "= T1 =1 € s(&,b)' Similarly B € @(&,b).
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The following concept will simplify the statement of later

theorems.

- DPefinition 15: The graph associated with the structure % is the
grdph having the elements of 5 as vertices and the pairs {x,y} where

x £ y and xby as edges.

Theorem 15: The graph of the set G{a,b) V &(a,ec) V G{b,c) takes one

of the following two forms:
b=

|

i
=3 L+
i H
> & - - = - = deeenm—

We include in (I) the cases where a ¢ C{b,c) or b € C{a,c) or

(1)

e ¢ C(a,b).

(11) i

|

1
a8 c
| I
Pty - - - - o ——————
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Proof: Suppose b £ C(a,c) since otherwise we have case (I). ILet C(a,a)
= (8 = 88 seeesly = ;I;'}. By theorem 10, C(a,c¢) < c¢(a,b) V C(b,c).

Let 1 be maximal so that g, € ¢{a,b) and let m be minimal so that

€y € t(b,e). Using theorem 10, C(a,b) and C(b,ec) have the following
form:

C(a,b) = (&

go)g1:-oo:gl,dl,da,opn,dr = b} and

c(b,e) = (b

BgsCg 1228 s8ps8n 1seeesEy = €]

where no g; occurs among the di or the e 1 Choose p minimally so

that dp equals some e Choose g minimally so that dp =e q Then

iI
C(gl’gm) v [d1,de,...,dp] v {31:32:'":9‘1_3]
is a get of distinct elements to which structure property (iii) is
applicable. Hence there is a set in & containing all of these elements
and in partiicular containing [gJ. ,gm,dp}. Then glfndp from which 1%
follows that p = 1., Also gm&’pdp ¢y whence q = 1. Hence d, = e, and
consequently d, = e, for all i. Also glbgm whence g =g, or g = g, ;.
This proves the theorem. g = g; corresponds to type (1) and 8y = &149
corresponds to type {II).

We have now proved all of the results on structures that we shall
need. However, we mention some additional properties. The set A of all
structures on the set S forms a lattice under the ordering defined by
setting 5‘.11 9822 whenever each set in 3?1 ie a subset of some set in 532.
The structure lattice A is in many respects similar to the partition

lattice lI. In particular, it i1s a compactly generated poini lattice.
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It has no proper congruence relstions provided S has at least four
elements. A however differs from I in that neither A nor its dual
is semi-modular. We omit the proofs of these results.
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CHAPTER III: OSUBLATTICES OF PARTITION LATTICES

As mentioned in the introduction, every lattice is isomorphic to
a sublattice of a partition laitice. It is not known, however, whether
a finite lattice is necessarily isomorphic to a sublattice of a finite
partition lattice., A solution to thie embedding problem would probably
involve a profound understanding of the nature of sublattices of a
partition lattice. In this connection it is natural to ask for infor-
mation about the sublattice I generated by a given set & of partitioms.
In this chapier we obtain satisfactory answers to this question for
sets L of certaln specinl types. We determine the sublattice generated
by the ideele correaponding to a strongly independent set (theorem 16).
We give necessary and sufficient conditions for two ideals /0 and B/0
to generate the ideal o U B/0 (thecrem 17), Finally we solve the same
problem for dual ideals 1/o and 1/8 (theorem 18). Every sublattice of
the partition lattice II contains e pair of fundemenial subsets A and &
whose existence is deduced from theorems 17 and 18 respectiirely.' This
result is the principal content of theorems 19 and 21. It turns out
that the set A 1s strongly independent, which enables us to prove that
every sublattice of Il which is generated by points is isomorphie to a
direct union of partition lattices.

Our results hold regardless of the order of the set S. However,
in the case in which S is Infinite, our methods seem to require that
we consider sublatilces genersied under the complete operations.

We give now our first application of the structure theory developed
in chapier IIX.
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Theorem 1&: Let [-:!.,p : peP) be a strongly independent subset of the
partition lattice NI. Let I be the sublattice generated by the set
V[a.p/o : p € P} under the complete lattice operations. Then I is

isomorphic to @ {cr,p/O : p € P}, the direct union of the ideals a.p/o.

Proof: Let L be the set of all partitions of the form lgap where each
%Eaf We claim that T = I. Mwﬂymhwemeb:peﬂfzﬁn
Hence it suffices to show that 5 is & complete sublettice of II. Let
[lg cpq : q € Q} be an arbitrary subset of £. It is obvious that

o . th:ncr:\p)no.na DUﬂc
YYfog) € 20 Next we snow thet QYo Yoo 1Y% 2 ¥d%q
always holds. Now let (a,b) be an arbitrary point contained in
chpq. Then for each particular g, (a,b) © lgcrpq. Thus there exists
a chain of blocks of the %na’ B, § By § «-- § B, such that a € B, and
b e Bk' For each p, O pq 1s contained in ap, and the blocks of &ll of
the ap form & structure ¥. Hence each Bi is contained in some set in
Q. Let 4, € B, 141
By theorem 10, C(a,b) < (a,dp8,5, 00,8, _;,b). Hence the partition
(©(a,b)) S (a,8,,d5,004,8,_;5b) glﬂapq. Let C(a,b)

= (8 = €y,8yr00018, = b}. Then each minimal partition (gj,gj+1) is

AB for each i. It follows that a&61ﬁdaﬁ--oﬁdk_lhb.

contained in same as . By theorem L4 we have

J

(85585,,) = %, n Yie, e,

- "“:p‘j N (cla,b))

[ond N e
- “pJ pa

= g +
PJQ
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But the partitions (gi,gi+1) are independent of q. Hence
(8y:81,1) € Q9 q 200 (a)b) € (6(a,0)) = Y (eyoey,,) € YQo .
+ follows that (WJo  =\JNo . Hence £ is a lete
I ow qu - \pJq pqt B z complete sublattice
of II and, consequently, Z = I
It 1s now clear that the natural mapping of  into
@D[ab/b : p € P)1s one - one, onto, and order preserving. Hence it

is an isamorphism and the proof is complete.

The preceding theorem is of an entirely letilice-theoretical nature.
It is therefore interesting that:ita conclusion does not hold in a
general geometrie latiice. Since there seems to be some confusion in
the literature over this point, we include an example of a geometric
lattice in which theorem 16 does not hold. Consider the set A of all
partitions on {1,2,3,4,5} which are unions of the minimal partitions
(1,2), (1,3), (2,4), (3,4), (4,5), and (1,5). A is clearly a geometric
lattice (although not a gublattice of the partition lattice). The
elements

o, = (1,2,3,4)(5) and o, = (1)(2)(3)(%,5)

are strongly independent in A. Set
&= (1,2,&)(3){5) and B = (1:3:”')(2)(5)-

Then clearly o and B belong 1o the ildeal 01/b in A, We easlily verify

that
(aUay) N (B UG, = (1,4,5)(2)(3) but

@NB)Ue, = (1(2)(3)(K5),
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where we have used the fact that ¢« N1 8 = O in A. Therefore
{a.Uaa) n (B UO’E)D(GH B) Uao,.

Thie shows that the jdeals 01 /O and 02/0 do not generate a sublattice

isamorphic with their direct union., Hence theorem 16 does not hold

in the geametric lattice A.

Next we consider complete sublattices generated by icdeals from

a somewhat different viewpoint.

Theorem 17: Let o and B be singular partitions with non-trivial blocks
A and B. Let I be the complete sublatiice of II generated by the ideals
a/0 and B/O. ThenP =a UB/O if and enly if a N B2 Cor AA B = 4.

Proof: (Necessity) Suppose that a N B =0and AAB £ d. oo UB is a
singular partition since A A B ¥ g. Then (« U B)/0 is a partition
lattice and hence directly undecomposable. On the other hand o N1 B = 0
implies that A A B is at most a singleton. But then {A,B)} is a struc-
ture and p = E/o@ 1;/0 by theorem 16. It follows that I # (& U.fﬁi;“)/O.
(Sufficiency) This is obvious if A A B = 4. Suppose that
a 1B =0, It will suffice to show that for every x and y in A V B,
the minimal partition (x,y) is in . This is because every partition
in (o U B)/0 is a union of such minimal pertitions. If both x and y
are in the same set, A or B, then (x,y) is in o/0 or 8/0 and hence in I.
Suppose now that X ¢ A ~ Band y € B - A, Since o N B 2 0, there exisd
distinet elements ¢ and d in A A B. Then (x,c) and (x,d) are in /0,
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and (y,c) and (y,d4) are in B/0. Hence (x,y) = [(x,e) U (e,y)]1 N

[(x,d) U (d,y)] e I completing the proof.

¥ith considerably more difficuliy we solve the analogous problem
for dual ideals.

eorem 18: Suppose that o and B are incamparable partitions in II.
Let 1 be the complete sublattice of II generated by the dual ideals
i/a end 1/B. Then © = 1/{a N B) if and only if no block of a overlaps

every block of B and no block of B overlaps every block of a.

Proof: We clearly lose no generality in taking o N B = O. Then
i/{a N B) = 1.

(Sutficiency) Let (a,b) be an arbitrary point. (a,b) is the
meet of all partitions of the form (x)(S-x) where x € S and
{a,b} £ {S-x). Hence in order to show that = I it will suffice to
show that every partition of the form (x)(5-x) is in 1.

Let x be an arbitrary element of S.. x is in some Dblock A1 of o

and in sume block B, of . The partition (AIJ(S-A1) is in T/a and

]
(B;)}(s-B,) is in 7/B. Therefore the partiticn (A, )(s-4;) N (B,)(s-B,),
which we se%t equal 1o 0, is in r. A A B, = (x) since a N B = 0.

Thus we have

(1) o = (x)(A-x)(B,-x)(s-A, V B,) e .

If A, or B, = {x), then (x)(8-x) 18 in T/a or T/B and hence in I as
desired. Suppose therefore that A1 > [x} and 131 > {x)}. Then A1 con-

tains an element y ¥ X. Yy belongs to some block By of P different
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from B1. By hypothesis there is & block Aa of o disjoint from B1.

A, is non-empty, so there exisis a block B of B which overlaps A,.
Let Ay A B = (2] Clearly v € (A1-x) and 2z ¢ (S-A1 v B1)‘ We now
set K = [A1 VALl N §: Bk] where [A, V A,] denotes the partition in
T/0, obtalned by joining the blocks A, and A, of a and where (B, V Bk]
denotes the partitiom in T7/B obtained by Joining the blocks 32 and Bk
of 8 (possibly B, = B, ). Clearly ¥ € I'. X is contained the block

(A, V A,) A B, of W But (&, VA A B, =(a A B,) V (4, A B,) = (x)
since A, A B, = g. Thus (x} is 8 block of M. Hence (x)(8-x) 20 Uwu,
{v,2) <A, VA, and (y,2) B, V-Bk. Therefore 1 2 (y,2) and |

cUu2oU (9 = (x){B1-x)(S-BT). Thus

(2} (x}{s=x) 20 U n2 (x)(B,~x)(s-B,).

By a similar ergument, there exists a v in I such that

(3) (x)(s-x) 20 U v 2 (x)(a,~x)(5-4,).

(5-]31) and (S-A1) overlap. Therefore 0 U U v = (x)(S-x) e p. This
impiies, as observed, that I = Il completing the first pert of the proof.

As part of the converse, we prove the following lemmes.

Lemma 18,1: Suppose the block A of a overlaps every block of B. Then
each 0 in I satisfies the following for every {a,b] < A:

(P)s (a,p) So U B implies (a,b) SO,

Proof of the lepma: Partitions in i/a or 1/P clearly satisfy (P).
Hence it suffices to show that (P) is preserved under coamplete latiice
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0perations? Suppose that the pertitions ai’ i e I, satisfy property
(P). We show that ri\ai and liJcri satisfy (P).

Suppose (a,b) < (Qci) U B where {(a,b} < A. Then for each i,
(2,b) co; UB, But for each i, o, satisfies (P) and therefore
(a,b) ;. Hence (a,b) € Qci which shows that q o, satisfies pro-
perty (P).

Now suppose that (a,h) C (li)ai) U B where {a,b} < A. Then
(a,b) © lij(ai U B). Hence there exisis a chain of sets
T, i T, [T | T, where each TJ 1s & block of some o, U 8 and where
ae T1 and b € Tn' Each set T A T +

k k+1
form (oi Ug)n (cJ U B8). Since (lcri UB)nN (t'.tljl U B) 2 B, each set

iz 8 block of a partition of the

Ty A Ty, mst contain a (non-empty) block of B. But each block of 8

contains sn element of A. Hence each set Tk. A Tkﬂ eontains st least

one element &, of A. Each partition (a,a1), (a1,a2),...,(an_1,b) is

contained in a partition of the form o, U B where o, satisfies (P).

i

Therefore each partition [a,a‘),(a],aa),...,(a b) is contained in

n=-17

some 0., But then {a,b) C (a,a1) u (“1'“2) U ees U (an-?’b) c_g\fai,
Hence (a,b) € lf'ci' Thus L{‘Oi satisfies property (P) and the lemma is

proved,

Lemma 18.2: Suppose the block A of a overlaps every block of B. If

c<Band i/ <, theno = B.

Proof: Suppose the assertion is false. Then i/0 < for some o < B,
Since each block of B that T/0 < for same ¢ € B. Since each block

of B contains exactly one element of A (because o N B = 0), ¢ must have

*This may be deduced from theorem 23 in chapter IV.
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a block C, such that C, A A = #. But C, is contained in some block

B1 of B. Let Ba be a second block of B. Let 02 be a block of ¢ which

is contained in B,. Let B, A A = (8,) and let B, A A = (a,].

denote the minimal partition in 1/0 obtained by joining the blocks C,

Let &

and 02

trary to lemma 18.1. This proves lemma 18.2.

of 0. Then & € I*» But (&1,a2) <_:.6 U B where (a1,a2) Z 5 con-

Proof of theorem 18: (Necessity) Suppose a has a block which overlaps
every block of 8. a N 8 € B since o and B are incomparable. By lemma
18.2 i/(a N B) £ I and hence i/(¢ N B} £ . The case in which B has a
block overlapping every block of o is, of course, similar. This com-

pletes the proof of theorem 18.

Corollary 18.3: Suppose a U B £ 1. Then the complete sublattice
generated by the ideals i/o and i/8 is i/a N B,

Proof: If, say, o had a block overlapping every block of B, then o U B
would equal i. With this observation the result follows from theorem 18,

One should note, however, that o« U f = 1 does not imply that one of
the partitions o and B has a block overlapping every block of the other.
It is therefore entirely possible that i/a and 1/B generate 1/(a N B}
even though a U B = 1.

The remaining results in thie chapiexr are just applications of

the preceding theorems.

Theorem 19: Any complete sublattice p of JI contains a unique set A of
singular partitions with the following properties:
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(1) /0 €1 for each a € A.
(2) If B is singular and B 2 « where a € A, then B/0 £ I,
(3) Let Q be the set of all points in I, If & € I A 0, then there is

an o € A such that ¢ C a.

Proof: For each m € ' A Q1 let

alw) = (@ € r : ¢ is singular, 0 2 @, and 6/0 < '}, Let % be a chain
in A{w), Then Uz is singular and Uz 2 o. If (a,b) is a point con-
tained in \Jz, then by compactness (a,b) < some ¢ € £. Then (a,b) e
since 6/0 < . It rollows that \Jz/0 < p and that Uz ¢ aA{w). By
Zorn's lemma A{w) contains a maximal element a.

Suppose now that both o and B are maximal elements of A(w). Then
@ U B ls singular since o 2 wand B2 w. Also o N B ¥ 0, /0 <1, and
B/0 £ r. Hence by theorem 17 o U B/0 < . But then o UB e Alw). By
maxinality a = o U 8 = B end g = B. Thus each set A{w) contains a
undgue maximal element a(w).

Set A = {a{w) : @ € P A Q). A clearly satisfies the three stated
conditions. Suppose that A' also satisfies the three conditions. Let
o €A Then o 2 some o where w € P A {l. By (3) there 1s an o' € A' |
such that a' 2 w. But then o U a' is singular and (o U a')/0 <T by
(1) and theorem 17. By (2) we have & = a U a' = a'. Hence o € A' and
A A" Similarly A' £ A, Thus A = A', which proves the asserted

uniqueness.

Additional informetion about the set A is easily obtained.
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Theorem 20: The set A of theorem 19 18 strongly independent.

Proof: By theorem 7 we need only show that the set (4 : (A) € 4},
which we denote by %, is a structure. $ clearly satisfles structure
prdperty (i). To verify (ii) suppose that T ¢  and U ¢ ® and that

T A U contains at least two elements. Then.(T)} N (U) > 0and (T)/O<r
and (U)/0 < r. By theorem 17, (T} U (U)/0 <r. But (T) U (U) is
singuler end so, by property (2) of A, (T) = (T) U (U) = (U). Hence

T = U, from which it follows that (1i) holds.

To prove (iii) let
a1,a2,.-.,ar

be a sequence of distinct elements of S such that, after setting

8, =& ., each (ai’aiﬂ) is contained in some element of A. let o

be the element of A con‘taining'(avag) and let 0 = (31,82,...,ar).

Each point (ai,aj), i < J, is contained in p since (ai,aj)

= [(ai,a1+1 JUses U(B.J__.’,B.J)] n [(QJ,EJ'H) Ueer U (&r,&1)U ses U (8-1_1)35_)]'
It follows that ¢/0 <. Also a/0 <] because a € A. a N ¢ 2 0 and

o U o is singular since o 2 (a1,32) and 0 =2 (at,aa). By theorem 17,

a U o/o < 0. By property (2) of A, a UO = a. Hence

g = (ai,ae,...,ar) C o ¢ A, which verifies (iil) end proves the thecrem.

As a simple corollary, we characterige all complete sublattices

of Il which are generated by points.

Corotlary 20.1: Let (I* < Q where 1 18 the set of all points in . Let

I’ be the complete sublattice of Il which is generated by (I', Then p is
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isomorphic to a direet union of partition lattices. In particular,

I is a point lattice (every element of I is a union of pointa).

Proof: The set A of theorem 19 corresponding to I is strongly inde~
pendent by theorem 20. Let A= V[a./O ta €A} Then Q' < A by
theorem 19 (3). A <D by theorem 19 (1). A therefore generates p

and, by theorem 16, =@ (a/0 : a € A} This campletes the proof.
Next we give a theorem which 1s, in a sense, dual to theorem 19.

Theorem 21: Any complete sublattice I of Il contains a unique subset
Ly with the following properties:

(1) i/a ST for each a € A,.

(2} If B < q where o € Ay, then iB £r.

(3) Let O be the set of all maximal partitions (dual points) in I

Ifocernr A 00’ then there is an a ¢ L. such that o C 0.

Iroof: For each Y e A QO let

MY)=(@er:oCyendifZr).
Let T be a chain in A(Y). Then Nz €Y. For notational convenience
suppose (YL = O, Then for each a and b in S,

(a,b) = n[c U{a,b) : 0 ez} er,
which implies that i//\£ < end hence that Nt ¢ a(Y). By Zornls
lemma A(Y) has a minimsl element «.

Suppose now that both o and B are minimal elements of A(Y).

Then i/ <reand i/ <prand o U B‘E Y ©i. Hence by corollary 18.3,

i/{(e N B) <. By the minimality of « a’id B we have a = a 1 B = B.



48

Thus each set A(Y) has a unique minimal element 5(y).
Set A, = (6{Y) t YerA 053 A, ¢learly has the three stated

properties., The uniqueness of the set L% ig easy to verify.

The set Ay seems t0 be much less regular than the set A of
theorem 19. From theorem 18 it is clear that if « and B are distinct
elements of By then « U B =i, In fact either o or B has a block |
overlapping every b]_cck of the other. However we cannot deduce a
result like corollary 20.1 for lattices generated by dual points.

In fact, one may give examples of sublattices I of II generated by dual
poinis whicﬁ are not dual point lattices and which are not dense in II.
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CHAPTER IV: SUBLATTICES [ WHERE U(rP A Q) = 1.

Again, we let Q denote the collection of all points in 1,
and we let (i, denote the collection of all dual points (maximal
partitions) in I.

In this chapler we characterize all complete sublattices
rr of 11 such that U(r‘ A} = i. The principal result is theorem 23.
The rather involved .proof depends upon an extensive application
of the theory developed in chapters II and III.

We gain access 1o the probleﬁ through the observeation that
it U(r A Q) = 1, then the set 8y, which corresponds to T by theorem

21 in fact characterizes the lattice P. We see this as follows.

Lemma 22,1: If ' 18 a complete sublattice of I in which
U A Q) =1, then N(r A a4) = 0.

Proof: Suppose that i covers (in I) @. Sinee U(r A Q) = i, there

is a B e P A Q such that 8 € a, It follows that « UB =i and, by
semi-modularity, that i covers (in I) «. Hence overy maximal partition
in I is also maximal in I. By corollary 20.1 the set I A () generates
a geometric lattice PI. In any geomelrie lattice the intersection

of all the maximal elements is O. But the maximal elements in ry axre

clearly maximal in I, and hence also maximal in II. It follows that
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0= ﬁ(nI A ﬂo) 3 N{r A QO)_whence o= N(ra ﬂo) completing the

proof.

Lemma 22,2: Let (A Q) = i. Then for each o € I' we have that
a = NIFA (1/) A Q4]

Proof: i/a is & partition lattice and
UleUa:eo erAQ) =1,
The partitions ¢ U o are points in i/a. Alsc every maximal partition

in i/a i5 also maximal in II. We ‘therefore replace I in lemma 22.1 by

' A (i/a) and obtain the desired result.

Hence every element of o' (except i) is the intersection of a suit-
able subsetl of A ﬂo. Now conaider the set &g corresponding to I by
theorem 21. We have

pAﬂoSV{i/O:UeAO]S_I‘,

which proves the following lemma.

lemma 22,3: If U(I‘ A Q) = i, then I is completely determined by its

gubset AD

We therefore introduce the following definition.

Definitjon 16: Any subset I of Il will be called characteristic if
for the complete sublattice I generated by T =\/{1/0 : 0 e ) we

have
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(1) Urany =1,
(2) BCa ez implies i/8 £ 1.
(3) PAQoSE‘

Iheorem 22: Complete sublattices I of Il where U(rAQ) =1 and

characteristic subsets of Il are in one -~ one correspondence.

Proof: Let > be a sublattice such that U(r A Q1) = i, The subset
By of theorem 21 then has the required three properties. In addi-
tion, by lemma 22.3, the set

EO = (1/ : 0 €qy)
generates '. Hence A is & characteristic set.

Conversely, a characteristic sei correéponds to a complete sub-
lattice I where U(r‘ A f1) = 1 by definition. The cpe - one nature
of the correspondence follows from the uniqueness part of theorem 21
and from the observation that a given subset of II generates only one

complete sublattice.

In the statement of theorem 23 we shall need the following de-

finitions.

Definition 17: A structure ¥ relative to which every iwo elements of

S are related (chapter II) will be called a comnected structure.

Pefinition 18: ILet A ~ B define an equivalence relation on the set 9.
Let ! and ¥ be equivalence classes. We say that @' gplits " (re-
lative to A ~ B) if for some T € ' and U;» U, € ®" we have that

T ¢ Gi(Ul ,Ua).
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Definition 19: A structure £ together with an equivalence relation
A~ Bon§ will be called an‘ equivalence structure if

(1) © is commected.

(2) IfA~Band AAB#£4#, then A = B,

(3) If 2! and " are equivalence classes such that ' splits ¥ and
%" splits 91, then H' = {n,

We now state the main theorem of this chapter.

Theorem 23: Let 0 be the set of all points in the partition lattice
I on the set S. Then the set of all complete sublatiices I of Il such
that U(I‘ Afl} =1 is in one - one correspondence with the set of all

equivalence structures on S.

Part I: Suppose we are given the complete sublattice I where
U(rAR) = i. Let &, be its characteristic subset. Then there is an
equivalence structure (%,~) such that £y is derived from (®,~) in
the following 'way. The equivelence relation on § may clearly be con-
sidered an equivalence relation on the se“t A={(A) el : A ). For
each a € A set H(a) = J(@ ea t ¢ % a}. (Note that by theorem 7, A
is strongly independent. Hence after setting o% = U('r eA: TH g}
for each ¢ € A, we have

Ma) = Ujo ea: o7 a} = No*: 0 en0~a}.)
Then 4 = (M{a) : a € A}; and this expresses the characteristic set

Oy, end hence also T, @8 & function of the equivalence structure (%,~).
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Part II: Suppose we are given the equivalence structure (%,~).
Defining W(a), as above, we show that the set £ = (M(x) : o € A) is
characteristic, and hence corresponds to a complete sublattice
where U(r A Q) = 1. Furthermore, we show that (9,~) is the only

equivalence structure which gives the sublattice r.

Proof: Both parts of the proof require considerable effort.

Part I: Let r be a complete sublattice of I where U(P AQY) = 1.
Let Ay be itg characteristic ggbsget (see definition 16 and theorem 22},

emma 23.1: The complete sublattice 0y generated by I A {1 corresponds

10 a unique connected structure .

Proof: By 20.1, I, is & point lattice and corresponds to a unique
gtructure ¥, We will show that £ 1s connected. Let

A= {(A) ell : A €R). For each point o of I, there is an (A) e |
guch that a C (A} by theorem 19. Since the unfon of the points of I,
is i, we have also that UA =31. Let x and y be arbiirary elements

of 5. Then (x,y) < !Ja whence (x,y) is contained in a finite union

of partitions in A. Hence there are distinci (A;) € A such that

{(x,y) € (Al) U (Aa) Uoeee U (An) where A, J A, b s B A and x € A,
end y € A, Let A, A A, . = {8;]) for each i. Then xiaa.lbaaf:'-«s;an_.lﬁy.
The arbitrary elements x and y are related, and @ is a ccnnected

structure.

Defipition 20: ILet x ¢ S and y € S.

We define A(x,y) to be the singular partition (C(x,y)).
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Any two elements of S are related since & 1s comnected. Hence
» (x,y) is defined for any pair of elements x and y in S. It is
easy to see that (x,y} € A(x,y) = N{¢ € r,:02 (x,¥))}. In part-

jeular, » (x%,y) is always in the lattice I.

Lemma 23.2: The cheracteristic set 4, is contained in the point sub-

Jattice I‘1 .

Proof: Suppose that for some o € Ay we have o £ Pye Then A (x,y) €a

for some (x,y) € o since otherwise
o= Uty Saj € Ualx,y) : (x,y) Sa}So

and @ = (J{» (x,5) : (x,¥) S0} e, Choose (a,b) 80 that ¢(a,b) has
the fewest possible elements such that {a,b) €« but A (a,b) €a. Let

C(a,b) - {8,8s85s+++,8,,D) and
let T be the block of a which contains {a,b}. Then

T A ¢{a,b) = (a,b}
by the minimality of C{a,b). Also n > 1 since A (a,b) & a.
If there were a pertition B such that a N B Ca, a UB £ 1, and

i/8 < ; then it would follow from 18.3 that i/a N 8 < p. This would
contradiet the fact that « is in By the characteristic set of 1.
Hence our proof will be complete when we have constructed such a

partition B. Set

B = (T)}(s-T),
v = (A)(S-A) where A = [x € S : g, £ C(x,8)},
B = (T A A)T-A)(S-T).

€ P since 4 2 a where o GAO. We next prove that v € . Let y be
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an arbitrary element of G{x,a) where x € A. By theorem 10,
C(y,a) < C(x,a). Then g, £ C(x,n) implies g, £ C(y,a). Hence y € A.
Thus for every x € A, we have C(x,a) < A. ﬁence
{(a) = U(?\(x,a) : x € A) € P By a similar argument (S-A) e r. Hence
v = (A) U (S-A) e .
Now we show that B € . We have
p Ny = (T AA)T-A)A-THS-T VA) er.
IfA-T=4¢g, thenB = N v € I'. Hence suppose A - T ¥ g. Let
d eA-T. Let .
5= (W0 V) U (w0 M4
Clearly & € ' We claim & = 8. Both d and g, belong to the block
8 -~ T of 4. Hence (d,g1) cun ?\(d,g1). Hence
8= (0 Nv)U(dg) =B

Next we claim that C(d,gt) A (T-A) = . By theorem 10, G(d,g1) <
c(d,a) Vv C(a,g1) = ¢(d,a) Vv (g,). Since d € A we have cld,a) <A
(shown above). Henee C(d,n) A (T-A) < A A (T-A) = 4. Now
? A C{a,b) = (a,b} and so g, £ T. Hence ] £T ~ A. Therefore
c(a,g ) A (T-A) S [6(d,a) V {g,]] A (T-A) = & end C(d,g,) A (T-A) = ¢
as claimed. But then & = (kN v) U (1 N NMd,g,)) € (4 N v) U Md.g,)
= (T-A)T A A)(A-T)(S-T V &) U (c(d,g,)) S (T-A)(S-(T-A)). It is also
clear that 8 S M = (T)(S-T). Hence & < (T-A){(S-(T-4)) N (T)(s-T)
= {T-A)(T A A}YS-T) = 8. Thus & € B and, as we've already shown
5=2B, we have 5 = B. Hence B eI

Let us denote the blocks TA A, T - A, 5~ T of B by By, By B3

respectively. Then B = (B1)(Ba)(B3). Observe that
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aeTAA=B,

beT-~A

]
o

2’
{81)823000’811] ss -T = B3, and also

and

m
-

(a,g1)

(b:gn)

T

m

It followa that

(131 v 33)(32)

(132 v 33)(51) =B U (b,gn) €, and

B U (algt) € P}

(B, v 132)(.33) = B €.
Therefore i/ 5 e ol B<a since a and b are equivalent mod « but

not mod B. Also B ‘_E M whence o. U B ¥ 1, Hence B is of the required

type and the lemma is proved.

Lemma 23.3: Let A= ((A) el : A eR). For a e plet a*= [Jjoeaiofa)
Then i/a* < rye

Proof: a N o¥* = O since A is strongly independent, Also a U o* = i.
Since w is singular, say o = (A), A eontéins exactly one element from
each block of a*. By the selection of A by 20.1, we have a/0 <T.

Hence a* U {a,b) € I‘1 for each a and b in A. But every minimal part-

ition in 1/a* is of this form. Ilence i/a* < Py
Lemma 23.%: ZIach element of &0 is a meet of partitions of the form a*.

Broof: Dy theorem 20.1, Iy is the direct union of all ideals «/0 where

o €A, Thus I, is a direct union of partition latiices. Partition
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lattices are dual point lattices. Hence Ty is a dual point lattice.
Moreover, every dual point (maximal partition) of I is clearly a
maximal partition in some 1i/a¥.

Let B ¢ AO' Then B ¢ I, by lemma 23.2., Hence 8 = nﬂlwhere

1
('is a set of dual points inr,. Let 0% = (a* : a* C some O ¢ Y.
For each o* € {P* there is & Y € (' such that a* S Y and B € Y whence
o* UB £ g, By lemma 23.3, i{/a* <. Hence i/a* N B < p by
theorem 18, But B € &y where A is characteristic, Hence a* N B2 B
and therefore a* 2 B, Hence ﬂn* D38, But also B = NAR Mo,

Honoe B = [10% and the lemma is proved.

Pefinition 213 Iet A end B be in . We write
A~DB
if there is & Y € A, such that (AY*2 ¥ and (B)*2 v.

Lemma 23.5: A ~ B is an equivalence relation on . Different elements

of Ao correspond to different equivalence classes.

Proof: By 23.3, 1/(A)* < p for every A € 2. By 18.3 and the defini-
tion of 4,, each (A)* contains some Y € Ay. 4Also by 18.3, (A)* cannot
contain two distinet elements of A,. It follows that the relation A ~ B
partitions £, that is, defines an equivalence relation. The latter

statement is now obvicus.

Lemma 23.6: IfA~Band AAB# ¢, then A = B,
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Proof; Let a = (A) and let 8 = (B), « U P 1is singular since
AABZF. oUB and o* N B¥ are a modular pair since A is strongly
independent. Hence for each S a UB, ¢ ={c U (a* N ¥)] N (a U B).
i/a® N p* <  since A~ B, Hence 9 U (a* N B*) e e But o U B is
also in I'. Therefore ¢ € I'. Since ¢ was an arbitrary element of

o U B8/0, we have (o« U B)/0 £ . But o and B are maximal singular
partitions with the property that a/0 < and B/0 < 1 (thecrem 19).

Hence o =a U B =B and A = B as was 1o be proved.

Lemma 23.7: Suppose A € &(B,C) where A # B and A # C. Then B and C
sre contained in different blocks of (A)*.

Proof: By definition

(Ay* = \J((H) : He®, HAA). If B and C are in
the same block of (A)*, then there is a sequence of sets different
from A such that

B} o, QGEQN' oanﬁc.
By theorem 11,

S(B;C) S {B)GysGps 005Gy sC)e
But then A is in the set on the right, a contradiction. Hence B and

C are in different blocks of (A)*.

Lemma 23.8: Let o and B be in A,. ILet %(B) be the equivalence class
corresponding to B (see lemma 23.5). If o has a block A which overlaps

every block of B, then T < A for each T ¢ 2(8).
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Proof: Since the block A overlaps every block of B, we have
(A)UB =1, Let T ¢ D(B). Let s and t be distinet elements of T.
Then (s,t) € (4) UB = 1. Both (A) and B are unions of appropriate
partitions (H) where H € ¥. Hence there exists a éequence of sets
Gy in @ such that G, § G, § **+ } G, where s € G, and ¥ ¢ G and
where each (Gi) is contained in either {A) or B. By theorem 12,
5{s,t) < (G,,Gps+++5G, ). But T € &(s,t) and so T equals some G,.
However B = N{(U)* : U e 2(B)}) S (T)%. Since o= ((U) : U e R} is
strongly independent, (T) & (T)* and therefore (T} ¥ B. Hence we

must have (T) € (A) and T < 4 proving the lemms.

Lemma 23.9: Let 2{a) and ${B) be the equivalence classes corresponding
to the elements o and B of 4,. If f{a) splits (B) and R(B) splits

Proof: Suppose that R(a) # ©(B). Then a # B. Since D{a) splits 2(B),
there exist A e R(a), B, € 2(B) and B, € £(B) such that & €(B,,B,)
where A £ 81 end A # Be. Thén B1 and Bz-occur in different blocks of
(A}t by lemma 23.7. Since o © (A)*, B, and B, occur in different
blocks of a. But then o cannot have a block overlapping every block
of B by lemma 23.8. Similarly B cannot have a block overlapping every
block of w. Since i/a S and i/8 S, it follows that i/ N B S I by
thecrem 18, But o and 8 are minimal partiticns with the property that
i/a €T end i/B <. Hence o = o 1 B = B, a contradiction. We have

therefore proved that ${a) = £(8).
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Comp. 1ét§=on of Part I: (»,~) is an equivalence structure aince
(1) % is a connected structure (23.1).
(2) If A~ Band AAB K¢, then &4 = B (23.6).
(3) If ' and OV are equivalence classes such that 2! splits 2" and
S splits ', then &' = & (23.9).
It remains to note that every element of A, is of the form M(a)
= {Yo* : 0 e A0 ~ a) for some a € A and that every element of this
form is in A, (lemmas 23.4 and 23.5). This shows that Ay is derived
from (%,~) in the way claimed, and completes the proof of part I.

Part II: Let (%,~) be an equivalence structure, Set
L= ((A) el : A e®). For eacha ¢ rlet u(a) = (0% : ¢ € A0 ~ a].
let =, = (4{x) : @ € A). Let I be the camplete sublattice of II
generated by the set EO =\ {i/e :a ¢ Iy} We must show that the set

ZO is charecteristic.

Lemma 23.,10: Suppose A € €(a,b). Thén a and b occur in different
blocks of (A)*. This is, a ¥ b(A)*.

Proof: Suppose that a = b(A)*. By definition (A)* = J{(T) e=: T ¥ 4A).
Then thera exists a sequence of sets , all different from A, such that
T, ] T, g .o T, where a € T, and b e T;. By theorem 12,

€(a,b) < {T;,Tps+s+,T ). Then A equals some T, since A ¢ ¥(a,b). This

is a contradiction. Hence a ¥ b{A)*.

Lemme 23.11: Let ©{p) be the equivalence class corresponding to U € EO.

Then a = b{mod W) if and only if S{u) A &(a,b) = £,
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Proof: Suppose that ©(u) A €(a,b) # g, Let T € 9(u) A €(a,b). Then
a ¥ b{T)* by 23.10. But 4 = (1 {({(U)* : U eR(1)} € (T)*. Hence
a # b{u).
Now suppose 2(n) A §(a,b) = &,
Then W = [Y{(U)*
= Ju(r)
2 U(T) : T e&(a,p)).

Hence a = b(u) and thias completes the proof.

U e®(K)}

.

T € &-2(k))

Suppose that I, is e characteristic oset. Then by lemma 22.2
every element of the corresponding sublattice I is a meet of elements
in the dual ideals i/i where W € 5,. This implies that the smallest
partlition in P which contains a given minimel partition (a,b) is the
partition

N U (a,b) : 1 e Iyl
It would therefore seem promising to study partitions of this type

relative to the present problem.
Definition 22: For a end b in S, we define n{a,b) = {1 U (a,b):d € Zok
Lemma 23.12: n{a,b) € A(a,b) for ell a and b in S.

Proof: From thecrem 16 it follows that there exist 8(a) € i/a¥,
a € %L, such that
AMa,p) = [1{6{a) t o € L}.

But then
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x(a,b) = [({(a,d) Up s n e o)
< ((a,b) VUa* : o € £}
cNsla) : o €I
= Aa,b)

which proves the lemma.

It is naturasl to ask when two elements of S are equivalent

mod n(a,b).

Lemms 23.13: Suppose that (s,%) _5_ c(a,b) and that s 9 t relative to
- {a,b) {defined in chapter II). 'fhen g8 # t(n(a,b)) if and only if
there exist sets P and @ in &(a,b) such that P ~ Q and

P <93 <Q94(a,b) or

s 9P <4t <9Q(a,b).

Proof: Suppose that s # t(n(a,b)). Then s # t(4 U (a,b)) for some

M e 5 . Rither s #£ a(u) or + # b{(u), since otherwise s = t(u U (a,b)).
Suppose that s ¥ a(i). (The other case is similar). Also s # t{M).
By lemma 23.11, there exist P e R(u) A ‘S(a,s) and Q@ € S(u) A €(s,%).
Then P <4 g < Q 9 ¢ where P ~ Q completing the proof.

Conversely, suppose P <98 9 Q< t(a,b) where P ~ Q. (The other
case is similar). Then there exists a i € L, such that u & (P)* and
HC (Q)*. By lemma 23.10

a ¥ s(P)*, b # s(Q)*, and t # s(Q)*
which imply that

a #a(u), b # a(u), and 4 # a(u).
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Hence s belongs neither to the block of M containing a nor to the
block of W conteining b. # U (a,b) is the same as M except that the
blocks of M containing a and b are cambined. Since s belongs to
neither, 8 1s equivalent to nothing more mod u U (a,b) than mod M.
Hence s ¥ t(u) implies s # t(4 U (a,b)). But x(a,b) Su U (a,b)

and 8o s ¥ t(n(a,b)) completing the proof.

% is an equivalence structure. The most interesting of the
three equivalence structure exioms is (3), which states that two
classea which split one-another must coincide. In the next lemma,

we make our first use of this property.

Lempa 23.14: Suppose thet P and Q belong to the eguivalence class R
and that P 9 Q where we are crdering relative to (a,b).

(1) If x < (covering) P € @ 9 (covering) y and &' A €(a,b) < §(P,Q),
then x = y(n{a,b)).

(2) 1f P @ (covering) x 3y < (covering.) Q and ' A &(P,Q) = (P,Q))

then x = y(n(a,b)).

oof’ 1): Suppose x ¥ y(n(a,b)). Then by 23.13 there exist
U1 ~ U2 such that, say,

x<u quUo

1 2

In view of the coverings
< 4 Q<.
p4a U1 3Q9U,
Letting fv dencte the equivalence classa containing l}f1 and Uy, we see

that §' splits ¥ and H" splits K1, Then V' = " since L is an



6l

equivelence structure. But then U, € &' A &(a,b) but U, £ 8(r,Q)
contrary to hypothesis. Therefore x = y(a(a,b)).
Now suppose x ¥ y(x(a,b)) under the hypothesis of (2). Then

by 23.13 there exists U, ~ U2 such that, say,

1
xd U‘ < N2 < Uau
In view of the coverings
<
P<4U, 94Q 30,
Then the class Q% containing {U,,U,) and the class ' gplit one-another.
Hence &' = ©". But then U, ¢ &' A €(P,Q) and U, ¥ P and u, £Q,a

contradiction. Therefore x = y(n(a,b)) and the lemma is proved.

Consider the elements of ¢(a,b) end the sets of &(a,b) under
their naturel ordering relative to (a,b). Let ' be any equivalence
class which is represented in €{a,b). The preceding lemma then states
thet if we take the outermost sets P and Q of %' in €(a,p), then the
elements x and y of C{a,b) which ere just external to P and Q are
equivalent by n(a,b). It may happen that P = Q, and this causes no
difficulty. Also, if %' contains at least two sets in €(a,b), then it
contains a distinct pair P' and Q' in €(a,b) with the property that
there are no sets in ' which are properly between P' and Q'. The
clements x' and y' of C(a,b) which are just internal to P' and Q! are
then equivalent by n(a,b) according to the preceding lemma.

The following lemme establishes a property which can easily be

shown to be necessary if Iy 18 to be a characteristic set.
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Lemma 23.15: n{a,e) € n(a,b) U x(b,ec) for all a, b, and ¢ in S.

Proof: By theorem 15, the graph of the set C(a,db) V C(b,c) V C(e,a)
takes one of two forms. In order to clarify our notation we illus-
trate these graphs on the following page. We also designate the
sets in &(a,b) V €(b,e) V &(c,a) appropriately. For example

C(a,c) = {8 = 8,,8,,-4,8, =¢) and

E(a,c) = (AR eeesh )0
We also set

n(a,c) = %y,

n(a,b) = ., and

2!
_n(b,c) = Ty

We must show that g c T, U 35 in other words, that

X = y(“1) implies x = y(x2 U n3).
If x = y(n1), then x = y(A(a,c)) by lemma 23.12, It follows that
x and y are in C(a,c). Thus x and y are of the form 8, and & where,
say, J < k.

Suppose therefore that a j= ak(nl) where J < k. We shall show
thet a, = .'a.k(ﬂ2 U “2) by induction on k = j, the result being trivial
if k - j = O. We distinguish several cases.

Case One: J < s and s < k in graph (I). By lemma 23.13, no Ay
in C‘a"-(aj,ak) ‘can be equivalent to an A, outside ﬁi(aj,ak) since other-
wige 8 # a.k(:t1). AJ-H € ‘E(aj,ak). Hence 1if we let r be maximal so

that AJ+1 ~ A,, then 23.14 (1) is applicable and

a, Ear(ﬂ1).
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This implies that s, = ak(ﬂ1). If r < k, then (r-3j) < (k-j) and
(k-r) < (k-J). By induction

o = ar(::2 U 13) and a, = ak(n2 u n3).
It follows that a'j = ak(::2 U 13) if r < k. We therefore suppose that
r = k; that is, that AJ+1 ~ Ak‘ Now Aj+1 is either equivalent to
some Bi or it is not. Suppose first that it is. Let 4 be maximal so

that Ai+1 ~ Bd. Then

a; £ bd{“E) and b, = ak(n3)
by 23.14 (1), and this implies that a; = ak(u2 U xs). Finally, suppose

that no Bi is equivalent to A3+1'

angd A3+1 ~ Ag' Choose h minimally so that 8 + 1 < h and AJ+1 ~ Ah.

Then by 23.1% (1)

Choose g maximslly so that g < 8

ay = ag(na) and @ . ¥ ak(ﬁ3).

By 23.14% (2), a, = ah_1(u1). But clearly [(h-1)-g] < (k-J). By
induction

a, = ah_1(1t2 U a3).
Therefore, mod x, U w3y We have

85 % % = A Ty
completing the proof in case one.

ase Two: Jj <Xk < s in graph (I). Again, we see that no 4 in

G(ad,ak) is equivelent to an A; outeide ﬁ(aj,ak). We deal exacily as
before with the case in which Ay # A . Suppose that A PR
AJ+1 is either equivalent to some Bi or it 1s not. Suppose first that

it is. Choose g meximally so that A ~ BE end choose h minimselly so

J+1
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that AJ+1 ~ B+ Then by 23.14 (1),

a, = bg(ne).

By 23.14 (2)
oy = Ppg{mp)e
By 23.14 (1)
bg = bh_1(st3).
Hence, mod =, U nys WE have
a.j = bg = bh-1 = 8y
completing the proof if A 41 is equivalent to some Bi' Suppose,

finally, that Aj+1 is equivelent to no B;. Then, by 23.1% (1),
8y and &, are equivalent mod n, and hence also mod U=z, and this

completes the proof in case two.

Remaining Cases: The case inwhich J<tand t + 1 Xk in
graph (II) is treated as in case one. All other cases are treated

as in case two. This completes the proof of the lepma.

The following lemmes will be needed in the proof that %o is a

charecteristic set.
e 23,16: If x and y are equivalent mod x(a,b), then x(x,y) € n(a,b).

‘E;;oof: By definition n(a,b) = [ U (a,b) : 1 € Zo}e Hence

1

x = y(x(a,b)) means precicely that (x,y) S H Y (a,b) for every
W € Iy. But then U (x,¥) €14 U (a,b) for every i and therefore

2(x,y) = N U (x,5) t W e Lol S N VU (a,b) 1 1 e Iy} = x{a,b).
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Lemmas 23.15 and 23.16 are special cases of the following lemma.

Lemma 23,17: Suppose (x,y) € UA where A 1s a set of partitions of
the form ={a,b), then x(x,y) € UA.

Proof: If (x,¥) € \|UA, then there exists a sequence of blocks of
partitions in A such that

B1°B2Q.-.GB

n
where X € B1 and y € Bn" For each i, let n, be a pertition in A of

which B, 1s a block. Let g; € B£ AB for each 1. Set x = and

i €o

get y = g, Then for each 1

i+l

8y = g4(m).
By lemma 23.16, for each i
7(g;_418;) S 7y
Hence
w(gys8,) U x(g,,85) U+ U nlg,_;s8,)
cn U

=a.

2U .'.Uﬂn

By lerma 23.15,
n(x,¥) = xlgy,e,) € nlgy,e;) U nlg,,g;) U +oe Unle_;.8,).

Hence #(x,y) €\JA completing the proof.

We next determine the sublattice I’ generated by the set

Ly = i/ 2 o € 1),
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Lemma 23.18: The complete sublattice I of II generated by
EO =\/(ife s o ¢ Z,) consists precisely of all unions of partitions

of the form n{a,b} where a and b are arbitrary elements of S.

Proof: Let I'' denote the set of all partitions which are unions of
partitions of the form n(a,b). Since each n(a,b) is a meet of
elements of EO » we have '

rrsr.
For each a € EO there is a U € &, such that U S a. Then (x,¥y) Ca
implies that (x,y) € =x(x,y} S u U (x,¥) € a. Hence
a = U(x,5) : (x,7) Sa) € Yinlx,¥y) : (x,5) Sa)Sa
and o = U[nfx,y) : (x,y) Sa) e ' It follows that

Eo <t
Thus our proof will be complete when we have shown that ! is a com-
plete sublattice of I. Let § be an arbitrary subset of 1'. It is
obvious that Ug e r'. By lemma 23.17, (x,y) < {)o implies that

a(x,y) €(\8. Therefore

Ne = Ux,y) : (x,5) €Nej
< Uxlx,y) : (x,%) €Nej
Na.

Hence Mo = Uin(x,y) : (x,y) € ﬂe] € I''. Thus I = I', completing

N

' the proof.

We still have not shown that }:0 is a characteristic set. For

this the following two lemmas will be used.



T

emma 23.19: If a and b are distinet elements of S, then there is ai

least one set T in €(a,b) which is equivalent to no other set in &(a,b).

Proof: Suppose that the lemma is false. Then every equivalence class
represented in €(a,b) is represented by at least two distinct sets.
let T and U be distinct equivalent sets in €{a,b) chosen to minimize
the number of sets in 6(T,ﬁ). Ciearly €(T,U) < €(a,b). By equiva-
lence structure property (2), T A U = g. Hence there is & set

V € &(T,U) such that V£ T and V £ U. V # T by the minimality of the
set §(T,U). By assumption, V is ‘equivelent to some set W in €(a,b).
W £ C(T,U) since otherwise €(v,w) < €(T,U) where V ~ W contrary to the
assumed minimality of &(T,U). Therefore, relative to (a,b) we have
an ordering of the type

TRVIUIVW

where T~ U, V~ W, and T # V. This contradicts equivelence structure

property (3) and proves the lemma.

Lemma 23,20: If a and b are distinet elemenis of S, then there exists

a pair of elements s and t such that &%t and s = t(xn(a,d)).

Proof: By lemma 23.19, there is a T € &(a,b) such that T is equiva-
lent to no other set in €(a,b). The set T A C(a,b) is of the form
(s,t). By lemma 23.14 (1), we have s = t(x{a,b)).

Next, we show that the set £ = ((A) : A e R} is the unique set

corresponding to I by theorem 19.
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Lemma 23.21: The set £ = {(&) 1 A € 9} 1s the unique set corresponding

to P by theorem 19.

Proof: If a®b, then clearly a{a,b) = (a,b). Hence, by lemma 23.18,
(4)/0 <1 for each A € ©. This verifies property (1) of theorem 19.
Suppose now that (a,b) ¢ r. By lemma 23.18, (a,b) = x(e,b). By
lemma 23.20, there exist elements 8 and t such that st and

s & t(n(a,b)). It ie immediate that (s,t} = (a,b} and hence that
(a,b) S some (A) where A €%, This verifies property (3) of theorem
19. Property _(.2) follows from the fact that £ is a structure. This

completes the proof.

The proof of theorem 23 is essentially complete with the following

lemma.
Lemma 23,22 ):0 is the characteristic set corresponding to P.

Proof
By the previous lemma, {A)}/0 <D for each A € %. It follows that

The fact that © is connected implies that |J{(A) : A D) - 4.

U(p A Q) = 1. Hence, letting £y, denote the cheracteristic set of I,
the lemmas of paﬂ I of the proof of theorcem 23 ore applicable.

By lemmas 23.21 and 23.4, every partition in &y is a meet of
partitions of the fc;rm (A)* where A € 9. By definition, each parti-
tion in £y is alsc a meet of partitions (A)* where A ¢ 8. Since I
contains each ideal i/M where WU ¢ }:0 by definition, it follows from
theorem 18 that each partition in By is a meei of partitiomns in Iy
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Henee for the equivalence structure (%,~) corresponding to &g by the

first part of the proof, we have
A~3B implies-A~ B
for all A and B in . Now let

7'{a,b) = N U (a,b) : M € Ay)

for all a and b in S. Since " ig also the complete sublattice norres-
ponding to the .equivalence structure {f,~), everything we have proved.
about x(a,b) also holds for ='(a,b). In particular, x*(a,b) € x(a,b)
gince (a,b) € x(a,b), by lemmas 23.17 and 23.18. Similarly
n{a,b) € n'(a,b) and hence

n{a,b) = n'(a,b)
for 11 & and b in S.

Now to show that Iy = &y it will clearly suffice to show that
A~DB implies A~ B

since then the sets Zo and &y are obtained in the same way from the

same equivalence structure. Suppose the contrary, that
A#B and A= B.

By theorem 14, there exist elements & € A and b € B such that
(A,B) < €(a,b). Let'

c{a,b) = (a = Bgsyseeesg = D]
and let

- €(a,0) = (A=

1’G2,000,Gn = B}
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where Gi is the set iIn & containing {gi-i’gi}‘ Since A =~ B, it follows
from 23.13 that

a ?{ gi(ﬂi(a,b)) fm' i = 1,2,.9.,11-1.
Now let k be maximal so that A ~ G k <n since A # B. Hence, by
23.14 (1)

acz=s gk(ﬂ(a,b)) where k € [1,2,.0.,]1""1]:

We have thus obtained a contradiction to the fact that =(a,b) = x'(a,b)
for all a and b in S. Thus A =~ B always implles that A ~ B. Therefore
the equivalence structures (®,~) and (%,~) coincide, and hence &, = B

campleting the proof of the lemma.

The preceding lemma shows that % is a characteristic set. Also
contained in the proof is the fact that snmy two equivalence structures
(R,~) and (R,~) corresponding to the characteristic set Iy mist coin-
cide. The proof of thecrem 23 is therefore complete.
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CHAPTER V: PROPERTIES OF SUBLATTICES © WHERE U(r A Q) = 1.

In this final chapter we obtain two properties of sublattices
where J(r A Q) = i. First, we show that such sublattices are always
dense (defined below) in f. Second, we show that any pair of parti-
tions of the form n{a,b) and n{c,d) are a modular pair. The latter
result implies that any two union irreducibles in I are a modular

pair because of lemma 23.18.

Definition 23: The sublattice I _of the lattice 11 is called a dense

sublattice of Il if every covering in  is also a covering in II.

It is clear that a dense sublattice of a semi-modular lattice is

always semi-modular.,

Thecrem 24: If I is a complete sublattice of II such that U(r‘ AQ) =1,

then p is dense in II.

Proof: Suppose a covers B in [« We may suppose that B = O since other-
wise we consider the sublattice 1 A (1/B) of the partition lattice i/B.
Every element of I is a union of partitions of the form n(a,b). Hence
there is a partition n{a,b) such that o = x(a,b} = 0. By lemma 23.20,
there is & point (&,t) e r such that «(a,b) 2 (s,t) @ 0., Since o covers
0, it follows that o = (s,%) and hence that a covers 0 in Il. This

campletes the proof,

The following property is a trivial consequence of lemmas 23,17

and 23.18,
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Lemma 25.1: Let a € I where U(r A Q) = 1. Then (x,y) € « implies

that n(x,y) € a.

It follows from theorem 24 that © is semi-modular. We mention
also that © is compactly generated. For each element of I 1s a union
of elements of the form x(a,b). (a,0) £ i = U(r A Q) implies that
there is a finite subset A of [ A { such that {a,b) C UA. But
\JA e r. By lemma 25.1, we have n(a,b) €\JA. It follows that =(a,b)
is the union of a finite number of pointe in . Hence x(a,b) is
compact in JI, and hence also in I' This proves compact generation.

The next theorem is of interest not only for its content, but

also for its rather curious proof.

Theorem 25; Any two elements x(a,b) and =x{c,d) in © form a modular

pair.

Proof: Set n(a,b) = n, and set x(c,d) = nye Let blocks of x, be
denoted by A 12 and let blocks of s be dencted by Bi' We lose no

generality in assuming thail

Klﬂﬁ2=0.

We shall prove that (x,,n,} is strongly independent. Criteria are given

in theorems 7 and 8. By lemma 23,12,
1, S A(a,b) and =, S Ne,d).

Hence every block Ai of n, is contained in C{a,b) and every block Bi of
%, 18 contained in C{c,d). The strong independence of {x,,n,} is
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obvious if C(a,b) A C(e,d) = 4. Suppose that
c{a,b) A c(e,d) £ 4.

From theorem 15 it is clear that the graph of C(a,b) V C(e,d) has the
following form.

go"a b = g

13
E -
LR ; Enwy
\ /
\ /
&x- Skal41
Exs1 8x4l41
8y - Eyy1
dk'-—1 d.‘ic'+l+1
\
/ \
/ \
d-| d]II*-'I
do = C d = dm

811 and dk'—1 may or may not be joined. Similarly for €11+ and

dk'+l+l' These pogsibilities do not affect our proof. Set

C = C(a,b) A C{c,d) = (E1sBppq 2028 )

We shall need the following lemma.
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Lemma 25,2: Suppose that

A A G(gi;gj) £ ¢ where
(g;,8;) 2 C - A and
Gi B gj(“1)-

Then 4, A C(gi »E J) is an entire block both of x, and of ..

Proof of lemma: Set

Ai = Al A C(gi’gj)’
o =, 0 ?\(gi,gj), and
T =

A(c,gi) Uo U h(gj,d).

¢ and T are in [. A]'_ is clearly a block of ¢ and, also, of T. Also
(c,d) S T. By lemma 25.1,

cT.

If2

Hence A]'_ contains some block BP of Koo Now set

]

¥ }\(c)gi) U K U 7'\(g:l:d) and

Ma,g ) U v U %(gj,b)-

T

i <Al < tos
Both v and M are in I, N_c_rbing that Bp < A'.L < [gi+1,gi+2, ,gj_1], we
see that B b is a block of v and, slso, of {l. We easily see that
(a,b) € e By lemma 25.1,
7 U,

Hence Bp contains some block A q of “1' Therefcre

b 2M 2B 24

which implies that A = Aq and that



5
A Aclggsgg) =] =& =B

completing the proof of the lenmma.

Proof of theorem: By theorems T and 8, we see that if the set {“1’“2}

is not strongly independent, then there is a sequence of blocks
(1) A1,B1’A2,BE,...’A1',BI.’A1 (I‘ 2 2)

such that adjacent blocks and only adjacent blockes overlap. Each
adjacent intersection is a singleton since x, n n, = 0. Thus each
block Ai in (1) vghares" exactly two elements {ai,ai} with other
blocks in (1). Define Al = G(ai,ai). Define Bj analogously. Suppose
that x e A} but x £ A;. Then by the preceding lemma, x belongs to a

set which is a block of both n, and =n,. But then x can belong to no

1 2
set in (1). It follows that the ﬁi form disjoint subintervals of the
finterval®
(2) gk’gk+1,...’gk+1.

Similarly for the B{. However, since the cruciel pairs have been pre-
served, each A} {resp. Bi) overlaps two distinct Bj (resp. Aj). we
complete our proof by sﬁowing this is impossible. Let us change sub-~
scripts so that

1 < j implies that A! is to the left of A!

H i in (2}

and

i < J implies that Bf is to the left of B3 in (2).

A; overlaps some Bé with 8 > 1 since it overlaps two distinct Bi. We

¢laim that A% cannot overleap B{ if t+ > 1, Thia is because A{ lies to
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the right of A{. Hence A{ cannot overlap any Bi to the left of Bé;
in particular, A{ cannot overlap B{. Bui then B{ can overlap at most
the single set A{. This gives the desired contradiction and proves

the theorem.

Corollary 25.3: Let [ be a complete sublattice of I such that

U(r A Q) =4, Let « and B be union irreducibles in 1. Then a and B

are a modular pair.

Proof: By lemms 23.18, any element of [ is & union of partitions of
the form n(x,y). Hence o = n{a,b) and B = x(c,d) for suiteble elements

a, b, ¢, and d in S. Theorem 25 is now applicable.



(1]

(2]

(3]

(4]

(5]

[6]

81

REFERENCES

G. Birkhoff, Lattice Theory, revised edition, New York, 1948.

M. L. Dubreil-Jacotin, L. Lesieur, and R. Croisot, Lecons sur
la Theorie s Treillis g Structures ebriques Ordonnees et

Des Treilies Geometrique, Paris, Gauthier-~Villars, 1953.

Bjarni Jonsson, Qn the representation of lattices, Math. Scand.
1(1953) pp. 193-206.

Oystein Ore, Theory of equivalence reletions, Duke Math. J.
9(1942) pp. 573-627.

Saseki and Fujiwara, Decomposition of matroid lattices, Hiroshima
J. of Science Series A15(1951-52) pp. 183-188.,

P. M. Whitman, Lattices, equivalence relations, and subgrou 8,
Bull. Am. Math. Soc. 52(1946) pp. 507-522.




