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ABSTRACT

The theory of rearrangement collisions involving composite
particles is reviewed and the '"post', "prior' discrepancy discussed.
Two recent improvements to the Born-Oppenheimer approximation,
the Ochkur (O), and Ochkur-Rudge (OR) approximations are reviewed.
These approximations are then used to calculate the total cross
section for the electronic excitation, of molecular hydrogen by low
~ energy electrons. Excitatmns from the ground (Xl'z': ) state to the
first (b 2 ) and second (a 5 ) triplet states are treated All nuclear
motions are taken into account. It is found that the first triplet cross
section is sensitive to the choice of the ground state wave function
whereas the second is not. The former is also sensitive to the
quality of excited state wave function used. The results using the
{(O) approximation are significantly larger than those of the (OR)
approximation, and the maximum cross section occurs at a somewhat
lower energy. Use of the separated atom approximation produces
results significantly lower than those obtained by including all the
multicenter terms in the scattering amplitude. The calculations
are carried out using the zeta function expansion method and are
quite lengthy, The sum of the first and second (OR) triplet cross
sections agrees well with a recent approximate experimental
determination of the cross section for electron impact dissociation
of H2 into 2H,

These approximations are also used to calculate the total
cross sections for excitation of helium from the ground to the 23S
and 23P states, These cross sections are sensitive to the ground
and excited state wave functions used. The (OR) results agree well

with the available experimental data for these excitations,
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The differential cross sections for these excitations are also
calculated. Since there is no experimental data for the H2 processes
or for the 23P excitation in He, the quality of these calculations
cannot be evaluated. The calculated angular distributions for the
238 excitation in He agree well with one set of experimental data
but disagree with the other,

The (OR) approximation is found to give quite good results
for total cross sections but its value in predicting angular distri-
butions cannot be evaluated until more experimental data are available.
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I, The Theory of Rearrangement Scattering

The formal scattering theory for collisions that involve rear-
rangement of particles will now be outlined, Because of the breadth
(and depth) in the theory of collision processes, this discussion will be
limited to those principles necessary for the understanding of rear-
rangement scattering, The finer details, including mathematical rigor,
can be found in any of a number of well written texts on the subject of

(1)

An understanding of the scattering processes involved in a

scattering.

collision between composite bodies is most easily obtained by first
reviewing simple potential scattering. The operator formalism will
be used here because it is quite useful in treating a complex collision
process. After obtaining the quantities pertinent for the description
of potential scattering, the corresponding quantities for the collision
between composite bodies can be found by direct extension,

(2)

1. Potential Scattering

In the following discussion, the interaction potentials of
the scattering system will be assumed to fall off faster than 1/r. This
excludes, for instance, the scattering of a charged particle by an ion.
This is not a real restriction since such Coulomb scattering can be dealt
with by appropriate modification of the scattering waves, (3) and then the
same formalism can be used.

Consider the scattering of a particle of mass (m) by a
potential V(r ). The kinetic energy operator is denoted by K o and the
Hamiltonian of the system by H:



H=K +V: K = n2 2 (1-1)
) ’ o~ " Zm " o

and the familiar Schroedinger equation for energy E is
He = E@ . (1-2)

The scattering states are of primary interest here and the following
notation will be used in this connection. Let Ea denote the wave vector
of the incident particles corresponding to energy Ea (n 2ka’z/ 2m). The
subscript (a) serves to define the initial conditions of the incident
particle such as energy (E a) and direction (Qa). Similarly, let T{'b
denote the wave vector for the scattered particle corresponding to
energy (Eb) and direction Q. For potential scattering Ea = Eb but
of course the directions of Ea and Eb are in general different.

The symbols v, ¥, are used to denote plane waves of

energy E = Ea = B, in the directions Qa and Qb respectively. They

b
are solutions of

Ko#y = Eo; (1-3)
, iﬁi . T
and are given by o, = e , (i=a, b), The stationary wave

solutions of (1-2) are denoted by zpia. The (+) superscript is used
to distinguish between the solutions of (1-2) corresponding to outgoing
(+) or incoming (-) spherical waves at infinity, That is, zpﬂ; satisfies

Hy, = By, , (1-4)



with the boundary condition

a b)e .. (1-5)

The subscript (b) on Q, in (1-5) is used to indicate the direction of
the scattered particle associated with Eb' The subscript (a or b) on
Y 1is used to denote the initial conditions of the incident particle; that
is, the energy and direction as given by k or kb There is an
equation for ll/b similar to (1-5) with(a) and(b) interchanged. For a
choice of one or the other boundary conditions (+ or -), the solution
of (1-4) can be shown to be unique as long as the potential is sufficiently
well behaved, (4) In practice, the potentials encountered satisfy this
well-behaved condition,

As usual, the differential and total cross sections are
determined from the quantity f; (Qb) in (1-5), For elastic scattering
the differential cross section is(5)

£ @) 2 . (1-6)

As mentioned above, the subscripts (@) or (b)on  indicate the particle
being scattered from direction (a) to direction (b). The total cross
section is given by

- [ do -
g = Hﬁ; de . | (1 7)



Let us now consider two potentials U and {1 which satisfy the required
condition of being well-behaved. Let £ and £ be the stationary eigen-
functions of the corresponding Hamiltonians., In particular, 52 and

§b are the solutions of

+ _ +
(K, + V), = EE (1-8)
AN Ao
(K + V)5, = EE (1-9)
satisfying the asymptotic conditions
. 1Ea - T ikar
3 Pf\; e + £ (Qb) - (1-10)
N ﬂzb .7 N e-ikbr
ey ;‘t/m e + fb (Qa) = . (1-11)

A
The functions @2 and §b represent therefore eigenfunctions of different

Hamiltonians for the same energy E. From (1-8) - (1-11) the following
(6)
d.

very useful property of the scattering amplitudes can be derived:

2

(EbIU Ul€ ) =" - £ (Qb)

21'rh 2 4

f (- ) (1-12)

where by definition, (-Q) is the direction opposite to (0). Equation
(1-12) is very general requiring only that the potentials be real and
fall off faster than 1/r.



As an example of the use of (1-12), let U =V and
U =0, Then, using (1-3) and (1-4), one finds that (1-12) becomes

-2nh2
m

Cop [ V]w)) = (). (1-13)

A :
Note that fb = 0 because in for this choice of ?J in (1-9), the particle

is free and hence not scattered. If now one chooses U =0 and U = v,
(1-12) becomes

- : -erhz o~
<‘Pb| V| V) = fb(_Qa) (1-14)

since for this choice f; = 0, Finally, if the choice U = U is made,
(1-12) becomes
4
f @

) =T (0) (1-15)

which, as a result of (1-13) and (1-14), implies that

Wy | Ve, = <o [ VYD) . (1-16)

Equations (1-13) and (1-14) relate the transition amplitude to the
scattering amplitude., The last equation, (1-16), is important
because it represents the reversibility of the scattering process.
Physically, this means the scattering process is the same running
forward or backward in time. As will be discussed in section (I-3),
an expression analogous to (1-16) for the case of complex collisions
has led to the "post", "prior' paradox of rearrangement scattering.



For simplicity in dealing with more complex collision
processes, it is convenient to define an operator which can be related
to the familiar scattering amplitudé (1-13) or (1-14). This operator
(T) (called the transition matrix, or scattering matrix or T- operator)
is defined such that its plane wave matrix representation elements
are equal to the scattering amplitudes:

Ty b= @plTloy) = (CpblVIz[/;) = (Y| Ve . (1-17)

The quantity Ta, b is called the transition amplitude and is unique
for a given potential scattering process. A more complete definition
of the operator T is reserved for a later section,

The Schriedinger equation for the scattering, (1-4),
together with the boundary condition (1-5) can be replaced by an
integral equation, This is particularly useful since it is a convenient
starting point for an approximate iteration scheme. I also leads to
the Green's function operators which form the basis of a powerful
theoretical approach for the treatment of scattering processes. The
integral equation and associated Green's function operator are
obtained as follows.

Equation (1-4) is rearranged to the form

E - Ky, = VY, (1-18)

and the free particle Green's function for energy E is defined as

the solution of

€ - KJF (T, ¥) = 8(r - 7) (1-19)



-with outgoing asymptotic behavior,

’&‘;(;’ T ~ _ m2 er oK. ]
r-o« 2t
The solution to (1-19) with incoming asymptotic behavmr " is also

useful; it is found to be the complex conjugate of,% (rl, ') ( ) For
potential scattering, these Green's functions are

- . 1k|r-r’| ; .
;&Z(%,r'):_ mz &-(I‘, I") =é’z (I‘, I"). (1_20)

omn’ |t - 7'

From the theory of inhomogeneous partial differential equations, the

general solution to (1-18) can be written as the sum of the homogeneous

(9)

defined above, the integral equation solutions to (1-4) and (1-5) are:

solution and a particular solution. Using the Green's functions

N m e:t1k|r -1
V2= %53 [ vt (Fyar . (1-21)

[T - 1]

The Green's function operator G is defined such that
its coordinate matrix representation gives the g{ (r, r') functions of
(1-20). That is,

Gl E T Gl (fET . )



The meaning of this operator can be seen from the effect of it
operating on a state vector |u) of finite norm, The spatial wave

function u(17 ) is the coordinate representation of the state vector:
u(r) = (r|u) . (1-23)

Thus, the effect of Gg operating on the state vector |u) in the
coordinate representation is

GFI6E w = [ (FEHEFwat = [T E Mu@Ear . @29

However, the definition above is not sufficient to be generally useful
because of its singular behavior. This can be seen by examining the
asymptotic form of (1-24):

2 At m eikr AR P2z
<r|GO|u> —~ - - J e u(rfdr' . (1-25)
r—- o 27k

[\

As (1-25) shows, G; operating on a vector of finite norm (|u))

produces a function which is not in general square-integrable. To
+

eliminate this singular property, the GO operators are defined in

terms of a 1limit of well-behaved operators:

+ 1
G = lim K6w—p—r ,
0 'G"O+ E - KO-_': ie

(e >0) . (1-26)

These G: operators, when operating on vectors of finite norm,
produce functions which are square-integrable. As defined in (1-26)



the G: operators-are well-behaved and bounded everywhere except
for e =0, As e - 0 from the upper half-plane, the right hand side
of (1-26) approaches G; ; and as it approaches zero from the lower
half-plane it becomes Go'

For the remainder of this discussion, the limiting
process in (1-26) will not be written explicitly but just assumed.
Fortunately, for purposes of manipulation of theée operators, such
details of rigor can be ignored - as they will from now on,

Utilizing this formalism, the integral equations (1-21)
can be written in the operator notation as

+

Va

+ =+
@, + Gy Vi, (1-27)

1 +

WtE-K F I Vi, - (1-28)

Note that iteration of (1-27) results in the Born expansion for the

scattering process which in this operator notation is written as:

v, = {1+ i (G;OV)H] ®, (1-29)

n=1

As will be seen, it is very often quite convenient to assume that the
potential (V) can be written as the sum of two parts, one of which
admits to an exact solution, That is, write

V=U,+W (1-30)

1 1
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H=K +U +W, = H +W, . (1-31)

+ +
H1 Xy = E Xgq (1-32)
:ukr
x ~ ¢, +E (ﬂo)-——- (1-33)
r -

where the notation used is consistent with that introduced above.

In analogy with (1-17), a transition matrix (T') for
collisions at energy E, governed by the Hamiltonian H1 can be
defined as

Taop = (Ol T0,) = o, |U ) = Gl Uyglwy) (1-34)

and the analog of (1-15) is

+ _ ¥ _ ' _
ga (Qb) - gb ('Qa) - o hz Ta b* (1 35)

The transition amplitude (T b) for the complete Hamiltonian (1-31)
is given by (1-17). By using (1 12) with U = V and L U1 one finds

2 2
2mh T L+ 2ra " -%
= 1, @) + g, (-0,)

xplWylwg) = -

2k~ 2

(using (1-35)) = - -1, (@) - & @) ]
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by (1-39), (1-170) = T, | - T} | (1-36)

Thus the ti-ansition amplitude for the two potential scattering can be
written as

1
!

? - + -—
ab = Tapt XplWylwl) (1-37)

Té,b+ (z//E)IWIIX;> . (1-38)

Equation (1-38) was obtained by interchanging the definitions of
U and U. From (1-37), (1-38) it is evident that

ol Wyl v = Ul Wylx) (1-39)

As was done for the total Hamiltonian H, Green's
functions and Green's function operators can be defined for Hl‘
That is, for Hl’ li is the solution of

€ - 1) &1 (F, ) =s(F-7) (1-40)

with the appropriate outgoing (+) or incoming (-) asymptotic boundary
condition. This Green's function can be used to solve the equation

(€ - H), = Wyy- (1-41)

in the form
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Vs [ Tw e (1-42)

In the operator notation, the Green's function operators corresponding

to H1 and H for energy E are defined as

+ 1

G1*ETHE T (1-43)
£ . 1

G fETHIT (1-44)

where as above the limiting process ¢ - 0" is assumed but not
written explicitly,

By using the definition of these operators, the following
very useful identities can be derived (see Appendix A): (H o = Ko)

+ _ =+ _ _
(E-H)G] =1, GE-H) =1 (1-45)
E-HG =1, G(E-H =1 (1-46)

1 1 _ 1 1 i
E-Hd:le-EuHoiie"E-Ho;tie VE-Hiie (147)

1 1

"E-Hik 'E-H il (1-48)
1+ GV Q- GiV) =1 (1-49)

a- Gf;V) A+GV)=1. (1-50)
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In each of the above equations, there are analogous identities with
H1 and U1 in.place of H and V; and also with H1 and W1 in place
of H0 and V,

The complete solution of the two-potential Hamiltonian

H at energy E can be written in this operator notation as

+ + =+
W, =G+ GI Wyl (1-51)

Note that (1-51) can be written in a number of equivalent forms by

using the above operator identities. For instance, by rearranging
(1-51) to

4 £+ _
(1-GIW)Y, =x, (1-52)

left-multiplying by (1 + Giwl) and using the identity (1-49) with
Gz, V replaced by Gi, W, (1-52) becomes

+
;p; = (1+ Giwl)xa X (1-53)
Or, by writing the Schrtedinger equation in the form

(€ - H)y: = U, + Wy, = Vi (1-54)

the formal solution

v, = ®, + G*;vgui (1-55)
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can be rearranged to the form

1-G VY=o, . (1-56)

Left-multiplying by (1 + G*V) and using identity (1-49) ylelds another

alternate expression

V= (1+G Vo, (1-57)

which can be compared with (1-51) and (1-53). The physical
significance of the terms in these three equations will be discussed
in a later section, (Of course the equation for Xz, (1-33), can be
similarly manipulated, )

From the equations derived above, a formal definition
of the T operator can be given. By (1-17), the transition matrix
is given by

Tap® @plTley) = o[ V1Y) . (1-58)

From (1-57) it can be written as

— + -
Ta’b = (cpb|V+VG VICpa> (1-59)

which serves to define the T operator as

- 1 -
T—V+va. (160)

As mentioned earlier, in the case of potential scattering this operator

is unique for a given H and E,
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2. Treatment of Collisions Between Complex Systems

The preceeding discussion has been limited to potential
scattering in order to understand how the operator formalism is
developed, In this section, the concepts presented in section 1 are
generalized to allow consideration of inelastic processes between
composite bodies. |

(2)

2.1 General considerations

In the analysis of collision processes between
complex systems it is useful to introduce the concept of a channel,
A channel is defined(ll) as any possible configuration of a system of
particles as a result of a collision between them, In the discussion
that follows, a channel will be denoted by a Greek subscript. Ina

collision process written symbolically as
A+X~-B+Y |, (2-1)

the entrance channel (o) is composed of particles A and X, I the
collision is elastic (no change in the internal energy of the particles)
the exit channel (g) is identical with the entrance channel. For the
sake of this discussion, exchange elastic scattering is included as an
elastic collision. If the internal energy of the colliding particles
changes, the collision is termed inelastic and the exit channel (B)
differs from the entrance channel (o). In the following discussion,

all channels will be assumed o be composed of two particles which
may be complex, i.e. have internal structure, Thus consideration
of processes such as ionization is being excluded; but this is no

serious restriction, (12)
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In any collision process in which the interactions
between the particles of the system depend only on the relative
positions of the particles, the center-of-mass motion can be separated
from the relative motion of the two particles. (13) Consequently, for
any channel (v = a, 8) consisting of two-composite particles C and Z,

a reduced mass

M = .S 2 (2-2)

and a relative kinetic energy

_ (szc B Mcpz)

2

p
rel Yy .2
g “om 0 Py T M+ M)
y c 7

(2-3)

can be defined, This is called the relative center-of-mass coordinate
system, |

Although the theoretical description of the collision
process is most easily carried out in the center-of-mass system of
coordinates, the experiment is performed in the laboratory system of
coordinates. The relation between the anglés in the center-of-mass
system (8, @) and those in the laboratory system (8, ) is given by(14)
(for the process (2-1), assuming particle X to be at rest)

: MMy E_ 1/2
S8 .= ) (2-4)

tand = Sosg+ 7 MXMY
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where Eoc and EB denote the kinetic energy in the entrance (a) and
exit (8) channels, and the masses of the particles involved have the
appropriate subscripts.

Consider an inelastic collision process of the type
symbolically indicated by (2-1). In a given channel (y), the wave
function which describes the internal quantum state of the two particles

(non-interacting) can be written in the product form

T] = g g L] (2" 5)

That is, if hc and hz are the Hamiltonians describing the internal

motions of the sub-particles composing C and Z, then

h&& =e& ; hEg =¢§ (2-6)

where eY is the total internal energy of the particles in channel (y).
It VY represents the interaction between the sub-particles composing
C and those composing Z, the total Hamiltonian of the system in
channel (y) is

H=H +V (2-7)
Y Y

_ 2 ]
-—hc+hz+ pY/ZMY+VY . (2-8)
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The total energy state of a channel (y) will be
denoted by a lower case subscript, say g = (v, Eg) where Eg denotes
the wave number of the relative kinetic energy in channel (y). In any
channel (y), the total energy (E) is the sum of the internal energies of
the particles in the channel and their relative kinetic energy. Since
the total energy (E) of the system is conserved in the collision process,
the total energy in the entrance () and exit (8) channels is the same:

hzki hzkg
E=ea+§m-;=es+§m;. (2-9)

From the above equation, the necessary condition for the exit channel
(B) to be open is

E-e >0, (2-10)

For given initial conditions of the system a = (a, Ea), three stationary
waves are important; the plane wave cpa and the two waves zp:. The

plane wave satisfies

He =E¢ (2-11)
ik, - I«’a
@ =N, P,Ee , (2-12)

where 7 is defined in (2-5) and ;a denotes the vector distance
between the center of masses of the two colliding particles in
channel (a). The stationary waves (z,lxz) are solutions of the complete

H with energy E whose asymptotic form corresponds to: the plane
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wave @ and outgoing (+) and incoming (-) spherical waves in the
entrance channel (o) ; just outgoing (+) or incoming (-) spherical
waves in all other exit channels (g). That is,

+ +
HY = Ey, (2-13)
ik r
1[/; —~ T]a ?, + fza(ﬂa — (2-14)
I'a - ® o4
iikbr[3
~— @) — (B2 . (2-15)
rB ) B

From these equations, the collision process (2-1) 1n Wh1ch particle B

is emitted in the direction Q

with kinetic energy # kb/ ZM is given
(15)

b

do v
a,b _ b .+
de B Va ‘ fa'B (Qb) ‘ (2-16)

In the case of elastic scattering B = a but b # a since in general
K, # ka even though kb = ka'
A transition matrix Ta b for the collision process
)
(2-1) can be defined in a manner analogous to the definitions made in
Section (I-1). An operator T, governed by the Hamiltonian (2-8) at

energy E is defined such that
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21Th2
ab_ <¢b|T|¢: >“—MB_ (Qb) (2-17)

The above definition of the operator T is consistent with the definition
of Section I, (I- 1 - 17), in that the matrix is formed between vectors
of the same total energy. However, (2-17) is not the usual definition
of the matrix representation of an operator because the state vectors
in (2-17) are not always orthogonal. (16) Nonetheless, it is possible to
write the transition amplitude for the scattering process (o - 8) in

terms of a certain operator T__ defined for the specific entrance and

exit channels. (16) This generalematmn will not be discussed here.

In passing, it is worth mentioning that in some
cases, such as collisions involving three or more particles, the
approximate solutions of the integral equations may not be unique. (17)
However, when the solutions obtained are first order in the interaction
potentials, as in the calculations performed here, uniqueness is

assured, (17b)

2.2 Green's function operators and integral equations

for collisions between complex systems

The Green's function operators and integral
equations are obtained in a manner analogous o that used in the
treatment of potential scattering. By a slight extension of the notation,
Green's function operators [E-H=z+ ie]_l and [E - HY + ie:]'1 can be
associated with the Hamiltonians H and HY respectively of (2-17).
Identities among these operators analogous to (1-45) through (1-50)
can be derived by direct extension of the potential scattering results.
By use of these identities, integral equations for the scattering

processes can be derived.
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For instance, assume that the complete

Hamiltonian can be written as
H=H +U +W (2-18)
[0 4 a 04
= H+W , (2-19)

That is, assume that the interaction potential in channel q, (Va),

.~ Inaddition,

can be written as the sum of two potentials ch and W
assume that the stationary scattering solutions, Cz, of H for energy

E exist;
A+ , ok
HeS = (H +U )¢, = EC, (2-20)
= = +ik r
g A~ ,»elka . r(L+ = (Q )e . (x}
na gaa r
r -~ OO G.
a S
(2-21)
ilker
—~— N gi (Q )"e"_""—""
Beap'b r *
rB — @ B

(Of course, one can also talk about solutions of Bl where aeeg and
aeeb, The above merely serves as an illustration,) The above

solutions can also be written in integral equation form:

£ _ 1 £ _
ga = ‘Pa"l'-E-—:—H—(-x-:E——i—é-UaCa . (2 22)
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Using the identity (analogous to (I-1-49))

1

1 —
(1+ g H U IE U - E_-——H_a—fi—G_Ua)—l (2-23)

(2-22) can be rewritten as

1

N

€§= [(1+
E - Hz+ia

U ](ba . (2-24)

In a similar fashion, the scattering solutions :,U: to the complete
Hamiltonian (2-18) at energy E can be written as

+ + 1 +

Vi =0 Wy (2-25)
& % E_H:zie %7
_ 1 +

= Drgars Vol (2-26)

3. Rearrangement Collisions

The treatment of complex collision processes outlined
above will now be specialized to that of rearrangement collisions.

Let H and H be two possible Hamiltonians describing
the given quantum system. Specifically, assume that they have the
same kinetic energy but may have different potential energies. At
energy E, denote their stationary scattering solutions by ¢ and $

respectively. Because of the possible difference in their potentials,
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some channels may be open for collisions governed by H that are not
open for collisions governed by f, and vice-versa. If channel (g) is
open for ﬁ, then one of the stationary solutions of B corresponding to

z (B, Eb) is @; The subscript (b) denotes the initial conditions for
this wave and hence (B) can be considered as the entrance channel for
Q; If channel (8) is also open to collisions governed by f (also at
energy E), then gAb_b will have the asymptotic form:

N iﬁb- r ’kb 8
o mgle © i) (3-1)
B —
—il«:dr6
A- .
~— myt (g ° (6 #8) . (3-2)
ry=e &

[ There is, of course, a @E solution to H but as will be shown,

only one of the two solutions need be considered; ”Ub is used here, ]
Let a,U be a similar solution of H for the (same) energy E corre-
sponding to the initial conditions (a). Then the following powerful

relation can be derived:(le)

2 2,
PplE- By =- 21\2—:' s+ 11 il

f (-Q o) - (8-3)

A
It should be emphasized that f" and f will not in general exist for
all o« and B, since H and A will not usually have the same sets of

open channels.
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Equation (3-3) can be manipulated into a form containing
the transition matrices for the collision processes governed by H and
A
H as follows. When H = fi, (3-3) reduces to

2m 2 2 _ 2mn? 2

8 o

where the (~) superscript has been dropped. Note that (3-4) means
that (2-17) can equally well be written as

2 2

Ta,b (@ |T|®,) = - M S5 (—Q ). (3-5)

In a similar fashion, a transition matrix can be defined for collisions
governed by H at energy E. In analogy with (II-2-17)

A - N _ znh Fal
2
2k < M+
Using these definitions allows (3-3) to be written in the form
A N A +
<<Izb[T|cI>a> = <q=blT]<1za> + (z,bblH - Hly ) . (3-8)

As will be shown immediately, (3-8) is a quite general and powerful
relation between the Hamiltonians H, fI and their respective

transition matrices.
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The rearrangement collision is indicated schematically

A+BX - AX+B (3-9)

where A, B are the particles undergoing the exchange. Without loss
of generality, the target particle X (hereafter called the ""core'") is
assumed to be infinitely heavy. (19) Channel (o) will be used to denote
a channel in which A is free and B is bound to the core, and channel
(8) one in which B is free and A is bound.

To clarify the description of the rearrangement process,
the Hamiltonian is written in two equivalent forms:

Hzch+Va=(KA+KB+UB)+(UA+WAB) (3-10)
= HB+VB = (KB+KA+UA)+(UB+WAB); (8-11)
where K A KB denote the kinetic energies of particles A, B; U A2

UB represent the interaction of particles A, B with the core; and
W AB is the interaction between particles A, B. The total
Hamiltonian has been written in the two forms (3-10), (3-11) to
emphasize the "prior" and "post" forms (respectively) of the collision
process. As written in (3-9), the rearrangement collision is assumed
to proceed from left to right and the terms "prior", '"post' have
evolved in the literature to describe which particle is free, A or B,
'The origin of this terminology will become apparent a little later,

The wave functions for particles A, B as free particles

are denoted by the plane waves @ A Ope They are solutions of
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(EA— A)cpA =0 ; (EB - KB)ch =0, (3-12)

The wave functions describing the particles A, B bound to the core
are written as n A g They satisfy

- K

W A" UA)'r]A=O; (WB— KB- UB)nB=0. (3-13)

A

Let xz, X; be the stationary scattering waves of energy E A? EB
satisfying

i — . i —
(EA— KA- UA)XA-O, (EB- KB- UB)XB—-O (3-14)

with the asymptotic behavior as indicated by the (+) superscripts.
(It is worth noting here that for some cases (3-14) may represent
scattering involving Coulomb potentials. In such cases, the
formalism is still applicable as long as the appropriate boundary
conditions are enforced, See ref, 3. ]

Because it will prove useful later, (3-14) is also written
in its equivalent integral equation form:

1 U - N 1 U
TR -U.zic "A¥A’ XBT % EL-Kg-Ugeic B¥B"

+

Xp =%p+

ATPAYE, SR, T,
(3-15)

The scattering wave solution to the total Hamiltonian, subject to the
appropriate (+) asymptotic boundary condition, satisfies

{E- [(KA+KB+UB)+(UA+WAB)]}1p:ib= 0 (3-16)
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{E-[(KB+ KA+UA)+(UB+WAB)]}¢§=0. (3-17)

In (3-16), the terms are grouped to indicate the "prior" form in which
A is free. The subscript (i) on the wave function is used to denote
this "prior'" solution. Similarly, (3-17) represents the "post' form
in which B is free, and the subscript (f) denotes this case. [The
case when A and B are identical particles is discussed at the end of
this section. ]

The "prior' and "'post" relationship of z,b? and 1//:; with
respect to the incident and scattered particle is perhaps seen more

clearly when (3-16) and (3-17) are written in their integral form:

+ + 1 +
Vi S XATB*ETR TR0 = Wap ¥ (3-18)
i *ABTE-K, -R;-U,-Ugzic "ABYi

= 1—_-l-i“E"'Ii -K .-I} _U _W :I:i WAB]X:EAT]B (3-19)

A TBT AT BT YABT

+ + 1 N
Y TXpATETR TR0, - =W, p¥ (3-20)
f " YBATE-K, “K;-U,-Ug<ic AB¥i

=1+ - W, olXan (3-21)

E-K, -K,-0,-0,-W, _*ic "AB'*B"A "

A B A B AB

The above integral equations were obtained by the same techniques
used to find (II-2-24) and (II-2-26).

Equations (3-16) through (3-21) might seem a little
artificial at first since it may appear as if trickery is being used
to generate two solutions to the same Hamiltonian, Keep in mind
that the two solutions zpii and zp;: represent two physically different
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scattering states in which A and B respectively is the free particle.
Energy conservation requires that

WB = EB+WA.

(3-22)
As indicated above, Ej and W]. represent the kinetic energy and
binding energy to the core respectively of particle j. The term '"core"
is used to describe the composite particle X in (3-9),

The transition amplitude for the rearrangement collision

process Ta, p can be derived using either of two equivalent approacht_es
the "prior' (3-16) or the "post' (3-17) interaction forms. The "prior"
form will be used here and the equivalence with the ""post' form will be
demonstrated.

As indicated in (3-8), two matrix elements must be formed
in order to calculate the transition amplitude. The second term on the
right-hand side of (3-8) can be found as follows. Choose H and i

respectively as

H=K,+U, +Kg+Up (3-23)
H=KA+UA+KB+UB+WAB. (3-24)

This choice is dictated by the decision to use the "prior' form. The

solution of (3-23) for energy E,

(EA+WB-KA-UA-KB-UB)¢;=0. (3-25)
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corresponding to the initial conditions [a = (q, Ea)] and outgoing
(asymptotic) spherical waves can be written using (3-13) and (3-14)
as

Yy = Xp"p - (3-26)

:2;) is the corresponding solution of ﬁ at energy E for the "initial"
conditions [ b = (B, i;.b)] and incoming (asymptotic) spherical waves.
The additional matrix element necessary to characterize the
scattering as governed by H is according to (3-8)

T = (®,|T|@,) . (3-217)

This term represents a rearrangement scattering at energy E as
governed by H (3-23). An expression for it in terms of the pertinent
wave functions can also be found by applying (3-8) to

H' = KA+ Kp+Upg (3-28)

(3-29)

This specific choice of Hamiltonians is again dictated by the decision
to use a "'prior" interaction. The solution of iy (3-29) at energy E
for the "initial" coaditions (b') and incoming (asymptotic) spherical

waves

Al
(Bp+ Wy - Ky -U, -Kp - Uy, =0 (3-30)
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can be written in a factored form by using (3-14), (3-15) as
A -
7sbbv = T'AXB . (3'31)

(The primes are introduced here just to avoid confusion with (3-23),
(3-24) and their solutions.) Similarly, the solution of H' (3-28) at

energy E for the initial conditions (a') can be written as
+
wav = CPAﬂB . (3'32)

By inspection of H' (3-28), one sees that particle A is completely
free, experiencing no interaction with the core or particle B.
Consequently, A is not scattered and the T' operator associated
with H' is identically zero, Using this fact, along with (3-28)
through (3-32), one finds that (3-8) takes the form

A —-—
(@ | T @, = npxplUpleang?. (3-33)
The total transition amplitude for the rearrangement of (3-9) is found

by using (3-23) through (3-26) in (3-8), along with (3-33). One finds
for this "prior'" form that

rPrior

a,b <®b| Tabl ¢a>

npaxplUploang) + <$;[WAB|x2nB> ) (3-34)
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where the subscripts a, b denote the channels for the process (3-9).
Note that an immediate simplification to (3-34) can be made. In the
first term on the right hand side, the wave functions x;3 and ng are
independent of the coordinates of particle A and consequently an
integration can be performed over the coordinates of particle B.
Since Xig and Ng are eigenfunctions of the same hermitian operator
but with different eigenvalues, these functions are orthogonal and thus
the first term in (3-34) vanishes identically. The transition amplitude
for the rearrangement process (3-9) thus reduces to

prior _ /- + _
Ta,b - <¢b|WAB|xAnB> . (3-35)

This result shows that the core does not contribute to rearrangement
scattering; a result which is quite logical on physical grounds.

The equivalence of the "prior'" and '"post" forms of the
transition amplitude will now be demonstrated, To obtain the '"post"
form, the role of H and A are reversed in (3-23) and (3-24), and
one chooses

(3-36)

n
A
+
(e
+
AN
+
c

H'

s

(3-36)

L}
2
+
(e}
+
-

[ Note in passing that iy equal to (3-28) is not parmissible on
physical grounds since H' admits no solution which will satisfy
the boundary conditions [b = (B, Eb)], A bound, ] Then the "post"
forms equivalent to (3-34) and (3-35) are found to be
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post _
Ta,b = <¢b|Tab|¢a>
= (N, 0] Unlxina ) + (MaXalWanl ) (3-37)
A"'B' "B'*A''B AMB! "AB'Ta’ ?
and
post _ - + _
Tob - MaxplWaplyy) - (3-38)

The first term on the right hand side of (3-37) vanishes for the same
reason the analogous term of (3-34) vanished.

Now, :,'D;) is written in its integral equation form (3-21)

1 -
Yr = [1 4+ e — W, o IxRn, (3-39)
b E-K,-Kg-U,-Ug-W,~1c AB*B"A

[1+G W,oplxpn, - (3-40)

It w AB is assumed to be hermitian and use is made of the fact that
Gt = G, then

-t +
G =W, G, (3-41)

- T
(G Wyp' =W B

A

and one can use (3-40) to write the "bra' ({/J;)l as

| = (xgnyl 1+ W,5G) . (3-42)
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Using (3-42), the "prior'" form of the transition amplitude (3-35) can
be Written

prior /- +
Tab = WplWaplxang)

- + +
= XpNp WA+ WapG Waplxang? (3-43)

i

- + +
XpNp [Wagl+ G Wyp)[xynp?

= <X;3ﬂAfWABlll/;> Cby (3-19)]

post

Ta, b

Thus, as expected on physical grounds, the "prior' and ''post" forms
of the transition amplitude for the process (3-9) are equivalent. In
passing, it is worth mentioning that the operator appearing in (3-43)
is often called the "effective interaction’ or '"t-matrix" for the
scattering of A by B in the presence of the core, (20)
The above results, though exact, are the origin of what
is known in the literature as the "prior", '"post" paradox. The
source of the paradox can be traced to the necessity of using approxi-
mate wave functions in actual calculations, For, when approximate
wave functions are inserted into the first term on the right hand sides
of (3-34) and (3-37), these matrix elements will not vanish in general.
For example, if the Born approximation is applied to (3-34), in which
X-B is replaced by ¥g) ¥ is not formally orthogonal to np since they
are eigenfunctions of different Hamiltonians, As a result of this fact,
much effort has been expended in an effort to modify (3-34) and (3-37)
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in such a manner that this discrepancy will disappear. (21) Recently,
it has been pointed out that this paradox is a result of the inadequacies
of perturbation theory, (19) and all approximatioas should be developed
from the formally exact result (3-35) or (3-38). However, at present
this view is not shared by all researchers in the field, (22) and in at
least one instance, including the core gives improved agreement with
experiment, (23)
In the preceeding discussion, the particles undergoing
rearrangement have been treated as distinguishable. This is nota
restriction because when the Hamiltonian for the collision process
is spin independent, the effect of exchange (if the particles are
indistinguishable) can be accounted for by the appropriate linear
combination of exchange degenerate scattering amplitudes. (24) It
is quite reasonable in atomic and molecular collision processes to
assume the interactions are spin independent and this approximation
is applied here, Consequently, detailed consideration of the exchange
of identical particles can be reserved until the end of a calculation.
This is discussed further in Appendix C.

4, Approximations to the Exact Scattering Amplitude

In this section, some of the commoaly used approxi-
mations to the exact transition amplitude .(3-35) or (3-38) will be
briefly discussed. These approximations are most conveniently
presented with the integral equations for the various scattering
states in mind since the terms in these equations have some physical

meaning,
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(25)

4.1 Distorted wave approximation

If the "prior" form is used to describe the
rearrangement process, the exact transition amplitude is given
by (3-35). In practice, since @; cannot be found exactly (because
@; represents the solution to the scattering problem ), some
approximation has to be employed. One frequently used approxi-
mation is to neglect the second term on the right hand side of (3-40).
Then (3-35) becomes

Dw

Ta, b

= (pxg IWaplang) - (4-1)

In {(4-1), the interaction between A and B is treated to first order
while the interactions of A and B with the core are treated exactly.
The functions X;3 and th-x are called "distorted waves' because, as
seen from (3-15), they represent the result of the distortion of the
respective plane waves due to the interaction with the core. The
second term on the right hand sides of (3-15) represents this
distortion. This approximation is expected to give good results
when the interaction between A and B is very small such that 1'/\/;)
deviates very little from n AXp

(26)

4,2 Born approximation

The Born approximation can be considered as an
additional approximation to the ""distorted-wave' scattering amplitude
of (4-1). In this approximation, all the distortion effects are neglected
and the scattered waves Xi3 and xz are replaced by their respective
plane waves., With these approximations, (4-1) reduces to
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B = "
Tab = {na®plWagloang) -

(4-2)
The physical assumption that accompanies such an approximation is
evident from (3-15). As seen from these equations, the Born approxi-
mation assumes that the core potentials are not effective in distorting
the plane waves, This is certainly expected to be a valid assumption
if the energy of the incident particle is sufficiently high, and numerous
calculations have verified that it holds for such an energy range. @7)
There is another condition for low incident energy for which (4-2) may
be expected to give reliable results, The low energy criteria is
determined by finding the condition under which the interaction is

truly a perturbation, It is(zs)
hz ~
IWABI < =3 (ka <=1, (4-3)
ma

where (a) is the range of the interaction potential W AR The physical
meaning of (4-3) can be found by noticing that the right hand side of
{4-3) is the order of the kinetic energy of a particle bound in a box of
dimension (a). Thus, if the interaction is too weak to form a bound
state, (4-2) may describe the scattering process adequately, Note
that (4-3) is a stronger criteria than the usual high energy requirement
because it is valid for all energies (#/a ~ p = #k), It is also important
to remember that both the high and low energy criteria stated above
are necessary but not sufficient conditions for the validity of (4-2),
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(29)

4,3 Close-coupling approximation

There is another method of solving the rear-
rangement scattering problems which is worth mentioning. It is
called the close-coupling approximation and was not treated here
because it is most easily derived from the differential equations
rather than the integral equation approach presented here, (29)

The basis of the method involves expanding the
solution of the scattering problem in terms of the eigenfunctions of
the bound systems (the composite particles in (3-9)). In practice,
one limits the number of terms in the expansion to the ones that most
effect the scattering process. When exchange is included, there results
a set of coupled integro-differential equations. Since this method seems
at present to be limited (on practical grounds) to spherically symmetric
scatterers with a small number of particles, it will not be presented
here. The resulis obtained using this approach will be briefly
discussed in a later section. (30)

In closing this section, it is felt worthwhile to
mention a few points concerning the use of the above mentioned approxi-
mations to the exact T a, b’ As a general rule, when performing a
distorted wave calculation according to (4~2), unless the interactions
with the ""core' are spherically symmetric, the distorted waves are
extremely difficult to obtain due to the mathematical complexities of
the non-separable inhomogeneous partial differential equations. In
addition, it has been found that for some processes, the Born approxi-
mation gives better agreement with experiment. (31) The apparent
reason for this is that in some cases there is a partial cancellation
of errors in the Born treatment which doesn't occur in the '"distorted-

wave'' approach., Unfortunately, there is no method which allows one
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to establish beforehand which approximation will describe a given
collision process most accurately. This serves to warn that the
""distorted-wave' approximation should not be considered as superior
to the Born approximation for all collision processes.

The remainder of Section I will be devoted to the
discussion of some of the recent improvements to the Born-

(26)

model for the general rearrangement process is necessary if many

Oppenheimer approximation. As indicated above, a tractable

of the interesting physical problems are going to be solved. As will
be seen, these new modifications appear to provide a useful model
which will enable calculations to be performed for processes that
were previously inaccessible theoretically,

5. Improvements oa the Born-Oppenheimer Approximation

In this section, and the remainder of this paper, the
wave functions and scattering amplitudes will be written as functions
of position only. That is, the spin dependence will not be written
explicitly; and all the results will be written as if the particles under-
going exchange are distinguishable. As mentioned in Section 3, this
technique is possible because the Hamiltonian describing the scattering
process is assumed independent of spin. After the scattering amplitude
for the given process has been found, the lack of distinguishability
among the participating particles can be accounted for by the appropriate
linear combination of the scattering amplitude. The necessary modifi-
‘cations are discussed in Appendix C for the case of electron scattering
from a two electron bound system,

The Born-Oppenheimer approximation (BO), as applied to

low energy electron-atom or electron-molecule (rearrangement)
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collisions, has been less than successful. (32) In most calculations
using the (BO) approximation, the cross section is found to be a
factor of about 10 larger than experiment in the region near excitation
threshold, The reason is (apparently) in part due to the retention of
the core interaction in the expression for the transition amplitude.
That is, the investigators apply the plane wave approximation to
(3-34) rather than (3-35) and hence calculate according to (""prior"
form)

T (5-1)

a,b = {Na%plUpl 9o np) + (ny2pWypl@snp).

Of course, the core term in (5-1) does not vanish now since *g and
ng are in general not orthogonal and, as discussed in Section 4, the
"prior', ''post' discrepancy appears. It is felt by this writer that a
bstter approximation is to omit the core term in (5-1); i.e. the
approximations should be applied to (3-35) or (3-38). This is the
approach used in the discussion that follows.

For simplicity in the presentation of the recent modifi-
cations of the (BO) approximation [and because explicit calculations
were carried out for such systems], the case of the electron impact
excitation of a two electron system (atom or diatomic molecule) is
used. Denote the ground and excited state wave functions for the

bound system as
wi(Fl,rz) and zpf(Fl,?z) (5-2)

[ The subscripts (i, f) can be considered as equivalent to (a, 8)]
respectively, and let the incident electron ("'prior'" form) be denoted
by the subscript 3. The wave functions (5-2) are assumed to have
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the spatial symmetry consistent with the Pauli Principle. In some
cases (when the bound system is a diatomic molecule) the bound state
wave functions will contain other variables. However, without loss
of flexibility, these other variables can be omitted and the wave
functions written as (5-2). Then, according to (2-17) and (4-2), the
scattering amplitude in the (BO) approximation is ("prior' form);
(The letter 7 is used to denote scattering amplifude while T denotes
the transition amplitude. ).

M 2

1200, 8,9) 2 - —5 (n, (T, Fop(Fpl log(ignp(Fp, ), (5-3)

2mh

where electrons 1 and 3 have been assumed <o undergo the rear-
rangement. According to (2-2), when one particle in channel {( = )
is an electron and the other a massive particle, the reduced mass

becomes

meMc 1 My
M, ——— =m_~ —— =m -O(Mc-), (5-4)

¢ (1+M£
(¢}

where m,, M are respectwely the masses of the electron and the

heavy core, Since me/ Mc ~ , (5-3) can be well approximated
by
2
.B? m e
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where the coordinates are identified by the electron subscript.

Transforming from Dirac to integral notation, (5-5) becomes

2

m
BO e 1
I - S (..._)e
f1. ﬁz Ir31

i(Kg ro-K-T.)

Vra, 2y,(1,2)d7 7,47, (5-6)

23

where k0 = ki and k's kf are the electron wave numbers,
Note that in (5-6) (the "prior' form), electrons (3) and (1) are
(arbitrarily) assumed to be involved in the exchange. As mentioned
earlier, this implies no loss of generality since the possibility of
exchange between (3) and (2) can be accounted for by linear combi-

nations of (5-6) containing appropriate coefficients (see Appandix C).

5.1 The Ochkur approximation

The first significant improvement of the (BO)

(33) 1n 1964. Ochkur exhibited

shrewdness when he observed that the scattering amplitude in the (BO)

approximation was made by Ochkur

approximation was not consistent with first order perturbation theory.
Specifically, he noticed that the scattering amplitude contained more
than just the leading term in an expansion of Tﬁo (5-6) in inverse
powers of the incident electron energy (the direct Born approximation
does not contain such high order terms). This fact is contrary to
first order perturbation theory because at high incident energy, where
the scattering potential is certainly a perturbation, only the leading
term in a power series of inverse incident energy should be present.
Consequently, it is necessary to modify the (BO) approximation in
such a way as to be consistent with these concepts,
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In the case of two bound electrons, the appropriate

modification of the exchange scattering amplitude TfBiO
expansion of (5-6) in inverse powers of the incident electron energy.

is found by

If the term with the lowest power of inverse energy is the only one

retained, 7 BO

¢; becomes (see Appendix D for the details)

O _ 2 ¥ 0 - - - iq. rl N —
Tﬁ = - ;{-2 J zpf(rz, rl)wi(rl, r2)e drld ry . (5-17)

The Ochkur modification of the (BO) approximation
does not suffer from the familiar "prior'-"post" discrepancy as can
be seen from (5-7). Even if one considers the core terms necessary
in the (BO) approximation, when the (BO) approximate scattering
amplitude is expanded in inverse powers of the energy, these core
terms are O(k:6) and hence dropped in favor of (5-7).

However, since the presentation of the Ochkur
results, several authors have pointed out that (5-17) is deficient with
respect to some of the more subtle aspects of scattering theory,
These corrections to the Ochkur modification are presented next.

5.2 The Rudge modification of the Ochkur result

Shortly after the publication of the Ochkur modifi-
cation, Rudge pointed out(34) that the Ochkur result is not consistent
with any trial function which satisfies the proper boundary conditions
and is derivable from a variational expression. (35) By the manipu-
lation of a variational expressiori, Rudge obtained an improvement on
the Ochkur result which is (see Appendix E for a derivation of this

result):
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2a ig. T
OR 0 1 *- - - e
Tg = 1/2”2 fe Vg (T, r)uy(ry, To)drydr,y
[a k' - (I/R) (5-8)

where (Ii/ R) is the ionization energy of the initial bound state measured
in Rydbergs, and k' is the wave number of the scattered electron
satisfying

1/2

2_ Zm (W, -W)1 . (5-9)

_[k

Equation (5-9) represents energy conservation, where Wi’ Wf are the
energies of the initial and final states of the bound system. The Rudge
expression (5-8) [ which is labeled by the symbols (OR)] is also
expected to be superior to the Ochkur result since the former is
complex while the latter is not in general., This superiority derives
from the fact that a complex scattering amplitude is a necessary
condition if particle flux is to be conserved. (36)

However, a critical examination of the Rudge result,
(5-8), indicates that it is in error for certain cases. This can be seen
by rewriting (5-8) in the form

- 2a_e ig. r
OR o} . 1 *-
Tg = e [e Yy(Tg, T Y (T, Tp)dTdT,,
ack'® + (L/R) ] (5-10)
where

1/2
, a/RY

6f1 = tan —E;—Er— . (5—11)
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Now the exact scattering amplitude for a collision process (general,
not just exchange) satisfies what is called "microreversibility' or
"detailed-balance!'. (37) This just corresponds to the collision process

running in reverse and is expressed formally as (38)

EMEET N (5-12)
As a result of the form of (5-10), when the final state can be reached
by both exchange and direct excitation, the total amplitude squared
does not satisfy detailed balance. This is because in this situation,
the amplitudes for the direct and exchange excitations are added, and
from (5-10) the detailed balance won't hold since

1/2
4 @Y

aoko . (5-13)

By # 6ﬂ= fan

However, in the case of pure exchange, (the case
of interest here) there is no contribution from direct excitation and
consequently the Rudge result satisfies the principle of detailed
balance.

| The remainder of this thesis will be devoted to the
application of the Ochkur (O) and the Ochkur-Rudge (OR) approximation
in the description of the electron excitation of helium and molecular

hydrogen.,
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II. The Exchange Excitation of Molecular Hydrogen

1. Review of Previous Calculations

Because of the mathematical complexities associated
with the non-central nature of the molecular field, there have bzen
relatively few calculations of electron-molecule collision processes.
Of those reported, a majority(39) have been for the hydrogen molecule
because it is the simplest of the neutral molecules. A brief review of
previous calculations for the exchange excitation of the hydrogen
molecule is as follows,

The first such calculation was done by Massey and Mohr(40)

who considered just the first triplet excitation process (X 1‘2; - D 32:;).
By applying the Born-Oppenheimer (BO) approximation (I-5-1) to
describe the excitation process and estimating the contribution from
the multicenter terms which appear in the scattering amplitude, they
obtained a total cross section which violated conservation of particle
flux, (41) Their predicted maximum cross section exceeds recent
experimental data(42) for the process by a factor of 7, Edelstein(43)
applied variational techniques to obtain the cross section for the

X 12; - Db 32:'1) process. However, no details appeared in his
publication and the shape of the cross section he reported disagrees
markedly with the experimental results. Khare and Moiseiwitsch (KM)
have also calcula,ted(44) the cross section for the process (X 12; - b 32"';)
employing the (BO), the Ochkur (O), and the first order exchange (E1)
approximations. However, (KM) applied the separated atom (SA)
approximation in order to evaluate the multicenter integrals that
appeared. In addition, Khare (K) has completed a calculation(45) for

the excitation of the (b 32;), (a 32;) and (c 3Hu) states from the ground
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state (X'IZ;) using one-center wave functions and the (O) approxi-
mation. These latter two calculations (which are the best to date),
including the effect of the (SA) approximation, will be compared with
the results reported in the present work and evaluated accordingly.

In this thesis, the (OR) theory is used for the calculation
of the total cross sections for the exchange excitation of the first
(b 32:’1) and second (a 32;) triplets from the ground state (X 12';) of
molecular hydrogen, Polarization and higher order effects are
neglected., The effects of the nuclear motions are included and shown
to be important. The resulis are seen to agree well with the available
experimental data. (42) The calculations performed here were done
using exponent-optimized minimum basis set two-center wave functions
for the molecule and include all the multicenter terms which appear in
the scattering amplitude. In addition, three different ground state wave
functions and two different (b 32;) wave functions were tried in these
calculations in order to determine the effect on the total cross sections
of using different approximate wave functions. The calculations were
also done using the (O) approximation, and the (SA) version of the (OR)
and (O) approximations. These latter two calculations, designated
respectively by the symbols (ORSA) and (OSA), are compared with the
(OR) resuits.

The second section of this chapter is devoted to the treat-
ment of the additional complexities in the calculation of the electronic
excitation cross section introduced by the motion of the nuclei. The
third and fourth sections respectively treat the wave functions used
and the methods employed to evaluate the multicenter integrals that
appeai' in the scattering amplitude. The last two sections discuss the
calculation of the cross sections and the quality of the results,
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2. Treatment of Nuclear Motion

2.1 The complete excitation cross section

The electronic excitation of the hydrogen molecule
can be treated as follows.

Let n, v, J, and M be the electronic, vibrational,
and rotational quantum numbers for the initial state of the hydrogen
molecule and n', v', J', M' the corresponding final state ones. The

molecular wave function can be written as:(46)

‘3(31: 625Rs s ®) = ¥ (;13 ;Z;R’ X ¢)S(§1,§2)
(2-1)
- - - - M
1ir(r]_’ rz;R: X ¢) = ll/n( rl’ rz;R)gn\)J(R) YJ (X’ ® )-

Here v and S are the total space and electronic spin wave functions; y,
g, and Y are the electronic-space, vibrational, and rotational (spherical
harmonics) wave functions; 51 s (?l,gl) and 62 z (?2,§2) are the space
and spin coordinate pairs for the bound electrons in a molecule-fixed
coordinate system; R is the internuclear distance; and x, ¢ are the
spherical polar angles of the molecular axis with respect to some space-
fixed axis. In the (BO) approximation, the differential cross section (per
unit solid angle) for scattering of an electron into a given direction aiter
the exchange excitation of the molecule from the initial state i(nvJM) to

the final state f(n'v'J'M') can be written a.s(47)
-ik'. T - 1
3 k!t 1 3% 2asToiR, X, ) ()
Itk 6,0 =—55 | [e o2 0 B
(2m)"a To

O
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2
dr, dr, | (2-2)

ik - Iy R n
e Yi(?l,?z;R,x, ¢) dR dry
where a_ = ﬁz/me2 is the Bohr radius, ?3 and (?‘1,;2) denote the
positions of the incident and bound electrons in a molecular-fixed
coordinate system; s 4 is the distance of the incident electron to
the molecular electron (1); dﬁ, d?j are the internuclear and j15g
electron volume elements; ko, k' are the wave vectors for the
incident and scattered electrons; 6, ¢ are the spherical polar angles
which define the direction of the scattered electron in a laboratory-
fixed system whose z-axis is in the direction of k o and the sub-
scripts i,f denote the initial and final state wave functions, As
mentioned in Section I-5, it is assumed that the core should not
contribute to the excitation process and hence this interaction is
omitted in (2-2). In addition only the spatial dependence is written
in (2-2); the factor of 3 results from having performed the spin
integration [ see Section I-3 and Appendix C].

It should be noted that k' is determined by ko and

the excitation energy according to

1/2

. . 2 2m
k (ko’ 1, f) - [kO = ?(Ef - Ei)] (2'3)

where E Ei are the final and initial energies of the molecule and

f’
(m) is the mass of the electron. Because of the energy degeneracy
of the rotational levels with respect to M and M', k' (for a given

electronic transition) is a function of ko’ n,v,J,n',v', and J' only.,

Substitution of {2-1) into (2-2) gives
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Lk, 8,0)

(0

k'

*
* M!
3?0 | f%n.V,J,(R)Y ¢ X 2) 7 (R) YM(x,qs)R d Rd 0|2,

(2-4)

1nJ

where dQ is the element of solid angle corresponding to ¥, ¢. Tfi is
the electronic scattering amplitude which, in the (BO) approximation,

is given by:

BO
Te (k, 0,0 R,x,8) &

= -

.—) - -
-ik'.r ik .r

1 1 * = - 1 o
Zra, [e Yi(Tg Tg3 R)("F:,:"l) e

3., 7 =,
:,bn(rl, r2,R)dr1dr2dr3.

(2-5)

As discussed in Section (I-5), the (BO) approximation
is not consistent with first order perturbation theory, It was shown
there that a significant improvement might be expected if the (BO)
expression is replaced by the (O) or (OR) approximations, which are

(respectively):
ig- T
2 1 X - ~ - - -
Tfi = - 3 f e z//n,(rl,rz; R)z,bn(rl, To; R) dr1 dr, (2-6)
00
: 2a ia-?
(o] . 1 % - - — Ead . -~ —
T = 2 Je Y (1 TRy (ry, roiR)dr dry

' 1 2
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where
q:zk -k (2-8)

is the momentum transferred to the bound system; In is the ionization
potential of state n, and R is one Rydberg. Note in passing that, as a
result of the Born-Oppenheimer separation of nuclear and electronic
motion, the electronic wave functions depend only parametrically on
the nuclear coordinates.

Given the hydrogen molecule wave functions, and for
a particular choice of 7, i (2-4) represents the differential cross
section for the excitation process i(nvdM) - f(n'v'J'M'). However,
since electronic excitation is the primary interest here, some of the

nuclear motion will be averaged-over in (2-4),

2. 2 Rotationally averaged cross section

Under most experimental conditions, the target
molecules are not all in the same quantum state. For the case of
molecular hydrogen at temperature T (around room temperature)
essentially all of the molecules are in the ground electronic and
vibrational states, but many rotational states are represented, their
relative populations being determined by the Boltzmann distribution
for this temperature, Furthermore, as a result of electron impact
on a molecule in a given initial rotational state, several rotational
states of the electronically excited molecule can be produced. These
various rotational states can be accounted for as follows. Define the

rotationally averaged cross section as



IE.\:) (kO’ 8,%; T) = < Ifl'lv\&M(kO: 6, CP)>T (2- 9)
where
J'ma,x dJ’
Inn\)\jTM(ko’ ;) = Z Z, Ii (ko’ 8,9) . (2-10)
J'=0 = J'

The averaging indicated by the angular brackets of (2-9) refers to a
statistical-mechanical average over initial rotational states J, M, the
weighting factors being the Boltzmann populations of those states at
temperature T. The double sum over J' and M' in (2-10) extends
over the accessible final rotational states for given initial and final
electronic and vibrational quantum numbers n, v, n', v' and a given
initial wave number k o J ymax is the maximum J' for which k', as
given by (2-3), remains real. Therefore, it depends on ko, n, v, d,
n', and v',

Next, show how Inn\')v’ can be determined, K Gj(u)
is any complete orthonormal set of functions of a variable u (which
may be multidimensional) and F(u) is any function of u, the following

expression is valid:

Z | je’j",(u) F() Gy(v) du 2 = [ 7@ G].(u)lzdu. (2-11)
]'

This property is easily proven by expanding FG] in the right side of
(2-11) in terms of the G Applying (2-11) to the particular case in
which G is YM(X, ) furnlshes
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© J' "
_ , .
YL Yy G e)F(x9ae |
J'=0 M'=-J'

= [1 Y )12 [F(x,0) 2 a0, (2-12)

Substitution of (2-4) into (2-10), replacement of Tﬁ by the quantity

n'v' . . o fex n'v' 2
Tnv defined below, and use of (2-12) with F = I gn,v, Tnv gan dR
furnishes:

1,1 3Ev
I.E\)\SM(kO’ e,CP) = "E_ | j‘ n'\)'( )Tnv (k e » P ,X’ )
0
0 R
2 2 M 2
e ® B2 ar® 1) (002 an. (2-13)

Here, k' (ko, n, v, J, n', v') represents some mean value of k'(ko,

n, v, Jd, n', v', J') over the accessible J'. The scattering amplitude
Tﬁ depends on J' through k'. Because of their small mass, electrons
are not effective in producing rotational excitation., Therefore, the
change in the wave number of the incident electron due to rotational
excitation is negligible compared to that due to electronic and vibrational

excitation. As a result, k' should deviate very little from

-E_)1V/2 (2-14)
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where the energies Env and En'v' do not include rotational contri-

butions. Since .’Z’fi is not a very rapidly varying function of k',

Tﬁ(k') can be replaced by Tlrll;\)' = Tﬁ(k") to a very good approxi-
mation., This quantity is not a function of J or J' and depends on

v and v' only through k", To get (2-13), the sum over J' in (2-10)
was assumed to extend to infinity, The justification for this assumption
is that, for the reasons just stated, lf is expected to be negligible for

J' very different from J, Therefore, the additional terms introduced

in going from J' to = should be negligible. On the same basis,

max
since only relatively small values of J and J' are being considered,
the radial wave functions Sty Jy(R) and §m} J(R) were assumed to be
independent of J' and J, respectively,

Substituting (2-13) into (2-9) and using the sum rule

for spherical harmonics gives the result

3(k")
to,y,! T . %k * ty!
1?1\)\) (kO’ B,CP; T) = """-E”—"' f I J [Rgnvvv(R)] Tg\)\) (k09 63@; R’X: ¢)
)
Q R
2 da
[R%n\)(r)] dR| = (2-15)
where
-Ean/kT__
T (2T + 1)e .k'(ko, n,v,dJ,n',v'")
(K p =2 - : (2-16)
£ (23 + 1)e nvd

J
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To a first very good approximation, (k') T Can be replaced by the
quantity k' defined by (2-14), for the reasons given above, This
substitution is even more reasonable if the incident electron beam

is not monoenergetic enough to resolve rotational transitions, which
is the usual case in the experiments performed to date, The resulting
expression for the differential, rotationally averaged, excitation cross

section is

! 3k n %k !

Iy &89 = T [ | [[Re @1 70~ (k_,0,9; R,x, 9)

o
Q R

[Re, (R)Z B . (2-17)

As a result of the replacement of (E'}T by k", the temperature (T)
has been dropped as a variable in lﬁ;\)' .

In (2-17), v', the quantum number for the vibrational
level of the excited state, is implicitly assumed to be discrete. How-
ever, if some of the symbols are redefined, this equation still holds
when v' is continuous, i.e., when En'\)’ - En,0 is larger than the
dissociation energy of electronic state n' or when that state is a
repulsive one. In such cases, Inn:)v' dv' represents the differential,
rotationally averaged, excitation cross section from state n, v into
any state in the range n', V' to n',v' + dv'. In addition, the radial
wave function RE 'y .(R), which now represents a state in the continuum,
is assumed to be normahzed according to(48)

@ vl
11m0 [= J | J RS R)dv"l dr]=1. (2-18)
0 vV
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It should be noted that (2-17) states that the
differential scattering cross section Iﬁ;\)’ for excitation from state
(nv) to state (n'v') can be obtained by assuming the molecular axis
fixed at some orientation {(x, ¢), averaging the electronic transition
amplitude TIIII'VV' over the vibrational wave functions (§ nv and §n,v,)
and then performing an angular average on the square of this quantity
over all possible orientations.

It is customary to introduce an additional approxi-
mation(49) into (2-17) by assuming that TE;V'(R) is a very slowly
varying function of R and replacing it by its value at the equilibrium
internuclear distance Re(nv) of the (nv) initial state. As will be seen
in Section 5. 2, 2, this approximation is not always justified, However,

it significantly simplifies (2-17) to

1"t tag! Tt 2
2 g 0,00 = 2 2 (7R, M) (2-19)
o)

where

2 dQ (2-20)

1,1 2 . y!
('.T?l\:)(R)l Jlfgvv(k 6, ®; :X?¢)‘

is the average of |Tnv\) 12 over all orientations of the internuclear

axis and

o'y ®1 [RE_ (R)] dR| (2-21)

111
oLﬁa
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is the Franck-Condon factor for the (nv) - (n'v') electronic-vibrational
transition. The quantity (|77 ” '(Re(n"))]2> is a function of the
transition (nv) - (n'v'), the incident electron wave number k, and
the scattering direction only.

_ The total cross section for the (nv) - (n'v') transition
can be obtained by integrating (2-17) [or its approximate equivalent

(2-19)] over all scattering angles:

n'y' _ n'v' .
oy k) = j I, (& ,0,9) sin ededy . (2-22)
9,
The total electronic excitation cross section from

the initial (nv) state to all accessible vibrational states of the excited

electronic state (n') is given by
onY k)= Scn'v'(k ) dv! (2-23)
v 0 nv o)

where S is a Stieltjes integral used to represent a sum over the
discrete values of v' plus an integral over its continuum values which

are energy-wise accessible in the sense that k”z >0,

3. Molecular Wave Functions

The wave functions used in calculating the excitation of
H2 from its ground electronic vibrational state (X 12;; v = 0) to its
first and second triplet states (b 32:; and a 32';, respectively) are

described in this section, For the ground state, three different

(50a)

approximate wave functions were used: the two-parameter wave

function of Weinbaum(sob)



57

V(T 5 Ty) = N, [(1si(1) 15123(2) + 1si(2) 1s§(1))

+ C (1si(1) 132(2) + 13123(1) 15123(2) )1, (3-1)

the valence bond wave function of Wang:(soc)

Wo(T 1, Tg) = N [lsi(l) 1s5(2) + lsi(Z) 1s5(D1 , (3-2)

and the simple molecular orbital wave function of Coulson:(SOd)

Vo(FqsTy) = N [(Is3(1) + 1s§(1) - (1s5(2) + 1s5(2))]. (3-3)

For the first triplet state (bSZZ) the two-parameter wave function of
(51a)

Phillipson- Mulliken was used:
(T, Ty = 75 {9, 0,@) - @) o (1}
3712720 T 2 g u g u (3-4)
where
2y %
Pg = Ng(lsA + lsB ) (3-5)
and
Z Z
- 2 2. _
Py = Nu(lsA - lsB ); (3-6)
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and the less accurate Hurley(51b) two-parameter wave function
Z
Vglry ) = Ng [1s%,(1) 1s5,2) - 183,() 153,01, (-7

where the centers A', B' are permitted to be displaced from the

nuclei A, B, the displacement being the second variational parameter
which, however, turns out to be practically zero for this state. Finally,
a two parameter Hartree-Fock function was calculated for the second
triplet state (a 32;) using computer programs furnished by Prof. W. A.
Goddard of the California Institute of Technology. The form of this

function was:

- - 1
U(Fg,Tg) = 75 {01, (1) 95,(2) - 0 (2) @y (D} (3-8)
where
24 )
cPlg = ng(lsA + 1sB ) (3-9)
and
Z 4 Z Z
_ 2 2 , 1 1
Pog = Nzg(ZsA + 2SB) - N 1g(lsA + lsB) . (3~10)
—zrjX/ao

In Egs: (3-1) through (3-10), the symbol 1s%() = e stands
for a 1s atomic orbital for electron j(= 1,2) centered on nucleus

: -zr,./a
X(= A, B) with screening parameters; and ZSX(J = e JX'70i4ga

similar 2s Slater atomic orbital,
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To perform cross section calculations, it is
necessary to know the molecular electronic wave functions of the
ground and excited states as well as the vertical excitation energies
from the ground to the appropriate excited state as parametric
functions of the internuclear distance R, In all cases, considered
in this paper these parametric functions varied quite slowly over the
pertinent range of R determined by the classical turning points of the
ground electronic vibrational state (1. 20 a <R<L167 ao), and it
was possible to use, with a high degree of accuracy (error < 3%),
polynomial representation of this R variation obtained from least
squares fitting to values calculated for a few R values., The R
variation of the screening parameters for the first triplet states

(51a, b) while for the ground states the

were found in the literature,
R dependence was obtained from unpublished work. (502) The R
variation of the parameters for the second triplet state was determined
in the calculation of the wave function. The values used in determining
the R variation of the excitation energies were taken from theoretical
calculations of the potential energy as a function of the internuclear
distance for the ground and the two excited triplet states. (52) Figure

1 illustrates the potential energy curves for these and some additional
singlet states. The classical range of R variation and the Franck-
Condon region are indicated by the shading.

In Table I are summarized some of the important
parameters for the wave functions used. The last column gives the
variationally determined energy at Re =1,40 a o Included in this table
is a listing of the R variation of the screening parameters and

normalization constants for the wave functions used.
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4, Evaluation of Multicenter Integrals

The scattering amplitude Tﬁ ( (O) or (OR) ) was calculated
for fixed ¢, R, and orientation (x, ¢) in the following manner. When
the two-center molecular wave functions are inserted into Egs. (2-6)
or (2-7), two- and three-center one-electron integrals appear. The
two-center integrals can be performed analytically while the three-
center ones require numerical evaluation., The general form of these

three-center one-electron integrals is

I= NpNt Ielq "1 riAp'l e “1a rlBt-l e “*1B d;‘l (4-1)
where p,t = 1,2, Np and Nt are the normalization constants for the
corresponding atomic orbitals, ry is the position vector of electron 1
with respect to the center (0) of the molecule, TiA and r,p are the
distances of this electron from the nuclei (see Fig, 2), and z, z' are
the screening parameters of the atomic wave functions considered,

These integrals are evaluated by expanding the plane wave as

ia’-}’l

co *
e = 4 z
=0

i*y,(ar) Y @ Y@ (4-2)
-4

DT

i

m

where j B is the spherical Bessel function of order 4, Yin is the spherical
harmonic and § and ?1 are the unit vectors in the Zi and ;1 directions,
The atomic orbitals are expanded in Legendre polynomials about the
center of the molecule according to the zeta function expansion(53)

which for the wave functions used in these calculations takes the form:
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-1 TFNhx ©
r’T e Z (2u + 1) P (cos 8 P p’u(z, ry; R/2) (4-3)

= u=0 ( )1

where (rl, 91) are the coordinates of the electron measured from the
diatomic center as indicated in Fig. 2; rlj is the distance of the
electron from nucleus j = A, B; P is the Legendre polynomial of

order u and gp’u is the zeta functmn.( 3) Although the integrals I

of Eq. (4-3) can be reduced to two-center integrals about the nuclei,

an expansion about their midpoint has the advantage that it enables the
averaging over all orientations of the molecular axis to be performed
easily and without any great increase in the complexity of the numerical
work, When the expansions are inserted into this equation, one obtains,
after choosing the laboratory-fixed z axis along a and performing the
integration over Pq the following:

I= z (2%+1)(i)LP£(cos X)Z Z NpNt(—l)u'(2u+1)(2u'+1)IjL(qu)
=0 u=0 u'=0

, 2
u(z, ry; R/2) gt’u,(z yTq5 R/2)(5-1—§) P%(cos 81) Pu(cos 61) Pu,(cos 81)

2. . s N D%, -
2rrydr, sin 91d91 z Z (22 +1)(5) P’L(cos x) Zt,z'({" q,R) . (4-4)
£4=0
Equation (4-4) serves to define the quantity Z,f’zz, as used in these
b

calculations.
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The three-center scattering integral program for Eq. (4-1)
was developed.using the methods just described. X was generated by
modification of a three-center energy integral program kindly supplied
by Prof. R. M, Pitzer of the California Institute of Technology. In the
actual computation the terms for each £ in Eq, (4-4) decreased rapidly
in magnitude with increasing ¢ so the series was truncated after ¢ = 2,
The error due to this truncation is less than 5%. For fixed g, R, and
X, each Z,E’ZZ, function can be evaluated with 5 or 6 decimal place
accuracy in about 7 seconds on an IBM 7094, This includes an inte-
gration over 9, using the recursion relations of the P functions and
a numerical integration over ry by a Gauss-Legendre mtegratlon (53)
Some of the details of these numerical methods, including a listing of
this modified three-center program, is given in Appasndix F,

5. Method of Calculating Cross Sections

Total cross sections for the exchange excitation of the
hydrogen molecule from the ground state (X b ) to the first (b 4 )
and second (a st ) triplet states have been calculated The (OR) and
(0) approx1mat10ns to the scattering amplitude T b [Egs. (2-7) and (2-6),
respectively] have been used, the necessary integrals, including the
three-center ones, having been evaluated as indicated in the previous
section. Even though the (OR) approximation is superior to the (O) one
(see Section I-5 and Appendix E), calculations with the latter were also
performed for comparison with the (OR) results since this (O) approxi-
mation appears frequently in the literature, The difference in compu-
tational efforts between the (OR) and (O) approximations is very small,
since they differ only in the energy dependent factors which appear
outside of the integral in the expressions for the corresponding

scattering amplitudes.
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In addition, the calculations were repeated using the (OR)
and (O) approximations with the separated atom (SA) approximation to
the scattering amplitude, This latter approximation, introduced by

Khare and Moiseiwitsch, (54) consists in neglecting the two- and three-
f

V
Vv
infinitely separated. Except for this, the molecule is treated as if the

center integrals in the expression for Tg ' as if the two atoms were
nuclei were at a finite distance, R. Although this (SA) approximation
greatly simplifies the calculations by eliminating the need to evaluate
the difficult three-center integrals, there seems to be little physical |
justification for it, as shown in Section 6. 2. However, since such an
approximation has appeared in the literature, the cross sections were
calculated using it for comparison with the complete calculations,

5.1 Electronic scattering amplitude

Using the wave functions described in Section 3, the
(OR) and (O) scattering amplitudes for the transition from the ground
vibrational-electronic state (Xlzg) to the first (bBZ;) and second (aSZ;)
states are given respectively by

1 1/2 . . . R
Tv'( ) = / naoNoNgNu(1+C)sF(ko,k')1[H1 sin(g Ecosx)- 6M1 cosx]( |
5-1

(2) _ 51/2 : R )
'Tv' = 2 naoNongNzg(hC)eF(ko,k )[H2 cos(q 5 COS X)+2K2 10L2P2(cosx)].

(5-2)



In the expressions above the laboratory-fixed system of coordinates
was chosen so that its z-axis is parallel to ?i With this choice the
values of Tv ,(1) and Tv,(z) are independent of ¢, which is now the
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angle of rotation of R around q. The new quantities in (5-1) are
defined by (5-3) through (5-7) and those in (5-2) by (5-8) through (5-13):

Hl(q’ R) =

W, (R)

v(R)

B(R)

tH

M,{q, R)

H,(q, R)

W,®)

16(z+ zz)

[(z+ zz)2 + (aoq)zli‘2

y(1-C)
B(I+C)

3 Z Z - 3 Z 2 -
ag [1s}(ry)) 1SA2(r2A) dry-ag [18] (ry,) Isgr,p) o7,

3¢, 2 Zq S 3.z, h A =
a_ JlsA(rZA) lsA (rzA) dr2+ a J 1sA(r2A) lsB (rZB) dr2

ZZ

16(z+ Zl)

[ (z+ zl)f+ (aoq)zj2

&
€

+ W

16(z+ zl)

' lerz)? + (a 0%

Z

(1-q,R)+w T (1; q, R)
( 7 1(z 372 1

1603(z+2,)° - (a_)°]

[(z+ zz)2 + (aoq)2]3

(5-3)

(5-4)

(5-5)

(5-6)

(5-7)

(5-8)

(5-9)
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3 z - “ 2
a(R) =a_ fls z(rzA) 1sA1(r2A) dr2+ ai flsZ(rZA) 1SB1(1‘2B) dr2 (5-10)
_ 37,2 Zz( > 3¢,z Zz( -
e(R) =a flsA(rZA) ZSA rZA) dr2+ a_ ur 1SA(I‘2A) ZsB r2B) dr2 (5-11)
1,z 2 1/2
= m A P 3 1,z ..
Kz(q’R) - 379 Zl Z (0; a, R) - WzﬁT-SR Zz Z (0: a, R) (5‘12)
(zzl) ’ . z z, 192
L(q,R) i zl’zl(z R) - W 3n? )12 z1:% (2.4.R)  (5-13)
GR) =~ ;0,R) - Wy (3¢ ', (250,R -
2 (zz,) 1,2 ’ 2 523zg? 2,29 77
The quantity F(.ko, k') is defined by:
1 ; 1
OR): F = (O): F = (5-14)
[a k' - (1/R)" 2112 a?oko2

where Io = 15, 279 (eV)(52a) and the value of C depends on which
ground state function is used, It is 0 for the Wang function, 1 for
the Coulson function, and given in Table I as a function of R for the
Weinbaum function, The quantities Hy, Hy, o, B, v, €, Wy, and W,
- depend on R due o the dependence of the molecular wave function
parameters on this quantity, as indicated in Table I,

As seen in Section 2, 3 [(2-19)], it is also useful to
calculate the quantity <|TV$3)(R)| 2>. This can be done using the above

equations and gives:
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12

13
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(sin? ( %?—' cos x)) =

2
K2®
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| P(e_, k)| 2[H2

36, ,2

1@11' - 1M1@1z ‘2M1®13

(5-15)

(5-16)

)2 a2 4
lF(k )] 2 Hy®gp+5 HoKy 89y -
100 . 2
24*;71“2@25] .

(1/2)1 - sin L)

<sin(32f—{cos x) €os x) = (qR) (sin

(cos2 x> = 1/3
(cos (

(cos (% T cos x)) =

R os x)) = (1/2)(1 + sin

qR
s1n p)

aR

2

qR

)

- S-]‘--l:ECOS

qR)

1 result from the orientation averaging process and

(5-17)

(5-18)

(5-19)

(5-20)

(5-21)
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Ogq = {cos ( %R— cos y) Pz(cos X)) = 3( -dgﬁ)z cos 925 +
2 24,2 . aR
8,, = (P2(cosy)) =1 (5-23)
24 " “p X
Dps = <p§ (cos x)) = 1/5 (5-24)

The actual calculations were done using atomic units throughout (see
Appendix B),

5.2 Excitation cross sections

To calculate the total cross sections for the electronic
excitation processes of interest we must evaluate the gquantities defined
by (2-17), (2-22), and (2-23). It is convenient to consider the two
triplet state excitations separately., [The details of the numerical
techniques, including listings and error checks for the important
programs used in this section are given in Appendices F and G. ]

5.2. 1 Xlz'; - bsz; excitation

The first triplet state (bsz;) is a non-bound one.

0

Let its continuum vibrational wave function be ggl,)(R) and let §g )(R) be
the v = 0 vibrational wave function of the ground electronic state,

According to (2-17), the following quantity must be evaluated:
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2

(5-25)

1, 0,055, 9) = | J CRe ST 2 e, 0,058, x, o0 ey e

Similar type quantities for H2 have been
considered in the past(55) in connection with spectral intensities in
32:’1 state. As above, this
was a discrete to continuum state transition. The integrals in question
involved either the product of the radial wave functions alone(éssf;) or
In

either case it was shown that these integrals could be evaluated with

optical emissions from the a3g; tothe b

this product times the electric dipole transition momentum.

good accuracy by substituting the radial function of the continuum state
by a delta function at the classical turning point for the transition energy
being considered. We will use here the same approximation and replace
rRs W®) n (5-25) by As® - RY):

2

3 < a2 178 6, 0r Yy, 6) R RWY) (5-26)

In this expression, A is a proportionality constant to be determined as
indicated below, R 1 is the classical turning point, and is depicted in
Fig, 1, It is a function of the excitation energy El’ determined by the

relation
V(l)(R(l)) = El = ES)];) - E(()O) (5-27)

where E(()O) is the energy of the ground vibrational-electronic state
and E 5)1,) that of the v' level of the first triplet state. v . V(l)(R)
is the equation for the potential energy curve for the first triplet state,
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measured with respect to the ground vibrational-electronic state,
Therefore, the function R(l) = R(l)(El) is simply the inverse of the
function V(l) = V(l)(R). Since (5-27) relates v' and El’ either of
them can be considered as the variable which defines the continuum
vibrational level under consideration. We shall use them inter-
changeably. _

The proportionality constant A can be evaluated
from the condition that replacement of Rg(l,)(R) by AS(R - R(l)) should
also furnish a very good approximation(55 ) to the Franck-Condon

factor

gf,l.)s [ [Rg\()l.)(R)]* [R§(()O)(R)JdR|2 : (5-28)
0

Expanding the normalized square integrable function RE go)(R) in terms
of the complete orthonormal set of wave functions RE E)I,)(R) and using the
orthonormality properties of such continuum functions, 46) it is easy to

prove that

[ g\()];)dv’ =1, (5-29)

Introducing into (5-28) the &-function substitution just mentioned, and

requiring that the approximate gil,) which results still be normalized

according to (5-29) furnishes

@

A=t ®Om)Le®e )2 1t (5-30)

D
o



71

where D o is the dissociation energy of the Xlz‘; state measured from
its lowest vibrational level.

Substitution of (5-26), (5-27), and into (2-17)
furnishes for the rotationally averaged differential cross section per

unit energy range:

1k, 0,00 = T 2B ) ( MhrDE )13 (5-31)
[8)
where
PP,z 1412 P ey s OrDE )1 2 (5-32)

satisfies the normalization relation

J”]: P(l)(El) dE, = 1 (5-33)

0
as can easily be seen from (5-30). In addition to depending on the
excitation energy E, (and hence v') through R(l) , the quantity

(|T 51,)[R(1)(E')] | 2) [defined for arbitrary R by Eq. (2-20)] is also
a function of ko, 6, and o,

The product Régo)(R) is well represented by a

(57)

ground linear harmonic oscillator wave function, which was used

in these calculations:

1/4

relOm) = (4) e (-4 ®-RYY . (5-34)
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Here, u=18.4 a 2, and R the ground state equilibrium internuclear

distance is 1, 40 a, (57) The range of R for which this wave function
contributes non-neg11g1b1y to the total cross section 0( )(k ) is
relatively small. Over this range, (5-27) can be represented to
within 3% accuracy by

E1 = a(l) - b(l) R(l) (5-35)

where a(l) = 21,01 eV and b(l) = 17,40 eV/ao.
Substitution of (5-31) into (2-22) furnishes

oWy = T oW ) [ (B rD(E )1)%) sinbavde.  (5-36)
0

Although (IT&I,)[R(J‘)(EI)]I% depends in
principle on both 8 and ¢ it can be seen from (5-15) and (5-17)
through (5-24) that this dependence occurs through the quantity q,
which according to (2-8) and (2-14) depends only on 6:

= [k(z) + k"2 - 2k0k" cos 8 ]1/2 . (5-37)

Therefore, the integration over ¥ results in a multiplicative factor
2 whereas the integration 6 can be easily calculated by changing fo
variable q. Since, from (5-37)

sin 6dg = %—d%ﬂ (5-38)
:
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(5-36) becomes

qmax(El)
2 1) (15 (1) 2
o) = & Bl &) [ (rVRYEDIZ adq (5-39)
% q.. (E)
min' 1

where

UpinEq) = K, - K'(E,)

(5-40)

qmax(El) = ko + k"(El) .

The quantity P(l) (E) was calculated from
(5-30), (5-32), (5-34), and (5-35) whereas (IT\()I,) | 2y was obtained
from (5-15). The most convenient method of evaluating numerically
the integral over ¢ in (5-39) is to perform a Simpson integration
taking advantage of the fact that as the incident energy increases,
qmin and qma.x monotonically decrease and increase, respectively.
Therefore, it is convenient to start at the lowest desired incident
energy and for each new energy value just add the contributions of
the two new integration regions to the integral which has already
been célculated. This is the method adopted here,

Finally, the total cross section 0(1)(k0) for
excitation from the ground vibrational-rotational state of H2 to all
vibrationally accessible levels of the first triplet state by electrons
of initial energy Eo = hzk(z)/Zm can be obtained by substitution of
(5-39) into (2-23), and use of E1 rather than v' as the vibrational
state label. The resulting expression is:
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(1) 6 "o (1) Upax*1 (1)(1) 2
o (k)=-——g f PY(E,) J' (JT5RYIEL)D)| ) qdg| dE,.
o) 1 v 1 1
k0 D0 | qmin El
(5-41)

It is convenient to change integration variables from E 1 to R(l)
through (5-27) [and specifically (5-35)]. The resulting expression

1S:
4 ax B .
M= 1 Wmey| | qrWm)? g g ar
ko R(Eo) min(R)
_ (5-42)

where the superscxjipt on the new integration variable has been dropped.
The integral over R in this equation was performed by a three-point
Gauss- Hermite quadrature(58) to 4 significant digit accuracy.

1

3
5.2.2 X'z -~ a
g

Z; excitation

The second triplet state is a shallow
(dissociation energy of 2, 91 eV) bound state which has a minimum
at Ré2)= 1.864 a o It has 16 bound vibrational states and no
continuum states whose left classical turning points fall within the
Franck-Condon vertical band depicted in Fig, 1. In principle, the
calculation of the total cross section for the excitation of this state
[according to (2-17), (2-22), and (2-23) requires inserting expressions
for the £
integration over R, Then the absolute value of the result obtained

and § 5)2,) vibrational wave functions, and performing the
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must be squared and averaged over all possible orientation angles of
the molecular axis. This process requires very extensive numerical
work in view of the large number of vibrational states involved, but

is unnecessary within the scope of this paper, since only the total
electronic excitation cross section as defined by (2-23) is desired
here. Instead of using (2-17), two approximate methods were used. In
one of them, (2-17) was replaced by (2-19). The validity of this
approximation is discussed later in this section. The total excitation
cross section which results from (2-19), (2-22), and (2-23), after
making the change of variables defined by (5-37), is

!

. AoV
o ’(ko)=§-;l5g§2.) | )<1Tf,?’(Re>|2> adg | dv'  (5-49)

1
o min(v

where Re is the equilibrium internuclear distance of the ground
electronic-vibrational state, and 1% and Uax 2T€ defined by
(5-40) with v' replacing E, (IT | %) was calculated using (5-16).
For each incident energy Eo = th o/ 2m the integral over q in (5-43)
was calculated for all of the allowed v' [for which k", defined &3)7

(2-14), is real]. The corresponding Franck-Condon factors g1

(59)

section obtained by performing the sum over v' indicated in (5-43).

were calculated by numerical integration and the total cross
Because these Franck-Condon factors decrease rapidly with increasing
v', essentially all the contribution to o( )(k ) comes from the first 8
vibrational levels (v' =0, -+, 7). In addition, contributions to c( )(k )
from continuum values of v' were neglected since the corresponding

(2)

values of g 1 are very small,
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The assumption used to derive (2-19), and
hence (5-43), was that Tﬁ\')\" was approximately independent of R
over the important range of R as determined by the ground vibrational
state. To test this assumption the quantity (IT\()z,) (R)|) was calculated
for different values of the momentum transfer q, by using (5-2) and
(5-8) through (5-13). It was found to vary linearly over this range
of R with a slope that decreased rapidly with increasing q. From
these considerations, the error introduced in this approximation is
expected to be largest in the threshold region where it might be as
high as 15%. Above 20 eV incident energy, the error associated with
this approximation is estimated to be less than 8%.

An alternate approximation to (2-17) was used
which is much faster computationally while still giving essentially the

same total cross section as (5-43). This approxnnatmn consists of

replacing the function Rg( ) (R) by a 6- function at the classical turning
point of the v'-state in a manner analogous to that done for the first
triplet excitation. The total cross section for excitation of the second
triplet is then given by expressions analogous to (5-42), (5-32), and
(5-30), with the superscript and subscript (1) replaced everywhere by

(2). In particular, the expression corresponding to (5-42) is:

@)
R
max
(2)(1:) Gﬂf (2)[E2(R(2))] f <|T£2,)(R(2))|2> qdg
k ( )(E ) qmin(R(Z))
dE
(- —gy) ar® (5-44)

dR
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Although this is a rather drastic approximation, especially for small
v', it does not assume that Tf}z,) is independent of R, as the previous
method did.

Over the region of R of importance, the
counterpart of (5-35) was obtained by a least squares fit to the
potential energy curve for the second triplet state as calculated by
Waketield and Davidson, 929 yielding (to within 1%)

E, = a? . @R, @42 (5-45)

where 2 = 20,22 ev, b = 7,48 eV/a_, and c'?) = 1.44 eV/al.
A comparison of the total electronic excitation
cross section obtained from (5-43) and (5-44) is given in Table II for
a few energies in the threshold region. The total computing time
necessary to obtain the cross section by (5-44) was 125 minutes while
that using (5-43) was 350 minutes. Therefore, the 6-function method
is faster than the Franck-Condon one but the results are equivalent,
For this reason, all other calculations done for the second triplet
state used the faster method. The good agreement of the two methods
could be due in part to errors of the same size and in the same
direction in the two different approximations, More likely, it is a
consequence of the fact that the general behavior of the total electronic
cross section is determined primarily by the parameters of the
electronic states involved. In other words, the range of excitation
energies due to excitation of different vibrational states is relatively
small and hence the integral over q varies slowly over the range of

v'. The distributions g\()z,) and P(z) (Ez) are both normalized:
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TABLE II. Comparison of §-function and Franck-Condon methods

Total Cross Section 0(2)(Tra§)

Incident Energy é-function Franck-Condon
EO(eV) (5-44) (5-43)
11, 90 . 0072 L0117
12, 30 . 0376 . 0418
12, 70 .0710 . 0841
13,43 . 1312 . 1321
15,00 . 1783 . 1787
18, 00 . 1602 . 1634
Computer 125 350

Time (min)
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S e gy = 1 (5-46)
\)'
and
J‘P(z)(Ez)dEz = ZP&Z,) =1 (5-47)
\)Y
where
Ez(v'+1)
pl2) - [ 13(2)(132)dE‘2 i (5-48)
v EZ(\)')

These relationships can be proved in a manner analogous to that used
to verify (5-29) and (5-33). In addition to being normalized, gf)z,) and
P\()z,) have approximately the same shape, as can be seen from Fig, 3,
Therefore, the result of Stieltjes integrating over v' (or Ez) is relatively
insensitive to the details of the v' dependence of cf)?:) (ko)'

As for the first triplet, the integration over R

in (5-44) was performed by a Gauss- Hermite quadrature, (58)

6. Results and Discussions

6.1 The effect of different approximate wave functions

Fig. 4 shows the effect on the calculated total
excitation cross sections of using different approximate wave functions
for the ground state of the molecule. Only the results using the
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complete (OR) approximation are illustrated since the (O) curves
show the same relative differences. I can be seen from this figure
that the first triplet cross section is quite sensitive to the choice of
the ground state wave function while the second triplet one is not,
which is at first surprising. In addition, the relative magnitude of
the first triplet cross section does not change monotonically as the
quality of the ground state wave function is improved. Indeed, in
order of increasing quality (from an energy criterion viewpoint), the
ground state wave functions are Coulson, Wang, and Weinbaum, but
in order of inci'easing relative cross section they are Coulson,
Weinbaum, and Wang, This suggests that the relative sizes of two
cross sections calculated from two different ground-state wave
functions depends on properties of the wave functions other than
those optimized by the energy minimization. This is indeed the case
and both the relative magnitudes and ordering of the calculated cross
sections can be qualitatively understood as follows. From the
expression for the scattering amplitude Tﬁ [ (2-6) or (2-7)], it is
seen that the effect of the electronic wave functions on the excitation
cross section is entirely contained in the one-electron overlap charge

density defined as:
! - % - - —_ — -
pam(T13 R) = [0 (F,T9; R) ¢, (F(,T9; R) dT,. (6-1)

Therefore, any change in the ground state wave function also produces
a change in the overlap charge density. The nature and magnitude of
this effect is expected to depend on the symmetries of the ground and
excited state wave functions.
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Consider the excitation to the first triplet state.
The ground and first triplet state wave functions are both symmetric
with respect to reflection of one of the electrons (electron 2, for
example) through a plane containing the internuclear axis. However,
the former one is even with respect to inversion of one electron
through the center of the molecule whereas the latter one is odd.
Therefore, the plane pasSing through the origin and perpendicular
to the internuclear axis is a one-electron plane of symmetry for the
ground state function and a nodal plane for the first triplet state. The
effect of this nodal plane is to reduce the contribution to p of spatial
regions of the ground state wave function close to it, i.e., of regions
for which [zy| is small (Oz being the direction of the internuclear
axis). As a result, the relative importance of the spatial extent of
the ground state wave function in the x and y directions is greatly
reduced whereas the contribution to p from regions of large lzzf is
relatively enhanced. Consequently, slight differences in the z-
direction tails (outer regions) of different ground state wave functions
will have their effect on p amplified by this nodal plane, and
appreciable differences in the resulting cross sections might be
expected, as is indeed found to be the case. From these arguments,
the ground state wave function with largest extend in the z-direction
might be expected to give the largest excitation cross section since
the region in which p is appreciable has then the largest spatial
extent. Table III contains the values of the second-order moments
of the ground state charge density of the hydrogen molecule as
calculated for the three ground state wave functions used and as
determined experimentally, As suggested by these qualitative
considerations, the relative ordering of the values of (zz> for the
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three ground state wave functions used is indeed the same as the
relative ordering of the magnitude of the corresponding cross
sections for excitation to the first triplet state.

In the case of excitation to the second triplet, the
excited state wave function has the same one-electron symmetry
characteristics as the ground state wave function, that is, no one-
electron nodal planes. As a result, the second triplet wave function
does not strongly emphasize the importance of the ground state wave
function along any one axial direction over the other two, Con-
sequently, the relative differences in pnn,(;l) as calculated for
different ground state wave functions is expected to be much smaller
than in the first triplet case, and the resulting cross sections are
expected to be much less sensitive to the choice of ground state wave
function. Fig. 4 shows that this is indeed the case.

The cross section for excitation to the first triplet
state was also calculated using the best (Weinbaum) ground state

(51b) wave function for the excited state.

wave function and the Hurley
This excited state wave function is much less accurate than the
Phillipson- Mulliken one {from an energy standpoint) and from the
above arguments should predict a significantly different cross
section. This is indeed the case as shown in Fig. 5 which illustrates
the first triplet cross section as calculated using the Weinbaum
ground state and the two different excited state wave function, in the
complete (OR) approximation. The large discrepancy between the
two curves further serves to indicate the magnitude of errors which

can result from the use of excessively inaccurate wave functions.
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6.2 Comparison of Ochkur, Ochkur-Rudge, and

separated atom approximations

Fig. 6 shows the theoretical cross sections for
excitation to the first triplet state from the ground state as calculated
in the complete Ochkur-Rudge (ORC), complete Ochkur (OC), the
separated atom Ochkur-Rudge (ORSA) and the separated atom-
Ochkur {OSA) approximations., The wave functions used for the
ground and excited states were the Weinbaum and Phillipson- Mulliken
ones, respectively (see Section 3). From the curves in this figure it
can be seen that the (OR) and (O) calculations give significantly
different results. As will be indicated in Section 6. 3, the (ORC)
results agree better with experiment than the (OC) ones. Two
differences between the (OR) and the {O) approximations can be noted.
First, in either the complete or the (SA) approximations the cross
section obtained using the (O) form for the transition amplitude
[(2-6)] is about two times the corresponding (OR) cross section
[(2-7)}], a result that might be expected from a comparison of the
energy dependent coefficients which precede the integral in (2-6) and
(2-7). Second, the location of the maximum in the (O) cross sections
occurs at a lower energy (by about . 5 to .75 eV) than the corre-
sponding (OR) cross sections., In addition, the (SA) approximation,
applied to either the (O) or the (OR) transition amplitudes, produces
cross sections that have the proper shape but whose magnitude will
generally be significantly smaller (by about 30%) than those predicted
by the corresponding complete calculations. This is due to the fact
that in the (SA) approximation all multicenter terms that appear in
the normalization constants and scattering amplitude are ignored.
For purposes of illustration of the effect of multicenter terms the
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following approximations were applied to (5-41). The quantity

(| T \()1,)(R(1) (Ei)) l 2) was evaluated at Re = 1,40 a only and the
excitation was assumed to occur at only one energy (8.8 eV).

From these approximations and the normalization property of P(El)
[see (5-33)]

qmax
My =8 T 2R3 agq (6-2)
k0 Umin

where (| T (1)(Re)l2> can be calculated from (5-15). Table IV gives
the contribution to the total cross section of the various terms in

this equation as obtained in the complete and (SA) calculations for

an incident energy of 14.0 eV. The (OR) approximation was used
along with the Weinbaum and Phillipson- Mulliken wave functions for
the ground and excited states. Columns I, IL, and III contain the energy-
independent constants associated with the molecular (electronic) wave
functions. Columns IV, V, and VIshow respectively the values of each of the
three terms in the bracket of (5-15) after they have been multiplied

by q, integrated over ¢ and finally multiplied by lFlz/k?). Column
VI is the sum of the three preceding columns and Column VIII gives
the total cross section (Column IO times Column VII) in units of nag.
Note that in the (SA) approximation, the second and third terms in this
bracket are zero because they are three-center terms. It is evident
from Table IV that application of the (SA) approximation leads to
significant changes in all of the quantities involved in the scattering
amplitude, some increasing and some decreasing. These changes are
not justifiable on either physical or mathematical grounds, and as a
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result, the (SA) approximation should not be relied on to give more
than order of magnitude results.

Fig. 7 is a comparison of the (OC) and (ORC) calcu-
lations (using the Weinbaum and Phillipson-Mulliken wave functions)
with two other recent calculations of the excitation cross section to
the first triplet state. The curve labeled (E1) is the first-order
exchange approximation of Khare and Moiseiwitsch(44) in which the
excitation was assumed to occur for a fixed energy loss of 11,0 eV
and at the fixed internuclear distance Re = 1,404 a o In addition, the
authors found it necessary to apply the (SA) approximation in order to
evaluate the cross section. The curve labeled (K) is a recent calcu-
lation by Kha.re(45) in which the (O) approximation was employed
along with the assumption that the excitation occurred at a fixed
energy loss of 10, 62 eV and at a fixed internuclear distance Re = 1,40
a To facilitate the evaluation of the integrals, only one-center
molecular (electronic) wave functions were used in this last calcu-
lation. From Fig, 7, it is apparent that the assumption of fixed
energy loss for the incident electrons and fixed internuclear distance
predicts a steeper rise of the excitation cross section as a function
of energy than either the (ORC) calculation, the (OC) calculation, or
experiment (see Section 6. 3).

Fig. 8 is a comparison of the total cross section for
excitation of the second triplet as calculated in the (ORC) and (ORSA)
approximations using the three different ground state wave functions,
Included for comparison is the corresponding (K) cross section calcu-
lated by Khare(‘ls) in the (O) approximation using one-center molecular
(electronic) wave functions, a single energy loss (11,7 eV) and single

internuclear distance Re =1.,40 a o As can be seen from the figure,
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the cross sections calculated with the (ORSA) approximation are
smaller and m'ore sensitive to the choice of ground state wave
function than those calculated in the (ORC) appi'oximation. In this
latter calculation, the cross sections obtained from the three ground
state wave functions coincide within the plotting accuracy of Fig, 8.
It is difficult to explain the large difference between the (K) and the
(ORC) results but it is probably due to the use by Khare of the (O)
approximation [which always leads to larger results than the (OR)
one] and of cne-center electronic wave functions which are less
accurate than the two-center ones employed in the (ORC) calculations,
It is interesting to note that the threshold energy in the (K) curve was
normalized to the approximately correct value of 11,7 eV by using
this as the single excitation energy, although the excitation energy
consistent with the equilibrium internuclear distance used is 12. 55
eV, (52d) This mode of normalization makes the maximum cross

section occur at an energy about 1. 2 eV lower than the (ORC) one.

6.3 Comparison with experiment

The only experimental results with which these
calculations can be directly compared are the approximate measure-

(42) of the total cross section for the electron

ments by Corrigan
impact dissociation of H2 into two H atoms. This experiment
essentially measured the sum of the total cross sections for the
excitation to all the triplets in molecular hydrogen. These states
then decay radiatively to the lowest repulsive friplet (b32';), which
dissociates into tWo ground state H atoms. Since experimental
evidence indicates that the magnitude of the total cross sections for

electronic excitation to level (n) from the ground state falls off very
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(61)

for excitation of the first two triplets should account for most of

rapidly with increasing n, the sum of the total cross sections

this experimentally measured dissociation cross section. There

is alsoa (:311u state which lies close in energy to the a32'g" state.
However, no minimum basis set wave function for this state could

be found in the literature., Because of its I symmetry, a calculation
of this type of wave function and of the corresponding scattering
amplitude would have involved an extensive amount of computer time,
A decision was made not to undertake this expense because this state
is not expected to contribute much to the dissociation cross section,
Its total excitation cross section is expected to be smaller than that

for the a32+g state in view of its different symmetry. (33, 61) This

behavior is indicated by the one-center calculations of Khare(45)
which show the cross section for excitation to the c3Hu state to be
about 60% of that to the a°
of the former cross section, the error in the total dissociation cross

section due to the neglect of the contribution from the csﬂu state

2; state., Because of the relative smallness

should not exceed 5%.

Fig, 9 is a comparison of the experimental data
(full curve) and the sum of the theoretical cross sections for the
excitation to the first and second triplets (dash-dot curve) as calcu-
lated here in the complete (OR) approximation, with the methods
described above, and using the best (Weinbaum) ground state wave
function. The theory is seen to predict quite well the linear rise
above threshold, the magnitude and the general shape of the measured
dissociation cross section. Although there actually exists a sudden
change in slope of the theoretical curve at the onset of the second
triplet excitation ( 11,9 eV), this change is negligible within plotting
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accuracy of the figure and thus cannot be seen in the (ORC) curve,
The discrepancy between the predicted and observed location (in
energy) of the maximum of the cross section is perhaps due in part
to the scatter in the experimental points (which are the dots shown
in Fig, 9 before the effect of molecular ionization is subtracted)
which is particularly bad for energies above 13 eV. In addition,
neglect of the contribution of the c3Hu to the cross section tends
to make the theoretical maximum shift slightly towards lower
energies. It is encouraging (but perhaps fortuitous) that the best
agreement between the present (ORC) calculations and experiment
occurs in the energy region between threshold and maximum cross
section, where the experimental points have highest accuracy.
Included in Fig, 9 is the dissociation cross section

(45) in which his calculations for the cross

sections for excitation of the bsz;, a32‘;’ and c3Hu states are added

curve reported by Khare,

together. The high threshold energy and excessively steep rise
between the threshold and maximum of this curve is due to the
assumption that the excitation of each state occurs only at the most
probable value of the internuclear distance (the equilibrium inter- .
nuclear distance of the ground electronic state).

The ionization cross-section curve used by Corrigan
to subtract the effect of ionization on his experimental results was
that obtained in 1932 by Tate and Smith. (62) More recent measure-

ments(63_

65) furnish somewhat larger values for that ionization
cross section, which would reduce the dissociation cross section of
Corrigan and decrease the discrepancy between it and the (ORC)
calculations at energies above 16 eV. In Fig. 10 are illustrated two
dissociation cross sections obtained by modifying the Corrigan curve

using the more recent experimental ionization data of Golden and
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(64) and of Harrison, (65) The modification is a simple sub-

Rapp,
traction from the Corrigan curve of the difference between the more
current data and that of Tate and Smith, The upper dash-dot curve
represents the dissociation cross section obtained by modification
with the Golden—Rapp(64) ionization cross section. The shaded area
along this curve indicates the error in the experiment as determined
by the spread in data points reported by Corrig‘ah. (42) The lower
dashed curve is the similar dissociation cross section obtained from
the Corrigan and Harrison(65) data, with the experimental error in
the former again denoted by the shading, I is apparent from this
figure that more accurate measurements of the dissociation cross
section are necessary before the quality of this exchange excitation
model can be evaluated more precisely.

Finally, it should be stressed that all the calcu-
lations we made are completely ab initio and absolute, with no
experimental parameters having been used and no normalization
to experiment having been performed.

6.4 Conclusions - Excitation of H2

The total cross section obtained in the (OR) model
for exchange excitation appears to describe the dissociation excitation
of the hydrogen molecule better than any other currently tractable
model., When proper allowance for nuclear motion (vibration) is
made, the results agree quite well with the experimental data in the
threshold-to-maximum region. When the excitation is assumed to
occur only at the equilibrium internuclear distance of the ground
electronic state, an excessively high threshold energy results as
well as too steep an increase in the cross section between this
threshold and the energy of maximum cross section.
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It is apparent from the results of these calculations
that care should be exercised in the choice of the wave functions used
to describe the bound system. In some cases the excitation cross
sections for a molecular electronic excitation process may be quite
sensitive to the "guality of the wave functions used and in other cases
not, It appears that the degree of this sensitivity on molecular
(electronic) wave functions depends on the symmetries of the
molecular states involved. The results of this invesfigation suggest
that along with the energy, other properties such as moments of the
one-electron charge density predicted by the approximate wave
functions should be used to determine the "best' overall approximate
wave function.

In addition, it is evident from the calculations here
reported that the (SA) approximation to the transition amplitude should
be used with caution since the cross sections predicted by it may
differ by 30% from the more accurate results,

The results reported in this paper and elsewhere(33’

34) show that the (OR) approximation describes reasonably well the
exchange excitation processes and indicates that more accurate
experiments are now needed in order to make a complete evaluation

of this model.
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III. The Exchange Excitation of Helium

1, Revie_w of Previous Calculations on He

There have been numerous calculations concerning the
electronic exchange excitation of He. However, because they are
superior, only the results of the more recent calculations will be
discussed and compared with the present calculations.

The first detailed treatment of the exchange excitation
of He was done for the 23S state by Massey and Moiseiwitsch. (66)
They performed an elaborate exchange-distorted wave calculation
which, although considered as quite complete, produced cross
sections which are somewhat smaller than the experimental data.
Ochkur has made(67) two calculations on the excitation of helium.
The first(67a) , Which involved only the 23S and 23P states, demon-
strated his modification of the (BO) approximation (Section I-5) and
gave quite good agreement with extrapolated experimental data. In
(67b), the excitation of the 23S and 23P states were part

of a more complete calculation in which he computed all the excitation

the second

processes from the ground state for which he could obtain wave
functions. He employed the Born (direct) and Ochkur (exchange)
approximations, Although his theoretical cross sections show general
agreemént with experiment, for some processes (excitation of the
23P state for example) the calculated cross sections still differ, by

a factor of 2 or more, from the experimental data, Bell, Eissa and
Moiseiwitsch(ﬁe) have applied the first order exchange approximation
to the excitation of the 238 and 23P states and obtained cross sections
which are larger than the experimental data by a factor of 2 or so.

Recently, Joachain and Mittleman(69) performed calculations using
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8 different formulations for the transition amplitude in an effort to
understand the' relative importance of the different approximations
used. However, they did not evaluate the possible errors in the
approximate wave functions theyusedand were unable to arrive at

a definite conclusion as to the best starting point (i. e., formulation -
of the T-matrix) to describe the rearrangement process, Massey

(70) (71) (

and Moiseiwitsch and then Lashmore-Davies who used a more
accurate ground state wave function) have calculated the cross section -
for excitation of the 23P state in the distorted wave approximation.
However, their results are about a factor of 5 larger than the best
experimental results.

The (0O) and (OR) approximations will be applied here to
calculate the exchange excitation of the 23S and 23P states of helium.
Some attention will be paid to possible errors introduced through the
use of approximate wave functions. The total cross sections obtained
using the ""best' wave functions are then compared with a few of the

previous calculations and the experimental data.

2, The Scattering Amplitude

The (O) and (OR) approximations to the exact scattering

amplitude were discussed in Section (I-5) and are given respectively

by

O__ 2tk oz iz aad 8T e o 2-1)
i7" =3 J ¥ (T T ¥yry, wole drydr, ; (2-

0 0
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where k' satisfies
k= (k2 - 2g, -E)1Y2, (2-3)

#

Yp, Y; are the final, initial wave functions for the He atom, Ii/& is

the ionization energy of the initial (ground) state of helium expressed

in Rydbergs, and the rest of the notation is as introduced in Section
-2, It was pointed out in Section I-3, that the particles undergoing

the exchange can be treated as distinguishable and any lack of
distinguishability can be accounted for by taking certain linear
combinations of the appropriate scattering amplitudes. Consequently,
no specific reference to spin variables need be made and the appropriate
multiplicative degeneracy factor (/3) will be introduced prior to

forming the absolute square of the scattering amplitude.

3. Atomic Wave Functions

The (approximate) wave functions used to calculate the
exchange excitation of He from the ground state (118) to the first
(23S) and second (23P) triplet states are described in this section.
Rydberg-atomic units are used throughout (Appendix B).

Three different ground state wave functions were used,.

They all satisfy the functional form
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where o(r) is different in the three cases. The three functions are:

the Clementi double minimum basis set function(72a)

. -Z4T ~ZgT
o(r) = No(cle + Cge ), (3-2)

the two-parameter function of Green, et.al. (72b)

1:19 -z1r -zzr

(7)) = 7 (e +Ce ), 2g =224 (3-3)

and the Hylleraas (minimum basis set Hartree- Fock) one-parameter

function(7zc)

. -z4T
o(r) = Noe . (3-4)

Two different sets of wave functions were u_sed for the two excited

triplet states (23S and 23P). One set is composed of the two-parameter

wave functions determined by Morse et. al. (732) :

Vg(F1,Ty) = 75 {1 (Fvy(Ry) - vi(F vy}, (3-5)

where

33 1/2
vi(F) = () (3-6)

b



a7

5 1/2 i
vz(r) = (:;TM) [re M %é e ubr] , (3-7)
3 2
A_(a+b)4, — 48A4+3}; ; (3-9)
(1+a) (1+Db) b _
wP(;l’;Z) = 712 {Vl(;l)vm(;z) - Vl(;z)vm(;l)} ) (3-9)
where vl(?) is given by (3-6) and
. 55 1/2 cos 8 (m = 0)
V(T = (55) Iz (3-10)
‘ 1 . +ip _
75 sin 8e (m=+1)

The other set is part of the two-parameter wave functions of Veselov
et al (73b)

where

3
2y _ o  -ar _
vl(r) = - e , (3-12)

| 5 1/2
vz(? ) = < 38 > r1- &t Br]e- Br . (3-13)
m(a
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The z//P states of Veselov et, al. have exactly the same form as (3-9),
(3-6), (3-10) except the variational parameters of those equations are
replaced by the Veselov values

ua - a, MC -y . (3-14)

The values of the parameters associated with these wave functions
are given in Table V,

At this point it is worthwhile making a few comments
concerning the quality of the above wave functions. The ground state
wave functions given in (3-2) and (3-3) are clearly better than (energy-
wise) the Hylleraas ground state function (3-4) as seen from Table V,
However, the latter was also used in these calculations because it has
been at least tried by most of the previous investigators(74) . Using
this state allows a better comparison to be made between the results
reported here and previous calculations.

To see more clearly the relative superiority of the

Clementi and Green et, al, ground states, the quantity
(@ (Fg, To) ] (22 4 22) | (F,T0) ) (3-15)
01’72 1 2 01’72

is tabulated in Table VI for the three ground state wave functions.

As seen by comparison with the experimental determination, the
Hylleraas wave function predicts too small a value, This means that
the charge density is more concentrated near the nucleus in the
"Hyllefaas atom'’ than in the real atom, Thus, by the same reasoning
used for the hydrogen molecule wave functions (see Section II-6-1),

the cross sections obtained by using the Hylleraas wave function
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TABLE VI

. 2 2

Wave function (r1 + r2>
Ground state (118) (in ag)
Clementi{ 2% 2. 3694
Green et. a1, (72P) 2. 3593
Hylleraas(72c) 2.1070
Experilnent(72d) 2, 3972
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- should be too small., This effect does indeed appear and will be
discussed in a later section,

Although the excited state wave functions are very
similar (see Table V), calculations were made using both sets
for the following two reasons, The first was to see if the calcu-
lated cross sections were sensitive to the small differences between
- the wave functions, and the second was because Ochkur used the
Veselov wave functions in his original paper. (33) Thus, by using
the Hylleraas ground state and the Veselov excited states, the
accuracies of the present calculations could be checked against
Ochkur's results,

4, Calculation of Total Cross Sections

For simplicity, the first and second triplet excitations
are treated separately. Atomic units are used throughout.

4,1 Excitation of the first triplet (118 - 23S)

When the wave functions (3-1) and (3-5) are
inserted into the expression for the scattering amplitude, either
(2-1) or (2-2), and the z-axis of the coordinate system is chosen
along a, the following expression results:

1 3 9 B Dl(z1 + Ha)
T, (178 + 2°8) = 8/6 NV, V,f(k , k) | g -
_ [(z1 +ua)” + q°]

D,[3 (z1+u)2 - qz] 3A D,(z, + ub) (29 + ua)

+ ( — + CD -
[(zq + REET Sk " g+ ab)? + ¢*12 ! [(z2+ua)2+qz]2
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2 2
CD [3(z +u ) - D,(z, + ub)
23 +(3fc) 22— (4-1)
[(zg + 1b)™ + "]

[(z, +|-1) +q°]

where the parameters for the wave functions are given by Table V,
equation (3-8) and

Z,2Z
N2 = ] /{1+ (eq/cy)? + 16(cy/cy) [ -(—1-3—-5 }3/2} . (4-2)
Zq+ zz)
. 3/2 3 5
Cy/Cq -C(—) ;vE-Bl o 2. B (4-3)
D, =(4m){ —1 . A, _C __AC/u 1,
' { (g r W b)) (2 o
| (4-4)
=8 (4-5
Tr{(z+ua) (zq +ua)3} )
(OR): £(k k)= — > s (0): £k k) =% (4-6)
0 [k - 0172112 (0] ki

where ID is the ionization energy of the 118 state expressed in
Rydbergs. The Morse et,al. (732)

used above,

excited state wave function is

Equations (4-1), (4-2), and (4-3) have been written in
a form such that any of the three ground state wave functions given
above can be used. For instance, setting C(or cz/ cl) equal to
zero and choosing the appropriate Zy, One obtains the scattering
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amplitude for the Hylleraas ground state wave function. Similar
manipulation of (c2/ cl), with the appropriate zq and z,, gives
the scattering amplitude corresponding to the ground state wave
functions (3-2) and (3-3). The cross section corresponding to
the Veselov excited state is obtained from (4-1) by using the
appropriate screening constants and redefining _V1 and V2
consistent with (3-12), (3-13).

The differential cross section for the excitation
is obtained by using (4-1) and forming

do k' 2
hoid == |T -
The total cross section is found by integrating (4-7) over all

scattered angles, or more conveniently by integrating over

momentum transfer:

q
olk) = j J %-; (k, 0)d0 = E%:E fax

Elaada. (4-8)
min

4.2 Excitation of the second triplet (118 - 23P)

The scattering amplitude for the excitation of
the second triplet state is obtained from the appropriate wave
functions exactly as done in section 4.1 above. Note that the choice
of the z-axis along the momentum transfer vector a simplifies the
calculétions by insuring that the only 23P wave function which
contributes to the cross section is the one with (m = 0) (the z-axis

is also the axis of Li-quantization). The contribution from the
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3P state vanish because of the resulting

(m = £1) components of the 2
azimuthal symmetry. Thus, the scattering amplitude for this

transition is given by (using excited state (3-10) ):

9 1 (z + ue) C(z, + uc)
Ty = ~8/6 1 NV, Vy Gyt k) 5 { R RV T o
[z +ue)" + q"1%  [(@g+ue)™+q"]

@1+Hd[&1+ud2-3q%1 C&2+u®[&2+u®2-3q%

[&1+uﬂ2-q%3 [&2+u®2+q%3

} (4-9)

where the wave function parameters are given in Table V; N2 is
given by (4-2); and

3

2 _ Ma" 2 _ uc )
Vitw o Vet (+-10)
G2 = 8m {1/(z1 + ;.;a)3 + C/(z2 + ua)a} . (4-11)

As in the case of the first triplet excitation, the appropriate choice
of (CZ/ ¢, or C) and Zy, Zy determines the particular ground state

wave function being used.
The differential and total cross sections are again

given by (4-7) and (4-8) respectively.
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5. Results and Discussion

5.1 The effect of approximate wave functions

Figures 11 and 12 show the effect on the total
excitation cross section of using different approximate ground and
excited state wave functions for the (238) and (23P) states
r‘espectively. Only the results from using the (OR) approximation
are illustrated since the (O) curves show the same relative
differences, In Fig. 11, the curves are labeled according to the
pair of ground-excited state wave functions employed: C -
Clementi(72a) ; G-~Green, et. al. (72b) 5 H—Hylleraas(7zc); MYBH-
Morse, et. al. (732) ; VES-Veselov, et. al, (73b). Figure 12 could
not be labeled this way because the curves are too close together
but it contains the same information (see figure captions for the
labeling of Fig., 12 ),

As seen from Fig, 11, the 23S cross section is
quite sensitive to the particular choice of ground and excited state
wave functions employed. As is perhaps expected from the data
in Tables V and VI, the Clementi and Green et, al. ground states
give essentially the same total cross section for a given excited
state. They agree within the plotting accuracy of the figure, One
also sees that the cross section obtained from the Hylleraas wave
function is significantly smaller than from the other ground states.
As suggested in Section (III-3), this is due to the over-concentration
of the electron charge density near the nucleus for the Hylleraas
wave function (see Table VI). Consequently, the one-electron
overlap charge density (defined in (6-1) of Section II-6-1) will be
smaller which will lead to a smaller total cross section. It is
worth noting that, although the cross sections obtained from the
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Green et.al. and Clementi ground states are nearly the same, their
relative magnitude is as expected from the values in Table VI,

That is, relative to the Green et.al, ground state function, the
Clementi wave function gives a slightly larger expectation value

for (r? + rg) and hence yields a cross section that is slightly larger.
The differences in the 23S excited states is more difficult to assess
since there is no experimental parameter (other than the energy) to
which the excited states can be referenced. However, by correlating
the energy eigenvalues for the (MYH) and (VES) 238 excited states
with the relative magnitudes of the 23S total cross section (for a
given ground state) one notices that the state with the better energy
eigenvalue (MYH) gives the lower cross section. This same
property for excited state wave functions is observed in the 23P
case although the relative difference is much smaller because the
2%p excited states (MYH and VES) are so similar in this case (their
energy eigenvalues are almost the same).

From Fig. 12 one notices that the cross section
for excitation of the 23P state is much less sensitive to the various
approximate wave functions. As just mentioned, the magnitude of
the total cross section is only slightly sensitive to which excited
(23P) wave function is used because the two excited states (MYH
or VES) are so similar, The reason the 23P cross section is only
slightly sensitive to the ground state wave function is probably due
to the fact that the excited state has "p, symmetry" [see (3-10),
(m = 0)], As a result, the difference in (r2 + rz) for the ground
state wave functions is "sampled' in only the z-direction. This is
in contrast to the case when the excited state is spherically
symmetric (e.g. the 23S state), and the difference in (ri + rg) is
accumulated along all three axial directions,
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5.2 Comparison of Ochkur and Ochkur-Rudge

approximations

Figure 13 shows the theoretical total cross section
3S state as calculated using the (O) and (OR)

approximations, Figure 14 is a similar comparison for the 23P

for excitation of the 2

state. The curves in both figures were calculated using the G and
MYH wave functions for the ground and excited states, The (O)
approximation is seen to always give a larger cross section than
the (OR) approximation. This is indeed expected by inspection of
lf(ko,k')l as given by (4-6) since

1
> T_ . (5-1)
k +I0

owml =

As stated earlier (Section I-5), the (OR) approximation is superior
to the (O) approximation on theoretical grounds and as will be
shown in the next section, indeed gives better agreement with
existing experimental data.

5.3 Comparison with experiment

No consistent set of absolute measurements of
33 and 2°P levels
exist at present. The basic reason for this state of affairs is

the total cross sections for excitation of the 2

because so far it has not been possible to overcome all the technical
difficulties in the experiments, The cross sections that can be
determined more conveniently are the ones for states with higher

(n = 3,4,..+) principal quantum numbers, whose excitations can

be measured by the light they emit when they radiatively decay. (75)
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As discussed in references (33) and (61) the excitation cross sections
decrease with the cube of the principal quantum number n. Thus,
the cross sections for excitation of the 238 and 23P states can be
reasonably well estimated by extrapolating to lower n the results

for the higher level excitations., This was done by Ochkur in his
original paper(33) using the Gabriel and Heddle data(6 1) and
Yakhontova data. (75b) These results, along with the isolated
absolute measurements that exist, will be compared with the
theoretical calculations. The cross section for excitation of the

two triplet states will be considered separately.

5.3.1 Excitation (1'8 - 2°§)

In Figure 15, the total cross section for
excitation of the 23S state, as calculated using the (OR) approxi-
mation and the (C) and (MYH) wave functions, is compared with the
extrapolated Gabriel and Heddle data. (33) The error bars denote
estimates of the error due to the extrapolation method., The cross
section obtained by extrapolating the Yakhontova data(75b) has a
maximum value represented by the symbol (A) in Fig. 15 and agrees
quite well with the extrapolated Gabriel and Heddle data over the
whole energy range. At an energy value 0.3 eV above the excitation
threshold of the 2°S state (19.81 eV), Schulz and Fox' 0 found a
maximum value equal to 4.5 x 10_2 nag which is denoted by (O) in
the figure. This value agrees somewhat with the measurement
4.2 x 1072 a2 determined by Maier- Letbnitz' ")
by the symbol (@) in Fig, 15. Included in Fig(.eg.)E is the cross

elaborate distorted wave method. As seen from the figure, the

, which is denoted

section calculated by Massey and Moiseiwitsch using a very
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Massey and Moiseiwitsch cross section possesses a very sharp

first maximum very close to the excitation threshold. The location

of this sharp psak agrees well with the measurements of Fox and
Schulz and Maier-Leibnitz, This sharp peak is attributed to a near-
resonance in the distortion of the electron-wave in the final channel. (66)
This is interesting as the emstence of such a resonance has been
verified experimentally, (77) It is clear that the present calculations
cannot be expected to produce such a "fine-structure' because they
are based on a model which does not contain the necessary flexibitity.
However, the (OR) calculations are seen to agree remarkably well
with the extrapolated experimental data. It is worth noting that the
(O) approximation, using the same wave functions, would be ~ 40%
larger than the (OR) curve in Fig. 15 (ref. Fig. 13). Also, the (BO)
approximation for this excitation gives a cross section whose |
2 (66) It is interesting to note that Massey
33 state but

the Hylleraas wave function for the ground state, By the discussion

maximum value is 1, Bna
and Moiseiwitsch used the (MYH) wave function for the 2

of Section 5.1 and Fig., 11, the Hylleraas wave function is clearly a
poor representation of the ground state. As a result, their reported
cross section could be as much as 40% too low. This would account
for some of the disagreement between their calculations and the
extrapolated data.

5.3.2 Excitation (118 - 2°P)

In Figure 16, the cross section for excitation
of the 23P state, as calculated using the (OR) approximation and the
(C) and (VES) wave functions, is compared with the available experi-
mental data. As evident from the figure, there is a wide range in
the experimental data., The extrapolated Gabriel and Heddle data(sgb)
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denoted by (x), possess error bars due to error in the original data
and error intrinsic in the extrapolation. The Frost and Phelps
data(78a) (®) as well as the Holt and Krotkov data(78b) (A) are taken
from the analysis of Joachain and Mittleman(sgb). Frost and Phelps
collected all the available data for incident electrons with less than
45 eV which had been published through 1956 and analyzed it with the
hope of arriving at a good consistent set of excitation cross sections,
The values reported by Frost and Phelps are the lowest of all the
experimental data, The Holt and Krotkov data, which extended only
a few eV above threshold, were obtained by assuming a value of
3.5 x 10'2 nag for the 23S cross section, The reported error
associated with that determination is indicated by the vertical bar,
There is one other set of data for which one point is included. This
is the data of St. John et, al. (79) who used optical methods to make
measurements of the cross section for excitation of the n = 3,4,+--
levels of helium. The St. John value, denoted by (¥), was obtained
by extrapolation and is larger than the other experimental valt(léeg).

’

All present theoretical cross sections
(690), (70), (71) , except for the (O) curve, predict values which are
much too large to be plotted in Fig., 16. The failures of the other

(70) similar to

theories also includes a distorted-wave calculation
the 238 calculation discussed above. There is no simple explanation
as to why the distorted wave should fail so for the 23P state but it
seems clear from Fig. 16 that the (OR) approximation has the best

chance of agreeing with the experimental data.
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IV. _Angular Distribution of Electrons After the Exchange Excitation
of Molecular Hydrogen and Helium

1. General Comments

In this section, the terms differential cross section (DCS),
angular distribution, or simply cross section will be used inter-
changeably and are supposed to mean the same thing,

The angular distributions of the electrons scattered after
undergoing a rearrangement collision with H2 or He are discussed
separately from the total cross sections for two reasons, The first
is because this separation is probably less confusing to the reader
and the second is because the analysis of the results requires special
treatment since there is so little experimental date available,

To date, there are no published differential cross
sections for the electron-exchange scattering processes in molecular -
hydrogen. For the electron-exchange processes in helium there are
three sets of data which will be discussed in Section (IV-3). How-
ever, therc are no published theoretical angular distributions for
any of the excitation processes of interest with which the present
calculations can be compared. The differential cross sections for
the electron excitation of the two lowest-lying triplet states of
molecular hydrogen and atomic helium are presented here as calcu-
lated in the (OR) approximation and using the ""best' wave functions
for the respective states. The results obtained from using the (O)
approximation and the other wave functions discussed in earlier
sections are not presented here since they contain no new information.
The comments of Sections II and III concerning the (O) approximation

and the effect of the less accurate wave functions apply here also.
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The last section will be devoted to an analysis of why
the maximum in the (DCS) appears where it does.

2. Molecular Hydrogen

3 3

The (DCS) for excitation of the b Z; states of
molecular hydrogen were calculated by slightly modifying the

o+
Zu and a

equations and techniques discussed in Section Il. For completeness,
the equations applicable for the two excitations will be reproduced
here.

2.1 x*t

+ 3+ et 1s
Zg - b Zu Excitation

From equations (5-31) through (5-35) of Section
(I-5. 2, 1), the differential, rotationally averaged, excitation cross
section per unit energy range is given by:

ey 0,0 = 5 2@y rlmBepn?y . e
where P(l), E 1 and k" are defined in the equations referred to
above, and .T\()l,) is defined by (5-15) of Section (II-5.1). Since the
(DCS8) is the quantity of interest, (2-1) was not integrated over the
scattered angles. The (DCS) for excitation from the ground
vibrational-rotational state to all final vibrational states that are

energetically accessible is given by

E
1 0o
W, 6,0 =3 [ pO@) £V @)D, (@-2)
&)

DO
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where

and D o -is the dissociation energy of the ground electronic-vibrational
state, It should be noted that due to the azimuthal symmetry of the
H2 molecule and the form of the (OR) matrix element (see equation
(5-8) of Section (I-5. 2)), (2-2) depends only on the scattered angle 6
but not on . The numerical techniques used to evaluate (2-2) are
the same as those discussed in Sections (II-4, 5).

Three "views'" of the (DCS) for the excitation
process (X 12; - bg’z;:) are illustrated(go) in Figures 17, 18, and
19, The definition of a "view" is the following, Since the (DCS) is
a function of two variables, the incident energy and the scattered
'angle, it can be represented by a surface in a system of coordinates
whose axis are E(incident energy), 6(scattering angle) and (DCS).
Figs, 17, 18, and 19 represent different perspective views of this
surface. The range of the scattered angle (6) is from 0° to 180° in
steps of 5° starting at the origin. The values of the incident enei'gy
range from 10 eV to 85 eV in steps of 5 eV also starting from the
ori_gin'., The spherical-polar angles from which direction the surface
is viewed are given at the lower left in each figure. The curves on
the figures are intersections of the surface with planes of constant
E and of constant 6. Fig. 17 is a special case of perspective
plotting, namely an x-y plot. The vertical lines are lines of
constant angle and the smoothly varying horizontal contours are
lines of constant energy. Figs. 18 and 19 are the same (DCS) array
but "viewed" from different angular orientations.
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Since there is no experimental data available for
these excitation processes, it is difficult to evaluate the quality of
the (OR) approximation in predicting the (DCS). However, the (DCS)
does possess the properties expected on physical grounds, That is,
at 10 eV (. 2 eV above threshold) the (DCS) is nearly isotropic, This
is consistent with the phyéical picture of the scattered electron
having almost equal probability of going in any direction since it, so
to speak, "barely escapes', As the incident energy increases, the
maximum in the (DCS) moves more and more toward the forward
direction, This is also expected since for high enough energy the
electron will be only slightly deflected.

2.2 Xlz; - aBZ; excitation

_ The equations and the methods used in the calcu-
lation of the (DCS) for this process are very similar to those
described above in Section (2, 1), The differences are associated
with the details of the a3z’; state, Thus, the differential cross
section, rotationally averaged and summed over all energetically
allowable final vibrational states is given by

E

) 1" Y

1D, 0,0) =35 [ 2B (rBrP ()1 Bam,,  (2-3)
)

D
0

where the symbols are the same as defined in Section (II-5. 2. 2).
Again, because of the azimuthal symmetry, (2-5) depends only on
the scattered angle 6.

The (DCS) for the excitation of the a 2; state is
displayed in Figs, 20, 21 and 22. These "views'" have exactly the

3



115

same meaning as those for the first triplet excitation described in
Part 2. 1 above except for one slight difference. Since the excitation
threshold is ~ 11. 9 eV, the lowest incident energy value in these
figures is 12 eV, Thereafter, the energy values are 15, 20, 25 efc.
up to 85 eV in steps of 5 eV. The angular range is the same as in
Figs, 17, 18 and 19.

As mentioned above, there is no experimental data
with which to check these calculations, A possible explanation as to

the shape of these cross sections is presented in Part 4.

3. Helium

The differential cross section for the excitation from
the ground state to the first (238) and second (23P) triplet states
were calculated using the (OR) approximation and the "best" wave
functions. The (DCS) for each excitation process will be treated
separately.

3.1 18 - 2%S excitation

The (DCS) for this process is given by equations
(4-7) and (4-1) of Section (II-4.1). Again note that because of the
symmetry involved, the (DCS) depends only on the scattered angle
8. The Green et.al, (12 gna Myn(73?)
for the ground and excited states respectively. Using the Clement

wave functions were used
(72a)
i
ground state wave function produced a negligible change in the (DCS).
Three perspective "views' of the (DCS) for this
process are illustrated in Figs. 23, 24 and 25. As expected, the
(DCS) possesses the same qualitative features as the angular
distributions for the excitation processes in H2 which were discussed
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above. There are three '"pieces' of experimental information
concerning the (DCS) for this process. Schulz and Philbrick(SI)
measured the change with incident energy of the (DCS) at the fixed
scattering angle of 729. Unfortunately, they were able to measure
this dependence to only a few eV above threshold (19, 81 eV), and
their measured cross section exhibits a good deal of complex
structure, The very limited energy range and résonance type
effects in their results does not permit a direct comparison with
the calculations reported here,

The other two "bits" of information involve experi-
ments in which the angular disfribution was measured for fixed
incident energy. Ehrhardt and Willmann just recently measured(gz)
the angular distribution of electrons scattered after exciting the
238 state for energies from threshold to 24 eV, They observed
three resonances at energies of 19, 90 = , 05, 20,45 + .05 and 21,00 +
.05 eV. The calculations here are not refined enough to see such
resonances but can be compared with two ""off~-resonance' angular
distributions at 20 and 24 eV which they measured, To facilitate the
comparison, the calculated cross sections corresponding to the
experimental incident energies are plotted with the Ehrhardt and
Willmann data in Fig, 26. The experimental data were reported as
relative and is consequently normalized to the calculated cross
section at a scattered angle of 70°, This particular angle is an
arbitrary choice representing a value half-way in the experimental
range. For an incident energy of 20 eV (the upper plot in Fig. 26),
the theory and normalized experimental data are seen to agree very
well, Both theory and experiment describe a preferential back-
scattering of the incident electrons. It should be noticed that for

this 20 eV case, the particular angle chosen for normalization
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doesn't affect the agreement because both theory and experiment are
approximately straight lines of the same slope.

The bottom half of Fig. 26 contains the comparison
between theory and experiment for the 24 eV case. To be consistent
with the 20 eV comparison, the data were again normalized to theory
at a scattered angle of 700. The agreement here is not as good as
for the 20 eV case although the theory and experiment possess very
similar characteristics. The theory has a maximum in the angular
distribution at ~ 120° while the experimental maximum falls at ~ 90 °
Both theory and exp'eriment predict the same relative difference
between the maximum and minimum of the angular distribution. It
is worth noting that a different choice of angle for the normalization
of the data could improve the agreement between theory and experi-
ment over sections of the angular range. However, it seems evident
that no choice of normalization will allow the curves to coincide over
the entire angular range.

Simpson et. al. (83) have measured the angulag
S

state, Their reported cross section is in disagreement with the

distribution of 56.5 eV electrons scattered after exciting the 2

present calculations. They determined that for this incident energy
the angular distribution peaks at ~ 0° while the calculated one peaks
at ~ 550. There seems to be no simple explanation for this
disagreement. It is the opinion of this writer that the measurements
of Simpson et. al. are not consistent with those of Ehrhardt and
Willmann, This is because to this writer the two measurements
imply angular distributions at the same energy which possess
completely different shapes. This discrepancy will probably persist
until more experimental measurements aré made for this excitation

process.
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3.2 118 - 23P excitation

The angular distributions for this excitation process
are displayed in Figs. 27, 28 and 29. They were calculated in the
(OR) approximation using the Green et. al. (72b) and MYH(73a)

functions for the ground and excited states respectively, Use of the
(72a) 1 ('73b)

wave

Clementi and/or Veselov et.a wave functions introduced
no significant changes in the cross sections. There are no published
calculations or experimental measurements for this excitation process
so the quality of this calculation can't be readily evaluated. About all
that can be said is that the angular distributions possess shapes that
are physically reasonable for the same reasons outlined in Section

2.1 above,

4, The Shape of the Angular Distributions

In this section, a few general comments will be made
concerning the shape of the angular distributions for the triplet
excitation processes as governed by the (OR) approximation.

By inspection of the matrix element in the (OR) approxi-
mation (suppressing all but electronic coordinates)

- -

iq- Ty
25@ = (yyle v (4-1)

one sees that the angular distribution is related to the Fourier trans-
form of a one-electron overlap charge density, Thus, if this one-
electron overlap charge density is appreciable only in a region of
radius (a), then the Fourier transform takes appreciable values

only in a region of linear dimensions (1/a) about the origin. (84)
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Consequently, (4-1) will possess its maximum somewhere in the
region ¢ < 1/a. The precise "a-priori' location of the maxima of
(4-1) requires a knowledge of the range of the one-electron charge
density and the details of the interaction process. Although not
enough information seems to be available at present a semi-
quantitative analysis can be carried out as will be shown below.
The intrinsic complexity of this type of scattering
process can be made more evident by considering the classical
analog of the scattering of electromagnetic radiation by a partially
absorbing body. One thinks of the body absorbing the incident
electromagnetic radiation and then re-emitting the radiation at a
different energy, If the wave length of the incident radiation is
large compared to the sizé of the object, one can treat the re-
emitted radiation as coming only from an induced dipole, However,
if the wave length of the incident radiation is of the order of the size
of the object, the case of interest here, many multipoles are
important and the details become quite complicated. This is called
by the general name of Mie Scattering. (85_) Some insight into the
quantum case can be gained from this classical analog when one
notes that the quantity which determines the angular distribution in

Mie Scattering is (85¢)

_ 2ma _ -
p-T:ar, (42)

where (a) is the radius of the particle and (1) is the wave length of
the incident radiation. This is very similar to the quantum require-

ment ga < 1 obtained in conjunction with (4-1).
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For the analysis of the electron scattering angular
distributions, these qualité,tive arguments need to be made more
quantitative. To do so, it is assumed that the maximum in the
angular distributions are characterized by the equation (atomic
units)

aqky, 9) = 1, (@-3)

where (a) is the radius of the one-electron charge distribution and
q is the momentum transfer wave number which depends on the
incident energy and scattered angle according to

q2 = k(z) r k2 2kok' cos 6 , (4-4)

k'“ = k - AE, (4-5)

The quantity AE is the excitation energy of the particular process
being considered. The choice of the value 1 for the right hand
side of (4-3) is somewhat arbitrary (although the value is close to
unity) and was chosen so for convenience. Although the actual
value may be different from 1 and may also be a function of the
particular scattering process, this choice is quite consistent with
the discussion above and does not affect the principle of the analysis
that follows.

By using (4-3), the location of the maxima in the
angular distributions can be explained as follows. Since (a) is
fixed for a given excitation process, q is always determined for
the same process by solving (4-3), It follows from (4-4) that in
order for g to maintain its same value as the energy changes, the
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scattered angle must change. To demonstrate that this type of
analysis does indeed characterize the maxima of the angular
distributions, the excitation of the first triplet (b3z;:) state of H
is analyzed using (4-3). In Fig. 30, the vector relation between

2

?i, '120 and k' is displayed in the upper left corner. The lower
portion represents this vector relation plotted out explicitly for

a number of incident energies. The horizontal axis represents ko
in atomic units, The large semi-circles whose centers are located
at different points along the ko—a,xis represent the magnitude and
possible orientations of the E'-vector with respect to the tip of the
.'1'{'0 vector. For purposes of this discussion, just one possible energy-
loss has been used in obtaining k' from (4-5); namely 10,62 eV. K
(4-3) is valid, the vectors q (for all possible energies) must lie on a
circle whose origin is at the tail of the vector k . In Fig. 30, the
‘magnitude of q was taken to be 1, which corresponds to a value of

1 for the radius of the one-electron overlap charge distribution.
Then for each incident energy, the intersection of the g-semicircle
with the k'-semicircle uniquely defines the scattered angle 6. The
vector diagram is explicitly for the case of 10 eV incident electrons.
By measuring the scattered angle (with a protractor) and comparing
it with the one corresponding to the maximum in the angular distri-
butions of Fig. 17, one sees that the agreement is quite good. For
instance, at energies of 10, 20 and 30 eV both the maxima predicted
by Fig. 30 and that displayed in Fig, 17 are respectively 1100, 54°
and 42°,

In Fig, 31 are displayed the maximum in the angular
distribution (emax) as function of the incident energy (E) as found
from Fig. 30 and calculated in the (OR) approximation (Fig. 17).
The solid line is the (OR) result, the crosses are the results from
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Fig. 30. I is worth mentioning that for an incident energy of 200

eV, the maximum in the angular distribution will occur at 15°
according to the (OR) model for the excitation. This is an interesting
result because it has been speculated that at this energy the maximum
in the angular distribution will be at 00. Experimental measurements
will be necessary to determine if this is indeed the case. Note that
the choice of a = la,0 is consistent with knowledge of the charge
distribution for the hydrogen molecule. This value corresponds to

a (rotationally averaged!) diameter of 2a o A similar analysis can
of course be carried out for the second triplet excitation of H2 and
the He excitation processes. The only changes that are necessary
are in the excitation energy and perhaps the value of a. In this
model, these two quantities are the ones that determine the shape of
the angular distribution! This is a physically appealing result.

The discussion carried out in this section shows that the
calculated angular distributions are indeed consistent with both the
classical picture of the scattering process and the mathematical
model employed. As more experimental data for electron-atom
rearrangement processes becomes available one will be able to
perform a better evaluation of the validity of the (OR) approximation

for differential cross sections.
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FIGURE 1

Potential energy as a function of internuclear distance
for low-1lying states of H2. (52) Quantities R(l) and E1 are
defined in Section 5.2.1. The shaded area represents the
Franck-Condon region for excitation firom the ground vibrational
state. The horizontal full line to the right of the b32‘: curve

represents a continuum vibrational energy level, V',
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FIGURE 4

Effect of ground state wave function on cross section
for excitation to first and second triplets: (1) Wg--first
triplet, Wang; (1) Whb--first triplet, Weinbaum; (1) C--
first triplet, Coulson; (2)--second triplet (curves corre-
sponding to the three different ground state wave functions

coincide within plotting accuracy).
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FIGURE 5

Effect of different excited state wave functions on
the cross section for excitation tothe first triplet. Ground
state is Weinbaum for both (PM)--Phillipson- Mulliken,

(H) Hurley.
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FIGURE 6

Energy dependence of excitation cross section to first
triplet: (OC)--Ochkur, complete; (OSA)--Ochkur, separated
atom; (ORC)--Ochkur Rudge, complete; (ORSA)--Ochkur

Rudge, separated atom.,
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FIGURE 7

Energy dependence of excitation cross section to first
triplet: (ORC)--Ochkur Rudge, complete; (OC)--Ochkur
complete; (E1)--first order exchange; (K)--Khare-one
center, Ochkur,
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FIGURE 8

Effect of ground state wave function on cross section
for excitation to second triplet state, for (OR), complete
and separated atom approximations:— — — —separated
atom (SA): (C)--Coulson; (WB)--Weinbaum; (Wg)--Wang;

complete (curves corresponding to the three
different ground state wave functions coincide within plotting
accuracy); — — — — (K), Khare one-center Ochkur,
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FIGURE 17

Perspective view of the differential cross section
for excitation of the b321': state of molecular hydrogen.
Calculated using the (OR) approximation with Weinbaum
and Phillipson- Mulliken®1®) wave functions, The axis is

as labeled and the spherical polar angles from which direction

(50Db)

the array is viewed are indicated on the lower portion of the

figure.
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FIGURE 18

Perspective view of the differential cross section

3.+

for excitation of the b r, State of molecular hydrogen.

Calculated using the (OR) approximation with Weinbaum(SOb)
and Phillipson- Mulliken(51a)

as labeled and the spherical polar angles from which direction

wave functions, The axis is

the array is viewed are indicated on the lower portion of the

figure.
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FIGURE 19

Perspective view of the differential cross section
for excitation of the b32;; state of molecular hydrogen.
Calculated using the (OR) approximation with Weinbaum(
and Phillipson- Mulliken(51a) wave functions. The axis is

as labeled and the spherical polar angles from which direction

50b)

the array is viewed are indicated on the lower portion of the
figure.
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FIGURE 20

Perspective view of the differential cross section for

excitation of the a3>:; state of molecular hydrogen, Calcu-
(50b)
and

Hartree-Fock wave functions. The axis is as labeled and

lated using the (OR) approximation with Weinbaum

the spherical polar angles from which direction the array is

viewed are indicated on the lower portion of the figure.
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FIGURE 21

Perspective view of the differential cross section for
excitation of the 3.32+ state of molecular hydrogen. Calcu-
lated using the (OR) gppro:dmation with Weinbaum(SOb) and
Hartree-Foch wave functions, The axis is as labeled and
the spherical polar angles from which direction the array is

viewed are indicated on the lower portion of the figure,
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FIGURE 22

Perspective view of the differential cross section for

excitation of the 3.32; state of molecular hydrogen. Calcu-

(50b) and

lated using the (OR) approximation with Weinbaum
Hartree-Foch wave functions, The axis is as labeled and
the spherical polar angles from which direction the array is

viewed are indicated on the lower portion of the figure.
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FIGURE 23

Perspective view of the differential cross section for
excitation of the 23S state of helium, Calculated using the
(OR) approximation with Green et. al. (72b) and MYH(73a) wave
functions, The axis is as labeled and the spherical polar
angles from which direction the array is viewed are indicated

on the lower portion of the figure,
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FIGURE 24

Perspective view of the differential cross section for
excitation of the 238 state of helium, Calculated using the
(OR) approximation with Green et, al. (72b) and MYH(73a) wave
functions. The axis is as labeled and the spherical polar
angles from which direction the array is viewed are indicated

on the lower portion of the figure.
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FIGURE 25

Perspective view of the differential cross section for
excitation of the 23S state of helium, Calculated using the
(OR) approximation with Green et. al.(72b) and MYH(73a) wave
functions. The axis is as labeled and the spherical polar
angles from which direction the array is viewed are indicated

on the lower portion of the figure.
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FIGURE 26

Comparison of theoretical and experimental angular
distributions for excitation of the 238 state of helium. Upper
plot is for electrons of 20 eV incident energy; lower plot is
for electrons of 24 eV incident energy. Vertical bars are
experimental points of Ehrhardt and Willmann(az); solid
lines are theoretical results in the (OR) approximation using
Green et. al. (72b) and MYH(73a) wave functions,
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FIGURE 27

Perspective view of the differential cross section of
the 23P state of helium. Calculated using the (OR) approxi-
‘mation with Green et. al. (72b) and MYH(73a) wave functions,
The axis is as labeled and the spherical polar angles from
which direction the array is viewed are indicated on the

lower portion of the figure.
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FIGURE 28

Perspective view of the differential cross section of
the 23P state of helium, Calculated using the (OR) approxi-
mation with Green et, al., (720) and MYH('?Sa) wave functions,
The axis is as labeled and the spherical polar angles from
which direction the array is viewed are indicated on the
lower portion of the figure.
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FIGURE 29

Perspective view of the differential cross section of
the 2°P state of helium. Calculated using the (OR) approxi-
mation with Green et. al. (72b) and MYH(73a) wave functions,
The axis is as labeled and the spherical polar angles from
which direction the array is viewed are indicated on the

lower portion of the figure.
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FIGURE 31

Plot of maximum in the angular distribution (emax) as
a function of incident energy (E) for the excitation of the
b32: state of molecular hydrogen. ¢ ), as calculated in |
the (OR) approximation (Fig. 17); (x), as determined assuming
g and a equal to unity.
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Appendix A

In this appendix, the proofs of some of the useful identities
used in Section I are given. The proof of (I-1-45) and (I-1-46) will
not be given since they are demonstrated on pp. 826-7 of Ref. 1lc.
In the following discussion, the limiting process will not be written
but just assumed.

The proof of (I-1-47) proceeds as follows: Take G~ and
write it as

1 _ 1 . 1 _
E-Hzic E- Ho:!:ie(E-Hoile) E-HIle (a-1)
In the above, the "right'" identity
+ C oy _
GO(E-Hoim)—l (A-2)

has been used. Add and subtract V to the quantity (E - H, + ic)
in (A-1) to give

1 1 . 1
ErHiE " E-H e (E-H- Ve« Vigrgey A9

S S
E—Hoile

1 1 1
Hiie+E-Hod:ieV F-Hile"
(A-4)

(E-H=+ ie)E_

Using the "left" identity for G* )

(E-H+i)G =1 (A-5)
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equation (A-4) becomes "

1 _ 1 1 1
E-Hzic E- Ho:l:ie+E-Ho:l:ieV']_i!-H:tie' (A-6)
Rearranging produces the identity (1-1-47):
1 1 1 1 (A=)

E-Hil E-H ik E-H il E-Hzlk’
Identity (I-1-48) is obtained in a very similar manner using the

"pre''-identities for G(i) and Gi:

11
E-Hiic E-Hzle

. 1
(B - Hj = ie) g H %t

o . 1
"grHr (E-Hzl)+Vigg Ik

_ 1 1 1
“E- Hoiie+E- i 'E- H +ie ° (A-8)
Rearranging gives (I-1-48)

E-Hiie-E-HOﬂ:ie::f?Hiie E-H i’

The very useful identities (I-1-49) and (I-1-50)
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1+ GV)(1 - GiV) =1 (A-10)

a- G§V)(1 +GV) =1 (a-11)

follow at once from the application of (A-6) and (A-8). To illustrate,
(A-10) is obtained as follows: Write (A-9) as

G*- G = ¢*va (A-12)

right-multiply by V and rearrange fo

Gv - G:;V - Gy sz = 0. (A-13)

Now add the identity to both sides of (A-13) to give

1+ GV - Gi;V - GTv Gﬂ(;V =1, (A-14)

The left hand side of (A-14) can be factored at once to give (I-1-49)
1+GV(1-GV) =1, (a-15)
The identity (I-1-49) is obtained in a similar manner by using (A— 7).

Note that care must be exercised so that these operators act
only on vectors of finite norm.
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Appendix B

There are two commonly used sets of atomic units. The
principle difference is in the unit of energy; in one case it is the
Rydberg and the other it is the Hartree. In table B below the
value of the constants are given for these two sets of atomic units.

Table B
Constant Rydberg A.U. Hartree A.U.
A =/2 =1
m =1 =1
e
|e] = /2 =1
2
a =—5 =1 =1
o} m2
e
2 2
_e 1 e - =

Consider the effect of these units on the Schredinger
equation for, say, an electron in the field of the hydrogen atom:

2 2 2
(-3=V° S BT <0 (B-1)

First scale the length quantities with a o’ that is, let r=a oP in
(B-1), so that it becomes (rewrite all the constants in terms of a o)
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(v 2,2_2 ,_E -0, (B-2)

P1 P12 e12/2ao

If Rydberg A.U, 's are used, e2/ 2a = 1 and the energy unit is
measured m terms of 13.595 eV = ez/ 2a . If Hartree A.U.'s
are used, e / 2a = 1/2, Equation (B-2) is multiplied by 1/2 so
that it becomes

V2t =0, (B-3)

(35
PP P12 e /2,

Dol =

and energy is measured in terms of 2 x e2/ 2a,o = 27,19 eV, Thus,
the advantage with either set of units is that the Schrbedinger
equation is rendered dimensionless; the choice of either set is
therefore arbitrary.

It is worthwhile to mention the effect of atomic units on the
quantities of interest in scattering problems., I the interaction
potential for the rearrangement collision is electrostatic, the
amplitude is the same in either set of atomic units:

2

m
Ty E "ol W’;(O)Ig(l J)ng) ng’ = <$')Ig(1 J)|XA ng) - (B-4)

(for electron scattering, g(i,j) = W AB ™ inter electron repulsion.)
This is of course a result of the fact that .’Z’fi has dimensions of a
length which is scaled the same in both sets of units.

The energy (E = fzzkz/ 2m_, in eV) is related to the wave

number k in the same way in both sets of units, as seen from
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E "zklza 2
(Rydberg A, U, 's) = g = kR
o e
L |
(Hartree A. U, 's) T T
0o e .
(50 = 1 Rydberg)
Note also that
2m
A

is also the same in both sets of units, since

E
2 .2 2,
(Rydbergs) k r = Kp (-8-;
E.
(Hartrees) k'fi = k?i - -2-9-) (z'{fl" -

Finally, since kz, k'z

2 2

qa =k +k'2-2k'kcos6

E(eV) = E:o,k?t
2
E(eV) = eokH .
E
f
%)
0

are the same in both units,

(B-5)

is also the same, Thus, as far performing calculations using the
transition amplitudes as defined in Section I, either set of atomic

units can be used.
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Appendix C

There are two possible approaches to the determination of
the proper spin symmetries involved; the first involves a brute force
anti - symmetrization of the total wave function for the three-
electron system which of course works but somewhat disguises
the principles when more than two electrons are involved. The
second relies on the understanding of which of the possible collision
processes are really indistinguishable. Of course, this latter
approach is not general but it is felt to be superior since it stresses
the physical aspects and hence is the one which will be used here,
For the general treatment of indistinguishable particles, the
interested reader can refer to the literature (Ca)

The basic necessity here is that the total wave function for
any one of the three-electron states of the system be anti-symmetric
with respect to interchange of indistinguishable electrons. It is
worth pointing out now that the free electron is considered as
distinguishable from the two bound electrons. This is because the
free electron can be separated from the bound electrons (which, of
course, is the way the experiment is performed). For the two-
electron bound states of the scatterer, the space and spin parts can
be written in product form, each of which have their own symmetry
appropriate to that state. Let ul(;l,?z) and u3(?1,¥2) dencte the
singlet and triplet spatial bound state wave functions of the scatterer,
and cp(?3) the free particle wave functions. I v(12;3) and %(12;3)
denote the respective initial and final state spin functions for the
three electrons, then the initial singlet state can be written as

¥,(123) = o(F5) u (¥}, T,) v(12;3) (C-1)
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and the final triplet state as
Y5 (32;1) = o(T,) ug(T,, T,) x(32;1) (C-2)

where in (C-2) the exchange as been assumed to involve electrons
3 and 1, an arbitrary but not restrictive choice as will be demon-
strated later, Note that the last electron (free) has been separated
from the first two (bound) in the writing of the spin functions since
this free electron is considered distinguishable.

The eigenfunctions (u1 and u3) are solutions of the bound
state Hamiltonian and must possess the symmetry associated with
their respective states. For instance, the singlet wave function
uy must be symmetric with respect to interchange of the bound
electrons; and the triplet wave function ug must be anti-symmetric
with such interchange. Since the Hamiltonian governing the
scattering process is assumed independent of spin (a good approxi-
mation), the total wave functions for each state must be eigen-
functions of (S1 + S2 + 83)2 and say (Szl + SZ2 + st).

Thus, for the scattering off a bound state initially in a singlet
state, the spin function v(12;3) must take the form

v(12;3) = 7% (onlea3 - Blazas) (C-3)
which represents a doublet (total spin 1/2) state. Since the total
spin is a constant of the motion, the final state spin function must

also be a doublet with the same z-projection. It is taken as

x(12;3) =71§(a1ﬁ2a3 + ByGglg = 20.10gB4) . (c-4)



203

Note that both the initial and final spin functions have symmetry
only with respect to interchange of electrons 1 and 2 as written
in (C-3) and (C-4). As mentioned before, no special symmetry
need be attached to the free electron., Note also that in equations
(C-3) and (C-4) only one polarization of incident electrons has
been assumed, This again is no restriction and can be accounted
for as will be shown later,

It is important at this point to observe that in producing
the exchange excitation, the incident electron can exchange with
only one of the two electrons bound in the scatterer, However,
the two bound electrons are really indistinguishable and hence the
final state can be reached by two experimentally indistinguishable
paths. These two paths are denoted symbolically as

be b l—1tY + (C-5)

3 21 3 2 1 '
and

boe b i—tt o b (C-6)

3 12 31 2

Then, in forming the scattering amplitude using (C-1) and (C-2)
there will be two contributions which will have equivalent spatial
portions but the spin factors will be:

c-5: Y . (32;1) v(12;3)
(C-17)

c-6): Y x (31;2) v(a1;8) = 52
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where these were evaluated by using (C-3) and (C-4) along with the
usual rules for matrix multiplication. Since these processes
leading to the same final state are indistinguishable, their corre-
sponding amplitudes must be added. This produces one spatial
matrix element (for example (I-5-3)) and the multiplicative factor
/3. (+ superscript means spin projection up)

ghy T /3 I5PAHRL, (C-8)

The above discussion represents the solution for the incident
electrons with a fixed projection of + #/2 in some preferred
direction., Most experiments of interest here are carried out with
an unpolarized incident beam of electrons. This means that the
incident electrons have equal probability (1/2) of being polarized
with + and - spin projection. An analysis for the negative
polarization analogous to that carried out for the plus polarization
((C-5) and (C-6)) will produce exactly the same spin factor and
spatial matrix element as found in (C-8), a result which is expected
on physical grounds.

To obtain the total probability that the excitation occurs
when the incident beam is unpolarized, one 'averages over initial
states'. Each initial state is the prbbabilitz of the excitation taking
place for a given polarization of the incident beam multiplied by the
probability of that polarization occurring in the incident beam, The
various (two in this case) initial states are then added to give the
total transition amplitude., In this case, since each incident
polarization is weighted with the factor 1/2 one finds from (C-8)
that
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+ - 2
2lepsl” + 31831 = Iegsl (C-9)

since g83 = g63. Because of the equal probability of positive and
negative polarization in the incident electron beam authors usually
forget about formally averaging over initial states since it introduces
no changes, and just derive the spin factor for one fixed incident
polarization,

It is interesting to point out that people are still making
errors concerning this spin manipulation. In the first(Cb' 1) of a
series of two papers on the triplet excitation of heli_um(CbZ the
authors used spin functions for the excited state which were not
eigenfunctions of (S + 8,y + Ss) and proceeded to obtain the correct
spin factor ((/3) ) by summing probabilities over two final states.

This approach implies that the excitation proceeds by two experi-
mentally distinguishable intermediate states which is certainly not

(Cb—2)’ the authors use the

the case. In the second of their series
correct excited state spin functions and just introduce the final
correct result ({/ 3)2) without elaboration on the details of forming

the transition probability.
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References for Appendix C

For the 2-electron case see, for instance, ref. 14a,
p. 235.

For the N-electron case see ref, 30b, Chapters 7 and 8.

C. J. Joachain and M. H. Mittleman, Phys. Rev. 140,
A432 (1965).

C. J. Joachain and M, H. Mittleman, Phys. Rev. 151,
151 (1966).
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Appendix D

The Ochkur modification proceeds by considering separately
the three terms in (II-5-5-6). (Ochkur kept the core terms.)

BO_ o

i 31~ G32+ G

7 32 T3A

(D-1)

where the subscripts on the G functions refer to the subscripts on
the electron interaction terms. Working just with G31 and
using the vector relation F31 = ?3 - ?1 one can write:

. g KTy -kT) L .
(;131 = 5 J'?gz e :,(/f(rs,r2) zpi(rl, rz)d rldrzdr3

-

i(k,- k")-r

1 —_ - - s d 1 — .
=95 f zpi(rl, r2) If( Ty rz)e dr, drg (D-2)
where
ik.r,,
L = J‘?—;—l wf(rs,rz)e 31 dr3 . (D-3)

In (D-3), change integration variables from ;3 to ;31, which just
amounts to relocation of the coordinate system origin. Choose the
z-axis along .'ﬁ, and employ the spherical coordinates (r31, 9,%).
Then (D-3) becomes
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ikrq cos 6

L= f Vs (;31 + ?1,?2)e roqdre,sin 6d6 dy (D-4)

1 e g

where

2m
—p — * =) ) —
X = cos 9 and Tf(rl’ Tays x,rz) = ‘fO ¢ff(r1+ r31,r2)dx. (D-6)

Now integrate (D-5) by parts with respect to x by letting

3¢,
U= Y¥eTey du = 5Ty &
ikgslx elk}‘Slx
dv=e dx V=g
krsq

and (D-5) becomes

1‘ ! 1.4
® ikr, .x 1l » 3y, ikr,.x
. 1 Wy 1 p 7 oY gy
L= Io %731 i, © }"“‘ &) | wxe  dxdrgy.
by 10 (D-1)

The second term in (D-7) is neglected as being a higher order
smallness than the first term (seen by integrating this term again

by parts). Then evaluating the limits in the first_ term gives
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© ikr -ikr
~ 1 - = 31 = = s31
L= TEJO [;f(rl’ T3y Lirgle - ¥y(ry,Tgq,-1,rp)e ]d"sr

(D-8)

Integrate (D-8) again by parts, this time with respect to Ta1s by

letting
Y
_ 1 _1 f
u= ¥ i du =1 57, 931
°~"31
dv = eikorsldr v= —:L e °31
31 ik

and {(D-8) becomes

ik -ik
~ 1 - - RE3q - - 31
L= - ;{E {Yf(rl,rsl, 1, rz)e + ’i’f(rl,rm,—l,rz)e }
) 0
+ (terms of higher order smallness). (D-9)

Using the fact that
Yf(rl,r31,:|:1, rz) -0 for gy = @

means that (D-9) becomes

I, 212 #4510, ,Fy) + 1(F,,0, 1,79) } (D-10)
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By using the definition of ‘Ef (D-6), we can see that

- - 2ok, * o -
Yf(rl,(), il,rz) = IO pelry + 0,r5)dy = 2mpf(r1,r2) . (D-11)

The last step was possible since the integrand is independeht of
®. The two terms in (D-10) then add to give

YTy (D-12)

Sl 5

Using (D-12), the expression for G31, (D-2), becomes

igery |
dr1 dr2 (D-13)

Ggy = fif‘f" (ENERPACHENE
where q = T{’o- k' is the momentum transferred by the incident
electron to the bound system.

The treatment of G3
(2‘132 O(k, ) for zp v.//B of the same symmetry and G32 = O(k, )
for y, Vg of dﬁferent symmetry. G, is also 0 (k;®).

9 proceeds in the same manner and y1e1ds
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Appendix E

In this appendix a derivation of the Rudge (34) approximation
will be outlined. Although Rudge approached the problem from
variational considerations a more direct method will be used here,
It will be similar to a discussion presented by Crothers. (Ea) For
simplicity the electron-hydrogen atom will be used although the end
result is general.

In Hartree atomic units, the Schriedinger equation for the

electron-hydrogen atom system in the jJCB channel is

1.2 1 o o
& Vl*ivg*rl*i"’l'*m“’j(rl’rz)=°' (E-1)

1 Yo Tig

I 1[/n is used to denote the nt—-h bound state of the atom

1.2 1 _
(—2-V + < +En)v,[/n-0 , (E-2)
then
+,- - - ﬂzj.;z - : —-' eiikmrz
I~ r P -
¥5(ry, o) g Yy(ryde +) Y O o k) T, (E-3)
m

represents the asymptotic boundary condition that total wave
function satisfies.
I, without loss of generality, the total wave function is

assumed to have the form
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+,- -~ - + - -
lfj(rlyrz) = "D](rl) gj (rl’ 1'2): (E-4)
and use is made of the identity
vz(w.g.) = z,b.vzg. + g.vzz,!/. + 2(vq.) - (vqg.) (E-5)
1755] D SO RS M A 17y Y157

(E-1)can be rearranged as follows:

2
L 1 zp.vzg. + (vq.) s (v 8) + lz,t/.vzg. + —1—1[/.g. - ——1-—¢.g. + kap.g.} +
RS A IS b6 (IS S PAS A5 IS i IR TPRS ks RS i
12 1
[5ve+=+Ely. =0 . E-6
glzvtr * B = 0 (E-6)
Using (E-2), and multiplying(E-1) through by 2/:,1/j gives
2(v, )
2 177, 2, .2 , . 2 K2e) = 0 E-7
(Vlg]- + IP] (vlgj) + Vzgj + r2 gj r12 gj +. ]gj) . ( )
Since
Vlg]- = (Vl In gj)gj (E"B)

(E-"7) can be written as

1,72 2 + +_ 2,1 1.+ -9
“i?{v1+vz+2(v11n¢j) (vllngj)}+1:{g]. 2(r - )gj. (E-9)
J
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The solution to (E-9) for high energy, which is consistent with
(E-3), is

ik,
gg‘t)(? )’\-’ e 12 (E-10)

which is just the Born solution, as expected.
The transition amplitude for the rearrangement excitation
in the Born-Oppenheimer approximation is thus

-
1k r N

B0, 0) = (W Fpe 1|———|4/(r1)e B @1

where p,q are the initial, final quantum numbers of the bound
system. Note that energy conservation relates the energy of the
free electron and the atom as

2 2 2 1 1
=k% - A\W= - - . E-12
‘kq kp A kp (-;2 gz) ( )

~ To proceed in the analysis, the Fourier transforms of the
bound functions are introduced as

—

ISI'

o5 - Ly [y,
(E-13)

—

- 1 oy =i e T .
zpj(r)=W ftlnj(s)e 18 ds,
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then

iE .‘; i(§+-ﬁ ')';-)
(2m)®/ 24/’; @e PFTI j@?(é')e T as. (E-14)

Using (E-14), and grouping the terms with the same coordinates,
(E-11) becomes (letting p~ j, q ~ p+q-J)

BO 3,1 % AE+ENT, -if+k M_j).'fl I
T(p, o) = (2m)[ 0 T, e @t e dr dr ,dsdt’.
(E-15)
Make the substitution in (E-15)
V'=1+8+k -k (E-16)

i pta-]

which corresponds to a translation of the origin of the 7:" integration.
Then {E-15) becomes

BO 1 * i(§+1‘i.)-?z .
== s ] t K. -K .
o, a) I P ¢p+q_j(S)e o,(t + 5+ k; erq_J)

-i(:?+§+§.)';1 e o e -3
e ] dry drydsdt (2m) (E-17)

The exponents in (E-17) can be regrouped to give

i(§+kj)' (F‘.,‘l—rl)-it-r1 1

L. N2
drzds dt. (E-18)

~3 A * - e
o 0= @) [ [ &, @ EsE ko ge

dr1



215

The above expression can be simplified by utilizing the identity(E b)

iu-(r1 - r2)

1_1J\e

du (E-19)
12  on; u

2

in the following fashion:

3 e I
™ - % NP ROLICEEEL R

@K, « (F)-F,) - iE-T, +iue(F,-T), . .
e 271 1 V2L Godf ¢ dS at
u

i(§+kj -—’) Ty

1 o * - 1 -
= , k.-k . d
: -2—4-3 .]‘¢p+q-j(§)q)]€+s+k3 p+q-J) ;—2 I e Ty

1-—) e e )

ry duds dt

-y -

t)du dsdt

% - —_ = — 1 — = -, - > =3
= . . ~k . ~u) §(u~s-k.-
Um |, G ask k) J’.?é(sﬂcl u) 6 (i-5-k;

1

* - — -y 6(? B

= . Fagei, -k ) =2t a3 af
() [ 8y, y(8) sk 2+
j
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(E) g3 +F-F ) LS (E-20)

BO
T80 - 1
un) [ pra-j 1T e (3482
j

If in (E-20) the limit k].2 - « is taken, then (E-20) becomes

which can be written in terms of the a,bj functions as

~ig. r1 1(s+k Jer '1

O ~_ 4 ] p+a-]
RO kﬂ (o )3H‘”p+qa fpyEpfe e
J

b

ds

dr dr!
1‘1 I‘l

i - Koo ) T L oo
JT p+q 3(r1) v, (rl)e 6(—1‘1 + r'l)drldri

t
ol &

wp =y .

" . ik, -k )Ty
Vorgei(FD WilEpe 7 T an (E-21)

ol B
—

which is just the Ochkur result,
Given (E-21), the above process is now reversed to determine
the specific form of g;:(?l,?z) in (E-4) which, when inserted into

- -

1K T
o, 0) =T, (6,0) = ¥y F)|WaplyGpe ©

> (E-22)
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—

ik T
= Tylo, @) = (W Gde & 1 IW,pI¥hGE LT (E-23)

will reduce to (E-21). The above two equations (E-22), (E-23) are
the familiar "prior', "post' forms for the scattering amplitude
respectively.

The reversal proceeds as follows: From (E-21)

. _ik.-k o )er L
=2 [y E) yGpe 1 PrO] Lo, - T)ar

. . (E-24
2 Yora- ry. (B-24)

Gk

Motivated by the technique used in the "forward' derivation, insert
into (E-24) |

J" e . at (E-25)

to give

O _ 4y * ] ptg-]
T = (—2;-)—3-1;2 f wmq_J(rl)wJ(rl)e e
, j
d}’ld?'ld? . (E-26)

Using the definitions (E-13), (E-26) becomes

-, - —3

1© =f‘% J‘ <I>* (f) &(T+k, -k, Jdt (E-217)
K.
J

p+a-j j i pra-j
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Insert u-'2 by writing

O 4-n' - - ¥ -, - - 2 o) L ) - = =
T = - . - -
-k—zfdi(u B ood gyt D IE+E]] 2 (T+K;-wat du (E-28)

6
———-§-——7—-§-I¢(S+t +E-E ) q)p+q J(t)[t+k] 2 (E+%,-0)
(2m) 2 u
5 @-s-t -Ej)dé’ at du. (E-29)
Restore the integrations over dr.dr, in (E-29)
O 1 A - * - 1
T &.(s+t+k.-k )D ()t +k.] =5
(zﬂ)3 2 7J i” Tpto-i prg-d 72
i€ +k.-u)-7, i(@-s-t-k)-r | . . . .
e ] 2e ] 1drdrdddu. (E-30)

Collect the exponents involving u and use the identity (E-19) to write:

O 1 1 =
T = ——— —_—
3—-2J¢(s+t+k -k o J)Qp_'_q J(‘c)[t+k]

(2m)° k T12

i(’?+E.)-?2 -i(§+¥+i§.)-?1 el
] e J drldrzds dt . (E-31)

Let§=s'-t-kK.+k . in (E-31
j* Kprg-j I (E-31)



219

' 1 1(t+Ej)-;2
—2 (S) (t)[t+k] T
(2 ) I %* T12
-i(s' +k )er o o
pra-i 1 2 o7 d8' o,

€ 19%9

Instead of (E-24), proceed from

_ 1 1 2 _" * N 1 i(t +kj)’r2 _i(S’+kp-Fq-j) -I‘1
o (vy) [a(E ENPRGE e
]
d’i’ld}'zd's" dt (E-32)
Or’ - - - —
1 2 1 is'er - _3° rl 1
0=—=(-v,) &.(s)e ds' e P71t =2
‘k? 2 "(2n_)37'2f T1y
t-r ik.. T,
1 * ~ 1 2 — 2 N
-(—2;)-37? I (I>p+q_j(t)e dt e drldrz .
(E-33)

Use equations (E-13), (E-21) to give

- -ik T 1k. T

- = prg-j 1 1 2 |2 2

ij(rl)e 12[ {wmq J(rz)e }jidrldrz
J

- -

- . 9 * . ikj- r
prq-i™ 2 T VR g @)
j l1’p+q-j 2
dr,dr (E-34)
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The "prior' and "post" forms for the transition amplitude are thus

o ) ;
("prior”) T = <¢q@2) gy, 7o) = Iz,l/p(rl)e 2, (E-35)
ik -r1 I
("post”) TO = (y e 1 I—l W Ey) "8y, 7o) ) (E-36)
5 k.. 17
v ( )e
where °g® = - —312 { ?:q ] } . (E-37)
bk (r)
i VYpra-j

The r-subscript in (E-37) depends on whether the "prior' or '"post"
form is being considered.

However, (E-37) is not quite correct as it stands since it
does not satisfy (E-3) and (E-4). This can be seen by expanding
(E-37) and investigating its asymptotic behavior. Choosing the
"post' form (E-36) one has

iK ¢
| 2
o+ 1e P 2 * . * 2 *
= - 21k - -k E-38
LI AMIE Fave* 2% "a¥a ™ Sp¥al =
*p Yq

and by using

2 2 1 * oo
{v2+—-q v, (T = 0
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1

* T
—~ . E-39
;;F V2 I,Uq I‘2 T o q ( )
q
iT«:'p -?2 % p -ik rz}
e T e 8(F - )e - 8(r+k e (E-40)
ro 11«:pr2 { kp p) ?
(E-38) asymptotically becomes
ik . T ik -7
p "2 2
O+ ~_- € 2 2
prz_’m_z__{kpﬁuzlk S -__}+ —— (5 @&
k p P

The last term in (E-41) must be neglected to be consistent with
(E-39), The boundary condition (E-3) says Og;; should have out-
going spherical waves and by (E-40) this means T = q. Using this
in (E-41) gives

0+/-\._/ (k +1-(]i)2 lil.;z
B Ty - ———T— e : (E-42)
p

Hence, although the Ochkur result is not properly normalized,
the following quantity is:

2
k
OR _+ _ p o _+ _
gp:——-—-‘]—_—z gp. (E-43)
(kp-}-l-_b')
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In general, the proper expression should be

2
OR & k, o

. - ] - .
") {kji i/(1@>+q-j)}2 "]

(E-44)

Thus, the Ochkur expression for the transition amplitude (E-21)
should be corrected to

OR 4n o ek g Ty o
7ot = v @) yi(r)e dr..
{kjﬂ/(mq-j)}?f pro-3m 1T !

(E-45)

Equation (E-45) represents the Rudge modification of the Ochkur
result.

Notice that when the given collision process also can proceed
by direct excitation, the total transition amplitude will be such
that the cross sections will not satisfy detailed balance. This is

because although the Born direct transition amplitude satisfies this

principle, (Ec) (E-45) does not since
1 4 1
. 1.2 . 1.2 °
(kp +1i 4 ) (kq i3 )

However, if no direct excitation can occur, then (E-45) does satisfy
detailed balance because

2 2
“—*1*1’“2 - ___1_“1._2 (E-46)
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is just the statement of conservation of energy. Since the processes
considered here proceed only by exchange excitation, the cross
sections reported here satisfy detail balance,

References for Appendix E .

(Ea) The initial modification of the Ochkur result was
published by:

(1) M. R. H. Rudge, Proc. Phys. Soc., 85, 607 (1965)
M. R. H. Rudge, Proc. Phys. Soc. 86, 763 (1965)

and subsequently the Rudge result was shown to fail at
detailed balance by

(2) D. 8. F. Crothers, Proc. Phys. Soc. 87, 1003 (1966)

(3) O. Bely, Proc. Phys. Soc. 87, 1010 (1966).

(Eb) L. D. Landau and M. M, Lifshitz, Quantum Mechanics
~ (Addison-Wesley, Second edition (1965)) p. 485.

(Ec) | See for example ref. Ea-3.
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Appendix F

This appendix contains a brief description of the numerical
methods used to evaluate the three-center integrals described in
Section I1-4, The essential features of the technique are contained
in the three-center Coulomb integral program (aa/ bc)(Fl) written
in FORTRAN II and FAP, The important changes that were made
to adapt (aa/bc) to the scattering integrals are as follows.

The MAIN of (aa/bc) was replaced by the subroutine FNOV
which still performed the initializations that MAIN did. However,
FNOV, along with FKBSJ, '"faked" two Slater orbitals of screening
constants 1/2 ¢ (momentum transfer), FKBSJ unnormalized these
Slater orbitals and called BESSEL(Fz) to eva.lua_,j:e the spherical
BESSEL functions needed in the expansion of eiq "¥1, These changes,
along with a few other minor changes are given in the listings of these
subroutines on the following pages. A listing of the subroutines
BESSEL and GAMMA (called by BESSEL), along with the unaitered
subroutines of (aa/be) are not included but can be obtained via the
references.

In the case of the second triplet, it was found convenient to
construct four subroutines to initialize prior to FNOV, They were
0S0S, OSTS, TSOS, TSTS which call FNOV and then proceed as
outlined above, They are also included in these listings.

It was important to test these programs and this was accom-
plished as follows, X the angle THETA was set equal to 0, the three
center integral reduced to a series of two center integrals which
could be integrated analytically. This test calculation was done for
a few representative values of g and the screening constants. The
computer results agreed with hand calculations to 5 decimal places.
The final listing in this appendix is the program used to run this test.
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References for Appendix F

This program can be obtained from The Quantum

Chemistry Program Exchange, Chemistry Department

Room 204, Indiana University, Bloomington, Indiana
47401, The designation of the program is: QCPE 22-25,

This program was taken from SHARE 1315, It is
capable of calculating BESSEL functions of complex

order and complex argument. It was written in FT II

also,
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CFNOV
* LIST
SURROUITINF FNOV(VALTNToooQCQyQCA)
U

COMMON TZXX s IIIPVXXsALF sD1sIMX s THETA sRHOB, RHOC,%Kle%K?sSKﬁ’SKAsQKA,
B 1 XaYsPsMgNs TARSMX s ARSCIS s WF IGHT s IABS2F o ZETASZETAPMeTJaNTERMGNE s -
T 2 ILsTUSsIVeIWsIUSsIVSsIHs IPSs THSsTUPVsJSURNSBLSTM1 ¢BLAST
~ COMMON NA GNRoNC 4 NNy IMX o NlY

COMMON NA]QNA?,NA39NA49NQ1,NR?,NP%,Nﬁanglth?;NC3,NraaNDI,”0?’
2 NDB3sND4 o TMX aNI3ST1 90825V 955) 9522455355949 S0735Q0A4SORIDELDLDELOP

- DIMENSION IZXX(5)sIUPVXX(5)sALF(535555)sD1(3Ns86)sP{3055)
Y ABSCIS(48).WEIGHT(48) sZETA(2534,548) »2ETAPM(2+30548)5TJ(8448)

? NE(4)Y s TLUA)Y s TU(A) s IV{4) sTW (4) s TH(4)sBLSTML(2) sRLAST (2)
B sTITLE(24) e
- THETAP=500.0
12XX(1)=1
- 1ZXX(2)=
oo YZxXx(3)=6 . e o e
- 1ZXXt4)=1R
e TZXXUB =42 . . I ~
TUPVXX (1) =0
- TUPVYXX (21 =1
TUPVYXX (3)=2
e TUPYXX )= S
TUPVXX (5)=6
e CALL PRPDY _ ~ L
SK3=8C3
SK4=SC4
RHOC=RHOR
CSK1=0e5%Q e e . -
SK?=5K 1 .
U IMX=XMINOF { IMX 929) o o e o
SKA=SK1+5K?
LZVINT=0 .
TF{NC=-2) 42,41,42
41 M= 3 B
GO TO 43
_ 42 M=) T . o _ o
43 TF{ND=2) 4544445
44 N=2 '
GO TO 47
45 N=) e T
47 TF(IMX=IMXP) 49+49,48
. A48 THETAP=THFTA e
CALL PRPLFG .
GO _TO_8n
49 IF{THFTA-THETAP) 50,58350
BN THETAP=THETA 3 .
CALL PRPLEG .
.58 IF(NU-NUP) 804,60s80 - o e
60 IF(ARSF (RHOR=— RHORP)+ARSF(RHOC RHOCP)) 8046180
e B1_1F(SK2~SK23D) 63462463
67 TF(M=MMX) 64464463
62 CALL PRPZTR _
MMY =M
B o 1ZVINT=1 o o _ e e o
64 TF(SK4L—SKBP) 66965+66
65 TF{N=NMX) TN+T04+66 - _
66 CALL PRPZTC . ' ’
CNMX=N , S e

TZVINT=1
70 IF(SKA=SKAP) 71s130,71
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CALL LITLJY

TZVINT=]
GO _TD 130

80 CALL OUADI(RHOP;PHOC»IARQMX,ARQCIC9WFIGHT9NU)

TTTCALL PRPZTC T

TZVINT =1

"CALL PRPZTR
MMX =M

NMX =N

et i o

CALL LITLJ
NUP =N

RHORP=RHOR
RHOCP=RHOC

) NTFRM=n

TMXP=1MX

SK3P=5K3
SK4P=SK4

SKAP=SKA
VALINT= AARC{NAyNRoN(QND;IZVTNT)

RETURN
END
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CFKRSJ ) . B et e e e
* LIST
# SYMROL TARLF

e i i o 2

SURRODHITINE LTITLJY
COMMON TZXX s IHIPYXXsALF D15 IMX s THETA,RHOR, RHOC s SK1 55K 255K 3 3SK44SKA

I XaY,P»MstIARQMX9AR§CI§9WFIGHT9IAR92F92FTAgZETAPMaTJsNTFRM’NE’

2 ILaIUsIVaIWQIU§91V§91H9IP§9]H99IUPVsJQURNQBLgTMl’BLAST

T COMMON™ 7 MABSNBaNCHND, IMX NI S

COMMON NAT sNAZyNABsNALINBLINBZ sNB3aNB4 s NCLsNC2sNC34NC4sNDL1sND2s F

7 ND3sNDG, IMXaNU3G1:523V+561+9952,563+55446072 sSQASAB3DELOSDELOP |
DIMENSION IZXX(8) s IUPVXX{5)sALF(5,5545)sD1(30+8B6)sP(30,5)

1 ARSCIS(48) sWEIGHT (48) sZFTA(2934+48) 47 ETAPM(2430:48) s TJI(B8s48)
2 NE(4)sTLU&4)sTU(4)sTVI(4) sIW(4) s TH(4)sBLSTML(2)sBLAST(2)

PO 100 T=1,TARSMX
OR=SKA*¥ARSCIS (1)

CALL BESSFL(0453N.N9GRsN 098F§09BI99RD9810915)
TJ(1sT) =2, N¥BFSO/SKA

CALL BESSEL(1+4530.05QR»0. ﬂsBESI;BIaRRDaBIDolS)
TJ(4s])=4.n*¥ABSCIS(T)*BFS]

CALL BESSEL(Z2+5350.0sQRsND-0sBES2sBIsRRD2BTIDs15)
TJ(BsI)==2, O*QR*ABSCI%(I)*BFS?

100

TJ(Tal)==6.0%¥TJ(8,1)
RETURN

END




cosos .. 22
* LIST
* . SYMROL_TARLF
SURROUTINE OQOQ(JAsJRanaJDoQaQQI959?9AN§) :
. COMMON_ IZXX s TUPVXXsALFaD1 s IMXsTHETAsRHOBsRHOC s SK19SK2+SK33SK&aS5KA
1 X&Yspo 9N9IABQMXsABSCISsWFIGHT9IABGZF,ZETA9ZCTAPM9TJ9NTERM,NE9
2 . ”,ILaIUwIV9IWaIHQQIV§5]H1J99m1H99IUPVsJSlRN,BLSTMlyaLAST
COMMON NASNRsNCsNDy IMX s NUI
COMMON NA19NA?,NA39PA49NR1qNB?,NR?aNHA,er0NC79NC?9NC4;ND}9ND79
2 ND3sND& s IMXsNU0S13S25V 98815582, %§3~§§4s§079%@A~9QB¢D&LO,DELOP
o DIMENSION TIZXX(5)sIUPVXX(5)sALF(54535)sD1(30+86)sP(30s5),y -
1l ARSCIS{48) sWETGHT (48) »ZETA(2+34+48) s ZETAPM( 2, 30948)’TJ(8;48)’
2 NF(Q)aIL(4)9IH(4)9IV(4)9IW(4 s TH{4)+sALSTML1 (21 sBLAST(2)

___ND=JD

CALL FNOV(ANSA;OaSSloSS?)
- "ANS=ANSA

RETURN
FND

COSTS

* QYMPOL TABLF '
CSURRQUTINE OSTS(JAsJRsJCsJID> O,§<3,€€49ARC)
COMMCN T1ZXX s TUPVXXsALF oD sIMX s THETA sRHOR 4RHOC s SK15SK255K35SK4 5 SKAS

1 XsYsPaMoNs JARSMX s ABSCIS s WEIGHT s IARS2F 4 ZETASZETAPMs TJSNTERMSNE »

2 ILsIUsIVaIWsIUg’IanleIPQ9IH%5IUPV9JSURR35L9TM1,QLAST

COMMON NAyNRQNCsNPsIMX;N(_

COMMON NAl5NA?9NA39RA49NBI9N8?9NR?9N84,NC19N(29NC39N(49N015NDZ’

2 ND39ND49IMX»NU9511529V95919§52y553955455Q7§SQA95QBQDEngD§LOEW
DIMENSION TIZXX{S) s TUPVXX(5)sALF{54535)sD1(30:86)sP(30+5)>

_ 1 ARSCIS(4BY sWFIGHT(48) s ZFTA(2 34 548) s 7FTAPMI?2+30448)+sTJ(RBab4R)

2 NE(4) s TL(4) o TU(L) s IV(4) s IW(4) s TH(4)sBLSTMII2) sBLAST(2)

CNA=JA
NR=JR

e CONCEJC e

ND=JD
CALL FNOV(AASRoQ;Q%B;SS#)

ANS=ANSB
L RETURN.
FND .

¢ e
* SYMROL TARLF

SURROUTINF TSOS(JASURSJCsJDa0s8%1 3S5SS2+ANSY
“COMMON__ IZXX s TUPVXXsALF sN1 s IMX s THETASRHOBSRHOC 9 SK 15 SK29SK3 4 SK4 s SKA,
. 1 XsYsPaMaNs IARSMX 3 ABSCISsWETGHT o TARS2F 4 ZETAZZETAPMyTJSNTERMHNE »
e 2 T TU IV IW IS alyYS s TH TIPS s IHS s TUPVIJSUPNSBLSTMISBLAST .
COMMON NASNRsNCoaND s TMX o NU .
COMMON_NAJT sNA2aNA3BsNALsNRL o NR2 s NR3SNB4aNC1aNC2aNC3sNCLINDLaND2,y
2 ND2sND4 s IMXsNUSS1 2525V 588145882 ,553, SQQaQQ?5§QA5§089DFLOsDELOP
_____________ DIMENSION IZXX(5) s TUPVXX{5)sALF(5+5+5)sD1(3N0s86)sP(30,5 ~ o
] ARQCI‘(QB),WFIGHT(AB)9ZFTA(?s34948)97FTAPM(793G948)sTJ(8949)9
2 NE(a)IL(A)2TULA) s IV(4) sTW (L) s TH(4)sBLSTMI(2) 4RLAST(2)Y
SMATJA
MB=JR
NC=C
CND=UDL L e e e e
CALL FNOV(ANSC9O$SSI¢S§2)
CANS=ANSC




o ______RETURN _
- END

- x LIST.
L * ___SYMBOL TABLF e
o SURROUTINF TSTS(JASJRsJCsUDs0sS€3 4854 ANS)
COMMON TZXX s IUIPYXX3ALF D15 IMX s THFETASRHOR, RHOC.%Kl,%k2.9K3,%r4,<<A,
T 1 XY sPsMyNs IABSMX s ARSC IS sWE TGHT s TARS2F s ZETASZETAPMs TUsNTERMGNE o
2 ILsTUsIVaIWsTlISsIVSsTHs TIPS, THS s IUPY 2 JSURNZBLSTMI 4BLAST
- COMMON - NASNRaNCosND o IMX 4 NLJ
COMMON NA1sNA2 sNABsNALsNRT oNB2sNB3sNBLsNC1aNC2sNC3sMCLsMDL4aND2,
2 NDAsNDL s IMX sNUSST 9S82 9VsS58155%2 4558345545807 »50ASARLWDELDOL,DELOP
 DIMENSION IZXX{5)sIUPVXX{5)sALF(5,5+5)sD1(3N386)sP(30,5),
T 1 ARSCIS(48) sWEIGHT(48) s ZFTA(2 s34 +48) s ZETAPM( 2530448 ,sTJ(8+48) s
2 NELG)Y s IL(A)Y o TULL) s IVIA) s TW (L) s IH{4)sBLSTML(2) yBLAST(2)
NA=JA
NB=JR
NC=JC
ND=JD
CALL FNOV{ANSDQ»SS34554)
ANS=ANSD
RETURN
END
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n‘DINFNQION_J7XX(5)oIUPVXX(5)qALF(5 5451aD1(30486)sP (3045 . .
1 AP%CI\(4819WFTGHT(48),7FTA(7934a08)9ZFTAPM(?a30s48),TJ(ﬁa48)o

2 NEFLAYATL LAY «TUAY S IVIA)Y s IWI4) s TH(A)sBRLSTMI(2) #+PLAST(2)
3 sTITLE(24) '
DIMENSION DUMMY(3)
(**********“‘**‘)‘**%7 Rk ** ""****"(’** * 3 '(*1(*******“%‘1(‘%%*%7“** 33 33 )f'%')\"-? He A WHHH
. THF FOLLOWING STATEMENT(S) HAVE BFFN MANUFACTURED BY THF TRANSLATOR TO
C COMPFENSATE FNOR THE FACT THAT FOUIVALENCE DOFS NOT REORDFR COMMOMN ===
(*******'ﬂ-% P T T TR UK T ST R TR TR 2 e T U LR Rt R R S BT L R R Bk R R R R o TR P R
OCOMMON/LOCAZTIZXX s TUPYXX s ALF sD1 2 IMY s THETARHOBSRHOC s SK 15K 245K345K4
1aSKAsXsYsMaNy TABRSMY 3 TABS2F 4P,  ARSCISsWETGHT 3 ZETAZZFETAPMSRLASTLRALSTHY
?19TJ9NTFRV‘9'\E9]L0IU;IVsI‘d,IUgaIVq IHes IPS S THSs TUPV 3 JSUBNSNTESTSLAST
COMMON/MOCA/NASNB WyNCsNDsNU

(*********%************************%J*%***%********* HAARHRREHRFER RF R AR TS
COMMON TZXX s TUPVXXsALF sD1sIMX 4aTHETASRHOBSRHOC,4SK]1 4 SK245K355K445KA,
1 XsY sP sMoNs IARSMX s ABSC IS sWE IGHT s IARBS2F s ZETAZETAPMy TUSNTERMGNE »
2 IL9IU91V9IW9IUQ9IVSyIHsIP39IHS;IUPVQJSURN;&F&I&I’RLAST9
3 NASMNR4NC sND o IMX 5 NIJ
DIMENSTON TZXX(5) s TUPYXX(5) sALF(5+555)sD1(30485) 2P (30,5}
1 ARGCIS(4B) sWFTOHT (48) sZFTA(P s34 +48) s ZFTAPMI 2,300 48) > TJ(8+48) s
7 NF(G) s TLUG) s TU(A) 9 IVIAG) aTW ) s IH(A)sRLETMI (2) sRLAST(2)
3 TTITLE(24)
L R g R b R R R R
‘_TK'———§EKBT§556Y_NK}NR,NC,ND,IMX,NU}NON
20  FORMATI(71I3)
READ(5s37) RHORaQQIa§929QS3 SS4
37 FORMAT (5F10.7)
THETA=0,.00
€363 3 30330 630 0 330 000 K IR I KA IR KR RIS S RH I KK R AR

A~ AN Al AN

c NOTE THAT THTIS 1€ A TWO CENTFR INTFGRAL NOW. WHEN DPOING THE
__C_____ THREE CFNTER INTEGRALS MUST_ALSO CHANGE THE VALUF OF THETA IN
C THF SURROUTINE FNOV.

336 36 34 338 3 336 336 3E R 303 6 03 503 3 3 H K %-X—”-Y%«%-X-?’*%%»L-}(-***‘r-‘: X-****%%**-X*“““%****%

WRITF(642M) NA;NR,R(,ND;IMXsNU,NON
e WRITF(6,88) RHORSSS145525553884 e
88 FORMAT (5F1N7)
e 22, POAT I=103
XNUM= DUMMY( 1)
RF=1-1
. 0= 4 ON0+RF#1 .0
_CALL. FNOV(VALNTIstQ%];%%?)

TCALL FNOVIVALNTZ24095539554)

17 WRITF(642) QsVALNTL.VALNT2 L _
2 FORMAT(F10,2+2E25.5///)
TEFINON) 1Nns31,10
31 STOP

FND
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Appendix G

This appendix sketches the methods used to calculate numerically
the cross sections of interest. As seen from (II-2-23), the calculation
of the total cross section requires a three-fold numerical integration:
the outermost over R {or E'), the middle over g, and the innermost
for the evaluation of the matrix element (the three-center integrals).
The matrix element integration is described in Appendix F so only the
outer two integrations will be— treated here. Because of the quantity of
words that would be necessary to describe these programs, only flow
charts and listings will be given,

The first flow chart is for the calculation of the total cross
section. The second flow chart is for the Simpson's rule integration
over ¢, which utilizes the monotonic nature of Uin and Lot A
flow chart for the angular distribution calculation can be obtained by
a simple modification of the total cross section flow chart,

The first four listings are subroutines used to calculate the

molecular constants as functions of the internuclear distance R, They
are SCREEN and CONSTS for the first triplet, and STSCR and STCONS
for the second triplet. The next two listings are typical programs
used to calculate a total cross section; the example being used is
excitation of the first triplet state. The first of these two is the main
program and the second is the Simpson's rule integration scheme.
The seventh listing is a typical angular distribution program, the
excitation of the second triplet being used as an example. The final
listing is the program used to calculate the weight and abscissa
values(Ga‘) for the outer Gauss-Hermite integration (over R or E').

The accuracy of the Simpson's rule integration was checked by

integrating a decaying exponential times a polynomial in q. This
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choice was made because it could be done analytically and yet

possessed the proper fall-off with increasing q. This method was

used to determine the optimum step sizes (DELO and DELOP) such

that 4 decimal place accuracy could be expected.

(Ga)

References for Appendix G

The techniques used in the determination of the weights
and abscissa values are those outlined in ref. (58) p.
350. Note that a n-point quadrature will integrate a

2n - 1 degree polynomial exactly, The accuracy of
this program was checked by letting the integral
approach the usual Gauss-Hermite integral:

[ 2 L 2

j e'X f(x)dx —— j e f(x)dx .
z -0

The weights and abscissa values calculated by this
program agreed with the tabulated values to 6 decimal
places.
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Total Cross Section

k' 4

Read:

Set:

Initialize:

type of atomic functions (NA, etc.)
code for choice of ground state (JGEM)
Gauss integration values

Pick value for internuclear distance

B = TR(IK, JM)

Calculate the molecular parameters [
for this value of B, JGEM

Calculate excitation energy for this
value of B

Start incident energy DO Loop;

increment incident energy

Calculate

qmin’ qma,x Pick new
' value B

r

Call Simpson rule
(qmin’ qmax)
]

Store value of integration according

to value of B and energy

|



(To point)
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Write out values of total cross
section for given value of B

and all values of energy used

A

After last B-value, form the
Gauss- Hermite integration

Write out total cross section
as function of incident electron

energy

Test to see if another ground
state wave function is to be

tried

(Yes) (No)

Exit

(To point)
A



236

Simpson Integration Scheme

| Ymin’ Ynax determined by the main

program

|

Test to see if Gnin’ Ymax arg
_ the first pair (K= 07?)

ﬁeS)

Set K=1 pgm will
know next set of q's
are not first pair.

Set values of Simpson
rule integration = 0

Set
91 = Ymin’ 92 © Ypax

4

_(qZ - ql)/DELO = NM

(N0\

SetJ=1 pgm know
there is another portion

to be integrated

Set
0'l'lzqmin’ q'2=qma,x'

(9 - 9;)/DELO = NM,

Set
q1 = C.li
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D¢ Simpson rule integration over NM
points call FNOV NM times

Test to seé if all has been
integrated (J = 09) \

(Yes) (No)
Add the value to previous (a5 - 95)/DELO = NM,
values, store in prescribed Set
locations
dg = G5
Set
J=20

Y

Return to main

program




b IS e e g e

_BIRFTC SCRFEN DFCK. . _GIVFS 7s21s72 FOR_GROUNDS AND FIRST EXCITED TRIP
o SURROUTINF SCREFN (ARoJIqA7oA719A7?)
C  JT=142,3 MFANS WEINRAUM,WANG,COILSON GROUND STATES PESPFCTIVELY.
- R=AR
JIFAOTLFQLY) GO TO 600

TE{JT«FQ.?2) GO TO 610
. TF(UI.EN.3) GO TO 620 o L
T 600 AZ=14 78R 7=046145T%R+NTRLAEHR¥R=N4 02 15R% (R*%72)

GO TO 630 )
610 AZ=1,80078~0aT24T46%¥R+0,22766%¥R¥R=D.02618% (R*%3)
GO 10 630
T &2n A2=1476254=0e62635%R+0e18896%R%¥R=0e02423% (R¥%73 )

£30 AZ1=1499%46~0e7116T%R+0e 19879%R*¥R=0402250% (R¥%3)

AZ2==0419289+0 7¢ész*n -0 ?0391*R*R+O N1864% (R**3)
RETURN
- END
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CCONSTS
SURROUT INF CONGTG(TZ;Tl T2sTDaTC1laTS2 TV, TCONGSTFFL 2 TEF2,4JG)
. cC THIS SUPRROITINE CALCIH ATFS THF _NORMAL J7ZATION COMSTANTS FOR THF

C GROLIND STATFS AND EXCITED STATF WAVEFUNCTICNS. 1T ALSD CALCS Ve
: PI=2,14159266
TF(JUG=2) 4394442
42 C=len
GO TO 33
44 C=0on

GO 70 33
43 CENGN4TNS9+0e312R6%TD=0e11245%TD*TD
33 CP=1.+C
CF=Ye+C®C_
(M=14~C
7=x7

TS1=7+T1

TSo=7+T? e
SZ1=8QRTF(T1%2)
LSZ2=8QRTF(T2*ZY
TFF1=PI/(T1%2%571) :
TFF2=P ] /{7 #T2%872) —— .

SOZ=EXPF{=Z%TD)#*(1e+Z2*TD+Z*Z%TD*TD/30)
SOT=FXPF{=T1%TD)I* (1 e+T1%TD+TLI*TI%#TD*TD/3,)

SOP=FXPF{=T2%¥TD)# (1e+T2%TD+T2#T2%TD*TD/3.)
RLIP=14=802+501-502%501

ORMES= ((TR2%#3 )% (T1%%¥34) /(PI#PI))%(1e/(8.%BLIP)Y
AFG=2 %P I#PI*CFE* (14 +802%S072 +4 #C/CEXSOZ)

ORMAE=(7%¥6.) /AFG.
Al=8e¥PT/L{TSI**3)

RHH=TD /2 4*TS1

e GAMETD /2% ({T1-2) . OO
SONH=0 . 5*(FXPF((AM)—FXPF(—GAM)) '

CISH=SONH+FXPF (=GAM)

TMLD=SONH/GAM* (14 /RHH+1e / (RHH¥RHH)~1 /(GAM*GAM))+CISH/(GAM*GAM)
CR1=PI*TD*TD®TD*EXPF (~RHH) /RHH®TMID .
RET=A1+R1 .
A2=B4¥PT/(TS2%%3)
PHI=TD/2«%TG2 ,
GAL=TN/2 % (7=T2)_______ ' : :

. SONTI=n. 5*(:XPF(GﬁT)~FXPF(—GAI))
. CIST=SONT+FXPF(~GAT) . .

TMII=SONI/GAT*(1,/RHI+1. /(QHI*QHI)—I /(GAI*GAI))+CISI/(GAT*GAI)
e e B2 =R IXRTDHTDRTDREXPF{=RHI} /RHT * TNII e e s
GAFF=A2-R?

TV=(CM*GAFF )/ (CPX*RET)

TCONG=12. %PI*ORMGG*ORVEQ*(P*CP¥PET*RFT _
S — R ETURN e
' END
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— x LIST
SURROUTINF STSCR(AR,JI4R7,RZ1,R72) o
T € JI=1,2s3 MFANS WETNBAUM,WANG,CONLSON GROUND STATES RESPECTIVELY.
R=AR

T IF(JI=1) 599,600,601
509  PRINT 650
T 650 FORMAT(11HJT TN ERROR)
' GO_TO 660

— 601 IF(JI=2) 599,610,620

600 BZ=1475812-0461451%R+0e 18466¥R¥R=0402158% (R*%3)
GO TO 6130
610 RZ=1480975-04724746%R 40427766 *R*R=0402618% (R¥*3)

GO TO 630
620 RZ=1476254=0e67635%R+0e18896%R%¥R-N, O?A?°¥(P*f“)

630 RZ1=1454616+0¢38585%R-0,48110% (R¥¥2) 40D T5253% (R¥E%3)
BZ2=0e24065+0415509%R+0,06N26% (R¥*¥%*2) =0, 0?328*(RK*3)

- 660 RETURN
END
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_CQTCONQ )
SURROUTINF QTCONQ(T29T19T29DD,T<1 TQZQTV TCONSsTQZsTQASTOR, JG)
COMMOM NAJNR S NCaNDs IMXsNUsC

- P1=3,14159266
e TRLUG=2) 4344042
B 42 C=1e0
e GOOTOL BB
- L4 C=0aD
’ GO _TO 33
43 C=NaNGTN594+0e31286%DN~0411245%DD%DD
w,,,____._B_.B (‘P ] O+C = e
- CW=1e+C*C
e 7 ETZ . e
Z1=T1 ‘
. 7.2=17.
R1=7+71
82824722 - _—— - e
TS1=51 ‘
e TS2=82 - - . e

TQZ=SQRTF(P1/(Z%%3))
TQA=SQRIFAPI/(71%%3))
TOR=SQQRTF (2. %P1/ 122%%5))
_S0Z=FXPF(=7%DD)*(1e+Z#DN+Z2¥Z2*¥DN*NN/3+) .
RBIF=]e+Q07%807+4 #CH*80Z2/CW
e ORMGS={7%%6 ) /(PI*PI)#(1e /{2 *CW*RTIF))Y e
C  TERM=...5643%0+5436-0.0186%02085)/(TQA*TQGB) WAS THE OLD CARD
TRRR={0.427213~-N, 267873%DD+0N. 1274 55#(DD*DD)Y) '
, TERM=TRRR/ (TQA%*TQR)
e ORMES=TFRM#*TERM ____ . . .
Al=8.#PI/(S1%%3)
RA=S1#DD/?e
GA=(21-Z)%DD/2e
PR=S2#DD/ 2.
GR=(7-22)%¥DD/7,
_SOAA=08%(FXPF(GA)-FXPF(~GA))
CISA=SOAA+EXDF (=GA)
_ ROA=SOAA/GA%(1e /RA+14/(RA¥RAY =14/ {GA*GA) )
ROR=CISA/(GA%GA) '
AI=PIADNX¥DNH*DN#FXPF (=RA) /RA# (ROA+RNOR)
"ALPHA=A1+R1" ‘
O A2=244%P1/{S2%%4y —
BTA=1e/RR+3 ¢/ (RB¥#2)+3¢/(RB%%3)+14./GB~14 /(RB*GB)—l /(GB*RB*RB)
2+3e/(GR¥%*3) =1,/ (GB¥*¥%7) =14/ (RBXGR*GR) e
BTR=1+/RR+14 /(RP**Z)+I-/GR+1./(GR*RR)—3 J(GR¥%2)
SOAR=0 5% (FXPF{GR)=FXPF (=GR}
CISR=SOAR+FXPF {-GR)
e B2=PIXUDD#%4L) /27« #FXPF (=RB) /RB*{ SOAR/GB¥*BTA+CISR/GR*#BTR) e

PELT=A2+R? _

e _TV=ALPHA/DELT. . _ .. - e
TCONS=6, *PIwORNGS*ORMFS*CP*CPwDFLT*DELT '
RETURN .

END
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(*_7“(-_***-% FE 6 FE SR I 3L L3 303 S 3 30 A ML I L 3F 36 S L S AT 6 S S TE AR 3 36 34 E S L S H I L W WL M s o s )\" e 36 I
THIS PROGRAM CALCULATFES THF TOTAL CROSS SFCTION FOR FXCITATION
OF TRIPLET LFVFLS IN H2 8Y FLECTRON IMPACT ALA THE GFNERAL

VETHOD OF OCHKUR OR RUDGF. THF APPLICATION INCLUPDES AN INTEGRA=
OVER THE INTERNUCLFAR DISTANCF. THF OUTFR INTEGRATION 1° GAUSGS=
TAN AMD THF INNFR 1§ SIMPSON. THF OUTER GAUSSIAN INVOLVES A
SPFCIFIC <FT OF ARCISSA AND WFIGHTS FOR THE DFLTA-FENFRGY OF THFE
TRANSITITON. THESF WFIGHTS ARF ORTAINED 8Y PROGRAM HUAJe

THF _GROUND STATFS CAN BE WFEINBAUMSWANGsCOULSON AND THE EXCITED
STATE 1S PHILLIPSON-MULLIKAN.
O B B R R Rl e R R B Rk bk L R L
I ST -5 .

% SYMBOL TARLF

COMMON IZXXsIUPVXXsALFyDlsIMX;THFTA,RHOB9RHOCe SK1s5K2+5K3 sSKbsSKA s

|
i

] XsY sPoMoNs TABSMX s ABSCTS o WE TGHT 9 IARS2F 4 7ETASZETAPM TS NTFRM,ZNE
2 TLaTt e TVaIWaTS s IVS s IHs TIPS, THS s IUPV 4 USURNSBLSTM14BLAST s
B ém_mNAQNRqNCaND}IMXoNUsglQQZxVQQCIJSSQ1533155@eFszFFlﬁDELQyDELQQHM.
DIMENSTON T7XX{5) s TUPVXXI(5)sALF (5453519 DT1(3NaRA)IsP(2N,5),
LY ARSCIS(48) sWEFTGHT(48)Y s Z25TA(2934448) s 7FTAPM (23N 948)sTJI (B4R
? NECAY S TLLAY o TU{aY s IVIL )Y IW(4) o IHI4)Y sRLSTML(2) s RLAST(2)
NIMENSTION TSIGTUI2)TR(239)aHHE(3 49 sENFR(12) 4RO(3512)

READ 20sNASNBSNCoND s ITMX o NUI
20 FORMAT(61I7) e
PRINT 455NA3NR9NCaNDaIMXsNU
e 5 FORMAT (3HMA=313,3Xs3HNB=y 13 3X93HNC—$A39BXQ3HN‘-91393X5.Wm””m
B4HIMX=9 443X s 3HNU=,13)
47 READ 1N .. JGEM

101 FORMAT(T1N)
e THETA=3 414188266 .
PI=3,14159266
e < DELO=0W02
PELORP=0,005
ALFAP=1Ra4 -

: SPI=cQRTFI{PI)
o FRONT=1,/8P1 :
SALF=SQRTF (ALFAPR)
e XVAL=1e2247449/SALF .
PELTF=1.0
TR(1s1)=1+649955

TR(251)=1.758458 /
TR{341)=1939779 _
HHF (151)=0.,094009
HHF {25 1)=NeN58437
HHF (35 1)=0.004506
TR(142)=1523542

, TR(2+2)=14656939
e __TR(3,2)=1.862597 _
HHF (152)=0.789925
CHHF(2521=042)773%

HHF (242)=0,02N0587
TR{153)=14402524

TR(243)=1.548075
TR(3242)=1,798580
HHF (152)=0,5815389
HHF{?243)=0.51115%1
HHF (24220 ,061628
TR(11,4)=1.291864

TR(2+4)=14496149
TR(344)=1.749283

HHF (144)=04574782

HHF (2+4)=0.821250 ... ...
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HHF(?oa)—ﬂ 129512 e A

TR(14%9)=1e400=XVAL
TR{245)=7440N

TRIR35)=1aaNNEXVAL

_HHF (155)=0,29%49n__ e
HHF(?95)~1.1816?50

_HHF {34 5)y=HHF (1s5) o
PRINT 134, ((TR(JI, KI),KI—J,S),JI-l,B),((HHF(NI,MI),MI-I,s
2)sNI=1,3)

134 FORMAT (1HOsOHTR MATRIX//  (3(5F10e4//)),2Xs10HHHF MATRIX//
_3(3(5F10.4//)1)

PRINT 102s JGFM
102 FORMAT (1H1 +5HJGFM=,13//)

DO 691 TK=1,3
JM="

OUTTA=0,000
__NUTTR=N,NON

T OUTTC=0,0N00
R=ETR{IK,JM)

" CALL SCRFFN (RsJGEMsZ+21+22)
CALL CONSTS(Z3714723R851452sVsCONSTSFF143FF24JGEM)

S81=z
g Q? 7 7 [ P

T 882=721
_854=7.

PRINT 83?9P9§§19qq79C§39QQQ9V9FF19FF?;CON%T$C
832 FORMAT (1H1 410F13.,5//)

FNDIF=~744N01%R+21,0081

e FMEFNDIF /3206 : e e e
NO 310 JJ=5,9

N

RR=JJ=-5
FNFRGY=13. ﬁ+RR“DFLTF

745 EN=FNERGY/13.6
o FNER(JUY=ENFRGY

TPP=SQRTF(EN)
_ TEMPS=ARSF (EN~EM)

S=EORTF (TFMPS)
OMIN=TPP-c¢

TOMAX=TPD+<
_ CALL %IMP(OMIN,OMAX9R,KV,VALuflaVALHEZsVALlF3)

W= FN*(C:"Q*'].)*(Q*Q‘Pla)
M=14 /W1

OUTTA=2 %P I *VALUE 1#CONST#VYj
QUTTR=24#P I #VALUE2*CONS TH#MW

OUTTC=2 ¢« ¥P I *VAL UE3*CONST*W
TERM=OUT TA=OUTTB+0UTTC

310 RO(IKsJJ)=TERM
991 PRINT 21, Bs(ENER(K),RO(IKsK)sK=5,12) ,
21 FORMAT (1HO s 25HINTER NUCLEAR CISTANCE I1S554XsF644//({40XsF1043530Xs

2F1545//))

NO 750 JJ=56.17
750 TSIGT(JJ)=FRONT* (HHE(195) ¥ROL 15 JJ)+HHEL2,5) ¥ROL25JUY+HHF (3550 %
PN (24 J4))
A ... PRINT 7573 e e
753 FORMAT (1H1 550X s 26HTHE TOTAL CROSS SECTION 1S//)
PRINT 751s (ENER(MI)sTSIGT(MI)sMI=5,412)

751 FORMAT (1HN 40X a THENFERGY=3F7 e3+s20X 46HTSIGT=3E1545//)

 IF(NON=3) 47,1347
13 eTOP
END
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CSIMP

SURRGHTINE SIMP(QL+QUDN X aVALWVALRSVALC)

COMMOM TZXX s 11IPYXX e B[ FaN1 s IMX s THETASRHOR SRHOC s SK10SY. 26 S4 25 Kby SKA

1 XaYoP oM yNe TARSMY s ARSC TS it IGHT o TARS2F 4 ZETASZETAPM s TUSNTERM s NE

2 TL Tl s IV IWa TS TVS s IH, TIPS THS, TPV, JSURNGBLSTM] 4BLAST,

4 NASNBSNCIND s IMXaNI]3S 13522V 3SS1 655205825554 ,FF2FF14DELCsDELOP
DIMENSTON TZXX(5) o TUPVYXX(5)sALF(5,535)1sD1({30,REsP{3N,5)

1 ARSCIS(48) sWEIGHT(48) sZETA(2 934 548) o ZFTAPM(2530s48)sTJ(B 248,

2 e NELAY 9T L (a4 o 1004 ) o INVI{L) s IW4) s THI4)YsRLSTMI(2) s PLAST(2)

L.

PI=3,14159266
TF(KY 2241522

S22 4=

heQasToL<al T T

e ___DASTIOL=0L _
NO=0L
4o NM=D/DELO _ _ i
TF(NM) 11411510
10 FN=NM
DEL=D/FN
_— S HH=DEL/3. S
F=0Q
 FA=16.%S2/({SP%SPHERF IR (S2HEC24+ERF ) ) o
GA=16e%S1/ {S1#ST+F#F)*#( S1*ST+F*F))
L HA=FA+VEGA . N - _ o -
PHASA=N 5% ({1 «~=STNFIF*NN) /{F*DN))
_ CALL FNOVIVALNTA,F,501,282)
CALL FNOVI(VALNTR,4F+S535S54)
o L VALSA=FF2¥YALNTA+VXFFI#VALNTR
YTA=FEXDD/2 .
- LTHETR=1 ¢ /(Y TAXYT AR (SINF (YTA ) =Y TA®COSE Y TAY )
SIGA=HA%XHA*F#+PHASA
SIGR=E® {124 /P1)*¥HAXVALSA*#THETR o - -
SIGC=E%*(124/PI)#VALSA¥VALSA/PI
_ DO B I=laNMe i} N
R=1
. D=EQO+REDFL L . - ;
F=16e%S2/( (S2%#S2+Q¥Q)*(S2%82+0%0 ) )
L B=16e¥S1/L(S1%SI+Q*OI¥(STIHST+0%0) ) -

2 S1GA=STIGA+SR%SIG]

H=F+V#*6
DHASF=0,8%(1.~SINF(YV}Y/YVY) .
e CALL FNOVAIVALNT Y a0 eSS s SO Y e

CALL FNOV(VALNT2,Qs5535554)
VALSS=EF2XVALNTIHVX¥FF1*VALNT2

YT=YY/2.
L THETT={1a/(YTHYT))H*(SINF{YT)I=YTH*COSF(YTY)Y .
STGl=Q¥H*H*PHASFK
L.SIG2=Q% (174 /PT)#H*VALSS*THFTT
STIG3=0% (124 /P11 }#VALSS¥VALSS/PI
B QR:?,(\

TFII-MM) £049,60
0 11=1/2
11=11%2
O IF(I=T1) 61462461
1 SR=1$un

SIGR=SIGR+GR¥*S1G2 _
SIGC=SIGC+SR*S1G3
GO TO 3
SIGA=SIGA+SIG1
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SIGR=SIGP+S1G?

QRIGC=cIGC+81G3 7
3 CONTINUF

- VAL =S TGAXHH+VAL

' VAL R=RTGP¥HH+VALR

T VALC=SIGC¥HH+VALC
TF(J} 974590497
TN TURRINT 120 0T T )
1 FORMAT (37H Q INTEGRATION INDEX ZERO, DELOP USFEDs1Xs14)

NM=D/DELOP

TF{NM) 14417510 :
17 PRINT 18 T T
18 . 'FORMAT(?5HDFLOP IS TOO LARGE VAL=0.)

TG0 TO 99
97 J=n
- NA=0ASTOU
. DP=QU-0ASTOU
T oasTon=0n — - = e -
GO TO &4 ) - B

1 J=0
K=1 o

C THIS DOME SO THAT EACH SUCCFEDING CALL MISSES THE INITIALIZATIOM,.
VAL=000

[— __..VAL A =5, 0 e oot et e e e e e+ e e oo e e
VALC=N.0 o . ~ L
R - _._-0 Q:QL" e+ e e 2ot e e e o e R,
N=001-QL
NASTQL=0L
OASTOLI=0U - o e

oY a T
14 PRINT 15

1% FORMAT(18HSTEP SIZE NEGATIVE) 7 ) T T
GO TO 16 '
99 VALCUET=VAL
) VALUEZ2=VALR _
T '\_/AL_FUFB ='V'A'[V_-(‘ T B ) T o T
16 RETURN S .

" FND
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SYMROL TARLF

COMMON IZXX;IUDVXX9ALF9019TMX THETA,

246

RHOP yRHOC « GK1 4 C¥ 24, SK 3,85 4,84 A,

)

d—

TTCOMMON NAGNR S NCaNDe TMX

T ADDITION OF TTCTT
COMMON

XY sP sMoNs IAPSMY s ARSC TS o wWF TIGHT s TAR GO F o 7ETASZETAPMS TIy NTERM
' IL9T“9IV9IV';IHC\eAVQ*’IHs ngoIHC9TUPVeJQURNoBLQTNlSBL/\ST

L g NFE o

aNULC T

"IHt AROVE COMMON CARD HAS BFFN ALTFRED FROM UAI
CTO TEST THE SUBROUTINE ACCURACY.
NAL 9 NAZsNABSNALINBL aNR2 3MNR24NBA s NCL sNC2ZaNC3sMNCAsMDT 9 NDD

THFE USUAL PY THE
4/20/67

2 ND3 sND& o TMX 9 NU 9 S
DIMENSION

19523V 25G14,C07 4583 ,554,507 4 SGASSOR
TZXXEB) s TURPVYXX{B) sALF (545351 aDT1(3Ns86)sP (3045

?

RN

THIS PGM CALCULATES THE ANGULAR PISTRIRUTION

WODELO,DELOP

T ARSCTS(46) SWFTGHT (48) s ZETA( 7534 5 48) s ZETAPML 2530548) s TI (B s4R) 5
NFL4) »TL(4)TUEAY,TVa) s TWIA),TH(4),BLETMI(2) ,RLAST(2)

FOR ELFECTRCOMS

SCATTERED AFTER EXCITING THE SFCOND TRIPLFET OF H2.

USING THE

O NN NN N

ZETA FUNCTION EXPANSION METHOD TO CALC THE

READ 20, o N

THREE CEMTER INTS.

"“EIMENETON &KGLF(ln),DSIGT(TdTﬁéﬁKﬁTié§ihTZ#ERMTéT?TbYé;337HRFTEZSf
NAT sNF1aNC1oNDLoNA2 N2 sNC2sND2 3 NABsNR3,NC3 4 ND

2NA4,NRhaNC49ND4aIMXsNU

’0 FORMAT (1813)

READ 101, JGEM
FORMAT (T10)

47
101

ANAL G NRASJNCL ZND4L s TMX 4N

PRINT 25,MA1sNBLyNCT,ND1sNAZSNR23NC29ND2 4NAB,NB3,NC34ND3 s

FORMAT {1813)
__THETA=3.14159266
P1=3,14159266
AB=154422/1%460
REQM=74483=2.870%1.40
ALFAP=1844

FRONT le/8P1

T SALF=SQRTF(ALFAPY

XVAL=142247469/SALF
C TR(151)=1.603786
TR(251)=14720145

TR(351)=1.91N0188
HHE(141)=04,151864

HHF (2411204100207
HHF (3511=0.008276
TOTR(1s2)=1.459127
TR(252)=1460845]

TR(3s2)=1.8277239
HHF (1+2)=0.418730

HHF (742)=N.359015
HHF (242)=0.038425
TR({1s3)=1340115
TR(243)=1.5726299

TR(3+3)=1.769607
HHF(193)=0,575142
CHHF (2 93)=0e693365
HHEF(252)1=0,096276
TR{1s4)=1e7245479
TR(2+4)=14469012

TR(3+4)=14731193

CHHF (1+4)=N04535819
HHF (294)=04,951534
HHF (R454)=0416628) .
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L TR(145)=14400=XVAL
TR(2+5)=14400
TRIR35) =1 40N+XVAL
HHF (1+5)=0429549n0
HHF (245)=1,1816359
HHF {33 5)=HHF (145)
e PRINT. 1345 ((TR(JISKI) oKI=145) o JI=143), ((HHF(NISMI)4MI=1,s5
, 2) sNT=143)

134 FORMAT (1HO s 9HTR MATRIX// (3(5F1Ne&t//)) a2X s 10HHHF MATRIX//

BI3(B5F1044/7/7)))

i PRINT 102s JGFM e

102 FORMAT (1H] ¢5HUGEM=513//)

DO 2 U=14,416 . ' R

C THp FOLLOWING PRINT STATEMENT HAS REEN ADDED FOR THIS RUN ONLY.

PRINT 301s DDsZ1sVsSRAsSORsCs CONST

301 FORMAT (1HN 3 3HDD=9F 7 el 95X 93HZ1=aF 7Tt 95X s 2HV=9F Teb 35X s 4HSQAS s FT ety
2 BXs4HSQOR=sF Tels5Xs2HC=sF Te 495X s 6HCONST=sFBa4)
XX=J=2
. *W_JF!JWLJMZQQLZQO’2Q1~A.H ;
200 JM=1
FN=N,8823529
GO TO 202
201 UM=5 e
FN=141029412+N0436764T*XX
202 ____FNFRGY=FMN#*1346 _ I e e
PP=SQRTF (EN)
PO 3 K=1,10
_R=K~=1
L RAD=0N43490658%R
ANGLE (K)=RAD*1804/P1
oo PO 15 IK=193
PD=TR(IK s M)
FACTOR= (7 e483~24 870*DD)/RFOM
RHOR=DD/2. \
ENDIF=2042203=Te483%¥DD+1435%¥DD*DD
FM=FNDIF/13.6
_TEMPS=ARSF(FN~EMY
S=SORTF (TFMPS)
O=SORTF (EN+S*S=2, #¥PP*S*¥COSF (RAD) )

WG/ (PP% (S#S+AB)* (S*S+AR) )
CALL STSCR(DDsJGEMs7421422)
CALL %TCON%(Z;leZZsDDoSlsSZsV,CORST,SQ79§QA;QOBpJGEM)
$S1=71_ _
§82=2
§83=7
$84=72
e e XYY =QRDD e
YT=YY/2
e PHASE=0a5% (Le+SINFAYYY/YYY
PHASR=14/YT*SINF(YT) '
PHASC=3 ¢ /{YTH*YT)*¥COGF(N¥T)+1e5%(1a=2e/(YTXYT))¥PHASR=N.5*¥PHASRH
F=16e%¥S1/((S1%S1+Q%Q)*(S1%51+0%Q))
_G216e%(34#52%G52-Q*Q) /((S2%¥82+Q#Q) #%*3)
H=F=Vv*G
CCALL OSOS(NAL12NR1,NC1sND1sQsSS1.582sVALAY
"CALL OSTSINA2sNB2sNC?sND23Q5S535554sVALB)
_CALL_TSOS(NA3sNR3,NC3sNN335095513552sVALC)
CALL TSTSINAL SNBL4 I NCLINNDLsQ»SS3 55543 VALD)
SBESA=SQZ*SQA*VALA=V#SQZ#SQR*VALB -
SBFSR=5QZ%SQAX¥VALC~-V*SQZ*SQR*¥VALD
DSTIG1=CONST#W*H*H*PHASE*FACTOR
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e DSIGP=CONST U *4 o /PI ¥HXSRFSA*PHASBXFACTOR
- DSIGA=CONSTH*W*20./PI*H*SRAFSR*PHASC*FACTOR
DSIGL=CONST*WH4, /PI*SRESA%XSBESA/PI*FACTOR

T DSIGS5=CONST#*W¥20,/PI*SBESB*SBESR/PI*FACTOR
15 TERM{IK)=DSIG1+DSIG2-DSIG3+NDSIG4+DSIGS

T DSIGT(K}“FRONT*(HHF(l,JM)*TFRM(I)+HHF(ZsJM)*TFRM(2)+HHF(39JM)*'mm
. PTERM(3)) . e e

3 QANG(JsK)=DSIGT(KY T .
2 PRINT 8+ENFRGY s (ANGLF(K) sDSIGT(K) sK=1510)

T 8 © FORMAT(1H1sF10e3//{F10a3s F2544//7))

o WRITFE OUTPUT TAPE 3, 83, ((QANG(I,J)sJ=1410)s1=1s16) .
T 83 FORMATI(5E1244)
CALL EXIT

e e g e ————

END



__SIRFTC HJUAJ  NODFCK o
DIMENSION A(50353)sB(5051)sCOE(4)sROOTR(2)sROOTI(3YsAJ(3)
COMMON /THRFE/ALFC(6)
— ALFAP=1844
. PI=3.14159265
T ‘%PI C,QRT(PI) T T T T )
o SALF=SQRT(ALFAP) :
e FOR THE .FIRST TRIPLET THE FOLLOWING CARD 1S DO 900 JK=1l.4 T T
’ NO 9NN JX=1 44
RJUK =JK -1 ‘
¢ FIRST TRIP HAS THE NFXT_CARD AS FNFRGY=940+14 N#*RJK
FNERGY=12+0+045%R JK o T
C _FIRST TRIP HAS THE NFXT CARD AS R=(21+N081-ENFRGY) /74401
R=7e483/2eBT0~SART (Te4B83%7 4483 ~L4%1e435%(20+2203-ENERGY) Y /24870
70=SALF#(R~1,40)
WRITE(6,901) RsZ0 - '
901 . FORMAT (1H1920Xs21HA NEW VALUE OF Rs R=sF7e4920Xs3H20=3F7e4)
c .
C NOW CALCULATE THE K-ALFA MOMENTS OF THE WEIGHTING FUNCTION W(X)e
C B :
CALL MOMFNT(Z0)
WRITF(64202) ALFC
202 FORMAT (1HN s 50X s 4HALFC// (50X sF1Na6/))
¢ _ :
..C _FORM THF A,RsC MATRICES o . _ o
C
DO 300 J=1,3
A{Js1)=ALFC(J)
o M Js2)=ALFCIYY e
300 CA{Je3)=ALFC{J+2)

WRITE(E6+301) ((A(NsM)sN=153)4M=1,43)

© FORMAT(1HO.50Xs29HTHE A MATRIX COMPOSFD OF ALFC///(40Xs3F1546//))

B3{141)==ALFC(4)

T OWRITE(65401) (BIN»1)4N=1,3)

R(7 1) ==ALFC(5)

B(3s1)==ALFC(6) e
_FORMAT (1H0365X»8HB MATRIX///(55XsF15e6//7))
CCALL MATINV(As35B51,DETERM)
WRITE(6,501) ITsDETERMy(BI(Ns1)sN=1,3)

 33(40XsF1546//))

WEJNEWTBEVBQQIS OF THE POLY--THE AJ VALUES.

FCRMAT({1H0 25X s3HIT=5 I35 10X+ 7THDETFRM=3sF 745/ /8HC MATRIX///

COF(1)=140

g g

COE(2)=R(3s1)

__COF(3)=B(2,1)

C COF(4)=R(T41)

WRITF(64,502) COE

FORMAT (1HN 50X s 16HCOFFFICIENTS COE//(55X3sF16e5//)) "
CALL MULLFR(COFs35R0O0OTRsROOTI )

L5003

WRITE(6,503) ROOTRSROOTI

FORMAT (1H0 25X s 5HRONTR 75X s SHROOTI///3(10X2F1546//)33(80XsF1546/))
AJ{1Y=RODTR (1) /SALF+1 440

AJ(2)=ROOTR(2)/SALF+1a40 S
AJ(3)=ROOTR(2)/SALF+1440

WRITF(64940) AJ

940

S

FORMAT(IH”;??HTHE ARCISSA VALUES ARE/(30XsF15.6//))

DETERMINF THE WEIGHTS HJ



R(1+1)=ALFC(2) 259

R(231)Y=ALFC(3)
R(241)=ALFC (%)
DO 601 N=1,3

L A(1sN)=ROOTR(N)

, AL2 sN)SROOTR(N) %%

601 A(34N)=ROOTR(N)#%3

WRITE(6+s602) (((A(KsL)9K=133) sL=1s3)s{B(Ns1)sN=123))

602 FORMAT (1HN,20X,15HSFCOND A MATRIXD5X,15HSFCOND B MATRIX//

23(20Xs3F1546///7)33(85Xs515.6//))

 CALL MATINV(As3sRs1sDFTERM) o

WRITE(6+603) TTeDETERMs (B(Ns1)aN=1,3)
_6N3._ FORMAT(1HOs3HIT=s13+30Xs THDETERM= 3F 745/ /50Xs21HWEIGHT COEFFICIENTS

4 H/7/3(30XsF1546/7))
CALCUL=R (1a1) +B(251 ) +R(351)
TRUF=ALFC(1)

e MRITF(6,700) CALCULSTRUF

700 FORMAT (1HN 20X s THCALCUL= yF 12 7,20x,5HTRUF—,F1? 7y

900 CONTINUE

STOP
END__-

SIRFTC MOMFNT DFCK

_SURROUTINF MOMFNT(RY
COMMON/THRFF/ALFC(6)

_ SPI=SQRT(2414159265)
FPP=FEXP (—R¥*R)
ALFC(1)=SP /2% (18=FRF(R))
ALFC(3)=0e5%{ ALFC{1)+R*EPP)

_ALFC(5)=145%ALFC(3)+045%(R*X3)%xFPDO
ALFC(2)=0.5%FPP

 ALFC(4)=ALFC(2)+R#R%FPP /2,
ALFC(6)=2 e ¥ALFC (&) +(B*#*4) XEPP /24
RETLRN
_END




CFNOV L 251

* LIST

SURROUTINE _FNOV(VALINT 20s5C35SCh) '
COMMON TZXX s IUPVXXsALF sD19IMXsTHETA sRHOR s RHOC » SK 145K 255K 3 5 SKE 3 SKA 5
1 XsYsPaMaNs TARSMX s ARSCIS sWE IGHT s IABS2F s ZETA s ZETAPMsTUsNTERMyNE s
2 ILsTUSIVsIWsTUS s IVSsTH,TPSs THS s TUPY »JSURNSBLSTML»BLAST
COMMON _ NASNRyNCoNDs IMXsNU o
COMMON NAT sNA2sNA3sNA4sNRL sNB7 s NB3 s NBG s NCToNC? sNC39NC4 s ND1 s ND? s

2 ND3aNDG 9 TMX aNiJ9ST1 4523V 9SS]1 458225534554 4950Q7 9SQAsSQRIDELDSWDELOP
DIMENSION IZXX(5)sTUPVXX(5) sALF(53555)sD1(30s86)sP(30+5) s

1 ARSCIS(48) sWEIGHT(48) sZETA(2234+48) sZETAPM(2930948)sTJ(B248)s

2 NF(4)sIL(4)aIU(4)9IV(4),IW(4)sIH(4)9BLSTM1(2),RLA5T(2)
$  STITLF(24)
THETAP=50040
1ZXX(1)=1
12XX(2)=2
_1ZxXxXi31=6
TZXX(4)=18
1ZXX(51=47
TUPVXX(1}=n
TURPYXX{(2)=]
TUPVXX {3)=2
TUPVXX (4)=4 : R
TUPVXX (5)=6 \
e CALL PRPD1 S — _ o
SK3=sC3
SK4=SCh
RHOC=RHOR
SK1=0e5%Q_
SK?=5K1
_IMX=XMINOF (IMX29).
SKA=SK1+5K2

1ZVINT=0
TFINC=2) 42541542
b1 M=2 .
GO TO 43
el M=1 i o - e
43 IF(ND=2) 45,44+45
44 N=2
GO TO 47
45 N=1

47 IF(IMX—IMXP) 495494548
48 THETAP=THFTA
CALL PRPLFG - -
GO T0O 80
49 IF(THETA=THETAP) 50558450
50 THETAP=THETA
CALL PRPLEG
58 IF(NU=NUP) 80, 60,80 e B
60 1F{ARSF (RHOR=RHORP)+ABSF (RHOC-RHOCP)) 80,6180
61 _T1F(SK3—SK3P) 63+462+63
67 T1F(M=MMX) 644644673
63 CAlLL PRPZTR
MMY =M
e~ 1ZVINT=Y e
64 TF(SK4—SK&P) 6665266
65 1F (N=NMX) 70+,70+66
66 CALL PRPZTC ,
e NMX =N : 4 N
IZVINT=1 ’ '
_70_IF({SKA=SKAP) T715130,71 e
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CALL LITLJ

TZVINT=1
GO TO 130

CALL. QUAD1 (RHOB sRHOC s IABSMX s ARSCI S sWEIGHT aNUJ)

1ZVINT =1

CALL PRPZTR
MM)(::M :

CALL PRPZTC
NMX =N :

130

CALL LITLJ
NUP=NU

RHORP=RHOR
RHOCP=RHOC

NTFRM=A
IMXP=IMX

SK3P=5K3
SKLP=SK4

SKAP=SKA
VALINT=AARC(NAJNBJNCoNDS IZVINT)

RETURN
END




CFKBSJ
- % LIST

* SYMROL TASLF
-_ SURROUTINFE LITLJ

. COMMON TIZXXsIUPVXXsALFaD19IMXsTHETASRHOB S RHOC sSK1 35K 2+SK3 35K 4 SKA .
Tl X e Y e P e MINS TABSMX s ARSCTS s WE IGHT s TARS2F s ZETASZETAPMs TUsNTERMyNEy
2 ILsTUSTVsIW, Iuc,rvq,IH,qu,IHq.IUPV,JGUHN,BLGTMl,BLAST
COMMON — MASNBSNC Oy ND s IMX G NIT 7 T I
COMMON NA1sNA23sNA33NALsNB1 sNB2 sNB34sNB4 s NC1sNC2sNC39sNC4sND13ND2,y
ND3 sND4 » IMXsNUI3S1 9523V 3851+552+,553+55435Q2+SQA+SQBR4DELOL,DELOP
DIMENSION IZXX(5)sIUPVXX(5)sALF(5:5s5)sD1(30586)sP{30+5) s
1 ABSCIS(4B) sWEIGHT (48) s ZFETA (7434 +48) s 7ETAPM(2530548) s TJ(8 548
2 NF(A)sIL(4)91U(4);IV(4)sIW(Q)sIH(4)’BLSTMl(2),BLAST(Z)
PO 100 T1=1, ABSMX T T
OR=SKA¥ARCCIS(T) '
CALL RESSFL{0e535Ne03QR3NeNsRFSOIRTsRRDsBID+15)
TJ(1,1)=2.N*RFSO/SKA
CALL RESSFL(1e530<0s0Rs0, n,BEq1.Bx,RRD.BrD.15>"'
TJ(4s1)=4.0*ABSCIS(1)*BFS1
CALL BESSFL(24550e05QRs0+NsBES2,BI,BRD,BTD15)
TJ(8s)==2N*QR*¥ABSCIS(I)*BFESY
100 TI T s1)==6.,0%TJ(8B,1)
RETURN : \

END \

e

e

2




€osns e 3 o
T a LIST
* SYMROL TARLF
- SURROUTINE 0OSOS{JA»JIBsJCsJIDsQ5551+5525ANS)
R COMMON_IZXX s TUPVXXsALF D19 IMX s THETASRHOBRHOC s SK145K225K355Kb s SKA

1 XsYsPoMaNs JABSMX s ABSCIS sWE IGHT s IABS2F 9 ZETASZETAPMs TUSNTERMyNE »
2 Il IUsIVaIW TS s IVSsIHsIPSs THS s TUPYVsJSUBNsBLSTM1 WBLAST
COMMON NASNBsNCsNDs IMX 9 NU
COMMON NA]gNAz9NA3’NA4!NﬁL9NB?9NB39NHQ9N(1’NC79NC39NC49ND]9NDZ,
2 ND3 aND4 s IMX sNU3S1 9525V 3581965582 ,+5833s5%455072+SQASARDELOSDELOP
DIMENSION IZXX{5)sTUPVXX(5)sALF(54545)sD1(30+86)sP{30s5), 3
1 ARSCIS(48) sWEIGHT(48) sZETA(22343:48) »2ZETAPM(2,30548)>sTJ(B+48) s
2 NEGA) s ILLA) S TULA) s TVA) 2 TW(L) 9 TH(4) sBLSTML(2) sBLAST(2)

©CALL FNOV(ANSA;O;SSI;SSZ)
ANS=ANSA
RETURN
FND

COSTS
* LIQT . L » \
* SYMBOL TARLF
SUBROUTINE OQTS(JA9J99JC9JD9O9§<393%49AN§)
COMMON IZXXaIUpVXX9ALFoDlslMX9THFTA¢RHOR,RHOC99K19§K295K399K499KA9
1 XsYsPasMaNs IABSMX s ABSCIS sWEIGHT s IARS2F 4 ZETASZETAPMsTIJ9NTERMINE »
2 T TL e TUsIVeIWIUSsIVSsIHIIPSs IHS»IUPVeJSUBNSBLSTM1BLAST
o COMMON_ = MNASNBsNCHINDeIMXsNU o
“COMMON NAlaNAZyNA39RA49NBl9NBZaN835NBh9NC19NC2’NC39NC4’NDlyNDZ,
2 ND3sND&s IMXaNU5S1 9529V 95519552 +553955445Q7 9S5QA«SAORBsDELOSDELOP
DIMENSTION IZXX(5)sTUPVXX(5)sALF(54595)sD1(30+86)sP(3055), :
1 ARSCIS(48) sWFIGHT (48) s ZETA(2 +34948) s 7ZETAPM(2430+48B)YaTJ(8B448),
2 NE(GI s TLIGY s TUTG)YsIVIG) sIW(4) s THI4)sBLSTML(2)4BLAST(2)
NA=JA_ »
NB=JR
_____NC=JC
ND=JD
CALL FNOV(ANSBsQsS5S53+554)
ANS=ANSB
RETURN
END .
. CTIS0S .
* LIST _
* ‘SYMROL TABLE
SURROUTINF TSOS(JASJRsJC s JDsRsSS1 2582 4ANS)
COMMO&~I7XX9IUPVXX9ALF9D19IMXsTHETA9RHOB;RHOC93K1,§K795K3;9K4’SKA1
1 X3Y sPaMaNes IABSMX s ABSCISSsWETGHT o TABS2F 4 ZETAGZETAPMsTJsNTERMYNE »
”VWWWﬁﬁ_gzﬁwwhwwlLsTU,IV;IW,I}%91VS9IH¢IP<,IH§9IUPV9J$UPN’8L9TM198LAST.mwm_;
COMMON NA sNBsNCsND s ITMX o NU
COMMOM NALsNA2sNA3sNALSNRLsNB2sNB3sNBLsNC1 sNC2sNC3sNC4sNDIsND2,y
2 ND2sND& s IMXsNUSS1 9525V 35519552+5539554-:5Q2 4SQA+SOQBIDELOSDELOP
- DIMENSION IZ2XX(5)aIUPVXX(5)sALF(5+5+5)9D1(30s86)5P(30+5) o
! AR%CIQ(#B);WFIGHT(QB)92FTA(2;34948)97FTAPM(?,3n948)9TJ(8’48)9'
. 2 NE)SIL(A) s TULL) 9 IVIL) s IW L) s THI4)»BLSTMI [2)4BLAST(2)
NA=JA .
NB=JR
- NC=JC
——nn  ND=JD e
CALL FNOV(ANSC’Q955195§2)
_._ANS=ANSC _ . . O —




RETURN 255
— END '
CTQT%
—% [TsT
N SYMROL TABLE
T G URROUTINE TSTE (AT IR JC DGy SE3 T8 Sh ANG) 7T T T T

COMMON T7XX»IHPVXX9ALF&D1;IMXsTHFTApRHOB,RHOCQQKl9§<?q§K319Y499KA’4

1
2

XsYsPsMaNs IABSMX s ABSC IS WE TGHT » IABS2F 3 ZETASZETAPMs TUsNTERMHNE s
TL s T1iaIVeIW,TINQaIVSsTHs IPCSs THS s TPV JSURNSJBLSTM] +BLAST

COM
COM

MON NASNRINCoND 9 IMX g NL)
MON NA1sNA2sNA3sNAL4LaNBL1sNB2? sNB3sNB4sNC1sNC2sNC3sNC4LINDL1sND2,y

2
DIM

ND2sNDG s IMXKsNU»G1+629Vs06815887 55355844507 sSQALSQRWDELOSDELOP
ENSTON IZXX(5) s IUPVXX{5)sALF(55+5)sD1(3N386)sP{3N45)

NE(4) o IL(G) s TULL) s IVIL) s IW(4L) s TH(4),BLSTMI(2) 4BLAST(2)

ARSCIC (48 ) sWETGHT (4B sZFTA (2434 s4LB)Y s 7ETAPM(2530548)9TJ(Bs48) s

NA=
NB=

JA
=JR

NC=
ND=

- JC
JD

CAL
ANS=

L FNOV{ANSDsQy 9339954)
ANSD

RET
END

URN
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J— ~DIMENSION 1ZXX(5) s JURPVXXA5) sALF{545+5)4D1{3Ns8E)sP(3Na5)s v o
1. ARSCIS(48)sWEIGHT(4B) sZFTA(2+34548) 92FTAPM(2+30+48)2TJ(R+48)
2 NF(hloIL(A)sIU(4191V(4)9IW(4)aIH(A!sHL%TMl(?)qRLA%T(2}

3 2TITLE(24&)
o DIMENSION DUMMY(3)
(**************%**************-&9%*************************%***-ﬂ-***********

C THF FOLLOWING STATEMENT(S) HAVE BFFN MANUFACTURED RY THF TRANSLATOR TO_

e e o e e

€ COMPENSATE FOR THE FACT THAT EQUIVALENCE DOFS NOT REORDER COMMOH===
’ (‘**************%***********%%* M A W AW I ST A I I S I I IC NI N
— OCOMMON/LOCA/1ZXX s TUPVXX s ALF sD14 IMX s THETA sRHOBsRHOC »SK 145K 2, 5K3 5 SK4
15SKAsXsYsMsNs JTABSMX s TABS2F ,P L ARSCIS s WEIGHT s2ZETASZFTAPM,BLAST sBLSTM

71sTJyNTFRMsNEsIL’IU;IV»IUaIUSsIVQsIHylpgsngsIUPVQJ%UBNQNTFST’LAST
COMMON/MOCA/NAsNB +NCaNDsNU

C************************%*********%*************************************
) COMMON T1ZXXs1UPVXXaALF D1 sIMXsTHETASRHOBLZRHOCsSK1 4 SK24sSK3 9S5K44SKA S
1 XsYsPasMysNs TARSMX s ARSCISsWEIGHT s IABS2F yZETAGZETAPMsTJsNTERMSNE »
2 IL»III}IV: IW;IUQaIVQQ ITHyIPS, ]HQ9IUPV,JQUBf\sBLSTVISBLA§T9
3 NASNBNC SND» IMX,NJ
DIMENSTON TZXXA{8) s TUPYXX(5) sALF{5,5, 5)901&39186)99(3ﬁ95)s
1 ARSCTIS(4LB) sWFTGHT(48) sZFTA(? 934 94RB) s 2ETAPM(2330:48)sTJ(8s4R)
7 NF(A)oIL(h’;TU(&);?V(&)sTW(h)sTH(h);RL%TM](?)9RLA§T(?)
3 sTITLE(24)
(**********************%*****4*******%3‘3 ******** **************************
10 READ(5s20) NAaNBsNCsNDsTMXsNUSNON N\
20 FORMAT(713) o o

READ({5437) RHOB 55195524853 45854
37 FORMAT(5F1047)

THETA=0,.00
C**************************************“********************************i
C NOTE THAT THIS IS A TWO CENTER INTFGRAL NOW. WHEN DOING THE
cC. - THREE CFNTFR INTEGRALS MUST ALSO CHANGE THE VALUF OF THETA TN

C THF SURROIITINE FNOV,
(************************************************************************

WRITF(6+20) NAsNBINCsNDs IMX4NUSNON

WRITE(6+88) RHOB4SS14552+5534554
88 FORMAT(SF]Q IA)

DO 17 1I=1,3

XNUM=DUMMY { 1)

RF=1-1

QA=1+NDN00+RF#1s0

CALL FNOV(VALNT19Q9QS19§§2‘

CALL FNOV{VALNT25Q55535554)

slaNaeaXeHaXalla R

17 WRITF(652) QsVALNTL,VALNT2
2 FORMAT(F10.292E25.5//7)

TF (NON) 10,31510
31 STOP

END
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$18FTC SCRFEN - DFCK GIVES 72+21572 FOR GROUNDS AND FIRST EXCITED TRIP_

SURROUTINF SCREEN (AR»JI,AZL,AZ1,A72)

- JT=1,+24+3 MEANS ‘AIFINHA[IMNA’ANG’COULQON GROUND ",TATFS

C RESPFCTIVELY.
- R=AR
o IF(JI.FQ.1)_GO_TO_ 60N N
- TF(JT«FQ.2) GO TO 610
. IF(J1.EQ.3) GO TO 670 ,
T 600 AZ=1475817=0e61451%R+Ns18466%R¥R=0 e O?lSR*(R**%)
' GO TO 630
T 610  AZ=1.80075=0,724766%R+0422766%R¥R—-0e02618% (R¥¥3}
GO TO 630
690 AZE1.T62546-0462635%R40. 18896FR¥R=0202423% (R%%3)
630  AZ1=1499346=0.71167%#R+0,19879#R*R=0.02250% (R¥¥3)

AZ2==0¢19289+0+79983%R~N420391%R*R+04 01864*(R**3)
RETURN

END
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____CCONSTS _ e —_
SURROUTINF CON%TS(TZ;TI;T29TD,TQI,T<29TV,TCON<,TFF1»TFF2,JG)
C THIS SURROUTINE CALCILATES THF NORMALIZATION CONSTANTS FNOR THE
C GROUND STATFS AND EXCITED STATF WAVEFUNCTIONS. IT ALSO CALCS Ve
.. PI=3.14159266 _ L e
i IF(JG—Z) 43.44,42
42  C=le0_
GO TO 33
__ 44 C=0e0
GO TO 33
43 C=NaN4T7N5940e31286%TD=0e11245%TD*TD
EEE CP=14+C
CE=].+C*C
CM=1.-C
2=17
- T81=2+T1

TS8S2=2+72
© 821=S0RTF{T1%2)
822=SQRTF(T2%Z)

TFF1=PI/(T1#Z2%571)

TFF2=P1/(72#T2%872) -

SOZ=EXPF(=2#TD)#(1e+Z#*TD+Z2H#ZXTD*#TD/3s)

SO1=EXPF(=T1¥TD)#*(1e+T1%#TD+T1#T1%#TD*TDA3,)

s02= FXPF(~T2*TD)*(1.+T2*TD+T2*T2*TD*TD/3.)

_ BLIP=1.-502+501=502%501

ORMES=( (T2%%#3 4 )% (T1%%34) /(PI*P1)) #(1e/(84%BLIP))

AFG=2 ¥PI*PI*CF* (1 o+ S0Z¥SOZ+4 4 ¥C/CF#*S02)

DRMGS= (7%#%64.) /AFG.

Al=Be%¥PI/(TS1%%3)

RHH=TD /2 «*TS1
_GAM=TD /2% (T1=2) _ _

SONH=0.5# (EXPF (GAM)=EXPF (-GAM) ) .

CleH=SONH+FXPF (=GAM)

TMID=SONH/GAM#* (1 e /RHH+1e/ (RHH#*RHH) =14 /(GAM*GAM))+CISH/(GAM*GAM)
R1=PI#TD*TD*TD*EXPF (=RHH) /RHH*TMID
RET=A1+R1
A2=BHPI/(TS2%#%3)_
RHI=TD /2 «%#TS52
GAI=TD/2%(7=T2)
SONI=Ne5% (FXPF(GAT)Y=FXPF(-GAI)) _ .

_CIST=S0NI+FXPF{~=GAl) e

TMITI=SONI/GAI#(1s/RHI+1. /(RHI*RHI)-I /(GAI*GAI))+CISI/(G T*GAI)
RO=PI#TD*TD*TO*EXPE(~RHI) /RHI*TMIL I
GAFF=A2-R2 :

TV=(CM*GAFF )1/ (CP*BRFTY
TCONS=12+#P I #ORMGS*ORMES#CP#CP*RET*RET
RETURN

END
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% LIST
SURROUTINF STSCR(ARsJTsR7sBZ1,872) ' .
- C "JI=13233 MFANS WEINBAUMsWANG+COULSON GROUND STATES RESPECTIVELY.
T T T IR (JI=1) 599,600,601 T e

599 PRINT 650
650 FORMAT (11HJT TN ERROR)
, GO TO 660
601 . IF(JI=2) 596,610,620
600 B2=1475812=0461451%R+0418466%R*¥R=Ne02158%(R¥**3)
GO TO 630
610 RZ=1.480075=0e724T46%R+0422T66%#R*¥R=040261 8% (R¥%3)
GO TO 630 .
620 RZ=1,76254=0e67635%R+0e 18896 % R¥R=Ne02423% (R#*3#3)
630 RZ1=1e54616+0.38585%R=044B119% (R¥¥2)40,075253% (R¥%3)
BZ2=0624065+0415509%R+0,08N26% (R¥*2)=0a02328% (R*#73)
660 RETURN :
END
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__CSTCONS

"SUBROUTINF %TCONS(TZaTlgTZoDDoTSlsTQZ9TV,TCON§,TQZ9TOA;TOB,JG)’w
fOMMON NAsNRaNCosNDs IMXsNUJsC

e e

47

44

PI=3414159266

IFAJG=2) 43 244442

C=1a0

GO _T0 _33 .
C=0e0

GO TO 33

43
33

C=n, 047059+0.31286*DD 06411245%DD*DD
CP=14+C . .

CW=1e+C*C
7=127

21=T1
72=72

$1=2+21
. 52=7+72

. TS1=51
T82=82

TQZ= QQRTF(PI/(Z**B))
TQA=SQRIF(PI/(71%%3))

C

TQR=SQRTF (R 4¥P1/(722%%5))
s0zZ= FXPF(-Z*DD)*(1.+Z*DD+Z*Z*DD*DD/3.)\

RIF=1e+807 #50Z+44#C*S0Z/CW
ORMGS=(7%%6 )/ (PI*¥PT )% (16 /(2 ¥CW*BTIF)) B
TERM=(0.5643%0e5436=0.0186%#0+2085)/(TQA*TQB) WAS THE OLD CARD.
TRRR=(0427213=0,267873%DD+0.127455%(DD*DD) )

_ORMES=TERM*TERM_

_RA=S51#DD/2.

TERM=TRRR/(TQA*TQB)

Al=8#*PI/(SL¥*¥3)

3A=(Z21=2)%¥DD/ 2
_RR=S2%D(/2.

GR=(72-22)%DD/2
. SOAA=05% (FXPF(GA)=FXPF(=GA))

CISA=SOAA+EXPF (=GA) o .
__RBOA=SOAA/GA*(1e/RA+1e/(RA%¥RA) =1, /(GA*GA))

BOR=CISA/ (GA*GAY
Rl= PI*DD*DD*DD*FXPF(-RA)/RA*(ROA+ROR)

C A2=24XPT /L S2#%4)

o 2+34/(GR¥%3)-1,/(GB*¥*2)-1./(RB*GR¥*GB)

ALPHA=Al1+B1

RTA=1e /RB+3 4/ (RB#%2)+3, /(RB**3)+1./GB 1./(RB*GB)“1 /(GB*RB*RB)

BTR=1+/RB+1. /(RR**2)+1-/GB+1o/(GR*RR)—3 /(GB**Z)
SOAR=0N65*(FXPF(GR)~EXPF(-GRY) :

CISBR=SOABR+FXPF {~GB)
B2=PI*(DD*%#4) /2 *FXPF(—RB)/RH*(QOAB/GB*BTA+CISB/GB*BTR)

DELT=A2+B2

~_TV=ALPHA/DELT

TCONS=64 *PI?ORMGS*ORMES*CP*CP*DFLT*DELT
_RETURN I

END
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, ¢ LIsT . ) A
- A SYMRAL TARLF ‘ '
' COMMON IZXX s IUPVXXsALF N1+ IMXsTHFTASRHOR, RHOC-QKl9§V799K3»9V499KA9
= i | XeY P sMaNs IARSMX s ARSC TS s WF IGHT o TARSZ2F 4 ZETASZETAPMs TUsNTERMyNE »
7 IL’IU9IV9IW9IUQQIV§91H9IPQoTH§9IUPVsJQURNaBLgTMIQBLAST
ST TCOMMON NASNR NG e ND s TMX s NU ™ 77T T T
C THE AROVE COMMON CARD HAS BFFN - ALTFRED FROM THF USUAL BY THE

— ¢ TTADDITION OF ¢ T TO TEST THE SUBROUTINE ACCURACY. — &4/20/67 7
COMMON NA1 sNA2sNA3sNALsNBL sNR2 3NR3SNBA s NC1sNC2sNC3sNC4sSND1sND2
ND3sNDL s IMX aNUSS1 9529V 9S5148824S53 45549807 s SQASSORWDELGDELOP
DIMENSION TZXXA(B5) s TUPVXX(5)sALF(545+5)sD1(30+86)sP(3N45)

1 ARSCIS(48) sWFIGHT(4B) s ZETA(2+34+4B) s ZETAPM(2+30+48)sTJ(8s48)

2 NE(L)Y s TLLA) s TULL) s IVI4) s IW(4) s TH{4) sBLSTMI(2) 4RLAST(2)

2

THIS PGM CALCULATES THF ANGULAR DISTRIBUTION FOR ELFECTRONS _
SCATTERED AFTER EXCITING THE SECOND TRIPLET OF H2. USING THE
ZETA FUNCTION EXPANSION METHOD TO CALC THE THREE CENTER INTS.

alallaXaliaga!

DIMENSION ANGLE(10)sDSIGT(10) sQANG(165s10)sTERM(3)sTR(395)sHHF(3+5)
" READ 204NA1 oNB1sNC1oND1sNA2sNB2 ¢yNC2sND2 sNA3SNR34NC3 4ND3
?NAa,Naa,Ncq,Noa.IMx,Nu
20 FORMAT (1813 - . \
47 READ 101, JGEM ' ' \
101 FORMAT(T10) ‘ ]
PRINT ZS,NAlsNHI,NC1gND1ohA?’NR2gNC2,NDZ,NAB;NBB;NC3;NDB,
ANAL JNRUSNC L SND4 o IMX 4 NU
25 FORMAT (1813) : , _
: THFTA=3.14159266 : . . R
PI=3.,14159266 »
AB=154422/13460
TREQM=T74483=24870%1¢40
ALFAP=18.4
T GPI=8QRTF(PI)
FRONT=1./8P1
SALF=SQRTF (ALFAP).
XVAL=1e2247449/SALF B L
TR(1,1)=1.603286
TR(2,1)=1.720145 \
TR(3,1)=1.910188 -
HHF (1+1)=04151864 o
HHF (251)=0.100207
HHF (35 1)=0.008276
TR(1s2)=1e459127
TR(2+2)=1.608451
TR(3,2)=1.827239
HHF (1+2)=04418730
HHF (242)=0.359015
HHF (352)=0,038425
TR(193)=1.340115
TR(2+3)=1.526299
TR(343)=1.769692
HHF (193)=0,575142

HHF (293)=0.693365
HHF (3+3)=0.096276

TRU1s4)=1.245479
TR(2+4)=14469012
TR(3,4)=1,731193
HHF (154)=0.535819

HHF (2+4)=0,951534
HHF(%;4)—0 166281




: 262
L TR(195)=14400=XVAL

TR(2+5)=14400
L TR(R4B ) =1, 400+XVAL

HHF (1451)1=0a2964900

el HHFI(2,5)=1.181635%50

HHF (39 5)=HHF (145)

PRINT. 134, _ ((TR(JI,KI)QKI 145)sJ1=133) 3 ((HHF(NTISMI)aMI=1,5
?)9NI'19?)

| 4 FORMAT (1HO,9HTR MATRIX// (3(5F10ets//)) a2XsOHHHE MATRIX//

3(3(BF10.4//7)))
_PRINT 102s JGFM

102  FORMAT{1H1 sS5HJGEM=,13/7/)
D02 J=14.16
c THE FOLLOWING PRINT STATEMENT HAS REEN ADDED FOR THIS RUN ONLY.
: PRINT 301s DDsZ1sVsSQAsSOBsCs CONST

301 FORMAT (1HN »3HDD= 9 F T2t 05X 93HZ1=9F 744 95X s 2HV=9F Tab 35X y4HSQA=3F Tatis
2 BXs4HSABR=sF To4s5X92HC=5F 70455X 96HCONST=yF804)
XX=J=2 '
- IF(J=1) 20052005201
200 JM=1
FN=0.,B873529

GO TO 202
200 JIM=5 S ’ \

FN=141029417+0436764T%XX BN
202 FNFRGY=FN#13,6 :

PP=SQRTF (FN)
DO_3 K=1,10

R=K~1
_RAD=0-3490658%¥R

ANGLE (K)=RAD*180./P1
DO 15 IK=143_

PD=TR(IK M)
FACTOR=(7.483~2, 870*DD}/RFOM

RHOR=DD/2.
ENDTIF=20. ??03:7~983EQDt13A3§iDQiDD

FM=FNDIF/13.6
TEMPS=ARSF (FN—-EM)

S=SORTF({TFMPS)
O=SQRTF(EN+S*S:2,*PP*S%§OSF(RAD))

=S/ (PP*(S#S+AB)* (S5#S+ARB))
rALL STSCRIDD s JGEMa7 497142722

CALL STCONQ(Zle922sDD,SI1929V9CONST’5Q29QQA9§QBsJGEM)
S5S81=71
§852=2
S$S83=2

§84=772?
e XY=Q®DD R

YT=YY/2» )
e PHASES 02 5% ( L s+ S INF O Y Y /Y Y Y e e

PHASR=1./YT#SINF(YT) - _

PHASC=3, / (YT*YT)*COSF(YT)+1eO¥*({10=2e/(YTHYT))*PHASB=D,5%PHASH

F=16%S51/((S1*¥S1+Q*Q)*(S1%51+0%Q) )
 G=164%(34%52%52=0%Q)/((S2%¥52+Q%Q) #%3)
H=F=V*G |
o CALL OSOS(NAL>NB1sNC1sND15Q»SS1s5S82sVALAY __ .

CALL OSTS(NAZSNB2sNC?9sND2+sQ39553555445VALB)
CALL _TSOSINA3INR3aNCIINDTQ95515552sVALC)

CALL TSTS(INAL4sNB4sNC4sND4sQ+553+554sVALD)
.. SBESA=SQZ¥SQA¥VALA-V*SQZ*SQAR*VALB
SRFSR=SQZ#SQA*VALC-V*SQZ*SQR*VALD
DSIG1=CONST*WXH¥H#*PHASEX¥FACTOR_ .



.. CSIMP.

263 f

SURROUTINE STIMP(QL QU DD sKsVAL s VALB s VALC)
COMMON TZXX s TUPVXXaAl FaN14IMX s THFETAsRHOP 4RHOC 3 SK1 s SK24SK 345K 4 9 SKA .

XaYoPaMaNe TARSMX s ARSCISsWE IGHT s TARS2F 3 ZETASZETAPMSTUSNTERMINE 5
TU T alVeIWa TS IVRaTHs IPSs THS 2 IUPV s JSURNSBLSTM1I sBLAST 5
AQNR’NC!ND’IMX!NU’SlOQP9V$§<199‘79%%19q§49FF29FF19DELO’DELOP
DIMENSION TZXX(5)sTUPVXX(5)sALF(5,555)sND1(30386)3P(30:5), .
1 ARSCIS(48) sWEIGHT (48) s ZETA(2+34+948) s ZETAPM( 25305481 sTJ (8548,
2 NE(a) o TL(&4)aJU(S) o IVIG) s IW(G) s TH{4)»BLSTMI(2) +BLAST(Z)

1
2 .
4

22

PI=3,14159266
_RHOR=DD/2a_ . -
IF{K) 2251422 : .
d=Y
D=QASTAL-QL
QASTOL =QL

. S

B X o N

~

0O=0L
NM=D/DELO.
TF{NM) 114511,10
_FN=NM
DEL=D/FN
HH=DEL /30

F=QQ

FA=164%#52/((S2%G2+EXF ) ¥ (S2%G2+F*E ) ) \
GA=16+%S1/((SI*S1+E#E) *( S1¥S1+F*E)) \
___ HA=FA+VEGA ——
PHASA=0, 5*(1.-€INF(F*DD)/(F*DD))'

CALL FNOV(VALNTALF,58]45552)

CALL FNOV(VALNTRE+S55835554)
VALSA=FF2#VALNTA+V*FF1#VALNTR

YTA=F*DD/2»

THETR=1./(YTA*YTA)®* {SINF(YTA)=YTA*COSF(YTA))
SIGA=HA*HA*E*PHASA
SIGR=E*[12+/P1)¥HA*¥VAL SA®THETH

DO 3 I=1sNM

SIGC=E*{12./P1)*VALSA*VALSA/P]

R=1

_A=QQ+R*DFL

F= 16.*€7/((%2*§?+Q*O)*(§2*§?+O*O))
G=16%S1/((S1#S1+0%¥Q)#(S1*#S1+0%Q) )

__YY=0#DD

o CALL_FNOVI(VALNT1:Ds581+5582)

H=F+V*G -

PHASF=N.5%(1.~SINF(YY)/YY)

CALL FNOV(VALNT2,055539554)
VALSS=FF2¥VALNT1+V*¥FF1*VALNT2

_SI1G2=0%(124/PL)¥H*VALSS*THETT

YT=YY/2. o
THETT=(1./(YT*YT))*(%INF(YT)-YT*COSF(YT))
STGL1=Q#H*H*PHASE

SIG3=Q0%(12./PI)*VALSS*VALSS/PI

L TF(I=1T) 61462461

1
62

- 10—

CR=2,Nn

IF(I=NM) 6049,60
=172 __
II=T1%2

SR=4.0
SIGA=SIGA+SR*¥SIG]

.9

_SIGC=SIGC+SR*S1G3

STGA=SIGA+SIG]

SIGR=SIGR+SR*¥S1G2

GO TO 3




o

3

PR
e

R IGC=STGC+SIGS

fM_WMWf;M._“4T“H . —o64 e e e

SIGR=SIGR+SIG?

CONTINUF

S
12

T VALC=STGCHHH+VALC

VAL =STGA¥HH+VAL
VA R=STGR*HH+VALR

1F{Y) 9799q997

PRINT 12— T

FORMAT(37H Q INTEGRATION INDEX ZEROo DELOP USEDs1Xs14)

NM=D/DELOP
IF(NM) 14417510

17
18 |

97

PRINT 18
FORMAT (25HDELOP IS TOO LARGE VAL=0.)

60 TO 99
J=n

NQ=0ASTOL
N=QU-QASTOU

DASTOU=QU

GO TO 4

K=1

C

- VAL=0.0 A\

THIS DONE SO THAT EACH SUCCEEDING CALL MIQSES THE INITIALIZATION.

VALR=N.0 . , N\
VALC=040 ' .

AG=0L
D=0U=-0L

QASTQL=0L
DASTQU=QU

N
15

GO TO 4
PRINT 15

" FORMAT (18HSTEP SIZE NEGATIVE)
GO TO 16

99

16

T VALUE3=VALC

VALUE1l=VAL
VALUE2=VALBR

RETURN

FND
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(iﬁﬁf********%*%***%%******************%***********%***%*%%**%*%*é****%*
THIS PROGRAM CALCULATES THE TOTAL CROSS SFCTION FOR EXCITATION
_OF TRIPLET LFVELS IN H2 RY FLECTROM IMPACT ALA THE GFNFRAL

|

METHOD OF OCHKUR OR RUDGF. THF APPLICATION INCLUDES AN INTEGRA-
_OVER THE INTERNUCLFAR DISTANCE. THF OUTFR INTFGRATION 15 GAUSS=
TAN AND THF INNFR IS SIMPSON. THF OUTER GAUSSTAN INVOLVES A
_SPECIFIC SFT _OF ARCISSA AND WFIGHTS FOR THE DFLTA~ENERGY OF THFE
TRANSITITON. THESE WFIGHTS ARF ORTAINED RY PROGRAM HJUAJ.
THE GROUND STATES CAN BE WEINBAUM,WANGsCOULSON AND THE EXCITED

;nr\r»n,

STATE IS PHILLIPSON~-MULLIKAN.
*********************************x********%******%*********************

LI e NaliaNa¥e Na

LIST

____ SYMBOL TARLE s
COMMON IZXX;IUPVXX;ALF9DI;IMX9THFTA9RH059RHOC9§K19QK? SK3,5K4s5KA»
1 XsYsPosMsNs JARSMX s ABSCIS o WEIGHT o JABRS2F o ZETASZETAPMy TUsNTEFRMGNE »

2 TLoaIt eIV IWsTlIG s IVSsIHsIPS s THS s TUPVsJSURNSBLSTM14BLAST,
4 NASNRONC sND s TMX NI ST 9529V 9551955245539 854aFF2+FF14DELOSDELOP

. DIMENSION T?XX(%),IUPVXX(S)9ALF(595s5)901(30;86),P(30 53
1 ARSCIS(48) sWFIGHT(48) sZETA(2934448) 9 7FTAPM(2+30948)sTI(Bs48)s

.2 NEC4) sTLUA) s TULL)Y s IVIL) s IW(4)sIH(4)BLSTM1(2)4RLAST(2)
DIMENSION TSIGT(IZ}JJR(?sE),HHF(BsE);FNEP(lZ),RO(E,IZ)

READ 204NASNBINCaND s IMXaNU

20 . FORMAT(613) . Y

PRINT 459NA9NR9NC;ND;TMX;NU \
45___”FORMAT(3HNA-?I3’3X13HNB’113,3X43HNC-9135ﬁX;3HBD 913 93Xs
54HIMX=91443Xs3HNU=513)
47 READ 101, JGFM

e THETA=3414159266

1Nl . FORMATI(II1N)

PI=3,14159266
DELO=0002 B e

NELOP=N,005
Al FAP=18.4

SPT=SQRTF(PI)

__FRONT=1./SPL ' - -
SALF=SQRTF (ALFAP) .
XVAL=1+22676449/SALE - B
PELTE=1.0 -
TR(141)=1649955

e TR(3,1)=1.929779.

TR(241)=1.758458 /

HHF (141)=0,094009
—HHF{25,1)=0.068437
HHF (35 1)=04004506
TR{1s2)=1523542

TR(2+2)=1.656939
TR(352)=14862597

HHF {1:2)=0,289925 .
HHF (2421=0.217733 R

HHF (352)=0,020587
TR(153)=1.402524

TR(?2+3)=1.568075 : - '
_TR(353)=1.798589 : - —
HHF (1+3)=0,515389 . -
_HHF(253)=045111581 O —

HHF (333)=0,061628
TR{1.4)=1291864

TR{2+4)=1.496149 : :
CTR(3,4)=1.749283 _ - U
. HHF{144)=0.574782 ' '
~HHF (254)=0.831250. e e e e e e
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HHF (3+4)=0.129512

TR(1,5)=1400=XVAL
TR(245)=1.40N

-

TR{345)=1.400+XVAL

_HHF (155)=0,2954909

HHF (2+5)=1.1816359
HHE {33 5)=HHF (15}

PRINT 134, ((TR{JISKI) sKI=195)sJl= 1§3),((HHF(N19MI)oMI 155
2) sNT=1+3)

134

FORMAT {1HOs9HTR MATRIX// (3(SF10a4//))+2Xs10HHHF MATRIX//

3{3(5F1044/7)))

102

PRINT 102+ JGEM
FORMAT (1H1 45HJGFM=,13//)

DO 991 IK=1,3
JM=5

QUTTA=0,000
NUTTR=N.N0ON

COUTTC=0,000
R=TR(IK4sJIM)

CALL SCREFN (BoJGFMquZl’ZZ)
CALL CON%T%(Zy?l9?2aH,91,9?,V,CON§T,FF1,FFZ,JGEM)

SS81=2 .
.882=22 ’ \

se3=71 ' BN
SS4=7

832

PRINT 837$R99§1999?9%5399949V9FF19FF29CONST9C
FORMAT (1H1,10F13.5//)

FNDIF==7401%R+21.0081
FM=ENDIF /1346

DO 310 JJ=5,9
KK=JJ=5%_ ..

RR=JJ=5
FNFRGY=13.N+RR#DFLTE

745

FEN=ENERGY/13.6
FNER(JJ)=ENFRGY

TPP=SQRTF(EN)
TEMPS=ARSF (EN~FM)

S=SQRTF (TFMPS)
OMIN=TPP-¢

OMAX=TPP+S
CALL SIMPtQMIN,oMAx.R,KK,VALUEl,VALUEz,VALUE3)

WISFN* (S%S+14 )% (S*S+14)
ERRYAD!

OUTTA=2.*P I *VALUE1#CONST*W
OUTTR=2¢#PT#VALUE2*CONSTH*W

OUTTC=2. %P I#VALUE3*CONST*W
TERM=0UTTA-QUTTR+0OUTTC

310
991
21

RO(IKsJJ)=TERM
PRINT 21, R, (ENER(K),RO(IKsK) ,K=5,12)

FORMAT(lHOs?SHINTFR NUCLEAR DISTANCE I1Ss4XsFbe 4//(40XsFlO .3530Xs
?2F1545//7))

750

NO 750 JJ=6,12
TSIGT(JJ)= FRONT*(HHF(]95)*RO(19JJ)+HHF(295)*RO(29JJ)+HHF(?95)*

753

ARD(3sd))
PRINT 783

FORMAT (1H1 550X s26HTHE TOTAL CRO%S "SECTION 1S/7)
PRINT 751s (ENER(MI)sTSIGT(MI) s MI=5,12}

751

FORMAT (1HO s 40X » THENERGY=+F 723520X s6HTSIGT=4EL1545//)
TF(NON=3) 47513447

13

sTOP
END
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PSIG2=CONST*W*h4s /P *HXSRESAXPHASRXFACTOR
DSIGA=CONST*W¥20, /P I ¥H*SRFSR*PHASC*FACTOR

- DSIG4=CONSTH*WH4./PI*SRESA%SBESA/PI#FACTOR

PSIGS=CONSTH*#W*20. /PT*SBESB*SBESR/PI#FACTOR

15 TERM(IK)=DSIG1+DSIG2=DSIG3+DS1G4+NSIGS
- "-'_m”"DQIGT(K)-FRONT*(HHF(1,JM)*TFRM(1)+HHF(2oJM)*TFRM(2)+HHF(3;JM)*

__ 2TERM(3)) B e
T3 QANG(J+K ) =DSTGT(K) )

2 PRINT B84sFENFRGY s (ANGLF(K) 4DSIGT{K) sK=1510)

8 FORMAT (1H1oF10e3//7/(F1043y F25e4/7))

, WRITE OUTPUT TAPE 3, 83s ((QANG(I,J)sJ=1+10)31=1516)

83 FORMAT(BE17+4) :

CALL EXIT

END



SIRFTC HJAY NODFCK

r— —— . . RSP

DIMENSION A(50a3)98(5011)sCOE(Q)’ROOTR(Q)’ROOTI(3)sAJ(3)
COMMON/THRFE/ALFC(6)

- T ALFAP=18.4
PI=3.14159265

T . o . s [ .

SPI=SQRT(PT)
SALF=SQRT (ALFAP)

€~ FOR THE .FIRST TRIPLET THE FOLLOWING CARD IS DO 900 JK=1s4
) NO_9nn JK=1 44

RJk=JK~1
¢ FIRST TRIP HAS THE NEXT CARD AS __ ENFRGY=9.0+1.0¥RJK
FNERGY=12+0+045%RJK T 4
C FIRST TRIP HAS THE NFXT CARD AS R=(21.0081-ENFRGY) /74401

R=7+483/2.870~ ~SQRT(7+483%#7.483~ 4.*1.435*(20 2203-ENERGY))/2.870
20=8SALF*(R~-1440)

- WRITE{(64901) Rs20
901 = FORMAT(1H14+20Xs21HA NEW VALUE OF Ry R=3FTe4520X33HZ0=sFTe4)

C NOW CALCULATE THE K-ALFA MOMENTS OF THE WEIGHTING FUNCTION W(X)s

CALL MOMENT (ZD)

WRITE(64202) ALFC '
202 FORMAT(]HOoGﬂX;QHALFC//(50X9F10 6/))

C FORM THFE AsRsC MATRICES

DO 300 J=1,43

A(Js1)=ALFC{J}
AlJs2)=ALFC{J+1}

300 A(Js3)=ALFC{J+2)
WRITE(65301) ((A(NsM) sN=1,3) yM= 1.3)

301 EORMAT (1H0 50X s 29HTHE A MATRIX COMPOSED OF ALFC/7//(40X33F15.6/7/))
B(1s1)==ALFC(4)

R(?2s1)==ALFC(5)
B{3+1)==ALLFC(6)

WRITE(6,5401) (B(Ns1)sN=153)
401 FORMAT (1H0,65Xs8HB MATRIX///(55X3F156//))

CALL MATINV(As34B,1,DETERM)
WRITE(6+501) ITsDETERMs(B(N»1)sN=133)

501 FORMAT (1HO0 325X s3HIT=513910Xs 7THDETFRM=>F 7. 5//8HC MATRIX///
33(40XsF15.6/7/))

FIND THE ROOTS OF THE POLY--THE AJ VALUES.

HalaNa!

COF(1)=1.0

COE(?2)=R(32+1)
COF (3)=R(2,1)

COF(4)Y=R{141)
WRITF(6.502) COE

502 FORMAT (1H0950Xs 16HCOFFFICIENTS COE//(55X9F16 ,5//))
‘ CALL MULLER(COEs3,RO0TRSROOTI}

WRITF(64503) ROOTRSROOTI '
503 FORMAT(lHOo?SXsSHROOTR975Xs5HROOTI///3(10XsF15 6/7)+3(80X,F15.

’\
[w

AJ(1)=ROOTR(1)/SALF+1 .40
AJ(2)=ROOTR(2)/SALF+1.40

f~

AJ(?)-ROOTP(B)/%ALF+1 40
WRITF(64+940) AJ

940 FORMAT (1HD22HTHE ABCISSA VALUES ARE/(30X»F15 6//))

C DETERMINﬁ THE WEIGHTS HJ -




R(ls?)—ALFC(Z)

e et e s e e = o . [

TRU(2s1)=ALFC(3)
R{3s1)=ALFC(4)

DO 601 N=1,3
e ALLSNI =ROQTRIN) S U U,
- _ A2sN)=ROOTR(N) *%2
__ 601 A(34N)=ROOTR(N)*%3
WRITF(6+602) (({A(KsL)sK=193) L= 1,1>.(ncN,1>,N=1,3)>

602 FORMAT {JHO 430X+ 15HSFCOND A MATRIX25X+15HSECOND B MATRIX//

23(20X93F15.6///)+3(85XsF15e6//))
_CALL MATINV(A433Bs1+sDFTERM)

WRITE(65603) TTsDETERMs (B(Ns1)sN=1s3)

_ 603 _ FORMAT(1IHOs3HIT=+134+30Xs THDETERM=4F7s 5//50X,21HWEIGHT _COEFFICIENTS
4 H//3(30XsF15e6//))
CALCUL=R{1 911 +B(2¢11+B(3s1)

TRUE=ALFC(1)
I WRITE(64700) CALCULsTRUF

700 FORMAT (1H0+20X s THCALCUL= sF1247520X +5HTRUE=,F1247)

900 CONTINUE

STOP
END

SIBFTC MOMFNT DFCK |
SURROUTINF _MOMENT (R) ‘ N\
COMMON/THRFE/ALFC(6) - \

_SP1=SQRT(3.,14159265)

EPP=EXP (~R%RB)
ALFC(1)=5P1/2.%(1.~FRF(B))

ALFC(3)1=05%(ALFC(1)+B*EPP)
ALFC(5)1=145#ALFC{3)+0. 5*(&**3)*FPD

ALFCIL2)=0.5%FPP :
.ALFC(4)"ALFC(2)+R*R*FPP/?._

ALFC(6)22%ALFC(4)+(R¥*4 ) *EPP /2,
RETURN

END
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Proposition I

In the study of electron molecule collisions the simplest
system which can be studied theoretically is the system: electron
incident on the hydrogen molecule ion. In the framework of non-
relativistic quantum mechanics there are many theoretical methods(-l)
with which to calculate the relevant scattering pérameters, but of
these many existing methods, few of them are practical when dealing
with the intrinsic non-central force field of molecular systems, As
a result of such mathematical difficulties the method used almost
entirely for both elastic and inelastic problems has been the Born-
Oppenheimer (scattering) approximation, @

It is proposed that a rigorous elastic s wave method intro-
duced by A. Temkin, ) called the Non-Adiabatic Theory, can be
extended to cope with the non-central potential of the hydrogen
molecule ion. The principle asset of this method is that it enables
one to derive a difference relation between the true (s) wave elastic
scattering phase shift and the approximate phase shift of this method.
This difference can be expressed as a series which rapidly converges
and whose terms correspond to multipole distortions of the molecular
field by the incoming electron. These multipole distortion terms
represent polarizations of the molecular field by the incident electron
which are considered by many(4) as one of the most important
mechanisms in low energy electron scattering.

Method:

In the case of an electron incident on the hydrogen molecule ion the
Schriedinger equation for the system with the nuclei fixed, which
will depend on the 8 coordinates of the two electrons and para-
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metrically on the internuclear separation, is expanded in terms of

(5)

wave expansion method is the choice of three Euler angles (8, & )

relative partial waves. The usefulness of the relative partial

and three residual coordinates (rl, Ty, 612), as the six coordinates
describing the position of the two electrons. This choice for
description is important because then the angular momentum depends
only on the Euler angles. Consequently, the eigenfunctions of the

total angular momentum operator (Mz) and the z-component of

z(aél)gular momentum operator (Mz)’ which are denoted by ém, k)(e, &, V)

functions. An added advantage with this basis set is that these functions

, play a central role in the description of the electronic wave

are also eigenfunctions of the space inversion operator (iE) with eigen-
value (- l)k, and since this operator commutes with the Hamiltonian,
the wave function is limited to definite k (even or odd). () In diatomic
molecules (M2) is no longer a constant of the motion and this fact is
used to expand the molecular wave function in terms of the orbital

(7)

angular momentum:

lpm: Z w&m'
4=|m|

The basis set &) ém’ k) 15 chosen so that they are real for m = 0 and

are eigenfunctions of the exchange operator 812
(m, k) _ L+k O\(m, k)=
EIZOQL ? - (i)(‘]-) ”9& ’

while maintaining their eigenfunction character with respect to (iE),
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(2 ), and (M ). (M:®) For the case of interest here, m = 0, the
expansion is

v.= 3 T {1, 00 0,0, g @ @R}
=0 k

where the double prime on the sum means every second value of k
is taken and the argument r of the functions f means (ry,r,, 8;,).
Thus, there are two classes for ”Ub’ even and odd (gerade and
ungerade)., The potential of the system is given by:

2 __ 2 2 2 _ 2 .2

A1 Bas Bpy EBpa Ty

V. + —
MOL Ty R

’ 7
and VMOL can be expanded( ) as

. R R
_ " AB AB
VoL = -4 ) [gx(‘“‘“z ,71)P, (67) + 8, (—5=,r9)P x(ez)ii
A even
where
x)‘/y)‘ +1 X<y
g (x,y =
A y)‘/x)‘ +1 y<X

and similarly the PX functions can be expanded in terms of the
o@)\(m, k) functions as(a)
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1

(e
1 4 - -
Px{efz} = i ) {“T(elz)‘@)fc’ W o) (912)95\0’ g }

U even

where
ko )
ok 12
) — + (1 - 8_)cos( )
@ﬂ%9=ﬁwmﬁﬁ$fﬂ(2 R
ke
12
L sin (—= J

The sum of the kinetic energy operator, the derivation of which is
long and complicated(e), and the potential, is the Hamiltonian
operator of the system and when the wave function(l) is substituted
into

(H-E)y=0
the VMOL part of the potential will couple terms of different 4.

40

spherical harmonics, but for Z states (m = 0) the coupling simplifies

This coupling is complicate , involving integrals over 3 vector

to the connecting radial functions of the same parity only but no inter-

mixing of different 4 parity. The kinetic energy operator in this
case has exchange symmetry and consequently the solution can be

3)

restricted to ry > Ty with the boundary conditions

2 glm, k), =0

_ (singlet)
ar 4 r1-r 9
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[ £ H) Jo o, 0 (plen (2)

The complete radial equations are similar to those found in
reference (7) but have been omitted here since they are very
complicated and must be simplified before a solution is attempted.
The practical method of solution consists in truncating the coupling
terms, which are doubly infinite (involving the potential summation
index A and the angular momentum index 4) at some value for
angular momentum so that only a finite number of terms enter.
The Non-Adiabatic method is to truncate at the lowest possible
value of orbital angular momentum (L = 0) and if it is assumed
that the hydrogen molecule is in the ground state (Z ) the equation
that must be solved is:

2 2
1 3 1 2 -2 -2 1
— r, +— To+ (7 +14"7) ——— (sind ) +
{rl ar§1 1 Ty arzﬁ 2 1 2 s:me12 aelz 12 aelz

along with the boundary conditions equations (2). The solution of

(3) would be carried out in the manner of Temkin(3), which involved

the expansion of the function f in terms of relative partial waves

2041
try 1013 = ), 1; ‘I’n(rl 2PnC12) - )
n=0
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The basis set P (e 2) is used because they are eigenfunctions of
the der1vat1ves of (3) and because 1/ r has an expansion in terms
of Pn(e ). (10) Substitution of (4) 1nto (3) gives an infinite set of
2-dimensional partial differential equations

.2 p) _ R R
{ _3_2 + a—z - L({,+1)(r12+ réz) +E+ 4go( AB, 1) +4g, ( AB: 2) -
31‘1 ar2
Mm}tb&(rlrz) = Z M, & (rro) (5)

m=0

where the prime means parity continuity with the left hand side and
where

: L+m n
= (2/L+1)1/2(2m+1)1/2 z n+1 r P (cose)P (cose)P (cosg)sinede
n=0 Ty

with the boundary conditions

i}
<

& (riro)| . T (triplet)

(6)

L

d .
&, (ryr,)| ry=r 0 (singlet)

and

cIJL(r, 0 =0,
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The overall charge on the hydrogen molecule ion requires the
asymptotic boundary conditions to be

lim . 1

r e @ (rl 2) Sm(kr1 8+ o1n 2kr1)R12(r2)
lim @, (r,ry) = 0 >0

ry - o V172 ]

(no inelastic scattering)

where k2 is related to the energy of H; by

E=-eg+k
(atomic units)

and Rm(rz) is the ground state wave function for H; . Equations (5),
along with the boundary conditions (6), are solved in the following
systematic manner:

The zeroth order problem is formed by setting ¢ = 0 in (5),
to give the zeroth order equation and

2 2 R

R
AB AB |
{ 5;2 ¥ i’ﬁ +E+4g(—5=,ry+ 8,(—5, r2)J> AryTy)
1 2
) rm
' 2 2
Z o . (7)
1/2 m+1 m

Neglecting the right hand side of (7) gives
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{32 +32+E+4g(R r,) + 4g ( )}qi(o)(r )=0
—a—;f -a—;g 2 °T1 ’2 172
(8)

lim _{o) . 1
rl—*mq’o -—sm(kr+6o+—k-a—

- In 2kry)R, (v

) -

A relation between 5§ and 6 is established by following the
®) and multiplying (7) by <I>( 0) and (8) by
¢0 subtracting, and integrating over the half plane ry > Ty

procedure of A, Temkin

applying Green's theorem in two dimentions and utilizing the
boundary conditions (6) in the resulting line integrals, This leads
to an expression for the difference in phases:

: 1 © (o)
sin(6 -8 )=-=% dry dr, & (9)
o k Z—. (2m+ 1) 1/2 J. f r11n+1 m
8§ = true phase shift ng) = geroth order solution
60 = geroth order phase shift <IJO = multipole solution

corrections

The above equation is the heart of this method because it allows a
systematic and physically appealing series of converging approxi-
mations to be conducted to determine the best value for §. In the
Non-Adiabatic Theory, the zeroth order problem (D( o) 4 is solved by
expanding <I=( 0) in terms of the separable solutions of (8) and applying
the bounda.ry conditions to these solutions. The separable solutions
are:
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—kr

20 - 1 1
@ sm(kr +8 o - 1n2kr1)R12(r2) + (Z Jdp)Cne R (rz)
where the integral is necessary to account (in principle) for the
continuum states of the hydrogen molecule ion. The parameters
are determined variationally from the condition
8 f |<I>(°) (r,=r )|2 dr, = 0 (triplet)
0o © 1 "2 1
) I O)IZ dry = 0 (singlet) .
=%
The lowest order solution to (9) is obtained by replacing Qm by (IJ(()O).

The higher order contributions are obtained by introducing a
perturbation theory based on the assumption that the neglect of
higher order @ in the equations do not significantly affect the
solution for the lower ®, (3). With some effort the set of equations
(7) and (9) can be replaced by a set of equations in terms of increasing
powers of the perturbing parameter. Successive solutions for the
| perturbed functions and substitution of these functions into (9) gives
the higher order corrections to the zeroth order phase shift. As
mentioned above, these corrections have the physical significance of
multipole distortions of the molecular field by the incident electron.
The method outlined above would undoubtedly be lengthy and
require much numerical work. However, it seems that the results
obtained stand a good chance of being far better than any existing
theoretical results for this system.
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(3)
(4)
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(6)

(7
(8)

(9)
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Proposition I

When a conducting body moves through a rarefied region
containing charged particles (a plasma) the surface of the body
acquires a negative charge due to the difference in the mobility of
the electrons and ions. This negative potential increases in
magnitude until the flux of ions becomes equal to the flux of the
electrons. The presence of this charged surface affects the
trajectbries of the nearby charged particles and in turn these
adjacent charged particles modify the potential due to their presence
as space charges. This electrodynamical phenomenon is encountered
in the attempted measurement of particle density and temperature
both in the laboratory and in the upper atmosphere by a satellite
probe,

The traditional manner of solution of this problem involves
the Boltzman equation which determines the distribution of the
particles, and Poisson's equation which governs the potential field. )
These equations are coupled through the charge density in Poisson's
equation and the gradient of the potential in the Boltzman equation.
These equations are non-linear in the potential and numerous approxi-
mations must be made before the system can be solved, Consequently,
the applicability of these equations in the rarefied gas situation is
currently controversial and a new approach has been recently
formulated to help understand these psuedo-macroscopic inter-
actions. (2)

It is proposed that this néw method, which treats only electro-
static interactions and planar geometry can be generalized to include

a static magnetic field and cylindrical geometry and therefore
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describe more realistically the situation as found in the upper
atmosphere or laboratory.

The basis for this new method is the replacement of the
Boltzman equation by the Schrdedinger equation to represent the
motion of the particles. As in the traditional methods, the
description of the electrostatic field is given by Poisson's equation.
Problems in hydrodynamic stability and wave excitations are
removed from consideration by investigating only the steady state
of the interaction. It is realistically assumed that the free stream
velocity of the particles v o is much larger than the thermal velocity
of the ions and much less than the thermal velocity of the electrons
and as a result, the electron distribution is almost completely
determined by the electric field. (1) On the other hand, the electric
field doesn't strongly influence the ions since their relative (to the
body) energy greatly exceeds their thermal velocity

Mvoz > > kT

and consequently exceeds their potential energy in the electric field
which is order kT. (1) In addition, assume the characteristic
dimension of the body is much less than the mean free path of the
partiéles so that particle-particle interactions can be negle(_:ted,
and also that the body absorbs and neutralizes all the charged
particles which it encounters, ) (which will lead to the overall
negative potential attained by the body).

Assuming that the velocity of the body (?r'o) is uniform it is
convenient to consider a coordinate system fixed in the moving body
so that the particle distribution is stationary. 3) As a good first

approximation to coping with the complicated coupling of the problem,
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assume that the electrons close to the body experience only the
electrostatic force and are therefore distributed according to the

Maxwell- Boltzman law. (4) (see above discussion)

£¢(r)

ne(r) = D@

(1)
where e,Kk, Te,¢ and n o denote the electron charge, Boltzman
constant, electron temperature, electrostatic potential and electron
density in the absence of the electric field.

The effect of the magnetic field on the motion of the ions is

.(5)

written in the Schredinger equation as:
1,4 2
3a(TV-eA) Y +epy = Ey
which can be expanded to

2 2
- 2  den = len ,» e .2 -
{-_——ZH v +-§—u (v-A)+—u (A-v)+-—2uA +e¢-E}z,b 0. (2

The Coulomb gauge(ﬁ) is chosen for the representation of the fields
so that

V-;‘;.=0

and equation (2) can be written as

2

2
# 2 ein ;o e 2 ‘ =
{-—z-l.-lv +T(A V)+—2§A +e¢-E}z[/ 0. (3)
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Equation (3) is coupled to Poisson's equation which governs the
variation of ¢ according to:

€9

9 en 9 KT

v¢=--§-(ni-ne)= e:'o"[l'ﬂ -e ©
0 0

with

¢,v¢ ~ 0 as [I"I -

(MKS units used)

where the probability interpretation that nol V| 2 represents the
number density of ions at T has been used. The simultaneous
solution of equations (3) and (4) would yield the structure of the
potential shield'around the body moving through the plasma.

Method of Solution

The two coupled partial differential equations that must
be solved are equations (3) and (4).

In order to make any headway with these equations it is
necessary to make some assumptions about the geometry of the

(4)

object traveling through the plasma and the local region of interest

on the body, To illustrate with a simple case, assume cylindrical
symmetry for the body and assume that the body is oriented in its

travel such that its axis always points in the direction of the
magnetic field and perpendicular to the motion of the body.
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In this case, the cylindrical portion of the body in the
direction of motion will become negatively charged. To greatly
simplify things for the sake of illustration, neglect edge effects
and assume that ¢(*) = ¢(p), which is the same as assuming the
potential distributes itself uniformly over the area of interest.
Under these assumptions, equation (3) can be reduced to one
ordinary differential equation, With B = B@z or A = (o, % p, 0)
equation (3) becomes

[~ (522 5o veale) - B}y =0 (5)

wheirt)a y is now a function only of p; the above can be rewritten
7
as:

[U/(p’ @, z) = (277)-% R(p)ezkz
2

dR,IAR (o y2% - Zep(e) )R = 0
dp par A

where v = %‘B— , B= Z—%E- - k2 , k2 = geparation constant of

h dimension L'z

= 0 in this case .
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To completely solve the problem it is necessary to solve the
remaining coupled equations:

2

d°R 1 dR 2,2 eg )

—2_+E—d—p-+(e-p (v +—"2'(P)))R— 0

dp P

2 % g
d  1dg _ o e 12

:i?+p p—GO {e | ¢l }

¢,v¢ =0 as p - =,

This is clearly difficult to accomplish as they stand, but an
approximation that might be reasonable with the physics of this
problem is to solve the first of equations (6) by the WKB approxi-
mation, (8) This approximation is justified since in the upper
atmosphere, the Debye shielding distance (the distance over which
¢ changes significantly) is order .5 cm(s) while the de Broglie
wave length for the ions in that region of space is order 10'4ch§1. ®)
It should be pointed out that if the solution ¢ is obtained in the
manner outlined above it can be considered to be the potential as

a function of p in the frontal zone only since by making the WKB
approximation all the "diffraction' effects found in the wake of

the moving body are lost, (10)
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Since this proposition describes an application of quantum
mechanical methods to a physical situation that is adequately
described by classical mechanics one may ask the why of it. The
main reason for this new approach is that in many cases the
mathematics associated with the solution of the Schredinger
equation would be easier than that associated with the Boltzman
equation since the classical (WKB) limit would be taken which
simplifies some of the mathematics of the Schredinger equation. @)
This 1limit in turn returns the formalism to that of the macroscopic
process.
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Proposition II

Natural aerosols are defined as those particles of greater
than molecular size which can exist in the atmosphere at relative
humidities below saturation. (1) This definition includes particle
sizes that range from . 04 to 100u and excludes such phenomenon
as fog, rain droplets and clouds. Knowledge of the size, type and
altitude distribution are important in studies of visibility, atmos-
pheric physics and chemistry, and radiation processes.

At the present time, there exists no method of determining
rapidly the distribution in type and size of aerosols over some
given area. This experimental void is due primarily to the size
of the particles being investigated and the techniques employed in
the past--namely rockets and balloons for the small aerosols and
radar for the much larger phenomenon,

It is proposed that the visible portion of the electromagnetic
spectrum can be used with the basic methods of radar to probe the
atmosphere and determine useful information concerning aerosol
size and distribution. I should be pointed out that radar frequencies
will not give the kind of information desired. Basically this is
because the wave length is much greater than the size of the
aerosols, and as a result of the Rayleigh scattering the angular
distribution is the same for all particles which satisfy: (radius
<< ). () To "see" the details of the particles one must use a
radiation probe whose wave length is the same order of magnitude
as the diameter of the particles.

| For a single particle, the relative intensity of scattered
radiation by particles at point R comparable to or larger than the
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3

wave length uf incident radiation is given by:

o, o, m) = )‘2( 12 2)"12' ’ (1)
T

NS
=v)

where i1 and 12 are the Mie scattering coefficients in {two mutually
perpendicular planes, a = 2nr/\, r = the radius of the scattering
particle, ¢ is the scattering angle measured from the incident
direction and m is the ratio nz/n1 of refractive index of scatterer
to refractive index of surrounding medium (air in this case). U
there is a distribution of particle sizes in the volume of illuminated
air which obeys Junge's Law(4), then

where ¢ is a constant dependent on the total number of particles

)

in the volume. The equation (1) is modified to read®

2 Yo 4 +12
I(a,,Cp,m) = '_§ I ( 2 )
k|

dn(r) (2)

where rl(rz) is the smallest (largest) diameter of particle appearing
in the distribution usually assumed fo be . 04(10u) for aerosols.
Equation (2) must be modified again to be useful in the apph(ca),tmn

of pulsed radar technigques. The equation can be written as
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i 2 2 2 1 + 1
r_ G
_It = ™ )3R4 (R e¢ )Amtf ‘. —— )dn(r) (3)

Where Ii, is the average returned intensity, It is the transmitted
intensity, G is the gain of the receiver, 6 and ¢ are the beam
widths or solid angle of the transmitted pulse; T is the duration
of the pulse in seconds and Aint is the area intercepted by the
beam at a distance R from the transmitter.

Equation (3) can be rewritten using ze = 4TrAeff where
Aeff is the effective area of the receiver, and the fact that

6 ~ 4*rr/G(6) to give

1 1+
if_ = :ffA int J" ( )dn(r) (4)
1

Equation (4) expresses the returned intensity of radiation in terms

of the power transmitted, the physical parameters of the transmitting
system, and the details of the scattering aerosols, the latter being
contained in the integral. The R2 in the denominator of equation (4)
is an expression of the attenuation of the radiation pulse due to all
scattering and absorption processes.

In general, atmospheric backscatter will consist of both
Rayleigh (molecular) and Mie (aerosol) scattered radiation. However,
it has been shown that Rayleigh scattering will contribute to the total
returned radiation in the visible spectrum only if the range visibility
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is greater than 5 KM (3. 1 miles) and in cases where Rayleigh
backscatter is not negligible the contribution can be reasonably

(7)

For this experiment, the radiation source is visualized as

well accounted for.

that of a laser because it is possible to obtain very short, high
peak power pulses of essentially monochromatic radiation. The
high peak power-short pulses are necessary to give the range and
still facilitate the separation of the returned signal from the back-
ground noise, while the monochfomatic radiation serves as a well
defined probe.

For a given wave length laser and receiver, the Aeff’ TC
and Aint are determined. The experilnental technique would
consist of pulsing the radiation and measuring both the intensity
and degree of polarization of the backscattered radiation. Then
the frequency would be changed to some other region of the visible
and the experimental procedure repeated.

The important aspects of Mie scattering theory which are
utilized are the following, First, the shape of the indicatrix
(angular distribution) is strongly dependent on the wave length.
For instance, for a ruby laser (A = .6943u) and assuming perfectly
reflecting particles the intensity of backscattered radiation is 80%
of the incident intensity for particles . 1y in radius but essentially
zero for particles .3u in radius;(s) while for radiation in the blue
(A ~ .45y) the corresponding upper radius cutoff appears at . 2u.
In other words, a certain range of particle size can be searched
for by proper choice of the monochromatic radiations employed.

The analysis of data could be conducted as follows: The

backscattered signals received will be a function of time (the R
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in equation (4)) and must be integrated to give the total back-
scattered energy from all the particles in the beam. A form for
the aerosol size distribution is chosen (Junge distribution) and the

expected degree of polarization is calculated from( )

Py = L, (®) + L)

where
N
r,
f -—dn(r) |
I { 2 } - g et effA int < >
f R dn(r)
-~/
and ¢ , the observation angle,=m in this experiment,

- Since the polarization is a more sensitive measure for the
aerosol size distribution than the scattering functions themselves, (10)
the form of the distribution function is varied until a reasonable
agreement with the data is obtained. Then the parameters, o and
m, of the Mie functions (i1 and iz) are varied until the calculated
total backscattered intensity agrees with the data obtained for the
various wave lengths employed. In this manner it should be possible
to obtain information concerning the type and size distribution as a
function of altitude, location, etc.

Because the investigation of aerosols in their environment

is complicated by many spurious factors, it is probable that
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sophisticated experimental and data processing technigues will

be needed for this method to yield accurate information concerning
aerosols in the atmosphere,

(1)

(2)

(3)

4)

(5)

(6)

M
(8)
9)

(10)
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Proposition IV

I. Introduction

It has recently become feasible to attempt calculations of
cross sections for the excitation and ionization processes in N2,
02, Nand O, It is suggested that by using these cross sections,
one can obtain insight into some of the interesting properties of
the aurora,

A good deal of work has been done on the emission of visible,
near-UV and infrared radiations from the aurora because these
processes can be measured by ground based equipment. (1) However,
due to the atmospheric cut-off, the UV portion of the spectrum cannot
be seen from the surface of the earth. It has recently been suggested(z)
that a major portion of the energy deposited in the emitting states of
the atmospheric atoms and molecules must appear in the form of UV
radiation. This was concluded because so little (~ 5%) of the expected
radiation appears in the visible and infrared. A recent experiment(3)
has verified that indeed this is the case as rocket experiments
measured intense radiation in the 1000-1350 K region. From an
analysis of the response of the rocket-borne detection system, it
was cdncluded(s) that most of the radiation comes from atomic oxygen
and molecular nitrogen.

It would be very interesting to try and explain these UV
emissions for two reasons., The first is because an adequate
description of the source of these radiations would represent a step
forward in the understanding of the complex aurora processes. The

second is, because from a description of the source of aurora
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emission, one can perhaps determine the distribution in energy of
the primary and secondary charged particles which produce the
aurora, A knowledge of these distributions is very important since
these particles may be part of an energy-coupling of the earth's

(4)

polar regions with the magnetosphere.

I. Theory

The basic analysis proceeds from Bethe's expression for
the stopping power of a charged particle in matter. () To simplify
presentation of the method, assume that only one type of particle
is present (say Nz) and all of them are in their ground electronic
state, One can then define an energy-loss function for a primary
particle of energy E as

Kmax
__LldE_ _
2(E) = - % 45 = Z QE)E -E 1+ [ [E.-E 1Qdk (1)
' 0

where N is the number density of atoms or molecules; (En - Eo)
is the excitation energy of state n; Qn is the total cross section
for excitation to state n; Qk is cross section, differential with
respect to energy of the ejected electron, and Kmax is determined
by the energy relation:

22
#
E =—--5r—nn-1?-‘—X , (@



296

where m is the electron mass. One then defines the fractional
energy loss to each mode as

(excitation) £ (E) = (E_- E)Q (E)/«(E), 3)
(ionization) fi(E) = Ii oi(E)/:e(E) , (4)
(energy of secondaries) fS(E) = (Wi - Ii) oi(E)/i(E) , (5)

where I, is the ionization energy of state i, o, is the total ionization
cross section; and Wi is the average energy lost in ionizing state
(i) and is defined by

E
W, o, = g W.(k) Q dk . (6)

From the above quantities, one can calculate

E
EH(E) = {) fu(E') dE' (7)

which represents the energy deposited in the uth mode by the primary
particle of energy E as it is slowed down,
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I, Discussion

The above equations contain the information necessary to
perform the calculations which proceed (qualitatively) as follows.
For a given primary incident energy (E) one determines the energy
deposited in the emitting states by the primary particle through use
of (3) and (7). Also, from (4) and (7) one calculates the energylost
in ionization which, by division with the ionization energy for the
state, leads to the number of secondary electrons. From the total
secondary energy one then finds the energy per secondary electron.
The above process of degradation is then repeated for these
secondaries, and then the tertiaries, etc. until all the available
energy is dissipated. By this procedure, the total amount of energy
emitted in the form of UV radiation is then determined. These
results can then be normalized to yield absolute emission rates,

To be realistic, the process outlined above would have to

(6)

allow for a distribution in energy of the primary and secondary
electrons, Different forms for the distributions could be tried
until (hopefully) consistent emission rates are obtained, Recently,
some measurements of the secondary electron distribution have
been made(7)
little is presently known about the energy distribution of primaries
and if this calculation were successful, it would provide information

which could g'uide the theoretical choices. However,

as to the source of these particles.

Of most importance in carrying out such a program is
knowledge of the ionization and excitation cross sections of N2 and O,
There are some recent experimental results on the allowed excitations
in N,, but very little is known about the forbidden or ionization cross
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sections of the states in N, and O, ®) However, a good portion of
the important cross sections for which there are no data can be

reliably calculated with an extension of a method just recently
developed, (@)

(1)

®3)
4)
(5)

(6)

(0
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Proposition V

1. Imtroduction

It is proposed that the bound-free absorption coefficients
(or photodetachment cross sections) for the negative ions of
astrophysical interest can be calculated accurately, and with
much less the usual effort, by using the new GF wave functions,

The attenuation of electromagnetic radiation in the visible
“and infrared .(called opacity) by the atmosphere of cooler late-
type stars is due predominantly to bound-free transitions of H
and other systems with Z's ranging from 2 to 30, (1) The H
system accounts for about 85% of this absorption and O about
half of that remaining, Knowledge of the absorption coefficients
for these photoionization processes is necessary for the develop-
ment of any detailed steller model for these stars. Because these
processes are so difficult to measure experimentally, it is '
essential to have reliable theoreticé.l values.

There have been many calculations of absorption coefficients
since the discovery of their importance in 1939, @) However, the
efforts have been devoted almost entirely to H  and calculations
continue to appear in which people use increasingly more com-
plicated two-electron wave functions for the bound and free states.
Even though the calculations are becoming internally consistent,
there is no clear cut basis for the best theoretical approach in the
general case, In addition, most the methods employed for H are
not easily extendable to O and other negative ions because of the
complexities associated with the larger number of electrons in these

®3)
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ions. Most of the calculations on H are performed using
Pekeris-type (Hylleraas-type) bound state wave functions(4)
which contain explicit electron correlation terms and many (70
to 203) variational parameters. If one hopes to calculate these
photoionization cross sections for the more complicated ions,
it appears necessary to search for wave functions which will
yield reliable results for H and still allow solution of the
processes involving the other ions. The GF wave functions
appear to offer the required flexibility and still possess the
quality necessary for accurate results,

(5)

II. Theory

For simplicity, the methods used to calculate the
absorption coefficient are presented for the case of H. The
techniques can in principle be extended to any Zsystem.

There are three formally equivalent ways of expressing
the absorption coefficient which in bractice differ because the
wave functions used are not exact. These expressions, all
descriptions of an oscillating dipole, differ in the matrix

®),

elements used
= [y d (1)
“z‘f“'d“l”%”c T

_ 1 R, 2
Mg =~ W IYd(azl + azz)wch ’ @)
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Z
e [ B @
(E 'y Ty

where ¥ & Yc are the bound and free two-electron wave functions

~ of energy E q and Ec respectively; dr is the two-electron volume
element and the other symbols have their usual meaning., Only the
z-component of the matrices have been written, The absorption
coefficients Kv for incident radiation v, in which an electron with
velocity v is ejected is given by (assuming the ejected electron

traveling in z-direction)

- - *

K\)(cmz) - 6.812 x 10”20 1(? + 21)| [ ¥y(ay + 29)¥ | 2, @)

K (cm?) = 2,725 x 107° J‘w (5+50 )ch'rlz, (5)
v a2 + 21) Z) 9Zg

Kv(cmz) = 1,000 x 10718 3 J‘ v -5 —)‘if d'rl (8)

2

where all the symbols are in Hartree atomic units but K\) is
expressed in cm2 by the numerical factors in the equations. The
symbol k denotes the wave number of the ejected electron and I
the electron affinity. The wave length (in angstroms) of the
incident radiation is related to k2 by

911.3 1)

x(A)=——2-——.
k™ + 21
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For the bound state wave functions one uses the GF wave
functions, which for H and Li have already been calculated. ()
The free-state wave function also poses a problem since it is
necessary to include exchange and the distortion of the neutral
atom by the ejected electron. There are a number of (approximate)
- ways of doing this, The most frequently employed method is the
explicit inclusion of neutral bound excited states in a Hartree-Fock
eigenfunction expansion for the continuum waves. (1) An alternate
approach, which is less complicated and more physically appealing,
is the method of polarized orbitals, ®) For H+ e , the necessary
polarized orbitals have been calculated, (8b) but this is not the case
for higher z-systems.

I, Discussion

It is almost unnecessary to point out that the calculations
which use Pekeris-type bound state wave functions and Hartree-Fock
continuum wave functions are very complicated, For this reason
it will probably be a few years before the larger Z-systems are
done, It is therefore worth while searching for an approach which
will work well for H and still be applicable to the larger Z-systems.
The GF wave functions(s) could represent a practical improvement
in the bound state situation. The reasons accurate cross sections
might result from using the GF wave functions are as follows.

Equations (4), (5) and (6), because of the form of their
matrix elements, are called respectively the dipole length, dipole
velocity and dipole acceleration expressions for the absorption
coefficients, The following general comments pertain to these
equations. The dipole length formulation (4) uses portions of
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configuration space which are more distant than those regions
important in the evaluation of the energy. On the other hand, the
acceleration formulation (6) emphasizes most strongly the regions
near the nucleus, The veloeity formulation (5) is somewhat inter-
mediate although it weights the inner regions more strongly than

- the outer regions, By investigating the properties of the GF wave
function for H , one would expect the dipole velocity and dipole
acceleration formulations to give the most accurate results. This
statement is based on the fact that the GF wave function for H
gives a good value for the charge density at the nucleus while
giving a somewhat poor value for (T ;i>' [ These conclusions are
drawn from Table VII of ref. (5)]. Because the GF wave function
gives almost as good a value as the Pekeris wave function for the
charge density at the nucleus, one might hope for a reliable value
for the absorption coefficient without having to use correlation
explicitly, It is worth noting that from the results of GF calcu-
lations(s) one notes that as Zincreases the general quality of the
GF wave functions for negative ions (relative to H ) seems to
increase. Thus, if the results obtained in the H calculation are
good, then one can expect equally accurate (or better) results for
the higher Z-systems.

As a final comment, note that such a calculation would also
be interesting because from a comparison of the absorption
coefficient using GF wave functions and that using the Pekeris-
type, one could obtain information concerning the importance of

correlation in predicting physical processes of this type.
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