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Abstract

We investigate the cooling of low mass white dwarfs with helium cores. We construct a de-
tailed numerical model using the most modern input physics, including our own calculations
of low temperature hydrogen opacities. We use our models to constrain the ages of binary
millisecond pulsars from the optical observations of their white dwarf companions. We use
this to place limits on the initial spin periods, magnetic field decay times and accretion
histories of the millisecond pulsars. Our models can also be used along with observations of
spectroscopic gravities and radial velocities to place interesting constraints on the neutron
star equation of state. We provide grids of temperature and luminosity as a function of age
for various white dwarf masses and surface compositions to facilitate future analyses.

We have investigated the effect of the pulsar wind on the atmospheric composition of
binary companions. The spallation of atmospheric helium to hydrogen increases the cooling
age of the white dwarf. We find that all white dwarf companions in binaries with orbital
period < 300 days should cool as DA (hydrogen surface layer) white dwarfs, irrespective of
their original hydrogen content. We investigate the effect of various wind compositions and
note that, if almost all the hydrogen on the surface of a pulsar companion is the result of
spallation of an ionic wind, then the D/H ratio is large.

We investigate the processes by which planets might form around a millisecond pulsar
such as PSR B1257+12. We study the evolution of accretion disks of different mass, angular
momentum and composition, corresponding to various proposed formation scenarios. We
find that most formation scenarios require a high efficiency of conversion of metal-rich ma-
terial into planets if they are to produce the observed parameters of the 1257412 planetary
system.

We have studied the distribution of pulsar proper motions in the light of the recent
analysis of Lyne & Lorimer (1994). Using a simulation of the selection effects of the various
surveys, and treating the censored data using survival statistics, we arrive at an estimate of
the characteristic pulsar birth velocity ~ 300 km.s™, 2/3 that of Lyne & Lorimer. We also
show that the older pulsar population shows the effects of the asymmetric drift, indicating

that it must be dynamically old.



Summary

In a general sense, all of the calculations described in this thesis are intended to study some
aspect of pulsars. Nevertheless, we cover a fairly eclectic range of fields in the forthcoming
pages. |

The major part of this thesis is devoted to the study of the cooling of low mass Helium
white dwarfs such as are found in binaries with millisecond pulsars. We describe in detail
the construction of a numerical model to calculate accurate cooling ages for these stars,
using the most recent input physics available. We may use the cooling ages we infer to
determine the age of the millisecond pulsar, which in turn allows us to place constraints on
the initial spin periods and accretion history of the neutron star. chapters 2 through 4 deal
with this calculation.

The choice of atmospheric composition is quite important in studying the white dwarf
cooling. The opacity of the atmosphere has a dramatic effect and thus the relative amounts
of Hydrogen and Helium in the atmosphere is important, especially at low temperatures
(Teg < 10 000 K). The proximity of a pulsar with a relativistic wind of particles ema-
nating from it can cause a change in the atmospheric composition of a Helium atmosphere
companion. We study the spallation of atmospheric Helium by the pulsar wind in chapter 5.

The presence of planetary mass companions around PSR B1257412 prompts questions
about the formation scenarios of such objects. In chapter 6 we study the planet formation
probabilities for the class of formation scenarios that form planets after the creation of
the neutron star. All of these models result in a protoplanetary disk of varying mass,
angular momentum and composition. We examine the efficiency required by each scenario
to produce the observed planetary system and rank the various schemes accordingly.

The final chapter (chapter 7) deals with the velocity distribution of young pulsars. We
present a statistical analysis of the pulsar proper motion distribution, including a discus-
sion of the selection effects of the relevant pulsar surveys as well as a proper statistical
treatment of those pulsars with only upper limits on their proper motion. We examine the
consequences of our results and also demonstrate that the class of pulsars with spin-down

ages > 107 years is dynamically old, because they show evidence for the asymmetric drift.
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Of the material in the forthcoming chapters, chapter 2 and Appendices A and B describe
the details of the numerical calculations of the input physics and stellar model for our cooling
code. The calculations in these chapters are based on material in the literature and included
for completeness. chapters 3, 4, 5 and 7 are original work and will be submitted to various
scientific journals in the forthcoming months. chapter 6 has appeared in Planets Around
Pulsars, ed. J.A. Phillips, S.E. Thorsett & S.R. Kulkarni, Volume 36 of the Astronomical
Society of the Pacific Conference Series. Sections 6.1, 6.2, 6.3 and 6.7 of this chapter are
primarily the work of E.S. Phinney.
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Chapter 1 Introduction

When a star nears the end of its lifetime as a cosmic nuclear reactor, it begins to contract
under the effects of its own gravity. Without the energy release from nuclear burning to
support it, the star will collapse until the internal pressures of its constituents are strong
enough to resist further contraction. For objects of stellar masses and composition, these
forces are due to the degeneracy pressure of the Fermi gases that comprise the stellar cores
under such conditions. For cores of mass less than ~ 1.4 Mg, the core is composed of a gas
of degenerate electrons and non-degenerate ions supported by the degeneracy pressure of
the electrons. For cores of mass between ~ 1.4 — 3.0 Mg, the core is composed primarily
of a degenerate neutron superfluid, which provides the degeneracy pressure in this case.
For masses greater than ~ 3 Mg, the gravitational attraction is stronger than even the
nuclear repulsion and the object is thought to collapse to a black hole. The values given for
the boundaries in each of these cases are somewhat uncertain due to uncertainties in our
knowledge of the equations of state at such densities and pressures as well as the effects of
rotation in these objects. Nevertheless, it is expected that all stars will eventually end their
lives (neglecting catastrophic events such as deflagration supernovae or stellar merging) in
one of three degenerate configurations, either a white dwarf (lowest masses), a neutron star
(intermediate masses) or a black hole (highest masses).

The correspondence between the original main sequence mass of a star and the mass of
its final degenerate configuration is determined by the evolutionary history of the star and
the circumstances under which it exists. Isolated stars undergo significant mass loss in their
shell burning giant phases, and stars in binaries can lose even more through mass transfer
to their companions. It appears that the division between main sequence white dwarf and
neutron star progenitors lies between 6 and 8 Mg (D’Antona & Mazzitelli (1990)), while
the division between neutron star and black hole is somewhat uncertain, lying at > 20 Mgy
(Timmes et al. (1996)).

These degenerate remnants are among the oldest objects in our galaxy, and thus offer
useful information about our local environment, as well as a possibility for investigating the

physics of matter at densities well above that which we can obtain in the laboratory. The
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following sections 1.1 and 1.2 offer a brief description of the basic physics of each of these

classes of objects as a prelude to the more detailed models we shall require later.

1.1 Pulsars

Although postulated by Landau (1932) and Baade & Zwicky (1934) in the 1930s, neutron
stars were not directly observed until Hewish et al. (1968) discovered the first radio pul-
sars, which were soon identified as rapidly rotating, magnetized neutron stars, generating
observable periodic radio emission from the loss of their spin-down energy (Gold (1968)).
From the measurement of the period P and its derivative, one may infer a characteristic
spin-down age t, = P/ 2P for each pulsar and the spin-down luminosity E = IQQ, where
Q = 27 /P is the angular frequency of the pulsar rotation and P is the rotation period. In
Figure 1.1 we show the known pulsar distribution in terms of P and E.

The very high brightness temperatures of the observed radio emission imply that the
emission comes from a large number of particles emitting coherently (e.g. Melrose (1992)).
Goldreich and Julian (1969) demonstrated that the immediate surroundings of a spinning,
magnetized neutron star must contain a magnetosphere, consisting of a large number of
charged particles. This plasma can remain tied to the field lines as long as the distance
from the star remains less than the light cylinder radius. Field lines that penetrate outside
of the light cylinder cannot close, and the plasma on these field lines escapes in a relativistic

wind, composed of electrons, positrons and possibly ions as well.

1.1.1 Magnetic Fields

Observations of the spin-down rate, combined with the assumption that magnetic dipole
radiation is responsible for the energy loss, implies a magnetic field strength B~ 10'% G.
Ostriker & Gunn (1969) and Gunn and Ostriker (1970) found evidence for the decay of
this magnetic field! on the basis of the scatter in the P-P diagram. However, this was later
discounted by Lyne et al. (1975), who showed that the decay signal was an artifact of the
greater range of observed period derivatives. Further evidence in favour of magnetic field

decay was advanced by Lyne et al. (1982) on the basis of proper motion measurements.

1One should note that when we say field decay, we refer to the decay of the quantity Bsin o, where a is
the angle between the dipole magnetic field axis and the rotation axis, so that we include alignment of the
field and rotation axes in this definition.
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Figure 1.1: The Known Pulsar Population: The circled points indicate pulsars in binary
systems. The points with horizontal lines through them have negative P and are situated
in globular clusters, where P is dominated by the acceleration due to the local gravitational
field (see Phinney (1993)). The dotted lines indicate spin-down ages and magnetic dipole
field values. The thin dashed line is the canonical spin-up line for accretion of material
onto a neutron star with a dipole magnetic field. The heavy dashed lines indicate various
‘death-lines’ from Chen & Ruderman (1993) and Phinney & Kulkarni (1994). The shaded
regions enclose the ‘death valley’ of Chen & Ruderman.



8

Using the measured height of the pulsar above the galactic plane z and the component of
the measured proper motion perpendicular to the plane (which yields the vertical velocity
V,, shown in Figure 1.2 for the latest data), they calculated the ‘kinetic age’ tx = z/V,.
Comparison of the kinetic age with the measured spin-down age t, = P/ 2P indicates that
tie ~ tp for t, < 107 years, but that tx < tp for t; > 107 years. The claim was that t, was
not a good age estimate for the older pulsars, and that most pulsars had ages of order 107
years or less. The increased t, was interpreted as evidence for field decay. However, the
veracity of the kinetic age determinations are somewhat suspect. In Figure 1.2 we show the
vertical velocity as a function of tp. The filled squares indicate pulsars moving away from
the plane, and open squares indicate pulsars moving towards the plane. The heavy solid
lines show the turn around age at which a pulsar born with initial vertical velocity V, at
2z=0 will turn around and come back towards the plane, as estimated using the potential of
Kuijken & Gilmore (1989). Also shown is the model of Narayan and Ostriker (1990). This
calculation is one-dimensional and thus of limited validity and intended to merely illustrate
the appropriate orders of magnitude. Nevertheless, it is striking to note that 7 of the 12
returning pulsars have ages longer than their model ‘turn around’ time. In fact the number
of pulsars travelling towards and away from the plane is approximately equal for pulsars to
the right of the heavy solid line, as would be expected for a population which has reached
a steady state. On the other hand, 85% (28/33) of pulsars to the left of the line are leaving
the plane. We should note that these data are based only on proper motions and thus some
of the returning pulsars could have velocities directed away from the plane by a suitable
choice of radial component. However, in many cases this value would be uncomfortably
large.

Figure 1.3 shows the problem from another perspective. The left panel shows the com-
parison of tyi, and t, a la Lyne et al., for those pulsars moving away from the Galactic
plane. The turnover at t; ~ 107 years is obvious. However, the right hand panel shows the
same diagram for pulsars approaching the galactic plane (ignoring the sign of the velocity
in ty). Although the number of pulsars is smaller, the same flattening is seen in the range
tp > 107 years. This suggests that we see the influence of selection effects rather than the
influence of a physical effect.

In recent years, more detailed phenomenological and theoretical studies have addressed

this question. Narayan and Ostriker (1990), following Narayan (1987), used monte carlo
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Figure 1.2: The Vertical Motion of Pulsars: The filled squares with error bars represent
those pulsars that are moving away from the plane of the galaxy. The open squares are
those pulsars that are moving back towards the plane of the galaxy. The heavy solid lines
are the turn around times as calculated using the vertical potential model of Kuijken &
Gilmore (1989), first with the original parameterisation and then with the later numbers
of Bahcall, Flynn and Gould (1992). The dotted line indicates a similar calculation for the
vertical potential of Narayan and Ostriker (1990). The circled pulsars have z > 1.5 kpc,
i.e., they lie outside the electron layer and so the magnitudes of their velocities are only
lower limits.
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those pulsars approaching the galactic plane. The dotted line indicates t, = ty.
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simulations and the known selection effects of the published pulsar surveys to examine the
properties of the pulsar population as a whole. They concluded that magnetic field decay
on timescales of ~ 107 years is required, a result consistent with the results of Lyne et al.
However, Bhattacharya et al. (1992) performed a similar calculation and concluded that
there was little evidence for magnetic field decay. Thus, the question of magnetic field decay

is still open to discussion.

1.1.2 Pulsar Velocities

An important component of the above statistical analyses is the velocity distribution of the
pulsar population. Shortly after their discovery, it was realized that pulsars have veloci-
ties significantly larger than those of their putative progenitors (Gunn & Ostriker (1970),
Lyne, Anderson & Salter (1982)). Ounly transverse motions have been observed for pul-
sars, whether in the form of proper motions (Lyne, Anderson & Salter (1982), Harrison,
Lyne & Anderson (1993)), scintillation measurements (Cordes (1986)) or inferences based
on supernova remnant associations (Frail, Goss & Whiteoak (1995)). Recently, Lyne &
Lorimer (1994) have reanalyzed the pulsar velocity data in the light of a recent revision of
the dispersion measure distance scale (Taylor & Cordes (1993)). They infer a mean three-
dimensional velocity of ~ 450 km.s~. This has important implications for binary survival
fractions (Brandt & Podsiadlowski (1995)), Globular Cluster retention fractions (Drukier
(1995), Phinney (1993)) and the origin of pulsar velocities (Burrows & Hayes (1996)). How-
ever, the analysis omits important selection effects and statistical biases. We shall address

these shortcomings in Chapter 7.

1.1.3 Millisecond Pulsars

‘Normal’ pulsars have spin periods ~ 0.1-3 seconds, and period derivatives ~ 10714 — 10716,
leading to inferred magnetic fields ~ 10*? G, and hence spin-down ages ~ 10° — 107 years.
However, Backer et al. (1982) discovered the first of a class of pulsars with much shorter
spin periods, of the order of milliseconds. Since then searches at Arecibo, Parkes and Jodrell
Bank have revealed many more. These pulsars have magnetic fields of order 10® G and spin-
down ages > Gigayears. Millisecond pulsars are also preferentially found in binaries, leading
to the proposal that they are ‘recycled’ pulsars, which are spun up to high rotation speeds

by the accretion of matter from their binary companions (Smarr & Blandford (1976)). It
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has also been proposed that their low fields may be the result of the accretion episode, either
due to the mass accreted (Taam & van den Heuvel (1986), Blondin & Freese (1988), Romani
(1990)) or from the accretion-induced spin-down (Ruderman (1995)). The distribution of
inferred magnetic field appears to be largely bimodal, prompting Kulkarni (1992) to suggest
the presence of a magnetic field gap between 10° — 101° G. However, this may be the result
of selection effects if the magnetic field structure of recycled pulsars is primarily dipolar.
This subject has already been discussed by Arons (1993), who concludes that higher order
multipoles account for less than 40% of the millisecond pulsar magnetic fields. The upper
boundary of the Chen and Ruderman ‘death valley’ shown in Figure 1.1 is the boundary
for a purely dipole magnetic field. Neutron stars with significant non-dipolar components
can still be seen as pulsars at longer periods down to the lower death line in Figure 1.1. A
significant fraction of isolated pulsars can be seen to have non-dipolar magnetic fields in this
interpretation. However, the shorter period pulsars lie above the dipole death line. Thus, a
spun-up pulsar with initial spin-period of 20 ms and dipolar field ~ 2 x 10!° G will shine as
a pulsar for only a few X108 years. Hence such pulsars are expected to be far more scarce
than pulsars spun up to ~ 5 ms, which take ~ 10'° years to reach their death line, which
is determined by the radiation reaction of the curvature photons rather than the polar cap
potential difference (Phinney & Kulkarni (1994)).

The hypothesis that millisecond pulsars are the result of an accretion episode requires a
progenitor population of neutron stars accreting from a companion. Thus, the Low Mass X-
ray Binaries (LMXB) are a natural progenitor population for the Low Mass Binary Pulsars
(LMBP). However, there is some uncertainty about whether the LMXB birthrate is sufficient
to explain the LMBP birthrate (Kulkarni & Narayan (1988), van den Heuvel (1995)). The
LMBP birthrate is ~ number in galaxy/pulsar lifetime. Estimating the number of LMBP
in the galaxy requires an estimate of the galactic volume efficiently covered by the pulsar
searches. Stokes et al. (1986) claim that about 10% of detected pulsars are millisecond
pulsars, which leads to an estimate of ~ 3 x 10* millisecond pulsars in the galaxy. With
lifetimes ~ the age of the galaxy, we use 1.5 x 10! years to yield a millisecond pulsar birth
rate of 2 X 1078yr~!. The estimate of the LMXB birthrate is somewhat more complicated
because the duration of the X-ray phase depends on the nature of the accretion process
and the evolutionary state of the system. Furthermore, the final fate of the LMXB will

depend on the initial orbital period, because this determines at what evolutionary stage the
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companion will overflow its Roche Lobe, which in turn affects the response of the companion
to mass loss.

The LMBP systems with orbital periods > 10 days can be explained by the following
evolutionary scenario. If we have a neutron star in a binary with a companion ~ 1Mg,
mass transfer from the secondary to the primary (neutron star) will result in an expansion
of the orbit. Hence the mass transfer will cease unless the secondary continues to expand
in response to the mass loss. For a low mass giant, burning Hydrogen in a shell around
a Helium core, this expansion will be driven by the nuclear evolution of the star. This
timescale is long and the mass transfer is stable. For stars less massive than 2.3 Mg,
there is a unique (i.e., independent of the total mass) relation between the core mass and
the radius of the giant. The condition for mass transfer is that the giant must fill its
Roche Lobe. Hence, setting the giant radius equal to the Roche lobe radius, we obtain a
unique core mass - orbital period relation (Refsdal & Weigert (1971), Joss, Rappaport &
Lewis (1987), Rappaport et al. (1995)). The final orbital separation of the LMBP system is
determined when the opacity of the secondary envelope is no longer large enough to support
convection any longer and the companion shrinks from giant dimensions towards the white
dwarf sequence. However, this evolutionary scenario results in the expansion of the orbital
period, so that even initial periods ~ 0.5 days will result in final orbital periods > 15 days.
Some LMBP have orbital periods much shorter than this.

For binaries with small initial separation, the secondary will overflow its Roche lobe
before it becomes a giant. In this case the atmosphere is primarily radiative and the
star will shrink in response to mass loss, thus shutting off further mass transfer. For
such systems further evolution requires that there be an additional angular momentum
loss (AML) mechanism in operation. This could be gravitational radiation (for very short
period systems) or magnetic braking (e.g., Rappaport et al. (1983)). For systems in which
the secondary is losing mass, the AML will act to counteract the expansion of the orbit,
leading to either spiral in or a slow expansion of the orbit (Pylyser & Savonije (1988), Coté
& Pylyser (1989)).

The aforementioned birthrate problem arises from the fact that the X-ray lifetimes of
these systems is ~ 10% years. There are ~ 130 LMXB in the galaxy of which ~ 40%
have orbital periods such that they are likely LMBP progenitors, yielding a birthrate of ~

5x 10~ 7yr~?! (four times too small). The solution may be that systems where the companion
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is more massive have shorter X-ray lifetimes because the mass transfer is super-Eddington
(van den Heuvel (1995)). van den Heuvel suggests Her X-1 may represent this short-lived
class of pulsars with X-ray lifetimes ~ 10° years (Savonije (1983)) and a corresponding
birthrate of 107 5yr~! (enough to explain the discrepancy). Another recent analysis by
Lorimer (1995) derives lower values for both the LMBP and LMXB birthrates which are
comparable to one another.

Determining the ages of millisecond pulsars can teach us much about both their evolution
and their structure. The use of the white dwarf companions as independent chronometers
can allow us to estimate the age of the binary system and hence the age of the millisecond
pulsar, completely independently of the spin-down of the pulsar. The determination of the
age by this method is the subject of Chapters 2, 3 and 4.

1.1.4 Pulsar Winds

Ostriker and Gunn (1969) first discussed the mechanism for rotational energy loss in terms
of magnetic dipole radiation in vacuum. The vacuum assumption was shown to be invalid by
Goldreich & Julian (1969), who demonstrated that the large potential differences induced
by the combination of the neutron star magnetic field and rotation would result in a charged
magnetosphere. Furthermore, the braking index n = Qf / Q% =3fora magnetic dipole while
measured values are < 3 (Groth (1975a,b), Manchester et al. (1985), Michel (1991)).

Pair production in the high electric field regions of the magnetosphere will lead to
the formation of a magnetohydrodynamic electron-positron wind, with a possible ionic
component as well. The radial flow of this particle wind will also contribute to the spin-
down torque of the star. Models of the Crab pulsar nebula (Rees & Gunn (1974), Kennel
& Coriniti (1984a,b), Hoshino et al. (1992), Gallant & Arons (1994)) indicate that, far
outside the light cylinder, the energy outflow is dominated by the particle component (o ~
Poynting Flux/Kinetic Flux ~ 1073).

The effects of the pulsar wind on the surroundings have been considered in a number
of scenarios, such as the Crab nebula, the Vela pulsar (Bietenholz et al. (1991)), eclipsing
close companions (e.g., Phinney et al. (1988), Johnston et al. (1994)) and Ha nebulae
(e.g., Bell et al. (1993), Cordes et al. (1993)). In Chapter 5 we consider the effect of
the wind and its composition on the atmospheric composition of white dwarf companions.

Spallation of atmospheric Helium can yield a substantial Hydrogen blanket on the surface
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of the white dwarf. This has important implications for the white dwarf cooling calculations

in Chapters 3 and 4.

1.1.5 Pulsar Planets

Possibly the most esoteric pulsar known is PSR 1257412, discovered by Wolszczan (1991).
Further timing observations indicated the presence of two planetary mass companions (Wol-
szczan & Frail (1992)), making this the first (or longest surviving?) extrasolar planetary
system detection. Further searches in radio and infra-red around pulsars have not located
any other such systems (Phillips & Thorsett (1994), Foster & Fischer (1996)). Formation
scenarios for such a system (see Podsiadlowski (1992)) differ markedly from those proposed
for normal planetary systems and can be roughly divided into two classes, those in which
the planets formed before the supernova and somehow survived it (termed ‘Salamander’ sce-
narios) and those in which the planets formed after the supernova from the debris (termed
‘Memnonides’ scenarios). The first class of models are fairly heterogeneous and have to be
considered on individual merit. The second class all lead to the formation of circumpulsar
disks of varying mass, angular momentum and composition. The subsequent planetary for-
mation can be analysed solely in terms of these three parameters. This is the subject of

Chapter 6.

1.2 White Dwarfs

After a star has shed the remnants of its envelope and contracted to form a white dwarf, it
shines primarily by virtue of the residual thermal reservoir in its core. The heat is retained
in the non-degenerate ions in the core of the white dwarf which is supported by electron
degeneracy pressure. The degenerate electrons conduct heat very efficiently so that the
strongly degenerate parts of the star remain almost isothermal throughout the white dwarf
cooling lifetime. At the very edge of the star, the material is less degenerate and energy
transport occurs via radiative diffusion and convection. These mechanisms are less efficient
than the conduction in the core and thus the cooling rate is determined by the thermal

‘bottleneck’ in the thin, non-degenerate outer layers of the star.

2See the preface to Planets around Pulsars, ed. J.A. Phillips, S.E. Thorsett & S.R. Kulkarni, for a review
of previous ill-fated reports of planetary companions to pulsars!
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The basic cooling theory of white dwarfs was first discussed by Mestel (1952), using a
simple picture much like the one above. The evolution can be reproduced using the following
simple scalings. The radiative opacity is assumed to be of the Kramers form x ~ nopT_” 2
and thus the structure of the non-degenerate atmosphere is described by the power law

J*AE@.)” 2 p17/4

P ~ 1.05 x 10'7 (M® - T, (1.1)

where M and L are the mass and luminosity and T7 is the temperature in units of 107 K.
This holds until the region where the gas becomes degenerate, i.e., the Fermi energy of the
electrons Eg¢ is of order 10 kT. This implies the condition P « T%/2, and thus matching the
two conditions implies

L ~1.1x 107 *LeMgT7/? (1.2)

where we have assumed that the degenerate electron fluid is infinitely conductive so that
the degenerate core is isothermal. This luminosity law implies that the age and luminosity

of a white dwarf are related by
L ~ 4 x 1073LyMaty /® (1.3)

where tg is the age in Gigayears and M3 is the mass in units of 0.3 Mg.

This is the simple Mestel cooling law and it is the basic underpinning for all subsequent
and more sophisticated cooling models. The essential point is that there is a correlation
between the age and luminosity of a white dwarf and thus we may derive the age of a given
white dwarf from its luminosity, given a sufficiently accurate model to describe the cooling
processes.

Of course, to obtain more accurate cooling ages, one has to go beyond simple theory and
consider all sources and sinks of energy that might play a role in the white dwarf cooling.
Chapter 2 will discuss the various microphysical processes in some detail, but the following

is a short list of the more important processes.

1. Proper radiative opacities do not conform to the Kramers law, and deviations can be
large in regions of partial ionization. Also, for some cool white dwarfs, pressure ion-
ization becomes important. A similar complication is that real electron conductivities

are not infinite and these need to be accurately calculated as well. The opacities can
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also vary somewhat depending on the atmospheric composition.

2. As white dwarfs cool, their atmospheres become convective. This affects the cooling
and also the surface abundances, since it is possible to dredge up material that sank

out under influence of the strong gravity of the white dwarf.

3. In the early stages of the white dwarf lifetime, the cooling due to neutrino emission
can be important, leading to a loss from the thermal reservoir that does not manifest

itself in the observed luminosity.

4. There can also be a contribution from residual Hydrogen shell burning if the remnant

Hydrogen envelope is thick enough.

5. As the star cools the central temperature may reach a value where the ion gas begins
to crystallize. The release of latent heat serves as an additional energy source and
the heat capacity of the core drops sharply once the temperature reaches the Debye

temperature of the coulomb lattice.

Iben & Tutukov (1984) studied the cooling of a representative white dwarf model using
detailed microphysics. They concluded that, although the assumptions made by Mestel
were drastic simplifications at all stages of the white dwarf evolution, the detailed cooling
calculation was well represented by the scaling obtained by Mestel. There have been a
number of subsequent detailed calculations of white dwarf cooling histories for a variety of
masses and surface compositions (Iben & Tutukov (1984), Koester & Schonberner (1986),
D’Antona & Mazzitelli (1989), Wood (1992)) although all of them considered a core mass
composed of Carbon and Oxygen (or sometime Magnesium). The determination of ages
using white dwarf cooling calculations has been applied to the galactic disk (Winget et
al. (1987), Wood (1992)), the galactic halo (Tamahana et al. (1991)) and, most recently,
globular clusters (Richer et al. (1995)).
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Most white dwarfs result from the evolution of isolated stars, which go through a se-
quence of burning successive nuclear fuels until they can no longer muster the internal
pressures to burn any of the core fuel, at which point they contract to the cooling sequence.
At various stages during this evolutionary cycle, such stars can attain dimensions of hun-
dreds to thousands of stellar radii. While this is no impediment for single stars, stars in
close enough binaries will overflow their Roche lobes at this stage and mass loss will result.
If sufficient mass is lost (and hence internal pressures lifted), the evolution of the star may
be truncated and the star may proceed onto the cooling sequence sooner that it would have
as an isolated star. In particular, this mechanism has been proposed to explain the low
mass white dwarfs in binary systems (Kippenhahn et al. (1967)).

The important point to note about these binary white dwarfs is their low mass. The
criterion for core helium ignition in a red giant is Mcore ~ 0.5 Mg (Sweigart & Gross (1978),
Mazzitelli (1989)). Thus, any star with mass less than this must be composed of helium.
Most of the binary pulsar companions have mass estimates significantly below this, although
a few do have masses consistent with a carbon-oxygen core white dwarf. Thus, to study
the evolution of these systems, we require an extensive grid of white dwarf models for
helium core white dwarfs. Previous work on this subject has been limited. Webbink (1975)
investigated the cooling of low mass stars with thick hydrogen envelopes and found that
their luminosity was maintained by hydrogen burning for the entire white dwarf lifetime.
However, Iben & Tutukov (1986) showed that a solar metallicity star with such a thick
hydrogen layer will undergo CNO shell flashes while at the top of the white dwarf cooling
sequence, resulting in the burning of much of the Hydrogen envelope. Thus, the Hydrogen
content is self-limiting at ~ few x107*Mg. Other investigations by Chin & Stothers (1971)
and D’Antona, Magni and Mazzitelli (1972) addressed the basic physics of such objects,
but none of the results were of sufficient generality to be used to determine accurate cooling
ages. The construction of a grid of models to address these issues will be the subject of
Chapter 2. The application of these models to the LMBP will be discussed in Chapters 3
and 4.
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Chapter 2 The White Dwarf Model

This chapter describes the details of the white dwarf model construction. Although most of
the material in this chapter is probably not original, an exposition is necessary to demon-
strate the features and limitations of the models we will use in the next chapter.

2.1 Numerical Algorithm

Our task in this chapter, in purely mathematical terms, is to solve the four stellar structure

equations
P GM(r)
Fr _P—r—z“— (2.1)
dM 2
i—f = 4nr’pe (2.3)
dT T
T - ~I;V (2.4)

where we have written the last equation in a form that applies for both radiative and

convective transport. In the case of radiative transport,

_ 3 s L)
~ 16mac T3 GM(r)

(2.5)

where & is the opacity and L(r) and M(r) are the luminosity and mass interior to radius
r respectively. p is the density and e is the emissivity of the stellar material, including
the thermal and gravitational contraction terms (see section 2.5). Although most stellar
structure problems are concerned with the solution of these four equations, the rich variety
of physical inputs that enter via functions p, x and e, plus the, as yet unspecified, boundary
conditions mean that this is not a trivial exercise.

Our first step will be to transform the above equations to a form more amenable to

numerical computation. The first matter is normalization. We shall normalize the radius
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variable r to a characteristic stellar length scale
x = R/10"cm. (2.6)

We will also remove constants from the luminosity, pressure and temperature as well as

transforming the last two to logarithmic variables,

£ = L/L (2.7)
m = InP/Pg (2.8)
6 = InT/T,. (2.9)

We will do the same to the density, which will be determined from the equation of state

and P and T,
¢ = In p/ po. (2.10)

Since much of the interesting structure in a white dwarf occurs in a very thin shell on the

outer edge of the star, we choose a mass variable £ such that
m = M/M,p = {(§). (2.11)

where

f&)=1-e"¢. (2.12)

We also convert the equations to a form in which £ is the independent variable rather than
X.

We use the various normalization constants to set coefficients in the transformed stellar
structure equations to unity. This determines Py, To and po in terms of Lo and Mg. Our

stellar structure equations (2.1)-(2.4) are then

dx e~®

€ f(6)— (2.13)
T = e (2.14)
dr , e ™

e —E(OHE) 7 (2.15)
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dé

T3 —T(OHE)— V- (2.16)

In the second equation we have normalized the emissivity

60M0
Lo

€ = €

We also use the radiative gradient (2.5) to determine the normalization, resulting in the

expression
Rew—49£
Viad = ——I,(T)— (2.17)
The constants are thus
2
Po = 2.123 x 10*dyn.cm™2 (—M—O) (2.18)
Mo
M
po = 0.15915 g.cm“3M—; (2.19)
Mn L 1/4
To = 3.568 x 10°K (M—OL—") (2.20)
® He

where the opacity has been normalized by 100 cm?.g7 1, i.e., kK = 10%R.

The equations (2.13)-(2.16) are the equations we will solve. The method we use is
that due to Henyey et al. (1959, 1964), although we followed the approach laid out in
Kippenhahn et al. (1967). We define a grid in our independent variable £ and use finite
differences to express the equations on this grid. This defines a set of vectors A;: where i
is the equation index and j is the grid point index. This also defines a set of dependent
variables yJ!‘ where the k is the variable index and j is still the grid point index. A solution

to the problem is a 4N- vector

y=(vhvd - vi ) (2-21)

which yields
Al(y)=0 (2.22)

for alli and j. Before we can solve the equations, we have to specify our boundary conditions.
With four variables and four equations, we need four boundary conditions. There are two

boundary conditions to be specified at r=0 (corresponding to m=0 and £ = 0) and two at
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the outer edge. At r=0, the physical boundary conditions are that mass and luminosity
must vanish as r — 0. The simple nature of these boundary conditions allows us to expand
our four variables in Taylor series about the origin to get the values at the first grid point
(which has £ > 0). We also have to specify two conditions on the boundary at the outer
edge. These are determined by matching a stellar atmosphere calculation to our solution
at some point £ = £,u:. The full system to be solved is the following, with the assignments

y'l=x,y =4y =mand y* = 0.

Ci(y3,v8,71) = 0,(i=1,4) (2.23)
Al(F59541) = 0,(i=1,4j=1,N-1) (2.24)
Bi(yn) = 0,(i=1,2) (2.25)

where the C vectors are the inner boundary conditions determined by the Taylor series at
the first grid point, the B vectors are the outer boundary conditions and the A vectors are
the equations on the intermediate grid points. We also use the notation § to denote the
four-vector of four dependent variables at a single grid point. This is a system of 4 + 4
(N-1) 42 = 4 N + 2 equations with 2 4+ 4 N variables, so it is solvable.

To solve the above system we do the following. Given an initial solution yg, which, in
general, does not satisfy the above equations, we calculate the linear perturbations necessary
to satisfy said equations, i.e., we calculate §y such that

i

Al(yo) + o4 §y =0 (2.26)
J ay o

i

. - aAl
Since we can calculate Aj(yo) and 3

, we can solve the matrix equation
0
H.fy = —A (2.27)

where H is the Henyey matrix, the matrix formed by the various derivatives. The structure
of the stellar structure equations are such that the Henyey matrix is band diagonal, and

can thus be solved in O(N) operations.
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We collect all the equations as follows:

C* = yi-vyo+ -;33‘4/3g(0)2/3e4/3¢°'y352/3 =0 (2.28)
ct = yioyi4 23—4/3g(0)2/3e4/3¢0—yg Vot2/3 = 0 (2.29)
C' = yi-(3g(0) /e ™% =0 (2.30)
C* = yi-g(0)&0)¢ =0 (2.31)

exp(~3(4; + d41))
3 (v + )]

AP = v -y - (61— &) E(’;‘(3’1'3+1 +¥7)s %(Y?H +y7)) =0 (2.33)
8 = v v - (G - 6) 8y (6 + G I (6 + f42)) X

exp(—3 (v} + 7))

B eva)]

Af = vha—vi (G- 6) 8 (6 + 600 I (6 + ) X

exp(—3 (v} +¥7))1

A = Y-y - (G- §) g(% (& + &+1)) =0 (232)

0 (2.34)

i 5 (Vi+Vi)=0 (2.35)
1/(.1 1 2
[5 (Yj + Yj+1)}
B' = yx-F'(yny%) =0 (2.36)
B> = y{-F(yn.y%) =0 (2.37)

where g(¢) = {'(¢) and F! and F? are determined from the atmosphere calculations.

We use the Press et al. (1992) subroutines bandec and banbks to solve the band-
diagonal matrix equation (2.27). The corrections are applied to yield the new solution and
iterated again. The iteration is stopped when the maximum change in the solution at any

grid point is less than a given amount, i.e.,
ma.x(AyJS;i =1,4;j=1,N)<10™* (2.38)

This method of solution is efficient for calculating sequences of models because each

solution provides a good approximation for the next model in the sequence and thus con-
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vergence is rapid (unlike shooting methods which start from scratch each time). This is
the basic algorithm, common to many codes. The interesting part of the problem is the

microphysical inputs.

2.2 Opacities

The most important aspect of the microphysics from the point of view of the cooling is the
opacity. This determines the rate of energy transport at any point in the star (unless the
region is convective, in which case the equation of state plays the dominant role). Figure 2.1
shows the temperature-density plane and the regions where various different opacity sources

dominate. These will be explained below.

2.2.1 Radiative Opacities

While the gas is non-degenerate, the primary mechanism for energy transport will be radia-
tive diffusion. The basis for our radiative opacity table is the calculation of the OPAL group
at Lawrence Livermore (Rogers & Iglesias (1992)). This calculation is based on the so-called
physical model for calculating the state of a Coulomb plasma. This approach has the ad-
vantage that it calculates a model using the fundamental constituents of ions and electrons,
and the aggregates we know as atoms and molecules are accounted for self-consistently using
the interatomic forces (Rogers (1981)). However, this method does require that the many
body effects be treated in a perturbation expansion (Rogers & de Witt (1973)), so that it
is limited to low density plasmas. This is not a severe restriction over much of the phase
diagram because electron conduction becomes the dominant transport mechanism at high
densities anyway. However, although molecules are accounted for in the underlying equa-
tion of state calculations, the opacities do not include any molecular contributions, which
means that they do not extend to very low temperatures.

In order to avoid the time expended in calling the OPAL subroutine every time we want
to calculate the opacity, we decided to fit the OPAL table by a series of spline fits first and
to use this information in our calculation. The fitting is best performed not in p — T space,
but rather R — T space, where R = p/T3 and Te = T/10°K. The OPAL region runs from
Te = 0.006 to Tg = 500 and from R = 1077 to R = 10 (although a small portion of this

region is also excluded by the subroutine, which is not mentioned in the documentation).
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Figure 2.1: The Hydrogen Phase Diagram: We show here the contours of constant log
&, where k is the Rosseland mean opacity in cm?.g=1. Solid contours have values 0,2 and
4, while the dotted contours have values, -2, -4, etc. down to -12. The thick dashed lines
denote the boundaries between various regions of dominant opacities.
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For 25 equally spaced values of log R between -7 and 1, we fit natural splines over the range
of T, each spline consisting of 100 points, equally spaced in log T. We note that points
which fall within the ‘allowed’ region but which satisfy

logTeg > —0.61161logR + 1.4758

will also not yield values in the OPAL subroutine. For splines which pass through this
region, we retain the spacing in log T, but lower the number of grid points when fitting the
spline. The calculation of the derivatives required in the Henyey matrix follows a similar
route. We have checked that the derivatives from the spline are in good agreement with
those obtained from the OPAL subroutines. We calculate the derivatives in the R-T plane

rather than the p-T plane, so that we have to transform the opal derivatives
alognr> <8lognr> (0lognr)
— - 2.
(5logT o OlogT /g 3 OR /o (2:39)
alognr> (Blogﬂr)
= 2.4
( Ologp /7 OR Jr (240)

However, the OPAL opacity calculations only go down to temperatures of 6000 K;

they are not sufficient to address the properties of white dwarfs down to temperatures of
4000 K. Since no tables of sufficient generality exist for such temperatures, we performed
the calculations ourselves, using physical parameters mostly from Lenzuni, Chernoff and
Salpeter (1991). Since this represents the only truly original work in this chapter, it requires

a more extended exposition, given in Appendix A.

2.2.2 Conductive Opacity

For high densities, the energy transport is not governed by the radiation, but rather by
electron conduction. We can cast the conductivity in the form of a ‘conductive opacity’ and
combine it with the radiative opacity to obtain a smooth transition. Recall that opacities

add harmonically

For the conductive opacity at high density, we use the classical regime calculations of

Itoh et al. (1983) and the extensions to semi-classical ions of Mitake et al. (1984). We
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convert the thermal conductivity into an opacity as follows. We note that the heat flux can

be represented in two ways:

4ac

F=-KVT=-—T3VT (2.41)
3kp
so that the equivalent opacity is
dac 3
Ke = 3chT (2.42)
or
log kc = —3.519+ 3log T — log p — log K. (2.43)
and thus the derivatives are
(Blognc) -1 <6loch) (2.44)
dlogp /1 dlogp /1
Olog k. Olog Kc)
=3 - 2.4
(alogT>p <BlogT o (2.45)

The range of validity of the above expressions is determined by the following conditions.

1. The electrons are degenerate. This requires that the temperature be less than the

Fermi Temperature

1/2
T < Tp = 5.93 x 10° “1 +0.6410'°] 2 1] : (2.46)
2. The ions form a Coulomb liquid, i.e.,
1/3
I=0573328 <171 (2.47)
Tg
3. The state of the ionic system is described by the parameter
2/3
v =2.608 x 10-3P6 (2.48)
Ts

which measures the ratio of electron Fermi momentum to Ion thermal momentum.
The Itoh calculations apply to the regime y < 1 where the electron Fermi energy is
negligible. The Mitake results extend the analysis to y < 0.1.
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The calculations of the Japanese group do not extend to densities lower than 10%g.cm™3.
At densities lower than this, we use the conductivities of Hubbard and Lampe (1969). The
primary improvement of the former calculations are the treatment of the ion-ion correlations

at values of the Coulomb coupling parameter (see next section) I' > 1, which leads to a

more accurate electron-ion scattering cross-section.

2.3 Equation of State

Since we consider mostly Hydrogen and Helium, our primary equation of state is that
of Saumon et al. (1995) (or SCV). At densities above the limits of their calculations,
we extended the equation of state using a Thomas-Fermi model calculation of our own,
outlined in Appendix B. When we have calculated Carbon composition cores, we have used
the results of Fontaine, Graboske and Van Horn (1977).

Figure 2.2 delineates the important regions of the phase diagram. Also shown are the
location of the centre and photosphere for a 0.3 M stellar model with a Helium core and
3 x 107*M of Hydrogen in the envelope. The dotted lines indicate the position where
n(HI) ~ n(HII) and n(HI) ~ n(H2). Thus, we see that, when the dominant atmospheric
constituent is neutral atomic Hydrogen, the opacity drops and hence the photospheric
density (and hence pressure) increases. This trend is only reversed with the formation of
molecular Hydrogen, when the opacity again increases.

The upper panel shows the Helium core. The thin solid line is the degeneracy boundary,
defined by the relation 7 = Ep/kT = 10. We see that the core of the White dwarf is
degenerate over all of the white dwarf sequence. We also note that, unlike Carbon/Oxygen
white dwarfs, crystallization is not important, since the core takes longer than a Hubble
time to reach the crystallization boundary. This is because the Coulomb coupling parameter
T = Ze?/akpT o« Z/A'/3 (where a=interatomic separation), which means it is 40% smaller
for Helium than Carbon.

Figure 2.3 demonstrates the matching between the SCV equation of state and our sup-
plementary Thomas-Fermi calculations described in B. We also see that the equation of
state is well described by an ideal gas at all temperatures as long as p < 107 2g.cm™3.

Our high density equation of state includes the Thomas-Fermi correction but neglects the

higher order corrections discussed by Salpeter (1961). To estimate the effect of neglecting
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Figure 2.2: The Most Important Regions of the P

shows the phase diagram for Hydrogen at low densities.

transitions from a plasma dominated by ionized Hydrog

the same 0.3 Mg model as before.

106

107 108

hase Diagram: The lower panel
The dotted lines indicate the
en, to neutral Hydrogen and then
to molecular Hydrogen. The heavy solid line denotes the location of the photosphere for
a 0.3Mg model with Helium core and Hydrogen envelope. The upper panel shows the
high density phase diagram for Helium, where the thin solid line indicates the degeneracy
boundary for Helium and the dashed lines indicate the transition from an ionic gas/liquid
to ionic glass and then to ionic crystal. The heavy solid line indicates the central values for



34

j—rm‘ﬂ] IIIIIm] ||||I|T|‘ Illllml Illllmi lllllm[—l‘l‘l‘l'ﬂ'ﬂl Illllml[ Illllm] ||||ITH‘ IHlfm] IIHIHT[ Hlllml Hlifﬂ;g
104 Hydrogen EEE,LE:E
- o 7
- . SCV \,@I. D'D' =
10°e sat S
- o TF @.I:. B'D 3
- com ’
b' l- . jn]
102 = ii. l. ] =
- % LI E
- Qg gnggg - ] mﬂm -
e 108 PR E
s - - L R i
3] PN v
. = S E . . -
o]y 1 - 55 coom = B & =
\Cz = (E, .l’:m'E . . mDQ(g ]
R 8‘,) .--' - . = &y ]
0.1 R, S g =
- ] ¥ " " g % .
- I- A u . ,D/$' 7]
N ; /,_, . . e ]
102 . o LI N ~
§ -'- '. | ] -l D'D'm Q)(U E
" -- u‘- l. u DFJ' /\t/) B
U N E
- u . . = 2 -
- ,"' [ " .. g’j 7
10_4 ﬂl’lﬂl IHIlUk'.IHIILU,' IIHU_I]] llllu.lll llllII_LIFIIHLI_lL[ Illl[_]_ll] IIHILL[] lllllmj HHIII]I IHIIU_I} Illlll_lll IIHID]"E
107108 10210101011101210131 014101510161 017101810191 0%0
P (dyn.cm™2)

Figure 2.3: The Equation of State for Hydrogen: The solid squares are from the
calculations of Saumon et al. (1995). The open squares are the result of our Thomas-Fermi
calculation. The various curves are each at constant temperature, ranging from 10% K on
the far left (so that the dominant low density species is molecular hydrogen) to 10® K on
the far right (which is too high for the SCV equation of state and so is determined entirely
from our calculation). The various dotted lines indicate the different simplified limiting
cases as labelled.
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the exchange energy correction (the next higher term), we compare the relative contributions
to the internal energy as calculated by Salpeter. At the densities which we are interested
in (p~ 10% — 106g.cm‘3), the exchange energy represents a correction ~ 2%.

The most uncertain part of the equation of state table is that where the plasma is both
partially ionised and partially degenerate (p ~ 0.1 — 1g.cm™3, T ~ 10%K). All published
equation of state calculations treat this region by interpolating between the various high
and low density regions. SCV compare the various determinations in the literature and
estimate that the density (as a function of pressure and temperature) is uncertain by a
factor ~ 2. The most likely influence of this uncertainty is a change in the depth of the
convection zone for stars where the base of the convection zone lies within this region. We
have tested our models for this uncertainty in cases where it might be important and have
found little important variation in any global parameters of the stellar models (see 4.3.4).

The effects of this uncertainty are small, as is shown in Figure 2.4. We see that the
entropy is conserved to within 1 % in the convective region, as expected. This is despite
the fact that the composition in this particular case is 75 % Helium and 25 % Hydrogen
(due to convective dredge-up). The slight error in matching between the atmosphere and
interior grid is due to the interpolation procedure used to determine the matching between
interior and exterior solution. This error is even smaller for the cases when the atmosphere
is of pure composition (because the variation due to changing composition from time-step

to time-step is responsible for some of the mismatch in Figure 2.4).

2.4 Convection

Once we have our equation of state and thus V.q, we need to include a prescription for
calculating convection. We do so using the standard mixing length formalism outlined
in Kippenhahn & Weigert (1991) (see also Mihalas (1980)). Convection sets in when the
Schwarzschild criterion Viag > Vaq is satisfied.

The basic picture in mixing length theory is energy transport by turbulent fluid elements
which possess an excess of energy relative to the surrounding medium. After travelling some
characteristic distance (the mixing length), these fluid elements dissolve smoothly into the
background, resulting in a direct transport of energy and enforcing a lower temperature

gradient than would exist if the only method of energy transport were through radiation.
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Figure 2.4: Model Entropy Profile: The profile shown here is the entropy for a 0.12 Mg
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vertical dotted line indicates the matching between the central grid and the atmosphere
calculation.
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We need to define a number of different temperature gradients:

Vrad = gradient if radiation were the only transport mechanism.

Vad = adiabatic gradient (i.e., fluid elements with this background
are neutrally bouyant)

Vg = gradient of convective elements

\% = gradient of the background.

In general, we have

vra.d 2 \Y _>. VE 2 vad- (249)

A rising fluid element which has travelled a distance Ar contains an excess heat relative

to the surroundings ~ pCLéT, because of the differenece in temperature gradients in fluid
element and background (6T ~ Ar (8T /0r — 0T /0r|g)). Thus, for elements travelling with

speed ¥, we have an energy flux due to convection of

WFconv = PCp\_féT - pCp‘\-I [—__ 4+ —

E] Ar (2.50)

If we average over all fluid elements at any particular point, we approximate Ar ~ %lm,

where £, is the mixing length. This is usually cast in terms of the pressure scale height

Hy = —P% = &%. Thus, we have
PvC oT 0T L 1 14
Feonv = L) T — == vT - = 2.51
i g [ Or + Or E] 2H, QPCPV (V= Vg) H, (2.51)

To estimate ¥, we need to consider the work done on an element by the buoyancy forces.
The force (per unit volume) is —gbp, where ép is the density difference between an element

and the surroundings. In pressure equilibrium, we may relate the density difference to a

temperature difference 6p = & (?12’?‘)13 0T = ——%’36T, and thus the work done is
bn /2 gQp b )
W= / f(Ar)d(Ar) = 8 (v - vg) [ = (2.52)
0 8 Hp

If we assume that half of this energy is expended on pushing aside the background and half
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goes into providing kinetic energy of the fluid element, then %W = %p\?z, and thus

1/2 2
TFconv = (%;B) pCPT (v - VE)S/z (%I_n_) (253)
P

This expression is correct for the ML1 mixing length prescription (Bohm-Vitense (1958))
following the terminology of Fontaine, Villeneuve & Wilson (1981). The general mixing

length expression is

2
TFcony = bpCpT (aQH, )2 (V — Vig)?/ (-‘l"l) (2.54)
P

where a and b have the values 1/8 and 1/2 respectively in the ML1 theory.
We also need to consider the efficiency of the convective transport, expressed by the

parameter

_ excessenergy content at time of dissolution (2.55)
7= energy lost by radiation during element lifetime '

The excess energy is « V — Vg, whereas, if the fluid element had moved adiabatically,
it would be «x V — V.4, so that the loss due to radiation is the difference of these two

quantities, i.e.,
V -Vg

—_ 2.
VE — Vaa (2.56)

¥ =

The radiation losses are different depending on whether the material is optically thick or

optically thin.

1. < 1. j, = Sy, = volume emission rate. Including emission into all solid angles and
the element volume, we have

j» = 47pr, VAB, (2.57)

The emission is for lifetime ~ £,,/% and the excess energy is pC,VéT, so that, using

AB = g,% 6T = 4"T3 5T (we have assumed a grey atmosphere to remove the frequency

dependence),

1 Gy gQ 1/2
Ythin = 3 3 K.T3 (SH ) (V \Y ) (258)

We can cast this in terms of the optical depth, 7 = kpl,,

pCp¥ 1
8cT3 71

Ythin = (259)
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2. 7 > 1. In the optically thick case, we may use the diffusion approximation to set

—0T/0r ~ §T /4y, and get

OPraqg  4m 0K 47 TF a1

T =T =T s e 2
or c Or c c or 3a, (2.60)
Thus
c4 50T 16 cT3 6T
Ftot = ;531‘ 6_7‘ = “:—))—’I—["—l;p_.f_; (261)
Thus,
pC,VeT pCp¥ A
V= oo 75T 0 = 16 T33npK (2.62)
e (B)a(y) w00

where A is the area of the emitting surface and V/A ~ £,,/3 for a spherical bubble.

In terms of optical depth this is

pCp¥ T

Tehick = o35 (2.63)
We may combine the two limits into a single expression valid for all optical depths
y = g’_%l;l_tilz (2.64)
More generally, )
= paclﬁ’;’ ’d‘(le (2.65)
where \
d(r) = 1+8+72/c (2.66)

and c is 24 for ML1, 16 for ML2 (B6hm & Cassinelli (1971)) and ML3 (Bergeron, Wesemael
& Fontaine (1992)).

Flux conservation requires
TFrad + TFcony = 0T (2.67)
and, using Fr.q/F = V/Viaq, we obtain a cubic equation (using ML1 and high optical

depth)
32UW

2
2+ %gxz + 256U%x — 0 (2.68)
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where
x=+V ~Vg (2.69)
W = Viad — Vada (2.70)

oT3  [8H,
Cor?stZ\ gQ

The properties of the solutions to a cubic equation are such that this has only one real

U=

(2.71)

solution if D > 0, where

5888 _,\?3 4672_, 16 2
— U — U3+ —UW 2.72
D ( 81 ) + ( 729 + 3 ) ( )

For real U and positive W (as our physical situation requires), this condition is satisfied,

i.e. there is only one gradient given by

V = Vaa + 2Ux + x? (2.73)
and x is written as
x:S+T~28—7U (2.74)
where
R = %79—2113 + 13—6UW (2.75)
s=(R+ «/5)1/3 (2.76)

T=(R- \/5)1/3 (2.77)

Note that we also require the derivatives of V to put into the Henyey matrix. Thus
OV = 0Vaq + 2x0U + 2(U + x)0x (2.78)

Once we have a well-defined table of equation of state quantities and opacities, we
can determine what regions of the phase space are convectively unstable by casting the

Schwarzschild criterion (Vyaq > Vaq) in the form

T4V .4 < 3 £
kP 647Go M

(2.79)
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The left-hand side is defined once we have an opacity table and an equation of state and
the right hand side is determined by the ratio L/M. For the case of a white dwarf, both
L and M are essentially unchanged throughout the atmosphere since they are determined
primarily by the isothermal core. Hence, at any point in the evolution of a given star, we
may determine what part of the parameter space is convective and so which parts of the
opacity table are likely to be important.

Thus, in the case of a hydrogen atmosphere, in figure 2.5 we see that, at the low
luminosities we are interested in, the top of the convective region lies in region A, which is
where our assumption of an ideal gas for the opacity calculations is justified. This is not
the case for the Helium atmosphere since the opacity is so low that the photosphere lies at

densities high enough for pressure ionization to be important.

2.5 Emissivity

The primary source of energy for the cooling white dwarf is that stored in the thermal
reservoir of ions in the core. The calculation of the emissivity due to the thermal leakage
and the release of gravitational energy by contraction is outlined below. We must also
remove from the energy generation expression that energy which is radiated in neutrinos
and thus is not a contributor to the optical luminosity. Furthermore, we have to include
the contribution due to any residual nuclear Hydrogen burning on the white dwarf surface.

The emissivity is expressed as

€= € — € + €nuc (2.80)
where
aT Qap
€g = —Cp'a" -+ —;E (281)

Casting this in terms of our chosen variables, we get

oL, .\
and
.. _Po Q vr—qb[ 81-@9] c 1E
E= P vade Vad 5 " 5| & + Enuc (2.83)
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Figure 2.5: The Convective Region: The heavy solid and dashed lines indicate the
boundaries of the convective region for stars with L = 107*Lg and M = 0.15, 0.25 and
0.4 Mg respectively (the solid line is for the 0.25 case). The thin dashed lines indicate the
boundaries of the region covered by the equation of state tables of Saumon et al. (1995).
The dotted lines delineate the various different opacity calculations we used as in figure 2.1.
In particular, regions A and B in each of the panels indicate the regions covered by our
own opacity calculation. A is the region where our assumption of an ideal gas is justified
while region B covers that region where non-ideal effects could be important up to the
onset of pressure ionization. Thus we see that, in the case of Hydrogen atmospheres, the
opacity calculations are trustworthy because the edge of the convective zone falls in regions
where our assumptions are justified. For the case of a Helium photosphere, the edge of the
convective zone is determined by the onset of pressure ionization, which means that opacity
calculations without a careful treatment of pressure ionization cannot give accurate results.
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We use the normalizations

Lo
— 2.
€0 Mo ( 84)
and
Py 7(MO)Z(L0)’1
9= — =2.193x 10" [ — — ears 2.85
°= wpo Mo/ \Lo/ ~ (2.89)
leading to
- Q — [ 671' 60] _ _
= ——e” ad 7~ T J7 T & nuc 2.
€ Vade \% a5 " 5| T € + & (2.86)

In differencing this, we need to use the information from the previous timestep. This is
because we need to calculate the change in temperature and pressure at each individual
point.

As the core cools, the significance of the Coulomb coupling between ions increases, and,
when the coulomb coupling parameter I' rises above 171, the ions form first a glass and then,
when I' > 210, an ionic crystal (Ichimaru (1983)). During this transition, a latent heat of
kT per ion is released, which provides a second temporary heat source. For Helium cores,
this turns out to be unimportant because the cores do not reach low enough temperatures
in a Hubble time.

The calculation of the neutrino rates takes account of the emission of plasma, brem-
strahlung, photo- and pair-production neutrinos. The bremstrahlung rates are taken from
Itoh & Kohyama (1983), while the others come from Munakata et al. (1985). Figure 2.6

1ecm™3. The emissivities

shows the combined emissivity from all these processes in ergs.s™
shown do not include the neutrino emission from the nuclear reactions described in the

section 2.7.

2.6 Gravitational Settling

The strong gravity leads to rapid separation of elements in the atmosphere of a white
dwarf (Schatzmann (1958)). Many detailed calculations have been made of this process
(Muchmore (1984), Dupuis et al. (1992), Pelletier et al. (1986)), but here we shall use the
expressions of Alcock & Ilarionov (1980), which are sufficient for illustrative purposes.

The diffusion equation governing the settling of a trace ionic species i of density n in a
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Figure 2.6: The Neutrino Emissivity: The contours are the logarithm of the cgs total
neutrino emissivity €,. At low densities the emission is dominated by pair production while
the large bump at intermediate densities is due to plasma neutrino production, which then
falls off towards high densities until bremstrahlung emission dominates.
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background of species 1 (density n;) is

on d On

where D is the diffusion coefficient and w is the settling velocity. Equilibrium is reached
when

On  wn

— = 2.

0z D (2.88)
which defines the local concentration scale height Az ~ D/w. Combined with the settling

velocity, this defines a local settling time

D
tset - ;V—E (289)

Thus, in regions where t; < cooling time of the star, the local concentration will be in
equilibrium, which means the heavy and light elements will be separated in the white dwarf

case. From Alcock & Mlarionov (1980) the diffusion coefficient is

B 3 (2k,T)"/2
1614 (7my )1/2 22724

(2.90)

where

3772,6
4rn,Z377€

A=l (1 + M) (2.91)

is the Coulomb logarithm and f(n) ~ 1 + n'/2e"1. The settling velocity is given by

O0lnT
~ 2.5ZID . 2.92
W~ 2571D7 2 (2.92)
For a radiative atmosphere,
OlnT 3kpL
= 2.93
Or 167acT4r? ( )
and the final expression for the settling time becomes
toet ~ 4.8 X 10%y1s A T3/ %032k 2r5L52. (2.94)

In Figure 2.7 we show the local settling time for a 105 year old 0.3M¢ white dwarf with a

Hydrogen envelope of 5 x 1073Mg. We see that the cooling time increases inwards and so,
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although settling occurs almost instantaneously in the outer layers of the star (producing
the observed surface abundances), there is a depth below which the composition has not
reached its equilibrium value. This is important for the results of the next section. For a
more complete description of the time dependence of this transition depth, see Dupuis et
al. (1992). Since our models only lose memory of their initial conditions after ~ 107 — 108
years, by which time much of the atmosphere has separated out, we shall assume complete
stratification in our models (except where convection is present, in which case we assume

complete mixing in the convective zone).

2.7 Nuclear Burning

Nuclear burning affects the white dwarf structure in two ways. Iben & Tutukov (1986) (see
also Iben & MacDonald (1986)) have shown that, for stars with thick (~ 1073Mg) Hydrogen
envelopes, CNO shell flashes can result in the burning of a significant quantity of the surface
Hydrogen to Helium, thus limiting the amount of Hydrogen that we can have on the surface
of a white dwarf. The shell flash results from the fact that, if the Hydrogen envelope is
thick enough, the settling time at the base of the envelope is long enough that the inwardly
diffusing CNO distribution (due to the stars primordial composition, since there is little
Helium burnt to Carbon in these stars) and outwardly diffusing Hydrogen distribution both
have significant tails which overlap at a density and temperature such that the CNO cycle
burning of Hydrogen is strong enough to lead to a shell flash (or self-induced nova in the
terminology of Iben & MacDonald). Only a full evolutionary computation can demonstrate
this mechanism properly, but we may get a qualitative understanding with a simple one-
zone model of the white dwarf envelope. We consider the Hydrogen envelope as a single
plane parallel zone, so that the values of various quantities at the base of the envelope are

determined by the thickness via the stellar structure equations

P = pgAr (2.95)

L = 4rrlpAr (ecno — Cpaa—‘f) (2.96)



47

109 E T Illlllll 1 IIIIHTI T llllm] TTTHIN ] IIUHTI T Hllm] 1 llllln] |BLRALL T !HIIII‘ T Illlﬂ'lll—rg 104
E 08 M® II __é 103
i ;3
108 ? MH = 3 x10-% MO I[ 3 107
- /=10t
B | 3
I e
I 0
107 :
= I’ | 0.1
- ! -
—~ i ! 0.01
2o T
2 108 / <10-3
] - / 3
- - '/ =104
) , 7
/ 510°°
10° = | 3
- ’I 10-6
N | 10-7
104
- 10-8
B | 10-°
I
1 3 ] II]HUJ IIIIHUJ i IIH[UJ I Illllu] i IIHIL[] 1 IIHLLIJ ] IHIIH[ 1 IHIHII ‘ iIIIH_[I [IRRE 10—10
90‘1210‘“10“10 10-2 10-8 10-7 108 10-5 104 103 0.01

M/M,,

Figure 2.7: Settling and Burning: The solid line indicates the local settling times (left
axis) for a 0.3 M, Helium core white dwarf with a thick Hydrogen envelope at ages of 10°
and 10° years. The settling time is shown only for the Hydrogen part of the star. The
dashed line is the value of the quantity I (right axis), which measures the stability of the
star to CNO flashes (see section 2.7). The marginally stable value (I=1) is shown by a
horizontal dotted line.



48

The radiative atmosphere yields a temperature gradient

o T 3ml
Or ér 16macT3r?’

(2.97)

Combining these, we obtain an evolution equation for the temperature at the base of the
Hydrogen envelope,

Cp"bT = €cno — 3k ? (298)

aT 4acT* ( g ) 2
This equation describes evolution on timescales much shorter than the cooling time. If the
first term on the right-hand side exceeds the second term, the temperature will increase and
the temperature dependence of €., is such that it too will increase and a thermonuclear
runaway will ensue. Hence our condition for a runaway in this simple model is

3Kécno (P\?
I= — 2.
1acT4 (g) >1 (2.99)

This can be made a little more accurate by replacing P/g by My /47rr? where r is the radius
of the star at the base of the Hydrogen layer, rather than the outer radius of the star (which

determines g). Numerically, our condition is thus

I~ 5.72 x 10~5 ,:1/:;3 102_2 (MH/1(3;3M@)2e__70.697(T;'1/3..1) > 1. (2.100)
7 9
This quantity is shown in Figure 2.7. We see that, for this model, the shell flash should set
in at a depth ~ 4 x 1073 My, although this is only a very rough estimate.
A second way in which nuclear burning may affect the evolution is through some residual
contribution to the luminosity from the pp burning of Hydrogen (Webbink (1975)). The

p-p burning reaction network consists of three branches, imaginatively named PPI, PPII

and PPIIL.
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H+1H — 2D4et v
2D+'H — S3He + ¥ » PPI
SHe +3He — 4“He+ 2'H

H+'H — D4et v
D4+'H — SHe+ 4
3He +4He — 7"Be+7 PPII
"Be + e~ - Li"+v
TLi4+'H —  “*He +* He

IH+'H — 2D4et+v
2D4+lH — 3He—]—'y
3He +* He — 7Be+'y

» PPIII
"Be+lH — 8B+ v
8B — 8Betet+w
8Be —  92%He

The primary reaction is the PPI chain, which is the only branch which occurs in a pure
Hydrogen plasma. The PPII and PPIII chains only become important when the abundance
of “He becomes significant.

A proper calculation of the nuclear burning requires the solution of the coupled equations
describing the above reaction network. However, a couple of approximations can be made
without loss of generality (Clayton (1968)). The first approximation is that the timescale
for Deuterium to reach equilibrium abundance is of the order of seconds to hours, so that
we may assume Deuterium is always in equilibrium. Similarly the equilibration timescales
of Lithium and Beryllium are of the order of years in astrophysical situations. This means
that we may solve the following set of three equations in Hydrogen, Helium-3 and Helium-4

to determine the nuclear energy generation.

dn 3
_d_t}i = —§>\ppn12{ + A33nj — Azanang (2.101)
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dn 1
—de = éAppnIZ—I — Aa3nj — Azanany (2.102)
dn 1
__dt4 = -2->\3311§ + Azqnang (2.103)

The quantities Agp, Asz and A4 are the standard < ov > cross-section averages for the
three reactions H-H, ®He —2 He and 3He —* He (the cross-section information is taken from
the review by Fowler, Caughlan & Zimmerman (1975)). The concentrations of Hydrogen
and the two Helium isotopes are denoted by ny, nz and ns. There is no simple general
solution for this system of equations. However, in the beginning, when the PPI chain is
dominant and Helium can be treated as a trace element, we may consider the second two

terms in (2.101) to be negligible, yielding a simple solution for the Hydrogen consumption,

ng 1
nH(O) 14 %)\pan(O)t

(2.104)

A full solution of the above system of equations for the temperatures and densities at
the base of the Hydrogen envelope (T ~ 107 K, p ~ 103g.cm™3) indicates that this remains
a good approximation (within 20%) for 3A,,nu(0)t < 1 (see Figure 2.8). Furthermore,
we see that this only becomes a poor approximation after ~ 10° years, by which time
sedimentation will have resulted in the depletion of the Helium products (see Figure 2.7),
effectively resetting the clock. Thus, to preserve the speed of our algorithm, we use the
approximation (2.104) to calculate the consumption of Hydrogen by nuclear burning and

its concomitant energy output.

2.8 Outer Boundary Conditions

The outer boundary conditions we require are the values of temperature and pressure at
a given grid point as a function of radius and luminosity. It turns out that calculating a
grid of values and interpolating between them is prohibitively expensive. This is because we
want to keep our outer grid point at reasonably small optical depths (say 7 < 10%—10%) and
thus the outer grid point changes significantly over the entire cooling curve for a given star
(values used range from £ = 30 to £ = 16) due to the rapid drop in the atmospheric opacities
when the temperatures in the outer envelope become small enough that the atmospheric

material recombines. Hence we would want to sample a three dimensional space (¢, R and
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Figure 2.8: PP Burning: The dotted line is the approximation (2.104) for the Hydro-
gen consumption via pp-burning. The solid lines indicate the solution of the full reaction
network for the various species.
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L), which is too expensive.

Thus, we perform the calculation of the atmosphere as required. We have calculated a
grey atmosphere T/T.g(7) relation, which we load into the program at the beginning. This
solution was obtained by numerical solution of the grey atmosphere problem using variable
Eddington factors. Figure 2.9 shows the comparison between our results and the values
for the exact numerical solution of the Hopf function given in Mihalas (1970). Calculating
Teg from L and R immediately gives us the temperature at all points 7 < 10 (the upper
bound of our relation). This assumes radiative transport. However, the atmosphere can
become convectively unstable even at low optical depth (Béhm et al. (1977)) and so we
also incorporate convection where needed using the formalism in section 2.4.

We also need the pressure. Assuming a plane parallel atmosphere, we can integrate the
hydrostatic equilibrium equation

ok _¢e (2.105)

ar &
since we know the temperature distribution and can calculate g from M and R. Note that,
in a plane parallel atmosphere, P = g m, where m is the mass column density through
the outer atmosphere. We must integrate inwards until we reach a critical m value which
corresponds to our outer grid value €. This is given by the expression

(1 1(§)) Mo

_ 10
Meyip = 1.592 X 107 g.cm 2 Mg

(2.106)

The pressure at the matching point can be calculated immediately because of the plane

parallel approximation, and we get the expression (from integrating equation (2.15))

—&10 1
7N = In [emo _ € . (1 _ efm—EN + _e“flo (e2(£10‘£N) _ 1))} (2_107)
XN 2

where the subscript 10 indicates the value at the point 7 = 10.

To get the temperature at the fitting point, we have to integrate the equation

00

==V (2.108)

from 7 = 10 to meyy, using the same V calculation subroutine as in the main program.

The fitting of inner and outer boundary conditions is performed at a fixed mass point.
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Figure 2.9: Hopf Comparison: The curve shows our numerical solution and the filled
solid points are obtained by using the values from the table in Mihalas (1970). q(7) is the
Hopf function and 7 is the grey atmosphere optical depth.
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The above procedure produces a pair of functions F; and F, which represent P and T as
functions of L and R (see equations (2.36) and (2.37)). These functions have no analytic
solution, but are reasonably smooth functions of L and R, so that we can use the triangle
method of Kippenhahn et al. (1967) to calculate them efficiently. The procedure involves
tiling the L-R plane with triangles of sufficiently small size that the functions F; and F,
can be accurately interpolated linearly between the three vertices of a given triangle. Thus,
for sufficiently smooth functions, this represents an efficient way to calculate the functions
using an algorithm to always bracket the boundary matching point (see Kippenhahn et al.
(1967)).

2.9 Initial Solutions

To generate initial solutions, we start with simplified initial microphysics which admit a
simple analytical solution. Then we gradually adjust each physical input and iterate until
we have a consistent solution. As an illustration, consider a model obtained assuming the
opacity k = kg = constant. To incorporate the correct microphysics, we use an interpolation
of the formula

k = €kg + (1 — €) Ktrue (2.109)

and, beginning with € = 1, we iterate solutions until ¢ = 0. The speed of this procedure is
greatly enhanced by choosing values of kg of the order of magnitude of the true opacity.
To determine the initial values of the central temperature appropriate to various kinds
of star, we use results obtained from Eggleton’s stellar evolution code (Eggleton (1971),
Pols (1995)), which performs stellar evolution with mass loss. Various stars were evolved
from different initial configurations to determine the central temperature as a function
core mass when the giant detached from its Roche lobe and began to shrink towards the
white dwarf sequence. We thank Glenn Soberman for performing these calculations for us.
Subsequent tests with various initial conditions indicate that the effects of initial structure
(other than core central temperature) are negligible for ages > 107 years. The effect of

central temperature on age is discussed in section 3.4.1
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Chapter 3 Stellar Forensics: I - Cooling Curves

We construct the first extensive grid of models of low mass white dwarfs with helium cores.
Such stars are formed in binaries when the white dwarf progenitor overflows its Roche lobe
before core helium ignition. We present detailed models of the structure and cooling of such

stellar remnants.

3.1 Introduction

While there exists an extensive literature on the cooling of "normal” white dwarfs with
Carbon/Oxygen cores (see D’Antona & Mazzitelli (1990) and references therein), the study
of helium core white dwarfs has been largely neglected. In order for a single star to have
evolved to form a white dwarf, the progenitor must have been massive enough to have left
the main sequence and evolved to the white dwarf stage in the age of the galaxy. Such stars
would ignite helium in their cores and will thus leave behind Carbon/Oxygen remnants.
However, Kippenhahn et al. (1967) realised that stars in binaries could be disrupted during
the course of their evolution before the core mass had grown large enough to ignite helium
(i.e., Mcore < 0.49 Mg, Sweigart & Gross (1978), Mazzitelli (1989)), leaving behind a lighter
remnant with a helium core composition.

Studies of binary pulsars (Phinney & Kulkarni (1994) and references therein) and close
double degenerate systems (Marsh et al. (1995)) have discovered a number of such low
mass degenerate dwarfs. In particular, the cooling of the companions in pulsar-white dwarf
binaries offers an independent estimate of the age of the system, thus constraining the pulsar
age as well. In this chapter we describe in detail the cooling of these stellar remnants. In
Chapter 4 we shall describe the application of these cooling curves to the observational
data.

In section 3.2 we briefly review the physical mechanisms which contribute to the white
dwarf cooling process and discuss their relative importance. Section 3.3 describes our calcu-
lations of the low-temperature opacities necessary to obtain accurate cooling sequences. In

section 3.4 we describe our numerical model and the tests of the code against other models
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from the literature. Finally, in section 3.5 we present our cooling sequences and describe

the details of the cooling models.

3.2 White Dwarf Cooling

The basic qualitative picture of white dwarf cooling is a well-known one, going back to
Mestel (1952). The star is supported by the pressure of a degenerate electron gas while the
heat content is dominated by the thermal reservoir of non-degenerate ions, which can form
a gas or a crystalline solid, depending on the Coulomb coupling parameter I' = (Ze)?/akT,
where a is the radius of the Wigner-Seitz sphere surrounding each ion. While the luminosity
is dominated by the loss of thermal energy, young, hot white dwarfs may also have a
contribution due to residual hydrogen burning at the base of the Hydrogen envelope.

The energy transport throughout most of the star is dominated by conduction due
to the degenerate electrons, which maintains the degenerate core at an almost constant
temperature throughout. The core is surrounded by a thin, non-degenerate envelope where
the energy transport is by radiative diffusion and, at late times, by convection (Bohm et
al. (1977)). This is the region of least efficient energy transport and thus it determines
the rate at which the star cools. Hence, the chemical composition of these outer layers is
important. The high gravities of white dwarfs lead to gravitational settling (Schatzmann
(1958), Dupuis et al. (1992) and references therein) which results in chemical separation in
the white dwarf envelope and hence the atmospheric opacity is dominated by the lightest
species remaining on the surface, usually either hydrogen or helium.

Since the cooling is determined by the radiative transport, the accuracy of the cooling
curves will be determined by the accuracy of the opacities we use. Over most of the cooling
sequence we use the radiative opacities from the OPAL group (Rogers & Iglesias (1992)),
which are good down to T = 6000K. For conductive opacities we use the results of Itoh
et al. (1983) and Mitake et al. (1984) for the region where the ions are gas or liquid and
the electrons degenerate (helium cores don’t reach crystallization temperatures within a
Hubble time). At temperatures and densities not covered by the Itoh results, we use the
older conductivities of Hubbard and Lampe (1969). This still leaves the region T < 6000K
unaccounted for. This is important because many of the objects we will discuss in Chapter 4

have Teg ~ 4000K. To address this issue, we have calculated Z=0 opacities for an arbitrary
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mix of hydrogen and helium using primarily the input physics of Lenzuni, Chernoff and
Salpeter (1991), henceforth called LCS. In particular, we calculate the opacities from the
collisionally induced absorption by molecular hydrogen. We describe this briefly below.

3.3 Low Temperature Z=0 Opacities

We calculate the opacity of a gas containing H, He, Hy, H~,He™ ,H* ,HJ ,H1 He' and elec-
trons. We assume ideal gas and LTE. From the equation of state of Saumon et al. (1995),
we determine that the assumption of an ideal gas is good for p < 1072g.cm™3. The partition
functions and cross-sections are taken largely from LCS. For the calculation of collisionally
induced molecular opacities we used the fits of LCS for the Hy-H, roto-vibrational tran-
sitions (with corrections for typographical errors for which we thank Dr. Chernoff), after
checking it with the original code (Borysow and Frommbhold (1990)), kindly supplied to us
by Dr. A. Borysow. The roto-translational contribution was recalculated using another
code (Zhang & Borysow (1995)) again supplied by Dr. Borysow. We also recalculated the
H,-He opacity following LCS although most of our atmospheres end up with pure H or He
compositions.

When we use the composition X=0.72 and Y=0.28, we find good agreement with LCS
except at the high temperature, high density end T ~ 6000 — 7000 K and p ~ 1073g.cm™3,
where we have a 10-20% error. We attribute this to our LTE treatment of the H™ ion. LCS
note that the equilibrium abundance of this ion is affected by the radiation field at almost
any temperature because of its low dissociation energy. Since the OPAL opacities reach
down to 6000 K and most atmospheres are convective in this region (see Figures 2.5 and
3.7), we opt for simplicity and use our LTE results.

For the case of a pure hydrogen atmosphere of moderate density p > 1073g.cm™3, the
opacity is dominated above ~ 3000 K by the H™ ion and below by the collisionally induced
opacity of Hy. As noted by Bergeron et al. (1995), the Rosseland opacity goes through a
minimum near this temperature. For a pure helium atmosphere He™ and Rayleigh scattering
provide most of what little opacity there is.

We extend our calculations up to densities p ~ 1 g.cm™3. At higher densities, in lieu of an

accurate calculation!, we introduce abrupt pressure ionization and the opacity is determined
3 p y

1The physics of partially ionised, partially degenerate plasmas is poorly known.
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by electron conduction at higher densities. For the case of a hydrogen atmosphere, this is
unimportant because the atmosphere is sufficiently opaque that convection will dominate
by the time these densities are reached. However, for the case of a helium atmosphere,,
this is the major source of uncertainty in our cooling times because the atmosphere is very
optically thin and where we place the pressure ionization will determine the location of the
photosphere.

Figures 3.1 and 3.2 show the contours of constant opacity in our density-temperature
parameter space for each of the two compositions. They also show the regions where different
opacity tables were used. In Figure 3.3, as an example, we show the opacity as a function
of temperature at p = 107%g.cm™2 for a pure hydrogen atmosphere. There is excellent

agreement between our calculation and the OPAL tables in the overlap region.

3.4 The Cooling Code

We have written a numerical cooling code using the Henyey method (Henyey et al. (1959,1964))
to solve the stellar structure equations. Our outer boundary conditions (obtained using a
grey atmosphere calculation) are implemented using the Kippenhahn, Weigart & Hoffmeis-
ter (1967) method of triangles.

Apart from the opacity tables described above, we have used the hydrogen and helium
equation of state of Saumon et al. (1995), supplemented by a Thomas-Fermi model where
necessary (at high densities). For the Carbon/Oxygen sequences used in our comparisons
(see 3.4.1), we also used the Carbon equation of state table of Fontaine et al. (1977).
For completeness, we also include the effects of neutrino losses using the emissivities of
Itoh & Kohyama (1983), Itoh et al (1984) and Munakata et al. (1985). To account for
the residual nuclear burning, we incorporate the cross-sections of Fowler, Caughlan and
Zimmerman (1975). We also use the mixing length theory of convection (we tested different
parameterisations, ML1, ML2 and ML3 (see Bergeron et al. (1992) and references therein),

and found no difference in their effect on the cooling).

3.4.1 Code Tests

The dearth of reliable helium white dwarf cooling sequences means that, in order to test

our numerical method properly, we need to include Carbon cores so as to test our models
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Figure 3.1: The Hydrogen Phase Diagram: The thin solid lines are contours of constant
log &, where k is the Rosseland mean opacity in cm?.g=!. The contours have values 0, 2
and 4. The dotted lines are also contours of constant log x but with values -2, -4, etc.,
down to -12. The heavy dashed lines delineate regions where different tables have been
used to calculate the opacity. The Itoh opacities are valid for T' < 0.1 Tp (where Ty is the
Fermi temperature), y < 0.1 (y measures the importance of the wave nature of the ions)
and T < 171. There is also a lower bound on the density p > 100g.cm™3. Outside of this
region we use the conductivities of Hubbard and Lampe. The radiative opacities in the
region T ~ 10*—10° K and p ~ 107* — 1 g.cm ™3 were obtained by extrapolating the OPAL
opacities to higher densities. This extrapolation is not important because the atmosphere
is convective at these temperatures and densities. The box in the lower left-hand corner
is the region covered by our opacity calculations. We can see the opacity minimum near
3000 K due to the change in the dominant opacity mechanism from H™ absorption to H;
CIA. The strange behaviour in the upper left-hand corner is due to the extrapolation of the
conductive opacities outside their range of validity. This is unimportant as no model we
consider will approach this region.



62

Helium
108 T T T 77777 LIS B I I Y P B B B 0 I B ™ol B B N B 4 2 T T LT T

107
108
108
104
1000
100
10

Q. o1
0.01
0.001
0.0001
10-%
10-¢

107

10-8

10-°

EI IE|I lh:'ll;: 1 lllillll/ J. lIIlI!II ) Illllll‘ i | I I

10—10
1000 104 108 108 107 108

T (K)

Figure 3.2: The Helium Phase Diagram: We can immediately see that the helium
opacities are much smaller at low temperatures and that the onset of pressure ionization at
p~ 1—5g.cm™3 will have a major effect on the atmosphere.
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Figure 3.3: Matching Opacities: The solid points are Rosseland mean opacities calcu-
lated using our code. The open squares are the results of the OPAL calculation. The open
stars are again our calculation but showing Planck mean opacities. The vertical dotted lines
delineate the region 6000-7000 K which is where the two calculations overlap. Once again,
the minimum in the opacity near 3000 K is due to the change in the dominant opacity con-
tributor, from H, CIA at lower temperatures to H™ absorption at higher temperatures. We
see that below 5000K there is a significant discrepancy between the Planck and Rosseland
mean opacities.
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against those in the accepted literature. We have made comparisons with three well known
codes, adjusting our input physics to approximate the original input physics as closely
as possible. The wide variation in input physics and parameters makes this a non-trivial
proposition (see Winget and Van Horn (1987)). Nevertheless we obtain satisfactory fits that
give us confidence in the accuracy of our numerical scheme and also incidentally reinforces
the assertion of Winget and Van Horn that the wide variation in published white dwarf
cooling models is a result of input physics and not numerical treatment. The comparison
is shown in Figure 3.4. The three models are from D’Antona & Mazzitelli (1989), Koester
& Schonberner (1986) and Wood (1992). Of particular interest is the comparison with the
Wood cooling sequence because that is the most up-to-date, using Z=0 OPAL opacities. We
don’t expect agreement at late times because the calculations of the opacities for T < 6000K
will vary, but the agreement for ages less than a few billion years is excellent.

The one useful test of our code for the case of a helium white dwarf is a comparison
with the cooling sequence of Iben & Tutukov (1986), shown in Figure 3.5. Their model
was for a 0.3 Mg, star which, after undergoing two hydrogen shell flashes, has a shell of
2.5 X 107* Mg, of pure hydrogen during the white dwarf phase. They caution that their
opacities are uncertain at low luminosities, but it provides a useful comparison at least
for logL/Ls > —3. Their model also demonstrates another uncertainty for our higher
luminosity models. Their white dwarf stage really only begins after the end of the second
hydrogen shell flash which means that our t=0 corresponds to t=108 years in this case. The
effect of this uncertainty in the starting point for the model is important for log L/Lg > —3.

A second uncertainty in the initial conditions is the value of the core temperature at
the beginning of the evolution. Tests of our code show that an uncertainty of 3 x 107
K corresponds to an age uncertainty ~ 108 years, although the exact numbers are model
dependant. We solve this problem by using the results of evolutionary calculations (Sober-
man, pers. comm.) of the progenitors at a variety of binary separations around a neutron
star, using the stellar evolution code of Eggleton (1973) (see also Pols et al. (1995)). This
provides us with an estimate of the initial central temperature for a given remnant mass,
which we use as a starting point for our calculations.

There are also uncertainties in the evolution associated with the uncertainties in the in-
put physics. We investigated the effect of extrapolating the Itoh opacities to lower densities

instead of using the old Hubbard and Lampe opacities for those regions. This was found to
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Figure 3.4: Code Comparisons: C/O models: The open squares denote the models
we compare against. The filled squares are our own models. The arrows denote the point
at which the core of the model begins to crystallize. The left panel describes a 0.564 Mg
Oxygen core surrounded by a helium envelope of 2.5 x 1073M, and a hydrogen envelope
of 3 x 107*My. The metallicity is taken to be Z=0. The centre panel describes a 0.546
Mg Carbon core with a helium envelope of 0.022Mg, and hydrogen envelope 10™*Mg. The
metallicity is Z=0.02. The rightmost panel is a 0.6 Mg star, with a Carbon core, mass
fraction 1072 of helium and 10™* of hydrogen. The metallicity is Z=0. We had to adjust
our conductive opacities to reproduce the above results. When prior authors used Hubbard
& Lampe opacities in regions where we used Itoh opacities, we divided our opacities by a
factor of 2 to compensate.
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Figure 3.5: Code Comparisons: He model: The solid line shows our model with no
corrections for different starting points. The dashed line corresponds to the same model,
but with the age incremented by 10® years, to compensate for the time spent in prior
evolutionary stages. The open squares are the results of Iben & Tutukov (1986). The
agreement is excellent until t ~ 2 Gyr, by which point Iben & Tutukov caution that their
opacities are uncertain.
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have little impact on the cooling sequences, because the conductivity is most important in
the highest density regions, which is covered by the Itoh tables. A second uncertainty is the
effect of extrapolating the OPAL opacities to higher densities in the region T ~ 10*—10° K
and p ~ 1073 — 1g.cm™3. This is not terribly important because the atmosphere is convec-
tive in this region, and so the extrapolation will affect only the point at which convection
shuts off. By changing the slope of the extrapolation, we determine that AlogL/Lg < 0.2
for ages > 3 Gyr. An exact estimate of this uncertainty is not possible without a proper
model for the opacities in this region.

A major uncertainty of past calculations was for the low temperature (T < 6000 K)
opacities. Our calculations in section 3.3 are designed to solve this problem, at least for
the hydrogen atmospheres. The problem persists with the helium atmospheres, where the
photospheric opacity is determined by the pressure ionization of helium, in a regime where
accurate opacity calculations do not exist. For some models, we also have convective mixing
of the elements. We assume that the convective zone is mixed to a uniform composition
determined by the relative mass fractions of hydrogen and helium in the convective zone.
When the convective zone retreats from the lower layers, we assume that the separation is
instantaneous, i.e., at all times, the composition in the convective zone is determined by
the depth of the convective base (i.e., the mass of helium in the convection zone relative to
the hydrogen envelope mass). The admixture of helium into the Hydrogen atmosphere does
not restrict the validity of our opacity calculations at low temperatures. Because of the
extremely low neutral helium opacities, 5% of hydrogen by mass is still sufficient to provide
enough opacity so that the photospheric pressure lies well below the pressure ionization

value.

3.5 Results

In this section, we will describe in detail the cooling of a 0.3 Mg helium core star with a
thick (3 x 107*Mg) hydrogen envelope. We start our models with an age of 10® years (the
time taken for the Iben & Tutukov models to reach the end of the last shell flash). We
find that, even for these hydrogen masses and at early ages, the residual nuclear burning
contribution to the luminosity is never more than ~ 1% (see Figure 3.6). The neutrino

luminosity is never more than ~ 10% of the photon luminosity. Thus, over the first few



68

X 108 years the star completes the contraction to the white dwarf configuration that it began
when the last shell flash ended (see, e.g., Iben & Tutukov (1986), Table 1). In these early
stages, the helium core is only mildly degenerate (central degeneracies ~ 30) with n ~ 1
at the hydrogen-helium boundary, although the core is already approaching an isothermal
state (0.99 of the stellar mass has T > 0.5 T;). The hydrogen envelope is entirely radiative
at this stage, so that this is the time at which the star most resembles the Mestel ideal.

When T.g ~ 15000K (~ 3 x 10® years), a small convection zone appears near the
surface. This zone remains relatively thin until Teg ~ 10*K ( ~ 10° years), when it starts to
deepen as a consequence of the movement of the hydrogen ionization zone to greater depths
(Figure 3.8). The recombination of hydrogen also leads to an increase in the photospheric
density (since neutral hydrogen has a smaller opacity than ionized Hydrogen). This increase
is only halted once molecular hydrogen begins to form (T.g ~ 5000K, t ~ 4 x 10° years,
see Figure 3.7). The deepening of the convective zone continues until the base reaches a
depth where the conduction due to degenerate electrons is more efficient than convection.
This occurs after 3 X 10° years. At its deepest extent, the convection zone contains ~
5 x 1075Mg. This is only a couple of scale heights above the hydrogen/helium interface,
so we might expect some small amount ofatmospheric helium contamination (since the
convection extends to 7 ~ 0.3) below T.g ~ 6000 K. However, the helium will be present
only in trace amounts and will not affect the cooling. As the star cools, it will revert again
to a pure DA character because of the formation of a radiative buffer zone near the surface
below Teg ~ 3500 K. This occurs because there is a minimum in the atmospheric opacity
as the primary opacity contribution changes from being Collisionally Induced Absorption
(CIA) of Hy to H™ opacity. If this minimum is low enough, convection will stop in the
region of the minimum, but will continue to operate both above and below the minimum.
This would allow the surface helium to diffuse out of the top convection zone, leaving the
star once again in a pure DA state.

The sequence of Figures 3.6, 3.7 and 3.8 describe the evolution of this cooling sequence
in some detail.

The features of the above sequence are common to most of the models we discuss here.
The primary differences occur at the lower mass end of the models (M ~ 0.15 Mg). The
lower masses lead to lower central densities and lower degeneracy, so that the model radii are

somewhat larger (hence with lower gravities) and convection extends deeper into the cooler
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Figure 3.6: Cooling of a 0.3 M; Model: We show here the cooling of a 0.3 Mg star
with a hydrogen envelope of 3 X 107*Mg. The solid line is the electromagnetic bolomet-
ric luminosity, the dotted lines indicate the neutrino and nuclear luminosities respectively
(the nuclear contribution is included in the bolometric luminosity) and the short and long
dashed lines indicate the gravity (in units of 107cm.s~2) and the central degeneracy (E¢/kT)
respectively. The effective temperatures corresponding to the various ages for this model
are shown on the top axis.
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Figure 3.7: Evolution in the Phase Diagram: This T-P phase diagram shows three
representative atmosphere profiles (labelled at the top by their age in Gyr) for the evolution
of the same model shown in 3.6. The heavy solid lines indicate the helium parts of the star
and the thin solid lines indicate the hydrogen part. The dotted lines delineate the regions
of 50-50 division between HI-HII and Hs-HI respectively. The dashed line indicates the
boundary of the convective region for this model (the other pair of dashed lines in the
upper left-hand corner indicates crystallization boundary of helium). The thick solid line
at the lower left indicates the location of the photosphere for this cooling sequence. The
labelled dashes on each of the three curves indicate the points at which the degeneracy
parameter 7 = E¢/kT has that particular value.
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Figure 3.8: 0.3 Mg Convective Zone: Here we show the mass in the convective zone
as a function of age (or effective temperature). The shaded region is the convective zone,
while the dotted line indicates the location of the photosphere. The dashed line indicates
the hydrogen-helium interface in this set of models. We note the appearance of a radiative
buffer zone at late times associated with the transition from H™ opacity to Hy opacity.
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models (because conduction is less efficient). Thus, even for thick hydrogen envelopes, the
0.15 Mg models do dredge up some helium, becoming mixed atmosphere stars for a short
while until the base of the convective zone retreats again. Figure 3.9 shows a diagram
similar to Figure 3.8 but for a 0.15 My model. We see that the base of the convective zone
penetrates to the helium layer, leading to an atmospheric Helium abundance of ~ 15% in
this case. Hence, for about 1.5 Gyr, the star would exhibit the characteristics of a cool
H/He star, although, with a temperature of 4000-5000 K, it would be difficult to identify
it as such. For the thick hydrogen layer models, only the lowest mass models are affected
by atmospheric helium contamination. In the sequence of models with thin (~ 10%Mg)
hydrogen masses, dredge-up occurs for all masses. In Figure 3.10 we show the effective
temperature ranges in which this occurs for all model masses.

Figures 3.11 and 3.12 show the cooling sequences for six different models spanning
the range of representative masses. We show curves for 0.15, 0.25 and 0.45 Mg, with
two different hydrogen envelope masses, 3 x 107*Mg (thick) and 107%Mg (thin). For
completeness we also show the sequences for pure helium models in Figure 3.13, but the
opacities for Teg < 6000 K are rather uncertain, and thus we do not expect the cooling
curves to be accurate at temperatures below this value.

In order to make comparison with observations easier, we have also calculated the black-
body absolute magnitudes for these sequences, using the flux calibrations of Bessell (1979).
The most common bands used are V and I, which are shown in Figures 3.14 and 3.15.

For stars with hydrogen envelopes and effective temperatures > 7000 K, spectroscopic
determinations of effective temperature and gravity can provide a direct measurement of
the white dwarf mass, provided one has a relationship between radius and mass. We have
calculated the mass-radius relations for both our thick and thin hydrogen layer models for
the full range of helium white dwarf masses. This leads to a relationship between gravity

g = GM/R? and effective temperature T.q for a given mass, namely

g = {(Terr) [a2 — a3Ter] (3.1)

with
ay Tesr
14 9exp(4 x 1073 (T.g — 5800K))

f(Teg) = 1+ (3.2)
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Figure 3.9: 0.15 Mg Convective Zone: Once again the shaded region is the convective
zone, and the dotted line denotes the position of the photosphere. We note that, for
Teg ~ 4000 — 5000 K, the atmosphere will be contaminated with helium.
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Figure 3.10: Atmospheric Helium Contamination for Thin Hydrogen Envelopes:
The shaded regions indicate those models in which the convective zone extends into the
helium layer and thus causes atmospheric Helium contamination. We consider two repre-
sentative cases. The area marked as H/He is characterised by a mass fraction of helium,
Xge > 0.1. The area marked as He/H is characterised by Xge > 0.8. This cutoff value may
seem rather high, but we note that the dredge-up occurs for temperatures at which helium
is neutral and thus makes little contribution to the opacity. The horizontal dotted lines
indicate the mass limits of the models we calculated, so that the extent of the convective

regions outside these bounds is unknown. These models are for a hydrogen envelope of mass
MH - 10_6 M@.
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Figure 3.11: Hydrogen Cooling Sequences 1: Luminosity Evolution: The solid lines
indicate model white dwarf cooling sequences with a hydrogen envelope of 3 x 10~*M, for
each of three representative total masses. The dashed lines are the equivalent sequences
with a smaller hydrogen envelope of 1078M,. The difference in luminosities at earlier times
is a result of the thicker hydrogen layer leading to a larger stellar radius (the effective
temperatures are closer - see Figure 3.12.
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Figure 3.12: Hydrogen Cooling Sequences 2: Temperature Evolution: Here we
show the effective temperature for the same sequences as in Figure 3.11. Note the large
variation in temperature with envelope mass for the most massive models. This is the

effect of the contribution of residual hydrogen burning at the base of the thicker hydrogen
envelope.
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Figure 3.13: Helium Cooling Sequences

masses as before. The evolution at effective temperatures below 6000 K is uncertain because
of the inaccuracies of the photospheric opacities for neutral helium at these temperatures.

We note that the faster cooling of these models means that crystallization sets in for the

0.25 Mg sequence after 9 Gyr.
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Figure 3.14: V Band Cooling Sequences: We show here the absolute V magnitude
determined from our cooling sequences. The curves are for 0.15, 0.25, 0.35 and 0.45 M.
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Figure 3.15: I Band Cooling Sequences: As for Figure 3.14, but for absolute I magnitude.
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and
_ M —-2.33
a; = 9.91x10 "(M—g) (3.3)
M 1.68
a; = 1.69x 10% (—) (3.4)
Mo
M 0.17

for the thick hydrogen envelope and

M —-2.18
a; = 3.79x 1077 ('1\71_5) (3.6)
M 1.55
a; = 1.68x 108 (M—®> (3.7)
ag = 650 (3.8)

for the thin hydrogen envelope and M < 0.4Mg. Figure 3.16 compares the fits to the proper
curves for the case of a thick envelope.
We may compare the Teg = 0 limit of (3.1) with various well-known T=0 mass-radius

relations. Converting the above into mass-radius relations and taking the T=0 limit we get

M -0.32
RE = 0.013 (M—) (Thick H) (3.9)
® ®
-0.28
RE = 0.013 (%) (Thin H) (3.10)
® O]

This is very close to the often used mass-radius relationship of Paczynski (1967) for low
mass degenerate dwarfs R/Rgy = 0.013 (M/M@)_l/s. In Figure 3.17 we compare our T=0

curves with the Paczynski relation and that of Hamada and Salpeter (1961).

3.6 Conclusion

We have presented a set of cooling sequences for low mass helium white dwarfs of different
masses and with different masses of surface hydrogen. We provide blackbody absolute
magnitudes and surface gravity - effective temperature relations as an aid to the analysis of
future observations. In Chapter 4 we shall apply these models to the optical observations

of the companions to millisecond pulsars in order to derive cooling ages.
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Figure 3.16: The Gravity-Effective Temperature Relation: The solid lines represent
the true g-T.g curves, and the dashed lines are the fits given by equations (3.1)-(3.5).
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Figure 3.17: The T=0 Mass-Radius Relation: The dotted line is the gravity as
determined from the Paczynski (1967) mass-radius relation. The dashed line was obtained
using the Hamada and Salpeter (1961) pure helium mass-radius relation. The filled circles
are for the thick H envelope models (3.9) and the open circles, for the thin H envelope
models (3.10).
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Chapter 4 Stellar Forensics: II - The Coroner’s
Report

In this chapter, we apply the results of our low mass white dwarf cooling models in Chapter 3
to the companions of millisecond pulsars. We analyse the results of optical observations
of these companions to determine cooling ages and initial spin periods for the millisecond
pulsars and examine the implications of these results for binary evolution theories and for

neutron star structure.

4.1 Introduction

The ages of millisecond pulsars are important for understanding both their nature and
origin. Ages are usually estimated from the characteristic spin-down age tp = P/ 2P, but
such estimates could be seriously in error if the current spin period is still close to the
initial spin period at the beginning of the millisecond pulsar phase. If the average millisecond
pulsar is significantly younger than its spin-down age, as suggested by Lorimer et al. (1995a),
then it would affect current theories of magnetic field decay in such stars (Kulkarni (1986),
Camilo et al.(1994)) as well as the birth-rate discrepancy between Low Mass Binary Pulsars
and Low Mass X-Ray Binaries (Kulkarni & Narayan (1988),van den Heuvel (1995)).

Many millisecond pulsars are found in binaries, often with low mass degenerate compan-
ions. Accurate modelling of the cooling of the companions can allow one to estimate the age
of the system (or rather the age of this particular incarnation). Since millisecond pulsars
are thought to be spun-up as the result of accretion from the companion star, the pulsar
will begin to spin down at the same time as the companion shrinks within its Roche lobe,
ending mass loss and beginning the process of cooling to its final degenerate white dwarf
configuration. Hence, the cooling age of the white dwarf should represent the millisecond
pulsar age as well.

In Chapter 3, we calculated accurate cooling models for the low mass Helium white

dwarfs thought to be the companions in these low mass binary pulsar systems. In this
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paper we shall now apply the models to the optical observations of these systems to infer
the cooling ages for these objects. Section 4.2 reviews the basic concepts used to infer the
age of a pulsar from its spin parameters as well as simple models of magnetic field decay in
such a pulsar. In section 4.3 we apply our cooling models to the observational data and in

section 4.4 we discuss the implications.

4.2 Pulsar Spin Down

For a pulsar with period P and spin-down rate P related by P o P2, the age is given by

f= (n—_PI)_iS (1 _ (%)IH) (4.1)

where n is the braking index and Py is the initial period. For magnetic dipole radiation n=3,
leading to the familiar expression for the characteristic pulsar spin-down time tp = P/ 2P.
For some young pulsars, measurements yield a range for n of 2.0 to 2.8 (Michel (1991)
and references therein). However, n is not known for any millisecond pulsars. Because
characteristic spin-down ages for millisecond pulsars are of the order of Gyr or higher, there
is a very real danger that estimates of the pulsar age based on this quantity will be gross
overestimates because of the second factor in equation (4.1).

The spin-down time is calculated from the spin-down rate P, which can also be seriously
affected by the proper motion of the pulsar (e.g., Camilo et al. (1994)). This is because of
the Shklovskii effect (Shklovskii (1970)), which produces an additional contribution to the

P (P \%
=] — 4.2
P (P)i+ cD (42)

where (P / P)_ is the intrinsic contribution due to pulsar rotation, D is the distance to the
1

period derivative such that

pulsar, V| o Dpu is the transverse velocity and p is the proper motion of the pulsar. Once
i is measured, we may remove this contribution to obtain the intrinsic spin-down time.
Thus, with n=3, we obtain an expression for the ratio of the true age of the pulsar to its

uncorrected characteristic age t;

- (- () (- 25)
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Apart from the initial period Pg, all the quantities on the right side are measurable in
principle. An independent age estimate, such as that from the cooling of a white dwarf, can
thus be used to estimate the initial period. If the companion is undetectable then only a
lower limit to the age is possible, which in turn translates into an upper limit on Py (as long
as 2V21t,/cD < 1, which is the case unless the intrinsic period derivative is negative, such
as in the binary system 1620-26, where a second companion is believed to be responsible
for the negative P (Backer et al. (1993), Thorsett et al. (1993)).

There is an additional complication, namely the possibility of magnetic field decay. For

magnetic dipole radiation, the spin down rate is given by!
2R6 2

P= (%c%—) -BF (4.4)
where B is the magnetic field strength on the surface of the neutron star. Thus, decay
of B will alter the spin-down rate. The possibility of field decay was first advanced by
Gunn & Ostriker (1969) but its occurrence is still not conclusively proven. Narayan &
Ostriker (1991) have argued for an exponential field decay with a decay time of ~ 107
years. Bhattacharya et al. (1992), on the other hand, find no evidence for field decay.
Furthermore, there may be a subdivision between ‘normal’ pulsars and ‘recycled’ pulsars
(i.e., those spun up through accretion in binaries). Kulkarni (1986) and Camilo et al (1994)
have argued that the fields on recycled pulsars do not decay, based on the ubiquitous nature
of the field strength ~ 108-°G amongst this population of objects and on the presence of
cool companions such as the ones we address here.

Thus, we shall also consider magnetic field decay of the form B = Bgexp(—t/tp), where

tp is the decay time. In this case, the equivalent of equation (4.3) is

2tp (1 B (BPQ)Z>

t 1

— = —In |14 7" 4.5

tp 2 b tp 1 2V2 tp (45)
T D

This introduces a second unknown parameter tp into the equation. Nevertheless, we

can obtain a lower limit to tp by setting Py = 0, so that we may rearrange equation (4.5)

! Again, B is in fact B sin @, and so decay could be the result of field alignment.
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in the form

(4.6)

tn (exp(2t/tp) — 1) < ( 2ty
cD

12V tp)
Once we have an estimate for t, the left-hand side is a monotonically decreasing function
of tp and the right-hand side consists of measurable quantities. Hence, we may constrain

the exponential field decay time.

4.3 Results

Table 4.1 lists the known low mass binary pulsars with white dwarf companions. Most
have Helium core companions (inferred from their mass) although three have companions
whose masses indicate that they are Carbon/Oxygen white dwarfs. These measurements
come from pulsar timing. In order to determine a cooling age, we need optical identifi-
cations of the companions. Those systems with detections or upper limits are shown in
Table 4.2. It is these systems that we shall now discuss in turn. We note that, while the
following analysis is quantitative, such an exercise is likely to contain small residual sys-
tematic uncertainties resulting from the use of a heterogeneous sample set from a number
of independent groups using different instruments and analysis procedures. The cooling
curves used in this procedure will be made public to enable improved estimates to be made
with better understanding of individual measurement errors.

To determine the effective temperature from the observed colours, we have used both
the original author’s estimates as well as our own black body colour calculations. We use
the bandpasses as described in Bessell (1990), with fluxes normalized to the spectrum of
Vega taken from Hayes (1985). In the case of the more massive white dwarfs, we use the
pure Hydrogen broad band colours of Bergeron et al. (1995).

In the following sections, we shall derive cooling ages for the various binary systems.
We shall also convert these into constraints on the initial periods of the millisecond pul-
sars. In order to obtain conservative estimates, we consider dispersion measure distances
to be accurate to within 30%, transverse velocities up to 100 km.s~! for systems without a

measured proper motion, and a braking index between n=2 and n=3.
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| Pulsar [P (ms) [ P, (d) [ (M) (M) [ M, (Mo) [log B (G) | tp (Gyr) | Ref |
J1022+1001 || 16.45 78] 0.0829 0.72 8.9 5.9 1
B0655+64 | 195.67 | 1.0 0.0710 067 | 9.95012) | 9.550) | 2
J2145-0750 || 16.05| 6.8 | 0.0240 0.43 <8.8 >8.7 3
J2019+2425 | 3.93| 765 0.0107 0.32 7.92) | 43.3(265)1 | 4
J17134+0747 | 457 | 67.8| 0.0079 0.28 8.3t 9.0f 5
J1455-3330 799 | 76.2| 0.0063 0.26 <86 > 5.3 6
J1640+2224 || 3.16 | 175.5| 0.0059 0.25 <8.0 >173 | 7
B1855+09 536 | 12.3| 0.0057 0.25 8.51 4.9 8
B08204+02 | 864.87 | 1232.5| 0.0030 0.20 11.51 0.131 9
J2033+17 595| 56.2| 0.0028 0.19 - . 10
B1953+29 6.13 | 117.3| 0.0024 0.18 8.6 3.3 11
J2317+1439 | 3.45| 25| 0.0022 0.18 7ot | 36.369)f | 12
J0218+4232 | 2.32| 2.0 0.0020 0.17 8.6 0.5 13
J1045-4509 747| 41| 0.0018 0.16 8.6 6.2 3
J1803-2712 || 334.42 | 406.8 | 0.0013 0.15 10.9 0.3 10
J0034-0534 1.88 1.6 | 0.0012 0.14 <8.1 >4.4 3
J0437-4715 576 | 5.7 | 0.0012 0.14 g5t | 545t | 14
J0751+1807 | 3.48| 0.3 | 0.0012 0.14 8.2 6.9 15
3222942643 | 2.98| 93.0| 0.0011 0.13 17
J0613-0200 3.06 1.2 | 0.0010 0.13 8.3 4.4 6
J1643-1221 46| 147 | 0.0008 0.12 8.6 2.2 6
J101245307 | 526 | 0.6 58 x10™* | 0.11 <8.5 >5.7 16

Table 4.1: The pulsar binary systems with suspected and confirmed white dwarf compan-
ions, sorted in order of decreasing mass function. The characteristic ages are uncorrected
for proper motions. The daggers mark those pulsars for which the magnetic field and spin-
down ages have been corrected for the Shklovski effect using measured proper motions. The
references are as follows:1 - Camilo (1996), 2-Jones & Lyne (1988), 3-Bailes et al. (1994),4-
Nice et al. (1993), 5- Foster et al. (1993), 6-Lorimer et al. (1995b), 7- Foster et al. (1995),
8-Kaspi et al. (1994), 9- Taylor & Dewey (1988), 10 - Taylor, Manchester & Lyne (1993),
11-Rawley et al. (1988), 12-Camilo et al. (1993), 13 - Navarro et al. (1995), 14 -Johnston et
al. (1992), 15- Lundgren et al. (1995), 16-Nicastro et al. (1995), 17-Camilo, Nice & Taylor
(1996)
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Name ” D (kpc) l Tex (K) mp my mp mr H Reference ”
J0034-0534 0.98 < 3600 e > 26.8 > 25.0 24.8(3) 1,2
JI71340747 || 1.1 | 3450(350) | >27.1 | 26.0(2) | .- 24.1(1) 1
J0437-4715 | 0.14 | 3950(550) | 22.1(2) | 20.8(3) | 19.6(4) | 19.5(2) 3,4,5
J164042224 || 1.18 | 4200(600) - 26.0(3) | 24.5(3) | 24.6(2) 1,6
J1012+5307 || 0.52 8550(25) | 10.78(4) | 19.58(2) | 19.49(4) | 19.32(4) 7,8
B0820-+02 14 | 15250(1250) | .- 22.8(1) | .- . 9,10
B1855+09 0.9 ce > 25.4 > 24.6 > 234 11,12
JO7514+1807 2.0 >23.5 . e 8
J2229+2643 1.4 ce >25.0 S 8
J2019+2425 | 0.9 | 5400(1300) - 26.4(4) 25.0(3) 6
72145-0750 0.5 6500(500) | 23.89(11) | 23.7(1) 22.97(7) 1
J10224+1001 | 0.6 | 8100(300) . | 23.1004) | - | 22.665(7) 1
B0655+464 0.48 7500(1500) 22.2 22.1 - 13

Table 4.2: The parameters of optically identified pulsar companions. All quoted distances
are subject to a 30 % uncertainty from the dispersion measure. The figures in brackets are
the uncertainties in the last quoted digit. The upper group are expected to be Helium core
stars and the lower group are thought to be C/O white dwarfs. The reference numbers
are as follows: 1- Lundgren et al. (1996b), 2-Bell et al. (1995), 3-Danziger et al. (1991),
4-Bell et al. (1991), 5-Bailyn (1991), 6-Lundgren at al (1996a), 7-van Kerkwijk et al (1996),
8-Lorimer et al. (1995a), 9-van Kerkwijk & Kulkarni (1995), 10-Koester et al. (1992),
11-Kulkarni et al. (1991), 12-Callanan (1989), 13-Kulkarni (1986).
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4.3.1 PSR J0437-4715

We shall start with the best determined case. The PSR J0437-4715 system contains the
closest known millisecond pulsar, at a nominal dispersion measure distance of 0.14 kpc,
with a 30% error (Taylor & Cordes (1993)). The proximity of this pulsar means that
the distance will get better as VLBI and timing parallaxes are measured. Until then the
dispersion measure distance is all we have. Optical observations of the companion have
been carried out by Bell et al. (1993), Bailyn (1993) and Danziger et al. (1993). Between
them these three groups measured B,V,R and I magnitudes, but the only band in which
the results agree is the I band. We shall adopt an apparent magnitude of I = 19.5 + 0.2 as
the synthesis of these observations. Based on the colours obtained by these various groups,
we adopt the temperature range 3950 K + 550 K for the companion.

This pulsar has a large proper motion (p = 135mas.yr™!) (Bell et al. (1995)), which
gives it a transverse velocity of 96 km.s™! at 150 pc. This affects the spin-down rate, leading
to a kinematically corrected spin-down age of 2.9 - 8.4 Gyr, depending on the distance to the
pulsar. Given the above distances we can find the absolute magnitude required, namely M;=
13.85 4 0.65. Our models must satisfy both the temperature and magnitude requirements.
We see that we can find consistent solutions for all masses 0.15-0.45 Mg models as shown
in Figure 4.1. These models are for a Hydrogen envelope of 3 x 10~*Mg (thick Hydrogen
envelope in the terminology of paper I). Similar analysis with thin Hydrogen envelope
models (107®Mg) yields similar answers, with cooling ages ~ 0.3 Gyr smaller on average.
Better distance determinations should allow us to constrain the mass range. The cooling
age is thus constrained to lie in the range 2.2-10.7 Gyr, depending on the companion’s total
mass and Hydrogen envelope mass.

Further timing measurements by Anderson et al. (1996, in preparation) have detected
a rate of change in the orbital timing delay x = a sin i, which they interpret as a change
in the inclination angle. Assuming that this is the result of the known proper motion, this
implies a lower limit to the inclination angle (i < 30°) and a new lower limit to the mass of
the companion, M > 0.3 M. This is consistent with our cooling models.

If we assume we know the braking index of the pulsar (the default assumption is n=3, the
value for magnetic dipole radiation), then we may compare the lowest allowed cooling age

with the timing age to get an upper limit on the initial spin period. For pulsar J0437-4715,
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the proximity and large proper motion mean that the Shklovskii correction is very important
for this comparison. For each possible value of the distance, this distance-dependant term
yields a value for the timing age. Similarly, each different distance leads to a different
inferred absolute magnitude. Thus, tp may be plotted as a function of Mj in Figure 4.1.
If we are conservative and adopt the dispersion measure distance limits, allow all masses
and take n=3, we obtain an upper limit on the initial period of Py < 0.828 P or Py <
4.9 ms. However, the mass limit M > 0.3Mg is just barely consistent with an n=3 tp
(within the error resulting from the uncertainty in the apparent magnitude). Future distance
determinations may allow us to constrain the braking index of J0437-4715. We also note
that M > 0.3M requires that the distance be less 161 pc for the cooling models to be
consistent with the I magnitude used here.

For completeness we have also compared the observations with the Carbon/Oxygen
models of Wood (1992). For J0437-4715, we find that consistent solutions may be obtained
for C/O models with a mass fraction ~ 10~* of surface Hydrogen and M = 0.5 - 0.55 Mg.
The cooling ages allowed by this are 5.6-5.9 Gyr, although again it requires a braking index
~ 2.

4.3.2 PSR J17134-0747

Lundgren et al. (1996b) have measured V=26.0 £ 0.2 and I=24.1 & 0.1 for this companion.
This yields a conservative temperature estimate of 3450 + 350 K. Given the pulsar distance
of 1.1 kpc, we use this temperature and the absolute I magnitude M; = 13.9 £ 0.5, where
the error is dominated by the distance uncertainty. The spin-down age for this pulsar is
9.0(2) Gyr, including the correction for proper motion.

We can find acceptable solutions for all masses from 0.15-0.31 Mg with a thick H enve-
lope and for all masses below 0.27 M, for a thin H envelope. However, the mass function for
this system restricts the companion mass to be > 0.28Mg), so that many of these solutions
are excluded. If we keep only those models with masses greater than 0.28, then the cooling
age must lie in the range 6.3-8.0 Gyr. Figure 4.2 shows the range of acceptable solutions.
If we assume an n=3 braking index, we may constrain the initial period to lie in the range
1.4 < Py < 2.6 ms. To be conservative we also consider the effects of n=2. This leads to a
more conservative upper limit of 3.0 ms, so that we have 2.5 < Pg < 3.0 ms for n=2. The

upper mass limit of 0.31 Mg on the companion implies a neutron star mass less than 1.63
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Figure 4.1: J0437-4715: We show the effective temperature and absolute I magnitude
as a function of age for cooling sequences of mass 0.15 to 0.45 Mg, in steps of 0.05 Mg.
The heavy solid line is the 0.30 My model. The horizontal dotted lines in the upper
panel indicate the allowed range of Teg. In the lower panel, the dotted lines indicate
the allowed range in absolute magnitude from the observations. In order for a solution
to be consistent, it must satisfy both observational criteria. The vertical shaded regions
indicate two consistent solutions. Given the apparent I magnitude, each absolute magnitude
corresponds to a different distance, and hence a different spin-down age (once corrected for
the Shklovskii term). This is shown by the heavy dashed lines and the lightly shaded
regions, corresponding to spin-down indices of n = 2 and 3. The width of these regions
are due to the 0.2 magnitude uncertainty in mj. The models shown here are for the Thick
Hydrogen layer models (as defined in Chapter 3).
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M.

We can find no consistent C/O solutions for this object.

4.3.3 PSR J16404-2224

Lundgren et al. (1996b) have also detected the companion in this system, with V=26.0 &
0.3 and 1=24.6 + 0.2, yielding T.g = 4200 + 600 K. The spin-down age for this system is
at least 17 Gyr and the distance 1.2 kpc, so that (including distance errors) we have an
absolute I magnitude I = 14.2 & 0.5. Once again, the mass function of this system requires
the companion to be more massive than 0.252.

Figure 4.3 shows that we obtain consistent solutions for all masses 0.25-0.45 Mg. The
range of cooling ages obtained is 4.0-11.8 Gyr, including both thick and thin Hydrogen
envelopes. The extremely low P of this pulsar means the tp is both large and sensitive
to V1. A transverse velocity of 100 km.s™! at the dispersion measure distance of 1.2 kpc
leads to a corrected spin-down age of 1058 Gyr! Thus, we can only obtain a lower limit
on the initial period by taking the smallest spin-down age and largest cooling age, yielding
Py > 1.8 ms.

We also find consistent C/O solutions for 0.5-0.8 Mg and cooling ages 4.6-8.2 Gyr.

4.3.4 PSR J10124-5307

Even without the benefit of a detailed model, the companion of this system is obviously
much brighter than it should be if the system were truly as old as the pulsar spin-down age
of 5.7 Gyrs (Lorimer et al. (1995a))2. The system is also closer than average at a distance
of 0.52 kpc, thus making it an ideal candidate for more detailed study. van Kerkwijk,
Bergeron and Kulkarni (1996) have determined the effective temperature and gravity using
the spectroscopic analysis of Bergeron et al. (1991). The star has log g = 6.75 + 0.07 and
Teg = 8550 + 25 K. Furthermore, we can use the photometry of Lorimer et al. (1995a) to
infer an absolute magnitude. Combining these three data in Figure 4.4 we find that we can
obtain consistent solutions for both thick and thin Hydrogen atmospheres.

Using our mass-radius relations from Chapter 3, we can determine that the mass limits

on the companion are 0.195-0.215 Mg for a thick Hydrogen envelope and 0.165-0.183 Mg

?The spin-down age could be even larger if the pulsar has a significant transverse velocity. V. =
100 km.s™* would increase t, to 20.6 Gyr!
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Figure 4.2: J1713+0747: We show the effective temperature and absolute I magnitude as
a function of age for cooling sequences of mass 0.25, 0.30 and 0.35 M respectively. The
horizontal dotted lines in the upper panel indicate the allowed range of T.g. In the lower
panel, the dotted lines indicate the allowed range in absolute magnitude from the observa-
tions. In order for a solution to be consistent, it must satisfy both observational criteria.
The shaded regions indicate for which ages and which masses we can find a consistent so-
lution. The vertical dotted line indicates the spin-down age for this pulsar (for n=3). The
models shown here are for the Thick Hydrogen layer models (as defined in Chapter 3).
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Figure 4.3: J1640+2224: In this case, we see that we get consistent solutions for all three
sequences, 0.25, 0.35 and 0.45 Mg.
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for a thin Hydrogen envelope. The corresponding cooling ages are thus 0.18-0.4 Gyr and
< 0.23 Gyr respectively. Thus, our combined result for the PSR J10124-5307 companion is
that M ~ 0.165 — 0.215Mg and the age is 0.3 - 0.7 Gyr.

van Kerkwijk et al. (1996) have also measured the radial velocity of the companion,
making this a double lined spectroscopic binary. This allows us to calculate the mass ratio
of the two components. Thus, using the companion mass range derived above, we can
constrain the neutron star mass to be Mns = 2.05 — 2.93 M, as is shown in Figure 4.5.

Alberts et al. (1996) have determined that a 0.185 My white dwarf burning ~ 2 x
1073Mg of Hydrogen can have the correct gravity and effective temperature at a cooling
age commensurate with the pulsar’s timing age (although, as noted above, the timing age
could increase further). Their solar metallicity model does not undergo shell flashes and
constitutes this decade’s installment in the conflict between the calculations of Webbink
(1975) and Iben and Tutukov (1986)! An examination of Figure 1 and Table 1 of Iben and
Tutukov (1986) (henceforth IT) suggests that the > 50 yr timesteps used by Alberts et al.
may still not be enough to resolve the shell flash behaviour reported in IT. The shell flash
results in the burning of much of the surface Hydrogen, which leads to the difference in
surface Hydrogen masses that is the source of the different cooling ages.

Since this mass limit has profound implications for some nuclear equations of state, we
need to test the uncertainties of the white dwarf mass-radius relation to provide a solid
foundation for our conclusions. In order for a 1.4 My neutron star to be consistent with
all the observational evidence, we need to obtain a consistent cooling solution for a 0.11
Mg white dwarf (see Figure 4.5). The standard ‘thick’ and ‘thin’ Hydrogen envelope white
dwarf models have effective temperatures that are too low by the time the gravity is in
the observed range. To increase the gravity at the desired effective temperature, we may
reduce the Hydrogen layer mass still further. However, in this case the convection zone
dredges up Helium, reducing the Hydrogen mass fraction in the photosphere. Bergeron
et al. (1991) have demonstrated that the presence of undetected neutral Helium in the
photosphere can change the gravity inferred from the Balmer line shapes. Furthermore,
Reid (1996) has shown that the masses inferred from the line shapes can differ substantially
from those inferred from gravitational redshifts for cooler atmospheres (T.g < 12000 K).
Thus we have to apply a correction to the gravity if our atmosphere contains Helium. If

we extrapolate the results of Bergeron et al. to lower gravities, we can obtain satisfactory
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Figure 4.4: J1012+45307: Here we use the effective temperature, luminosity and gravity to
constrain the age and mass of the white dwarf companion. The solid lines are models with
a thick Hydrogen atmosphere and masses 0.15, 0.20 and 0.25 Mg respectively. The long
dashed curves are for models with a thin Hydrogen envelope and masses 0.15, 0.18 and 0.20
Mg. We show consistent solutions for the 0.20 thick H model and 0.18 thin H model, both
yielding ages significantly younger than the spin down age, shown by the vertical dotted
line at the far right. The heavy dashed line indicates the 0.11 My model. We see that the
effective temperature is too low by the time the (uncorrected for Helium) gravity is in the
correct range.
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Figure 4.5: Equation of State Constraints from J1012+45307: The heavy solid line
represents the limit from the mass function f(M) measured from the pulsar timing. The
diagonal dashed lines enclose the limit based on the mass ratio determined from the com-
panion radial velocity. The shaded parts indicate the values allowed by the combination of
the spectroscopic gravity and mass radius relation. The labels Rotating and Static denote
the maximum neutron star masses allowed for maximally rotating stars and maximum static
mass stars respectively. The labelled horizontal lines represent the maximum static masses
for the different equations of state, labelled as in Cook et al.(1995). We see that the C,
FPS and A equations of state are ruled out (as well as the B,D,E,F,G,M and UT equations
of state which are not shown). For a standard 1.4 Mg neutron star to be consistent with
the observations, the companion would have to have a mass of 0.11 Mg, which is consistent
with our models only for absurdly young ages. The thick long-dashed line indicates the
combination of masses which will yield a relativistic time delay signal of amplitude 1 us in
the timing residuals.
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fits to the observations for a 0.11 Mg white dwarf with a very thin Hydrogen envelope
(~ 107% — 107"Mg) and with appropriate corrections for Helium content, but only for
improbably young white dwarfs (for ages ~ 10° — 10® years). Furthermore, at such young
ages our models are still strongly influenced by initial conditions. Hence we cannot claim an
unambiguous solution. Only a detailed evolutionary calculation of such a system can truly
determine whether such a young star can fit the observations. Nevertheless, we can assert
that such a solution would require an implausibly young age for the system. A possible way
to verify this solution, independent of white dwarf physics, is to measure the relativistic
time delay from the pulsar timing. Figure 4.5 shows that a 1.4 Mg neutron star solution
would have to be very close to edge-on. With orbital eccentricity < 2 x 107%, we may

approximate the expression for the amplitude of the time delay signal as (using equation

(2.20) from Blandford & Teukolsky (1976)),

Mwa 1
= 4. — —. 4.
At 494us(M® )log [1~sini] (4.7)

Figure 4.5 shows the relation between Mg and M, for a timing residual of 1us. We see
that if this measurement is possible, it would clearly differentiate between a massive neutron
star and a canonical 1.4 Mg neutron star.

There are two possible systematic uncertainties in the equation of state that may also
conceivably change the solution. The first is the treatment of the Hydrogen/Helium plasma
in the region p ~ 0.1 — 1g.cm™2 and T ~ 10% — 10° K. In this part of the phase diagram,
the plasma is partially degenerate and partially ionized. No published equation of state
provides a detailed microphysical description of the plasma in this region. Rather, various
procedures are used to interpolate between the high and low density regions where the mi-
crophysics is better understood. Saumon et al. (1995) estimate (based on intercomparisons
of the different available treatments) that the pressure-density relation could be uncertain
to within a factor of 2 in this region. Thus, we have artificially varied the density in this
region by a factor of 2 in our input equation of state to test the impact of such uncertainties
on the models. For a 0.11 Mg white dwarf, such changes do not affect the cooling in any
way. The only observable effect in our models is a slight difference in the surface abundance
of Helium when the first dredge-up occurs, due to the slightly different rate of descent of

the bottom of the convection zone. The affected region is shown in figure 4.6. We see that
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the reason this uncertain region is not crucial to the cooling is that the model atmosphere
enters this part of the phase diagram only when the base of the convection zone already
lies at higher densities, thus it has a minimal effect on the structure of the convection zone,
which is really the only way the equation of state can have an effect in the outer layers. Our
deep convection region maintains a constant entropy to an accuracy of 1 %, even through
the uncertain region.

A second possible influence on the mass-radius relation is changes in the high density
equation of state, changing the central structure of the star and thus the radius. Our
equation of state calculation uses the Saumon et al. (1995) results supplemented by a
Thomas-Fermi model at densities above the limits of the aforementioned table. Salpeter
(1961) discusses the various order corrections to the degenerate equation of state at length.
The next order effect beyond the Thomas-Fermi (non-uniform electron distribution) correc-
tion is the exchange energy correction. However, at central densities of 105g.cm™3 this is a
2% change in the internal energy and a similar variation in the pressure. Thus it is unlikely
that this could cause any significant variation. Further corrections could arise when the
central ions form a crystal lattice, but this will not occur in a Hubble time for Helium cores.

Hence, we claim the observations of the white dwarf companion to PSR J1012+5307
constrain the neutron star mass to be in the range 2.05 - 2.93 M. The age of the current
binary incarnation is also constrained to be less than 0.7 Gyr. Allowing for a braking index
of n=2-3, this results in the constraint Py > 4.9 ms. Given the above uncertainties about
the gravity measurement, it is useful to calculate the constraints without using the gravity.
If we use only the magnitude and temperature, then the white dwarf mass is constrained
to lie in the range 0.12 - 0.32 Mg, and the age is < 0.8 Gyr. Thus, this pulsar is still much

younger than the pulsar spin-down age.

4.3.5 PSR B0820-+02

The pulsar in this system has the longest spin-period (864.8 ms), largest magnetic field
(10''5G) and shortest spin-down time (0.13 Gyr)® of all the low mass binary pulsars.
The companion has been studied optically by Kulkarni (1986) and Koester et al. (1992).
We shall use the Koester et al. apparent magnitude V=22.76 + 0.05. van Kerkwijk &

3Recall that these are not independent quantities!
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Figure 4.6: Uncertainties in the Equation of State: The Hydrogen phase diagram
shown here indicates the two shaded regions where the equation of state calculations are
most uncertain. The leftmost region is the region where three-body interactions (not in-
cluded in the opacity calculations) will affect the dissociation equilibrium of molecular Hy-
drogen. The rightmost shaded region is where the plasma is partially ionized and partially
degenerate and feeling the effects of both pressure and temperature ionization. The quan-
tities I' and 7 are the Coulomb coupling and degeneracy parameters respectively and PPT
indicates the Plasma Phase Transition of Saumon et al. (1995) (and references therein).
The dashed lines indicate the upper and lower boundaries of the convection region for a
0.11 Mg white dwarf with 107*Mg of Hydrogen on the surface. The heavy solid line is the
stellar model for such a star and an age of 5 x 108 years.
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Kulkarni (1995) have also identified Hydrogen balmer lines in the companion spectrum,
yielding an effective temperature consistent with the photometric temperature estimate of
15250 £ 1250 K by Koester et al.. The signal to noise ratio is not yet good enough to
determine a spectroscopic gravity.

The dispersion measure distance to this pulsar is 1.4 + 0.4 kpc. This yields an absolute
V magnitude My = 12.0 £ 0.5. This leads to a problem when we try to find consistent
temperature-luminosity solutions for this pulsar. As shown in Figure 4.7, the effective
temperature constraints imply much higher luminosities than observed for all models, both
Helinm core and Carbon-core. A solution to this problem would be for the true distance
to be larger than the dispersion measure distance. If we use the additional constraint that
we expect the spin-down age to be an upper limit to the true age, then we can place some
constraints on the acceptable models using only the temperature constraints and infer what
the true distance would have to be for a consistent solution.

If we assume a Helium core white dwarf (allowing for n=3 and n=2), then the mass
is limited to the range 0.27-0.42 Mg, and the true distance has to be ~ 3.5 - 4.5 kpc! If
we assume a Carbon core white dwarf, the mass range is 0.4-0.8 Mg, with a true distance
of ~ 2 - 2.8 kpc. This is probably the more palatable of the two options, which would
make this the fourth binary pulsar to contain a ‘normal’ white dwarf, and the first of those
to have not undergone significant inspiral during its evolution. We note that Koester et
al. (1992) also infer a distance range of 1.7-3 kpc based on a similar analysis (although
their final published solution is 1.7-1.9 kpc, based on the supposed allowed error in the
dispersion measure). The determination of a spectroscopic gravity for this star should
answer the question conclusively, as the Helium dwarfs should have log g ~ 7.05 and the

Carbon dwarfs should have log g ~ 7.8.

4.3.6 PSR J0034-0534

The spin-down age is 4.5 £ 0.4 Gyr and the distance is 1.0 &+ 0.3 kpc. The proper motion
of this pulsar is not known. However, if the pulsar had a transverse velocity of 100 km.s™?,
the spin-down age would be 6.5 Gyr, so we adopt this as a conservative upper limit to the
spin-down age. Lundgren et al. (1996b) have detected this companion at I = 24.8 + 0.3
and set a limit of V > 26.8, which implies that the temperature < 3600 K. This is sufficient

to constrain the ages of cooling models of various masses (see Figure 4.8) to lie within the
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Figure 4.7: B0820+02: The dashed curves are the models for Helium white dwarfs, while
the solid curves are for carbon core white dwarfs. The vertical dotted lines indicates the
spin-down age of the pulsar for n=3 (lower value) and n=2. In the bottom panel we show
the absolute magnitude for the dispersion measure distance as well as for several other
assumed distances, to demonstrate the effect such distance errors have on the comparison.
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range 4.1 - 15 Gyr. However, if we require that the cooling age be less than the spin-down
age (using our upper limit of 6.5 Gyr), then the mass range is 0.15 - 0.21 Mg (assuming
n=3). If we allow n=2, then the mass is 0.15 - 0.35 M. Thus we get a range of cooling ages
of 4.1 - 13 Gyr. This leads to a conservative upper limit on the initial period of Py < 1.3 ms
(using n=2 and assuming a 100 km.s~! transverse velocity). A measurement of the proper
motion for this pulsar would provide a useful constraint on the initial period, although it
will not prove to be a useful constraint on the nuclear equation of state unless the braking
index can be measured (see Figure 4.9). For n=3 and V1 = 0, the upper limit on Py is 0.6
ms, which is sufficient to rule out many of the harder equations of state. However, even the

hardest equation of state would survive if n=2.

4.3.7 PSR J2145-0750

For the Carbon/Oxygen-core white dwarfs, we use Wood’s models (Wood (1991)), which
have a more complete description of crystallization, to perform the same sort of analysis
as above. For PSR J2145-0750, the spin-down age is 8.7 Gyr and the dispersion measure
distance is 0.5 kpc. The minimum mass is 0.43 Mg. Optical observations by Lundgren et
al. (1996Db) give V = 23.7(1) and I = 23.0(1). The V-I broad band colours of Bergeron et
al. (1995) yield a temperature estimate of 6500 + 500 K.

The determination of ages and masses for the Carbon sequences requires a little care,
because the cores of M > 1 Mg white dwarfs can begin to crystallize after ~ 1 Gyr. This
means that the absolute magnitude curves for different masses can cross, making the deter-
mination of consistent solutions slightly more complicated. We show the V band magnitudes
for this case because the theoretical My curves are more dispersed than the Mj curves. Fig-
ure 4.10 shows the analysis using the Wood curves for both Carbon and Oxygen cores,
Helium mass fraction = 1072 and a Hydrogen mass fraction of 10~%. For models with pure
Helium envelopes, the age limits are similar. We find consistent models for masses M > 1.0
Mg (in both C and O cases, the cores have begun to crystallize), and a range of cooling
ages 3.2 - 5.2 Gyr. We note that the upper limit is uncertain to within ~ 1 Gyr because
the Wood models did not extend far enough and a modest extrapolation was required.

A transverse velocity of 100 km.s~! would change the sign of P for this pulsar, so the
spin-down age of 8.7 Gyr is only a lower limit. Using the largest cooling age, we can thus

get a lower limit on the initial period Pg > 10.2 ms (assuming an n=2 braking index).
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Figure 4.8: J0034-0534: The solid line shading indicates consistent cooling solutions that
lie at ages less than the spin-down age. The dotted lines indicate cooling solutions that lie
above the current spin-down age but could be made consistent if the pulsar has a substantial
transverse velocity. The size of the horizontal arrow indicates the change in tp that would
result from a transverse velocity of 100 km.s™?.
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Figure 4.9: Equation of State Constraints from the Proper motion: The solid lines
indicate Pg for PSR J0034-0534 for the indicated proper motion and an assumed distance
of 0.7 (lower curve) and 1.3 (upper curve) kpc respectively. These curves were obtained
using the smallest uncorrected P allowed within the measured precision (making the upper
solid curve the most conservative estimate) and n=3. The lower dashed line indicates the
same data as the upper solid curve but using the best fit P. The upper dashed line again
uses the same data as the upper solid line except that n=2. The three horizontal dotted
lines indicate the minimum periods for three representative equations of state, those of
Pandharipande (1971) (B - soft), Lorenz, Ravenhall & Pethick (1993) (FPS - medium) and
Pandharipande & Smith (1975) (L - hard). The minimum periods shown are those obtained
by spinning up a maximum mass static model. Smaller rotation periods can be obtained
for masses which don’t have a stable static limit; see Cook et al. (1995).
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Figure 4.10: J2145-0750: The solid lines indicate Carbon core sequences of mass 0.4, 0.7,
0.8 and 1.0 Mg respectively. The long dashed lines represent Oxygen core sequences of mass
0.4, 0.6, 0.8 and 1.0 respectively. The most massive models begin to crystallize after 0.8
Gyr, and the least massive after 3.6 Gyr. The shaded regions shows the consistent solution
for the 1.0 Mg C and O models. The other solutions are omitted because the crossing of
the model curves means they lie largely on top of one another.
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4.3.8 PSR J1022+4-10

This pulsar has a spin period of 16.45 ms and spin down age 5.9 Gyr (although this would
be 18.3 Gyr with a 100 km.s~! transverse velocity). It lies at a distance of 0.6 kpc and
has been observed by Lundgren et al. (1996b), yielding V = 23.09 + 0.04 and I = 22.665
+ 0.007. The mass function for this pulsar requires a companion of mass M > 0.72Mg,
putting this firmly in the Carbon/Oxygen mass range. Our temperature estimate for this
star is 8100 £ 300 K. Figure 4.11 shows our comparison of the observations with the Wood
models, yielding an age range of 2.3 - 3.3 Gyr and a mass range M > 0.9Mg. Thus we
obtain 10.9 < Pg < 15.4 ms.

4.3.9 PSR B06554-64

This was one of the first pulsars with an optically identified companion. Upper limits on the
proper motion mean that we can constrain the spin-down age to the range 4.5-13.6 Gyrs.
The distance is 0.48 kpc. The mass function constrains the companion to have M > 0.67
Mg. van Kerkwijk & Kulkarni (1995) have identified the white dwarf companion as a DQ
star, i.e., it shows traces of molecular Carbon in the optical spectrum. This makes accurate
temperature determination difficult but does constrain the temperature to be in the range
5500-8000 K, when the convection zone is deep enough to dredge up trace amounts of
Carbon from the core and deposit them in the atmosphere. Kulkarni (1986) has measured
V = 22.2 for this star. Since molecular Carbon is seen, the Helium and Hydrogen envelopes
must be quite thin. We use the pure Helium envelope/Carbon core models (qge = 10™*) of
Wood (1991) to calculate the cooling ages in Figure 4.12. We find solutions for all models
M > 0.7Mg. The range of cooling ages is 2.6 - 4.8 Gyr. The largest possible timing age,
the smallest possible cooling age and n=2 yield a limit on Pg > 177ms.

4.3.10 PSR 201942425

This pulsar has one of the largest spin-down ages (corrected for proper motion) of any
pulsar, ranging from 17 to 70 Gyr, depending on the rather uncertain distance. It lies close
to the galactic plane, which means that extinction is an important problem. Lundgren et
al. (1996) have detected the pulsar companion at V=26.4(4) and 1=25.0(3). To estimate

the extinction to the companion, we can find the extinction in the general direction of
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Figure 4.11: J1022+4-1001: The solid lines indicate Carbon core sequences of mass 0.7,
0.8, 0.9 and 1.0 Mg respectively. The long dashed lines represent Oxygen core sequences of
mass 0.8 and 1.0 respectively. We are able to find consistent age ranges for models greater
than 0.9 Mg, spanning the range of ages from 2.3 - 3.3 Gyr.
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Figure 4.12: B0655-+64: We show here the curves for 0.7-1.0 Mg and a Helium envelope
mass fraction = 107%. These models have no Hydrogen envelope. The shaded region shows
the solution for 0.7 Mg.
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J2019+2425 from Neckel & Klare (1980). For distances less than 1 kpc, Ay rises linearly to
0.4 magnitudes, but then rises steeply to ~ 3 magnitudes at a distance of 1.5 kpc (i.e. 1.5
magnitudes for Aj). Using this extinction law and the 30% distance uncertainty, we find
that V-I=1.0(4), which implies Teg ~ 4100 — 6700 K. Similarly, we estimate the absolute I
magnitude as My = 14.9(10). A further constraint is that the mass function requires that
the companion mass > 0.32 Mg.

Using these limits we find consistent solutions for all masses above the minimum allowed
by the mass function. Figure 4.13 shows the solution for the 0.35 Mg case. The approach
taken here is slightly different because the allowed ranges of Teg and My are not uncorrelated
(as they are if observational error is the prime source of uncertainty). The large extinction
correction implies that the allowed V-I and Mj ranges are a function of distance, as shown
in 4.13. Using this approach we find a range of cooling ages from 7.6-13.9 Gyr. Although
Woods models again do not extend to low enough temperatures in most cases, modest
extrapolation indicates that consistent solutions may also be found with C/O models for
all masses (a sample 0.6 Mg model is shown in Figure 4.13). These models allow cooling
ages < 1 Gyr, so that our most reasonable constraint on the age of the white dwarf is only
an upper limit, teoo1 < 13.9 Gyr.

Using these values and the range 16.7-69.8 Gyr for the spin-down age, we may derive
a lower limit to the initial period of 1.6 ms for n=3 (or 2.3 ms for n=2). Despite the
uncertainty in the cooling age resulting from the extinction correction, we find that this
result is quite robust, primarily because the measured proper motion constrains the timing

age to be significantly greater than the age of the galaxy.

4.3.11 PSRs B1855+09, JO75141807 & J22294-2643

For those systems where we have only upper limits on the companion magnitudes, it is
sometimes still possible to place some constraints on the ages and masses of the stars
involved.

For PSR 1855409, the almost 90° inclination of this orbit has allowed Kaspi et al.
(1994) to determine the masses of both components as well as the parallax and distance.
The companion mass is 0.258fg:8%gM@ and the distance is 0.9f8:§ kpc. The spin-down

0.06

age, corrected for kinematic effects, is 4.8675 03 X 10° kpc. We can thus restrict our model

comparisons to the 0.25 Mg model in this case. Kulkarni (1991) obtained limits of R> 24.6
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Figure 4.13: J2019+42425: The solid lines are the models for 0.35, 0.40 and 0.45 M. The
thin dashed line is for a 0.30 Mg He core model and the heavy dashed line is for a 0.60
Mg Carbon core model. The dotted line in the upper panel indicates the allowed range of
V-I for each Mj (and hence each distance). The shaded region demonstrates the consistent
solution for the 0.35 Mg model. The filled circle (with error bars) is the allowed range at
the nominal dispersion measure distance. In the bottom panel the vertical and horizontal
bars indicate the allowed range of cooling ages (for all models) and the expected range in
Mj consistent with the dispersion measure uncertainty.
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and I > 23.4, while Callanan et al (1989) obtained V> 25.4. Callanan et al. estimated
the extinction to the system to be Ay = 1.5 — 2.0 mags/kpc. Using the extinction law of
Savage and Mathis (1979), this becomes Ag=1.1-1.5 and A;=0.7-1.0 mags/kpc. Figure 4.14
shows the comparison of the model curves with each constraint. We use two constraints,
using the largest extinctions and furthest distance estimate; and the smallest extinctions
and closest distance estimates, to examine the range of possible solutions. We see that the
0.25 M sequence is perfectly consistent with the bounds on the absolute magnitude for all
ages between the spin-down age of 4.9 Gyr to a minimum age of 0.98 Gyr. This yields a
constraint Py > 4.8 ms.

Also shown in Figure 4.14 are the detection limits for the companions to J0751+1807 and
J2229+2643, with spin-down ages of 6.9 and 24.9 Gyrs respectively. The only meaningful
limits that can be placed on these systems is that the cooling times are longer than 0.4 and
1.7 Gyrs respectively.

The various constraints on the cooling ages are collected together in Figure 4.15

4.4 Discussion

4.4.1 Binary Evolution

The formation of low mass binary pulsars (LMBPs) has been discussed by many authors
(for reviews see Phinney and Kulkarni (1994), Verbunt (1993) and references therein). If we
consider a binary containing a pulsar and a stellar companion, the binary will undergo mass
transfer if the non-degenerate companion begins to expand as a result of nuclear evolution
or if the orbit decreases due to magnetic braking or gravitational wave radiation. This mass
transfer results in the spin-up of the neutron star to form a millisecond pulsar. The mass
loss also means that the companion never evolves far enough to grow a core of mass large
enough to ignite Helium. Rather, the envelope is lost during the course of the evolution
and the remnant of the secondary settles down to a degenerate configuration, a low mass
Helium core white dwarf. The fact that giants have a well-defined relationship between
core mass and giant radius, allied with the fact that the star must fill its Roche lobe to
lose matter to the companion (assuming corotation), means that there exists a relationship
between orbital period and secondary mass in the LMBPs (Refsdal and Weigart (1971),
Joss, Rappaport and Lewis (1983), Rappaport et al. (1993)). However, this holds only
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Figure 4.14: Limits for Other Pulsar Companions: We compare the absolute V
magnitudes of our models with the limits determined for three binary pulsar systems. The
vertical dotted lines indicate the (n=3) spin-down ages for each binary system and the
horizontal dotted lines are the magnitude limits determined from the observations. The
models are for 0.15, 0.25, 0.35 and 0.45 M, respectively. The heavy solid line indicates the
0.25 M model (for comparison with the B1855409 limits).
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Figure 4.15: Cooling Ages for Millisecond Pulsar Companions: Here we show the
constraints on the cooling age for the various binaries discussed in this paper. The open
circles indicate timing ages (for a braking index n=3), and the filled circles indicate cooling
ages. The uncertainties in the timing ages are because of the Shklovskii term. The systems
are separated into C/O and He white dwarfs (B0820+02 is placed in limbo due to the
uncertainty in its mass) and ordered in increasing orbital period. No cooling ages are
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as long as the secondary star is sufficiently evolved to have a convective envelope when it
overflows its Roche lobe. This is because mass loss from the secondary results in expansion
of the orbit, shutting off mass loss unless the donor star increases as well (which requires
a convective envelope, rather than a radiative one). Thus, this scenario describes systems
with orbital periods ~ 10 — 102 days.

For shorter period systems, the donor star overflows its Roche lobe either on the main
sequence or during the transition from the main sequence to the giant branch. The envelope
is still primarily radiative in this case, and the star will shrink in response to mass loss. The
result is that one needs angular momentum loss mechanisms such as gravitational radiation
and magnetic braking to maintain mass transfer in these systems. The competition between
these loss mechanisms and the mass-transfer induced evolution of the system leads to a very
steep relationship between final orbital period and initial orbital period/final core mass
(Pylyser and Savonije (1988), Coté and Pylyser (1989)).

In Figure 4.16 we compare our mass determinations for these companions with the
results of Rappaport et al. (1993) and Pylyser & Savonije (1988) (omitting models in the
latter sample where the accretor was far from 1 Mg ). We find excellent agreement with the
models. We are able to identify each system we discuss as definitely belonging to either one

class or the other.

4.4.2 Neutron Star Spin-up

Under the assumption that the magnetic field does not decay, the cooling age of the white
dwarf allows us to estimate the initial spin period of the millisecond pulsar, by inverting
formula (4.1). These estimates are shown in table 4.3.

The simplest theories regarding spin-up of recycled pulsars to millisecond periods (Smarr
& Blandford (1976), Ghosh (1995) and references therein) predicts that the initial period
should be equal to the equilibrium spin-period of the neutron star of magnetic field B

accreting at a rate M. This predicts an initial spin period

o7 M -3/7
Py = 1.89ms Bg i , (4.8)
Edd

where M is the accretion rate. Thus, a comparison between the inferred initial spin period

and magnetic field can determine the accretion rate onto the neutron star during spin-up.
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Figure 4.16: The Orbital Period-Mass Relation: The upper shaded region is the pa-
rameter space spanned by the models of Rappaport et al. (1993) while the lower shaded
region is that spanned by the models of Pylyser & Savonije (1988). Also shown are the
mass constraints for various systems determined in this paper as well as those of Kaspi et
al. (1993) for B1855+09 and the mass function limits for those systems without further
constraints. The dotted line at the bottom of the diagram indicates the boundary below
which the companion will spiral into a 1.4 Mg neutron star in a Hubble time due to gravita-
tional radiation. The vertical dotted line indicates the dividing line between Carbon cores
(> 0.5Mg) and Helium cores (< 0.5Mg). The error bars for B0820402, J1640+2224 and
J0437-4715 are from two overlapping mass estimates, one for a Helium core white dwarf
and one for a Carbon core. J0034-0534 has two upper mass limits, for n=3 (0.21 Mg) and
n=2 ( 0.35 Mg). The dotted error bar for J0437-4715 denotes those masses below the mass
limit derived by Anderson et al. (1995). If the secondary progenitor in this system were a
1 Mg star of very low metallicity, the Py, — M. relationship would be given by the curve
labelled Z = 10710, which lies closer to the new mass limit.
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| Name [P (ms) [ tp (Gyr) | teoot (Gyr) [ P§ (ms) [ PJ (ms) |
J0034-0534 | 1.88 | 5.4(5) 9.6(54) <11 <13
J17134+0747 | 4.57 | 9.0(2) 7.2(8) 2.0(6) 2.7(3)
J0437-4715 || 5.76 | 5.4(25) | 8.7(65) | < 5.3/0.9 | < 5.4/3.0
J1640+2224 || 3.16 >17.3 7.9(39) > 1.8 > 2.1
J1012+5307 || 5.26 >5.7 < 0.7 > 4.9 > 4.9
B1855+09 5.36 | 4.9(1) > 1.0 <48 <49
J2229+2643 || 2.98 24.9 > 1.7 <29 <29
J2019+2425 || 3.94 | 37.4(265) | < 13.9 > 1.6 > 2.3
J2145-0250 || 16.05 | > 8.7 4.2(10) > 102 | >11.3
J1022+1001 || 16.45 | 12.1(62) | 2.8(5) | 13.2(22) | 13.6(18)
BO655+64 | 195.7 | 9.1(46) | 3.7(11) < 176 <177

Table 4.3: Initial spin periods estimated on the basis of the cooling ages to various pulsars.
We include estimates based on both n=2 and n=3 (superscript indicates the value of n).
For J0437-4715, we include two numbers. The first is derived allowing all cooling models,
while the second is restricted to cooling models with masses > 0.3 M.

However, this inversion is complicated somewhat by the uncertainty in the macroscopic di-
mensions of the neutron star. Figure 4.17 shows the spin period-magnetic field diagram for
the millisecond pulsars. We see that canonical values of M and R lead us to infer accretion
rates ~ 1072 — 0.1 Mgaq. However, a 1.4 Mg, star with a hard equation of state could yield
an Eddington rate spin-up line much closer to the inferred initial periods. Although we
cannot accurately determine the accretion rate for most of these systems, we can confi-
dently assert that PSR J1012+5304 had an accretion rate significantly sub-Eddington (<
0.1 MEdd), no matter what the equation of state. Of the other systems, pulsars J0034-0534,
J171340747 and B1855+09 are all consistent with Eddington accretion rates, while pulsars
J1640+2224, J0437-4715 and J2145-0750 must have had sub-Eddington accretion rates (a
similar conclusion was reached by Lundgren et al. (1996)), regardless of the equation of
state. This is consistent with the findings that low mass X-ray binaries have a range of

sub-Eddington accretion rates (Bradt & McClintock (1983)).

4.4.3 Magnetic Field Decay

Although many authors have noted that millisecond pulsars must have very long magnetic
field decay times (Kulkarni (1986), Camilo et al. (1994)), the determination of a cooling

age allows us to make a quantitative estimate of tp in the context of the paradigm outlined
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Figure 4.17: Initial spin periods for millisecond pulsars: We show here the inferred
limits on the initial spin periods for the neutron stars discussed in the text. The three par-
allel dotted lines indicate the spin-up lines (4.8) for M/MEdd =1, 0.1 and 0.01 respectively,
and canonical neutron star values of M = 1.4 Mg and R = 10 km. The heavy dashed lines
indicate the Eddington rate spin up lines for different equations of state taken from Cook et
al. (1995), and spanning the range from hard (L) to soft (AU). The three curves contained
in the shaded region represent the case for maximal spin-up for each equation of state (i.e.,
they result from the spin-up of a maximum static mass model). Also shown is the spin-up
line for a 1.4 Mg star with a hard equation of state. Many of the pulsar magnetic fields
are uncertain because of the Shklovski effecti on P. The derivation of the limits on Py are
discussed in the text.
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in 4.2. To get the upper limits on tp, we must use the lower limits on both the distance
and the cooling age. We find that J0034-0534 and J1713+0747 both have lower limits on
tp ~ 10 Gyr which strongly supports the view that millisecond pulsar fields do not decay
at all.

4.4.4 Nuclear Equation of State

In addition to constraining evolution scenarios, we note that the mass estimate of the pulsar
J10124-5307 obtained in 4.3.4 rules out all equations of state with maximum masses < 2.05
Mg. The four hardest of the fourteen equations of state in Cook et al. (1995) pass this
test. These fur have minimum periods spanning the range 0.593 - 0.97 ms.

If one assumes n=3, the initial spin period of J0034-0534 can also provide a useful
constraint on the harder equations of state (Figure 4.9), but this conclusion is not robust,
because a braking index n=2 will yield an upper limit that lies above all minimum spin

periods.

In conclusion, we have shown that using the white dwarf cooling ages as an independent
chronometer for binary pulsars can teach us a lot about both neutron star structure and
binary evolution. In particular, the determination of initial spin periods provides us with
new information about the final stages of pulsar spin-up and evolution. Further observations
of low mass binary pulsars, both in radio and optical, will lead to even better constraints
in the future.

The authors would like to thank Marten van Kerwijk for use of results prior to publica-
tion and extensive discussion of white dwarf observational uncertainties and Glenn Sober-

man for discussions about mass transfer in binaries.
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Chapter 5 Pulsar Winds and Their Effect on

Close Binary Companions

We discuss the effect that the relativistic wind from a pulsar may have on its white dwarf
companion. In particular we consider the spallation of the white dwarf atmospheric Helium
to produce Hydrogen. This has a significant effect on the white dwarf cooling age and
may have the observational consequence that Deuterium could be observable in the hotter

companions.

5.1 Introduction

More than 25 years after the discovery of the first pulsar, still relatively little is known
about the energy loss mechanisms by which such objects spin down. The defining char-
acteristic, radio emission, is a negligible contributor to the energy budget, although some
young pulsars may lose a significant fraction (~ 10%) of their energy via gamma rays (Fierro
(1996)). Detailed studies of the Crab Nebula imply that the nebular emission is driven by
a relativistic, particle dominated, magnetohydrodynamic wind emanating from the pulsar
(Kennel and Coroniti (1984), Gallant and Arons (1994) and references therein). Early work
favoured a pair-dominated kinetic luminosity, although Gallant and Arons (1994) (hereafter
GA) find that most of the kinetic energy is carried by an ionic component. The presence
of such a wind can also be inferred from the presence of bow-shocks around pulsars moving
with respect to the surrounding medium (Hester and Kulkarni (1988), Kulkarni and Hester
(1988)).

The significance of pulsar winds for the energy balance of very close binary compan-
ions has been recognised by a number of previous authors (Ruderman, Shaham and Tavani
(1989), Kluzniak et al. (1988), Phinney et al. (1988), Arons and Tavani (1993)). Further-
more, Eichler and Nath (1996) have noted that the spallation of heavy materials in more
widely separated companions may serve as a diagnostic of the pulsar wind content. In this

paper we examine the importance of the pulsar wind for the atmospheric composition of
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the low mass Helium core white dwarfs that constitute the majority of millisecond pulsar
companions. This is of particular importance for the dwarf white cooling age, which can be
used as an independent estimate of the millisecond pulsar age (Chapter 4).
In section 5.2 we review the basic nature of the relativistic pulsar wind and its interaction
with a close stellar companion. In section 5.3 we discuss the mechanism of spallation in a
white dwarf atmosphere for various possible wind compositions. Finally, in section 5.4, we

discuss the implications of this for the cooling of pulsar companions.

5.2 The Pulsar Wind

The spin-down rate of a pulsar is given by (e.g., Shapiro and Teukolsky (1983)),

- . B2
E =100 = 5.6 x 103 ergs.s™ ' Iys (E;) P;* (5.1)

where L5 is the pulsar moment of inertia in units of 10*5 g.cm?, By = 3 x 108 G, B is
the pulsar surface magnetic field and Ps is the period in units of 5 ms. A companion,
with stellar radius R and orbiting at distance Ry, from the pulsar, will intercept a fraction

2
~ % (2 RI: ) of this luminosity, where f is the beaming fraction of the pulsar wind (assuming

the companion falls within the wind beam?! ). Thus, the wind luminosity impinging on the

I 2 P\ 43
LWind =3 X ].0-.611@% (BE()) P5_4Rg (m‘%) (52)

companion is

Models of the Crab nebula (GA) indicate that the ratio of magnetic to kinetic energy in
the pulsar wind is ~ 0.003, so that Ly, ~ Lyina- We adopt as our default model the model
of GA, in which the kinetic energy is carried primarily by relativistic ions. GA find the
Lorentz factor of the ions to be ~ 108. To adapt this model to millisecond pulsars, we shall
assume that the Lorentz factors scale as a constant fraction 7 of the energy drop across the
pulsar polar cap (7 ~ 0.04 for the Crab). Thus, we obtain the ion Lorentz factor

Z (B
¥ ~ 3.6 X 103K (B_o> p;? (5.3)

where Z,A are the atomic and mass numbers of the constituent nuclei. The results of Rosen

! Models of the Crab Nebula suggest that much of the wind emission may be equatorial.
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and Cameron (1972) indicate that the most likely constituents are iron nuclei, although
anything Z > 2 is possible.
The interaction of the pulsar wind with the companion is governed by a bow shock

surrounding the companion. The upstream magnetic field in the wind at the bow shock is

-2/3 2/3
~ 214G (%33) p;? (fg;‘;,) ! , yielding an ion Larmor radius of r, ~ 5.3 x 10%m (%ﬁ";) / .

This is larger than white dwarf dimensions, and so the companion will be irradiated by ions
from all directions (i.e., we should not expect to see any ‘day/night’ variations in the effect
on the companion). Furthermore, although the ions would lose ~ 20% of their energy
to the downstream pairs by excitation of magnetosonic waves (Hoshino et al. (1992))
behind an isolated shock, the presence of the companion is likely to reduce this efficiency
by intercepting the ions before they have had a chance to complete a gyration.

Other external sources of Hydrogen, such as cometary impacts (Tremaine and Zytkow
(1986)) or interstellar accretion (Alcock and Illarionov (1980b)) are precluded by the pres-

ence of the pulsar. The ram pressure of the pulsar wind will clear out a cavity of radius

Ls\Y/? Bg
cav ™ 1.8 1 ! (_) ey 4
R x 10*6 cm o P2V1o (5.4)

where n; and Vg are the density of the ISM (in cm™3) and the binary system velocity (in
units of 10 km.s™!) respectively. This corresponds to an orbital period of 3 x 10* years,
so that all the binaries we are interested in will orbit within this cavity. Furthermore, the
kick velocities (~ 10 — 100 km.s™!) acquired in the supernova that formed the pulsar will be
enough to free the binary from any pre-existing Oort cloud (inner Oort cloud comets have

V~ 1km.s71).

5.3 Companion Spallation

We shall consider in turn the behaviour of high energy electrons, photons and ions entering
the companion atmosphere.
5.3.1 Electromagnetic Cascade

We consider electrons, positrons and photons together, because all three kinds of primary

particle will initiate an electromagnetic cascade of electrons, positrons and photons, with
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approximately equal amounts of energy residing in leptons and photons. At energies above 1
GeV, electrons lose energy primarily through bremstrahlung and photons primarily through
pair production. At lower energies, ionization and compton losses prevail respectively.
Spallation of atmospheric nuclei by the electromagnetic cascade is performed by photons in
the energy range 20-150 MeV (Puget, Stecker and Bredekamp (1976)). Above 150 MeV, the
photohadron cross-section is dominated by pion production, and below 20 MeV the energy
is below the spallation threshold.

Approximately half the primary energy will, at some point in the cascade, pass through
the energy range 150-20 MeV in the form of photons. The fraction of this energy that
goes into spallation will be determined by the comparison of the spallation cross-section to

the other photon energy loss mechanisms, pair creation and Compton losses. From Rossi

(1952),
8.5mb [Z, 1 8.541 x 103\ *
comp ™ T - 1 ].1 .1E -~ l - - = .
Teomp ~ (2)[11( 7 3°)+2{ ( Eao >H e
2.\ [7 109
Opair ~ 37.2mb (?) [5 In117.1E30 — gz] (5.6)

where Eg is the energy in 30 MeV and Z, is the atmospheric atomic number (the pair
cross-section is for the complete screening limit (E < 55 MeV)). These are to be compared

with the mean spallation cross-sections from Puget et al. (1976),
Ospall ~ 1.7mb at 150 MeV (5.7)

and

Ospall ~ 2.3mb at 30 MeV (5.8)

At 150 MeV (and using the no screening formula for pair production), we get that ocomp =
11.7mb, Opair = 144mb, 0spay = 1.7mb, yielding a spallation fraction of ~ 0.01, i.e.,
1% of the photons with this energy will spall a nucleus. Similarly, at 30 MeV, ocomp =
45mb, opair = 16 mb, ospan = 2.3 mb, which implies a spallation fraction ~ 0.04.

Thus, we find ~ 3% of photons in this energy range will spall nuclei. This implies
that, for a primary photon/electron of energy Eg, approximately ~ % X 0.03%%5—‘,— nuclei
are spalled. If we consider the companion to be a pure Helium star, then the spallation of

atmospheric Helium will result in the production of 1 Hydrogen per spallation. Thus, our
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kinetic luminosity may be converted into a mass accumulation rate of Hydrogen due to the
spallation of atmospheric Helium. Assuming that a fraction ( of the pulsar wind energy
enters the atmosphere as high energy electrons and photons, we obtain

2 ~-4/3
v -20 ~1¢ B —4n2 POTb)
~ gt (=) P —orb :
Mg~4x%x10 M@ yr fI45 <B0> 5 Rg (1day (5 9)

5.3.2 The Ionic Component

In this section we consider the spallation of atmospheric *He by the ionic component of the
pulsar wind. Once again our concern is the production rate of Hydrogen. An ion of mass
number A and energy Eg is considered to interact as A independent nuclei of energy Eq/A.
This is valid because the total mass-changing cross section scales as o, ~ 97A%%% mb for
a Helium target (Webber et al. (1990) - for a beam energy of 1.5 GeV /nucleon - it is of
this order for higher energies). Thus, the mean free path of an iron nucleus is 0.08 that of
a proton and, if we assume a heavy nucleus fragments into two equal mass products with
each collision, an iron nucleus will break into particles of A ~ 3 — 4 in one proton mean
free path. Tsao et al. (1995) have shown that the approximation that product nuclei share
the same energy/nucleon of their parent nuclei is good to within 5% (Note that this applies
to product nucleons resulting from the primary particle - it does not necessarily describe
the energy distribution of the products spalled from the target). Thus, we shall consider in
detail the case of high energy protons spalling in a Helium atmosphere.

The spallation of “He has been considered in detail by Meyer (1972). The four most
likely reaction channels are listed in table 5.1. We consider the 3He and 3H reaction channels
together, because 3H is unstable and will decay to 3He. Furthermore, we will assume the
mirror reactions (n + 4He) have the same cross-sections, an assumption valid for E > 40
MeV, because then Coulomb energies are negligible with respect to the kinetic energies
available in the centre of mass frame after the destruction of the Helium nucleus.

At high energies, the spallation reaction is described by the participant-spectator model
(see, e.g., Lynch (1987)), in which the primary nucleon interacts strongly with one or two of
the nucleons in the target nucleus, with a resultant large transfer of energy and ejection of
the nucleons from the parent nucleus. The rest of the target nucleons are spectators in this
interaction, resulting in a remnant ‘wounded nucleus’, possibly in an excited state. This

may subsequently decay, with the resultant emission of further product nucleons, but at
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Symbol || Reaction Ethreshold (MeV) | o(1 GeV) (mb)
*H p+ *He - 3H + 2p (+ ) 24.9 40
He || p + 4He — 3He + n + p (+ 7) 25.8 35
dd p+*He 5D+ D +p(+7) 29.8 12
d p+ *He - D+ n + 2p (+ 7) 32.7 25

Table 5.1: The dominant proton-Helium spallation reaction channels.

energies of order of the nuclear binding energy. Thus, to determine the secondary energy
spectrum, we consider that each spallation reaction produces one spalled nucleon in addition
to the primary nucleon, the rest of the material remaining in the spectator nucleus. Energy
and momentum conservation in the centre of mass frame yields a secondary particle energy

distribution
1 1

i [(7'7bﬁ’ﬂb)2 — (7 = 7'n)?

where v is the lab frame Lorentz factor of the secondary particle, v’ is the C.0.M. frame

P(y) = ]1/2 (5.10)

Lorentz factor of the the secondary particle (a unique function of the incident primary
energy) and - is the Lorentz boost factor between the Lab and C.o.M. frames. The av-
erage secondary Lorentz factor is Yave = 7’75 and the maximum/minimum is Ypayx/min =
Yave (1 * B'Bp). Expressions for these quantities is given in Appendix C. High energy
hadronic interactions also result in significant losses to pion production. Mannheim and

Schlickeiser (1994) provide expressions for the multiplicity?

E 1/4
r —1.22 A1
b~ 3oy - 122 (5.11)
and average energy
E 17 E i 2
< Bigp >~ g l:a*e-v — 0.94] (5.1 )

of the pions produced in a hadronic interaction (E is the lab frame energy of the incident
nucleon). Thus, we calculate the results of a spallation reaction as follows. At each interac-
tion, the energy lost to pions is removed from the nucleonic shower. The interaction channel
is chosen from amongst those in table 5.1 according to the relative cross-section and the

energies of the secondary particles is chosen from the distribution (5.10). We note that, in

2We have added the contribution from neutral pions.
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the case of a reaction via channel dd, one of the emergent secondaries is a deuteron. We
describe this as two emergent nucleons each with half the energy of the emergent deuteron.
The results of these calculations can be described as a function f(E/,E)dE, the probability
that a primary particle of energy E’ will give rise to a secondary of energy between E and
E+dE. This function is shown in figure 5.1.

Using this function, we calculate the propagation of a proton-induced nucleonic shower
in a Helium atmosphere, using our simple formalism above in the continuous loss approxi-
mation. The number of shower nucleons of energy in the range E,E+dE at depth y in the

atmosphere is N(E,y) dE. The evolution with depth is described by the equation

aN(E:Y)_ N(E>Y) Bo N(E'7Y) ’ 7
o= ) +/ (5 (B F)aE (5.13)

where ) is the mean free path of nucleons of energy E in the atmosphere. The result of this
calculation is a function W(y), describing the number of wounded nuclei left by the passage
of the shower particles as a function of depth. The shower particles themselves also make a
significant contribution to the global Hydrogen production. Once they reach energies < 50
MeV, they no longer spall other nuclei and simply constitute another source of Hydrogen.
The relative contributions of wounded and shower particles to the white dwarf cooling will
be discussed in section 5.4.

The energy losses to the pionic cascade can also make a contribution to the spallation
yield. Pions eventually decay into photons and electrons (with some neutrino losses along
the way), and thus will provide photons to spall nuclei as discussed in section 5.3.1. We may
estimate the contribution as follows. Of the energy lost to pions, 1/3 is lost to neutral pions
and 2/3 to charged pions (Mannheim and Schlickeiser (1994)). The neutral pions have a
short decay time and will decay to two gamma rays, contributing all of their energy to the
electromagnetic cascade. Charged pions have a longer decay time, and have a significant
chance of interacting with a nucleus before decaying (especially at high energies, where
relativistic time dilation increases their lab frame decay time). However, the dominant
result of pion-nucleus interactions is further pion production, so that we consider all energy
in charged pions to eventually decay to muons and neutrinos (with an average of ~ 20% of
the energy carried off by the v). The muons will also decay to electrons, with a further loss

of energy to neutrinos (~ 1/2 in this case) and thus 40% of the energy in the charged pions
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Figure 5.1: Secondary Energy Distribution: The solid lines are contours of constant
f(E",E). The dotted lines indicate E=E’ and E=E’/2, which is the region labelled pion
losses, since the energy lost to pions is ~ 1/2 the primary energy for energies much greater
than 1 GeV. f(E',E) has three sharp peaks shown by the dashed lines. These are due to
the fact that P(y) peaks near the maximum and minimum allowed energies. The largest
peak is for the two emission channels in which the products are all of 1 nucleon mass. The
other two peaks result from reactions in which one of the products is a deuteron (the peak
corresponding to the deuteron emission is labelled as such) and the other is a single nucleon.
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is transferred to the electromagnetic cascade. So 60% of the energy lost by the nucleons
will reside in an electromagnetic cascade as discussed in section 5.3.1, implying that the the
resulting electromagnetic cascade will spall ~ 0.2 nuclei for every GeV of primary nucleon
energy.

Figure 5.2 shows the evolution of a shower begun by a 1 TeV proton. The peak of the
Hydrogen deposition is at ~ 350 g.cm ™2 for this case. We define the efficiency of Hydrogen
production by the quantity

= 0" Wo() + Wa(y) + Naow(3)dy ) e ( Eo )-0-22

.14
Eo/50MeV 10GeV (5-14)

as determined from our shower calculation. (The functions W and Ng.w are shown in
Figure 5.3). The reason that this efficiency is not constant with energy is the fact that the
efficiency of converting pionic energy to spalled Hydrogen is much lower than the conversion
of nucleonic energy to spalled Hydrogen. Thus, higher energy primaries result in greater
losses to the pion production and a corresponding decrease in the Hydrogen yield. The
calculated efficiencies are shown in Figure 5.2. We should also note that the Hydrogen
material deposited has D/H ~ 0.24 by number. Thus, using equations (5.2) and (5.3), we
find a global Hydrogen accumulation rate of

i AN —-0.22 B 1.78 _
Mg ~ 9 X 107 **Mg.yr (T%) (B—> P;3%R3P/° (5.15)
0

5.4 The Effect on White Dwarf Cooling

The spallation of atmospheric material in a pure Helium white dwarf star can have dra-
matic consequences for the cooling of such a star. This is because the efficiency of electron
conduction in the degenerate core means that the cooling rate of the star is determined pri-
marily by the efficiency of the radiative diffusion of energy through the thin, non-degenerate
surface layers of the star. This efficiency is determined by the atmospheric opacity, and so
the presence of a small amount of Hydrogen on the surface of the star can have a dramatic
effect on the cooling by virtue of the greater opacity of Hydrogen at the temperatures of
observational interest (Teg ~ 4000 — 15000 K).

The deposition of Hydrogen as described in section 5.3 takes place in a region on the
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Figure 5.2: Shower Developement: The left panel shows the energy in the shower as a
function of atmospheric column depth. This is defined as particles of energy E > 50 MeV.
The right panel shows the deposition of various kinds of Hydrogen particles as a function
of depth. Wy indicates ‘wounded Hydrogen’ and Wp indicates ‘wounded Deuterium’. The
curve labelled slow is shower particles with E < 50 MeV.
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Figure 5.3: Hydrogen Production Efficiency: The dotted line is our approximation
(5.14) to the calculated efficiencies, determined from our shower calculation.
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surface of the white dwarf ~ ygop deep, where ygop ~ 800 g.cm™?2

, corresponding to a
surface mass ~ 47 R2yg0p ~ 5 X 10712R2 Mg . The spalled Hydrogen will rise to the surface
under the action of gravitational separation (Schatzmann (1958)) and will form a surface
layer of pure Hydrogen on the surface. This occurs as long as the surface is radiative. The
formation of a convection zone will mean that only the material above the convection zone
will separate, the rest remaining fully mixed. Thus, the accumulation rate (5.15) will apply
only as long as there is no surface convection zone.

For a Helium atmosphere, convection starts at Tog ~ 25000 K, so that the star has ~ 108
years after it starts to shrink from its giant configuration till it forms a surface convection
zone. In this period of time, the material will form an amount of Hydrogen

—-12 __t_) (?&)_0.22 (9_)1'78 —3.56p2p—4/3
My ~ 107*Mg (106yrs 172 B, Py RQPdlays (5.16)

if the wind is ionic, and an amount

t B\? -
My ~ 4 x 1071M, ( - OGyrs) % (E&) P;*R3P; 27 (5.17)

if the wind is photons and pairs. Using the settling velocity expression of Alcock and

TNlarionov (1980a), the characteristic® settling time tset ~ Zstop/Vset(Zstop) is

Ay M/0.3M
teet ™~ 0-025}’68,1‘5—1__[_0____@

5.18
K10 L/L@ ( )

e is the opacity and A =1n (1 + 7.143—;:—5—7-) is the Coulomb logarithm in

Jo— K
where K10 = 5T

terms of the temperature T (in units of 10° K), column depth y (in units of 800 g.cm™3) and
gravity g (in units of 10"m.s~2). For all reasonable values of the parameters, this is much
less than the cooling time to formation of a convection zone, and so we may consider the
spalled hydrogen to reside on the surface in a layer of mass given by (5.16). We note that
this mass is of order of 20% of the entire stopping column mass, which represents a rough
upper limit to the amount of Hydrogen that will accumulate. This is because p-p collisions
result in losses to pion and electromagnetic cascades and thus the wind that impinges on

the white dwarf after the formation of this layer will lose most of its energy to the induced

3Note that this is different from the local settling time defined in section 2.6. Our expression here is the
time for sedimentation on length scales comparable to the stopping depth of the shower particles.
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electromagnetic cascade, resulting in an accumulation rate ~ 60% of (5.9).

A star modified in this manner will appear initially as a normal DA white dwarf, since
the photospheric mass Mphot ~ 4TR*/k ~ 6 X 10" Y"MgR2k70p- Figure 5.4 shows the
Hydrogen masses for various pulsar companions obtained using equation (5.16). The shaded
region indicates the range of photospheric masses expected from our white dwarf models
(Chapter 3). We see that all but the most widely separated binaries should have begun
their cooling sequence with at least a few optical depths of Hydrogen on their surfaces, even
if they lost all of their original Hydrogen envelope in the mass transfer process. Thus, we
expect nearly all of these stars to cool with a rate regulated by the Hydrogen opacity at
the surface.

As these stars cool, a surface convection zone develops. Depending on the amount
of Hydrogen on the surface, this could lead to the dredge up of heavier species into the
photosphere. In the case of Helium stars, this leads to the appearance of DAB or DBA
stars, depending on the relative abundances of Hydrogen and Helium. For Carbon core
stars, this could result in the appearance of DQ stars, such as has been observed in the
binary system PSR B0655+64 (van Kerkwijk and Kulkarni (1995)). Nevertheless, we expect
all such stars in millisecond pulsar binaries to contain traces of Hydrogen in the atmosphere.
The spallation of the molecular Carbon in the PSR 0655464 companion is unlikely to be
observable since the spalled material will be mixed with the entire convection zone, diluting
the products beyond observable limits. For PSR 0655464, a Helium layer of 10~*Mg and
a convective zone Carbon abundance of 1072, we estimate a destruction rate of Carbon

~ 5 x 107%Mg.yr~!, so that the ratio of products to Carbon ~ 5 x 10~° after 10° years.

5.5 Discussion

The primary intention of this paper is to justify the use of Hydrogen atmospheres in studying
the cooling of the white dwarf companions to millisecond pulsars. These cooling rates are
used to constrain the ages of the companions and therefore also the millisecond pulsars
(Chapter 4). One of the uncertainties in the age determination is the composition of the
white dwarf atmosphere. We have demonstrated that it is unlikely that any but the most
widely separated companions will have a pure Helium envelope and a correspondingly larger

uncertainty in the timing age, regardless of whether the pulsar wind is dominated by ions
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Figure 5.4: Spalled Hydrogen Masses for known White Dwarfs: The filled squares
are pulsar binaries in which the companion is thought to be a Helium core white dwarf.
The open squares are systems in which the companion is thought to be a Carbon core white
dwarf. The shaded region indicates the range of photospheric masses obtained from various
white dwarf cooling models. These masses assume a pulsar wind dominated by ions. The
vertical bar indicates the reduction in the Hydrogen mass if one assumes that the wind is
dominated by pairs and photons.
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or by electron-positron pairs or by high energy photons. This allows us to constrain the
white dwarf/pulsar ages using only our Hydrogen surface models.

The identification of observational signatures of spallation would allow us to study the
composition of the pulsar wind, in particular its ionic content. One notable consequence of
the above model for an ionic wind is the Deuterium-rich nature of the manufactured Hydro-
gen. Rapid gravitational settling will lead to the presence of a Deuterium layer between the
Hydrogen and Helium layers, shielded by the Hydrogen layer from the debilitating effects
of the pulsar wind. Although Figure 5.4 indicates that the bulk of this layer lies at optical
depths > 10 for most of the observed companions, the equilibrium scale height is ~ 40%
of the thermal scale height, which is comparable to the optical depth for modest optical
depths. Thus it is possible that the tail of the Deuterium layer could be observable. We
should note, however, that this will only result if the Hydrogen on the surface of the star is
the result of spallation. A pulsar wind acting on a primordial Hydrogen envelope will not
produce Deuterium in any observable amounts, because there is no surface Helium to spall.

Figure 5.4 also implies that the companion to PSR 0655+64, identified as a DQ star,
should nevertheless possess some Hydrogen on the surface, although it may be hard to

4

detect because of the low effective temperature®. Indeed, the determination of accurate

photospheric Hydrogen/Helium ratios in white dwarfs has long been a subject of much
uncertainty (see Liebert (1991), Bergeron et al. (1990)). Until this problem has been
solved, it is unlikely that one will be able to accurately determine the Hydrogen layer mass

on the surface of a white dwarf.
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Chapter 6 The Pulsar Planet Production

Process

Most plausible scenarios for the formation of planets around pulsars end with a disk of gas
around the pulsar. The supplicant author then points to the solar system to bolster faith
in the miraculous transfiguration of gas into planets. We here investigate this process of
transfiguration. We derive analytic sequences of quasi-static disks which give good approxi-
mations to exact solutions of the disk diffusion equation with realistic opacity tables. These
allow quick and efficient surveys of parameter space. We discuss the outward transfer of
mass in accretion disks and the resulting timescale constraints, the effects of illumination
by the central source on the disk and dust within it, and the effects of the widely different
elemental compositions of the disks in the various scenarios, and their extensions to glob-
ular clusters. We point out where significant uncertainties exist in the appropriate grain

opacities, and in the effect of illumination and winds from the neutron star.

6.1 Introduction

Like most things in astronomy, scenarios for the formation of planets and planetary systems

around pulsars can be divided into two classes:

1. Salamander scenarios (recall that the mythical salamander could survive, even thrive,
in fire). In these, the planets were formed as part of the formation of an ordinary main
sequence star, and survived its violent transformation to a rapidly spinning neutron
star. In this category we may place planets which: survive pre-supernova evolution
and the supernova explosion and recoil; spiral into an extended envelope; are the
remains of the ablation of a much more massive companion; or are captured from a
passing star. These scenarios (reviewed in these proceedings by Podsiadlowski) require
unlikely events or physical circumstances of controversial verisimilitude. More impor-
tantly, they have nothing new to teach us about planet formation, since such planets

would have formed in circumstances similar to the solar system, and the challenge is
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to get them to survive, not to make them. We shall thus consider these scenarios no

further, as they fall outside the statutory limits of our title.

2. Memnonides scenarios (recall that, according to Ovid (8), the Memnonides were birds
which annually constructed themselves from the ashes of the warrior Memnon, and
circled his funeral pyre). In these the planets are formed from the scattered remains
of a disrupted, evaporated, ablated, or otherwise dismembered star (for a comprehen-
sive description of the proposed scenarios, see the review by Podsiadlowski in these
proceedings). Neutron stars surrounded by gaseous stellar remains are ubiquitous
in standard models of binary evolution, supernovae, and globular cluster pulsar for-
mation. White dwarf analogues are also ubiquitous. Understanding the evolution of
such gaseous remnants around degenerate stars is consequently of general importance,

whether or not they ultimately transfigure themselves into planets.

6.2 Synopsis of Memnonides Scenarios

In table 6.2, we summarize the Memnonides scenarios which have been proposed, listing for
each the physical properties of the initial gaseous disk (our personal favourite, number 5 in
the table, a suggestion of C. Thompson, is illustrated in figure 6.1). There are many sig-
nificant differences between the conditions in the gaseous disks produced by these scenarios

and the conditions in the Solar nebula.

1. The large luminosity of the central source. In all the scenarios, > 1072Mg is ac-
creted toward the neutron star. Averaged over a typical planet formation timescale
of 10%y (see below), this corresponds to an accretion rate of > 10~8Mg y !, giving a
luminosity ~ 1038 erg s7!, about the Eddington luminosity for the neutron star. At
0.4 AU from such a luminosity, the black body temperature is ~ 6,000 K, well above
the sublimation temperature for even the most refractory solids. To make planets it
is therefore crucial either to shield any coagulating dust and planetesimals from this
radiation, or more likely, to wait until the rate of accretion onto the central source
has dropped below 1071°Mg yr~!. In scenarios 2-5, naive application of standard

disk models (see below) would predict that most of the mass would try to accrete in
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Disk forms from disrupted
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Viscous evolution of disk:

most mass accreted inwards
most angular momentum and
a little mass move out. NS
spun up by accretion. Planets

form from outward diffusing mass.

Figure 6.1: Cartoon of Memnonides Scenario no. 5 of Table 6.2:. Steps 3-5 could
also occur in a globular cluster, during the close encounters which are believed to produce
many of the cluster pulsars and X-ray binaries. Steps 3-5 are also representative (with
modest changes of scale) of all the other scenarios in Table 6.2.
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< 10%*y. Since this would lead to an enormously super-Eddington luminosity, the bulk
of the mass evidently cannot be accepted by the neutron star, and must be ejected
from the system. It is energetically possible for the resulting wind to carry off the

incipient outer disk, and thus prevent planet formation altogether.

. The planets must be formed from the ezpanding, not the contracting parts of the neb-
ula in all the scenarios of table 6.2, except for no. 6. The planets inferred around
PSR 1257412 (Wolszczan & Frail 1992; Wolszczan, these proceedings) lie at radii
much larger than the initial radii of the gaseous disk. In standard viscous disk mod-
els, this does not present an insuperable difficulty, since the total angular momentum
J of the matter in the disk is nearly conserved (negligible angular momentum is ac-
creted onto the point-like neutron star), so Jg = Ma(t)\/GMa(t) = const. Since for
most reasonable viscosities, the bulk of the mass of the disk is near its outer edge, of

radius re(t), it follows that

Md(o)]2 .

ro(t) ~ 1e(0) [Md(t) (6.1)

As the mass of the disk drops through accretion, it must move outwards to con-
serve angular momentum. The fact that, at most (see worries about super-Eddington
winds in (1) above) ~ [r,(0)/0.4 AU]*/2 of the total initial disk mass reaches the radii
of PSR 12574+12’s planets means that in scenarios 1-4 (and to a lesser extent in
scenario 5), mass at the desired planetary radii is a dangerously scarce commodity,
requiring the planet formation to be quite efficient (see also figure 6.5). In some of
the models which have been proposed for the ionized parts of accretion disks in active
galactic nuclei (Blandford & Payne 1982, Blandford 1976) and adapted to protostellar
disks (K&nigl 1989), all of the disk’s angular momentum is removed in a magnetised
wind, and the disk mass simply accretes without any outward expansion of the disk.
If these models applied to the early evolution of the circumpulsar disks, they would
lead to the failure of all of scenarios 1-5 [no. 6 would survive, but in this scenario it is
difficult to explain the apparently high proper motion of PSR 1257412 (Wolszczan,
these proceedings)]. Those (including the authors) with an attachment to these sce-

narios might then take the existence of planets around PSR 1257412 as an indication
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that disks solve their angular momentum problem by viscous transport (e.g., via small-

scale magnetic cells), not by angular momentum ejection along a global magnetic field.

. The grain opacities could be quite different from those in the ISM and the protosolar
nebula. In Memnonides scenarios there is no dust initially present in the disk. In
the solar nebula, aboriginal dust nuclei from the interstellar medium (from the winds
of carbon and other extreme giant stars, and perhaps from supernovae) can simply
grow by sticking atoms they encounter to their surfaces. In a pulsar nebula, by
contrast, the gas must first supercool and nucleate grains. The high densities and
long evolution times (respectively thousands of times higher and longer than in red
giant photospheric winds —cf. Frenklach et al., 1989a, b for discussion of formation
of PAHs and silicon carbide grains in red giants) suggest that this should present no
difficulty. However, the different environment is likely to yield a different density of
nucleation sites and rate of grain growth. Grain radius a grows as & ~ 30 um yr~!
in solar metallicity disks with the properties shown in figure 6.4. Consequently, the
grain size distribution, and therefore the opacity x, could be very different from those
assumed in the opacity tables used in solar nebula models (and in the rest of this
paper). Simple classical nucleation theory (Salpeter 1974; note, however, that this
is rarely applicable! —cf. Frenklach et al. 1989b) would predict that the density of
nucleated grains scales roughly as the inverse of the cooling time, so that the grains in
the circumpulsar disk would be < 1072 times as numerous as in the protosolar disk,
but > 102 times more massive, i.e., > 10 times larger. To see the consequences for the
circumpulsar disk, define the viscous stress as ap (hence viscosity v = (2/3)ac?Q?
for a Keplerian disk of angular velocity © = (GM/r®)}/2 and isothermal sound speed
¢s), and equate the dissipation per unit area of the disk (see 6.4) to the radiation
flux diffusing out. This gives an implicit equation for the disk surface density ¥ as a

function of temperature and radius:

orp\1/2 3 /2
- () [ .o

where oy, is the Stefan-Boltzmann constant, T, the temperature at the midplane of

the disk, and p, the density there, p(r,Z, T) = ££/(2¢,). Since grain opacity is only
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weakly dependent on p, it follows that £(T) o a'/? (a!) for akpT/(hc) > 1 (< 1),
where a is the typical grain size, ky, the Boltzman constant, and h, Planck’s constant.
The grain size distribution thus determines the structure and evolution of the disk

once it cools below ~ 3000 K.

. The heavy element abundances may be quite different from solar. In scenarios 1 and
2, the disk may be formed almost entirely of heavy elements, with a mixture quite
different from cosmic (e.g., nearly pure C, O or Si). This dramatically increases
the mean mass per particle u in the neutral gas phase (recall that the thickness of a
thermally supported disk h o (T/ u)l/ 2), and the opacity in almost all phases, bottling
up the radiation and increasing the midplane temperature of the disk. Scenarios 3-5
can operate in globular clusters which have heavy element abundances as low as 1072
of solar. Over most of their evolution, such disks are much colder at given surface
density and radius than the solar nebula. But for the high central source luminosity,

these could form planets at smaller radii than Galactic systems.
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Jisk Risk  ZcolZy ZsirelZg Viys Ageof NSat  Occur in WD
Planet form. glob clust? analogue?
gem®s™) AU (fms™) ()

Solar nebula > 10% >10 1 1 20

Memnonides

Scenario initial

1. Supernova 10% 107 ~1007  ~ 1007 any 10° No No
fallback .

2a. NS disrupt WD 10%° 107 ~100 1 any > 108 Yes —

2b. WD disrupt WD 10%° 107 ~100 1 ~ 20(Pop ) AIC Yes Yes

3. Unstable xfer 10%0 10-3 1 1 any > 10° Yes Yes
disrupt compan.
M, ~01M,

4. Nonconservative 10%0 1072 1 1 any any Yes No
xfer/evap forms
circumbinary disk

5. Supernova 10% 10728 1 1 > 100 106 (tidal cap) (GC only)
recoil into
companion

6. Disk captured 10% 1 1 1 ~20 < 107 No Yes
from Be* wind

PSR 1257412 >10%%  gn04 — — ~2007  loB —> 1077

Table 1: Memnonides scenarios for pulsar planet formation
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In the particular application to PSR 1257412, scenarios 1, 2b, 5 and 6 require the pul-
sar to have evolved in a way which would before 1988 have been considered ridiculous, but
is now more fashionable (on phenomenological, not theoretical grounds). PSR 1257412
belongs to the distinct group of pulsars with low magnetic dipole moments and high spin
frequencies which are found (with the sole exception of PSR 1937+421) only in binary sys-
tems and in globular clusters (see review by van den Heuvel in these proceedings). These
differ from isolated Galactic pulsars both in being much older (> 108y vs. < 10”7y) and
in having accreted from companions. Before 1988, it was generally accepted that the sig-
nificant difference was the age difference, and that neutron star magnetic fields decayed
spontaneously (Narayan & Ostriker 1990). This belief was not hindered by an absence of
theoretical justification (cf. review by Goldreich & Reisenegger 1992). More recent data
and analyses of pulsar kinematics (Bhattacharya et al. 1992) and X-ray binary evolution
(Verbunt et al. 1990) suggest that the fields may not spontaneously decay. It has thus
become fashionable to argue that the significant difference between the high and low field
pulsars is not their age, but the fact that the low field pulsars have accreted (cf. Romani
1990). Though the observational and theoretical justification for this view are far from
compelling, they would permit a young, high-field neutron star to be turned into a low field

pulsar like 1257412, thus saving scenarios 1, 2b, 5 and 6.

6.3 Vicious Assumptions

In this section, we examine the transfiguration of the hot gas of a dismembered star into
a disk of gas large and cool enough to begin forming planetesimals. In doing so, we make

three major assumptions whose validity can be questioned.

1. Neglect self-gravity in the early stages of the disk evolution. In scenarios 1, 2, 3 and 5,
the disrupted companion initially forms (in a few dynamical times) a thick radiation-
pressure supported torus with an Eddington-limited luminosity (Evans & Kochanek
1989, Frank 1978, Abramowicz et al. 1978), which must last for at least

aM2

~ R(init )LEdd ’ (6.3)

TKH
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which is of order 10 y for a disrupted main sequence star, and of order 103y for a
disrupted white dwarf. In scenarios 2 and 5, the resulting torus is massive enough
that it is susceptible to the m=1 and 2 fission instability (the I-mode of Christodoulou
& Narayan 1992), and may gather itself in a few orbits into a single orbiting lump,
rather than an axisymmetric disk. In scenarios 1 and 3, the torus is less massive, but
as it loses internal energy and ceases to be supported by internal radiation pressure,
it becomes Jeans unstable (the J-mode of Christodoulou & Narayan 1992) and breaks
up into many orbiting lumps. Gravitational interactions between these lumps will
spread the lumps over a wider range of radii, where on a longer timescale viscosity
might be able to smear them back into an axisymmetric disk, now of much wider
radial extent, which would then be Jeans stable (see below). We assume that this
occurs, and begin our calculations with an axisymmetric disk which has lost its initial

internal energy (i.e. we start at t > 7xu).

. Neglect the effect of radiation from the neutron star and inner disk on the outer disk.
In scenarios 1, 2, 3, 5 and 6, the neutron star initially accretes at a highly super-
Eddington rate. As discussed above, the wind from the inner disk could then have
a dynamical effect on the outer disk, perhaps blow it away. Even as the luminosity
drops below Eddington, the neutron star and inner disk can still affect the evolution
of the entire disk. The surface density distribution and rate of radial spreading of the
disk are controlled in part by the thermal structure of the disk. If the temperature
drops more slowly than T o r™!, then the disk half-thickness h T1/213/2 increases
faster than !, i.e., h/r increases with r. This occurs, for example, in the inner regions
0.05

of the disk where bound-free (h/r o 1%8) and electron scattering opacity (h/r o r

dominate, and in the optically thin outer ice grain regions. When

dln(h/r) S 3 GMM e dIn(h/r) S 15GM

[ IR fl Ty .4
dinr 2 T dint rc? (6.4)

which is satisfied for all the regions mentioned above for r > 108 cm, the flux absorbed
from the vicinity of the neutron star exceeds the flux generated locally by viscous
dissipation in the disk. The temperature and vertical temperature structure of the

disk are then substantially different from those in standard disk models. Even if h/r
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decreases with r, radiation scattered down from a wind above the disk can provide
significant surface heating. The far infrared spectra of protostellar nebulae appear to
require such scattering (or some other means of heating the outer disk far more than
standard disk models predict —Kenyon & Hartmann 1987). The most serious effects
occur in the outer (ice-coated grain) regions. The surface heating can stabilize the disk
against convection, which is sometimes argued to provide the turbulent eddy viscosity
justifying an a-viscosity prescription (e.g., Ruden et al. 1988; see discussion under (3)
below, however). Furthermore, even a small fraction f (f ~ max[dIn(h/r)/dInr, 7],
where T, is the scattering optical depth between r and 2r in the wind above the disk) of
the central source luminosity L can sublimate the solid grains crucial for planetesimal
formation, if incident on the disk. Consider grains with a sublimation temperature
Teup = 10°T3 K. Graphite grains sublimate at Ts3 ~ 2 in the solar nebula, and at
Ts3 ~ 4 in the denser, C-rich environment of a disrupted white dwarf disk. Ice grains
sublimate at T3 ~ 0.2 in the solar nebula, and at Ts3 ~ 0.25in the disk of a disrupted

main sequence star. Grains of the given sublimation temperature will not form inside
rsub = 2(fL/10%erg s“l)l/sz‘a2 AU. (6.5)

Note that grains smaller than ~ 10 um are transparent to the keV X-rays from the neu-
tron star, but also radiate inefficiently at frequencies v ~ kT /h, so both heating and
cooling rates scale with volume for small grains; for larger grains, they scale with area.
Equation 6.5 applies roughly to both. We see that at the ~ 0.4 AU radius of the planets
around PSR 1257412, refractory grains cannot form until fL. < 103 erg s~ (i.e., fM <
2 X 1071%Mg y~1), and ice grains until fL, < 2x 103 erg s! (fM < 5x 1073 Mgy 1),
less than the current pulsar spin-down luminosity INQ ~ 2 x 103%erg s~! (as we dis-
cuss in 6.7, the pulsar wind luminosity is likely to be in such a penetrating form that
equation 6.5 does not apply to it). In gas of solar metallicity, the X-rays penetrate
only ~ 0.1g cm™2, less than 1075 of the total disk surface density > 10*g cm™2 at
0.4 AU required to make the planets of PSR 1257+12. The shielded inner layers of
the disk will then be heated by the inward-diffusing infrared reradiation from the
directly heated gas. When the infrared optical depth is high, the temperature of the

shielded layers can be somewhat cooler than (6.5) would indicate. Any illuminated
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but not sublimated grains with radii a < 0.4(L/10%8erg s™') cm will feel a radiation
pressure force exceeding the force of gravity, and can drive a wind from illuminated

dusty surfaces of the disk.

3. We adopt an o viscosity prescription. We assume the viscous stress in the disk to be
given by ap, with a a constant of order 1072-1071, and p the gas pressure. This gives
a viscosity
2 o

v =goc Q. (6.6)

In the ionized portions of the disk this popular prescription has been lent new re-
spectability by the demonstration by Hawley and Balbus (1991) and Balbus and Haw-
ley (1992) that any weak magnetic field in the disk will grow exponentially on the or-
bital timescale until it becomes dynamically important (forcing reconnection, or rising
buoyantly out of the disk).! A dynamically important field gives o ~ B2/(87p), and
models of flux loops (Coroniti 1981, Sakimoto and Coroniti 1989) suggest o ~ 1072,
In the outer neutral regions of the disk, turbulent convection has been suggested to
provide an a ~ 1072 in the optically thick regions of the disk (Ruden et al. 1988,
though in the linear regime convective modes carry angular momentum inwards, not
outwards, and thus do not have the characteristics of viscosity —Ryu & Goodman
1992). Ambipolar diffusion through a global magnetic field (Kénigl 1989) can also
remove angular momentum, but as discussed in 6.2, this does not act like a true

viscosity, and the disk does not expand outwards as required in scenarios 1-5.

6.4 Viscous Development

A thin viscous accretion disk operates as follows. Relative to disk material at some distance
r from the neutron star, matter closer to the neutron star is moving faster, and matter on
the outside moving slower. Across the mean free path of the viscosity (e.g., magnetic cell

or convection cell size, both of order the disk thickness h if @ ~ 1), matter on the inner

!The objection of Knobloch (1992) that the linear instability is strictly an overstability for non-vertical
fields is of purely semantic interest. With anyrealistic seed field expected in a disrupted star, the exponential
growth of the “overstability” for any field orientation will have reached the nonlinear phase simulated by
Hawley long before the linear overstability would have begun oscillating.
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fast track and the outer slow track share momentum. Thus the inner matter on average
loses momentum (hence angular momentum) and the outer matter gains it. The inner
mass, losing angular momentum, spirals inwards, accreting, while the outer matter will
move outward, unless there is matter beyond it to which it can in turn transfer its angular
momentum.

In the standard model of a neutron star accreting from a companion star orbiting it,
mass is lost from the companion at the L1 point, and forms an accretion disk around the
neutron star. Initially the disk is quite small (~ 0.1 the Roche lobe size), but as discussed
above, the outward transport of the angular momentum lost by matter accreting toward the
neutron star makes the disk expand outward until its edge is close enough to the companion
that gravitational torques can transfer the angular momentum back to the companion star.
The disk thus has a sharp outer edge, close to a resonance (Goldreich & Tremaine 1982,
Priedhorsky & Verbunt 1988, Whitehurst & King 1991). In the Memnonides scenarios (save
no. 6), there is no outer companion, and the disk is free to expand forever.

The time evolution of a disk of surface density ¥ and viscosity v (given, for our purposes,
by equation 6.6) is thus described by a diffusion equation

9% _30 (120 [ g 172 )
5% = 1 5r (r B [VEI‘ ] , (6.7)

(cf. Frank, King & Raine 1992) provided that we ignore winds from the disk, and inter-
pret v as the vertically-averaged viscosity. The energy per unit area produced by viscous

dissipation on each side of the disk midplane is

Fy = gZUQZ, (6.8)

which must be balanced by radiative losses if the disk is to remain thin. Substituting
(6.6) and equating to the radiation flux in the diffusion approximation (large optical depth)
then gives us equation (6.2), with k a Rosseland mean opacity. Equations (6.7), (6.6), and
(6.2), together with an opacity table k(p,T), and p = EQ/(2¢,) from vertical hydrostatic
equilibrium then give a complete set of equations for the evolution of a disk. Given X at
some 1, (6.2) determines T and hence all the other disk properties, including v(%,r) which

can then be substituted into (6.7) and evolved.
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spin up NS make planets

Figure 6.2: General Features of the Evolution of a Viscous Disk.

The general character of the evolution from a torus of radius R(init) (see table 6.2) is
as follows (see figure 6.2). Most of the mass rapidly accretes inwards, but a small fraction
of the mass (usually given by (6.1)) moves outwards to conserve angular momentum. At
some particular radius r > R(init), the surface density of the disk will initially rise (as the
outer edge of the disk approaches r), and then fall (as the outer edge moves beyond r, and
the mass of the disk continues to drop by accretion). The surface density at r > R(init)
thus reaches a maximum at a time ty,(r). At this time, the maximum mass is available to
form planets near r, provided that the disk is there cool enough to form grains. If it is not,
one must wait until it has cooled further, but the surface density and available mass will

then be much less.

6.5 Matched Quasi-Static Similarity Solutions

We have integrated the differential equation (6.7) directly (see 6.6), but we have found
that its solutions, even for disks with realistic opacities, can be represented well by analytic

(algebraic) solutions which we now describe. These allow us to quickly survey parameter
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space, and the effects of changes in opacity, composition, etc.
As described following (6.8), using the a prescription, the thermal and vertical hydro-
static equilibrium conditions for a given opacity, determine the midplane temperature T,
viscosity v and disk thickness h all as functions of the surface density and radius. For an

opacity law

K = Kop™T", (6.9)
we have that
9ako\ 7= [ k amim _2m4s  2m42
T = ( 0) b Ye—anim {)8—2n+m (610)
320y pmy
2 T
v = gag—:iﬁ%<9n°>s‘h+m ky ’ S eanm (Yot (6.11)
3 320y pmp
1/2
k T/2
b - ( b) i (6.12)
pmy Q

where ) = (GM/r3)1/ 2 is the Keplerian angular velocity, p is the mean particle mass in
units of my and oy, is the Stefan-Boltzmann constant.

Thus, we have the viscosity in the functional form
v =1%%P. (6.13)

Since for most opacities the viscous timescale (inflow time) decreases inwards, the inner parts
of the disk must have reached a quasi-steady state, with M = 37vYX nearly independent of
r. Since even at a maximal spin period ~ 0.7ms, a neutron star cannot have angular
momentum > 10%%rg s, loss (or gain) of angular momentum to it will not have a significant
effect on the total disk angular momentum in any scenario (except possibly no. 1). Thus
the total disk angular momentum J ~ %(r.)r2Q(r.) where e is ~ 0.7 times the radius of
the outer edge of the accretion disk. The viscous timescale there is t, ~ 12 /v, which is also
of order the time t for the outer edge of the disk to reach r.. Combining these equations,

we have

r. o t2/(4-2p+5a)32q/(4-2p+5q) (6.14)

M o t-1-1/(4-2p+5q)jl-a/(4-2p+5q) (6.15)
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These suggest the existence of more rigorous similarity solutions, which indeed there
are. Pringle (1991; see also Cannizzo et al. 1990) has shown that similarity solutions of
the Zel’dovich-Raizer type can be found for (6.7) when v is of the form (6.13), i.e. (6.11).
Two different types of similarity solution can be found depending on whether the mass or
the angular momentum of the accretion disk is conserved. The solution for the angular

momentum conserving case is given below.

B = Zox (LK) (6.16)
where x = (r/IO)l/za T = %Vorg—zzgt, f = X’I'—A and
a = 1/a (6.17)
b = l+tc (6.18)
3g+3—-2p
= T 1xq 6.19
¢ 1+¢q ( )
A = 1/(5q+4 - 2p) (6.20)
k = qA/(49+4 - 2p). (6.21)

The opacity table used here (all quantities in cgs units) is based on that of Lin &
Papaloizou (1985), with an electron scattering opacity added for high densities.

1. Electron scattering: k = k;, where k3 = 0.2(1 + X), and X is the mass fraction of

hydrogen. This opacity is valid for T > 4.55 X 108p2/5K.

2. Free-Free/Bound-Free: k = xpT 2%, where k2 = 1.5 x 102%. This opacity is bounded
from below by T = 1.76 x 104,01/ 21 K. Instead of the partially ionized opacity favoured
by Lin and Papaloizou, we approximate the ionization front as a discontinuous jump
into the molecular dissociation and grain evaporation regime, which is characterised

by the following two opacities.

3. k= kap?/3T3, k3 = 2 x 1078, In the temperature and density regime used here, this

opacity rarely comes into play, the transition usually taking place from opacity 2 to:
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4. k= /c4p2/3T_9, k4 = 2 X 1034, This opacity is bound from above by T = 3000 K, and
from below by T = 4.6 x 103p!/15

5. The next three opacities are due to various types of grains: & = k5T, k5 = 5 X 1073,
and bounded from below by T = 210 K. This is representative of the high-Z refractory

grains thought to be important in terrestrial planet formation.
6. k = kgT~7, k = 2 x 108, This is bounded below by T = 170K.

7. Below 170K, the opacity is represented by the ice grain opacity x = k7 T2, k7 =
2 x 1074,

These opacities map out a “phase diagram” in the T-p plane, as shown in Figure 6.3.

By associating a single opacity with a given range of density and temperature in the
disk, we can build an analytic model of the disk by linking the similarity solutions for
different opacities. Each similarity solution has two free parameters, ¥ and 7. The 7 value
of the outermost similarity solution is fixed by the disk outer radius, where ¥ = 0. The 7’s
of the inner solutions are fixed such that each similarity solution would have its edge at the
same place if it were extended to T = 0. The other boundary condition, i.e., that which
determines Xg, is that the accretion rate M remains constant across the boundary between
two similarity solutions. The accretion rate at radius r can be calculated from M = dg/0h
(Lynden-Bell & Pringle 1974), where g is the torque exerted by the outer annulus on the

inner annulus and h is the specific angular momentum at r. This leads to an expression
y 129 [ pr1/2514
M = 67ygr p [rp b)) q] . (6.22)
r

Except at the extreme edge of the accretion disk, each similarity solution may be charac-
terised by a power law of the form ¥ o r~®/ (1+a) and thus the accretion rate is constant
throughout most of the disk. Thus the outer radius and the accretion rate at the inner edge

define the patchwork accretion disk completely.
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Figure 6.3: The Phase Diagram: Here we show the phase diagram in T-p space, showing
the dominant opacity source in each region. ‘e.s.” is electron-scattering. The opacity below
the double lines at T = 170 K is due to ice-coated grains.
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Although a number of opacities are required for a full description, one can obtain an
idea of the behaviour of the disk at early and late times by considering just a single opacity.
The first practical early time approximation is to assume that the disk is dominated by
the free-free/bound-free opacities. The timescales over which this remains valid are of the
order of a year. While this is still not applicable to planet formation, one might expect this
solution to bear the main characteristics of the disk structure at early times. This solution
may also be used to calculate a quick lower bound on the mass in a given disk, since its
surface density drops faster at large radii than the properly self-consistent solutions. Using

opacity 2 from the above table, we obtain m = 1, n = —2.5, hence g = 0.5, p = 1, and so

from (6.14) and (6.15),
re oc t4/97%/° . M o t71/937/0 (bf/fF). (6.23)

For disks with re > 5 x 1013 cm, other opacities are required for a self-consistent descrip-
tion. Furthermore, to obtain significant disk mass for r. less than this, one requires super-
Eddington accretion rates. This means that matter arrives at the neutron star Alfvén radius
more quickly than it can be accepted. Hence there is likely to be a build-up of material
at the inner edge of the disk. How much of this is “blown-off” by the pulsar radiation
and how much builds up in a thick boundary layer outside the magnetosphere is a matter
that can only be decided by detailed modelling. With the magnetic field of PSR 1257+12,
the Alfvén radius rp ~ 4Rns. Hence the mass expelled is likely to be only ~ 4 times the
mass accreted. Thus, a significant fraction of the mass could pile up in a boundary “shield”
outside the magnetosphere.

The analytic solution from which the most concrete conclusions can be drawn is that
corresponding to the ice grain opacity, the low temperature regime that dominates the
outermost reaches of the disk. The approximation that the disk is dominated by this
opacity improves at later times and it is this approximation that is valid on timescales

required for planet formation. For this disk, m = 0, n = 2, hence q = 2, p = 0, and

re oc £3/732/7 M o t715/1438/T  (ice grain). (6.24)

1/3 “1/3 4 Mo 12/ -1/6
. =3.0x10M (ﬁ.) <lﬁ.> ( disk ) _ 25
fe = 3.0x 107 em { g7 0.6 10-3Mg Maag (6-25)
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1/6 ~1/6 / M. 5/4 M -1/12
50 a | disk
= 3. 2 il : 2
J=3.7x10%erg s (0.1) <0.6) (10—31\4@) <MEdd) (6.26)
t —36><103yr( Masai )( M )4 (6.27)
v ) 10_3M® MEdd ) ’

The inner regions of this disk will, of course, be hotter and described by different opac-
ities. Performing matchings at constant M as described above equation (6.22), we can
derive an evolutionary sequence for the complete disk, shown in figure 6.4. We note that
except at their very edges, these disks are stable against self-gravitational instabilities:
Q = Qc¢;/(rGZ) > 1 (cf. Goldreich & Tremaine 1982).

To apply these models to the PSR1257+412 system, we note that the total mass of the
two observed planets, M = 2 x 105Mg/ sin 1, requires a disk mass Mg > 2 X 107°Mg and
J > 2 x 10*8erg s. Since the planets are most likely to be formed from refractory elements
(see discussion following (6.5)), more realistic minimum disk mass and angular momentum
are larger than these by the reciprocal of the abundance of refractory elements (C, O, Si,
Fe).

For a given disk profile, the independent variables are the outer radius, the inner radius
and the accretion rate. There are two further parameters, the value of a and the value of p.
The latter parameter will be determined by the composition of the original material. For
the following discussion, @ = 1072 and the composition of the material is solar (x will vary
with the degree of ionization).

Figure 6.5 shows the distribution of disk properties in the M-T, plane, the natural co-
ordinates of the disk model. The solid lines indicate curves of constant total disk angular
momentum. These are the evolutionary tracks for disks with a given total angular momen-
tum. The dotted lines are lines of constant inspiral time from the edge of the disk, a rough
indication of the disk age. The important curves are the dashed lines. These lines represent
contours of mass in the region of the disk where grains have formed, and which lies within
1 AU. This mass was calculated by summing all the mass in that part of the disk dominated
by opacity number 5 above and which lay at radii less than 1 AU. This is (a generous es-
timate of ) the mass which would be available for the formation of terrestrial-type planets,
the most likely mode of formation for the planets of PSR 1257412 (see above).

The most favourable region of parameter space is thus that where there is the most

mass in grains inside 1 AU. For example, in the evolutionary sequence shown in figure 6.4,
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Figure 6.4: Disk Evolution Sequence: The sequence of quasi-static disks representing
the evolution of a disk with total angular momentum J~ 2 x 10°°gm cm?s~! is shown.
The dashed line lies at 1 AU. A: ¢t = 10%y, B: ¢t = 10%y, C: t = 10%y (see figure 6.5).
The temperature and physical state at each radius can be estimated by noting that each
discontinuity in ¥ corresponds to crossing one of the opacity boundaries in figure 6.3, and
the temperature increases from right to left (to smaller r). The outermost part of each disk
shown here is dominated by the opacity of ice-coated grains.
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Log X,

Log M

Figure 6.5: The Parameter Space Spanned by our Quasi-Static Disk Models: The
ordinate Xqu = (re/101 cm)l/z, where r. is the radius of the outer edge of the disk. The
abscissa is the accretion rate through the inner parts of the disk, in Mgyr~*. To good
approximation, a real disk evolves upwards to the right along the solid line of constant total
angular momentum J = 1059J50g cm?s™!. The solid lines of constant J are labelled in units
of Js0. The dotted lines are the viscous time at the edge of the disk, roughly the disk age,
and are labelled in years. The dashed lines represent the mass in the cold, refractory grain

disk that lies inside 1 AU, and are labelled in M. The letters A, B and C are the positions
of the three profiles in figure 6.4.
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the point at which the viscous evolution ends will depend on the grain growth in the disk.
However, contours of constant mass in the grain region in figure 6.5 show that planetesimal
formation would probably have to be completed before 2 x 10%yr, although one could
stretch this timescale to 2 x 10° yr if one assumed 100% efficiency in converting disk mass
into planets.
Notice that the mass constraint outlined above restricts the amount of disk angular

momentum to J ~ 10%°

erg s. If it is much higher than this, then there is never enough
mass in heavy grains to make planets. If it is less than this, then the ice grain disk forms

too early, leaving little time for planet formation.

6.6 Validity of the Matching Solutions

As a check on the accuracy of the matched quasi-static solutions described above, we have
also calculated the disk evolution using a finite difference scheme. We solve equation (6.7)
as transformed defining x = (r/R(init))}/?, and S = 3%, # = v/x* 8S/07 = 8?/0x*(SP),
where 7 = 3t/(4R?%(init)). To provide convenient stepsizes, we transform to a new radial

1/a

variable y = x*/2. The following difference scheme conserves both angular momentum and

mass explicitly:

g+l _ gn At y-l”a[ (Sﬁ)?ﬂ _ (Y?+1 - Yf—1)(s’7)?
. PooalAy (v —vh) (F -y )R - v)
SO
+—£—V)-Jr;—] : (6.28)
(Yj - Yj-1)

This scheme has the stability criterion At < (aAy)?/(25)y?*~2, and thus is second order
in space, despite appearances. With a single opacity law, the solutions of our scheme
rapidly approach the similarity solution (6.16) to very high precision. With multiple opacity
laws, comparison with the results of 6.5 is not quite straightforward, since the definitions
for opacities used in 6.5 completely cover the p-T plane, but not the ¥-x plane. Thus
for the numerical integration, we used a simplified version of the opacity table, with five
regions which cover the X-x plane. These regions are shown in figure 6.6, along with the
corresponding analytical patchwork solution. Such comparisons lead us to believe that the
results of 6.5 are reliable to within a factor of two —much better than the uncertainties in

the physics!
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Figure 6.6: Comparison of Numerical and Analytic Results: The state at t = 108, yr
of a J = 2.3 x 10%0erg s disk, started as an annulus at R(init) = 10! cm, is shown. The
solid curve is the numerical solution of (6.7). The dashed curve is the quasi-static analytic
solution with the same accretion rate. The dotted curves represent the transition boundaries
between opacities for the numerical solution. The definitions for opacities in 6.5 completely
cover the p-T plane, but not the X-x plane. Thus for the numerical integration, we used
a simplified version of the opacity table, with five regions which cover the X-x plane. The
modest differences in the opacities used in the two solutions exaggerates their differences.
Nevertheless, they track each other well.
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6.7 Conclusions

In the particular case of PSR 1257+12, scenarios 1, 2, 5, and 6 are constrained by the
requirement that the pulsar be spun up to its present 6 ms period. To spin it up requires
accreting

AM > 0.02P 2145 Mg, (6.29)

where the moment of inertia of the neutron star is 1043145 g cm?. This result is insensitive
to whether or not the field was initially low, or decayed as a result of accretion, since most
of the mass is required to make the last factor of two change in P: AM > IQ}/j, where j =
(GMr,)!/? is the specific angular momentum at the Alfvén radius, and ra < (GM/Q?)1/3
as long as spin up continues. The time to spin up to this period is bounded below by the

fact that the neutron star cannot accept matter at a super-Eddington rate, so
6 ___4/3 . .
tspin—up ~ 2 X 10°I45Pg 1o (MEdd/M) yr. (6.30)

With standard disk physics, as shown in figure 6.5, only disks with J > 10%! erg s maintain
the accretion this long. This would favour scenario 5 (or 3 and 4, in which the pulsar could
have been spun up at leisure before the disruptive event).

At the other extreme of the evolution, one may enquire what happens as the accretion
rate tails off at late times. For a pulsar with magnetic dipole moment pup = 10%7ua7
(PSR 1257412 has pa7 ~ 1), the Alfvén radius will be pushed beyond the pulsar’s light
cylinder when

M < M, =~ 107*242,(P/6 ms)""/*Mg yr . (6.31)

Since beyond the light cylinder, the ram pressure of the pulsar wind falls as r=2, more slowly
than the ram pressure of accretion, roughly o r5/2 (Ilarionov & Sunyaev 1975, Shaham
& Tavani 1991), the pulsar wind will then be able to break free, and prevent any further
accretion. The pulsar will turn off as an X-ray source, and turn on as a radio pulsar.

In the late stages of evolution of the solar nebula, Poynting-Robertson drag is often
invoked to clear dust from the young planetary system (Lin & Papaloizou 1985). In the
context of the pulsar nebula, this is much less effective once M < M, (6.31). The drag
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timescale is

2.2
4t ag Pgr

tpr = (632)

fabsLipsr
The difference here is that the penetrating part of the pulsar wind, mainly ultrarelativistic
(v > 10°% Kulkarni et al. 1992) electrons and ions, has a stopping column > 10%g cm™2.
Thus grains smaller than baseball size are transparent, and the fraction of the incident

pulsar flux absorbed, fabs x (agrpgr), 50 all such grains sink at roughly the same rate,
tpr ~ 10°riy v, (6.33)

so slowly as to be probably irrelevant.

In conclusion, we find that the scenarios listed in table refTabmem are just barely capable
of producing planets of the masses and semi-major axes appropriate to PSR 1257412, if the
disk approximations employed in solar nebula modelling are valid in these circumstances.
Such model disks are not capable of producing a massive planet at large radii, as is inferred
around the globular cluster PSR 1620-26 in M 4 from its apparently large p (Backer,
Sigurdsson, these proceedings). However, the effects of illumination by the central source,
its super-Eddington winds, self-gravity in early stages, and the problem of grain nucleation

in the nebulae bear investigation beyond our cursory discussion.
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Chapter 7 Pulsar Velocities

We analyse the existing proper motion data for pulsars and infer the distribution of birth
velocities for pulsars, taking into account the selection effects of the pulsar surveys and
treating censored data using survival statistics. We find that the mean birth velocity of a

pulsar is ~ 250 — 300km.s™!, rather than the 450 km.s~! found by Lyne & Lorimer (1995).

7.1 Introduction

The fact that pulsars have velocities much in excess of those of ordinary stars (a subset of
whom are presumably the pulsar progenitors) has been known for some time. The origin
of these velocities is not so clear. One possibility is that they result from the disruption
of a binary population (Gott et al. (1970), Iben and Tutukov (1996)), leaving the pulsar
with a velocity characteristic of the orbital velocity of the progenitor in the binary. The
problem with this scenario is that it has trouble explaining the largest observed velocities
(e.g., Phinney and Kulkarni (1994)). Another possibility is that the pulsar acquired its
velocity from an asymmetric supernova collapse, i.e., it received a natal kick.

Lyne and Lorimer (1994) have analysed the known sample of pulsar velocities in the
light of recent proper motion studies (Harrison,Lyne and Anderson (1993)) as well as the
new pulsar distance scale due to Taylor and Cordes (1993). They conclude that pulsars are
born with a mean speed of ~ 450 km.s~!. Although Lyne and Lorimer restrict their sample
to those younger than 4 x 10° years to avoid the selection effect pointed out by Cordes
(1986), they did not treat the selection effects that accrue from the flux limits of the pulsar
surveys or the limiting accuracy of proper motion determinations. We shall attempt to do
that here. Recently, Iben and Tutukov (1996) have also addressed this question, but in a
less systematic fashion than what we propose to use in this paper.

In this paper, we will restrict our analysis to those pulsars with velocities determined by
proper motion only. While scintillation data have been used to calculate velocities (Cordes
(1986), Harrison and Lyne (1993)) to within a factor of 2, we prefer to keep our sample

as homogeneous as possible, and so we exclude these data. We use the properties of well-
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known pulsar surveys to estimate the V/Vyax correction for each pulsar, making use of
survival statistics (Feigelson and Nelson (1985)) to treat those data with upper bounds
(section 7.2). This allows us to estimate the two dimensional velocity distribution of the
observed pulsar population and thus the kick velocity distribution taking into account the

differential galactic rotation in section 7.3

7.2 The Proper Motion Distribution

7.2.1 Selection Effects

The princeton pulsar database (Taylor et al. (1993)) now contains ~ 800 pulsars, 101 of
whom have measured proper motions or upper limits. The number of surveys responsible for
this profusion is also gradually increasing in size (in excess of 15). To do a proper treatment
of the selection effects for the full proper motion sample would then require modelling the
selection effects of a significant number of these surveys. Luckily, we note that most of the
proper motion pulsars were detected in the earlier surveys. By restricting ourselves to those
pulsars detected in the Molonglo 2 (Manchester et al. (1978)) and Green Bank/NRAO 1,2
and 3 surveys (Damashek et al. (1978), Dewey et al. (1985), Stokes et al. (1985), Stokes
et al. (1986)), we are left with 86 out of 101 pulsars. We note that 12 of the 15 pulsars left
out have P< 0.1 s (and only one of our restricted sample satisfies this criterion), which is
not surprising, since many of the later surveys focussed on finding faster spinning pulsars.
In performing this cut, we lose one young pulsar and all but one of the pulsars with spin-
down ages greater than 1 Gyr. This also means we are not affected by the possibly different
evolutionary histories of millisecond pulsars. We shall omit the one millisecond pulsar (PSR
0655+64) which does fall into our sample as well. Figure 7.1 shows the distribution of the
included and excluded pulsars as a function of period and velocity.

The observed pulsar sample suffers from two obvious selection effects, due to flux limits
and proper motion limits respectively. Figure 7.2 shows the distribution of inferred lumi-
nosities and transverse velocities. The lack of faint, fast pulsars (upper left corner) and
bright, slow pulsars (lower right corner) is evident.

To correct for this bias, we need to weight the pulsars according to the maximum volume
in which they could have been detected, i.e., using a Vyax weighting. To do this we need

to consider the detection efficiency of the various pulsar surveys. After Narayan (1987) (see
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Figure 7.1: Sample Definition: The filled squares indicate the pulsars that we include
in our analysis. The open squares denote those that are excluded. Since the purpouse
here is simply to demonstrate which pulsars are in the sample discussed, we omit any error
bars. Of the three excluded pulsars with P > 0.1s, two are recycled binaries, B0655+64
and B08204-02.
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Figure 7.2: Luminosity and Velocity for the Proper Motion Pulsars: We again
include all the pulsars with proper motions on this plot. The filled squares will be the ones
to which our analysis applies. The dotted line indicates a proper motion of 5 mas.yr—!
and flux 4 mJy. This line does not represent a cutoff over most of this diagram because
making a pulsar brighter at a given distance will move it to the right and making a pulsar
faster at a given distance will move it up, thus one can populate both sides of the line
with observable pulsars. Nevertheless, at the high luminosity/high velocity end, it should
represent the limiting case. It is also noticeable that, on average, higher velocity pulsars
have higher luminosities, and so will be overrepresented in an unweighted sample.
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also Dewey et al. (1984)), the minimum flux detectable is

(7.1)

where Ty, and Tg, are the system and sky noise temperatures, Sp is the flux normaliza-
tion, and W is the measured pulse width, where W, is the intrinsic pulse width, which is

broadened because of sampling, dispersion and scattering
W2 = Ws + Tszamp + T]%M + Tszcatt' (72)

Thus we calculate the minimum flux for a given survey in a particular direction. The param-
eters describing each survey were taken from Narayan (1987)' and Stokes et al. (1986). We
used the updated electron distribution model of Taylor and Cordes (1993) to calculate the
dispersion and scatter broadening along a given line of sight. This accounts for the bias due
to the flux limits. No such simple model exists for treating the proper motion limits. This
is because the accuracy of a given proper motion measurement depends on the vagaries of
the distribution of background radio sources near the pulsar position on the sky (Harrison,
Lyne and Anderson (1993)). As a crude model of this, we model the distribution of proper
motion errors in Harrison et al. using the distribution p(s) = exp(—x/10.5mas.yr™!). In
the Vyax calculations to follow, the proper motion cutoff is randomly selected from this
distribution for each line of sight. We also used simple limits of 5 and 2 mas.yr~!. This
introduces a variation of ~ 10km.s™! in the mean velocity of the young sample and about
30km.s~! in the old sample. Iben and Tutukov (1996) have also taken account of this
selection effect.

For each pulsar, we randomly place it in different directions and at different distances
with respect to the observer and calculate whether or not it would be detectable in any of the
surveys we consider. Thus, using this Monte Carlo integration procedure, we determine the
volume within which each pulsar could have been detected. These V.« values determine
the relative weights of each of the pulsars in the corrected sample.

A possible source of concern with this procedure is illustrated by Figure 7.3. The

1The formula for the sky background temperature (3.5) contains an error. The factor [1 + (b/ 3)2] should
be in the denominator.
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analytic flux limits do not describe the complications of the true detection limits perfectly.
In Figure 7.3 we find four pulsars detected by the Molonglo survey that lie below the
analytically described detection threshold for that survey. This will reduce the weight
accorded to these pulsars. To estimate the impact of this error on our results, we repeated

the analysis with these pulsars artificially ‘brightened’ to meet the flux limit expression.

1

The mean proper motion we infer for the young pulsar sample increases by only 7 km.s™*,

so this is not a significant source of error for our analysis here.

The V,.x correction is not without biases of its own. In particular, weighting pulsars by
their Vyax presupposes that the real distribution is distributed uniformly throughout the
galactic volume. However, the pulsars are born from a disk population with a scale height
of about 150-450 pc (Narayan and Ostriker (1990)). Thus, a population born with small
velocities will not expand to fill as much of the spherical volume as a fast population. The
above analysis then overcorrects for the slow pulsars (see Helfand and Tademaru (1977),
Cordes (1986), Lyne and Lorimer (1994)). In order to adjust for this, we consider the
maximum detectable volume to be limited in the vertical extent by the scale Zpax=Vitp,
where t; is the pulsar timing age. If this is larger than Deg, then there is no change in the
weight assigned to that pulsar, but, if Deq > Zmax, then we assume that we see the edge
of the distribution of pulsars of this velocity, and reduce the weight given to that pulsar
(see Figure 7.4). Furthermore, for young pulsars, we set a lower limit on Zma.y of 450 pc,
representative of the initial scale height.

In Figure 7.5 we show the distribution of velocities with age and the relative weighting

of each pulsar.

7.2.2 Survival Statistics

The Vmax correction takes care of the selection effects, but we still need to account properly
for those data which only have upper limits (‘censored’ data in the statistical lexicon). Of
our 85 pulsars, 20 fall into this category. Using only those data with actual detections will
bias our distribution to higher values as we will see below.

Following Feigelson and Nelson (1985), we use survival statistics to treat the effects of
our censored data. In particular, we use the Kaplan-Meier estimator (Kaplan and Meier
(1958)) to calculate the cumulative probability distribution of the transverse velocities. We

have modified this method slightly to take account of our V. correction (see appendix D).
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Figure 7.3: Selection Effects: The solid circles represent those pulsars detected in the
Green Bank surveys. The open circles are the ones detected in the Molonglo surveys. The
dotted lines indicate the approximate limiting flux as a function of P for DM=50 cm~3.pc
and the most sensitive Molonglo and Green Bank surveys. The dashed lines are for DM =200
cm_3.pc.
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Figure 7.4: Detectable Volume for Each Pulsar: Pulsars with small luminosities will
only be observable near the galactic plane, so that their V., will be spherical (neglecting
other selection effects for the moment). Pulsars with large luminosities will be observable
much further away, out to the limits of the disk that such a population, born in the galactic
plane, would fill. In this case, the spherical Vi,ay will be cut off above the limits of the disk
height given by z =V, X t.
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Figure 7.5: The Weighted Proper Motion Distribution: The size of each circle is
proportional to the logarithm of the weight accorded that pulsar. The vertical dotted
line indicates the dividing line between what we consider ‘young’ and ‘old’ pulsars. The
horizontal dashed lines indicate the range of values we infer for the mean proper motion of
the pulsars in each sample. The short horizontal solid line at left indicates the mean proper
motion value quoted by Lyne and Lorimer (1995).
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7.2.3 The Corrected Distribution

Figure 7.6 shows the cumulative probability distribution of observed transverse velocities
taking into account different levels of adjustment. With no adjustments, the mean trans-

1

verse velocity of the entire sample is 355 km.s™*, in agreement with the analysis of Lyne

and Lorimer (1995). The mean of the entire sample including all corrections is 195 km.s™*.
However, if we restrict the sample to pulsars with spin-down ages < 107 years, we obtain
a mean transverse velocity of 237 £ 49 km.s™! (51 pulsars). The mean velocity of the
complementary sample with ages > 107 years is 193 50 km.s~! (35 pulsars). In Figure 7.6
we see that the distribution for the old pulsars does have a larger low velocity tail, as one
might expect. If we place the velocity cutoff at 4 x 10° years, we find 226 + 71 km.s~! for
the 36 young pulsars and 198 4 53 km.s™! for the older pulsars.

A reduction in the mean velocity for old pulsars has been noted before by several authors
(Lyne and Lorimer (1995), Nice and Taylor (1995), Camilo et al. (1995)). We should
note, however, that when we refer to “old” pulsars above, we refer to those with spin-
down ages less than 10° years, i.e., we don’t consider millisecond pulsars because of the
increased complexity of treating their selection effects. Nevertheless, in a completely model-
independent way, we can demonstrate that these pulsars are old in a dynamical sense,
because they show the effects of the asymmetric drift (e.g., Mihalas and Binney (1981)).
Nice and Taylor (1995) have pointed out that the millisecond pulsar population might
possess this property, but it appears to be true for all pulsars with spin down ages > 107
years. This is shown in Figure 7.7. The effect has its origin in the fact that any population
with a significant radial velocity dispersion will rotate about the galactic centre more slowly
than the local circular speed (Mihalas and Binney (1981)).

To calculate this we restrict ourselves only to those pulsars with well-determined proper
motions (since large enough error bars can reverse the sign of the transverse velocity).
However, because we will not treat selection effects in this case, we shall use all the proper
motion pulsars that satisfy this and subsequent criteria, including millisecond pulsars. We
consider a cartesian coordinate system with origin at the sun, with positive x pointing
radially outward and positive y pointing in the direction of £ = 270°. We consider the
y-components of the transverse velocity, which measures the approximate azimuthal com-

ponent of the pulsar velocity with respect to the sun (strictly speaking, this should be done
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Figure 7.6: The Inferred Proper Motion Distribution: The cumulative probability
distribution P(V<V,) is shown for different degrees of correction. The dotted line shows
the entire sample with no V., weighting and no treatment of upper bounds. The short
dashed line is for only the 66 pulsars with detected proper motions corrected using our
Vmax correction (i.e., all those with only upper limits were left out). The long dashed line
is the properly corrected sample (with Vipax corrections and Kaplan-Maier estimator) but
only those with spin-down ages greater than 107 years. The solid line is the complementary
sample of only those pulsars with spin-down ages less than 107 years. The 95% confidence
levels for the corrected distributions lead to an uncertainty of ~ 0.05 in P for velocities <
300 km.s~!. Above that, the statistics become uncertain and we cannot say much about
the distribution.



179

for each pulsar in its individual local standard of rest, but this rough approach demonstrates
our result sufficiently well and remains the same if we reduce the sample radius). We also
exclude pulsars with d> 6 kpc and within 20° of £=90 or 270 (where transverse velocities
are primarily radial in the galactic frame) and of b = +90°. This leaves us with 37 pulsars
with spin-down ages from 10® - 101 years. The signature of the asymmetric drift is thus
an excess of positive Vy. Indeed, this is seen to striking effect in figure 7.7, where less than
10% of the pulsars older than 4 x 10° years have negative Vy. The ‘raw’ data is shown in

Figure 7.8.

7.3 The Kick Distribution

In section 7.2, we derived the corrected proper motion distribution appropriate to a volume
limited sample. Since pulsars receive their kicks in a rest frame rotating about the galactic
centre and we are interested in the low velocity tail, we need to consider the effect of
differential galactic rotation.

We consider a pulsar with a given kick speed Vg, with an arbitrary kick direction. Con-
sider a cartesian rest frame in the pulsar progenitor local standard of rest. The component of
the kick velocity Vg cos a perpendicular to the plane will be unaffected by the differential ro-
tation. However, the two velocity components in the galactic plane, Vgsinacos f = V§cos 8
and V3 sin 8, will be affected. If we restrict ourselves to distances small with respect to the
sun’s galactocentric radius (d < Rg), then we can describe the effects of differential ro-
tation using the Oort A and B coefficients. If we consider all pulsars to be born in the
galactic plane, we obtain the following expression for the 2-D velocity in the galactic plane

transverse to the line of sight:

d
Vrxy = Vgcos(£— ) + Re {RO(B —A) — Vicos B+ V§cos(£ — B) cos£ — 2AR, cos? E]

(7.3)

Combining this with V, = V( cos @, we obtain a proper motion distribution corresponding

to the kick distribution. We have also calculated the proper motion distribution using Monte
Carlo simulations for various kick distributions.

In Figure 7.9, we see that the low and intermediate range of our proper motion distri-

1

bution is best fit by a scenario where every pulsar receives a kick of 250 km.s™" in random



180

i I |||ll|] T T §|I|H T i llllll[ T T T TT7TT7] i 1 IIIIH‘ 1 1
1000 |- : —~
-5/10 b 20 /2 :
_ 5 0% f T |

E i ] 5] 3 E
=100 _ } ] .
2 - : o~ ___ 1957420 ]
g .z : E | [] S ]
;‘;d/ i 0 f // i

N L : /
- - : / -
)/ 1855+09
I L i
............................ B P TEY REREETTPEPETEPIEPEPRERY LA OPTTPEPRRRETEES
10 ://// =
I ® ]
I : 1937+21 )
1 ! |ll|||l ] | .IIIIII 1 i |ll||1| | i Illlt(l 1 1 lIIIII[ ] il
10% 108 BTG 108 10° 1010
T(years)

Figure 7.7: The Asymmetric Drift 1: The solid squares indicate a positive V, and
open squares indicate a negative Vy. The circled points indicate binaries. The horizontal
dashed line indicates the order of magnitude of the sun’s motion within its local standard
of rest, and velocities below this will experience a contamination of the asymmetric drift.
The vertical dashed line is at 4 x108 years, and represents an approximate division between
"young” and ”old” pulsars, namely those that show the asymmetric drift and those that
don’t. Of the young pulsars, only 33% have positive V,,, while 91% of the old pulsars have
positive V. The dashed line indicates the evolution of the mean asymmetric drift velocity
obtained from the calculation in section 7.4.
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Figure 7.8: The Asymmetric Drift 2: We show here the positions in galactic coordinates
of those pulsars with well-determined p, i.e., Ay < 0.5|u|. The solid circles are ‘young’
(1 < 107 years) and the open circles are old. The arrows indicate the motion of the pulsar
in 10° years given its current proper motion. The shaded regions around 1 = -90 and 1=90
are excluded from asymmetric drift considerations because the circular motion would be
largely along the line of sight. In this diagram the signature of the asymmetric drift is an
excess of negative y for —90 < [ < 90 and positive yj otherwise.
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directions. This scenario does, however, have a problem producing proper motions larger
than about 400 km.s™!. The distribution is also consistent with a Maxwellian distribution
of kick velocities with velocity dispersion of ~ 190 km.s™! (corresponding to a 3-D mean
of ~ 300km.s™!). However, it is inconsistent with the Lyne and Lorimer proper motion
distribution as well as the earlier form suggested by Paczynski (1990). Neither of these
analyses included a discussion of selection effects. Thus, our best estimate for the kick

velocity distribution is

2 v?
(Vi) = /2 Ly Viet (7.

v

with ¢, = 190km.s~ 1.

7.4 Long Term Evolution

Our analysis above is concerned solely with those pulsars with spin-down ages < 107 years.
To do the same for the older pulsar population will require the incorporation of the selection
effects of more pulsar surveys, as well as the effect of the death line and recycling of pulsars
in binaries. Nevertheless, if we assume that all pulsars originate from a population with the
velocity distribution (7.4), we may examine the long-term evolution of this population, in
anticipation of comparisons with future analyses. We have performed monte-carlo simula-
tions of such a population using a galactic potential from Paczynski (1990). The potential

contains two terms of the form

GM;
05+ ot 2+ 020

&(R,z) = (7.5)

where i=1,2 represent the disk and bulge respectively. A third component, the halo, is

2
83(R,Z) = ‘GIM° [%m (1 + %) + r?catan (i)] . (7.6)

< C rC

represented by

The various parameter values are given in table 7.1. The birth positions of the pulsars
are distributed exponentially in both galactocentric radius (R) and disk height (z), with
scale lenghts of 4.5 and 0.075 kpc respectively. The integration is performed using the
Burlisch-Stoer integration algorithm from Press et al. (1992).

To recreate the observations we ‘observe’ the pulsars from a galactocentric radius of 8
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Figure 7.9: Determining the Birth Velocity Distribution: The heavy solid line is the
corrected proper motion distribution. The light solid line is the proper motion distribution
obtained for a single kick speed of 250 km.s~! in random directions. The dotted line is for
a maxwellian and is also consistent. The short and long dashed lines represent the results
of Paczynski (1990) and Lyne and Lorimer (1995) and are both inconsistent.

a (kpc) | b (kpc) | rc (kpe) | M (Mg)
Bulge | 0 0.277 112 x101°
Disk 3.7 0.20 8.07 x10™°
Halo 6.0 5.0 x101°

Table 7.1: The parameters of our Galactic Model
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Figure 7.10: Monte Carlo Pulsars: The right half of this projection onto the galactic
plane is for the initial positions of the pulsars. The mirror images of the positions of the
same pulsars after 10° years is shown on the left hand side. The circles indicate the volumes
sampled by the ‘observations’.
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kpc, using a volume of radius 3 kpc about the observer (this distance is chosen to approx-
imately recreate the volume sampled by Harrison, Lyne and Anderson (1993)). To make
more efficient use of our simulations we can use 8 simultaneous observers spread equidis-
tantly around the circle R = 8 kpc (see Figure 7.10). As long as the observing volumes
don’t overlap, the observations from all volumes can be added together. We calculate the
transverse velocities after subtracting the circular velocity of the observer and derive the
observed velocity distribution as a function of time.

Figure 7.11 shows the evolution of the transverse velocity distribution with time. We
can compare it to our corrected observed distributions, both for ¢ < 107 years? and for
t > 107 years. Our older distribution here does not include the millisecond pulsars and has
a mean age of ~ 2 X 107 years. Hence this curve should not be interpreted as representing
the truly dynamically old population. Indeed, the high velocity end of the distribution
agrees well with the 107 year curve, although a low velocity excess has begun to develope.
To properly constrain the evolved distribution will require modelling the selection effects of
all the pulsars with proper motions.

An additional constraint on the evolved distribution is the magnitude of the asymmetric
drift. For the kick distribution (7.4) the magnitude is small (V, < 10km.s™1) to begin with,
reaching a maximum of ~ 80 km.s~! after 10® years and then reaching an asymptotic value
of ~ 60 km.s~! after 10° years. The evolution of this quantity is shown in Figure 7.7. Again,
we see we have the correct order of magnitude.

As we have noted before, a proper comparison of our results with the older pulsars will
require an analysis of the millisecond pulsar distribution. However, many of these pulsars
are in binaries (see, for example, Figure 7.7). Thus, we also need to calculate the dis-
tribution of kick velocities for the binaries. Similar calculations have been performed by
numerous authors for different kick distributions (e.g. Dewey and Cordes (1986), Brandt
and Podsiadlowski (1995)) and we shan’t go into details here. This calculation introduces
further uncertainties into the problem through the initial distribution in orbital period,
companion masses and pre-supernova helium star masses. Figure 7.12 shows a representa-
tive calculation for a binary that initially had a 1 day orbital period, a companion of 1 Mg

and a Helium star of 3.5 Mg which then exploded in a supernova, leaving a 1.4 Mg neutron

2We see that the 10° year distribution confirms our analysis of section 7.3
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Figure 7.11: Velocity Distribution Evolution: The solid lines, labelled by log(age), are
the time-dependant transverse velocity distributions produced by the initial three dimen-
sional distribution labelled Vg (dotted line). The dashed lines indicate the observed ‘young’
(lower) and ‘old’ (upper) distributions.
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Figure 7.12: Kicks in Binaries: The dotted line is the three-dimensional kick the neutron
star in the binary acquires at birth. 24 % of the binaries survive this, acquiring centre-of-
mass velocities given by the thick solid line. The rest of the binaries are unbound, with the
neutron star acquiring a velocity given by the thin solid line. The final orbital periods of
the bound systems range from 0.5 days to 10* days.
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star which also acquired a kick chosen from the distribution (7.4).

7.5 Discussion

Our approach above is designed to provide a robust, largely model-independent estimate
of the characteristic velocities of pulsars. We have tested the procedure with simple Monte
Carlo simulations using known distributions. We find that we can reproduce the mean
velocities to within ~ 30 — 50 km.s™!, although the exact shape of the distribution at
the high velocity (> 300km.s™!) is not well constrained. To better estimate the shape of
the distribution will require more detailed modelling and the use of more of the pulsar
population information, such as was done by Narayan and Ostriker (1991) or Bhattacharya
et al. (1991).

Another recent analysis by Iben and Tutukov (1996) finds a large birthrate of very slow
(< 10km.s™!) pulsars. Their treatment neglects flux limits (although some inferences are
made on the basis of a nearby sample only, their full analysis uses pulsars at all distances),
and treated the proper motion limits using various ad hoc analytic cutoffs. They also used
no upper age cutoffs, so that their large birthrate of slow pulsars was due to 3 old (t > 107
years) pulsars, which acquired significant weight because of the small likelihood of seeing
them. When restricting ourselves to ages < 107 years, we do not find any such low velocity
tail. Furthermore, we find that the flux cutoff is responsible for the detection limit of more
pulsars than the proper motion limit.

Some constraints on the nature of pulsar kicks can be obtained by analysing the prop-
erties of binaries containing neutron stars. Recently, in the light of the results of Lorimer
and Lyne (1995), Brandt and Podsiadlowski (1995) analysed the effect of the revised kick
distribution on the post-supernova orbital parameters of neutron star binaries. Their anal-
ysis indicated that an isotropically distributed kick velocity of 450 km.s~! was inconsistent
with the eccentricity-orbital period distribution of the observed binary population. How-
ever, a kick velocity of 200 km.s™! was perfectly consistent. Similarly, Wijers et al. (1992)
obtained an upper limit of 400 km.s™! for a characteristic kick velocity from an analysis of
the eccentricities of the known double neutron star binaries. Both of these results are in
good agreement with our analysis.

The most direct test of the pulsar kick velocities is to find the supernova remnant
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associated with the birth of a given pulsar. If the pulsar was born at the centre of a
circularly symmetric supernova remnant, we may infer a proper motion and thus a velocity.
Much work has been devoted to this (Caraveo (1993), Frail et al. (1994)), and the results
indicate velocities significantly larger than the mean velocity derived by other methods. In
fact, the mean velocity of the Frail et al. sample is 990 km.s™!, with a median of 480 km.s™1.
Whether or not this discrepancy with respect to our results is real depends on the veracity
of the various assumptions used to infer a proper motion from a supernova association.
Some of the problematic assumptions discussed by Frail et al. include the difficulty of
defining the shape of a remnant and the possible displacement of the supernova blast centre
with respect to the geometric centre of the remnant (possibly caused by expansion into
an inhomogeneous surrounding medium). It is illuminating, although not conclusive, to
note that the two pulsars associated with supernova remnants which have measured proper
motions are the Crab and Vela pulsars, with transverse velocities of 150 and 120 km.s™?
respectively (In particular, Frail et al. note that the methods used on other pulsar-remnant
associations would imply a velocity of 800 km.s~! for the Vela pulsar!)

A revised velocity distribution can possibly affect the results of statistical analyses of
the pulsar population as a whole. Indeed, it may even contribute to an explanation for
the conflicting claims concerning magnetic field decay. Narayan and Ostriker (1990) used a
Maxwellian distribution for their paper on the pulsar population as a whole. They used two
different populations of pulsars and their kick distribution was a function of magnetic field.
Their two populations had velocities that varied from 80-250 km.s™! for their S population
and from 20-100 km.s™! for their F population. The analysis of Bhattacharya et al. (1991)
also used a Maxwellian, but with a somewhat lower dispersion of 110 km.s™!. Our value
lies a little above these characteristic values, consistent with the fact that the dispersion
measure distances are now thought to be larger than those used in the above analyses.

One possible problem with our result lies with the lack of a pronounced low velocity
tail. This has implications for the retention fraction of neutron stars in globular clusters,
as well as the existence of some obviously low velocity pulsars with ages > 107 years (see
section 7.2.3). Globular cluster central escape velocities are < 50 km.s™! (and frequently ~
10 km.s~1). If all kick velocities are ~ 250 km.s™!, then no pulsars born from isolated stars
are retained! If the distribution is maxwellian, then the fraction retained is about 0.2%,

which is still extremely low! Yet, the retention fraction of neutron stars is claimed to be
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of the order of 10% (Phinney (1993)) or higher (Hut and Verbunt (1983)). However, it is
possible that pulsars born in binaries, either primordial or dynamically formed, could be
responsible for the pulsars found in globular clusters (see Hut et al. (1992)). Brandt and
Podsiadlowski (1995) find that ~ 17% of binaries remain bound if the kick velocity is 200
km.s™!, which is the right order of magnitude to explain the required mass in dark massive
remnants. However, this is likely to be an upper limit on the retention fraction because
even systems which remain bound can receive significant centre-of-mass velocities. In the
light of this, we should point out that the lack of a low velocity tail in our distribution is
not a result of the Vyax weighting. Of the 51 pulsars in our sample with ages less than
107 years, the lowest transverse velocity is 70 km.s™!. If there are young pulsars with very
small velocities, then they have not been measured yet. Another possible complication is
the creation of fast (P < 0.1 s) pulsars with initial timing ages > 107 years. The birthrate
of such pulsars is not constrained by our analysis because of both our age cutoff and the
restriction of our analysis to the early Molonglo and Green Bank surveys.

In conclusion, we have shown that the distribution of pulsar proper motions, corrected
for selection effects, is consistent with a characteristic kick velocity at birth of ~ 250-300
km.s~!. We find little evidence for a significant low velocity tail to the distribution. Our
method is largely model-independent, and hence robust in its reproduction of the mean
velocity and low velocity shape of the distribution. However, the shape of the distribution
at velocities > 300 km.s~! is not well constrained by this method. Our results are in good
agreement with the properties of binaries containing neutron stars and pleasantly close to
the value expected from numerical supernova simulations. However, our results may be in

conflict with the estimates for the retention of pulsars in globular clusters.
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Appendix A Low Temperature H and He

Opacities

Much of the following calculation is essentially a recapitulation of the work of Lenzuni,
Chernoff and Salpeter (1991), but with a variety of different compositions and, in a few
places, slightly updated physical inputs. We undertook this calculation to fill in the gap
in the opacity table left by the restriction of OPAL opacity calculations to temperatures
larger than 6000 K. This is because OPAL does not include the contribution of molecular
opacities, which becomes important for hydrogen at temperatures below 6000 K.

We calculate the opacity of a gas containing the atomic, ionic and molecular species H,
He, Hy, H™, He—, H'{, H;‘ and He' as well as electrons. We assume that the equation of
state is that of an ideal gas (comparison with the Saumon et al. calculations show that this
is a good approximation for p < 1072g.cm™3) and that LTE holds. Most of our partition
functions and cross-sections come from Lenzuni et al. (1991), although we have recalculated

some of the molecular absorption coefficients as described below.

A.1 JIonization Balance

The assumption of LTE means that we use the Saha equation throughout this calculation.
For the case of hydrogen atmospheres, this is sufficient because the region of parameter space
where pressure ionization occurs is not probed by the atmospheric models we require. For
a pure helium atmosphere, the opacity is low enough that pressure ionization can become
important. Where necessary we treat this using an abrupt transition from radiative to
conductive opacity. The use of the assumptions of ideal gas and LTE up to this point are not
terribly important because the helium radiative opacity is low enough that the atmosphere
remains approximately isothermal. The important factor is the density at which we begin
pressure ionization. We choose this to be p ~ 1 — 3g.cm™3.

Table A.1 shows the dissociation/ionization potentials used for each important reaction.

In Figures A.1 and A.2, we see the change in the equilibrium concentration of different



194

Reaction x1 (eV)
Hy, - 2H 4.478
H— Ht +e” 13.598

Hi - H+HT 2.643
Hi — Hy + H* || 4.355
H - H+e™ 0.755
He — He™ + e~ || 24.586

Table A.1: The Ionization potentials for the important reactions in an H-He plasma at
temperatures < 10% K.

species with temperature. The figures are for a mixture that is equal mass helium and
hydrogen. The basic trend shows that molecular hydrogen dominates at low temperatures
and high densities, while atomic hydrogen dominates at higher temperatures and lower
densities, eventually becoming ionized hydrogen. The minor species of ions never become
important for the equation of state, but are nevertheless important for the opacity, as we

3

shall see. The intermediate density case of 10~*g.cm™2 corresponds to optical depths of

order unity in the white dwarf atmospheres.

A.2 Collisionally Induced Molecular Absorption

The ground electronic state of the H; molecule has no electric dipole moment, so any
absorption of photons has to take place via electric quadropole transitions. Thus, at low
densities, molecular hydrogen is transparent to visible and infrared light.

At higher densities, however, collisions between an Hy molecule and a helium atom (or
H atom or another H, molecule) form a temporary ‘supermolecule’ with a non-zero electric

dipole and can thus absorb photons much more efficiently. The collision times are (Borysow,

Frommbhold and Dore (1987))

At~ 3x 1071 (—T——) o (A1)
3000K

which implies broad absorption with a characteristic frequency width

T 1/2
Av ~ (CAt)—l ~ 111Cm_1 (‘3‘“0—60—K> . (A2)
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Figure A.1: Ionization Balance 1: The solid lines refer to the various ionization states
of atomic hydrogen. The dashed lines refer to the various ions of molecular hydrogen.
The dotted line corresponds to helium. For these temperatures, helium remains completely
neutral. The curves represent the mass fraction of each species as a function of temperature.
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This line width is broader than the characteristic energy difference between rotational
levels ~ h/27rmpc(1A)2 ~ 70cm™!, but smaller than that between vibrational levels (~
(mp/me)l/2 Veot ~ 2900 cm™1). Thus, the absorption occurs in broad bands centred around
the rotational-vibrational transition frequencies of the Hy molecule. For H; — Hy collisions,
simultaneous transitions can occur in both colliding partners, which leads to absorption at
the sums and differences of these transition frequencies as well.

The opacity in the rototranslational (RT) and rotovibrational (RV) transitions due to

H, — He collisions is given by the expression
2
K(w, T) = %;_lr——n(Hg)n(He)w (1 - /) G(w, T)em™ (A.3)
c
where G is the spectral density given by

G(w,T) =Y > > Pus(T)C(INT'; 00’ (w — wavrsr; T) (A4)
vv/ JJ LA

where C is the Clebsch-Gordon coefficient linking the two levels involved in each transition,

P is the thermal Boltzmann factor

gJ e“EvJ /kT

PVJ(T) - (A5)

Zy,

and gf‘}"' is the absorption line profile for each transition. The quantum numbers v and J
label the vibrational and rotational energy levels respectively. The quantum numbers L and
) are the quantum numbers that result from an expansion of the vector separation of the two
colliding molecules/atoms (L) and the two nuclei of the molecule (}) in terms of spherical
harmonics. The reflection symmetry of the Hy molecule restricts A to even values!. The
absorption processes are linked by a selection rule L = A+ 1. This is because the absorption
or emission of a photon requires a change in the angular momentum of the system. A and
L represent the components of the orbital angular momentum along the Hj axis and the
H, — He axis respectively, so that the absorption of a photon changes the configuration.
The spectral density for the H, — H, interaction is somewhat more complicated due to the

possibility of double transitions.

YT (r + 6, ¢) = (-1)Y7 (6, 4)
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The dominant contributions to the opacity come from the transitions with low L and
X. We calculate the RT contributions for Hy — Hy using the code of Zheng and Borysow
(1995), which accounts for all v=v’ transitions for v=0-3. Our calculations of the Hy — H,
RV transitions use the results of Borysow and Frommhold (1990) supplemented by the
estimates of Lenzuni et al. (1991) for the overtones (e.g., v = 0 — 2) and double transitions
(vi =0 - 1,v; = 0 — 1). The Hy — He results are similarly obtained from the results
of Borysow and Frommhold (1989) and Borysow, Frommhold and Birnbaum (1988). An
example of the CIA spectra at 1000 K is shown in Figure A.3.

All our calculations assume binary interactions. At high densities, many-body effects can
alter the opacities. Lenzuni et al. determined that higher order effects are only important
for p > 10~ 2g.cm~3. This is not important because the hydrogen opacity is sufficiently large
that this region lies in the optically thick part of the atmosphere and the energy transport

is driven by convection for the atmospheres we calculate.

A.3 The Opacity Table

Now that we have an ionization equilibrium, we need to calculate all the possible opacity
sources, both from absorption and from scattering. We include molecular CIA absorption
as described in the previous section for Hy — H, and Hy — He. We also include bound-free
absorption from both neutral hydrogen and H™. We include the free-free absorption from
H, H™, H,, H; ,H3, He and He™. We also include Rayleigh scattering from H, H; and He,
as well as Thomson scattering. Finally, we also include the dissociation reactions for H,
and Hi. The cross-sections for these processes were taken from Lenzuni et al. (1991) and
references therein.

Figures A.4 and A.5 show the dominant opacity sources for a low density and inter-
mediate density environment. We see that molecular absorption becomes important for
high density and low temperature, while H™ dominates the opacity at higher temperatures,
despite its low abundance by mass.

Once we have monochromatic opacities, we need to calculate the Planck and Rosseland
mean opacities which will be used in our calculations and for comparison to other opacity

compilations.



199

~

10-5

I
-
-~

I T TTTTH
~
| IIIHI]

10-6

T 1 lIIHIl

! IIIIIH]

10-7

/py Py (cm~lam—=.s7!)

1078 =
10—9:_ RT RV RV \ =

“(Av = 0) Av =1 Av = 2\
10-10 . RV -

E \\ Av = 3 E

b \ —
10-11 1 1 1 i | 1 L 1 1 | ! \\1 I 1

0 5000 10 1.5x104

v(cm™1)

Figure A.3: The Collisionally Induced Opacity of Hydrogen: The solid line shows
the Hy — Hy CIA opacity, and the dashed line shows the Hy — He opacity. In both cases
the density dependence has been removed. The temperature for this case is T=1000 K.
The approximate positions of important infrared passbands are shown at the top, and the
various broad peaks are labelled according to the various transitions. The abbreviation am
stands for amagat = c/2/Loschmidts number = 6.45 x 107*% cm?/2571/2,
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Figure A.4: The Low Density Opacity: This figure shows the monochromatic opacity
at three different temperatures for a low density, equal parts by mass H-He plasma. We
see that, at low temperatures, the opacity is dominated by Rayleigh scattering, and then
at intermediate temperatures by the H™ ion and finally atomic H bound-free and free-free
opacities at higher temperatures. The heavy solid line indicates the total monochromatic
opacity in each panel. The dotted lines are H opacities and the dashed lines are He opacities.
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Figure A.5: The Intermediate Density Opacity: This figure shows the monochromatic
opacity at three different temperatures for an intermediate density, equal parts by mass,
H-He plasma. We see that, at low temperatures, the opacity is dominated by Rayleigh scat-
tering at short wavelengths, but that collisionally induced molecular absorption dominates
at longer wavelengths. As the temperature increases, the contribution from the molecules
drops away and the H™ and H opacities take over (middle panel) until the opacity is
dominated by the H™ absorption.
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1. The Rosseland mean opacity is defined by

KR o Grdv

and is used in the optically thick limit. It results from averaging the radiative diffusion

equation (which is valid at large optical depths) over frequency.

2. The Planck mean opacity is defined by

kB dy

and is used in the optically thin limit. This results from the frequency average of the

emissivity and Kirchoff’s law.

Figure A.6 shows the comparison between the Rosseland and Planck means calculated
above and the OPAL opacities of Rogers and Iglesias (1992). The curves join smoothly
onto one another in the region of common validity. At lower temperatures, the Planck and
Rosseland means start to differ significantly from one another as the dominant opacity source
shifts from H™ to Rayleigh scattering. The two means will differ when the monochromatic
opacity varies significantly in the frequency range of interest. This is because the Rosseland
mean calculation gives extra weighting to those frequencies which have small opacities. The
transition is shown by Figures A.7 and A.8. The density in both cases is p = 107 %g.cm™3,
so that they can be compared with Figure A.6. In Figure A.7, where the temperature is
6000 K, we see that the Planck and Rosseland means stress the same frequency range, and
thus the resulting mean values are similar. However, in Figure A.8, where the temperature
is 3000 K, the opacity at the peak of the two integrands differs by more than two orders of
magnitude, which is why the mean values differ significantly. For temperatures lower than
3000 K at this density, the deviation decreases again, because the dip at low frequencies is
filled in by the increase in molecular CIA opacities (at higher densities this will occur at
even higher temperatures). However, at higher densities, the strong molecular CIA opacities
can also lead to deviations between Rosseland and Planck means.

This is demonstrated in Figure A.9, where we have taken the ratio of Planck and Rosse-

land mean opacities. We see that at low densities and temperatures, the Rayleigh scattering
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Figure A.6: Matched Opacities: The solid squares are the Rosseland means we calculate
and the open squares are the result of the OPAL calculation. We see that there is excellent
agreement at these low densities. The Planck opacity starts to deviate for T < 4000 K, due
to the formation of molecules and the influence of CIA.
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leads to a significant difference while at high densities the CIA also leads to a large ratio.
At temperatures above 4000 K, the two mean opacities are in reasonable agreement. Thus,
we can calculate tables of Rosseland and Planck opacities for any hydrogen/helium plasma.
Figure A.10 shows some results for the two extreme compositions. The lack of molecules

results in a very low opacity for the helium atmosphere.
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Appendix B The Thomas-Fermi Model of High
Density Matter

In calculating our models, we found that the Fontaine et al. (1977) or Saumon et al. (1995)
tables did not extend to the highest densities we required. Thus, to obtain complete coverage
of the pressure-density plane, we calculated the equation of state in the high density limit

using the Thomas-Fermi model described here.

B.1 The Basic Physics

The Thomas-Fermi model incorporates the effects of a non-uniform electron distribution
about each ion by considering the material to be constructed out of identical cells (similar
to Wigner-Seitz cells) in which the electron motions are described by a degenerate Fermi
gas in an electric potential. This is equivalent to assuming the electron interaction energy
is much weaker than the kinetic or potential energies of the individual electrons (since the
degenerate gas describes non-interacting particles). The electron distribution is described
by

2 [ 2

ne = 47p*f(E)dp (B.1)
h3 Jo

where f is the Fermi-Dirac probability distribution function. In the non-relativistic case,

E = p?/2m, and so
= —8 (2m3)1/2 EY/?f(E)dE B.2)
e h3 e 0 ( ) ( *

Casting this in normalized terms and using A\, = i/mec, we get

_ V2 ( kT )3/2/°° 21/2dz (B.3)
fle = 7223 \m.c? o ez 41 ’
where z¢ = p?/2m.kT. This is related to the Fermi energy by
p?
Er = =1 —eg(r) (B.4)

" 2m,
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where ¢(r) is the electrostatic potential in which the electrons move, generated by the

Poisson equation

V2¢ = —4n [Zeb(0) — ene(r)] (B.5)

The Fermi energy itself, Ef, is constant with radius (otherwise electrons would move to
radii with lower Ef). Normally Ef is the argument of the Fermi-Dirac function, and the
change can be considered as simply a transformation of variables due to the fact that we
integrate over the kinetic energy p?/2m, rather than the full energy E¢. (This is perfectly
valid because we do an integral over momentum at fixed position (see equation (B.4).)) We

will also denote from now on

©  ztdz
In(Zf):./O m (BG)

The delta function in Poisson’s equation can be incorporated into an inner boundary
condition and combined with the result that the cell should be charge neutral at its boundary

to provide the well defined problem

V2 = 4+/2e < kT )3/2 L (71+ eqS(r)) (B.7)

T 1A \mec? kT
subject to
lim, ,ord(r) = Ze (B.8)
0¢
PR (B.9)

where a is the cell radius and 7 = E¢/kT. With the assumption of spherical symmetry, this

. . . 2 . .
is a one dimensional problem and V2¢ = %g—rz-rq&. We define a new variable ¥ via

Ef + eg(r) = ?:—Z‘I’ (B.10)

and rescale the radial variable using r = R x, where

7Z \1/3 mec? 12
R = (4\@) (kT) Ao (B.11)

%%\I’(x) =Ii/ (a%x—)) (B-12)

leading to the equation
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with
¥(0) = 1 (B.13)
ow) ¥ (B.14)
0x |y, X xg )
where

1/3 ,2/3 2
o = (4\/5) Z c (B15)

T Ae vVm.c?kT
and xo = a/R. Since the mass per cell is that of an ion, we can relate the cell volume to

the mass density, s7ad = A—I:E, and thus

B 3\/5( kT )3/2 Am,

P= 7 \mec? ZX3x3" (B-16)

The pressure is calculated from the momentum transfer across the cell boundary, i.e.,

2 [ 2PV
e — —f(E)d B.1
P=i [ 4mp? B (B)ap (B.17)
at r=a. This becomes

b _ 2V2KT ( kT )3/213/2 (n+ Eﬂf_)) (B.18)

" 372 A% \m.c? kT

or, cast in more familiar terms,

p 2lp(e¥x)) . (B.19)

"~ 3Ly 5(a¥(x0)) *
(note that we have applied the boundary condition in the arguments). This is just the
electron contribution to the pressure. There is also a contribution from the thermal motions

of the ideal ion gas, so that we have

_ pkT | 2V2kT

P= =
Am, 372 )3

( KT )3/213/2 (0¥ (x0)) (B.20)

mec?

To calculate all the thermodynamic quantities, we need to calculate the internal energy

of each cell as well. We start by calculating the total energy. The total kinetic energy of all
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the electrons is

a ) 2
— 2 2 P° 2
Ex _/0 4rr dr/) 4np 5 E:th(E)dp (B.21)

which can be reduced to

a I
Ex :/ 4rr?ne(r)kT LG (B.22)
0 Ty /a(z¢)
The electrostatic potential energy is given by
e > a4 Ze
Ep = ——5/ 4rr?drne(r)ge(r) — e/ 4rridrne(r)— (B.23)
0 0 r

where the first term is the electron-electron contribution (note the factor 1/2 to take care
of double summation over each interaction) and the second is the electron-ion contribution.
The electronic potential is ¢o = ¢ — Ze?/r. Combining Ey and E; (and adding in the ionic

thermal motion contribution) we get

a T &
By = KT + / 4rr?drng(r) (kTﬂm;%) - (§ + e¢(r)>) (B.24)
2 0 Lpm+gr) 20T

Casting this in terms of our calculating variables (and making it per unit mass rather than

per particle), this becomes

Etor = 3.099 x 10"3Tg (1 + 1) (B.25)
where
x : v v 1}
f= 1.333/ * x%dx [13/2 (a‘—II-> 0 513/928 [1 +2 (XO)] L/ (a—)] . (B.26)
0 X Ty X Xg X

We have used Helium (Z=2, A=4) and denoted T/10°K = Ts.
A further problem is that we really want the energy relative to the T=0, P=0 state,
which is not zero in equation (B.24). Thus U = E4ot(T,P) — E;o¢(0,0). The calculation of

this will be deferred to the next section.
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B.2 Mathematical Asides

We need to calculate the functions I,(zf). We use Gauss-Laguerre quadrature, which cal-

culates integrals of the form

/0 ” e *i(2)dz (B.27)

We can cast our functions in such a form by integrating the function

f e B.2
(@) =TT (B.28)
We can derive some useful limits.
1.z > 1
1 n+1

2. 20 ~0

Ln(zg) ~ (1 —27)T'(1 +n){(1 + n) (B.30)
3. z¢ <€ -1

In(zs) ~ T(1 +n)e™. (B.31)

The limit (1) is important, because it applies for x < 1, so that our equation becomes

iqﬂ'(x) N § (ﬁ‘_l’(_x)>3/2 (B.32)

X

This still yields a non-linear equation

203/2 ¥3/2

V= (B.33)
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In the limit of small x, however, ¥(x) ~ ¥(0) ~ 1, so that we get the solution
T(x)=1+T'(0)x+ 2043/2}{3/2 (B.34)

which we can use to generate initial values at finite x values, as long as we maintain the
constraint that the second and third terms remain much less than 1. Our method of solution
is to choose a value of ¥’/(0) and then integrate outwards until the boundary condition is
satisfied. In this way, for a given «, we can generate xo as a function of ¥’(0).

It turns out that we require a fairly large dynamic range in x to get good accuracy (i.e.,
small x to get good initial conditions and x of order unity or larger at the outer boundary).
Thus, we find it more convenient to transform to a logarithmic variable z = Inx. This leads

to the equation

T — ¥ = e¥l ), (ae™? D) (B.35)

with the boundary conditions
¥(-o0) = 1 (B.36)
U'(z0) = ¥(z0) (B.37)

Solving the above problem is not quite sufficient, as we must also perform the integral
over r to calculate the energy. Since we solve the above differential equations using adaptive
stepsize ODE integrators, it is inconvenient to try to then use the solution (whose solution
values are not guaranteed to be in any regular stepsize order) to calculate an integral. It
far easier to cast our integral in terms of a differential equation which we can then solve
simultaneously with the same ODE integrator. Actually, because the integral contains a
term ¥(xg)/Xo, which depends on the outer boundary (which isn’t known until the end of

the calculation), we have to split the integral into two differential equations

v
f=1.333 <f1 +1 39) (B.38)
X0
where
of z s 0.5398 —z —
—52— = e3 [:[3/2 (ae ‘If) — ‘Ei‘/—i— (1 + Q)e 11/2 (ae ‘P)} (B39)
6
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af. 0.5398 .
—-6?2 = 63 —WZ——I]_/?' (ae 1:[’) (B.40)
6

In addition, as a check of our numerical accuracy, we can also calculate the integral

/a 4rr’ne(r)dr (B.41)

which should yield Z (=2 for Helium), the ionic charge. This can also be cast in the form

of a differential equation

0Ze a¥
o :Zx211/2< ) (B.42)

x
where Ze(a) = Z. Figure B.1 shows an example of our cell calculation.

We need the T=0, P=0 limit to calculate the internal energy. Since a o Té/ 2, we once
again reduce our equation to

P3/2

"
V=~ (B.43)

This equation is analysed by Shapiro and Teukolsky (1983), pg. 34. The P=0 (correspond-
ing to the xo — oo) limit is given by ¥’/(0) = —1.5880710. Thus, a solution of this equation
with this initial value will yield our limit.

If we consider now the energy integral in the same limit, we get (ionic part drops away

when T=0)

SN iy [(z SEANCANGNE LG LS (2)3’2} (8.44)

oAl (mec2)3/2 0 5 3/\r 3r5/2 3 a r

There are three different integrals to be performed here. Since we have expressed things in
terms of 1, consider ¥” = A®3/2/x1/2, The integrals become (using integration by parts

and the equation for ¥"),

/Oa 24 (—?)5/2 _ % [%al/z\lf(a)s/z _ _‘?_%9)] (B.45)
/Oarzdrf://: _ %(\I’—ia;)"q’](o)) (B.46)
[ -
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T T TTHN T 1T T T T TTTTN T T TTTH T TTTT T T T T TT
¥(x)
1 —_
0.5 —
x ¥ (x)
O —
C 1 1 |||H|! L.l llllll[ I IHHI' 1 1 lllHll .| |HH|[ i IllHll 11 |IHHI 11 IlIT

101 10-® 10-% 10~ 10-¢ 105 10* 1073
X

Figure B.1: A Sample Solution: This shows ¥(x) and x¥'(x) for the case of T = 10* K
and initial condition ¥’(0) = —20.0, which corresponds to a density of p = 2 x 108g.cm~3.
The global solution is accurate to within 5%, based on the calculation of Z.
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In the end, this all reduces to

3 2
Etot = ?A2/3Z2e2 [Exé/z‘y(XO)s/z + ‘I"(O)] (B.48)
where A is not the atomic number but the normalization constant in our equation. Thus

we get
2

7 3
_ —10 (4
Etot = 1.0505 x 10 ( ) [15

5 x5 2 W (x0)%/2 + \1:'(0)] (B.49)

for the energy per particle, which has to be converted into energy per unit mass. The
equation has a power law solution ¥ ~ x~3 which does not satisfy ¥(0) = 1, but to which
the solution will tend at large radii. Thus x1/2¥5/2 _ x~7 and so the first term in the

integral tends to zero. Finally, we get
Eiot = —2.497 x 103 (B.50)

Thus,
U = Eiot + 2.497 x 10*3. (B.51)

We also expect to recover a couple of limits for our equation of state. For T=0,

I3/2(x) /11 /2(x) o x and ne o (T\I!’(xo))3/2 which means that
P x neT(x0) & 1o Tn?/3T~1 o n5/3 (B.52)

which is the completely degenerate electron gas equation of state. Similarly, for T — oo,
I, — constant, and so

P xn.T (B.53)

which is the ideal gas limit.

B.3 Thermodynamics

With the information provided by P and U, we can calculate the other thermodynamic

quantities we may require. We collect the formulae here for further information.
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The first important quantity is

olnT
Vaa = (81HP>S (B.54)
We consider
1 (61nP)
vad - OlnT g
. (6111P> +(31nP> (Blnp)
~ \8nT/, Olnp/p \0InT/g
dln
= X1+ X <—————31n,§)s (B.55)

We can use one of Maxwell’s relations to show that

dlnp (5‘8 )
= e B.
(aln T)s PT\ap ) (B.56)
and using the Thermodynamic identity,
oS U /0lnU
) = == B.
T(BP)p Pxt (81nT>p (B.57)
and thus
1 pUx, (aan)
= B.
Vo XTT Py \8InT/, (B-58)
The heat capacities can be derived as follows:
aQ au P x7 ( 1 )
= () (2} = AT - B.59
ov=57),= (o), = o7 (7 (8.59)

and

or = (80),-2(2),-1(%), (%), (228, (-3) (D),

PQ
= B.
pTvad ( 60)
where Q = x1/x,. Thus we get
Cp = PQ (B.61)

pTvad



Cy = Cp— —xT (B.62)

(B.63)
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Appendix C Secondary Energy Distribution

For a beam particle of mass m; and lorentz factor ; and a target particle of mass mj, the

lorentz boost to the centre of mass frame and the centre of mass frame energy are

_my+mm
’Yb . EO/C2 (C'l)
E 1/2
—CTO = (m% + m2 + 2m1m2'yl) (C.2)

For the purposes of our calculations here, the 7; is the beam lorentz factor after the re-
moval of pion losses in each collision. The product particles have masses m3 and my. The
energy available to them (E,) is Eg minus the rest mass energy of the wounded nucleus,
~ b (m; + my — m3 — my) c?. It is well known that the centre of mass energy of the prod-
ucts is uniquely determined to be

(E,/c?) + mi —m]
2m3E*/c2

V3 = (C.3)

%= [1 +(22) [ - 1]]1/2 (C4)

However, the products emerge at an arbitrary angle ¢’ to the beam direction in the centre

of mass frame and the transformation back to the laboratory frame yields

Y3 = Y37 [1 + B3 cos 8] (C.5)

yielding the distribution

-1/2

P(1s) = = [(15mB685)" — (v3 — 757)°] (C.6)

R
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Appendix D The Kaplan-Meier Estimator

We describe here the formalism set out in Feigelson and Nelson (1985).
Consider our data to be the set of n distinct values {z;}?,, where the z; are ordered
in the manner z; > =3 > -+ > Z,, where z; can be either a detected value or an upper

bound. Now, for a given value t, let
Pi=Plt <zigq |t <z

i.e., the conditional probability that t is less than z;1 given that it is less than z;.

Using this, we can calculate the probability that t is less than any given z; by
Plt<z;] = {P[t < zjyq |t < z5)

To calculate this, we need to estimate the P;. To start, P; = 1, since all values are at most
as big as z;. For any other z;, if it is a detection, then there are n — j + 1 values at most
as large as z, and all except z; are also at least as large as z;1;. Thus, we estimate
n—7j 1
n—3+1 n—71+1
If z; is an upper bound, then P; = 1 by following similar reasoning as above. Thus, we

have that

i1 1 5
Plt<az] =13 (1 - m)

where §; = 1 if z; is a detection, and 6(j) = 0 if z; is an upper limit. This is the Kaplan-
Meier (1958) estimator of the distribution function. In the case where we have ties in our

data (i.e., more than one measurement at the same value), this becomes

4.\ %
Plt] = Mzt (1 — n—:)

where n; = number of measurements < ;, and d; is the number of measurements at the
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value z;.
We also want to calculate the mean of velocities. Since p(x) dx = AP, the mean of a

quantity x is given by

[e o] o0
<:c>:/ a:dP:/ Pdz
0 0

where we have integrated by parts. Thus we estimate the mean by

N
<V >= > Plzi](zi — zi-1)
=1

and we take zq = 0.
To include a V/Va, weighting, we adjust the number of "counts” at each value ac-

cording to the weights w(j), and thus we have

o=r
BT ek
In calculating the error on this new estimator, we note that we have artificially increased
the total number of observations fed into the sum and thus have reduced the error by a
factor v N. We remove this artificial error but lose some of the rigour of the confidence

limits quoted in Feigelson and Nelson.



